
Fault Tolerance in Distributed Systems

Aisha Mushtaq

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-44

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-44.html

May 9, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Fault Tolerance in Distributed Systems

by

Aisha Mushtaq

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Scott Shenker, Co-chair
Professor Sylvia Ratnasamy, Co-chair

Professor Natacha Crooks
Professor Aurojit Panda

Spring 2022

Fault Tolerance in Distributed Systems

Copyright 2022
by

Aisha Mushtaq

1

Abstract

Fault Tolerance in Distributed Systems

by

Aisha Mushtaq

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Co-chair

Professor Sylvia Ratnasamy, Co-chair

Modern datacenter applications need to provide resiliency to mask failures. These appli-
cations widely use techniques like Replicated State Machines to provide fault tolerance.
Replicated State Machines typically rely on consensus protocols to provide availability and
consistency. These applications also require high throughput and low latency from the un-
derlying consensus protocols. Furthermore, in an effort to further reduce latency experienced
by clients, we are seeing the emergence of edge computing; storage and computational re-
sources are placed in between the clients and servers in datacenters (typically closer to the
client). This placement provides many benefits: lower-latency responses to clients, lower
bandwidth demands on the backbone and increased privacy. Stateful applications running
on the edge pose a problem of losing state when an edge node fails.

This dissertation looks at fault tolerance for datacenters and edge computing. First, Ring-
World looks at datacenter fault tolerance for highly available lock services. RingWorld adapts
ring-based consensus protocols to leverage programmable switches and datacenter topology.
This allows RingWorld to provide higher throughput and comparable latency to existing
lock services. Second, to provide fault tolerance for edge computing, CESSNA provides a
mechanism to recover from edge failures for strongly stateful applications that ensures cor-
rectness and good performance. To do this, CESSNA defines the consistency guarantee for
correctness in the face of edge failures, and recovers from failures by adapting techniques
like log-replay.

i

To mom, Asad and Azoo

ii

Contents

Contents ii

1 Introduction 1
1.1 RingWorld: Datacenter Fault Tolerance . 2
1.2 CESSNA: Edge Fault Tolerance . 2
1.3 Co-Authored/Previously Published Work . 2

2 Fault Tolerance in Datacenters 3
2.1 Background . 5

2.1.1 Safety and Liveness for RSMs . 5
2.1.2 Programmable Switches . 5

2.2 System Model . 6
2.3 RingWorld . 7

2.3.1 Overview . 9
2.3.2 Protocol . 9
2.3.3 Adding Servers to a Rack . 17
2.3.4 Handling Rack Failures . 17
2.3.5 Connecting a rack to the ring (Rejoins) 21
2.3.6 Ring size changes . 22
2.3.7 Analysis . 22

2.4 Evaluation . 22
2.4.1 Throughput vs. Latency . 23
2.4.2 Server Failures . 25
2.4.3 ToR Failures . 25

2.5 Related Work . 27
2.6 Conclusion . 28

3 Fault Tolerance at the Edge 29
3.1 Background and Related Work . 31

3.1.1 Current Edge Computing Efforts . 31
3.1.2 Fault Tolerance and Message Replay 32

3.2 Our Approach . 34

iii

3.2.1 Computational Model . 34
3.2.2 Consistency Requirement . 36

3.3 CESSNA’s Design . 36
3.3.1 Edge platform . 37
3.3.2 Client/Server Platform . 39
3.3.3 Recovery . 40

3.4 Formalizing Our Guarantees . 42
3.5 Implementation . 43

3.5.1 Container Isolated CESSNA (CI-CESSNA) 43
3.5.2 Software Isolated CESSNA (SI-CESSNA) 45

3.6 Evaluation . 46
3.6.1 Applications on CESSNA . 46
3.6.2 Performance Evaluation . 49
3.6.3 Summary and Discussion . 51

3.7 Conclusion . 52

Bibliography 53

iv

Acknowledgments

I am immensely grateful to have been a part of the NetSys lab at Berkeley. I made many
great friends and learned from great teachers. This dissertation would not have been possible
without these amazing people!

Scott Shenker. The wise ol’ Scott has been my North Star throughout my PhD process
and has guided me through many ups and downs (many downs!). Whenever I was feeling
lost and hopeless, Scott would meet me brimming with positivity and would share lots of
ideas, and eventually, we’d figure out a way forward. He’s always treated me with lots of
patience and kindness and has always had anecdotes to share through any problems I’d face,
be they personal or academic.

Sylvia Ratnasamy. Sylvia with her candid feedback has always encouraged me to reach
my potential. I have not spent as much time with her as I would have liked, but whenever
I have approached her, she has always provided thoughtfulness and clarity and has helped
me critically examine the deeper parts of my research.

Aurojit Panda. I started collaborating with Panda later in my PhD career, and I regret
it often. Panda’s immense knowledge of anything and everything is unbelievable. Over the
course of my projects, he has guided me through all things great and small. I’ve bugged him
many times with insignificant things; he’s always quick to respond, but patient as well in
explaining stuff again and again.

Yotam Harchol. Yotam has been my mentor and my friend. I watched him do research
and I was so impressed, I’ve been trying to emulate him ever since. He has taught me how
to look at problems, how to run experiments, document them, how to write and so much
more. His mentorship has helped me become a better researcher.

James ‘Murphy’ McCauley. I enjoyed our conversations together. Murphy and I could
talk for hours on end and I would always come out learning something new from him. He
could listen to my nonsensical ramblings and then translate them into something useful.
Thank you for humoring me.

Jon Kuroda. Without Jon’s help, I probably would not have been able to graduate. I ap-
proached Jon to help set up the infrastructure for RingWorld. The setup required setting up
four programmable switches and infinite connections with a two-day deadline! He magically
set it up with such elegance and thoroughness. Thank you Jon!

Natacha Crooks and Dan Ports. My collaborators on RingWorld provided me with
valuable insights that helped me polish my research. I learned a great deal from both of
them.

v

Amin Tootoonchian, Amy Ousterhout, Anwar Hithnawi, Christopher-Branner
Augmon, Ed Oakes, Emmanuel Amaro, Ethan Jackson, Lloyd Brown, Michael
Chang, Narek Galstyan, Radhika Mittal, Sarah McClure, Silvery Fu, Vivian
Fang, Wen Zhang, and Zhihong Luo. The time I spent with friends and collaborators
during my time at the NetSys Lab has been invaluable. I enjoyed our lunch conversations,
laughter, and chocolates.

To my family, and my friends in the Bay Area, for their continuous support and understand-
ing throughout my PhD.
To my husband Asad. I owe my Phd to you; if it were not for your unwavering support and
help I would not be writing this dissertation. You’ve been with me through it all, the ups,
the downs, and the tears. Whenever I felt I could not do it anymore, you would jump in,
you’d discuss ideas, run experiments, and more, without ever asking for anything in return.
I am really glad to have you by my side.
To my baby Azlan, you were the calmest baby ever, I don’t know how I would have done it
all otherwise. You have the warmest smile that will melt anyone’s heart!
To my mom, thank you for always being there for me and for all your prayers that helped
me.

1

Chapter 1

Introduction

Datacenters power many of today’s services. These services run on clusters comprised of
hundreds or even thousands of commodity servers. Failures in such large clusters of servers
are inevitable. The multiplicative effect of individual failure rates - compared to that of a
single server - means failures are expected every few hours or less [5]. However, despite the
unreliability of the underlying infrastructure, applications need to work around failures to
provide uninterrupted service.

To guarantee that services remain available, today’s applications relies on fault-tolerance
techniques like replicated state machines (RSMs). Replication stores state on multiple repli-
cas to ensure key services remain available and consistent. For example, Chubby [10],
Etcd [21], and ZooKeeper [30] use replication to build highly available lock services that are
widely used to coordinate access to shared resources and configuration information. Simi-
larly, persistent storage systems, such as Spanner [12] and H-Store [64], use replication to
prevent system outages or data loss. Replication typically rely on consensus protocols such
as Paxos [67], Viewstamped Replication [51, 43], and Raft [52] to keep replicas consistent.
Modern applications simultaneously require high throughput and low latency from their un-
derlying consensus protocols. However, many factors, e.g., communication overheads, limit
the throughput of these protocols. Additionally, the performance of these protocols scales in-
versely with the number of replicas; i.e., lower throughput and higher latency as the number
of replicas increase.

It is becoming increasingly important for modern applications to keep total latency within
strict bounds. To this effect, we are seeing the emergence of edge computing with compu-
tational and storage resources being deployed at the network edge. This allows to offload
computation/storage from clients and/or servers (in datacenters). These edge servers are
also prone to failures like servers in datacenters. While solutions for datacenter fault toler-
ance, such as RSMs, are well studied in the literature, these solutions do not directly apply
to edge fault tolerance. For instance, RSMs are not a suitable choice for edge fault tolerance
because (a) edge locations have limited resources (it is not possible to scale thousands of
edge locations) and (b) entire edge sites can fail (it is too expensive to provide adequate
compute and power redundancy to all edge sites). One might suggest far-site replication to

CHAPTER 1. INTRODUCTION 2

provide resiliency, however, this can be too slow and wash out the latency benefits of the
edge.

