Enhancing Privacy and Security on the Extensible
Internet

William Lin

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-75
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-75.html

May 12, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to thank Professor Scott Shenker and the other members of the
Extensible Internet group for their guidance and collaborative efforts
throughout my research. | would also like to thank my friends and family for
their unconditional support during my studies.

Enhancing Privacy and Security on the Extensible Internet

by William Lin

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

=

Professor Scott Shenker
Research Advisor

May 12, 2022

(Date)

k ok ok ok sk ok ok

fagt b

Professor Aurojit Panda
Second Reader

April 29, 2022

(Date)

William Lin
May 12, 2022

William Lin
April 29, 2022

Enhancing Privacy and Security on the Extensible Internet

William Lin
University of California, Berkeley
will.lin@berkeley.edu

Abstract

The Extensible Internet (EI) is an initiative to transform the
Internet architecture by introducing a new Interposition Layer
between L3 and L4 for services to be deployed on. Backed by
verifiably secure infrastructure, EI provides new opportuni-
ties to improve the privacy and security of Internet clients. In
this work, we address two challenges that the Internet faces
today: maintaining privacy in DNS lookups and ensuring the
integrity of third-party application servers. Specifically, we
design and implement services for EI to facilitate oblivious
DNS and remote attestation verification. We evaluate their
execution and demonstrate how EI can help mimic and de-
ploy these proposals without significantly compromising on
performance.

1 Introduction

The architecture of the Internet provides a primary service
model of best-effort packet delivery and has largely remained
static. Unfortunately, this service model alone is insufficient
for the extensive use cases of the modern Internet, which
consist of content and service-oriented applications for mobile
clients. Furthermore, the Internet lacks fundamental security
features to protect client privacy and security.

Private network operators have deployed in-network ser-
vices that provide additional functionalities, like caching and
load balancing, to accommodate for the Internet’s lack of
features. However, these services are restricted to private net-
works and are proprietary, making them incompatible with
the rest of the Internet. The explosion of in-network services
threaten to relegate the public Internet to a second-class, last-
mile delivery service.

The Extensible Internet (EI) [2] is a proposal that aims to
bridge the functionality gap between the public Internet and
private networks. EI introduces a new Interposition Layer
between L3 and L4 for a common set of public services to be
deployed on. This layer is supported by commodity machines,
called service nodes, which are run by traditional network
operators.

The verifiably secure infrastructure of EI presents new
opportunities to deploy services to increase the privacy and
security of Internet clients. In this work, we leverage EI’s
deployment model to tackle two privacy and security-related
challenges that the Internet faces today: (1) performing private
DNS lookups and (2) verifying the integrity of third-party
application servers.

The first challenge is motivated by the lack of privacy in
traditional DNS lookup systems. Clients must send their DN'S
requests directly to a DNS resolver, which exposes their com-
munication partners and access patterns. A malicious resolver
can use this data to create invasive profiles on its clients
and potentially sell them to other parties. Oblivious DNS
(oDNS) [9] aims to solve this issue by adding an additional
forwarding node in between the client and the DNS resolver.
However, deploying oDNS requires extra infrastructure to
support the additional nodes.

The second challenge is motivated by the practice of pub-
lishers outsourcing the deployment of their applications to
third-party platforms, like Amazon AWS. As a result, hosting
platforms become prime targets of attack for both internal
and external attackers. In these environments, remote attesta-
tion [3] can add a layer of protection by enabling clients to
check the integrity of the application before communicating
with it. Unfortunately, adopting remote attestation at a large
scale introduces its own issues. For every application that
needs to be verified, the client must somehow know the hash
of its correct code. Developers must distribute this informa-
tion to every client on every update through a separate channel
(which could be compromised itself). Deploying verifiable
applications thus run into significantly scalability and latency
issues.

The challenges that oDNS and remote attestation face have
limited their adoption on the public Internet. In the following
sections, we describe how EI can help address these barriers
through services deployed on its platform. We design two
services for EI to help facilitate o DNS lookups and remote
attestation verification. Finally, we evaluate them to demon-
strate their viability in a practical setting.

The remainder of the paper is as follows:

* In Section 2, we provide additional background behind
oDNS and remote attestation and the challenges limiting
their adoption. We also introduce EI and highlight the op-
portunities for deploying privacy and security-enhancing
services with its framework.

