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Abstract
Efficiently Designing Efficient Deep Neural Networks
by
Alvin Wan
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

A number of competing concerns slow adoption of deep learning for computer vision on
“edge” devices. Edge devices provide only limited resources for on-device algorithms to
employ, constraining power, memory, and storage usage. Examples include mobile phones,
autonomous vehicles, and virtual reality headsets, which demand both high accuracy and low
latency, two objectives competing for resources.

To tackle this sisyphean task, modern methods expend gargantuan amounts of computation
to design solutions, exceeding thousands of GPU hours or years of GPU compute to design a
single neural network. Not to mention, these works maximize just one performance metric —
accuracy — under a single set of resource constraints. What if the set of resource constraints
changes? If additional performance metrics rise to the forefront, such as explainability or
generalization? Modern methods for designing efficient neural networks are handicapped by
excessive computation requirements for goals too singularly and narrowly sighted.

This thesis tackles the bottlenecks of modern methods directly, achieving state-of-the-art
performance by efficiently designing efficient deep neural networks. These improvements
don’t only reduce computation or only improve accuracy; instead, our methods improve
performance and reduce computational requirements, despite increasing search space size by
orders of magnitude. We also demonstrate missed opportunities with performance metrics
beyond accuracy, redesigning the task so that accuracy, explainability, and generalization
improve jointly, an impossibility by conventional wisdom, which suggests explainability and
accuracy participate in a zero-sum game.

This thesis culminates in a set of models that set new flexibility and performance standards for
production-ready models: those that are state-of-the-art accurate, explainable, generalizable,
and configurable for any set of resource constraints in just CPU minutes.



To MY PARENTS

for loving and supporting me



Contents

Contents

List of Figures

List of Tables

1

Introduction

1.1 Evolution of Efficient Neural Networks . . . . . . . . .. . . . .. ... ...
1.2 Efficient Design for Efficient Neural Networks . . . . . ... ... ... ...
1.3 Thesis Outline . . . . . . . . .
Background

2.1 Manual, Efficient Design . . . . . . . ... ... oL
2.2 Automatic, Efficient Design . . . . . . .. ... oL
2.3 Concerns Beyond Accuracy . . . . . . . . ...
Searching an Octillion Neural Network Architectures in 24 Hours

3.1 Introduction . . . . . . . . .

3.2 Motivation . . . . . . ..
3.3 Neural Architecture Search for Spatial and Channel Dimensions . . . . . . .
3.4 Experiments . . . . . . ...
3.5 Implementation . . . . . . . . ...
3.6 Conclusion . . . . . . . . .

Jointly Searching Neural Architectures and Training Recipes
4.1 Introduction . . . . . . . . .. .

4.2 Motivation . . . . . . ..
4.3 Joint Architecture-Recipe Search via Predictor Pretraining . . . . . . . . ..
4.4 Experiments . . . . . . . .. e e e
4.5 Ablations . . . . ...
4.6 Implementation . . . . . . . ...
4.7 Discussion . . . . . . . e

4.8 Conclusion . . . . . . . .

i

ii

v

vi

= DN =

o O Ut O



5 Jointly Improving Accuracy, Generalization, and Explainability

5.1 Introduction

5.2 Motivation . . . . . . ...
5.3 Neural-Backed Decision Trees . . . . . . . . . .. ... .. ... ...
5.4 Experiments . . . . . . ... e
5.5 Interpretability . . . . . . ..o
5.6 Applications . . . . . ...
5.7 Ablations . . . . ...
5.8 Implementation . . . . . . . ...
5.9 Conclusion . . . . . . . ..

6 Conclusion
6.1 Review . . .
6.2 Impact . . .
6.3 Future Work

Bibliography

il

46
47
48
51
95
57
62
64
66

68
68
69
70

71



v

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
9.3
5.4
9.5
0.6
0.8
9.9
5.10
5.11
5.12

Differentiable Neural Architecture Search . . . . . . . . ... ... ... ... .. 11
How Channel Masking Works . . . . . . . . ... .. .. .. .. ... ... 13
Challenges in Channel Search . . . . . . . . . ... ... ... ... ....... 14
Challenges (and Solutions) in Spatial Search . . . . . ... ... ... ... ... 17
Minimizing Pixel “Contamination” in Spatial Search . . . . . . . .. ... .. .. 18
Searched FBNetv2 Architectures . . . . . . . .. ... ... ... ... 19
Near-Constant Memory Cost of Our DMaskingNAS . . . . . ... ... ... .. 21
FBNEtV2 Accuracy vs. FLOPs . . . . . . . ... . 21
FBNetV2 Accuracy vs. Model Size . . . . . . . . .. ... ... ... 23
FBNetV2 Accuracy vs. FLOPs (Large) . . . . . ... .. ... ... ... .... 23
FBNetV3 Accuracy vs. FLOPs (Small) . . . . ... ... ... ... ... .... 28
FBNetV3 Searched Recipe Improves Accuracy . . . . . . . .. .. .. .. .. .. 29
Predictor Pretraining . . . . . . . . . .. .. 32
Pretraining Boosts Predictor Performance . . . . . . ... ... ... ... ... 32
Rank Correlation Improves with Training . . . . . . . . . . . .. ... ... ... 33
FBNetV3 Search Process . . . . . . . . . . . . . . ... 36
FBNetv3 CIFAR-10 Accuracy vs. FLOPs . . . . . . .. ... .. ... ... .. 38
Search Recipe Training Curve . . . . . . . . .. . ... .. . ... ... 42
Training Curves for Object Detection . . . . . . . . . ... ... .. ... .... 44
ImageNet Accuracy vs. FLOPs using Distilled Models . . . . . ... ... ... 45
Hard and Soft Decision Trees . . . . . . . . . . . . . ... ... ... ...... 49
Building Induced Hierarchies . . . . . . . ... ... .. ... .. ........ 50
NBDT ImageNet Results . . . . . . . .. .. . 53
CIFAR-10 Blurry Images . . . . . . . . . . . . . 56
Types of Ambiguous Labels . . . . . . . .. ... 58
ImageNet Ambiguous Labels . . . . . . . . . ... ... 59
Maximum Similarity Examples . . . . . . . .. ..o 60
Node Meaning . . . . . . . . . . . 60
CIFARI10 Induced Hierarchies . . . . . . . . . .. . ... ... ... ....... 61
Visualization of Path Traversal Frequency . . . . .. .. .. .. ... ... ... 62
Tree Supervision Loss Variants . . . . . . . . . . ... ... L. 63



5.13 Example Survey Question for Mechanical Turks

5.14 CIFAR-100 Tree Visualization on WideResNet28x10 . . . . . . . . . . . . . ..



vi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3

4.4
4.5
4.6
4.7

4.8
4.9
4.10
4.11

5.1
5.2
9.3
5.4
9.5
5.6
5.7
5.8

DMaskingNAS Surpasses Prior Art in Number of Design Choices . . . . .. .. 13
Macro-Architecture Specification . . . . . . . ... ... L. 20
Micro-Architecture Specification . . . . . . . . ... ... ... 21
FBNetV2 ImageNet Classification Performance . . . . . . . .. ... ... ... 22
ImageNet FLOP-Efficient Classification . . . . . . . . ... ... ... ... ... 24
ImageNet Parameter-Efficient Classification . . . . . . .. ... ... ... ... 24
Macro-Architecture for Large Search Space . . . . . . . . . ... .. ... .. .. 25
Macro-Architecture for FLOP-Efficient Search Space . . . . . . . . .. ... .. 25
Macro-Architecture for Parameter-Efficient Search Space . . . . . . . . . .. .. 26
Training Recipes Affect Architecture Ranking . . . . . . ... ... .. ... .. 28
FBNetV3 Search Space Specification . . . . . .. . ... . ... ... ...... 35
Accuracy improvements with the searched training recipes on existing neural

networks. Above, ResNeXt101 refers to the 32x8d variant. . . . . . . .. .. .. 36
FBNetV3 Performance Comparisions . . . . . . . . . .. .. .. ... .. ..., 37
FBNetV3 Backbone Improves Object Detection . . . . . . .. . ... ... ... 39
Accuracy comparison for the searched models with swapped training recipes. . . 39
Performance improvement by the predictor-based evolutionary searchsearch. *:

Models derived from constrained iterative optimization. . . . . . . . . . . .. .. 40
FBNetV3 Improvement using EMA, Distillation . . . . . ... .. ... ... .. 40
Searched Training Recipe . . . . . . . . . . . ... o 42
Baseline Architecture for Recipe-Only Search . . . . . . ... ... .. ... .. 43
Effect of Distillation on Model Performance . . . . . .. ... ... ... .... 44
NBDT Results . . . . . . . 52
Comparision of Hierarchies . . . . . . . . . . . .. . ... ... . ... ...... 53
Comparisons of Losses . . . . . . . . . . .. 54
Mid-Training Hierarchy . . . . . . . . . .. .. .. 54
NBDT Outperforms Original Neural Network . . . . . .. ... ... ... ... 55
NBDT Exhibits Zero-Shot Superclass Generalization . . . . . . . .. .. .. .. 55
Comparison of Inference Modes . . . . . . . . .. . . ... ... ... ... ... 64
Tree Supervision Loss . . . . . . . . .. 64



vii
Acknowledgments

Thank you to all my collaborators, mentors, friends, and family for their unending and
unconditional support. This thesis would not have been possible, had this support network
not believed in me before I did.

My adviser Joseph E. Gonzalez or, colloquially, “Joey”, deserves all the gratitude I could give
and more — giving me guidance when I needed it (a.k.a., all the time), encouraging me to
explore research beyond his lab, and supporting me in both the highs and the lows. I am
especially grateful for his willingness to fight for me — against the naysayers and the ones
that said I didn’t belong. His unwavering faith and seemingly infinite breadth of knowledge
gave me the flexibility to pivot wildly, and his dedication to my growth — at times, at the
cost of his own — is one of the most important reasons for any success I can claim today.

My committee members Kurt Keutzer and Angjoo Kanazawa also deserve a huge thanks:
Kurt, for introducing the art of storytelling and emphasizing time and time again that
communicating results were just as important if not more important than obtaining results;
Angjoo, for welcoming me into her group as one of her own, an endless enthusiasm, and for
pushing me to tackle new frontiers in efficient, production-ready research.

Mentors Vaishaal Shankar, Bichen Wu, and Richard Zhang shaped my research philosophy
today to a significant degree, being the first mentors to take me under their wing. I am
thankful to these mentors for investing their time in me: Vaishaal, for introducing me to
research despite my complete lack of prior experience, and for giving me a healthy amount
of skepticism for deep learning papers; Bichen, for demonstrating what it takes to produce
world-class and famous papers, letting me tag along at my first (and only) ever in-person
conference, and vouching for me to all that will listen; and Richard, for his tough love,
ingraining in me the best practices for computer vision research.

To the Facebook Reality Labs Mobile-Vision team, I am grateful they took a chance on me
as a first-year PhD student and gave me the production-aware mentality that I still carry
with me today. Thank you to Peter Vajda for letting me use (and subsequently fall asleep
on) your desk, Peizhao Zhang for mentoring me and pushing me to be more results-driven,
Xiaoliang Dai for saving me from impending doom (by showing me how to get those results),
Bichen Wu (again) for believing in me, Matthew Yu for showing me how to “make impact”
(insert clapping) and for hacking with me, Zijian He for supporting me, and all the other
team members for their welcoming spirit: Tao Xu, Kan Chen, Zhen Wei. I thank my mentors
from FAIR as well: Yuandong Tian, Saining Xie, Zhicheng Yan.

To the Tesla AutoPilot team, I am thankful for the experience of working with such a lean
and highly productive team. A big thanks to Lane McIntosh for always guiding me towards



viii

the highest-impact work, showing me what it means to move fast by prioritizing judiciously,
Micael Carvalho for exemplifying work ethic and convincing me join AutoPilot, Christian
Cosgrove for always being patient and supportive, Andrej Karpathy for appreciating my
memes and basic donuts, and the team in general for achieving the impossible: John Emmons,
Kate Park, Bradley Emi, Ethan Knight, Danny Hung, and Patrick Li.

A big thanks to labmates and coauthors in Joey’s group: Suzie Petryk, Lisa Dunlap, Brijen
Thananjeyan, Daniel Rothchild, Paras Jain, Tianjun Zhang, Charles Packer, Matthew Wright,
Xin Wang; in Kurt’s group: Amir Gholami, Xiangyu Yue, Peter Jin; and in Angjoo’s group:
Vickie Ye, Matthew Tancik; Sarah Bargel from Boston University, for introducing me to
explainability and for always pushing for results you knew were possible (that I doubted,
until we actually got there); and Geoff Tison, Robert Avram from UCSF, for introducing
me to computer vision applications in medicine. Thank you to my co-author undergraduate
collaborators: Daiyaan Arfeen, Daniel Ho, Victor Sun, Scott Lee, Henry Jin, Jihan Yin, Henk
Tilman, Younjin Song and all other past and present undergraduate collaborators. Our hack
sessions in the 5th floor Soda lounge and elsewhere were a blast.

I thank my industry mentors and colleagues for introducing me to productionizing Al from
ground zero: Andy Terrel, Yiwen Wang, Casey Allen, and last but not least, Andy Barkett —
who would read my excruciatingly long, panicky email essays and responded with his own
equally long email essays to calm me down.

Thank you to the friends and communities that have kept me sane over the years, throughout
COVID and beyond: Brijen Thananjeyan, Derek Wan, Andrew Liu, Joyce Lo, Sinho Chewi,
Andy Palan, and the Jackbox group.

I thank my mom and dad, whose love and support see no bound, making sacrifices to ensure
my brother and I live a good life with plentiful opportunities - coming to America, learning
English alongside us, toiling away at work, and more. My work past and present, including
this thesis, are just as much their accomplishment as they are mine.

Finally, I would like to thank Emily, who has stuck it out with me through thick and thin,
keeping me healthy, sane, and high spirited. Like my mom, she’s always right, and this thesis
means Emily won the bet — I finished the PhD after all.

Thank you all!



Chapter 1

Introduction

A number of competing concerns slow adoption of deep learning for computer vision on
“edge” devices. Edge devices provide only limited resources for on-device algorithms to
employ, constraining power, memory, and storage usage. Examples include mobile phones,
autonomous vehicles, and virtual reality headsets, which demand both high accuracy and low
latency, two objectives competing for resources.

1.1 Evolution of Efficient Neural Networks

To tackle this sisyphean task, modern methods passed through three milestone moments in
designing efficient neural networks.

1. Sacrifice Accuracy for Efficiency. Early work took existing deep neural networks and
applied a suite of different efficiency techniques, including quantization, pruning, compression,
and hyperparameter tuning. Despite significant progress, these post-processing steps and
architecture-agnostic approaches reached a saturation point: there were only so many bits to
quantize, only so many layers and channels to prune etc. This resulted in a new series of
approaches: Instead of working backwards from prior art, design new architectures from the
ground up with efficiency in mind.

2. Manually Trade off Accuracy and Efficiency. Subsequent work designed a series
of efficient “building blocks”, or group of deep learning operations configured to maximize
accuracy per parameter or compute-then integrated those into efficient neural architectures
built from scratch. These networks saw significantly higher efficiency and could be made
even more efficient by combining improved architectures with architecture-agnostic efficiency
techniques from before. These efficient building blocks would become a mainstay of efficient
neural networks but likewise hit a wall: With a design space easily containing 10'® different
candidate architectures, how could manual design possibly consider all possibilities? The
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natural next step was to consider automatic ways of designing efficient neural networks, or
Neural Architecture Search.

3. Automatically Trade off Accuracy and Efficiency. Neural Architecture Search is
effective, producing state-of-the-art neural networks that are both more efficient and more
accurate than their predecessors. However, these methods were critically flawed in two ways:

1. Computationally Expensive: Methods like AutoML expend gargantuan amounts of
computation to design solutions, exceeding thousands of GPU hours or years of GPU
compute to design a single neural network. Modern methods for designing efficient
neural networks are handicapped by excessive computation requirements.

2. Narrow Focus: Previous works furthermore maximize just one performance metric
— accuracy — under a single set of resource constraints. What if the set of resource
constraints changes? If additional performance metrics rise to the forefront, such as
explainability or generalization? Modern methods have missed an opportunity to
leverage—contrary to conventional wisdom—complementary objectives.

1.2 Efficient Design for Efficient Neural Networks

This thesis tackles the bottlenecks of modern methods directly, achieving state-of-the-art
performance by efficiently designing efficient deep neural networks. These improvements
don’t only reduce computation or only improve accuracy; instead, our methods improve
performance and reduce computational requirements, despite increasing search space size by
orders of magnitude.

Approaches

We approached the issue of computational expense in two ways, using Neural Architecture
Search (NAS) methods at opposite ends of the efficiency spectrum.

Expand Search Space for Efficient NAS Algorithm: Our first approach was to
use an existing, already-computationally-cheap neural architecture search method called
differentiable neural architecture search (DNAS), which took no more than 24 hours on a
DGX to train fully. However, this method involved differentiating through a supergraph of
possible neural networks, meaning its search space size was limited by the amount of RAM
on a single node. We directly tackled this weakness in DNAS, expanding its search space
by 14 orders of magnitude to produce a family of efficient neural networks that attained
state-of-the-art performance. More importantly, this drastic increase in search space size
incurred no extra computational or memory cost, making the accuracy win “free”’, called

FBNetV2.
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Make Inefficient NAS Algorithm more Efficient: Our second approach took the
reverse direction: make a computationally-expensive neural architecture search method more
computationally efficient. In particular, we chose to use a predictor-based approach, which
trains a predictor to predict neural network accuracy. These predictors are expensive to
train, as every sample it trains on, is itself another fully trained network: the input is a
neural network architecture and the label is the accuracy. A number of papers find surrogates
for this fully-trained accuracy number by training on a dataset subset, feature subset, or
fewer epochs. However, these techniques then suffer from noisy data which then requires
more data to compensate for, resulting in a catch 22. In response, we instead of develop
a pretraining strategy using “free” architecture statistics, allowing our predictor to learn
a quality archictecture representation and learn architecture accuracies successfully with
2 orders of magnitude less training data. This again produced a family of efficient neural
networks that attained state-of-the-art performance, called FBNetV3.