In this dissertation, we explore fault tolerance from two perspectives: (i) datacenters
and (ii) edges. To that effect, we explore the answers to the following questions: (i) How
to achieve consensus in datacenters with high throughput and comparable latency to exist-
ing RSM protocols? and (ii) How to provide resiliency for edge computing based on the
constraints of edges?

We address the first question by presenting RingWorld, a new protocol for achieving
consensus in datacenters. We then answer the second question using CESSNA, a protocol
to provide resiliency for edge applications. We elaborate on these two protocols next.

1.1 RingWorld: Datacenter Fault Tolerance

RingWorld is a new consensus protocol for datacenters that leverages a ring-of-racks ap-
proach; each rack contains a programmable top-of-rack (ToR) switch and multiple servers.
Ring-based consensus protocols arrange the replicas in a logical ring. This structure allows
them to achieve optimal throughput regardless of the number of replicas. However, the la-
tency of these protocols grows linearly as we increase the number of replicas. In RingWorld,
the processing is split between a fast-path ToR ring and a slow-path on the server. This
approach allows RingWorld to achieve the latency of the commonly used consensus protocols
while providing the throughput benefits of ring-based protocols as the number of replicas
scale.

1.2 CESSNA: Edge Fault Tolerance

The introduction of computational resources at the network edge allows application designers
to offload computation from clients and/or servers, thereby reducing response latency and
backbone bandwidth. More fundamentally, edge-computing moves applications from a client-
server model to a client-edge-server model. While this is an attractive paradigm for many use
cases, it raises the question of how to design client-edge-server systems so they can tolerate
edge failures and client mobility. This is particularly challenging when edge processing is
strongly stateful. In chapter 3, we propose a design for meeting this challenge called the
Client-Edge-Server for Stateful Network Applications (CESSNA).

1.3 Co-Authored/Previously Published Work

In this dissertation, the work for chapter 2 was done in collaboration with Aurojit Panda, Dan
Ports, Natacha Crooks, and Scott Shenker. The work for chapter 3 was done in collaboration
with Yotam Harchol, Vivian Fang, James McCauley, Aurojit Panda, and Scott Shenker. The
material in chapter 3 is an adaptation from [28].

3

Chapter 2

Fault Tolerance in Datacenters

Highly available lock services such as Chubby [10], Etcd [21], ZooKeeper [30], and other
similar services are a core component of many distributed applications deployed in modern
datacenters. Many applications, including distributed databases that provide data replica-
tion, and cluster management systems, rely on these services to implement mutual exclusion
between processes, to track resource allocation, and for coordination. These services must be
fault tolerant, and are usually implemented as replicated-state machines (RSMs) using con-
sensus protocols such as Paxos [67] (Chubby), Raft [52] (Etcd), and ZAB [34] (ZooKeeper).

Many factors, including the protocol they use and RPC and communication overheads,
limit the throughput of existing services. While using more replicas increases fault toler-
ance, consensus protocol performance scales inversely with the number of replicas; i.e., these
protocols exhibit lower throughput and higher latency as the number of replicas increases.
Consequently, application developers generally try to minimize the use of these lock ser-
vices [10]. This avoidance often requires changing application semantics; e.g., requiring that
applications weaken consistency guarantees to avoid the need for coordination. In cases
where an application cannot avoid coordination, the lock service often becomes a scaling
bottleneck. Thus, the limited throughput of current lock services imposes limits on both
application semantics and performance.

In this chapter, we look at the question of how to build a consensus protocol for locking
services that provides higher throughput than current solutions while still having latency
that is comparable to existing lock services. Our starting point is ring-based consensus
protocols such as Carousel [25] and Ring Paxos [45]. Ring-based protocols arrange replicas
in a logical ring, and in most cases, a replica only receives messages from its predecessor and
only sends messages to its successor. This structure means that the number of messages sent
or received by a replica is independent of the number of replicas deployed. Additionally, this
communication structure also makes it easier to pipeline proposals (or requests) and thus
allows throughput to scale as the number of replicas increases. Indeed, prior work [25] has
shown that ring-based protocols are throughput optimal. Unfortunately, these throughput
improvements come at the cost of latency that grows linearly as the number of replicas (and
hence ring size) increases.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 4

In this chapter, we propose RingWorld, a new protocol that leverages programmable
switches to modify the ring-based approach so that it can match the latency of more com-
monly used broadcast-based protocols (e.g., Raft, Paxos, and ZAB) while providing the
throughput benefits of ring-based protocols. Instead of a ring of servers, RingWorld runs on
a ring of racks, each of which contains a programmable top-of-rack switch (ToR) and multiple
servers. Processing is split between a fast-path running on the ToR switches and a slow-path
running on the server. The switch fast-path is responsible for maintaining consistent order-
ing between requests, for forwarding messages to the successor rack, and for broadcasting
messages and collecting responses from all servers in the rack. Servers are responsible for
actually replicating and maintaining the state machine. Because the ring propagation time
is small compared to the server processing time, the response latency (in contrast to typical
ring-based protocols) does not grow with the size of the ring (until the ring reaches very
large sizes, far beyond what is needed or desired).

While RingWorld’s design minimizes latency increase due to message transfer between
racks, the actual latency for the consensus protocol can still be high due to straggling servers1

(a sufficient number of which must acknowledge that they have replicated state) or because of
failures. RingWorld handles straggling servers by having ToRs temporarily disconnect servers
(i.e., limit the packet traffic to/from them) who are late in responding. RingWorld combines
this with a protocol for server recovery that, in most cases, only involves its associated ToR.
Similarly, the ring-based nature of RingWorld allows ToR failures to be handled locally (by
the successor ToR) without requiring a more expensive view change operation. As we show
later in §2.4, these choices allow RingWorld to provide similar response latencies as existing
lock services while providing better throughput. We have implemented and tested RingWorld
on a cluster of four Tofino based programmable switches and twelve servers. We describe
the protocol and our implementation in greater detail in later sections of the chapter.

We are of course not the first to propose using programmable switches to improve lock
service performance and others, notably NetLock [71] have also used programmable switches
to improve lock-service performance. However, these prior efforts focused on reducing latency
and hence focused on optimizing broadcast based consensus protocols. Furthermore, these
prior efforts moved all state to switches, which in turn required them to both limit the amount
of state they could support and the types of operations they could implement. RingWorld’s
design limits neither. We delay a detailed discussion of the related work to §2.5.

Next, we present some background on programmable switches and consensus protocols
before presenting RingWorld’s design.

1Programmable switch ASICs are designed to process all packets in a constant number of clock cycles,
and hence switches cannot be stragglers in our setting.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 5

2.1 Background

2.1.1 Safety and Liveness for RSMs

As noted before, replicated state machines (RSMs) [60] are a common abstraction used for
building fault-tolerant distributed services. RSMs are generally implemented using consen-
sus protocols that are used to build a consistent log replicated across several processes. This
consistent replicated log ensures that processes can fail without impacting application cor-
rectness (safety). These protocols also ensure that the service remains available as long as a
certain number of processes remain functioning (liveness).

Consensus protocols have been widely studied in the distributed systems literature, and
a correct consensus protocol should ensure three safety properties [22] (which are most easily
stated in the binary consensus framework [22]):

• Agreement: All correct processes must agree on the same value, for RSMs this means
all processes must agree on the contents of the log.

• Validity: The value at any correct process must be the input to some correct process.

• Termination: All processes must eventually decide on a value, i.e., all correct pro-
cesses must eventually reach an agreement.

The well-known FLP result [22] shows that no fault-tolerant protocol designed to run on
an asynchronous network can ensure all three properties. As a result, protocols, such as
Paxos [38], ensure agreement and validity, but cannot ensure termination.

2.1.2 Programmable Switches

Programmable switches, such as Intel Tofino [31] and Broadcom Trident [9], enable the
ability to add functionality beyond plain packet forwarding. These switches provide flexible
packet parsing and a programmable match-action pipeline to enable programmability. Packet
header and metadata information is stored in the packet header vector (PHV) after parsing.
The ingress and egress match-action pipelines have multiple stages. Objects are allocated
in each stage and accessed by the packets via ALUs. The switches use a limited amount of
on-chip memory to provide stateful elements which include tables, registers, and counters.
Additionally, these switches provide other built-in functionality such as packet resubmission,
recirculation, and mirroring for more advanced packet processing.

Programmable switches have high throughput and deterministic packet processing la-
tencies. However, they achieve their performance by restricting program semantics. These
switches have a limited number of stages, with each stage only allowing a fixed amount
of computation. They are more suited for a flat, linear programming model with limited
branching. They support reduced comparison capabilities, such as equality comparisons

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 6

Figure 2.1: RingWorld topology.

between variable fields (limited in bitwidth) and less than/greater than comparison with
constants only.

Additionally, these switches have access to a limited amount of state that can only be
accessed in a specific order (i.e., the stateful element is tied to a particular stage). Amongst
the stateful elements, only registers provide both read and write capabilities in the dataplane,
while tables are read-only, and counters are write-only. For registers, all read-modify-write
operations are atomic. We can not write arbitrary values to the registers; the value must
either be a constant, a modification of the previous value, or a value from the packet header
vector (header/metadata). The registers only allow a single comparison with values from
the packet header vector. A register array indicates a register with n entries. We can not
access a register array at two different indices in a single pass of the pipeline.