* In Sections 3 and 4, we introduce the high level overview
of the oDNS service and the remote attestation service.
We highlight their designs and the motivations behind
them.

¢ In Sections 5 and 6, we describe lower-level details of
our implementations and present benchmarks showing
their performances in different setups.

2 Background and Motivation

2.1 Domain Name System

The Domain Name System (DNS) is used to map human-
readable domain names to IP addresses. The issue with tradi-
tional DNS name resolution is that clients must compromise
their privacy to use the system. They send DNS lookup re-
quests directly to a DNS resolver, revealing their communi-
cation partners and access patterns. The client can only hope
that the DNS resolvers do not abuse this information.

2.1.1 Oblivious DNS

Oblivious DNS (0DNS) [9] addresses the privacy issues of
DNS lookups by adding an additional layer of indirection
between the client and the DNS resolver. In an oDNS setup,
there are three independent parties: a client, a forwarder, and
a DNS resolver.

An oDNS lookup can be summarized as such:

1. The client encrypts their DNS request such that only the
DNS resolver can decrypt it.

2. The client sends the encrypted request to the forwarder,
who then forwards it to the DNS resolver.

3. The DNS resolver decrypts the encrypted request to ob-
tain the request contents.

4. The DNS resolver performs a normal DNS name resolu-
tion to obtain the DNS response.

5. The DNS resolver encrypts the response such that only
the client can decrypt it.

6. The DNS resolver sends the encrypted response to the
forwarder, who then forwards it to the client.

7. The client decrypts the response to retrieve the response
contents.

If the DNS resolver does not support encrypted DNS re-
quests, then the setup requires an additional node (the oDNS
resolver) to sit between the forwarder and the DNS resolver.
The oDNS resolver performs cryptographic operations on be-
half of the DNS resolver, decrypting requests and encrypting
responses.

oDNS protects the privacy of its clients by disassociating
the identity of the client from the contents of their requests.
The forwarder knows who the client is but does not know what
the client is requesting because the DNS request is encrypted
for the resolver. The resolver knows what the client is request-
ing but does not know who the client is because the packet
comes from the forwarder. Assuming that the forwarder and
resolver do not collude, no single party can construct a profile
mapping a client to their requests.

2.1.2 Challenges

Although oDNS addresses the privacy problems that tradi-
tional DNS resolution suffers from, there are still challenges
slowing its deployment. First, while oDNS can reuse exist-
ing DNS infrastructure to perform name resolutions, oDNS
still requires extra servers running oDNS code to support the
intermediate nodes.

In addition, oDNS is still vulnerable to a sufficiently pow-
erful network adversary, like a government entity. If an adver-
sary can compromise both the forwarder and resolver, then
they can easily link a client to their DNS request. Even net-
work adversaries observing traffic going into and coming out
of the forwarder and resolver can compromise privacy through
timing attacks. For instance, suppose the adversary observes
that a forwarder receives an oDNS request and observes a
packet going from the same forwarder to a resolver. Any
name resolution soon after from the resolver can be linked
back (with some probability) to the original client. This attack
defeats any privacy gains of oDNS.

2.2 Hardware Enclaves

Third-party applications running on remote servers risk be-
ing compromised by malicious attackers, like server opera-
tors. Hardware enclaves add an additional layer of protection
against such attacks by providing a shielded execution envi-
ronment for applications to run in. The shielded execution
environment maintains the confidentiality and integrity of a
program’s state, even against a compromised operating system
or hypervisor. These guarantees make hardware enclaves an
attractive option for securely outsourcing application runtimes
to untrusted third-party platforms. Examples of hardware en-
claves include Intel’s Software Guard Extensions (SGX) [3]
and AMD’s Secure Encrypted Virtualization (SEV) [4]. For
this work, we primarily focus on Intel SGX enclaves due to
its extensive literature and existing tooling.

2.2.1 Remote Attestation

Hardware enclaves would be useless if the client is unable to
verify that the application is running on a legitimate enclave
and that the application code has not been tampered with.
As a result, hardware enclaves provide remote attestation
capabilities that enable clients to verify these conditions hold.
The client interacts with an application if and only if the
application has been checked with remote attestation.