Tackling more than Architecture Accuracy

A significant portion of our insight came from leveraging objectives other than just neural
architecture accuracy, leading to new categories of joint optimization that were previously
unrealized:

Joint Architecture-Recipe Search: Neural Architecture Search, true to its name, searches
only for architectures but not the associated training hyperparameters (i.e., “training recipe”).
This ignores the fact that different training recipes may drastically change the success or
failure of an architecture, or even switch architecture rankings. To remedy this, we optimize
architectures and recipes jointly in a Neural Architecture-Recipe Search (NARS). This
produced the efficient state-of-the-art family of neural networks mentioned above, called
FBNetV3.

Jointly Improve Accuracy, Explainability, and Generalization: Conventional wisdom
says that accuracy and explainability are opposing objectives, where only one or the other can
be obtained if not traded off. However, our work debunks this misconception, showing that
adding explainability can actually improve both accuracy and generalization in a deep neural
network, separating a black box into a series of interpretable discrete decisions. This final
part is our most surprising result that defies conventional thinking: Additional objectives,
like explainability, are not the antithesis to accuracy. Contrary to prior art, we show that
accuracy, explainability, and generalization can all be simultaneously and jointly improved.

Result

This thesis culminates in a set of models that set new flexibility and performance standards for
production-ready models: those that are state-of-the-art accurate, explainable, generalizable,
and configurable for any set of resource constraints in just CPU minutes.
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1.3 Thesis Outline

This thesis addresses the challenges mentioned above, showing how efficient design of efficient
deep neural networks yields neural networks with state-of-the-art accuracy with even little
resource consumption. Chapter 2 discusses prior art in more detail, covering previous and
significant progress in designing efficient deep neural networks, as well as highlighting missed
opportunities. Chapters 3 and 4 then discuss the two approaches to handling computational
efficiency in neural architecture search, where the former discusses improved accuracy at no
additional computational cost and the latter discusses improved accuracy at less computational
cost. Chapter 4 additionally discusses joint optimization over both neural architectures and
training recipes for further improvements. Chapter 5 extends this, jointly optimizing over
accuracy, explainability, and generalization all at the same time. Finally, Chapter 6 concludes
the thesis with a summary of impact and discussion of future directions.



Chapter 2

Background

2.1 Manual, Efficient Design

Hand-crafted, efficient neural networks see three predominant approaches: (1) compress-
ing existing architectures, (2) designing compact architectures from scratch, and (3) non-
architectural methods.

Making Existing Architectures more Efficient

Most early work compresses existing architectures. One method is pruning [33, 18, 130, 13,
34, 115, 127|, where either layers or channels are removed according to certain heuristics.
Various heuristics govern layer-wise or channel-wise pruning: For example, Han et al. [34]
show that magnitude-based pruning can reduce parameter count by orders of magnitude
without accuracy loss, and NetAdapt [128] utilizes a filter pruning algorithm that achieves
a 1.2x speedup for MobileNetV2. However, with heuristics-based simplifications, pruning
methods train potential architectures sequentially and separately [128], one after another —
in some cases, pruning methods consider only one architecture [68, 37, 34|. This limits the
design space.

Designing Efficient Architectures from Scratch

Compact architecture design aims to directly construct efficient networks, rather than trim
an expensive one [47, 119]. These works design new architectures from the ground up, using
new operations that are cost-friendly. This includes convolutional variants like the depthwise
convolutions in MobileNet; inverted residual blocks in MobileNetV2; activations such as hswish
in MobileNetV3 [41, 93, 40]; and operations like shift [118] and shuffle [71]. For example,
MobileNet [41] and MobileNetV2 [93] achieve substantial efficiency improvements by exploiting
a depth-wise convolution and an inverted residual block, respectively. ShuffleNetV2 [71]
shrinks the model size utilizing low-cost group convolutions. Tan et al. propose a compound
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scaling method, obtaining a family of architectures that achieve state-of-the-art accuracy
with an order of magnitude fewer parameters than previous convolutional networks [105].
Although many of these building blocks are still used in state-of-the-art neural networks,
these models rely on finely-tuned, manual decisions that are bested by automatic design. In
particular, manually-designed architectures have been superseded by automatically-searched
counterparts.

Non-Architectural Efficiency Improvements

Non-architectural modifications: One non-architectural approach is low-bit quantization,
where weights and activations alike may be represented with fewer bits. For example, Wang
et al. [113] propose hardware-aware automated quantization, which achieves a 1.4-1.95x
latency reduction on MobileNet [41]. Other low-bit quantization [33] papers consider as few
as two [138] or even one bit [45] representations. Still other work downsamples input non-
uniformly [120, 125, 73] to reduce computational cost. These methods can be combined with
architecture improvements for roughly additive reduction in latency. Other non-architecture
modifications involve hyperparameter tuning, including tuning libraries from the pre-deep-
learning era |7]. Several deep-learning-specific tuning libraries are also widely used [60]. A
newer category of approaches automatically searches for the optimal combination of data
augmentation strategies. These methods use policy search [17], population-based training [39],
Bayesian-based augmentation [109], or Bayesian optimization [51].

2.2 Automatic, Efficient Design

Neural Architecture Search automates neural network design for state-of-the-art perfor-
mance. Several of the most common techniques for NAS include reinforcement learning [139,

106], evolutionary algorithms [86, 87, 129|, and differentiable neural architecture search
(DNAS) (66, 117, 111, 32, 124].

Scoring Architectures

Zoph et al. first proposed using reinforcement learning (RL) for automated neural network
design in [139]. This and other early NAS approaches are based on RL [139, 106] and evolu-
tionary algorithms (EA) [86]. However, both approaches consume substantial computational
resources.

Another direction is to exploit a performance predictor to guide the search process [19, 65].
Such approaches explore the search space by trimming progressively and lead to significant
reductions in search cost.
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These prior works search for only the model architecture [65, 116, 114, 96, 13| or perform
neural architecture-recipe search searches on small-scale datasets (e.g., CIFAR) [4, 134]. By
contrast, our NARS jointly searches both architectures and training recipes on ImageNet.
To compensate for the larger search space, we (a) introduce a predictor pretraining technique
to improve the predictor’s rate of convergence and (b) employ predictor-based evolutionary
search to design architecture-recipe pairs in just CPU minutes, for any resource constraint
setting—outperforming the predictor’s highest-ranked candidate before evolutionary search
significantly. We also note prior work that generates a family of models with negligible or no
cost after one search 32, 129, 69].

Searching Differentiably

Later works utilize various techniques to reduce the computational cost of search. One such
technique formulates the architecture search problem as a path-finding process in a supergraph
[117, 66, 32, 102]. Among them, gradient-based NAS has emerged as a promising tool. Wu et
al. show that gradient-based, differentiable NAS yields state-of-the-art compact architectures
with 421 x less search cost than RIL-based approaches. However, supergraph-based methods
suffer from severely limited search space sizes, due to memory constraints.

Stamoulis et al. [103] introduce weight-sharing to further reduce the computational cost of
search. However, kernel weight-sharing doesn’t address the primary drawback of DARTS,
namely a memory bottleneck yielding small search space size: Say a “mixed kernel" contains
weights shared between a 3 x 3 and 5 x 5. Since it is impossible to extract a 3 x 3 convolution’s
outputs from a 5 x 5’s (and vice versa), this mixed kernel still convolves 2x and still stores 2
feature maps for backpropagation. Thus, 2 kernel-weight-sharing convolutions induce memory
and computational costs of 2 vanilla convolutions.

Searching along spatial and channel dimensions has been studied both with and
without NAS. Liu et al [64] develop a NAS variant that searches over varying strides for
semantic segmentation. However, this method suffers from increasing memory cost as the
number of possible input resolutions grows. As described above, network pruning suffers from
inefficient and sequential exploration of architectures, one-by-one. Yu et al [132] amend this
partially by creating a batchnorm invariant to the number input channels; after training the
“supergraph" they see competitive accuracy without further training, for each possible subset
of channels. Yu et al [67] expand on these slimmable networks by introducing a test-time
greedy channel selection procedure. However, these methods are orthogonal to and can be
combined with DMaskingNAS, as we train the sampled architecture from scratch. To address
these concerns, our algorithm jointly optimizes over multiple input resolutions and channel
options simultaneously, increasing memory cost only negligibly as the number of options
grows. This allows DMaskingNAS to support orders of magnitude more possible architectures,
under existing memory constraints.
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DNAS trains quickly with few computational resources but is limited by search space size
due to memory constraints. Several works seek to address this issue, by training only subsets
at a time [12] or by introducing approximations [111].

2.3 Concerns Beyond Accuracy

There are a number of performance metrics other than accuracy that are likewise important
for production deep learning models: two of these metrics are generalization and explainability.
One school of thought suggests tackling one performance metric at a time, as performance
is a zero sum game and accuracy is more important. However, as our work shows, these
performance can all be jointly optimized, with mutual benefit, showing that concurrent
consideration for these metrics is a missed opportunity.

Explainable Al

Saliency Maps. Numerous efforts [100, 133, 98, 137, 94, 89, 82, 104 have explored the design
of saliency maps identifying pixels that most influenced the model’s prediction. White-box
techniques [100, 133, 98, 94, 104] use the network’s parameters to determine salient image
regions, and black-box techniques [89, 82| determine pixel importance by measuring the
prediction’s response to perturbed inputs. However, saliency does not explain the model’s
decision process (e.g. Was the model confused early on, distinguishing between Animal and
Vehicle? Or is it only confused between dog breeds?).

Decision Trees

Transfer to Explainable Models. Prior to the recent success of deep learning, decision
trees were state-of-the-art on a wide variety of learning tasks and the gold standard for
interpretability. Despite this recency, study at the intersection of neural network and decision
tree dates back three decades, where neural networks were seeded with decision tree weights
[6, 5, 49, 48], and decision trees were created from neural network queries [55, 9, 21, 15,
16], like distillation [38]. The modern analog of both sets of work [46, 99, 30| evaluate on
feature-sparse, sample-sparse regimes such as the UCI datasets [28] or MNIST [59] and
perform poorly on standard image classification tasks.

Hybrid Models. Recent work produces hybrid decision tree and neural network models to
scale up to datasets like CIFAR10 [56], CIFAR100 [56], TinylmageNet [58], and ImageNet [23].
One category of models organizes the neural network into a hierarchy, dynamically selecting
branches to run inference [110, 74, 108, 88, 78|. However, these models use impure leaves
resulting in uninterpretatble, stochastic paths. Other approaches fuse deep learning into each
decision tree node: an entire neural network [79], several layers [78, 91], a linear layer [1],
or some other parameterization of neural network output [54]. These models see reduced
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interpretability by using k-way decisions with large k (via depth-2 trees) [1, 31| or employing
an ensemble |54, 1], which is often referred to as a “black box” [14, 92].

Hierarchical Classification [97|. One set of approaches directly uses a pre-existing hierarchy
over classes, such as WordNet [88, 11, 25|. However conceptual similarity is not indicative of
wisual similarity. Other models build a hierarchy using the training set directly, via a classic
data-dependent metric like Gini impurity [2] or information gain [90, 8|. These models are
instead prone to overfitting, per [107]. Finally, several works introduce hierarchical surrogate
losses [121, 24|, such as hierarchical softmax [77], but as the authors note, these methods
quickly suffer from major accuracy loss with more classes or higher-resolution images (e.g.
beyond CIFAR10). We demonstrate hierarchical classifiers attain higher accuracy without a
hierarchical softmax.
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Chapter 3

Searching an Octillion Neural Network
Architectures in 24 Hours

3.1 Introduction

Differentiable Neural Architecture Search (DNAS) has demonstrated great success in designing
state-of-the-art, efficient neural networks. However, DARTS-based DNAS’s search space
is small when compared to other search methods’; since all candidate network layers must
be explicitly instantiated in memory. To address this bottleneck, we propose a memory
and computationally efficient DNAS variant: DMaskingNAS. This algorithm expands the
search space by up to 10'x over conventional DNAS, supporting searches over spatial and
channel dimensions that are otherwise prohibitively expensive: input resolution and number
of filters. We propose a masking mechanism for feature map reuse, so that memory and
computational costs stay nearly constant as the search space expands. Furthermore, we
employ effective shape propagation to maximize per-FLOP or per-parameter accuracy. The
searched FBNetV2s yield state-of-the-art performance when compared with all previous
architectures. With up to 421x less search cost, DMaskingNAS finds models with 0.9%
higher accuracy, 15% fewer FLOPs than MobileNetV3-Small; and with similar accuracy but
20% fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2 outperforms MobileNetV3
by 2.6% in accuracy, with equivalent model size. FBNetV2 models are open-sourced at
https://github.com/facebookresearch /mobile-vision.*

'The contents of this work are in collaboration with Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong
Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, Peter Vajda, and Joseph E. Gonzalez,
published at CVPR 2020 [111]. This was a part of my internship at Facebook Reality Labs and was supported
by my National Science Foundation Graduate Research Fellowship under Grant No. DGE 1752814. In
addition to NSF CISE Expeditions Award CCF-1730628, UC Berkeley research is supported by gifts from
Alibaba, Amazon Web Services, Ant Financial, CapitalOne, Ericsson, Facebook, Futurewei, Google, Intel,
Microsoft, Nvidia, Scotiabank, Splunk and VMware.
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DNAS DNAS

no channel search with all possible channels

M
e e

dimension mismatch

Pruning Ours

Exploring one channel option at a time with all possible channels

training pruning

Figure 3.1: DNAS: Adding all possible numbers of filters to DNAS (top-right) increases compu-
tational and memory costs drastically, exacerbating DNAS’s memory bottleneck on search space
size. Pruning: Channel pruning (bottom-left) is limited to training one architecture at a time.
Ours: With our weight-sharing approximation, DNAS can explore all possible number of filters
simultaneously with negligible memory and computation overhead. See Fig. 3.2 for details.

3.2 Motivation

Deep neural networks have led to significant progress in many research areas and applications,
such as computer vision and autonomous driving. Despite this, designing an efficient network
for resource-constrained settings remains a challenging problem. Initial directions involved
compressing existing networks [33| or building small networks [71, 93]. However, the design
space can easily contain more than 10'® candidate architectures [117, 102], making manual
design choices sub-optimal and difficult to scale. In lieu of manual tuning, recent work uses
neural architecture search (NAS) to design networks automatically.

Previous NAS methods utilize reinforcement learning (RL) techniques or evolutionary algo-
rithms (EAs). However, both methods are computationally expensive and consume thousands
of GPU hours [140, 106]. As a result, recent NAS literature [117, 66, 83] focuses on differen-
tiable neural architecture search (DNAS); DNAS searches over a supergraph that encompasses
all candidate architectures, selecting a single path as the final neural network. Unlike con-
ventional NAS, DNAS can search large combinatorial spaces in the time it takes to train a
single model [66, 124, 117, 102]. One class of DNAS methods, based on DARTS [66], suffer
from two significant limitations [29]:
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e Memory costs bound the search space. Short of paging in and out tensors, the
supergraph and feature maps must reside in GPU memory for training, which limits
the search space.

e Cost grows linearly with the number of options per layer. This means that
each new search dimension introduces combinatorially more options and combinatorial
memory and computational costs.

The other class of DNAS methods, not based on DARTS, suffer from similar issues: For
example, ProxylessNAS tackles the memory constraint by training only one path in the
supergraph each iteration. However, this means ProxylessNAS would take a prohibitively
long time to converge on an order-of-magnitude larger search space. These memory and
computation issues, for all DNAS methods, prevent us from expanding the search space to
explore larger spaces of configurations. Noting that feature maps typically dominate memory
cost [22], we propose a formulation of DNAS (Fig. 3.1) called DMaskingNAS (Fig. 3.2) that
increases the search space size by orders of magnitude. To accomplish this, we represent
multiple channel and input resolution options in the supergraph with masks, which carry
negligible memory and computational costs. Furthermore, we reuse feature maps for all
options in the supergraph, which enables nearly constant memory cost with increasing search
space sizes. These optimizations yield the following three contributions:

¢ A memory and computationally efficient DNAS that optimizes both macro-
(resolution, channels) and micro- (building blocks) architectures jointly in a 10x
larger search space using differentiable search. To the best of our knowledge, we are the
first to tackle this problem using a differentiable search framework supergraph, with
substantially less computational cost and roughly constant memory cost.

e A masking mechanism and effective shape propagation for feature map reuse.
This is applied to both the spatial and channel dimensions in DNAS.

e State-of-the-art results on ImageNet classification. With only 27 hours on 8 GPUs,
our searched compact models lead to substantial per-parameter, per-FLOP accuracy
improvements. The searched models outperform all previous state-of-the-art neural
networks, both manually and automatically designed, small and large.

3.3 Neural Architecture Search for Spatial and Channel
Dimensions

We propose DMaskingNAS to search over spatial and channel dimensions, summarized in
Fig. 3.2. The search space would be computationally prohibitive and ill-formed without the
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Table 3.1: The number of DMaskingNAS design choices eclipses that of previous search spaces:

number of channels ¢, kernel size k, number of layers [, bottleneck type b, input resolution r, and
expansion rate e.

NAS algorithm c k I b r e
MnasNet [106] v v oV v
ProxylessNAS [12] v v v
Single-Path NAS [102] v v v
ChamNet [19] v v v
FBNet [117] v v oV v
DMaskingNAS v v v v v v
Channel masking Resolution subsampling

m, m, m, N h ;;; . - | F | = @ — %%% g1
) -es B-[-0-5g-

\
56 6 B0
A B

M X C D

Figure 3.2: Channel Masking for channel search: A column vector mask M € R€ is the weighted
sum of several masks m; € R®, with Gumbel Softmax weights ¢g;. Each m; has ones (white) in
the first k& entries and zeros (blue) in the next ¢ — k entries, for some k € Z. Multiplication with
this mask speeds up channel search, using a weight-sharing approximation described in Fig. 3.3.
Resolution Subsampling for input resolution: X is an intermediate output feature map for the
network. A is subsampled from X using nearest neighbors. Values at the blue pixels in column A
are assembled to create the smaller feature map in B. Next, run the operation F'. Finally, each
value in C' is placed back into a larger feature map in D. Note we put values back (D) into pixels
where we pulled values from (A). This process is motivated in Fig. 3.4.

optimizations described below; our approach makes it possible to search this expanded search
space (Table 3.1) over channels and input resolutions.

