
Synergy of Prediction and Control in Model-based

Reinforcement Learning

Nathan Lambert

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-65

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-65.html

May 11, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Synergy of Prediction and Control in Model-based Reinforcement Learning

by

Nathan Owen Lambert

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kristofer S.J. Pister, Chair
Dr. Roberto Calandra

Professor Sergey Levine
Professor Claire Tomlin

Spring 2022

Synergy of Prediction and Control in Model-based Reinforcement Learning

Copyright 2022
by

Nathan Owen Lambert

1

Abstract

Synergy of Prediction and Control in Model-based Reinforcement Learning

by

Nathan Owen Lambert

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kristofer S.J. Pister, Chair

Model-based reinforcement learning (MBRL) has often been touted for its potential to im-
prove on the sample-efficiency, generalization, and safety of existing reinforcement learning
algorithms. These model-based algorithms constrain the policy optimization during trial-
and-error learning to include a structured representation of the environment dynamics. To
date, the posited benefits have largely been left as directions for future work. This thesis
attempts to illustrate the central mechanism in MBRL: how a learned dynamics model in-
teracts with decision making. A better understanding of this interaction will point the field
in the direction of enabling the posited benefits.

This thesis encompasses the interaction of model-learning with decision making with re-
spect to two central issues: compounding prediction errors and objective mismatch. The
compounding error challenge emerges from accumulating errors on recursive passes of any
one-step transition model. Most dynamics models are trained for single-step accuracy, which
often results in models with substantial long-term prediction error. Additionally, the model
being trained for accurate transitions need not guarantee high-performance policies on the
downstream task. The lack of correlation between model and policy metrics in separate
optimization is coined and studied as Objective Mismatch.

These challenges are primarily studied in the context of sample-based model predictive con-
trol (MPC) algorithms, where the learned model is used to simulate trajectories and their
resulting predicted rewards. To mitigate compounding error and objective mismatch, the
trajectory-based dynamics model is a feedforward prediction parametrization containing a
direct representation of time. This model represents one small, but important steps towards
more useful dynamics models in model-based reinforcement learning. This thesis concludes
with future directions on the synergy of prediction and control in MBRL, primarily focused
on state-abstractions, temporal correlation, and future prediction methodologies.

i

ii

To my family and dear friends.

iii

iv

Acknowledgments

Thank you to my advisor, Kris, for admitting me to this wildly exciting place of graduate
study, U.C. Berkeley Electrical Engineering and Computer Sciences. Even though my re-
search interests have consistently moved me away from your core research, you have never
slowed in your support of me. You enabled me to take on something different in my Ph.D.
and the result is successful beyond what we would have ever anticipated. This advising
relationship hopefully helped you grow, and I look forward to see what we discover together
in the future.

I was lucky to pair Kris with my mentor, colleague, co-advisor, and friend Roberto. When
I started working with you, it was a tireless effort to prove myself in your field. Your support
of me through this transition – ultimately acting as if I always belonged – has been central
to my successes. I look forward to continuing to working together.

Beyond my advisors, I would like to thank some close collaborators within the Pister
Group: First, thank you to Dan and Craig for doing the selfless mentorship work early in
my Ph.D. that helped me get my feet underneath me. We are short a few celebrations, as
our paths were artificially separated due to the pandemic. Thank you Lydia, for being a
great desk-buddy – we even have published together and we never saw that coming! I was
lucky to work closely with three other Berkeley Ph.D. students in the latter half of my Ph.D.,
Sarah, Thomas, and Tom, who formed our team doing formative work understanding how
AI will integrate with society. Through a relatively independent Ph.D., you all made me
remember some normal joys of being a collaborative graduate student and accepted me in a
challenging time for myself, where we have now become close friends.

I do not know where I would be in my life without my family and specifically my brother
Victor. V, Your compassion, patience, support, charisma, and love are just the beginning
of my admiration for you. My parents Jean and Rob, you supported me through challenges
that I did always admit I was having. I am glad that we got to expand on our parent-child
relationships and become closer friends through my Ph.D. Cathy, your addition to our family
is a unilaterally positive addition and you inspire me to follow my dreams. Max, while our
future is unsure, I thank you for showing me how to love way more about this world. Our
journey through COVID was always exciting and fearless; we are stronger from it. Thank
you all for your patience.

My closest friends have contributed to this culminating work. Berkeley introduced me to
Vikram, Saavan, Mau, Divya, and many others who now will make it even harder to leave
the Bay. Thank you to Rohit for your never-ending willingness and joy in dealing with our
unusual communication styles. Our friendship has taken on many forms during my Ph.D.,
but it has never dimmed and it will continue to flourish. Olav, Erik, Scott, and Lav – our
friendships are not in close proximity, but we have never missed a beat.

This dissertation represents the closure on a long path of growth for me, and while I did
not mention everyone here, I hold appreciation for all who helped me get to today.

v

vi

Contents

Contents vi

1 Introduction 1

2 Learning Dynamics for Reinforcement Learning: A Brief Review 3
2.1 Motivation & Preliminaries . 3
2.2 Model Types: What to Model . 7
2.3 Tools for Prediction: How to Model . 12
2.4 Propagating Trajectories . 17

3 Using MBRL: Case-study with Sample-based Control 18
3.1 Experimental Setup . 18
3.2 Learning System . 19
3.3 Control Optimization . 22
3.4 Results . 24

4 Compounding Prediction Errors in Learned Models 27
4.1 Problem Formulation . 28
4.2 Experimental Setting . 29
4.3 The Effects of System Properties . 34
4.4 The Effects of Model Training and Parametrization 40
4.5 Other Factors Impacting Compounding Error 43
4.6 Case Studies of Compounding Error with Real World Data 47
4.7 Understanding Compounding Error . 48
4.8 Future Work . 48

5 Objective Mismatch in Reinforcement Learning 50
5.1 The Origin of Objective Mismatch . 50
5.2 Experimental Setting . 53
5.3 Correlating Model Loss and Episode Reward 53
5.4 Examining Model Loss vs Episode Reward Per Training Epoch 54
5.5 Decoupling Model Loss from Controller Performance 56

vii

5.6 Mitigating Mismatch During Training . 58
5.7 Discussion . 60

6 Trajectory-based Dynamics Model 62
6.1 A New Prediction Formulation . 62
6.2 Benefits of Trajectory-based Models . 64
6.3 Experimental Setting . 65
6.4 Long-term Prediction Accuracy . 67
6.5 Accelerated Data Efficiency . 69
6.6 Predictive Episode Reward . 70
6.7 Iterative Learning of Control Parameters . 71
6.8 Model Predictive Control with Trajectory-based Models 71
6.9 Predicting Unstable and Periodic Dynamics 73
6.10 Related Work . 74

7 Future Directions and Open Challenges 76
7.1 Filling the Gap Between Model-based and Model-free 76
7.2 Accurate, Generalizable, and Transferable Predictions 76
7.3 Spatio-temporal Abstractions . 77
7.4 Computational Efficiency: From Planning to Reactive Policies 78
7.5 Solving Objective Mismatch . 78
7.6 Bridging Curiosity-based Motivation, Pixel- and State-based MBRL, and Ex-

ploration . 79
7.7 Additional Benefits of Learning a Model . 80

8 Conclusion 82

Bibliography 83

1

Chapter 1

Introduction

Deep reinforcement learning (RL) has emerged as a powerful candidate for generating decision-
making agents that can surpass that of human experts. Recent successes originated with re-
search in games [SAH+20], but related techniques have been emerging in robotics [KVC+21],
autonomous-vehicles [Ell21], efficient computing [MZR+22], energy technology [DFB+22],
and likely many more projects not yet announced or shared. The core of reinforcement
learning is a numerical methodology for open-ended trial-and-error learning. An agent acts
in an environment, observes a state and a reward, and then uses that information to make
decisions about the future. This framework is designed to allow consistent improvement in
behavior by feedback over rewards and current parameters. To date, the most successful
variants of these algorithms have been data- and compute-hungry, highly specialized, and
operating in an end-to-end manner.

Model-based reinforcement learning (MBRL) is the conceptual counter to large end-to-
end systems, where the learning agent includes the structured optimization of a dynamics
model of the environment to make downstream decisions. The strengths of end-to-end learn-
ing, namely its power to optimize and scaling with data and compute, how been crucial to
its recent successes. With these strengths come a series of downsides that are more difficult
to address: at-scale model-free reinforcement learning is known to exploit the environment
and be opaque to audits of decision reasoning. Learning a structured dynamics model of the
environment has been shown to have benefits in sample-efficiency, and is touted for its po-
tential to convey strengths in generalization, interpretability, and safety – positioning itself
as a solution to large open problems in the field.

At the implementation level, most recent model-based reinforcement learning methods
learn a model to represent discrete transitions in the environment. These transition approx-
imations are used with a variety of decision making schemes to maximize reward, such as
sample-based planning or actor-critic algorithms. This thesis aims to discuss and address
critical issues limiting the pairing of learned dynamics models with a separately optimized
control policy. There is a crucial difference between learning a model to accurately predict
the dynamics of a system and learning a model to reliably convey high-performance policies.
Developing this understanding is central to unlocking the posited benefits of model-based

CHAPTER 1. INTRODUCTION 2

learning.
This thesis begins with a review of existing methods for learning models for control in

the context of model-based reinforcement learning, Chapter 2, with particular focus given to
how techniques interface with different environments and controllers. The review is comple-
mented with a brief case-study on applying model-based reinforcement learning to low-level
control of a quadrotor in Chapter 3. Following, the thesis focuses on two issues limiting the
advancement of MBRL techniques. One issue, the compounding error problem, emerges as
prediction errors accumulating with each forward pass. This issue, addressed in Chapter 4
and based on our recent work [LPC22], focuses on how an understanding of one’s application
domain can be integrated into an understanding of how a model propagates trajectories.

On the other hand, an accurate model may not be shifting the agent’s optimization
space to be optimal in reward. Objective Mismatch arises when two separate optimization
problems are executed sequentially in the hopes of achieving one downstream goal. This
effect, described in Chapter 5 and our recent work [LAYC20], with respect to the optimization
of an accuracy-based dynamics model inducing a policy with a task-based goal.

The popular algorithms using sample-based model predictive control (MPC), such as
PETS [CCML18], POPLIN [WB20], and PDDM [NKLK20] suffer from both objective mis-
match and compounding prediction errors. This thesis concludes with the study of a new
class of dynamics model aimed at mitigating these challenges – the trajectory-based model.
By adding an explicit notion of time, the trajectory-based model conveys benefits in long-
term prediction accuracy, uncertainty quantification, and computational efficiency – shown
in Chapter 6 [LWZPC21].

Model-based reinforcement learning has many open research and engineering challenges,
noted by the challenges addressed in this thesis and the relative low-density of algorithms
when compared to model-free or offline RL algorithms. This thesis concludes with future di-
rections for the field, primarily interested in temporal abstractions and long-term predictions
(Chapter 7).

3

Chapter 2

Learning Dynamics for Reinforcement
Learning: A Brief Review

This chapter is a progression from the basic ideation of reinforcement learning, to the moti-
vation of learning models for decision making, and a detailed discussion of which models we
may want to learn.

2.1 Motivation & Preliminaries

Learning by Reinforcement

Machine Learning (ML) is the field of study focusing on using computation to make decisions
in the presence of uncertainty. Classic notions of machine learning theory include trading
off between the structural biases of a model and the inherent variance in observing partial
data, developing model architectures for specific applications, understanding data with and
without labels, and more. The general pipeline of a ML problems follows as inputs of a
desired functionality and a dataset and outputs of a model to predict said data based on
some underlying loss function.

The leading question with any machine learning method is: how do we utilize it to
make decisions? A prediction is only a source of information that must be integrated into
a broader framework to take action Countless products in modern life use the outputs of
machine learning models to feed suggestions to users. Though, these systems largely are
hand-engineered and did not converge on these actionable traits on their own. Here lies the
modern motivation for learning by reinforcement: how do we deploy tools that can learn to
make decisions autonomously?

Reinforcement Learning (RL) is a framework where an agent interacts with an envi-
ronment to solve a task by trial and error. The framework which this thesis builds on is
visualized in Fig. 2.1, and encompasses two entities: 1) the agent, that is often defined by
its evolving decision making rule, called the policy π, and 2) the environment, that is often

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 4

Agent

Target
Environment

Figure 2.1: A basic visualization of the feedback inherent to reinforcement learning. The
agent takes an action at corresponding to its policy πθ and the current state of the environ-
ment st. The environment outputs a scalar reward rt based on the current state and action.

assumed to be a static playground by which the agent learns its abilities. The RL framework
often combines multiple sub-components of traditional machine learning that are directly op-
timized for the purpose of taking actions. The central addition is the notion of an observed
reward function by which the agent will tune its behavior.

The motivation and history of enabling autonomous learning agents comes from multiple
directions. Broadly, the idea of learning via reinforcement has been of interest of scientists
looking to imitate their mental processes. Though, a major driving force to progress in the
computational methods for achieving this goal emerged from the field of optimal control. By
enabling an agent with dynamic programming, a policy could converge to the optimal policy
by modelling the expected return from a given state [Bel57]. These ideas, now described by
the Bellman Operator are central to modern successes in deep reinforcement learning.

Why Learn a Model

In designing a RL agent, the design question with the largest impact on the downstream
behavior is whether or not to include a structured dynamics model of the environment. This
trade-off, described as model-free or model-based, changes how decisions are made and ex-
perience is stored. Those algorithms learning a structured representation of the dynamics,
called model-based, are known to have better sample-efficiency and generalization capabili-
ties than their model-free counterparts. Though, these methods are historically more difficult
to implement, computationally intensive, and sometimes weaker performing.

Model-based reinforcement learning is well-motivated by a broader literature and is often
touted for its potential to overcome these shortcomings. Leveraging local models of the world
is widely accepted as a central mechanism of human cognition [Kaw99; DSD12], where
different temporal abstractions of the world allow flexible decision making. Given that the
field of reinforcement learning has long been motivated by realizing this understanding in
decision making algorithms [SB18], MBRL is a natural continuation of mirroring human
capabilities. Beyond these conceptual goals, learned models convey multiple structured

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 5

strengths that represent rich areas of recent work and important avenues for the future
of model-based reinforcement learning. Here we discuss its potential for data-efficiency,
generalization, safe decision making, interpretability, and exploration.

Data-efficiency Data-efficiency in RL is often characterized as the number of steps in
the discrete environment that are need to solve a goal (in the real world, this directly links
to clock time). Constraining the learning process to include a dynamics model induces
a structural bias on the parameter space that substantially reduces the search-space over
behaviors the agent can express 1. This constrained search is the central idea behind the
data-efficiency benefits of learning models for control. Data-efficiency is crucial for certain
applications where every trial is even more costly, such as novel robotics [DLSP18; LSDP20]
and healtcare [GJK+19].

Generalization Generalization in RL is the ability for an agent to move from one area in
its environment to a not yet seen area without a drop in performance. A dynamics model
learned for one task can be used for generalization when the agent behavior or state-space
region needs to change, so long as the model extrapolates correctly between previous versions
of the state-action space [KZGR21] 2. Compared to model-free counterparts, a dynamics
model can readily be used to induce a new policy for a new task with a simple change of the
dynamics model. This ability to keep the same model and change the behavior of the reward
function is the strength of entirely planning based approaches, where model-free agents are
known to need substantial re-training or even re-collection to change the policy.

Safety Another advantage of a learned model over a policy is that of moving towards
constrained safety by querying the model as offline knowledge. A safe agent is one which can
avoid predetermined areas of a state-space that it should not operate in. Current methods
integrate safety techniques from optimal control, such as system stability [BTSK17] or safe
set constraints [KBTK18]. Future work in safety for MBRL will involve integrating these
well-studied techniques from optimal control with advanced methods that can integrate with
value functions or supervision [TBR+20].

Interpretability After multiple high-profile failures of machine learning algorithms to
fairly integrate social and human values in optimizations, there is an increased appetite for
the study of how machine learning algorithms can beneficially integrate with society. As these
algorithms are given the freedom to act on many digital systems in an open-ended manner,
as would be done with using reinforcement learning in the real-world, further effort should
be taken to mitigate potential harms of these systems. The field of reinforcement learning

1The structural bias is the difference between needing to model all possible behaviors of an agent in the
environment versus only the underlying dynamics (which is often simpler).

2Generalization can take many forms, such as within distribution or outside of distribution. For more
information, see the referenced survey.

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 6

broadly is working to define a clear notion of what it means for a temporally evolving decision-
making system to be interpretable [PV20], but a learned model allows more comprehensive
investigation of safety, generalization, and sociotechnical specification [DGLZ21] 3.

Exploration Further study of knowledge representations in reinforcement learning is needed
in order to enable agents capable of adapting to new situations and environments. Explo-
ration is the concept for how an agent to autonomously collect the most relevant and inter-
esting data in an environment without prior direction. A starting point will be to expand on
recent work in knowledge-based exploration, where learned dynamics models are used as a
intrinsic reward signal for exploration agents [BEP+18; LWW+22]. These models are often
used only to generate reward signals for a model-free optimizer, but this intersection repre-
sents an opportunity to extend the usefulness of model-learning for control to new problem
settings.

Technical Formulation

We utilize the setting where an agent’s interactions with an environment to maximize reward
rt are modeled as a Markov Decision Process (MDP) [Bel57]. A MDP is defined by a state
of the environment s, an action a that is taken by an agent according to a policy πθ(st),
a transition function p(st+1|st,at) governing the next state distribution, and a discount
factor γ ∈ [0, 1] weighting future rewards. With a transition in dynamics, the agent receives
a reward rt from the environment and stores the State-Action-Reward-(next)State tuple
(SARS) data in a dataset D : {sk,ak, rk, sk+1}. The objective of an agent is often to
maximize the cumulative future reward on a predetermined task by optimizing a set of
parameters of the policy θ, shown in Eq. (2.1).

E
[∞∑
τ=0

γτrτ |s0 = st
]

(2.1)

RL differs from other popular machine learning systems via the temporal variation. RL
algorithms are designed to search for and optimize over dynamic datasets. Core to the
process are two feedback loops [GDZL22]: 1) the agent acts in control feedback with the
environment, where each decision is a function of the current state; and 2) the current
parameters defining the policy and the past lifetime of an agent influence the future decisions
in a form of behavioral feedback.

3As discussed in the safety section above, a model can be used to perform counterfactual queries on agent
intent and understanding in a more principled manner than a policy. Where a policy will only suggest an
action at a given state, a planning-based agent with a model can convey its action sequence with its expected
outcomes – the user can study a mismatch between actions and plans that may be leaning on exploitative
behavior.

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 7

Agent

Target
Environment

Control
Feedback

Behavioral
Feedback

Agent
Experience

Figure 2.2: Reinforcement learning is the field of study for understanding how to make
decisions in temporal processes. Here is an illustration of how the agent interacts with the
environment and how different types of feedback emerge. The learning of a dynamics model
would often occur in the Behavioral Feedback loop.

2.2 Model Types: What to Model

In this section we cover the different ways models are used and define terminology around
using a learned dynamics model. The two most common dynamics models used are Forward
dynamics and Inverse dynamics. An emerging category is that of Reward models where the
model directly predicts the reward of a transition or a forward model is trained by proxy
as a tool to predict rewards. All of these model varieties leverage the discrete nature of the
environment, as is modelled by an MDP.

Forward Dynamics The forward dynamics aim at predicting the future states given the
current state and possible actions to be performed. The forward model is a function to model
the transition dynamics p(st+1|st,at). The model prediction is formulated as:

st+1 = f (st,at) . (2.2)

Forward models are used in many domains and algorithms, including online-planning, offline
value-estimation, and more. In the remainder of this chapter, the discussion is focused on
forward dynamics models due to their prevalence (and they are often referred to as the
dynamics model).

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 8

Inverse Dynamics Instead, inverse dynamics aim at predicting the actions to be per-
formed given the current state, and the future desired (or measured) state. An inverse
model is closely related to a policy πθ, but is one that has the context of a desired state
rather than the measured reward. The model prediction is formulated as:

a = g(s, sdesired) . (2.3)

These inverse models are useful when the agent knows the goal of a given task and this
model can act as a policy [ET12; CSM+16].

Reward Models Reward is the central signal to an RL agent. When using MBRL, a
common technique is to use a forward dynamics model to predict future states. With these
predicted states, the agent needs a way to evaluate which trajectory is best. This can be done
with a learned reward model that returns an estimate of the reward the real environment
would return at that step (based on past tuples sampled from the environment):

rt = f (st,at) . (2.4)

Forward models taking in the state-action and predicting a future value of the environment
have been used in parallel to dynamics models, expanding the prediction dimension by 1.

Related Works Model learning for control has a rich history in the fields of optimal
control and state-estimation [NP11]. Recent work has seen a few in-depth reviews specific to
dynamics models in MBRL. These focus on model-predictive agents [LHB+21], determining
the correct metrics for dynamics models [KHT21], and studying the causes and effects of
compounding error [LPC22].

Formulating Predictions

In this portion we focus on how the transitions in forward models can be formatted to
improve on certain performance characteristics. The three types of models that we focus
on are one-step models that directly model the environment transitions as a memoryless
function, recurrent & latent models that learn models in a constrained representation of the
state-space, and ensemble methods that augment any predictor with a more robust inference
procedure.

One-step Models

The most common forward dynamics model is the single-step ahead of Eq. (2.2). The
prediction is often formulated as a distribution to sample next state from, ŝt+1 ∼ fθ(st,at),
and a propagation method is used to determine the predicted next state. To train a set of
model parameters θ for accurate predictions, a log-likelihood formulation is used as

arg max
θ

∑
(sn,an,sn+1)∈D

log fθ(sn+1|sn,an). (2.5)

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 9

Most other prediction formulations trade off one type of prediction accuracy (e.g. short
or long-term predictions) in exchange for increased computation cost.

Here, we detail some popular modifications to the standard one-step formulation shown
in Eq. (2.5).

Delta-state Consider the case of prediction two trajectories that have similar local dy-
namics (e.g. joint velocities), but they are off-set by a fixed positional delta (e.g. a different
GPS reading), would the standard model parametrization succeed? In order to address
this shortcoming, the one-step formulation is parametrized as a delta-state prediction for
improved regularization of the training set, as

st+1 = st + fθ (st,at) . (2.6)

History Another situation where a modification is useful is one where limited state-data
does not include crucial information such as velocities. In systems where the state-estimation
is poorly observable, a common trick is to augment the state-space to contain the history of
actions. For example, this can give the model equivalent information of a velocity measure-
ment when only positions are available [LDY+19; KBM+20]. Given a desired history, H,
the formulation becomes:

st+1 = f (st,at, st−1,at−1, . . . , st−H ,at−H) . (2.7)

This formulation is popular with neural network models due to their ability to handle large
input dimensions. The history formulation can be modified to include any other contextual
signals from the system that are not defined as the state (e.g. battery charge of a robot).

Autoregressive Prediction A final option for one-step models is to change the predic-
tion so that each predicted state-index informs that remaining items because states are often
strongly correlated (rather than predicting the entire state-vector in one pass). Autoregres-
sive prediction directly addresses this by conditioning the prediction of each element of a
vector on the previously predicted subcomponents at that time step, along with the cur-
rent state and actions [LR85]. A motivating example is the prediction of each subsequent
joint on a robotic arm given the previous joints’ positions. This method recently has been
re-examined in the context of MBRL due to its potential to represent each state dimension
as a conditionally independent distribution [ZPN+21]. Predicting the states one by one
constrains the distribution of each subsequent element, but the resulting predictive model
is slower at inference than standard methods due to the number of forward passes scaling
linearly with state dimension.

The autoregressive optimization extends the log-likelihood maximization in Eq. (2.5) to
optimize for per-state predictions. Consider the ith sub-element of a state vector as sin

arg max
θ

∑
(sn,an,sn+1)∈D

[
log fθ(sn+1|sn,an) +

ds∑
i=1

log fθ(s
i
n+1|sn,an, s

1
n+1, . . . , s

i−1
n+1)

]
. (2.8)

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 10

[JLL21] also predicts the states in an autoregressive manner, though this Trajectory
Transformer also predicts a policy and reward functions, differentiating itself from most
feedforward models. Casting large language models as a predictor shifts the prediction
problem from regression to classification.

Visual, Latent & Recurrent

Now we consider a different class of models focused on high-dimensional states and directly
imbuing temporal feedback within the model as additional states 4. The techniques of learn-
ing models from vision, optimizing in learned latent spaces, and incorporating recurrence
have been growing concurrently in recent years. While each of these three methods can be
found individually, recently they most frequently are found together.

