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Abstract

FogROS: An Adaptive Framework for Automating Fog Robotics Deployment and
Co-scheduling Feature Updates and Queries for Feature Stores

by
Yafei Liang
Master of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

As many robot automation applications increasingly rely on multi-core processing or deep-
learning models, cloud computing is becoming an attractive and economically viable resource
for systems that do not contain high computing power onboard. Despite its immense com-
puting capacity, it is often underused by the robotics and automation community due to lack
of expertise in cloud computing and cloud-based infrastructure. Fog Robotics balances com-
puting and data between cloud edge devices. We propose a software framework, FogROS,
as an extension of the Robot Operating System (ROS), the de-facto standard for creating
robot automation applications and components. It allows researchers to deploy components
of their software to the cloud with minimal effort, and correspondingly gain access to addi-
tional computing resources and predeployed software made available by other researchers.

To accommodate the real-time update requirements for many Machine Learning models and
robotics applications, Feature Stores are fast emerging as a new class of Machine Learning
system that maintains intermediate statistics of live data streams used for model training
and inference to improve accuracy and save prediction time. Our work is based on RALF,
a feature store designed for streaming data and explicitly leverages downstream feedback.
Our project explores the impact of lazy evaluation, which postpones feature updates in a
feature store, on the three most important aspects of feature stores (i.e., staleness, latency,
and costs) and builds an SLO-aware featurization scheduler that reduces the staleness of the
queried features by co-scheduling feature updates and query responses.
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Chapter 1

FogROS: An Adaptive Framework
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1.2 Introduction

Power, weight, and cost considerations often mean robots do not include computing capabil-
ities capable of running large-scale multi-core CPU-based, graphics processing unit (GPU)-
based, field-programmable gate array (FPGA)-based, or tensor processing unit (TPU)-based
algorithms. For example, a light-weight drone with an attached gripper that uses a GPU-
based grasp-planning module to compute grasp points for picking up objects [4] or perch-
ing [48], requires access to a GPU that the drone would not have onboard. While nearby
computers can provide the necessary computing capabilities, this practice can be complex
to set up, scale, and is prone to over-provisioning. Instead, we propose a framework based
on the Fog Robotics [24, 40, 60] idea of balancing between the compute available at the edge
and in the cloud. This framework, FogROS, is an extension of the Robot Operating System
(ROS) [47] that, with minimal effort, allows researchers to deploy components of their soft-
ware to the cloud, and correspondingly gain access to additional computing cores, GPUs,
FPGAs, and TPUs, as well as predeployed software made available by other researchers.

ROS, at its core, is a platform in which software components (nodes) communicate with
each other via a publication/subscription (pub/sub) system. Individual nodes can publish
messages to named topics and subscribe to other named topics to get messages published by
other nodes. In practice, these nodes all run on the robot and perhaps a nearby computer.
For example, on a robot, a sensor node publishes to a sensor topic, a planning node subscribes
to the sensor topic and compute a plan based on the sensor messages, and then publishes
messages that another node uses to execute the plan (Fig. 1.1).

With FogROS, a researcher can use the same code, and make a small change to a con-
figuration file to select components of the edge computer software to deploy to cloud-based
computers. On launch, FogROS provisions a cloud-based computer, deploys the nodes to it,
and then transparently passes the pub/sub communication between the edge computer and
the cloud. The only observable differences are: (1) the pub/sub latency increases, and (2)
the cloud-deployed components can compute faster given the additional computing resources.
The increased latency means that not all components will benefit from being deployed to the
cloud, in particular, any component with real-time requirements (e.g., a motor controller) or
any component that requires little computing power, should not be deployed to the cloud.
On the other hand, for many applications, the increased computation speed may enable new
robot capabilities, speed up tasks, and allow for higher accuracy in tasks such as object
detection or segmentation due to the use of larger models.

FogROS also supports launching pre-built automation container images. These container
images contain all the software and dependencies required to run a program. To date,
many academic and industrial open-source communities leverage container services, such as
Docker [13], to distribute their applications. FogROS can deploy robot automation containers
to the cloud without explicitly configuring the environment and hardware, facilitating ease
of containerized software reuse.

This paper makes three contributions: (1) FogROS, an open-source extension to ROS that
allows user-friendly and adaptive deployment of software components to cloud-based comput-
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Figure 1.1: Synthetic Workflow with a server and a client

ers; (2) a method to pre-deploy containerized FogROS software that allows commonly-used
software to be quickly integrated into applications; and (3) application examples evaluating

the performance of FogROS deployment.

Design Principles

FogROS aims to adhere to the following design principles:

Transparent to software FogROS should preserve ROS abstractions and interfaces. Ap-
plications should notice no difference between cloud-deployed and on-board nodes (other

than the latency of message processing).
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Flexible computing resources Different nodes require different computing capabilities.
Some nodes benefit from additional computing cores, while others benefit from access to a
GPU. FogROS should make selecting the appropriate configuration simple.

Minimal configuration required Running software nodes on a cloud-based computer
should be as easy as running them on the edge computer.

Pre-deployed nodes Some useful nodes require extensive setup, installation of a depen-
dency structure, and may have conflicting dependency versions. FogROS should make it
possible to use pre-deployed containerized software through configuration.

Flexible Networking Different networking options may have different availability, per-
formance, setup time, and costs associated. FogROS should allow the user to select the
networking options best suited to their application.

Security and Isolation The communication between cloud and on-board nodes should
be secure, and FogROS should close ports that expose software to compromise.
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1.3 Related Work

Cloud computing has emerged as an attractive and economically viable [27] resource to
offload computation for robot automation systems with minimal onboard computing power.
Kehoe et al. [29] survey the capabilities, research potential, and challenges of cloud robotics,
as well as applications such as grasp planning, motion planning, and collective robot learning,
that might benefit from the computational power of the cloud. Grasp planning and motion
planning have both shown to be amenable to cloud computation. Ben et al. [7], Nan et al.
[40], and Li et al. [32] generate robot grasp poses in the cloud by implementing parallelizable
Monte-Carlo sampling of grasp perturbations [28, 6, 30] while Mahler et al. [36] explore
cloud grasp pose computation that maintains privacy of proprietary geometries. In motion
planning, Lam et al. [31] introduce path planning as a service (PPaaS) for on-demand path
planning in the cloud and use Rapyuta to share plans among robots. Bekris et al. [5] and
Ichnowski et al. [23] both devise methods for splitting motion planning computation between
the cloud and the edge computer [24, 1]. In addition to providing computing resources, the
cloud can also facilitate sharing and benchmarking of algorithms and models between edge
computers [61] for grasping, motion planning, or computer vision.

To leverage cloud resources, many in academia and industry endeavor to connect edge
computers to the cloud. Example approaches include using SSH port forwarding [19] or
VPN-based proxying [33] to support unmodified ROS applications to share a single ROS
master. FogROS builds on these approaches, and adds automation of ROS node deploy-
ment to the cloud and a virtual private cloud (VPC), saving time over prior approaches
that require manual configuration of network access rules and IP addresses. For example,
setting up a VPN-based proxying requires more than 12 steps for configuration and 37 steps
for verification [19]. The complex manual configurations scale poorly and are error-prone.
ROSRemote [46] and MSA [66] replace the ROS communication stack with custom Pub/Sub
designs. Although edge computers can communicate with nodes owned by other ROS mas-
ters, these systems require heavy code changes to ROS applications. FogROS, as an option,
leverages rosbridge [12], an open-source webserver that enables an edge computer to interact
with another ROS environment with JSON queries. Given diverse attempts to connect edge
computers to the cloud, Wan et al. [64] and Saha et al. [53] call for a unified and stan-
dardized framework to handle cloud-robot data interactions. FogROS aims to be a painless
solution to this open issue by allowing unmodified ROS applications to be launched on the
cloud with minimal additional configurations.

