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Abstract
Mutual Information for Exploration in Reinforcement Learning
by
Abhinav Gopal
Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Reinforcement Learning (RL) is a rapidly growing area of interest in the Artificial Intelligence
community, with tremendous applications. As a result, there is a need to improve efficiency
and exploration in RL algorithms to promote quicker and improved learning. We introduce
MIRL: Mutual Information for Beneficial Exploration in RL, which considers the use of the
mutual information between an action and the expected “future” from a given state as an
additional reward to improve exploration. Using MIRL, agents learn to exploit “decision
states” that lead to highly specialized futures.
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Chapter 1

Introduction

1.1 A Note on Reinforcement Learning

Artificial Intelligence is a booming field in computer science today, aimed at creating au-
tonomous agents to do human tasks, or even superhuman tasks, improving humanity broadly.
Today, various methods of learning exist to help agents learn how to do tasks, and a popular
field of interest is Reinforcement Learning.

Reinforcement Learning relies on experience-driven autonomous learning, similar to the
way humans learn to do tasks from scratch. Through interactions with the actual envi-
ronment /task of interest, agents learn in a self-critical manner, understanding optimal and
sub-optimal behavior. Agents seek to learn a policy that strategically maximizes the ex-
pected “return” from an environment. Today, with the existence of deep neural networks,
agents are able to also use function approximation in order for deep RL to be able to tackle
complex, high-dimensional problems.

1.2 Motivation

Deep reinforcement learning has grown to be able to solve a variety of tasks in complicated
environments in high dimensions. However, learning to perform well and efficiently explore
has remained a difficult problem. Specifically, RL is still waiting for a clear and efficient
method for exploration to discover effective policies. Currently, when faced with the choice
of determining which states are worth exploring, agents frequently struggle, using seemingly
ad hoc methods of exploration [4, 5, 1].

We focus on addressing the problem by taking advantage of the overall goal of explo-
ration in RL: visiting states that have the possibility of learning new approaches that may
yield high reward. To identify these new approaches, it is important to visit states that
have diverse options for trajectories agents can take, each leading to a completely different
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approach to solving the problem. These states are called “decision states.” Keeping this
in mind, we introduce MIRL, Mutual Information for Beneficial Exploration in RL, which
explores states based on whether they are decision states.

Our approach extends the work of [3] by using a more generic approach instead of goal
conditioning.

1.3 Problem Statement

We use D4RL’s large-maze environment ! as seen in ??. The agent has to reach the goal
position from its initial starting position. We run experiments with a fixed goal position
and randomized goal position. The benefit of using such maze environments is that they
contain both paths of low mutual information and high mutual information. Put simply,
they contain “branch points,” which are regions that have high mutual information since
there are many possible paths/directions.

1.4 Hypothesis

We hypothesize that encouraging agents to take low mutual information paths unless the
state is a local maximum of mutual information will result in efficient exploration that leads
to faster learning and improved performance. We test this hypothesis using MIRL on top
of Twin Delayed Deep Deterministic Policy Gradients (TD3), and comparing against vanilla
TD3 [2].

Our hypothesis follows from the approach of incentivizing agents to learn task structure
by training policies that will learn to perform well for a variety of end points, not specializing
to any specific approach. At the same time, our approach incentivizes deviating from the
default policy when visiting “decision states” that might lead to highly specialized futures.

'https://github.com/rail-berkeley/d4rl



Chapter 2
Related Work

2.1 Exploration

[4] proposes a simple unified ensemble method to address standard off-policy RL algorithm
issues such as unstable Q-learning and balancing exploration and exploitation. In terms of
addressing exploration, SUNRISE uses an inference method that selects actions using the
highest upper-confidence bounds for efficient exploration. This is done by defining an upper-
confidence bound (UCB) based on the mean and variance of Q-functions. The inference
method then selects actions with the highest UCB for efficient exploration as it provides a
bonus for visiting unseen state-action pairs, where ensembles produce high uncertainty.

[5] proposes a “plan online and learn offline” (POLO) framework for the setting where
an agent needs to continually act and learn in the world. They use model predictive control
(MPC) for the agent to explore the space of trajectories. The agent considers a hypothesis of
potential reward regions in the state space (generated by taking a Bayesian view and approx-
imately tracking a posterior over value functions), and then execute the optimal trajectory
conditioned on this belief. This results in a temporally coordinated sequence of actions which
leads the agent to cover the state space more rapidly and intentionally (efficient exploration).