Visual models use elements such as convolutional layers to use images directly in predic-
tive models. These models can take many forms. A learned latent space is any state-space
that is the output of a learned dynamics model. These latent spaces can be fine-tuned with
gradients from many types of downstream components, such as gradients from the reward
of a control policy. For example, [NYA+18] uses a visually conditioned feedforward model
in a standard planning approach (e.g. without directly learning a latent state). While the
most popular latent structure uses a recurrent neural network [HS18b], many examples exist
for applications of learned latent spaces without recurrent models. Deep latent models have
been used in online [RZN+21] and offline RL [RYRF21]. Additionally, latent spaces can
be incorporated into other model modalities such as Gaussian Processes [SHD18], learned
MDP’s [GKBNB19], or for linear policy search [ZVS+19].

With these developments in visual reinforcement learning and learned latent spaces,
recurrent models have been the most popular technique for advancements in pixel-based
MBRL. These systems typically operate by combining a representation learning layer with
a recurrent one-step dynamics model. This often involves three or more models – a recur-
rent state ht, a latent state zt from a learned representation, and predicted latents from a
transition model ẑt:

ht = fϕ(ht−1, zt−1,at−1) , (2.9)

zt ∼ qϕ(zt|ht, st) , (2.10)

ẑt ∼ pϕ(ẑt|ht) . (2.11)

This technique was pioneered by [HS18a], who uses a Variational Autoencoder (VAE)
with a recurrent dynamics model and a linear control policy. This method has been ex-
tended as Recurrent state-space models (RSSM) in state-of-the-art pixel-based MBRL al-
gorithms [HLNB21; HWS22]. Such recurrent, latent-space models have also been useful
directly on planning for robotic control [EFD+18] and in Atari [KBM+20]. On recent base-
lines, recurrent models tend to outperform convolutional models and latent transition models

4It is important to distinguish this between flexible notions of time. These models are still single-step
models with a fixed time-step, but they have a feedback-based state variable.

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 11

Model Type Training
Cost

Inference
Cost

Parallel
Option

Tooling
Com-
plexity

Domain
Knowl-
edge

State
Setable

MLP
↪→ Single ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆

↪→ Ensemble ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆

↪→ Autoreg. ⋆⋆⋆⋆ ⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆

Specialized MLP
↪→ Neural ODE ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆

↪→ Physics-based ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆

Locally Linear ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆

Gaussian Process ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆

Expert-designed
↪→ Env. Simulator / ⋆ ⋆ ⋆⋆⋆ ⋆ ⋆

↪→ Dynamical System / ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆ ⋆⋆⋆

Replay Buffer / ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆

Table 2.1: Tooling and engineering considerations of different model types. Training Cost
is the training time with a set dataset, Inference Cost is the cost of forward passes of a
model, Parallel Option is the ability for a model to be accelerated, Tooling Complexity is the
approximate dot product of the software maturity with the ease of use, Domain Knowledge
is the required knowledge per evaluation environment, and State Setable is the ability for
the model type to predict arbitrary state-action pairs (e.g. simulators often cannot).

for downstream reward prediction [BSH+20]. The final related class of models are those in-
spired by MuZero which utilize recurrent dynamics models, but they are only trained on
reward signals (rather than for transition accuracy) [SAH+20].

Ensemble Methods

Ensembles of bootstrapped models have gained popularity as a simple method to estimate
epistemic uncertainty and improve accuracy of various models [OAC18; LLSA21]. For a given
predictive model, we consider the ensemble to have B members, using θb to denote the bth set
of parameters for the model fθb . Each model in the ensemble have the same composition (e.g.
number of layers) and are trained with cross-validation to get different sets of parameters.
Deep ensembles can be composed of both deterministic or probabilistic [LPB17] members,
with the primary practical difference being in how they are used to propagate predictions.

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 12

Model Type Accuracy Uncer-
tainty
Man-
agement

Value
Predic-
tion

State
Scaling

Data
Scaling

General-
ization

MLP
↪→ Single ⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆

↪→ Ensemble ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆

↪→ Autoreg. ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆

Specialized MLP
↪→ Neural ODE ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆

↪→ Physics-based ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆

Locally Linear ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆

Gaussian Process ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆⋆

Expert-designed
↪→ Env. Simulator ⋆⋆⋆⋆⋆ / ⋆⋆⋆⋆ / / ⋆⋆⋆⋆⋆

↪→ Dynamical System ⋆⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆⋆

Replay Buffer ⋆⋆⋆⋆ ⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆ ⋆

Table 2.2: Prediction and control considerations of different model types. Accuracy is the
ability for the model to predict held out evaluation sets, Uncertainty Management is the
ability for a model to represent the empirical uncertainty in the training set, Value Prediction
is the ability for the dynamics model to also prediction the reward received from a given
transition, State Scaling is the ability for the model to maintain accuracy with increasing
state-action dimension, Data Scaling is the ability for a model to improve accuracy with
orders of magnitude more data, and Generalization is the ability for a model to handle
generalization within and without the training distribution.

2.3 Tools for Prediction: How to Model

In this section, we detail the various tools that can be used to deploy predictive models. A
summary of the strengths and weaknesses of various approaches is shown with respect to the
engineering and tooling considerations in Tab. 2.1 and the decision-performance character-
istics in Tab. 2.2.

Feedforward Neural Networks

The most popular tool for modeling predictions in recent MBRL algorithms are multi-layer
perceptron (MLP) networks. Compared to recent advancements in natural language pro-

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 13

cessing and computer vision, these “deep” models are relatively shallow, with many state-of-
the-art algorithms [CCML18; JFZL19; WB19] and open-source code [PAZLC21; MSA+21]
utilizing 2-5 layer networks of 128-512 neurons.

The most common solution is to constrain the resulting model to take on the form of a
Gaussian distribution with a diagonal covariance matrix fθ(sn,an) = N (µθ(sn,an),Σθ(sn,an)),
with a loss function that penalizes the relative prediction accuracy with a l2 penalty on each
variance:

lossGauss(θ)=
N∑

n=1

[µθ(sn,an)−sn+1]
⊤Σ−1

θ (sn,an)[µθ(sn,an)−sn+1]+log det Σθ(sn,an).

(2.12)

The mean squared error (MSE) loss can also be viewed as a reduction of the Gaussian
loss to that of delta distributions centered around a given point prediction (the mean of the
prediction in the formulation above):

lossM.S.E.(θ) =
N∑

n=1

(sn+1 − µθ(sn,an))T (sn+1 − µθ(sn,an)) . (2.13)

Linking these two losses simplifies the notation when moving to more advanced loss
functions and propagation methods.

Given any standard loss function discussed above, a multi-step loss can be used dur-
ing training to help optimize for long-term prediction accuracy [AN04; VHB15; AMKL19;
HLF+19; LHB+21]. With a given propagation method for ŝn+1 = fθ(sn,an), the multi-step
loss is shown with the MSE loss function at each step:

lossmulti.(θ) =
1

H

H∑
i=0

lossM.S.E.(θ)(ŝn+i+1,an+i+1) . (2.14)

This multi-step loss evenly averages the prediction accuracy of a simulated trajectory across
each H predicted steps.

Strengths Ease of use, powerful scaling properties with both dimensionality and data.

Weaknesses Poor uncertainty quantification, un-interpretable.

Integrating with Control Can be used with decision-time and offline planning, provides
gradients, required GPU for online methods.

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 14

Specialized MLPs

Given that many of the current evaluation benchmarks for MBRL are in robotic tasks, there
is substantial potential in linking the decision making algorithms with progress in using
physical knowledge to model these systems. To date, the advancements in this area can
be separated into learned differential equation models and physics-based forward models.
The goal of these models with control would be to provide a substantial improvement in
both short- and long-horizon predictions when deployed on a suitable system. Substantial
opportunity lays in integrating these new predictive methods with control.

Neural Differential Equations Neural Ordinary Differential Equations (Neural ODEs)
were introduced to more accurately model discrete transitions between sequences of hidden
states [CSA+18]. The discrete transitions follow a simple Euler discretization of a continuous
transform, so they can be reconstructed by differentiation through an ODE solver. These
methods solve the form of

st+1 = st +

∫ t0+h

t0

Fθ(s(t))dt . (2.15)

Physics-based Models On the other hand, physics-based models constrain the optimiza-
tion of existing forward dynamics models [CGH+20; GMMK20]. Working from a physical
system with state st = (q, q̇), a Euler-Lagrange equation can be applied as a constraint on a
transition from st to st+1 as d

dt
dL
dq̇j

= dL
dqj

, which can be re-written in vector form to get the

following solution for the acceleration, q̈:

q̈ = (∇q̇∇⊤
q̇ L)−1[∇qL − (∇q∇⊤

q̇ L)q̇]] , (2.16)

which can be solved via integration to compute the dynamics of the system. These con-
strained optimizations have shown to be both sample-efficient and more accurate for suitable
systems 5, but further advancements are needed for systems without the suitable low-level
observations.

Strengths Potential to include better inductive biases for control, potential for inter-
pretability.

Weaknesses Increased training complexity, designed for smooth systems (e.g. contacts
are challenging).

Integrating with Control (Open questions) added model complexity difficult for online
control.

5They have been studied for a variety of dynamical systems, but often in the context of a well-shaped
training dataset. In RL problems, the dataset is multi-modal and lacking uniform coverage, which results in
a more challenging modeling problem.

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 15

Locally Linear

Linear models are a strong candidate for simple systems or when agent behavior is restricted
to a small, stable region of the state-space. Additionally, these models allow easy trans-
lation into popular linear control strategies such as iterative Linear Quadratic Regulator /
Gaussian (iLQR / iLQG). Different methods for solving for the model exist, but the sim-
plest is structuring the model as the result of solving the least squared problem after each
episode, arg minω ||Xω− b||2, where b = (sn+1 − sn), ω =

[
Â B̂

]
, X =

[
S U

]
(S and U are

stacked state and action vectors). The next state is then predicted with a linear system as
ŝn+1 = Âsn + B̂an.

Additionally, linear Gaussian models can be learned that enable some of the sampling
for propagation benefits discussed above. In this case, the model of the dynamics follows
as fθ(sn+1|sn,an) = N (fsnsn + fanan + fcn,F n), which can be solved for directly via the
statistical properties of the data [RG99]. This formulation can be used in guided policy
search [LA14] and updated with linear updates [FLA16] and recursive least squares [YC14].
While simple, efficient, and often accurate, these models are less suited for environments
with complex dynamics or when generalization is needed.

Strengths Simple, fast at training and inference.

Weaknesses Cannot capture nonlinear dynamics, low potential generalization, worse scal-
ing with dimensionality and data.

Integrating with Control Easy to use with classical control techniques (e.g. iLQR),
differentiable.

Gaussian Processes

The most popular non-parametric model used in MBRL is the Gaussian Process (GP) [Ras03].
A GP takes the form of a non-parametric transition function,

f ∼ GP(m, k) , (2.17)

where m is the mean of the dynamics with a covariance function k. These can take on many
forms, but a popular solution is that of a regular Gaussian distribution. Given samples xi in
i = 1, . . . , n, the model takes the mean µi = m(xi) = 1

4
x2i and covariance Σij = k(xi, xj) =

exp(−1
2
(xi − xj)

2), resulting in the model as f ∼ N (µ,Σ).
Gaussian Processes have been studied extensively in the context of offline dynamics

modeling [WHF06; WFT14; HK11] and for model-based policy search [DR11; BSWR14;
GWH14].

Strengths Stable uncertainty quantification, strong model accuracy.

Weaknesses Does not scale well above low state-action dimension.

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 16

Integrating with Control Uncertainty estimates can be useful for control, inverting
kernel can be slow for online decisions.

Hand-designed Tools

Environment Simulators Many papers make use of existing simulators that can simulate
the dynamics for use in planning, such as examples in robotics [TET12] or games [KBM+20].
Using environment simulators can be powerful for demonstrating control for the first time,
though serious limitations can preclude transferring these methods to the real world. For
example, if a simulator cannot set arbitrary initial states, it is not suitable for online decision
making algorithms planning from a measurement. Additionally, building simulators can be
very expensive and is only attainable for relatively well understood systems.

Dynamical Systems An alternate to building a simulator of the entire world is for engi-
neers to develop a suitable state-space model of the dynamical system. These can take the
form of a control-affine system,

st = A(st,at)st + B(st,at)at + c(st,at) . (2.18)

These methods build extensively on techniques of optimal control.

Strengths Can require little-to-no environmental data, fast and parallel inference, inter-
pretable.

Weaknesses Requires extremely precise domain knowledge / engineering time and often
limited to linear systems.

Integrating with Control Integrates well with most control types and allows use of
optimal control techniques (e.g. iLQR).

Replay Memory

The replay buffer can be viewed as a statistical model of the environment by querying
transitions. A replay buffer is a type of model [HHA19; VS15] with remarkable similarities
to a tabular dynamics model, but it is limited in its ability to generalize to new states.
Hindsight experience replay [AWR+17] actualizes the goal of using the replay buffer as a
model, but this formulation lacks an output of a structured understanding of dynamics.
Similarly, [ESL19] use the replay buffer as a graph to search over for control.

Other Models

There are many other methods for learning a model of a system to be use for control.
Some include using a convolutional neural network to learn system parameters of a physical

CHAPTER 2. LEARNING DYNAMICS FOR REINFORCEMENT LEARNING: A
BRIEF REVIEW 17

system [WYLFT15], a graph neural network modeling over system parameters [SHS+18],
tabular dynamics models [Tou97; Boo97], and more. These other methods often increase
the specificity of the model in order to match the system. Such matching often improves
accuracy, but comes at the cost of generalization and implementation complexity.

2.4 Propagating Trajectories

All methods for predicting trajectories with variants of the one-step model operate via com-
posed function calls of the learned model, as:

ŝt+h = fθ(. . . fθ(fθ(st,at),at+1) . . . ,at+h) . (2.19)

In this, any dynamics model f carries a prediction error ϵt = ŝt − st. The resulting error
growth is referred to as compounding error [LPC22], which grows multiplicatively by the
next prediction’s input being subject to all past errors in the prediction, as

ŝt+h = fθ(. . . fθ(fθ(st,at) + ϵt,at+1) + ϵt+1 . . . ,at+h) + ϵt+h . (2.20)

Different model types allow for different propagation modalities that can reduce compound-
ing error, enable multi-modal predictions, and carry more stable uncertainty propagation.

There are different propagation methods for translating from a distribution to a predic-
tion. The simplest, expectation propagation assumes takes st = µθ (only option for MSE
loss without an ensemble). Alternatively, a state can be propagated by sampling by selecting
a value from a unit Guassian random vector, η ∼ N (0, 1) and predicting the next state as
st = µθ + Σθη. This can also be denoted by sampling directly from the distribution induced
by the model, but this notation can be confusing when discussing both probabilistic and
deterministic models.

With ensembles, additional methods for propagating trajectories are available. The ex-
pectation propagation can be expended by taking the mean over the bootstrap ensemble
members, though this method has no capability to address bias or utilize the trained un-
certainty estimates. Moment matching can be used to re-sample the particles after each
step corresponding to a smooth Gaussian distribution [GMR16]. This represents a gain on
expressivity over the expectation propagation, but lacks the ability to express multi-modal
trajectories.

[CCML18] proposes two methods to propagating trajectories with probabilistic ensem-
bles, Trajectory Sampling (TS). Two variants of TS – TS1 and TS∞ – differ on how the
ensemble members are used and which types of uncertainty are captured. TS1 samples a
new ensemble member for each particle for each dynamics step in the unrolling process to
mitigate the bias of any one model. The re-sampling per step can be incremented from TSi
to TS∞, where one bootstrap member remains assigned to each particle to maintain the
separation of aleoteric and epistemic uncertainty. The iterative stepping through distribu-
tions is similar to that of a particle filter without the re-shaping of distributions at each step.
Each particle stepping through the models per-step allows the particles to capture multiple
modes.

18

Chapter 3

Using MBRL: Case-study with
Sample-based Control

This short chapter is based on our work to control novel robots and a Crazyflie quadro-
tor [LDY+19]. This section shows how a simple MBRL setup can be used to solve a real
world problem.

3.1 Experimental Setup

In this section, we use as experimental hardware platform the open-source Crazyflie 2.0
quadrotor [Bit16]. The Crazyflie is 27 g and 9 cm2, so the rapid system dynamics create a
need for a robust controller; by default, the internal PID controller used for attitude control
runs at 500 Hz, with Euler angle state estimation updates at 1 kHz. This section specifies
the Robot Operating System (ROS) base-station and the firmware modifications required
for external stability control of the Crazyflie.

All components we used are based on publicly available and open source projects. We
used the Crazyflie ROS interface supported here: github.com/whoenig/crazyflie ros [HA17].
This interface allows for easy modification of the radio communication and employment of
the learning framework. Our ROS structure is simple, with a Crazyflie subscribing to PWM
values generated by a controller node, which processes radio packets sent from the quadrotor
in order to pass state variables to the model predictive controller (as shown in Fig. 3.2). The
Crazyradio PA USB radio is used to send commands from the ROS server; software settings
in the included client increase the maximum data transmission bitrate up to 2 Mbps and a
Crazyflie firmware modification improves the maximum traffic rate from 100 Hz to 400 Hz.

In packaged radio transmissions from the ROS server we define actions directly as the
pulse-width modulation (PWM) signals sent to the motors. To assign these PWM values
directly to the motors we bypass the controller updates in the standard Crazyflie firmware
by changing the motor power distribution whenever a CRTP Commander packet is received
(see Fig. 3.2). The Crazyflie ROS package sends empty ping packets to the Crazyflie to ask

https://github.com/whoenig/crazyflie_ros

CHAPTER 3. USING MBRL: CASE-STUDY WITH SAMPLE-BASED CONTROL 19

M1

M3

M4

M2

Prediction Evaluation

a* = [PWMM1, ... , PWMM4]s = [ωx,ωy,ωz,ax,ay,az,Ф,θ,ψ]

Deep Neural Network

Model Predictive Controller

Figure 3.1: The reinforcement learning control loop used to stabilize the Crazyflie. Within
the model predictive controller, the agent uses a neural network to unroll predictions and
select an action. Using deep model-based reinforcement learning, the quadrotor reaches
stable hovering with only 10,000 trained datapoints – equivalent to 3 minutes of flight.

for logging data in the returning acknowledgment packet; without decreasing the logging
payload and rate we could not simultaneously transmit PWM commands at the desired
frequency due to radio communication constraints. We created a new internal logging block
of compressed IMU data and Euler angle measurements to decrease the required bitrate for
logging state information, trading state measurement precision for update frequency. Action
commands and logged state data are communicated asynchronously; the ROS server control
loop has a frequency set by the ROS rate command, while state data is logged based on
a separate ROS frequency. To verify control frequency and reconstruct state action pairs
during rollouts we use a round-trip packet ID system.

3.2 Learning System

The foundation of a controller in MBRL is a reliable forward dynamics model for predictions.
In this paper, we refer to the current state and action as st and at, which evolve according to
the dynamics f(st, at). Generating a dynamics model for the robot often consists of training
a NN to fit a parametric function fθ to predict the next state of the robot as a discrete

CHAPTER 3. USING MBRL: CASE-STUDY WITH SAMPLE-BASED CONTROL 20

Crazyflie Server (ROS)

Crazyflie Firmware

CRTP Packet Handler

DecodePacket:

 Set Motors

Main Loop

Log Topic Callback Main Loop

MPC Step:

 Publish Topic

DecodePacket:

 Format Inputs

Compact State:

 Log Block

~300Hz

(logTopicFrequency)

~50Hz

(ROSrate)

4x uint16 > 4x uint8 > 1x uint32 , uint16

 u = [PWM
M1

, ... , PWM
M4

, ID]

1x uint32 > 4x uint8 > 4x uint16

motors(PWM
M1

, ... , PWM
M4

)

6x float > 2x uint32 , 3x float, uint16

log(ωx,ωy,ωz,ax,ay,az,Ф,θ,ψ, ID)

2x uint32 > 6x float , 3x float

lastState(ωx,ωy,ωz,ax,ay,az,Ф,θ,ψ)

Figure 3.2: The ROS computer passes control signals and state data between the MPC node
and the Crazyflie ROS server. The Crazyflie ROS server packages Tx PWM values to send
and unpacks Rx compressed log data from the robot.

change in state st+1 = st + fθ(st, at). In training, using a probabilistic loss function with a
penalty term on the variance of estimates, as shown in Eq. (4.11), better clusters predictions
for more stable predictions across multiple time-steps [CCML18]. The probabilistic loss fits
a Gaussian distribution to each output of the network, represented in total by a mean vector
µθ and a covariance matrix Σθ

l =
N∑

n=1

[µθ(sn, an) − sn+1]
TΣ−1

θ (sn, an)[µθ(sn, an) − sn+1] + log det Σθ(sn, an) . (3.1)

The probabilistic loss function assists model convergence and the variance penalty helps
maintain stable predictions on longer time horizons. Our networks implemented in Pytorch
train with the Adam optimizer for 60 epochs with a learning rate of .0005 and a batch size
of 32. Fig. 3.3 summarizes the network design. The network structure was cross validated
offline for prediction accuracy verses potential control frequency. Initial validation of training
parameters was done on early experiments, and the final values are held constant for each
rollout in the experiments reported. The validation set is a random subset of measured
(st, at, st+1) tuples in the pruned data.

CHAPTER 3. USING MBRL: CASE-STUDY WITH SAMPLE-BASED CONTROL 21

Input	layer Output	
layer

… …
Figure 3.3: The NN dynamics model predicts the mean and variance of the change in state
given the past 4 state-action pairs. We use 2 hidden layers of width 250 neurons.

Additional dynamics model accuracy could be gained with systematic model verification
between rollouts, but experimental variation in the current setup would limit empirical in-
sight and a lower model loss does not guarantee improved flight time. Our initial experiments
indicate improved flight performance with forward dynamics models minimizing the mean
and variance of state predictions versus models minimizing mean squared prediction error,
but more experiments are needed to state clear relationships between more model parameters
and flight performance.

Training a probabilistic NN to approximate the dynamics in this high-noise task re-
quires pruning of logged data (e.g. dropped packets cause large time-steps and nonphysical
dynamics that must be removed) and scaling of variables per-dimension to assist model con-
vergence. Our state st is the vector of Euler angles (yaw, pitch, and roll), linear accelerations,
and angular accelerations, reading

st =
[
ω̇x, ω̇y, ω̇z, ϕ, θ, ψ, ẍ, ÿ, z̈

]T
. (3.2)

The Euler angles are from the an internal complementary filter, while the linear and
angular accelerations are measured directly from the on-board MPU-9250 9-axis IMU. In
practice, for predicting across longer time horizons, modeling acceleration values as a global
next state rather than a change in state increased the length of time horizon in composed
predictions before the models diverged. While the Euler angle predictions are stable, the
raw accelerations are corrupter by high sensor noise and are extremely difficult to predict, so
all the linear and angular accelerations are trained to fit the global next state (rather than
a delta-state formulation shown in Eq. (2.6)).

We combine the state data with the four PWM values, at = [m1,m2,m3,m4]
T , to get

the system information at time t. The NNs are cross-validated on a held out set to confirm
using all state data (i.e., including the relatively noisy raw measurements from all flights,
rather than a subset) improves prediction accuracy in the change in state.

While the dynamics for a quadrotor are often represented as a linear system, for a Micro
Air Vehicle (MAV) at high control frequencies motor step response and thrust asymmetry

CHAPTER 3. USING MBRL: CASE-STUDY WITH SAMPLE-BASED CONTROL 22

heavily impact the change in state, resulting in a heavily nonlinear dynamics model. The step
response of a Crazyflie motor RPM from PWM 0 to max or from max to 0 is on the order of
250 ms, so our update time-step of 20 ms is short enough for motor spin-up to contribute to
learned dynamics. To account for spin-up, we append past system information to the current
state and PWMs to generate an input into the NN model that includes past time. From
the exponential step response and with a bounded possible PWM value within peq ± 5000,
the motors need approximately 25 ms to reach the desired rotor speed; when operating at
50 Hz, the time step between updates is 20 ms, leading us to an appended states and PWMs
history of length 4. This state action history length was validated as having the lowest test
error on our data-set (lengths 1 to 10 evaluated). This yields the final input of length 52 to

our NN, ξ, with states and actions combined to ξt =
[
st st−1 st−2 st−3 at at−1 at−2 at−3

]T
.

3.3 Control Optimization

This section explains how we incorporate our learned forward dynamics model into a func-
tional controller. The dynamics model is used for control by predicting the state evolution
given a certain action, and the MPC provides a framework for evaluating many action can-
didates simultaneously. We employ a ‘random shooter’ MPC, where a set of N randomly
generated actions are simulated over a time horizon T . The best action is decided by a
user designed objective function that takes in the simulated trajectories X̂(a, st) and returns
a best action, a∗, as visualized in Fig. 3.4. The objective function minimizes the receding
horizon cost of each state from the end of the prediction window to the current measurement.

