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Abstract

Safe Reinforcement Learning Using Learned Safe Sets

by

Brijen Thananjeyan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Ken Goldberg, Co-chair

Joseph E. Gonzalez, Co-chair

Reinforcement learning is an increasingly popular framework that enables robots to learn
to perform tasks from prior experience in environments where dynamics or shaped reward
functions are challenging to model. However, because this requires robots to sample tra-
jectories under significant dynamical uncertainty, the robot may perform unsafe maneuvers
during online exploration. This is particularly problematic in real-world robotics, where
unsafe behaviors can lead to damage to surroundings. As a result, many impressive rein-
forcement learning results are in simulation only. Safe reinforcement learning is a field with
a rich history that studies how to reduce the number and magnitude of unsafe behaviors
during learning, particularly in the real world. Safe reinforcement learning is challenging,
because it requires limiting exploration to provide safety, but enabling sufficient exploration
to maximize the task reward function. Algorithms frequently draw inspiration from meth-
ods in control theory, constrained optimization, and online learning to adaptively balance
task-driven exploration and safety based on prior experience.

This thesis presents a set of novel safe reinforcement learning algorithms that maintain
subsets of the state space where safety is highly probable under the current policy. The
algorithms leverage these safe sets in different ways to promote safety during online explo-
ration in the real world. The first part of the thesis covers a class of algorithms that requires
the robot to maintain a conservative safe set of states from which it has already completed
the task. As long as the robot approximately maintains the ability to return to the safe
set, the robot can explore outside the safe set and iteratively expand it. This thesis also
presents strong theoretical guarantees for this class of algorithms under known but stochas-
tic, nonlinear dynamics. The second part presents another class of algorithms that maintains
a much larger safe set based on the probability of the robot committing unsafe behaviors.
The robot uses the boundary of this set to determine whether it should focus on task-driven
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exploration or safety recovery maneuvers. The final part of this thesis covers an algorithm
that uses policy uncertainty to implicitly model safety and request human interventions for
corrective feedback. This thesis concludes with a commentary on lessons learned and future
endeavors.
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Chapter 1

Introduction

Learning-based control and decision-making are active areas of research in robotics, and
there is a heavy focus on methods that enable robots to learn online from their interactions
in the world. Online learning enables robots to explore and try out new strategies, which
can enable them to iteratively improve over time and adapt to changing scenarios. However,
because the real-world dynamics of robotic manipulation are often very challenging to model,
exploration strategies can operate under significant dynamical uncertainty which can lead to
unsafe and catastrophic behaviors during learning. Due to this, most impressive reinforce-
ment learning results are limited to simulation, to avoid the real world cost associated with
unsafe actions. The rapidly-growing field of safe reinforcement learning focuses on provid-
ing theoretical abstractions and exploration strategies that address this challenge. Progress
in safe reinforcement learning is a prerequisite to the deployment of online learning-based
robots in safety-critical, real-world domains such as driving, hospitals, or households.

Before beginning, it is important to define the notion of safety used in this work. In this
thesis, an unsafe state is a state that indicates an undesirable behavior, according to the
user. Examples of unsafe states in practice could include states with broken objects, damage
to surroundings, or entering a stay-out zone of the workspace. We will generally consider
unsafe behaviors to be catastrophic offenses that terminate the current episode and require
human intervention to reset the environment or correct. We will also interchangeably use the
phrase constraint violation to refer to unsafe states. In general, states that are not unsafe are
considered safe. The goal of a safe reinforcement learning algorithm is to learn to perform
a desired behavior or task with high performance without encountering too many unsafe
states during the learning process. We will mathematically formalize this idea in subsequent
chapters.

Safe reinforcement learning is an area of research with a rich history, with methods
dating back as early as the 1970s [1]. Many works, including this one, draw inspiration from
prior work in constrained optimization, online learning, and control theory, and safety is
considered in different, sometimes equivalent, ways.

This thesis proposes a class of safe reinforcement learning algorithms that attempt to
achieve this by maintaining regions of safety in the workspace known as safe sets. In this
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work, different styles of safe sets will be learned from data and used during exploration
to avoid unsafe behaviors. Each method will define a different type of safe set, which will
be used differently during online exploration to either maintain safety guarantees, switch to
recovery behaviors, or query human interventions. The common theme across these methods
will be the existence of a contingency ”backup” plan, which can be executed if the robot
is in a risky state. This work presents a combination of theoretical results and empirical
experiments, including on physical robots, to analyze both the safety and sample efficiency
of methods with respect to alternative approaches.

1.1 Background

This thesis covers algorithms that safely explore online in the state space by leveraging
learned safe sets and focuses on algorithms that are designed for exploration in the real
world. The algorithms presented in this thesis share many parallels and inspirations from
works in safe reinforcement learning, control theory, and interactive imitation learning.

1.1.1 Safety in Reinforcement Learning

Safe reinforcement learning dates back as early as the 1970s [1], and a main focus is designing
methods that avoid constraint violations during learning and online exploration in the real
world [2]. Methods attempt to achieve this using a variety of means. Many methods impose
safety during exploration via a Lagrangian function optimization that combines task-driven
optimization with safety constraints in a single policy [3–7]. Many methods, including some
of the ones previously mentioned also enforce safety during policy execution by learning
a measure of safety and adapting the policy outputs based on it [4, 7–10]. The methods
proposed in this work fall in the latter category and use learned regions of the state space
with safety implications to adaptively select actions during online exploration.

1.1.2 Safe Sets and Shielding in Control Theory

Safe sets have been extensively studied in control theory and they can be defined in different
ways. Prior work uses Hamilton-Jacobi reachability analysis to construct task and safety
policies and a decision rule to select which one to execute [11, 12]. Other works define safe
sets that are based on the abilities of prior safe policies and enforce that new policies do not
explore too far away from their regions of confidence [13–16]. The algorithms described in
this thesis are very similar in flavor, but do not assume access to known system dynamics. In
contrast, the presented algorithms will use data to either perform online system identification
and explicitly reason about dynamical uncertainty using stochastic modeling, or they will
implicitly learn dynamical distance to dangerous behaviors via value function learning.
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1.1.3 Human Interventions in Robot Learning

A common method to fall back to safety during online execution is to query a human su-
pervisor. Human-gated imitation learning algorithms are an area of active research, where
a human either decides to intervene or is called to intervene and take control of a robot [17–
22]. These algorithms often maintain functions that estimate uncertainty [20, 22], super-
visor discrepancy [17, 19, 22], or probability of failure, which are used to request a human
intervention. The minimization of supervisor burden, or the work done by a human is also
a desirable property of imitation learning algorithms [17, 19, 23]. Supervisor burden is often
modeled by the length of interventions and also the number of context switches experienced
by supervisors. This thesis presents a novel algorithm that solicits human interventions
when predicted supervisor discrepancy is large and does not switch back until the robot is
sufficiently confident, to jointly minimize both the context switching overhead of supervisors
and the total length of interventions [17]

1.2 Thesis Structure

This thesis consists of three main parts. In Part I, I will introduce a subclass of safe rein-
forcement learning algorithms that maintains a very conservative safe set to which the robot
must always maintain the ability to reach. The safe set considered in this subclass uses infor-
mation about prior safe trajectories to structure exploration. The robot is allowed to explore
outside of the safe set as long as it maintains this property, which enables it to guarantee
safety under additional theoretical assumptions. This is in turn used to grow the safe set over
time, giving the agent the ability to iteratively improve its performance as it becomes more
comfortable in more regions of the state space. I will present a control-theoretic version of
this algorithm in Chapter 2, which a suite of desirable theoretical guarantees for stochastic,
nonlinear dynamical systems with known dynamics and input noise distributions. In Chap-
ter 3, I will discuss how to relax this algorithm to apply in the reinforcement learning setting
where system dynamics are unknown. This will remove the theoretical guarantees of the
method, but empirical experiments suggest that the relaxation still provides some of these
properties empirically on a set of benchmark simulation and physical experiments. This
version of the algorithm is particularly designed for fully-observable, low-dimensional dy-
namical systems, so in Chapter 4, I will present an extension that scales to high-dimensional
image observations using latent space safe sets. One limitation of the methods in this sub-
section are that they rely on computationally-expensive model-based planners during online
execution. In Chapter 5, I will shift gears slightly and present an algorithm with theoreti-
cal guarantees that distills an offline, model-based reinforcement learning algorithm into an
online, model-free policy.

In Part II, I will construct safe sets that, in contrast to the previous part, use prior
trajectories containing unsafe behaviors to guarantee safety. While the work in this section
will specifically focus on the reinforcement learning setting, it is heavily related and inspired
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by recent advances in the model predictive control shielding community. Chapter 6 presents
an algorithm that leverages a offline demonstrations of unsafe behaviors to extract informa-
tion about the location of constraint violating zones in the state space and the dynamics of
the system near them. This information is used to learn a recovery zone, where the agent
switches it focus from task-driven exploration to recovering to safety. The safe set in this
section is the complement of the recovery zone and constraint violating regions, and it is
much larger than the one considered in Part I. In Chapter 7, I will present an extension of
this work that transfers safe sets from other, similar dynamical systems to a test environment
using meta-learning.

In Part III, a different form of safe set will be introduced. In this section, the safe set
will be based on policy uncertainty and not explicit safety modeling. Upon exiting the safe
set, the robot will query a human supervisor, that will take control and provide corrective
feedback, which will be used for policy updates.

Finally, I will conclude in Chapter 9 with remarks on lessons learned and future work.
.
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Part I

Safe Exploration Using Prior
Successes
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Chapter 2

Constructing a Safe Set for
Stochastic, Nonlinear Control Using
Prior Successes

In this chapter, we will construct a learning-based policy for stochastic, nonlinear dynamics
that is guaranteed to converge to a goal set, maintain safety during learning, and improve
each iteration. In this chapter, we will assume the dynamics are known, but we will relax
this assumption in subsequent chapters. The policy in this section maintains regions known
as safe sets that denote regions of the state space where a prior policy can safely converge
to the goal set. As long as the current policy iterate follows receding horizon plans that can
robustly reach this set, it can also guarantee safe convergence to the goal set.

2.1 Introduction

Model Predictive Control (MPC) is an established control methodology which systematically
uses forecasts to compute control actions. In MPC at each time t, the policy predicts a
trajectory over a short time horizon, then it applies to the system to the first control action
and the process is repeated at the next time step. This technique has seen significant success
in a variety of robotic tasks [24–26], and there is substantial experimental and theoretical
work demonstrating that the resulting closed loop system performs well on challenging tasks
in stochastic dynamical systems [13, 16, 24, 27]. In this chapter, we build on the recently
proposed learning model predictive control (LMPC) framework [13, 15, 16]. We assume a
known stochastic dynamics model and design an iteratively improving MPC-based control
strategy by estimating safe sets and value functions from past closed-loop trajectories.

The LMPC framework [13, 15, 16] presents a novel class of reference-free control strategies
which utilize MPC to iteratively improve upon a suboptimal policy for a goal directed task.
LMPC algorithms typically operate in the iterative learning control setting with fixed initial
and terminal conditions, and provide robust guarantees on iterative improvement (in terms
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of task cost) for stochastic linear systems [13, 16] and deterministic nonlinear systems [15],
if the MPC problem can be solved exactly. However, while LMPC-based control strategies
exhibit a variety of desirable theoretical properties [13, 15, 16] and have been shown to work
well on practical problems on physical robotic systems [24, 28], they have two key limitations:
(1) guarantees for stochastic systems are limited to linear systems while practical systems
are often stochastic and nonlinear and (2) start states and goal sets are typically assumed
to be identical in each iteration.

We address both of these challenges. First, we extend the results in [16] to show itera-
tive improvement guarantees for stochastic nonlinear systems. Second, we present a method
to expand the set of feasible start states and goal sets during learning while maintaining
these guarantees. Finally, we introduce sample-based approximations to present a practi-
cal algorithm to learn safe policies, which reliably complete tasks with varying boundary
conditions while satisfying pre-specified constraints. In this chapter, we provided a more
detailed treatment and theoretical analysis of the policy presented in Thananjeyan et al. [14]
in addition to a novel method to expand the domain of the policy. This chapter presents
(1) a novel multi-start, multi-goal LMPC algorithm, Adjustable Boundary Condition LMPC
(ABC-LMPC), which optimizes expected costs subject to robust constraints, with (2) guar-
antees on expected performance, robust constraint satisfaction, and convergence to the goal
for stochastic nonlinear systems, (3) a practical algorithm for expanding the allowed set of
initial states and goal sets during learning, and (4) simulated continuous control experiments
demonstrating that the learned policy can adapt to novel start states and goal sets while
consistently and efficiently completing tasks during learning.

2.2 Related Work

Model Predictive Control: There has been a variety of prior work on learning based
strategies for model predictive control in the reinforcement learning [24–27] and controls
communities [29–35]. Learning strategies are used for estimating at least one of the following
components needed to design MPC policies: i) a model of the system and the associated
prediction accuracy [24–26, 28, 30, 32, 33], ii) a safe set of states from which the control
task can be completed using a known safe policy [36–39] and iii) a value function [13, 16, 24,
40], which for a given safe policy, maps each state of the safe set to the closed-loop cost to
complete the task. For an extensive survey of learning strategies used in MPC please refer
to [41].

The most closely related works, both by Rosolia et. al. [13, 16], introduce the learning
MPC framework for iterative learning control in stochastic linear systems. Here, MPC is used
to iteratively improve upon a suboptimal demonstration by estimating a safe set and a value
function from past closed loop trajectories. Robust guarantees are provided for iterative
policy improvement if the MPC problem can be solved exactly. Furthermore, Thananjeyan
et al. [24] propose a practical reinforcement learning algorithm using these strategies to learn
policies for nonlinear systems. However, [13, 24] are limited to the iterative learning control
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setting, and although [16] presents a strategy for policy domain expansion, the method is
limited to linear systems and requires the user to precisely specify an expansion direction.
In this chapter, we build on this framework by (1) extending the theoretical results to prove
that under similar assumptions, LMPC based policies yield iterative improvement in expec-
tation under certain restrictions on the task cost function and (2) providing a practical and
general algorithm to adapt to novel start states and goal sets while preserving all theoretical
guarantees on policy performance.
Reinforcement Learning: There has been a variety of work from the reinforcement learn-
ing (RL) community on learning policies which generalize across a variety of initial and
terminal conditions. Curriculum learning [42–44] has achieved practical success in RL by
initially training agents on easier tasks and reusing this experience to accelerate learning
of more difficult tasks. Florensa et al. [42] and Resnick et al. [43] train policies initialized
near a desired goal state, and then iteratively increase the distance to the goal state as
learning progresses. While these approaches have achieved practical success on a variety of
simulated robotic and navigation tasks, the method used to expand the start state distri-
bution is heuristic-based and requires significant hand-tuning. We build on these ideas by
designing an algorithm which expands the start state distribution for an MPC-based pol-
icy by reasoning about reachability, similar to Ivanovic et al. [45]. However, [45] provides
a curriculum for model free RL algorithms and does not provide feasibility or convergence
guarantees, while we present an MPC algorithm which expands the set of allowed start states
while preserving policy feasibility and convergence guarantees. There is also recent interest
in goal-conditioned RL [46, 47]. The most relevant prior work in this area is hindsight ex-
perience replay [48], which trains a goal-conditioned policy using imagined goals from past
failures. This strategy efficiently reuses data to transfer to new goal sets in the absence of
dense rewards. We use a similar idea to learn goal-conditioned safe sets to adapt to novel
goal sets by reusing data from past trajectories corresponding to goal sets reached in prior
iterations.
Motion Planning: The domain expansion strategy of the proposed algorithm, ABC-
LMPC, bears a clear connection to motion planning in stochastic dynamical systems [49,
50]. Exploring ways to use ABC-LMPC to design motion planning algorithms which can
efficiently leverage demonstrations is an exciting avenue for future work, since the reced-
ing horizon planning strategy could prevent the exponential scaling in complexity with time
horizon characteristic of open-loop algorithms [51]. We are also excited about exploring ways
the domain expansion properties of ABC-LMPC can be used to facilitate safe navigation [52]
and planning [53] in complex robotic systems.

2.3 Problem Statement

In this chapter, we consider nonlinear, stochastic, time-invariant systems of the form:

xt+1 = f(xt, ut, wt) (2.1)
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where xt ∈ Rn is the state at time t, ut ∈ Rm is the control, wt ∈ Rk is a disturbance input,
and xt+1 is the next state. The disturbance wt is sampled i.i.d. from a known distribution
over a bounded set W ⊆ Rp. We denote Cartesian products with exponentiation, e.g.
W2 =W×W . We consider constraints requiring states to belong to the feasible state space
X ⊆ Rn and controls to belong to U ⊆ Rm. Let xjt , u

j
t , and wjt be the state, control input,

and disturbance realization sampled at time t of iteration j respectively. Let πj : Rn → Rm

be the control policy at iteration j that maps states to controls (i.e. ujt = πj(xjt)).
Unlike [16], in which the goal of the control design is to solve a robust optimal control

problem, we instead consider an expected cost formulation. Thus, instead of optimizing for
the worst case noise realization, we consider control policies which optimize the given cost
function in expectation over possible noise realizations. To do this, we define the following
objective function with the following Bellman equation and cost function C(·, ·):

Jπ
j

(xj0) = E
wj0

[
C(xj0, π

j(xj0)) + Jπ
j

(f(xj0, u
j
0, w

j
0))
]

(2.2)

However, we would like to only consider policies that are robustly constraint-satisfying for all
timesteps. Thus, the goal of the control design is to solve the following infinite time optimal
control problem:

J j,∗0→∞(xj0) = min
πj(.)

Jπ
j

(xj0)

s.t. xjt+1 = f(xjt , u
j
t , w

j
t )

ujt = πj(xjt)

xjt ∈ X , u
j
t ∈ U

∀wjt ∈ W , t ∈ {0, 1, . . .}

(2.3)

In this chapter, we present a strategy to iteratively design a feedback policy πj(.) : F jG ⊆
X → U , where F jG is the domain of πj for goal set G (and also the set of allowable initial
conditions). Conditioned on the goal set G, the policy design provides guarantees for (i)
robust satisfaction of state and input constraints, (ii) convergence in probability of the
closed-loop system to G, (iii) iterative improvement: for any xj0 = xl0 where j < l, expected
trajectory cost is non-increasing (Jπ

j
(xj0) ≥ Jπ

j+1
(xj+1

0 )), and (iv) exploration: the domain
of the control policy does not shrink over iterations (F jG ⊆ F

j+1
G for all goal sets G sampled

up to iteration j). In Section 2.4.3, we describe how to transfer to a new goal set H by
reusing data from prior iterations while maintaining the same properties.

We adopt the following definitions and assumptions:

Assumption 2.3.1. Costs: We consider costs which are zero within the goal set G and
greater than some ε > 0 outside the goal set: ∃ε > 0 s.t. C(x, u) ≥ ε1GC (x) where 1 is an
indicator function and GC is the complement of G.
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Definition 2.3.1. Robust Control Invariant Set: A set A ⊆ X is a robust control
invariant set with respect to dynamics f(x, u, w) and policy class Π, if for an initial condition
x0 ∈ X there exists a policy π ∈ Π that keep the evolution of the system within A, i.e.,

∀x ∈ A, ∃π ∈ Π s.t. f(x, π(x), w) ∈ A, π(x) ∈ U , ∀w ∈ W .

Assumption 2.3.2. Robust Control Invariant Goal Set: G ⊆ X is a robust control
invariant set with respect to the dynamics and the set of state feedback policies Π.

2.4 Preliminaries

Here we formalize the notion of safe sets, value functions, and how they can be conditioned
on specific goals. We also review standard definitions and assumptions.

2.4.1 Safe Set

We first recall the definition of a robust reachable set as in [54]:

Definition 2.4.1. Robust Reachable Set: The robust reachable set Rπ
t (xj0) contains the

set of states reachable in t-steps by the system (2.1) in closed loop with π at iteration j:

Rπ
t+1(xj0) ={
xt+1 ∈ Rn| ∃wt ∈ W , xt ∈ Rπ

t (xj0), xt+1 = f(xt, π(xt), wt)
} (2.4)

where Rπ
0 (xj0) = xj0. We define Rπ

t+1 similarly when the input is a set and for time-varying
policies.

Now, we define the safe set at iteration j for the goal set G as in [16].

Definition 2.4.2. Safe Set: The safe set SSjG contains the full evolution of the system at
iteration j,

SSjG =

{
∞⋃
t=0

Rπj

t (xj0)
⋃
G

}
. (2.5)

Note that (2.5) is robust control invariant by construction [16]. We could set SS0
G = G

or initialize the algorithm with a nominal policy π0. This enables the algorithm to naturally
incorporate demonstrations to speed up training.
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2.4.2 Value Function

In this section we define the value function over the safe set. In contrast to standard model-
based RL strategies [40], our strategy i) does not approximate the value function over the
entire state space and ii) computes a value function associated with the best performing
policy from a particular state x ∈ SSjG. These characteristics will be useful to approximate
the value function using historical data which are collected over a subset of the state space
and for different control policies.

Next, we introduce the expected cost associated with the policy πj.

Definition 2.4.3. Expected Cost: The expected cost of πj from start state xj0 is defined
as

Jπ
j

(xj0) = E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
(2.6)

Observe that this is the solution to the Bellman equations in Equation 2.2.

Definition 2.4.4. Value Function: Recursively define the value function of πj in closed-
loop with (2.3) as:

Lπ
j

G (x) =

{
E
w

[
C(x, πj(x)) + Lπ

j

G (f(x, πj(x), w))
]

x ∈ SSjG
+∞ x 6∈ SSjG

(2.7)

Let
V πj

G (x) = min
k∈{0,...j}

Lπ
k

G (x) (2.8)

which is the expected cost-to-go of the best performing prior policy at x.

Observe that Lπ
j

G is defined only on SSjG, and Jπ
j

= Lπ
j

G on SSjG. In the event a nominal
policy π0 is used, we require the following assumption on the initial safe set SS0

G, which is
implicitly a restriction on π0 for start state x0

0.

Assumption 2.4.1. Safe Set Initial Condition: If a nominal policy π0 is used, then
∀x ∈ SS0

G, L
π0

G (x) <∞.

This assumption requires that the nominal policy is able to robustly satisfy constraints
and converge in probability to G. If no nominal policy is used, then this assumption is not
required. In that case, we let SS0

G = G and Lπ
0

G (x) = 0 ∀x ∈ SS0
G.

2.4.3 Transfer to Novel Goal Sets

While Rosolia et al. [16] studies tasks with fixed goal sets, here we show how the safe set
and value function can be modified to transfer the learned policy at iteration j + 1 to a new
robust control invariant goal set H and reuse data from the earlier iterations to accelerate
learning.
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Definition 2.4.5. Goal Conditioned Safe Set: Define the goal conditioned safe set by
collecting the prefixes of all robust reachable sets until they robustly fall in H as follows:

SSjH =

{⋃k∗

k=0Rπj

k

⋃
H max

k∈N
1{Rπj

k (xj0) ⊆ H} = 1

H otherwise
(2.9)

where k∗ = arg max
k∈N

1{Rπj

k (xj0) ⊆ H}

We also redefine the value function as follows:

Definition 2.4.6. Goal Conditioned Value Function: Recursively define the goal-
conditioned value function Lπ

j

H (x) of πj in closed-loop with (2.3) as:
E
w

[
C(x, πj(x)) + Lπ

j
(f(x, πj(x), w))

]
x ∈ SSjH \ H

0 x ∈ H
+∞ x 6∈ SSjH

(2.10)

Define V πj

H (x) = min
k∈{0,...j}

Lπ
k

H (x) as before.

This new value function is for a policy that executes πj but switches to a policy that
keeps the system in H upon entry.

2.5 Policy Design

Here we describe the policy design for optimizing the task cost function while satisfying state
and input constraints (Section 2.5.1), and discuss how this can be extended to iteratively
expand the policy domain (Section 2.5.2). We consider a fixed goal set G for clarity, but
note that the same formulation holds for other goal sets if the safe set and value function
are appropriately defined as in Definitions 2.4.5 and 2.4.6. See Figure 2.1 for an illustration
of the full ABC-LMPC policy optimization procedure.
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Figure 2.1: ABC-LMPC Iterative Algorithm (Left): ABC-LMPC alternates between (1)
collecting rollouts under the current policy πj given SSjG0 and Lπ

j

G0 (by optimizing (2.11)), (2)

updating SSj+1
G0 and Lπ

j+1

G0 given the new rollouts, and (3) expanding the policy domain towards
a desired start state (by optimizing (2.14)); Goal Set Transfer (Right): When a new goal set
G1 is supplied, trajectories to goal G0 can be reused to estimate a new safe set for a new goal G1

(SSjG1) and associated value function (Lπ
j

G1).

2.5.1 Task Driven Optimization

At time t of iteration j with goal set G, the policy solves the following receding-horizon
trajectory optimization problem with planning horizon H > 0:

J jt→t+H(xjt)

= min
πt:t+H−1|t

E
wjt:t+H−1

[
H−1∑
i=0

C(xjt+i|t, u
j
t+i|t) + V πj−1

G (xjt+H|t)

]
s.t. xjt+i+1|t = f(xjt+i|t, u

j
t+i|t, wt+i)

ujt+i|t = πt+i|t(x
j
t+i|t)

xjt+H|t ∈
j−1⋃
k=0

SSkG,

xjt:t+H|t ∈ X
H+1, πt:t+H−1|t ∈ ΠH

∀wjt:t+H−1 ∈ W
H ,∀i ∈ {0, . . . , H − 1}

(2.11)

where πt+i|t is the i-th policy in the planning horizon conditioned on xjt and πt:t+H−1|t =
{πt|t, . . . , πt+H−1|t} (likewise for other optimization variables). Let the minimizer of (2.11)

be π∗,jt:t+H−1|t. Then, execute the first policy at xjt :

ujt = πj(xjt) = π∗,jt|t (xjt) (2.12)
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Solving 2.11 is typically intractable in practice, so we discuss practical approximations we
make to the designed algorithm in Section 10.2.

2.5.2 Start State Expansion

We now describe the control strategy for expanding the policy domain. If there exists a
policy π for which the H-step robust reachable set for the start states sampled at iteration
j is contained within the current safe set for goal set G, then we can define the feasible
set/domain for the policy at iteration j. The domain of πj for G is computed by collecting
the set of all states for which there exists a sequence of policies which robustly keep the
system in

⋃j−1
k=0 SS

k
G. Precisely, we define the policy domain as follows:

F jG = {x | ∃π0:H−1 ∈ ΠH s.t. Rπ0:H−1

H (x) ⊆
j−1⋃
k=0

SSkG} (2.13)

This set defines the states from which the system can robustly plan back to
⋃j−1
k=0 SS

k
G. Note

that the policy domain is a function of the goal set G. While any start state sampled from
F jG will ensure feasibility and convergence for goal set G (proven in Section 10.1), we present

a method to compute states from F jG \
⋃j−1
k=0 SS

k
G to expand F jG towards a desired start state,

which may not be added to the domain through task-directed exploration. Computing this
set is intractable for general nonlinear stochastic systems, so we introduce the following
method to approximate this.

At the end of iteration j, we sample a start state xjS ∈
⋃j
k=0 SS

k
G and seek to execute

a sequence of H ′ exploration policies πjE,0:H′−1 which carry the system outside of
⋃j
k=0 SS

k
G

and then robustly back into
⋃j
k=0 SS

k
G, for all noise realizations w0:H′−2 ∈ WH′−1 where

H ′ ≥ 0. The sequence of policies πjE,0:H′−1 is computed by solving an H ′-step optimization

problem with a cost function Cj
E(x, u) that encourages exploration outside of

⋃j
k=0 SS

k
G

while enforcing that the policy terminates in some state xjH′ ∈
⋃j
k=0 SS

k
G. In Section 10.2,

we discuss some possibilities for Cj
E(x, u), implement one instantiation, and demonstrate

that it enables adaptation to novel start states while maintaining policy feasibility. The
sequence of policies can computed by solving the following 1-step trajectory optimization
problem with xj0 = xjS:

πjE,0:H′−1(xjS) = argmin
π0:H′−1∈ΠH′

E
wj

0:H′−2

[
H′−1∑
i=0

CjE(xji , πi(x
j
i ))

]
s.t. xji+1 = f(xji , πi(x

j
i ), wi), ∀i ∈ {0, . . . ,H

′ − 1}

xjH′ ∈
j⋃

k=0

SSkG , ∀w0:H′−2 ∈ WH′−1

xj0:H′ ∈ X
H′+1, ∀w0:H′−2 ∈ WH′−1

(2.14)
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Let

M =

(
R
πj
E,0:H′−1

i (xjS)

)H′
i=0

,

be the set of all states reachable in H ′ steps by πE and let

MH =

(
R
πj
E,0:H′−1

i (xjS)

)H′
i=max(H′−H, 0)

.

Note that ∀x ∈ MH , the policy initialized at x can be robustly guided to
⋃j
k=0 SS

k
G in H

steps. At iteration j+ 1, feasible start states can be sampled fromMH to guide the policy’s
domain toward a desired target start state. An MPC policy πjE could be executed instead
to generate these future start states. We could also use the exploration policy to explicitly
augment the value function Lπ

j

G and safe set SSjG and thus F jG. This could be used for general
domain expansion instead of directed expansion towards a desired start state.
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Chapter 3

SAVED: Safe RL Using Prior
Successes

In this chapter, we relax several of the assumptions made in the previous chapter to adapt
ABC-LMPC to the reinforcement learning setting. In particular, because dynamics are
unknown, we must identify them from data and leverage uncertainty estimates to satisfy
MPC problem constraints, which are now transformed into chance constraints. Additionally,
we continuously approximate the safe set in the prior chapter from samples and kernel density
estimation.

3.1 Introduction

To use RL in the real world, algorithms need to be efficient, easy to use, and safe, motivating
methods which are reliable even with significant dynamical uncertainty. Deep model-based
reinforcement learning (deep MBRL) is of significant interest because of its sample efficiency
advantages over model-free methods in a variety of tasks, such as assembly, locomotion,
and manipulation [25, 27, 28, 55–58]. However, past work in deep MBRL typically requires
dense hand-engineered cost functions, which are hard to design and can lead to unintended
behavior [59]. It would be easier to simply specify task completion in the cost function, but
this setting is challenging due to the lack of expressive supervision. This motivates using
demonstrations, which allow the user to roughly specify desired behavior without exten-
sive engineering effort. However, providing high-performing trajectories of the task may be
challenging, motivating methods that can rapidly improve upon suboptimal demonstrations
that may be supplied via a PID controller or kinesthetically. Furthermore, in many robotic
tasks, specifically in domains such as surgery, safe exploration is critical to ensure that the
robot does not damage itself or cause harm to its surroundings. To enable this, deep MBRL
algorithms must be able to satisfy user-specified (and possibly nonconvex) state-space con-
straints.

We develop a method to efficiently use deep MBRL in dynamically uncertain environ-
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Figure 3.1: SAVED is able to safely learn maneuvers on the da Vinci surgical robot, which is
difficult to precisely control [60]. We demonstrate that SAVED is able to optimize inefficient
human demonstrations of a surgical knot-tying task, substantially improving on demonstration
performance with just 15 training iterations.



CHAPTER 3. SAVED: SAFE RL USING PRIOR SUCCESSES 18

ments with both sparse costs and complex constraints. We address the difficulty of hand-
engineering cost functions by using a small number of suboptimal demonstrations to provide
a signal about task progress in sparse cost environments, which is updated based on agent ex-
perience. Then, to enable stable policy improvement and constraint satisfaction, we impose
two probabilistic constraints to (1) constrain exploration by ensuring that the agent can plan
back to regions in which it is confident in task completion and (2) leverage uncertainty es-
timates in the learned dynamics to implement chance constraints [61] during learning. The
probabilistic implementation of constraints makes this approach broadly applicable, since
it can handle settings with significant dynamical uncertainty, where enforcing constraints
exactly is difficult.

We introduce a new algorithm motivated by deep model predictive control (MPC) and
robust control, Safety Augmented Value Estimation from Demonstrations (SAVED), which
enables efficient learning for sparse cost tasks given a small number of suboptimal demon-
strations while satisfying the provided constraints. We specifically consider tasks with a
tight start state distribution and fixed, known goal set. SAVED is evaluated on MDPs with
unknown dynamics, which are iteratively estimated from experience, and with a cost func-
tion that only indicates task completion. The contributions of this chapter are (1) a novel
method for constrained exploration driven by confidence in task completion, (2) a technique
for leveraging model uncertainty to probabilistically enforce complex constraints, enabling
obstacle avoidance or optimizing demonstration trajectories while maintaining desired prop-
erties, (3) experimental evaluation against 3 state-of-the-art model-free and model-based RL
baselines on 8 different environments, including simulated experiments and physical maneu-
vers on the da Vinci surgical robot. Results suggest that SAVED achieves superior sample
efficiency, success rate, and constraint satisfaction rate across all domains considered and
can be applied efficiently and safely for learning directly on a real robot.

3.2 Related work

There is significant interest in model-based planning and deep MBRL [25, 40, 55–58] due
to the improvements in sample efficiency when planning over learned dynamics compared to
model-free methods for continuous control [62, 63]. However, most prior deep MBRL algo-
rithms use hand-engineered dense cost functions to guide exploration and planning, which
we avoid by using demonstrations to provide signal about delayed costs. Demonstrations
have been leveraged to accelerate learning for a variety of model-free RL algorithms, such
as Deep Q Learning [64] and DDPG [65, 66], but model-free methods are typically less
sample efficient and cannot anticipate constraint violations since they learn reactive poli-
cies [67]. Demonstrations have also been leveraged in model-based algorithms, such as in
motion planning with known dynamics [68] and for seeding a learned dynamics model for fast
online adaptation using iLQR and a dense cost [58], distinct from the task completion based
costs we consider. Unlike traditional motion planning algorithms, which generate open-loop
plans to a goal configuration when dynamics are known, we consider designing a closed-loop
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controller that operates in stochastic dynamical systems where the system dynamics are
initially unknown and iteratively estimated from data. Finally, Brown et al. [69] use inverse
RL to significantly outperform suboptimal demonstrations, but do not enforce constraints
or consistent task completion during learning.

In iterative learning control (ILC), the controller tracks a predefined reference trajectory
and data from each iteration is used to improve closed-loop performance [70]. Rosolia et
al. [15, 16, 71] provide a reference-free algorithm to iteratively improve the performance
of an initial trajectory by using a safe set and terminal cost to ensure recursive feasibility,
stability, and local optimality given a known, deterministic nonlinear system or stochastic
linear system under certain regularity assumptions. In contrast to Rosolia et al. [15, 16,
71], we consider designing a similar controller in stochastic non-linear dynamical systems
where the dynamics are unknown and iteratively estimated from experience. Thus, SAVED
uses function approximation to estimate a dynamics model, value function, and safe set.
There has also been significant interest in safe RL [72], typically focusing on exploration
while satisfying a set of explicit constraints [5, 73, 74], satisfying specific stability criteria
[75], or formulating planning via a risk sensitive Markov Decision Process [76, 77]. Distinct
from prior work in safe RL and control, SAVED can be successfully applied in settings with
both uncertain dynamics and sparse costs by using probabilistic constraints to constrain
exploration to feasible regions during learning.

3.3 SAVED: Safety Augmented Value Estimation

from Demonstrations

This section describes how SAVED uses a set of suboptimal demonstrations to constrain
exploration while satisfying user-specified state space constraints. First, we discuss how
SAVED learns system dynamics and a value function to guide learning in sparse cost en-
vironments. Then, we motivate and discuss the method used to enforce constraints under
uncertainty to both ensure task completion during learning and satisfy user-specified state
space constraints.

3.3.1 Assumptions and Preliminaries

In this chapter, we consider stochastic, unknown dynamical systems with a cost function
that only identifies task completion. We outline the framework for MBRL using a standard
Markov Decision Process formulation. A finite-horizon Markov Decision Process (MDP) is a
tuple (X ,U , P (·, ·), T, C(·, ·)) where X is the feasible (constraint-satisfying) state space and
U is the control space. The stochastic dynamics model P maps a state and control input to
a probability distribution over states, T is the task horizon, and C is the cost function. A
stochastic control policy π maps an input state to a distribution over U .

We assume that (1) tasks are iterative in nature, and have a fixed low-variance start
state distribution and fixed, known goal set G. This is common in a variety of repetitive
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tasks, such as assembly, surgical knot-tying, and suturing. We further assume that (2) the
user specifies an indicator function 1 (x ∈ X ), which checks whether a state x is constraint-
satisfying. Finally, we assume that (3) a modest set of suboptimal but constraint satisfying
demos are available, for example from imprecise human teleoperation or a hand-tuned PID
controller. This enables rough specification of desired behavior without having to design a
dense cost function, allowing us to consider cost functions which only identify task comple-
tion: C(x, u) = 1GC (x), where G ⊂ X defines a goal set in the state space and GC is its
complement. We define task success by convergence to G at the end of the task horizon with-
out violating constraints. Note that under this definition of costs, the problem we consider
is equivalent to the shortest time control problem in optimal control, but with initially un-
known system dynamics which are iteratively estimated from experience. The applicability
of SAVED extends beyond this particular choice of cost function, but we focus on this class
due to its convenience and notorious difficulty for reinforcement learning algorithms [66].

Finally, we define the notion of a safe set to enable constrained policy improvement, which
is described further in Section 3.3.3. Recent MPC literature [15] motivates constraining
exploration to regions in which the agent is confident in task completion, which gives rise
to desirable theoretical properties when dynamics are known and satisfy certain regularity
conditions [15, 16, 71]. For a trajectory at iteration k, given by xk = {xkt |t ∈ N}, we define
the sampled safe set as

SSj =
⋃

k∈Mj

xk (3.1)

where Mj = {k ∈ [0, j) : limt→∞ x
k
t ∈ G} is the set of indices of all successful trajectories

before iteration j as in Rosolia et al. [15]. SSj contains the states from all iterations before
j from which the agent controlled the system to G and is initialized from demonstrations. A
key operating principle of SAVED is to use SSj to guide exploration by ensuring that there
always exists a way to plan back into a continuous approximation of SSj. This allows for
policy improvement while ensuring that the agent can always return to a state from which
it has previously completed the task, enabling consistent task completion during learning.

3.3.2 Algorithm Overview

Deep Model Predictive Control

SAVED uses MPC to optimize costs over a sequence of controls at each state. However, when
using MPC, since the current control is computed by solving a finite-horizon approximation
to the infinite-horizon control problem, an agent may take shortsighted controls which may
make it impossible to complete the task safely, such as planning the trajectory of a race
car over a short horizon without considering an upcoming curve [54]. Additionally, the
planner receives no feedback or information about task progress when using the indicator
task functions used in this chapter. Thus, to guide exploration in temporally-extended
tasks, we solve the problem in equation 3.2a, which includes a learned value function in the
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Figure 3.2: Task Completion Driven Exploration (left): A density model is used to represent
the region in state space where the agent has high confidence in task completion; trajectory samples
over the learned dynamics that do not have sufficient density at the end of the planning horizon
are discarded. The agent may explore outside the safe set as long as a plan exists to guide the
agent back to the safe set from the current state; Chance Constraint Enforcement (right):
Implemented by sampling imagined rollouts over the learned dynamics for the same sequence of
controls multiple times and estimating the probability of constraint violation by the percentage of
rollouts that violate a constraint.

objective. Note that UH refers to the set of H length control sequences while XH+1 refers
to the set of H + 1 length state sequences. This corresponds to the standard objective in
MPC with an appended value function V π

φ , which provides a terminal cost estimate for the
current policy at the end of the planning horizon.

While prior work in deep MBRL [25, 55] has primarily focused on planning over learned
dynamics, we introduce a learned value function, which is initialized from demonstrations to
provide initial signal, to guide planning even in sparse cost settings. The learned dynamics
model fθ and value function V π

φ are each represented with a finite probabilistic ensemble of
n neural networks (in this chapter we pick n = 5), as is used to represent system dynamics
in Chua et al. [25]. The probabilistic ensemble consists of a set of neural networks, each
of which output the parameters of a conditional axis-aligned Gaussian distribution and are
trained on bootstrapped samples from the training dataset using a maximum likelihood
objective as in [25]. Each conditional Gaussian is used to model aleatoric uncertainty in the
dynamics, while the bootstrapped ensemble of these models captures epistemic uncertainty
due to data availability in different regions of the MDP. SAVED uses the learned stochasticity
of the models to enforce probabilistic constraints when planning under uncertainty. These
functions are initialized from demonstrations and updated from data collected from each
training iteration. See supplementary material for further details on how these networks are
trained.

Probabilistic Constraints

The core novelties of SAVED are the additional probabilistic constraints in 3.2c to encourage
task completion driven exploration and enforce user-specified chance constraints. First, a
non-parametric density model ρ is trained on SSj, which includes states from prior successful



CHAPTER 3. SAVED: SAFE RL USING PRIOR SUCCESSES 22

trajectories, including those from demonstrations. ρ constraints exploration by requiring
xt+H to fall in a region with high probability of task completion. This enforces cost-driven
constrained exploration and iterative improvement, enabling reliable performance even with
sparse costs. Note that the agent can still explore new regions, as long as it has a plan that
can take it back to the safe set with high probability. Second, we require all elements of xt:t+H
to fall in the feasible region XH+1 with probability at least β, which enables probabilistic
enforcement of state space constraints. In Section 3.3.3, we discuss the methods used for task
completion driven exploration and in Section 3.3.4, we discuss how probabilistic constraints
are enforced during learning.

In summary, SAVED solves the following optimization problem at each timestep based
on the current state of the system, xt, which is measured from observations:

u∗t:t+H−1 = argmin
ut:t+H−1∈UH

Ext:t+H

[
H−1∑
i=0

C(xt+i, ut+i) + V π
φ (xt+H)

]
(3.2a)

s.t. xt+i+1 ∼ fθ(xt+i, ut+i) ∀i ∈ {0, . . . ,H − 1} (3.2b)

ρα(xt+H) > δ,P
(
xt:t+H ∈ XH+1

)
≥ β (3.2c)

Algorithm 1 SAVED: Safety Augmented Value Estimation from Demonstrations

Require: Replay Buffer R; value function V π
φ (x), dynamics model f̂θ(x

′|x, u), and safety
density model ρα(x) all seeded with demos; kernel and chance constraint parameters α
and β.
for i ∈ {1, . . . , N} do

Sample x0 from start state distribution
for t ∈ {1, . . . , T − 1} do

Pick u∗t:t+H−1 by solving eq. 3.2 using CEM
Execute u∗t and observe xt+1

R = R∪ {(xt, u∗t , C(xt, u
∗
t ), xt+1)}

end for
if xT ∈ G then

Update safety density model ρα with x0:T

end if
Optimize θ and φ with R

end for

3.3.3 Task Completion Driven Exploration

Under certain regularity assumptions, if states at the end of the MPC planning horizon are
constrained to fall in the sampled safe set SSj, iterative improvement, controller feasibility,



CHAPTER 3. SAVED: SAFE RL USING PRIOR SUCCESSES 23

and convergence are guaranteed given known stochastic linear dynamics or deterministic
nonlinear dynamics [15, 16, 71]. The way we constrain exploration in SAVED builds on this
prior work, but we note that unlike Rosolia et al. [15, 16, 71], SAVED is designed for settings
in which dynamics are completely unknown, nonlinear, and stochastic. As illustrated in Fig-
ure 3.2, the mechanism for constraining exploration allows the agent to generate trajectories
that leave the safe set as long as a plan exists to navigate back in, enabling policy improve-
ment. By adding newly successful trajectories to the safe set, the agent is able to further
improve its performance. Note that since the safety density model and value function are
updated on-policy, the support of the safety density model expands over iterations, while
the value function is updated to reflect the current policy. This enables SAVED to improve
upon the performance of the demonstrations since on each iteration, it simply needs to be
able to plan back to the high support region of a safety density model fit on states from
which SAVED was able to complete the task from all prior iterations rather than just those
visited by the demonstrations.