[1] shows that an ensemble of Q*-functions can be used for effective exploration in deep RL
by achieving significant gains on the Atari benchmark. Instead of using posterior sampling
for exploration, the uncertainty estimates from the Q-ensemble are used. [1] proposes the
UCB exploration strategy, which constructs uncertainty estimates of the Q-values. Agents
take actions with the highest UCB.

[Tang:2017] introduces count-based exploration in reinforcement learning. In the paper,
Tang shows how the generalization of traditional count based approaches can help RL agents
reach state-of-the-art performance. Specifically, states are mapped to "hashes” which are
then counted whenever the hashes are reached. Simple hashing results in excellent results.
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With static hashing, Tang discretizes the state space, then adding an exploration bonus in
the following fashion:

Here, n(s) represents the number of times the ”s” hash has occurred, or has been visited.

2.2 Mutual Information

Mutual information is a way to measure the dependence between two random variables. If
(X,Y') are random variables with their joint distribution defined as P x yy and the marginal
distributions Px and Py, then mutual information can be defined as follows. The operation
® refers to the tensor product.

I(X;Y) = Dgr(Pxyl||Px ® Py)

For discrete distributions, we can rewrite this as

I(X:Y) = Z;/ Z):(I)(Xv’”)(x’y) 1°g<m)

In [3], agents are incentivized to learn task structure by training policies that perform well
under a variety of goals, while not overfitting to any individual goal. The policy dependence
on the individual goal is minimized using the conditional mutual information I(A; G|S).

The conditional mutual information I(A; G|S) from [3] is defined as follows:

p(alg, s)
I(A;GIS) = )_ pla, g, s)log
2 plals)
[3] also coins the term “decision states,” which refer to states in which the agent learns
to deviate from its habits. These states can be used as the basis for learning an exploration
bonus that leads to more effective training than other task-agnostic exploration methods.

2.3 Twin Delayed Deep Deterministic Policy
Gradients

2] introduces Twin Delayed Deep Deterministic Policy Gradients (TD3), which builds on
Double Q-Learning. TD3 addresses overestimation bias and the accumulation of error in
temporal difference methods are present in an actor-critic setting. TD3 does this by using
a pair of critic networks, delaying updates of the actor, and using action noise regulation.
TD3 outperforms the state of the art in continuous control tasks from OpenAl gym, making
it a suitable benchmark for us to use.
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2.4 Preliminaries

In this paper, we investigate a method of solving maze-based Markov Decision Processes
(MDPs) defined as follows:
M = (S,A,T,T,’}/,Mo),

where S and A represent the state and action spaces, r denotes the reward function, 7'(s'|s, a)
is dynamics transition function, v € [0, 1] is the discount factor, and po(s) is an initial state
distribution. Actions a € A can be performed in states s € S, resulting in a reward r.

In this paper, we are also interested in the future of a particular state at timestep t,
s(t). To represent the future, we take the state that exists a certain “lookahead” timesteps
ahead of time t. This state, s(t+lookahead) is referred to as the future.

The notation MI(A, F|S = s;) refers to the mutual information between an action A
and a future state F' conditioned on the current state S being s;.



Chapter 3

Approach

3.1 Motivation

With continuous reinforcement learning tasks, agents have a theoretically ”infinite” number
of decisions that they can make at any given state. To decrease the search space, as well as
train time, minimizing the number of decisions that agents have to make is very important.
Without this minimization, agents have more difficulty staying in ”optimal paths” as they
have to continue making correct decisions on every single small step. Through the use of
MI, we intend on inducing the agent into traversing certain canonical paths in free space,
regardless of where the agent is coming from. Agents only need to make decisions when they
are required to, at ”"decision” or "branch” points. In effect, the infinite decision problem is
reduced to a finite graph search problem.

3.2 MIRL: High Level Overview

At a high level, MIRL is implemented on top of existing reinforcement learning algorithms
(in this case specifically TD3), and uses replay-buffer memory and gradient updates from
buffer sampling. MIRL first takes samples from the buffer, calculates the mutual information
MI(A, F|S = s;), and calculates whether each state is a “local maximum.” When the state
is not a local maximum, MI(A, F|S) is subtracted from the reward (using a factor). MIRL
incentivizes beneficial exploration through reward shaping.