The candidate actions, {ai = (ai,1, ai,2, ai,3, ai,4)}Ni=1, are 4-tuples of motor PWM values
centered around the stable hover-point for the Crazyflie. The candidate actions are constant
across the prediction time horizon T . For a single sample ai, each ai,j is chosen from a
uniform random variable on the interval [peq,j − σ, peq,j + σ], where peq,j is the equilibrium
PWM value for motor j. The range of the uniform distribution is controlled by the tuned
parameter σ; this has the effect of restricting the variety of actions the Crazyflie can take. For
the given range of PWM values for each motor, [peq −σ, peq +σ], we discretize the candidate
PWM values to a step size of 256 to match the future compression into a radio packet.
This discretization of available action choices increases the coverage of the candidate action
space. The compression of PWM resolution, while helpful for sampling and communication,
represents an uncharacterized detriment to performance.

Our investigation focuses on controlled hovering, but other tasks could be commanded
with a simple change to the objective function. The objective we designed for stability seeks
to minimize pitch and roll, while adding additional cost terms to Euler angle rates. In the
cost function, λ effects the ratio between proportional and derivative gains. Adding cost
terms to predicted accelerations did not improve performance because of the variance of the

CHAPTER 3. USING MBRL: CASE-STUDY WITH SAMPLE-BASED CONTROL 23

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestep (T)

−40

−30

−20

−10

0

10

20

30

40

R
ol

l(
de

g)

Predicted State
Ground Truth
Chosen Action

Figure 3.4: Predicted states for N = 50 candidate actions with the chosen “best action”
highlighted in red. The predicted state evolution is expected to diverge from the ground
truth for future t because actions are re-planned at every step.

predictions.

a∗ = arg min
a

T∑
t=1

λ(ψ2
t + θ2t) + ψ̇2

t + θ̇2t + ϕ̇2
t . (3.3)

Our MPC operates on a time horizon T = 12 to leverage the predictive power of our
model 1. Higher control frequencies can run at a cost of prediction horizon, such as T = 9 at
75 Hz or T = 6 at 100 Hz. The computational cost is proportional to the product of model
size, number of actions (N), and time horizon (T). At high frequencies the time spanned
by the dynamics model predictions shrinks because of a smaller dynamics step in prediction
and by having less computation for longer T , limiting performance. At 50 Hz, a time horizon
of 12 corresponds to a prediction of 240 ms into the future. Tuning the parameters of this
methodology corresponds to changes in the likelihood of taking the best action, rather than
modifying actuator responses, and therefore its effect on performance is less sensitive than
changes to PID or standard controller parameters. At 50 Hz, the predictive power is strong,
but the relatively low control frequencies increases susceptibility to disturbances in between
control updates. A system running with an Nvidia Titan Xp attains a maximum control
frequency of 230 Hz with N = 5000, T = 1. For testing we use locked frequencies of 25 Hz
and 50 Hz at N = 5000, T = 12.

1Experiments executed on NVIDIA 1080.

CHAPTER 3. USING MBRL: CASE-STUDY WITH SAMPLE-BASED CONTROL 24

00 01 02 03 04 05 06 07 08 09 10 11 12

Rollout (10 Flights Per)

0.0

0.5

1.0

1.5

2.0

2.5

F
lig

ht
T

im
e

(s
)

50hz

Max50hz

25hz

Max25hz

Figure 3.5: Mean and standard deviation of the 10 flights during each rollout learning at
25 Hz and 50 Hz. The 50 Hz shows a slight edge on final performance, but a much quicker
learning ability per flight by having more action changes during control.

3.4 Results

The performance of our controller is measured by the average flight length over each roll-out.
Failure is often due to drift induced collisions, or, as in many earlier roll-outs, when flights
reach a pitch or roll angle over 40°. In both cases, an emergency stop command is sent to the
motors to minimize damage. Additionally, the simple on-board state estimator shows heavy
inconsistencies on the Euler angles following a rapid throttle ramping, which is a potential
limiting factor on the length of controlled flight. Notably, a quadrotor with internal PIDs
will still fail regularly due to drift on the same time frame as our controller; it is only with
external inputs that the PID controllers will obtain substantially longer flights. The drift
showcases the challenge of using attitude controllers to mitigate an offset in velocity.

Learning Process The learning process follows the RL framework of collecting data and
iteratively updating the policy. We trained an initial model f0 on 124 and 394 points of
dynamics data at 25 Hz and 50 Hz, respectively, from the Crazyflie being flown by a random
action controller. Starting with this initial model as the MPC plant, the Crazyflie undertakes
a series of autonomous flights from the ground with a 250 ms ramp up, open-loop takeoff
followed by on-policy control while logging data via radio. Each roll-out is a series of 10
flights, which causes large variances in flight time. The initial roll-outs have less control
authority and inherently explore more extreme attitude orientations (often during crashes),
which is valuable to future iterations that wish to recover from higher pitch and/or roll. The
random and first three controlled roll-outs at 50 Hz are plotted in Fig. 3.6 to show the rapid
improvement of performance with little training data.

CHAPTER 3. USING MBRL: CASE-STUDY WITH SAMPLE-BASED CONTROL 25

0.0 0.5 1.0 1.5 2.0 2.5

−25

0

25

P
it

ch
(D

eg
)

Random Controller Flights

0.0 0.5 1.0 1.5 2.0 2.5

−25

0

25

After 1 Model Iteration

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

−25

0

25

P
it

ch
(D

eg
)

After 2 Model Iterations

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

−25

0

25

After 3 Model Iterations

Figure 3.6: The pitch over time for each flight in the first four model training iterations of
learning at 50 Hz showing the rapid increase in control ability on limited data. The models
are trained once per ten flights, so each quadrant of this figure represents 10 flights with one
learned dynamics model. The random and first controlled roll-out show little ability, but by
roll-out 3 it flies for > 2 seconds.

The full learning curves are shown in Fig. 3.5. At both 25 Hz and 50 Hz the rate of flight
improvement reaches its maximum once there is 1,000 trainable points for the dynamics
model, which takes longer to collect at the lower control frequency. The improvement is
after roll-out 1 at 50Hz and roll-out 5 at 25Hz. The longest individual flights at both control
frequencies is over 5 s. The final models at 25 Hz and 50 Hz are trained on 2,608 and 9,655
points respectively, but peak performance is earlier due to dynamics model convergence and
hardware lifetime limitations.

Performance Summary This controller demonstrates the ability to hover, following a
“clean” open-loop takeoff, for multiple seconds (an example is shown in Fig. 3.8). At both
25 Hz and 50 Hz, once reaching maximum performance in the 12 roll-outs, about 30% of
flights fail to drift. The failures due to drift indicate the full potential of the MBRL solution
to low-level quadrotor control. An example of a test flight segment is shown in Fig. 3.7,
where the control response to pitch and roll error is visible.

The basis of comparison, typical quadrotor controllers, achieve better performance, but
with higher control frequencies and engineering design iterations leveraging system dynamics
knowledge. With the continued improvement of computational power, the performance of
this method should be re-characterized as potential control frequencies approach that of PID
controllers. Beyond comparison to PID controllers with low computational footprints, the
results warrant exploration of MBRL for novel dynamical systems. In less than 10 minutes
of clock time, and only 3 minutes of training data, we present comparable, but limited,
performance that is encouraging for future abilities to match and surpass basic controllers.
Moving the balance of this work further towards domain specific control would likely improve

CHAPTER 3. USING MBRL: CASE-STUDY WITH SAMPLE-BASED CONTROL 26

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

N
or

m
al

iz
ed

M
o

to
r

P
W

M

m1 m2 m3 m4

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

−20

0

20

E
u

le
r

A
n

g
le

s
(D

eg
)

Pitch Roll

Figure 3.7: The performance of the 50 Hz controller. (Above) The controlled PWM values
over time, which visibly change in response to angle oscillations. (Below) Pitch and roll.

Figure 3.8: A full flight of Euler angle state data with frames of the corresponding video.
This flight would have continued longer if not for drifting into the wall. The relation between
physical orientation and pitch and roll is visible in the frames. The full video is online on
the accompanying website.

performance, but the broad potential for applications to more and different robotic platforms
compels exciting future use of MBRL.

27

Chapter 4

Compounding Prediction Errors in
Learned Models

In this chapter, we study in detail the causes of compounding prediction errors in learned
dynamics models. This chapter is primarily covered in our recent paper highlighting this is-
sue [LPC22]. The issue, frequently referenced in state-of-the-art papers [CNF+18; WBC+19]
and other tools [AMKL19; LWZPC21] for model-based reinforcement learning is not well
studied from first principles even though it is referenced as a substantial limiting factor on
performance. In this chapter we characterize the impact of three types of problem proper-
ties relevant to long-term prediction accuracy in MBRL: a) the system properties inherent
to the environment and controller used; b) the model training and prediction linked with the
optimization; and c) other factors at the interface of systems with models.

Sec. 4.3 focuses on how the environment and agent impact modelling accuracy. It starts
by covering The Underlying Dynamics by observing and setting the eigenvalues of state-
space systems. Then, this section covers often discussed properties of learning models such
as Process Noise and State-space Dimension. The section concludes with observations of
how the controller can impact accuracy, by studying Data Distribution & Density and Re-
computing Actions for prediction.

Sec. 4.4 highlights how different modeling decisions, e.g. which type of model or loss
function, impacts accuracy given a static dataset. This section covers Prediction Formulation
& Training, Model Capacity, and Data Normalization.

Sec. 4.5 demonstrates how broader examples of prediction can impact long-term predic-
tions. This section uses the Lorenz system to showcase the limitations of Predicting Chaotic
Dynamics. Next, the section shows how different temporal abstractions influence accuracy
with a discussion of Control Frequency & Signal to Noise Ratio.

The chapter concludes with real-world examples in Sec. 4.6 and tips for understanding
compounding error in Sec. 4.7.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 28

4.1 Problem Formulation

As discussed in Sec. 2.4, to the prediction of the long-term future, a one-step dynamic model
is often recursively applied as

ŝt+h = fθ(. . . fθ(fθ(st,at),at+1) . . . ,at+h) . (4.1)

Any parametrization of the dynamics model f carries a prediction error ϵt = ŝt − st. It is
often observed that this error grows multiplicatively by the next prediction’s input being
subject to all past errors in the prediction, as

ŝt+h = fθ(. . . fθ(fθ(st,at) + ϵt,at+1) + ϵt+1 . . . ,at+h) + ϵt+h . (4.2)

The central metric we will use to quantify and visualize compounding error is the mean-
squared prediction error (MSE) at each step. The action sequence used with a given tra-
jectory, {a0,a1, . . . ,ah} is provided when planning the trajectory and measuring its perfor-
mance. To that end, we train a dynamics model fθ, and use it to predict to a horizon h,
steps into the future, generating a predicted trajectory ŝi∀i ∈ [1, h]. Then, the predicted
error is computed by summing across all of the state dimensions at the given time-step as:

MSEt =
ds∑
d=0

∥ŝt,d − st,d∥22 . (4.3)

For each experiment and environment, the MSE is normalized per-state to [0, 1] to make
the calculated MSE represent average predictive accuracy proportional to the relative state
error rather than the numerical error (e.g. to normalize across states of different state types
like positions and velocities). The goal is to make the errors shown more intuitive – an mean
squared error of 1 represents an error across each state averaging to 100%.

This chapter includes many models to evaluate predictions, as are discussed in Sec. 2.2.

One-step Dynamics Models We use the delta-state formulation that is popular for
regularizing the prediction distribution, st+1 = st + fθ(st, at), and compare to the true-state
variant, st+1 = fθ(st, at). The true-state models are denoted with a -S, such as the true-state
probabilistic ensemble PE-S. These formulations can be used with multiple loss functions,
including Mean Squared Error (MSE) for deterministic models and Negative Log Likelihood
(NLL) for probabilistic models. All model types can be used with an ensemble that weights
predictions across multiple trained models, denoted with E.

In this work, the studies primarily compare the delta-state and true-state prediction for-
mulations with simple deterministic models (D) and with rich probabilistic ensembles (PE).
For the probabilistic models, the trajectories are propagated with expectation based prop-
agation, more options for the PE models are detailed in [CCML18]. The chapter compares
one-step models to linear models (LIN) based on least-squares learning of a linear predic-
tor and zero models (ZERO) that return a predicted state of the zero vector at each step.
Additional model training details are included in Sec. 4.2.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 29

(a) Cartpole. (b) Reacher. (c) Quadrotor.

Figure 4.1: Experimental platforms used for studying compounding error.

4.2 Experimental Setting

Here, the systems evaluated in this chapter are explained.

State-space System

To test the possible causes of compounding error, we test the ability of deep one-step models
to predict variations of a clearly defined system. Consider a state-space system defined with
a state s ∈ R3 and an action a ∈ R as st+1 = Ast + Bat + ωt. Therein, we define A and B
as follows to control the poles of the system:

A =

ρ a1 a2
0 ρ a3
0 0 ρ

 , B =

b1b2
b3

 . (4.4)

We set the desired eigenvalues, or poles, of the system to be ρ. The other parameters of the
system are sampled randomly for each trial as ai, bi ∼ U(−1, 1), which act as a source of
uncertainty. The default process-noise in the environment ωi ∼ U(−0.01, 0.01). All actions
are chosen randomly from U(−1, 1) and act via the randomly generated B matrices.

For a discrete-time state-space system, the time evolution of the state over time can
be solved for explicitly. This time evolution, shown in Eq. (4.5), is the goal of what these
composed one-step systems attempt to model, yet result in compounding errors. The solution
to the discrete transition dynamics takes the form an transient response from the initial state
and a forced response corresponding to the applied action sequence:

st = Ats0︸ ︷︷ ︸
Transient

+
k−1∑
l=0

Ak−l−1Ba(l)︸ ︷︷ ︸
Forced Response

. (4.5)

In this case, the magnitude of the transient response at a given time is proportional to the

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 30

eigenvalues of the matrix:

∥st∥ ≤ ∥At∥ · ∥s0∥ +
k−1∑
l=0

∥Ak−l−1B∥ · ∥a(l)∥ . (4.6)

For the state-space system, the time by which the prediction error converges to its minimum
for a given pole is proportional to the number of steps by which the transient of the initial
state will decay. The transient is proportional to powers of the dynamics matrix, ∥A∥k, which
is proportional to the powers of the eigenvalues. For the poles in {0.01, 0.05, 0.1, 0.25, 0.5}
the number of time-steps until the steady state error is reached is proportional to the mean
transient decay in Tab. 4.1. Example trajectories and one-step predictions are shown in
Fig. 4.2. In this parametrization, the input at any time is randomly sampled, so the forced
response becomes a source of noise.

Cartpole

We evaluate predictions of state and reward of cartpol (ds = 4, da = 1) agents conditioned
on a varied Linear Quadratic Regulator (LQR) [CD12] control laws (Fig. 4.4).

Reacher

The task associated with the reacher (ds = 15, da = 5) environment is to maneuver the end-
effector of the arm from an initial position state to an end position state. Our experiments
control the agent using a Proportional-Integral-Derivative (PID) controller with randomly
generated parameter vectors K ∈ R15.

Quadrotor - Simulated

The quadrotor model (ds = 9, da = 4) is based off the Crazyflie [GSWWK17] – an 27 g,
open-source micro-aerial vehicle. The 12 state Euler-step simulation follows [MKC12]. The
simulated controller is a linear, pitch and roll Proportional-Derivative controller with ran-
domly sampled parameters.

Quadrotor - Real World

Due to the high noise on the accelerations measured by on-board sensors, we evaluate pre-
dicting a restricted state of Euler angles from direct motor voltages as:

st =
[
Yaw:ψ Pitch:θ Roll:ϕ

]
, at =

[
V1 V2 V3 V4 .

]
(4.7)

When discretizing dynamics, lower sample rates yield more unstable eigenvalues, but the
system can also gain by having relatively lower signal-to-noise ratio on the measured states.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 31

Transient decay Delta-state labels True-state labels
Poles (ρ) k : ∥Akx0∥ < 1 × 10−4 mean(∥st+1 − st∥) ± σ(·) mean(∥st+1∥) ± σ(·)

0.01 4.7 0.019 ± 0.063 0.011 ± 0.021
0.05 6.1 0.020 ± 0.066 0.012 ± 0.020
0.10 7.4 0.018 ± 0.052 0.012 ± 0.026
0.25 11.2 0.017 ± 0.044 0.016 ± 0.048
0.50 21.8 0.020 ± 0.042 0.033 ± 0.087
0.75 55.5 0.029 ± 0.051 0.134 ± 0.299
0.90 168.3 0.086 ± 0.156 1.284 ± 2.610
0.95 N.A. 0.225 ± 0.351 8.511 ± 14.30
1.00 N.A. 7.442 ± 11.164 201.2 ± 450.5
1.10 N.A. 6.5 × 104 ± 1.9 × 105 7.0 × 105 ± 1.9 × 106

Table 4.1: Dataset properties for state-space systems with different eigenvalues. The tran-
sient decay is the number of discrete transitions on average by which the transient term in
Eq. (4.5) decays below 1 × 10−4 (chosen based on the steady state prediction error that the
most stable poles converge to on average). The mean and standard deviations of the data
labels represent a relative challenge for the models – as the input and output normalizers
need to compress a wider range of data to N (0, 1), the more sensitive the learning process
becomes (for more on normalization, see Sec. 4.4).

Quadruped - Real World

The state, st ∈ R52, corresponds to the following:

st =
[
x ẋ ω xf

k ψ θ ϕ αi α̇i cfk .
]

(4.8)

Here, x ∈ R3 is the position of the robot base, ω ∈ R3 is the angular rates of the robot base,
xf
k ∈ R3 is the position of the kth foot, ψ, θ, ϕ are the Euler angles, αi is the joint angle

for each of the 12 motors, and cf is an indicator if each foot is in contact with the ground.
The action, at ∈ R60, is a bimodal input, where for each of the 12 motors on the robot has
5 dimensional action space of desired joint position and velocities (α∗

i , α̇
∗
i), low-level PID

control coefficients (Kp
i , K

d
i), and set torque (τi):

at =
[
α∗
i α̇∗

i Kp
i Kd

i τi .
]

(4.9)

Model Training

To learn a model of the dynamics, we use a feedforward neural network with two hidden
layers of width 256. Ensemble models use E = 5 members. The models are trained on 100

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 32

0 10 20 30 40 50
Timestep

0.4

0.2

0.0

0.2

St
at

e
V

al
ue

gt d

(a) Poles at 0.1, state index 0.

0 10 20 30 40 50
Timestep

0.0

0.2

0.4

0.6

0.8

St
at

e
V

al
ue

gt d

(b) Poles at 0.1, state index 1.

0 10 20 30 40 50
Timestep

0.0

0.5

1.0

1.5

St
at

e
V

al
ue

gt d

(c) Poles at 0.1, state index 2.

0 10 20 30 40 50
Timestep

0.6

0.4

0.2

0.0

St
at

e
V

al
ue

gt d

(d) Poles at 0.30, state index
0.

0 10 20 30 40 50
Timestep

0.05

0.00

0.05

0.10

0.15

0.20

St
at

e
V

al
ue

gt d

(e) Poles at 0.30, state index
1.

0 10 20 30 40 50
Timestep

0.1

0.0

0.1

St
at

e
V

al
ue

gt d

(f) Poles at 0.30, state index
2.

0 10 20 30 40 50
Timestep

0.0

0.2

0.4

0.6

St
at

e
V

al
ue

gt d

(g) Poles at 0.5, state index 0.

0 10 20 30 40 50
Timestep

0.05

0.00

0.05

0.10

St
at

e
V

al
ue

gt d

(h) Poles at 0.5, state index 1.

0 10 20 30 40 50
Timestep

0.4

0.3

0.2

0.1

0.0

0.1

St
at

e
V

al
ue

gt d

(i) Poles at 0.5, state index 2.

Figure 4.2: Example trajectories for the state-space system in three dimensions showcasing
the predictions of deterministic models for ρ = 0.1, 0.30, 0.5. The three states for each pole
correspond to one example trajectory, and the matrices and initial states are different for
each of the representative poles shown. gt is the true state dynamics and d is the one-step
model.

trajectories – all with different matrices A,B with the same poles for the state-space systems.
For the other environments, control policies are randomly sampled to create diverse training
and testing data. The models are trained for 20 epochs with a learning rate of 0.0003 for
deterministic and 0.000025 for probabilistic models with the Adam optimizer. Deterministic
models use a batch size of 32 and probabilistic models use a batch size of 64. All state data
is normalized to a unit Gaussian and action data is normalized to [−1, 1] for training. The

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 33

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(a) Poles, ρ, 0.05.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(b) Poles, ρ, 0.1.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(c) Poles, ρ, 0.25.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(d) Poles, ρ, 0.5.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(e) Poles, ρ, 0.75.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

2
5

100
2
5

1000

(f) Poles, ρ, 0.90.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

2
5

100
2
5

1000

(g) Poles, ρ, 0.95.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

2
5

100
2
5

1000

(h) Poles, ρ, 1.0.

Figure 4.3: Showing the compounding errors, formally the per-step MSE (median, 65th,
and 95th percentiles), of state-space systems shown in Eq. (4.4) with different poles, ρ.
Compounding errors vary substantially with the underlying poles of the environment and
diverge when the poles approach instability. All models are trained and evaluated on separate
datasets of 100 trajectories.

equations for computing the loss during training are shown for MSE and NLL:

lMSE =
N∑

n=1

∥fθ(sn,an) − sn+1∥22 , (4.10)

lNLL =
N∑

n=1

[µθ(sn, an) − sn+1]
TΣ−1

θ (sn, an)[µθ(sn, an) − sn+1] + log det Σθ(sn, an) . (4.11)

Important to the convergence of supervised learning is the shape and magnitude of the
training data. In Tab. 4.1, we compare the training data shape for the different state-
space system eigenvalues when using true- and delta-state labels for the one-step dynamics
model. As the eigenvalues become more unstable, the variation in the training labels grows
exponentially. This effect can be counteracted with normalization if it is uniform, but the
model loses the ability to differentiate between elements at fine scales, which could render
the usefulness of the model low.

The linear model is the result of solving the least squared problem, arg minω ||Xω− b||2,
where b = (st+1 − st), ω =

[
Â B̂

]
, X =

[
S U

]
(S and U are stacked state and action

vectors). The next state is then predicted with ŝt+1 = Âst + B̂at.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 34

0 50 100 150 200 250 300 350 400
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(a) Cartpole. ds + da = 5.

0 100 200 300 400 500
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(b) Quadrotor. ds + da = 13.

0 100 200 300 400 500
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(c) Reacher. ds + da = 20.

LIN (#) ZERO (∗) D () D-S (⋆) PE (▷◁) PE-S (+)

Figure 4.4: Comparing the MSE of prediction error per-step (median, 65th, and 95th per-
centiles) on common model types and parametrizations on simulated robotic tasks of different
dynamics, simulators, and dimension. There is a trend of error of predictions increasing with
the task difficulty, but there is high variability in the performance of any one model type
when comparing across platforms. All model types are trained and evaluated on the same
datasets, maintaining separate datasets of 100 trajectories for test-train split.

4.3 The Effects of System Properties

Underlying Dynamics

The underlying dynamics of a system to be modelled controls the relative complexity of
the prediction landscape. One way to characterize the behavior of a system’s behavior is
through the poles, often computed as the eigenvalues for linear systems. To continue the
state-space example, a discrete-time system is stable when the eigenvalues are within the
unit-circle, ∥ρ∥ < 1. We vary the eigenvalues of our state-space system shown in Eq. (4.4)
across a range of mostly stable and psuedo-stable values to compare the compounding error.

The results in Fig. 4.3 indicate that as eigenvalues approach instability, prediction accu-
racy quickly degrades. For stable systems, the error growth over time does not compound,
but decreases over a short horizon before reaching steady state. Those systems with truly un-
stable poles, ∥ρ∥ > 1, diverge so rapidly that plotting and computing the magnitude of error
is computationally intractable. It is also interesting that when the poles are notably stable,
the relative stable-ness of the system does not have a large baring on prediction accuracy, as
shown by the similarity in error between poles of ρ < 0.25. Examples of the compounding
error on different simulated robotic tasks is shown in Fig. 4.4, which show substantial vari-
ation in compounding errors. With complex robotic systems it is often difficult to directly
identify the eigenvalues, further increasing the difficulty of cross-platform comparisons. The
Cartpole and Quadrotor environments represent stabilization tasks, which have similar error
profiles when compared to the Reacher maniuplation task. The variation between platforms
in both the magnitude and shape of compounding error motivates a deeper study of the
causes, which could be revealed in other properties of the system such as the dimension or
noise.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 35

0 20 40 60 80 100

10μ

100μ

0.001

0.01

0.1

1

10

100

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) 0× noise.

0 20 40 60 80 100

10μ

100μ

0.001

0.01

0.1

1

10

100

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

ρ = 0.95ρ = 0.10 ρ = 0.50 ρ = 0.75

(b) 10× noise.