2.2 System Model

A RingWorld deployment consists of at least 2r + 1 racks, each of which contains at least
2f+1 servers and one top-of-rack switch. We assume fail-stop failures for both ToRs (which,
in our model, encompasses all rack-wide failures) and servers. Further, we assume no more
than r ToRs can fail and no more than f servers in a rack can fail.

In terms of communication, we assume that any pair of ToRs can reach each other
through the datacenter network. In addition, we assume that the network is asynchronous
but reliable, i.e., messages can be arbitrarily delayed but may not be dropped or reordered.
This does not require a reliable physical network, but can be achieved through the use of
reliable tunnels (e.g., GRE tunnels) or by enabling priority flow control (which is often used
when deploying RDMA).

Logically, the ToRs (and their associated racks) are arranged in a ring (as shown in figure
2.1), with each ToR assigned a unique ID based on its relative location in the ring. Each
ToR knows the entire mapping from IDs to ToRs. Similarly, we assign IDs to each server.
IDs must be unique within a rack but need not be unique across racks, and each ToR can

~-----------------------1
I ~==="=" r=----=="=" r=-e==="=" I

~ 000000 t~000000h~000000
~J Sequencers1 □□□□□□ 1 □□□□□□ 1 □□□□□□

Replicas ~::I ======~I ~::I=======~! ~::I======~
Replicas:,.,..! I :➔I I :➔::I======~
ReplicasH 11---1 I !---..... I __ __.

I I I

Replicas~! I ~I I ~ ... I ___ __.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 7

State Type Description

tid Integer ToR ID.
next Integer Successor’s ToR ID.
prev Integer Precessor’s ToR ID.
f, r Integers Failure parameters.
prop Integer Proposal ID, initially 0.
last prop Integer Highest Proposal ID seen so far.

Previous sequence tracking.
last prop tid Register array: proposal id to

ToR id
Previous sequence tracking.

acks Register array: seq no.-server
bool bitmap

Acknowledgement tracking.

acks sum Register array: seq no.-ack
count

Acknowledgement tracking.

children Set of Integers Correct servers in the rack.

Table 2.1: Configuration and state at each ToR.

State Type Description

id Integer Server ID,
parent Integer ToR ID to which server is con-

nected.
pending Priority queue of messages Messages pending delivery.
can deliver Dictionary: seq no. to bool Can the packet be delivered.

Table 2.2: Configuration and state at each server.

map machine IDs to ports. During normal operations, ToRs only send protocol messages to
directly connected servers or to their immediate successor.

Similar to other protocols RingWorld guarantees safety and liveness when no more than
r ToRs fail and no more than f servers in a rack fail. For liveness, we additionally expect
sufficient periods of synchrony to make progress.

2.3 RingWorld

In this section, we describe the design of RingWorld. Similar to all RSM protocols, Ring-
World primarily provides a mechanism to append values to an ordered log which is replicated

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 8

…

…

…
1 PROPOSE(m)

DATA(pid,
 pred,

 m)

2

2

2

All racks have
proposal m
with ID pid.

3

…

…
…

COLLECT(pid, 2)

4

4

4

m replicated on
2 racks.

5 COLLECT(pid, 1)

COLLECT(pid, 2)

…

…

…

6

6

m can be
delivered
after pred’

7 DELIVER(pid,
 pred’,
 TRUE)Proposal Phase Collect Phase Deliver Phase

6

ID=1

ID=2ID=0

ID=1

ID=2ID=0

ID=1

ID=2ID=0

DATA(pid,
 pred’,

 m)

DATA(pid,
 pred’,

 m)

DELIVER(pid,
 pred’,
 TRUE)

Figure 2.2: An overview of the RingWorld protocol in the absence of failures.

2

DA
TA
(1
,
0,
 m
)

1

0

1

2

3

4

5

2 DATA(1, 0, m)

3

DATA(1, 0, m)

4COLLECT(1, 0, 2) 5 COLLECT(1, 0, 2)

6DELIVER(1, 0, True)

7 Suspect servers 0,1,3,4.
Remove from children

ACK(1, 0)

7 DELIVER(1,0, TRUE)

8 DELIVER(1,0, TRUE)

Figure 2.3: A look at messages within rack 0 in the execution shown in Figure 2.2.

across servers in a consistent manner. RingWorld also provides mechanisms to recover from
server and rack failures and to change the set of participants.

RingWorld replicates state across racks. Within a rack, RingWorld’s logic and state are
partitioned across the top-of-rack(ToR) switch and servers. Due to the limited processing
capabilities of switch ASICs and the limited amount of on-board memory, RingWorld is
designed to minimize the amount of state stored at the switch and accessed when processing
messages at the ToR. As a result, servers are responsible for maintaining the actual contents
of the replicated log. We list the state stored at a rack’s ToR in Table 2.1 and at servers in
Table 2.2. We explain the semantics and contents of each state element as we walk through
the algorithm.

Servers in RingWorld are also responsible for receiving requests from clients and respond-
ing to these requests. RingWorld is a leaderless protocol, and as a result, any server located
in any participating rack can process client requests. We do not make any assumptions about
how client requests are distributed across servers, and instead assume that some external
mechanism (e.g., a load balancer) is responsible for this task. For ease of exposition, we
assume that each request must be successfully appended to the log (i.e., committed) before
a response is sent back to the client.

l~I I,.., .,.!I.\
ti I "' ,. \ \i!t. \
I I I I \ \ \ 'i!t. \

.._/I I I I \ \ \ 'i!t..,
.._1 1 I \ \ V ... , , ...

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 9

2.3.1 Overview

Before delving into the details of the RingWorld protocol, we first describe a brief overview
of the protocol.

Initiating proposals: Upon receiving a client request, a server sends a propose message
to the ToR in its rack, which then assigns a unique sequence number and a previous sequence
number to the proposal to produce a DATAmessage. The committed proposals in RingWorld’s
totally-ordered log is ordered according to the lexicographic order of these sequence numbers.
The proposing ToR then initiates the process of appending an entry to the log which proceeds
in three phases (shown in figure 2.2 and figure 2.3).

Phase 1 - Proposal: In the proposal phase, the proposal is replicated across the ring. The
ToR broadcasts the DATA message to all the servers in its rack and concurrently forwards the
message to its successor ToR in the ring, which in turn performs the same actions. Upon
receiving the proposal, a server adds the proposal to its temporary log (pending) in the
lexicographic order of the sequence number and sends an acknowledgment to the ToR. The
first phase ends when the message completes a round around the logical ring, i.e., when the
proposing ToR receives the DATA message back.

Phase 2 - Collect: The proposing ToR triggers the next phase by sending a COLLECT

message around the ring. This phase collects the following piece of information: whether the
proposal has been sufficiently replicated across the racks in the ring. We consider a proposal
to be sufficiently replicated if and only if it has been replicated by at least f + 1 servers.
ToRs maintain a count of how many servers in their rack have acknowledged a proposal
and mark in the COLLECT message if a proposal has been sufficiently replicated (or not) by
incrementing (or leaving unchanged) the count of racks that have replicated the proposal.
The collect phase ends when the message completes a round around the ring.

Phase 3 - Deliver: Finally, the proposing ToR uses the count from the COLLECT message
to determine whether the proposal can be committed or not. Once determined, the proposing
switch disseminates this decision in the deliver phase by sending a DELIVER message which
contains the decision. The message is forwarded around the ring, and each ToR broadcasts it
to all servers in its rack. Upon receiving the DELIVER message, the servers mark the proposal
to be committed or aborted. The servers move proposals from their temporary log to their
consistent log if there are no other proposals before it that need to be committed/aborted.

2.3.2 Protocol

We now describe the RingWorld protocol in detail.

Ordering requests

Upon receiving a client request, a server sends a propose message to the ToR in its rack.
This initiates the process of appending the message to the log. The rack’s ToR assigns the
proposal a sequence number of the form (ToR ID, proposal ID, where the proposal ID

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 10

is a monotonically increasing integer that meets the following properties: i) The proposal

ID assigned to a new proposal is larger than that assigned to any previously committed
proposal regardless of the origin rack of those committed proposals and ii) The proposal

ID is distinct from any other proposal sent by the ToR.
The committed proposals are ordered according to the lexicographic order of these se-

quence numbers. The constraints on proposal ID ensure that this is a total order and that
the total order of proposals is a superset of the committed order, i.e., this ensures that
RingWorld maintains linearizability.

Additionally, each proposal is assigned a previous sequence number of the form (ToR ID,
proposal ID). The previous sequence number indicates the sequence number that ought
to be ordered before our current proposal in the consistent log. As we will see later, this
prevents RingWorld from committing entries out of order in case of packet drops, thereby
maintaining linearizability. The ToR initially assigns its highest known sequence number
as the previous sequence number to the proposal which is updated as the proposal travels
around the ring.

Packet headers

RingWorld adds a RingWorld header on top of the Ethernet header. The RingWorld header
contains the following fields: packet type, tor id, proposal id, previous proposal tor

id, and previous proposal id. Additionally, collect packets contain an ack count field,
and deliver packets contain a decision field. ACK packets also contain a server id field.

Initiating proposals

Listing 2.1 shows the pseudo-code for initiating a proposal at the ToR. The ToR assigns the
proposal a sequence number and a previous sequence number and updates its own state.
The state updates must be atomic (read-modify-write), so the ToR reads the register values
and stores them temporarily in packet metadata and then updates the register values.