Sharing a similar vision as FogROS, RoboEarth [63] is a successful example where edge
computers share information on the cloud. However, in their use cases, edge computers
mainly use the shared database on the cloud, and do not benefit from the powerful cloud
computing resources. Rapyuta [37] and AWS Greengrass [2] provide pipelines to deploy
pre-built ROS nodes to edge computers or robots. Both platforms build ROS nodes or
Docker images on the cloud, and push the built images to robots that are registered with
their platforms. FogROS considers the reversed direction of Rapyuta and AWS Greengrass.
Instead of pushing the computation from cloud to robots, FogROS is a lightweight platform
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that allows developers to rapidly prototype applications and gain quick access to extensive
computing resources, without conforming to an additional framework.

7



CHAPTER 1. FOGROS: AN ADAPTIVE FRAMEWORK
FOR AUTOMATING FOG ROBOTICS DEPLOYMENT 8

1.4 Background

In this section, we provide a brief background on the building blocks of FogROS, including
(A) cloud-based computing, (B) ROS and its pub/sub system, and (C) how ROS-based
robotic systems are configured and launched.

Cloud Computing

Cloud-based computing services, such as Amazon Web Services (AWS), Google Cloud, and
Microsoft Azure, offer network accessible computers of various specifications to be rented
on a per-time-unit basis. Setting up a service typically requires a one-time registration and
a credit card. Registered users can setup, reconfigure, turn on, turn off, and tear down
virtual computers in the cloud. This can be done either through a web-browser interface, or
programmatically through a network-based application programming interface (API). Com-
puter configuration options include: amount of memory, amount of processing cores, type and
amount of GPUs, and inclusion of custom processing hardware such as field-programmable
gate arrays (FPGAs) and tensor processing units (TPUs). FogROS uses the AWS cloud
service API to setup a cloud-based computer, deploy ROS and the code, secure network
communications, and then run the node.

ROS and Pub/Sub

In ROS, nodes (software components) communicate with each other using a pub/sub (pub-
lication and subscription) system. Nodes register as publishers and/or subscribers to named
communication channels called topics. Each topic has message type that determines what
data is sent over the channel. For example, a ROS node that monitors the joint state (e.g.,
angles) through sensors, would publish messages of type JointState on an appropriately
named topic, and that topic would only contain JointState messages. When a node pub-
lishes a sequence of messages to a topic, all registered subscribers will receive the message
in the same sequence they were published.

Coordination of the publishers and subscribers to topics is maintained by the ROS Mas-
ter [52]. The ROS Master exposes network API that allows nodes to connect over a network
and register /unregister themselves as publishers and subscribers to topics. During the regis-
tration process, publishers get the current list of subscribers, and subscribers get the current
list of publishers. Publishers may then connect directly to already-registered subscribers,
and subscribers may connect directly to already-registered publishers.

Once a publishing and subscribing nodes are directly connected to each other!, publishing
nodes serialize message-specific data structure to a sequence of bytes and sends the bytes
over the connection. When subscribing nodes receives the sequence of bytes, they deserializes
the bytes to the message-specific data structure and process the message.

'As an implementation optimization, ROS nodes on the same machine can communicate via a shared-
memory queue, instead of using a network.
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However, existing ROS pub/sub communication has several limitations: (1) all the nodes
have to share the same master to communicate (inter-master communication is not supported
by ROS pub/sub protocol stack, and one has to use out-of-band protocols for communicating
across masters); (2) although it is possible to join nodes from multiple machines to share a
single master, the communication for ROS is not secured, and users must configure security
protocols.

ROS Launch Scripts

Robot systems can be comprised of a complex graph of nodes communicating with each
other via pub/sub. To consolidate an automation system deployment into a single file,
ROS supports a launch configuration file. This file specifies which nodes are to be launched
by code entry point, and allows for optional remapping of topic names (e.g., so that code
written to process a standard message type can produce it from a topic with a name not
known /specified when the code was written). Fig. 1.2 is an example launch script that
launches a client node and a server node from the mpt_ros package locally.

<launch>
<!=-— Run client node ——>
<node name="client" pkg="mpt_ros" type="client"
output="screen" />

<!-— Run server node—->
<node name="server" pkg="mpt_ros" type="server"
output="screen" />
</launch>

Figure 1.2: ROS Launch Script Example

FogROS extends the launch script capabilities to allow the specification of which nodes
to deploy in the cloud and on what machine type.
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1.5 Approach

To meet the design principles, FogROS (1) extends ROS launch scripts to include an option
of where to deploy and run a ROS node, the only place that requires user configurations;
(2) provisions cloud-based computers, securely pushes the code or containers to them, and
runs the code; (3) sets up one of two networking options (VPC or Proxy) to transparently
and automatically proxy the pub/sub communication between the edge computer and the
cloud; (4) provides introspection infrastructure for monitoring network conditions; and (5)
supports launching containerized FogROS nodes from pre-built Docker images.

Launch Script Extensions

FogROS uses standard ROS launch scripts as the user interface. Users specify which nodes
are to be deployed and what type of cloud computing instance is used in the same launch
file as the nodes that users want to deploy locally. They can push multiple nodes to the
cloud at the same time by providing the path to a separate launch script. FogROS parses
the launch script, finds and collects all the packages in the script, and pushes them to the
cloud computer. As part of the configuration process, users can optionally specify a bash
script that installs dependencies outside of the FogROS launch process (e.g., mirroring the
steps to install dependencies on the edge computer).

Fig. 1.3 provides an example of a FogROS launch script that serves the same functionality
as Fig. 1.2, but with the server node running on a cloud computer. Local ROS nodes, such as
client, are launched as before. With FogROS, the user specifies the launch file that contains
the server node (server.launch), the type of cloud computer (c5.24xlarge), and optionally, a
setup script (init.bash).

Cloud-Computer ROS Nodes

When FogROS launches cloud-based nodes, it performs the following sequence of steps that
result in ROS nodes running on a cloud computer with messages being transparently proxied
between the edge computer and the cloud computer:

1. Provision and start a cloud computer with the capabilities from the launch file and
pre-loaded with ROS

2. Push code for ROS nodes to the cloud computer
3. Run the environment setup script
4. Set up secure networking (via Proxy or VPC)

5. Launch the pushed code
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<launch>
<!-—- Run client node as before ——>
<node name="client" pkg="mpt_ros" type="client"
output="screen" />

<!—=— Run server node w/ FogROS——>
<node name="server" pkg="fogros" type="
fogros_launch.py" >
<rosparam>
instance_type: cb5.24xlarge
launch_file: server.launch
env_script: init.bash
</rosparam>
</node>
</launch>

Figure 1.3: FogROS Launch Script Example

Before FogROS provisions a cloud computer, it uses the cloud service provider API to
create security rules to set up a secure computing infrastructure suitable for ROS application
configuration. It closes network ports not needed for communication between nodes. Then it
provisions the cloud computer with a specified location and type. To speed up the launching
process, FogROS specifies an image pre-loaded with the core ROS libraries to run on the cloud
computer. As part of the launch process, FogROS generates and installs secure credentials
on the cloud computer, and gets its public internet protocol (IP) address.

Once the computer is started, using the IP address and secure credentials, FogROS re-
cursively copies the ROS code to the cloud computer securely over a secure shell (SSH) [67]
connection, optionally runs the user-specified setup script, and builds the code on the cloud.
With the code ready to run, FogROS then starts the configured secure networking compo-
nents for VPC (Sec. 1.5) or proxying (Sec. 1.5), and runs the ROS nodes in the cloud.