Since SSj is a discrete set, we introduce a continuous approximation by fitting a density
model ρ to SSj. Instead of requiring that xt+H ∈ SSj, SAVED instead enforces that
ρα(xt+H) > δ, where α is a kernel width parameter (constraint 3.2c). Since the tasks
considered in this chapter have sufficiently low (< 17) state space dimension, kernel density
estimation provides a reasonable approximation. We implement a top-hat kernel density
model using a nearest neighbors classifier with a tuned kernel width α and use δ = 0 for
all experiments. Thus, all states within Euclidean distance α from the closest state in SSj
are considered safe under ρα, representing states in which the agent is confident in task
completion. As the policy improves, it may forget how to complete the task from very old
states in SSj, so such states are evicted from SSj to reflect the current policy when fitting
ρα. We discuss how these constraints are implemented in Section 3.3.4, with further details
in the supplementary material. In future work, we will investigate implicit density estimation
techniques to scale to high-dimensional settings.

3.3.4 Chance Constraint Enforcement

SAVED leverages uncertainty estimates in the learned dynamics to enforce probabilistic con-
straints on its trajectories. This allows SAVED to handle complex, user-specified state space
constraints to avoid obstacles or maintain certain properties of demonstrations without a
user-shaped or time-varying cost function. During MPC trajectory optimization, control
sequences are sampled from a truncated Gaussian distribution that is iteratively updated
using the cross-entropy method (CEM) [25]. Each control sequence is simulated multiple
times over the stochastic dynamics model as in [25] and the average return of the simula-
tions is used to score the sequence. However, unlike Chua et al. [25], we implement chance
constraints by discarding control sequences if more than 100 · (1 − β)% of the simulations
violate constraints (constraint 3.2c), where β is a user-specified tolerance. Note that the β
parameter controls the tradeoff between ensuring sufficient exploration to learn the dynamics
and satisfying specified constraints. This is illustrated in Figure 3.2. The task completion
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constraint (Section 3.3.3) is implemented similarly, with control sequences discarded if any
of the simulated rollouts do not terminate in a state with sufficient density under ρα.

3.3.5 Algorithm Pseudocode

We summarize SAVED in Algorithm 1. The dynamics, value function, and state density
model are initialized from suboptimal demonstrations. At each iteration, we sample a start
state and then controls are generated by solving equation 3.2 using the cross-entropy method
(CEM) at each timestep. Transitions are collected in a replay buffer to update the dynamics,
value function, and safety density model at the end of each iteration. The state density model
is only updated if the last trajectory was successful.

3.4 Experiments

We evaluate SAVED on simulated continuous control benchmarks and on real robotic tasks
with the da Vinci Research Kit (dVRK) [78] against state-of-the-art deep RL algorithms and
find that SAVED outperforms all baselines in terms of sample efficiency, success rate, and
constraint satisfaction rate during learning. All tasks use C(x, u) = 1GC (x) (Section 3.3.1),
which yields a controller which maximizes the time spent inside the goal set. All algorithms
are given the same demonstrations and are evaluated by measuring iteration cost, success
rate, and constraint satisfaction rate (if applicable). Tasks are only considered successfully
completed if the agent reaches and stays in G until the end of the episode. Constraint
violation results in early termination of the episode.

For all experiments, we run each algorithm 3 times to control for stochasticity in training
and plot the mean iteration cost vs. time with error bars indicating the standard deviation
over the 3 runs. Additionally, when reporting task success rate and constraint satisfaction
rate, we show bar plots indicating the median value over the 3 runs with error bars between
the lowest and highest value over the 3 runs. When reporting the iteration cost of SAVED and
all baselines, any constraint violating trajectory is reported by assigning it the maximum
possible iteration cost T , where T is the task horizon. Thus, any constraint violation is
treated as a catastrophic failure. We plan to explore soft constraints as well in future work.
Furthermore, for all simulated tasks, we also report best achieved iteration costs, success
rates, and constraint satisfaction rates for model-free methods after 10,000 iterations since
they take much longer to start performing the task even when supplied with demonstrations.

For SAVED, dynamics models and value functions are each represented with a proba-
bilistic ensemble of 5, 3 layer neural networks with 500 hidden units per layer with swish
activations as used in Chua et al. [25]. To plan over the dynamics, the TS-∞ trajectory
sampling method from [25] is used. We use 5 and 30 training epochs for dynamics and
value function training when initializing from demonstrations. When updating the models
after each training iteration, 5 and 15 epochs are used for the dynamics and value functions
respectively. Value function initialization is done by training the value function using the
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true cost-to-go estimates from demonstrations. However, when updated on-policy, the value
function is trained using temporal difference error (TD-1) on a replay buffer containing prior
states. The safety density model, ρ, is trained on a fixed history of states from which the
agent was able to reach the goal (safe states), where this history can be tuned based on
the experiment (see supplement). We represent the density model using kernel density es-
timation with a tophat kernel. Instead of modifying δ for each environment, we set δ = 0
(keeping points with positive density), and modify α (the kernel parameter/width), which
works well in practice. See the supplementary material for additional experiments, videos,
and ablations with respect to choice of α, β, and demonstration quantity/quality. We also
include further details on baselines, network architectures, hyperparameters, and training
procedures.

3.4.1 Baselines

We consider the following set of model-free and model-based baseline algorithms. To enforce
constraints for model-based baselines, we augment the algorithms with the simulation based
method described in Section 3.3.4. Because model-free baselines have no such mechanism
to readily enforce constraints, we instead apply a very large cost when constraints are vio-
lated. See supplementary material for an ablation of the reward function used for model-free
baselines.

1. Behavior Cloning (Clone): Supervised learning on demonstration trajectories.
2. PETS from Demonstrations (PETSfD): Probabilistic ensemble trajectory sam-

pling (PETS) from Chua et al [25] with the dynamics model initialized with demo
trajectories and planning horizon long enough to plan to the goal (judged by best
performance of SAVED).

3. PETSfD Dense: PETSfD with tuned dense cost.
4. Soft Actor Critic from Demonstrations (SACfD): Model-free RL algorithm, Soft

Actor Critic [62], where demo transitions are used for training initially.
5. Overcoming Exploration in Reinforcement Learning from Demonstrations

(OEFD): Model-free algorithm from Nair et al. [66] which combines model-free RL
with a behavior cloning loss on the demonstrations to accelerate learning.

6. SAVED (No SS): SAVED without the sampled safe set constraint described in Sec-
tion 3.3.3.

3.4.2 Simulated Navigation

To evaluate whether SAVED can efficiently and safely learn temporally extended tasks with
nonconvex constraints, we consider a 4-dimensional (x, y, vx, vy) navigation task in which a
point mass is navigating to a goal set, which is a unit ball centered at the origin. The agent
can exert force in cardinal directions and experiences drag coefficient ψ and Gaussian process
noise zt ∼ N (0, σ2I) in the dynamics. We use ψ = 0.2 and σ = 0.05 in all experiments in
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Figure 3.3: Navigation Domains: SAVED is evaluated on 4 navigation tasks. Tasks 2-4 contain
obstacles, and task 3 contains a channel for passage to G near the x-axis. SAVED learns significantly
faster than all RL baselines on tasks 2 and 4. In tasks 1 and 3, SAVED has lower iteration
cost than baselines using sparse costs, but does worse than PETSfD Dense, which is given dense
Euclidean norm costs to find the shortest path to the goal. For each task and algorithm, we report
success and constraint satisfaction rates over the first 100 training iterations and also over the first
10,000 iterations for SACfD and OEFD. We observe that SAVED has higher success and constraint
satisfaction rates than other RL algorithms using sparse costs across all tasks, and even achieves
higher rates in the first 100 training iterations than model-free algorithms over the first 10,000
iterations.

this domain. Demonstrations trajectories are generated by guiding the robot along a very
suboptimal hand-tuned trajectory for the first half of the trajectory before running LQR on
a quadratic approximation of the true cost. Gaussian noise is added to the demonstrator
policy. Additionally, we use a planning horizon of 15 for SAVED and 25, 30, 30, 35 for
PETSfD for tasks 1-4 respectively. The 4 experiments run on this environment are:

1. Long navigation task to the origin: x0 = (−100, 0) We use 50 demonstrations
with average return of 73.9 and kernel width α = 3.

2. Large obstacle blocking the x-axis: This environment is difficult for approaches
that use a Euclidean norm cost function due to local minima. We use 50 demonstrations
with average return of 67.9, kernel width α = 3, and chance constraint parameter β = 1.

3. Large obstacle with a small channel near the x-axis: This environment is
difficult for the algorithm to optimally solve since the iterative improvement of paths
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Figure 3.4: Simulated Robot Experiments Performance: SAVED achieves better perfor-
mance than all baselines on both tasks. We use 20 demonstrations with average iteration cost of
94.6 for the reacher task and 100 demonstrations with average iteration cost of 34.4 for the pick
and place task. For the reacher task, the safe set constraint does not improve performance, likely
because the task is very simple, but for pick and place, we see that the safe set constraint adds
significant training stability.

taken by the agent is constrained. We use x0 = (−50, 0), 50 demonstrations with
average return of 67.9, kernel width α = 3, and chance constraint parameter β = 1.

4. Large obstacle surrounds the goal set with a small channel for entry: This
environment is very difficult to solve without demonstrations. We use x0 = (−50, 0),
100 demonstrations with average return of 78.3, kernel width α = 3, and chance
constraint parameter β = 1.

SAVED has a higher success rate than all other RL baselines using sparse costs, even
including model-free baselines over the first 10,000 iterations, while never violating con-
straints across all navigation tasks. Furthermore, this performance advantage is amplified
with task difficulty. Only Clone and PETSfD Dense ever achieve a higher success rate, but
Clone does not improve upon demonstration performance (Figure 3.3) and PETSfD Dense
has additional information about the task. Furthermore, SAVED learns significantly more
efficiently than all RL baselines on all navigation tasks except for tasks 1 and 3, in which
PETSfD Dense with a Euclidean norm cost function finds a better solution. While SAVED
(No SS) can complete the tasks, it has a much lower success rate than SAVED, especially in
environments with obstacles as expected, demonstrating the importance of the sampled safe
set constraint. Note that SACfD, OEFD, and PETSfD make essentially no progress in the
first 100 iterations and never complete any of the tasks in this time, although they mostly
satisfy constraints. After 10,000 iterations of training, SACfD and OEFD achieve average
best iteration costs of 23.7 and 23.8 respectively on task 1, 21 and 21.7 respectively on task
2, 17.3 and 19 respectively on task 3, and 23.7 and 40 respectively on task 4. Thus, we see
that SAVED achieves comparable performance in the first 100 iterations to the asymptotic
performance of model-free RL algorithms while maintaining consistent task completion and
constraint satisfaction during learning.

3.4.3 Simulated Robot Experiments

To evaluate whether SAVED also outperforms baselines on standard unconstrained envi-
ronments, we consider sparse versions of two common simulated robot tasks: the torque-
controlled PR2 Reacher environment from Chua et al. [25] with a fixed goal and on a pick
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Figure 3.5: Physical Surgical Knot-Tying: Training Performance: After just 15 iterations,
the agent completes the task relatively consistently with only a few failures, and converges to a
iteration cost of 22, faster than demos, which have an average iteration cost of 34. In the first
50 iterations, both baselines mostly fail, and are less efficient than demos when they do succeed;
Trajectories: SAVED quickly learns to speed up with only occasional constraint violations.

and place task with a simulated, position-controlled Fetch robot from [79]. The reacher task
involves controlling the end-effector of a simulated PR2 robot to a small ball in R3. The state
representation consists of 7 joint positions, 7 joint velocities, and the goal position. The goal
set is specified by a 0.05m radius Euclidean ball in state space. Suboptimal demonstrations
are generated with average cost 94.6 by training PETS with a shaped cost function that
heavily penalizes large torques. We use α = 15 for SAVED and a planning horizon of 25
for both SAVED and PETSfD. SACfD and OEFD achieve a best iteration cost of 9 and 60
respectively over 10,000 iterations of training averaged over the 3 runs. The pick and place
task involves picking up a block from a fixed location on a table and also guiding it to a small
ball in R3. The task is simplified by automating the gripper motion, which is difficult for
SAVED to learn due to the bimodality of gripper controls, which is hard to capture with the
unimodal truncated Gaussian distribution used during CEM sampling. The state represen-
tation for the task consists of (end effector relative position to object, object relative position
to goal, gripper jaw positions). Suboptimal demonstrations are generated by hand-tuning a
controller that slowly but successfully completes the task with average iteration cost 34.4.
We use a safe set buffer size of 5000 and α = 0.05. We use a planning horizon of 10 for
SAVED and 20 for PETSfD. SACfD and OEFD both achieve a best iteration cost of 6 over
10,000 iterations of training averaged over the 3 runs.

SAVED learns faster than all baselines on both tasks (Figure 3.4) and exhibits signifi-
cantly more stable learning in the first 100 and 250 iterations for the reacher and pick and
place tasks respectively. However, while SAVED is substantially more sample efficient than
SACfD and OEFD for these tasks, both algorithms achieve superior asymptotic performance.
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3.4.4 Physical Robot Experiments

We evaluate the ability of SAVED to learn a surgical knot-tying task with nonconvex state
space constraints on the da Vinci Research Kit (dVRK) [78]. The dVRK is cable-driven
and has relatively imprecise controls, motivating model learning [60]. Furthermore, safety is
paramount due to the cost and delicate structure of the arms. The goal of these tasks is to
speed up demonstration trajectories while still maintaining properties of the trajectories that
result in a task completion. This is accomplished by constraining learned trajectories to fall
within a tight, 1 cm tube of the demos. The goal set is represented with a 1 cm ball in R3 and
the robot is controlled via delta-position control, with a maximum control magnitude of 1
cm during learning for safety. Robot experiments are very time consuming due to interactive
data collection, so training RL algorithms on limited physical hardware is difficult without
sample efficient algorithms. We include additional experiments on a Figure-8 tracking task
in the supplementary material.

Surgical Knot-Tying

SAVED is used to optimize demonstrations of a surgical knot-tying task on the dVRK, using
the same multilateral motion as in [80]. Demonstrations are hand-engineered for the task,
and then policies are optimized for one arm (arm 1), while a hand-engineered policy is used
for the other arm (arm 2). While arm 1 wraps the thread around arm 2, arm 2 simply
moves down, grasps the other end of the thread, and pulls it out of the phantom as shown
in Figure 3.1. Thus, we only expect significant performance gain by optimizing the policy
for the portion of the arm 1 trajectory which involves wrapping the thread around arm 2.
We only model the motion of the end-effectors in 3D space. We use β = 0.8, α = 0.05,
planning horizon 10, and 100 demonstrations with average cost 34.4 for SAVED. We use a
planning horizon of 20 and β = 1. for PETSfD. SAVED quickly learns to smooth out demo
trajectories, with a success rate of over 75% (Figure 3.5) during training, while baselines are
unable to make sufficient progress in this time. PETSfD rarely violates constraints, but also
almost never succeeds, while SACfD almost always violates constraints and never completes
the task. Training SAVED directly on the real robot for 50 iterations takes only about an
hour, making it practical to train on a real robot for tasks where data collection is expensive.
At execution-time (post-training), we find that SAVED is very consistent, successfully tying
a knot in 20/20 trials with average iteration cost of 21.9 and maximum iteration cost of 25
for the arm 1 learned policy, significantly more efficient than demos which have an average
iteration cost of 34. See supplementary material for trajectory plots of the full knot-tying
trajectory and the Figure-8 task.

3.5 Discussion and Future Work

We present SAVED, a model-based RL algorithm that can efficiently learn a variety of
robotic control tasks in the presence of dynamical uncertainty, sparse cost feedback, and
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complex constraints by using suboptimal demonstrations to constrain exploration to regions
in which the agent is confident in task completion. We then empirically evaluate SAVED on
6 simulated benchmarks and on a knot-tying task on a real surgical robot. Results suggest
that SAVED is more sample efficient and has higher success and constraint satisfaction rates
than all RL baselines and can be efficiently and safely trained on a real robot. In future
work, we will explore convergence and safety guarantees for SAVED and extensions to a
wide distribution of start states and goal sets. Additionally, a limitation of SAVED is that
solving the MPC objective with CEM makes high frequency control difficult. In future work,
we will explore distilling the learned controller into a reactive policy to enable fast policy
evaluation in practice.
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Chapter 4

LS3: Scaling Safe RL Using Prior
Successes

In this chapter, we will further relax the algorithm in the previous chapter to adapt it to
high dimensional observation spaces such as images. Image-based safe sets are challenging
for SAVED, because SAVED assumes access to a natural metric to compare the dynamical
distance between states. In this chapter, we will discuss techniques for learning safe sets in
a latent space as well as latent obstacles and dynamics.

4.1 Introduction

Visual planning over learned forward dynamics models is a popular area of research in robotic
control from images [81–87], as it enables closed-loop, model-based control for tasks where
the state of the system is not directly observable or difficult to analytically model, such as
the configuration of a sheet of fabric or segment of cable. These methods learn predictive
models over either images or a learned latent space, which can then be used to plan actions
which maximize some task reward. While these approaches have significant promise, there
are several open challenges in learning policies from visual observations. First, reward spec-
ification is particularly challenging for visuomotor control tasks, because high-dimensional
observations often do not expose the necessary features required to design dense, informative
reward functions [88], especially for long-horizon tasks. Second, while many prior reinforce-
ment learning methods have been successfully applied to image-based control tasks [46, 89–
92], learning policies from image observations often requires extensive exploration due to
the high dimensionality of the observation space and the difficulties in reward specification,
making safe and efficient learning exceedingly challenging.

One promising strategy for efficiently learning safe control policies is to learn a safe
set [15, 93], which captures the set of states from which the agent is known to behave safely,
which is often reformulated as the set of states where it has previously completed the task.
When used to restrict exploration, this safe set can be used to enable highly efficient and
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safe learning [14, 15, 24], as exploration is restricted to states in which the agent is confident
in task success. However, while these safe sets can give rise to algorithms with a number
of appealing theoretical properties such as convergence to a goal set, constraint satisfaction,
and iterative improvement [14–16], using them for controller design for practical problems
requires developing continuous approximations at the expense of maintaining theoretical
guarantees [24]. This choice of continuous approximation is a key element in determining
the applications to which these safe sets can be used for control.

Prior works have presented approaches which collect a discrete safe set of states from
previously successful trajectories and represent a continuous relaxation of this set by con-
structing a convex hull of these states [15] or via kernel density estimation with a tophat
kernel function [24]. While these approaches have been successful for control tasks with
low-dimensional states, extending them to high-dimensional observations presents two key
challenges: (1) scalability: these prior methods cannot be efficiently applied when the num-
ber of observations in prior successful trajectories is large, as querying safe set inclusion
scales linearly with number of samples it contains and (2) representation capacity: both of
these prior approaches do not scale well to high dimensional observations and are limited in
the space of continuous sets that they can efficiently represent. Applying these ideas to vi-
suomotor control is even more challenging, since images do not directly expose details about
the system state or dynamics that are typically needed for formal controller analysis [12, 14,
15].

This chapter makes several contributions. First, we introduce a scalable continuous
approximation method which makes it possible to leverage safe sets for visuomotor policy
learning. The key idea is to reframe the safe set approximation as a binary classification
problem in a learned latent space, where the objective is to distinguish states from successful
trajectories from those in unsuccessful trajectories. Second, we present Latent Space Safe
Sets (LS3), a model-based RL algorithm which encourages the agent to maintain plans back
to regions in which it is confident in task completion, even when learning in high dimensional
spaces. This constraint makes it possible to define a control strategy to (1) improve safely by
encouraging consistent task completion (and therefore avoid unsafe behavior) and (2) learn
efficiently since the agent only explores promising states in the immediate neighborhood of
those in which it was previously successful. Third, we present simulation experiments on 3
visuomotor control tasks which suggest that LS3 can learn to improve upon demonstrations
more safely and efficiently than prior algorithms. Fourth, we conduct physical experiments
on a vision-based cable routing task which suggest that LS3 can learn more efficiently than
prior algorithms while consistently completing the task and satisfying constraints during
learning.
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Figure 4.1: Latent Space Safe Sets (LS3): At time t, LS3 observes an image st of the environ-
ment. The image is first encoded to a latent vector zt ∼ fenc(zt|st). Then, LS3 uses a sampling-based
optimization procedure to optimize H-length action sequences by sampling H-length latent tra-
jectories over the learned latent dynamics model fdyn. For each sampled trajectory, LS3 checks
whether latent space obstacles are avoided and if the terminal state in the trajectory falls in the
latent space safe set. The terminal state constraint encourages the algorithm to maintain plans
back to regions of safety and task confidence, but still enables exploration. For feasible trajectories,
the sum of rewards and value of the terminal state are computed and used for sorting. LS3 executes
the first action in the optimized plan and then performs this procedure again at the next timestep.

4.2 Related Work

4.2.1 Safe, Iterative Learning Control

In iterative learning control (ILC), the agent tracks a reference trajectory and uses data from
controller rollouts to refine tracking performance [70]. Rosolia et al. [15, 16, 71] present a
new class of algorithms, known as Learning Model Predictive Control (LMPC), which are
reference-free and instead iteratively improve upon the performance of an initial feasible
trajectory. To achieve this, Rosolia et al. [15, 16, 71] use data from controller rollouts
to learn a safe set and value function, with which recursive feasibility, stability, and local
optimality can be guaranteed given a known, deterministic nonlinear system or stochastic
linear system under certain regularity assumptions. However, a core challenge with these
algorithms is that they assume known system dynamics, and cannot be applied to high-
dimensional control problems. Thananjeyan et al. [24] extends the LMPC framework to
higher dimensional settings in which system dynamics are unknown and must be learned,
but the visuomotor control setting introduces a number of new challenges as learned system
dynamics, safe sets, and value functions must flexibly scale to visual inputs. Richards et
al. [93] designs expressive safe sets for fixed policies using neural network classifiers with
Lyapunov constraints. In contrast, LS3 constructs a safe set for an improving policy by
optimizing a task cost function instead of uniformly expanding across the state space.
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4.2.2 Model Based Reinforcement Learning

There has been significant recent progress in algorithms which combine ideas from model-
based planning and control with deep learning [25, 40, 55–58]. These algorithms are gaining
popularity in the robotics community as they enable leaning complex policies from data while
maintaining some of the sample efficiency and safety benefits of classical model-based control
techniques. However, these algorithms typically require hand-engineered dense cost functions
for task specification, which can often be difficult to provide, especially in high-dimensional
spaces. This motivates leveraging demonstrations (possibly suboptimal) to provide an initial
signal regarding desirable agent behavior. There has been some prior work on leveraging
demonstrations in model-based algorithms such as Quinlan et al. [68] and Ichnowski et al.
[94], which use model-based control with known dynamics to refine initially suboptimal
motion plans, and Fu et al. [58], which uses demonstrations to seed a learned dynamics
model for fast online adaptation using iLQR [58]. Thananjeyan et al. [24] and Zhu et al.
[95] present ILC algorithms which rapidly improve upon suboptimal demonstrations when
system dynamics are unknown. However, these algorithms either require knowledge of system
dynamics [68, 94] or are limited to low-dimensional state spaces [24, 58, 95] and cannot be
flexibly applied to visuomotor control tasks.

4.2.3 Reinforcement Learning from Pixels

Reinforcement learning and model-based planning from visual observations is gaining signif-
icant recent interest as RGB images provide an easily available observation space for robot
learning [81, 96]. Recent work has proposed a number of model-free and model-based al-
gorithms that have seen success in laboratory settings in a number of robotic tasks when
learning from visual observations [46, 81, 91, 92, 96–100]. However, two core issues that
prevent application of many RL algorithms in practice, inefficient exploration and safety, are
significantly exacerbated when learning from high-dimensional visual observations in which
the space of possible behaviors is very large and the features required to determine whether
the robot is safe are not readily exposed. There has been significant prior work on address-
ing inefficiencies in exploration for visuomotor control such as latent space planning [82,
96, 100] and goal-conditioned reinforcement learning [46, 92]. However, safe reinforcement
learning for visuomotor tasks has received substantially less attention. Thananjeyan et al. [8]
and Kahn et al. [101] present reinforcement learning algorithms which estimate the likelihood
of constraint violations to avoid them [8] or reduce the robot’s velocity [101]. Unlike these
algorithms, which focus on presenting methods to avoid violating user-specified constraints,
LS3 additionally provides consistent task completion during learning by limiting exploration
to the neighborhood of prior task successes. This difference makes LS3 less susceptible to
the challenges of unconstrained exploration present in standard model-free reinforcement
learning algorithms.
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4.3 Problem Statement

We consider an agent interacting in a finite horizon goal-conditioned Markov Decision Pro-
cesses (MDP) which can be described with the tuple M = (S,G,A, P (·|·, ·), R(·, ·), µ, T ). S
and A are the state and action spaces, P : S × A × S → [0, 1] maps a state and action
to a probability distribution over subsequent states, R : S × A × S → R is the reward
function, µ is the initial state distribution (s0 ∼ µ), and T is the time horizon. In this
chapter, the agent is only provided with RGB image observations st ∈ RW×H×3

+ = S, where
W and H are the image width and height in pixels, respectively. We consider iterative
tasks, where the agent must reach a fixed goal set G ⊆ S as efficiently as possible and the
support of µ is small. While there are a number of possible choices of reward functions that
would encourage fast convergence to G, providing shaped reward functions can be exceed-
ingly challenging, especially when learning from high dimensional observations. Thus, as
in Thananjeyan et al. [24], we consider a sparse reward function that only indicates task
completion: R(s, a, s′) = 0 if s′ ∈ G and −1 otherwise. To incorporate constraints, we aug-
mentM with an extra constraint indicator function C : S → {0, 1} which indicates whether
a state satisfies user-specified state-space constraints, such as avoiding known obstacles. This
is consistent with the modified CMDP formulation used in [8]. We assume that R and C
can be evaluated on the current state of the system, but may be approximated using prior
data for use during planning. We make this assumption because in practice we plan over
predicted future states, which may not be predicted at sufficiently high fidelity to expose the
necessary information to directly evaluate R and C during planning.

Given a policy π : S → A, we define its expected total return inM asRπ = Eπ,µ,P [
∑

tR(st, at)].
Furthermore, we define P π

C(s) as the probability of future constraint violation (within time
horizon T ) under policy π from state s. The objective is to maximize the expected return
Rπ while maintaining a constraint violation probability lower than δC. This can be written
formally as follows:

π∗ = arg max
π∈Π

{Rπ : Es0∼µ [P π
C(s0)] ≤ δC} (4.1)

We assume that the agent is provided with an offline dataset D of transitions in the
environment of which some subset Dconstraint ( D are constraint violating and some subset
Dsuccess ( D appear in successful demonstrations from a suboptimal supervisor. As in [8],
Dconstraint contains examples of constraint violating behaviors (for example from prior runs
of different policies or collected under human supervision) so that the agent can learn about
states which violate user-specified constraints.

4.4 Latent Space Safe Sets (LS3)

We describe how LS3 uses demonstrations and online interaction to safely learn iteratively
improving policies. Section 4.4.1 describes how we learn a low-dimensional latent repre-
sentation of image observations to facilitate efficient model-based planning. To enable this
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Figure 4.2: LS3 Learned Models: LS3 learns a low-dimensional latent representation of image-
observations (Section 4.4.1) and learns a dynamics model, value function, reward function, con-
straint classifier, and safe set for constrained planning and task-completion driven exploration in
this learned latent space. These models are then used for model-based planning to maximize the
total value of predicted latent states (Section 4.4.3) while enforcing the safe set (Section 4.4.2) and
user-specified constraints (Section 4.4.3).

planning, we learn a probabilistic forward dynamics model as in [25] in the learned latent
space and models to estimate whether plans will likely complete the task (Section 4.4.2) and
to estimate future rewards and constraint violations (Section 4.4.3) from predicted trajec-
tories. In Section 4.4.4, we discuss how these components are synthesized in LS3. Dataset
D is expanded using online rollouts of LS3 and used to update all latent space models (Sec-
tions 4.4.2 and 4.4.3) after every K rollouts. See Algorithm 2 and the supplement for further
details on training procedures and data collection.

Algorithm 2 Latent Space Safe Sets (LS3)

Require: offline dataset D, number of updates U
1: Train VAE encoder fenc and decoder fdec (Section 4.4.1) using data from D
2: Train dynamics fdyn, safe set classifier fS(Section 4.4.2), and the value function V goal

indicator fG, and constraint estimator fC (Section 4.4.3) using data from D.
3: for j ∈ {1, . . . , U} do
4: for k ∈ {1, . . . , K} do
5: Sample starting state s0 from µ.
6: for t ∈ {1, . . . , T} do
7: Choose and execute at (Section 4.4.4)
8: Observe st+1, reward rt, constraint ct.
9: D := D ∪ {(st, at, st+1, rt, ct)}

10: end for
11: end for
12: Update fdyn, V , fG, fC, and fS with data from D.
13: end for
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4.4.1 Learning a Latent Space for Planning

Learning compressed representations of images has been a popular approach in vision based
control to facilitate efficient algorithms for planning and control which can reason about
lower dimensional inputs [82, 86, 96, 100, 102, 103]. To learn such a representation, we train
a β-variational autoencoder [104] on states in D to map states to a probability distribution
over a d-dimensional latent space Z. The resulting encoder network fenc(z|s) is then used
to sample latent vectors zt ∼ fenc(zt|st) to train a forward dynamics model, value function,
reward estimator, constraint classifier, safe set, and combine these elements to define a policy
for model-based planning. Motivated by Laskin et al. [105], during training we augment
inputs to the encoder with random cropping, which we found to be helpful in learning
representations that are useful for planning. For all environments we use a latent dimension
of d = 32, as in [82] and found that varying d did not significantly affect performance.

4.4.2 Latent Safe Sets for Model-Based Control

LS3 learns a binary classifier for latent states to learn a latent space safe set that represents
states from which the agent has high confidence in task completion based on prior experi-
ence. Because the agent can reach the goal from these states, they are safe: the agent can
avoid constraint violations by simply completing the task as before. While classical algo-
rithms use known dynamics to construct safe sets, we approximate this set using successful
trajectories from prior iterations. At each iteration j, the algorithm collects K trajectories
in the environment. We then define the sampled safe set at iteration j, Sj, as the set of
states from which the agent has successfully navigated to G in iterations 0 through j of
training, where demonstrations trajectories are those collected at iteration 0. We refer to
the dataset collecting all these states as Dsuccess. This discrete set is difficult to plan to with
continuous-valued state distributions so we leverage data from Dsuccess (data in the sampled
safe set), data from D \Dsuccess (data outside the sampled safe set), and the learned encoder
from Section 4.4.1 to learn a continuous relaxation of this set in latent space (the latent safe
set). We train a neural network with a binary cross-entropy loss to learn a binary classifier
fS(·) that predicts the probability of a state st with encoding zt being in Sj. To mitigate
the negative bias that appears when trajectories that start in safe regions fail, we utilize the
intuition that if a state st+1 ∈ Sj then it is likely that st is also safe. To do this, rather
than just predict 1Sj , we train fS with a recursive objective to predict max(1Sj , γSfS(st+1)).
The relaxed latent safe set is parameterized by the superlevel sets of fS, where the level δS
is adaptively set during execution: SjZ = {zt|fS(·)(zt) ≥ δS}.

4.4.3 Reward and Constraint Estimation

In this chapter, we define rewards based on whether the agent has reached a state s ∈ G,
but we need rewards that are defined on predictions from the dynamics, which may not
correspond to valid real images. To address this, we train a classifier fG : Z → {0, 1} to map
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the encoding of a state to whether the state is contained in G using terminal states in Dsuccess

(which are known to be in G) and other states in D. However, in the temporally-extended,
sparse reward tasks we consider, reward prediction alone is insufficient because rewards only
indicate whether the agent is in the goal set, and thus provide no signal on task progress
unless the agent can plan to the goal set. To address this, as in prior MPC-literature [14,
15, 24, 88], we train a recursively-defined value function (details in the supplement). Similar
to the reward function, we use the encoder (Section 4.4.1) to train a classifier fC : Z → [0, 1]
with data of constraint violating states from Dconstraint and the constraint satisfying states
in D \ Dconstraint to map the encoding of a state to the probability of constraint violation.

4.4.4 Model-Based Planning with LS3

LS3 aims to maximize total rewards attained in the environment while limiting constraint
violation probability within some threshold δC (equation 4.1). We optimize an approximation
of this objective over an H-step receding horizon with model-predictive control. Precisely,
LS3 solves the following optimization problem to generate an action to execute at timestep
t:

arg max
at:t+H−1∈AH

Ezt:t+H

[
H−1∑
i=1

fG(zt+i) + V π(zt+H)

]
(4.2)

s.t. zt ∼ fenc(zt|st) (4.3)

zk+1 ∼ fdyn(zk+1|zk, ak) ∀k ∈ {t, . . . , t+H − 1} (4.4)

P̂
(
zt+H ∈ Sj−1

Z
)
≥ 1− δS (4.5)

P̂(zt+i ∈ ZC) ≤ δC ∀i ∈ {0, . . . , H − 1} (4.6)

In this problem, the expectations and probabilities are taken with respect to the learned,
probabilistic dynamics model fdyn(zt+1|zt, at). The optimization problem is solved approxi-
mately using the cross-entropy method (CEM) [106] which is a popular optimizer in model-
based RL [8, 14, 24, 107, 108].

The objective function is the expected sum of future rewards if the agent executes at:t+H−1

and then subsequently executes π (equation 4.2). First, the current state st is encoded to
zt (equation 4.3). Then, for a candidate sequence of actions at:t+H−1, an H-step latent
trajectory {zt+1, . . . , zt+H} is sampled from the learned dynamics fdyn (equation 4.4). LS3

constrains exploration using two chance constraints: (1) the terminal latent state in the plan
must fall in the safe set (equation 4.5) and (2) all latent states in the trajectory must satisfy
user-specified state-space constraints (equation 4.6). ZC is the set of all latent states such that
the corresponding observation is constraint violating. The optimizer estimates constraint
satisfaction probabilities for a candidate action sequence by simulating it repeatedly over
fdyn. The first chance constraint ensures the agent maintains the ability to return to safe
states where it knows how to do the task within H steps if necessary. Because the agent
replans at each timestep, the agent need not return to the safe set: during training, the safe
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Figure 4.3: Experimental Domains: LS3 is evaluated on 3 long-horizon, image-based, simulation
environments: a visual navigation domain where the goal is to navigate the blue point mass to the
right goal set while avoiding the red obstacle, a 2 degree of freedom reacher arm where the task is
to navigate around a red obstacle to reach the yellow goal set, and a sequential pushing task where
the robot must push each of 3 blocks forward a target displacement from left to right. We also
evaluate LS3 on a physical, cable-routing task on a da Vinci Surgical Robot, where the goal is to
guide a red cable to a green target without the cable or robot arm colliding with the blue obstacle.
This requires learning visual dynamics, because the agent must model how the rest of the cable
will deform during manipulation to avoid collisions with the obstacle.

set expands, enabling further exploration. In practice, we set δS for the safe set classifier
fS adaptively as described in the supplement. The second chance constraint encourages
constraint violation probability of no more than δC. After solving the optimization problem,
the agent executes the first action in the plan: π(zt) = at where at is the first element of
a∗t:t+H−1, observes a new state, and replans.

4.5 Experiments

We evaluate LS3 on 3 robotic control tasks in simulation and a physical cable routing task on
the da Vinci Research Kit (dVRK) [78]. Safe RL is of particular interest for surgical robots
such as the dVRK due to its delicate structure, motivating safety, and relatively imprecise
controls [24, 60], motivating closed-loop control. We study whether LS3 can learn more
safely and efficiently than algorithms that do not structure exploration based on prior task
successes.

4.5.1 Comparisons

We evaluate LS3 in comparison to prior algorithms that behavior clone suboptimal demon-
strations before exploring online (SACfD) [62] or leverage offline reinforcement learning to
learn a policy using all offline data before updating the policy online (AWAC) [109]. For
both of these comparisons we enforce constraints via a tuned reward penalty of λ for con-
straint violations as in [3]. We also implement a version of SACfD with a learned recovery
policy (SACfD+RRL) using the Recovery RL algorithm [8] to use prior constraint violating
data to try to avoid constraint violating states. We then compare LS3 to an ablated version
without the safe set constraint (just binary classification (BC)) in equation 4.5 (LS3 (−Safe
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Figure 4.4: Simulation Experiments Results: Learning curves showing mean and standard
error over 10 random seeds. We see that LS3 learns more quickly than baselines and ablations.
Although SACfD and SACfD+RRL converge to similar reward values, LS3 is much more sample
efficient and stable across random seeds.

Set)) to evaluate if the safe set promotes consistent task completion and stable learning.
Finally, we compare LS3 to an ablated version of the safe set classifier (Section 4.4.2) with-
out a recursive objective, where the classifier is just trained to predict 1Sj (LS3 (BC SS)).
See the supplement for details on hyperparameters and offline data used for LS3 and prior
algorithms.

4.5.2 Evaluation Metrics

For each algorithm on each domain, we aggregate statistics over random seeds (10 for sim-
ulation experiments, 3 for the physical experiment), reporting the mean and standard error
across the seeds. We present learning curves that show the total sum reward for each train-
ing trajectory to study how efficiently LS3 and the comparisons learn each task. Because all
tasks use the sparse task completion based rewards defined in Section 4.3, the total reward
for a trajectory is the time to reach the goal set, where more negative rewards correspond
to slower convergence to G. Thus, for a task with task horizon T , a total reward greater
than −T implies successful task completion. The state is frozen in place upon constraint
violation until the task horizon elapses. We also report task success and constraint satisfac-
tion rates for LS3 and comparisons during learning to study (1) the degree to which task
completion influences sample efficiency and (2) how safely different algorithms explore. LS3

collects K = 10 trajectories in between training phases on simulated tasks and K = 5 in
between training phases for physical tasks, while the SACfD and AWAC comparisons update
their parameters after each timestep. This presents a metric in terms of the amount of data
collected across algorithms.

4.5.3 Domains

In simulation, we evaluate LS3 on 3 vision-based continuous control domains that are illus-
trated in Figure 4.3. We evaluate LS3 and comparisons on a constrained visual navigation
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task (Pointmass Navigation) where the agent navigates from a fixed start state to a fixed
goal set while avoiding a large central obstacle. We study this domain to gain intuition and
visualize the learned value function, goal/constraint indicators, and safe set in Figure 4.2.
We then study a constrained image-based reaching task (Reacher) based on [110], where
the objective is to navigate the end effector of a 2-link planar robotic arm to a yellow goal
position without the end-effector entering a red stay out zone. We then study a challenging
sequential image-based robotic pushing domain (Sequential Pushing), in which the objective
is to push each of the 3 blocks forward on the table without pushing them to either side and
causing them to fall out of the workspace. Finally, we evaluate LS3 with an image-based
physical experiment on the da Vinci Research Kit (dVRK) [111] (Figure 4.3), where the
objective is to guide the endpoint of a cable to a goal region without letting the cable or end
effector collide with an obstacle. The Pointmass Navigation and Reaching domains have a
task horizon of T = 100 while the Sequential Pushing domain and physical experiment have
task horizons of T = 150 and T = 50 respectively. See the supplement for more details on
all domains.

4.5.4 Simulation Results

We find that LS3 is able to learn more stably and efficiently than all comparisons across all
simulated domains while converging to similar performance within 250 trajectories collected
online (Figure 4.4). LS3 is able to consistently complete the task during learning, while the
comparisons, which do not learn a safe set to structure exploration based on prior successes,
exhibit much less stable learning. Additionally, in Table 4.1 and Table 4.2, we report the
task success rate and constraint violation rate of all algorithms during training. We find
that LS3 achieves a significantly higher task success rate than comparisons on all tasks. We
also find that LS3 violates constraints less often than comparisons on the Reacher task, but
violates constraints more often than SACfD and SACfD+RRL on the other domains. This
is because SACfD and SACfD+RRL spend much less time in the neighborhood of constraint
violating states during training due to their lower task success rates. Because they do not
efficiently learn to perform the tasks, they do not violate constraints as often. We find
that the AWAC comparison achieves very low task performance. While AWAC is designed
for offline reinforcement learning, to the best of our knowledge, it has not been previously
evaluated on long-horizon, image-based tasks as in this paper, which we hypothesize are very
challenging for it.

We find LS3 has a lower success rate when the safe set constraint is removed (LS3(−Safe
Set)) as expected. The safe set is particularly important in the sequential pushing task, and
LS3 (−Safe Set) has a much lower task completion rate than LS3. LS3 without the recursive
classification objective from Section 4.4.2 (LS3 (BC SS)) has similar performance to LS3 on
the navigation environment, but learns substantially more slowly on the Reacher environment
and performs significantly worse than LS3 on the more challenging Pushing environment as
the learned safe set is unable to exploit temporal structure to distinguish safe states from
unsafe states. See the supplement for details on experimental parameters and offline data
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Table 4.1: Task Success Rate over all Training Episodes: We present the mean and standard
error of training-time task completion rate over 10 random seeds. We find LS3 outperforms all
comparisons across all 3 domains, with the gap increasing for the challenging sequential pushing
task.

SACfD AWAC SACfD+RRL LS3 (−SS) LS3

Pointmass Navigation 0.363± 0.068 0.312± 0.093 0.184± 0.053 0.818± 0.019 0.988± 0.004
Reacher 0.502± 0.072 0.255± 0.089 0.473± 0.056 0.736± 0.025 0.870± 0.024
Sequential Pushing 0.425± 0.064 0.006± 0.003 0.466± 0.065 0.366± 0.030 0.648± 0.049

Table 4.2: Constraint Violation Rate: We report mean and standard error of training-time
constraint violation rate over 10 random seeds. LS3 violates constraints less than comparisons
on the Reacher task, but SAC and SACfD+RRL achieve lower constraint violation rates on the
Navigation and Pushing tasks, likely due to spending less time in the neighborhood of constraint
violating regions due to their much lower task success rates.

SACfD AWAC SACfD+RRL LS3 (−SS) LS3

Pointmass Navigation 0.006± 0.002 0.104± 0.070 0.001± 0.001 0.019± 0.006 0.005± 0.001
Reacher 0.146± 0.039 0.398± 0.107 0.142± 0.031 0.247± 0.027 0.102± 0.027
Sequential Pushing 0.033± 0.003 0.138± 0.028 0.054± 0.006 0.122± 0.031 0.107± 0.016

used for LS3 and comparisons and ablations studying the effect of the planning horizon and
threshold used to define the safe set.