For Intel SGX enclaves, the remote attestation process re-
quires the server to return a signed report, called a quote, that
is generated by its hardware enclaves. The report contains a
hash of the running code and is signed by a separate "quot-
ing" enclave. Upon receiving the quote, the client compares
the hash against a known, correct hash. The client also sends
the quote to a third-party attestation service, called the Intel
Attestation Service (IAS), to check that the report is signed
by a legitimate Intel SGX enclave. If the hashes match and
the signature is [AS-approved, then the client can establish a
secure channel with the server.

2.2.2 RA-TLS

RA-TLS [5] merges the Intel SGX remote attestation flow
with the Transport Layer Security (TLS) handshake process.
During a setup phase, the enclaved application generates a
new key pair and computes a remote attestation quote crypto-
graphically bound to the new public key. The application then
embeds the quote inside a new, self-signed TLS certificate.
During secure channel establishment, a RA-TLS handshake
is nearly identical to a TLS handshake. However, instead of
checking the certificate with a Certificate Authority, the client
instead extracts the embedded quote and performs remote
attestation. After verification, the TLS handshake continues
as normal.

2.2.3 Challenges

Despite the powerful guarantees of remote attestation on hard-
ware enclaves, there are still challenges with supporting it on
a large scale. First, the remote attestation process requires the
publisher to distribute up-to-date hashes of the application
code to every client that verifies the program. Depending on
how often the code is updated and how many clients there are,
the deployment process runs into clear scalability and latency
issues. The channel that the publisher uses to distribute the
hashes may also become a target for attack itself.

Second, for hardware enclaves like Intel SGX, remote at-
testation requires the client to communicate with a third-party
attestation service to validate that the attestation reports are
generated by legitimate enclaves. This third-party service
may become a bottleneck if many Internet clients rely on it to
verify every application they run.

2.3 The Extensible Internet

The Extensible Internet (EI) [2] is an initiative to add a new in-
network layer, called the Interposition Layer, between L3 and
L4. The Interposition Layer introduces new services to the
public Internet and are backed by commodity servers, called
service nodes, on the network edge. Unlike the overlay net-
works of private networks, the Interposition Layer is tightly
knit into the rest of the Internet, with traditional network oper-
ators managing service nodes as a part of their infrastructure.
All service nodes offer the same set of open source services
with limited levels of computation to operate at reasonable
speeds.

2.3.1 Threat Model

Because service nodes interact with potentially many clients,
they become compelling targets for internal and external at-
tackers. However, EI focuses on protecting against internal
attackers, as they are strictly more powerful than external
attackers; internal attackers have physical and login access to
the service nodes. They consist of entities like malicious ad-
ministrators and may try to steal sensitive client information
through observing machine state or injecting malicious code.

Side channel attacks that gain information through ob-
serving I/O or memory access patterns are out of scope, as
the noisiness of Internet traffic make these attacks signifi-
cantly less effective. However, if a service node does not have
enough clients, then it could theoretically employ defense
mechanisms, like ORAM [7], to mask access patterns from
observers.

2.3.2 Securing Service Nodes

Service nodes use hardware to protect against internal attack-
ers. Specifically, they run on processors that support hardware
enclaves, trusted platform modules (TPMs), and hardware
security modules (HSMs). The hardware enclaves ensure that
a malicious actor cannot observe or modify the state of the
service node. They also allow clients to verify the service
code is trustworthy through remote attestation. The TPMs
provide attestation capabilities to authenticate the underlying
platform. Finally, the HSMs store and protect secrets, like
encryption keys, that are needed for secure communication.
These hardware capabilities protect the service node from
internal attackers by isolating the service code from the un-
derlying platform. Hardware protections are already available
in a number of cloud platforms, making them accessible for
EI systems to use.