Additionally, the last prop tid register array is accessed at two different indices for
a propose packet. This is not a permissible operation in current P4 switches. To get
around this limitation, we need to resubmit propose packets at the ToR. The resubmit
operation allows the switch to resubmit the packet to the beginning of the packet processing
pipeline, so that the packet can go through and be processed by the pipeline again. Since we
are resubmitting packets and reading/writing last prop tid in two rounds, we must also
ensure consistent reads/writes. For this, we leverage three properties of the switch and the
RingWorld protocol:

• All resubmitted propose packets arrive back in the same relative order at the ToR
(though they might be interleaved with several other packets),

• Writes in last prop tid are done at monotonically increasing indices with each index
being written to only once, and

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 11

1 procedure broadcast(message) {

2 send(next, message)

3 send(children, message)

4 }

5

6 callback receive PROPOSE(m) from server c {

7 % Assign proposal a sequence number (tid, prop)

8 % Assign proposal the previous sequence number (last_prop_tid[last_prop], last_prop)

9 % Send proposal to all servers in the rack and successor.

10

11 if resubmit == 0 {

12 m_prop = prop % Read and assign proposal ID

13 prop += 1 % Increment proposal ID

14

15 prev_prop = last_prop % Read and assign prev proposal ID

16 last_prop = m_prop % Update prev proposal ID to current m_prop i.e., highest

proposal id seen so far

17

18 last_prop_tid[last_prop] = tid % Write ToR ID corresponding to prev proposal ID (

highest proposal ID seen so far)

19

20 % Resubmit packet and propagate values of m_prop and prev_prop

21 resubmit(m_prop, prev_prop, m)

22 } else {

23 prev_tid = last_prop_tid[prev_prop] % Read the value of last_prop_tid at prev_prop

24 broadcast(DATA(tid, m_prop, prev_tid, prev_prop m))

25 }

26 }

Listing 2.1: ToR logic for initiating a proposal in RingWorld.

• Reads are always performed on lower indices than the writes (which will not be updated
again).

This ensures we always have consistent reads/writes across propose and, as we will see
later, data packet resubmissions. Current P4 switches also do not allow modifying packet
headers in a resubmission’s first round, so we also need to propagate the values of m prop

and prev prop using a resubmission header to ensure their consistency.
The ToR broadcasts the transformed data message to all servers in its rack and the next

hop in the ring starting the first phase of RingWorld.

Phase 1 - Proposal

The aim of the proposal phase is to replicate the proposal across racks. Listings 2.2-2.4 and
2.5 show the pseudo-code for RingWorld’s proposal phase for the ToR and server respectively.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 12

In the proposal phase, the data packet is circulated around the ring of ToRs, which in turn
broadcast the packet to all servers in their rack for replication.

Upon receiving a data packet that was not proposed by the ToR itself, the ToR updates
the previous sequence number information in the packet header and updates its local state.
Similar to the propose packets, data packets need to access the last prop id register array
at two indices, which requires a packet resubmission. Additionally, data packets also require
several less-than/ greater-than comparisons to update the prev prop field in the packet
header. These comparisons are not directly supported in current P4 switches. To get around
this limitation, we check the most significant bit of the difference between the two values
to be compared. Occasionally, we also need to split the comparisons into smaller bit length
comparisons. Finally, we split the computation between ingress (line 3) and egress (line 32)
pipelines to fit the computation in the limited number of switch stages.

The packet is finally forwarded to all the servers in the rack and the next hop in the ring.
The servers upon receiving the data packet append the proposal in their pending log

in the lexicographic order described above in section 2.3.2 and mark it as not deliverable
yet. The servers also start a timer for the proposal. This is needed to prevent stalling of
pending log processing in the case of ToR failure which we will describe later. The servers
then respond with an ACK packet to the ToR.

Upon receiving an ACK packet from a server in its rack, the ToR updates the acks and
acks sum state. The acks register array tracks which servers have responded to a proposal,
serving a two-fold purpose: (i) helps prevent double-counting of ACKs and (ii) checks which
servers to take offline in the case of no response (described in phase 3). Due to limited stages
in the switch, and the limited computation available to each stage, it is not possible to count
the number of ACKs by checking the servers from acks register array. Therefore, to count
the servers which have responded, we use the sum kept in acks sum array.

Once a data packet completes a full round around the ring and arrives at the proposing
ToR, the data packet will have the correct previous sequence number in its header. Upon
receiving the data packet that was proposed by the ToR itself, the ToR transforms the
packet into a collect packet and begins the second phase of RingWorld.

Phase 2 - Collect

The aim of the collect phase is to determine if the proposal has been sufficiently replicated
across racks. A proposal is considered sufficiently replicated in a rack if and only if ≥ f + 1
servers have replicated the proposal. This ensures at least one live server in the rack always
has the proposal. A proposal is considered committable if and only if ≥ r + 1 racks have
sufficiently replicated the proposal.

Listing 2.6 shows the pseudocode for RingWorld’s collect phase. The proposing ToR
checks how many servers have responded with an ACK for the proposal and increments the
ack count in the packet header if the proposal has been sufficiently replicated. The collect
then loops around the ring, collecting the same information from each ToR in the ring and
updating the header.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 13

1 callback receive DATA(t, m_prop, prev_tid, prev_prop, m) {

2 if (t != tid) { % Received a proposal from a different rack.

3 % Ingress processing

4 if (resubmit == 0) {

5 % Update the proposal count to ensure that all subsequent proposals from this

rack will be ordered after.

6 prop = max(prop, m_prop + 1)

7

8 prev_prop_temp = last_prop

9 last_prop = max(last_prop, m_prop)

10

11 % Update last_prop_tid if the last_prop was updated i.e., if (m_prop >

prev_prop_temp)

12 % msb returns the most significant bit of the input.

13 if msb(prev_prop_temp - m_prop) == 1 {

14 last_prop_tid[last_prop] = t

15 }

16 resubmit(m_prop, prev_prop_temp, m)

17 } else {

18 % If this proposal is the highest sequence seen so far, set the index to read

for last_prop_tid to prev_prop_temp (old highest sequence seen so far)

19 if msb(prev_prop_temp - m_prop) == 1 {

20 prev_prop_idx = prev_prop_temp

21 } else { % If this proposal isn't the highest sequence seen so far, set the

index to read for last_prop_tid to current proposal's prop id

22 prev_prop_idx = m_prop

23 % If the proposal's tid is greater than current tid, the highest seen proposal

id for this proposal must be one less than the proposal's prop_id.

24 if (msb(t - tid) == 1) {

25 prev_prop_idx = prev_prop_idx - 1

26 }

27 }

28 prev_tid_tmp = last_prop_tid[prev_prop_idx]

29 }

30 send_egress(next, DATA(tid, m_prop, prev_tid, prev_prop, m))

31 send_egress(children, DATA(tid, m_prop, prev_tid, prev_prop, m))

32 } else {

33 % This is a proposal sent by this rack, and its receipt implies that all other

racks have received the proposal.

34 % Start the COLLECT phase.

35 send_collect(tid, m_prop, prev_tid, prev_prop, 0)

36 }

Listing 2.2: ToR logic for RingWorld’s proposal phase at the ingress pipeline.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 14

1 callback receive DATA from ingress {

2 % If the ToR knows of higher sequence no. than the packet's previous sequence no.

3 % but less than current sequence no. update the packet's previous sequence no

4 if ((msb(prev_prop - prev_prop_idx) == 1) or (prev_prop == prev_prop_idx

5 and msb(prev_tid - prev_tid_tmp) == 1)) and ((msb(prev_prop_idx - m_prop) == 1)

6 or (prev_prop_idx == m_prop and msb(prev_tid_tmp - t) == 1)) {

7 prev_prop = prev_prop_idx

8 prev_tid = prev_tid_tmp

9 }

10 }

Listing 2.3: ToR logic for RingWorld’s proposal phase at the egress pipeline.

1 callback receive ACK(t, m_prop) from server c {

2 % Record the fact that server c has received an ack.

3 if (c in children) {

4 ack_count = acks[(t, m_prop)] % Read old value of acks

5 acks[(t, m_prop)] = acks[(t, m_prop)] || c % Record an ack from server c, where c

is the one-hot encoded server id.

6 if (ack_count & c == 0) { % de-duplicate ACK, increment only if old value has not

accounted for this server.

7 acks_sum[(t, m_prop)] += 1 % Update the sum of acks for proposal

8 }

9 }

10 }

Listing 2.4: ToR logic for processing ACKs in RingWorld.

1 callback receive DATA(t, m_prop, prev_tid, prev_prop, m) {

2 % insert DATA in sorted order of (m_prop, t)

3 pending.insert((t, m_prop), m)

4 can_deliver[t, m_prop] = null

5 timer.start(t1)

6 send(parent, ACK(t, m_prop))

7 }

Listing 2.5: Server logic for RingWorld’s proposal phase.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 15

1 % Check if a proposal is sufficiently replicated and then

2 % forward the appropriate collect message.

3 procedure send_collect(t, m_prop, prev_tid, prev_prop, count) {

4 if (acks_sum(t, m_prop)]) > f) {

5 % We consider a proposal to have been replicated on this rack

6 % if and only if more than f servers have acknowledged the proposal.