Channel Search

To support searches over varying numbers of channels, previous DNAS methods simply
instantiate a block for every channel option in the supergraph. For a convolution with &
filters, this could mean up to k(k + 1)/2 ~ O(k?) convolutions. Previous channel pruning
methods [67] suffer from a similar drawback: each option must be trained separately, finding
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Figure 3.3: Channel Search Challenges: Step A: Consider 3 convolutions with varying numbers
of filters. Each output (gray) will have varying numbers of channels. Thus, the outputs cannot be
naively summed. Step B: Zero-padding (blue) outputs allows them to be summed. However, both
FLOP and memory cost increases sub-linearly with the number of channel options. Step C: This is
equivalent to running three convolutions with equal numbers of filters, multiplied by masks of zeros
(blue) and ones (white). Step D: We approximate using weight sharing — all three convolutions
are represented by one convolution. Step E: This is equivalent to summing the masks first, before
multiplying by the output. Now, FLOP and memory cost are effectively constant w.r.t. the number
of channel options.

the “optimal" channel count in one shot or iteratively. Furthermore, even without saturating
the maximum number of possibilities, there are two problems, the first of which makes this
search impossible:

1. Incompatible dimensions: DNAS is divided into several “cells". In each cell, we
consider a number of different block options; the outputs of all options are combined in
a weighted sum. This means that all block outputs must align dimensions. If each block
adopts convolutions with different number of filters, each output will have a different
number of channels. As a result, DNAS could not perform a weighted sum.

2. Slower training, increased memory cost: Even with a workaround, with this naive
instantiation, each convolution with a different channel option must be run separately,
resulting in a O(k) increase in FLOP cost. Furthermore, each output feature map must
be stored separately in memory.

To address the aforementioned issues, we handle the incompatibility (Fig. 3.3, Step A):
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consider a block b with varying numbers of filters, where b; denotes this block with ¢ filters.
The maximum number of filters is k. The outputs of all blocks are then zero-padded to
have k channels (Fig. 3.3, Step B). Given input z, the Gumbel Softmax output is thus the
following, with Gumbel weights g;:

y = Z g;PAD(b;(z), k) (3.1)

Note that this is equivalent to increasing the number of filters for all convolutions to k, and
masking out the extra channels (Fig. 3.3, Step C). 1; € R¥ is a column vector with 7 leading
1s and k — i trailing zeros. Note that the search method is invariant to the ordering of 1s
and 0s. Since all blocks b; have the same number of filters, we can approximate by sharing
weights, so that b; = b (Fig. 3.3, Step D).

Y= Z 9i(b(z) o 1;) (3.2)

Finally, with this approximation, we can handle the computational complexity of the naive
channel search approach: this is equivalent to computing the aggregate mask and running
the block b only once (Fig. 3.3, Step E).

k
y="0b(z)o Zgi]li (3.3)

i=1

——
M

This approximation only requires one forward pass and one feature map, inducing no
additional FLOP or memory costs other than the negligible M term in Eq. 3.3 (Fig. 3.2,
Channel Masking). Furthermore, the approximation falls short of equivalence only because
weights are shared, which is shown to reduce train time and boost accuracy in DNAS [103].

This allows us to search the number of output channels for any block, including related
architectural decisions such as the expansion rate in an inverted residual block.

Input Resolution Search

For spatial dimensions, we search over input resolutions. As with channels, previous DNAS
methods would simply instantiate each block with every input resolution. This naive method’s
downfalls are twofold: increased memory cost and incompatible dimensions. As before, we
address both issues directly by zero-padding the result. However, there are two caveats:
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1. Pixel misalignment: means padding cannot occur naively as before. It would not
make sense to zero-pad the periphery of the image, since the sum in Eq. 3.1 would
result in misaligned pixels (Fig. 3.4, B). To handle pixel misalignment, we zero-pad such
that zeros are interspersed spatially (Fig. 3.4, C). This zero-padding pattern is uniform;
except for the zeros, this is a nearest neighbors upsampling. For example, a 2x increase
in size would involve zero-padding every other row and column. Zero-padding instead
of upsampling minimizes “pixel contamination" across input resolutions (Fig. 3.5).

2. Receptive field misalignment: Since subsets of the feature map correspond to
different resolutions, naively convolving over the full feature map would result in a
reduced receptive field (Fig. 3.4, D). To handle receptive field misalignment, we convolve
over subsampled input instead. (Fig. 3.4, E). Using Gumbel Softmax, we arrive at
“resolution subsampling" in Fig. 3.2.

NASNet [140] introduces a similar notion of combining hidden states. These combinations are
also used to efficiently explore a combinatorially large search space but are used to determine
— instead of input resolution or channels — the number of times to repeat a searched cell. With
the above insights, the input resolution search thus incurs constant memory cost, regardless of
the number of input resolutions. On the other hand, computational cost increases sub-linearly
as the number of resolutions grows.

Effective Shape Propagation

Note this calculation for effective shape is only used during training. In our formulation of
the weighted sum Eq. 3.1, the output y retains the maximum number of channels. However,
there exists a non-integral number of effective channels: say a 16-channel output has Gumbel
weight g; = 0.8 and a 12-channel output has weight g; = 0.2. This means the effective number
of channels is 0.8 x 16 + 0.2 % 12 = 15.2. These effective channels are necessary for both FLOP
and parameter computation, as assigning higher weight to more channels should incur a
larger cost penalty. This effective shape is how we realize effective resource costs introduced
in previous works [117, 124]: First, define the gumbel softmax weights as

| expl(al+€)/7]
FT Siexpllal + /7]

(3.4)

with sampling parameter o, Gumbel noise €, temperature 7. For a convolution with Gumbel
Softmax in the lt’f layer, we define its effective output shape St . in Eq. 3.7 using effective
output channel (C! ,, Eq. 3.5), and effective height, width (AL ,, @’ ,, Eq. 3.6).

out? out’ “out?

~l
C'out

i,out

(3.5)
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Figure 3.4: Spatial Search Challenges: A: Tensors with different spatial dimensions cannot be
summed due to incompatible dimensions. B: Zero-padding along the periphery of the smaller feature
map makes summing possible. However, the top-right pixels (blue) are not aligned correctly. C:
Interspersing zero-padding spatially results in a sum that aligns pixels correctly. Note the top-right
pixels of both feature maps are correctly overlapping in the sum. D: Say F' is a convolution with
3 x 3 kernels. Convolving naively with the feature map, containing a subset (gray), results in
reduced receptive field (2 x 2, blue) for the subset. E: To preserve receptive field for all searched
input resolutions, the input must be subsampled before convolving. Note the receptive field (blue)
is still 3 x 3. Furthermore, note we can achieve the same effect, without the need to construct a
smaller tensor, with appropriately-strided dilated convolutions; we subsample to avoid modifying

the operation F.



CHAPTER 3. SEARCHING AN OCTILLION NEURAL NETWORK ARCHITECTURES
IN 24 HOURS 18

I EYE

8x8 4x4 2x2 4x4

Figure 3.5: Minimizing Pixel “Contamination": On the far left, we have the original 8 x 8
feature map. The blue 4 x 4 is a feature map subsampled with nearest neighbors and zero-padded
uniformly. The yellow 2 x 2 is also subsampled and zero-padded. Summing the 2 x 2 with the 4 x 4
yields the combined feature map to the far right. Only the green pixels in the corners hold values
from both feature map sizes; these green values are “contaminated" by the lower resolution feature
maps.

l
h’ out —

= Elgz h‘in’ 7out = Elgz mn (36)
Sto=n,C hL ) (3.7)

out’ "Yout? out

with batch size n, effective input width w;, and height hj,.

For a convolution layer without a Gumbel Softmax, effective output shape simplifies to
Eq. 3.8, where effective channel count is equal to actual channel count. For a depth-wise
convolution, effective output shape simplifies to Eq. 3.9, where effective channel count is
simply propagated.

(3.8)

(3.9)

with actual output channel count C,,;, effective input channel count Cj,. Then, we define
the cost function for the I*" layer as follow:

k2 - hl ! if FLOP
COStl _ { out out out / Y (310)

with  convolution groups. The effective input channels for the (I+ 1) layer are CLt = C? ..
The total training loss consists of (1) cross-entropy loss and (2) total cost, which is the sum

of cost from all layers: costipre = 2icost!.

In the forward pass, for all convolutions, we calculate and return both the output tensor and
effective output shape. Additionally, 7 in the Gumbel Softmax Eq. 3.4 decreases throughout
training, |50], forcing ¢' to approach a one-hot distribution. argmax,g! would thus select a
path of blocks in the supergraph; a single channel and expansion rate option for each block;
and a single input resolution for the entire network. This final architecture is then trained.
Note this final model does not employ masking or require effective shapes.
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[0

Figure 3.6: Searched FBNetV2 architectures, with colors denoting different kernel sizes and heights
denoting different expansion rates. The heights are drawn to scale.

3.4 Experiments

We use DMaskingNAS to search for convolutional network architectures under different
objectives. We compare our search space, performance of searched models, and search cost
to previously state-of-the-art networks. Detailed numerical results are listed in Table 5.3.

Experimental Setup

We implement DMaskingNAS using PyTorch on 8 Tesla V100 GPUs with 16GB memory. We
use DMaskingNAS to search for convolutional neural networks on the ImageNet (ILSVRC
2012) classification dataset [23|, a widely-used NAS evaluation benchmark. We use the same
training settings as reported in [117]: we randomly select 10% of classes from the original 1000
classes and train the supergraph for 90 epochs. In each epoch, we train the network weights
with 80% of training samples using SGD. We then train the Gumbel Softmax sampling
parameter a with the remaining 20% using Adam [53|. We set initial temperature 7 to 5.0
and exponentially anneal by e~ ~ 0.956 every epoch.

Search Space

Previous cell-level searches produced fragmented, complicated, and latency-unfriendly blocks.
Thus, we adopt a layer-wise search space for known, latency-friendly blocks.

Table 3.3 describes the micro-architecture search space: the block structure is inspired
by [93, 40| and sequentially consists of a 1 x 1 point-wise convolution, a 3 x 3 or 5 X 5
depth-wise convolution, and another 1 x 1 point-wise convolution. Table 3.2 describes the

macro-architecture. The search space contains more than 103° candidate architectures, which
is 10" x larger than DNAS’s [117].

Memory Cost

Our memory optimizations yield a ~1MB increase in memory cost for every 2 orders of
magnitude the channel search space grows by; for context, this 1 MB increase is just 0.1% of
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Table 3.2: Macro-architecture for our largest search space, describing block type b, block

expansion rate e, number of filters f, number of blocks n, stride of first block s. “TBS” means layer
type needs to be searched. Tuples of three values represent the lowest value, highest, and steps
between options (low, high, steps). The maximum input resolution for FBNetV2-P models is 288,
for FBNetV2-F is 224, and for FBNetV2-L is 256. See supplementary material for all search spaces.

Max. Inputb e f n s
2562 x3  3x3 1 16 1 2
1282 x 16 TBS 1 (12, 16, 4) 1 1
1282 x 16 TBS  (0.75, 3.25, 0.5) (16, 28, 4) 1 2
642 x 28 TBS  (0.75, 3.25, 0.5) (16, 28, 4) 2 1
642 x 28 TBS  (0.75, 3.25, 0.5) (16, 40, 8) 1 2
322 x40 TBS (0.75,3.25,0.5) (16, 40, 8) 2 1
322 x40 TBS (0.75,3.75, 0.5) (48, 96, 8) 1 2
162x96 TBS (0.75, 3.75, 0.5) (48, 96, 8) 2 1
162x96 TBS (0.75,4.5,0.75) (72,128,8) 4 1
162 x 128 TBS  (0.75, 4.5, 0.75) (112,216,8) 1 2
82 x 216 TBS (0.75,4.5,0.75) (112,216,8) 3 1
82 x216 1xl - 1984 11
82 x 1984 avgpl - - 1 1
1984 fc - 1000 1 -

the total memory cost during training. This is due to our feature map reuse as described in
Sec. 3.3. We compare memory costs for DNAS and DMaskingNAS as the number of channel
options increases (Fig. 3.7, left). With only 8 channel options for each convolution, DNAS
fails to fit in memory during training, exceeding the 16GB memory supported by a Tesla
V100 GPU. On the other hand, DMaskingNAS supports 32-option channel search, for a
32?2 ~ 10?3 in search space size (given our 22-layer search space), at nearly constant memory
cost. Here, k-option channel search means that for each convolution with ¢ channels, we
search over {c/k,2c/k, ...,c} channels. To compare larger numbers of channel options, we
reduce the number of blocks options in the search space (Fig. 3.7, right). To compute memory
cost, we average the maximum memory allocated during each training step, across 10 epochs.

Search for ImageNet Models

FLOP-efficient models: We first use DMaskingNAS to find compact models (Fig. 3.6)
for low computational budgets, with models ranging from 50 MFLOPs to 300 MFLOPs in
Fig. 3.8. The searched FBNetV2s outperform all existing networks.

Storage-efficient models: Many real world scenarios face limited on-device storage space.
Thus, we next perform searches for models minimizing parameter count, in Fig. 3.9. With
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Table 3.3: Micro-architecture search space for block design: non-linearities, kernel sizes, and
Squeeze-and-Excite [42].

block type kernel squeeze-and-excite non-linearity

ir k3 3 N relu
ir k5 5 N relu
ir k3 _hs 3 N hswish
ir kb hs 5 N hswish
ir k3 se 3 Y relu
ir kb se 5 Y relu
ir k3 se hs3 Y hswish
ir kb se hsd Y hswish
skip - - -
2 + DNAS « DNAS >

Pt / . DMaskingNAS s DMaskingNAS /
] 13 8s
i 8
g_; / S 4.
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Figure 3.7: Memory Cost of DNAS vs. DMaskingNAS (Left) Conventional DNAS does not
fit into memory with just 8 options per block in channel search. On the other hand, DMaskingNAS’s
memory cost remains roughly constant, even with 32 channel options per block. (Right) We reduce
the number of block options in the search space to fit conventional DNAS into memory. The memory
cost growth, as the search space increases, is significantly steeper than that of DMaskingNAS: in
fact, DMaskingNAS’s memory cost is nearly constant.
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Figure 3.8: ImageNet Accuracy vs. Model FLOPs. We refer to these FLOP-efficient
FBNetV2s as FBNetV2-F{1, 2, 3, 4} from left to right.
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Model Search FLOPs Top-1
Method Space Cost (GPU hours) Acc (%)
MobileNetV2-0.35x [93] manual - - 59M 60.3
ShuffleNetV2-0.5x [71] manual - - 41M 60.3
MnasNet-0.35x {106] RL stage-wise ~ 91K* 63M 64.1
ChamNet-E [19] EA stage-wise 28Kt 54M 64.2
FBNet-0.35x [117] gradient layer-wise 0.2K 72M 65.3
MobileNetV3-Small [40] RL/NetAdapt stage-wise — >91K} 66M 67.4
FBNetV2-F1 (ours) gradient layer-wise 0.2K 56M 68.3
MobileNetV2-1.0x [93] manual - - 300M 72.0
ShuffleNetV2-1.5x [71] manual - - 299M 72.6
DARTS [66] gradient cell 0.3K 595M 73.1
FBNetV2-F3 (ours) gradient layer-wise 0.2K 126M  73.2
ChamNet-B [19] EA stage-wise  28Kf 323M 73.8
FBNet-B [117] gradient layer-wise 0.2K 295M 74.1
One-Shot NAS [32] EA layer-wise 0.3K 295M 74.2
ProxylessNAS [12] gradient/RL layer-wise 0.2K 320M 74.6
MobileNetV3-Large [40] RL/NetAdapt stage-wise = >91K} 219M 75.2
MnasNet-A1 [106] RL stage-wise ~ 91K* 312M 75.2
FBNetV2-F4 (ours) gradient layer-wise 0.2K 238M  76.0
ResNet-50 [35] manual - - 4.1B 76.0
DenseNet-169 [44] manual - - 3.5B 76.2
EfficientNet-B0 [105]  RL/scaling stage-wise ~ >91K} 390M 77.3
FBNetV2-L1 (ours) gradient layer-wise 0.6K 325M  77.2

Table 3.4: ImageNet classification performance: For baselines, we cite statistics on ImageNet
from the original papers. Our results are bolded. *: The search cost is estimated based on the
experimental setup in [106]. {: [19] discovers 5 models with the cost of training 240 networks. : The
cost estimation is a lower bound. [40] and [105] combines the approach proposed in [106] with [128]
and compound scaling.

similar or smaller model size (4M parameters), FBNetV2 achieves 2.6% and 2.9% absolute
accuracy gains over MobileNetV3 [40] and FBNet [117], respectively.

Large models: We finally use DMaskingNAS to explore larger models for high-end devices.
We compare FBNetV2-Large with networks of 300+ MFLOPs in Fig. 3.10.
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Figure 3.9: ImageNet Accuracy vs. Model Size. We refer to these as parameter-efficient
FBNetV2s as FBNetV2-P{1, 2, 3} from left to right.
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Figure 3.10: ImageNet Accuracy vs. Model FLOPs for Large Models. We refer to these
large FBNetV2s as FBNetV2-L{1, 2} from left to right.

Full ImageNet Results: We include numeric results for all three categories of FBNetV2s,
optimized for various resource constraints: FLOP-efficient FBNetV2-F and large FBNetV2-L
in Table 3.5, parameter-efficient FBNetV2-P in Table 3.6.