Networking: Virtual Private Cloud

To allow the edge computer and cloud-based computers to communicate securely with each
other, FogROS automates the setup of a Virtual Private Cloud (VPC). A VPC secures
point-to-point communication between cloud computers by assigning private IPs that are
only accessible for other nodes within the VPC. FogROS creates a Virtual Private Network
(VPN) between the edge computer and the VPC. A VPN is a secure network communication
channel provided by the operating system. With this setup, from the perspective of a ROS
node, all nodes appear as though they are on the same private network.

FogROS automates the setup of the VPC and the VPN when it provisions the cloud
computers to run the ROS nodes, by using the cloud service providers APT to: (1) create a
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Figure 1.4: Sequence Diagram of FogROS Deployment Process. Users only need to input
the launch file, and FogROS automates the provisioning, deployment, code execution, and
network setup sequence.

VPC instance and a security group for it, (2) establish credentials for the cloud-computers
that will participate in the VPC, (3) configure the cloud computers to use the VPC for
cloud-to-cloud communication, and (4) set up a VPN endpoint to which the edge computer
will connect. Once set up, the cloud service provider manages the VPC, while FogROS
manages the VPN. As part of the setup process, FogROS sets a unique private IP address
for each of the computers participating, so that the ROS nodes can establish connections
between computers.

Networking: Pub/Sub Proxying

In addition to VPC networking, FogROS also supports a proxied-network option that enable
communication between the edge computer and the cloud. This option is available for
cases where the VPC solution may be unavailable due to service provider restrictions or
costs, or when an additional level of isolation between the edge computer and the cloud
is desired. There are also performance differences (see Section 2.6) when considering the
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Figure 1.5: Automatic Pub/Sub Proxy. The proxy tunnels the traffic only if there is an
active subscriber.

network options, and a user of FogROS may wish to measure performance in their application
before choosing a suitable option.

In FogROS, a proxy consists of two ROS nodes, one running in the edge computer and
one running on the cloud. These nodes connect directly to each other via a secure network
connection, and register as publishers and subscribers to topics on the ROS Master running
on each computer. When a proxy node receives a message from a subscription, it sends it
to the other proxy node, which then publishes it to the subscribers registered on its ROS
Master.

There are two options for FogROS to identify topics to proxy: (1) user-specified in the
configuration file, or (2) automated. If topics are specified by the user in the configuration
file, FogROS subscribes and publishes to the topics specified. If the user does not specify
topics, FogROS communicates with the ROS Master on each end and identifies which topics
have registered subscribers and publishers. When a topic has a publisher on one end, and
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a subscriber on the other, the ROS proxy nodes coordinate with each other to proxy the
associated topic (see Fig. 1.5). While the automated process is simpler to setup for the
developer, it may result in increased setup time as the proxy nodes coordinate the setup of
proxied topics, or wasted bandwidth on topics that do not need proxying.

Network Monitoring

With the proxying network option, FogROS also provides interfaces to monitor network
conditions via ROS topics /fogros/latency and /fogros/throughput on both the edge com-
puter and the cloud. These interfaces do not introduce additional overhead unless an active
subscriber subscribes to them. Users can also inspect and interact with ROS topics with
standard ROS tools such as rostopic. In addition, FogROS provides the same fault tolerance
as ROS running locally, where ROS nodes can re-join the pub/sub communication after
network interruption.

Pre-Built ROS Nodes

FogROS also supports launching containerized ROS nodes with a similar interface to the
FogROS launch script extension described in Section 1.5. While an increasing number of
ROS developers are using pre-built docker images to host ROS nodes, this functionality is not
natively supported by ROS. With FogROS, users can specify the name of a publicly-available
image on DockerHub as well as the destination machine on which they want to launch it.
FogROS then uses a template environment setup script to pull and run the image on the
specified machine. It analyzes the machine type and configures the docker run command to
match the hardware (e.g., GPU) available on the computer.

Fig. 1.6 shows an example launch script for a Dex-Net grasp planning node in a docker
image. FogROS provisions and starts a cloud computer (gddn.xlarge) with a GPU, pulls the

<launch>
<!-- Dex-Net Docker Image w/ FogROS —-—>
<node name="dexnet" pkg="fogros" type="
fogros_docker.py" output="screen">
<rosparam>
docker_image: keplerc/dexnet :gpu
machine_type: g4dn.xlarge
</rosparam>
</node>
</launch>

Figure 1.6: FogROS Docker Container Example
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dexnet:gpu image from DockerHub [13], and attaches the docker container to the GPU, and

runs it.
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1.6 Evaluation

Here we present three example applications on FogROS: (A) visual SLAM, (B) Dex-Net
grasp planning and (C) multi-core motion planning. The nodes, topics, and split between a
single-core edge computer with 2GB RAM and the cloud are shown in Fig. 1.7. In addition

to showing the network latency and performance with FogROS, we highlight the simplicity
and minimal configuration of deploying these applications.

Visual SLAM Service

Edge Edge
Node Node | Node
“A
EAD ; %,

. ROS . %
ROS e ROS [ Task H
Master | .| v Master | . ", Planning

- Mapping & N p
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i ] e . | Node 5
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(a) VSLAM (b) Grasp Planning (c) Motion Planning

Figure 1.7: FogROS Docker Container Example

Edge Cloud — FogROS — Network
Scenario FPS Create (s) FPS Create (s) VPC (s) Proxy (s)
frl/xyz 16.6 2.9 25.2 1.2 0.4 0.6
fr2 /xyz 14.7 2.1 30.2 0.8 0.4 0.6
frl/desk  15.6 2.8 23.8 2.0 0.4 0.6

Table 1.1: SLAM with FogROS. We benchmark FogROS on 3 different visual SLAM scenar-
ios, and record the frame-per-second (FPS) and the latency in creating a new map (Create)
in seconds on the local edge computer (using one-core CPU) and a cloud-computer with
36-core CPU. We also record the average network time in seconds for transmitting raw video
frames to the cloud computer. FogROS demonstrates up to 2.0x improvement on FPS and
2.6x improvement on new map creation time than using only edge computer.

ORB-SLAM2 [39] is a visual simultaneous localization and mapping system that uses
monocular video input. In this experiment, a Camera Node publishes a 640 x 480 resolution
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video with each frame 48 KiB on average to the cloud (Fig. 1.7a). On the cloud an ORB-
SLAM2 node subscribes to the video feed [57] and computes a pointcloud map along with
the current estimated location within the map, which are sent back to the robot. For more
details on the ORB-SLAM?2 algorithm, we refer readers to the paper and open-source code
available from Mur-Artal et al. [39].

To configure FogROS to work with ORB-SLAM?2, we build ROS docker images and push
them to Dockerhub [13]. We wrote a bash script to pull and run the docker image and include
its path as in Fig 1.3; FogROS then runs the script when configuring the environment. After
initialization, FogROS sets up and secures communication between the robot and the cloud
SLAM server.

To evaluate the performance of FogROS when deploying ORB-SLAM?2, we compare the
cloud-deployed performance to an edge-computer-only implementation. We select a 36-core
cloud-computer (AWS c4.8xlarge) for the ORB-SLAM?2 node, and compare it with ORB-
SLAM2 running on a one-core edge computer We report frames-per-second (FPS) and latency
that creates the first map (in seconds) [41]. Table 1.1 suggests that cloud-based SLAM can
achieve higher FPS, meaning that it can aggregate more data and produce higher quality
maps in a real-time setting. Cloud-based SLAM also has less latency in generating a new
map because the time to create a new map on the cloud is less than the time to create a
new map on the edge.