4.5.5 Physical Results

In physical experiments, we compare LS3 to SACfD and SACfD+RRL (Figure 4.5) on the
physical cable routing task illustrated in Figure 4.3. We find LS3 quickly outperforms the
suboptimal demonstrations while succeeding at the task significantly more often than both
comparisons, which are unable to learn the task and also violate constraints more than
LS3. We hypothesize that the difficulty of reasoning about cable collisions and deformation
from images makes it challenging for prior algorithms to make sufficient task progress as
they do not use prior successes to structure exploration. See the supplement for details on
experimental parameters and offline data used for LS3 and comparisons.

4.6 Discussion and Future Work

We present LS3, a scalable algorithm for safe and efficient policy learning for visuomotor
tasks. LS3 structures exploration by learning a safe set in a learned latent space, which
captures the set of states from which the agent is confident in task completion. LS3 then
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Figure 4.5: Physical Cable Routing Results: We present learning curves, task success rates
and constraint violation rates with a mean and standard error across 3 random seeds. LS3 learns a
more efficient policy than the demonstrator while still violating constraints less than comparisons,
which are unable to learn the task.

ensures that the agent can plan back to states in the safe set, encouraging consistent task
completion during learning. Experiments suggest that LS3 can safely and efficiently learn 4
visuomotor control tasks, including a challenging sequential pushing task in simulation and
a cable routing task on a physical robot. In future work, we are excited to explore further
physical evaluation of LS3 on safety critical visuomotor control tasks and applications to
systems with dynamic constraints on velocity or acceleration.
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Chapter 5

Model-based Learning with a
Model-free Policy

The previous chapters discuss how to use model-based policies for safe reinforcement learning.
However, the model-based optimizations are very expensive and may be too costly to run at
execution time. In this chapter, we will discuss a technique for distilling a model-based policy
that is improving over time into a model-free policy that is fast to execute. To theoretically
justify this technique, we will discuss a few theoretical results that suggests that training
a model-free policy from an improving offline supervisor (the model-based agent) results in
sublinear regret.

In robotics there is significant interest in using human or algorithmic supervisors to train
policies via imitation learning [112–114]. For example, a trained surgeon with experience tele-
operating a surgical robot can provide successful demonstrations of surgical maneuvers [115].
Similarly, known dynamics models can be used by standard control techniques, such as model
predictive control (MPC), to generate controls to optimize task reward [116, 117]. However,
there are many cases in which the supervisor is not fixed, but is converging to improved
behavior over time, such as when a human is initially unfamiliar with a teleoperation inter-
face or task or when the dynamics of the system are initially unknown and estimated with
experience from the environment when training an algorithmic controller. Furthermore,
these supervisors are often slow, as humans can struggle to execute stable, high-frequency
actions on a robot [117] and model-based control techniques, such as MPC, typically require
computationally expensive stochastic optimization techniques to plan over complex dynam-
ics models [25, 55, 118]. This motivates algorithms that can distill supervisors which are
both converging and slow into policies that can be efficiently executed in practice. The idea
of distilling improving algorithmic controllers into reactive policies has been explored in a
class of reinforcement learning (RL) algorithms known as dual policy iteration (DPI) [119–
121], which alternate between optimizing a reactive learner with imitation learning and a
model-based supervisor with data from the learner. However, past methods have mostly
been applied in discrete settings [119, 120] or make specific structural assumptions on the
supervisor [121].
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This chapter analyzes learning from a converging supervisor in the context of on-policy
imitation learning. Prior analysis of on-policy imitation learning algorithms provide regret
guarantees given a fixed supervisor [122–125]. We consider a converging sequence of supervi-
sors and show that similar guarantees hold for the regret against the best policy in hindsight
with labels from the converged supervisor, even when only intermediate supervisors provide
labels during learning. Since the analysis makes no structural assumptions on the supervi-
sor, this flexibility makes it possible to use any off-policy method as the supervisor in the
presented framework, such as an RL algorithm or a human, provided that it converges to a
good policy on the learner’s distribution. We implement an instantiation of this framework
with the deep MPC algorithm PETS [25] as an improving supervisor and maintain the data
efficiency of PETS while significantly reducing online computation time, accelerating both
policy learning and evaluation.

The key contribution of this chapter is a new framework for on-policy imitation learning
from a converging supervisor. We present a new notion of static and dynamic regret in
this setting and provide sublinear regret guarantees by showing a reduction from this new
notion of regret to the standard notion for the fixed supervisor setting. The dynamic regret
result is particularly unintuitive, as it indicates that it is possible to do well on each round
of learning compared to a learner with labels from the converged supervisor, even though
labels are only provided by intermediate supervisors during learning. We then show that the
presented framework relaxes assumptions on the supervisor in DPI and perform simulated
continuous control experiments suggesting that when a PETS supervisor [25] is used, we
can outperform other deep RL baselines while achieving up to an 80-fold speedup in policy
evaluation. Experiments on a physical surgical robot yield up to an 20-fold reduction in query
time and 53% reduction in policy evaluation time after accounting for hardware constraints.

5.1 Related Work

On-policy imitation learning algorithms that directly learn reactive policies from a supervi-
sor were popularized with DAgger [122], which iteratively improves the learner by soliciting
supervisor feedback on the learner’s trajectory distribution. This yields significant perfor-
mance gains over analogous off-policy methods [126, 127]. On-policy methods have been
applied with both human [128] and algorithmic supervisors [117], but with a fixed supervi-
sor as the guiding policy. We propose a setting where the supervisor improves over time,
which is common when learning from a human or when distilling a computationally expen-
sive, iteratively improving controller into a policy that can be efficiently executed in practice.
Recently, convergence results and guarantees on regret metrics such as dynamic regret have
been shown for the fixed supervisor setting [124, 125, 129]. We extend these results and
present a static and dynamic analysis of on-policy imitation learning from a convergent se-
quence of supervisors. Recent work proposes using inverse RL to outperform an improving
supervisor [69, 130]. We instead study imitation learning in this context to use an evolving
supervisor for policy learning.
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Model-based planning has seen significant interest in RL due to the benefits of lever-
aging structure in settings such as games and robotic control [119–121]. Deep model-
based reinforcement learning (MBRL) has demonstrated superior data efficiency compared
to model-free methods and state-of-the-art performance on a variety of continuous control
tasks [25, 55, 118]. However, these techniques are often too computationally expensive
for high-frequency execution, significantly slowing down policy evaluation. To address the
online burden of model-based algorithms, Sun et al. [121] define a novel class of algorithms,
dual policy iteration (DPI), which alternate between optimizing a fast learner for policy
evaluation using labels from a model-based supervisor and optimizing a slower model-based
supervisor using trajectories from the learner. However, past work in DPI either involves
planning in discrete state spaces [119, 120], or making specific assumptions on the structure
of the model-based controller [121]. We discuss how the converging supervisor framework
is connected to DPI, but enables a more flexible supervisor specification. We then pro-
vide a practical algorithm by using the deep MBRL algorithm PETS [25] as an improving
supervisor to achieve fast policy evaluation while maintaining the data efficiency of PETS.

5.2 Converging Supervisor Framework and

Preliminaries

5.2.1 On-Policy Imitation Learning

We consider continuous control problems in a finite-horizon Markov decision process (MDP),
which is defined by a tuple (S,A, P (·, ·), T, R(·, ·)) where S is the state space and A is the
action space. The stochastic dynamics model P maps a state s and action a to a probability
distribution over states, T is the task horizon, and R is the reward function. A deterministic
control policy π maps an input state in S to an action in A. The goal in RL is to learn a
policy π over the MDP which induces a trajectory distribution that maximizes the sum of
rewards along the trajectory. In imitation learning, this objective is simplified by instead
optimizing a surrogate loss function which measures the discrepancy between the actions
chosen by learned parameterized policy πθ and supervisor ψ.

Rather than directly optimizing R from experience, on-policy imitation learning involves
executing a policy in the environment and then soliciting feedback from a supervisor on the
visited states. This is in contrast to off-policy methods, such as behavior cloning, in which
policy learning is performed entirely on states from the supervisor’s trajectory distribution.
The surrogate loss of a policy πθ along a trajectory is a supervised learning cost defined by the
supervisor relabeling the trajectory’s states with actions. The goal of on-policy imitation is to
find the policy minimizing the corresponding surrogate risk on its own trajectory distribution.
On-policy algorithms typically adhere to the following iterative procedure: (1) at iteration
i, execute the current policy πθi by deploying the learner in the MDP, observing states and
actions as trajectories; (2) Receive labels for each state from the supervisor ψ; (3) Update
πθi according to the supervised learning loss to generate πθi+1

.
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On-policy imitation learning has often been viewed as an instance of online optimization
or online learning [122, 124, 125]. Online optimization is posed as a game between an
adversary, which generates a loss function li at iteration i and an algorithm, which plays
a policy πθi in an attempt to minimize the total incurred losses. After observing li, the
algorithm updates its policy πθi+1

for the next iteration. In the context of imitation learning,
the loss li(·) at iteration i corresponds to the supervised learning loss function under the
current policy. The loss function li(·) can then be used to update the policy for the next
iteration. The benefit of reducing on-policy imitation learning to online optimization is that
well-studied analyses and regret metrics from online optimization can be readily applied
to understand and improve imitation learning algorithms. Next, we outline a theoretical
framework in which to study on-policy imitation learning with a converging supervisor.

5.2.2 Converging Supervisor Framework (CSF)

We begin by presenting a set of definitions for on-policy imitation learning with a converging
supervisor in order to analyze the static regret (Section 5.3.1) and dynamic regret (Section
5.3.2) that can be achieved in this setting. In this chapter, we assume that policies πθ are
parameterized by a parameter θ from a convex compact set Θ ⊂ Rd equipped with the
l2-norm, which we denote with ‖·‖ for simplicity for both vectors and operators.

Definition 5.2.1. Supervisor: We can think of a converging supervisor as a sequence
of supervisors (labelers), (ψi)

∞
i=1, where ψi defines a deterministic controller ψi : S → A.

Supervisor ψi provides labels for imitation learning policy updates at iteration i.

Definition 5.2.2. Learner: The learner is represented at iteration i by a parameterized
policy πθi : S → A where πθi is differentiable function in the policy parameter θi ∈ Θ.

We denote the state and action at timestep t in the trajectory τ sampled at iteration i
by the learner with sit and ait respectively.

Definition 5.2.3. Losses: We consider losses at each round i of the form: li(πθ, ψi) =

Eτ∼p(τ |θi)
[

1
T

∑T
t=1‖πθ(sit)− ψi(sit)‖2

]
where p(τ |θi) defines the distribution of trajectories gen-

erated by πθi. Gradients of li with respect to θ are defined as ∇θli(πθi , ψi) = ∇θli(πθ, ψi)
∣∣
θ=θi

.

For analysis of the converging supervisor setting, we adopt the following standard as-
sumptions. The assumptions in this section and the loss formulation are consistent with
those in Hazan [131] and Ross et al. [122] for analysis of online optimization and imitation
learning algorithms. The loss incurred by the agent is the population risk of the policy, and
extension to empirical risk can be derived via standard concentration inequalities as in Ross
et al. [122].
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Assumption 5.2.1. Strongly convex losses: ∀θi ∈ Θ, li(πθ, ψ) is strongly convex with
respect to θ with parameter α ∈ R+. Precisely, we assume that

li(πθ2 , ψ) ≥ li(πθ1 , ψ) +∇θli(πθ1 , ψ)T (θ2 − θ1) +
α

2
‖θ2 − θ1‖2 ∀ θ1, θ2 ∈ Θ

The expectation over p(τ |θi) in Assumption 5.2.1 preserves strong convexity of the
squared loss for an individual sample, which is assumed to be convex in θ.

Assumption 5.2.2. Bounded operator norm of policy Jacobian: ‖∇θπθi(s)‖ ≤ G
∀s ∈ S, ∀ θ, θi ∈ Θ where G ∈ R+.

Assumption 5.2.3. Bounded action space: The action space A has diameter δ. Equiv-
alently stated: δ = supa1,a2∈A ‖a1 − a2‖.

5.3 Regret Analysis

We analyze the performance of well-known algorithms in on-policy imitation learning and
online optimization under the converging supervisor framework. In this setting, we emphasize
that the goal is to achieve low loss li(πθi , ψN) with respect to labels from the last observed
supervisor ψN . We achieve these results through regret analysis via reduction of on-policy
imitation learning to online optimization, where regret is a standard notion for measuring
the performance of algorithms. We consider two forms: static and dynamic regret [132],
both of which have been utilized in previous on-policy imitation learning analyses [122, 124].
In this chapter, regret is defined with respect to the expected losses under the trajectory
distribution induced by the realized sequence of policies (πθi)

N
i=1. Standard concentration

inequalities can be used for finite sample analysis as in Ross et al. [122].
Using static regret, we can show a loose upper bound on average performance with

respect to the last observed supervisor with minimal assumptions, similar to [122]. Using
dynamic regret, we can tighten this upper bound, showing that θi is optimal in expectation
on its own distribution with respect to ψN for certain algorithms, similar to [124, 129];
however, to achieve this stronger result, we require an additional continuity assumption
on the dynamics of the system, which was shown to be necessary by Cheng et al. [125].
To harness regret analysis in imitation learning, we seek to show that algorithms achieve
sublinear regret (whether static or dynamic), denoted by O(N) where N is the number of
iterations. That is, the regret should grow at a slower rate than linear in the number of
iterations. While existing algorithms can achieve sublinear regret in the fixed supervisor
setting, we analyze regret with respect to the last observed supervisor ψN , even though the
learner is only provided labels from the intermediate ones during learning. See supplementary
material for all proofs.
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5.3.1 Static Regret

Here we show that as long as the supervisor labels are Cauchy, i.e. if ∀s ∈ S, ∀N >
i, ‖ψi(s)− ψN(s)‖ ≤ fi where limi→∞ fi = 0, it is possible to achieve sublinear static regret
with respect to the best policy in hindsight with labels from ψN for the whole dataset.
This is a more difficult metric than is typically considered in regret analysis for on-policy
imitation learning since labels are provided by the converging supervisor ψi at iteration i,
but regret is evaluated with respect to the best policy given labels from ψN . Past work
has shown that it is possible to obtain sublinear static regret in the fixed supervisor setting
under strongly convex losses for standard on-policy imitation learning algorithms such as
online gradient descent [131] and DAgger [122]; we extend this and show that the additional
asymptotic regret in the converging supervisor setting depends only on the convergence rate
of the supervisor. The standard notion of static regret is given in Definition 5.3.1.

Definition 5.3.1. The static regret with respect to the sequence of supervisors (ψi)
N
i=1 is given

by the difference in the performance of policy πθi and that of the best policy in hindsight under
the average trajectory distribution induced by the incurred losses with labels from current
supervisor ψi.

RegretSN((ψi)
N
i=1) =

N∑
i=1

li(πθi , ψi)−
N∑
i=1

li(πθ∗ , ψi) where θ∗ = arg min
θ∈Θ

N∑
i=1

li(πθ, ψi)

However, we instead analyze the more difficult regret metric presented in Definition 5.3.2
below.

Definition 5.3.2. The static regret with respect to the supervisor ψN is given by the dif-
ference in the performance of policy πθi and that of the best policy in hindsight under the
average trajectory distribution induced by the incurred losses with labels from the last observed
supervisor ψN .

RegretSN(ψN) =
N∑
i=1

li(πθi , ψN)−
N∑
i=1

li(πθ? , ψN) where θ? = arg min
θ∈Θ

N∑
i=1

li(πθ, ψN)

Theorem 5.3.1. RegretSN(ψN) can be bounded above as follows:

RegretSN(ψN) ≤ RegretSN((ψi)
N
i=1) + 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN(sit)− ψi(sit)‖

]

Chapter 5.3.1 essentially states that the expected static regret in the converging super-
visor setting can be decomposed into two terms: one that is the standard notion of static
regret, and an additional term that scales with the rate at which the supervisor changes.
Thus, as long as there exists an algorithm to achieve sublinear static regret on the standard
problem, the only additional regret comes from the evolution of the supervisor. Prior work
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has shown that algorithms such as online gradient descent [131] and DAgger [122] achieve
sublinear static regret under strongly convex losses. Given this reduction, we see that these
algorithms can also be used to achieve sublinear static regret in the converging supervisor
setup if the extra term is sublinear. Chapter 5.3.1 identifies when this is the case.

Corollary 5.3.1. If ∀s ∈ S, ∀N > i, ‖ψi(s) − ψN(s)‖ ≤ fi where limi→∞ fi = 0, then
RegretSN(ψN) can be decomposed as follows:

RegretSN(ψN) = RegretSN((ψi)
N
i=1) + O(N)

5.3.2 Dynamic Regret

Although the static regret analysis provides a bound on the average loss, the quality of that
bound depends on the term minθ

∑N
i=1 li(πθ, ψN), which in practice is often very large due

to approximation error between the policy class and the actual supervisor. Furthermore, it
has been shown that despite sublinear static regret, policy learning may be unstable under
certain dynamics [125, 128]. Recent analyses have turned to dynamic regret [124, 125], which
measures the sub-optimality of a policy on its own distribution: li(πθi , ψN)−minθ li(πθ, ψN).
Thus, low dynamic regret shows that a policy is on average performing optimally on its
own distribution. This framework also helps determine if policy learning will be stable or if
convergence is possible [124]. However, these notions require understanding the sensitivity of
the MDP to changes in the policy. We quantify this with an additional Lipschitz assumption
on the trajectory distributions induced by the policy as in [124, 125, 129]. We show that
even in the converging supervisor setting, it is possible to achieve sublinear dynamic regret
given this additional assumption and a converging supervisor by reducing the problem to a
predictable online learning problem [129]. Note that this yields the surprising result that it is
possible to do well on each round even against a dynamic comparator which has labels from
the last observed supervisor. The standard notion of dynamic regret is given in Chapter 5.3.3
below.

Definition 5.3.3. The dynamic regret with respect to the sequence of supervisors (ψi)
N
i=1

is given by the difference in the performance of policy πθi and that of the best policy under
the current round’s loss, which compares the performance of current policy πθi and current
supervisor ψi.

RegretDN((ψi)
N
i=1) =

N∑
i=1

li(πθi , ψi)−
N∑
i=1

li(πθ∗i , ψi) where θ∗i = arg min
θ∈Θ

li(πθ, ψi)

However, similar to the static regret analysis in Section 5.3.1, we seek to analyze the
dynamic regret with respect to labels from the last observed supervisor ψN , which is defined
as follows.
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Definition 5.3.4. The dynamic regret with respect to supervisor ψN is given by the difference
in the performance of policy πθi and that of the best policy under the current round’s loss,
which compares the performance of current policy πθi and last observed supervisor ψN .

RegretDN(ψN) =
N∑
i=1

li(πθi , ψN)−
N∑
i=1

li(πθ?i , ψN) where θ?i = arg min
θ∈Θ

li(πθ, ψN)

We first show that there is a reduction from RegretDN(ψN) to RegretDN((ψi)
N
i=1).

Lemma 5.3.1. RegretDN(ψN) can be bounded above as follows:

RegretDN(ψN) ≤ RegretDN((ψi)
N
i=1) + 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN(sit)− ψi(sit)‖

]

Given the notion of supervisor convergence discussed in Chapter 5.3.1, Chapter 5.3.2
shows that if we can achieve sublinear RegretDN((ψi)

N
i=1), we can also achieve sublinear

RegretDN(ψN).

Corollary 5.3.2. If ∀s ∈ S, ∀N > i, ‖ψi(s) − ψN(s)‖ ≤ fi where limi→∞ fi = 0, then
RegretDN(ψN) can be decomposed as follows:

RegretDN(ψN) = RegretDN((ψi)
N
i=1) + O(N)

It is well known that RegretDN((ψi)
N
i=1) cannot be sublinear in general [124]. However,

as in [124, 125], we can obtain conditions for sublinear regret by leveraging the structure
in the imitation learning problem with a Lipschitz continuity condition on the trajectory
distribution. Let dTV (p, q) = 1

2

∫
|p − q|dτ denote the total variation distance between two

trajectory distributions p and q.

Assumption 5.3.1. There exists η ≥ 0 such that the following holds on the trajectory
distributions induced by policies parameterized by θ1 and θ2:

dTV (p(τ |θ1), p(τ |θ2)) ≤ η‖θ1 − θ2‖/2

A similar assumption is made by popular RL algorithms [133, 134], and Chapter 5.3.2
shows that with it, sublinear RegretDN((ψi)

N
i=1) can be achieved using results from predictable

online learning [129].

Lemma 5.3.2. If Assumption 5.3.1 holds and α > 4Gη supa∈A ‖a‖, then there exists an algo-
rithm where RegretDN((ψi)

N
i=1) = O(N). If the diameter of the parameter space is bounded, the

greedy algorithm, which plays θi+1 = arg minθ∈Θ li(πθ, ψN), achieves sublinear RegretDN((ψi)
N
i=1).

Furthermore, if the losses are γ-smooth in θ and
4Gη supa∈A ‖a‖

α
> α

2γ
, then online gradient de-

scent achieves sublinear RegretDN((ψi)
N
i=1).
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Finally, we combine the results of Chapter 5.3.2 and Chapter 5.3.2 to conclude that since
we can achieve sublinear RegretDN((ψi)

N
i=1) and have found a reduction from RegretDN(ψN) to

RegretDN((ψi)
N
i=1), we can also achieve sublinear dynamic regret in the converging supervisor

setting.

Theorem 5.3.2. If ∀s ∈ S, ∀N > i, ‖ψi(s) − ψN(s)‖ ≤ fi where limi→∞ fi = 0 and
under the assumptions in Lemma 5.3.2, there exists an algorithm where RegretDN(ψN) =
O(N). If the diameter of the parameter space is bounded, the greedy algorithm that plays
θi+1 = arg minθ∈Θ li(πθ, ψN) achieves sublinear RegretDN(ψN). Furthermore, if the losses

are γ-smooth in θ and
4Gη supa∈A ‖a‖

α
> α

2γ
, then online gradient descent achieves sublinear

RegretDN(ψN).

5.4 Converging Supervisors for Deep Continuous

Control

Sun et al. [121] apply DPI to continuous control tasks, but assume that both the learner and
supervisor are of the same policy class and from a class of distributions for which computing
the KL-divergence is computationally tractable. These constraints on supervisor structure
limit model capacity compared to state-of-the-art deep RL algorithms. In contrast, we do
not constrain the structure of the supervisor, making it possible to use any converging,
improving supervisor (algorithmic or human) with no additional engineering effort. Note
that while all provided guarantees only require that the supervisor converges, we implicitly
assume that the supervisor labels actually improve with respect to the MDP reward function,
R, when trained with data on the learner’s distribution for the learner to achieve good task
performance. This assumption is validated by the experimental results in this chapter and
those in prior work [119, 120]. One strategy to encourage the supervisor to improve on
the learner’s distribution is to add noise to the learner policy to increase the variety of the
experience used by the supervisor to learn information such as system dynamics. However,
this was not necessary for the environments considered in this chapter, and we defer further
study in this direction to future work.

We utilize the converging supervisor framework (CSF) to motivate an algorithm that
uses the state-of-the-art deep MBRL algorithm, PETS, as an improving supervisor. Note
that while for analysis we assume a deterministic supervisor, PETS produces stochastic
supervision for the agent. We observe that this does not detrimentally impact performance
of the policy in practice. PETS was chosen since it has demonstrated superior data efficiency
compared to other deep RL algorithms [25]. We collect policy rollouts from a model-free
learner policy and refit the policy on each episode using DAgger [122] with supervision from
PETS, which maintains a trained dynamics model based on the transitions collected by
the learner. Supervision is generated via MPC by using the cross entropy method to plan
over the learned dynamics for each state in the learner’s rollout, but is collected after the
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rollout has completed rather than at each timestep of every policy rollout to reduce online
computation time.

5.5 Experiments

The method presented in Section 5.4 uses the Converging Supervisor Framework (CSF) to
train a learner policy to imitate a PETS supervisor trained on the learner’s distribution.
We expect the CSF learner to be less data efficient than PETS, but have significantly faster
policy evaluation time. To evaluate this hypothesis, we measure the gap in data efficiency
between the learner on its own distribution (CSF learner), the supervisor on the learner’s
distribution (CSF supervisor) and the supervisor on its own distribution (PETS). Returns
for the CSF learner and CSF supervisor are computed by rolling out the model-free learner
policy and model-based controller after each training episode. Because the CSF supervisor is
trained with off-policy data from the learner, the difference between the performance of the
CSF learner and CSF supervisor measures how effectively the CSF learner is able to track the
CSF supervisor’s performance. The difference in performance between the CSF supervisor
and PETS measures how important on-policy data is for PETS to generate good labels. All
runs are repeated 3 times to control for stochasticity in training; see supplementary material
for further experimental details. The DPI algorithm in Sun et al. [121] did not perform
well on the presented environments, so we do not report a comparison to it. However,
we compare against the following set of 3 state-of-the-art model-free and model-based RL
baselines and demonstrate that the CSF learner maintains the data efficiency of PETS while
reducing online computation time significantly by only collecting policy rollouts from the
fast model-free learner instead of from the PETS supervisor.

1. Soft Actor Critic (SAC): State-of-the-art maximum entropy model-free RL algo-
rithm [62].

2. Twin Delayed Deep Deterministic policy gradients (TD3): State-of-the-art
model-free RL algorithm [63] which uses target networks and delayed policy updates
to improve DDPG [135], a popular actor critic algorithm.

3. Model-Ensemble Trust Region Policy Optimization (ME-TRPO): State-of-
the-art model-free, model-based RL hybrid algorithm using a set of learned dynamics
models to update a closed-loop policy offline with model-free RL [134].

5.5.1 Simulation Experiments

We consider the PR2 Reacher and Pusher continuous control MuJoCo domains from Chua
et al. [25] (Figure 5.1) since these are standard benchmarks on which PETS attains good
performance. For both tasks, the CSF learner outperforms other state-of-the-art deep RL
algorithms, demonstrating that the CSF learner enables fast policy evaluation while main-
taining data efficient learning. The CSF learner closely matches the performance of both
the CSF supervisor and PETS, indicating that the CSF learner has similar data efficiency
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Figure 5.1: Simulation experiments: Training curves for the CSF learner, CSF supervisor,
PETS, and baselines for the MuJoCo Reacher (top) and Pusher (bottom) tasks for a linear (left)
and neural network (NN) policy (right). The linear policy is trained via ridge-regression with
regularization parameter α = 1, satisfying the strongly-convex loss assumption in Section 5.2.
To test more complex policy representations, we repeat experiments with a neural network (NN)
learner with 2 hidden layers with 20 hidden units each. The CSF learner successfully tracks the CSF
supervisor on both domains, performs well compared to PETS, and outperforms other baselines
with both policy representations. The CSF learner is slightly less data efficient than PETS, but
policy evaluation is up to 80x faster than PETS. SAC, TD3, and ME-TRPO use a neural network
policy/dynamics class.

as PETS. Results using a neural network CSF learner suggest that losses strongly-convex in
θ may not be necessary in practice.

This result is promising because if the model-free learner policy is able to achieve similar
performance to the supervisor on its own distribution, we can simultaneously achieve the
data efficiency benefits of MBRL and the low online computation time of model-free methods.
To quantify this speedup, we present timing results in Table 5.1, which demonstrate that
a significant speedup (up to 80x in this case) in policy evaluation is possible. Note that
although we still need to evaluate the model-based controller on each state visited by the
learner to generate labels, since this only needs to be done offline, this can be parallelized to
reduce offline computation time as well.

5.5.2 Physical Robot Experiments

We also test CSF with a neural network policy on a physical da Vinci Surgical Robot
(dVRK) [78] to evaluate its performance on multi-goal tasks where the end effector must be
controlled to desired positions in the workspace. We evaluate the CSF learner/supervisor
and PETS on the physical robot for both single and double arm versions of this task, and
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Figure 5.2: Physical experiments: Training curves for the CSF learner, CSF supervisor and
PETS on the da Vinci surgical robot with a neural network policy. The CSF learner is able to track
the CSF supervisor and PETS effectively and can be queried up to 20x faster than PETS. However,
due to control frequency limitations on this system, the CSF learner has a policy evaluation time
that is only 1.52 and 1.46 times faster than PETS for the single and double-arm tasks respectively.
The performance gap between the CSF learner and the supervisor takes longer to diminish for the
harder double-arm task.

Table 5.1: Policy evaluation and query times: We report policy evaluation times in seconds
over 100 episodes for the CSF learner and PETS (format: mean ± standard deviation). Further-
more, for physical experiments, we also report the total time taken to query the learner and PETS
over an episode, since this difference in query times indicates the true speedup that CSF can enable
(format: (total query time, policy evaluation time)). Policy evaluation and query times are nearly
identical for simulation experiments. We see that the CSF learner is 20-80 times faster to query
than PETS across all tasks. Results are reported on a desktop running Ubuntu 16.04 with a 3.60
GHz Intel Core i7-6850K and a NVIDIA GeForce GTX 1080. We use the NN policy for all timing
results.

PR2 Reacher (Sim) PR2 Pusher (Sim) dVRK Reacher dVRK Double-Arm Reacher

CSF Learner 0.29± 0.01 1.13± 0.66 (0.036± 0.009,5.54± 0.67) (0.038± 0.007,8.87± 1.12)
PETS 24.77± 0.08 57.77± 17.12 (0.78± 0.02, 8.43± 1.07) (0.88± 0.07, 12.97± 0.77)

find that the CSF learner is able to track the PETS supervisor effectively (Figure 5.2) and
provide up to a 22x speedup in policy query time (Table 5.1). We expect the CSF learner
to demonstrate significantly greater speedups relative to standard deep MBRL for higher
dimensional tasks and for systems where higher-frequency commands are possible.

5.6 Conclusion

We formally introduce the converging supervisor framework for on-policy imitation learning
and show that under standard assumptions, we can achieve sublinear static and dynamic
regret against the best policy in hindsight with labels from the last observed supervisor, even
when labels are only provided by the converging supervisor during learning. We then show a
connection between the converging supervisor framework and DPI, and use this to present an
algorithm to accelerate policy evaluation for model-based RL without making any assump-
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tions on the structure of the supervisor. We use the state-of-the-art deep MBRL algorithm,
PETS, as an improving supervisor and maintain its data efficiency while significantly accel-
erating policy evaluation. Finally, we evaluate the efficiency of the method by successfully
training a policy on a multi-goal reacher task directly on a physical surgical robot. The
provided analysis and framework suggests a number of interesting questions regarding the
degree to which non-stationary supervisors affect policy learning. In future work, it would
be interesting to derive specific convergence guarantees for the converging supervisor set-
ting, consider different notions of supervisor convergence, and study the trade-offs between
supervision quality and quantity.
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Part II

Safe Exploration Using Prior Failures
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Chapter 6

Learning a Recovery Zone and Policy

In this chapter, we will form a different flavor of safe set that maintains dynamical distance
from constraint violating states. When the policy attempts to leave the safe set, a recovery
policy is invoked, and the robot is guided back to safety before task-driven exploration can
continue. This type of safe set enables much less constrained exploration, and it is also
compatible with many different types of reinforcement learning algorithms.

6.1 Introduction

Reinforcement learning (RL) provides a general framework for robots to acquire new skills,
and has shown promise in a variety of robotic domains such as navigation [52], locomo-
tion [89], and manipulation [26, 91]. However, when deploying RL agents in the real world,
unconstrained exploration can result in highly suboptimal behaviors which can damage the
robot, break surroundings objects, or bottleneck the learning process. For example, con-
sider an agent tasked with learning to extract a carton of milk from a fridge. If it tips
over the carton, then not only can this possibly break the carton and create a mess, but it
also requires laborious human effort to wipe up the milk and replace the carton so that the
robot can continue learning. In the meantime, the robot is not able to collect experience
or improve its policy until the consequences of this violation are rectified. Thus, endowing
RL agents with the ability to satisfy constraints during learning not only enables robots to
interact safely, but also allows them to more efficiently learn in the real world. However,
enforcing constraints on the agent’s behavior during learning is challenging, since system
dynamics and the states leading to constraint violations may be initially unknown and must
be learned from experience, especially when learning from high dimensional observations
such as images. Safe exploration poses a tradeoff: learning new skills through environmental
interaction requires exploring a wide range of possible behaviors, but learning safely forces
the agent to restrict exploration to constraint satisfying states.

We consider a RL formulation subject to constraints on the probability of unsafe future
behavior and design an algorithm that can balance the often conflicting objectives of task-
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Figure 6.1: Recovery RL can safely learn policies for contact-rich tasks from high-dimensional image
observations in simulation experiments and on a physical robotic system. We evaluate Recovery RL
on an image-based obstacle avoidance task with delta-position control on the da Vinci Research Kit
(top left) with overhead image observations (top right). We find that Recovery RL substantially
outperforms prior methods (Figure 6.6), suggesting that it can be used for visuomotor control on
physical robots. We also find that Recovery RL can perform challenging contact-rich manipulation
tasks in simulation; as shown in the bottom row, Recovery RL successfully extracts the red block
without toppling other blocks by learning to nudge it away from other blocks before grasping it.

directed exploration and safety. Most prior work in safe RL integrates constraint satisfaction
into the task objective to jointly optimize the two. While these approaches are appealing
for their generality and simplicity, there are two key aspects which make them difficult
to use in practice. First, the inherent objective conflict between exploring to learn new
tasks and limiting exploration to avoid constraint violations can lead to suboptimalities in
policy optimization. Second, exploring the environment to learn about constraints requires
a significant amount of constraint violations during learning. However, this can result in the
agent taking uncontrolled actions which can damage itself and the environment.

We take a step towards addressing these issues with two key algorithmic ideas. First,
inspired by recent work in robust control [11, 12, 136, 137], we represent the RL agent with
two policies: the first policy focuses on optimizing the unconstrained task objective (task
policy) and the second policy takes control when the task policy is in danger of constraint
violations in the near future (recovery policy). Instead of modifying the policy optimization
procedure to encourage constraint satisfaction, which can introduce suboptimality in the
learned task policy [138], the recovery policy can be viewed as defining an alternate MDP
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for the task policy to explore in which constraint violations are unlikely. Separating the task
and recovery policies makes it easier to balance task performance and safety, and allows using
off-the-shelf RL algorithms for both. Second, we leverage offline data to learn a recovery set,
which indicates regions of the MDP in which future constraint violations are likely, and a
recovery policy, which is queried within this set to prevent violations. This offline data can
be collected under human supervision to illustrate examples of desired behaviors before the
agent interacts with the environment or can contain unsafe behaviors previously experienced
by the robot in the environment when performing other tasks. Both the recovery set and
policy are updated online with agent experience, but the offline data allows the agent to
observe constraint violations and learn from them without the task policy directly having to
experience too many uncontrolled violations during learning.

We present Recovery RL, a new algorithm for safe robotic RL. Unlike prior work, Recov-
ery RL (1) can leverage offline data of constraint violations to learn about constraints before
interacting with the environment, and (2) uses separate policies for the task and recovery
to learn safely without significantly sacrificing task performance. We evaluate Recovery RL
against 5 state-of-the-art safe RL algorithms on 6 navigation and manipulation domains in
simulation, including a visual navigation task, and find that Recovery RL trades off con-
straint violations and task successes 2 - 20 times more efficiently than the next best prior
method. We evaluate Recovery RL on an image-based obstacle avoidance task on a phys-
ical robot and find that it trades off constraint violations and task successes 3 times more
efficiently than the next best prior algorithm.

6.2 Related Work

Prior work has studied safety in RL in several ways, including imposing constraints on
expected return [3, 5], risk measures [139–142], and avoiding regions of the MDP where
constraint violations are likely [9, 12, 24, 75, 143, 144]. We build on the latter approach
and design an algorithm which uses a learned recovery policy to keep the RL agent within a
learned safe region of the MDP.

Jointly Optimizing for Task Performance and Safety: A popular strategy in
algorithms for safe RL involves modifying the policy optimization procedure of standard RL
algorithms to simultaneously reason about both task reward and constraints using methods
such as trust regions [5], optimizing a Lagrangian relaxation [3, 6, 145], or constructing
Lyapunov functions [146, 147]. The most similar of these works to Recovery RL is Srinivasan
et al. [145], which trains a safety critic to estimate the probability of future constraint
violation under the current policy and optimizes a Lagrangian objective function to limit
the probability of constraint violations while maximizing task reward. Unlike Srinivasan et al.
[145], which uses the safety critic to modify the task policy optimization objective, Recovery
RL uses it to determine when to execute a learned recovery policy which minimizes the
safety critic to keep the agent in safe regions of the MDP. This idea enables Recovery RL to
more effectively balance task performance and constraint satisfaction than algorithms which
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Figure 6.2: Recovery RL: For intuition, we illustrate Recovery RL on a 2D maze navigation
task where a constraint violation corresponds to hitting a wall. Recovery RL first learns safety
critic Q̂πφ,risk with offline data from some behavioral policy πb, which provides a small number of
controlled demonstrations of constraint violating behavior as shown on the left. For the purposes
of illustration, we visualize the average of the Q̂πφ,risk learned by Recovery RL over 100 action
samples. Then, at each timestep, Recovery RL queries the task policy πtask for some action a at
state s, evaluates Q̂πφ,risk(s, a), and executes the recovery policy πrec if Q̂πφ,risk(s, a) > εrisk and πtask

otherwise. The task policy, recovery policy, and safety critic are updated after each transition from
agent experience.

jointly optimize for task performance and safety.
Restricting Exploration with an Auxiliary Policy: Another approach to safe RL

explicitly restricts policy exploration to a safe subset of the MDP using a recovery or shield-
ing mechanism. This idea has been explored in [11, 12], which utilize Hamilton-Jacobi
reachability analysis to define a task policy and safety controller, and in the context of
shielding [136, 137, 148]. In contrast to these works, which assume approximate knowledge
of system dynamics or require precise knowledge of constraints apriori, Recovery RL learns
information about the MDP, such as constraints and dynamics, from a combination of of-
fline data and online experience. This allows Recovery RL to scale to high-dimensional state
spaces such as images, in which exact specification of system dynamics and constraints can be
very challenging, and is often impossible. Additionally, Recovery RL reasons about chance
constraints rather than robust constraints, which may be challenging to satisfy when dy-
namics are unknown. Fisac et al. [11] design and prove safety guarantees for learning-based
controllers in a robust optimal control setting with known dynamics and a robust control
invariant safe set. With these additional assumptions, Recovery RL has similar theoretical
properties as well. Han et al. [149] and Eysenbach et al. [9] introduce reset policies which are
trained jointly with the task policy to reset the agent to its initial state distribution, ensuring
that the task policy only learns behaviors which can be reset [9]. However, enforcing the
ability to fully reset can be impractical or inefficient. Inspired by this chapter, Recovery
RL instead executes approximate resets to nearby safe states when constraint violation is
probable. Richter et al. [52] learns the probability of constraint violation conditioned on an
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action plan to activate a hand-designed safety controller. In contrast, Recovery RL uses a
learned recovery mechanism which can be broadly applied across different tasks.

Leveraging Demonstrations for Safe RL and Control: There has also been signifi-
cant prior work investigating how demonstrations can be leveraged to enable safe exploration.
Thananjeyan et al. [14] and Rosolia et al. [15] introduce model predictive control algorithms
which leverage initial constraint satisfying demonstrations to iteratively improve their per-
formance with safety guarantees and Thananjeyan et al. [24] extends these ideas to the RL
setting. In contrast to these works, Recovery RL learns a larger safe set that explicitly models
future constraint satisfaction and also learns the problem constraints from prior experience
without task specific demonstrations. Also, Recovery RL is compatible with model-free RL
algorithms while [14, 24] require a dynamics model to evaluate reachability-based safety
online.

6.3 Problem Statement

We consider RL under Markov decision processes (MDPs), which can be described by tuple
M = (S,A, P (·|·, ·), R(·, ·), γ, µ) where S and A are the state and action spaces. Stochastic
dynamics model P : S × A × S → [0, 1] maps a state and action to a probability distribu-
tion over subsequent states, γ ∈ [0, 1] is a discount factor, µ is the initial state distribution
(s0 ∼ µ), and R : S × A → R is the reward function. We augment the MDP with an
extra constraint cost function C : S → {0, 1} which indicates whether a state is constraint
violating and associated discount factor γrisk ∈ [0, 1]. This yields the following new MDP:
(S,A, P (·|·, ·), R(·, ·), γ, C(·), γrisk). We assume that episodes terminate on violations, equiv-
alent to transitioning to a constraint-satisfying absorbing state with zero reward.

Let Π be the set of Markovian stationary policies. Given policy π ∈ Π, the expected re-
turn is defined as Rπ = Eπ,µ,P [

∑
t γ

tR(st, at)] and the expected discounted probability of con-
straint violation is defined as Qπ

risk(si, ai) = Eπ,µ,P [
∑

t γ
t
riskC(st+i)] =

∑
t γ

t
riskP (C(st+i) = 1),

which we would like to be below a threshold εrisk ∈ [0, 1]. The goal is to solve the following
constrained optimization problem:

π∗ = arg max
π∈Π

{Rπ : Qπ
risk(s0, a0) ≤ εrisk} (6.1)

This setting exactly corresponds to the CMDP formulation from [150], but with constraint
costs limited to binary indicator functions for constraint violating states. We limit the choice
to binary indicator functions, as they are easier to provide than shaped costs and use Qπ

risk

to convey information about delayed constraint costs. We define the set of feasible policies,
{π : Qπ

risk ≤ ε}, the set of ε-safe policies Πε. Observe that if γrisk = 1, then by the assumption
of termination on constraint violation, Qπ

risk(si, ai) = P (
⋃
tC(st) = 1), or the probability of

a constraint violation in the future. Setting εrisk = 0 as well results in a robust optimal
control problem.

We present an algorithm to optimize equation (6.1) by utilizing a pair of policies, a
task policy πtask, which is trained to maximize Rπ over πtask ∈ Π and a recovery policy πrec,
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which attempts to guide the agent back to a state-action tuple (s, a) where Qπ
risk(s, a) ≤

εrisk. We assume access to a set of transitions from offline data (Doffline) with examples
of constraint violations. Unlike in typical imitation learning settings, this data need not
illustrate task successes, but shows possible ways to violate constraints. We leverage Doffline

to constrain exploration of the task policy to reduce the probability of constraint violation
during environment interaction.

6.4 Recovery RL

We outline the central ideas behind Recovery RL. In Section 6.4.1, we review how to learn a
safety critic to estimate the probability of future constraint violations for the agent’s policy.
Then in Section 6.4.2, we show how this safety critic is used to define the recovery policy for
Recovery RL and the recovery set in which it is activated. In Section 6.4.3 we discuss how
the safety critic and recovery policy are initialized from offline data and in Section 6.4.4 we
discuss implementation details. See Algorithm 3 and Figure 6.2 for further illustration of
Recovery RL.