7 send(next, COLLECT(id, m_prop, prev_tid, prev_prop, count + 1))

8 } else {

9 send(next, COLLECT(id, m_prop, prev_tid, prev_prop, count))

10 }

11 }

12

13 callback receive COLLECT(t, m_prop, prev_tid, prev_prop, ack_count) from prev {

14 if (t != tid) { % A COLLECT message for a proposal from another rack.

15 % Update count and send it to the successor.

16 send_collect(t, m_prop, prev_tid, prev_prop, ack_count)

17 } else { % A collect message originally sent by this ToR.

18 % Count the number of racks that have successfully replicated this message to

decide whether or not to commit.

19 if (ack_count > r) { % Commit message (tid, m_prop)

20 broadcast(DELIVER(t, m_prop, prev_tid, prev_prop, true))

21 } else { % Cannot commit, mark.

22 broadcast(DELIVER(id, m_prop, prev_tid, prev_prop, false))

23 }

24 % Update children to remove any who have not acknowledged the proposal until now.

25 suspect_servers(id, seq)

26 }

27 }

Listing 2.6: ToR logic for RingWorld’s collect phase.

Since ToR-to-ToR latency is often lower than ToR-to-server latency, it is possible that
the servers did not have enough time to respond with ACKs for the proposal by the time the
collect phase starts. In that case, we can extend the collect phase’s duration by looping the
collect packet around multiple times. We can set the number of times we loop to balance
the latency of the system and prevent excessive suspicion of servers having failed.

Once a collect packet arrives back at the proposing ToR, the proposing ToR determines
if ≥ r + 1 racks have sufficiently replicated the proposal using the ack count header. The
proposing ToR then transforms the packet into a deliver packet and includes the decision
to commit or abort the proposal. The deliver packet is broadcasted to the next hop in the
ring and all servers in the rack which starts the third phase of RingWorld.

Phase 3 - Deliver

The deliver phase disseminates the decision (commit/abort) for the proposal around the
ring. Listings 2.7 and 2.8 show the pseudocode for RingWorld’s deliver phase for the ToR

-

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 16

1 procedure suspect_servers(t, seq) {

2 % Servers that did not respond by deliver are removed from children.

3 children = children && acks[(t,seq)]

4 }

5

6 callback receive DELIVER(t, m_prop, prev_tid, prev_prop, commit) {

7 if (t != id) {

8 broadcast(DELIVER(t, m_prop, prev_tid, prev_prop, commit)

9 suspect_servers(t, seq)

10 }

11 }

Listing 2.7: ToR logic for RingWorld’s deliver phase.

1 procedure try_deliver() {

2 % process messages from head only: ensures every machine would deliver in the same

order

3 while ((t, m_prop, m) = pending.remove()) {

4 if (can_deliver[(t, m_prop)] && can_deliver[(link[t, m_prop])]) {

5 deliver(m)

6 } else {

7 pending.insert((t, m_prop), m)

8 }

9 }

10 }

11

12 callback receive DELIVER(t, m_prop, prev_tid, prev_prop, commit) {

13 cancel_timer(t1)

14 can_deliver[t, m_prop] = commit

15 link[t, m_prop] = (prev_tid, prev_prop)

16 if (!commit) {

17 pending.remove((t, m_prop))

18 }

19 try_deliver()

20 }

Listing 2.8: Server logic for RingWorld’s deliver phase.

and server respectively.
Each ToR broadcasts the decision to the servers in its rack. Each ToR maintains a set

of suspected servers, which are servers that have either crashed or are straggling. If a server
has not responded with an ACK for the proposal by the time of deliver, the ToR suspects
that the server has failed. The ToR then proceeds to take the suspected server offline by
removing the server from its list of children (no further RingWorld packets are sent to the
suspected server).

Upon receiving a deliver packet at the server, the server marks the proposal as deliver-

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 17

State Type Description

predecessor list Register array Predecessor ToR IDs (by
hop distance).

predecessor idx Integer Current predecessor index
(hop distance).

recovery counter Integer Recovery ID, initially 0.
decide counter Register Array: Recovery

id to ACK count
Recovery acknowledgement
tracking.

recovery link Register array: Recovery id
to (link seq, link t)

Previous sequence tracking.

Table 2.3: Configuration and state at each ToR for ToR failure recovery.

able and records its decision. The server then attempts to deliver any deliverable proposals.
The server checks (i) if the proposal at the head of the pending log is deliverable and com-
mitted, and (ii) if the proposal’s previous sequence number is also deliverable; if so the server
moves the proposal from the head of the pending log to the consistent log. Any aborted
messages are removed from the pending log.

2.3.3 Adding Servers to a Rack

In the deliver phase of RingWorld, the ToR takes any servers that have not responded in
time offline. Doing so is necessary to prevent straggling servers from impacting RingWorld’s
latency or throughput. This begets the need to ensure servers can efficiently (re)join the
rack. RingWorld has a rack-local protocol to add servers to the rack.

RingWorld’s server-join protocol ensures that the joining server replicates all com-
mitted and pending proposals before it can join the rack. The joining server does so by
communicating with other servers in the rack. The ToR also forwards all new proposals to
any joining servers. The joining servers process all proposals normally and must acknowledge
these proposals to prevent being taken offline again once they rejoin. However, they won’t
be able to commit any proposals until they have caught up on missing proposals owing to
the previous sequence number undelivered check. Once the server is up-to-date, it can join
the rack.

2.3.4 Handling Rack Failures

Racks are a failure domain in most datacenters, and a rack can fail for a variety of reasons in-
cluding ToR failure or power failures to the rack. Since messages in RingWorld are forwarded
along a logical ring of racks, a rack failure can pause processing and impact RingWorld’s

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 18

performance. We address this problem using RingWorld’s recovery protocol. The recovery
protocol rapidly repairs the ring by routing around the failed rack. It then ensures any
proposals that were not completed (due to packets that were lost when the rack failed) are
committed or aborted. Table 2.3 shows the additional state kept at the ToR for RingWorld’s
recovery protocol.

Ring repair

Detecting rack failures: A ToR in RingWorld sends periodic heartbeats to its logical successor
ToR in the ring. The successor ToR uses a lack of heartbeat packets to detect a rack failure.
Since heartbeats in RingWorld are sent and processed entirely by ToRs (that provide tight
latency bounds on message processing) we can set very low timeouts for failure detection. In
our experience, we found that we can set detection timeouts as low as 2ms without causing
false positives.

Routing around rack failures: We start by describing how RingWorld handles a single
rack failure, then briefly discuss the generalization to multiple rack failures.

Assume rack t+1 detects that rack t has failed. ToR t+1 sends a message to rack t− 1
requesting it to change its successor from t to t + 1. ToR t − 1 changes its successor and
starts forwarding all RingWorld packets to ToR t+ 1.

To reach ToR t−1, each ToR maintains a list of its predecessors and its current predecessor
index in the logical ring which is updated upon detecting each rack failure. In the case of
multiple rack failures, ToR t + 1 would continue to contact t − 2, t − 3, and so on until it
reaches the first non-failed rack.

Recovering incomplete proposals

When a rack fails some RingWorld packets might be lost. This results in proposals that were
initiated but are not completed (committed or aborted), which in turn stalls the pending log
processing at the servers. RingWorld must ensure that such proposals are either committed
or aborted to make progress. Listings 2.9 and 2.10 show the pseudocode for the recovery
process for the server and ToR respectively.

To do so, each server that received a proposal starts a decided timer (t1) for that proposal.
All timers are canceled when a corresponding deliver packet is received for that proposal.
However, in the case of a lost packet (which could be data, collect or deliver) the decided
timer will go off, initiating the recovery process. The server first attempts to recover the
proposal locally in its rack by querying other servers in the same rack. The server starts
a recover timer (t2) at this point. Other servers in the rack only respond if they know a
decision was reached for the proposal.

If the server receives no information regarding the proposal locally, the recover timer will
go off initiating a global recovery. A recovery packet is sent serially around the ring where
each ToR first checks whether any server has logged a decision. If any server has logged a
decision, then the ToR switch sends an appropriate deliver packet to its successor rack.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 19

1 callback timeout for timer t1, (t, m_prop, m) {

2 % Initiate local recovery process

3 send(parent, DECIDEDP(t, m_prop))

4 start_timer(t2)

5 }

6

7 callback receive DECIDEDP(t, m_prop, server) {

8 if can_deliver[(t,m_prop)] != null {

9 send(server, DECIDEDV(t,m_prop, prev_tid, prev_prop, can_deliver[(t,m_prop])

10 }

11 }

12

13 callback timeout for timer t2 (t, m_prop, m) {

14 % Find the largest proposal smaller than (t, m_prop)

15 prev_tid, prev_prop = find_latest(t, m_prop)

16 % Initiate global recovery process

17 send(parent, INIT_RECOVER(t, m_prop, prev_tid, prev_prop, m))

18 }

19

20 callback receive RECOVER_LINK(init_tor, rid, t, m_prop, recover_count, m) {

21 if can_deliver[(t,m_prop)] != null {

22 % If already decided tell the parent ToR the decision

23 send(parent, LINK_RESPONSE(init_tor, rid, t, m_prop, prev_tid, prev_prop, true,

can_deliver[(t,m_prop], recover_count, m)

24 } else {

25 % Replicate the proposal

26 pending.insert((t,m_prop), m)

27 can_deliver[t,m_prop] = null

28 % Find the largest proposal smaller than (t, m_prop)

29 prev_tid, prev_prop = find_latest(t, m_prop)

30 send(parent, LINK_RESPONSE(init_tor, rid, t, m_prop, prev_tid, prev_prop, false,

false, recover_count, m)

31 }

32 }

Listing 2.9: Server logic for RingWorld’s recovery process.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 20

1 callback receive DECIDEDP(t, m_prop) {

2 send(children, DECIDEDP(t, m_prop, server))

3 }

4

5 callback receive INIT_RECOVER(t, m_prop, prev_tid, prev_prop, m) {

6 rid = recovery_counter

7 recovery_counter += 1

8 decide_counter[rid] = 0

9 recovery_link[rid] = prev_tid, prev_prop

10 send(children, RECOVER_LINK(id, rid, t, m_prop, 0, m))

11 }

12

13 callback receive LINK_RESPONSE(init_tor, rid, t, m_prop, prev_tid, prev_prop, decided,

decision, recover_count, m) {

14 if decided {

15 % If already decided, circulate DELIVER around the ring

16 broadcast(DELIVER(t, m_prop, prev_tid, prev_prop, can_deliver[(t,m_prop])

17 } else { % If not, check how many servers have replicated the message, if enough

servers have send it forward.