0 20 40 60 80 100

10μ

100μ

0.001

0.01

0.1

1

10

100

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(c) 100× noise.

Figure 4.5: Comparing prediction accuracy when increasing the levels of process noise in
the system above and below the default of ωt ∼ U(−0.01, 0.01) on all dimensions (median,
65th, and 95th percentiles). The error between a system with default (shown in Fig. 4.3) and
zero process noise shows that the default noise from the random action matrices determines
the resulting prediction accuracy. An interesting feature is that when increasing the process
noise from 10× to 15×, the modelling accuracy degrades by a factor of 15.

Process Noise

The underlying noise within the dynamics has a substantial impact on measurement and
evolution of any dynamical system. The default state-space system has only process noise,
sampled uniformly ωi ∼ U(−0.01, 0.01). To measure the effects of this noise, we measure the
prediction accuracy with the following multiples of the original noise: 0×, 10×, 100×. The
results, shown in Fig. 4.5 indicate that noise can control the maximum accuracy. This floor
is a primary contributor to model inaccuracy for stable poles ρ = {0.1, 0.5, 0.75}, but when
the poles approach instability ρ = 0.95, the compounding error is similar across all noise
levels.

An interesting observation of the learning process is the relation between the random
actions, which the networked is informed of, and that of the process noise. By default,
the input matrices B are randomized along with the control policy in each trajectory, so
they computationally impossible for the general dynamics model to learn. In Fig. 4.6, the
actions are zeroed so they no longer contribute as a disturbance on system dynamics, and
the prediction accuracy shape is similar, but improves performance by about 100× when
compared to Fig. 4.3.

For the robotic tasks shown in Fig. 4.4, the default noise varies dramatically. The Reacher
has an unreported and low noise level (hidden within the Mujoco simulator), the Cartpole
has uniform noise U(−0.1, 0.1) on all states, and the Quadrotor has a noise sampled from
N (0, 0.0001). None of these simulators vary the level of noise relative to the type of the
state variables (for example, a position in meters can take much lower magnitudes than an
angle in degrees). The learned models on the quadrotor system converged to substantially
lower levels, potentially indicating that deep models continue to improve with substantial
noise reduction.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 36

0 20 40 60 80 100

10μ

100μ

0.001

0.01

0.1

1

10

100

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

1000

ρ = 0.95

ρ = 0.10ρ = 0.50

ρ = 0.75

Figure 4.6: Showing how the randomly sampled input matrices, B, and actions affect the
per-step MSE with different eigenvalues (median, 65th, and 95th percentiles) by collecting
new data and evaluate newly trained models with B = 0. The random actions are the
second leading cause of prediction error behind the unstable eigenvalues.

0 20 40 60 80 100
0.01

2
5

0.1
2
5
1
2
5

10
2
5

100
2
5

1000

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) ds = 9.

0 20 40 60 80 100
0.01

2
5

0.1
2
5
1
2
5

10
2
5

100
2
5

1000

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(b) ds = 27.

0 20 40 60 80 100
0.01

2
5

0.1
2
5
1
2
5

10
2
5

100
2
5

1000

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

ρ = 0.90ρ = 0.10 ρ = 0.50 ρ = 0.75

(c) ds = 81.

Figure 4.7: Comparing compounding error with different state dimensions to see if input-
output prediction size challenges the models when the underlying dynamics are regularized
(shown is the MSE with median, 65th, and 95th percentiles). State size does not have a
substantial effect on the modeling error (the decreased variance of the error at each step in
the state-sizes could be due to averaging over more state dimensions).

State-space Dimension

A large motivation to using deep models for predicting dynamics is the ability to extend
to higher dimensional tasks. While early work has shown that deep networks are useful for
high dimensional tasks (such as [NKLK20; LDY+19] with state-action spaces over 40 dimen-
sional), given the difficulty of comparing across different systems more controlled studies of
prediction dimensionality are needed. Learning one-step models scale the input and output
dimensions with respect to the environment state. To evaluate this, we scale the dimension-

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 37

0 20 40 60 80 100
0.01
0.1

1
10

100
1000
10k

100k
1M

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

10M

dim = 3 dim = 27dim = 9

Figure 4.8: The prediction accuracy versus unregularized state-dimension growth given a
set pole at ρ = 0.5 for all systems predictions. Specifically, in this figure the matrix norm,
∥A∥∞, of the state-dynamics grows with dimension.

ality of the state-space system from 3 to 9, 27, and 81, which is shown in Fig. 4.8. The effect
of increasing the state without normalizing the underlying dynamics, A, is a rapid increase
in the compounding error because the matrix norm grows with state-dimension.

The underlying trajectories act more unstable when increasing the dimension of the
state-space system because each state is a weighted sum of the current states. Without
normalization the summation representing a linear transition continues to grow with state
dimension. As a second experiment, the maximum row norm of the state-dynamics matrix,
A∞, is bounded to isolate the effects of prediction-dimension from the strong effects of system
stability. As the dimension increases in this subsection, the dynamics are regularized so that
∥A∥∞ ≤ 3, as in the default system. With such normalization, the standard model types
suffer from an increase in baseline prediction error, but the rate of error compounding does
not grow, shown in Fig. 4.7. Increasing the dimension of the state also reduces the variance
of the compounding MSE, which is likely due to averaging over more states rather than a
change in prediction dynamics.

Data Distribution & Density

Understanding how model accuracy relates to an underlying training distribution is crucial
to advancements in deep learning. Scaling the state-dimension of a system effectively reduces
the density of data. Another axis for comparing the density of training data for a learned
model is to compare model accuracy along trajectories understanding the relative density
with respect to time. For stable systems, the data will likely be more dense at higher time

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 38

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Trajectory Time Index

M
ea

n
Sq

ua
re

d
Er

ro
r

ρ = 0.95ρ = 0.10 ρ = 0.50 ρ = 0.75

Figure 4.9: The per time index error for varying state-space systems. Again, unexpectedly,
the error does not worsen further into the trajectories where state-space coverage is less
dense.

0 50 100 150 200 250 300 350 400
10n2

5100n2
51μ2
510μ2
5100μ2
50.0012
50.012
50.1

Trajectory Time Index

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) Cartpole.

0 100 200 300 400 500
10n2

5100n2
51μ2
510μ2
5100μ2
50.0012
50.012
50.1

Trajectory Time Index

M
ea

n
Sq

ua
re

d
Er

ro
r

(b) Crazyflie.

0 100 200 300 400 500
10n2

5100n2
51μ2
510μ2
5100μ2
50.0012
50.012
50.1

Trajectory Time Index

M
ea

n
Sq

ua
re

d
Er

ro
r

(c) Reacher.

D () D-S (⋆) PE (▷◁) PE-S (+)

Figure 4.10: The per-step model prediction error, rather than accumulated prediction error,
(median, 65th, and 95th percentiles) across trajectories in simulated robotic experiments.
This highlights the relative error of a true state-action pair at a given time index in a
trajectory. In these examples, the per-step error decreases as the controllers stabilize the
robots towards the stationary target points.

indices (as is the case for the Cartpole and the Crazyflie), but for other systems the data-
distribution over time in trajectories can take complex forms. As a proxy to density, we
observe the per-step prediction error when predicting from the true state and action to the
next state along each trajectory from the initial state s0 and at each intermediate state st
(rather than the composed predictions as in most of this work). The results of the across-
time one-step errors are shown in Fig. 4.10 for the simulated robots and Fig. 4.9 for the
state-space system.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 39

0 50 100 150 200 250 300 350 400
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(a) Cartpole. ds + da = 5.

0 100 200 300 400 500
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(b) Quadrotor. ds + da = 13.

0 100 200 300 400 500
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(c) Reacher. ds + da = 20.

D () D-S (⋆) PE (▷◁) PE-S (+)

Figure 4.11: Showing how re-computing actions has a dramatically different effect on predic-
tion MSE depending on the policy type (median, 65th, and 95th percentiles). We hypothesize
that these diverging predictions could be worsened when coupled with feed-forward control
policies. The data used is the same as in Fig. 4.4 where the policy is computed based on
the predicted state, rather than mimicking the original action. Note, the predictions for the
different environments are across different horizons.

Re-computing Actions

When planning into the future there are two potential actions sequences: a logged action
sequence to compare the model accuracy of a learned model to measured data and a generated
action sequence to evaluate the potential usefulness of a simulated trajectory. The effect of
re-computing the actions passed into the predictive model as at = π(ŝt) instead of the
original action sequence being provide by an oracle can be crucial to if a model will be
useful under a certain controller. The action on a predicted state will take the form of
a = π(ŝ) = π(s + ϵt), so the action returned varies in most the model accuracy and policy
robustness to perturbation. Depending on the problem formulation, long horizon prediction
is often done with an action sequence passed into the model (representing the ground truth),
but model accuracy can be dramatically different if the actions are re-computed from the
predicted state as computed action sequences will also exhibit compounding error.

The original results of the models on the simulated robotic tasks are shown in Fig. 4.4
and the results where the oracle no longer provides the original action sequence are shown
in Fig. 4.11. In this case, all environments show approximately a 10× increase in error when
not given the action sequence from an oracle. Crucially, this type of planning without a
real action sequence is how most MPC algorithms compute the action with a learned model.
One may expect that reflexive policies recomputing actions would diverge faster because
they compute the control off only the current state, while controllers with built in damping
or slew limiting can predict more accurately (such as the integral or derivative terms in a
PID controller), but this trend is not clear in our simulated results.

Generated action sequences are closely linked to using the models for control, but gen-
erally model training is only evaluated on accuracy with logged data. To date, there are
no methods to evaluate the potential accuracy of randomly generated actions leaving fu-
ture work to understand this relationship – for example, by evaluating the bootstrapped

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 40

0 20 40 60 80 100

10μ

100μ

0.001

0.01

0.1

1

10

100

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) All predictions 0.

0 20 40 60 80 100

10μ

100μ

0.001

0.01

0.1

1

10

100

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(b) Linear model.

0 20 40 60 80 100

10μ

100μ

0.001

0.01

0.1

1

10

100

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

ρ = 0.95ρ = 0.10 ρ = 0.50 ρ = 0.75

(c) Default Neural Network.

Figure 4.12: Comparing the compounding error of the state-space system with simple linear
and zero prediction models (shown is the MSE, 65th, and 95th percentiles per pole). On the
simple state-space system, the simple models perform comparably to the neural network,
but this does not indicate they would be as useful for control.

0 100 200 300 400 500
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(a) Without sine & cosine state processing.

0 100 200 300 400 500
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(b) With preprocessing.

D () D-S (⋆) PE (▷◁) PE-S (+)

Figure 4.13: Comparing the prediction accuracy (MSE median, 65th, and 95th percentiles) on
the Reacher environment with (right) and without (left) transforming the joint angles from
radians θi to an expanded state for each joint (cos θi, sin θi) to account for angle wrap-around
the interval [0, 2π]. The joint angle transformation, while increasing the state dimension from
10 to 15 improves the prediction accuracy substantially on short horizons and at convergence.

uncertainty estimate of a probabilistic ensemble across a planned trajectory.

4.4 The Effects of Model Training and

Parametrization

In this section we detail the effects of model training decisions on long-term prediction
accuracy.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 41

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(a) 1 Training Trajectory.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

ρ = 0.95ρ = 0.10 ρ = 0.50 ρ = 0.75

(b) 5 Training Trajectories.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(c) 10 Training Trajectories.

Figure 4.14: Prediction error across representative poles for different training set sizes given
a constant training set of 100 trajectories for each pole. The models quickly converge with
only 10 training trajectories.

Prediction Formulation & Training

Different model parametrizations, particularly ensembles and probabilistic loss functions,
have been shown to improve the peak performance of MBRL algorithms [CCML18; JFZL19].
It is important to identify if these models are uniformly more accurate in predictions, or if
their integration with controllers is important to the performance gains. As additional model
comparisons, we include two simple model baselines often omitted in recent MBRL work: a
linear model (LIN) and a model predicting 0 (ZERO) to provide context for the prediction
errors presented. These simple models performances are highlighted in Fig. 4.12 for the state-
space system and in Fig. 4.4 for the other simulated environments. These simple models are
extremely strong baselines in terms of compounding error, but our work does not study their
usefulness for control (e.g. the zero prediction model would be useless for control).

Another popular modelling tool is shift from a true one-step prediction to that of a
delta-state formulation. For the simulated environments in Fig. 4.4, there can be an im-
provement by using the delta-state parametrization or an probabilistic ensemble, but it is
not constant across all systems. Importantly, especially when deploying on real systems,
is that the ranking of prediction accuracy per-model is not consistent across environment.
Another implementation trick used in MBRL and other applications of model-learning for
control is to map angles and other state-variables that may have discontinuities to smooth
representations. For example, with angles, the state-space can be expanded to be the sine
and cosine of each angle, such as done by default in the Reacher environment. The increase
in state dimension for smooth state-space improves the prediction accuracy notably at short
horizons (h < 50) and at convergence in Fig. 4.13 – confirming results presented in Sec. 4.3
that it is not a crucial factor for prediction accuracy when the underlying dynamics are
constant.

We tested numerous other model types and neural network parametrizations (e.g. depth,
layer size, parameter tuning, normalization, training set size, etc.) on the state-space system,
but they had minimal effect on the prediction accuracy. The additional results can be found
in the Appendices.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 42

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(a) Default model. ρ =
0.1.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(b) Default model. ρ =
0.5.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(c) Default model. ρ =
0.75.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(d) Default model. ρ =
0.95.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(e) Hidden width 32.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(f) Hidden width 32.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(g) Hidden width 32.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(h) Hidden width 32.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(i) Hidden width 512, 3
hidden layers.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(j) Hidden width 512, 3
hidden layers.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(k) Hidden width 512,
3 hidden layers.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(l) Hidden width 512, 3
hidden layers.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(m) No normalization.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(n) No normalization.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(o) No normalization.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step
M

ea
n 

Sq
ua

re
d 

Er
ro

r

(p) No normalization.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(q) More model types.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(r) More model types.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(s) More model types.

0 20 40 60 80 100
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(t) More model types.

D () D-S (⋆) PE (▷◁) PE-S (+)

Figure 4.15: Comparing the effects of common modeling tools on MSE (median, 65th, and
95th percentiles) – changing models from top to bottom with increasing poles from right
to left. Reducing the model capacity by lowering layer width from 256 to 32 units or by
removing data normalization does not substantially affect prediction accuracy on the simple
state-space system. The probabilistic ensemble is able to improve on prediction accuracy,
though contrary to common practices, only when using the state-based predictions.

Model Capacity

Given recent advancements in deep learning driven by large datasets with evolving model ar-
chitectures, one-step dynamics models operate with simpler and smaller models and datasets.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 43

The results shown in Fig. 4.3 show the model prediction accuracy with a field-standard model
capacity of 2 hidden layers and 250 neurons. To further examine the effects of model ca-
pacity, we also test the rate of divergence for deep predictive models on state-space systems
with models with substantially fewer or greater parameters. The results of model predictive
error with models of a hidden layer of size 32, shown in Fig. 4.15(a-d), and of a model with 3
hidden layers of width 512, shown in Fig. 4.15(e-h) show that for a simple task, changing the
model size has little impact on prediction accuracy. The smaller model has slightly higher
prediction error and variance among errors and the larger model has slightly improved pre-
diction accuracy, though the effect is substantially less than the effects of system properties
studied in Sec. 4.3. Additionally, the model accuracy with different training set sizes is shown
in Fig. 4.14, where there is not a substantial effect beyond the first few trajectories.

Data Normalization

Tools for designing and optimizing neural networks are designed to work on data centered
around unit normal distributions – i.e. identical and independently distributed data closely
centered around 0. In robotics data where one-step models are deployed, this is often not
the case, which leaves it up the user to maintain data cleaning practices for dynamics model
training.

Normalization techniques map state and action variables over different ranges (bounds)
and shapes (relative density) to well-behaved distributions to aid model training. The model
normalizes the inputs and targets at training, and at prediction time utilizes these distri-
butions to map new inputs to the latent space of the model and then back into the true
distribution. Such mappings can also contribute to compounding error by pushing both
inputs and targets of some validation data further outside of a training distribution. In this
work, we map continuous variables to a normal distribution N (0, 1) and bounded variables
(such as actions) to a uniform distribution U(−1, 1). The effects of turning this normal-
ization off is a small increase in prediction error, shown in Fig. 4.15(i-l). Normalization
is heavily sensitive to outliers because if some training points are substantially outside the
distribution, it will further concentrate the data of interest onto a small region of the input
space, resulting in a harder learning problem and one that is more sensitive to model bias.

4.5 Other Factors Impacting Compounding Error

In this section, we build upon our study of system and model properties to show how some of
these variables can interweave in complex manners, resulting in difficultly to forecast model
performance.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 44

(a) Lorenz system,
x0, y0, z0 ∈ [5, 10].

0 50 100 150 200
0.01

2
5

0.1
2
5
1
2
5

10
2
5

100
2
5

1000

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(b) Compounding prediction
error, x0, y0, z0 ∈ [5, 10].

(c) Lorenz system,
x0, y0, z0 ∈ [−10, 10].

0 50 100 150 200
0.01

2
5

0.1
2
5
1
2
5

10
2
5

100
2
5

1000

Prediction Step

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(d) Compounding prediction
error, x0, y0, z0 ∈ [−10, 10].

Figure 4.16: Highlighting the dynamics of the of the Lorenz system (a,c) as a challenging
dynamics problem due to its chaotic dynamics that result in multi-modal behavior. The
chaotic system also happens to be stable, which is reflected by its bounded prediction error
per-step (b,d : median, 65th, and 95th percentiles) and a testing set of new trajectories. (a,b)
are trajectories sampled from a more restricted initial condition, where the initial x, y, z
coordinates fall in [5, 10]. (c,d) is a more diverse training and testing set, where the initial
states x, y, z are sampled from [−10, 10], though the dynamics model generalizes better to
new previously unseen data.

Predicting Chaotic Dynamics

A fundamental limit of prediction can be posed as how to predict chaotic systems. A
chaotic system is defined by the idea that a small perturbation in state can grow to an
exponential difference over time. As a case study, we include prediction errors for the Lorenz
system [Lor63], shown in Eq. (4.14). The canonical parameter η is often ρ, but we have
replaced it to avoid overloading our symbol for pole. The equations governing the system
follow,

ẋ = σ(y − x) , (4.12)

ẏ = x(η − z) − y , (4.13)

ż = xy − βz . (4.14)

In this work, the initial states for the Lorenz system are constrained to two different dis-
tributions: x0, y0, z0 ∈ [5, 10] or x0, y0, z0 ∈ [−10, 10], resulting in a comparison between how

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 45

 True, ⋄ Predicted Trajectory

TRUE
TRAJECTORY ENDS

PREDICTED
TRAJECTORY ENDS

Figure 4.17: Example showing the prediction on the Lorenz system, where the predictions
tend to advance in time and do not diverge rapidly.

training and test data distribution can affect dynamics model performance. Both training
sets include 100 trajectories of length 500 that are evaluated on 100 previously unseen tra-
jectories of length 200. While in practice learning to identify the three governing parameters
of the dynamics could result in more accurate predictions, learning models for systems by
which the analytical equations are unknown poses a problem of great interest for the field.
As the simulated version of system has no noise and stable dynamics, the prediction error
do not growth to infinity, but rather proportional to the separation of the two stable points,
shown by the oscillations in Fig. 4.16.

Control Frequency & Signal to Noise Ratio

The signal to noise ratio (SNR) [SDDS88] is a metric for evaluating the relative strength
of a signal that one wishes to measure to the noise that will be present in measurements,
commonly deploying in digital signal processing. A related topic emerges with any dynamical
system, where changing the sampling frequency of a system with uniform observation noise
can implicitly change the SNR of the transition labels for supervised learning – a shorter
sample time leads to higher impact of noise.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time

St
at

e
Va

lu
e

La
be

l R
an

ge

True Dynamics

(a) 250ms step size. SNR
<< 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time

St
at

e
Va

lu
e

La
be

l R
an

ge

True Dynamics

(b) 500ms step size. SNR
≈ 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time

St
at

e
Va

lu
e

La
be

l R
an

ge

True Dynamics

(c) 750ms step size. SNR
>> 1.

Figure 4.18: Showing how signal to noise ratio and step size are important for robotic tasks.
The difference between the potential measurement regions is the magnitude of signal present
in the labelled data. Crucially, a slower sampling frequency can increase the resolution of
the labelled data, improving downstream prediction accuracy.

Consider a canonical control system, the double integrator, shown in Eq. (4.15), that is
the underlying dynamics of Newtownian systems:

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), o(t) = x(t) + ωm(t) . (4.15)

With a constant input – corresponding to a constant force – solutions to this equation take
the form of a quadratic function. With a set measurement noise level the dynamics of a
given system when sampled at different frequencies results in modeling problems of varying
difficult, which we propose understanding as a signal to (measurement) noise ratio. The
true change in state, st+1 − st is corrupted by some noise from the current and previous
measurements, ωm

t and ωm
t+1, acting on the current and past observations o, where the

relative size of the true dynamics can be described as a signal-to-noise ratio (SNR):

SNR ≈ ∥st − st−1∥
∥st − st−1 + ωm

t + ωm
t−1∥

. (4.16)

Crucial to accurately modelling dynamics is for the sampling rate to be slow enough by which
the noise is a minor contribution to the targets, SNR >> 1. An illustration of this example
is shown in Fig. 4.18, where a constant noise interval illustrates the possible data labels with
different sample rates. All three simulators in this work do not have measurement error,
though every real system’s measurement error is determined by the quality of on-board
or external state measurement. In the real quadrotor system that follows in Sec. 4.6, we
evaluate model accuracy for two sampling rates. Finally, in real systems noise distributions
often take on asymmetric and complex distributions, which can be measured and understood
as specific detriments to learned model accuracy.

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 47

0 5 10 15 20 25
5

10μ
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Predictive Horizon

M
ea

n
Sq

ua
re

d
Er

ro
r

25 Hz D (), PE (X)
50 Hz D (), PE ()

(a) Crazyflie Quadrotor.

0 10 20 30 40 50

2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10

Prediction Horizon

M
ea

n
Sq

ua
re

d
Er

ro
r

5
10μ

D (), D-S (),
PE (), PE-S (+)

(b) Unitree A1 Quadruped.

Figure 4.19: Looking at the real-world prediction divergence on a flying (a) and walking
robot (b) two training sets for a Euler angles of a flying robot (median, 65th, and 95th

percentiles).

4.6 Case Studies of Compounding Error with Real

World Data

In this section we showcase the prediction accuracy of models trained on real-world dy-
namics data from a quadrotor and a quadruped. The quadrotor is a high-speed, high-noise
system with datasets from two different control frequencies (showcasing the potential pre-
diction challenge with low state-signal to noise ratio, which is studied further in Sec. 4.5).
The quadruped shows how high-dimensional state-action spaces can reduce the prediction
accuracy of true-state models.

Quadrotor: The Crazyflie is a micro-aerial vehicle that masses only 27 g, is 9 cm2 and
performs on-board sensor fusion with an MPU-9250 inertial measurement unit (s ∈ R3, a ∈
R4). The dataset used corresponds primarily to episodes of flights from 1 to 5 s attempting
to stabilize the Euler angles of the robot (data is from [LDY+19]). Most of these sequences
are unstable and end with failed control where the Euler angles diverge or the robot collided
with a wall due to drift of unmeasured states. The prediction accuracy is shown for a training
set in Fig. 4.19(a). Note that a prediction of the same horizon in steps translates to a longer
prediction in time when the model is trained on data with a lower frequency. The results
show that there is a clear gain in prediction accuracy with the lower frequency.

Quadruped: As another evaluation of compounding data, we have randomly created
episodes of length 50 from a batch of 3800 points of state-action data from the Unitree A1
Quadruped (at ∈ R60, st ∈ R52). This data comes from non-episodic data of the quadruped
walking with a trot gait. The action space is a multi-modal controller representing a un-
studied problem in MBRL for control.When a leg corresponding to one of the 12 motors (3
per leg) is in contact with the ground, all actions are set to 0 except torque indicator, and
vice-versa when the leg is in the air. The error shown when predicting a high-dimensional

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 48

input-output relation is shown in Fig. 4.19(b).

4.7 Understanding Compounding Error

Here, we outline a few key observations that should be considered when understanding the
compounding prediction error on a new system. These should be the points of focus when
model-learning for control is applied on new systems:

• “No Free Lunch” Applies to Model Accuracy: Given a fixed dataset, changing
between different models will shift where error is present in the state-action space and
over different predictive horizons. There will be no model that is perfect for one task,
so designers should match their model to the desired controller.

• Dynamics Dominates the Model Accuracy: The properties of the dynamic sys-
tem being modeled often has substantially greater effect on the prediction accuracy
compared to model parametrization or training parameters. This point covers the
accepted optimization procedures in the literature, but more complex optimizations,
such as Automatic Machine Learning of dynamics models for MBRL [ZRP+21], is an
exception that shifts modeling from an accuracy problem to one of maximization of
reward.