Dex-Net Grasping Service

Grasp analysis computes the contact point(s) for a robot gripper that maximize grasp
reliability—the likelihood of successfully lifting the object given those contact points. To
plan grasps on rigid objects in industrial bins using an overhead depth camera, we use
an open-source implementation of the fully-convolutional grasp-quality convolutional neural
network (FC-GQ-CNN) [54, 35] from Dex-Net[34]. We wrap FC-GQ-CNN in a ROS node
and deploy it to the cloud along with pretrained neural-network weights as a Docker image.
We refer the reader to Satish et al. [54] and Mahler et al. [35] for details and code for the
neural network and grasping environment.

This node subscribes to 3 input topics containing a scene depth image and mask for
objects to be grasped, and a message of type sensor_msgs/Cameralnfo containing camera
intrinsics. Internally, the node feeds this to FC-GQ-CNN, which outputs a grasp pose and
associated estimate of grasp quality. The node wraps these outputs, along with the gripper
type and coordinates in image space, into a gqenn_ros/ GQCNNGrasp message, and publishes
it.

While the node can be run both locally or in the cloud, using cloud GPU instances as
opposed to a CPU for neural-network inference can greatly reduce computation time. In
either case, the node is wrapped inside of a Docker container, reducing the need for resolving
dependency issues between deep-learning libraries, CUDA, OS, and ROS versions. The
pretrained models in the image is intended for a setup similar to that shown in Figure 1.8;
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Edge Cloud FogROS VPC FogROS Proxy
Scenario Ounly (s) Compute (s) Network (s) Total (s) Network (s) Total (s)
Compressed 7.3 0.6 0.6 1.2 0.8 1.4
Uncompressed 7.5 0.6 0.7 1.3 0.9 1.5

Table 1.2: Dex-Net Grasp Planning with FogROS. We benchmark Dex-Net on 10 trials, and
record the compute time in seconds on the local edge computer with CPU only (1st column),
and the total (4th&6th column, respectively) = compute (2nd column) + network (3rd&5th
column, respectively) time for using a 4-core cloud computer with a single Nvidia T4 GPU.
FogROS demonstrates up to 6.0x improvement with VPC and 5.7x improvement with proxy
than using only edge server.

variations in camera pose, camera intrinsics, or gripper type may require retraining the
underlying model for accurate predictions.

We run FogROS with the Dex-Net docker image using the launch file in Fig 1.6. We
compare grasp planning times across 10 trials using both the CPU onboard the edge computer
and FogROS with the Docker images on the cloud. We also show compute times when using
a compressed depth image format to transfer images instead of transferring raw images to
the cloud directly. For the latter case, images are compressed and decompressed using the
republish node from the image_transport ROS package [25]. Table 1.2 shows the results
for both compressed and uncompressed image transport between the nodes.

¢

Suction

Gripper
&Bi

Figure 1.8: FogROS Docker Container Example

Multi-Core Motion Planning

Motion planning computes a collision-free motion for a robot to get from one configuration
to another. Sampling-based motion planners randomly sample configurations and connect
them together into a graph, rejecting samples and motions that are in collision. These
planners can be scaled with additional computing cores.
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Figure 1.9: FogROS Docker Container Example

Edge Cloud FogROS VPC FogROS Proxy
Scenario Only (s) Compute (s) Network (s) Total (s) Network (s) Total (s)
Apartment 157.6 4.2 0.4 4.6 0.7 5.0
Cubicles 35.8 14 0.3 1.7 0.6 2.1
Home 161.8 6.2 0.3 6.5 0.6 6.8
TwistyCool 167.9 5.1 0.4 5.5 0.6 5.7

Table 1.3: Multi-core Motion Planning with FogROS. We benchmark FogROS on 6 different
motion planning scenarios using the same multi-core motion planner, and record the compute
time in seconds on the local edge computer (1st column), and the total (4th&6th column,
respectively) = compute (2nd column) + network (3rd&5th column, respectively) time for
using a 96-core computer in the cloud. FogROS demonstrates up to 34.2x improvement with
VPC and 31.52x improve with proxy than using only edge server.

Using FogROS, we deploy a multi-core sampling-based motion planner [22; 21] to a
96-core computer in the cloud to solve motion planning problems from the Open Motion
Planning Library (OMPL) [58] (see Fig. 1.9). This planner node subscribes to topics for
the collision model of the environment and motion plan requests (Fig. 1.7c). When the
planner node receives a message on any of these topics, it computes a motion plan, and then
publishes it to a separate topic. For more details on the multi-core motion planner, we refer
the reader to the paper and the open-source code by Ichnowski et al. [21]. To configure
FogROS to work with multi-core motion planner, we record the steps we use to setup the
dependencies (e.g., FCL [44] and Nigh [20]) in a script. By providing the script, we configure
FogROS similar to Fig 1.3.

We compare the planning time as the difference between publishing a motion plan request
message, and receiving the plan result message, and show the results in Table 1.3. The same
motion planning problem is solved in a fraction of the time on the cloud when compared
to using the edge computer. However, for simpler planning problems, when the network
latency (between 0.3s and 0.6s) is longer than the motion planning computing time, there
may be little to no benefit to use a cloud deployment. Intuitively, if it takes more time to
upload data onto the cloud than computing it locally, there is no point in uploading it. If
the motion planner is asymptotically-optimal (finds shorter/better plans the longer it runs
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and with more CPU cores), then one could potentially run the motion planner for the same
amount of time but get a better path using the cloud. Anand et al. [1] explored and shown
the benefit of using the tradeoff between more cores and the resulting motion plan optimality.
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1.7 Conclusion

We present FogROS, a user-friendly and adaptive extension to ROS that allows developers
to rapidly deploy portions of their ROS system to computers in the cloud. FogROS sets
up a secure network channel transparent to the program code, allowing applications to be
split between edge and the cloud with little to no modification. In experiments, we show
that the added latency associated with pushing software components to the cloud is can be
small when compared to the time gained from using high-end computers with many cores
and GPUs in the cloud. However, in some simple tasks, using high-end cloud servers may
lead to marginal benefits and can be considered as an overkill.

In future work, we will address the interactions of multiple hardware systems with differ-
ent ROS masters, and handle the decentralized communication efficiently and securely. We
will also support real-time compression on the proxy connection between edge computer and
cloud to help reduce latency especially on low-bandwidth connections.
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2.2 Introduction

In real-world machine learning applications, it is a common practice to pre-process data and
get features to reduce latency and improve accuracy. Features are raw and derived data and
can have different representations and encodings. The process of converting the data into
features is called featurization. Machine learning models need to featurize data from the
data source to do training or prediction. For example, in the scenario of credit card fraud
detection, the application uses credit cards’ activity patterns to identify anomalies, while the
user interface of a bank can provide only raw data such as credit card number, individual
transaction record time, and transaction amount. For the machine learning model to detect
fraud, some pre-computation needs to happen to produce the probability of each transaction
occurrence, so that the downstream model can infer if the transaction is a fraud.

Featurization usually takes a significant amount of computing power and time. It is
desirable for online models to respond in a timely manner to achieve its goal (e.g. stop
fraudulent transactions in time). Thus, a feature store that can pre-process raw data and
respond to queries from models is ideal to hide the latency associated with featurization.

Feature stores usually store and maintain a feature table that maps from a feature key
(e.g. a user ID) to featurized data (e.g. the transaction history of a user). Ideally, the
table should be updated upon receiving new raw data; however, this will require a massive
amount of computation and may result in higher latency. Thus, a feature store needs to
decide on the frequency of update and balance the tradeoffs between latency and staleness
of the features.