3.5 Implementation

Macro-architecture Search Spaces

We list the DMaskingNAS macro-architecture search spaces for all three categories of FB-
NetV2s, optimized for various resource constraints: FLOP-efficient FBNetV2-F in Table 3.8,
parameter-efficient FBNetV2-P in Table 3.9, and large FBNetV2-L in Table 3.7. Note that
in all classes of models, the micro-architecture search space over blocks remains the same.
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Model Input  Flops  Top-1 (%)
FBNetV2-F1 128 56M 68.3
FBNetV2-F2 160 86M 71.1
FBNetV2-F3 192 126M 73.2
FBNetV2-F4 224 238M 76.0
FBNetV2-L1 224 325M 77.2
FBNetV2-L2 256 422M 78.1

Table 3.5: ImageNet FLOP-efficient classification: These are the FBNetV2 models yielded by
DMaskingNAS optimizing for FLOP count and accuracy.

Model Input  Params  Top-1 (%)

FBNetV2-P1 288 2.64M 73.9
FBNetV2-P2 288 2.99M 74.8
FBNetV2-P3 288 4.00M 75.9

Table 3.6: ImageNet parameter-efficient classification: These are the FBNetV2 models
yielded by DMaskingNAS optimizing for parameter count and accuracy.

3.6 Conclusion

We propose a memory-efficient algorithm, drastically expanding the search space for DNAS
by supporting searches over spatial and channel dimensions. These contributions target the
main bottleneck for DNAS — high memory cost that induces constraints on the search space
size — and yield state-of-the-art performance.
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Table 3.7: Macro-architecture for our largest search space for FBNetV2-L, describing block type
b, block expansion rate e, number of filters f, number of blocks n. “T'BS” means layer type needs to
be searched. Tuples of three values additionally represent steps between options (low, high, steps).
The maximum input resolution for FBNetV2-L is 256.

Max. Inputb e f n s
2562 x 3 3x3 1 16 1 2
1282 x 16 TBS 1 (12, 16, 4) 1 1
1282 x 16 TBS  (0.75, 3.25, 0.5) (16, 28, 4) 1 2
642> x 28  TBS  (0.75, 3.25, 0.5) (16, 28, 4) 2 1
642 x 28 TBS  (0.75, 3.25, 0.5) (16, 40, 8) 1 2
322 x40 TBS (0.75,3.25,0.5) (16, 40, 8) 2 1
322 x40 TBS (0.75,3.75,0.5) (48, 96, 8) 1 2
162 x 96 TBS (0.75, 3.75, 0.5) (48, 96, 8) 2 1
162 x96 TBS (0.75, 4.5, 0.75) (72,128,8) 4 1
162 x 128 TBS  (0.75, 4.5, 0.75) (112, 216,8) 1 2
82 x216 TBS (0.75,4.5,0.75) (112,216,8) 3 1
82 x 216 1x1 1984 1 1
82 x 1984 avgpl - 1 1
1984 fc - 1000 1 -

Table 3.8: Macro-architecture for our FLOP-efficient search space for FBNetV2-F. The maximum
input resolution for FBNetV2-F is 224. See Table 3.7 for column names.

Max. Inputb e f n s
2242 x 3 3x3 1 16 1 2
1122 x 16 TBS 1 (12, 16, 4) 11
1122 x 16 TBS  (0.75, 4.5, 0.75) (16, 24, 4) 1 2
562 x 24 TBS  (0.75, 4.5, 0.75) (16, 24, 4) 2 1
562 x 24 TBS  (0.75, 4.5, 0.75) (16, 40, 8) 1 2
282 x40 TBS  (0.75, 4.5, 0.75) (16, 40, 8) 2 1
282 x40 TBS  (0.75, 4.5, 0.75) (48, 80, 8) 1 2
142 x 80 TBS  (0.75, 4.5, 0.75) (48, 80, 8) 2 1
142 x 80 TBS (0.75,4.5,0.75) (72,112,8) 3 1
142 x 112 TBS  (0.75, 4.5, 0.75) (112,184, 8) 1 2
7?2 x 184 TBS  (0.75,4.5,0.75) (112,184,8) 3 1
72 x184 1x1 1984 11
72 x 1984 avgpl - 1 1
1984 fc - 1000 1 -
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Table 3.9: Macro-architecture for our parameter-efficient search space for FBNetV2-P. The
maximum input resolution for FBNetV2-P is 288. See Table 3.7 for column names.

Max. Inputb e f n s
2882 x 3  3x3 1 32 1 2
1442 x 16 TBS 1 (16, 28, 4) 1 1
1442 x 28 TBS  (0.75, 4.5, 0.75) (16, 40, 4) 1 2
722 x40 TBS  (0.75, 4.5, 0.75) (16, 40, 4) 2 1
722 x40 TBS  (0.75, 4.5, 0.75) (16, 48, 8) 1 2
362 x48 TBS  (0.75, 4.5, 0.75) (16, 48, 8) 2 1
362 x 48 TBS  (0.75, 4.5, 0.75) (48, 96, 8) 1 2
182 x96 TBS  (0.75, 4.5, 0.75) (48, 96, 8) 2 1
182 x96 TBS (0.75,4.5,0.75) (72,128,8) 4 1
182 x 128 TBS  (0.75, 4.5, 0.75) (112, 216,8) 1 2
92 %216 TBS (0.75,4.5,0.75) (112,216,8) 3 1
92 x 216 TBS (0.75,4.5,0.75) (112,216,8) 1 1
92 x 216  1x1 - 1280 1 1
92 x 1280 avgpl - - 1 1
1280 fc - 1000 1 -
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Chapter 4

Jointly Searching Neural Architectures
and Training Recipes

4.1 Introduction

Neural Architecture Search (NAS) yields state-of-the-art neural networks that outperform their
best manually-designed counterparts. However, previous NAS methods search for architectures
under one set of training hyperparameters (i.e., a training recipe), overlooking superior
architecture-recipe combinations. To address this, we present Neural Architecture-Recipe
Search (NARS) to search both (a) architectures and (b) their corresponding training recipes,
simultaneously. NARS utilizes an accuracy predictor that scores architecture and training
recipes jointly, guiding both sample selection and ranking. Furthermore, to compensate for
the enlarged search space, we leverage “free” architecture statistics (e.g., FLOP count) to
pretrain the predictor, significantly improving its sample efficiency and prediction reliability.
After training the predictor via constrained iterative optimization, we run fast evolutionary
searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource
constraints, called FBNetV3. FBNetV3 makes up a family of state-of-the-art compact
neural networks that outperform both automatically and manually-designed competitors.
For example, FBNetV3 matches both EfficientNet and ResNeSt accuracy on ImageNet with
up to 2.0x and 7.1x fewer FLOPsS, respectively. Furthermore, FBNetV3 yields significant
performance gains for downstream object detection tasks, improving mAP despite 18% fewer
FLOPs and 34% fewer parameters than EfficientNet-based equivalents.*

!The contents of this work are in collaboration with Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Zijian
He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew Yu, Peter Vajda, and Joseph E. Gonzalez, presented at
CVPR 2021 [20]. This was a part of my part-time research with Facebook Reality Labs and was supported by
my National Science Foundation Graduate Research Fellowship under Grant No. DGE 1752814. In addition
to NSF CISE Expeditions Award CCF-1730628, UC Berkeley research is supported by gifts from Alibaba,
Amazon Web Services, Ant Financial, CapitalOne, Ericsson, Facebook, Futurewei, Google, Intel, Microsoft,
Nvidia, Scotiabank, Splunk and VMware.
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Figure 4.1: ImageNet accuracy vs. model FLOPs comparison of FBNetV3 with other efficient
convolutional neural networks. FBNetV3 achieves 80.8% (82.8%) top-1 accuracy with 557M (2.1G)
FLOPs, setting a new SOTA for accuracy-efficiency trade-offs.

Traini
S Recipe-1  Recipe-2
Model

ResNet18 (1.4x width)  70.8%  73.3%
ResNet18 (2x depth) 70.7% 73.8%

Table 4.1: Different training recipe could switch the ranking of architectures. ResNet18 1.4x width
and 2x depth refer to ResNet18 with 1.4 width and 2.0 depth scaling factor, respectively. Training
recipe details can be found in Appendix 4.6.

4.2 Motivation

Designing efficient computer vision models is a challenging but important problem: A myriad
of applications from autonomous vehicles to augmented reality require compact models that
must be highly accurate — even under constraints on power, computation, memory, and
latency. The number of possible constraint and architecture combinations is combinatorially
large, making manual design a near impossibility.

In response, recent work employs neural architecture search (NAS) to design state-of-the-art
efficient deep neural networks. One category of NAS is differentiable neural architecture
search (DNAS). These path-finding algorithms are efficient, often completing a search in
the time it takes to train one network. However, DNAS cannot search for non-architecture
hyperparameters, which are crucial to the model’s performance. Furthermore, supernet-based
NAS methods suffer from a limited search space, as the entire supergraph must fit into
memory to avoid slow convergence [12] or paging. Other methods include reinforcement
learning (RL) [106], and evolutionary algorithms (ENAS) [86]. However, these methods share
several drawbacks:



CHAPTER 4. JOINTLY SEARCHING NEURAL ARCHITECTURES AND TRAINING
RECIPES 29

HEE Bascline
[ mmm WSL(1B)
. Ours

- ® %
» S ]

Accuracy (%, Top-1 ImageNet)

3

ResNet50 ResNet101  ResNet152 ResNeXt101

Figure 4.2: Accuracy improvement on existing architectures with the searched training recipe.
WSL refers to the weakly supervised learning model using 1B additional images [72].

1. Ignore training hyperparameters: NAS, true to its name, searches only for archi-
tectures but not the associated training hyperparameters (i.e., “training recipe”). This
ignores the fact that different training recipes may drastically change the success or failure
of an architecture, or even switch architecture rankings (Table 4.1).

2. Support only one-time use: Many conventional NAS approaches produce one model
for a specific set of resource constraints. This means that deploying to a line of products,
each with different resource constraints, requires rerunning NAS once for each resource
setting. Alternatively, model designers may search for one model and scale it suboptimally,
using manual heuristics, to fit new resource constraints.

3. Prohibitively large search space to search: Naively including training recipes in the
search space is either impossible (DNAS, supernet-based NAS) or prohibitively expensive,
as architecture-only accuracy predictors are already computationally expensive to train
(RL, ENAS).

To overcome these challenges, we propose Neural Architecture-Recipe Search (NARS) to
address the above limitations. Our insight is three-fold: (1) To support re-use of NAS results
for multiple resource constraints, we train an accuracy predictor, then use the predictor to
find architecture-recipe pairs for new resource constraints in just CPU minutes. (2) To avoid
the pitfalls of architecture-only or recipe-only searches, this predictor scores both training
recipes and architectures simultaneously. (3) To avoid prohibitive growth in predictor training
time, we pretrain the predictor on proxy datasets to predict architecture statistics (e.g. ,
FLOPs, #Parameters) from architecture representations. After sequentially performing
predictor pretraining, constrained iterative optimization, and predictor-based evolutionary
search, NARS produces generalizable training recipes and compact models that attain state-
of-the-art performance on ImageNet, outperforming all the existing manually designed or
automatically searched neural networks. We summarize our contributions below:
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1. Neural Architecture-Recipe Search: We propose a predictor that jointly scores both
training recipes and architectures, the first joint search, over both training recipes and
architectures, at scale to our knowledge.

2. Predictor pretraining: To enable efficient search over this larger space, we furthermore
present a pretraining technique, significantly improving the accuracy predictor’s sample
efficiency.

3. Multi-use predictor: Our predictor can be used in fast evolutionary searches to quickly
generate models for a wide variety of resource budgets in just CPU minutes.

4. State-of-the-art ImageNet accuracy per FLOP for the searched FBNetV3 models.
For example, our FBNetV3 matches EfficientNet accuracy with as low as 49.3% fewer
FLOPs, as shown in Fig. 4.1.

5. Generalizable training recipe: NARS’s recipe-only search achieves significant accuracy
gains across various neural networks, as illustrated in Fig. 4.2. Our ResNeXt101-32x8d
achieves 82.6% top-1 accuracy; this even outperforms its weakly-supervised counterpart
trained on 1B extra images [72].

4.3 Joint Architecture-Recipe Search via Predictor
Pretraining

Our goal is to find the most accurate architecture and training recipe combination, to avoid
overlooking architecture-recipe pairs as prior methods have. However, the search space is
typically combinatorially large, making exhaustive evaluation an impossibility. To address
this, we train an accuracy predictor that accepts architecture and training recipe represen-
tations (Sec 4.3). To do so, we employ a three-stage pipeline (Algorithm 1): (1) Pretrain
the predictor using architecture statistics, significantly improving its accuracy and sample
efficiency (Sec 4.3). (2) Train the predictor using constrained iterative optimization (Sec 4.3).
(3) For each set of resource constraints, run predictor-based evolutionary search in just CPU
minutes to produce high-accuracy architecture-recipe pairs (Sec 4.3).

Predictor

Our predictor aims to predict accuracy given representations of an architecture and a training
recipe. The architecture and training recipe are encoded using one-hot categorical variables
(e.g., for block types) and min-max normalized continuous values (e.g., for channel counts).
See the full search space in Table 4.2.

The predictor architecture is a multi-layer perceptron (Fig. 4.3) consisting of several fully-
connected layers and two heads: (1) An auxiliary “proxy” head, used for pretraining the
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Algorithm 1: Three-stage Constraint-aware Neural Architecture-Recipe Search
Input:
Q: the designed search space;
n: size of candidate pool A in constrained iterative optimization;
m: the number of DNN candidates (&X') to train in each iteration;
T: the number of batches for constrained iterative optimization;
Stage 1: Pretrain Predictor
Generate a pool A with n samples with QMC sampling from the search space (;
Pretrain accuracy predictor u with architecture statistics;
Stage 2: Train Predictor (Constrained Iterative Optimization):
Initialize Dy as 0;
fort=1,2,..,T do
Find a batch of the most promising DNN candidates X C A based on predicted scores, u(x);
Evaluate all x € & by training in parallel;
if ¢ = 1: Determine early stopping criteria;
Update the dataset: Dy = D1 U {(x1,acc(x1)), (z2, acc(xs)), ... };
Retrain the accuracy predictor u on Dy;

end
Stage 3: Use Predictor (Predictor-Based Evolutionary Search)
Initialize D* with p best-performing samples in D and ¢ randomly generated samples paired with scores
predicted by u;
Initialize s* with the best score in D*; set s = 0; set € = 1076;
while (s* — s§) > e do
for z € D* do
Generate a set of children C C 2 subject to resource constraints, by the adaptive genetic
algorithm [19];
end
Augment D* with C paired with scores predicted by u;
Select top K candidates from the augmented set to update D*;
Update the previous best ranking score by si = s*;
Update the current best ranking score s* by the best predicted score in D*.

end
Result: D*, i.e., all the top K best samples with their predicted scores.

encoder, predicts architecture statistics (e.g., FLOPs and #Parameters) from architecture rep-
resentations; and (2) the accuracy head, fine-tuned in constrained iterative optimization (Sec
4.3), predicts accuracy from joint representations of the architecture and training recipe.

Stage 1: Predictor pretraining

Training an accuracy predictor can be computationally expensive, as each training label
is ostensibly a fully-trained architecture under a specific training recipe. To alleviate this,
our insight is to first pretrain on a proxy task. The pretraining step can help the predictor
to form a good internal representation of the inputs, therefore reducing the number of
accuracy-architecture-recipe samples needed. This can significantly mitigate the search cost
required.
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Figure 4.4: (a) and (b): Predictor’s performance on the proxy metrics, (c) and (d): Predictor’s
performance on accuracy with and without pretraining, (e): Predictor’s MSE vs. number of samples
with and without pretraining.

To construct a proxy task for pretraining, we can use “free” source of labels for architectures:
namely, architecture statistics like FLOPs and numbers of parameters. After this pretraining
step, we transfer the pretrained embedding layer to initialize the accuracy predictor (Fig. 4.3).
This leads to significant improvements in the final predictor’s sample efficiency and prediction
reliability. For example, to reach the same prediction mean square error (MSE), the pretrained
predictor only requires 5x less samples than its counterpart without pretraining, as shown in
Fig. 4.4(e). As a result, predictor pretraining reduces the overall search cost substantially.

Stage 2: Training predictor

In this step, we train the predictor and generate a set of high-promise candidates. As
mentioned prior, our goal is to find the most accurate architecture and training recipe

combination under given resource constraints. We thus formulate the architecture search as
a constrained optimization problem:

(ﬁ%gn acc(A,h), s.t. g;(A) ? Y (4.1)

where A, h, and €) refer to the neural network architecture, training recipe, and designed
search space, respectively. acc maps the architecture and training recipe to accuracy. g;(A)
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Figure 4.5: Rank correlation vs. epochs. Correlation threshold (cyan) is 0.92.

and v refer to the formula and count of resource constraints, such as computational cost,
storage cost, and run-time latency.

Constrained iterative optimization: We first use Quasi Monte-Carlo (QMC) [80] sampling
to generate a sample pool of architecture-recipe pairs from the search space. Then, we train
the predictor iteratively: We (a) shrink the candidate space by selecting a subset of favorable
candidates based on predicted accuracy, (b) train and evaluate the candidates using an
early-stopping heuristic, and (c) fine-tune the predictor with the Huber loss. This iterative
shrinking of the candidate space avoids unnecessary evaluations and improves exploration
efficiency.

e Training candidates with early-stopping. We introduce an early stopping mechanism
to cut down on the computational cost of evaluating candidates. Specifically, we (a) rank
samples by both early-stopping and final accuracy after the first iteration of constrained
iterative optimization, (b) compute the rank correlation, and (c) find the epoch e where
correlation exceeds a particular threshold (e.g., 0.92), as shown in Fig. 4.5.

For all remaining candidates, we train (A, h) only for e epochs to approximate acc(A, h).
This allows us to use much fewer training iterations to evaluate each queried sample.

e Training the predictor with Huber loss. After obtaining the pretrained architecture
embedding, we first train the predictor for 50 epochs with the embedding layer frozen.
Then, we train the entire model with reduced learning rate for another 50 epochs. We
adopt the Huber loss to train the accuracy predictor, i.e., L =0.5(y — 9)?if |y — g| < 1
else |y — g| — 0.5, where y and g are the prediction and ground truth label, respectively.
This prevents the model from being dominated by outliers, which shows can confound the
predictor [116].