2.3.3 Opportunities

EI offers a set of secure servers that can provide valuable ser-
vices to Internet clients without requiring traffic to be routed
through private networks. Because services are open source

SN 1

SN 2

(1) oDNS Request

Client | (oDNS |

(2) oDNS Request

(3) DNS Request

(oDNS | DNS

(6) oDNS Response | Forwarder) | sy oDNS Response

| - Resolver
Resolver) | (4) DNS Response

Figure 1: A high level overview of the types of packets transferred during an oblivious DNS lookup on EI.

and service nodes are verifiable through attestation, clients
can trust service nodes to act as intermediaries on their behalf
to enhance individual privacy and security. Additionally, ser-
vice nodes can verify one another to form a secure network for
propagating data through EI. Finally, service nodes provide
services for multiple clients, so there may be opportunities to
amortize service costs through methods like caching. In this
work, we build on these benefits to implement services that
mimic existing proposals and address the challenges limiting
their deployment.

3 Oblivious DNS Service

Recall from Section 2.1.2 that a barrier for oDNS adoption is
the lack of infrastructure required to support its deployment.
EI can help alleviate this concern by providing a set of verifi-
able machines to deploy oDNS on top of. We construct an EI
service similar to the scheme described in [9]. Our oDNS EI
service is split into three components: the oDNS client, the
oDNS forwarder, and the oDNS resolver. The client machine
runs the oDNS client code locally, which helps translate DNS
requests into oDNS requests. Service nodes can act as both an
oDNS forwarder and an oDNS resolver. However, a service
node cannot act as both for a single oODNS request to maintain
privacy.

In our designs, we make the following assumptions. First,
we assume that there exists a public-key infrastructure (PKI)
in EI that allows clients to look up the public key of a specific
service node. Second, we assume that the client knows a set
of service node pairs, such that one may act as the oDNS for-
warder while the other may act as the oDNS resolver. Finally,
we assume that all service nodes involved have been verified
through remote attestation.

Figure | demonstrates the high-level overview of our oDNS
deployment on EI. We describe each step of the diagram in
the following sections. For our descriptions, we refer to the
locally-running oDNS client code as the client. We refer to the
service node running the oDNS forwarder as the forwarder.
Because the DNS resolver and the oDNS resolver are different
parties, we continue to use their full descriptions to distinguish
between them.

3.1 Initiating a Lookup

The client translates traditional DNS requests into oDNS re-
quests supported by EI. To initiate an oDNS lookup, the client
first generates a new session key and stores it locally. The
client chooses a service node to act as the oDNS resolver and
another service node to act as the forwarder. In the selection
process, the client ensures that they choose a pair of indepen-
dent but peered service nodes to prevent collusion between
the oDNS resolver and the forwarder.

The client symmetrically encrypts their DNS request with
the session key and encrypts the session key with the oDNS
resolver’s public key. The client concatenates the encrypted
session key, the encrypted DNS request, and other metadata
(like a request identifier and the target oDNS resolver) to form
the oDNS request. The client sends the oDNS request to the
forwarder (Step 1).

3.2 Forwarding the Request

Upon receiving an oDNS request, the forwarder records the
identity of the sender and maps them to the specific request
identifier. Doing so ensures that any oDNS responses with
the same request identifier can be routed back to the correct
client later on. Finally, the forwarder sends the oDNS request
to the oDNS resolver indicated in the request (Step 2).
While the forwarder learns the client’s identity, they do
not learn the content of the client’s actual request. The DNS
request is encrypted and the metadata contains only enough
information to forward the packet to the correct node.

3.3 Resolving the Request

When the oDNS resolver receives an oDNS request from
the forwarder, it uses its private key to decrypt the encrypted
session key and uses the session key to decrypt the encrypted
DNS request. The oDNS resolver forwards the DNS request to
a dedicated DNS resolver (Step 3) to obtain the DNS response
(Step 4). While the oDNS resolver can perform the name
resolution itself, leveraging existing DNS infrastructure is
preferable to avoid unnecessary I/O burdens on the service
node.

In this setup, the additional layers of indirection protects
the client’s identity. Both the oDNS and DNS resolvers learn
the client’s requests contents but do not learn the client’s
identity; the oDNS resolver sees the forwarder’s IP address,

while the DNS resolver sees the oDNS resolver’s IP address.
Neither can link the request back to the actual requester.

3.4 Returning the Result

The oDNS resolver encrypts the DNS response with the orig-
inal session key and sends it back to the forwarder with the
same request identifier (Step 5). The forwarder looks up the
original requester associated with the request identifier and for-
wards the packet back to the client (Step 6). Finally, the client
decrypts the encrypted response with their locally-stored ses-
sion key.