6.4.1 Preliminaries: Training a Safety Critic

As in Srinivasan et al. [145], Recovery RL learns a critic function Qπ
risk that estimates the

discounted future probability of constraint violation of the current policy π:

Qπ
risk(st, at) = Eπ

[
∞∑
t′=t

γt
′−t

risk ct′|st, at

]
= ct + (1− ct)γriskEπ [Qπ

risk(st+1, at+1)|st, at] .
(6.2)

Here ct = 1 indicates that state st is constraint violating with ct = 0 otherwise. Note we do
not assume access to the true constraint cost function C. This is different from the standard
Bellman equations to the assumption that episodes terminate when ct = 1. In practice,
we train a sample-based approximation Q̂π

φ,risk, parameterized by φ, by approximating these
equations using sampled transitions (st, at, st+1, ct).

We train Q̂π
φ,risk by minimizing the following MSE loss with respect to the target (RHS

of equation 6.2).

Jrisk(st, at, st+1;φ) =
1

2

(
Q̂π
φ,risk(st, at)− (ct

+ (1− ct)γrisk E
at+1∼π(·|st+1)

[Q̂π
φ,risk(st+1, at+1)])

)2 (6.3)

and use a target network to create the target values [62, 145].
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6.4.2 Defining a Recovery Set and Policy

Recovery RL executes a composite policy π in the environment, which selects between a
task-driven policy πtask and a recovery policy πrec at each timestep based on whether the
agent is in danger of constraint violations in the near future. To quantify this risk, we use
Qπ

risk to construct a recovery set that contains state-action tuples from which π may not
be able to avoid constraint violations. Then if the agent finds itself in the recovery set, it
executes a learned recovery policy instead of πtask to navigate back to regions of the MDP
that are known to be sufficiently safe. Specifically, define two complimentary sets: the safe
set T πsafe and recovery set T πrec:

T πsafe = {(s, a) ∈ S ×A : Qπ
risk(s, a) ≤ εrisk}

T πrec = S ×A \ T πsafe

We consider state-action tuple (s, a) to be safe if in state s after taking action a, executing
π has a discounted probability of constraint violation less than εrisk.

If the task policy πtask proposes an action aπtask at state s such that (s, aπtask) 6∈ T πsafe, then
a recovery action sampled from πrec is executed instead of aπtask . Thus, the recovery policy
in Recovery RL can be thought of as projecting πtask into a safe region of the policy space
in which constraint violations are unlikely. The recovery policy πrec is also an RL agent, but
is trained to minimize Q̂π

φ,risk(s, a) to reduce the risk of constraint violations under π. Let
aπtaskt ∼ πtask(·|st) and aπrect ∼ πrec(·|st). Then π selects actions as follows:

at =

{
aπtaskt (st, a

πtask
t ) ∈ T πsafe

aπrect (st, a
πtask
t ) ∈ T πrec

(6.4)

Recovery RL filters proposed actions that are likely to lead to unsafe states, equivalent to
modifying the environment that πtask operates in with new dynamics:

P πrec
εrisk

(s′|s, a) =

{
P (s′|s, a) (s, a) ∈ T πsafe

P (s′|s, aπrec) (s, a) ∈ T πrec

(6.5)

We train Q̂π
φ,risk on samples from π since πtask is not executed directly in the environment,

but is rather filtered through π.
It is easy to see that the proposed recovery mechanism will shield the agent from regions

in which constraint violations are likely if Q̂π
φ,risk is correct and executing πrec reduces its

value. However, this poses a potential concern: while the agent may be safe, how do we
ensure that πtask can make progress in the new MDP defined in equation 6.5? Suppose that
πtask proposes an unsafe action aπtaskt under Q̂π

φ,risk. Then, Recovery RL executes a recovery
action aπrect and observes transition (st, a

πrec
t , st+1, rt) in the environment. However, if πtask

is updated with this observed transition, it will not learn to associate its proposed action
(aπtaskt ) in the new MDP with rt and st+1. As a result, πtask may continue to propose the same
unsafe actions without realizing it is observing the result of an action sampled from πrec. To
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address this issue, for training πtask, we relabel all actions with the action proposed by πtask.
Thus, instead of training πtask with executed transitions (st, at, st+1, rt), πtask is trained with
transitions (st, a

πtask
t , st+1, rt). This ties into the interpretation of defining a safe MDP with

dynamics P πrec
εrisk

(s′|s, a) for πtask to act in since all transitions for training πtask are relabeled
as if πtask was executed directly.

Algorithm 3 Recovery RL

Require: Doffline, task horizon H, number of episodes N
1: Pretrain πrec and Q̂π

φ,risk on Doffline . Section 6.4.3
2: Dtask ← ∅, Drec ← Doffline

3: s0 ← env.reset()

4: for i ∈ {1, . . . N} do
5: for t ∈ {1, . . . H} do
6: if ct = 1 or is terminal(st) then
7: st ← env.reset()

8: end if
9: aπtaskt ∼ πtask(·|st) . Query task policy

10: . Check if task policy will be unsafe
11: if (st, a

πtask
t ) ∈ T πrec then

12: at ∼ πrec(·|st) . Select recovery policy
13: else
14: at = aπtaskt . Select task policy
15: end if
16: Execute at
17: Observe st+1, rt = R(st, at), ct = C(st)
18: . Relabel transition
19: Dtask ← Dtask ∪ {(st, aπtaskt , st+1, rt)}
20: Drec ← Drec ∪ {(st, at, st+1, ct)}
21: Train πtask on Dtask, πrec on Drec

22: Train Q̂π
φ,risk on Drec . Eq. 6.3

23: end for
24: end for

6.4.3 Offline Pretraining

To convey information about constraints before interaction with the environment, we provide
the agent with a set of transitions Doffline that contain constraint violations for pretraining.
While this requires violating constraints in the environment, this data can be collected by
human defined policies or under human supervision, and thus provide the robotic agent
with examples of constraint violations without the robot having to experience too many
uncontrolled examples online. We pretrain Q̂π

φ,risk by minimizing Equation 6.3 over offline
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batches sampled from Doffline. We also pretrain πrec using Doffline. Then, πtask, πrec, and Q̂π
φ,risk

are all updated online using experience from the agent’s composite policy as discussed in
Section 6.4.2 and illustrated in Algorithm 3. Any RL algorithm can be used to represent
πtask while any off-policy RL algorithm can be used to learn πrec. For some environments
in which exploration is challenging, we use a separate set of task demos to initialize πtask to
expedite learning.

6.4.4 Practical Implementation

Recovery Policy: Any off-policy RL algorithm can be used to learn πrec. In this chapter,
we explore both model-free and model-based RL algorithms to learn πrec. For model-free
recovery, we perform gradient descent on the safety critic Q̂π

φ,risk(s, πrec(s)), as in the popular
off-policy RL algorithm DDPG [135]. For model-based recovery, we perform model predictive
control (MPC) over a learned dynamics model fθ using the safety critic as a cost function.
For lower dimensional tasks, we utilize the PETS algorithm from Chua et al. [25] to plan over
a learned stochastic dynamics model, while for tasks with visual observations, we use a VAE
based latent dynamics model. Task Policy: We utilize the popular maximum entropy RL
algorithm SAC [62] to learn πtask, but note that any RL algorithm could be used. Details
on the implementation of both policies is in the supplement.

6.5 Experiments

In the following experiments, we aim to study whether Recovery RL can (1) more effectively
trade off task performance and constraint satisfaction than prior algorithms, which jointly
optimize both and (2) effectively use offline data for safe RL.

Domains: We evaluate Recovery RL on a set of 6 simulation domains (Figure 6.3) and an
image-based obstacle avoidance task on a physical robot (Figure 6.6). All experiments involve
policy learning under state space constraints, in which a constraint violation terminates
the current episode. This makes learning especially challenging, since constraint violations
directly preclude further exploration. This setting is reflective of a variety of real world
environments, in which constraint violations can require halting the robot due to damage to
itself or its surrounding environment.

We first consider three 2D navigation domains: Navigation 1, Navigation 2, and Maze.
Here, the agent only observes its position in 2D space and experiences constraint violations if
it hits obstacles, walls, or workspace boundaries. We then consider three higher dimensional
tasks to evaluate whether Recovery RL can be applied to contact rich manipulation tasks
(Object Extraction, Object Extraction (Dynamic Obstacle)) and vision-based continuous
control (Image Maze). In the object extraction environments, the goals is to extract the
red block without toppling any blocks, and in the case of Object Extraction (Dynamic
Obstacle), also avoiding contact with a dynamic obstacle which moves in and out of the
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workspace. Image Maze is a shorter horizon version of Maze, but the agent is only provided
with image observations rather than its (x, y) position in the environment.

We then evaluate Recovery RL on an image-based obstacle avoidance task on the da
Vinci Research Kit (dVRK) [78] where the robot must guide its end effector within 2 mm
of a target position from two possible starting locations without touching red 3D printed
obstacles in the workspace. See Figure 6.1 for an illustration of the experimental setup. The
dVRK is cable-driven and has relatively imprecise controls, motivating closed-loop control
strategies to compensate for these errors [151]. Furthermore, the dVRK system has been
used in the past to evaluate safe RL algorithms [24] due to its high cost and the delicate
structure of its arms, which make safe learning critical. Further environment, task, and data
collection details can be found in the supplement for all simulation and physical experiments.

Offline Data Collection: To effectively initialize Q̂π
φ,risk, Doffline should ideally contain

a diverse set of trajectories which violate constraints in different ways. Since Doffline need
not be task specific, data from other tasks in the environment could be used, or simple
human defined policies can be used to illustrate constraint violating behaviors. We take
the latter approach: for all navigation environments (Navigation 1, Navigation 2, Maze,
Image Maze, and the physical experiment), offline data is collected by initializing the agent
in various regions of the environment and directing the agent towards the closest obstacle.
For the object extraction environments (Object Extraction, Object Extraction (Dynamic
Obstacle)), demonstrations are collected by guiding the end effector towards the target red
block and adding Gaussian noise to controls when it is sufficiently close to the target object
to make toppling likely. Recovery RL and all comparisons which have a safety critic are
given the same offline dataset Doffline. See the supplementary material for details on the data
collection procedure, and the number of total transitions and constraint violating states for
all offline datasets.

Evaluation Metric: Since Recovery RL and prior methods trade off between safety
and task progress, we report the ratio of the cumulative number of task successes and the
cumulative number of constraint violations at each episode to illustrate this (higher is better).
We tune all algorithms to maximize this ratio, and task success is determined by defining a
goal set in the state space for each environment. To avoid issues with division by zero, we
add 1 to the cumulative task successes and constraint violations when computing this ratio.
This metric provides a single scalar value to quantify how efficiently different algorithms
balance task completion and constraint satisfaction. We do not report reward per episode,
as episodes terminate on task completion or constraint violation. Each run for simulation
experiments is replicated across 10 random seeds and we report the mean and standard error.
For physical experiments we run each algorithm across 3 random seeds and visualize all 3
runs. In the supplementary material, we also report additional metrics for each experiment:
cumulative task successes, cumulative constraint violations, and reward learning curves. We
find that Recovery RL violates constraints less often than comparisons while maintaining a
similar task success rate and more efficiently optimizing the task reward.

Comparisons: We compare Recovery RL to the following algorithms that ignore con-
straints (Unconstrained) or enforce constraints via the optimization objective (LR, SQRL,
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Figure 6.3: Simulation Experiments Domains: We evaluate Recovery RL on a set of 2D
navigation tasks, two contact rich manipulation environments, and a visual navigation task. In
Navigation 1 and 2, the goal is to navigate from the start set to the goal set without colliding into
the obstacles (red) while in the Maze navigation tasks, the goal is to navigate from the left corridor
to the red dot in the right corridor without colliding into walls/borders. In both object extraction
environments, the objective is to grasp and lift the red block without toppling any of the blocks or
colliding with the distractor arm (Dynamic Obstacle environment).

RSPO) or via reward shaping (RP, RCPO).
• Unconstrained: optimizes task reward, ignoring constraints.

• Lagrangian Relaxation (LR): minimizes Lpolicy(s, a, r, s′; π)+λ(Ea∼π(·|s)

[
Q̂π
φ,risk(s, a)

]
−

εrisk), where Lpolicy is the policy optimization loss and the second term approximately en-

forces Q̂π
φ,risk(s, a) ≤ εrisk. Policy parameters and λ are updated via dual gradient descent.

• Safety Q-Functions for RL (SQRL) [145]: combines the LR method with a filtering
mechanism to reject policy actions for which Q̂π

φ,risk(s, a) > εrisk.

• Risk Sensitive Policy Optimization (RSPO) [140]: minimizes Lpolicy(s, a, r, s′; π) +

λt(Ea∼π(·|s)

[
Q̂π
φ,risk(s, a)

]
− εrisk), where λt is a sequence which decreases to 0.

• Reward Penalty (RP): observes a reward function that penalizes constraint violations:
R′(s, a) = R(s, a)− λC(s).

• Critic Penalty Reward Constrained Policy Optimization (RCPO) [3]: optimizes
the Lagrangian relaxation via dual gradient descent and the policy gradient trick. The pol-

icy gradient update maximizes Eπ
[∑∞

t=0 γ
t(R(st, at)− λQ̂π

φ,risk(st, at))
]

and the multiplier

update is the same as in LR.
All of these algorithms are implemented with the same base algorithm for learning the

task policy (Soft Actor-Critic [62]) and all but Unconstrained and RP are modified to use
the same safety critic Q̂π

φ,risk which is pretrained on Doffline for all methods. Thus, the key

difference between Recovery RL and prior methods is how Q̂π
φ,risk is utilized: the comparisons

use a joint objective which uses Q̂π
φ,risk to train a single policy that optimizes for both task

performance and constraint satisfaction, while Recovery RL separates these objectives across
two sub-policies. We tune all prior algorithms and report the best hyperparameter settings
found on each task for the ratio-based evaluation metric. Details on Recovery RL and all
comparison algorithms are in the supplement.
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Figure 6.4: Simulation Experiments: Left: ratio of successes to constraint violations
over the course of online training. In all navigation tasks, we find that Recovery RL signif-
icantly outperforms prior methods with both model-free and model-based recovery policies, while
for the object extraction environments, Recovery RL with a model-based recovery policy signifi-
cantly outperforms prior algorithms while Recovery RL with a model-free recovery policy does not
perform as well. We hypothesize that this is due to the model-based recovery mechanism being
better able to compensate for imperfections in Q̂πφ,risk. Results are averaged over 10 runs for each
algorithm; the sawtooth pattern occurs due to constraint violations, which result in a sudden drop
in the ratio. Right: cumulative successes and constraint violations. Additionally, we show
the cumulative task successes and cumulative constraint violations for the Object Extraction task
for all algorithms, and find that Recovery RL with model-based recovery succeeds more often than
all comparisons while also violating constraints the least. Similar plots for all other experimental
domains can be found in the supplementary material.

Results: We first study the performance of Recovery RL and prior methods in all
simulation domains in Figure 6.4. Results suggest that Recovery RL with both model-
free and model-based recovery mechanisms significantly outperform prior algorithms across
all 3 2D pointmass navigation environments (Navigation 1, Navigation 2, Maze) and the
visual navigation environment (Image Maze). In the Object Extraction environments, we
find that Recovery RL with model-based recovery significantly outperforms prior algorithms,
while Recovery RL with a model-free recovery mechanism does not perform nearly as well.
We hypothesize that the model-based recovery mechanism is better able to compensate for
approximation errors in Q̂π

φ,risk, resulting in a more robust recovery policy. We find that
the prior methods often get very low ratios since they tend to achieve a similar number of
task completions as Recovery RL, but with many more constraint violations. In contrast,
Recovery RL is generally able to effectively trade off between task performance and safety.
This is illustrated on the right pane of Figure 6.4, which suggests that Recovery RL with
model-based recovery not only succeeds more often than comparison algorithms, but also
exhibits fewer constraint violations. We study this further in the supplement. Finally,
we evaluate Recovery RL and prior algorithms on the image-based obstacle avoidance task



CHAPTER 6. LEARNING A RECOVERY ZONE AND POLICY 70

Figure 6.5: Sensitivity Experiments: We report the final number of task successes and con-
straint violations averaged over 10 runs at the end of training for Recovery RL and comparison
algorithms for a variety of different hyperparameter settings on the Object Extraction task. We
find that the comparison algorithms are relatively sensitive to the value of the penalty parameter λ
while given a fixed γrisk, Recovery RL achieves relatively few constraint violations while maintaining
task performance over a range of εrisk values.

Figure 6.6: Physical Experiment: We evaluate Recovery RL on an image-based obstacle avoid-
ance task (red obstacles) on the dVRK (Figure 6.1). We supply all algorithms with an overhead
RGB image as input and run each algorithm 3 times. We find that Recovery RL significantly
outperforms Unconstrained and LR.
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Figure 6.7: Ablations: We first study the affect of different algorithmic components of Recovery
RL (left). Results suggest that offline pretraining of πrec and Q̂πφ,risk is critical for good performance,
while removing online updates leads to a much smaller reduction in performance. Furthermore,
we find that the action relabeling method for training πtask (Section 6.4.2) is critical for good
performance. We then study the sensitivity of Recovery RL to the number of offline transitions
used to pretrain πrec and Q̂πφ,risk (right) and find that Recovery RL performs well even with just
1000 transitions in Doffline for the Object Extraction task, with performance degrading when the
number of transitions is reduced beyond this point.

illustrated in Figure 6.1 and find that Recovery RL substantially outperforms prior methods,
suggesting that Recovery RL can be used for contact-rich visuomotor control tasks in the real
world (Figure 6.6). We study when Recovery RL violates constraints in the supplement, and
find that in most tasks, the recovery policy is already activated when constraint violations
occur. This is encouraging, because if a recovery policy is challenging to learn, Recovery RL
could still be used to query a human supervisor for interventions.

Ablations: We ablate different components of Recovery RL and study the sensitivity
of Recovery RL to the number of transitions in Doffline for the Object Extraction domain
in Figure 6.7. Results suggest that Recovery RL performs much more poorly when πrec

and Q̂π
φ,risk are not pretrained with data from Doffline, indicating the value of learning to

reason about safety before environment interaction. However, when πrec and Q̂π
φ,risk are

not updated online, performance degrades much less significantly. A key component of
Recovery RL is relabeling actions when training the task policy so that πtask can learn to
associate its proposed actions with their outcome (Section 6.4.2). We find that without this
relabeling, Recovery RL achieves very poor performance as it rarely achieves task successes.
Additionally, we find that although the reported simulation experiments supply Recovery
RL and all prior methods with 20, 000 transitions in Doffline for the Object Extraction task,
Recovery RL is able to achieve good performance with just 1000 transitions in Doffline, with
performance significantly degrading only when the size of Doffline is reduced to less than this
amount.

Sensitivity Experiments: We tune hyperparameters for Recovery RL and all baselines
to ensure a fair comparison. We first tune γrisk and εrisk for Recovery RL, and then use the
same γrisk and εrisk for prior methods to ensure that all algorithms use the same safety critic
training procedure. These two hyperparameters are the only ones tuned for Recovery RL
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and SQRL. For RP, RCPO, and LR, we tune the penalty term λ with γrisk and εrisk fixed
as mentioned above. For RSPO, we utilize a schedule which decays λ from 2 times the best
value found for λ when tuning the LR comparison to 0 with an evenly spaced linear schedule
over all training episodes. In Figure 6.5, we study the sensitivity of Recovery RL with model-
based recovery and the RP, RCPO, and LR comparisons to different hyperparameter choices
on the Object Extraction task. Recovery RL appears less sensitive to hyperparameters than
the comparisons for the γrisk values we consider.

6.6 Conclusion

We present Recovery RL, a new algorithm for safe RL which is able to more effectively balance
task performance and constraint satisfaction than 5 state-of-the-art prior algorithms for safe
RL across 6 simulation domains and an image-based obstacle avoidance task on a physical
robot. In future work we hope to explore further evaluation on physical robots, establish
formal guarantees, and use ideas from offline RL to more effectively pretrain the recovery
policy. We will explore settings in which constraint violations may not be catastrophic and
applications for large-scale robot learning.
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Chapter 7

Transferring a Recovery Zone and
Policy from Other Tasks

In this chapter, we will discuss how to transfer the safety critic and recovery policy learned
from similar dynamical systems to new ones without requiring as much data, specifically of
constraint violations, to do so. The proposed algorithm uses recent techniques from meta
learning to rapidly adapt the safety critic to test environments that have similar but different
dynamics.

7.1 Introduction

Reinforcement learning (RL) is a versatile abstraction that has shown significant recent
success in learning a variety of different robotic tasks purely from interactions with the
environment. However, while learning policies through online experience affords simplicity
and generality to RL algorithms, this can result in unsafe behavior during online learning.
Unconstrained exploration can potentially lead to highly unproductive or unsafe behaviors,
which can cause equipment/monetary losses, risk to surrounding humans, and inhibit the
learning process. This motivates safe RL algorithms that leverage prior experience to avoid
unsafe behaviors during exploration. Recent work on safe RL algorithms typically learn a
risk measure [4, 8, 145], which captures the probability that an agent will violate a con-
straint in the future, and then uses this measure to avoid unsafe behaviors. For example, a
robot may realize that, under its current policy, it is likely to collide with a wall and hence
take preemptive measures to avoid collision. However, the agent’s ability to be safe largely
depends on the accuracy of the learned risk measure, and learning this risk measure requires
significant data demonstrating unsafe behavior. This poses a key challenge: to know how to
be safe, an agent must see sufficiently many examples of unsafe behavior, but the more such
examples it generates, the less effectively it has protected itself from unsafe behaviors.

This challenge motivates developing methods to endow RL agents with knowledge about
constraints before online interaction, so the agent can learn safely without excessive con-
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straint violations during deployment in risk-sensitive environments. Prior work studies how
to use previous data of agent interactions, either via online interaction or offline datasets,
to learn a risk measure which can then be adapted during online deployment [8, 108, 145].
However, a challenge with these methods is that these offline transitions are required to
be in the same environment as that in which the agent is deployed, which may not always
be practical in risk-sensitive environments in which a large number of constraint violations
could be exceedingly costly or dangerous. Additionally, shifting dynamics is a ubiquitous
phenomenon in real robot hardware: for example losses in battery voltage [152] or wear-and-
tear in manipulators or actuators [153]. These changes can drastically change the space of
safe behaviors, as the robot may need to compensate for unforeseen differences in the robot
dynamics. Furthermore, these changes in dynamics will often not be immediately observ-
able for a robot control policy, motivating algorithms which can identify and adapt to these
changes based online interaction.

To address this, we aim to effectively transfer knowledge about safety between envi-
ronments with different dynamics, so that when learning some downstream task in a test
environment with previously unseen dynamics, the agent can rapidly learn to be safe. Our
insight is that the agent should be able to leverage offline datasets across previous deploy-
ments, with knowledge of only the safety of states in these datasets, to rapidly learn to be safe
in new environments without task specific information. The contributions of this chapter are
(1) casting safe RL as an offline meta-reinforcement learning problem [154, 155], where the
objective is to leverage fully offline data from training and test environments to learn how
to be safe in the test environment; (2) MEta-learning for Safe Adaptation (MESA), which
meta-learns a risk measure that is used for safe reinforcement learning in new environments
with previously unseen dynamics; (3) simulation experiments across 3 continuous control
domains which suggest that MESA can cut the number of constraint violations in half in
a new environment with previously unseen dynamics while maintaining task performance
compared to prior algorithms. Please see the supplement for a more thorough discussion of
related work.

7.2 Related Work

7.2.1 Safe Reinforcement Learning

There has been significant recent work on reinforcement learning algorithms which can sat-
isfy safety constraints. We specifically focus on satisfying explicit state-space constraints in
the environment and review prior literature which also considers this setting [2]. Prior work
has considered a number of methods for incorporating constraints into policy optimization
for reinforcement learning, including trust region based methods [5, 156], optimizing a La-
grangian relaxation [3, 4, 6, 145], drawing connections to Lyapunov theory [75, 146, 147],
anticipating violations with learned dynamics models [14, 24, 108, 157], using Gaussian pro-
cesses to reason about uncertainty [158, 159], using recovery policies to shield the agent from
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constraint violations [8, 9, 136, 137, 149], formal reachability analysis [11, 12, 160–163], or
formal logic [148, 164]. Zhang et al. [108] design a model-based RL algorithm which lever-
ages unsafe data from a variety of training environments with different dynamics to predict
whether the agent will encounter unsafe states and penalize its reward if this is the case.
Unlike Zhang et al. [108], we explicitly optimize for adaptation and decouple information
about constraints from the reward function, making it possible to efficiently learn transfer-
able notions of safety. Additionally, we learn a risk measure in a fully offline setting, and do
not assume direct access to the training environments.

Srinivasan et al. [145] introduce the idea of a safety critic, which estimates the discounted
probability of constraint violation of the current policy given the current state and a proposed
action. Bharadhwaj et al. [4], Thananjeyan et al. [8], and Srinivasan et al. [145] present 3
different methods to utilize the learned safety critic for safe RL. Thananjeyan et al. [8]
and Srinivasan et al. [145] also leverage prior data from previous interactions to learn how
to be safe. However, unlike these works, which assume that prior data is collected in an
environment with the same dynamics as the test environment, MESA learns to leverage
experience from a variety of environments with different dynamics in addition to a small
amount of data from the test environment. This choice makes it possible to avoid excessive
constraint violations in the test environment, in which constraint violations may be costly,
by leveraging prior experience in safer environments or from accident logs from previous
deployments.

7.2.2 Meta Reinforcement Learning

There is a rich literature [165–169] studying learning agents that can efficiently adapt to new
tasks. In the context of reinforcement learning, this problem, termed meta-reinforcement
learning [170–172], aims to learn RL agents which can efficiently adapt their policies to new
environments with unseen transition dynamics and rewards. A number of strategies exist
to accomplish this such as recurrent or recursive policies [170, 171, 173], gradient based
optimization of policy parameters [172, 174], task inference [175–177], or adapting dynamics
models for model-based RL [26, 178]. One of the core challenges studied in many meta-RL
works is efficient exploration [175, 179–181], since the agent needs to efficiently explore its
new environment to identify the underlying task. Unlike all of these prior works, which focus
on learning transferable policies, we focus on learning risk measures which can be used to
safely learn new tasks in a test environment with previously unseen dynamics. Additionally,
we study learning these measures in the context of offline meta-RL, and learn from purely
offline datasets of prior interactions in various environments with different dynamics.

The offline meta reinforcement learning problem [154, 155, 182] considers a setting in
which the agent learns from a set of offline data from each training task, and adapts to the
test environment conditioned only on a small set of offline transitions. Critically, this setting
is particularly well suited to the problem of safe RL, because it has potential to enable an
agent to be safe in an environment with previously unseen dynamics conditioned on a small
set of experiences from that environment. In this chapter, we formalize safe reinforcement
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learning as an offline meta-RL problem and present an algorithm to adapt a safety critic
to new environments and use this adapted safety critic for safe reinforcement learning. One
option for meta-learning for safe RL is using meta-learning for sim-to-real domain adaptation
where data can be collected safely and at scale in simulated environments [183]. By contrast,
MESA explicitly reasons about safety constraints in the environment to learn adaptable risk
measures. Additionally, while prior work has also explored using meta-learning in the context
of safe-RL [184], specifically by learning a single safety filter which keeps policies adapted for
different tasks safe, we instead adapt the risk measure itself to unseen dynamics and fault
structures.

7.3 Preliminaries

7.3.1 Constrained Markov Decision Processes

In safe reinforcement learning, an agent interacts with a Constrained Markov Decision Pro-
cess (CMDP) [150], defined by the tuple M = (S,A, P, r, C, ρ0, γ, γrisk), where S represents
the state space, A is the action space, the transition dynamics function P : S×A×S → [0, 1]
maps the current state and action to a probability distribution of next states, r : S×A → R
is the reward function, C : S → {0, 1} is a constraint function which indicates whether a state
is constraint violating, ρ0 : S → [0, 1] is the starting state distribution, and γ, γrisk ∈ [0, 1] are
the discount factors for the rewards and constraint values. As in prior work [8, 145], we as-
sume constraint violations end the episode immediately. The expected return for a policy π :
S → A is R(π) = Eπ,ρ0,P [

∑∞
t γtr(st, at)]. The discounted probability of future constraint vi-

olation for policy π is Qπ
risk(st, at) = Eπ,ρ0,P [

∑∞
t γtriskC(st)] = Eπ,ρ0,P [

∑∞
t γtriskP (C (st) = 1)].

Unlike unconstrained RL, safe RL agents seek to optimize:

π∗ = arg max
π

{Rπ : Qπ
risk ≤ εrisk} (7.1)

where εrisk is a hyper-parameter that defines how safe the agent should be.

7.3.2 Safety Critics for Safe RL

Recent work investigates ways to estimate the discounted future probability of catastrophic
constraint violation under the current policy: Qπ

risk(st, at) =
∑∞

t′=t γ
t′−t
risk C(st) [8, 145]. In

practice, algorithms search over a parametric function class:
{
Qπ
ψ,risk(st, at) : ψ ∈ Ψ

}
, where

ψ is a particular parameter vector and Ψ is its possible values. This function is trained by
minimizing an MSE loss function with respect to a target function on a dataset of transitions
{(st, at, ct, st+1)i}Ni=1 collected in the environment:

Lrisk(st, at, ct, st+1) = (Qπ
ψ,risk(st, at)− (ct

+ γrisk(1− ct)Eat+1∼π(·|st+1)

[
Qπ
ψ,risk,targ(st+1, at+1)

]
))2

2



CHAPTER 7. TRANSFERRING A RECOVERY ZONE AND POLICY FROM OTHER
TASKS 77

where Qπ
ψ,risk,targ is a target network and ct denotes that state st is constraint violating. The

safety critic can be used for constrained policy search, by either optimizing a Lagrangian
function [3, 4, 145] with it or filtering dangerous actions [8, 145].

7.3.3 Recovery RL

In this chapter, we use the safety critic Qπ
risk to detect when to switch to a recovery policy

and to train the recovery policy as in Recovery RL [8]. In particular, Recovery RL trains
a task policy πtask and a recovery policy πrec and executes actions from πtask when the risk
estimate is sufficiently low and from πrec otherwise. That is,

at ∼
{
πtask(·|st) Qπ

risk(st, a
π
t ) ≤ εrisk

πrec (·|st) otherwise

Here εrisk ∈ [0, 1] is a user-specified hyperparameter that indicates the level of risk the
agent is willing to take. If the safety critic indicates that the current state and action visited
by the task policy is unsafe, the recovery policy will overwrite the task policy’s actions,
moving the agent back to safe regions of the state space. Both policies can be trained using
any reinforcement learning algorithm, where πtask optimizes task reward and πrec minimizes
Qπ

risk.

7.3.4 Meta-learning

Consider a task distribution p(M) where tasks are sampled via Mi ∼ p(M). In the RL
setting, each task corresponds to an MDP, all of which share the same state and action spaces
but may have varying dynamics (e.g. varying controller impedance for a legged robot). The
goal in this chapter is to learn risk measures that rapidly adapt to new environments, such as
when a robot’s actuator loses power and it is forced to compensate with only the remaining
actuators. We will briefly discuss how functions can be initialized for rapid adaptation to
new tasks by training on similar tasks.

Meta-learning learns a model explicitly optimized for adaptation to a new task from
p(M). Let θ′i = θ − α∇θLMi

(fθ) be the parameters θ after a single gradient step from
optimizing LMi

(fθ). Model-Agnostic Meta-Learning (MAML) [172] optimizes the following
objective at meta-train time:

min
θ

EMi∼p(M)

[
LMi

(fθ′i)
]

= min
θ

EMi∼p(M)

[
LMi

(fθ−α∇θLMi
(fθ))

]
(7.2)

After meta-training, to quickly adapt to a new test environment, MAML computes a
task-specific loss function from an unseen task and updates θ with several gradient steps.

7.4 Problem Statement

We consider the offline meta-reinforcement learning problem setting introduced in [154, 155],
in which the objective is to leverage offline data from a number of different tasks to rapidly
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adapt to an unseen task at test-time. We consider an instantiation of this setting in which
tasks correspond to CMDPs {Mi}Ni=1, each with different system dynamics pi(s

′|s, a), but
which otherwise share all other MDP parameters, including the same state and action spaces
and constraint function. Here the agent is not allowed to directly interact with any environ-
ment at meta-train time or meta-test time, but is only provided with a fixed offline dataset
of transitions from environments. This setting is particularly applicable to the safe reinforce-
ment learning setting, where direct environmental interaction can be risky, but there may be
accident logs from prior robot deployments in various settings. We formalize the problem of
learning about constraints in the environment in the context of offline meta-reinforcement
learning, in which the agent is provided with offline data from Ntrain training environments
{Mtrain

i }Ntrain
i=1 with varying system dynamics and must rapidly adapt to being safe in a new

environment Mtest with unseen system dynamics. The intuition is that when dynamics
change, the states which violate constraints remain the same, but the behaviors that lead
to these states may be very different. Thus, we consider the problem of using data from a
number of training environments to optimize the safe RL objective in Equation 7.1.

We assume that the agent is provided with a set of Ntrain datasets of offline transitions
Dtrain = {Dtrain

i }Ntrain
i=1 from training environments with different dynamics in addition to

a small dataset Dtest of offline transitions from the test environment Mtest, in which the
agent is to be deployed. The agent’s objective is to leverage this data to optimize the safe
RL objective in Equation 7.1 in MDP Mtest by learning some task τ in MDP Mtest while
minimizing constraint violations.

7.5 MEta-learning for Safe Adaptation (MESA)

We introduce MEta-learning for Safe Adaptation (MESA), a 3-phase procedure to optimize
the objective in Section 7.4. First, MESA uses datasets of offline transitions from the training
environments to meta-learn a safety critic optimized for rapid adaptation (Section 7.5.1).
Then, we discuss how MESA adapts its meta-learned safety critic using a dataset of offline
transitions from the test environment (Section 7.5.2). This same dataset is also used to learn
a recovery policy, which is trained to descend the safety critic and prevent the agent from
visiting unsafe states as in Thananjeyan et al. [8], but we note that the learned safety critic
can also be used in conjunction with other safe RL algorithms such as those from Bharadhwaj
et al. [4] and Srinivasan et al. [145]. Finally, the meta-learned safety critic and recovery
policy are used and updated online when learning some downstream task τ in the testing
environment (Section 7.5.3). The full algorithm is summarized in Algorithm 5 and Figure 7.2.
An illustration of the safety critic adaptation procedure is shown in Figure 7.1.

7.5.1 Phase 1, Meta-Learning Qπ
risk

Given offline transitions from Ntrain training environments, {Dtrain
i }Ntrain

i=1 , we meta-learn the
safety critic Qπ

ψ,risk, with parameters ψ, using Model-agnostic Meta Learning [172]. We
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Figure 7.1: Safety Critic Adaptation Visualizations: For purposes of illustration, we evaluate
MESA and a Multi-Task learning comparison on a simple Maze Navigation task (left) from [8] in
which the objective is for the agent (the red dot) to navigate from a random point in the left column
to the middle of the right column without colliding into any of the Maze walls or boundaries. Envi-
ronments are sampled by changing the gaps in the walls (parameterized by w1, w2 ∼ U(−0.1, 0.1)),
leading to significant changes in which behaviors are safe. On the left, we show heatmaps of the
learned safety critic Qπrisk when it is adapted to a new Maze with unseen wall gaps for the Multi-
Task comparison (top) and MESA (bottom). Here bluer colors denote low probability of constraint
violation while redder colors denote a higher probability, and the labels above the heatmaps indicate
the number of gradient steps used for adaptation on Dtest. The Multi-Task learning comparison,
which aggregates data from all environments to learn the safety critic and does not explicitly op-
timize for adaptation, is much slower to adapt while MESA is able to leverage its learned prior to
rapidly adapt to the new gap positions.

Figure 7.2: Left: MESA: MESA takes a 3 phase approach to learn a transferable risk measure for
safe RL. In Phase 1, MESA uses offline datasets from training environments of different dynamics
to meta-learn a safety critic Qπrisk. In Phase 2, MESA adapts the safety critic to a test environment
with unseen dynamics using a small test dataset. Finally, in Phase 3, MESA uses the adapted
safety critic and recovery policy in the test environment to enable safe learning as in Recovery RL.

utilize the same safety critic loss function from [8]. The recovery policy is not trained with
a MAML-style objective. Similar to the actor’s loss function in DDPG [135], the recovery
policy, parameterized by ω, aims to minimize the safety critic value for input state st:

Lπrec(ω, st) = Qπ
ψ,risk(st, πω,rec(·|st)).
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(a) Navigation 1 (b) Navigation 2 (c) Cartpole
Length

(d) HalfCheetah Dis-
abled

(e) Ant Dis-
abled

Figure 7.3: Simulation Domains: We evaluate MESA on a set of 2D navigation and locomotion
tasks in simulation. In Navigation 1 and Navigation 2, the agent learns to navigate from a beginning
position to the goal while avoiding the obstacles (red walls). In the Cartpole-Length task, the goal is
to keep the pole balanced on the cart while minimizing the number of times the pole falls beneath
the rail or moves off the rail. Lastly, in the HalfCheetah-Disabled and Ant-Disabled tasks, the
objective is to learn how to move forwards while minimizing the number of collisions with the
ground of the head (HalfCheetah) or torso (Ant) during training.

7.5.2 Phase 2, Test Time Adaptation

A previously unseen test environment Mtest is sampled from task distribution p(M) and
the agent is supplied with a dataset of offline transitions Dtest, which is 10-100x smaller
than the training datasets. We then perform M gradient steps with respect to Lrisk(ψ, s)
(in Section 7.3.2) and Lπrec(ω, s) over Dtest to rapidly adapt safety critic Qπ

ψ,risk and train
recovery policy πω,rec

Note that the learned Qπ
ψ,risk is initially calibrated with the policy used for data collection

in the meta-training environments. Since these datasets largely consist of constraint viola-
tions, the resulting Qπ

ψ,risk serves as a pessimistic initialization for online learning of some
downstream task τ . This is a desirable property, as Qπ

ψ,risk will initially prevent constraint
violations, and then become increasingly less pessimistic during online exploration when
calibrated with the task policy for task τ .

7.5.3 Phase 3, Using Qπ
risk and πrec for Safe RL

We initialize the safety critic and recovery policy with the adapted Qπ
ψ,risk and πω,rec when

learning a task τ in the test environment. Since the safety critic is learned offline in a task-
agnostic way, we can flexibly utilize the meta-learned safety critic and recovery policy to
learn a previously unknown task τ in the test environment. As in Recovery RL [8], both
Qπ
ψ,risk and πω,rec are updated online through interaction with the environment so that they

are calibrated with the learned task policy for τ .

7.6 Experiments

We study the degree to which MESA can leverage offline data from environments with
different dynamics to quickly learn safety in a new test domain with modified, previously
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unseen dynamics via a small amount of experience in the new domain. To do this, we compare
MESA with prior safe reinforcement learning algorithms and study the degree to which they
can limit constraint violations when learning in a perturbed test environment with previously
unseen dynamics. MEta-learning for Safe Adaptation (MESA) and all comparisons are built
on top of the Soft Actor Critic (SAC) algorithm from Haarnoja et al. [62]. Comparisons:
We compare MESA with the following algorithms: Unconstrained: A soft actor critic
agent which only optimizes for task rewards and ignores constraints; Recovery RL (RRL):
Uses data only from Dtest to learn Qπ

risk and then uses Qπ
risk in conjunction with the Recovery

RL algorithm [8]; Multi-Task Learning (Multi-Task): Learns Qπ
risk from a combination

of all data from both the training datasets {Di}Ntrain
i=1 in phase 1 and then adapts in phase

2 using gradient steps on only the test dataset Dtest. In phase 3, Multi-Task uses the
learned Qπ

risk in conjunction with the Recovery RL algorithm [8] as in MESA and the RRL
comparison; CARL: A prior safe meta-reinforcement learning algorithm which learns a
dynamics model and safety indicator function through interaction with number of source
environments and uses the uncertainty of the learned dynamics models to adapt to a target
environment with previously unknown dynamics in a risk-averse manner; CARL-Offline:
A modification of CARL which only provides CARL with offline datasets from the source
environments, consistent with the offline meta-RL setting we consider in this chapter.

The comparison to Unconstrained allows us to evaluate the effect of reasoning about
constraints at all. The comparison to Recovery RL allows us to understand whether offline
data from different environments enables MESA to learn about constraints in the test envi-
ronment. The comparison to the Multi-Task Learning algorithm allows us to evaluate the
benefits of specifically leveraging meta-learning to quickly adapt learned risk measures. The
comparisons to CARL and CARL-Offline allow us to evaluate whether MESA can outperform
prior work in safe meta-RL.
Experimental Procedure: We evaluate MESA and comparisons on their ability to (1)
efficiently learn some downstream task τ in the test environment (2) while satisfying con-
straints. We report learning curves and cumulative constraint violations for all algorithms to
see if MESA can leverage prior experience to safely adapt in the test environment. Episodes
are terminated upon a constraint violation, making learning about constraints critical for
safely learning in the test environment. We report average performance over 5 random seeds
with standard error shading for all learning curves.
Domains: We evaluate MESA and comparisons on 5 simulation domains which are il-
lustrated in Figure 7.3. All domains we study have the property that the changes in the
dynamics are not immediately observable in the agent’s observation, motivating learning how
to be safe from interaction experience when dynamics change. This is common in various
practical settings, such as a robot with worn out joints or sudden power loss in a legged
locomotion system. We first consider two 2D navigation domains from [8] in which the
agent must navigate between a start set and goal set without colliding into red obstacles in
a system with linear Gaussian dynamics. The environment distribution for both domains
is defined by varying the coefficients of the A and B matrices in the transition dynamics
function where st+1 = A · st +B · at + ε, where ε ∼ N (0, σ2I).
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Figure 7.4: Navigation Results: Top: Learning Curves (Phase 3). MESA is able to achieve
similar task success compared to prior algorithms on bot domains. Bottom: Cumulative Con-
straint Violations (Phase 3). Here, we find that MESA achieves fewer constraint violations
than most comparisons, but find that the Multi-Task comparison also performs well on these envi-
ronments.



CHAPTER 7. TRANSFERRING A RECOVERY ZONE AND POLICY FROM OTHER
TASKS 83

We then consider a cartpole task (Cartpole-Length) in which the agent must balance
the cartpole system without letting the pole fall below the cart. Here environments are
sampled by varying the length of the pole, where pole lengths for the training environments
are sampled from U (0.4, 0.8) and the test environment corresponds to a pole of length 1.
We also consider two legged locomotion tasks, HalfCheetah-Disabled and Ant-Disabled, in
which the agent is rewarded for running as fast as possible, but violates constraints given
a collision of the head with the floor or torso with the floor for the HalfCheetah-Disabled
and Ant-Disabled tasks respectively. For both HalfCheetah-Disabled and Ant-Disabled,
environments are sampled by choosing a specific joint and simulating a loss of power (power
loss corresponds to always providing zero motor torque to the joint), resulting in significantly
different dynamics across environments. The Cartpole-Length and HalfCheetah-Disabled
tasks are adapted from [108] while the Ant-Disabled task is from [26].