Stage 3: Using predictor

The third stage of the proposed method is an iterative process based on adaptive genetic
algorithms [101]. The best-performing architecture-recipe pairs from the second stage are
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inherited as part of the first generation candidates. In each iteration, we introduce mutations
to the candidates and generate a set of children C C 2 subject to given constraints. We
evaluate the score for each child with the pretrained accuracy predictor u, and select top K
highest-scoring candidates for the next generation. We compute the gain of the highest score
after each iteration, and terminate the loop when the improvement saturates. Finally, the
predictor-based evolutionary search produces high-accuracy neural network architectures and
training recipes.

Note that with the accuracy predictor, searching for networks to fit different use scenarios
only incurs negligible cost. This is because the accuracy predictor can be substantially reused
under different resource constraints, while predictor-based evolutionary search takes just
CPU minutes.

Predictor search space

Our search space consists of both training recipes and architecture configurations. The search
space for training recipes features optimizer type, initial learning rate, weight decay, mixup
ratio [136], drop out ratio, stochastic depth drop ratio [43], and whether or not to use model
exponential moving average (EMA) [53]. Our architecture configuration search space is
based on the inverted residual block [93] and includes input resolution, kernel size, expansion,
number of channels per layer, and depth, as detailed in Table 4.2.

In recipe-only experiments, we only tune training recipes on a fixed architecture. However,
for joint search, we search both training recipes and architectures, within the search space in
Table 4.2. Overall, the space contains 107 architecture candidates with 10 possible training
recipes. Exploring such a vast search space for an optimal network architecture and its
corresponding training recipe is non-trivial.

4.4 Experiments

In this section, we first validate our search method in a narrowed search space to discover
the training recipe for a given network. Then, we evaluate our search method for joint search
over architecture and training recipes. We use PyTorch [81], and conduct our search on the
ImageNet 2012 classification dataset [23]. In the search process, we randomly sample 200
classes from the entire dataset to reduce the training time. Then, we randomly withhold 10K
images from the 200-class training set as the validation set.

Recipe-only search

To establish that even modern NAS-produced architecture’s performance can be further
improved with better training recipe, we optimize over training recipes for a fixed architecture.
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block k e ¢ n s se act.
Conv 3 - (16, 24, 2) 1 2 - hswish
MBConv  [3, 5] 1 (16,24,2) (L4 1 N hswish
MBConv  [3, 5] 4,7) / (2, 5) (20,32, 4) (4,7 2 N hswish
MBConv |3, 5] 4,7)/(2,5) (24, 48, 4) 4,7) 2 Y hswish
MBConv  [3, 5] 4,1/ (2,5)2  (56,84,4) (4,8 2 N hswish
MBConv  [3, 5] (4, 1)t / (2, 5)? (96, 144, 4)  (6,10) 1 Y hswish
MBConv  [3, 5] 4, 7) (180,224, 4) (5, 9) 2 Y hswish
MBConv  [3, 5] 6 (180, 224, 4) 1 1 Y hswish
MBPool [3, 5] 6 1984 1 - - hswish
FC - - 1000 1 - - -
res Ir(1073)  optim ema p(1072) d(107Y) m(107')  wd(107°)

(224, 272, 8) (20, 30)  [RMSProp, SGD| |[true, false] (1, 31)  (10,31) (0,41) (7, 21)

Table 4.2: The network architecture configuration and search space in our experiments. MBConv,
MBPool, k, e, ¢, n, s, se, and act. refer to the inverted residual block 93], efficient last stage [40],
kernel size, expansion, #Channel, #Layers, stride, squeeze-and-excitation, and activation function,
respectively. res, Ir, optim, ema, p, d, m, and wd refer to resolution, initial learning rate, optimizer
type, EMA, dropout ratio, stochastic depth drop probability, mixup ratio, and weight decay,
respectively. Expansion on the left of the slash is used in the first block in the stage, while that on
the right for the rest. Tuples of three values in parentheses represent the lowest value, highest, and
steps; two-value tuples imply a step of 1, and tuples in brackets represent all available choices during
search. Note that Ir is multiplied by 4 if the optim chooses SGD. Architecture parameters with the
same superscript share the same values during the search.

We adopt FBNetV2-L3 [111] (Appendix 4.6) as our base architecture, which is a DNAS
searched architecture that achieves 79.1% top-1 accuracy with the original training method
used in [111]. We set the sample pool size n = 20K, batch size m = 48 and iteration T = 4
in constrained iterative optimization. We train the sampled candidates for 150 epochs with a
learning rate decay factor of 0.963 per epoch during the search, and train the final model with
3x slower learning rate decay (i.e., 0.9875 per epoch). We show the distribution of samples
at each round as well as the final searched result in our experiments in Fig. 4.6, where the
first-round samples are randomly generated. The searched training recipe (Appendix 4.6)
improves the accuracy of our base architecture by 0.8%.

We extend the NARS-searched training recipe to other commonly-used neural networks to
further validate its generality. Although the NARS-searched training recipe was tailored to
FBNetV2-L3, it generalizes surprisingly well, as shown in Table 4.3. The NARS-searched
training recipe leads to substantial accuracy gains of up to 5.7% on ImageNet. In fact,
ResNet50 outperforms the baseline ResNet152 by 0.9%. ResNeXt101-32x8d even surpasses
the weakly supervised learning model, which is trained with 1 billion weakly-labeled images
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Figure 4.6: Illustration of the sampling and search process.

Model Top-1 Accuracy (%)

Original Recipe-only A

FBNetV2-L3 [111]  79.1 79.9 +0.8
AlexNet [57] 56.6 62.3 +5.7
ResNet34 [35] 73.3 76.3 +3.0
ResNet50 [35] 76.1 79.2 +3.1
ResNet101 [35] 77.4 81.2 +3.8
ResNet152 [35] 78.3 81.9 +3.6
DenseNet201 [44]  77.2 80.2 +3.0
ResNeXt101 [123]  79.3 82.6 +3.3

Table 4.3: Accuracy improvements with the searched training recipes on existing neural networks.
Above, ResNeXt101 refers to the 32x8d variant.

and achieves 82.2% top-1 accuracy. Notably, it is possible to achieve even better performance
by searching for specific training recipe for each neural network, which would increase the
search cost.

Neural Architecture-Recipe Search (NARS)

Search settings Next, we perform a joint search of architecture and training recipes to
discover compact neural networks. Note that based on our observations in Sec. 4.4, we
shrink the search space to always use EMA. Most of the settings are the same as in the
recipe-only search, while we increase the optimization iteration T' = 5 and set the FLOPs
constraint for the sample pool from 400M to 800M. We pretrain the architecture embedding
layer using 80% of the sample pool which contains 20K samples, and plot the validation on the
rest 20% in Fig. 4.4. In the predictor-based evolutionary search, we set four different FLOPs
constraints: 450M, 550M, 650M, and 750M and discover four models (namely FBNetV3-
B/C/D/E) with the same accuracy predictor. We further scale down and up the minimum
and maximum models and generate FBNetV3-A and FBNetV3-F /G to fit more use scenarios,
respectively, with compound scaling proposed in [105].

Training setup For model training, we use a two-step distillation based training process: (1)
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Model Search method  Search space Search cost FLOPs  Accuracy Accuracy
(GPU/TPU hours) (%, Top-5) (%, Top-1)

FBNet [117] gradient arch 0.2K 375M - 74.9
ProxylessNAS [12] RL/gradient arch 0.2K 465M - 75.1
ChamNet [19] predictor arch 28K 553M - 75.4
RegNetY [85] pop. param.* arch 11K 600M - 75.5
MobileNetV3-1.25x [40] | RL/NetAdapt arch >91K 356M - 76.6
EfficientNetB0 [105] RL/scaling arch >91K 390M 93.3 77.3
AtomNAS [75] gradient arch 0.8K 363M - 77.6
FBNetV2-L2 [111] gradient arch 0.6K 423M - 78.1
FBNetV3-A NARS arch/recipe 10.7K 35" 94.5 79.1
ResNet152 [35] manual - - 11G 93.8 78.3
EfficientNetB2 [105] RL/scaling arch >91K 1.0G 94.9 80.3
ResNeXt101-32x8d [123] manual - - 7.8G 94.5 79.3
Once-For-All [13] gradient - - 595M - 80.0
FBNetV3-C NARS arch/recipe 10.7K 557TM 95.1 80.5
BigNASModel-XL [131] | gradient arch 2.3K 1.0G - 80.9
ResNeSt-50 [135] manual - - 5.4G - 81.1
FBNetV3-E NARS arch/recipe 10.7K 762M 95.5 81.3
EfficientNetB3 [105] RL/scaling arch >91K 1.8G 95.7 81.7
ResNeSt-101 [135] manual - - 10.2G - 82.3
EfficientNetB4 [105] RL/scaling arch >91K 4.2G 96.4 82.9
FBNetV3-G NARS arch/recipe 10.7K 2.1G 96.3 82.8

Table 4.4: Comparisons of different compact neural networks. For baselines, we cite statistics on
ImageNet from the original papers. Our results are bolded. *: population parameterization. See 4.7
for discussions about the training tricks and additional EfficientNet comparisons.

We first train the largest model (i.e., FBNetV3-G) with the searched recipe with ground truth
labels. (2) Then, we train all the models (including FBNetV3-G itself) with distillation, which
is a typical training technique adopted in [13|[131]. Different from the in-place distillation
method in [13][131], the teacher model here is the ImageNet pretrained FBNetV3-G derived
from step (1). The training loss is a sum of two components: Distillation loss scaled by 0.8 and
cross entropy loss scaled by 0.2. During training, we use synchronized batch normalization
in distributed training with 8 nodes and 8 GPUs per node. We train the models for 400
epochs with a learning rate decay factor of 0.9875 per epoch after a 5-epoch warmup. We
train the scaled models FBNetV3-A and FBNetV3-F /G with the searched training recipes
for FBNetV3-B and FBNetV3-E, respectively, only increasing the stochastic depth drop ratio
for FBNetV3-F /G to 0.2. More training details can be found in Appendix 4.6.
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Figure 4.7: Accuracy vs. FLOPs comparison on the CIFAR-10 dataset.

Searched models We compare our searched model against other relevant NAS baselines
and hand-crafted compact neural networks in Fig. 4.1, and list the detailed performance
metrics comparison in Table 4.4, where we group the models by their top-1 accuracy. Among
all the existing efficient models such as EfficientNet [105], MobileNetV3 [40], ResNeSt [135],
and FBNetV2 [111], our searched model delivers substantial improvements on the accuracy-
efficiency trade-off. For example, on low computation cost regime, FBNetV3-A achieves 79.1%
top-1 accuracy with only 357M FLOPs (2.5% higher accuracy than MobileNetV3-1.25x [40]
with similar FLOPs). On high accuracy regime, FBNetV3-E achieves 0.2 higher accuracy
with over 7x fewer FLOPs compared to ResNeSt-50 [135], while FBNetV3-G achieves the
same level of accuracy as EfficientNetB4 [105] with 2x fewer FLOPs. Note that we have
further improved the accuracy of FBNetV3 by using larger teacher models for distillation, as
shown in Appendix 4.7.

Transferability of the searched models

Classification on CIFAR-10 We further extend the searched FBNetV3 on CIFAR-10
dataset that has 60K images from 10 classes [56] to validate its transferability. Note that
different from [105] that scales up the base input resolution to 224x224, we keep the original
base input resolution as 32x32, and scale up the input resolutions for larger models based
on the scaling ratio. We also replace the second stride-two block with a stride-one block
to fit the low-resolution inputs. We don’t include distillation for simplicity. We compared
the performance of different models in Fig. 4.7. Again, our searched models significantly
outperform the EfficientNet baselines.

Detection on COCO To further validate the transferability of the searched models on
different tasks, we use FBNetV3 as a replacement for the backbone feature extractor for
Faster R-CNN with the conv4 (C4) backbone and compare with other models on the COCO
detection dataset. We adopt most of the training settings in [122] with 3x training iterations,
while use synchronized batch normalization, initialize the learning rate at 0.16, switch on
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Backbone #Params (M) FLOPs (G) mAP

EfficientNetB0 8.0 3.6 30.2
FBNetV3-A 5.3 2.9 30.5
EfficeintNetB1 13.3 5.6 32.2
FBNetV3-E 10.6 5.3 33.0

Table 4.5: Object detection results of Faster RCNN with different backbones on COCO.

EMA, reduce the non-maximum suppression (NMS) to 75, and change to learning rate
schedule to Cosine after warming up. Note that we only transfer the searched architectures
and use the same training protocol for all the models.

We show the detailed COCO detection results in Table 4.5. With similar or higher mAP,
our FBNetV3 reduces the FLOPs and number of parameters by up to 18.3% and 34.1%,
respectively, compared to EfficientNet backbones.

4.5 Ablations

In this section, we revisit the performance improvements obtained from joint search, signifi-
cance of the predictor-based evolutionary search, and the impact and generality of several
training techniques.

Architecture and training recipe pairing. Our method yields different training recipes
for different models. For example, we observe that smaller models tend to prefer less
regularization (e.g., smaller stochastic depth drop ratio and mixup ratio). To illustrate the
significance of neural architecture-recipe search, we swap the training recipes searched for
FBNetV3-B and FBNetV3-E, observing a significant accuracy drop for both models, as
shown in Table 4.6. This highlights the importance of correct architecture-recipe pairings,
emphasizing the downfall of conventional NAS: Ignoring the training recipe and only searching
for the network architecture fails to obtain optimal performance.

FBNetV3-B  FBNetV3-E
Train recipe Train recipe

FBNetV3-B Arch 79.8% 78.5%
FBNetV3-E Arch 80.8% 81.3%

Table 4.6: Accuracy comparison for the searched models with swapped training recipes.
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Predictor-based evolutionary search improvements. Predictor-based evolutionary
search yields substantial improvement on top of constrained iterative optimization. To
demonstrate this, we compare the best-performing candidates derived from the second search
stage with the final searched FBNetV3 under the same FLOPs constraints (Table 4.7). We
observe an accuracy drop of up to 0.8% if the third stage is discarded. Thus, the third search
stage, though requiring only negligible cost (i.e., several CPU minutes), is equally crucial to
the final models’ performance.

Model Evolutionary Search FLOPs Accuracy
FBNetV3-B Y 461M 79.8%
FBNetV3-B* N 448M 79.0%
FBNetV3-E Y 762M 81.3%
FBNetV3-E* N 746M 80.7%

Table 4.7: Performance improvement by the predictor-based evolutionary searchsearch. *: Models
derived from constrained iterative optimization.

Impact of distillation and model averaging We show the model performance on
FBNetV3-G in Table 4.8 with different training configurations, where the baseline refers to
the vanilla training without EMA or distillation. EMA brings substantially higher accuracy,
especially during the middle stage of training. We hypothesize EMA intrinsically functions
as a strong “ensemble” mechanism and thus improves single-model accuracy. We additionally
observe distillation brings notable performance improvement. This is consistent with the
observations in [13, 131]. Note since the teacher is a pretrained FBNetV3-G, FBNetV3-G is
self-distilled. The combination of EMA and distillation improves the model’s top-1 accuracy
from 80.9% to 82.8%.

Training Baseline EMA Dist* Dist*+EMA
Model

FBNetV3-G | 80.9%  82.3% 82.2% 82.8%

Table 4.8: Performance improvement with EMA and distillation. *: Distillation-based training
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4.6 Implementation

Training recipe used in Table 4.1

Both Recipe-1 and Recipe-2 share the same batch size of 256, initial learning rate 0.1, weight
decay at 4 x 107°, SGD optimizer, and cosine learning rate schedule. Recipe-1 train the
model for 30 epochs and Recipe-2 train the model for 90 epochs. We don’t introduce training
techniques such as dropout, stochastic depth, and mixup in Recipe-1 or Recipe-2.

We make the same observation when training Recipe-1 and Recipe-2 use the same #Epochs
but different weight decay: The accuracy of ResNet18 (1.4x width) is 0.25% higher and 0.36%
lower than that of ResNet18 (2x depth) when the weight decay is le™* and le™>, respectively.

Base architecture in recipe-only search

We show the base architecture (a scaled version of FBNetV2-1.2) used in the recipe-only
search in Table 4.10, while the input resolution is 256 x256. This is the base architecture used
in the training recipe search in Section 4.4. It achieves 79.1% top-1 accuracy on ImageNet
with the original training recipe used for FBNetV2. With the searched training recipes, it
achieves 79.9% ImageNet top-1 accuracy.

Search settings and details

In the recipe-only search experiment, we set the early-stop rank correlation threshold to
be 0.92, and find the corresponding early-stop epoch to be 103. In the predictor-based
evolutionary search, we set the population of the initial generation to be 100 (50 best-
performing candidates from constrained iterative optimizationand 50 randomly generated
samples). We generate 24 children from each candidate and pick the top 40 candidates for
the next generation. Most of the settings are shared by the joint search of architecture and
training recipes, except the early-stop epoch to be 108. The accuracy predictor consists of
one embedding layer (architecture encoder layer) and one extra hidden layer. The embedding
width is 24 for the joint search (note that there is no pretrained embedding layer for the
recipe-only search). We set both minimum and maximum FLOPs constraint at 400M and
800M for the joint search, respectively. The selection of m best-performing samples in the
constrained iterative optimization involves two steps: (1) equally divide the FLOP range into
m bins and (2) pick the sample with the highest predicted score within each bin.

We show the detailed searched training recipe in Table 4.9. We also release the searched
models.
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Notation Value
Ir 0.026
optim RMSprop
ema true
p 0.17
d 0.09
0.19
wd Te-6

Table 4.9: Searched training recipe.
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Figure 4.8: Training curve of the search recipe on FBNetV3-G.