• Long-horizon Errors Can Level-off : The results show that for many simulated
applications, the error only compounds over an initial horizon h after which the error
levels off or grows slowly. In most cases, this levelling happens when predictions are
already useless for control purposes. However, we can postulate that might exist cases
when the levelling off of error is sufficiently low that long-horizon predictions could be
leveraged to solve sparse tasks.

• Simple Models for Simple Systems: In our low-dimensional experiments, simple
linear models and deterministic neural networks provide a strong baseline that should
be considered in real-world applications.

• Low-to-Zero Noise is not a Accuracy Guarantee: Transitioning from moderate
to low to zero noise has diminishing returns on prediction accuracy, indicating that
even simulated environments with no noise can still be difficult modelling tasks.

4.8 Future Work

Other Prediction Modalities Many other model types and trajectory propagation tech-
niques exist that are well suited to a more narrow spectrum of problems than deep neu-
ral networks. Linear models are suited to linear systems [FLA16; BCXLT17b], Gaussian
processes are useful for lower dimensionalities and dataset sizes [WHF06; DR11; MS17],

CHAPTER 4. COMPOUNDING PREDICTION ERRORS IN LEARNED MODELS 49

trajectory-based neural networks are useful with closed form control laws [LWZPC21], and
new physics-based neural networks are yet to be deployed for control [KGZKM21; JHF21].
When dynamics models learn distributions instead of specific transitions, the method for
propagation of the imagined trajectory can heavily impact both compounding error and
downstream control. In this work, only expectation-based propagation is used for proba-
bilistic models and probabilistic ensembles. Crucially, careful understanding of the various
model types’ strengths and weaknesses with respect to compounding error will yield improved
performance when paired with a suitable controller.

Dynamics Modeling with Distribution Shift In model-based reinforcement learning,
the data used to train the model changes with each step. This can take two forms: the
amount of data in the replay buffer and the relative shape of the data distribution. There
are complicated relationships in model-based reinforcement learning between model accuracy,
task-performance, and data-distribution that are not studied in this chapter. Recent work
suggests that optimizing solely for prediction accuracy does not result in maximum task-
performance [LAYC20; ZRP+21]. These data-properties are very difficult to quantify but
crucial for performance – for example, the relative density of labeled data points and the
underlying difficulty of a transition to model both effect prediction accuracy and are not well
understood.

50

Chapter 5

Objective Mismatch in Reinforcement
Learning

In this chapter, we highlight a fundamental problem in the MBRL learning scheme: the ob-
jective mismatch issue. This work is primarily sourced from our paper describing Objective
Mismatch [LAYC20]. The learning of the forward dynamics model is decoupled from the
subsequent controller through the optimization of two different objective functions – pre-
diction accuracy or loss of the single- or multi-step look-ahead prediction for the dynamics
model, and task performance for the policy optimization. While the use of log-likelihood
(LL) for system identification is an historically accepted objective, it results in optimizing
an objective that does not necessarily correlate to controller performance. This chapter cov-
ers the following: 1) identify and formalize the problem of objective mismatch in MBRL;
2) examine the signs of and the effects of objective mismatch on simulated control tasks;
3) propose an initial mechanism to mitigate objective mismatch; 4) discuss the impact of
objective mismatch and outline future directions to address this issue.

5.1 The Origin of Objective Mismatch

The Subtle Differences between MBRL and System Identification

Many ideas and concepts in model-based RL are rooted in the field of optimal control and
system identification [Sut91; Ber95; ZDG+96; Kir12; Bry18]. In system identification (SI),
the main idea is to use a two-step process where we first generate (optimal) elicitation tra-
jectories st+h = fθ(st, h, θπ) to fit a dynamics model (typically analytical), and subsequently
we apply this model to a specific task. This particular scheme has several assumptions:
1) the elicitation trajectories collected cover the entire state-action space; 2) the presence
of virtually infinite amount of data; 3) the global and generalizable nature of the model
resulting from the SI process. With these assumptions, the theme of system identification
is effectively to collect a large amount of data covering the whole state-space to create a

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 51

Dynamics 𝑓" Policy 𝜋"(𝑥) Environment

State Transitions RewardTrajectories

Training: Maximum Likelihood Objective Mismatch

Control Interacts

Responses

Figure 5.1: Objective mismatch in MBRL arises when a model is trained to maximize the
likelihood but then used for control to maximize a reward signal not considered during
training.

Start

Goal

(a) Elicitation Trajectories.

Start

Goal

(b) On-policy Collection.

Figure 5.2: Sketches of state-action spaces. (Left) In system identification, the elicitation
trajectories are designed off-line to cover the entire state-action space. (Right) In MBRL
instead, the data collected during learning is often concentrated in trajectories towards the
goal, with other parts of the state-action space being largely unexplored (grey area).

sufficiently accurate, global model that we can deploy on any desired task, and still obtain
good performance. If these assumptions are true, using the closed-loop of MBRL should
further improve performance over traditional open-loop SI [HGD96].

When adopting the idea of learning the dynamics model used in optimal control for
MBRL, it is important to consider if these assumptions still hold. The assumption of virtually
infinite data is visibly in tension with the explicit goal of MBRL which is to reduce the
number of interactions with the environment by being “smart” about the sampling of new
trajectories. In fact, in MBRL the offline data collection performed via elicitation trajectories
is largely replaced by on-policy sampling to explicitly reduce the need to collect large amount

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 52

of data [CCML18]. Moreover, in the MBRL setting the data will not usually cover the entire
state-action space, since they are generated by optimizing one task. In conjunction with the
use of non-parametric models, this results in learned models that are strongly biased towards
capturing the distribution of the locally accurate, task-specific data. Nonetheless, this is not
an immediate issue since the MBRL setting rarely tests for generalization capabilities of the
learned dynamics. In practice, we can now see how the assumptions and goals of system
identification are in contrast with the ones of MBRL. Understanding these differences and
the downstream effects on algorithmic approach is crucial to design new families of MBRL
algorithms.

Definition

During the MBRL process of iteratively learning a controller, the reward signal from the
environment is diluted by the training of a forward dynamics model with a independent
metric, as shown in Fig. 5.1. In our experiments, we highlight that the minimization of
some network training cost does not hold a strong correlation to maximization of episode
reward. As dynamic environments becoming increasingly complex in dimensionality, the
assumptions of collected data distributions become weaker and over-fitting to different data
poses an increased risk.

Formally, the problem of objective mismatch appears as two de-coupled optimization
problems repeated over many cycles of learning, shown in Eq. (5.1a,b), which could be at
the cost of minimizing the final reward. This loop becomes increasingly difficult to analyze
as the dataset used for model training changes with each experimental trial – a step that is
needed to include new data from previously unexplored states. We characterize the problems
introduced by the interaction of these two optimization problems, but, for simplicity, we do
not consider the interactions added by the changes in the dynamics-data distribution during
the learning process. In addition, we discuss potential solutions, but do not make claims
about the best way to do so, which is left for future work.

Training: arg max
θ

N∑
i=1

log pθ(s
′
i|si, ai), Control: arg max

at:t+T

Eπθ(st)

t+T∑
i=t

r(si, ai) (5.1a,b)

Manifestations of Mismatch

Model mismatch between fitting the likelihood and optimizing the task’s reward manifests
itself in many ways. Here we highlight two of them and in Sec. 5.7 we discuss how related
work connects in with these issues.

Long-horizon roll-outs of the model may be unstable and inaccurate. Time-series
or dynamics models that are unrolled for long periods of time easily diverge from the true
prediction and can easily step into predicting future states that are not on the manifold of
reasonable trajectories. Taking these faulty dynamics models and using them as a smaller

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 53

part of a controller that optimizes some cost function under a poor approximation to the
dynamics. Issues can especially manifest if, e.g., the approximate dynamics do not properly
capture stationarity properties necessary for the optimality of the true physical system being
modeled.

Non-convex and non-smooth models may make the control optimization problem
challenging The approximate dynamics might have bad properties that make the control
optimization problem much more difficult than on the true system, even when the true
optimal action sequence is optimal under the approximate model. This is especially true
when using neural network as they introduce non-linearities and non-smoothness that make
many classical control approaches difficult.

5.2 Experimental Setting

We now experimentally study the issue of objective mismatch to answer the following:
1) Does the distribution of models obtained from running a MBRL algorithm show a strong
correlation between LL and reward? 2) Are there signs of sub-optimality in the dynamics
models training process that could be limiting performance? 3) What model differences are
reflected in reward but not in LL?

In our experiments, we use two popular RL benchmark tasks: the cartpole (CP) and half
cheetah (HC). For more details on these tasks, model parameters, and control properties see
[CCML18]. We use a set of 3 different datasets to evaluate how assumptions in MBRL affect
performance. We start with high-reward, expert datasets (cartpole r > 179, half cheetah
r > 10000) to test if on-policy performance is linked to a minimal, optimal exploration. The
two other baselines are datasets collected on-policy with the PETS algorithm and datasets
of sampled tuples representative of the entire state space. The experiments validate over
a) many re-trained models and b) many random seeds, to account for multiple sources of
stochasticity in MBRL.

5.3 Correlating Model Loss and Episode Reward

The MBRL framework assumes a clear correlation between model accuracy and policy per-
formance, which we challenge even in simple domains. We aggregated Mcp = 1000 cartpole
models and Mhc = 2400 half cheetah models trained with PETS. The relationships between
model accuracy and reward on data representing the full state-space (grid or sampled) show
no clear trend in Fig. 5.3c,f. The distribution of rewards versus LL shown in Fig. 5.3a-c
shows substantial variance and points of disagreement overshadowing a visual correlation
of increased reward and LL. This bi-model distribution on the half cheetah expert dataset,
shown in Fig. 5.3d, relates to a unrecoverable failure mode in early half cheetah trials. The
contrast between Fig. 5.3e and Fig. 5.3d,f shows a considerable per-dataset variation in the

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 54

−10 −8 −6 −4 −2 0 2 4
0

20

40

60

80

100

120

140

160

180

Log Likelihood

Ep
is

od
e

R
ew

ar
d

(a) CP Expert (ρ = 0.59).

−10 −8 −6 −4 −2 0 2 4
Log Likelihood

(b) CP On-Policy (ρ = 0.34).

−10 −8 −6 −4 −2 0 2 4
Log Likelihood

(c) CP Grid (ρ = −0.06).

−10 −8 −6 −4 −2 0 2 4
−1000

0

1000

2000

3000

4000

5000

6000

Log Likelihood

Ep
is

od
e

R
ew

ar
d

(d) HC Expert (ρ = 0.07).

−10 −8 −6 −4 −2 0 2 4
Log Likelihood

(e) HC On-Policy (ρ = 0.46).

−10 −8 −6 −4 −2 0 2 4
Log Likelihood

(f) HC Sampled (ρ = 0.19).

Figure 5.3: The distribution of dynamics models (Mmodels = 1000, 2400 for cartpole, half
cheetah) from our experiments plotting in the LL-Reward space on three datasets, with
correlation coefficients ρ. Each reward point is the mean over 10 trials. There is a trend of
high reward to increased LL that breaks down as the datasets contain more of the state-space
than only expert trajectories.

state-action transitions. The grid and sampled datasets, Fig. 5.3c,f, suffer from decreased
likelihood because they do not overlap greatly with on-policy data from PETS.

If the assumptions behind MBRL were fully valid, the plots should show a perfect corre-
lation between LL and reward. Instead these results confirm that there exists an objective
mismatch which manifests as a decreased correlation between validation loss and episode
reward. Hence, there is no guarantee that increasing the model accuracy (i.e., the LL) will
also improve the control performance.

5.4 Examining Model Loss vs Episode Reward Per

Training Epoch

This section explores how model training impacts performance at the per-epoch level. These
experiments shed light onto the impact of the strong model assumptions outlined in Sec. 5.1.
As a dynamics model is trained, there are two key inflection points - the first is the training
epoch where episode reward is maximized, and the second is when error on the validation set

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 55

Validation Error (△: DE, PE, 3: D, P) Episode Reward (X: DE,PE, ⋆: D,P)

0 100 200 300 400 500
 -6
 -4
 -2

0
2
4
6

0

50

100

150

200

Training Epoch

N
eg

at
iv

e
LL

R
ew

ar
d

(a) P, PE models.

0 100 200 300 400 500
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1

0

50

100

150

200

Training Epoch

M
SE

R
ew

ar
d

(b) D,DE models.

Figure 5.4: The reward when re-evaluating the controller at each dynamics model training
epoch for different dynamics models, M = 50 per model type. Even for the simple cartpole
environment, D, DE fail to achieve full performance, while P , PE reach higher performance
but eventually over-fit to available data. The validation loss is still improving slowly at 500
epochs, not yet over-fitting.

Grid Data (△) Policy Data (⃝) Expert Data (3) Episode Reward (X)

0 100 200 300 400 500
−6
−4
−2

0
2
4
6
8

10

0

50

100

150

200

Training Epoch

N
eg

at
iv

e
LL

R
ew

ar
d

(a) Trained: grid Tested: expert, on-policy.

0 100 200 300 400 500
−6
−4
−2

0
2
4
6
8

10

0

50

100

150

200

Training Epoch

N
eg

at
iv

e
LL

R
ew

ar
d

(b) Trained: on-policy Tested: expert, grid.

Figure 5.5: The effect of the dataset choice on model (P) training and accuracy in different
regions of the state-space, N = 50 per model type. (Left) when training on the complete
dataset, the model begins over-fitting to the on-policy data even before the performance
drops in the controller. (Right) A model trained only on policy data does not accurately
model the entire state-space. The validation loss is still improving slowly at 500 epochs in
both scenarios.

is optimized. These experiments highlight the disconnect between three practices in MBRL
a) the assumption that the on-policy dynamics data can express large portions of the state-
space, b) the idea that simple neural networks can satisfactorily capture complex dynamics,
c) and the practice that model training is a simple optimization problem disconnected from
reward. Note that in the figures of this section we use Negative Log-Likelihood (NLL) instead
of LL, to reduce visual clutter.

For the grid cartpole dataset, Fig. 5.4 shows that the reward is maximized at a drastically
different time than when validation loss is minimized for P , PE models. Fig. 5.5 highlights

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 56

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Planned Trajectories

Expert Trajectory

Time (Environment Step)

St
at

e
Va

lu
e

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (Environment Step)

LL: 4.83
Reward: 176

LL: 4.85
Reward: 98

Figure 5.6: Example of planned trajectories along the expert trajectory for (left) a learned
model and (right) the adversarially generated model trained to lower the reward. The
planned control sequences are qualitatively similar except for the peak at t = 25. There, the
adversarial attack applies a small nudge to the dynamics model parameters that significantly
influences the control outcome with minimal change in terms of LL.

how the trained models are able to represent other datasets than they are trained on (with
additional validation errors). Fig. 5.5b shows that on-policy data will not lead to a complete
dynamics understanding because the grid validation data rapidly diverges. When training on
grid data, the fact that the on-policy data diverges in Fig. 5.5a before the reward decreases is
encouraging as objective mismatch may be preventable in simple tasks. Similar experiments
on half cheetah are omitted because models for this environment are trained incrementally
on aggregated data rather then fully on each dataset [CCML18].

5.5 Decoupling Model Loss from Controller

Performance

We now study how differences in dynamics models – even if they have similar LLs – are
reflected in control policies to show that a accurate dynamics model does not guarantee
performance.

Adversarial attack on model performance

We performed an adversarial attack [SZS+13] on a deep dynamics model so that it attains
a high likelihood but low reward. Specifically, we fine-tune the deep dynamics model’s last
layer with a zeroth-order optimizer, CMA-ES, (the cumulative reward is non-differentiable)
to lower reward with a large penalty if the validation likelihood drops. As a starting point
for this experiment we sampled a P dynamics model from the last trial of a PETS run
on cartpole. This model achieves reward of 176 and has a LL of 4.827 on it’s on-policy
validation dataset. Using CMA-ES, we reduced the on-policy reward of the model to 98,

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 57

Start

End
 4.6 4.7 4.8 4.9 5 5.1

100

120

140

160

180

0

2

4

6

8
Itr.

LL

R
ew

ar
d

Figure 5.7: Convergence of the CMA-ES population’s best member.

Number of random transitions:
200, 2000, 4000, 20000

0 5 10 15 20
0

50

100

150

Trial Num

C
um

ul
at

iv
e

R
ew

ar
d

Figure 5.8: Cartpole (Mujoco simulations) learning efficiency is suppressed when additional
data not relevant to the task is added to the dynamics model training set. This effect
is related to the issue of objective mismatch because model training needs to account for
potential off-task data.

on 5 trials, while slightly improving the LL; the CMA-ES convergence is shown in Fig. 5.7
and the difference between the two models is visualized in Fig. 5.6. Fine tuning of all model
parameters would be more likely to find sub-optimal performing controllers because the
output layer consists of about 1% of the total parameters. This experiment shows that the
model parameters that achieve a low model loss inhabit a broader space than the subset that
also achieves high reward.

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 58

Effect of Dataset Distribution when Learning

Learning speed can be slowed by many factors in dataset distribution, such as adding addi-
tional irrelevant transitions. When extra transitions from a specific area of the state space
are included in the training set, the dynamics model will spend increased expression on these
transitions. LL of the model will be biased down as it learns this data, but it will reduce the
learning speed as new, more relevant transitions are added to the training set.

Running cartpole random data collection with a short horizon of 10 steps (while forcing
initial babbling state to always be 0), for 20, 200,400 and 2000 babbling roll-outs (that sums
up to 200, 2000, 4000 and 20000 transitions in the dataset finally shows some regression
in the learning speed for runs with more useless data in the motor babbling. This data
highlights the importance of careful exploration vs exploitation trade-offs, or changing how
models are trained to be selective with data.

Finding the Optimal Data for Training a Model

The previous experiment showed that having too much data can slow MBRL performance,
which leads to the natural question of how to mitigate it? In the context of micro-data
RL for novel robotics, we proposed using clustering to better balance model capacity over
the dynamics of interest [LTL+20]. By clustering on the training data for a learned model,
we can actually improve prediction accuracy on a held-out validation set. Fig. 5.9 shows
an improvement in validation set accuracy when training on a k-means clustered, uniformly
representative subset of the training data on a real-world quadrotor dataset. The question of
optimal data in reinforcement learning has been studying in the context of offline RL, where
static inference procedures are used to generate policies [LWW+22; YBL+22]. Translating
these ideas to model training will improve the data-efficiency of model-based RL algorithms.

5.6 Mitigating Mismatch During Training

Tweaking dynamics model training can partially mitigate the problem of objective mismatch.
Taking inspiration from imitation learning, we propose that the learning capacity of the
model would be most useful when accurately modeling the dynamics along trajectories that
are relevant for the task at hand, while maintaining knowledge of nearby transitions for
robustness under a stochastic controller. Intuitively, it is more important to model accurately
the dynamics along the optimal trajectory, rather than modeling part of the state-action
space that might never be visited to solve the task. For this reason, we now propose a model
loss aimed at alleviating this issue.

Given a element of a state space (si, ai), we quantify the distance of any two tuples, di,j.
With this distance, we re-weight the loss, l(y), of points further from the optimal policy
to be lower, so that points in the optimal trajectory get a weight ω(y) = 1, and points
at the edge of the grid dataset used in Sec. 5.3 get a weight ω(y) = 0. Using the expert

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 59

3400
3200
3000
2800
2600
2400
2200

2000

1800

1600

1400

1200

1000

800

600

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Clustered Training

Default Training (4000 Datapoints)

Cluster Size (Log Scale)

Pr
ed

ic
tio

n 
M

ea
n 

Sq
ua

re
d 

Er
ro

r

Figure 5.9: Removing redundant datapoints from quadrotor dynamics data can improve
validation set accuracy while reducing stored data by over 50%. We trained 25 models at
each dataset size, and evaluated them on the same validation set. From left to right is
increasing the filtering (smaller training sets), which improves the accuracy on an 800 point
validation set by up to 25%.

dataset discussed in Sec. 5.3 as a distance baseline, we generated 25e6 tuples of (s, a, s′) by
uniformly sampling across the state-action space of cartpole. We sorted this data by taking
the minimum orthogonal distance, d∗, from each of the points to the 200 elements in the
expert trajectory. To create different datasets that range from near-optimal to near-global,
we vary the distance bound ϵ, and number of training points, S. This simple form of re-
weighting the neural network loss , shown in Eq. (5.2a,b,c), demonstrated an improvement
in sample efficiency to learn the cartpole task, as seen in Fig. 5.10. Unfortunately, this
approach is impractical when the optimal trajectory is not known in advance. However,
future work could develop an iterative method to jointly estimate and re-weight samples in
an online training method to address objective mismatch.

Weighting ω(y) = ce−d∗(y) Standard l(ŷ, y) Re-weight l(ŷ, y) · ω(y)
(5.2a,b,c)

Using simple reward as re-weight

An alternative to re-weighting w.r.t. the optimal trajectory could be re-weighting w.r.t. the
reward of each state. The compelling advantage of this would be the easy availability of the
reward without access to additional information (e.g., the optimal trajectory). However, the
reward does not topologically have the desired shape compared to the optimal trajectory. In
fact, for many rewards (e.g., distance to the target) the isocurves of reward are orthogonal
to the optimal trajectory. This means that the resulting re-weighting would concentrate the
dynamics to model accurately the part of the state-action space closer to the target, but

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 60

10 100 1000
0.1

1.0

10.0

Re-Weighting Dataset Size

Sa
m

pl
in

g
B

ou
nd

 (E
ps

ilo
n)

10 100 1000
0

30

60

90

120

150

Reward

Standard Dataset Size

Figure 5.10: Mean reward of PETS trials (Ntrials = 100), with (left) and without (right)
model re-weighting, on a log-grid of dynamics model training sets with number of points
S ∈ [10, 2500] and sampling optimal-distance bounds ϵ ∈ [.28, 15.66]. The re-weighting
improves performance for smaller dataset sizes, but suffers from increased variance in larger
set sizes. The performance of PETS declines when the dynamics model is trained on points
too near to the optimal trajectory because the model lacks robustness when running online
with the stochastic MPC.

it would ignore the dynamics that lead us to the reward in the first space (e.g., along the
optimal trajectory). Intuitively, this is undesirable, as it might decrease performance in the
initial stages of the trajectory. More research will be necessary to fully study alternatives
forms of re-weighting.

5.7 Discussion

Objective mismatch impacts the performance of MBRL – our experiments have gone deeper
into this fragility. Beyond the re-weighting of the LL presented in Sec. 5.6, here we summarize
and discuss other relevant works in the community.

Learning the dynamics model to optimize the task performance Most relevant
are research directions on controllers that directly connect the reward signal back to the
controller. In theory, this exactly solves the model mismatch problem, but in practice the
current approaches have proven difficult to scale to complex systems. One way to do this is by
designing systems that are fully differentiable and backpropagating the task reward through
the dynamics. This has been investigated with differentiable MPC [AJSBK18], differentiable
CEM [AY20], differentiable simulators [LSWP21], and Path Integral Control [ORA17], Uni-
versal Planning Networks [SJALF18] propose a differentiable planner that unrolls gradient
descent steps over the action space of a planning network. [BCXLT17a] use a zero-order
optimizer to maximize the controller’s performance without having to compute gradients
explicitly.

CHAPTER 5. OBJECTIVE MISMATCH IN REINFORCEMENT LEARNING 61

ε

(a) Expert Distance Weight.

r

(b) Reward Weight.

Figure 5.11: We propose to re-weight the loss of the dynamics model w.r.t. the distance ϵ
from the optimal trajectory. Re-weighting of the loss of the dynamics model w.r.t. the
reward, shown right, does not have the desired topology for optimal behavior as an accurate
value function would.

Add heuristics to the dynamics model structure or training process to make
control easier If it is infeasible or intractable to shape the dynamics of a controller, an
alternative is to add heuristics to the training process of the dynamics model. These heuris-
tics can manifest in the form of learning a latent space that is locally linear, e.g., in Embed
to Control and related methods [WSBR15], by enforcing that the model makes long-horizon
predictions [KST+19], ignoring uncontrollable parts of the state space [GGL18], detecting
and correcting when a predictive model steps off the manifold of reasonable states [Tal17],
adding reward signal prediction on top of the latent space [GKBNB19], or adding noise when
training transitions [MLJ+19]. [FBN17; Far18; VLGF22] also attempts to re-frame the tran-
sitions to incorporate a notion of the downstream decision or reward. Finally, [SRSSP21]
proposes stabilizability constraints to regularize the model and improve the control perfor-
mance. None of these papers formalize or explore the underlying mismatch issue in detail.