7.6.1 Data Collection

For the navigation environments, offline datasets are collected via a random policy where the
episode does not terminate upon constraint violation. We collect a total of 20-25 datasets for
each of the sampled training environments, with each dataset consisting of 10000 transitions
(680 and 1200 violations in Navigation 1 and Navigation 2 respectively), similar to that of
[8]. However, the dataset in the test environment is 50-100x smaller than each training task
dataset (∼100, 200 transitions with 15, 36 violations respectively).

Similarly, for locomotion environments, the datasets from the test environment are col-
lected via a random policy rollout, where the episode does not terminate early upon con-
straint violations. To collect datasets from the training environments, we train SAC on each
of the training environments and log the replay buffer from an intermediate checkpoint. For
the HalfCheetah-Disabled and Ant-Disabled tasks, we collect 4 and 3 training datasets of
400 episodes (on average ∼400K transitions with 14K and 113K violations) respectively. The
dataset from the testing environment consists of 40K transitions (2.4K, and 11.2K violations
for HalfCheetah, Ant), which is 10x smaller than before. For the Cartpole-Length task, 20
training datasets are generated, with each containing 200 episodes of data (∼20K timesteps
with 4.5K violations). The dataset from the testing environment contains 1K transitions
(with 200 violations), which is 20x smaller than before.

7.6.2 Results

Navigation Results: We evaluate the performance of MESA and comparisons in Figure 7.4.
Unconstrained SAC performs poorly as it no mechanism to reason about constraints and thus
collides frequently and is unable to learn the task. MESA violates constraints less often than
the Multi-Task comparison, but the performance gap is somewhat small in these environ-
ments. We hypothesize that this is because in the Navigation environments, particularly
Navigation 2, the space of safe behaviors does not change significantly as a function of the
system dynamics, making it possible for the Multi-Task comparison to achieve strong perfor-
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Figure 7.5: Locomotion Results: Top: Learning Curves (Phase 3). MESA achieves similar
task performance as the best comparison algorithm, indicating that MESA is able to effectively
learn in a test environment with previously unseen dynamics. Bottom: Cumulative Constraint
Violations (Phase 3). MESA violates constraints less often than comparisons, with this differ-
ence being most significant on the HalfCheetah-Disabled and Ant-Disabled tasks. This suggests
that MESA is able to effectively leverage its prior experiences across environments with different
dynamics to rapidly adapt its risk measure to the test environment.

mance by simply learning the safety critic jointly on a buffer of all collected data. CARL and
CARL-Offline baselines perform the best in the Navigation 1 environment but are unable to
make much progress in Navigation 2.

Locomotion Results: MESA significantly outperforms prior methods on the HalfCheetah-
Disabled and Ant-Disabled, while achieving comparable performance on the Cartpole task
(Figure 7.5). We hypothesize that in the HalfCheetah-Disabled and Ant-Disabled tasks,
the different training environments are sufficiently different in their dynamics that a safety
critic and recovery policy trained jointly on all of them is unable to accurately represent
the boundaries between safe and unsafe states. Thus, when adapting to an environment
with unseen dynamics, the space of safe behaviors may be so different than in the train-
ing environments that the Multi-Task comparison cannot easily adapt. MESA mitigates
this by explicitly optimizing the safety critic for rapid adaptation to different dynamics. In
addition, CARL and CARL-Offline make little task progress in the HalfCheetah and Ant
Disabled domain and, as a result, are able to generally satisfy constraints. The sharp decline
in performance is likely due to the planning algorithm that CARL utilizes for optimization
over learned dynamics.
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(a) Varying Test Dataset Sizes

(b) Test Task Generalization: Partial Joint Failures

Figure 7.6: Ablation: Sensitivity to Test Dataset Size: In Figure 7.6a, we investigate the
sensitivity of MESA to the number of transitions in the test dataset used for adapting Qπrisk for
HalfCheetah-Disabled. We find that even with a test dataset 4 times smaller than used in the ex-
periments in Section 7.6, MESA does not experience much degradation in performance. However,
further reductions in the test dataset size make it difficult for MESA to learn a sufficiently accurate
safety critic in the test environment, leading to more significant drops in performance. Gener-
alization to More Different Test Environment Dynamics: In Figure 7.6b, we investigate
MESA’s and Multi-Task’s generalization to partial joint failures in the HalfCheetah-Disabled task,
where the training sets are kept the same as described in Section 7.6. We find that MESA is able
to significantly reduce the number of constraint violations compared to the Multi-Task comparison
while also achieving superior task performance, suggesting that as differences in system dynamics
increase between the training and testing environments, MESA is able to more effectively adapt
risk measures across the environments.
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7.7 Ablations

In ablations, we seek to answer the following questions: (1) how small can the dataset from
the test environment be for MESA to safely adapt to new test environments? and (2) how
well can MESA generalize to environments consisting of more significantly different dynamics
(e.g. partial joint failures when only trained on datasets with examples of full joint failures)?

7.7.1 Test Dataset Size

We first investigate the sensitivty of MESA to the size of the test dataset. Figure 7.6a,
we study performance when the test dataset is 1x, 1/2x, 1/4x, 1/8x, and 1/16x the size
of the test dataset (40K transitions) used for the HalfCheetah-Disabled results reported in
Section 7.6. We find that MESA can do well when given a test dataset 1/4 the size of the
original test dataset (10K transitions, which is 10 episodes of environment interaction). This
suggests that the test size dataset can be up to 40x smaller than the training dataset sizes
without significant drop in performance. We find that when the test dataset is reduced to
1/8 and 1/16 the size of the original test dataset, MESA exhibits degrading performance, as
the safety critic has insufficient data to learn about constraints in the test environment.

7.7.2 Test Environment Generalization

Here we study how MESA performs when the test environments have more significantly
different dynamics from those seen during training. To evaluate this, we consider the
HalfCheetah-Disabled task, and train MESA using the same training datasets considered
in Section 7.6, in which specific joints are selected to lose power. However, at test time,
we evaluate MESA on a setting with partial power losses to joints, in which the maximum
applicable power to certain joints is set to some k percent of the original maximum power,
where k ∈ U (0.5, 0.95). This is analogous to partial subsystem failures that can occur in
real-world robotic systems. In, Figure 7.6b, we find that MESA achieves superior perfor-
mance compared to the the Multi-Task comparison in terms of both task performance and
constraint violations during training. This suggests that MESA could rapidly learn to be
safe even with system dynamics that are out of the meta-training environment distribution.

7.8 Conclusion

We formulate safe reinforcement learning as an offline meta-reinforcement learning problem
and motivate how learning from offline datasets of unsafe behaviors in previous environments
can provide a scalable and compelling way to learn tasks safely in new environments with
unobserved change in system dynamics. We then present MEta-learning for Safe Adap-
tation (MESA), a new algorithm for learning a risk measure which can transfer knowledge
about safety across environments with different dynamics. Results in simulation experiments
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suggest that MESA is able to achieve strong performance across 5 different robotic simula-
tion domains and is able to effectively adapt to test environments with previously unseen
dynamics.
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Part III

Safe Exploration Using Policy
Uncertainty
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Chapter 8

Querying a Human Recovery Policy
Based on Task Uncertainty

8.1 Introduction

Imitation learning allows a robot to learn from human feedback and examples [185–187].
In particular, interactive imitation learning (IL) [18, 19, 188], in which a human supervisor
periodically takes control of the robotic system during policy learning, has emerged as a
popular imitation learning method, as interventions are a particularly intuitive form of hu-
man feedback [188]. However, a key challenge in interactive imitation learning is to reduce
the burden that interventions place on the human supervisor [18, 19].

Figure 8.1: LazyDAgger learns to cede control to a supervisor in states in which it estimates that its
actions will significantly deviate from those of the supervisor. LazyDAgger reduces context switches
between supervisor and autonomous control to reduce burden on a human supervisor working on
multiple tasks.

One source of this burden is the cost of context switches between human and robot
control. Context switches incur significant time cost, as a human must interrupt the task
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they are currently performing, acquire control of the robot, and gain sufficient situational
awareness before beginning the intervention. As an illustrative example, consider a robot
performing a task for which an action takes 1 time unit and an intervention requires two
context switches (one at the start and one at the end). We define latency L as the number
of time units associated with a single context switch. For instance, L � 1 for a human
supervisor who will need to pause an ongoing task and walk over to a robot that requires
assistance. If the supervisor takes control 10 times for 2 actions each, she spends 20L + 20
time units helping the robot. In contrast, if the human takes control 2 times for 10 actions
each, she spends only 4L + 20 time units. The latter significantly reduces the burden on
the supervisor. Furthermore, prior work suggests that frequent context switches can make it
difficult for the supervisor to perform other tasks in parallel [189] or gain enough situational
awareness to provide useful interventions [190].

We present LazyDAgger (Figure 8.1), an algorithm which initiates useful interventions
while limiting context switches. The name LazyDAgger is inspired by the concept of lazy
evaluation in programming language theory [191], where expressions are evaluated only when
required to reduce computational burden. As in SafeDAgger [19], LazyDAgger learns a
meta-controller which determines when to context switch based on the estimated discrep-
ancy between the learner and supervisor. However, unlike SafeDAgger, LazyDAgger reduces
context switching by (1) introducing asymmetric switching criteria and (2) injecting noise
into the supervisor control actions to widen the distribution of visited states. One appealing
property of this improved meta-controller is that even after training, LazyDAgger can be
applied at execution time to improve the safety and reliability of autonomous policies with
minimal context switching. We find that across 3 continuous control tasks in simulation,
LazyDAgger achieves task performance on par with DAgger [122] with 88% fewer supervisor
actions than DAgger and 60% fewer context switches than SafeDAgger. In physical fab-
ric manipulation experiments, we observe similar results, and find that at execution time,
LazyDAgger achieves 60% better task performance than SafeDAgger with 60% fewer context
switches.

8.2 Background and Related Work

Challenges in learning efficiency and reward function specification have inspired significant
interest in algorithms that can leverage supervisor demonstrations and feedback for policy
learning.

Learning from Offline Demonstrations: Learning from demonstrations [185–187]
is a popular imitation learning approach, as it requires minimal supervisor burden: the
supervisor provides a batch of offline demonstrations and gives no further input during
policy learning. Many methods use demonstrations directly for policy learning [192–195],
while others use reinforcement learning to train a policy using a reward function inferred
from demonstrations [196–200]. Recent work has augmented demonstrations with additional
offline information such as pairwise preferences [69, 201], human gaze [202], and natural
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language descriptions [203]. While offline demonstrations are often simple to provide, the
lack of online feedback makes it difficult to address specific bottlenecks in the learning process
or errors in the resulting policy due to covariate shift [122].

Learning from Online Feedback: Many policy learning algorithms’ poor perfor-
mance stems from a lack of online supervisor guidance, motivating active learning methods
such as DAgger, which queries the supervisor for an action in every state that the learner
visits [122]. While DAgger has a number of desirable theoretical properties, labeling every
state is costly in human time and can be a non-intuitive form of human feedback [204]. More
generally, the idea of learning from action advice has been widely explored in imitation learn-
ing algorithms [205–208]. There has also been significant recent interest in active preference
queries for learning reward functions from pairwise preferences over demonstrations [201,
209–213]. However, many forms of human advice can be unintuitive, since the learner may
visit states that are significantly far from those the human supervisor would visit, making it
difficult for humans to judge what correct behavior looks like without interacting with the
environment themselves [188, 214].

Learning from Supervisor Interventions: There has been significant prior work on
algorithms for learning policies from interventions. Xie et al. [215] and Kurenkov et al. [216]
leverage interventions from suboptimal supervisors to accelerate policy learning, but assume
that the supervisors are algorithmic and thus can be queried cheaply. Thananjeyan et al. [8],
Nolan Wagener [217], and Saunders et al. [218] also leverage interventions from algorithmic
policies, but for constraint satisfaction during learning. Kelly et al. [18], Mandlekar et al. [21],
Spencer et al. [188], Wang et al. [219], Kahn et al. [220], and Amir et al. [221] instead consider
learning from human supervisors and present learning algorithms which utilize the timing
and nature of human interventions to update the learned policy. By giving the human control
for multiple timesteps in a row, these algorithms show improvements over methods that only
hand over control on a state-by-state basis [222]. However, the above algorithms assume
that the human is continuously monitoring the system to determine when to intervene,
which may not be practical in large-scale systems or continuous learning settings [189, 223–
225]. Such algorithms also assume that the human knows when to cede control to the robot,
which requires guessing how the robot will behave in the future. Zhang et al. [19] and
Menda et al. [20] present imitation learning algorithms SafeDAgger and EnsembleDAgger,
respectively, to address these issues by learning to request interventions from a supervisor
based on measures such as state novelty or estimated discrepancy between the learner and
supervisor actions. These methods can still be sample inefficient, and, as we discuss later,
often result in significant context switching.

By contrast, LazyDAgger encourages interventions that are both easier to provide and
more informative. To do this, LazyDAgger prioritizes (1) sustained interventions, which allow
the supervisor to act over a small number of contiguous sequences of states rather than a
large number of disconnected intervals, and (2) interventions which demonstrate supervisor
actions in novel states to increase robustness to covariate shift in the learned policy.
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8.3 Problem Statement

We consider a setting in which a human supervisor is training a robot to reliably perform a
task. The robot may query the human for assistance, upon which the supervisor takes control
and teleoperates the robot until the system determines that it no longer needs assistance.
We assume that the robot and human policy have the same action space, and that it is
possible to pause task execution while waiting to transfer control. We formalize these ideas
in the context of prior imitation learning literature.

We model the environment as a discrete-time Markov decision process (MDP) M with
states s ∈ S, actions a ∈ A, and time horizon T [226]. The robot does not have access to the
reward function or transition dynamics of M but can cede control to a human supervisor,
who executes some deterministic policy πH : S → A. We refer to times when the robot is
in control as autonomous mode and those in which the supervisor is in control as supervisor
mode. We minimize a surrogate loss function J(πR) to encourage the robot policy πR : S → A
to match that of the supervisor (πH):

J(πR) =
T∑
t=1

Est∼dπRt [L(πR(st), πH(st))] , (8.1)

where L(πR(s), πH(s)) is an action discrepancy measure between πR(s) and πH(s) (e.g., the
squared loss or 0-1 loss), and dπRt is the marginal state distribution at timestep t induced by
executing πR in MDP M.

In interactive IL we require a meta-controller π that determines whether to query the
robot policy πR or to query for an intervention from the human supervisor policy πH ; im-
portantly, π consists of both (1) the high-level controller which decides whether to switch
between πR and πH and (2) the low-level robot policy πR. A key objective in interactive IL
is to minimize some notion of supervisor burden. To this end, let mI(st; π) be an indicator
which records whether a context switch between autonomous (πR) and supervisor (πH) modes
occurs at state st (either direction). Then, we define C(π), the expected number of context
switches in an episode under policy π, as follows: C(π) =

∑T
t=1 Est∼dπt [mI(st; π)], where dπt

is the marginal state distribution at timestep t induced by executing the meta-controller π
in MDP M. Similarly, let mH(st; π) indicate whether the system is in supervisor mode at
state st. We then define D(π), the expected number of supervisor actions in an episode for
the policy π, as follows: D(π) =

∑T
t=1 Est∼dπt [mH(st; π)].

We define supervisor burden B(π) as the expected time cost imposed on the human
supervisor. This can be expressed as the sum of the expected total number of time units spent
in context switching and the expected total number of time units in which the supervisor is
actually engaged in performing interventions:

B(π) = L · C(π) +D(π), (8.2)

where L is context switch latency in time units, and each time unit is the time it takes
for the supervisor to execute a single action. The learning objective is to find a policy π
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that matches supervisor performance, πH , while limiting supervisor burden to lie within a
threshold Γb, set by the supervisor to an acceptable tolerance for a given task. To formalize
this problem, we propose the following objective:

π = arg min
π′∈Π

{J(π′R) | B(π′) ≤ Γb}, (8.3)

where Π is the space of all meta-controllers, and π′R is the low-level robot policy associated
with meta-controller π′.

8.4 Preliminaries: SafeDAgger

We consider interactive IL in the context of the objective introduced in Equation (8.3): to
maximize task reward while limiting supervisor burden. To do this, LazyDAgger builds
on SafeDAgger [19], a state-of-the-art algorithm for interactive IL. SafeDAgger selects be-
tween autonomous mode and supervisor mode by training a binary action discrepancy clas-
sifier f to discriminate between “safe” states which have an action discrepancy below a
threshold βH (i.e., states with L(πR(s), πH(s)) < βH) and “unsafe” states (i.e. states with
L(πR(s), πH(s)) ≥ βH). The classifier f is a neural network with a sigmoid output layer (i.e.,
f(s) ∈ [0, 1]) that is trained to minimize binary cross-entropy (BCE) loss on the datapoints
(st, πH(st)) sampled from a dataset D of trajectories collected from πH . This is written as
follows:

LS(πR(st), πH(st), f) = −f ∗(πR(st), πH(st)) log f(st)

−(1− f ∗(πR(st), πH(st))) log(1− f(st)),
(8.4)

where the training labels are given by f ∗(πR(st), πH(st)) = 1 {L(πR(st), πH(st)) ≥ βH}, and
1 denotes the indicator function. Thus, LS(πR(st), πH(st), f) penalizes incorrectly classifying
a “safe” state as “unsafe” and vice versa.

SafeDAgger executes the meta-policy π which selects between πR and πH as follows:

π(st) =

{
πR(st) if f(st) < 0.5

πH(st) otherwise,
(8.5)

where f(st) < 0.5 corresponds to a prediction that L(πR(st), πH(st)) < βH , i.e., that st is
“safe.” Intuitively, SafeDAgger only solicits supervisor actions when f predicts that the
action discrepancy between πR and πH exceeds the safety threshold βH . Thus, SafeDAgger
provides a mechanism for querying the supervisor for interventions only when necessary. In
LazyDAgger, we utilize this same mechanism to query for interventions but enforce new
properties once we enter these interventions to lengthen them and increase the diversity of
states observed during the interventions.
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8.5 LazyDAgger

We summarize LazyDAgger in Algorithm 1. In the initial phase (Lines 1-3), we train πR
and safety classifier f on offline datasets collected from the supervisor policy πH . In the
interactive learning phase (Lines 4-19), we evaluate and update the robot policy for N
epochs, ceding control to the supervisor when the robot predicts a high action discrepancy.

8.5.1 Action Discrepancy Prediction

SafeDAgger uses the classifier f to select between πR and πH (Equation (8.5)). However,
in practice, this often leads to frequent context switching (Figure 8.3). To mitigate this, we
make two observations. First, we can leverage that in supervisor mode, we directly observe
the supervisor’s actions. Thus, there is no need to use f , which may have approximation
errors, to determine whether to remain in supervisor mode; instead, we can compute the
ground-truth action discrepancy L(πR(st), πH(st)) exactly for any state st visited in super-
visor mode by comparing the supplied supervisor action πH(st) with the action proposed
by the robot policy πR(st). In contrast, SafeDAgger uses f to determine when to switch
modes both in autonomous and supervisor mode, which can lead to very short interventions
when f prematurely predicts that the agent can match the supervisor’s actions. Second, to
ensure the robot has returned to the supervisor’s distribution, the robot should only switch

Figure 8.2: LazyDAgger Switching Strategy: SafeDAgger switches between supervisor and au-
tonomous mode if the predicted action discrepancy is above threshold βH . In contrast, LazyDAgger
uses asymmetric switching criteria and switches to autonomous mode based on ground truth action
discrepancy. The gap between βR and βH defines a hysteresis band [227].
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Figure 8.3: MuJoCo Simulation Results: We study task performance (A), ablations (B), online
supervisor burden (C), and total bidirectional context switches (D) for LazyDAgger and baselines
over 3 random seeds. For Columns (A)-(D), the x-axis for all plots shows the number of epochs
over the training dataset, while the y-axes indicate normalized reward (A, B), counts of supervisor
actions (C, log scale), and context switches (D) with shading for 1 standard deviation. We find
that LazyDAgger outperforms all baselines and ablations, indicating that encouraging lengthy, noisy
interventions improves performance. Additionally, LazyDAgger uses far fewer context switches than
other baselines while requesting far fewer supervisor actions than DAgger.

back to autonomous mode when the action discrepancy falls below a threshold βR, where
βR < βH . As illustrated in Figure 8.2, LazyDAgger’s asymmetric switching criteria create
a hysteresis band, as is often utilized in control theory [227]. Motivated by Eq. (8.3), we
adjust βH to reduce context switches C(π) and adjust βR as a function of βH to increase
intervention length. We hypothesize that redistributing the supervisor actions into fewer
but longer sequences in this fashion both reduces burden on the supervisor and improves the
quality of the online feedback for the robot. Details on setting these hyperparameter values
in practice, the settings used in our experiments, and a hyperparameter sensitivity analysis
are provided in the Appendix.

8.5.2 Noise Injection

If the safety classifier is querying for interventions at state st, then the robot either does not
have much experience in the neighborhood of st or has trouble matching the demonstrations
at st. This motivates exploring novel states near st so that the robot can receive maximal
feedback on the correct behavior in areas of the state space where it predicts a large action
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Algorithm 4 The Student-Teacher Framework

1: Collect D,DS offline with supervisor policy πH
2: πR ← arg minπR E(st,πH(st))∼D [L(πR(st), πH(st))] . Eq. (8.1)
3: f ← arg minf E(st,πH(st))∼D∪DS [LS(πR(st), πH(st), f)] . Eq. (8.4)
4: for i ∈ {1, . . . N} do
5: Initialize s0, Mode ← Autonomous
6: for t ∈ {1, . . . T} do
7: at ∼ πR(st)
8: if Mode = Supervisor or f(st) ≥ 0.5 then
9: aHt = πH(st)

10: D ← D ∪ {(st, aHt )}
11: Execute ãHt ∼ N (aHt , σ

2I)
12: if L(at, a

H
t ) < βR then

13: Mode ← Autonomous
14: else
15: Mode ← Supervisor
16: end if
17: else
18: Execute at
19: end if
20: end for
21: πR ← arg minπR E(st,πH(st))∼D [L(πR(st), πH(st))]
22: f ← arg minf E(st,πH(st))∼D∪DS [LS(πR(st), πH(st), f)]
23: end for

discrepancy from the supervisor. Inspired by prior work that has identified noise injection
as a useful tool for improving the performance of imitation learning algorithms (e.g. Laskey
et al. [204] and Brown et al. [199]), we diversify the set of states visited in supervisor mode
by injecting isotropic Gaussian noise into the supervisor’s actions, where the variance σ2 is
a scalar hyperparameter (Line 11 in Algorithm 1).

8.6 Experiments

We study whether LazyDAgger can (1) reduce supervisor burden while (2) achieving similar
or superior task performance compared to prior algorithms. Implementation details are
provided in the supplementary material. In all experiments, L measures Euclidean distance.



CHAPTER 8. QUERYING A HUMAN RECOVERY POLICY BASED ON TASK
UNCERTAINTY 97

Figure 8.4: Fabric Smoothing Simulation Results: We study task performance measured by
final fabric coverage (A), total supervisor actions (B), and total context switches (C) for LazyDAg-
ger and baselines in the Gym-Cloth environment from [228]. The horizontal dotted line shows the
success threshold for fabric smoothing. LazyDAgger achieves higher final coverage than Behavior
Cloning and SafeDAgger with fewer context switches than SafeDAgger but more supervisor actions.
At execution time, we again observe that LazyDAgger achieves similar coverage as SafeDAgger but
with fewer context switches.

8.6.1 Simulation Experiments: MuJoCo Benchmarks

Environments: We evaluate LazyDAgger and baselines on 3 continuous control environ-
ments from MuJoCo [229], a standard simulator for evaluating imitation and reinforcement
learning algorithms. In particular, we evaluate on HalfCheetah-v2, Walker2D-v2 and Ant-v2.

Metrics: For LazyDAgger and all baselines, we report learning curves which indicate
how quickly they can make task progress in addition to metrics regarding the burden imposed
on the supervisor. To study supervisor burden, we report the number of supervisor actions,
the number of context switches, and the total supervisor burden (as defined in Eq. (8.2)).
Additionally, we define L∗ ≥ 0 to be the latency value such that for all L > L∗, LazyDAgger
has a lower supervisor burden than SafeDAgger. We report this L∗ value, which we refer to
as the cutoff latency, for all experiments to precisely study the types of domains in which
LazyDAgger is most applicable.

Baselines: We compare LazyDAgger to Behavior Cloning [195], DAgger [122], and
SafeDAgger [19] in terms of the total supervisor burden and task performance. The Be-
havior Cloning and DAgger comparisons evaluate the utility of human interventions, while
the comparison to SafeDAgger, another interactive IL algorithm, evaluates the impact of
soliciting fewer but longer interventions.

Experimental Setup: For all MuJoCo environments, we use a reinforcement learn-
ing agent trained with TD3 [63] as an algorithmic supervisor. We begin all LazyDAgger,
SafeDAgger, and DAgger experiments by pre-training the robot policy with Behavior Cloning
on 4,000 state-action pairs for 5 epochs, and similarly report results for Behavior Cloning
after the 5th epoch. To ensure a fair comparison, Behavior Cloning uses additional offline
data equal to the average amount of online data seen by LazyDAgger during training. All
results are averaged over 3 random seeds.
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Results: In Figure 8.3, we study the performance of LazyDAgger and baselines. After
every epoch of training, we run the policy for 10 test rollouts where interventions are not
allowed and report the task reward on these rollouts in Figure 8.3. Results suggest that
LazyDAgger is able to match or outperform all baselines in terms of task performance across
all simulation environments (Figure 8.3A). Additionally, LazyDAgger requires far fewer con-
text switches compared to SafeDAgger (Figure 8.3D), while requesting a similar number of
supervisor actions across domains (Figure 8.3C): we observe a 79%, 56%, and 46% reduc-
tion in context switches on the HalfCheetah, Walker2D, and Ant environments respectively.
LazyDAgger and SafeDAgger both use an order of magnitude fewer supervisor actions than
DAgger. While SafeDAgger requests much fewer supervisor actions than LazyDAgger in
the Ant environment, this limited amount of supervision is insufficient to match the task
performance of LazyDAgger or any of the baselines, suggesting that SafeDAgger may be
terminating interventions prematurely. We study the total supervisor burden of SafeDAgger
and LazyDAgger as defined in Equation (8.2) and find that in HalfCheetah, Walker2D, and
Ant, the cutoff latencies L∗ are 0.0, 4.3, and 7.6 respectively, i.e. LazyDAgger achieves lower
supervisor burden in the HalfCheetah domain for any L as well as lower burden in Walker2D
and Ant for L > 4.3 and L > 7.6 respectively. The results suggest that LazyDAgger can
reduce total supervisor burden compared to SafeDAgger even for modest latency values, but
that SafeDAgger may be a better option for settings with extremely low latency.

Ablations: We study 2 key ablations for LazyDAgger in simulation: (1) returning to
autonomous mode with f(·) rather than using the ground truth discrepancy (LazyDAgger
(-Switch to Auto) in Figure 8.3), and (2) removal of noise injection (LazyDAgger (-Noise)).
LazyDAgger outperforms both ablations on all tasks, with the exception of ablation 1 on
Walker2D, which performed similarly well. We also observe that LazyDAgger consistently
requests more supervisor actions than either ablation. This aligns with the intuition that
both using the ground truth action discrepancy to switch back to autonomous mode and
injecting noise result in longer but more useful interventions that improve performance.

Algorithm Task Successes Task Progress Context Switches Supervisor Actions Robot Actions Failure Modes
(1) (2) (3) A B C D

Behavior Cloning 0/10 6/10 0/10 0/10 N/A N/A 119 2 1 7 0
SD-Execution 2/10 6/10 4/10 2/10 53 34 108 5 0 0 3
LD-Execution 8/10 10/10 10/10 8/10 21 43 47 0 0 0 2

Table 8.1: Physical Fabric Manipulation Experiments: We evaluate LazyDAgger-Execution
and baselines on a physical 3-stage fabric manipulation task and report the success rate and super-
visor burden in terms of total supervisor actions and bidirectional context switches (summed across
all 10 trials). Task Progress indicates how many trials completed each of the 3 stages: Smoothing,
Aligning, and Folding. LazyDAgger-Execution achieves more successes with fewer context switches
(L∗ = 0.28). We observe the following failure modes (Table 8.1): (A) action limit hit (> 15 total
actions), (B) fabric is more than 50% out of bounds, (C) incorrect predicted pick point, and (D)
the policy failed to request an intervention despite high ground truth action discrepancy.
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Figure 8.5: Physical Fabric Manipulation Task: Left: We evaluate on a 3-stage fabric
manipulation task consisting of smoothing a crumpled fabric, aligning the fabric so all corners
are visible in the observations, and performing a triangular fold. Right: Rollouts of the fabric
manipulation task, where each frame is a 100 × 100 × 3 overhead image. Human supervisor actions
are denoted in red while autonomous robot actions are in green. Rollouts are shaded to indicate
task progress: blue for smoothing, red for alignment, and green for folding. SafeDAgger ends
human intervention prematurely, resulting in poor task performance and more context switches,
while LazyDAgger switches back to robot control only when confident in task completion.

8.6.2 Fabric Smoothing in Simulation

Environment: We evaluate LazyDAgger on the fabric smoothing task from [228] (shown
in Figure 8.4) using the simulation environment from [228]. The task requires smoothing an
initially crumpled fabric and is challenging due to the infinite-dimensional state space and
complex dynamics, motivating learning from human feedback. As in prior work [228], we
utilize top-down 100 × 100 × 3 RGB image observations of the workspace and use actions
which consist of a 2D pick point and a 2D pull vector. See [228] for further details on the
fabric simulator.

Experimental Setup: We train a fabric smoothing policy in simulation using DAgger
under supervision from an analytic corner-pulling policy that leverages the simulator’s state
to identify fabric corners, iterate through them, and pull them towards the corners of the
workspace [228]. We transfer the resulting policy for a 16×16 grid of fabric into a new sim-
ulation environment with altered fabric dynamics (i.e. lower spring constant, altered fabric
colors, and a higher-fidelity 25×25 discretization) and evaluate LazyDAgger and baselines on
how rapidly they can adapt the initial policy to the new domain. As in [228], we terminate
rollouts when we exceed 10 time steps, 92% coverage, or have moved the fabric more than
20% out of bounds. We evaluate performance based on a coverage metric, which measures
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the percentage of the background plane that the fabric covers (fully smooth corresponds to
a coverage of 100).

Results: We report results for the fabric smoothing simulation experiments in Fig-
ure 8.4. Figure 8.4 (A) shows the performance of the SafeDAgger and LazyDAgger policies
during learning. To generate this plot we periodically evaluated each policy on test roll-
outs without interventions. Figure 8.4 (B) and (C) show the number of supervisor actions
and context switches required during learning; LazyDAgger performs fewer context switches
than SafeDAgger but requires more supervisor actions as the interventions are longer. Re-
sults suggest that the cutoff latency (as defined in Section 8.6.1) is L∗ = 1.5 for fabric
smoothing. Despite fewer context switches, LazyDAgger achieves comparable performance
to SafeDAgger, suggesting that LazyDAgger can learn complex, high-dimensional robotic
control policies while reducing the number of hand-offs to a supervisor. We also evaluate
LazyDAgger-Execution and SafeDAgger-Execution, in which interventions are allowed but
the policy is no longer updated (see Section 8.6.3). We see that in this case, LazyDAgger
achieves similar final coverage as SafeDAgger with significantly fewer context switches.

8.6.3 Physical Fabric Manipulation Experiments

Environment: In physical experiments, we evaluate on a multi-stage fabric manipulation
task with an ABB YuMi robot and a human supervisor (Figure 8.5). Starting from a
crumpled initial fabric state, the task consists of 3 stages: (1) fully smooth the fabric,
(2) align the fabric corners with a tight crop of the workspace, and (3) fold the fabric
into a triangular fold. Stage (2) in particular requires high precision, motivating human
interventions. As in the fabric simulation experiments, we use top-down 100× 100× 3 RGB
image observations of the workspace and have 4D actions consisting of a pick point and
pull vector. The actions are converted to workspace coordinates with a standard calibration
procedure and analytically mapped to the nearest point on the fabric. Human supervisor
actions are provided through a point-and-click interface for specifying pick-and-place actions.
See the supplement for further details.

Experimental Setup: Here we study how interventions can be leveraged to improve
the final task performance even at execution time, in which policies are no longer being
updated. We collect 20 offline task demonstrations and train an initial policy with behavior
cloning. To prevent overfitting to a small amount of real data, we use standard data augmen-
tation techniques such as rotating, scaling, changing brightness, and adding noise to create
10 times as many training examples. We then evaluate the behavior cloning agent (Behavior
Cloning) and agents which use the SafeDAgger and LazyDAgger intervention criteria but
do not update the policy with new experience or inject noise (SafeDAgger-Execution and
LazyDAgger-Execution respectively). We terminate rollouts if the fabric has successfully
reached the goal state of the final stage (i.e. forms a perfect or near-perfect dark brown
right triangle as in Hoque et al. [230]; see Figure 8.5), more than 50% of the fabric mask
is out of view in the current observation, the predicted pick point misses the fabric mask
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by approximately 50% of the plane or more, or 15 total actions have been executed (either
autonomous or supervisor).

Results: We perform 10 physical trials of each technique. In Table 8.1, we report
both the overall task success rate and success rates for each of the three stages of the task:
(1) Smoothing, (2) Alignment, and (3) Folding. We also report the total number of con-
text switches, supervisor actions, and autonomous robot actions summed across all 10 trials
for each algorithm (Behavior Cloning, SafeDAgger-Execution, LazyDAgger-Execution). In
Figure 8.5 we provide representative rollouts for each algorithm. Results suggest that Behav-
ior Cloning is insufficient for successfully completing the alignment stage with the required
level of precision. SafeDAgger-Execution does not improve the task success rate signifi-
cantly due to its inability to collect interventions long enough to navigate bottleneck regions
in the task (Figure 8.5). LazyDAgger-Execution, however, achieves a much higher suc-
cess rate than SafeDAgger-Execution and Behavior Cloning with far fewer context switches
than SafeDAgger-Execution: LazyDAgger-Execution requests 2.1 context switches on aver-
age per trial (i.e. 1.05 interventions) as opposed to 5.3 switches (i.e. 2.65 interventions).
LazyDAgger-Execution trials also make far more task progress than the baselines, as all 10
trials reach the folding stage. LazyDAgger-Execution does request more supervisor actions
than SafeDAgger-Execution, as in the simulation environments. LazyDAgger-Execution also
requests more supervisor actions relative to the total amount of actions due to the more con-
servative switching criteria and the fact that successful episodes are shorter than unsuccessful
episodes on average. Nevertheless, results suggest that for this task, LazyDAgger-Execution
reduces supervisor burden for any L > L∗ = 0.28, a very low cutoff latency that includes all
settings in which a context switch is at least as time-consuming as an individual action (i.e.
L ≥ 1).

In experiments, we find that SafeDAgger-Execution’s short interventions lead to many
instances of Failure Mode A (see Table 8.1), as the policy is making task progress, but not
quickly enough to perform the task. We observe that Failure Mode C is often due to the fabric
reaching a highly irregular configuration that is not within the training data distribution,
making it difficult for the robot policy to make progress. We find that SafeDAgger and
LazyDAgger experience Failure Mode D at a similar rate as they use the same criteria
to solicit interventions (but different termination criteria). However, we find that all of
LazyDAgger’s failures are due to Failure Mode D, while SafeDAgger also fails in Mode A
due to premature termination of interventions.

8.7 Discussion and Future Work

We propose context switching between robot and human control as a metric for supervisor
burden in interactive imitation learning and present LazyDAgger, an algorithm which can
be used to efficiently learn tasks while reducing this switching. We evaluate LazyDAgger
on 3 continuous control benchmark environments in MuJoCo, a fabric smoothing environ-
ment in simulation, and a fabric manipulation task with an ABB YuMi robot and find that
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LazyDAgger is able to improve task performance while reducing context switching between
the learner and robot by up to 79% over SafeDAgger. In subsequent work, we investigate
more intervention criteria and apply robot-gated interventions to controlling a fleet of robots,
where context switching can negatively impact task throughput.
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Part IV

Conclusion
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Chapter 9

Concluding Remarks

This thesis presents a set of safe reinforcement learning algorithms that use data from demon-
strations and online experience to construct regions of the state space that are used to avoid
unsafe behaviors during online exploration. The first class of algorithms maintains distance
to regions where prior policy iterates are confident in task success. The second class of algo-
rithms maintains distance from likely constraint violations by learning their likelihood from
prior experience and demonstrations. The third class uses policy uncertainty to solicit human
interventions. In all classes, a plan to recover to safety exists, by maintaining reachability to
a prior policy’s safe set, querying a recovery policy, or calling a human supervisor. These al-
gorithms may be naturally adaptable to the multi-agent setting, where a small set of human
supervisors manages a much larger fleet of robots by sharing a risk budget across robots. In
future work, I hope to further explore this generalization and formalize this setting, which is
increasingly relevant as fleets of robots are deployed in the real world for applications such
as delivery, manufacturing, and kitting. In this section, I will elaborate on lessons learned
and future ideas.

9.1 Lessons Learned

Over the course of my PhD, I have had the opportunity to work on dozens of research
projects on a diverse set of topics with well over fifty collaborators. In this subsection I will
discuss a few principles I have adopted over the years, which I hope might be helpful to a
future reader someday.

9.1.1 Power of Collaboration

As alluded to throughout this thesis, collaborations were one of the most rewarding and
productive aspects of my PhD. My most successful collaborations were ones that involve
collaborators with complementary backgrounds, where each person can bring a different
skill set or perspective to the project. This class of collaboration is especially instructive
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because I often learn how different communities can view the same problems. Additionally,
these collaborations provide the opportunity to quickly learn new skills from experts, which
become lifelong tools that I can use thereafter.

9.1.2 High Level Focus

A second lesson I learned throughout the course of my PhD is to not lose track of the
high level objective. I found it easy to get lost in the details and sometimes the beauty of
methods, which can take research in a direction orthogonal to the ultimate objective. As an
analogy, this is like getting lost in the details of a proof or a paper and forgetting its high
level structure. I found it very useful to have constant awareness of the greater context of
anything I worked on, and I tried to instill this in the undergraduates I worked with. This
is a skill I work on continuously, and it requires balancing between detail orientation (which
is also important) and high level understanding.

9.1.3 Starting Simple

I also found that it was helpful to start off with ideas that seem relatively “obvious.” In my
experience, even obvious ideas usually end up being more nuanced than expected. These
unexpected nuances are exacerbated by the complexity of the idea or problem, which can
lead to lack of progress or confusion, because it becomes more difficult to isolate the cause
of phenomena. So, I am constantly running sanity checks and obvious experiments, which
often lead to discoveries when something unexpected inevitably occurs.

9.1.4 The Value of Simulation for Real World Learning

During my study of safe reinforcement learning, I found that safety is critical for many
real world reinforcement learning tasks. However, prototyping algorithms in real systems
is challenging, due to engineering overhead and the time-intensive and sequential nature of
most physical experimental setups. So, I found that prototyping algorithms in simulations
to be very important, and while this thesis targets methods that would be applicable to
real world reinforcement learning, simulation is still a critical technology their advancement.
However, I do wish I spent more of my PhD trying these algorithms on a variety of different
real systems and tasks. This was partially limited by the outbreak of COVID 19, but I hope
to run more real world experiments in the future.

9.2 Future Directions in Parallel Safe Reinforcement

Learning

The algorithms in this work suggest that human supervision is critical for real world robot
learning, from providing resets to corrective feedback. However, supervising each robot
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individually with a human is expensive and does not scale well. However, when running
robot experiments, direct supervision is not always required. This is a limitation I found
when I was running robot experiments: I had to be nearby constantly in case of hard failures,
but I was mostly idle. I always wondered if it may be possible for a single person to effectively
supervise a set of several robots learning in parallel.

The algorithms discussed in this work suggest a natural extension to a setting that
contains m different robots learning in parallel with n < m humans that are assigned to
supervise them. The robots may have different morphologies and may be performing tasks,
but are still supervised by the same set of human supervisors. In practice, this might mean
a warehouse containing m robots or a fleet of m delivery drones, all semi-autonomously
exploring or executing their policies in the real world. The goal is to design an intelligent
supervisor allocation strategy that assigns humans to perform interventions to specific robots
in order to maximize a collective performance metric. An intervention could consist of
corrective feedback for imitation learning, recovery actions to take the robot away from
danger, or resets to address the consequences of unsafe behaviors. An intelligent supervisor
allocation strategy will consider the consequences of each of these type of interventions and
the state of all of the robots before assigning a human to perform an intervention.

There are two settings worth discussing here: training time and execution time. During
training time, the robot policies are all learning in the real world together and the goal
is to maximize the collective learning progress of the robots. During execution time, the
robot policies, which may not be learning-based at all, the goal is to maximize the collective
throughput of the robots.

An intelligent allocation strategy will consider the real world cost of failures when as-
signing humans. For example, a constraint violation may be worth avoiding at all costs,
because it can result in long human reset times and a high real world cost. So, robots that
are in danger of failing catastrophically should be prioritized over robots that are unsure
but are safe. An allocation strategy should also consider when robots should be paused: if
the strategy is unable to supervise the robots effectively, it should be able to report that
it is overloaded. In future work, I hope to explore different methods for human supervisor
allocation during real world robot learning in order to address these concerns.
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Chapter 10

Appendix for Chapter 4

10.0.1 Policy Domain Expansion Strategy

Here we discuss another way in which the policy domain can be expanded when the safe set
and value function are updated based on samples from the exploration policy. To approx-
imately expand

⋃j
k=0 SS

k
G, we can again solve the following 1-step trajectory optimization

problem with xj0 = xjS:

πjE,0:H′−1(xjS) = argmin
π0:H′−1∈ΠH′

E
wj

0:H′−2

[
H′−1∑
i=0

CjE(xji , πi(x
j
i ))

]
s.t. xji+1 = f(xji , πi(x

j
i ), wi) ∀i ∈ {0, . . . ,H

′ − 1}

xjH′ ∈
j−1⋃
k=0

SSkG , ∀w0:H′−2 ∈ WH′−1

xj0:H′ ∈ X
H′+1, ∀w0:H′−2 ∈ WH′−1

(10.1)

For all xjS ∈ SS
j−1
G , the states

H′⋃
k=0

R
πj
E,0:H′−1

k (xjS) ∪
∞⋃
k=1

Rπj

k (R
πj
E,0:H′−1

H′ (xjS)) (10.2)

are added to SSjG. The second union is included to define the value function for the compo-

sition of πj and πjE,0:H′−1. This is analogous to running the exploration policy followed

by running the task-directed policy πj. Denoting the safe set where πj is executed as
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SSπjG =
⋃∞
k=1Rπj

k (R
πj
E,0:H′−1

H′ (SSj−1
G )) ∪

⋃∞
k=1Rπj

k (SSj−1
G ), we redefine Lπ

j

G as:

0 x ∈ G
+∞ x 6∈ SSjG
E
w

[
C(x, πj(x)) + Lπ

j

G (f(x, πj(x), w))
]

x ∈ SSπjG \ G

E
w

[
C(x, πjE,0:H′−1(x)) + Lπ

j

G (x′E)
]

x ∈ SSjG \ SS
πj

G

(10.3)

where x′E = f(x, πjE,0:H′−1(x), w). This means that trajectories from the exploration policy
can spend more time outside of the safe set. In either case, the safe set remains robust
control invariant.