18 if (recovery_link[rid] < (prev_tid, prev_prop)) {

19 recovery_link[rid] = prev_tid, prev_prop

20 }

21 decide_counter[rid] += 1

22 if (decide_counter[rid] == f + 1) {

23 send(next, RECOVER(initiator, t, m_prop, recovery_link[rid][t], recovery_link[

rid][m_prop], recover_count + 1, m)

24 }

25 }

26 }

27

28 callback receive RECOVER(init_tor, t, m_prop, prev_tid, prev_prop, recover_count, m) {

29 if (initiator == id) { % Have completed a round around the ring, check if enough

racks have replicated the proposal and circulate DELIVER

30 if (recover_count > r) { % Commit

31 broadcast(DELIVER(t, m_prop, prev_tid, prev_prop, true))

32 } else { % Cannot commit, mark.

33 broadcast(DELIVER(id, m_prop, prev_tid, prev_prop, false))

34 }

35 } else {

36 rid = recovery_counter

37 recovery_counter += 1

38 decide_counter[rid] = 0

39 recovery_link[rid] = prev_tid, prev_prop

40 % Ask children for latest information

41 send(children, RECOVER_LINK(initiator, rid, t, m_prop, recover_count, m))

42 }

43 }

Listing 2.10: ToR logic for RingWorld’s recovery process.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 21

All RingWorld ToRs unconditionally forward deliver packets along the ring and broadcast
them to servers in their rack. This is safe because deliver packets are idempotent. On the
other hand, if a server has not logged a decision, it replicates the proposal and responds to
the ToR. Once enough servers have replicated under a ToR, the ToR forwards the recovery
message to its successor. Once the recovery packet makes its way back to the recovery
initiating ToR, a deliver packet with the decision is circulated around the ring.

Split brain in RingWorld

RingWorld’s ring could possibly split into multiple smaller rings. To maintain safety in such
cases, only the ring with majority racks (≥ r + 1) is allowed to commit proposals. At the
time of deliver, RingWorld checks if ≥ r + 1 racks participated in the collect phase for
this proposal. Due to this check, any smaller rings will not be able to commit any proposals
guaranteeing safety.

RingWorld eventually repairs the ring such that a majority ring is formed. At the time
of deliver a ToR detects it is no longer part of the majority ring when less than r+1 racks
have participated in the collect phase. The ToR then circulates this information around
the minority ring to update other ToRs. To repair the ring, when a ToR detects it is no
longer part of the majority ring, the ToR takes itself offline and then initiates the ToR rejoin
process (described below).

2.3.5 Connecting a rack to the ring (Rejoins)

RingWorld needs a rejoin process in case a rack fails or a split ring is formed. RingWorld’s
rack-rejoin protocol ensures that all ToRs point to correct successors and predecessors,
and the new rack starts with the correct state as it rejoins the ring. We first describe the
rejoin protocol and then describe a heuristic for finding the right place to join the ring.

Rack rejoin

The rejoining ToR contacts its chosen successor in the ring with a ToR-join packet. The
successor updates its list of predecessors and circulates the packet around the ring, with each
ToR doing the same. Once the packet arrives at the rejoining ToR’s potential predecessor,
the potential predecessor brings the rejoining ToR up-to-date. The predecessor provides its
proposal ID and its list of predecessors which the rejoining ToR inherits. The rejoining
ToR adopts the predecessor’s proposal ID, as starting from any number lower would violate
the proposal ID properties described in section 2.3.2. The rejoining ToR also shares the
same set of predecessors as its predecessor. Once updated, the ToR becomes a part of the
ring and can start normal processing.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 22

Rejoin position

We present a heuristic for the rack to rejoin the ring at a correct place: the rack must join
as the predecessor of the lowest ToR id of the majority ring. If no majority exists, use the
lowest ToR id only. This will eventually result in a majority ring. To do so, the rejoining
ToR contacts all ToRs and requests two things: i) its ToR id, and ii) whether the ToR
believes it is part of the majority ring.

2.3.6 Ring size changes

RingWorld needs a view change to change ring size (changing ring size is different to rack
rejoin). A view id must be maintained by each ToR, which is incremented every time the
quorum size changes. The ToRs should only accept proposals with the latest view id. The
view change requires two rounds around the ring to get a majority of racks to agree to change
the quorum size.

2.3.7 Analysis

We now analyze the impact of various factors on the latency of RingWorld.
Number of racks in the ring: One would expect that RingWorld’s latency would increase

as we add more racks in the ring due to an increase in the ring size However, server processing
is often slower and ToR-to-ToR communication latency is a small fraction of server processing
times. Therefore, up to a certain threshold (where server processing times are larger than
the entire ring’s latency) increasing the number of racks in the ring does not impact the
latency of the system. Beyond the threshold, increasing the ring size increases the latency of
the system, although, not at the same rate as the number of servers (RingWorld has multiple
servers in a single rack). The machine processing time can be improved by using various
techniques such as kernel bypass or responding to the ACK from the NIC instead of going
into userspace.

Number of servers in a rack: To ensure a proposal is sufficiently replicated, more than f
servers in a rack must respond with an ACK to the proposal. All servers communicate with
the rack’s ToR in parallel. The latency of RingWorld, therefore, depends on the median
response time of the servers to sufficiently replicate the proposal.

2.4 Evaluation

We evaluate RingWorld by addressing three questions: i) how does RingWorld perform
with regards to throughput and latency in comparison to other ring-based and leader-based
protocols? ii) how does RingWorld perform in the presence of server failures? and iii) how
does RingWorld perform in the presence of ToR failures?

Implementation and experimental setup: We implemented RingWorld’s ToR component
on Tofino Barefoot Wedge 100BF-32X [31] in P4 and the client/server component in C++.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 23

switch

switch

switch

switch

replica

replica

replica

replica client

client

client

client

machine

Figure 2.4: Testbed topology showing connections for a single server.

We set up a testbed of four ToR switches connected in a full mesh network. Additionally,
we connected three 16-core Intel Xeon, 64 GB memory servers to our setup, with a single
server’s connections shown in figure 2.4. The other machines replicate these connections.
Each server was equipped with eight 10 Gbps NICs, thereby each server running up to four
replicas and four clients.

For RingWorld we connect twelve replicas with four ToR switches with each ToR having
three replicas under it.

2.4.1 Throughput vs. Latency

To compare the performance of RingWorld we compare it to three other replication protocols:
one ring-based replication protocol - similar to LCR [26] and two leader-based protocols -
Viewstamped Replication [43, 51] (equivalent to Multi-Paxos) and NOPaxos [42]. Addition-
ally, we evaluate it against an unreplicated system that does not provide any fault tolerance
and provides a baseline for optimal throughput. We extended NOPaxos’s original code and
corresponded extensively with the authors to ensure a fair setup. The latency vs. through-
put results are shown in figure 2.5 as we increase the number of clients and the clients are
run in a closed-loop. In all cases, the throughput was bottlenecked at the replicas with 100%
CPU utilization.

Unreplicated system comparison: RingWorld matches the throughput of an unreplicated
system (∼85 Kops/s), as each replica communicates only with its own ToR, eliminating
the throughput bottleneck introduced by extra message processing. However, the latency
for RingWorld is higher than an unreplicated system as communication around the ring is
needed to ensure a request is replicated across the system.

Ring-based replication comparison: For the ring-based replication protocol, we use 12
replicas connected in a ring. Figure 2.5 shows that while the ring-based system is able to

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 24

20K 40K 60K 80K
Throughput (ops/s)

0
100
200
300
400
500
600
700

La
te

nc
y

(
s)

RingWorld
NoPaxos
VR

Unreplicated
RingBased

Figure 2.5: Latency vs. throughput comparison for RingWorld, VR, NOPaxos, ring-based
consensus and unreplicated system.

achieve high throughput (due to limited communication between replicas), the latency is 2x
higher for the simple ring-based protocol compared to RingWorld, even though both systems
use the same number of replicas. This is due to the greater number of hops in the ring-
based protocol’s ring with slow server-to-server communication, compared with RingWorld’s
smaller ring size with faster ToR-to-ToR communication.