Feature Store
RALF

Query
Data | Event [Featurization  key Model
Source |(key,value) | & Storage Response Serving
feature

Figure 2.1: Overview of a Machine Learning pipeline with a Feature store: A data update
creates an event with a key and a value. The feature store performs featurization and stores
the feature. The Downstream model can issue a query with the desired key and the feature
store will respond with the feature value associated with that key.

Among the many exploration of feature stores, RALF [65] is designed for streaming data,
and it explicitly leverages downstream feedback to reduce costs with minimal downstream
accuracy degradation. Currently, RALF only computes updates eagerly. As Figure 2.2 and
Figure 2.2 shows, the latency and staleness of eager computation increase exponentially when
the rate of incoming data, or update rate, is around or above 1000 per second. Our project
adds the support for lazy computation to RALF to mitigate this issue while exploring the
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tradeoffs associated with lazy computation. With lazy evaluation, RALF will not featurize
newly received raw data until the client sends a query to get that feature. Lazy evaluation
will schedule a featurization if the feature for the queried key doesn’t exist or return an old
feature if featurization has ever happened for that key. We use the metrics defined in the
following section to evaluate the effectiveness of our implementation.

—— query_rate=5 —— query_rate=5
1014 query_rate=10 ——— query_rate=10
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Figure 2.2: Latency and staleness of eager evaluation in log scale. Both latency and staleness
of the system grows exponentially when update rate approaches 1000 times per second for
the three different query rates tested.

Another issue is that RALF does not consider query service-level objectives (SLOs) for
scheduling queries and features updates. As a result, they lose the opportunity to return
more up-to-date features computed from the freshest data updates. In our project, we
explore the query SLOs between 10ms to 50 ms to see how different scheduling policies
and latency requirements can affect the accuracy of the downstream model. With the co-
scheduling algorithm, features are computed when queried to meet some specified deadline
while increasing the accuracy.

The rest of this paper is structured as follows. In section 2.3, we discuss the success
metrics that our system considers. Then, we describe our exploration of metrics tradeoff
with synthetic data in section 2.4 and our scheduler implementation in section 2.5. In
section 2.6, we present the experiment results of our scheduler implementation. We then
have a little discussion of the experiment results in section 2.8, compare our scheduler to
related work in section 2.7, and conclude in section 2.9.
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2.3 Success Metrics

When training machine learning models with a feature store, developers care the most about
three metrics.

Staleness Different workloads might have different definitions of staleness but in general,
the more stale the features are, the less fresh they are, and the lower accuracy the model
output can have. Given the fact that the environment might change a lot when time goes
by, fresher features tend to reflect the real environment more accurately. Downstream model
accuracy is a clean and effective way to measure the impact of feature store staleness. In our
work, we explore different ways to reduce staleness of our features and increase accuracy for
two different workloads.

Latency Latency is defined as the time difference between the time a query is issued and
the time a response is received. To achieve higher pipeline efficiency and also a better user
experience, we pursue a lower latency when possible. In this project, we either measure the
latency directly or give an explicit SLO constraint to the feature store when issuing a query.

Computation cost Featurization in feature stores can be very expensive. For example, in
our embedding workload, a featurization can take a few milliseconds and there can be a few
hundred data updates per second. In real world, this can be translated to AWS lambda [3]
rental costs. The more computation that happens, the more developers need to pay for a
serverless compute service. We aim to reduce the number of times calling the featurization
methods.

In the following sections, we explore the trade-offs between these three metrics.



CHAPTER 2. CO-SCHEDULING FEATURE UPDATES AND QUERIES FOR
FEATURE STORES 26

2.4 Exploring Trade Offs in Lazy Evaluation

We implement lazy evaluation and a load shedding policy. We then create a synthetic
workload to understand the behavior of the current system as well as exploring various trade
offs between lazy evaluation and eager evaluation.

Lazy Evaluation Implementation

In the current implementation of RALF, it always does featurization upon receiving new
data (i.e. eager evaluation). We implement lazy evaluation with which the system will not
featurize the updated raw data unless the client queries for it. Upon receiving a query, if
the current table has the feature, the system will return the stale feature immediately and
schedule a featurization. If the current table does not have the corresponding feature but
the key exists in an upstream table, it will wait for the featurization to complete. Otherwise,
a key error will be returned indicating the key does not exist in the system.

As illustrated in Figure 2.3, eager evaluation will perform featurization for updates of
(key_1,value_1), (key_1,value_2), and (key_1,value_3), respectively. Lazy evaluation will not
do anything until the first query with key_1 comes in. Lazy evaluation doesn’t have a feature
value for key_1, so it checks its upstream table and see that an update with (key_1, value_3) is
the latest update with key_1. Lazy evaluation performs a featurization and returns a feature
associated with value_3. Eager evaluation returns the feature associated with value_3 that it
has computed. When update (key_1, value 4) arrives, eager evaluation will perform another
featurization while lazy evaluation does nothing. When query with key_1 comes in again,
eager evaluation will return the feature associated with value_4 that it has computed. Lazy
evaluation sees that it has a feature for key_1 that was computed from value_3, so it will
return value_3 to the query first, and schedule a featurization so that it can respond with
the feature associated with value_4 when the next query comes in.

Load Shedding

A disadvantage of laziness is when the query rate is high, it may schedule unnecessary
updates. For example, if a client monitors a value and sends heartbeat data to a feature
store but the value does not change frequently, the feature store will receive multiple duplicate
feature updates with the same key and value. To avoid redundant computations, our system
provides an option to group N queries and check if there is duplicate update requests for the
same key. The system will perform computation only once for duplicate update requests.
The result of this policy is illustrated in the subsection below.

Synthetic Workload

As shown in Figure 2.4, the server simulates the featurization pipeline. The client con-
tinuously generates raw data and sends HTTP requests to the server. The server has a
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Figure 2.3: Lazy evaluation workflow: the lazy computation only does featurization when
receiving a query.

source operator that receives streaming data through a Redis [50] data structure store. The
server then performs featurization with a featurization operator. The client also simulates
a downstream application that gets desired features by querying the table in the featuriza-
tion operator. To avoid the impact of network connections, we assume that the clients, the
inference server, and the feature store are running on the same local machine with varying
parameters.

The implementation details are as follows. The client has num keys of keys. It will count
from 0 to update up_to and assign the number (i.e. raw data) to key num % num keys.
Each data will be generated every 1/update_rate seconds and sent to the source operator
on the server. The featurization operator performs an identity operation that is set to take
processing time seconds, simulating an expensive featurization operation. The client sends
a query every 1/query_rate seconds.
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Figure 2.4: Synthetic Workflow with a server and a client

Experiments

We conduct a number of experiments on the synthetic workload to explore: All experiments
are done with the following parameters:

e There only exists one key.
e The featurization time is set to be 0.01 seconds.
e Unless specified, load shedding policies are not enabled.

e The query requests and update requests are in the same queue and are processed using
FIFO policy.

e There are 4 worker threads to process queries and updates.

e The client continuously queries the server for 5 seconds, three times (15 seconds in
total). The latency and staleness is the average of the last two runs, which excludes
potential initialization time.

Trade-Offs We expect a higher staleness for lazy evaluation because when there is an
existing value for a certain key being queried, the value will be returned immediately. Since
featurization only happens when there is a query to the key, if the last time this key got
queried was a long time ago, the value returned would not be very fresh (i.e., the staleness
of the data is very high).