3.5 Defenses Against Global Adversaries

In the case of forwarder and oDNS resolver collusion, EI'’s
verifiably secure infrastructure prevents adversaries from ob-
serving or modifying the state of the service nodes to trivially
connect a client with their requests. However, they may still
compromise client privacy by observing network traffic and
using timing attacks. For example, if an adversary observes
an oDNS request from a client and soon after sees a DNS
request from a service node, then they can conclude with
some probability that the client sent the request. These types
of global attacks are a second challenge that oDNS faces.

While our design does not explicitly defend against such
an attack, we can easily add protections to help mitigate their
effectiveness in EI. The oDNS resolver can mask actual client
requests by generating dummy requests that mimic DNS traf-
fic. Because the oDNS resolver runs in a shielded execution
environment, an adversary cannot simply observe the state
of or modify the oDNS resolver to determine which requests
are fake and are for real clients. The details of how an oDNS
resolver can generate convincing traffic are out of scope for
this work, as they require a more in-depth analysis into DNS
request patterns.

4 Remote Attestation Service

As introduced in Section 2.2.3, the adoption of remote attes-
tation faces two challenges. First, the client must know the
most up-to-date hashes of the correct code they wish to verify.
Application publishers must distribute the hashes of their ap-
plications to every client on every update, which introduces
scalability and latency issues to deployment. Second, every
client must communicate with a third-party attestation service,
like the TAS, to verify the attestation reports. Dependencies on
a single third-party service may cause bottlenecks, especially
if the service artificially rate-limits the number of attestations
supported.

We leverage the deployment model of EI to address these
issues. We observe that service nodes can perform remote at-
testation verification on one another to form a secure network
for information to flow through EI. With a secure network, EI

makes the distribution of code hashes more scalable; instead
of distributing hashes to each client individually, publishers
communicate them with a small number of EI servers and
let the network distribute them to client-facing nodes. The
service nodes then help facilitate remote attestation for their
clients through a remote attestation service.

However, clients still need to retrieve the correct hashes of
the service node code to use the service. Fortunately, service
nodes are not updated as frequently as other applications, so
their hashes may be distributed through more expensive but
scalable methods, like operating system or browser updates.

For this work, we are not focused on the details of how
the hashes propagate through the network. Rather, we are
more concerned with how the service nodes can effectively
facilitate remote attestation in a service once the hashes are
already known by client-facing service nodes. We explore two
approaches of a remote attestation service: hash distribution
and attestation-checking.

Because the end-goal of remote attestation is for clients to
have a secure channel established with an application server,
we build our approaches on top of RA-TLS because it inte-
grates remote attestation verification into the TLS handshake
process. The RA-TLS handshake abstracts away the lower
level details of using remote attestation results in secure chan-
nel establishment. However, RA-TLS restricts us to remote
attestation for Intel SGX enclaves. Nevertheless, we believe
the high-level ideas of our designs translate to other hardware
enclaves with similar remote attestation flows.

4.1 Application Setup

On startup, an instance of the application running in an Intel
SGX enclave generates a new key pair and keeps it stored in
enclave memory. The enclave’s shielded execution environ-
ment prevents malicious actors from directly retrieving the
private key. Using the newly generated key pair, the runtime
generates a new RA-TLS certificate as detailed in Section
2.2.2 and in [5].

To ensure security, the private key should not be transferred
to parties outside of the enclave. If such restrictions hold,
the private key and the associated RA-TLS certificate are
bound to the specific instance of the application runtime. If
the application is rebooted, then the private key is lost and
the new instance must generate another key pair and RA-
TLS certificate. While it is possible to use other hardware
mechanisms to securely store the enclave secret, we opt to
use the simple case of instance-specific keys.

Note that a malicious third-party cannot use an RA-TLS
certificate from another enclave to establish a secure channel
with a client. Without the associated private key (which is
isolated in enclave memory), the RA-TLS handshake cannot
complete.

(3) RA-TLS
Application | Handshake Client Service

Server B Nod
(2) Certificate ode

(1) Request

L . Intel
Application Service Attestation
Server Node .
(3) Start @) Service
RA-TLS Attestation
Handshake Quote
(1) Request | |(2) Hash
A\

(6) Finish
RA-TLS
Handshake

(5) Verification

Client Result

Figure 2: The hash distribution approach of the remote attes-
tation service.