Leader-based replication comparison: For Viewstamped Replication (VR) and NOPaxos
we use 3 replicas to replicate the requests. Figure 2.5 shows VR’s throughput maxes out at
a significantly lower ∼9 Kops/s, due to excessive messaging between the leader and replicas
which makes the leader a throughput bottleneck. NOPaxos is able to achieve high throughput
as ordering at the switch eliminates excessive message processing at the servers; the switch
directly broadcasts a request to the replicas and replicas reply directly to the client. This
also allows NOPaxos to achieve lower latency than RingWorld.

Exploiting a ring-based topology with a hierarchy of ToR and servers allows RingWorld
to have a simpler failure recovery mechanism which we explore below.

.........
■ ·•· ■

-•·

::l.

.........
••

•••■■■■■■■■-
)+■■■ -·-++·

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

Figure 2.6: Normalized throughput for RingWorld during a server failure indicated by the
vertical red line.

2.4.2 Server Failures

We now look at how RingWorld performs in the presence of server failures. Figure 2.6 shows
there is zero downtime on the system’s throughput as a server fails at the time indicated
by the red line. A leader failure in VR and NOPaxos would lead to a view change protocol
to re-elect a leader and would cause some downtime for the system. A server failure in a
ring-based protocol would require either require a view change or routing around the failed
server which also means some downtime would be experienced during server failures.

2.4.3 ToR Failures

We now look at how RingWorld performs in the presence of ToR failures. RingWorld needs
to repair the ring to start processing requests again and catch up on any missed requests to
ensure linearizability. The time to reach full throughput, therefore, depends on two things:
(i) link repair and (ii) log resumption. We will look at their impact separately and then look
at their overall impact on the system.

Link repair: We measure the link repair duration as we vary the granularity of heartbeat
generation and failure detection. In our experiments, we set failure detection time to be
four times the heartbeat generation time. To measure the link recovery time at ToR i,
we record the time between the failed predecessor’s (t − 1) last heartbeat and the new
predecessor’s (t − 2) first message/heartbeat. The results in figure 2.7 show that recovery

- ~ ._.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 26

0 5 10 15 20
Detection Granularity (ms)

0

10

20

30

Re
co

ve
ry

 T
im

e
(m

s)

Figure 2.7: RingWorld’s link repair time af-
ter a ToR failure as a function of detection
granularity.

0 20 40 60 80 100 120
Total Machine Timeout (t1+t2) (ms)

0

25

50

75

100

125

Lo
g

Re
su

m
pt

io
n

Ti
m

e
(m

s)
Figure 2.8: RingWorld’s log resumption
time after a ToR failure as a function of sum
of decided and recover timeouts (t1 + t2).

time is within a few milliseconds of the detection granularity and grows linearly with the
detection granularity.

In terms of bandwidth overhead, our heartbeat packet contains the Ethernet and Ring-
World headers, which are 14 bytes and 7 bytes respectively. However, the Tofino packet
generator imposes a minimum size of 60 bytes which we fulfill by padding the remaining
header with zeros. We do not need to generate heartbeat packets when we have actual
request packets to send.

Log resumption: The messages at the servers must be delivered in order to maintain
linearizability and message delivery is paused if a message that ought to be delivered first
is missing. The resumption of message processing depends on the two server timeouts:
decided (t1) and recover (t2). In our experiments, we vary the two timeouts, while keeping
failure detection granularity at 2 ms. We measure resumption time as the time between a
data message was sent out before ToR failure and the time when its corresponding deliver

message is received after ring recovery. Figure 2.8 shows the log resumption time as we vary
the two timeouts. The plot shows the sum of the two timeouts on the x-axis with both t1
and t2 timeout values being equal. The plot shows that the resumption closely follows the
sum of the two timeouts and increases linearly as the sum of the two timeouts increases.

ToR recovery: Taking a holistic look, figure 2.9 shows the normalized throughput of the
system after we fail a ToR at the time indicated by the red line. In this experiment, the
detection granularity is set to 2ms, and the decided (t1) and recover (t2) timeouts are
set to 5ms each. The results show that the throughput drops partially for 10-15 ms before
bouncing back. In contrast, NOPaxos relies on an external SDN controller to recover from
switch failures and the downtime will depend on the controller [42].

v~
/
V

/ V

/
V

/"

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 27

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

Figure 2.9: RingWorld’s normalized throughput during a ToR failure with 2ms failure de-
tection timeout and 5ms decided and 5ms recover timeouts.

2.5 Related Work

Many classical log-based consensus algorithms use a single leader to order requests e.g.,
MultiPaxos [41, 39], Viewstamped Replication [51, 43], Raft [52], and ZAB [34]. However,
they suffer from poor performance (latency and throughput) due to the leader being a bot-
tleneck. As a result, many optimizations to improve throughput and latency have been pro-
posed. In this vain, Fast Paxos [37], SpecPaxos [54] use approximate network ordering, and
NOPaxos [42] uses programmable switches to guarantee network ordering to improve latency
and throughput. Hovercraft [35] uses in-network programmability and transport designed
for datacenters. Mu [1] utilizes RDMA to provide microsecond latencies, while Derecho [32]
uses it to provide high throughput. P4xos [15] implements Paxos in programmable switches
to improve throughput and latency. However, all of these protocols require complicated fail-
over procedures to recover from leader failure or are dependent upon a separate replicated
entity e.g., SDN to recover from failures.

In contrast, Mencius[44], EPaxos [47], and Rabia [53] take a leaderless approach to achieve
consensus. A leaderless approach eliminates the single leader as the bottleneck and allows
these protocols to achieve higher throughput. However, they exhibit increased latency in
certain cases. Mencius partitions the log amongst replicas, but its latency suffers in the
case of straggling replicas. EPaxos requires indicating dependencies and can be slow in
the case of dependency interference. Rabia uses randomized consensus and requires more
communication to achieve consensus.

CHAPTER 2. FAULT TOLERANCE IN DATACENTERS 28

Most closely related to RingWorld is the work on Ring- or chain-based consensus algo-
rithms which organize the replicas into a ring (or chain) and replicate requests sequentially,
e.g., LCR [26], RingPaxos [45], Chain Replication [68], CRAQ [65] and NetChain [33]. Each
replica only communicates with its neighbors, providing optimal throughput. However, the
latency of these systems scales linearly with the size of the ring. They also require either
complex fail-over protocols or depend on a separate replicated entity to recover from failures.
Another ring-based algorithm, Carousel [25] provides a simple failure recovery protocol in
case of failure, but still suffers from scaling latency as the size of the ring grows.

RingWorld utilizes programmable switches to arrange racks in a ring. Exploiting the ring
topology allows RingWorld to achieve optimal throughput and a simpler failure recovery
procedure. The hierarchy of ToRs and servers in a rack (with server communication under
a ToR happening in parallel) prevents RingWorld’s latency from growing with the number
of servers in the ring.

2.6 Conclusion

In this chapter, we present RingWorld, a protocol that leverages programmable switches to
adapt a ring-based approach to achieve consensus. RingWorld arranges racks in a ring; pro-
grammable ToR switches are connected to form a logical ring with multiple servers under each
ToR. Processing is partitioned between fast-path ToRs and slow-path servers. ToRs main-
tain consistent ordering between requests, and forward requests around the ring, whereas
servers maintain a consistent log. The response latency for RingWorld does not grow with
the size of the ring (until the ring becomes really large). This is due to the ring propagation
time being lower compared to server processing times.

RingWorld is able to achieve optimal throughput, comparable to an unreplicated system,
and latency comparable to existing RSMs. Additionally, exploiting a ring-based topology
allows RingWorld to have a simple failure recovery process with low downtime. Server failures
do not impact request processing and ToR failures do not need an expensive view change
protocol, but only communication between local neighbors to repair the ring.

29

Chapter 3

Fault Tolerance at the Edge

We are now moving computation to the edge
But the failure case has me on the ledge
But in this chapter, we do solemnly pledge
that about correctness you must no longer hedge

Edge computing has recently entered the hype cycle, but it is important to remember that,
with Akamai being founded in 1998, we have had edge computing in the form of CDNs since
soon after the Internet went public. In recent years, however, we have seen the emergence
of a new and more varied generation of edge computing, with the likes of Apple, Google,
Netflix, and other major content providers establishing their own edge infrastructures, and
commercial offerings, such as AWS Lambda@Edge, Cloudflare Workers, Akamai Cloudlet,
Fastly Edge Compute Platform, and Azure Edge Functions, allowing tenants to deploy
computation at the edge.

This nontrivial computation is being placed at the network edge1 for many reasons,
including: lower-latency responses to clients (such as in games and content provision), lower
bandwidth demands on the backbone (such as in IoT and some video applications), and
increased privacy where the edge handles information that clients do not want seen by the
backend server (which arises in some video and IoT applications).

Earlier uses of edge computing such as CDNs were either stateless or soft-state, so their
correctness and reasonable performance did not depend on the edge retaining any state.2

However, many of the new uses of edge computing – such as games, video analytics, and
IoT – are strongly stateful in the sense that either the correctness of the application, or

1In this work, we use the term edge to describe any application-level processing node that is placed
between a client and a server. Such an edge could be placed, for example, in a branch office, an ISP central
office, or a factory floor.