We expect a comparable latency for lazy evaluation if the update rate and query rate are
within a normal range, because for a key that shows up more than once, both lazy and eager
evaluation will return an old value that they computed from the last query or data update,
respectively. However, if updates and queries come in from the same data stream and each
query result needs to wait for the corresponding update (e.g., real-time click-recommendation
on commercial websites), lazy evaluation may have a lower latency because it doesn’t need
to wait for the featurization to complete.
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Since featurization is the most expensive process, we expect lazy evaluation to have a
higher computation cost when the query rate is high because it does featurization when-
ever a query comes in. For the same reason, we expect eager evaluation to have a higher
computation cost when the update rate is high because it does featurization for every data
update.

To confirm our hypothesis about metrics changes, we vary the update rate and query
rate for both lazy evaluation and eager evaluation, and measure the latency, staleness, and
computation cost.

Load shedding In both eager and lazy evaluation, our load shedding policy can group
N update requests for the same key so that only one update is performed, as opposed to
N. This decreases the number of updates and increases the limit of concurrent updates and
queries.
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Figure 2.5: Latency of eager and lazy evaluation with fixed query rate of 10. The figure
on the left is in log scale. The figure on the right is the zoomed-in version in linear scale.
Latency of the eager system grows exponentially when the update rate approaches 1000
times per second. Latency of the lazy system stays low when the update rate grows.

Observations

Varying the update rate Figure 2.5 and Figure 2.6 shows that when the query rate is
fixed, the latency and staleness for the feature store with lazy updates and eager updates are
around the same when the update rate is below 1000 times per second. For a higher update
rate, the latency of the feature store with eager computation grows exponentially.

Varying the query rate Figure 2.7 and Figure 2.8 shows that when update rate goes
high, the eager evaluation will encounter a congestion problem because the limited computing
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Figure 2.7: Latency of eager and lazy evaluation with fixed update rate of 10. The figure
on the left is in log scale. The figure on the right is the zoomed-in version in linear scale.
Latency of the lazy system grows exponentially when the query rate approaches 1000 times
per second. Latency of the eager system stays low when the query rate grows.

resources cannot process all the updates. This leads to a rise in the latency and staleness
of records. Lazy evaluation mitigates this problem by postponing processing new updates
until receiving queries. For the synthetic data, only the latest value associated with the same
key matters so as long as the query rate stays the same, the lazy evaluation only performs
certain amount of computation. In addition, since featurization only happens when receiving
a query in lazy evaluation, if the query rate is too low (j 10 queries / second), the staleness
can be high, as shown in Figure 2.8. In this case, too many updates are discarded because
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Figure 2.8: Staleness of eager and lazy evaluation with fixed update rate of 10. The figure
on the left is in log scale. The figure on the right is the zoomed-in version in linear scale.
Staleness of the lazy system is higher than the eager system when the query rate is smaller
than 10 queries per second. Staleness of the eager system stays low when the update rate
grows.

of the infrequent queries. As query rate grows, the staleness of data for a feature store with
lazy evaluation and eager evaluation converges.

Computation costs With similar reasons as above, more computation leads to more cost.
When update rate goes high, the cost for a feature store with eager evaluation goes high.
When query rate goes high, the cost for a feature store with lazy evaluation goes high. The
plateaus in Figure 2.9 indicates the system cannot process more updates concurrently.

Load shedding As expected, by grouping duplicate update requests, our load shedding
policy decreases the number of redundant featurization and prevent the computation cost
from growing too fast. The results for lazy computation with and without load shedding
policy are shown in Figure 2.10. With load shedding policy, the computation cost grows
slower than the system without load shedding policy as the query rate increases.

The current implementation of RALF treats update requests in the same way as query
requests. It only has one queue to process both events, which may result in unnecessary
waiting time for time-sensitive queries. Prioritizing queries is discussed in later sections.
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Figure 2.9: Computation costs of eager and lazy evaluation with fixed query rate of 10 (left)
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Figure 2.10: Cost between lazy evaluation with and without load shedding with fixed update
rate of 10. Cost of the lazy system without load shedding policy grows faster than with load
shedding policy.

2.5 SLO-Aware Featurization Scheduler

In this section, we design and implement an SLO-aware featurization scheduler based on the
explored trade offs in Section 2.4. Motivated by the fact that the ultimate goal of real-time
ML serving systems is to provide high-quality predictions while meeting SLOs, we argue
that the goal of feature store should be to provide high-quality features within the query
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Figure 2.11: The high-level comparison between RALF and our system. While RALF is
designed to immediately respond to queries by a simple cache lookup, our system provides
a way for users to specify their query deadlines and considers the deadline information in
scheduling.

deadlines. We show that by considering SLOs our scheduler can provide the most up-to-date
features to queries and thus significantly enhance the downstream model accuracy.

Figure 2.11 illustrates the key difference between RALF [65], the existing feature store
system, and our system. In RALF, the task of responding to queries and the task of updating
features are done asynchronously. Specifically, RALF treats a feature query as a lookup to
its cache store which is continuously updated by the incoming stream of events. As such,
because individual queries are responded without any waiting time by RALF, their latencies
are extremely low (i.e., < 5 ms) and stable. Nevertheless, RALF loses the opportunity to
return more up-to-date features by co-scheduling query responses and feature updates. For
example, when a query and an event to the same feature arrive simultaneously, RALF cannot
reflect the latest event in the query response. For many real-time applications sensitive to
feature staleness, this can lead to significant accuracy loss. Our scheduler addresses this
limitation by accepting the deadline of each query and using it to intelligently schedule the
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Figure 2.12: Overview of our system. The blue boxes represent the system components we
added on top of RALF. Our system accepts deadline-specified queries, and co-schedules query
responses and feature updates, using its latency estimator and a staleness metric defined by
the user.

featurization pipelines.

System Overview

The fundamental idea of our scheduler is to prioritize the updates of the features being
queried over those not being queried. That is, our system processes the latest events of
the features upon requests and returns the up-to-date features to the queries within their
deadlines. The intuition behind this is that the system can process the deferred updates (i.e.,
updates for unqueried features) when its resources are underutilized, as the distribution of
the query arrival time is naturally skewed.

However, when the query rate is high and the system has a fixed processing capacity,
the scheduler cannot process the updates of all the queried features while meeting the SLOs.
Thus, among the features being queried, the scheduler should select which features to update
before the deadlines and which features to not. To this end, our scheduler takes a staleness-
based policy that gives higher priority to the processing of staler features over the updates for
fresher features. That is, when the query rate is beyond the system capacity, our scheduler
selects the queries to the stalest features and returns the features after updating them. For
the queries that are not selected by the scheduler, features cached in the system are simply
returned without updates, as in the current version of RALF.

Figure 2.12 illustrates our overall system architecture. Our system augments the RALF’s
query API so that users can specify the deadlines of their queries. Our scheduler then makes
use of the SLO information and the estimated latency of feature updates to calculate the
maximum number of queries whose feature updates can be processed before the deadlines.
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When the number of pending queries exceeds this number, queries to the stalest features
are selected based on a wuser-defined staleness metric. Updated features are served for the
selected queries, while cached (possibly stale) features are return for those not selected.
When the query rate becomes low and the system resources are underutilized, the deferred
updates for queried /unqueried features are processed.