Refer to 3.1 for a high level overview of MIRL.

3.3 Mathematical Simplification of MI(A, F|S = s;)

From the definition of mutual information,

MI(A,F|S = s;)
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S Optimize model P
parameters theta ¢ o

/' Sampla baten b and
/' add M using help of
Agent action predictors.

e Sample of Mi Buffer
parameters theta @ with additive Mi reward

Figure 3.1: This diagram shows a high level overview of the algorithm MIRL.

=> Y P(FAS= SZ)ZOQ(p(F|g(§j)|§’(1:4;)= 51>)

a€A feF

=> > P(FAS= si)log<P](f(1§’SS::Sj))

a€A fEF

P(A|S = &)
We perform this simplification so that we can compute the quantity MI(A, F|S = s;)
using predictor models, as explained in the next section.

= EAF(lOg(

3.4 Required Architecture/Models for MI(A, F|S)

MIRL requires the modification of existing replay buffers that keep track of states, next
states, rewards, and done signals. Specifically, MIRL also requires buffers to maintain the
1.5 % k closest neighbors for each state. The necessity of these neighbors will become evident
in the next section.

In addition to this, MIRL requires the maintenance of the ”time-reversed” observations
as well. This time-reversal incorporates the knowledge that the agent in the maze could
easily go in the exact opposite trajectory of one it took (i.e. backwards). In a maze with
a state containing (position, velocity), an action (a), and a next state (position’, velocity’),
the time reversal would amount to negating the action, reversing the velocities, and flipping
the initial and next states.
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To understand the need for the time reversal, consider a maze with a particular branch
point that has 3 possible entrances. If an agent only encounters 1 entrance and exit in its
episodes, it will not register the branch point as an area of high mutual information. With
time reversal, this situation is always avoided!

Given a particular state, for the calculation of P(A|S), MIRL also requires the mainte-
nance of a predictor, ¢,qs:, which will calculate the probability of an action given a particular
state. @pqs 1S trained using data from the replay buffer that is generated with training.

Similarly, given a particular state and a future (represented as another state [ steps
ahead), MIRL requires the maintenance of a predictor, ¢ fyture, which will calculate P(A|F, S).
@ future 1s also trained using data from the replay buffer that is generated with training.

Both ¢pes and ¢pypure are 2-layer MLPs with 32 neurons in each hidden layer. The
MLPs output a singular scalar value to represent the mean of the action distribution, which
has a constant variance of 0.1 for the past predictor, and 0.09 for the future predictor. In
future work, we hope to eliminate these hard-coded variances entirely. When we trained the
predictors using a network to estimate standard deviations, it resulted in poor performance
for the M1 calculation.

3.5 Implementation of MI(A, F|S =s;)

The calculation of MI(A, F|S = s;) comes from an expectation over the futures and actions
at a particular state. To get the states, we randomly sample (s;, a;) tuples from the replay
buffer to update on.

For each (s;,a;) tuple, we first calculate P(A|S) by directly using the predictor ¢pqst.
®past generates a gaussian distribution over the action space, from which we can generate
the probability density function (pdf) of the action of interest (a;).

Now, we move to the calculation of P(A|F,S = s;). In order to get a series of samples for
the computation over the “expected” future, we calculate the k£ nearest neighbors for each
state s; in the sample from the replay buffer.

Since these states are very similar to the states s;, the futures and actions taken at these
'k

states can be used to estimate MI(A, F|S = s;). For each state s;, we generate s;'...s;

matches. We get the action taken at these matches, and we also get the future from these
matches, by checking [ steps in the future. Specifically, for each match s, which is found

at the p’th position in the replay buffer, we get the action by checking the p’th position in
the replay buffer’s action buffer, and we get the future by finding the p + [’th position in the
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replay buffer’s observation buffer.

Now that we have k different (s}, a}) matches for each state s;, we can calculate the pdf
for each of the a] by passing them into ¢ syure. After this, we have k values for P(A|F,S).
We combine these terms into one term by weighing them according to their closeness to the

original state S = s;.