Thus, each iteration j is split into two phases. In the first phase, πj is executed and
in the second phase, πjE,0:H′−1 is executed. This procedure provides a simple algorithm to

expand the policy’s domain F jG while still maintaining its theoretical properties.

10.1 Properties of ABC-LMPC

In this section, we study the properties of the policy constructed in Section 2.5. For analysis,
we will assume a fixed goal set G, but note that if the goal set is changed at some iteration,
the same properties still apply to the new goal set H by the same proofs, because all of the
same assumptions hold for H.

Lemma 10.1.1. Recursive Feasibility: Consider the closed-loop system (2.11) and (2.12).
Let the safe set SSjG be defined as in (2.5). If assumptions 2.3.1-2.4.1 hold and xj0 ∈ F

j
G,

then the policy induced by optimizing (2.11) and (2.12) is feasible almost surely for t ≥ 0
and j ≥ 0, i.e.,

E
wj0:H−1

[J jt→t+H(xjt)] <∞,∀t, j ≥ 0.

Proof of Chapter 10.1.1: We proceed by induction. By assumption 2.4.1, J0
0→H(xj0) <

∞. By the definition of V πj

G and F jG, J
j
0→H(xj0) < ∞. Let J jt→t+H(xjt) < ∞ for some t ∈ N.

In the following expressions, we do not explicitly write the MPC problem constraints for
clarity. Conditioning on the random variable xjt :
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J jt→t+H(xjt) = (10.4)

E
wjt:t+H−1

[
H−1∑
k=0

C(xjt+k|t, π
∗,j
t+k|t(x

j
t+k|t)) + V πj−1

G (xjt+H|t)

]
(10.5)

= C(xjt , π
∗,j
t|t (xjt)) (10.6)

+ Ewjt:t+H−1

[
H−1∑
k=1

C(xjt+k|t, π
∗,j
t+k|t(x

j
t+k|t)) + V πj−1

G (xjt+H|t)

]
(10.7)

= C(xjt , π
∗,j
t|t (xjt))

+ E
wjt:t+H

[H−1∑
k=1

C(xjt+k|t, π
∗,j
t+k|t(x

j
t+k|t)) + C(xjt+H|t, π

l(xjt+H|t))

+ V πj−1

G (xjt+H+1|t)

]
, l ∈ [j − 1]

(10.8)

≥ C(xjt , π
∗,j
t|t (xjt))

+ E
wjt

[
min

πt+1:t+H|t+1

E
wjt+1:t+H

[H−1∑
k=1

C(xjt+k|t+1, πt+k|t+1(xjt+k|t+1))

+ C(xjt+H|t+1, πt+H|t+1(xjt+H|t+1))

+ V πj−1

G (xjt+H+1|t+1)

]] (10.9)

= C(xjt , π
j(xjt)) + E

wjt

[
J jt+1→t+H+1(xjt+1)|xjt

]
(10.10)

Equation 10.5 follows from the definition in 2.11, equation 10.8 follows from the definition

of V
πj−1

G , which is defined as a point-wise minimum over
(
Lπ

l

G

)j−1

l=0
. We take a function Lπ

l

G

that is active at xjt+H|t and apply its definition to expand it and then replace Lπ
l

G with V πj−1

G
in the expansion. The inner expectation in equation 10.9 conditions on the random variable
xjt+1, and the outer expectation integrates it out. The inequality in 10.9 follows from the

fact that [π∗,jt+1|t, . . . , π
∗,j
t+H−1|t, π

j−1] is a possible solution to (10.9). Equation 10.10 follows
from the definition in equation 2.11.
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We have shown that J jt→t+H(xjt) <∞ =⇒ E
wjt

[
J jt+1→t+H+1(xjt+1|t)

]
<∞. So:

E
wj0:t−1

[
J jt→t+H(xjt)

]
<∞ =⇒ E

wj0:t−1

[
E
wjt

[
J jt+1→t+H+1(xjt+1|t)

]]
(10.11)

= E
wj0:t

[
J jt+1→t+H+1(xjt+1)

]
<∞ (10.12)

By induction, E
wj0:t−1

[J jt→t+H(xjt)] < ∞ ∀t ∈ N. Therefore, the policy is feasible at iteration

j.
Chapter 10.1.1 shows that the policy is guaranteed to satisfy state-space constraints for

all timesteps t in all iterations j given the definitions and assumptions presented above.
Equivalently, the expected planning cost of the policy is guaranteed to be finite. The follow-
ing lemma establishes convergence in probability to the goal set given initialization within
the policy domain.

Lemma 10.1.2. Convergence in Probability: Consider the closed-loop system defined by
(2.11) and (2.12). Let the sampled safe set SSjG be defined as in (2.5). Let assumptions 2.3.1-

2.4.1 hold and xj0 ∈ F
j
G. If the closed-loop system converges in probability to G at iteration

0, then it converges in probability at all subsequent iterations. Stated precisely, at iteration
j: limt→∞ P (xjt 6∈ G) = 0.

Proof of Chapter 10.1.2: By Chapter 10.1.1 and Assumption 2.3.1, ∀L ∈ N,

E
wj1:L−1

[
L−1∑
k=0

C(xjk, π
j(xjk)) + J jL→L+H(xjL)

]
≤ J j0→H(xj0) (10.13)

=⇒ E
wj1:L−1

[
J jL→L+H(xjL)

]
≤ J j0→H(xj0)− (10.14)

E
wj1:L−1

[
L−1∑
k=0

C(xjk, π
j(xjk))

]
(10.15)

≤ J j0→H(xj0)− ε
L−1∑
k=0

P (xjk 6∈ G) (10.16)

Line 10.16 follows from rearranging 10.13 and applying assumption 2.3.1. Because G is
robust control invariant by assumption 2.3.2, xt ∈ G =⇒ xt+k ∈ G ∀k ≥ 0. Now, assume
limk→∞ P (xjk 6∈ G) does not exist or is nonzero. This implies that P (xjk 6∈ G) ≥ δ > 0
infinitely many times. By the Archimedean principle, the RHS of 10.16 can be driven
arbitrarily negative, which is impossible. By contradiction, limk→∞ P (xjk 6∈ G) = 0.
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Theorem 10.1.1. Iterative Improvement: Consider system (2.1) in closed-loop with
(2.11) and (2.12). Let the sampled safe set SSj be defined as in (2.5). Let assumptions 2.3.1-
2.4.1 hold, then the expected cost-to-go (2.6) associated with the control policy (2.12) is non-
increasing in iterations for a fixed start state. More formally:

∀j ∈ N, xj0 ∈ F
j
G, x

j+1
0 ∈ F j+1

G =⇒ Jπ
j

(xj0) ≥ Jπ
j+1

(xj+1
0 )

Furthermore, {Jπj(xj0)}∞j=0 is a convergent sequence.

Proof of Chapter 10.1.1: Let j ∈ N

J j0→H(x0) ≥ C(x0, u0) + E
wj0

[
J j1→H+1(xj1)

]
(10.17)

≥ E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
+ lim

t→∞
E

wj0:t−1

[
J jt→t+H(xjt)

]
(10.18)

= E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
(10.19)

+ lim
t→∞

E
1{xjt 6∈G}

[
E

wj0:t−1

[
J jt→t+H(xt)|1{xjt 6∈ G}

]]
(10.20)

= E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
(10.21)

+ lim
t→∞

E
wj0:t−1

[
J jt→t+H(xjt)|x

j
t 6∈ G

]
P (xjt 6∈ G) (10.22)

≥ E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
+ lim

t→∞
εP (xjt 6∈ G) (10.23)

= E
wj

[
∞∑
t=0

C(xjt , π
j(xjt))

]
= Jπ

j

(x0) (10.24)

Equations 10.17 and 10.18 follow from repeated application of Chapter 10.1.1 (10.10). Equa-
tion 10.20 follows from iterated expectation, equation 10.22 follows from the cost function
assumption 2.3.1. Equation 10.23 follows again from assumption 2.3.1 (incur a cost of at
least ε for not being at the goal at time t). Then, Equation 10.24 follows from Chapter 10.1.2.
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Using the above inequality with the definition of Jπ
j
(x0),

J j0→H(x0) ≥ Jπ
j

(x0) = E
wj0:H−1

[
H−1∑
t=0

C(xjt , π
j(xt)) + V πj

G (xjH)

]
(10.25)

≥ E
wj0:H−1

[
H−1∑
t=0

C(xjt , π
∗,j
t|0 (xt|0)) + V πj

G (xH|0)

]
= J j+1

0→H(x0) (10.26)

≥ Jπ
j+1

(x0) (10.27)

Equation 10.25 follows from equation 10.24, equation 10.26 follows from taking the minimum
over all possible H-length sequences of policies in the policy class Π. Equation 10.27 follows
from equation 10.24. By induction, this proves the theorem.

Note that this also implies convergence of (Jπ
j
(x0))∞j=0 by the Monotone Convergence

Theorem.
Chapter 10.1.1 extends prior results [16], which guarantee robust iterative improvement

for stochastic linear systems with convex costs and convex constraint sets. Here we show
iterative improvement in expectation for ABC-LMPC for stochastic nonlinear systems with
costs as in Assumption 2.3.1. The following result implies that the policy domain is non-
decreasing.

Lemma 10.1.3. Policy domain expansion: The domain of πj is an non-decreasing
sequence of sets: F jG ⊆ F

j+1
G .

Proof of Chapter 10.1.3: The proof is identical to [16]. Because SSjG is an increasing

sequence of sets, F jG is also an increasing sequence of sets by definition.

10.2 Practical Implementation

ABC-LMPC alternates between two phases at each iteration: the first phase performs the
task by executing πj and the second phase runs the exploration policy πjE,0:H′−1. Only

data from πj is added to an approximation of SSjG, on which the value function Lπ
j

is fit,

but in principle, data from πjE,0:H′−1 can also be used. Although the task (2.11) and ex-
ploration (2.14) objectives are generally intractable, we present a simple algorithm which
introduces sample-based approximations to expand the policy’s domain F jG while approxi-
mately maintaining theoretical properties in practice. Here, we describe how each component
in the policy design is implemented and how optimization is performed. See Appendix 10.2
for further implementation details.
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10.2.1 Sample-Based Safe Set

In practice, as in [16], we approximate the safe set SSjG using samples from the closed loop
system defined by (2.11) and (2.12). To do this, we collect R closed-loop trajectories at
iteration j, each of length T as in [16] where T is the task horizon.

Thus, given the ith disturbance realization sequence collected at iteration j, given by
wj
i = [wj0,i, . . . w

j
T,i], we define the closed loop trajectory associated with this sequence as

in [16]: xj(wj
i ) =

[
xj0(wj

i ), . . . , x
j
T (wj

i )
]
. As in [16], we note that xjk(w

j
i ) ∈ Rπj

k (xj0), so

R rollouts from the closed-loop system provides a sample-based approximation to Rπj

k (xj0)
as follows: R̃πj

k (xj0) =
⋃R
i=1 x

j
k(w

j
i ) ⊆ Rπj

k (xj0). Similarly, we can define a sample-based

approximation to the safe set as follows: S̃SjG =
{⋃∞

k=0 R̃πj

k (xj0)
⋃
G
}

.

While S̃SjG is not robust control invariant, with sufficiently many trajectory samples (i.e.
R sufficiently big), this approximation becomes more accurate in practice [16]. To obtain a
continuous approximation of the safe set for planning, we use the same technique as [24],

and fit density model ρGα to
⋃j−1
k=0 S̃S

k

G and instead of enforcing the terminal constraint by

checking if xt+H ∈
⋃j−1
k=0 S̃S

k

G, ABC-LMPC instead enforces that ρGα(xt+H) > δ, where α is
a kernel width parameter. We implement a tophat kernel density model using a nearest
neighbors classifier with tuned kernel width α and use δ = 0 for all experiments. Thus, all

states within Euclidean distance α from the closest state in
⋃j−1
k=0 S̃S

k

G are considered safe
under ρGα.

10.2.2 Start State Expansion Strategy

To provide a sample-based approximation to the procedure from Section 2.5.2, we sample

states xjS from
⋃j
k=0 S̃S

k
and execute πjE,0:H′−1 for R trajectories of length H ′, which approx-

imate M. We repeat this process until an xjS is found such that all R sampled trajectories

satisfy the terminal state constraint that xjH′ ∈
⋃j
k=0 S̃S

k

G (Section 2.5.2). Once such a state
is found, a state is sampled from the last H steps of the corresponding trajectories to serve
as the start state for the next iteration, which approximates sampling fromMH . We utilize
a cost function which encourages policy domain expansion towards a specific desired start
state x∗, although in general any cost function can be used. This cost function is interest-
ing because it enables adaptation of a learning MPC policy to desired specifications while
maintain policy feasibility. Precisely, we optimize a cost function which simply measures the
discrepancy between a given state in a sampled trajectory and x∗, ie. Cj

E(x, u) = D(x, x∗).
This distance measure can be tuned on a task-specific basis based on the appropriate dis-
tance measures for the domain (Section 10.3.3). However, we remark that this technique
requires: (1) an appropriate distance function D(·, ·) and (2) a reverse path from the goal
to the start state, that may differ from the optimal forward path, along which the goal is
robustly reachable.
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10.2.3 Goal Set Transfer

We practically implement the goal set transfer strategy in Section 2.4.3 by fitting a new
density model ρHα on the prefixes of prior trajectories that intersect some new user-specified

goal set H. If H is chosen such that S̃SjH contains many states, the policy can seamlessly
transfer to H. If this is not the case, the policy domain for H must be expanded from H
until it intersects many trajectories in the original domain.

10.2.4 ABC-LMPC Optimization Procedure

As in prior work on MPC for nonlinear control [24, 25], we solve the MPC optimization
problem in (2.11) over sampled open loop sequences of controls using the cross entropy
method (CEM) [231]. In practice, we implement the terminal safe set constraints and state-
space constraints in (2.11) and (2.14) by imposing a large cost on sampled action sequences
which violate constraints when performing CEM.

As in [24], we sample a fixed population size of action sequences at each iteration of CEM
from a truncated Gaussian. These action sequences are simulated over a known model of the
system dynamics and then the sampling distribution for the next iteration is updated based
on the lowest cost sampled trajectories. For the cross entropy method we build off of the
implementation in [25]. Precisely, at each timestep in a trajectory, a conditional Gaussian
is initialized with the mean based on the final solution for the previous timestep and some
fixed variance. Then, at each iteration of CEM, pop size action sequences of plan hor length
are sampled from the conditional Gaussian, simulated over a model of the system dynamics,
and then the num elites samples with the lowest sum cost are used to refit the mean and
variance of the conditional Gaussian distribution for the next iteration of CEM. This process
is repeated num iters times. The sum cost of an action sequence is computed by summing
up the task cost function at each transition in the resulting simulated trajectory and then
adding a large penalty for each constraint violating state in the simulated trajectory and an
additional penalty if the terminal state in the simulated trajectory does not have sufficient
density under ρG. For all experiments, we add a 1e6 penalty for violating terminal state
constraints and a 1e8 penalty for violating task constraints. In practice to accelerate domain

expansion to x∗, when selecting initial states xjS from
⋃j
k=0 S̃S

k
, we sort states in the safeset

under Cj
E(x) and use this to choose xjS close to x∗ under Cj

E(x). Note that this choice does
not impact any of the theoretical guarantees.

We use a probabilistic ensemble of 5 neural networks to approximate Lπ
j

G (x) as in [24].

In contrast to [24], a separate Lπ
j

G (x) is fit using data from each iteration instead of fitting
a single function approximator on all data. We utilize Monte Carlo estimates of the cost-
to-go values when fitting Lπ

j

G (x). Each element of the ensemble outputs the parameters of
a conditional axis-aligned Gaussian distribution and are trained on bootstrapped samples
from the training dataset using a maximum likelihood [25]. We represent each member of the
probabilistic ensemble of neural networks used to approximate Lπ

j
(x) with a neural network

with 3 hidden layers, each with 500 hidden units. We use swish activations, and update
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weights using the Adam Optimizer with learning rate 0.001. We use 10 epochs to learn the
weights for Lπ

j
(x).

To implement the start state expansion strategy in Section 10.2.2, we again perform tra-
jectory optimization using the cross entropy method and for each experiment use the same
pop size, num elites, num iters parameters as for solving the MPC problem. Costs for action
sequences are computed by summing up Cj

E(x) evaluated at each state x in the correspond-
ing simulated trajectory, and the same mechanism is used for enforcing the terminal state
constraint and task constraints as for solving the MPC problem.

10.3 Experiments

We evaluate whether ABC-LMPC can enable (1) iterative improvement in expected perfor-
mance for stochastic nonlinear systems, (2) adaptation to new start states and (3) transfer to
new goal sets on 3 simulated continuous control domains. In Section 10.3.1 we describe the
experimental domains, in Section 10.3.2, we evaluate the policy with fixed start states and
goal sets, in Section 10.3.3, we expand the policy domain iteratively toward a desired start
state far from the goal set, in Section 10.3.4, we switch the goal set during learning, and finally
in Section 10.3.5 we utilize both start state expansion and the goal set transfer technique to
control a pendulum to an upright position. In all experiments, we use C(x, u) = 1{x 6∈ G}
as in [24]. Note that for this cost function, the maximum trajectory cost is the task horizon
T , and the resulting objective corresponds to minimum time optimal control. We include
comparisons to the minimum trajectory cost achieved by the state-of-the-art demonstration
augmented model-based reinforcement learning algorithm, SAVED [24] after 10 iterations of
training to evaluate the quality of the learned policy. For all experiments, we use R = 5

closed-loop trajectories from the current policy to estimate S̃SjG and perform start state
expansion. Experimental domains have comparable stochasticity to those in [16].

10.3.1 Experimental Domains

Point Mass Navigation: We consider a 4-dimensional (x, y, vx, vy) navigation task as
in [24], in which a point mass is navigating to a goal set (a unit ball centered at the origin
unless otherwise specified). The agent exerts force (fx, fy), ‖(fx, fy)‖ ≤ 1, in each cardinal
direction and experiences drag coefficient ψ. We introduce truncated Gaussian process noise
zt ∼ N (0, σ2I) in the dynamics with domain [−σ, σ]. We include a large obstacle in the
center of the environment that the robot must navigate around to reach the goal. While this
task has linear dynamics, the algorithm must consider non-convex state space constraints and
stochasticity. We use ψ = 0.2 and σ = 0.05 in all experiments in this domain. Demonstration
trajectories are generated by guiding the robot past the obstacle along a very suboptimal
hand-tuned trajectory for the first half of the trajectory before running LQR with clipped
actions on a quadratic approximation of the true cost. Gaussian noise is added to the
demonstrator policy. The task horizon is set to T = 50.
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Figure 10.1: Experimental Domains: We evaluate ABC-LMPC on three stochastic domains:
a navigation domain with an obstacle, a 2D 7-link arm reacher domain with an obstacle, and an
inverted pendulum domain. In the first two domains, suboptimal demonstrations are provided,
while no demonstrations are provided for the inverted pendulum task.

7-Link Arm Reacher: Here, we consider a 2D kinematic chain with 7 joints where the
agent provides commands in delta joint angles. We introduce truncated Gaussian process
noise zt ∼ N (0, σ2I) in the dynamics with domain [−σ, σ] and build on the implementation
from [232]. The goal is to control the end effector position to a 0.5 radius circle in R2

centered at (3,−3). We use σ = 0.03 for all experiments. The state space consists of the
7 joint angles. Each link is of 1 unit in length and the goal is to control the end effector
position to a 0.5 radius circle in R2 centered at (3,−3). We do not model self-collisions but
also include a circular obstacle of radius 1 in the environment which the kinematic chain
must navigate around. Collisions with the obstacle are checked by computing the minimum
distance between each link in the kinematic chain and the center of the circular obstacle and
determining whether any link has a minimum distance from the center of the obstacle that
is less than the radius of the obstacle. The task horizon is set to T = 50. We build on the
implementation provided through [232].
Inverted Pendulum: This environment is a noisy inverted pendulum task adapted from
OpenAI Gym [233]. We introduce truncated Gaussian process noise in the dynamics with
standard deviation σ = 0.5 for all experiments. The robot consists of a single link and can
exert a torque to rotate it. The state space consists of the angle and angular velocity of
the pendulum. Note that there are only 2 stable orientations, the upright orientation and
downward orientation for this task, and thus for a goal set to be robust control invariant, it
will likely need to be defined around the neighborhood of these orientations. The task horizon
is set to T = 40. We define G1 as the goal set centered around the downward orientation
and G2 as the goal set centered around the upright orientation. Precisely, inclusion in G1 is
determined by determining whether the orientation of the pendulum is within 45 degrees of
the downward orientation. Similarly, inclusion in G2 is determined by determining whether
the orientation of the pendulum is within 45 degrees of the upward orientation.
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Figure 10.2: Fixed Start, Single Goal Set Experiments: Learning curves for ABC-LMPC
averaged over R = 5 rollouts per iteration on simulated continuous control domains when the start
state and goal set is held fixed during learning. Performance of the demonstrations is shown at
iteration 0, and the policy performance is shown thereafter. Point Mass Navigation: The
policy immediately improves significantly upon the demonstration performance within 1 iteration,
achieving a mean trajectory cost of around 20 while demonstrations have mean trajectory cost
of 42.58. 7-Link Arm Reacher: The policy significantly improves upon the demonstrations,
achieving a final trajectory cost of around 18 while demonstrations achieve a mean trajectory cost
of 37.77. In all experiments, the policy quickly converges to the best cost produced by SAVED.

10.3.2 Fixed Start and Goal Conditions

We first evaluate ABC-LMPC on the navigation and reacher environments with a fixed
start state and goal set. In the navigation domain, the robot must navigate from S0 =
(−50, 0, 0, 0) to the origin (G0) while in the reacher domain, the agent must navigate from
a joint configuration with the end effector at (7, 0) to one with the end effector at (3,−3)
(G1). For the navigation domain, we use popsize = 400, num elites = 40, cem iters = 5,
and plan hor = 15 and α = 2 for the kernel width parameter for density model ρGα. For the
reacher domain, we use popsize = 400, num elites = 40, cem iters = 5, and plan hor = 15
and α = 0.5 for the kernel width parameter for density model ρGα. The policy rapidly and
significantly improves upon the 100 provided demonstrations in both domains (Figure 10.2).
We compare ABC-LMPC to SAVED, which is provided with the same demonstrations as
ABC-LMPC, using the implementation [24]. We use kernel width parameters α = 3 and
α = 0.5 for the navigation and reacher domains respectively and find that ABC-LMPC
achieves comparable cost to SAVED for both tasks and never violates constraints during
learning.

10.3.3 Start State Expansion

ABC-LMPC is now additionally provided a target start state which is initially outside its
domain and learns to iteratively expand its domain toward the desired start state. We report
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Figure 10.3: Goal Set Transfer Learning: In this experiment, the goal set is switched to to a
new goal set at iteration 3 and we show a learning curve which indicates performance on both the
first goal (blue) and new goal (red). The policy is re-trained as in Section 10.2.3 to stabilize to
the new goal. The policy immediately is able to perform the new task and never hits the obstacle.
Results are plotted over R = 5 policy rollouts per iteration.

the sequence of achieved start states over iterations in addition to the mean and standard
deviation trajectory cost. ABC-LMPC is able to maintain feasibility throughout learning and
achieve comparable performance to SAVED at the final start state when SAVED is supplied
with 100 demonstrations from the desired state. To ensure that results are meaningful, we
specifically pick desired start states such that given 100 demonstrations from the original
start state, ABC-LMPC is never able to accomplish the task after 30 iterations of learning. A
different CE(x, u) is used for start state expansion based on an appropriate distance metric
for each domain. For all start state expansion experiments, we utilize H ′ = H − 5 for
the trajectory optimization horizon for start state expansion. Otherwise, we use the same
optimization parameters as in Section 10.3.2 except for plan hor, which we set to 20 for all
domains.

We first consider a navigation task where 100 suboptimal demonstrations are supplied
from (−25, 0, 0, 0) with average trajectory cost of 44.76. The goal is to expand the policy
domain in order to navigate from start states S1 = (−70, 0, 0, 0) and S2 = (−60,−20, 0, 0).
CE(x, u) measures the Euclidean distance between the positions of x and those of the desired
start state. After 20 iterations, the policy reaches the desired start state while consistently
maintaining feasibility during learning (Table 10.1).

We then consider a similar Reacher task using the same suboptimal demonstrations from
Section 10.3.2. The desired start end effector position is (−1, 0), and CE(x, u) measures the
Euclidean distance between the end effector position of states x in optimized trajectories
and that of the desired start state. Within 16 iterations of learning, the policy is able to
start at the desired start state while maintaining feasibility during learning (Table 10.1). On
both domains, the policy achieves comparable performance to SAVED when trained with
demonstrations from that start state and the policy successfully expands its domain while
rapidly achieving good performance at the new states. Constraints are never violated during
learning for all experiments.
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Table 10.1: Start State Expansion Experiments: Pointmass Navigation: Start State Ex-
pansion towards position (−70, 0) (left) and (−60,−20) (center). Here we see that ABC-LMPC
is able to reach the desired start state in both cases while consistently maintaining policy fea-
sibility throughout learning. Furthermore, the policy achieves competitive performance with
SAVED, which achieves a minimum trajectory cost of 21 from (−70, 0) and 23 from (−60,−20);
7-link Arm Reacher: Here we expand the start state from that corresponding to an end effector
position of (7, 0) to that corresponding to an end effector position of (−1, 0) (right). Again, we
see that the policy consistently maintains feasibility during learning and achieves trajectory costs
comparable to SAVED, which achieves a minimum trajectory cost of 24. The trajectory costs are
presented in format: mean ± standard deviation over R = 5 rollouts.

Point Navigation (-70, 0)

Iteration Start Pos (x, y) Trajectory Cost

4 (−42.3, 1.33) 23.0± 0.89
8 (−54.1, 0.08) 22.8± 1.67
12 (−61.2, 2.70) 25.0± 2.37
16 (−70.3,−0.26) 32.6± 5.08
20 (−70.4, 0.12) 29.4± 2.33

Point Navigation (-60, -20)

Iteration Start Pos (x, y) Trajectory Cost

4 (−42.6,−8.76) 19.6± 4.22
8 (−54.6,−14.2) 25.6± 5.23
12 (−58.8,−20.3) 27.2± 12.0
16 (−60.6,−20.2) 21.0± 0.63
20 (−60.5,−19.6) 22.4± 1.85

7-Link Reacher

Iteration Start EE Position Trajectory Cost

4 (−1.28,−0.309) 31.6± 8.04
8 (−0.85,−0.067) 30.8± 15.7
12 (−0.95,−0.014) 20.2± 1.83
16 (−1.02,−0.023) 19.4± 4.03
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10.3.4 Goal Set Transfer

ABC-LMPC is trained as in Section 10.3.2, but after a few iterations, the goal set is changed
to a new goal set that is in the policy domain. In the navigation domain, the robot is
supplied a new goal set centered at G1 = (−25, 10, 0, 0) or G2 = (−7, 7, 0, 0) with radius
7 after 2 iterations of learning on the original goal set. We increase the radius so more
prior trajectories can be reused for the new goal-conditioned value function. Results are
shown in Figure 10.3 for both goal set transfer experiments. We also perform a goal set
transfer experiment on the 7-link Reacher Task in which the robot is supplied a new goal set
centered at G1 = (4, 0.2) with radius 1 after 2 iterations of training. Results are shown in
Figure 10.3. In both domains, ABC-LMPC seamlessly transfers to the new goal by leveraging
prior experience to train a new set of value functions.

10.3.5 Inverted Pendulum Swing-Up Task

In this experiment, we incorporate both the start state optimization procedure and goal set
transfer strategies to balance a pendulum in the upright position, but without any demon-
strations. We utilize popsize = 600, num elites = 40, cem iters = 5, and plan hor = 15.
For experiments we utilize α = 2 for the kernel width parameter for density model ρGα and
H ′ = H for the trajectory optimization horizon for start state expansion. We initialize the
pendulum in the downward orientation (G0), and the goal of the task is to eventually sta-
bilize the system to the upright orientation (G1). We iteratively expand the policy domain
using the start state expansion strategy with initial goal G0 until the pendulum has swung
up sufficiently close to the upright orientation. Once this is the case, we switch the goal
set to G1 to stabilize to the upright position. The policy seamlessly transitions between the
two goal sets, immediately transitioning to G1 while completing the task (convergence to
either G0 or G1 within the task horizon) on all iterations (Table 10.2). CE(x, u) measures the
distance between the pendulum’s orientation and the desired start state’s orientation.

10.4 Discussion and Future Work

We present a new algorithm for iteratively expanding the set of feasible start states and goal
sets for an LMPC-based policy and provide theoretical guarantees on iterative improvement
in expectation for non-linear systems under certain conditions on the cost function and
demonstrate its performance on stochastic linear and nonlinear continuous control tasks.
In future work, we will explore synergies with sample based motion planning to efficiently
generate asymptotically optimal plans. We will also integrate the reachability-based domain
expansion strategies of ABC-LMPC with model-based RL to learn safe and efficient policies
when dynamics are learned from experience.
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Table 10.2: Pendulum Swing Up Experiment: We iteratively expand the policy domain
outward from a goal set centered around the downward orientation (G0) towards the upward ori-
entation until the policy domain includes a goal set centered around the upward orientation (G1).
Then, the goal set is switched to G1. The resulting policy maintains feasibility throughout and
seamlessly transitions to G1. The trajectory costs are presented as: mean ± standard deviation
over R = 5 rollouts. The upward orientation corresponds to a pendulum angle of 0◦ and the angle
(degrees) increases counterclockwise from this position until 360◦.

Iteration Start Angle Goal Set Trajectory Cost

3 200.3 G0 30.2± 1.47
6 74.3 G0 35.0± 0.00
9 53.9 G0 34.4± 0.49
12 328.1 G1 36.0± 0.63
15 345.1 G1 13.8± 7.03
18 0.6 G1 0.00± 0.00
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Chapter 11

Appendix for Chapter 5

11.1 Additional Experimental Details for SAVED and

Baselines

For all experiments, we run each algorithm 3 times to control for stochasticity in training
and plot the mean iteration cost vs. time with error bars indicating the standard deviation
over the 3 runs. Additionally, when reporting task success rate and constraint satisfaction
rate, we show bar plots indicating the median value over the 3 runs with error bars between
the lowest and highest value over the 3 runs. Experiments are run on an Nvidia DGX-1
and on a desktop running Ubuntu 16.04 with a 3.60 GHz Intel Core i7-6850K, 12 core CPU
and an NVIDIA GeForce GTX 1080. When reporting the iteration cost of SAVED and
all baselines, any constraint violating trajectory is reported by assigning it the maximum
possible iteration cost T , where T is the task horizon. Thus, any constraint violation is
treated as a catastrophic failure. We plan to explore soft constraints as well in future work.

11.1.1 SAVED

Dynamics and Value Function

For all environments, dynamics models and value functions are each represented with a
probabilistic ensemble of 5, 3 layer neural networks with 500 hidden units per layer with
swish activations as used in Chua et al. [25]. To plan over the dynamics, the TS-∞ trajectory
sampling method from [25] is used. We use 5 and 30 training epochs for dynamics and value
function training when initializing from demonstrations. When updating the models after
each training iteration, 5 and 15 epochs are used for the dynamics and value functions
respectively. All models are trained using the Adam optimizer with learning rate 0.00075
and 0.001 for the dynamics and value functions respectively. Value function initialization is
done by training the value function using the true cost-to-go estimates from demonstrations.
However, when updated on-policy, the value function is trained using temporal difference
error (TD-1) on a buffer containing all prior states. Since we use a probabilistic ensemble
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of neural networks to represent dynamics models and value functions, we built off of the
provided implementation [234] of PETS in [25].

Constrained Exploration

Define states from which the system was successfully stabilized to the goal in the past as
safe states. We train density model ρ on a fixed history of safe states, where this history
is tuned based on the experiment. We have found that simply training on all prior safe
states works well in practice on all experiments in this chapter. We represent the density
model using kernel density estimation with a top-hat kernel. Instead of modifying δ for
each environment, we set δ = 0 (keeping points with positive density), and modify α (the
kernel parameter/width). We find that this works well in practice, and allows us to speed
up execution by using a nearest neighbors algorithm implementation from scikit-learn. We
are experimenting with locality sensitive hashing, implicit density estimation as in Fu et al.
[235], and have had some success with Gaussian kernels as well (at significant additional
computational cost). The exploration strategy used by SAVED in navigation task 2 is
illustrated in Figure 11.1.

11.1.2 Behavior Cloning

We represent the behavior cloning policy with a neural network with 3 layers of 200 hidden
units each for navigation tasks and pick and place, and 2 layers of 20 hidden units each for
the PR2 Reacher task. We train on the same demonstrations provided to SAVED and other
baselines for 50 epochs.

11.1.3 PETSfD and PETSfD Dense

PETSfD and PETSfD Dense use the same network architectures and training procedure as
SAVED and the same parameters for each task unless otherwise noted, but just omit the
value function and density model ρ for enforcing constrained exploration. PETSfD uses a
planning horizon that is long enough to complete the task, while PETSfD Dense uses the
same planning horizon as SAVED.

11.1.4 SACfD

We use the rlkit implementation [236] of soft actor critic with the following parameters:
batch size=128, discount=0.99, soft target τ = 0.001, policy learning rate = 3e − 4, Q
function learning rate = 3e− 4, and value function learning rate = 3e− 4, batch size = 128,
replay buffer size = 1000000, discount factor = 0.99. All networks are two-layer multi-layer
perceptrons (MLPs) with 300 hidden units. On the first training iteration, only transitions
from demonstrations are used to train the critic. After this, SACfD is trained via rollouts
from the actor network as usual. We use a similar reward function to that of SAVED,
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with a reward of -1 if the agent is not in the goal set and 0 if the agent is in the goal set.
Additionally, for environments with constraints, we impose a reward of -100 when constraints
are violated to encourage constraint satisfaction. The choice of collision reward is ablated
in section 11.4.2. This reward is set to prioritize constraint satisfaction over task success,
which is consistent with the selection of β in the model-based algorithms considered.

11.1.5 OEFD

We use the implementation of OEFD provided by Jangir [237] with the following parameters:
learning rate = 0.001, polyak averaging coefficient = 0.8, and L2 regularization coefficient
= 1. During training, the random action selection rate is 0.2 and the noise added to policy
actions is distributed as N (0, 1). All networks are three-layer MLPs with 256 hidden units.
Hindsight experience replay uses the “future” goal replay and selection strategy with k = 4
[48]. Here k controls the ratio of HER data to data coming from normal experience replay
in the replay buffer. We use a similar reward function to that of SAVED, with a reward of
-1 if the agent is not in the goal set and 0 if the agent is in the goal set. Additionally, for
environments with constraints, we impose a reward of -100 when constraints are violated to
encourage constraint satisfaction. The choice of collision reward is ablated in section 11.4.2.
This reward is set to prioritize constraint satisfaction over task success, which is consistent
with the selection of β in the model-based algorithms considered.

11.2 Simulated Experiments Additional Results

In Figure 11.1, we illustrate the mechanism by which SAVED iteratively improves upon
suboptimal demonstrations on navigation task 2 by planning into an expanding safe set.

Figure 11.1: Navigation Task 2 Trajectory Evolution: SAVED rapidly improves upon demon-
stration trajectories by constraining its exploration to regions of relative certainty and high cost.
By iteration 15, SAVED is able to find a safe but efficient trajectory to the goal at the origin.

In Figure 11.2, we show the task success rate for the PR2 reacher and Fetch pick and
place tasks for SAVED and baselines. We note that SAVED outperforms RL baselines
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(except SAVED (No SS) for the reacher task, most likely because the task is relatively
simple so the sampled safe set constraint has little effect) in the first 100 and 250 iterations
for the reacher and pick and place tasks respectively. Note that although behavior cloning
has a higher success rate, it does not improve upon demonstration performance. However,
although SAVED’s success rate is not as different from the baselines in these environments
as those with constraints, this result shows that SAVED can be used effectively in a general
purpose way, and still learns more efficiently than baselines in unconstrained environments
as seen in the main section of this chapter.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Simulated Robot Success Rate

            PR2 Reacher                    Fetch Pick and Place

SAVED
SAVED (No SS)
PETSfD
Clone
SACfD
OEFD
SACfD (10K)
OEFD (10K)

Figure 11.2: Simulated Robot Experiments Success Rate: SAVED has comparable success
rate to Clone, PETSfD, and SAVED (No SS) on the reacher task in the first 100 iterations. For the
pick and place task, SAVED outperforms all baselines in the first 250 iterations except for Clone,
which does not improve upon demonstration performance.

11.3 Physical Experiments: Additional Details and

Experiments

For all experiments, α = 0.05 and a set of 100 hand-coded trajectories with a small amount
of Gaussian noise added to the controls is generated. For all physical experiments, we use
β = 1 for PETSfD since we found this gave the best performance when no signal from the
value function was provided. In all tasks, the goal set is represented with a 1 cm ball in R3.
The dVRK is controlled via delta-position control, with a maximum control magnitude set
to 1 cm during learning for safety. We train state density estimator ρ on all prior successful
trajectories for the physical robot experiments.

11.3.1 Figure-8

In addition to the knot-tying task discussed in the main section of this chapter, we also
evaluate SAVED on a Figure-8 tracking task on the surgical robot. In this task, the dVRK
must track a Figure 8 in the workspace. The agent is constrained to remain within a
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Figure 11.3: Figure-8: Training Performance: After just 10 iterations, SAVED consistently
succeeds and converges to an iteration cost of 26, faster than demos which took an average of 40
steps. Neither baseline ever completes the task in the first 50 iterations; Trajectories: Demo
trajectories satisfy constraints, but are noisy and inefficient. SAVED learns to speed up with only
occasional constraint violations and stabilizes in the goal set.

1 cm pipe around a reference trajectory with chance constraint parameter β = 0.8 for
SAVED and β = 1 for PETSfD. We use 100 inefficient but successful and constraint-satisfying
demonstrations with average iteration cost of 40 steps for both segments. Additionally we
use a planning horizon of 10 for SAVED and 30 for PETSfD. However, because there is an
intersection in the middle of the desired trajectory, SAVED finds a shortcut to the goal state.
Thus, the trajectory is divided into non-intersecting segments before SAVED separately
optimizes each one. At execution-time, the segments are stitched together and we find that
SAVED is robust enough to handle the uncertainty at the transition point. We hypothesize
that this is because the dynamics and value function exhibit good generalization.

Results for both segments of the Figure 8 task are shown in Figures 11.3 and 11.4 below.
In Figure 11.3, we see that SAVED quickly learns to smooth out demo trajectories while
satisfying constraints, with a success rate of over 80% while baselines violate constraints
on nearly every iteration and never complete the task, as shown in Figure 11.3. Note that
PETSfD almost always violates constraints, even though constraints are enforced exactly
as in SAVED. We hypothesize that since we need to give PETSfD a long planning horizon
to make it possible to complete the task (since it has no value function), this makes it
unlikely that a constraint satisfying trajectory is sampled with CEM. For the other segment
of the Figure-8, SAVED still quickly learns to smooth out demo trajectories while satisfying
constraints, with a success rate of over 80% while baselines violate constraints on nearly
every iteration and never complete the task, as shown in Figure 11.4.

In Figure 11.5, we show the full trajectory for the Figure-8 task when both segments are
combined at execution-time. This is done by rolling out the policy for the first segment, and
then starting the policy for the second segment as soon as the policy for the first segment
reaches the goal set. We see that even given uncertainty in the dynamics and end state for the
first policy (it could end anywhere in a 1 cm ball around the goal position), SAVED is able
to smoothly navigate these issues and interpolate between the two segments at execution-
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Figure 11.4: Figure-8: Training Performance: After 10 iterations, the agent consistently
completes the task and converges to an iteration cost of around 32, faster than demos which took an
average of 40 steps. Neither baseline ever completed the task in the first 50 iterations; Trajectories:
Demo trajectories are constraint-satisfying, but noisy and inefficient. SAVED quickly learns to
speed up demos with only occasional constraint violations and successfully stabilizes in the goal
set. Note that due to the difficulty of the tube constraint, it is hard to avoid occasional constraint
violations during learning, which are reflected by spikes in the iteration cost.

Figure 11.5: Full Figure-8 trajectory: We show the full figure-8 trajectory, obtained by evaluat-
ing learned policies for the first and second figure-8 segments in succession. Even when segmenting
the task, the agent can smoothly interpolate between the segments, successfully navigating the
uncertainty in the transition at execution-time and stabilizing in the goal set.

time to successfully stabilize at the goal at the end of the second segment. Each segment of
the trajectory is shown in a different color for clarity. We suspect that SAVED’s ability to
handle this transition is reflective of good generalization of the learned dynamics and value
functions.

11.3.2 Knot-Tying

In Figure 11.6, we show the full trajectory for both arms for the surgical knot-tying task. We
see that the learned policy for arm 1 smoothly navigates around arm 2, after which arm 1
is manually moved down along with arm 2, which grasps the thread and pulls it up through
the resulting loop in the thread, completing the knot.
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Figure 11.6: Knot-Tying Full Trajectories: (a) Arm 1 trajectory: We see that the learned
part of the arm 1 trajectory is significantly smoothed compared to the demonstrations at execution-
time as well, consistent with the training results. Then, in the hand-coded portion of the trajectory,
arm 1 is simply moved down towards the phantom along with arm 2, which grasps the thread and
pulls it up; (b) Arm 2 trajectory: This trajectory is hand-coded to move down towards the
phantom after arm 1 has fully wrapped the thread around it, grasp the thread, and pull it up.

11.4 Ablations

11.4.1 SAVED

We investigate the impact of kernel width α, chance constraint parameter β, and the number
of demonstrator trajectories used on navigation task 2. Results are shown in Figure 11.8.
We see that SAVED is able to complete the task well even with just 20 demonstrations,
but is more consistent with more demonstrations. We also notice that SAVED is relatively
sensitive to the setting of kernel width α. When α is set too low, we see that SAVED is
overly conservative, and thus can barely explore at all. This makes it difficult to discover
regions near the goal set early on and leads to significant model mismatch, resulting in poor
task performance. Setting α too low can also make it difficult for SAVED to plan to regions
with high density further along the task, resulting in SAVED failing to make progress. On
the other extreme, making α too large causes a lot of initial instability as the agent explores
unsafe regions of the state space. Thus, α must be chosen such that SAVED is able to
sufficiently explore, but does not explore so aggressively that it starts visiting states from
which it has low confidence in being able reach the goal set. Reducing β allows the agent
to take more risks, but this results in many more collisions. With β = 0, most rollouts end
in collision or failure as expected. In the physical experiments, we find that allowing the
agent to take some risk during exploration is useful due to the difficult tube constraints on
the feasible state space.