Scheduling Policy

Formally, the scheduling granularity of our system is an individual event, a collection of the
tasks to update a certain feature with new data. While the ways to update features may
vary, we only focus on such a case that an ML algorithm is involved in the featurization
pipeline, and thus each event takes non-negligible time (e.g., > 1 ms) to be processed. For
example, in a recommender system, user features are often computed by a computationally
heavy ML model and used for making predictions. And the user features are continuously
recomputed as more user data (e.g., the user’s page views) are collected. In this example,
updating a user feature by running the ML model with new data is regarded as a (processing
of) event. As such events stream into the system, the system scheduler should decide which
events to process first and which ones to process later. The decision of the scheduler can
largely affect the downstream model accuracy, as providing stale features to downstream
applications may lead to bad predictions (e.g., recommending items irrelevant to the user’s
latest page views).

Two-level Priority. The core of our scheduling policy is assigning two-level priorities to
events. Specifically, the higher priority is given to the events whose target features are being
queried and the lower priority is given to those whose target features are not being queried.
The priority is strict; events with the lower priority are never processed as long as there
exists any higher-priority event. Also, the scheduling algorithm is non-preemptive; because
each event usually takes a few milliseconds, the system simply awaits when a low-priority
event blocks a high-priority one.

Staleness-based Prioritization. When the query rate is high, the scheduler cannot
process the events of all queried features while meeting the SLLOs. The selection of events to
process before deadlines is based on the degree of staleness of the queried features. Specifi-
cally, the scheduler prioritizes processing events that recompute stale features over the those
for fresh features. Our intuition is that, if the computation costs are the same, updating
a stale feature is more likely to improve the overall downstream accuracy than updating a
fresh feature. The system relies on users to define their staleness metrics. This allows users
to leverage their domain knowledge to further enhance scheduling.

Note that the priority of the unselected events is de-escalated to the low priority. This
ensures an important invariant that at every moment the number of the high-priority events
in the system do not exceed the maximum number of events that the system can process
within the deadlines. We find this invariant extremely helpful in bounding the query latency
and efficiently managing the queue of the high-priority events.
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Fairness and Starvation. Arguably, our scheduling policy maintains fairness in terms
of feature staleness in that it essentially aims to equalize the staleness of the stored features.
Moreover, we can guarantee that our scheduling policy has no starvation problem. One might
point out that the events for unqueried features will never get processed if the query rate is
continuously high and the features are never queried. However, this is actually desirable, as
the system is saving the computation cost for updating the features that will not be queried
afterwards. When such a feature is queried, the scheduler will likely find it much staler than
others and prioritize the processing of its events.

Scheduling Mechanism

As in Figure 2.12, we use multi-level queues for the two-level priority scheduling. The both
queues use first-in-first-out (FIFO) processing policy. The detailed scheduling mechanism is
as follows.

When a query arrives, the system first computes the staleness of the queried feature
using the user-defined staleness metric function. The function takes the cached feature and
its latest event as the inputs, and express the feature staleness in a non-negative real value.
The 0 staleness indicates that the feature is in its freshest state while larger values mean
that the feature is staler. Here, queries to the features that are not yet created by pending
events get the maximum level of staleness.

Usually, the system has unprocessed events in the low-priority queue for the queried fea-
ture. The scheduler predicts whether these events can be processed before the query deadline.
The prediction is made by considering the number of events in the high-priority queue that
should be processed for preceding queries and the processing time of an event estimated by
the latency estimator. The latency estimator periodically measures the processing time of
the individual events and provides the exponential moving average of the processing time to
the scheduler.

The events for the queried feature are simply put into the high-priority queue if they can
be processed before the query deadline. If not, the scheduler tries to reduce the processing
time of the query by removing some of the unprocessed events in the high-priority queue.
Specifically, if the high-priority queue contains an event to update a feature less stale than
the queried one, the scheduler removes that event from the queue. This process is repeated
until the estimated processing time of the query becomes before the query deadline or no
event can be further removed from the queue by the feature staleness comparison.

Lastly, the updated feature is stored in the cache and served to the querying user. Im-
portantly, we design our system to asynchronously perform the task of recomputing features
and the task of responding to queries (just like RALF). Regardless of the scheduling state,
the system retrieves queried features from its cache at the moment right before the query
deadlines. For example, if a query latency budget is 100 ms, the system will simply return
the feature stored at the moment when 99 ms has been elapsed from the query arrival. Al-
though such a trick can lead to higher average latency because of the unnecessary delay in
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query responses, we find it necessary for simplifying the system design and strictly bounding
the latency even when the latency estimation is inaccurate.

Implementation

Our system is implemented on top of RALF, which is in turn built on top of Ray Serve [38,
49|, a scalable model serving library. Our scheduler is implemented in ~300 lines of Python
code. We also provide default staleness metric functions that use either the elapsed time
from when the feature is lastly computed or simply a random value.
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Figure 2.13: End-to-end recommendation serving pipeline used for our experiments.

2.6 Evaluation

We showcase the effectiveness of our system on an online recommendation workload. Specifi-
cally, we evaluate the system on a next item prediction task, a core recommendation problem
whose goal is to predict the next item that the user is most likely to interact with given the
sequence of the user’s previous items. Obviously, in order to achieve high accuracy on the
next item prediction task, it is important to consider the users’ latest interaction with items
to infer their current interest. In this section, we show that our system enables this by
co-scheduling query responses and feature updates whereas RALF produces stale features
and results in significantly low accuracy.

End-to-End Workflow

Figure 2.13 illustrates the end-to-end recommendation system pipeline developed for our
experiments. Imagine that you are shopping on an online store such as Amazon. When you
click into an item page, the site will also show other items you may be interested in. For
example, if you are browsing smartphones, the site will probably display ones from different
vendors or some accessories for the phones. In personalized recommendation systems, the
recommended items are not only relevant to the one you are currently viewing but also have
connections with your recent browsing history, which better represents your current interest.
If the recommendation is successful, you will click through one of the items. The end goal
of the system is to increase the likelihood that you click one of the recommended items at
every browsing step.

The process of making recommendations is collaboration of two separate systems, an
inference server and a feature store (i.e., either our system or RALF). The inference server
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is responsible for accepting user inputs, making final predictions, and sending them back to
the users. The predictions are made using the features provided by the feature store, which
are in this case the user embeddings produced by an ML model called XLNet4Rec [56].

The system workflow can be described as follows. 182 Whenever a user clicks an item,
183 the inference server queries the user embedding to the feature store. The key of the
query is the user ID, and the deadline of the query is given by the inference server. Here, at
the same time the user embedding is queried, 183 the inference server also creates an event
for updating the user embedding with the new item ID. That is, a user click works as both
a query and an event, since a click is a request to a new recommendation but is also used
to recompute the user embedding. 184 After the feature store returns the queried feature,
185 the inference server makes predictions via similarity search between the user embedding
and the item embeddings. 186 Finally, the inference server serves the list of recommended
items to the user.

Workload Generation

Base Benchmark. Our workload is generated from the REES46 E-commerce dataset !,
which contains real customer behavior data from a large online store. The dataset includes
the log of user-item interactions, such as page view, add-to-cart, and purchase, with the
timestamps and item metadata. For simplicity, we do not distinguish the types of interactions
and regard them equally as a click. Additionally, we ignore the item metadata and only use
the tuples of (user.id, item_id, timestamp) in training and evaluating our recommendation
model. Lastly, out of the seven-month data in the dataset, we only use the events from the
month of October 2019 for our experiments, as in [18].

Recommender Model. Following the recent findings that Transformer models [59,
8, 56| achieve state-of-the-art performance in the next item prediction tasks, we use XI-
Net4Rec [56] as our recommender model. Similar to BERT4Rec [59], XLNet4Rec consists of
an item embedding table and 2 Transformer blocks, each of which has 4 attention heads and
hidden dimension of 448. The model takes as the input a sequence of the item IDs that a user
has interacted with, and encodes it to a feature that densely represents the user interests,
which we call a user embedding. Then the items whose embeddings are most similar to the
user embedding are recommended to the user. The model is incrementally trained on the
data from October 1st to October 30th, and is tested on the October 31st data.