Specifically, we compute the following:

P(AIF,5,) = Zim1 @) * Gpuare (a4
y D4 ZZZI(cI)(S;Q))

Where CID(s;q) is the normal pdf of a gaussian centered at S; with a predefined variance

of 0.01 evaluated at ®(s,7).
Ultimately, putting together the calculated probabilities from our two predictors ¢p,q
and @ fyture, We can compute:

MI(A,F|S = s;) = Ear(log(

This quantity is the mutual information estimate MI(F, A|S = s;). Since mutual infor-
mation is measured in terms of bits, we expect no more than 0 to 5 nats (units with a natural
log, 1 bit = 0.693 nats) of mutual information at any given state. Since we are using an
estimation, there may be some slightly negative mutual information points. In our several
experiments, we have found that roughly 80% of M I values found in our method lie between
-1 to 5 nats. For negative mutual information, we take those values to be 0.

3.6 Determining Whether A State is A Decision State

A decision state is a junction/state in the maze environment, wherein a specific action results
in a highly specialized future. Importantly, different actions result in vastly different futures.

In order to determine whether a particular state is a “decision state” or “branch point,” we
determine whether the state is a local maximum of mutual information. In the determination
of whether a state is the local maximum, we compare the M of the state with the MIs of
its k closest neighbors. If it is larger than each of its neighbors, we consider it to be a local
maximum.
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3.7 The actual algorithm

The pseudocode for the algorithm is defined in 1. For our experiments, we use a value of 10
for k. We train for a total of 1M steps, and we begin training our predictor after 50K steps.
We update our M I buffer every 25K steps.

Algorithm 1: MIRL
for ¢t € 1000000steps do — _
Take environment steps by executing action according to algorithm’s distribution centered
at fig
observe next state ', reward r, and done signal to indicate whether next state is terminal
add (s',r,done) to replay buffer
if time to update mi buffer or time to begin training predictors then
copy buffer into ma buffer.
calculate closest indices for mi buffer
end if
if time to do gradient updates then
if predictors have already begun training then
sample batch b from mi buffer.
Update ¢past and @ furyre using b
Calculate MI(A, F|S = s;) for each state in b
if state s; is not a local mazimum of MI, and MI1(A, F|S = s;) is positive then
subtract a« * MI(A, F|S = s;) from r;
end if
Perform gradient updates using modified reward
else
sample batch b from replay buffer
Perform gradient updates using b
end if
end if

3.8 Environments

Environments for this paper were developed using D4RL’s pointmaze environments. Tradi-
tionally, pointmaze has a fixed goal with a varying start position. However, in order to show
the utility of identifying ”decision points” with mutual information, the goal needs to be
varied— if the goal is not varied, there is (almost) always one correct path that the agent will
choose to take (the shortest distance to the goal). By varying the goal, we teach the agent to
ensure that it can do a "searching” operation. We proceeded to fix the agent’s initial state
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to decrease the complexity of the Q function that the agent needs to model. We design a
“large”, “umaze” and a “medium” maze to consider in this setting.

We use the sparse setting of the environment, wherein the agent receives no reward unless
it is within a 0.5 unit radius of the goal, at which time the episode ends in success. Using a
sparse reward setting makes the setting more realistic to moving goals in the real world, and
also helps underscore the importance of MIRL having the ability to generate reward signals
for learning in the absence of them.

Since traditional algorithms without any exploration bonus struggle to escape local max-
ima (well documented in literature), we proceed to use a count-based exploration bonus.
This bonus is detailed in the appendix.
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Chapter 4

Experiments

Figure 4.1: D4RL’s Large Maze Environment.

Our experiments are as follows:

1. We first confirm that predictors for actions given a particular state (for ¢,q.st), or given
a state and its future state (for ¢ fuure) perform well.

2. We then investigate a proof of concept for our M I approach, checking whether mutual
information quantities are clearly high at decision points, and lower in other areas. We
visualize a M [-heatplot for D4RL’s maze environment with a fixed goal.
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Figure 4.2: D4RL’s Medium Maze Environment.

Figure 4.3: D4RL’s U-Maze Environment.

3. Next, we test MIRL using traditional TD3 against MIRL-TD3, which adds reward
shaping on top of the traditional TD3 algorithm in the same fashion as highlighted in
section IV: Approach and 1. We use openAl’s spinningup’s ! implementation of TD3
for our experiments.