Training settings and details

We use distributed training with 8 nodes for the final models, and scale up the learning rate
by the number of distributed nodes (e.g., 8x for 8-node training). The batch size is set to be
256 per node. We use label smoothing and AutoAugment in the training. Additionally, we
set the weight decay and momentum for batch normalization parameters to be zero and 0.9,
respectively

We implement the EMA model as a copy of the original network (they share the same weights
at t = 0). After each backward pass and model weights update, we update the EMA weights
as

Wi = awf™ 4 (1 - a)wisy (4.2)

where wi?, wi™*, and w4 refer to the EMA weight at step ¢ + 1, EMA weight at step
t, and model weight at t + 1. We use an EMA decay a of 0.99985, 0.999, and 0.9998 in
our experiments on ImageNet, CIFAR-10, and COCO, respectively. We further provide the
training curves of FBNetV3-G in Fig. 4.8.

The baseline models (e.g., AlexNet, ResNet, DenseNet, and ResNeXt) are adopted from
PyTorch open-source implementation without any architecture change. The input resolution
is 224 x224.
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block k e C n S se act.
Conv 1 3 16 1 2 - hswish
MBConv 3 1 16 2 1 N hswish
MBConv 5 5.46 24 1 2 N hswish
MBConv 5 1.79 24 1 1 N hswish
MBConv 3 1.79 24 1 1 N hswish
MBConv 5 1.79 24 2 1 N hswish
MBConv 5 5.35 40 1 2 Y hswish
MBConv 5 3.54 32 1 1 Y hswish
MBConv 5 4.54 32 3 1 Y hswish
MBConv 5 5.71 72 1 2 N hswish
MBConv 3 2.12 72 1 1 N hswish
Skip - - 72 - - - hswish
MBConv 3 3.12 72 1 1 N hswish
MBConv 3 5.03 128 1 1 N hswish
MBConv 5 2.51 128 1 1 Y hswish
MBConv 5 1.77 128 1 1 Y hswish
MBConv 5 2.77 128 1 1 Y hswish
MBConv 5 3.77 128 4 1 Y hswish
MBConv 3 5.57 208 1 2 Y hswish
MBConv 5 2.84 208 2 1 Y hswish
MBConv 5 4.88 208 3 1 Y hswish
Skip - - 248 - - - hswish
MBPool - 6 1984 1 - - hswish
FC - - 1000 1 - - -

Table 4.10: Baseline architecture used in the recipe-only search. The block notations are identical to
Table 4.2. Skip block refers to an identity connection if the input and output channel are equal otherwise a
1x1 conv.

4.7 Discussion

Comparison between recipe-only search and hyperparameter
optimizers

Many well-known hyperparameter optimizers (ASHA, Hyberband, PBT) evaluate on CIFAR10.
One exception is [76], which reports a 0.5% gain for ResNet50 on ImageNet by searching
optimizers, learning rate, weight decay, and momentum. By contrast, our recipe-only search
with the same space (without EMA) increases ResNet50 accuracy by 1.9%, from 76.1% to
78.0%.
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Model Distillation FLOPs Acc. (%) A
EfficientNetB2 N 1050 80.3 0.0
FBNetV3-E N 762 80.4 +0.1
FBNetV3-E Y 762 81.3 +1.0

Table 4.11: Model comparison w/ and w/o distillation.

0 10 20 30 40
COCO epoch

Figure 4.9: Training curves for RetinaNet with ResNet101 backbone on COCO object detection.

More discussions on training tricks

We acknowledge EfficientNet does not use distillation. For fair comparison, we report FBNetV3
accuracy without distillation. We provide an example in Table 4.11: Without distillation,
FBNetV3 achieves higher accuracy with 27% less FLOPs, compared to EfficientNet. However,
all our training tricks (including EMA and distillation) are used in the other baselines,
including BigNAS and OnceForAll.

Generality of stochastic weight averaging via EMA. We observe that stochastic
weight averaging via EMA yields significant accuracy gain for the classification tasks, as
has been noted prior [10, 36]. We hypothesize that such a mechanism could be used as a
general technique to improve other DNN models. To validate this, we employ it to train a
RetinaNet [61] on COCO object detection [62] with ResNet50 and ResNet101 backbones. We
follow most of the default training settings but introduce EMA and Cosine learning rate. We
observe similar training curves and behavior as the classification tasks, as shown in Fig. 4.9.
The generated RetinaNets with ResNet50 and ResNet101 backbones achieve 40.3 and 41.9
mAP, respectively, both substantially outperform the best reported values in [122] (38.7 and
40.4 for ResNet50 and ResNet101, respectively). A promising future direction is to study
such techniques and extend it to other DNNs and applications.

Further improvements on FBNetV3

We demonstrate that using a teacher model with higher accuracy leads to further accuracy
gain on FBNetV3. We use RegNetY-32G FLOPs (top-1 accuracy 84.5%) [26] as the teacher
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model, and distill all the FBNetV3 models. We show all the derived models in Fig. 4.10,
where we observe a consistent accuracy gain at 0.2% - 0.5% for all the models.

2
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E #*  ChamNet e OnceForAll
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Figure 4.10: ImageNet accuracy vs. model FLOPs comparison of FBNetV3 (distilled from giant
RegNet-Y models) with other efficient convolutional neural networks.

4.8 Conclusion

True to their name, previous neural architecture search methods search only over architec-
tures, using a fixed set of training hyperparameters (i.e., “training recipe”). As a result,
previous methods overlook higher-accuracy architecture-recipe combinations. However, our
NARS does not, being the first algorithm to jointly search over both architectures and
training recipes simultaneously for a large dataset like ImageNet. Critically, NARS’s predic-
tor pretrains on “free” architecture statisticsnamely, FLOPs and #Parameters—to improve
the predictor’s sample efficiency significantly. After training and using the predictor, the
resulting FBNetV3 architecture-recipe pairs attain state-of-the-art per-FLOP accuracies on
ImageNet classification. We furthermore show generalizable training hyperparameters and
a number of ablation studies to support our design choices. These results pave the way
for joint architecture-recipe searches in the future, marrying neural architecture search and
hyperparameter tuning algorithms under one framework.
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Chapter 5

Jointly Improving Accuracy,
(Generalization, and Explainability

5.1 Introduction

Machine learning applications such as finance and medicine demand accurate and justifiable
predictions, barring most deep learning methods from use. In response, previous work
combines decision trees with deep learning, yielding models that (1) sacrifice interpretability
for accuracy or (2) sacrifice accuracy for interpretability. We forgo this dilemma by jointly
improving accuracy and interpretability using Neural-Backed Decision Trees (NBDTs). NBDTs
replace a neural network’s final linear layer with a differentiable sequence of decisions and
a surrogate loss. This forces the model to learn high-level concepts and lessens reliance
on highly-uncertain decisions, yielding (1) accuracy: NBDTs match or outperform modern
neural networks on CIFAR, ImageNet and better generalize to unseen classes by up to
16%. Furthermore, our surrogate loss improves the original model’s accuracy by up to
2%. NBDTs also afford (2) interpretability: improving human trust by clearly identifying
model mistakes and assisting in dataset debugging. Code and pretrained NBDTs are at
github.com /alvinwan /neural-backed-decision-trees.!

!The contents of this work are in collaboration with Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry
Jin, Suzanne Petryk, Sarah Adel Bargal, and Joseph E. Gonzalez, presented at ICLR 2021 [112]|. This research
was supported by my National Science Foundation Graduate Research Fellowship under Grant No. DGE
1752814. In addition to NSF CISE Expeditions Award CCF-1730628, UC Berkeley research is supported
by gifts from Alibaba, Amazon Web Services, Ant Financial, CapitalOne, Ericsson, Facebook, Futurewei,
Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk and VMware.
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5.2 Motivation

Many computer vision applications (e.g. medical imaging and autonomous driving) require
insight into the model’s decision process, complicating applications of deep learning which
are traditionally black box. Recent efforts in explainable computer vision attempt to address
this need and can be grouped into one of two categories: (1) saliency maps and (2) sequential
decision processes. Saliency maps retroactively explain model predictions by identifying
which pixels most affected the prediction. However, by focusing on the input, saliency maps
fail to capture the model’s decision making process. For example, saliency offers no insight
for a misclassification when the model is “looking” at the right object for the wrong reasons.
Alternatively, we can gain insight into the model’s decision process by breaking up predictions
into a sequence of smaller semantically meaningful decisions as in rule-based models like
decision trees. However, existing efforts to fuse deep learning and decision trees suffer from
(1) significant accuracy loss, relative to contemporary models (e.g., residual networks), (2)
reduced interpretability due to accuracy optimizations (e.g., impure leaves and ensembles),
and (3) tree structures that offer limited insight into the model’s credibility.

To address these, we propose Neural-Backed Decision Trees (NBDTs) to jointly improve
both (1) accuracy and (2) interpretability of modern neural networks, utilizing decision rules
that preserve (3) properties like sequential, discrete decisions; pure leaves; and non-ensembled
predictions. These properties in unison enable unique insights, as we show. We acknowledge
that there is no universally-accepted definition of interpretability |70, 27, 63|, so to show
interpretability, we adopt a definition offered by [84]: A model is interpretable if a human
can validate its prediction, determining when the model has made a sizable mistake. We
picked this definition for its importance to downstream benefits we can evaluate, specifically
(1) model or dataset debugging and (2) improving human trust. To accomplish this, NBDTs
replace the final linear layer of a neural network with a differentiable oblique decision tree
and, unlike its predecessors (i.e. decision trees, hierarchical classifiers), uses a hierarchy
derived from model parameters, does not employ a hierarchical softmax, and can be created
from any existing classification neural network without architectural modifications. These
improvements tailor the hierarchy to the network rather than overfit to the feature space,
lessens the decision tree’s reliance on highly uncertain decisions, and encourages accurate
recognition of high-level concepts. These benefits culminate in joint improvement of accuracy
and interpretability. Our contributions:

1. We propose a tree supervision loss, yielding NBDTs that match/outperform and out-
generalize modern neural networks (WideResNet, EfficientNet) on ImageNet, Tiny-
ImageNet200, and CIFAR100. Our loss also improves the original model by up to

2%.

2. We propose alternative hierarchies for oblique decision trees — induced hierarchies built
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using pre-trained neural network weights — that outperform both data-based hierarchies
(e.g. built with information gain) and existing hierarchies (e.g. WordNet), in accuracy.

3. We show NBDT explanations are more helpful to the user when identifying model
mistakes, preferred when using the model to assist in challenging classification tasks,
and can be used to identify ambiguous ImageNet labels.

5.3 Neural-Backed Decision Trees

Neural-Backed Decision Trees (NBDTs) replace a network’s final linear layer with a decision
tree. Unlike classical decision trees or many hierarchical classifiers, NBDTs use path prob-
abilities for inference (Sec 5.3) to tolerate highly-uncertain intermediate decisions, build a
hierarchy from pre-trained model weights (Sec 5.3 & 5.3) to lessen overfitting, and train with
a hierarchical loss (Sec 5.3) to significantly better learn high-level decisions (e.g., Animal vs.
Vehicle).

Inference

Our NBDT first featurizes each sample using the neural network backbone; the backbone
consists of all neural network layers before the final linear layer. Second, we run the final
fully-connected layer as an oblique decision tree. However, (a) a classic decision tree cannot
recover from a mistake early in the hierarchy and (b) just running a classic decision tree on
neural features drops accuracy significantly, by up to 11% (Table 5.2). Thus, we present
modified decision rules (Figure 5.1, B):

1. Seed oblique decision rule weights with neural network weights. An oblique
decision tree supports only binary decisions, using a hyperplane for each decision. Instead,
we associate a weight vector n; with each node. For leaf nodes, where i = k € [1, K], each
n; = wy, is a row vector from the fully-connected layer’s weights W € RP*¥_ For all inner
nodes, where i € [K + 1, N], find all leaves k € L(i) in node i’s subtree and average their

weights: n; = 324y wi/|L(9)].

2. Compute node probabilities. Child probabilities are given by softmax inner products.
For each sample z and node ¢, compute the probability of each child j € C(i) using
p(jli) = SOFTMAX(({7i;, x))[j], where 7i; = ((nj, 7)) jecq)-

3. Pick a leaf using path probabilities. Inspired by [24], consider a leaf, its class k and
its path from the root P,. The probability of each node 7 € P, traversing the next node in
the path Cx(i) € P, N C(7) is denoted p(C(7)|7). Then, the probability of leaf and its class k
is
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Figure 5.1: Hard and Soft Decision Trees. A. Hard: is the classic “hard” oblique decision tree.
Each node picks the child node with the largest inner product, and visits that node next. Continue
until a leaf is reached. B. Soft: is the “soft” variant, where each node simply returns probabilities,
as normalized inner products, of each child. For each leaf, compute the probability of its path to the
root. Pick leaf with the highest probability. C. Hard vs. Soft: Assume wy is the correct class.
With hard inference, the mistake at the root (red) is irrecoverable. However, with soft inference, the
highly-uncertain decisions at the root and at ws are superseded by the highly certain decision at ws
(green). This means the model can still correctly pick wy despite a mistake at the root. In short,
soft inference can tolerate mistakes in highly uncertain decisions.

p(k) = iep,p(Cr(i)[1) (5.1)

In soft inference, the final class prediction k is defined over these class probabilities,

k = argmax,p(k) = argmax, IL;c p, p(Ci(7)7) (5.2)

Our inference strategy has two benefits: (a) Since the architecture is unchanged, the fully-
connected layer can be run regularly (Table 5.5) or as decision rules (Table 5.1), and (b)
unlike decision trees and other conditionally-executed models [107, 110], our method can
recover from a mistake early in the hierarchy with sufficient uncertainty in the incorrect
path (Figure 5.1 C, Appendix Table 5.7). This inference mode bests classic tree inference
(Appendix 5.7).

Building Induced Hierarchies

Existing decision-tree-based methods use (a) hierarchies built with data-dependent heuristics
like information gain or (b) existing hierarchies like WordNet. However, the former overfits
to the data, and the latter focuses on conceptual rather than visual similarity: For example,
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Figure 5.2: Building Induced Hierarchies. Step A. Load the weights of a pre-trained model’s
final fully-connected layer, with weight matrix W € RP*K. Step B. Take rows w;, € W and
normalize for each leaf node’s weight. For example, the red w; in A is assigned to the red leaf in B.
Step C. Average each pair of leaf nodes for the parents’ weight. For example, w; and wy (red and
purple) in B are averaged to make ws (blue) in C. Step D. For each ancestor, average all leaf node
weights in its subtree. That average is the ancestor’s weight. Here, the ancestor s the root, so its
weight is the average of all leaf weights w1, ws, w3, wy.

by virtue of being an animal, Bird is closer to Cat than to Plane, according to WordNet.
However, the opposite is true for visual similarity: by virtue of being in the sky, Bird is
more visually similar to Plane than to Cat. Thus, to prevent overfitting and reflect visual
similarity, we build a hierarchy using model weights.

Our hierarchy requires pre-trained model weights. Take row vectors wy, : k € [1, K], each
representing a class, from the fully-connected layer weights . Then, run hierarchical
agglomerative clustering on the normalized class representatives wy/||wy||2. Agglomerative
clustering decides which nodes and groups of nodes are iteratively paired. As described in
Sec 5.3, each leaf node’s weight is a row vector wy, € W (Figure 5.2, Step B) and each inner
node’s weight n; is the average of its leaf node’s weights (Figure 5.2, Step C). This hierarchy
is the induced hierarchy (Figure 5.2).

Labeling Decision Nodes with WordNet

WordNet is a hierarchy of nouns. To assign WordNet meaning to nodes, we compute the
earliest common ancestor for all leaves in a subtree: For example, say Dog and Cat are
two leaves that share a parent. To find WordNet meaning for the parent, find all ancestor
concepts that Dog and Cat share, like Mammal, Animal, and Living Thing. The earliest
shared ancestor is Mammal, so we assign Mammal to the parent of Dog and Cat. We repeat
for all inner nodes.



CHAPTER 5. JOINTLY IMPROVING ACCURACY, GENERALIZATION, AND
EXPLAINABILITY 51

However, the WordNet corpus is lacking in concepts that are not themselves objects, like
object attributes (e.g., Pencil and Wire are both cylindrical) and (b) abstract visual ideas
like context (e.g., fish and boat are both aquatic). Many of these which are littered across
our induced hierarchies (Appendix Figure 5.14). Despite this limitation, we use WordNet
to assign meaning to intermediate decision nodes, with more sophisticated methods left to
future work.

Fine-tuning with Tree Supervision Loss

Even though standard cross entropy loss separates representatives for each leaf, it is not
trained to separate representatives for each inner node (Table 5.3, “None”). To amend this, we
add a tree supervision loss, a cross entropy loss over the class distribution of path probabilities
Dupas = {p(k)}E, (Eq. 5.1) from Sec 5.3, with time-varying weights wy, 3; where ¢ is the
epoch count:

L = B, CROSSENTROPY (Dpyed, Diabel) +wi CROSSENTROPY (Diypat, Diabel) (5.3)

S i

~~ ~~
Coriginal Esoft

Our tree supervision loss Ly requires a pre-defined hierarchy. We find that (a) tree
supervision loss damages learning speed early in training, when leaf weights are nonsensical.
Thus, our tree supervision weight w; grows linearly from wy = 0 to wy = 0.5 for CIFARI10,
CIFAR100, and to wy = 5 for TinylmageNet, ImageNet; 3, € [0, 1] decays linearly over time.
(b) We re-train where possible, fine-tuning with L.g only when the original model accuracy
is not reproducible. (c¢) Unlike hierarchical softmax, our path-probability cross entropy loss
Loy disproportionately up-weights decisions earlier in the hierarchy, encouraging accurate
high-level decisions; this is reflected our out-generalization of the baseline neural network by
up to 16% to unseen classes (Table 5.6).