In the test data, we find that the peak number of clicks per second is only 25, which
is insufficient to show the impact of our scheduler. To evaluate our system on a more
intensive workload, we synthesize a click pattern by adjusting the initial timestamps when
users starts their clicks. This way, we get a click pattern where the time interval between the
user’s subsequent clicks is preserved while more clicks arrive simultaneously to the system.
From the synthesized workload, we extract the peak 10 minutes data, which has at most 250
clicks per second.

Thttps://rees46.com/en/datasets/
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Figure 2.14: Recommendation accuracy of RALF and our system with varying latency con-
straints.

Experimental Setup

All of our experiments in this section are conducted on an AWS c5d.9xlarge instance 2,

which has 48 virtual CPUs. Note that, following the common practice in recommendation
systems [18], all the computations including the inference of XLNet4Rec are processed on
CPUs, not GPUs.

The code of XLNet4Rec is brought from the NVIDIA Transformers4Rec repository [42].
We train the model with a standard training recipe. At inference time, the model is executed
on PyTorch [45] which is powered by the Intel MKL-DNN library [26].

The inference server is implemented using Ray Serve. For the approximate similarity
search, we use the CPU version of the Faiss library [14]. In querying to the feature store,
the inference server sends HT'TP requests. For sending new data to the feature store, the
inference server uses Redis Stream [50]. To avoid the impact of network connections, we
assume that the clients, the inference server, and the feature store are running on the same
machine.

Downstream Accuracy

Figure 2.14 shows the downstream model accuracies of RALF and our system. We use top-
20 hit rate as our accuracy metric, which is the probability that the true next item belongs
to the top-20 recommendations. In the optimal case where the recommendation is always
made on the most up-to-date features, the accuracy is 42%. This is the upper bound of the
accuracy that we can obtain from our XLNet4Rec.

Zhttps://aws.amazon.com/ec2/instance-types/c5/
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Figure 2.15: Cumulative distribution of query latencies of RALF and our system, with two
different latency constraints (i.e., 30 ms and 50 ms). Because the latency of RALF does not
change by the latency constraint, it is drawn once. The y axis is scaled to highlight the SLO
violation rates.

Our system shows up to 14% improvement in accuracy compared to RALF when the
latency constraint is 50 ms. Our system increases accuracy by 65%. The accuracy for
our system has reached 87.5% of the optimal accuracy (42%), which can be attained when
unlimited computation time is available. The huge accuracy gain mostly comes from our co-
scheduling policy that enables updating queried features before returning them. Particularly
in our next item prediction task, this difference is critical in accuracy; a query and an event
(from the same click) always arrive simultaneously, and the users’ latest click information
is a key ingredient in predicting their current interests. Because RALF cannot immediately
reflect this information in the queried features, it suffers from significantly low accuracy. On
the other hand, when a sufficient latency budget (e.g., > 30 ms) is given, our system recovers
most of the accuracy loss by intelligently prioritizing the updates for queried features.

Query Latency

Figure 2.15 shows the cumulative distribution of query latencies of RALF and our system
when 30/50 ms latency constraints are given. Note that the latency (and actually the
behavior) of RALF does not change according to the latency constraints, as RALF does not
use the SLO information in scheduling.

As discussed in Section 2.5, RALF retains low and stable latency since it processes every
feature query as a cache lookup. In contrast, our system shows much higher average latency
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as the system intentionally postpones responding to queries until their deadlines. However,
our system still meets the SLO for more than 99.7% of the queries, as shown in Figure 2.15.
This is because the system falls back on its cached feature store when the processing time of
queries accidentally exceeds the deadlines. We believe that, under such low SLO violation
rates, the accuracy improvement by our scheduler far outweighs the potential advantages of
the unnecessarily low latency of RALF in most cases.
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2.7 Related Works

Recently, many ML serving systems have been proposed both in academia [10, 11, 17, 51,
68, 9, 55] and industry [62, 49, 43]. The main goal of these systems is to serve as many
ML queries as possible while meeting the SLOs. Their core techniques are batching, load
balancing, and auto scaling [16], which are not covered in detail in our paper.

A limitation of the existing ML serving systems is that they only handle stateless infer-
ence jobs, such as object detection and text classification, where no intermediate data (i.e.,
features) persist after the completion of the job. In essence, the systems regard an inference
job as running a pure function that receives model inputs and returns a prediction. How-
ever, this is not the case in many ML serving pipelines; ML models often use pre-computed
features for their inference, which should be cached and continuously updated over time by
the system.

Feature store has emerged as the system layer responsible for storing the pre-computed
features. Feast [15] is an open-source feature store that manages fast retrieval of features
with consistency. However, Feast itself does not manage the featurization pipeline, and
thus cannot exploit the opportunity to improve its accuracy/computation cost trade off
by intelligently scheduling the feature updates. RALF [65] addresses this limitation by
leveraging downstream feedback. It supports a fine-grained scheduling mechanisms over
keys and periodically controls the feature update frequency to reduce the computation cost.
Our system extends RALF to more intelligently schedule feature updates by exposing the
SLO information of queries to the scheduler.
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2.8 Discussion

Feature store is a very new concept in the system design area and researchers are currently
conducting a series of exploration of its functionality, effectiveness, and tradeoffs. The three
metrics that we propose are tentatively used by RALF and we regard them as the most
important attributes of feature store research. In our exploration of feature store tradoffs
with synthetic data, we've observed that lazy updates can cause high latency when query
rate goes high and causes a congestion. On the other hand, if we can resolve the query
congestion issue with some load shedding policy, lazy computation has some advantage in
decreasing latency by avoiding waiting for featurization. Laziness also saves some compute
power by skipping some updates when not all the updates are important for the downstream
model. Additional update rules can be added to RALF by extending its load shedding
method library, or adding specific data types that stores updates with different desired
attributes. The synthetic data is currently generated from a counter workload, which doesn’t
use much CPU of the machine. In future works, we will replace it with a random dot product
calculation to represent real world workload more precisely.

In Section 2.5, we rely on many assumptions to simplify the problem. First, we assume
that our system runs on a single node, which has a fixed amount of CPUs. Thus, one of our
future works would be to extend our scheduler to work on multiple nodes with heterogeneous
devices (e.g., GPUs and TPUs). Second, our system does not consider batch processing of
events for different features. As batching can greatly improve the system utilization in ML
workloads, we can expect that introducing batching algorithms to our scheduler will further
enhance the downstream accuracy. Lastly, our scheduler assumes that the system has no
malicious users. Since the queries to non-existent features (i.e., those not yet created by
the pending events in the low-prirority queue) get the highest priority, a malicious user can
block the processing of other users’ queries by continuously sending queries to new features.
In our future work, we will explore a method (e.g., priority boosting) to protect the system
from such an attack.
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2.9 Conclusion

In this paper, we first explore the trade offs in designing a feature store. The main factors
we considere are query latency, feature staleness, and computation cost. By comparing the
eager and lazy evaluation mechanisms, we find that the optimal scheduling algorithm should
adaptively use either of the mechanism, depending on the workload intensity.

Based on the explored trade offs, we design and implement an SLO-aware featurization
scheduler on top of RALF. It allows users to specify their query deadlines, and co-schedules
feature updates and query responses to reduce the staleness of the queried features. In our
experiments, we show that our system improves the downstream accuracy by up to 14%
while achieving the SLO violation rates less than 0.3%.
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