4. Finally, we test MIRL-TD3 with the additional count-based reward for exploration
against vanilla TD3 with count-based reward exploration.

'https://github.com/openai/spinningup
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Chapter 5

Experiment Analysis

We break down our analysis into the following three parts:
1. Proof of concept for the predictors ¢pqs: and @ fytyre
2. Proof of concept — understanding M (A, F|S = s;)

3. MIRL-TD3 vs. Traditional TD3

5.1 Proof of Concept for ¢ predictors

In order to calculate MI(A, F|S = s;), we need to ensure that we have usable methods of
calculating P(A|F,S = s;) and P(A|S = s;). To investigate this, we fully train a model
using traditional TD3, adding 0.01 variance of noise on every dimension, and then sample
from the replay buffer to train the predictors ¢pqs: and ¢ fypure. Our training curves for the
mean squared error between the actions predicted and the real actions are presented in 5.1.
We observe that as expected, the future predictor generally performs slightly better than
the past predictor during the entire period of training. Both predictors are able to predict
the action with 0.03 mean squared error.

5.2 Proof of Concept — Understanding MI(A; F|S = s;)

First, we consider the proof of concept — to show that M is high in “decision states,”
and low in other areas. Visually, in a maze environment, we should see higher mutual
information at branch points, and lower mutual information along certain corridors/walls.
5.2 is a visualization for the mutual information calculated in the maze based environment.

It is worth considering why the mutual information is distributed as shown in 5.2. As we
can see, branch points, or “decision states,” seem to have extremely high values of mutual
information. This is because at branch points, agents have many possible directions to move.
At branch point 1, for example, as seen in 5.3, the agent has the option of moving in three
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Figure 5.1: Comparison between future predictor ¢ sy, Which predicts P(A|F, S) and past
predictor ¢p.s which predicts P(A[S) in D4RL’s Large Maze environment. The future
predictor is trained using the state, and the state 5 timesteps later. As we can see, the
future predictor has an overall lower MSE than the past predictor. We report our average
over 3 seeds.

Figure 5.2: Visualization of mutual information in D4RL’s large maze. Here, we cut off the
values to be within the allowable range of -1 to 4. Some points are between 0 and -1 because
the mutual information is an approximation and may come out to be slightly negative at
times.

distinct directions: up, left, or right. Given the future state, the agent knows the direction
that was chosen. However, without this future state knowledge, the agent has three different
options. As a result, P(A|F,S = s;) is much higher than P(A|S = s;) for these decision
states, making the mutual information quantity MI(A, F'|S = s;) higher.

At states that are not branch points, and more like corridors, like point 2 in 5.3, the
mutual information is extremely low, and that is because given the velocity of the agent
(provided as a part of the state), the future of the agent is relatively known because of the
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Figure 5.3: D4RL’s maze environment, with annotations for areas discussed in the paper.

lack of any other paths to explore. As a result, P(A|F,S = s;) is not much higher than
P(A|S = s;) for such states, making the mutual information quantity MI(A, F|S = s;)
lower than the mutual information quantity at point 1.

5.3 MIRL-TD3 vs. Traditional TD3

In the next two sections, we discuss the experiments that compare our proposed approach
MIRL-TD3 against traditional TD3.

In the fixed-goal settings, specifically the case where the goal is a fixed location, but the
initialization of the agent is random, MIRL-TD3 performs comparably to traditional TD3.
The reason for this is because TD3 agents without exploration bonuses find themselves stuck
in local minimuma. Furthermore, the additional reward signal was also not useful enough
because the agent would get stuck at the local minima, not allowing for optimal action pre-
diction. Refer to figures 5.4, 5.5, and 5.6 for these.

5.4 MIRL-TD3 vs. Traditional TD3 with Exploration
Bonus

Due to the issue of agents getting stuck in local optima, we moved to integrate a count-based
exploration reward in the environment.