Continuing Experiments Our experiments represent an initial exploration into the chal-
lenges of objective mismatch in MBRL. Sec. 5.4 is limited to cartpole due to computational
challenges of training with large dynamics datasets and Sec. 5.5 could be strengthened
by defining quantitative comparisons in controller performance. Additionally, these effects
should be quantified in other MBRL algorithms such as MBPO [JFZL19] and POPLIN [WB19].

62

Chapter 6

Trajectory-based Dynamics Model

In this chapter, we propose and study a new class of feed-forward dynamics models focused
on capturing not the behavior of single steps, but the long-term time dependant evolution
of a trajectory as a whole. This work is derived from our paper introducing the trajectory-
based model [LWZPC21]. The main intuitions behind this model are that: 1) sequences
of actions and states are usually strongly correlated with their neighbors across time (i.e.,
across a trajectory) and 2) in quantifying the quality of long-horizon predictions, it might be
preferable to have higher uncertainty over the single steps, if the predication of the trajectory
as a whole is more accurate. This is particularly crucial when the dynamics models are used
for planning, where the relative ranking of the trajectories will directly impact the decision
making (e.g., it might be relatively unimportant to know how we reach a location as long as
we know that we can reach it accurately).

6.1 A New Prediction Formulation

We now describe our new trajectory-based dynamics models (which we refer in the rest of
the manuscript as T) which focus on modeling trajectories over time rather than individual
steps. The are two main intuitions behind the adoption of this type of model: 1) for control
purposes it is often more valuable to have an accurate overall trajectory prediction compared
to accurately predict single steps (which might compound error over long-term). This is even
more important when planning, since for planning the relative ranking of the trajectories is
what determines the eventual actions applied by control scheme such as MPC. 2) trajectories
are often strongly correlated in space and time; however, single-step models do not have
efficient mechanism to enforce that.

To address the error compounding, an idea would be to replace the recursive call of
Eq. (4.1) with a nth step prediction

st+h = fθ(st,at,at+1 . . . ,at+h) , (6.1)

which does not requires recursion, and is thus more likely to produce stable long-term pre-
dictions. However, here we can observe how the dimensionality of the model to be learned

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 63

1 2

3
4

...

L

(a) One-step models:
st+1 = fθ(st, at)

t=L

st+h

st

(b) Trajectory-based models:
st+h = fθ(st, h, θπ)

Figure 6.1: The model formulation for one-step models (a) and our new trajectory-based
models (b).

depends on the length of the prediction into the future h, and that in addition, this model is
generally only capable of predicting the resulting nth step ahead prediction, but not its inter-
mediate steps (this is not true for RNNs, but their formulation is more similar to Eq. (4.1)).
A first variant of this nth step ahead formulation would be to observe that the sequence of ac-
tion at,at+1, . . .at+h is typically generated by a generic, but single controller π(·) determined
by parameters θπ, and thus we can rewrite as

st+h = fθ(st, θπ) . (6.2)

As long as the dimensionality of θπ is smaller than the dimensionality of at,at+1, . . .at+h, this
would result in an effective reduction of the dimensionality of our dynamics model and thus
improved data-efficiency. However, once again this model only allows us to predict the final
state but not the trajectory that led us there. Adding the notion of dynamic time-prediction
is the final conceptual change to attempt to accurately predict long-term system dynamics in
a data-efficient manner, by which we index the starting state at time t and directly predict to
the future, variable horizon of h steps with one forward pass. The trajectory-based models
predict the evolution from a starting state st, subject to the control parameters θπ, to a
future-time index t+ h, as

st+h = fθ(st, h, θπ) . (6.3)

Compared to the traditional recursive one-step ahead formulation of Eq. (6.1), this formu-
lation provides several benefits that we now detail.

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 64

6.2 Benefits of Trajectory-based Models

Data-efficiency

One advantage of this formulation is that we can perform a re-labeling trick over the dataset
of collected trajectories, to significantly augment the dataset used to train the trajectory-
based model. We assume a dataset D of n collected trajectories D = {τn}, each of fixed
length L. For each collected trajectory τ j = [s0, . . . , sL] we can now extract L− 1 subtrajec-
tories τ ji = [si, . . . , sL] for i = 0 . . . L− 1, and use them all for training the trajectory-based
model. By training on all sub-trajectories, the model gains two strengths: 1) it can predict
into the future from any state, not just those given as initial states from a environment, and
2) the number of training points grows proportional to the square of trajectory length, as

Ntrain = n
L∑

t=1

t = n
(L)(L− 1)

2
≈ nL2 . (6.4)

This results in models that better exploit the temporal structure of the systems, while using
less data.

Computationally Efficient Planning

The trajectory-based models have a useful property of directly predicting entire trajecto-
ries instead of imagined roll-outs composed of repeated model evaluations. For prediction
propagation, by only passing in a vector of time horizons h from a current state, a planner
can evaluate the future with one forward pass, alleviating the computational burden (as
well as the compounding, multiplicative error) associated with evaluating sequentially many
steps of one-step models. In our model the predictions in a trajectory do not depend on the
prediction at the previous step, which can dramatically increase the control frequency when
planning online.

Capturing Empirical Distribution over Trajectories

One-step models commonly suffer from the issue of uncertainty explosion, where the pre-
dicted uncertainty over a trajectory typically keep increasing, and does not match the em-
pirical uncertainty from the data. By propagating time directly, our probabilistic trajectory-
based model can instead capture the uncertainty of variation in dynamics in the training
set (i.e., the model is more uncertain in areas of rapid movement and can become confident
when motion converges), and the empirical uncertainty over trajectories. The uncertainty
propagation is drawn in Fig. 6.2a and an example experiment is shown in Fig. 6.2b; both are
compared to one-step models that have diverging uncertainty as the predicted states leave
the training distribution. Stable uncertainty estimates convey promise when planning on
robotic hardware, where action choices are balanced against model uncertainty due to high
cost-per-test.

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 65

True Trajectory (-) Probabilistic Traj. Model (◦)
One-step Probabilistic Model (♢)

Sa
m

pl
e

st
at

e
va

lu
e

Time

(a) Uncertainty sketch. (b) Experimental uncertainty.

Figure 6.2: The trajectory-based models have prediction uncertainty proportional to the
epistemic uncertainty in the training dataset. (Left) a sketch of the uncertainty mechanism.
Trajectory-based models have uncertainty that can shrink when more confident in the dy-
namics, which is opposed to one-step models that have predicted uncertainties that diverge
at long horizons. (Right) an example trial of a robotic prediction (from the reacher task in
Sec. 6.3) highlights this uncertainty propagation with a probabilistic trajectory-based model
and an one-step probabilistic model (P).

Continuous Time

Traditional one-step ahead models assume a discrete quantization of time such that the
sampling frequency is constant. Instead, our model is agnostic to the use of discrete or
continuous time, since the model can make use of data collected at arbitrary h and explicitly
interpolate between them. While this property is not employed in the following experiments,
this is a very desirable property that we aim to explore in future work.

6.3 Experimental Setting

We now evaluate the proposed trajectory-based models. In particular, we investigate the
long term prediction accuracy, the ability for the trajectory-based model to predict unstable
or periodic data, the sample efficiency benefit of the new parameterization, and using the
new model for predicting experimental reward.

Model Training Using the same notation and model training formulations in [CCML18],
we use four model types: D,P,DE, PE. The deterministic model, D, and deterministic

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 66

(a) Cartpole. (b) Reacher. (c) Quadrotor.

Figure 6.3: Experimental platforms used for studying the Trajectory-based model.

Re-compute at from ŝt (X) Oracle Provides at (+)

0 50 100 150 200
2

5
0.001

2

5
0.01

2

5
0.1

2

5
1
2

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

Figure 6.4: The prediction accuracy of a PE on Cartpole with and without re-computing
the action at each step (Ntraj = 100) shows the increased error from re-computing actions.

ensemble, DE, minimize the mean squared error (MSE) of predictions. The probabilistic
model, P , and probabilistic ensemble, PE, minimize the negative log likelihood (NLL) of a
Gaussian distribution of state transitions.

All models normalize the input states and actions to a standard normal distribution
N (0, 1) in each dimension, and bounded control parameters are mapped to [−1, 1]. The
feedforward models have two hidden layers of width 250, are optimized with Adam [KB14],
with batch sizes of 32 for D,P and 64 for T, and learning rates of 2.5 × 10−5 for P models,
5×10−5 for D and 8×10−4 for T. Due to the rapid accruing of labeled data for the trajectory-
based models, we cap the training set size at 1×105 by random downsampling. The LSTMs
are trained with Adam with a learning rate of 0.1, with batches of sequences matching the
trajectory length, L, and with normalization following [SVL14].

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 67

Cartpole (Simulated) We evaluate our models thoroughly on the cartpole task where
the goal is to balance a mass over a sliding cart (ds = 4, da = 1), shown in Fig. 6.3a. To
have a continuous reward for prediction, we introduce a new reward function r(st, at) =
−(x2 + θ2) and the remaining details are outlined in [CCML18]. We evaluate predictions
of state and reward of cartpole agents conditioned on a Linear Quadratic Regulator (LQR)
control policy. LQR solves the optimization minu J(u) =

∫∞
0

s⊤Qs + a⊤Ra dt for the

dynamics ṡ = Ãs + B̃u. LQR control minimizes the expected cost based on a linearized
dynamical system, Ã, B̃. The control policy, π(·), of LQR takes the form of state feedback,
a = −Ks, where K ∈ Rda×ds . For all experiments we use the following cost matrices to
generate a optimal controller, K∗: Q = diag(.5, .05, 1, .05), R = [1], and then sample
a random vector m ∈ R4×1 uniformly from the interval [0.5, 1.5] to create a variety of
controllers Ki = mi ·K∗∀i.

Reacher (Simulated) For a higher dimensional task, we examine the 5 joint, three-
dimensional, reacher manipulation task (ds = 15, da = 5) in the Mujoco, OpenAI Gym
environment [TET12; BCP+16], shown in Fig. 6.3b. The task associated with the environ-
ment is to maneuver the end-effector of the arm from an initial position state to an end
position state. To create a diverse set of data for prediction, our experiments control the
agent using a Proportional-Integral-Derivative (PID) controller with randomly generated pa-
rameter vectors K ∈ R15. The parameters of a PID control are defined by a vector of joint
angle targets, zd ∈ R5, proportional constants, Kp ∈ R5, integrative constants, KI ∈ R5,
and derivative constants, KD ∈ R5, for each rotatory joint. We set KI = 0 for all experi-
ments. Given the joint angle zi and the current error ei = zi − zd, the control command at
the ith joint is ui = KP · ei +KD · ėi.

Quadrotor (Simulated & Real Hardware) We validated the prediction accuracy
of trajectory-based models on a simulated and experimental low-level attitude control of a
quadrotor (ds = 5, da = 4). The quadrotor model is based off the Crazyflie [GSWWK17],
shown in Fig. 6.3c, an 27 g, open-source micro-aerial vehicle. The 12 state Euler-step simu-
lation follows [MKC12] and has uniform Gaussian noise on all state variables sampled from
σ ∼ N (0, 0.01). The simulated controller is a linear, pitch and roll PD controller with
randomly sampled parameters. For experimental data, we collected 180 s of aggressive flight
data with default PID rate-controllers. This data was broken down into trajectories of length
1000 randomly, which we used to validate our prediction mechanism.

6.4 Long-term Prediction Accuracy

We now demonstrate the ability of the trajectory-based models (T) to more accurately
predict long-horizon robotic dynamics by measuring the mean-squared error of the predicted
trajectory versus the measured state,

∑H
t=1 ∥ŝt − st∥2. We evaluate the ability to predict

horizons of over 100 steps and trajectories longer than the original training distributions.
An advantage of trajectory-based models over one-step models is that T models lack a need
to be given a time-series of actions from an oracle or to compute a new action from the current

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 68

Deterministic, one-step: D (◦) Trajectory-based: T (+)

Probabilistic, Ensemble one-step: PE (▷◁) Long Short-term Memory : LSTM (2)

0 50 100 150 200 250 300 350 400
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r Trained on H=200

(a) Cartpole (Simulated).

0 200 400 600 800 1000
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

Trained on H=500

(b) Reacher (Simulated).

0 200 400 600 800 1000
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

Trained on H=500

(c) Quadrotor (Simulated)

0 200 400 600 800 1000
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(d) Quadrotor (Real Hardware)

Figure 6.5: The log-scale, mean-squared prediction error for the tested environments. The
simulated environments are tested on 250 validation trajectories and the experimental data is
tested on 16 training trajectories due to experimental restrictions. Highlighted is the median
error with the 65th and 95th percentile of errors. These figures highlight two properties: 1)
5× to 10× gain in long term prediction accuracy via trajectory-based models for h > 50 and
2) the uncertainty in one-step prediction continues to growth with the prediction step while
trajectory-based error remains stable. The vertical line indicates the length of trajectories
in the training distribution.

state. When predicting to long horizons with one-step models, the error can compound and
diverge rapidly if the predicted state is used to re-compute the action, shown in Fig. 6.4.
For a more competitive baseline in the remainder of our experiments, the one-step models
predict the next state given the original action sequences, {at}Lt=0, and the trajectory-based
models given only θπ.

The prediction accuracy for D, PE, LSTM, and T models with error 65th, 95th percentiles
(tested on 100 trajectories) is shown for the cartpole trained on 100 trials of 200 time-steps,
Fig. 6.5a, 100 reacher trials of 500 time-steps, Fig. 6.5b, 100 simulated quadrotor trials of

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 69

D model T model

Training trajectories length (L)

N
um

be
r o

f t
ra

in
in

g
tra

je
ct

or
ie

s (
N

)

M
ea

n
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r

Figure 6.6: The median, cumulative prediction error of 5 models sweeping over the number N
and length L of reacher training trajectories given on a constant validation set of trajectories
of length 100. The trajectory-based model achieves substantially better prediction accuracy
with both shorter and fewer trajectories in the training set. In the context of MBRL, the
trajectory based model has better sample efficiency by having lower cumulative prediction
error when trained on fewer trajectories N (a slice at a specific length L).

500 time-steps, Fig. 6.5c, and 16 experimental quadrotor trajectories of 1000 time-steps,
Fig. 6.5d. The experimental quadrotor trajectories all have the same control parameters,
which the model could use to better generalize across trajectories, showing that adding time-
dependence alone can improve long-term prediction accuracy. All states are normalized to
a range of [0, 1] before computing the MSE to match error across different states (i.e., the
scale of a velocity is matched to the scale of an angle). The trajectory-based models are less
accurate for short horizons (h < 25), but converge to an improvement of up to 10× reduction
in MSE for long horizons both in simulation and experiment. In practice, it is expected that
some testing trajectories will extend beyond the expected length, which we evaluate by
testing on trajectories of greater length than the training set. Even with out of distribution
time indices, the trajectory-based models maintain their improvement in accuracy over one-
step models, removing any need for T models to be trained on equal-length trajectories.

6.5 Accelerated Data Efficiency

Having sufficient labeled data is frequently a limiting factor in deep-learning tasks. Recall
from Sec. 6.2 that the labelled data for trajectory-based models grows at a rate of the
trajectory length squared, L2. Leveraging this accelerated accruing of data, we evaluate
the ability of trajectory-based models to predict accurately in the low-data regime. In

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 70

Prediction Mechanism Prediction Mapping Cartpole MSE ±σ Reacher MSE±σ
Direct mapping (GP) (K, s0) 7→ r̂ 0.88 ± 1.87 0.13 ± 0.19
Direct mapping (NN) (K, s0) 7→ r̂ 0.45 ± 1.19 0.07 ± 0.11
One-step; oracle (D)

(
fθ,at=0:L, s0

)
7→ r̂ 0.06 ± 0.10 0.46 ± 2.05

One-step; pred. actions (D)
(
fθ,K, s0

)
7→ r̂ 0.98 ± 1.73 0.07 ± 0.09

Trajectory-based (T)
(
fθ,K, s0

)
7→ r̂ 0.01 ± 0.03 0.01 ± 0.01

Table 6.1: The mean-squared predicted reward error across 100 simulated trajectories show
the strength of learning long term dynamics for predicting episode reward. The 100 trajec-
tories have different initial states s0, and control parameters K. The rewards are normalized
per the number of trial step – 200 steps for the cartpole task and 500 for the reacher task.

the reacher environment, we trained models on a grid of trajectory lengths, L ∈ [5, 100],
and number of trajectories, N ∈ [1, 20], to predict a validation set of 10 trajectories of
length 100. Given an initial state, st, we can predict a set horizon, h, into the future to
obtain a simulated trajectory of states, τ̂ = {ŝi}t+h

i=t , and measure the mean-squared error
(MSE) across all normalized state dimensions. In Fig. 6.6, the trajectory-based models show
improved performance for both a) shorter trajectories (L) (another link to predicting beyond
the initial training length in Sec. 6.4) and b) fewer samples (N). The regime of low number
of training trajectories (N) represents an area of high value to robotic tasks via its potential
for reduced evaluations on a real robot.

6.6 Predictive Episode Reward

Predicting reward is tied to planning actions for robotic systems because if one can accurately
predict rewards for an action set, then one can correctly rank actions. The trajectory-based
models predict rewards in a simulated task by coupling reward prediction to stable long-term
predictions. In this section we compare the predicted reward, r̂, of an initial state, s0, and
control parametrization K to the true cumulative reward, r =

∑L
t=0 r(st).

We consider five methods for predicting the reward of an episode from an initial state
and control parameters: 1) the trajectory-based models, 2) the one-step models given the
action sequence from true-states (oracle), 3) the one-step models with actions computed from
predicted states (predicted-actions), 4) Gaussian Processes (GPs), and 5) neural networks
(NN) predicting directly from the initial state and control parameters to sum of reward. Each
candidate method is a different mapping in the following function-space: h : (s0,K, θ) 7→ r,
where θ carries different model formulations. The dynamics models are used to predict future
states via ŝt+1 = fθ(·), with the one-step models taking in the previous predicted state and
the trajectory-based models updating the time index. The predicted trajectory reward uses

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 71

the environment-defined reward function r(st, at) summed over time (the reward functions
are action independent). A Gaussian process (GP), defined by a mean vector, µθ(x), and
a covariance matrix, k(x1,x2), or a neural network (NN) can predict the reward with no
structured dynamics model. for the GP and the NN, the target rewards are normalized
uniformly to [−1, 1] before prediction to aid in model training.

For both the cartpole and the reacher tasks, the trajectory-based model outperforms
other methods in predicted reward accuracy. The mean-squared predicted reward error
across 100 trajectories is shown in Tab. 6.1. We hypothesize that the structured learning of
a dynamics model accurate across a trajectory improves reward prediction with knowledge
of each step over predicting directly to the cumulative reward.

6.7 Iterative Learning of Control Parameters

We now compare the trajectory-based model against black-box optimization algorithms for
the iterative learning of control parameters. At each iteration, we retrain the trajectory-
based model and then use it to simulate rollouts of different control parameters. Finally, we
execute the best control parameters found on the real system, and a new iteration starts.
Ideally, a more accurate dynamics model over the trajectory will result in faster convergence
and better performance. In our experiments, we indicate this approach as Trajectory Op-
timization and use covariance matrix adaptation evolution strategy (CMA-ES) to optimize
the simulated rollouts. However, CMA-ES can be replaced with any optimizer that does not
require gradients on the reward function. Trajectory Optimization generates new control
parameters within the population of CMA-ES and simulates a trajectory of the trial length
200 for cartpole. The simulated reward r̂ is the sum over the predicted states, as in Sec. 6.6.
We compare this approach to the data-efficient black-box optimization algorithm Bayesian
Optimization (BO) which iteratively optimize the control parameters without knowledge of
the dynamics [MHBST16; CSPD16; BCXLT17a]. The results of the experiments in Fig. 6.7
show that on the toy cartpole benchmark task Trajectory Optimization converge to excellent
performance faster than Bayesian Optimization. This demonstrates that we can learn in an
iterative manner trajectory dynamics model, and that they can successfully be applied for
control.

6.8 Model Predictive Control with Trajectory-based

Models

We now demonstrate how to use the trajectory-based model in a common control architecture
– model predictive control (MPC) [SKS03; Wie06]. MPC is a common tool for model-
based reinforcement learning [CCML18; WWG+17; NYA+18], and originated in the study
of optimal control leveraging predictions to make decisions [GPM89; Kir12]. MPC with

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 72

Bayesian Optimization (+) Trajectory Optimization (◦)

0 2 4 6 8 10 12 14
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Trial Number

Av
er

ag
e

R
ew

ar
d

pe
r S

te
p

(a) Cartpole (1 is the maximum reward
per step).

0 5 10 15 20 25
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

Trial Number

Av
er

ag
e

R
ew

ar
d

pe
r S

te
p

(b) Reacher (0 is the maximum reward
per step).

Figure 6.7: The cumulative maximum reward for the iterative learning task on cartpole. The
trajectory-based search with CMA-ES shows impressive performance, consistently solving
the cartpole task in 2-4 trials. The 66th and 95th percentiles over 25 trials are shaded. ,
highlighting the consistency of the approach compared to Bayesian Optimization.

learned one-step dynamics models is formulated as

a∗t = arg max
ut:t+τ

τ∑
i=0

r(ŝt+i, at+i), ŝt+1 = fθ(ŝt, at). (6.5)

With the trajectory-based model, the control formulation needs a modification in how the
candidate solutions are selected. Sampling over control policies and computing the action
from the current state, the new MPC formulation is

θ∗π,t = arg max
θπ,t:t+τ

τ∑
i=0

r(ŝt+i, at+i) , (6.6)

ŝt+τ = fθ(st, θπ,t, t+ τ) , a∗t = θ∗π(t) . (6.7)

MPC is known to be computationally intensive – where some robots lack the computing
infrastructure to run recent MBRL methods online – so we compare leveraging the trajectory-
based optimization only from the first state, and running that policy through the remaining
of the trial. This is a starting point, and re-planning online with varying update frequencies
(holding the chosen policy for T steps) would allow flexibility in control.

As a comparison to iterative learning of one set of control parameters, as in Sec. 6.7, we
compare the performance of MPC to that if the optimization is only run on the first time-
step. In this case we maintain random sampling to mirror common applications of MPC
in MBRL, while the Trajectory Optimization in Sec. 6.7 leveraged the CMA-ES optimizer.
The preliminary results for the planning methods on the cartpole task are shown in Fig. 6.8.

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 73

Open Loop, D Open Loop, T Closed Loop, D
0

0.05

0.1

0.15

0.2

0.25

C
os

t p
er

 S
te

p

Figure 6.8: Comparison between trajectory-based and one-step ahead models planning from
the initial state (i.e., open-loop) and the one-step model re-planning after each step (i.e.,
closed loop). The trajectory-based planning improves performance compared to the one-step
ahead in open-loop. However, the one-step model used in closed-loop performs the best, at
the expense of increased computational complexity for re-planning. The mean and standard
deviation of the reward per step in the cartpole task are reported for 25 trials.

The trajectory-based model is limited by aggregating labelled data with MPC because it
requires the sub-trajectories that it is labelled on to have constant control parameters. This
can be partially overcome by re-planning at a lower frequency, but is an important direction
for future work to better integrate the new models into existing MBRL literature.

6.9 Predicting Unstable and Periodic Dynamics

Important to the application of dynamics models to robotic tasks is the ability to accurately
model dynamics when a) trained on imperfect data (e.g. data with noise and divergent
modes) and b) evaluated on different modes of data. In this section, the evaluation of
predicting stable dynamics is extended onto unstable and periodic dynamics. Representative
stable, unstable, and periodic trajectories are shown in Fig. 6.9a,b,c. Unstable dynamics are
designed to be diverging through the trajectory and periodic dynamics have consistent cyclic
motion of various frequencies.

To test this, we collect 3 training and testing datasets (Ntraj = 100) for each datatype
above in the cartpole environment via different tunings of LQR control. The stable data is
the same used in Sec. 6.4 where the majority of trajectories converge towards s = 0. The
one-step models maintain similar performance to trajectory-based models when trained on
stable data, shown in Fig. 6.9d,g,j. In the unstable-data trained models (Fig. 6.9e,h,k) and
the periodic-data trained models (Fig. 6.9f,i,l), the trajectory-based models demonstrate an
impressive performance in modelling dynamics motion across long horizons. Except when
trained and tested on unstable data, the one-step models diverge rapidly – suggesting two

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 74

potential modes of training for the one-step models: a) they may be memorizing the unstable
trajectories and b) when training on stable data, the majority of the delta-state predictions
are around 0, so when predicting out of distribution data the model may predict no change,
slowing divergence. Conversely, when trained on unstable or periodic data, and testing
elsewhere, the one-step models diverge rapidly due to the constant change in state in the
training set, shown in Fig. 6.9e,f,i,k,l. The ability for trajectory-based models to generalize
from periodic data to stable dynamics confers a substantial improvement over the one-step
model.