Finally, we also ablate the quantity and quality of demonstrations used for navigation
task 2 (Figure 11.8), and find that SAVED is still able to consistently complete the task with
just 20 demonstrations and is relatively robust to lower quality demonstrations, although
this does result in some instability during training. We additionally ablate the quantity and
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quality of demonstrations for navigation task 1 in Figure 11.7. We note that again, SAVED
is relatively robust to varying demonstration quality, achieving similar performance even for
very slow demonstrations
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Figure 11.7: SAVED Ablations on Navigation Task 1: Number of Demonstrations:
SAVED is able to consistently complete the task with just both demo qualities considered without
significant performance decay. The 100 demonstrations provided in this task have average trajectory
cost of 117.56 (black) and 77.82 (red) and SAVED significantly outperforms both, converging in
less than 10 iterations in all runs to a policy with trajectory cost less than 30. Demonstration
quality: SAVED is able to consistently complete the task with just 20 demonstrations (red) after
15 iterations. The demonstrations provided in this task have average trajectory cost of 77.82.
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Figure 11.8: SAVED Ablations on Navigation Task 2: Kernel width α: We see that α must
be chosen to be high enough such that SAVED is able to explore enough to find the goal set, but
not so high that SAVED starts to explore unsafe regions of the state space; Chance constraint
parameter β: Decreasing β results in many more collisions with the obstacle. Ignoring the obstacle
entirely results in the majority of trials ending in collision or failure. Demonstration quantity:
In this experiment, we vary the number of demonstrations that SAVED is provided. We see that
SAVED is able to complete the task with just 20 demonstrations (red), but more demonstrations
result in increased stability during learning. Even with 10 demonstrations (green), SAVED is able
to sometimes complete the task. The demonstrations provided in this task have average trajectory
cost of 77.82. Demonstration quality: SAVED efficiently learns a controller in all runs in all
cases, the worst of which has demos that attain an iteration cost 5 times higher than the converged
controller. We do occasionally observe some instability in the value function, which begins to
display somewhat volatile behavior after initially finding a good controller. Constraints are never
violated during learning in any of the runs.

11.4.2 Model-Free
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Figure 11.9: A high cost for constraint violations results in conservative behavior that learns to
avoid the obstacle, but also makes it take longer to learn to perform the task. Setting the cost low
results in riskier behavior that more often achieves task success.
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To convey information about constraints to model-free methods, we provide an additional
cost for constraint violations. We ablate this parameter for navigation task 2 in Figure 11.9.
We find that a high cost for constraint violations results in conservative behavior that learns
to avoid the obstacle, but also takes much longer to achieve task success. Setting the cost
low results in riskier behavior that succeeds more often. This trade-off is also present for
model-based methods, as seen in the prior ablations. Additionally, we also ablate the demon-
stration quality for the model-free baselines, and find that increasing the iteration cost of
the demonstrations by almost 50% does not significantly change the learning curve of OEFD
(Figure 11.10), and in both cases, OEFD takes much longer than SAVED to start performing
the task successfully (Figure 11.7). We also perform the same study on the model-free RL
baseline algorithm Soft Actor Critic from Demonstrations (SACfD) [62]. We observe that
increasing demonstration length results in somewhat faster learning, and hypothesize this
could be due to the replay buffer having more data to initially train from. We note that
this method has high variance across the runs, and all runs took close to 900 iterations to
converge (Figure 11.10) while SAVED converges in less than 10 iterations (Figure 11.7). We
also ablate demo quantity for SACfD on navigation task 1 in Figure 11.11 and find that
although SACfD has a performance improvement with additional demonstrations, it takes
a few hundred iterations to converge and more than a 100 iterations to even complete the
task, while SAVED converges within 15 iterations (Figure 11.7).

Figure 11.10: SAVED Model-Free RL Demo Quality Ablations on Navigation Task 1:
OEFD: We see that the baseline OEFD has similar performance across demonstration qualities.
OEFD takes hundreds of iterations to start performing the task successfully, while SAVED converges
less than 10 iterations; SACfD: We see that the baseline SACfD does slightly better with worse
demonstrations. This could be due to the fact that more samples are placed in the agent’s replay
buffer with longer demonstrations. We note that both cases take hundreds of iterations to start
completing the task, while SAVED starts to the complete the task almost immediately.
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Figure 11.11: SACfD Demo Quantity Ablation on Navigation Task 1: We study the effect
of varying demonstration numbers on the model free RL baseline algorithm SACfD [62]. We see
that the baseline SACfD has high variance across all demonstration quantities, and takes roughly
similar time to converge in all settings with 50 demonstrations (green) being the fastest. We also
plot the best observed cost in 10,000 iterations across all runs (dashed blue) and note that unlike
OEFD (Figure 11.10), the SACfD runs all converge close to this value.
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Chapter 12

Appendix for Chapter 6

In Sections 12.0.1 and 12.0.2 we discuss algorithmic details and implementation/hyperpa-
rameter details respectively for LS3 and all comparisons. We then provide full details re-
garding each of the experimental domains and how data is collected in these domains in
Section 12.0.3. In Section 12.0.4, we present an additional experiment studying the task
success rate of LS3 and comparisons evolves as training progresses. Finally, in Section 12.0.5
we perform sensitivity experiments and ablations.

12.0.1 Algorithm Details

In this section, we provide implementation details and additional background information
for LS3 and comparison algorithms.

Latent Space Safe Sets (LS3)

We now discuss additional details for each of the components of LS3, including network
architectures, training data, and loss functions.

Variational Autoencoders: We scale all image inputs to a size of (64, 64, 3) before feeding
them to the β-VAE, which uses a convolutional neural network for fenc and a transpose
convolutional neural network for fdec. We use the encoder and decoder from Hafner et al.
[82], but modify the second convolutional layer in the encoder to have a stride of 3 rather
than 2. As is standard for β-VAEs, we train with a mean-squared error loss combined with
a KL-divergence loss. For a particular observation st ∈ S the loss is

J(θ) = ‖fdec(zt)− st‖2
2 + βDKL (fenc(zt|st)||N (0, 1)) (12.1)

where zt ∼ fenc(zt|st) is modeled using the reparameterization trick.

Probabilistic Dynamics: As in Chua et al. [107] we train a probabilistic ensemble of
neural networks to learn dynamics. Each network has two hidden layers with 128 hidden



CHAPTER 12. APPENDIX FOR CHAPTER 6 155

units. We train these networks with a maximum log-likelihood objective, so for two particular
latent states zt, zt+1 ∈ Z and the corresponding action at ∈ A the loss is as follows for
dynamics model fdyn,θ with parameter θ:

J(θ) = − log fdyn,θ(zt+1|zt, at) (12.2)

When using fdyn for planning, we use the TS-1 method from Chua et al. [107].

Value Functions: As discussed in Section 4.4.3, we train an ensemble of recursively de-
fined value functions to predict long term reward. We represent these functions using fully
connected neural networks with 3 hidden layers with 256 hidden units. Similarly to [24], we
use separate training objectives during offline and online training. During offline training, we
train the function to predict actual discounted cost-to-go on all trajectories in D. Hence, for
a latent vector zt, the loss during offline training is given as follows where V has parameter
θ:

J(θ) =

(
V π
θ (zt)−

T−t∑
i=1

γirt+i

)2

(12.3)

In online training we also store target network V π′ and calculate a temporal difference (TD-1)
error,

J(θ) =
(
V π
θ (zt)− (rt + γV π′

θ′ (zt+1))
)2

(12.4)

where θ′ are the parameters of a lagged target network and π′ is the policy at the timestep
at which θ′ was set. We update the target network every 100 updates. In each of these
equations, γ is a discount factor (we use γ = 0.99). Because all episodes end by hitting a
time horizon, we found it was beneficial to remove the mask multiplier usually used with
TD-1 error losses.

For all simulated experiments we update value functions using only data collected by
the suboptimal demonstrator or collected online, ignoring offline data collected with random
interactions or offline demonstrations of constraint violating behavior.

Constraint and Goal Estimators: We represent constraint indicator fC : Z → {0, 1}
with a neural network with 3 hidden layers and 256 hidden units for each layer with a binary
cross entropy loss with transitions from Dconstraint for unsafe examples and the constraint
satisfying states in D\Dconstraint as safe examples. Similarly, we represent the goal estimator
fG : Z → {0, 1} with a neural network with 3 hidden layers and 256 hidden units. This
estimator is also trained with a binary cross entropy loss with positive examples from Dsuccess

and negative examples sampled from all datasets. For the constraint estimator and goal
indicator, training data is sampled uniformly from a replay buffer containing Dsuccess, Drand

and Dconstraint.
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Safe Set: The safe set classifier fS(·) is represented with neural network with 3 hidden
layers and 256 hidden units. We train the safe set classifier to predict

fS(st) = max(1Sj(st), γSfS(st+1)) (12.5)

using a binary cross entropy loss, where 1Sj(st) is an indicator function indicating whether
st is part of a successful trajectory. Training data is sampled uniformly from a replay buffer
containing all of D. Similar to deep value function learning literature [24, 62, 238], the
safe set is trained to solve the above equation by fixed point iteration: the safe set is used
to construct its own targets, which are then used to update the safe set before using the
updated safe set to construct new targets.

Cross Entropy Method: We use the cross entropy method to solve the optimization
problem in equation 4.2. We build on the implementation of the cross entropy method pro-
vided in [234], which works by sampling ncandidate action sequences from a diagonal Gaussian
distribution, simulating each one nparticle times over the learned dynamics, and refitting the
parameters of the Gaussian on the nelite trajectories with the highest score under equation 4.2
where constraints are implemented by assigning large negative rewards to trajectories which
violate either the safe set constraint or user-specified constraints. This process is repeated
for ncem iters to iteratively refine the set of sampled trajectories to optimize equation 4.2. To
improve the optimizer’s efficiency on tasks where subsequent actions are often correlated,
we sample a proportion (1− prandom) of the optimizer’s candidates at the first iteration from
the distribution it learned when planning the last action. To avoid local minima, we sample
a proportion prandom uniformly from the action space. See Chua et al. [107] for more details
on the cross entropy method as applied to planning over neural network dynamics models.

As mentioned in Section 4.4.4, we set δS for the safe set classifier fS adaptively by checking
whether there exists at least one plan which satisfies the safe set constraint at each CEM
iteration. If no such plan exists, we multiply δS by 0.8 and re-initialize the optimizer at the
first CEM iteration with the new value of δS. We initialize δS = 0.8.

Soft Actor-Critic from Demonstrations (SACfD)

We utilize the implementation of the Soft Actor Critic algorithm from [236] and initialize
the actor and critic from demonstrations but keep all other hyperparameters the same as
the default in the provided implementation. We create a new dataset Ddemos ( D using only
data from the suboptimal demonstrator, and use the data from Ddemos to behavior clone the
actor and initialize the critic using offline bellman backups. We use the same mean-squared
loss function for behavior cloning as for the behavior clone policy, but only train the mean
of the SAC policy. Precisely, we use the following loss for some policy π with parameter
θ: L(θ,Ddemos) =

∑
τi∈Ddemos

∑T
t=1 ||µθ(sit) − ait||2 where sit and ait are the state and action

at timestep t of trajectory τi and π(·|st) ∼ N (µθ(st), σφ(st)). We also experimented with
training the SAC critic on all data provided to LS3 in D but found that this hurt performance.
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We use the architecture from [236] and update neural network weights using an Adam
optimizer with a learning rate of 3×10−4. The only hyperparameter for SACfD that we tuned
across environments was the reward penalty λ which was imposed upon constraint violations.
For all simulation experiments, we evaluated λ ∈ {−1,−3,−5,−10,−20} and report the
highest performing value. Accordingly, we use λ = −3 for all experiments except the reacher
task, for which we used λ = −1. We observed that higher values of λ resulted in worse task
performance without significant increase in constraint satisfaction. We hypothesize that
since the agent is frozen in the environment upon constraint violations, the resulting loss of
rewards from this is sufficient to enable SACfD to avoid constraint violations.

Soft Actor-Critic from Demonstrations with Learned Recovery Zones
(SACfD+RRL)

We build on the implementation of the Recovery RL algorithm [8] provided in [239]. We
train the safety critic on all offline data from D. Recovery RL uses SACfD as its task
policy optimization algorithm, and introduces two new hyperparameters: (γrisk, εrisk). For
each of the simulation environments, we evaluated SACfD+RRL across 3-4 (γrisk, εrisk) set-
tings and reported results from the highest performing run. Accordingly, for the naviga-
tion environment, we use: (γrisk = 0.95, εrisk = 0.8). For the reacher environment, we use
(γrisk = 0.55, εrisk = 0.7), and we use (γrisk = 0.75, εrisk = 0.7) for the sequential pushing
environment. For the cable routing environment, we use (γrisk = 0.55, εrisk = 0.7).

Advantage Weighted Actor-Critic (AWAC)

To provide a comparison to state of the art offline reinforcement learning algorithms, we eval-
uate AWAC [109] on the experimental domains in this chapter. We use the implementation of
AWAC from [240]. For all simulation experiments, we evaluated λ ∈ {−1,−3,−5,−10,−20}
and report the highest performing value. Accordingly, we use λ = −1 for all experiments.
We used the default settings from [240] for all other hyperparameters.

12.0.2 LS3 Implementation Details

In Table 12.1, we present the hyperparameters used to train and run LS3. We present details
for the constraint thresholds δC and δS. We also present the planning horizon H and VAE KL
regularization weight β. We present the number of particles sampled over the probabilistic
latent dynamics model for a fixed action sequence nparticles, which is used to provide an
estimated probability of constraint satisfaction and expected rewards. For the cross entropy
method, we sample ncandidate action sequences at each iteration, take the best nelite action
sequences and then refit the sampling distribution. This process iterates ncem iters times. We
also report the latent space dimension d, whether frame stacking is used as input, training
batch size, and discount factor γ. Finally, we present values of the safe set bellman coefficient
γS. For all domains, we scale RGB observations to a size of (64, 64, 3). For all modules we
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Table 12.1: Hyperparameters for LS3

Parameter Navigation Reacher Sequential Pushing Cable Routing

δS 0.8 0.5 0.8 0.8
δC 0.2 0.2 0.2 0.2
β 1× 10−6 1× 10−6 1× 10−6 1× 10−6

H 5 3 3 5
nparticle 20 20 20 20
ncandidate 1000 1000 1000 2000
nelite 100 100 100 200

ncem iters 5 5 5 5
d 32 32 32 32

prandom 1.0 1.0 1.0 0.3
Frame Stacking No Yes No No

Batch Size 256 256 256 256
γ 0.99 0.99 0.99 0.99
γS 0.3 0.3 0.9 0.9

use the Adam optimizer with a learning rate of 1 × 10−4, except for dynamics which use a
learning rate of 1× 10−3.

12.0.3 Experimental Domain Details

Navigation

The visual navigation domain has 2-D single integrator dynamics with additive Gaussian
noise sampled from N (0, σ2I2) where σ = 0.125. The start position is (30, 75) and goal
set is B2((150, 75), 3), where B2(c, r) is a Euclidean ball centered at c with radius r. The
demonstrations are created by guiding the agent north for 20 timesteps, east for 40 timesteps,
and directly towards the goal until the episode terminates. This tuned controller ensures that
demonstrations avoid the obstacle and also reach the goal set, but they are very suboptimal.
To collect demonstrations of constraint violating behavior, we randomly sample starting
points throughout the environment, move in a random direction for 15 time steps, and
then move directly towards the obstacle. We do not collect additional data for Drand in
this environment. We collect 50 demonstrations of successful behaviors and 50 trajectories
containing constraint violating behaviors.

Reacher

The reacher domain is built on the reacher domain provided in the DeepMind Control Suite
from [110]. The robot is represented with a planar 2-link arm and the agent supplies torques
to each of the 2 joints. Because velocity is not observable from a single frame, algorithms
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are provided with several stacked frames as input. The start position of the end-effector
is fixed and the objective is to navigate the end effector to a fixed goal set on the top left
of the workspace without allowing the end effector to enter a large red stay-out zone. To
collect data from Dconstraint we randomly sample starting states in the environment, and
then use a PID controller to move towards the constraint. To sample random data that will
require the agent to model velocity for accurate prediction, we start trajectories at random
places in the environment, and then sample each action from a normal distribution centered
around the previous action, at+1 ∼ N (at, σ

2I) for σ2 = 0.2. We collect 50 demonstrations
of successful behavior, 50 trajectories containing constraint violations and 100 short (length
20) trajectories or random data.

Sequential Pushing

This sequential pushing environment is implemented in MuJoCo [229], and the robot can
specify a desired planar displacement a = (∆x,∆y) for the end effector position. The goal is
to push all 3 blocks backwards by at least some displacement on the table, but constraints
are violated if blocks are pushed backwards off of the table. For the sequential pushing
environment, demonstrations are created by guiding the end effector to the center of each
block and then moving the end effector in a straight line at a low velocity until the block is
in the goal set. This same process is repeated for each of the 3 blocks. Data of constraint
violations and random transitions forDconstraint andDrand are collected by randomly switching
between a policy that moves towards the blocks and a policy that randomly samples from
the action space. We collect 500 demonstrations of successful behavior and 300 trajectories
of random and/or constraint violating behavior.

Physical Cable Routing

This task starts with the robot grasping one endpoint of the red cable, and it can make
(∆x,∆y) motions with its end effector. The goal is to guide the red cable to intersect with the
green goal set while avoiding the blue obstacle. The ground-truth goal and obstacle checks
are performed with color masking. LS3 and all baselines are provided with a segmentation
mask of the cable as input. The demonstrator generates trajectories Dsuccess by moving the
end effector well over the obstacle and to the right before executing a straight line trajectory
to the goal set. This ensures that it avoids the obstacle as there is significant margin to
the obstacle, but the demonstrations may not be optimal trajectories for the task. Random
trajectories Drand are collected by following a demonstrator trajectory for some random
amount of time and then sampling from the action space until the episode hits the time
horizon. We collect 420 demonstrations of successful behavior and 150 random trajectories.
We use data augmentation to increase the size of the dataset used to train fenc and fdec,
taking the images in D and creating an expanded dataset by adding randomly sampled affine
translations and perspective shifts, until |DVAE| > 100000.
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12.0.4 Additional Results

We additionally study how the task success rate of LS3 and comparisons evolves as training
progresses in Figure 12.1. Precisely, we checkpoint each policy after each training trajectory
and evaluate it over 10 rollouts for each of the 10 random seeds (100 total trials per data-
point). We find that LS3 achieves a much higher task success rate than comparisons early
on in training, and maintains a higher task success rate throughout the course of training
on all simulation domains.

12.0.5 Sensitivity Experiments

Key hyperparameters in LS3 are the constraint threshold δC and safe set threshold δS, which
control whether the agent decides predicted states are constraint violating or in the safe
set respectively. We ablate these parameters for the Sequential Pushing environment in
Figures 12.2 and 12.3. We find that lower values of δC made the agent less likely to violate
constraints as expected. Additionally, we find that higher values of δS helped constrain
exploration more effectively, but too high of a threshold led to poor performance suffered as
the agent exploited local maxima in the safe set estimation. Finally, we ablate the planning
horizon H for LS3 and find that when H is too high, Latent Space Safe Sets (LS3) can
explore too aggressively away from the safe set, leading to poor performance. When H is
lower, LS3 explores much more stably, but if it is too low (ie. H = 1), LS3 is eventually
unable to explore significantly new plans, while slightly increasing H (ie. H = 3) allows for
continuous improvement in performance.
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Figure 12.1: Task Success Rate: Learning curves showing mean and standard error of task
success rate of checkpointed policies over 10 random seeds (and 10 rollouts per seed). We see that
LS3 has a much higher task success rate than comparisons early on, and maintains a success rate
at least as high as comparisons throughout training in all environments.
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Figure 12.2: Hyperparameter Sweep for LS3 Constraint Threshold: Plots show mean
and standard error over 10 random seeds for experiments with different settings of δC on the
sequential pushing environment. As expected, we see that without avoiding latent space obstacles
(No Constraints) the agent violates constraints more often, while lower thresholds (meaning the
planning algorithm is more conservative) generally lead to fewer violations.
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Figure 12.3: Hyperparameter Sweep for LS3 Safe Set Threshold: Plots show mean and
standard error over 10 random seeds for experiments with different settings of δS on the sequential
pushing environment. We see that after offline training, the agent can successfully complete the
task only when δS is high enough to sufficiently guide exploration, and that runs with higher values
of δS are more successful overall.
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standard error over 10 random seeds for experiments with different settings of H on the sequential
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complete the task due to modeling errors. When the planning horizon is too low, it learns quickly
but cannot significantly improve because it is constrained to the safe set. We found H = 3 to
balance this trade off best.
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Chapter 13

Appendix for Chapter 7

13.1 Static Regret

13.1.1 Proof of Chapter 5.3.1

Recall the standard notion of static regret as defined in Definition 5.3.1:

RegretSN((ψi)
N
i=1) =

N∑
i=1

[li(πθi , ψi)− li(πθ∗ , ψi)] where θ∗ = arg min
θ∈Θ

N∑
i=1

li(πθ, ψi) (13.1)

However, we seek to bound

RegretSN(ψN) =
N∑
i=1

[li(πθi , ψN)− li(πθ? , ψN)] where θ? = arg min
θ∈Θ

N∑
i=1

li(πθ, ψN) (13.2)

as defined in Definition 5.3.2.
Notice that this corresponds to the static regret of the agent with respect to the losses

parameterized by the last observed supervisor ψN . We can do this as follows:
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RegretSN(ψN) =
N∑
i=1

[li(πθi , ψN)− li(πθ? , ψN)] (13.3)

=
N∑
i=1

[li(πθi , ψN)− li(πθ? , ψN)]− RegretSN((ψi)
N
i=1) + RegretSN((ψi)

N
i=1)

(13.4)

=
N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[li(πθ∗ , ψi)− li(πθ? , ψN)]

+ RegretSN((ψi)
N
i=1)

(13.5)

≤
N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[li(πθ? , ψi)− li(πθ? , ψN)]

+ RegretSN((ψi)
N
i=1)

(13.6)

Here, inequality 13.6 follows from the fact that
∑N

i=1 li(πθ∗ , ψi) ≤
∑N

i=1 li(πθ? , ψi). Now, we
can focus on bounding the extra term. Let h(x, y) = ‖x− y‖2.

N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[li(πθ? , ψi)− li(πθ? , ψN)] (13.7)

=
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθi(s
i
t), ψN(sit))− h(πθi(s

i
t), ψi(s

i
t))

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθ?(s
i
t), ψi(s

i
t))− h(πθ?(s

i
t), ψN(sit))

] (13.8)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈∇ψh(πθi(s
i
t), ψN(sit)), ψN(sit)− ψi(sit)〉

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈∇ψh(πθ?(s
i
t), ψi(s

i
t)), ψi(s

i
t)− ψN(sit)〉

] (13.9)
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=
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈2(ψN(sit)− πθi(st)), ψN(sit)− ψi(sit)〉

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈2(ψi(s
i
t)− πθ?(st)), ψi(sit)− ψN(sit)〉

] (13.10)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2‖ψN(sit)− πθi(st)‖‖ψN(sit)− ψi(sit)‖

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2‖ψi(sit)− πθ?(st)‖‖ψi(sit)− ψN(sit)‖

] (13.11)

≤ 4δ
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN(sit)− ψi(sit)‖

]
(13.12)

Equation 13.8 follows from applying the definition of the loss function. Inequality 13.9 follows
from applying convexity of h in ψ. Equation 13.10 follows from evaluating the corresponding
gradients. Inequality 13.11 follows from Cauchy-Schwarz and inequality 13.12 follows from
the action space bound. Thus, we have:

RegretSN(ψN) ≤ 4δ
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN(sit)− ψi(sit)‖

]
+ RegretSN((ψi)

N
i=1) (13.13)

13.1.2 Proof of Chapter 5.3.1

∀s ∈ S, ∀N > i, ‖ψi(s)− ψN(s)‖ ≤ fi where lim
i→∞

fi = 0 (13.14)

implies that

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψi(sit)− ψN(sit)‖

]
≤ fi ∀N > i ∈ N (13.15)

This in turn implies that

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψi(sit)− ψN(sit)‖

]
≤

N∑
i=1

fi (13.16)

Remark: For sublinearity, we really only need inequality 13.15 to hold. Due to the depen-
dence of p(τ |θi) on the parameter θi of the policy at iteration i, we tighten this assumption
with the stricter Cauchy condition 13.14 to remove the dependence of a component of the
regret on the sequence of policies used.

The Additive Cesàro’s Theorem states that if the sequence (an)∞n=1 has a limit, then
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lim
n→∞

a1 + a2 . . . an
n

= lim
n→∞

an

Thus, we see that if limi→∞ fi = 0, then it must be the case that limN→∞
1
N

∑N
i=1 fi = 0.

This shows that for some (fi)
N
i=1 converging to 0, it must be the case that

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψi(sit)− ψN(sit)‖

]
≤

N∑
i=1

fi = O(N)

Thus, based on the regret bound in Chapter 5.3.1, we can achieve sublinear RegretSN(ψN)
for any sequence (fi)

N
i=1 which converges to 0 given an algorithm that achieves sublinear

RegretSN((ψi)
N
i=1):

RegretSN(ψN) = RegretSN((ψi)
N
i=1) + O(N)

13.2 Dynamic Regret

13.2.1 Proof of Chapter 5.3.1

Recall the standard notion of dynamic regret as defined in Definition 5.3.3:

RegretDN((ψi)
N
i=1) =

N∑
i=1

[
li(πθi , ψi)− li(πθ∗i , ψi)

]
where θ∗i = arg min

θ∈Θ
li(πθ, ψi) (13.17)

However, we seek to bound

RegretDN(ψN) =
N∑
i=1

[
li(πθi , ψN)− li(πθ?i , ψN)

]
where θ?i = arg min

θ∈Θ
li(πθ, ψN) (13.18)

as defined in Definition 5.3.4.
Notice that this corresponds to the dynamic regret of the agent with respect to the losses
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parameterized by the most recent supervisor ψN . We can do this as follows:

RegretDN(ψN) =
N∑
i=1

[
li(πθi , ψN)− li(πθ?i , ψN)

]
(13.19)

=
N∑
i=1

[
li(πθi , ψN)− li(πθ?i , ψN)

]
− RegretDN((ψi)

N
i=1)

+ RegretDN((ψi)
N
i=1)

(13.20)

=
N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[
li(πθ∗i , ψi)− li(πθ?i , ψN)

]
+ RegretDN((ψi)

N
i=1)

(13.21)

≤
N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[
li(πθ?i , ψi)− li(πθ?i , ψN)

]
+ RegretDN((ψi)

N
i=1)

(13.22)

Here, inequality 13.22 follows from the fact that li(πθ∗i , ψi) ≤ li(πθ?i , ψi). Now as before, we
can focus on bounding the extra term. Let h(x, y) = ‖x− y‖2.

N∑
i=1

[li(πθi , ψN)− li(πθi , ψi)] +
N∑
i=1

[
li(πθ?i , ψi)− li(πθ?i , ψN)

]
(13.23)

=
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθi(s
i
t), ψN(sit))− h(πθi(s

i
t), ψi(s

i
t))

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθ?i (s
i
t), ψi(s

i
t))− h(πθ?i (s

i
t), ψN(sit))

] (13.24)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈∇ψh(πθi(s
i
t), ψN(sit)), ψN(sit)− ψi(sit)〉

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈∇ψh(πθ?i (s
i
t), ψi(s

i
t)), ψi(s

i
t)− ψN(sit)〉

] (13.25)
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=
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈2(ψN(sit)− πθi(st)), ψN(sit)− ψi(sit)〉

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈2(ψi(s
i
t)− πθ?i (st)), ψi(s

i
t)− ψN(sit)〉

] (13.26)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2‖ψN(sit)− πθi(st)‖‖ψN(sit)− ψi(sit)‖

]

+
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2‖ψi(sit)− πθ?i (st)‖‖ψi(s
i
t)− ψN(sit)‖

] (13.27)

≤ 4δ
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN(sit)− ψi(sit)‖

]
(13.28)

The steps of this proof follow as in the proof of the static regret reduction. Equation 13.24
follows from applying the definition of the loss function. Inequality 13.25 follows from apply-
ing convexity of h in ψ. Equation 13.26 follows from evaluating the corresponding gradients.
Inequality 13.27 follows from Cauchy-Schwarz and inequality 13.28 follows from the action
space bound. Combining this bound with 13.22, we have our desired result:

RegretDN(ψN) ≤ 4δ
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN(sit)− ψi(sit)‖

]
+ RegretDN((ψi)

N
i=1) (13.29)

13.2.2 Proof of Chapter 5.3.2

By Chapter 5.3.1,

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψi(sit)− ψN(sit)‖

]
= O(N)

which implies that
RegretDN(ψN) = RegretDN((ψi)

N
i=1) + O(N)

13.2.3 Predictability of Online Learning Problems

Next, we establish that the online learning problem defined by the losses defined in Section
5.2 is an (α, β)-predictable online learning problem as defined in Cheng et al. [129]. An online
learning problem is (α, β)-predictable if it satisfies ∀θ ∈ Θ, (1) li(.) is α strongly convex in θ,
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(2) ‖∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)‖ ≤ β‖θi+1 − θi‖+ ζi where
∑N

i=1 ζi = O(N). Proposition
12 in Cheng et al. [129] shows that for (α, β)-predictable problems, sublinear dynamic regret
can be achieved if α > β. Furthermore, Theorem 3 in Cheng et al. [129] shows that if α is
sufficiently large and β sufficiently small, then sublinear dynamic regret can be achieved by
online gradient descent.

Lemma 13.2.1. If ∀s ∈ S, ∀N > i, ‖ψi(s)−ψN(s)‖ ≤ fi where limi→∞ fi = 0, the learning
problem is (α, 4Gη supa∈A ‖a‖)-predictable in θ: li(πθ, ψ) is α-strongly convex by assumption
and if Assumption 5.3.1 holds, then li(πθ, ψ) satisfies:

‖∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)‖ ≤ 4Gη sup
a∈A
‖a‖‖θi+1 − θi‖+ ζi where

N∑
i=1

ζi = O(N)

Proof of Chapter 13.2.1 We have bounded RegretDN(ψN) by the sum of RegretDN((ψi)
N
i=1)

and a sublinear term. Now, we analyze RegretDN((ψi)
N
i=1). We note that we can achieve sub-

linear RegretDN((ψi)
N
i=1) if the losses satisfy

‖∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)‖ ≤ β‖θi+1 − θi‖+ ζi

where
∑N

i=1 ζi = O(N) by Proposition 12 in Cheng et al. [129].

Note that for Jτ (πθ, ψ) = 1
T

∑T
t=1‖ψ(st)− πθ(st)‖2, we have

∇θli(πθ, ψ) = Eτ∼p(τ |θi)
1

T

T∑
t=1

∇θ‖ψ(st)− πθ(st)‖2 (13.30)

= Eτ∼p(τ |θi)∇θJτ (πθ, ψ) (13.31)

=

∫
p(τ |θi)∇θJτ (πθ, ψ)dτ (13.32)

∇θJτ (πθ, ψ) =
1

T

∑
st∈τ

2∇θπθ(st)
T (πθ(st)− ψ(st)) (13.33)

=
2

T
∇θπθ(τ)T (πθ(τ)− ψ(τ)) (13.34)

where

ψ(τ) =

ψ(s0)
...

ψ(sT )

 , πθ(τ) =

πθ(s0)
...

πθ(sT )

 , ∇θπθ(τ) =

∇θπθ(s0)
...

∇θπθ(sT )

 (13.35)
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Taking the difference of the above loss gradients, we obtain:

‖∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)‖ (13.36)

=

∥∥∥∥∫ p(τ |θi+1)∇θJτ (πθ, ψi+1)dτ −
∫
p(τ |θi)∇θJτ (πθ, ψi)dτ

∥∥∥∥ (13.37)

≤
∫
‖p(τ |θi+1)∇θJτ (πθ, ψi+1)− p(τ |θi)∇θJτ (πθ, ψi)‖dτ (13.38)

=

∫ ∥∥∥∥ 2

T
∇θπθ(τ)T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

+
2

T
∇θπθ(τ)T (p(τ |θi+1)πθ(τ)− p(τ |θi)πθ(τ))

∥∥∥∥dτ (13.39)

≤
∫ ∥∥∥∥ 2

T
∇θπθ(τ)T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ
+

∫ ∥∥∥∥ 2

T
∇θπθ(τ)Tπθ(τ)(p(τ |θi+1)− p(τ |θi))

∥∥∥∥dτ (13.40)

≤
∫ ∥∥∥∥ 2

T
∇θπθ(τ)T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ
+ 2G sup

a∈A
‖a‖

∫
|p(τ |θi+1)− p(τ |θi)|dτ

(13.41)

≤
∫ ∥∥∥∥ 2

T
∇θπθ(τ)T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ + 2Gη sup
a∈A
‖a‖‖θi+1 − θi‖ (13.42)

≤ 2

T
G

∫
‖p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ)‖dτ + 2Gη sup

a∈A
‖a‖‖θi+1 − θi‖ (13.43)

=
2

T
G

∫
‖p(τ |θi)ψi(τ)− p(τ |θi)ψi+1(τ) + p(τ |θi)ψi+1(τ)− p(τ |θi+1)ψi+1(τ)‖dτ

+ 2Gη sup
a∈A
‖a‖‖θi+1 − θi‖

(13.44)

≤ 2

T
G

∫
‖p(τ |θi)(ψi(τ)− ψi+1(τ))‖+ ‖(p(τ |θi)− p(τ |θi+1))ψi+1(τ)‖dτ

+ 2Gη sup
a∈A
‖a‖‖θi+1 − θi‖

(13.45)

≤ 2

T
G

∫
p(τ |θi)‖ψi(τ)− ψi+1(τ)‖dτ + 4Gη sup

a∈A
‖a‖‖θi+1 − θi‖ (13.46)

≤ 2Gfi

∫
p(τ |θi)dτ + 4Gη sup

a∈A
‖a‖‖θi+1 − θi‖ (13.47)

≤ 2Gfi + 4Gη sup
a∈A
‖a‖‖θi+1 − θi‖ (13.48)

= 4Gη sup
a∈A
‖a‖‖θi+1 − θi‖+ ζi (13.49)
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where here ζi = 2Gfi and we see that 2G
∑N

i=1 fi = O(N) as desired for some (fi)
N
i=1 where

limi→∞ fi = 0 as in Chapter 5.3.1. Equation 13.37 follows from applying definitions. Equa-
tion 13.38 follows from the triangle inequality. Equation 13.39 follows from substitution of
the loss gradients. Inequality 13.40 follows from the triangle inequality and factoring out
common terms. Inequality 13.41 follows from subadditivity, the policy Jacobian and action
space bound. Inequality 13.42 follows from Assumption 5.3.1. Equation 13.43 follows from
subadditivity of the operator norm and the policy Jacobian bound. Equation 13.45 follows
from the triangle inequality, and equation 13.46 follows from the triangle inequality and
Assumption 5.3.1. Equations 13.47 and 13.49 follow from the convergence assumption of
the supervisor and the triangle inequality.

Lemma 13.2.2. Assumption 5.2.2 implies that the loss function gradients are bounded as
follows:

‖∇θli(πθ, ψ)‖ ≤ 2Gδ ∀θ, θi ∈ Θ, ∀ψ

Proof of Chapter 13.2.2∥∥∥∥∥Eτ∼p(τ |θi)
[

1

T

T∑
t=1

2(∇θπθ(s
i
t))

T
(
πθ(s

i
t)− ψi(sit)

)] ∥∥∥∥∥ ≤
Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥∥∥∥2(∇θπθ(s
i
t))

T
(
πθ(s

i
t)− ψi(sit)

) ∥∥∥∥
]

by convexity of norms ‖·‖ and Jensen’s inequality.
Then, we have that

‖(∇θπθ(s))
T (πθ(s)− ψ(s))‖ ≤ ‖∇θπθ(s)‖‖πθ(s)− ψ(s)‖ ≤ Gδ ∀θ ∈ Θ, ∀s ∈ S, ∀ψ

due to subadditivity and the assumption that the action space diameter is bounded. Thus,
we have that

∀θ, θi ∈ Θ,∀ψ, ‖∇θli(πθ, ψ)‖ ≤ 2Gδ

13.2.4 Proof of Chapter 5.3.2

From Chapter 13.2.1, the loss gradients are bounded by the sum of a Lipschitz-type term and
a sublinear term, satisfying the conditions for Proposition 12 from Cheng et al. [129]. Thus,
by Proposition 12 from Cheng et al. [129], we see that as long as α > 4Gη supa∈A‖a‖, there
exists an algorithm that can achieve sublinear RegretDN((ψi)

N
i=1). An example of an algorithm

that achieves sublinear dynamic regret under this condition is the greedy algorithm [129]:
θi+1 = arg minθ∈Θ li(πθ, ψi).

Define β = 4Gη supa∈A‖a‖, λ = β/α, and ξi = ζi/α. For the greedy algorithm, the result
can be shown in a similar fashion to Theorem 3 of Cheng et al. [129]:

‖θ∗i − θi‖ = ‖θ∗i − θ∗i−1‖ ≤ λ‖θi − θi−1‖+
ζi
α
≤ λi‖θ1 − θ0‖+

i∑
j=1

λi−jξj
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where the first inequality follows from Proposition 1 of Lee et al. [124] and the second
inequality follows from repeated application of the same proposition. Summing from 1 to N
with ζi = 2Gfi as in the proof of Chapter 5.3.2, we have

N∑
i=1

i∑
j=1

λi−jξj ≤
N∑
i=1

ξi(1 + λ+ λ2 + . . .) ≤ 1

1− λ

N∑
i=1

ξi =
2G

α(1− λ)

N∑
i=1

fi

Thus, if
∑N

i=1 fi = O(N), we can show that the greedy algorithm achieves sublinear RegretDN((ψi)
N
i=1)

by using the Lipschitz continuity of the losses as shown in the proof of Chapter 13.2.2 if the
parameter space diameter is bounded as follows: D = supθ,θ′∈Θ ‖θ − θ′‖.

RegretDN((ψi)
N
i=1) ≤ 2Gδ

N∑
i=1

‖θi − θ∗i ‖

≤ 2Gδ

(
D

N∑
i=1

λi +
2G

α(1− λ)

N∑
i=1

fi

)

≤ 2Gδ

(
D

1− λ
+

2G

α(1− λ)

N∑
i=1

fi

)
= O(N)

For the last part of the lemma, the fact that online gradient descent achieves sublinear
RegretDN((ψi)

N
i=1) follows directly from applying Theorem 3 from Cheng et al. [129] with

4Gη supa∈A ‖a‖
α

> α
2γ

if the losses are γ-smooth in θ.

13.2.5 Proof of Chapter 5.3.2

The proof follows immediately from combining the result of Chapter 5.3.2 and Chapter 5.3.2.

13.3 Training Details

13.3.1 CSF Learner

For the linear policy, the CSF learner is trained via linear regression with regularization
parameter α = 1. For the neural network policy, the CSF learner is represented with an
ensemble of 5 neural networks, each with 2 layers with 20 hidden units and swish activations.

13.3.2 PETS

PETS learns an ensemble of neural network dynamics models using sampled transitions and
updates them on-policy to better reflect the dynamics local to the learned policy’s state
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distribution. We use the implementation from [234]. MPC is run over the learned dynamics
to select actions for the next iteration. For all environments, a probabilistic ensemble of 5
neural networks with 3 hidden layers, each with 200 hidden units and swish activations are
used to represent the dynamics model. The TS-∞ sampling procedure is used for planning.
We use an MPC planning horizon of length 25 for all environments and 1 initial random
rollout to seed the learned dynamics model. Chua et al. [25] contains further details on
training PETS.

13.3.3 SAC

We use the rlkit implementation [236] of soft actor critic with the following parameters: batch
size = 128, discount factor = 0.99, soft target τ = 0.001, policy learning rate = 0.0003, Q
function learning rate = 0.0003, value function learning rate = 0.0003, and replay buffer size
= 1000000. All networks are two-layer multi-layer perceptrons with 300 hidden units.

13.3.4 TD3

We use the rlkit implementation [236] of TD3 with the following parameters: batch size =
128, discount factor = 0.99, and replay buffer size = 1000000. The exploration strategy
consists of adding Gaussian noise N (0, 0.1) to actions chosen by the policy. All networks
are two-layer multi-layer perceptrons with 300 hidden units.

13.3.5 ME-TRPO

We model both the policy and dynamics with neural networks, using an ensemble of dynamics
models to avoid exploitation of model bias. We use the ME-TRPO implementation from
[241] with the following hyperparameters: batch size=128, discount factor=1, and learning
rate =.001 for both the policy and dynamics. The policy network has two hidden layers with
64 units each and all dynamics networks have two hidden layers with 512 units each and
ReLU activation.

13.4 Experimental Details

13.4.1 Simulated Experiments

Both simulated experiments involve manipulation tasks on a simulated PR2 robot and are
from the provided code in Chua et al. [25]. Both are implemented as 7-DOF torque control
tasks. For all tasks, we plot the sum of rewards for each training episode.
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13.4.2 Physical Experiments

Both physical experiments involve delta-position control in 3D space on the daVinci surgical
system, which is cable driven and hard to precisely control, making it difficult to reliably
reach a desired pose without appropriate compensation [60]. The CSF learner policy and
supervisor dynamics are modeled by 3 hidden-layer feed-forward neural networks with 200
hidden units each. The tasks involve guiding the end effectors to targets in the workspace
and isotropic concave quadratic rewards are used. For all tasks, we plot the sum of rewards
for each training episode. For multi-arm experiments, the arms are limited to subsets of the
state space where collisions are not possible. We are investigating modeling arm collisions
for future work. Since the da Vinci surgical system has relatively limited control frequency,
although the CSF learner often enables significantly faster query time than PETS, the im-
provement in policy evaluation time was somewhat less significant due to physical hardware
constraints. In future work, we plan to implement the proposed algorithm on a robot with
higher frequency control capability.
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Chapter 14

Appendix for Chapter 8

The supplementary material is structured as follows: In Section 14.1 we discuss brief the-
oretical motivation for Recovery RL and possible variants and in Section 14.2 we discuss
algorithmic details for Recovery RL and comparison algorithms. In Section 14.3, we re-
port additional metrics for all domains and comparisons and in Section 14.4 we visualize
the safety critic for all navigation experiments. We provide additional details about algo-
rithm implementation in Section 14.5, and on domain-specific algorithm hyperparameters in
Section 14.6. Finally, we report simulation and physical environment details in Section 14.7.

14.1 Recovery RL Theoretical Motivation and

Variants

In this section, we will briefly and informally discuss additional properties of Recovery RL
and then discuss some variants of Recovery RL.