5.4 Experiments

NBDTs obtain state-of-the-art results for interpretable models and match or outperform
modern neural networks on image classification. We report results on different models
(ResNet, WideResNet, EfficientNet) and datasets (CIFAR10, CIFAR100, TinylmageNet,
ImageNet). We additionally conduct ablation studies to verify the hierarchy and loss designs,
find that our training procedure improves the original neural network’s accuracy by up to 2%,
and show that NBDTs improve generalization to unseen classes by up to 16%. All reported
improvements are absolute.
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Table 5.1: Results. NBDT outperforms competing decision-tree-based methods by up to 18% and

can also outperform the original neural network by ~ 1%. “Expl?” indicates the method retains
interpretable properties: pure leaves, sequential decisions, non-ensemble. Methods without this check
see reduced interpretability. We bold the highest decision-tree-based accuracy. These results are
taken directly from the original papers (n/a denotes results missing from original papers): XOC [2],
DCDJ [3], NofE [1], DDN [79], ANT [107], CNN-RNN |[31]. We train DNDF [54] with an updated
R18 backbone, as they did not report CIFAR accuracy.

Method Backbone Expl? CIFARI10 CIFAR100 TinyImageNet
NN WideResNet28x10 97.62% 82.09% 67.65%
ANT-A* n/a v 93.28% n/a n/a
DDN NiN 90.32% 68.35% n/a
DCDJ NiN n/a 69.0% n/a
NofE ResNet56-4x n/a 76.24% n/a
CNN-RNN WideResNet28x10 v n/a 76.23% n/a
NBDT-S (Ours) WideResNet28x10 v 97.55% 82.97% 67.72%
NN ResNet18 94.97% 75.92% 64.13%
DNDF ResNet18 94.32% 67.18% 44.56%
XOC ResNet18 v 93.12% n/a n/a
DT ResNet18 v 93.97% 64.45% 52.09%
NBDT-S (Ours) ResNet18 v 94.82% 77.09% 64.23%
Results

Small-scale Datasets. Our method (Table 5.1) matches or outperforms recently state-of-
the-art neural networks. On CIFAR10 and TinyIlmageNet, NBDT accuracy falls within 0.15%
of the baseline neural network. On CIFAR100, NBDT accuracy outperforms the baseline by
~1%.

Large-scale Dataset. On ImageNet (Table 5.3), NBDTs obtain 76.60% top-1 accuracy,
outperforming the strongest competitor NofE by 15%. Note that we take the best competing
results for any decision-tree-based method, but the strongest competitors hinder interpretabil-
ity by using ensembles of models like a decision forest (DNDF, DCDJ) or feature shallow
trees with only depth 2 (NofE).

Analysis

Analyses show that our NBDT improvements are dominated by significantly improved ability
to distinguish higher-level concepts (e.g., Animal vs. Vehicle).
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Figure 5.3: ImageNet Results. NBDT outperforms all competing decision-tree-based methods by
at least 14%, staying within 0.6% of EfficientNet accuracy. “EfficientNet” is EfficientNet-EdgeTPU-
Small.

Method NBDT (ours) NBDT (ours) XOC NofE
Backbone EfficientNet ResNet18 ResNet152 AlexNet
Original Acc 77.23% 60.76% 78.31% 56.55%
Delta Acc -0.63% +0.50% -17.5% +4.7%
Explainable Acc 76.60% 61.26% 60.77% 61.29%

Table 5.2: Comparisons of Hierarchies. We demonstrate that our weight-space hierarchy bests
taxonomy and data-dependent hierarchies. In particular, the induced hierarchy achieves better
performance than (a) the WordNet hierarchy, (b) a classic decision tree’s information gain hierarchy,
built over neural features (“Info Gain”), and (c) an oblique decision tree built over neural features

(“ocr),

Dataset Backbone Original Induced Info Gain WordNet 0C1

CIFARI10 ResNet18 94.97% 94.82% 93.97% 94.37% 94.33%
CIFAR100 ResNet18 75.92% 77.09% 64.45% 74.08% 38.67%
TinyImageNet200 ResNet18 64.13% 64.23% 52.09% 60.26% 15.63%

Comparison of Hierarchies. Table 5.2 shows that our induced hierarchies outperform
alternatives. In particular, data-dependent hierarchies overfit, and the existing WordNet
hierarchy focuses on conceptual rather than visual similarity.

Comparisons of Losses. Previous work suggests hierarchical softmax (Appendix 5.7)
is necessary for hierarchical classifiers. However, our results suggest otherwise: NBDTs

trained with hierarchical softmax see ~3% less accuracy than with tree supervision loss on
TinyImageNet (Table 5.3).

Original Neural Network. Per Sec 5.3, we can run the original neural network’s fully-
connected layer normally, after training with tree supervision loss. Using this, we find that

the original neural network’s accuracy improves by up to 2% on CIFAR100, TinylmageNet
(Table 5.5).

Zero-Shot Superclass Generalization. We define a “superclass” to be the hypernym
of several classes. (e.g. Animal is a superclass of Cat and Dog). Using WordNet (per Sec
5.3), we (1) identify which superclasses each NBDT inner node is deciding between (e.g.
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Table 5.3: Comparisons of Losses. Training the NBDT using tree supervision loss with a linearly
increasing weight (“TreeSup(t)”) is superior to training (a) with a constant-weight tree supervision
loss (“TreeSup”), (b) with a hierarchical softmax (“HrchSmax”) and (c) without extra loss terms.
(“None”). A is the accuracy difference between our soft loss and hierarchical softmax.

Dataset Backbone  Original =~ TreeSup(t)  TreeSup  None HrchSmax
CIFAR10 ResNet18 94.97% 94.82% 94.76% 94.38% 93.97%
CIFAR100 ResNet18 75.92% 77.09% 74.92% 61.93% 74.09%
TinyImageNet200 ResNet18 64.13% 64.23% 62.74% 45.51% 61.12%

Table 5.4: Mid-Training Hierarchy. Constructing and using hierarchies early and often in
training yields the highest performing models. All experiments use ResNet18 backbones. Per Sec
5.3, B¢, w: are the loss term coefficients. Hierarchies are reconstructed every “Period” epochs, starting
at “Start” and ending at “End”.

Hierarchy Updates CIFAR10 CIFAR100

Start End Period NBDT NN+TSL NN NBDT NN+TSL NN

67 120 10 94.88% 94.97% 94.97% 76.04% 76.56% 75.92%
90 140 10 94.29% 94.84% 94.97% 75.44% 76.29% 75.92%
90 140 20 94.52% 94.89% 94.97% 75.08% 76.11% 75.92%
120 121 10 94.52% 94.92% 94.97% 74.97% 75.88% 75.92%

Animal vs. Vehicle). (2) We find unseen classes that belong to the same superclass, from a
different dataset. (e.g. Pull Turtle images from ImageNet). (3) Evaluate the model to ensure
the unseen class is classified into the correct superclass (e.g. ensure Turtle is classified as
Animal). For an NBDT, this is straightforward: one of the inner nodes classifies Animal
vs. Vehicle (Sec 5.3). For a standard neural network, we consider the superclass that the
final prediction belongs to. (i.e. When evaluating Animal vs. Vehicle on a Turtle image,
the CIFAR-trained model may predict any CIFAR Animal class). See Appendix 5.6 for
details. Our NBDT consistently bests the original neural network by 8%+ (Table 5.6). When
discerning Carnivore vs. Ungulate, NBDT outperforms the original neural network by 16%.

Mid-Training Hierarchy: We test NBDTs without using pre-trained weights, instead
constructing hierarchies during training from the partially-trained network’s weights. Tree
supervision loss with mid-training hierarchies reliably improve the original neural network’s
accuracy, up to ~0.6%, and the NBDT itself can match the original neural network’s accuracy
(Table 5.4). However, this underperforms NBDT (Table 5.1), showing fully-trained weights
are still preferred for hierarchy construction.



CHAPTER 5. JOINTLY IMPROVING ACCURACY, GENERALIZATION, AND

EXPLAINABILITY 55
Table 5.5: Original Neural Network. Table 5.6: Zero-Shot Superclass Generalization.

We compare the model’s accuracy before We evaluate a CIFAR10-trained NBDT (ResNet18

and after the tree supervision loss, us- backbone) inner node’s ability to generalize beyond
ing ResNet18, WideResNet on CIFAR100, seen classes. We label TinyImageNet with superclass
TinyImageNet. Our loss increases the labels (e.g. label Dog with Animal) and evaluate
original network accuracy consistently by nodes distinguishing between said superclasses. We
~ .8 —2.4%. NN-S is the network trained compare to the baseline ResNet18: check if the pre-
with the tree supervision loss. diction is within the right superclass.
Dataset Backbone NN NN-S Nelass duperclasses R18 NBDT-S
C100 RIS 75.92%  76.96% 71 Animal vs. Vehicle 66.08%  74.79%
T200 RIS 64.13%  66.55% 36  Placental vs. Vertebrate  45.50%  54.89%
C100 WRN28 82.09%  82.87% 19  Carnivore vs. Ungulate 51.37%  67.78%
T200 WRNZ28 67.65%  68.51% 9 Motor Vehicle vs. Craft 69.33%  77.78%

5.5 Interpretability

By breaking complex decisions into smaller intermediate decisions, decision trees provide
insight into the decision process. However, when the intermediate decisions are themselves
neural network predictions, extracting insight becomes more challenging. To address this, we
adopt benchmarks and an interpretability definition offered by [84]: A model is interpretable
if a human can validate its prediction, determining when the model has made a sizable
mistake. To assess this, we adapt [84]’s benchmarks to computer vision and show (a) humans
can identify misclassifications with NBDT explanations more accurately than with saliency
explanations (Sec 5.5), (b) a way to utilize NBDT’s entropy to identify ambiguous labels (Sec.
5.5), and (c) that humans prefer to agree with NBDT predictions when given a challenging
image classification task (Sec. 5.5 & 5.5). Note that these analyses depend on three model
properties that NBDT preserves: (1) discrete, sequential decisions, so that one path is selected;
(2) pure leaves, so that one path picks one class; and (3) non-ensembled predictions, so that
path to prediction attribution is discrete. In all surveys, we use CIFAR10-trained models
with ResNet18 backbones.

Survey: Identifying Faulty Model Predictions

In this section we aim to answer a question posed in [84] "How well can someone detect when
the model has made a sizable mistake?”. In this survey, each user is given 3 images, 2 of
which are correctly classified and 1 is mis-classified. Users must predict which image was
incorrectly classified given a) the model explanations and b) without the final prediction. For
saliency maps, this is a near-impossible task as saliency usually highlights the main object in
the image, regardless of wrong or right. However, hierarchical methods provide a sensible
sequence of intermediate decisions that can be checked. This is reflected in the results: For
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Figure 5.4: CIFARI10 Blurry Images. To make the classification task difficult for humans, the
CIFARI10 images are downsampled by 4x. This forces at least partial reliance on model predictions,
allowing us to evaluate which explanations are convincing enough to earn the user’s agreement.

each explainability technique, we collected 600 survey responses. When given saliency maps
and class probabilities, only 87 predictions were correctly identified as wrong. In comparison,
when given the NBDT series of predicted classes and child probabilities (e.g., “Animal (90%)
— Mammal (95%)”, without the final leaf prediction) 237 images were correctly identified
as wrong. Thus, respondents can better recognize mistakes in NBDT explanations nearly 3
times better.

Although NBDT provides more information than saliency maps about misclassification, a
majority — the remaining 363 NBDT predictions — were not correctly identified. To explain
this, we note that ~ 37% of all NBDT errors occur at the final binary decision, between
two leaves; since we provide all decisions except the final one, these leaf errors would be
impossible to distinguish.

Survey: Explanation-Guided Image Classification

In this section we aim to answer a question posed in [84] “To what extent do people follow a
model’s predictions when it is beneficial to do so?”. In this first survey, each user is asked
to classify a severely blurred image (Fig 5.4). This survey affirms the problem’s difficulty,
decimating human performance to not much more than guessing: 163 of 600 responses are
correct (27.2% accuracy).

In the next survey, we offer the blurred image and two sets of predictions: (1) the original
neural network’s predicted class and its saliency map, and (2) the NBDT predicted class
and the sequence of decisions that led up to it (“Animal, Mammal, Cat”). For all examples,
the two models predict different classes. In 30% of the examples, NBDT is right and the
original model is wrong. In another 30%, the opposite is true. In the last 40%, both models
are wrong. As shown in Fig. 5.4, the image is extremely blurry, so the user must rely on the
models to inform their prediction. When offered model predictions, in this survey, 255 of 600
responses are correct (42.5% accuracy), a 15.3 point improvement over no model guidance. We
observe that humans trust NBDT-explained prediction more often than the saliency-explained
predictions. Out of 600 responses, 312 responses agreed with the NBDT’s prediction, 167
responses agreed with the base model’s prediction, and 119 responses disagreed with both
model’s predictions. Note that a majority of user decisions (~ 80%) agreed with either model
prediction, even though neither model prediction was correct in 40% of examples, showing
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our images were sufficiently blurred to force reliance on the models. Furthermore, 52% of
responses agreed with NBDT (against saliency’s 28%), even though only 30% of NBDT
predictions were correct, showing improvement in model trust.

Survey: Human-Diagnosed Level of Trust

The explanation of an NBDT prediction is the visualization of the path traversed. We
then compare these NBDT explanations to other explainability methods in human studies.
Specifically, we ask participants to pick an expert to trust (Appendix, Figure 5.13), based on
the expert’s explanation — a saliency map (ResNet18, GradCAM), a decision tree (NBDT),
or neither. We only use samples where ResNet18 and NBDT predictions agree. Of 374
respondents that picked one method over the other, 65.9% prefer NBDT explanations; for
misclassified samples, 73.5% prefer NBDT. This supports the previous survey’s results,
showing humans trust NBDTs more than current saliency techniques when explicitly asked.

Analysis: Identifying Faulty Dataset Labels

There are several types of ambiguous labels (Figure 5.5), any of which could hurt model
performance for an image classification dataset like ImageNet. To find these images, we
use entropy in NBDT decisions, which we find is a much stronger indicator of ambiguity
than entropy in the original neural network prediction. The intuition is as follows: If all
intermediate decisions have high certainty except for a few decisions, those decisions are
deciding between multiple equally plausible cases. Using this intuition, we can identify
ambiguous labels by finding samples with high “path entropy” — or highly disparate entropies
for intermediate decisions on the NBDT prediction path.

Per Figure 5.6, the highest “path entropy” samples in ImageNet contain multiple objects,
where each object could plausibly be used for the image class. In contrast, samples that
induce the highest entropy in the baseline neural network do not suggest ambiguous labels.
This suggests NBDT entropy is more informative compared to that of a standard neural
network.

5.6 Applications

In this section, we expand on details for interpretability as presented above, with an emphasis
on qualitative use of the hierarchy.

Maximum Similarity Examples to Visualize Generalization

We (1) visually confirm the hypothesized meaning of each node by identifying the most
“representative” samples, and (2) check that these “representative” samples represent that
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Figure 5.5: Types of Ambiguous Labels. All these examples have ambiguous labels. With
NBDT (top), the decision rule deciding between equally-plausible classes has low certainty (red,
30-50%). All other decision rules have high certainty (blue, 96%-+). The juxtaposition of high and
low certainty decision rules makes ambiguous labels easy to distinguish. By contrast, ResNet18
(bottom) still picks one class with high probability. (Left) An extreme example of a “spug” that may
plausibly belong to two classes. (Right) Image containing two animals of different classes. Photo
ownership: “Spug” by Arne Fredriksen at gyyporama.com. Used with permission. Second image is
CC-0 licensed at pexels.com.

category (e.g., Animal) and not just the training classes under that category. We define
“representative” samples, or maximum similarity examples, to be samples with embeddings
most similar to an inner node’s representative. We visualize these examples for a model
before and after the tree supervision loss (NBDT and ResNet18, respectively). The models
are trained on CIFAR10, but samples are drawn from ImageNet. We observe that maximum
similarity examples for NBDT contain more unseen classes than ResNet18 (Figure 5.8). This
suggests that our NBDT is better able to capture high-level concepts such as Animal, which
is quantitatively confirmed by the superclass evaluation in Table 5.6.

Explainability of Nodes’ Visual Meanings

This section describes the method used in Table 5.6 in more detail. Since the induced
hierarchy is constructed using model weights, the intermediate nodes are not forced to split on
foreground objects. While hierarchies like WordNet provide hypotheses for a node’s meaning,
the tree may split on unexpected contextual and visual attributes such as underwater and on
land, depicted in Figure 5.7b. To diagnose a node’s visual meaning, we perform the following
4-step test:

1. Posit a hypothesis for the node’s meaning (e.g. Animal vs. Vehicle). This hypothesis can
be computed automatically from a given taxonomy or deduced from manual inspection of
each child’s leaves (Figure 5.9).



CHAPTER 5. JOINTLY IMPROVING ACCURACY, GENERALIZATION, AND
EXPLAINABILITY

RESNET-18 ENTROPY NBDT PATH ENTROPY

Figure 5.6: ImageNet Ambiguous Labels. These images suggest that NBDT path entropy
uniquely identifies ambiguous labels in Imagenet, without object detection labels. We plot ImageNet
validation samples that induce the most 2-class confusion, using Tinylmagenet200-trained models.
Note that ImageNet classes do not include people. (Left) Run ResNet18 and find samples that (a)
maximize entropy between the top 2 classes and (b) minimize entropy across all classes, where the
top 2 classes are averaged. Despite high model uncertainty, half the classes are from the training set —
bee, orange, bridge, banana, remote control — and do not show visual ambiguity. (Right) For NBDT,
compute entropy for each node’s predicted distribution; take the difference between the largest and
smallest values. Now, half of the images contain truly ambiguous content for a classifier; we draw
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2. Collect a dataset with new, unseen classes that test the hypothesised meaning from
step 1 (e.g. Elephant is an unseen Animal). Samples in this dataset are referred to as
out-of-distribution (OOD) samples, as they are drawn from a separate labeled dataset.

3. Pass samples from this dataset through the node. For each sample, check whether the
selected child node agrees with the hypothesis.

4. The accuracy of the hypothesis is the percentage of samples passed to the correct child.
If the accuracy is low, repeat with a different hypothesis.