6.10 Related Work

Predicting long-term trajectories has a long-history, dating back to autoregressive-moving-
average models (ARMAX) [NP11], and has been a growing area of research as robotic com-
plexity outgrew the performance of historical approaches. A common approach is to modify
one-step prediction training to account for correlation across a trajectory with NNs or GPs.
Specifically, [NXD20] proposes a time-weighted loss function to learn unstable state-space
systems, but does not apply it to high-dimensional, nonlinear systems. [LAYC20] showed
increased correlation between model-accuracy and downstream reward when training with
batches sampled from a single-trajectory instead of random transitions, but predictions still
suffer from compounding errors.

Other related methods have attempted to create direct, structural links between models
and trajectory training data. With high dimensional images (rather than states) [KST+19]
uses an auto-regressive, recurrent network to predict observations in a latent state-space.
[DDN+17] proposes a multi-step Gaussian Process for learning robotic control and the
approach is studied further using the correlation between prediction steps in [HAFZ20].
[WFT14] suggests using a new kernel in GPs to correlate across trajectory data and using
simulated model rollouts to predict reward as a prior GP mean function. These methods
all leverage one-step models to create long-term dynamics, which we differentiate from by
including time-dependence. Other exciting avenues of long-term prediction of dynamical sys-
tems are with neural ordinary differential equations [CRBD18] and long short-term memory
blocks (LSTMs) [HS18b], but both are yet to be successfully applied to prioperceptive (i.e.,
not vision based) robotics control tasks. We baseline our method against LSTMs which have
implicit time dependance, where our method includes it explicitly in the input.

CHAPTER 6. TRAJECTORY-BASED DYNAMICS MODEL 75

pole-angle, θ (▷◁) x position (◦)

0 50 100 150 200

−0.2

0

0.2

0.4

0.6

Timestep

N
or

m
al

iz
e 

St
at

e

(a) A stable trajectory.

0 50 100 150 200

0
10
20
30
40
50
60
70

Timestep
N

or
m

al
iz

e 
St

at
e

(b) An unstable trajectory.

0 50 100 150 200

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2

Timestep

N
or

m
al

iz
e 

St
at

e

(c) A periodic trajectory.

Deterministic, one-step: D (◦) Trajectory-based: T (+)

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(d) Train: stable, test: stable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(e) Train: unstable, test: sta-
ble.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(f) Train: periodic, test: sta-
ble.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(g) Train: stable, test: unsta-
ble.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(h) Train: unstable, test: un-
stable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(i) Train: periodic, test: un-
stable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(j) Train: stable, test: peri-
odic.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(k) Train: unstable, test: peri-
odic.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(l) Train: periodic, test: peri-
odic.

Figure 6.9: Above: representative trajectories for the stable, unstable, and periodic datasets.
Below: the evaluation error when using a model trained exclusively on one-variety of data
(e.g. unstable) to predict all types of data. This figure represents 6 models (D and T trained
on 3 different datasets) and 18 evaluations (the 6 models evaluated on the 3 testing sets).

76

Chapter 7

Future Directions and Open
Challenges

7.1 Filling the Gap Between Model-based and

Model-free

The gap between canonical model-based and model-free algorithms is shrinking. Some of the
most notable advancements in recent years have been algorithms that would easily fit the
taxonomy of model-based and model-free. Prominent examples of this are the Model-based
Policy Optimization (MBPO) [JFZL19] that learns via an actor-critic algorithm in a model
simulator and MuZero [SAH+20] that learns a dynamics model that is not trained explicitly
for accuracy. Moving forward, it is likely that model-free will be the narrow classification –
where any algorithm that does not employ a model is model-free. This classification leaves
model-based methods encompassing a large spectrum of algorithms.

A more informative taxonomy is needed for model-based reinforcement learning algo-
rithms. The current algorithms can be classified into a few distinctive areas. Online planning
algorithms rely on repeated unrolling of action candidates [CCML18; WB20; WWG+17],
model-sim algorithms train the agent in a learned simulator [JFZL19], and implicit model-
based algorithms train a model by proxy that is not explicitly constrained to the dynam-
ics [SAH+20; ASYW21]. This represents an initial direction for a taxonomy, though it is far
from complete.

7.2 Accurate, Generalizable, and Transferable

Predictions

Further improvements to the accuracy and transfer of learned dynamics models is central to
the continued progress in MBRL. The primary avenue of development of MBRL algorithms
has been on simulated, continuous control tasks where relatively shallow neural networks

CHAPTER 7. FUTURE DIRECTIONS AND OPEN CHALLENGES 77

can learn the dynamics with relatively low data in comparison to Q-functions. The next
generation of algorithms will likely change both the prediction formulation and the tools for
doing so. Past work uses multiple models to predict multiple horizons [AMKL19], a multi-
step loss [VHB15], or more parametrization tweaks on the same variety of feedforward,
discrete step model [LWZPC21].

A series of recent works have taken more substantial steps to reparametrize the pre-
dictions in MBRL. The recent trajectory transformer uses pre-trained language models to
cast the prediction problem as classification [JLL21], the trajectory-based model adds di-
rect temporal dependency to the standard feedforward dynamics models for gains in long-
term predictions [LWZPC21], and the Gamma model re-frames prediction as a generative
model [JML20]. Continuing to integrate these lines of work into effective decision making
routines is an open challenge for the field.

These works on new forward predictive models are pointing MBRL in the same direc-
tion of task-focused accurate models, while dynamics models have more structural benefits,
such as the transfer of knowledge in a closed form or generalization to new tasks. The
current state-of-the-art in MBRL is to re-train the dynamics model for every trial on every
task. New infrastructure to allow model transfer (within or across domains) for continual
learning and faster iteration would facilitate research progress. The field of MBRL also
lacks well-adopted tools for evaluating their models on other notions of performance than
single-domain, single-task accuracy. There is need for isolated model evaluation, where new
model training procedures can be evaluated given a set decision making scheme. These
direction could move the dynamics models from a per-agent training paradigm to a large
model paradigm where representation learning and data aggregation allow for the capture
of more complex behavior across domains.

7.3 Spatio-temporal Abstractions

In real-world control problems, the notion of time is often both flexible and inconsistent.
Due to most of the progress of RL research being driven by accessible and fast simulated
environments with static notions of time (that the user often cannot modify), the opportuni-
ties entailed by a richer notion of time in decision making have not been explored in depth.
The goal of a generally intelligent and practical agent is one that can dynamically vary its
notion of time to solve tasks that span from reflexes to strategies.

Recent works on spatio-temporal abstraction in reinforcement learning have largely fallen
under the themes of options frameworks and hierarchical RL. Options frameworks cast the
decision making problem at a higher level of abstraction where an agent decides on a behavior
for a period of time, rather than a sequence of actions [SPS99; Pre00]. Options have been
used in many ways in RL, such as in exploration [ŞB04] or skill transfer [KB07], but they
lack the multi-level or even continuous notion of time that would most mirror the diversity
of internal models used by humans [DSD12].

CHAPTER 7. FUTURE DIRECTIONS AND OPEN CHALLENGES 78

One step closer to arbitrary notions of time lays hierarchical model-based reinforcement
learning, which promises to help scale solutions by leveraging natural layered structures
of the environment. These methods either learn models [JS08], policies [KNST16], or val-
ues [Die+98] focusing on different temporal horizons. For each sub-version of the problem,
the agent will use a separate decision making rule. Ideally, with more flexible notions of
temporal abstraction one decision rule can be used to solve all potential tasks in an abstract
domain.

Model-based reinforcement learning has an exciting opportunity and challenge to directly
incorporate flexible notions of time into the model, and then progress on the decision making
can follow. Recent work has been investigating the performance of machine learning systems
to model chaotic systems [Gil20; JHF21] or continuous physics [KGZKM21]. These problem
spaces can push developments in temporal abstraction due to their grounding in systems that
are often characterized across a spectrum of timescales. MBRL will benefit from research on
the integration problem of new model classes with existing decision making tools.

7.4 Computational Efficiency: From Planning to

Reactive Policies

Translating MBRL algorithms to the real world is often limited by the computational in-
tensity of the recent methods. Given the prevalence of simulators in driving algorithmic
progress, little focus is given to the clock time of the algorithms in comparison to the focus
on sample complexity.Model predictive control (MPC) based algorithms suffer most from
this because of the thousands of forward passes through a model at decision time. Efforts
have begun to reduce MPC-based decision rules to policy via better proposals for action
candidates [BHT+21; WB20]. Recent work in optimization-based MPC in an non-RL set-
ting show the ability to reduce a controller to a policy from optimal control labels [CSA+18;
ZBB20]. On the other hand, simply re-training a dynamics model after every episode and po-
tentially simulating it to collect on-policy data for a value function estimate adds substantial
background processing in addition to the decision-time bottleneck.

7.5 Solving Objective Mismatch

Objective mismatch occurs when the optimization of a model is separate from the opti-
mization of the final policy in MBRL [LAYC20]. Dynamics models can be used to generate
policies in different ways, such as the training of a model inducing a policy in a decision-time
planner akin to model predictive control or via a model being used to collect data for an
actor-critic policy optimization. Generally, there is no use of observed reward nor gradients
from the controller in this process, which leaves the model as an object solely optimized for

CHAPTER 7. FUTURE DIRECTIONS AND OPEN CHALLENGES 79

accuracy over an automatically collected dataset 1. Automatically collected datasets are of-
ten biased by the exploration mechanism or environment when compared to hand-engineered
demonstration-based datasets that are focused on specific areas of coverage. Objective mis-
match emerges in many ways, but poses difficulty in achieving clear understanding on the
limits of MBRL algorithms in challenging tasks.

There are lines of work both directly positing to mitigate objective mismatch and study-
ing its effects from related perspectives. Many methods attempt to use information about
the task in the model training or rollouts, such as a value function gradient for model train-
ing [VLGF22], goal-aware predictions [NSF20], or implicit gradients through the model [NAAB21].
Alternatively, software is being developed that allows direct differentiation of the model
through controllers [AJSBK18] or simulators [LSWP21].

Mismatch is also deeply related to systems where the dynamics models are only trained
implicitly for accuracy, with the gradients being focused on rewards [SHM+21]. Comparing
the predictions and decision of models trained in different manners would illuminate how
mismatch manifests in an optimization, and if the posited solutions operate as intended.

Open questions in addressing objective mismatch involve investigating the underlying
cause of this phenomena. Some potential causes include:

• Uneven model accuracy : if the downstream reward is well correlated because the com-
mon deep models do not cover the training data in proportion to their importance for
control (or if the training data is too non-uniform). While batch gradient descent is
efficient and flexible, it may be that for dynamics models practitioners must prioritize
accuracy at a few crucial states rather than on average.

• Policy exploitation: if the optimizer is too strong given a certain class of model, it will
always be able to exploit non-grounded phenomena. As dynamics models get more
accurate, comparing action selections at different model snapshots can illuminate the
causes of policy exploitation.

7.6 Bridging Curiosity-based Motivation, Pixel- and

State-based MBRL, and Exploration

Three closely related fields have been developing methods to learn and use forward dynamics
models for control. State-based MBRL has continued to develop algorithms for continuous
control from states, intrinsic curiosity has been using learned dynamics models for unsuper-
vised RL from states and pixels, and pixel-based MBRL has been setting state-of-the-art
scores on sample-efficiency game-playing tasks. Bridging the insights from these closely re-
lated fields represents opportunity for aligning progress and understanding of the community.

1Models trained solely on existing data are also not suited for some application domains with high-stakes,
such as autonomous vehicles. In these cases generalization is needed to prevent some failures.

CHAPTER 7. FUTURE DIRECTIONS AND OPEN CHALLENGES 80

Model-based RL methods, especially those utilizing sample-based control, explore in a
related, passive manner where the model error contributes indirectly to exploration. The
sample-based MPC algorithms propose action sequences that may not have been previously
executed by the agent. The optimizer selects the action with the highest perceived reward,
but when the model is very inaccurate it is not understood if this action selection reduces
to random sampling or some biased sampling related to the coverage of dynamics model
error. The exploration mechanism is often described as one variety model exploitation. As
the dynamics model gets more accurate these MBRL algorithms explore less and focus on
the pre-described task.

Intrinsic curiosity is a growing subfield of work optimizing intelligent exploration of un-
known environments. Curiosity-based methods utilize the error signal of a trained dynamics
models to select actions with different RL agents [BEP+18]. This error-based reward signal
can be viewed as running an MBRL agent with a time-varying reward function because the
model error changes each time it is updated. The idea behind curioisty-based exploration
is to reward an agent to re-visit states where a learned dynamics model is high-error to
gather data that is “interesting”. The Intrinsic Model Predictive Control exploration agent
bridges the gap between model exploitation and intrinsic rewards by using a curiosity model
in parallel to a learned dynamics model [LWW+22], but how it relates to off-policy curiosity
and task-aware MBRL is left to future work.

State-of-the-art pixel-based algorithms create a latent state that is used for control [HLNB21;
HWS22], yet there are now comparisons to how the behavior of this state-space mirrors or
differs from existing methods in state-based continuous control. As in state-based algorithms,
model exploitation plays a heavy role in exploration, but it is not rigorously characterized.

7.7 Additional Benefits of Learning a Model

Learned dynamics models convey increased potential for designing agents capable in more
nuanced manners than scalar reward maximization. For example, a model can expand an
existing agent’s abilities to avoid regions of a state-space (safety) or understand why and
how decisions are made (interpretability). These example model uses can be expanded into
many categories, such as explainability, fairness, or causality, without solely combining them
into the reward function of the RL agent.

Safe control is a starting point to extract additional information from models. Current
methods integrate safety techniques from optimal control, such as system stability [BTSK17]
or safe set constraints [KBTK18]. Future work in safety for MBRL will involve integrating
this well-studied techniques from optimal control with advanced methods that can integrate
with value functions or supervision [TBR+20]. A less clearly defined problem is that of
interpretability – where we hope to be able to pinpoint why a certain action was selected
by an agent. Prior work in explainable AI (XAI) for RL [PV20] shows that is a problem
well beyond translating existing solutions for supervised learning, with little existing work
studying the most popular methods of deep RL. Initial work investigating Deep Q-Networks

CHAPTER 7. FUTURE DIRECTIONS AND OPEN CHALLENGES 81

revealed hierarchical state abstractions in the learned value function and studied activation
regions of learned policies [ZBM16]. That paper focuses on evaluating current capabilities,
and accepts that there is little understanding in how the agent converges to this state. A
learned model is a substantially compressed snapshot of the agent’s knowledge, requiring
less complex methodology for building tools for more broadly intelligent agents.

82

Chapter 8

Conclusion

In the near future we will have agents capable of exploring new environments, rapidly learning
new skills, and working with humans. These factors will lead to technologies transforming
society with new solutions to at-scale control problems. Reinforcement learning is an open-
ended framework touted as the most likely tool to achieve this dream in the near term. The
RL method is powerful and appealing due to its open-ended framing and self-supervised
deployment, but these apparent strengths can result in agents prone to exploitation.

Designing algorithms that capture the upside of RL while mitigating the risks is crucial
for translation of RL from a proof of concept to a widespread engineering tool. Model-based
reinforcement learning represents a promising candidate for the efficient learning of effective
controllers that humans can understand and control. The promise of models as a structured
form of learning conveys a series of benefits to an intelligent agent itself and to an engineer
looking to safely deploy this technology. This thesis presents a substantial overview of the
challenges of integrating a learned dynamics model with dynamic decision making systems.
Creating new modular, autonomous systems with synergistic components is an exciting en-
gineering challenge in the pursuit of building AI systems that do good. The goal is to lay the
groundwork for a next generation of algorithms that integrate seamlessly with societal goals.
By deeply understanding the challenges of compounding error and objective mismatch, the
future generations of model-based reinforcement learning algorithms can unlock not only
high-performance agents, but intelligent systems that are safe, interpretable, and transfer-
able. The powerful solutions of RL systems can only be deployed for the good of all when
the gap between understanding and practice is closed. In the future, I want to build these
empirically grounded reinforcement learning systems.

83

Bibliography

[AJSBK18] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter.
“Differentiable mpc for end-to-end planning and control”. In: Advances in
neural information processing systems 31 (2018).

[AMKL19] Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L Littman.
“Combating the compounding-error problem with a multi-step model”. In:
arXiv preprint arXiv:1905.13320 (2019).

[AN04] Pieter Abbeel and Andrew Ng. “Learning first-order Markov models for con-
trol”. In: Advances in neural information processing systems 17 (2004).

[ASYW21] Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson.
“On the model-based stochastic value gradient for continuous reinforcement
learning”. In: Learning for Dynamics and Control. PMLR. 2021, pp. 6–20.

[AWR+17] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-
ciech Zaremba. “Hindsight experience replay”. In: Advances in neural infor-
mation processing systems 30 (2017).

[AY20] Brandon Amos and Denis Yarats. “The differentiable cross-entropy method”.
In: International Conference on Machine Learning. PMLR. 2020, pp. 291–
302.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. “Openai gym”. In: arXiv preprint
arXiv:1606.01540 (2016).

[BCXLT17a] S. Bansal, Roberto Calandra, T. Xiao, S. Levine, and C. J. Tomlin. “Goal-
Driven Dynamics Learning via Bayesian Optimization”. In: IEEE Conference
on Decision and Control (CDC). 2017, pp. 5168–5173. doi: 10.1109/CDC.
2017.8264425.

[BCXLT17b] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J
Tomiin. “Goal-driven dynamics learning via Bayesian optimization”. In: IEEE
Conference on Decision and Control (CDC). 2017, pp. 5168–5173.

[Bel57] Richard Bellman. “A Markovian decision process”. In: Journal of mathemat-
ics and mechanics (1957), pp. 679–684.

https://doi.org/10.1109/CDC.2017.8264425
https://doi.org/10.1109/CDC.2017.8264425

BIBLIOGRAPHY 84

[BEP+18] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell,
and Alexei A Efros. “Large-scale study of curiosity-driven learning”. In: arXiv
preprint arXiv:1808.04355 (2018).

[Ber95] Dimitri P Bertsekas. Dynamic programming and optimal control. Vol. 1. 2.
Athena scientific Belmont, MA, 1995.

[BHT+21] Arunkumar Byravan, Leonard Hasenclever, Piotr Trochim, Mehdi Mirza,
Alessandro Davide Ialongo, Yuval Tassa, Jost Tobias Springenberg, Abbas
Abdolmaleki, Nicolas Heess, Josh Merel, et al. “Evaluating model-based plan-
ning and planner amortization for continuous control”. In: arXiv preprint
arXiv:2110.03363 (2021).

[Bit16] AB Bitcraze. Crazyflie 2.0. 2016.

[Boo97] Gary Boone. “Efficient reinforcement learning: Model-based acrobot control”.
In: Proceedings of International Conference on Robotics and Automation.
Vol. 1. IEEE. 1997, pp. 229–234.

[Bry18] Arthur Earl Bryson. Applied optimal control: optimization, estimation and
control. Routledge, 2018.

[BSH+20] Mohammad Babaeizadeh, Mohammad Taghi Saffar, Danijar Hafner, Harini
Kannan, Chelsea Finn, Sergey Levine, and Dumitru Erhan. “Models, pixels,
and rewards: Evaluating design trade-offs in visual model-based reinforce-
ment learning”. In: arXiv preprint arXiv:2012.04603 (2020).

[BSWR14] Joschka Boedecker, Jost Tobias Springenberg, Jan Wülfing, and Martin Ried-
miller. “Approximate real-time optimal control based on sparse gaussian pro-
cess models”. In: 2014 IEEE symposium on adaptive dynamic programming
and reinforcement learning (ADPRL). IEEE. 2014, pp. 1–8.

[BTSK17] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause.
“Safe model-based reinforcement learning with stability guarantees”. In: Ad-
vances in neural information processing systems 30 (2017).

[CCML18] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine.
“Deep reinforcement learning in a handful of trials using probabilistic dy-
namics models”. In: Neural Information Processing Systems. 2018.

[CD12] Frank M Callier and Charles A Desoer. Linear system theory. Springer Sci-
ence & Business Media, 2012.

[CGH+20] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel,
and Shirley Ho. “Lagrangian neural networks”. In: arXiv preprint arXiv:2003.04630
(2020).

BIBLIOGRAPHY 85

[CNF+18] Ignasi Clavera, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel, Sergey
Levine, and Chelsea Finn. “Learning to Adapt: Meta-Learning for Model-
Based Control”. In: CoRR abs/1803.11347 (2018). arXiv: 1803.11347. url:
http://arxiv.org/abs/1803.11347.

[CRBD18] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
“Neural ordinary differential equations”. In: Neural Information Processing
Systems. 2018, pp. 6571–6583.

[CSA+18] Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D Lee, Vijay Kumar,
George J Pappas, and Manfred Morari. “Approximating explicit model pre-
dictive control using constrained neural networks”. In: 2018 Annual American
control conference (ACC). IEEE. 2018, pp. 1520–1527.

[CSM+16] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Black-
well, Joshua Tobin, Pieter Abbeel, and Wojciech Zaremba. “Transfer from
simulation to real world through learning deep inverse dynamics model”. In:
arXiv preprint arXiv:1610.03518 (2016).

[CSPD16] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth.
“Bayesian optimization for learning gaits under uncertainty”. In: Annals of
Mathematics and Artificial Intelligence 76.1-2 (2016), pp. 5–23.

[DDN+17] Andreas Doerr, Christian Daniel, Duy Nguyen-Tuong, Alonso Marco, Stefan
Schaal, Toussaint Marc, and Sebastian Trimpe. “Optimizing long-term pre-
dictions for model-based policy search”. In: Conference on Robot Learning.
2017, pp. 227–238.

[DFB+22] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki,
Diego de Las Casas, et al. “Magnetic control of tokamak plasmas through
deep reinforcement learning”. In: Nature 602.7897 (2022), pp. 414–419.

[DGLZ21] Sarah Dean, Thomas Krendl Gilbert, Nathan Lambert, and Tom Zick. “Axes
for sociotechnical inquiry in AI research”. In: IEEE Transactions on Tech-
nology and Society 2.2 (2021), pp. 62–70.

[Die+98] Thomas G Dietterich et al. “The MAXQ Method for Hierarchical Reinforce-
ment Learning.” In: ICML. Vol. 98. Citeseer. 1998, pp. 118–126.

[DLSP18] Daniel S Drew, Nathan O Lambert, Craig B Schindler, and Kristofer SJ
Pister. “Toward controlled flight of the ionocraft: a flying microrobot using
electrohydrodynamic thrust with onboard sensing and no moving parts”. In:
IEEE Robotics and Automation Letters 3.4 (2018), pp. 2807–2813.

[DR11] Marc P. Deisenroth and Carl E. Rasmussen. “PILCO: A Model-Based and
Data-Efficient Approach to Policy Search”. In: International Conference on
Machine Learning. 2011, pp. 465–472.

https://arxiv.org/abs/1803.11347
http://arxiv.org/abs/1803.11347

BIBLIOGRAPHY 86

[DSD12] Bradley B Doll, Dylan A Simon, and Nathaniel D Daw. “The ubiquity of
model-based reinforcement learning”. In: Current opinion in neurobiology
22.6 (2012), pp. 1075–1081.

[EFD+18] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and
Sergey Levine. “Visual foresight: Model-based deep reinforcement learning for
vision-based robotic control”. In: arXiv preprint arXiv:1812.00568 (2018).

[Ell21] Ashok Elluswamy. “Planning and Control”. Tesla AI Day. 2021. url: https:
//www.youtube.com/watch?v=j0z4FweCy4M&t=4802s.

[ESL19] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. “Search on the
replay buffer: Bridging planning and reinforcement learning”. In: Advances
in Neural Information Processing Systems 32 (2019).

[ET12] Tom Erez and Emanuel Todorov. “Trajectory optimization for domains with
contacts using inverse dynamics”. In: 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE. 2012, pp. 4914–4919.

[Far18] Amir-massoud Farahmand. “Iterative value-aware model learning”. In: Ad-
vances in Neural Information Processing Systems. 2018, pp. 9072–9083.

[FBN17] Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. “Value-
aware loss function for model-based reinforcement learning”. In: Artificial
Intelligence and Statistics. 2017, pp. 1486–1494.

[FLA16] Justin Fu, Sergey Levine, and Pieter Abbeel. “One-shot learning of manipu-
lation skills with online dynamics adaptation and neural network priors”. In:
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2016, pp. 4019–4026.

[GDZL22] Thomas Krendl Gilbert, Sarah Dean, Tom Zick, and Nathan Lambert. “Choices,
Risks, and Reward Reports: Charting Public Policy for Reinforcement Learn-
ing Systems”. In: arXiv preprint arXiv:2202.05716 (2022).

[GGL18] Dibya Ghosh, Abhishek Gupta, and Sergey Levine. “Learning Actionable
Representations with Goal-Conditioned Policies”. In: arXiv preprint arXiv:1811.07819
(2018).

[Gil20] William Gilpin. “Deep learning of dynamical attractors from time series mea-
surements”. In: arXiv preprint arXiv:2002.05909 (2020).