14.1.1 Theoretical Motivation

Recall that the task policy is operating in an environment with modified dynamics:

P πrec
εrisk

(s′|s, a) =

{
P (s′|s, a) (s, a) ∈ T πsafe

P (s′|s, aπrec) (s, a) ∈ T πrec

(14.1)

However, P πrec
εrisk

changes over time (even within the same episode) and analysis of policy
learning in non-stationary MDPs is currently challenging and ongoing work. Assuming that
P πrec
εrisk

is stationary following the pretraining phase, it is immediate that πtask is operating
in a stationary MDP M′ = (S,A, P πrec

εrisk
, R(·, ·), γ, µ), and therefore all properties of πtask in

stationary MDPs apply in M′. Observe that iterative improvement for πtask in M′ implies
iterative improvement for π in M, since both MDPs share the same reward function, and
an action taken by πtask in M′ is equivalent to πtask trying the action in M before being
potentially caught by πrec.
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14.1.2 Safety Value Function

One variant of Recovery RL can use a safety critic that is a state-value function V π
risk(s)

instead of a state-action-value function. While this implementation is simpler, the Qπ
risk

version used in the paper can switch to a safe action instead of an unsafe one instead of
waiting to reach an unsafe state to start recovery behavior.

14.1.3 Reachability-based Variant

Another variant can use the learned dynamics model in the model-based recovery policy to
perform a one (or k) step lookahead to see if future states-action tuples are in T πsafe. While
Qπ

risk in principle carries information about future safety, this is an alternative method to
check future states.

14.2 Algorithm Details

14.2.1 Recovery RL

Recovery Policy: In principle, any off-policy reinforcement learning algorithm can be
used to learn the recovery policy πrec. In this chapter, we explore both model-free and
model-based reinforcement learning algorithms to learn πrec. For model-free recovery, we
perform gradient descent on the safety critic Q̂π

φ,risk(s, πrec(s)), as in the popular off-policy
reinforcement learning algorithm DDPG [135]. We choose the DDPG-style objective function
over alternatives since we do not wish the recovery policy to explore widely. For model-based
recovery, we perform model predictive control (MPC) over a learned dynamics model fθ by
minimizing the following objective:

Lθ(st, at) = E

[
H∑
i=0

Q̂π
φ,risk(ŝt+i, at+i)

]
(14.2)

where ŝt+i+1 ∼ fθ(ŝt+i, at+i), ŝt = st, and â = at. For lower dimensional tasks, we utilize the
PETS algorithm from Chua et al. [25] to plan over a learned stochastic dynamics model while
for tasks with visual observations, we utilize a VAE based latent dynamics model. In the
offline pretraining phase, when model-free recovery is used, batches are sampled sequentially
from Doffline and each batch is used to (1) train Q̂π

φ,risk and (2) optimize the DDPG policy to

minimize the current Q̂π
φ,risk. When model-based recovery is used, the data in Doffline is first

used to learn dynamics model fθ using either PETS (low dimensional tasks) or latent space
dynamics (image-based tasks). Then, Q̂π

φ,risk is separately optimized to over batches sampled
from Doffline. During the online RL phase, all methods are updated online using on-policy
data from composite policy π.

Task Policy: In experiments, we utilize the popular maximum entropy RL algorithm
SAC [62] to learn πtask, but note that any RL algorithm could be used to train πtask. In
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general πtask is only updated in the online RL phase. However, in certain domains where
exploration is challenging, we pre-train SAC on a small set of task-specific demonstrations
to expedite learning. To do this, like for training the model-free recovery policy, we sample
batches sequentially from Doffline and each batch is used to (1) train Q̂π

φ,risk and (2) optimize

the SAC policy to minimize the current Q̂π
φ,risk. To ensure that πtask learns which actions

result in recovery behavior, we train πtask on transitions (st, a
πtask
t , st+1) even if πrec was

executed.

14.2.2 Unconstrained

We use an implementation of the popular model-free reinforcement learning algorithm Soft
Actor Critic [62, 236], which maximizes a combination of task reward and policy entropy
with a stochastic actor function.

14.2.3 Lagrangian Relaxation (LR)

In this section we will briefly motivate and derive the Lagrangian relaxation comparison. As
before, we desire to solve the following constrained optimization problem:

min
π
Lpolicy(s; π) s.t. Ea∼π(·|s) [Qπ

risk(s, a)] ≤ εrisk

where Lpolicy is a policy loss function we would like to minimize (e.g. from SAC). As in prior
work in solving constrained optimization problems, we can solve the following unconstrained
problem instead:

max
λ≥0

min
π
Lpolicy(s; π) + λ(Ea∼π(·|s) [Qπ

risk(s, a)]− εrisk)

We aim to find a saddle point of the Lagrangian function via dual gradient descent. In
practice, we use samples to approximate the expectation in the objective by sampling an
action from π(·|s) each time the objective function is evaluated.

14.2.4 Risk Sensitive Policy Optimization (RSPO)

We implement Risk Sensitive Policy Optimization by implementing the Lagrangian Relax-
ation method as discussed in Section 14.2.3 with a sequence of multipliers which decrease
over time. This encourages initial constraint satisfaction followed by gradual increase in pri-
oritization of the task objective and is inspired by the Risk Sensitive Q-learning algorithm
from [140].

14.2.5 Safety Q-Functions for Reinforcement Learning (SQRL)

This comparison is identical to LR, except it additionally adds a Q-filter, that performs
rejection sampling on the policy’s distribution π(·|st) until it finds an action at such that
Qπ

risk(st, at) ≤ εrisk.
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14.2.6 Reward Penalty (RP)

The reward penalty comparison simply involves subtracting a constant penalty λ from the
task reward function when a constraint is violated. This is the only comparison algorithm
other than Unconstrained which does not use the learned Qπ

risk or the constraint demos, but
is included due to its surprising efficacy and simplicity.

14.2.7 Off Policy Reward Constrained Policy Optimization
(RCPO)

In on-policy RCPO [3], the policy is optimized via policy gradient estimators by maximizing
Eπ [
∑∞

t=0 (γtR(s, a)− λγtriskD(s, a))]. In this chapter, we use D(s, a) = Qπ
risk(s, a) and update

the Lagrange multiplier λ as in LR. We could also use D(s, a) = C(s), which would be almost
identical to the RP comparison. Instead of optimizing this with on-policy RL, we use SAC
to optimize it in an off-policy fashion to be consistent with the other comparisons.

14.3 Additional Experimental Metrics

In Figure 14.1 and Figure 14.2, we report cumulative task successes and constraint violations
for all methods for all simulation experiments. We report these statistics for the image-
based obstacle avoidance physical experiment in Figure 14.4. We observe that Recovery RL
is generally very successful across most domains with relatively few violations. Some more
successful comparisons tend to have many more constraint violations.

Additionally, in Figures 14.3 and 14.5, we plot the cumulative reward attained by the
agent for Recovery RL and all comparison algorithms to evaluate whether Recovery RL learns
more efficiently than comparisons while also learning safely. For all plots, we show total
reward attained in each episode smoothed over a 100 episode length window. Additionally,
we do not show results when constraints are violated to prevent negative bias for algorithms
which may violate constraints very frequently, which accounts for gaps in the plot, especially
for the unconstrained algorithm which tends to violate constraints very frequently. Thus, the
plots illustrate the attained reward for all algorithms conditioned on not violating constraints,
which provides a good measure on the quality of solutions found. We find that in addition
to the safe learning shown by Recovery RL as evidenced by the results in Figure 14.2, the
results in Figure 14.3 and Figure 14.5 indicate that when Recovery RL satisfies constraints,
it generally converges to higher quality solutions more quickly compared to the comparison
algorithms. These results provide further evidence that the way Recovery RL separates the
often conflicting objectives of task directed optimization and constraint satisfaction allows
it to not only be safer during learning, but also learn more efficiently.

In Table 14.1, we report empirical results for when constraint violations occur in Ta-
ble 14.1. Results suggest that in most tasks, the recovery policy is already activated when
violations do occur. Thus, in these failure cases, Recovery RL is able to successfully predict
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Figure 14.1: Simulation Experiments Cumulative Successes: We plot the cumulative task
successes for each algorithm in each simulation domain, with results averaged over 10 runs for
all algorithms. We observe that Recovery RL (green), is generally among the most successful
algorithms. In the cases that it has lower successes, we observe that it is safer (Figure 14.2). We
find that Recovery RL has a higher or comparable task success rate to the next best algorithm on
all environments except for the Object Extraction (Dynamic Obstacle) environment.

future violations, but is not able to prevent them. This is encouraging, and suggests that
for environments in which a recovery policy is very challenging to learn, Recovery RL could
still be used to query a human supervisor for interventions.

14.4 Safety Critic Visualizations

We visualize the safety critic after pretraining for the navigation domains in Figure 14.7
and observe that increasing γrisk results in a more gradual increase in regions near obsta-
cles. Increasing γrisk carries more information about possible future violations in Qπ

risk(s, a).
However, increasing γrisk too much causes the safety critic to bleed too much throughout the
state-action space as in the right-most column, making it difficult to distinguish between
safe and unsafe states.

14.5 Implementation Details

Here we overview implementation and hyperparameter details for Recovery RL and all com-
parisons. The recovery policy (πrec) and task policy (πtask) are instantiated and trained in
both the offline phase, in which data from Doffline is used to pre-train the recovery policy,
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Figure 14.2: Simulation Experiments Cumulative Violations: We plot the cumulative con-
straint violations for each algorithm in each simulation domain, with results averaged over 10 runs
for all algorithms. We observe that Recovery RL (green), is among the safest algorithms across
all domains. In the cases where it is less safe than a comparison, it has a higher task success rate
(Figure 14.1).

and the online phase, in which Recovery RL updates the task policy with its exploration
constrained by the learned safety critic and recovery policy. The safety critic and recovery
policy are also updated online.

For all experiments, we build on the PyTorch implementation of Soft Actor Critic [89]
provided in [236] and all trained networks are optimized with the Adam optimizer with a
learning rate of 3e − 4. We first overview the hyperparameters and training details shared
across Recovery RL and comparisons in Section 14.5.2 and then discuss the implementation
of the recovery policy for Recovery RL in Section 14.5.3.

14.5.1 Network Architectures

For low dimensional experiments, we represent the critic with a fully connected neural net-
work with 2 hidden layers of size 256 each with ReLU activations. The policy is also rep-
resented with a fully connected network with 2 hidden layers of size 256 each, uses ReLU
activations, and outputs the parameters of a conditional Gaussian. We use a deterministic
version of the same policy for the model-free recovery policy. For image-based experiments,
we represent the critic with a convolutional neural network with 3 convolutional layers to
embed the input image and 2 fully connected layers to embed the input action. Then, these
embeddings are concatenated and fed through two more fully connected layers. All fully
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Figure 14.3: Simulation Experiments Reward Learning Curve: We show the total reward
attained in each episode smoothed over a 100 episode length window for each simulation domain,
with results averaged over 10 runs for all algorithms. We do not show results when constraints
are violated to prevent negative bias for algorithms which may violate constraints very frequently,
which accounts for gaps in the plot, especially for the unconstrained algorithm which tends to
violate constraints very frequently. Thus, the plots illustrate the attained reward for all algorithms
conditioned on not violating constraints, which provides a good measure on the quality of solutions
found. We find that on all but the dynamic obstacle domain, Recovery RL is able to converge
more quickly to higher quality solutions with respect to the task reward function compared to
comparisons. This indicates that Recovery RL is able to learn more efficiently, in addition to more
safely, compared to comparison algorithms.

Figure 14.4: Physical Experiment Successes and Violations: We plot the cumulative con-
straint violations and task successes for the image-based obstacle avoidance task on the dVRK for
all 3 runs of each algorithm. We observe that Recovery RL is generally both more successful and
safer than LR and unconstrained.
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Figure 14.5: Physical Experiment Reward Learning Curve: We show the total reward
attained in each episode smoothed over a 10 episode length window with results from 3 runs for
all algorithms. We do not show results when constraints are violated to prevent negative bias
for algorithms which may violate constraints very frequently, which accounts for gaps in the plot
or explains why some plots have a single line (only one out of 3 runs is constraint satisfying) .
Note that the Unconstrained algorithm does not appear in the plot as it never makes progress on
the harder initial configuration of the task. Thus, the plots illustrate the attained reward for all
algorithms conditioned on not violating constraints, which provides a good measure on the quality
of solutions found. We find that Recovery RL is able to converge more quickly to higher quality
solutions with respect to the task reward function compared to comparisons. This indicates that
Recovery RL is able to learn more efficiently, in addition to more safely, compared to comparison
algorithms.

connected layers have 256 hidden units each. We utilize 3 convolutional layers, with 128, 64,
and 16 filters respectively. All layers utilize a kernel size of 3, stride of 2, and padding of
1. ReLU activations are used between all layers, and batch normalization units are added
for the convolutional layers. For all algorithms which utilize a safety critic (Recovery RL,
LR, SQRL, RSPO, RCPO), Qπ

risk is represented with the same architecture as the task critic
except that a sigmoid activation is added at the output head to ensure that outputs are
on [0, 1] in order to effectively learn the probability of constraint violation. The task and
model-free recovery policies also use the same architectures for image-based experiments,
except that they output the parameters of a conditional Gaussian over the action space or
an action, respectively.

14.5.2 Global Training Details

To prevent overestimation bias, we train two copies of all critic networks to compute a pes-
simistic (min for task critic, max for safety critic) estimate of the Q-values. Each critic is
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Table 14.1: Constraint Violations Breakdown: We report the proportion of constraint vi-
olations for each environment that occur when the recovery policy is activated for Recovery RL
(format is mean ± standard error). If most constraint violations occur when the recovery policy
is active, this indicates that the safety critic is sufficiently accurate to detect that the recovery
policy must be activated, but may not provide sufficient information to avoid constraint violations.
We note that if the safety critic detects the need for recovery behavior too late, then these errors
are attributed to the recovery policy. For the both Maze environments and the Object Extraction
environment, most constraint violations occur when the recovery policy is activated. In Navigation
1, none occur when the recovery policy is activated, but in this environment constraints are almost
never violated. In the Image-Based obstacle avoidance tasks, most violations occur when the re-
covery policy is not activated, which indicates that the bottleneck in this task is the quality of the
safety critic. In Navigation 2, Recovery RL never violates constraints and only model-free recov-
ery was run for Recovery RL on the physical robot. In the Dynamic Obstacle Object Extraction
environment, we observe a more even combination of low safety critic values and recovery errors
during constraint violations.

Navigation 1 Navigation 2 Maze Object Extraction Object Extraction (Dynamic Obstacle) Image Maze Image Obstacle Avoidance

MF Recovery N/A N/A 0.828± 0.115 0.954± 0.024 0.550± 0.049 0.717± 0.156 0.000± 0.000
MB Recovery N/A 1.000± 0.000 0.858± 0.039 0.98344± 0.01655 0.269± 0.055 0.583± 0.059 N/A

associated with a target network, and Polyak averaging is used to smoothly anneal the pa-
rameters of the target network. We use a replay buffer of size 1000000 and target smoothing
coefficient τ = 0.005 for all experiments except for the manipulation environments, in which
a replay buffer of size 100000 and target smoothing coefficient τ = 0.0002. All networks are
trained with batches of 256 transitions. Finally, for SAC we utilize entropy regularization
coefficient α = 0.2 and do not update it online. We take a gradient step with batch size 1000
to update the safety critic after each timestep. We also update the model free recovery policy
if applicable with the same batch at each timestep. If using a model-based recovery policy,
we update it for 5 epochs at the end of each episode. For pretraining, we train the safety
critic and model-free recovery policy for 10, 000 steps. We train the model-based recovery
policy for 50 epochs.

14.5.3 Recovery Policy Training Details

In this section, we describe the neural network architectures and training procedures used
by the recovery policies for all tasks.

Model-Free Recovery

The model-free recovery policy uses the same architecture as the task policy for all tasks,
as described in Section 14.5.1. However, it directly outputs an action in the action space
instead of a distribution over the action space and greedily minimizes Q̂π

φ,risk rather than
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including an entropy regularization term as in [62]. The recovery policy is trained at each
timestep on a batch of 1000 samples from the replay buffer.

Model-Based Recovery Training Details

For the non-image-based model-based recovery policy, we use PETS [25, 242], which trains
and plans over a probabilistic ensemble of neural networks. We use an ensemble of 5 neural
networks with 3 hidden layers of size 200 and swish activations (except at the output layer) to
output the parameters of a conditional Gaussian distribution. We use the TS-∞ trajectory
sampling scheme from Chua et al. [25] and optimize the MPC optimization problem with 400
samples, 40 elites, and 5 iterations for all environments. For image-based tasks, we utilize a
VAE based latent dynamics model as in Nair et al. [86]. We train the encoder, decoder, and
dynamics model jointly where the encoder and decoder and convolutional neural networks
and the forward dynamics model is a fully connected network. We follow the same archi-
tecture as in Nair et al. [86]. For the encoder we utilize the following convolutional layers
(channels, kernel size, stride): [(32, 4, 2), (32, 3, 1), (64, 4, 2), (64, 3, 1), (128, 4, 2), (128, 3,
1), (256, 4, 2), (256, 3, 1)] followed by fully connected layers of size [1024, 512, 2L] where L
is the size of the latent space (predict mean and variance). All layers use ReLU activations
except for the last layer. The decoder takes a sample from the latent space of dimension
L and then feeds this through fully connected layers [128, 128, 128] which is followed by de-
convolutional layers (channels, kernel size, stride): [(128, 5, 2), (64, 5, 2), (32, 6, 2), (3, 6, 2)].
All layers again use ReLU activations except for the last layer, which uses a Sigmoid ac-
tivation. For the forward dynamics model, we use a fully connected network with layers
[128, 128, 128, L] with ReLU activations on all but the final layer.

14.6 Environment Specific Algorithm Parameters

We use the same γrisk and εrisk for LR, RSPO, SQRL, and RCPO. For LR, RSPO, and SQRL,
we find that the initial choice of λ strongly affects the overall performance of this algorithm
and heavily tune this. We use the same values of λ for LR and SQRL, and use twice the best
value found for LR in as an initialization for the λ-schedule in RSPO. We also heavily tune
λ for RP and RCPO. These values are shown for each environment in Tables 14.3 and 14.2.

14.7 Environment Details

In this section, we provide additional details about each of the environments used for eval-
uation.
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Table 14.2: Hyperparameters for Recovery RL and comparisons for all domains

LR RP RCPO MF Recovery MB Recovery
Navigation 1 (0.8, 0.3, 5000) 1000 (0.8, 0.3, 1000) (0.8, 0.3) (0.8, 0.3, 5)
Navigation 2 (0.65, 0.2, 1000) 3000 (0.65, 0.2, 5000) (0.65, 0.2) (0.65, 0.2, 5)

Maze (0.5, 0.15, 100) 50 (0.5, 0.15, 50) (0.5, 0.15) (0.5, 0.15, 15)
Object Extraction (0.75, 0.25, 50) 50 (0.75, 0.25, 50) (0.75, 0.25) (0.85, 0.35, 15)

Object Extraction (Dyn. Obstacle) (0.85, 0.25, 20) 25 (0.85, 0.25, 10) (0.85, 0.35) (0.85, 0.25, 15)
Image Maze (0.65, 0.1, 10) 20 (0.65, 0.1, 20) (0.65, 0, 1) (0.6, 0.05, 10)

Image Obstacle Avoidance (0.55, 0.05, 1000) N/A N/A (0.55, 0.05) N/A

Table 14.3: Hyperparameters for Recovery RL and all comparisons.

Algorithm Name Hyperparameter Format
LR (γrisk, εrisk, λ)
RP λ

RCPO (γrisk, εrisk, λ)
MF Recovery (γrisk, εrisk)
MB Recovery (γrisk, εrisk, H)

14.7.1 Navigation Environments

The Navigation 1 and 2 environments have linear Gaussian dynamics and are built from
scratch while the Maze environment is built on the Maze environment from [86]. In all
navigation environments, offline data is collected by repeatedly initializing the pointmass
agent randomly in the environment and executing controls to make it collide with the nearest
obstacle.

1. Navigation 1 and 2: This environment has single integrator dynamics with additive
Gaussian noise sampled from N (0, σ2I2) where σ = 0.05 and drag coefficient 0.2. The
start location is sampled from N

(
(−50, 0)>, I2

)
and the task is considered successfully

completed if the agent gets within 1 unit of the origin. We use negative Euclidean
distance from the goal as a reward function. Methods that use a safety critic are
given 8000 transitions of data for offline pretraining. For Navigation 1, 455 of these
transitions contain constraint violating states, while in Navigation 2, 778 of these
transitions contain constraint violating states.

2. Maze: This environment is implemented in MuJoCo and we again use negative Eu-
clidean distance from the goal as a reward function. Methods that use a safety critic are
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given 10, 000 transitions of data for offline pretraining, 1163 of which contain constraint
violating states.

14.7.2 Manipulation Environments

We build two manipulation environments on top of the cartgripper environment in the visual
foresight repository [81]. The robot can translate in cardinal directions and open/close its
grippers. In manipulation environments, offline data is collected by tuning a proportional
controller to guide the robot end effector towards the objects. For the offline constraint
violations, Gaussian noise is added to the controls when the end effector is sufficiently close
to the objects to increase the likelihood of constraint violations. Additionally, to seed the
task critic function for SAC to ease exploration for all algorithms, we utilize the same PID
controller to collect task demos illustrating the red object being successfully lifted by auto-
matically opening and closing the gripper when the end effector is sufficiently close to the
red object.

1. Object Extraction: This environment is implemented in MuJoCo, and the reward
function is −1 until the object is grasped and lifted, at which point it is 0 and the
episode terminates. Constraint violations are determined by checking whether any
object’s orientation is rotated about the x or y axes by at least 15 degrees. All methods
that use a safety critic are given 20, 000 transitions of data for offline pretraining, 363
of which contain constraint violating states. All methods are given 1000 transitions of
task demonstration data to pretrain the task policy’s critic function.

2. Object Extraction (Dynamic Obstacle): This environment is implemented in
MuJoCo, and the reward function is −1 until the object is grasped and lifted, at
which point it is 0 and the episode terminates. Constraint violations are determined
by checking whether any object’s orientation is rotated about the x or y axes by at
least 15 degrees. Additionally, there is a distractor arm that is moving back and forth
in the workspace in a periodic fashion. Arm collisions are also considered constraint
violations. All methods that use a safety critic are given 20, 000 transitions of data for
offline pretraining, 896 of which contain constraint violating states. All methods are
given 1000 transitions of task demonstration data to pretrain the task policy’s critic
function.

14.7.3 Image Maze

This maze is also implemented in MuJoCo with different walls from the maze that has
ground-truth state. Constraint violations occur if the robot collides with a wall. All methods
are only supplied with RGB images as input, and all methods that use the safety critic are
supplied with 20, 000 transitions for pretraining, 3466 of which contain constraint violating
states.
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Figure 14.6: Additional Physical Experiment: The image reacher task on the dVRK involves
guiding the end effector to a target position while avoiding an invisible stay out zone in the center of
the workspace. We plot the cumulative constraint violations and task successes the image reacher
task on the dVRK. We observe that Recovery RL is both more successful and safer than LR and
unconstrained.

14.7.4 Physical Experiments

Physical experiments are run on the da Vinci Research Kit (dVRK) [78], a cable-driven
bilateral surgical robot. Observations are recorded and supplied to the policies from a Zivid
OnePlus RGBD camera. However, we only use RGB images, as the capture rate is much
faster, and we subsample the images so input images have dimensions 48 × 64 × 3. End
effector position is checked by the environment using the robot’s odometry to check task
completion, but this is not supplied to any of the policies. In practice, the robot’s end
effector position can be slightly inaccurate due to cabling effects such as hysteresis [151], but
we ignore these effects in this chapter. We train a neural network to classify whether the
robot is in collision based on its current readings and joint position. All methods that use a
safety critic are supplied with 6, 000 transitions of data for pretraining, 649 of which contain
constraint violating states. As for the navigation environments, offline data is collected by
randomly initializing the end effector in the environment and guiding it towards the nearest
obstacle. To reduce extrapolation errors during learning, we sample a start state on the right
and left sides of the workspace with equal probability.

14.7.5 Additional Physical Experiment

We also evaluate Recovery RL and comparisons on an image-based reaching task where the
robot must make sure the end effector position does not intersect with a stay out zone in
the center of the workspace instead of physical bumpers. The setup is almost identical to
the setup described in Section 14.7.4. We again provide RGB images to algorithms, and
use 10,000 transitions to pre-train the safety critic. We again find that Recovery RL is able
to outperform comparisons on this task, both in terms of constraint satisfaction, and task
completion.
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Figure 14.7: Q̂πφ,risk Visualization: We plot the safety critic Qπrisk for the navigation environments
using the cardinal directions (left, right, up, down) as action input. We see that as γrisk is in-
creased, the gradient is lower, and the the function more gradually increases as it approaches the
obstacles. Increasing γrisk essentially increases the amount of information preserved from possible
future constraint violations, allowing them to be detected earlier. These plots also illustrate action
conditioning of the safety critic values. For example, the down action marks states as more unsafe
than the up action directly above walls and obstacles.
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Chapter 15

Appendix for Chapter 9

15.0.1 Algorithm Description

The full detail of the MESA algorithm is described in Algorithm 5. In Phase 1, Offline
Meta-Learning, the safety critic is updated with a MAML-style objective. In Phase 2, both
the safety critic and recovery policy adapt to the test environment with a small offline test
dataset. Finally, in Phase 3, the agent interacts with the test environment by using Recovery
RL [8] to avoid constraint violations.

15.0.2 Hyperparameters for MESA and Comparisons

We report global hyperparameters shared across all algorithms in Table 15.1 and additionally
include domain specific hyperparameters in separate tables in Tables 15.2, 15.3, and 15.4.
We use the same base neural network architecture for the safety critic, recovery policy, actor
for the task policy, and critic for the task policy. This base network is a fully connected
network with 2 hidden layers each with 256 hidden units. For the task policy, we utilize the
Soft Actor Critic algorithm from [62] and build on the implementation provided in [236].

15.0.3 Dataset Details

To collect datasets from the training environments, we train SAC on each of the training en-
vironments and log the replay buffer from an intermediate checkpoint. For the HalfCheetah-
Disabled and Ant-Disabled tasks, we collect 4 and 3 training datasets of 400 episodes (on
average ∼400K transitions with 14K and 113K violations) respectively. The dataset from the
testing environment consists of 40K transitions (2.4K, and 11.2K violations for HalfChee-
tah, Ant), which is 10x smaller than before. For the Cartpole-Length task, 20 training
datasets are generated, with each containing 200 episodes of data (∼20K timesteps with
4.5K violations). The dataset from the testing environment contains 1K transitions (with
200 violations), which is 20x smaller than before.
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Algorithm 5 MEta-learning for Safe Adaptation (MESA)

Require: Training datasets Dtrain = {Dtrain
i }Ntrain

i=1 , adaptation dataset Dtest, task horizon
H, safety threshold εrisk, safety critic step sizes α1 and α2, recovery policy step size β.
for i ∈ {1, . . . N} do . Phase 1: Offline Meta-Learning

for j ∈ {1, . . . K} do
Sample Dtrain

j ∼ Dtrain

ψ′j ← ψ − α1 · ∇ψLrisk

(
ψ,Dtrain

j

)
end for
for j ∈ {1, . . . K} do

Sample Dtest
j ∼ Dtest

end for
ψ ← ψ − α2 ·

∑
j∇ψLrisk

(
ψ′j,Dtrain

j

)
ω ← ω − β · ∇ωLπrec (ω,Dtest)

end for
for i ∈ {1, . . .M} do . Phase 2: Test Time Adaptation

ψ ← ψ − α1 · ∇ψLrisk (ψ,Dtest)
ω ← ω − β · ∇ωLπrec (ω,Dtest)

end for
Dtask ← ∅
while not converged do . Phase 3: Recovery RL

s1 ∼ env.reset()

for t ∈ {1, . . . H} do
aπt , a

rec
t ∼ πθ(·|st), πrec(·|st)

if Qπ
risk(st, at) ≤ εrisk then
at = aπt

else
at = arec

t

end if
Execute at, observe rt, ct, and st+1

Add (st, a
π
t , ct, st+1) to Dtest

Add (st, at, rt, st+1) to Dtask

θ ← θ − γ · ∇θLπ
(
θ,Dtask

)
ψ ← ψ − α1 · ∇ψLsafe (ψ,Dtest)
ω ← ω − β · ∇ωLπrec (ω,Dtest)
if ct then

End episode
end if

end for
end while
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Hyperparameters Unconstrained RRL Multi-Task MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 10000 10000
Inner Batch Size |Bin| — — — 256
Outer Batch Size |Bout| — — — 256
Inner Adaptation Steps — — — 1
Inner LR α1 — — — 0.001
Outer LR α2 — — — 0.00001
Task Batch Size K — — — 5
Adam LR η — — 0.0003 —
Batch Size B — — 256 —

Phase 2: Offline Finetuning (Dtest)

Total Iterations M — 10000 500 500
Batch Size B — 256 256 256
Adam LR — 0.0003 η α1

Phase 3: Online Finetuning

Adam LR 0.0003 0.0003 η α1

Batch Size B 256 256 256 256
Discount γ 0.99 0.99 0.99 0.99
γrisk — 0.8 0.8 0.8
εrisk — 0.1 0.1 0.1

Table 15.1: Algorithm Hyperparameters.

Hyperparameters Unconstrained RRL Multi-Task MESA

Phase 2: Offline Finetuning (Dtest)

Total Iterations M — 2000 100 100
Batch Size B — 64 64 64

Phase 3: Online Finetuning

γrisk (Navigation 2) — 0.65 0.65 0.65
εrisk (Navigation 1) — 0.3 0.3 0.3

Table 15.2: Navigation Hyperparameter Differences
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Hyperparameters Unconstrained RRL Multi-Task MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 15000 15000

Table 15.3: HalfCheetah-Disabled Hyperparameter Differences.

Hyperparameters Unconstrained RRL Multi-Task MESA

Phase 1: Offline Training (Dtrain)

Total Iterations — — 15000 15000

Phase 3: Online Finetuning

Risk Threshold εrisk — 0.3 0.3 0.3

Table 15.4: Ant-Disabled Hyperparameter Differences.

Dataset Ntrain |Dtrain| |Dtest|

Cartpole-Length 20 20K 1K
HalfCheetah-Disabled 4 400K 40K
Ant-Disabled 3 400K 40K

Table 15.5: Dataset Hyperparameters.

For all environments, datasets are collected by an early-stopped SAC run, where the
episode does not end on constraint violation. The testing dataset is collected by a randomly
initialized policy. Each episode consists of 1000 timesteps.
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Chapter 16

Appendix for Chapter 10

Here we provide further details on our MuJoCo experiments, hyperparameter sensitivity,
simulated fabric experiments, and physical fabric experiments.

16.0.1 MuJoCo

As stated in the main text, we evaluate on the HalfCheetah-v2, Walker2D-v2, and Ant-v2
environments. To train the algorithmic supervisor, we utilize the TD3 implementation from
OpenAI SpinningUp (https://spinningup.openai.com/en/latest/) with default hyper-
parameters and run for 100, 200, and 500 epochs respectively. The expert policies obtain
rewards of 5330.78 ± 117.65, 3492.08 ± 1110.31, and 4492.88 ± 1580.42, respectively. Note
that the experts for Walker2D and Ant have high variance, resulting in higher variance for
the corresponding learning curves in Figure 8.3. We provide the state space dimensionality
|S|, action space dimensionality |A|, and LazyDAgger hyperparameters (see Algorithm 1) for
each environment in Table 16.1. The βH value in the table is multiplied with the maximum
possible action discrepancy ||ahigh − alow||22 to become the threshold for training f(·). In
MuJoCo environments, ahigh = ~1 and alow = −~1. The βH value used for SafeDAgger in all
experiments is chosen by the method provided in the paper introducing SafeDAgger [19]:
the threshold at which roughly 20% of the initial offline dataset is classified as “unsafe.”

For LazyDAgger and all baselines, the actor policy πR(·) is a neural network with 2
hidden layers with 256 neurons each, rectified linear unit (ReLU) activation, and hyperbolic
tangent output activation. For LazyDAgger and SafeDAgger, the discrepancy classifier f(·)
is a neural network with 2 hidden layers with 128 neurons each, ReLU activation, and
sigmoid output activation. We take 2,000 gradient steps per epoch and optimize with Adam
and learning rate 1e-3 for both neural networks. To collect D and DS in Algorithm 1 and
SafeDAgger, we randomly partition our dataset of 4,000 state-action pairs into 70% (2,800
state-action pairs) for D and 30% (1,200 state-action pairs) for DS.

https://spinningup.openai.com/en/latest/
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Environment |S| |A| N T βH βR σ2

HalfCheetah 16 7 10 5000 5e-3 βH / 10 0.30
Walker2D 16 7 15 5000 5e-3 βH / 10 0.10
Ant 111 8 15 5000 5e-3 βH / 2 0.05

Table 16.1: MuJoCo Hyperparameters: |S| and |A| are aspects of the Gym environments while
the other values are hyperparameters of LazyDAgger (Algorithm 1). Note that T and βH are the
same across all environments, and that βR is a function of βH .

16.0.2 LazyDAgger Switching Thresholds

As described in Section 8.5.1, the main LazyDAgger hyperparameters are the safety thresh-
olds for switching to supervisor control (βH) and returning to autonomous control (βR). To
tune these hyperparameters in practice, we initialize βH and βR with the method in Zhang
et al. [19]; again, this sets the safety threshold such that approximately 20% of the initial
dataset is unsafe. We then tune βH higher to balance reducing the frequency of switching to
the supervisor with allowing enough supervision for high policy performance. Finally we set
βR as a multiple of βH , starting from βR = βH and tuning downward to balance improving
the performance and increasing intervention length with keeping the total number of ac-
tions moderate. Note that since these parameters are not automatically set, we must re-run
experiments for each change of parameter values. Since this tuning results in unnecessary
supervisor burden, eliminating or mitigating this requirement is an important direction for
future work.

To analyze sensitivity to βR and βH , we plot the results of a grid search over parameter
values on each of the MuJoCo environments in Figure 16.1. Note that a lighter color in the
heatmap is more desirable for reward while a darker color is more desirable for actions and
switches. We see that the supervisor burden in terms of actions and context switches is not
very sensitive to the threshold as we increase βH but jumps significantly for the very low
setting (βH = 5× 10−4) as a large amount of data points are classified as unsafe. Similarly,
we see that reward is relatively stable (note the small heatmap range for HalfCheetah) as
we decrease βH but can suffer for high values, as interventions are not requested frequently
enough. Reward and supervisor burden are not as sensitive to βR but follow the same trends
we expect, with higher reward and burden as βR decreases.

16.0.3 Fabric Smoothing in Simulation

Fabric Simulator

More information about the fabric simulator can be found in Seita et al. [228], but we review
the salient details here. The fabric is modeled as a mass-spring system with a n×n square grid
of point masses. Self-collision is implemented by applying a repulsive force between points
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Figure 16.1: LazyDAgger βR and βH sensitivity heatmaps across the 3 MuJoCo environments. The
x-axis denotes βH and the y-axis denotes βR. Note that βR is a function of βH . Each of the 3
environments was run 9 times with the different settings of βR and βH . As in Figure 8.3 we plot
test reward, number of supervisor actions, and number of context switches.

that are sufficiently close together. Blender (https://blender.org/) is used to render the
fabric in 100× 100× 3 RGB image observations. See Figure 8.4 for an example observation.
The actions are 4D vectors consisting of a pick point (x, y) ∈ [−1, 1]2 and a place point
(∆x,∆y) ∈ [−1, 1]2, where (x, y) = (−1,−1) corresponds to the bottom left corner of the
plane while (∆x,∆y) is multiplied by 2 to allow crossing the entire plane. In simulation,
we initialize the fabric with coverage 41.1 ± 3.4% in the hardest (Tier 3) state distribution
in [228] and end episodes if we exceed 10 time steps, cover at least 92% of the plane, are at
least 20% out of bounds, or have exceeded a tearing threshold in one of the springs. We use
the same algorithmic supervisor as [228], which repeatedly picks the coordinates of the corner
furthest from its goal position and pulls toward this goal position. To facilitate transfer to
the real world, we use the domain randomization techniques in [228] to vary the following
parameters:

• Fabric RGB values uniformly between (0, 0, 128) and (115, 179, 255), centered around
blue.

• Background plane RGB values uniformly between (102, 102, 102) and (153, 153, 153).

• RGB gamma correction uniformly between 0.7 and 1.3.

• Camera position (x, y, z) as (0.5+δ1, 0.5+δ2, 1.45+δ3) meters, where each δi is sampled
from N (0, 0.04).

• Camera rotation with Euler angles sampled from N (0, 90◦).

https://blender.org/
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• Random noise at each pixel uniformly between -15 and 15.

For consistency, we use the same domain randomization in our sim-to-sim (“simulator to
simulator”) fabric smoothing experiments in Section 8.6.2.

Actor Policy and Discrepancy Classifier

The actor policy is a convolutional neural network with the same architecture as [228], i.e.
four convolutional layers with 32 3x3 filters followed by four fully connected layers. The
parameters, ignoring biases for simplicity, are:

policy/convnet/c1 864 params (3, 3, 3, 32)

policy/convnet/c2 9216 params (3, 3, 32, 32)

policy/convnet/c3 9216 params (3, 3, 32, 32)

policy/convnet/c4 9216 params (3, 3, 32, 32)

policy/fcnet/fc1 3276800 params (12800, 256)

policy/fcnet/fc2 65536 params (256, 256)

policy/fcnet/fc3 65536 params (256, 256)

policy/fcnet/fc4 1024 params (256, 4)

Total model parameters: 3.44 million

The discrepancy classifier reuses the actor’s convolutional layers by taking a forward pass
through them. We do not backpropagate gradients through these layers when training the
classifier, but rather fix these parameters after training the actor policy. The rest of the
classifier network has three fully connected layers with the following parameters:

policy/fcnet/fc1 3276800 params (12800, 256)

policy/fcnet/fc2 65536 params (256, 256)

policy/fcnet/fc3 1024 params (256, 4)

Total model parameters: 3.34 million

Training

Due to the large amount of data required to train fabric smoothing policies, we pretrain the
actor policy (not the discrepancy classifier) in simulation. The learned policy is then fine-
tuned to the new environment while the discrepancy classifier is trained from scratch. Since
the algorithmic supervisor can be queried cheaply, we pretrain with DAgger as in [228]. To
further accelerate training, we parallelize environment interaction across 20 CPUs, and before
DAgger iterations we pretrain with 100 epochs of Behavior Cloning on the dataset of 20,232
state-action pairs available at [228]’s project website. Additional training hyperparameters
are given in Table 16.2 and the learning curve is given in Figure 16.2.

Experiments

In sim-to-sim experiments, the initial policy is trained on a 16x16 grid of fabric in a range
of colors centered around blue with a spring constant of k = 10, 000. We then adapt this
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Hyperparameter Value
BC Epochs 100
DAgger Epochs 100
Parallel Environments 20
Gradient Steps per Epoch 240
Env Steps per Env per DAgger Epoch 20
Batch Size 128
Replay Buffer Size 5e4
Learning Rate 1e-4
L2 Regularization 1e-5

Table 16.2: DAgger Hyperparameters. After Behavior Cloning, each epoch of DAgger (1) runs
the current policy and collects expert labels for 20 time steps in each of 20 parallel environments
and then (2) takes 240 gradient steps on minibatches of size 128 sampled from the replay buffer.

Figure 16.2: Behavior Cloning and DAgger performance across 10 test episodes evaluated every
10 epochs. Shading indicates 1 standard deviation. The first 100 epochs (left half) are Behavior
Cloning epochs and the second 100 (right half) are DAgger epochs.

policy to a new simulator with different physics parameters and an altered visual appearance.
Specifically, in the new simulation environment, the fabric is a higher fidelity 25x25 grid with
a lower spring constant of k = 2, 000 and a color of (R, G, B) = (204, 51, 204) (i.e. pink),
which is outside the range of colors produced by domain randomization (Section 16.0.3).
Hyperparameters are given in Table 16.3.

16.0.4 Fabric Manipulation with the ABB YuMi

Experimental Setup

We manipulate a brown 10” by 10” square piece of fabric with a single parallel jaw gripper as
shown in Figure 8.1. The gripper is equipped with reverse tweezers for more precise picking of
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Hyperparameter Value
N 10
T 20
βH 0.001
βR βH
σ2 0.05
Initial |D| 1050
Initial |DS| 450
Batch Size 50
Gradient Steps per Epoch 200
π Learning Rate 1e-4
f Learning Rate 1e-3
L2 Regularization 1e-5

Table 16.3: Hyperparameters for sim-to-sim fabric smoothing experiments, where the first 5 rows
are LazyDAgger hyperparameters in Algorithm 1. Initial dataset sizes and batch size are in terms
of images after data augmentation, i.e. scaled up by a factor of 15 (see Section 16.0.4). Note that
the offline data is split 70%/30% as in Section 16.0.1.

deformable materials. Neural network architecture is consistent with Section 16.0.3 for both
actor and safety classifier. We correct pick points that nearly miss the fabric by mapping
to the nearest point on the mask of the fabric, which we segment from the images by color.
To convert neural network actions to robot grasps, we run a standard camera calibration
procedure and perform top-down grasps at a fixed depth. By controlling the width of the
tweezers via the applied force on the gripper, we can reliably pick only the top layer of
the fabric at a given pick point. We provide LazyDAgger-Execution hyperparameters in
Table 16.4.

Image Processing Pipeline

In the simulator, the fabric is smoothed against a light background plane with the same size
as the fully smoothed fabric (see Figure 8.4). Since the physical workspace is far larger than
the fabric, we process each RGB image of the workspace by (1) taking a square crop, (2)
rescaling to 100 × 100, and (3) denoising the image. Essentially we define a square crop of
the workspace as the region to smooth and align against, and assume that the fabric starts
in this region. These processed images are the observations that fill the replay buffer and
are passed to the neural networks.

User Interface

When the system solicits human intervention, an interactive user interface displays a scaled-
up version of the current observation. The human is able to click and drag on the image to
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Figure 16.3: The user interface for human interventions. The current observation of the fabric state
from the robot’s perspective is displayed, with an overlaid green arrow indicating the action the
human has just specified.

provide a pick point and pull vector, respectively. The interface captures the input as pixel
locations and analytically converts it to the action space of the environment (i.e. a ∈ [−1, 1]4)
for the robot to execute. See Figure 16.3 for a screen capture of the user interface.

Data Augmentation

To prevent overfitting to the small amount of real data, before adding each state-action pair
to the replay buffer, we make 10 copies of it with the following data augmentation procedure,
with transformations applied in a random order:

• Change contrast to 85-115% of the original value.

• Change brightness to 90-110% of the original value.

• Change saturation to 95-105% of the original value.

• Add values uniformly between -10 and 10 to each channel of each pixel.

• Apply a Gaussian blur with σ between 0 and 0.6.

• Add Gaussian noise with σ between 0 and 3.

• With probability 0.8, apply an affine transform that (1) scales each axis independently
to 98-102% of its original size, (2) translates each axis independently by a value between
-2% and 2%, and (3) rotates by a value between -5 and 5 degrees.
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Hyperparameter Value
βH 0.004
βR βH
|D| 875
|DS| 375
Batch Size 50
Gradient Steps per Epoch 125
π Learning Rate 1e-4
f Learning Rate 1e-3
L2 Regularization 1e-5

Table 16.4: Hyperparameters for physical fabric experiments provided in the same format as Ta-
ble 16.3. Since this is at execution time, N , T and σ2 hyperparameters do not apply.
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