4.2 Hash Distribution Approach

A trivial approach for a remote attestation service is to simply
treat each service node as a hash storage and distribution
system. Figure 2 demonstrates the communication flow of this
approach. When a client wants to perform remote attestation
verification, they contact their local service node (Step 1) to
retrieve the correct hash (Step 2). The client begins an RA-
TLS handshake with the application server (Step 3) to retrieve
the RA-TLS certificate containing the attestation quote. The
client verifies the quote’s legitimacy with the Intel Attestation
Service (Steps 4-5) and compares the quote’s hash against
the trusted hash from the service node. If the hashes match
and the quote is verified, then the RA-TLS handshake can
complete (Step 6).

This approach addresses the scalability issue of clients
needing to have up-to-date hashes for verification; they can
now retrieve them from the EI network rather than directly
from the developer. However, every client still needs to com-
municate with the Intel Attestation Service (IAS) every time
they wish to perform remote attestation, potentially introduc-
ing a bottleneck in the system.

4.3 Attestation-checking Approach

Instead of requiring clients to verify applications themselves,
the service nodes can perform remote attestation on behalf
of the client. This approach has multiple benefits. First, only
service nodes need to regularly communicate with the Intel
Attestation Service. Clients infrequently perform remote at-
testation for their service node and leave the rest to the remote
attestation service. Second, the attestation-checking approach
can amortize the costs of remote attestation through caching.
The idea is that if a specific application instance has been
verified with remote attestation, then it does not need to be
verified again until a restart. Together, these benefits reduce
the reliance on the IAS to eliminate a possible bottleneck.

In this approach, when the client wants to verify an applica-
tion instance, they communicate with their local service node.

Figure 3: The attestation-checking approach of the remote
attestation service, assuming that the service node has previ-
ously cached required remote attestation results.

If the service node has not previously verified the application
instance, then it performs a new RA-TLS handshake with
the untrusted server. If the handshake is successful, then the
service caches and returns the RA-TLS certificate obtained.
For subsequent verification requests for the same application
instance, the service node can immediately return the certifi-
cate without repeating the handshake process. Figure 3 shows
the communication flow for the cached case.

The client uses the RA-TLS certificate from the service
node to establish a separate secure channel directly with
the application instance. During the RA-TLS handshake, the
client does not perform remote attestation process and can
instead use the verified RA-TLS certificate from the service
node.

S Implementation

We implement the oDNS service detailed in Section 3 on top
of the most up-to-date version of the EI framework. For our
implementation, we use AES-GCM [8] for the symmetric key
encryption algorithm for its ability to ensure both the confi-
dentiality and the integrity of the underlying plaintext data.
For our public key encryption scheme, we use RSA [6] with
2048 bit keys because of its availability in our cryptographic
libraries.

We also implement both approaches (hash distribution and
attestation-checking) of the remote attestation service detailed
in Section 4. Unfortunately, some limitations with our testing
infrastructure has limited us to building the remote attestation
service on top of an outdated version of the EI framework.
However, we expect that the general conclusions of the eval-
uation to remain the same. Our services use the Gramine
project’s [1] implementation of the RA-TLS library for the
handshake process.

6 Evaluation

6.1 Oblivious DNS Service

We examine the latencies of name resolutions in both standard
DNS and oblivious DNS. Each experiment performs name
resolutions for the top 10,000 domains from the Alexa Top
Sites list. We focus on learning the latency characteristics
of our requests, so we perform name resolutions one after

0.8

0.6
0
O 0.41

0.2

—— Standard DNS
. Local oDNS
0.0 """ oDNS
0 50 100 150 200 250 300

Latency (ms)

Figure 4: A graph demonstrating DNS lookup latencies with
different setups.

another and record the time between having DNS request and
having the DNS response. We compare three setups:

1. Standard DNS. The client performs traditional DNS
lookups without obliviousness.

2. Local oDNS. The client makes oDNS requests as de-
tailed in Section 3. However, the client machine runs the
oDNS forwarder and oDNS resolver locally. This setup
is not meant to be used in practice but rather serves to
demonstrate the overheads of our oDNS service without
network latencies.