With the integration of a count-based exploration bonus, the performance of the agents
drastically improved. We found that MIRL-TD3 slightly improved training time, but the
overall affect was not pronounced in this setting. The reason for this was that the existence
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Figure 5.4: Comparison of performance of MIRL-TD3 versus TD3 in D4RL’s fixed-goal
medium maze environment without exploration bonuses. We smooth out the graph using a
15-epoch moving average. We report our average over 3 seeds.

of a fixed goal decreased the importance of decision points as training went on. To provide
some insight into this, consider the top right branch of the large-maze. When the maze
consistently has a goal set at the absolute top right, an agent at the branch will always learn
to go rightward. As a result of this, the mutual information quantity tends to 0 since the
correct action is almost fully informed by just the current state.

Finally, we took to the setting of a variable goal, and a fixed initial point (to decrease the
complexity of the problem that the Q-functions need to model). In this setting, we found
that in the large and medium mazes, MIRL-TD3 resulted in quicker convergence, as well as
better performance when compared to the vanilla TD3 agent (Figures 5.7, 5.8, 5.9). The
agents learned to visit decision points and randomly fully explore certain paths from decision
points before returning. In the u-maze, however, the improvement of MIRL-TD3 was not
evident. This is attributed to the lack of decision points in that environment because of its
simple structure as a ”U”.

For our other experiments that were attempted, as well as for the specific parameters
used in our experiment, please refer to the appendix in Chapter 9.



CHAPTER 5. EXPERIMENT ANALYSIS 18

Figure 5.5: Comparison of performance of MIRL-TD3 versus TD3 in D4RL’s fixed-goal large
maze environment. We smooth out the graph using a 15-epoch moving average. We report
our average over 3 seeds.
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Figure 5.6: Comparison of performance of MIRL-TD3 versus TD3 in D4RL’s fixed-goal
umaze environment without exploration bonuses. We smooth out the graph using a 15-
epoch moving average. We report our average over 3 seeds.

Figure 5.7: Comparison of performance of MIRL-TD3 versus TD3 in D4RL’s random-goal
medium maze environment. We smooth out the graph using a 15-epoch moving average. We
report our average over 3 seeds.
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Figure 5.8: Comparison of performance of MIRL-TD3 versus TD3 in D4RL’s random-goal
large maze environment. We smooth out the graph using a 15-epoch moving average. We
report our average over 3 seeds.

Figure 5.9: Comparison of performance of MIRL-TD3 versus TD3 in D4RL’s random-goal
umaze environment. We smooth out the graph using a 15-epoch moving average. We report
our average over 3 seeds.
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Chapter 6

Conclusion

Within deep reinforcement learning, learning to efficiently explore complicated environments
to solve a variety of tasks is an unsolved problem. Our motivation is to find a clear and
efficient method for exploration to discover effective policies, improving on the work of [4, 1,
3, 5]

In order to facilitate efficient exploration, we propose the algorithm MIRL: Mutual In-
formation for Beneficial Exploration in RL. MIRL involves using the mutual information
between an action and a future from a given state in order to improve exploration. Agents
are incentivized to visit “decision states” that lead to highly specialized futures.

We hypothesized that encouraging agents to take low mutual information paths unless the
state is a local maximum of mutual information will result in efficient exploration that leads to
faster learning and improved performance when compared to TD3. From our experiments we
found that in the case of a maze with a random goal position with an exploration incentive,
MIRL helps with quicker convergence and finds optimal behavior by leveraging decision
points in the maze space. However, in the case of a fixed goal position, MIRL’s benefits were
not as pronounced.
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Chapter 7

Limitations

There are a few limitations of our work which we explore below.

1. Computational complexity and memory overhead: With MIRL, replay buffers are re-
quired to maintain closest neighbors, and mutual information is calculated for each
state that is being updated on. The calculation of nearest neighbors for up to 1M
points in the replay buffer takes significant amount of time, and even with approxi-
mate nearest neighbors, there is still an additional overhead that is noticeable. This is
something that needs to be managed, especially in high dimensional environments.

2. Mutual Information in non-maze environments: It is easy to understand the notion of
decision states from the perspective of maze-based environments as branch points, but
in non-maze based environments, it is unclear whether this approach is useful.

3. Tuning at Environment-level: The MIRL algorithm also incorporates the “time-reversal”
of states so that MI can be calculated for them, which requires the knowledge of what
a reverse time trajectory looks like. In the maze, for example, this was tantamount
to the negation of the action, the negation of the velocity, and the switching of the
next state and the current state. There is some thought that is required to understand
which parts of the state should be negated/changed to mimic the time-reversal.
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Chapter 8

Future Work

In future work, we intend on applying MIRL to other reinforcement learning algorithms aside
from TD3. Perhaps, we may even attempt to use MIRL to see results in offline reinforcement
learning.