Figure 5.9a depicts the CIFAR10 tree induced by a WideResNet28x10 model trained on
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Figure 5.8: Maximum Similarity Examples. We run two CIFAR10-trained models, one trained
with tree supervision loss (NBDT) and one without tree supervision loss (ResNet18). We compute
the induced hierarchy of both models and find samples most similar to the Animal, and Motor Vehicle
concepts. Each row represents an inner node, and the red borders indicate images that contain
CIFARIO0 classes. (1) Note that NBDT’s concept of an animal includes classes and contexts it was
not trained on; aquatic animals (top-right) and trains (bottom-right) are not a part of CIFAR10.
In contrast, ResNet18 largely finds examples closely related to existing CIFAR10 classes (dog, car,
boat). This is qualitative evidence that NBDTs better generalize.
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Figure 5.9: A Node’s meaning. (Left) Visualization of node hypothesis test performed on a
CIFARI10-trained WideResNet28x10 model, by sampling from CIFAR100 validation set for OOD
classes. (Right) Classification accuracy is high (80-95%) given unseen CIFAR100 samples of Vehicles
(top) and Animals (bottom), for the WordNet-hypothesized Animal/Vehicle node.

CIFAR10. The WordNet hypothesis is that the root note splits on Animal vs. Vehicle. We
use the CIFAR100 validation set as out-of-distribution images for Animal and Vehicle classes
that are unseen at training time. We then compute the hypothesis’ accuracy. Figure 5.9b
shows our hypothesis accurately predicts which child each unseen-class’s samples traverse.
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Figure 5.10: CIFAR10 induced hierarchies, with automatically-generated WordNet hypotheses
for each node. The higher-accuracy (a) WideResNet (97.62% acc) has a more sensible hierarchy
than (b) ResNet’s (93.64% acc): The former groups all Animals together, separate from all Vehicles.
By contrast, the latter groups Airplane, Cat, and Frog.

How Model Accuracy Affects Interpretability

Induced hierarchies are determined by the proximity of class weights, but classes that are
close in weight space may not have similar visual meaning: Figure 5.10 depicts the trees
induced by WideResNet28x10 and ResNet10, respectively. While the WideResNet induced
hierarchy (Figure 5.10a) groups visually-similar classes, the ResNet (Figure 5.10b) induced
hierarchy does not, grouping classes such as Frog, Cat, and Airplane. This disparity in visual
meaning is explained by WideResNet’s 4% higher accuracy: we believe that higher-accuracy
models exhibit more visually-sound weight spaces. Thus, unlike previous work, NBDTs
feature better interpretability with higher accuracy, instead of sacrificing one for the other.
Furthermore, the disparity in hierarchies indicates that a model with low accuracy will not
provide interpretable insight into high-accuracy decisions.

Visualization of Tree Traversal

Frequency of path traversals additionally provide insight into general model behavior. Fig-
ure 5.11 shows frequency of path traversals for all samples in three classes: a seen class, an
unseen class but with seen context, and an unseen class with unseen context.

Seen class, seen context: We visualize tree traversals for all samples in CIFAR10’s Horse
class (Figure 5.11a). As this class is present during training, tree traversal highlights the
correct path with extremely high frequency. Unseen class, seen context: In Figure 5.11b,
we visualize tree traversals for Tinylmagenet’s Seashore class. The model classifies 88% of
Seashore samples as “vehicle with blue context,” exhibiting reliance on context for decision-
making. Unseen class, unseen context: In Figure 5.11c, we visualize traversals for
TinyImagenet’s Teddy Bear. The model classifies 90% as Animal, belying the model’s
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Figure 5.11: Visualization of path traversal frequency on an induced hierarchy for CIFARI10.
(a) In-Distribution: Horse is a training class and thus sees highly focused path traversals. (b)

" "Unseen Class: Seashore is largely classified a5 Shipdespite not contai

model reliance on context (water). (c) Unseen Class: Teddy Bear is classified as Dog, for sharing

visual attributes like color and texture.

generalization to stuffed animals. However, the model disperses samples among animals more
evenly, with the most furry animal Dog receiving the most Teddy Bear samples (30%).

5.7 Ablations

In the context of neural network and decision tree hybrids, many works (95, 52, 126, 107]
leverage conditional execution to improve computational efficiency in a hierarchical classifier.
One motivation is to handle large-scale classification problems.

Hard Tree Supervision Loss

An alternative loss would be hierarchical softmax — in other words, one cross entropy loss
per decision rule. We denote this the hard tree supervision loss, as we construct a variant of
hierarchical softmax that (a) supports arbitrary depth trees and (b) is defined over a single,
un-augmented fully-connected layer (e.g. k-dimensional output for a k-leaf tree). The original
neural network’s loss Loyiginal Minimizes cross entropy across the classes. For a k-class dataset,
this is a k-way cross entropy loss. Each internal node’s goal is similar: minimize cross-entropy
loss across the child nodes. For node ¢ with ¢ children, this is a c-way cross entropy loss
between predicted probabilities D()preq and labels D(i)iahe. We refer to this collection of
new loss terms as the hard tree supervision loss (Eq. 5.4). The individual cross entropy losses
for each node are scaled so that the original cross entropy loss and the tree supervision loss
are weighted equally, by default. If we assume N nodes in the tree, excluding leaves, then we
would have N + 1 different cross entropy loss terms — the original cross entropy loss and N
hard tree supervision loss terms. This is Loriginal + Lhard, Where:

1y objects, exhibiting
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Figure 5.12: Tree Supervision Loss has two variants: Hard Tree Supervision Loss (A)
defines a cross entropy term per node. This is illustrated with the blue box for the blue node and
the orange box for the orange node. The cross entropy is taken over the child node probabilities.
The green node is the leaf representing a class label. The dotted nodes are not included in the path
from the label to the root, so do not have a defined loss. Soft Tree Supervision Loss (B) defines
a cross entropy loss over all leaf probabilities. The probability of the green leaf is the product of the
probabilities leading up to the root (in this case, (z,ws)(x,ws) = 0.6 x 0.7). The probabilities for
the other leaves are similarly defined. Each leaf probability is represented with a colored box. The
cross entropy is then computed over this leaf probability distribution, represented by the colored
box stacked on one another.

N
1 . .
Lhara = 77 > CROSSENTROPY (D(i)pred; D(i)iaver) - (5.4)

i=1 g
over the ¢ children for each node

Hard Inference

Hard inference is more intuitive: Starting at the root node, each sample is sent to the child
with the most similar representative. We continue picking and traversing the tree until we
reach a leaf. The class associated with this leaf is our prediction (Figure 5.1, A. Hard). More
precisely, consider a tree with nodes indexed by i with set of child nodes C'(7). Each node i
produces a probability of child node j € C(i); this probability is denoted p(j|i). Each node
thus picks the next node using argmax;cc;)p(jl7)-

Whereas this inference mode is more intuitive, it underperforms soft inference (Figure 5.7).
Furthermore, note that hard tree supervision loss (i.e. modified hierarchical softmax) appears
to more specifically optimize hard inference. Despite that, hard inference performs worse
(Figure 5.8) with hard tree supervision loss than the “soft” tree supervision loss (Sec 5.3)
used in previous sections.
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Table 5.7: Comparisons of Inference Modes Hard inference performs worse than soft inference.
See Table 5.1 in the main manuscript for a comparison against baselines.

Method Backbone CIFARI10 CIFAR100 TinyImageNet
NN WideResNet28x10 97.62% 82.09% 67.65%
NBDT-H (Ours)  WideResNet28x10 97.55% 82.21% 64.39%
NBDT-S (Ours)  WideResNet28x10 97.55% 82.97% 67.72%
NN ResNet18 94.97% 75.92% 64.13%
NBDT-H (Ours)  ResNet18 94.50% 74.29% 61.60%
NBDT-S (Ours) ResNet18 94.82% 77.09% 63.77%

Table 5.8: Tree Supervision Loss Training the NBDT with the tree supervision loss (“T'SL”)
is superior to (a) training with a hierarchical softmax (“HS”) and to (b) omitting extra loss terms.
(“None”). A is the accuracy difference between our soft loss and hierarchical softmax.

Dataset Backbone NN Inference None TSL HS A

CIFARI10 ResNet18 94.97% Hard 94.32% 94.50% 93.94% +0.56%
CIFARI10 ResNet18 94.97% Soft 94.38% 94.82% 93.97% +0.85%
CIFAR100 ResNet18 75.92% Hard 57.63% 74.29% 73.23% +0.94%
CIFAR100 ResNet18 75.92% Soft 61.93% 77.09% 74.09% +1.83%
TinylmageNet ResNet1l8  64.13%  Hard 39.57%  61.60%  58.89%  +2.71%
TinyImageNet ResNet18 64.13% Soft 45.51% 63.77% 61.12% +2.65%

5.8 Implementation

Our inference strategy, as outlined above, includes two phases: (1) featurizing the sample
using the neural network backbone and (2) running the embedded decision rules. However,
in practice, our inference implementation does not need to run inference with the backbone,
separately. In fact, our inference implementation only requires the logits § outputted by the
network. This is motivated by the knowledge that the average of inner products is equivalent
to the inner product of averages. Knowing this, we have the following equivalence, given
the fully-connected layer weight matrix W, its row vectors w;, featurized sample =, and the
classes C' we are currently interested in.

IC] C

1 1 1 .
(x, - 4 w;) = — Z(%W) == izlyi,z eC (5.5)
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Thus, our inference implementation is simply performed using the logits ¢ output by the
network.

Experimental Setup

To reiterate, our best-performing models for both hard and soft inference were obtained by
training with the soft tree supervision loss. All CIFAR10 and CIFAR100 experiments weight
the soft loss terms by 1. All Tinylmagenet and Imagenet experiments weight the soft loss
terms by 10. We found that hard loss performed best when the hard loss weight was 10x that
of the corresponding soft loss weight (e.g. weight 10 for CIFAR10, CIFAR100; and weight
100 for Tinylmagenet, Imagenet); these hyper-parameters are use for the tree supervision
loss comparisons in Table 5.3.

Where possible, we retrain the network from scratch with tree supervision loss. For our
remaining training hyperparameters, we largely use default settings found in github.com/
kuangliu/pytorch-cifar: SGD with 0.9 momentum, 5% weight decay, a starting learning
rate of 0.1, decaying by 90% % and % of the way through training. We make a few modifications:
Training lasts for 200 epochs instead of 350, and we use batch sizes of 512 and 128 on one
Titan Xp for CIFAR and Tinylmagenet respectively.

In cases where we were unable to reproduce the baseline accuracy (WideResNet), we fine-
tuned a pretrained checkpoint with the same settings as above, except with starting learning

rate of 0.01.

On Imagenet, we retrain the network from scratch with tree supervision loss. For our
remaining hyperparameters, we use settings reported to reproduce EfficientNet-EdgeTPU-
Small results at

github.com/rwightman/pytorch-image-models: batch size 128, RMSProp with starting
learning rate of 0.064, decaying learning rate by 97% every 2.4 epochs, weight decay of 1072,
drop-connect with probability 0.2 on 8 V100s. Our results were obtained with only one
model, as opposed to averaging over 8 models, so our reported baseline is 77.23%, as reported
by the EfficientNet authors: https://github.com/tensorflow/tpu/tree/master/models/
official/efficientnet/edgetpu#fpost-training-quantization.

CIFAR100 Tree Visualization

We presented the tree visualizations for various models on the CIFAR10 dataset in above
sections. Here we also show that similar visual meanings can be drawn from intermediate
nodes of larger trees such as the one for CIFAR100. Figure 5.14 displays the tree visualization
for a WideResNet28x10 architecture on CIFAR100 (same model listed in Table 1 of Sec. 4.2).
It can be seen in Figure 5.14 that subtrees can be grouped by visual meaning, which can be


github.com/kuangliu/pytorch-cifar
github.com/kuangliu/pytorch-cifar
github.com/rwightman/pytorch-image-models
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/edgetpu#post-training-quantization
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/edgetpu#post-training-quantization
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Figure 5.13: An example of a survey question presented to mechanical turks.

a Wordnet attribute like Vehicle or Household Item, or a more contextual meaning such as
shape or background like Cylindrical or Blue Background.

5.9 Conclusion

In this work, we propose Neural-Backed Decision Trees that see (1) improved accuracy:
NBDTs out-generalize (16%+), improve (2%-+), and match (0.15%) or outperform (1%-+)
state-of-the-art neural networks on CIFAR10, CIFAR100, TinylmageNet, and ImageNet.
We also show (2) improved interpretability by drawing unique insights from our hierarchy,
confirming that humans trust NBDT’s over saliency and illustrate how path entropy can
be used to identify ambiguous labels. This challenges the conventional supposition of a
dichotomy between accuracy and interpretability, paving the way for jointly accurate and
interpretable models in real-world deployments.
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Chapter 6

Conclusion

6.1 Review

Efficient deep neural networks underwent three key steps: sacrifice accuracy in existing
neural networks for efficiency, manually tradeoff accuracy and efficiency by designing neural
networks from scratch, and finally, automatically trade off accuracy and efficiency using
Neural Architecture Search. However, this last stage resulted in computationally expensive
neural architecture search methods that would expend GPU years of compute to design a
single neural network. In response, this thesis proposes efficient design for efficient neural
networks. In particular, we summarize the major contributions of the thesis below:

1. This thesis culminates in a set of models that set new flexibility and performance stan-
dards for production-ready models: those that are state-of-the-art accurate, explainable,
generalizable, and configurable for any set of resource constraints in just CPU minutes.

2. Expanded Search Space for Differentiable Neural Architecture Search (DNNAS)
A memory and computationally efficient DNAS that optimizes both macro- (resolution,
channels) and micro- (building blocks) architectures jointly in a 1014 x larger search
space using differentiable search. To the best of our knowledge, we are the first to tackle
this problem using a differentiable search framework supergraph, with substantially less
computational cost and roughly constant memory cost.

3. DNAS Masking Mechanism A masking mechanism and effective shape propagation
for feature map reuse. This is applied to both the spatial and channel dimensions in
DNAS.

4. FBNetV2 State-of-the-art ImageNet Accuracy. With only 27 hours on 8 GPUs,
our searched compact models lead to substantial per-parameter, per-FLOP accuracy
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10.

11.

improvements. The searched models outperform all previous state-of-the-art neural
networks, both manually and automatically designed, small and large.

. Neural Architecture-Recipe Search: We propose a predictor that jointly scores

both training recipes and architectures, the first joint search, over both training recipes
and architectures, at scale to our knowledge.

Predictor Pretraining To enable efficient search over this larger space, we furthermore
present a pretraining technique, significantly improving the accuracy predictor’s sample
efficiency.

Multi-Use Predictor: Our predictor can be used in fast evolutionary searches to
quickly generate models for a wide variety of resource budgets in just CPU minutes.

FBNetv3 State-of-the-art ImageNet Accuracy per FLOP for the searched FB-
NetV3 models. For example, our FBNetV3 matches EfficientNet accuracy with as low
as 49.3% fewer FLOPs.

Neural-Backed Decision Trees: We propose a tree supervision loss, yielding NBDTs
that match/outperform and out- generalize modern neural networks (WideResNet,
EfficientNet) on ImageNet, Tiny- ImageNet200, and CIFAR100. Our loss also improves
the original model by up to 2%.

Induced Hierarchies: We propose alternative hierarchies for oblique decision trees —
induced hierarchies built using pre-trained neural network weights — that outperform
both data-based hierarchies (e.g. built with information gain) and existing hierarchies
(e.g. WordNet), in accuracy.

Improved Interpretability: We show NBDT explanations are more helpful to the
user when identifying model mistakes, preferred when using the model to assist in
challenging classification tasks, and can be used to identify ambiguous ImageNet labels.

6.2 Impact

This thesis compiles my research in efficient deep learning over the past few years [112, 111,
20] which, despite its recent publications, has begun to make an impact in the efficient deep
learning community:

1.

2.

FBNetV2 [111] (Chapter 3) was published in CVPR 2020 and has amassed 141
citations since. We furthermore open-sourced the pre-trained models, with the repository
receiving significant amounts of attention (706 stars).

FBNetV3 [20] (Chapter 4) was published in CVPR 2021 and has garnered 52 citations
since.
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3. NBDT [112] (Chapter 5) was published in ICLR 2021 and has garnered 60 citations
since, with a similarly popular open-source repository (521 stars) that includes all code
for training, evaluating, predicting, and even deploying the model.

6.3 Future Work

The work described in this thesis shows that joint consideration of even more objectives
and of larger search sizes is, surprisingly, the way to automatically design efficient neural
networks, more efficiently. This suggests the following directions for future work:

Efficient 3D Deep Learning: Techniques for efficient deep neural networks today are all
task-agnostic, despite the fact that most papers focus on image classification as a testbed.
Furthermore, accuracy on ImageNet is teetering close to the widely accepted label accuracy,
meaning any further accuracy improvements suggest overfitting. These two concerns together
— that efficiency techniques are task-agnostic and that the ImageNet classification benchmark
is possibly saturated — suggests shifting focus to other computer vision tasks, from popular
tasks like object detection and segmentation to depth estimation. However, are generic
efficiency techniques the best we can do, for these downstream tasks?

We believe otherwise; in particular, we believe that there is unrealized potential in redesigning
portions of the task—or even the task entirely—to repurpose downstream tasks for deployment
to edge devices. We furthermore believe that without redesigning the task, existing efficiency
techniques will not suffice. One example is 3D instance segmentation. If we naively adapt 2D
methods to a 3D voxel grid, the majority of efficiency techniques will be only counteracting
the computational complexity incurred by the naive adaptation. Instead, 3D instance
segmentation may take an entirely different approach, separate from its 2D counterpart, to
be edge-ready.

Test-Time Training in Lieu of Efficiency For depth estimation in particular, a number
of test-time deep learning training methods have proven extremely successful, inspired by
classical structure-from-motion and SLAM pipelines. Unsupervised test-time training has
likewise shown promise in areas like object detection, suggesting that test-time training may
offer another boon for model performance, thus enabling even smaller, more compact deep
neural networks. There are a large number of questions: How do we partition the sparse
on-device resources between test-time training and inference? How much performance can
test-time training “make up” for in a poorly-trained model? How would we trade off test-time
training with standard model training?
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