3. oDNS. The client makes oDNS requests as detailed in
Section 3. The oDNS forwarder and oDNS resolver are
located on remote service node machines. This setup
imitates a real-world deployment of the oDNS service.

The machines for the client and the service nodes are hosted
by Google Cloud Platform. The client machine runs on a
n2-standard-4 machine with 16GB of RAM. The two ser-
vice nodes runs on a n2d-standard-2 machine with 8GB
of RAM and confidential computing (AMD SEV) enabled.
The oDNS client code, the oDNS forwarder, and the oDNS
resolver each run on a single core of their respective machines.
We use Cloudflare’s recursive resolver (1.1.1.1) to execute the
name resolution process for both DNS and oDNS experiments.
The round-trip time (RTT) latencies between:

¢ The client and the oDNS forwarder is 12-13ms.

¢ The oDNS forwarder and the oDNS resolver is 13-
14ms.

0.8

0.71
0.6 ./‘.‘/”
30.5’
9
c 0.41
g
@©
—10.31
0.2
—o— Non-El
0.11 Hash Distribution
—— Attestation-Checking

0.0

25 50 75 100 125 150
Attestations / Sec

Figure 5: A graph demonstrating how latency changes as
we increase the rate of attestation in different experimental
setups.

¢ The oDNS resolver and Cloudflare’s DNS resolver is
11-12ms.

¢ The client and Cloudflare’s DNS resolver is 11-12ms.

Figure 4 shows the results of our experiments. We see from
our Local oDNS experiments that running oDNS on EI in-
troduces relatively small overheads. The median overhead is
approximately 2-3ms, which is mostly attributed to the cryp-
tographic overheads of the public key decryption. The oDNS
setup with remote servers demonstrate larger performance dif-
ferences, with a median overhead of approximately 30-31ms.
The primary overhead from this setup comes from the two ad-
ditional network hops required to resolve oDNS queries. The
overheads of running in EI is relatively insignificant compared
to the network costs.

6.2 Remote Attestation Service

We evaluate the two approaches to our remote attestation
service from Section 4. We vary the rate of attestation and
record the latency time in between when the client wants to
communicate with an application server and when the client
has a TLS connection set up. For each rate of attestation,
we perform 512 rounds of verifications following a Poisson
arrival process to mimic the spiky behavior of Internet traffic.
We compare three setups:

1. Non-El. The client somehow already has the correct
hash of the application they wish to verify. They do not
use EI at all and perform remote attestation themselves.

2. Hash Distribution. The remote attestation service is
treated as a hash storage system, as detailed in Section
4.2. At runtime, the client retrieves the correct hash from
their service node and performs remote attestation them-
selves.

3. Attestation-checking. The remote attestation service
performs remote attestation on behalf of the client, as
detailed in Section 4.3. We assume that the clients access
the same application instance and that the service node
caches remote attestation results.

Our machine setup is as follows. The application servers
run in a Standard_DC2s_v2 virtual machine hosted by Mi-
crosoft Azure, using a single core with 8GB of RAM. The ser-
vice node runs on a n2d-standard-2 virtual machine hosted
by Google Cloud Platform, using a single core with 8GB of
RAM and confidential computing (AMD SEV) enabled. We
emulate multiple clients on a single e2-standard-8 virtual
machine hosted by Google Cloud Platform, using eight CPU
cores and 32GB of RAM. The round-trip time (RTT) latencies
between:

¢ The client and the service node is 20-21ms.

e The service node and the application server is 40-
41ms.

e The client and the application server is 30-31ms.

Figure 5 demonstrate the results of our experiments. At
lower rates of attestation, the Hash Distribution setup has a la-
tency overhead of approximately 30ms over the Non-EI setup.
The slowdown can be attributed to the additional round of
communication required for the client to retrieve the correct
hash from the service node. The Attestation-Checking setup
has the lowest latency and the highest rate of attestation out
of the three setups. The Non-EI and Hash Distribution setups
have significantly lower throughput because the Intel Attes-
tation Service (IAS) artificially limits the rate of attestation
during our experiments. The Attestation-Checking approach
does not run into this issue because it is not as reliant on the
IAS; remote attestation is performed only once and the cached
results are reused for later verifications. Caching also enables
lower latencies because the remote attestation process can be
skipped altogether.