Furthermore, it should also be noted that MIRL relies on the maintenance of nearest
neighbors for points in its replay buffer. As a result, when the state-space gets even larger
(like with 100 dimensions), this nearest-neighbors array will be very expensive to keep track
of. It would be interesting to combine MIRL with an encoder for the state space to decrease
dimensionality and avoid this issue. This is a definite avenue for future work!

Finally, we also intend on applying MIRL to non maze-based environments in the future.
Specifically, we hope that MIRL can be used in environments even involving coordination
tasks, or other continuous control tasks like the ones part of the MuJoCo suite.
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Chapter 9

Appendix

9.1 Predictors— Additional Information

When we first began the approach of using predictors to calculate P(A|S) and P(A|F,S)
we attempted to use batch reinforcement learning in order to train an actor of a reinforce-
ment learning agent. Unfortunately, this proved to be quite difficult, with significant mean-
squared-error values. We then moved to a direct Multi-layer perceptron model, which proved
to be more computationally efficient, and also better-performing.

Regarding the parameters used for the perceptron, for both predictors, we used a 2-layer
neural net of 256 neurons each. We used an adam optimizer with a 0.001 learning rate, and
a 107° weight decay.

Regarding the way the predictors were trained, we train them using 100-state size batches
at regular intervals during training, which happen after a burn-in period. We have a burn
in period, because without this, the actor has not yet learned useful methods of tackling the
maze, which means the "action” predictors will be relatively random.

9.2 Mutual Information Calculation— Additional

Information

Since the calculation of Mutual Information in this project is quite dense, it is explained in
detail in this section.

We seek to calculate the quantity M1(A; F|S = s;). First, we sample the replay buffer,
getting a batch of states. Let’s consider a single state s; and its corresponding action a; as
doing the calculation for all states is simply vectorized.

NOTE: at certain intervals, the replay buffer calculates its closest matches for all indices
using FAISS. For this project, we use 25000 episodes. As a result of this, at timestep t, the
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replay buffer always has its closest matching states from 0...t — 25K.

With state s;, we first calculate P(A = @;|S = s;) by passing the state through the
®past Predictor which outputs a specific distribution over the action space, with a standard
deviation that is preset to 0.01. Then, we calculate the probability of taking action a; at
this state. This gives us the P(A|S = s;) quantity.

For the P(A|S = s;, f = siu1), where [ is the lookahead number of states, we calculate
this quantity by first finding states that are close "matches” of s;. To do this, we take a look
at our replay buffer, which keeps track of the 1.5k closest states to s;. We then ensure that
for each of these 1.5%k matching states, there exists a future state at the specified lookahead.
To tangibly put this, suppose we have a matching state at index ¢q. We ensure that index
q + [ also has a state that belongs to the same episode as index ¢. If this is the case, s, is a
valid match for s;. After keeping the valid matches, we truncate the valid matches to only
k matches.

Note: The probability of having less than k valid matches after storing 1.5k possible
matches initially, with k=10 is as follows:

1 — P(15Valid) — P(14valid) — P(13valid) — P(12valid) — P(11valid) — P(10valid)

The probability of a particular index being invalid is 5/1000, because only the last 5 states
of an episode are invalid (1000 is the episode length). Using a simple binomial distribution,
this calculation works out to 7.5~ which is very negligible.

With the k matches, we now get the actions a, that correspond to each of the matches.
We calculate P(A = a,|S = s4, F = s44; for each of the matches by passing them through
the ¢ future network. We then weight these matches according to their L-2 distance from s;.

As mentioned earlier, we compute the following:

/

E’;Zl (CI)(S;q) * (bfuture(az’q)
Sh_ (@(s,7)

(2

P(A[F,S;) =

Where CD(s;q) is the normal pdf of a gaussian centered at S; with a predefined variance
of 0.01 evaluated at the gth match of s;.

Ultimately, putting together the calculated probabilities from our two predictors ¢pqst
and @ fyture, We can compute:

MI(A,F|S = s;) = E4 p(log( POAIS = ) )
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