[GJK+19] Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal,
David Sontag, Finale Doshi-Velez, and Leo Anthony Celi. “Guidelines for re-
inforcement learning in healthcare”. In: Nature medicine 25.1 (2019), pp. 16–
18.

https://www.youtube.com/watch?v=j0z4FweCy4M&t=4802s
https://www.youtube.com/watch?v=j0z4FweCy4M&t=4802s

BIBLIOGRAPHY 87

[GKBNB19] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G
Bellemare. “Deepmdp: Learning continuous latent space models for represen-
tation learning”. In: International Conference on Machine Learning. PMLR.
2019, pp. 2170–2179.

[GMMK20] Jayesh K Gupta, Kunal Menda, Zachary Manchester, and Mykel Kochen-
derfer. “Structured mechanical models for robot learning and control”. In:
Learning for Dynamics and Control. PMLR. 2020, pp. 328–337.

[GMR16] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. “Improving
PILCO with Bayesian neural network dynamics models”. In: Data-Efficient
Machine Learning workshop, ICML. Vol. 4. 34. 2016, p. 25.

[GPM89] Carlos E Garcia, David M Prett, and Manfred Morari. “Model predictive
control: theory and practice—a survey”. In: Automatica 25.3 (1989).

[GSWWK17] Wojciech Giernacki, Mateusz Skwierczyński, Wojciech Witwicki, Pawe l Wroński,
and Piotr Kozierski. “Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering”. In: IEEE International Con-
ference on Methods and Models in Automation and Robotics (MMAR). 2017,
pp. 37–42.

[GWH14] Robert Grande, Thomas Walsh, and Jonathan How. “Sample efficient rein-
forcement learning with gaussian processes”. In: International Conference on
Machine Learning. PMLR. 2014, pp. 1332–1340.

[HA17] Wolfgang Hönig and Nora Ayanian. “Flying multiple uavs using ros”. In:
Robot Operating System (ROS). Springer, 2017, pp. 83–118.

[HAFZ20] Lukas Hewing, Elena Arcari, Lukas P Fröhlich, and Melanie N Zeilinger.
“On simulation and trajectory prediction with gaussian process dynamics”.
In: Learning for Dynamics and Control. 2020, pp. 424–434.

[HGD96] H̊akan Hjalmarsson, Michel Gevers, and Franky De Bruyne. “For model-
based control design, closed-loop identification gives better performance”.
In: Automatica 32.12 (1996), pp. 1659–1673.

[HHA19] Hado P van Hasselt, Matteo Hessel, and John Aslanides. “When to use para-
metric models in reinforcement learning?” In: Advances in Neural Informa-
tion Processing Systems 32 (2019).

[HK11] Elnaz Jahani Heravi and Sohrab Khanmohammadi. “Long term trajectory
prediction of moving objects using gaussian process”. In: IEEE International
Conference on Robot, Vision and Signal Processing. 2011.

[HLF+19] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. “Learning latent dynamics for planning
from pixels”. In: International conference on machine learning. PMLR. 2019,
pp. 2555–2565.

BIBLIOGRAPHY 88

[HLNB21] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba.
“Mastering Atari with Discrete World Models”. In: International Conference
on Learning Representations. 2021. url: https://openreview.net/forum?
id=0oabwyZbOu.

[HS18a] David Ha and Jürgen Schmidhuber. “Recurrent world models facilitate policy
evolution”. In: Advances in neural information processing systems 31 (2018).

[HS18b] David Ha and Jürgen Schmidhuber. “World models”. In: arXiv preprint
arXiv:1803.10122 (2018).

[HWS22] Nicklas Hansen, Xiaolong Wang, and Hao Su. “Temporal Difference Learning
for Model Predictive Control”. In: arXiv preprint arXiv:2203.04955 (2022).

[JFZL19] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. “When to
trust your model: Model-based policy optimization”. In: Neural Information
Processing Systems. 2019, pp. 12498–12509.

[JHF21] Tom Z Jiahao, M Ani Hsieh, and Eric Forgoston. “Knowledge-based learning
of nonlinear dynamics and chaos”. In: Chaos: An Interdisciplinary Journal
of Nonlinear Science 31.11 (2021), p. 111101.

[JLL21] Michael Janner, Qiyang Li, and Sergey Levine. “Offline Reinforcement Learn-
ing as One Big Sequence Modeling Problem”. In: Advances in neural infor-
mation processing systems 34 (2021).

[JML20] Michael Janner, Igor Mordatch, and Sergey Levine. “gamma-models: Genera-
tive temporal difference learning for infinite-horizon prediction”. In: Advances
in Neural Information Processing Systems 33 (2020), pp. 1724–1735.

[JS08] Nicholas K Jong and Peter Stone. “Hierarchical model-based reinforcement
learning: R-max+ MAXQ”. In: Proceedings of the 25th international confer-
ence on Machine learning. 2008, pp. 432–439.

[Kaw99] Mitsuo Kawato. “Internal models for motor control and trajectory planning”.
In: Current opinion in neurobiology 9.6 (1999), pp. 718–727.

[KB07] George Dimitri Konidaris and Andrew G Barto. “Building Portable Options:
Skill Transfer in Reinforcement Learning.” In: IJCAI. Vol. 7. 2007, pp. 895–
900.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[KBM+20] Lukasz Kaiser et al. “Model Based Reinforcement Learning for Atari”. In:
International Conference on Learning Representations. 2020. url: https:
//openreview.net/forum?id=S1xCPJHtDB.

[KBTK18] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause.
“Learning-based model predictive control for safe exploration”. In: 2018 IEEE
conference on decision and control (CDC). IEEE. 2018, pp. 6059–6066.

https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB

BIBLIOGRAPHY 89

[KGZKM21] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael
W Mahoney. “Characterizing possible failure modes in physics-informed neu-
ral networks”. In: Advances in Neural Information Processing Systems 34
(2021).

[KHT21] Balázs Kégl, Gabriel Hurtado, and Albert Thomas. “Model-based micro-
data reinforcement learning: what are the crucial model properties and which
model to choose?” In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=p5uylG94S68.

[Kir12] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation,
2012.

[KNST16] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenen-
baum. “Hierarchical deep reinforcement learning: Integrating temporal ab-
straction and intrinsic motivation”. In: Advances in neural information pro-
cessing systems 29 (2016).

[KST+19] Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua
Bengio, Devi Parikh, and Dhruv Batra. “Learning Dynamics Model in Re-
inforcement Learning by Incorporating the Long Term Future”. In: arXiv
preprint arXiv:1903.01599 (2019).

[KVC+21] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson,
Rico Jonschkowski, Chelsea Finn, Sergey Levine, and Karol Hausman. “Mt-
opt: Continuous multi-task robotic reinforcement learning at scale”. In: arXiv
preprint arXiv:2104.08212 (2021).

[KZGR21] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. “A
survey of generalisation in deep reinforcement learning”. In: arXiv preprint
arXiv:2111.09794 (2021).

[LA14] Sergey Levine and Pieter Abbeel. “Learning neural network policies with
guided policy search under unknown dynamics”. In: Advances in neural in-
formation processing systems 27 (2014).

[LAYC20] Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. “Ob-
jective Mismatch in Model-based Reinforcement Learning”. In: Learning for
Dynamics and Control. PMLR. 2020, pp. 761–770.

[LDY+19] Nathan O Lambert, Daniel S Drew, Joseph Yaconelli, Sergey Levine, Roberto
Calandra, and Kristofer SJ Pister. “Low-level control of a quadrotor with
deep model-based reinforcement learning”. In: IEEE Robotics and Automa-
tion Letters 4.4 (2019), pp. 4224–4230.

[LHB+21] Michael Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-
Arnold, Piotr Trochim, Nicolas Heess, Josh Merel, and Yuval Tassa. “Learn-
ing dynamics models for model predictive agents”. In: arXiv preprint arXiv:2109.14311
(2021).

https://openreview.net/forum?id=p5uylG94S68

BIBLIOGRAPHY 90

[LLSA21] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. “Sunrise:
A simple unified framework for ensemble learning in deep reinforcement
learning”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 6131–6141.

[Lor63] Edward N Lorenz. “Deterministic nonperiodic flow”. In: Journal of atmo-
spheric sciences 20.2 (1963), pp. 130–141.

[LPB17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple
and scalable predictive uncertainty estimation using deep ensembles”. In:
Advances in neural information processing systems 30 (2017).

[LPC22] Nathan Lambert, Kristofer Pister, and Roberto Calndra. “Investigating Com-
pounding Prediction Errors in One-step Dynamics Models”. In: arXiv preprint
(2022).

[LR85] Richard Lewis and Gregory C Reinsel. “Prediction of multivariate time series
by autoregressive model fitting”. In: Journal of multivariate analysis 16.3
(1985), pp. 393–411.

[LSDP20] Nathan O Lambert, Craig B Schindler, Daniel S Drew, and Kristofer SJ Pis-
ter. “Nonholonomic yaw control of an underactuated flying robot with model-
based reinforcement learning”. In: IEEE Robotics and Automation Letters 6.2
(2020), pp. 455–461.

[LSWP21] Michael Lutter, Johannes Silberbauer, Joe Watson, and Jan Peters. “Dif-
ferentiable physics models for real-world offline model-based reinforcement
learning”. In: 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2021, pp. 4163–4170.

[LTL+20] Nathan O Lambert, Farhan Toddywala, Brian Liao, Eric Zhu, Lydia Lee, and
Kristofer SJ Pister. “Learning for Microrobot Exploration: Model-based Lo-
comotion, Sparse-robust Navigation, and Low-power Deep Classification”. In:
2020 International Conference on Manipulation, Automation and Robotics at
Small Scales (MARSS). IEEE. 2020, pp. 1–6.

[LWW+22] Nathan Lambert, Markus Wulfmeier, William Whitney, Arunkumar Byra-
van, Michael Bloesch, Vibhavari Dasagi, Tim Hertweck, and Martin Ried-
miller. “The Challenges of Exploration for Offline Reinforcement Learning”.
In: arXiv preprint arXiv:2201.11861 (2022).

[LWZPC21] Nathan Lambert, Albert Wilcox, Howard Zhang, Kristofer SJ Pister, and
Roberto Calandra. “Learning accurate long-term dynamics for model-based
reinforcement learning”. In: 2021 60th IEEE Conference on Decision and
Control (CDC). IEEE. 2021, pp. 2880–2887.

BIBLIOGRAPHY 91

[MHBST16] Alonso Marco, Philipp Hennig, Jeannette Bohg, Stefan Schaal, and Sebas-
tian Trimpe. “Automatic LQR tuning based on Gaussian process global op-
timization”. In: International Conference on Robotics and Automation. 2016,
pp. 270–277.

[MKC12] Robert Mahony, Vijay Kumar, and Peter Corke. “Multirotor aerial vehicles:
Modeling, estimation, and control of quadrotor”. In: IEEE Robotics and Au-
tomation magazine 19.3 (2012), pp. 20–32.

[MLJ+19] Daniel J Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias
Springenberg, Timothy Mann, Todd Hester, and Martin Riedmiller. “Robust
Reinforcement Learning for Continuous Control with Model Misspecifica-
tion”. In: arXiv preprint arXiv:1906.07516 (2019).

[MS17] Christopher D McKinnon and Angela P Schoellig. “Learning multimodal
models for robot dynamics online with a mixture of Gaussian process ex-
perts”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2017, pp. 322–328.

[MSA+21] John McLeod, Hrvoje Stojic, Vincent Adam, Dongho Kim, Jordi Grau-Moya,
Peter Vrancx, and Felix Leibfried. “Bellman: A Toolbox for Model-based
Reinforcement Learning in TensorFlow”. In: arXiv:2103.14407 (2021). url:
https://arxiv.org/abs/2103.14407.

[MZR+22] Amol Mandhane, Anton Zhernov, Maribeth Rauh, Chenjie Gu, Miaosen
Wang, Flora Xue, Wendy Shang, Derek Pang, Rene Claus, Ching-Han Chi-
ang, et al. “MuZero with Self-competition for Rate Control in VP9 Video
Compression”. In: arXiv preprint arXiv:2202.06626 (2022).

[NAAB21] Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon.
“Control-Oriented Model-Based Reinforcement Learning with Implicit Dif-
ferentiation”. In: arXiv preprint arXiv:2106.03273 (2021).

[NKLK20] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. “Deep
dynamics models for learning dexterous manipulation”. In: Conference on
Robot Learning. PMLR. 2020, pp. 1101–1112.

[NP11] Duy Nguyen-Tuong and Jan Peters. “Model learning for robot control: a
survey”. In: Cognitive processing 12.4 (2011), pp. 319–340.

[NSF20] Suraj Nair, Silvio Savarese, and Chelsea Finn. “Goal-aware prediction: Learn-
ing to model what matters”. In: International Conference on Machine Learn-
ing. PMLR. 2020, pp. 7207–7219.

[NXD20] Kamil Nar, Yuan Xue, and Andrew M Dai. “Learning Unstable Dynamical
Systems with Time-Weighted Logarithmic Loss”. In: arXiv preprint arXiv:2007.05189
(2020).

https://arxiv.org/abs/2103.14407

BIBLIOGRAPHY 92

[NYA+18] Anusha Nagabandi, Guangzhao Yang, Thomas Asmar, Ravi Pandya, Gregory
Kahn, Sergey Levine, and Ronald S Fearing. “Learning image-conditioned
dynamics models for control of underactuated legged millirobots”. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2018, pp. 4606–4613.

[OAC18] Ian Osband, John Aslanides, and Albin Cassirer. “Randomized prior func-
tions for deep reinforcement learning”. In: Advances in Neural Information
Processing Systems 31 (2018).

[ORA17] Masashi Okada, Luca Rigazio, and Takenobu Aoshima. “Path integral net-
works: End-to-end differentiable optimal control”. In: arXiv preprint arXiv:1706.09597
(2017).

[PAZLC21] Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, and Roberto
Calandra. “MBRL-Lib: A Modular Library for Model-based Reinforcement
Learning”. In: Arxiv (2021). url: https://arxiv.org/abs/2104.10159.

[Pre00] Doina Precup. Temporal abstraction in reinforcement learning. University of
Massachusetts Amherst, 2000.

[PV20] Erika Puiutta and Eric Veith. “Explainable reinforcement learning: A sur-
vey”. In: International cross-domain conference for machine learning and
knowledge extraction. Springer. 2020, pp. 77–95.

[Ras03] Carl Edward Rasmussen. “Gaussian processes in machine learning”. In: Sum-
mer school on machine learning. Springer. 2003, pp. 63–71.

[RG99] Sam Roweis and Zoubin Ghahramani. “A unifying review of linear Gaussian
models”. In: Neural computation 11.2 (1999), pp. 305–345.

[RYRF21] Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. “Offline
reinforcement learning from images with latent space models”. In: Learning
for Dynamics and Control. PMLR. 2021, pp. 1154–1168.

[RZN+21] Oleh Rybkin, Chuning Zhu, Anusha Nagabandi, Kostas Daniilidis, Igor Mor-
datch, and Sergey Levine. “Model-based reinforcement learning via latent-
space collocation”. In: International Conference on Machine Learning. PMLR.
2021, pp. 9190–9201.

[SAH+20] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hass-
abis, Thore Graepel, et al. “Mastering atari, go, chess and shogi by planning
with a learned model”. In: Nature 588.7839 (2020), pp. 604–609.

[ŞB04] Özgür Şimşek and Andrew G Barto. “Using relative novelty to identify use-
ful temporal abstractions in reinforcement learning”. In: Proceedings of the
twenty-first international conference on Machine learning. 2004, p. 95.

https://arxiv.org/abs/2104.10159

BIBLIOGRAPHY 93

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[SDDS88] William D Stanley, Gary R Dougherty, Ray Dougherty, and H Saunders.
“Digital signal processing”. In: (1988).

[SHD18] Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. “Meta
reinforcement learning with latent variable gaussian processes”. In: arXiv
preprint arXiv:1803.07551 (2018).

[SHM+21] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin
Barekatain, Ioannis Antonoglou, and David Silver. “Online and offline re-
inforcement learning by planning with a learned model”. In: Advances in
Neural Information Processing Systems 34 (2021).

[SHS+18] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel,
Martin Riedmiller, Raia Hadsell, and Peter Battaglia. “Graph networks as
learnable physics engines for inference and control”. In: International Con-
ference on Machine Learning. PMLR. 2018, pp. 4470–4479.

[SJALF18] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. “Universal planning networks: Learning generalizable representations
for visuomotor control”. In: International Conference on Machine Learning.
PMLR. 2018, pp. 4732–4741.

[SKS03] David H Shim, H Jin Kim, and Shankar Sastry. “Decentralized nonlinear
model predictive control of multiple flying robots”. In: IEEE International
Conference on Decision and Control. Vol. 4. 2003, pp. 3621–3626.

[SPS99] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learn-
ing”. In: Artificial intelligence 112.1-2 (1999), pp. 181–211.

[SRSSP21] Sumeet Singh, Spencer M Richards, Vikas Sindhwani, Jean-Jacques E Slo-
tine, and Marco Pavone. “Learning stabilizable nonlinear dynamics with
contraction-based regularization”. In: The International Journal of Robotics
Research 40.10-11 (2021), pp. 1123–1150.

[Sut91] Richard S Sutton. “Dyna, an integrated architecture for learning, planning,
and reacting”. In: ACM Sigart Bulletin 2.4 (1991), pp. 160–163.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learn-
ing with neural networks”. In: Neural Information Processing Systems. 2014,
pp. 3104–3112.

[SZS+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural
networks”. In: arXiv preprint arXiv:1312.6199 (2013).

BIBLIOGRAPHY 94

[Tal17] Erik Talvitie. “Self-correcting models for model-based reinforcement learn-
ing”. In: Thirty-First AAAI Conference on Artificial Intelligence. 2017.

[TBR+20] Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Felix Li, Rowan McAl-
lister, Joseph E Gonzalez, Sergey Levine, Francesco Borrelli, and Ken Gold-
berg. “Safety augmented value estimation from demonstrations (saved): Safe
deep model-based rl for sparse cost robotic tasks”. In: IEEE Robotics and
Automation Letters 5.2 (2020), pp. 3612–3619.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine
for model-based control”. In: IEEE International Conference on Intelligent
Robots and Systems. IEEE. 2012, pp. 5026–5033.

[Tou97] Claude F Touzet. “Neural reinforcement learning for behaviour synthesis”.
In: Robotics and Autonomous Systems 22.3-4 (1997), pp. 251–281.

[VHB15] Arun Venkatraman, Martial Hebert, and J Andrew Bagnell. “Improving
multi-step prediction of learned time series models”. In: AAAI Conference
on Artificial Intelligence. 2015.

[VLGF22] Claas A Voelcker, Victor Liao, Animesh Garg, and Amir-massoud Farah-
mand. “Value Gradient weighted Model-Based Reinforcement Learning”. In:
International Conference on Learning Representations. 2022. url: https:
//openreview.net/forum?id=4-D6CZkRXxI.

[VS15] Harm Vanseijen and Rich Sutton. “A deeper look at planning as learning
from replay”. In: International conference on machine learning. PMLR. 2015,
pp. 2314–2322.

[WB19] Tingwu Wang and Jimmy Ba. “Exploring model-based planning with pol-
icy networks”. In: (2019). url: https : / / openreview . net / forum ? id =

0xDIv1GlJYx.

[WB20] Tingwu Wang and Jimmy Ba. “Exploring Model-based Planning with Policy
Networks”. In: International Conference on Learning Representations. 2020.
url: https://openreview.net/forum?id=H1exf64KwH.

[WBC+19] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen,
Eric Langlois, Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy
Ba. “Benchmarking model-based reinforcement learning”. In: arXiv preprint
arXiv:1907.02057 (2019).

[WFT14] Aaron Wilson, Alan Fern, and Prasad Tadepalli. “Using trajectory data to
improve bayesian optimization for reinforcement learning”. In: The Journal
of Machine Learning Research 15.1 (2014), pp. 253–282.

[WHF06] Jack Wang, Aaron Hertzmann, and David J Fleet. “Gaussian process dy-
namical models”. In: Neural Information Processing Systems. 2006, pp. 1441–
1448.

https://openreview.net/forum?id=4-D6CZkRXxI
https://openreview.net/forum?id=4-D6CZkRXxI
https://openreview.net/forum?id=0xDIv1GlJYx
https://openreview.net/forum?id=0xDIv1GlJYx
https://openreview.net/forum?id=H1exf64KwH

BIBLIOGRAPHY 95

[Wie06] Pierre-Brice Wieber. “Trajectory free linear model predictive control for sta-
ble walking in the presence of strong perturbations”. In: IEEE-RAS Interna-
tional Conference on Humanoid Robots. 2006, pp. 137–142.

[WSBR15] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Ried-
miller. “Embed to control: A locally linear latent dynamics model for control
from raw images”. In: Advances in neural information processing systems 28
(2015).

[WWG+17] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M
Rehg, Byron Boots, and Evangelos A Theodorou. “Information theoretic
MPC for model-based reinforcement learning”. In: International Conference
on Robotics and Automation. 2017, pp. 1714–1721.

[WYLFT15] Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum.
“Galileo: Perceiving physical object properties by integrating a physics engine
with deep learning”. In: Advances in neural information processing systems
28 (2015).

[YBL+22] Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel,
Alessandro Lazaric, and Lerrel Pinto. “Don’t Change the Algorithm, Change
the Data: Exploratory Data for Offline Reinforcement Learning”. In: arXiv
preprint arXiv:2201.13425 (2022).

[YC14] Michael C Yip and David B Camarillo. “Model-less feedback control of con-
tinuum manipulators in constrained environments”. In: IEEE Transactions
on Robotics 30.4 (2014), pp. 880–889.

[ZBB20] Xiaojing Zhang, Monimoy Bujarbaruah, and Francesco Borrelli. “Near-optimal
rapid MPC using neural networks: A primal-dual policy learning framework”.
In: IEEE Transactions on Control Systems Technology 29.5 (2020), pp. 2102–
2114.

[ZBM16] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. “Graying the black box:
Understanding dqns”. In: International Conference on Machine Learning.
PMLR. 2016, pp. 1899–1908.

[ZDG+96] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and optimal
control. Vol. 40. Prentice hall New Jersey, 1996.

[ZPN+21] Michael R Zhang, Tom Le Paine, Ofir Nachum, Cosmin Paduraru, George
Tucker, Ziyu Wang, and Mohammad Norouzi. “Autoregressive dynamics mod-
els for offline policy evaluation and optimization”. In: arXiv preprint arXiv:2104.13877
(2021).

BIBLIOGRAPHY 96

[ZRP+21] Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp,
Kurtland Chua, Frank Hutter, and Roberto Calandra. “On the importance
of hyperparameter optimization for model-based reinforcement learning”.
In: International Conference on Artificial Intelligence and Statistics. PMLR.
2021, pp. 4015–4023.

[ZVS+19] Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew John-
son, and Sergey Levine. “Solar: Deep structured representations for model-
based reinforcement learning”. In: International Conference on Machine Learn-
ing. PMLR. 2019, pp. 7444–7453.

	Contents
	Introduction
	Learning Dynamics for Reinforcement Learning: A Brief Review
	Motivation & Preliminaries
	Model Types: What to Model
	Tools for Prediction: How to Model
	Propagating Trajectories

	Using MBRL: Case-study with Sample-based Control
	Experimental Setup
	Learning System
	Control Optimization
	Results

	Compounding Prediction Errors in Learned Models
	Problem Formulation
	Experimental Setting
	The Effects of System Properties
	The Effects of Model Training and Parametrization
	Other Factors Impacting Compounding Error
	Case Studies of Compounding Error with Real World Data
	Understanding Compounding Error
	Future Work

	Objective Mismatch in Reinforcement Learning
	The Origin of Objective Mismatch
	Experimental Setting
	Correlating Model Loss and Episode Reward
	Examining Model Loss vs Episode Reward Per Training Epoch
	Decoupling Model Loss from Controller Performance
	Mitigating Mismatch During Training
	Discussion

	Trajectory-based Dynamics Model
	A New Prediction Formulation
	Benefits of Trajectory-based Models
	Experimental Setting
	Long-term Prediction Accuracy
	Accelerated Data Efficiency
	Predictive Episode Reward
	Iterative Learning of Control Parameters
	Model Predictive Control with Trajectory-based Models
	Predicting Unstable and Periodic Dynamics
	Related Work

	Future Directions and Open Challenges
	Filling the Gap Between Model-based and Model-free
	Accurate, Generalizable, and Transferable Predictions
	Spatio-temporal Abstractions
	Computational Efficiency: From Planning to Reactive Policies
	Solving Objective Mismatch
	Bridging Curiosity-based Motivation, Pixel- and State-based MBRL, and Exploration
	Additional Benefits of Learning a Model

	Conclusion
	Bibliography