7 Discussion

Our experiments demonstrate that EI can facilitate the adop-
tion of oDNS and remote attestation without significantly
compromising performance. As shown by our oDNS service
experiments, the primary latency overheads of oDNS on EI
come from the extra network hops, which are not related to
the EI framework. The extra hops are already part of the

oDNS construction and can vary depending on the physical
distances between the machines.

From our remote attestation service experiments, we
demonstrate two key points. First, our Hash Distribution ap-
proach adds relatively small overheads compared to the cost
of the overall remote attestation process. If the client wants
to perform remote attestation themselves, then the Hash Dis-
tribution approach can be feasible. Second, our Attestation-
Checking approach demonstrates the benefits of reducing the
reliance on the IAS and successfully eliminates a key bottle-
neck from our system.

These results show that deploying security-enhancing ser-
vices on El is a practical endeavor. While these services can
be deployed by themselves, EI helps scale them up without
significantly compromising on performance. For future work,
we may implement additional services to further improve
client privacy and security. One example of a new service is
one that has a Tor-like design for hiding the source of Internet
traffic. We may also expand on our current services. For ex-
ample, we can add a request generator for our oDNS service
discussed in Section 3.5.

8 Conclusion

In this work, we demonstrate potential use cases for EI to
enhance the privacy and security of clients on the public
Internet. We leverage EI’s unique position on the network and
its infrastructure to tackle challenges of existing proposals
and deploy services to help facilitate their operations on a
large scale. Specifically, we design, implement, and evaluate
two services built on top of the EI framework to assist with
oblivious DNS lookups and remote attestation. Through these
services and others like them, we believe that EI can help
make the Internet more private and secure.

References

[1] gramineproject/gramine: A library OS for Linux multi-
process applications, with Intel SGX support. https:
//github.com/gramineproject/gramine.

[2] Hari Balakrishnan, Sujata Banerjee, Israel Cidon, David
Culler, Deborah Estrin, Ethan Katz-Bassett, Arvind Krish-
namurthy, Murphy McCauley, Nick McKeown, Aurojit
Panda, et al. Revitalizing the public internet by making it
extensible. ACM SIGCOMM Computer Communication
Review, 51(2):18-24, 2021.

[3] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. IACR Cryptol. ePrint Arch., 2016(86):1-118,
2016.

[4] David Kaplan, Jeremy Powell, and Tom Woller. Amd
Memory Encryption. White paper, 2016.

https://github.com/gramineproject/gramine
https://github.com/gramineproject/gramine

(5]

Thomas Knauth, Michael Steiner, Somnath Chakrabarti,
Li Lei, Cedric Xing, and Mona Vij. Integrating remote
attestation with transport layer security. arXiv preprint
arXiv:1801.05863, 2018.

Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and An-
dreas Rusch. PKCS #1: RSA Cryptography Specifica-
tions Version 2.2. RFC 8017, November 2016.

Benny Pinkas and Tzachy Reinman. Oblivious ram revis-
ited. In Annual cryptology conference, pages 502-519.
Springer, 2010.

Joseph A. Salowey, David McGrew, and Abhijit Choud-
hury. AES Galois Counter Mode (GCM) Cipher Suites
for TLS. RFC 5288, August 2008.

Paul Schmitt, Anne Edmundson, Allison Mankin, and
Nick Feamster. Oblivious DNS: Practical Privacy for
DNS Queries. Proceedings on Privacy Enhancing Tech-
nologies, 2:228-244, 2019.

	Introduction
	Background and Motivation
	Domain Name System
	Oblivious DNS
	Challenges

	Hardware Enclaves
	Remote Attestation
	RA-TLS
	Challenges

	The Extensible Internet
	Threat Model
	Securing Service Nodes
	Opportunities

	Oblivious DNS Service
	Initiating a Lookup
	Forwarding the Request
	Resolving the Request
	Returning the Result
	Defenses Against Global Adversaries

	Remote Attestation Service
	Application Setup
	Hash Distribution Approach
	Attestation-checking Approach

	Implementation
	Evaluation
	Oblivious DNS Service
	Remote Attestation Service

	Discussion
	Conclusion