2Of course, the raison d’être of CDNs is to cache state (i.e., content), but if that state were deleted
it would merely result in a cache miss and the request would be forwarded to the origin site. While the
resulting performance is not optimal, it is still within normal operational bounds since cache misses are not
rare events.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 30

its ability to achieve reasonable performance, requires that the edge state be maintained.
Applications are strongly stateful if when the edge state is lost: (i) the application correctness
requires that the state be reconstructed and (ii) that reconstruction (if possible at all within
the application’s normal operation) incurs a substantial performance penalty. Being strongly
stateful poses a problem when an edge fails and another edge is available (so that connectivity
can be re-established), but the state from the failed edge is not present on the new edge. We
address this challenge in the context of client-server network services.

Typically the client-server paradigm is built around the notion of a client session (i.e.,
a client’s ongoing interaction with the server). Inserting a strongly stateful edge to improve
the performance of a client’s session turns the client-server paradigm into a client-edge-server
paradigm. With the original client-server paradigm, fate sharing is assumed to exist between
the session and the client and server, such that if either the client or server dies, the session is
terminated. While there are multiple techniques that have been developed to improve server
resilience (e.g., using replicated state machines) and client resilience (e.g., using multihoming
to allow clients to survive some types of network outages), the lifetime of a session is still
fundamentally tied to both the client and server being available.

In the new client-edge-server paradigm with a strongly stateful edge, the session’s fate
is now shared between all three entities, in that if any of the three stops functioning, the
session cannot continue (at least not without a significant performance penalty). While the
session’s reliance on the client and server is inherent, the reliance on the edge is problematic
since an edge failure can terminate a session even when the client and server remain alive
and another edge is available to provide connectivity. We note here that the problem of
fault-tolerance is also relevant to the case of client mobility; as clients move, they may need
to change the edge to which they connect. While there are techniques for smoothly moving
the edge state to follow the client, in the worst case (where such state migrations are not
implemented or fail to complete), this poses the same challenge as an edge failure.

To make our discussion of how best to provide fault tolerance for strongly stateful edge
computing more concrete, we present a video analytics application as a motivating example;
this example did not come from our lab, but instead was brought to us by the team who
has deployed this application in production and had struggled with the problem of edge
failures. Many video analytics frameworks rely on edge computing to minimize the amount
of data transferred from a camera to the backend servers (typically in datacenters). The
savings can be significant because many video frames contain little or no actionable data,
so these frames can be safely filtered. However, this filtering often depends on knowing
what information has previously been sent to the backend servers. If the state about this
previously sent information is lost, then the video analytics application must stop filtering
at the edge (or stop forwarding traffic completely) until it can restore enough shared state
between the edge and the server so that filtering can resume. As we explain later, for the
application we consider, this can interrupt video service for several minutes.

To provide uninterrupted service for this and other strongly stateful applications, we need
a mechanism to recover from edge failures that ensures correctness and provides reasonably
good performance. We propose a general purpose solution that uses message replay and

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 31

checkpointing. These are, of course, not novel techniques, but our main contribution is to
adapt these techniques to the edge context and thereby provide an effective solution for the
real problem of edge fault-tolerance.

To achieve this solution, we first identify a consistency guarantee that we refer to as
output message consistency that applies to the client-edge-server paradigm. We then de-
scribe the design and implementation of CESSNA (Client-Edge-Server for Stateful Network
Applications), which is an application framework that provides output message consistency
for each application session. We designed CESSNA to require minimal modifications to ap-
plication logic, and thus any client-edge-server application can readily adopt CESSNA, and
be tolerant to failures at the edge.

We have implemented two prototypes of CESSNA, using two different sets of technologies:
The first, Container Isolated CESSNA (CI-CESSNA) uses Docker, an off-the-shelf Container
platform, and provides an Edge API based on Python. This version is designed to minimize
the number of changes required when adopting CESSNA, but this ease of adoption comes
at a slight increase in overheads. The second, Software Isolated CESSNA (SI-CESSNA),
requires applications to make use of specialized CESSNA data structures, which in turn
allow us to reduce application overhead. We have implemented versions of SI-CESSNA for
both Rust and C#. In addition to measuring the SI-CESSNA performance with our video
analytics example, we also deployed both the SI-CESSNA and CI-CESSNA implementa-
tions in multiple locations worldwide and ran several other example edge applications. We
discuss our correctness guarantees, and present experimental results to show that CESSNA
provides these guarantees with minimal performance overhead in the absence of failures, and
reasonable recovery times when there are failures.

3.1 Background and Related Work

Before delving into our design, we first describe some relevant background about how the
edge is currently being used and about the various mechanisms now used to provide fault
tolerance.

3.1.1 Current Edge Computing Efforts

We start by briefly discussing the various forms of shared edges (i.e., edge computing services
offered to tenants) currently available, along with a quick review of special-purpose edge
computing.

Content delivery networks (CDNs): CDNs such as Akamai, Cloudflare, Fastly, Azure
CDN, and Amazon CloudFront represent the earliest attempts to use resources at the network
edge in order to improve application performance. Caching content in the network benefits
three parties: the client’s ISP, who now has to transfer a smaller quantity of data over the
network core; the content provider, who can more easily scale to larger number of clients;

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 32

and clients, who experience lower latency when accessing content. As a result, CDNs have
been widely adopted, and form a core component of the Internet infrastructure. CDN caches
however offer little in terms of general computational capabilities.

Cloudlets: Cloudlets [58, 57] is an academic project in which computation is performed
on servers at the edge of the network. Cloudlets were originally envisioned to augment
the capabilities of mobile clients, but the Cloudlet computational model is general and has
been adopted by a few companies including Akamai [3]. The Cloudlet design places four
main requirements on these offerings, one of which explicitly requires that the edge only
contain soft-state – state whose loss does not impair the correctness of the application. The
authors state that this requirement simplifies management, in particular simplifying the task
of handling client mobility and failures. While some recent efforts [27, 7] have looked at using
VM live migration in order to reduce the impact of lost state during client migration, these
efforts assume that neither the old edge nor the new edge has failed, and provide migration
times on the order of minutes.

Serverless edge offerings: These offerings – such as AWS’s Lambda@Edge, Azure Func-
tion on IoT Edge, and Cloudflare Workers – allow developers to write serverless applications
that are executed at the edge. Similar to current serverless offerings, most of these services
require the use of cloud storage services such as blob stores and databases to store state.
Azure’s Durable Functions [19] are an exception to this rule, allowing functions to persist
state locally. In order to do so, Durable Functions require developers to use short-lived
functions called activities in order to manipulate state. An orchestrator, which can be cus-
tomized by the developer, logs the sequence of activities that have been executed. Durable
Functions replay activities in order to recover from failures or reconstruct state that was lost
for other reasons. Durable Functions therefore do provide mechanisms for recovering from
edge failures; however, the failure recovery process requires applications to be restructured
in order to log modification to individual state elements. CESSNA, by contrast, adopts a
more traditional approach to checkpoint and replay, treating the entire edge process as a
single entity, thus minimizing the application changes needed to provide fault-tolerance.

Single-application edges: There is a growing trend for inserting computation into application-
specific edges (in some cases replacing functionality previously located in the cloud). Ex-
amples include automation technology on factory floors, and smart-camera and other video
analytics applications [48, 70, 55, 29].

3.1.2 Fault Tolerance and Message Replay

There is a long history of distributed systems that rely on replication, checkpointing, and
message replay to provide fault tolerance. In situating our design within this literature we
consider four types of work:

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 33

State Machine Replication: Replicated state machines [60] and closely related work
such as viewstamped replication [51] and virtual synchrony [6] have long been the standard
approach to providing fault tolerance for many services. The core idea used by these tech-
niques is to deploy several replicas of a service, and then execute messages in the same order
at each replica. The main challenge when using these techniques lies in ensuring that mes-
sages are processed in the same order at all replicas, and this is addressed either through the
use of consensus protocols such as Paxos and Raft, or the use of group communication prim-
itives like atomic broadcast. Standard results in distributed systems [11] show that both of
these approaches are equivalent, and most modern implementation build on consensus based
approaches.
Primary Backup Replication for VMs and Processes: Auragen 4000 [8], Remus [14],
and other systems have relied on VM and process replication [59] in order to provide fault
tolerance. These systems run multiple replicas of the same service, and treat one of these
replicas as the primary. All external inputs including messages and interrupts received by
the primary are assigned a processing order and sent to the replicas. This ensures that all
replicas agree on the external order of events, and replicas can take over when the primary
fails. This approach poses two main challenges: first it requires multiple active replicas;
second, in order to meet consistency requirements when handling failures, these systems
require that the primary replicate inputs before releasing any outputs. The former increases
resource requirements, while the later impacts system latency and throughput.

Record and Replay: Record and replay systems such as ReVIRT [18], SMP-ReVIRT [17],
and FTMB [62] are designed to reduce the resource requirements of the previous techniques
by eliminating the need for active replicas. These systems execute a single primary as a VM,
and periodically checkpoint the primary’s state. These systems also record all external inputs
between checkpoints. When the primary fails, these systems recover by first restoring a VM
from the last good checkpoint, and then replaying all external inputs in order to produce a
replica with the same state as the primary. While the use of checkpoint and replay eliminates
the need for active replicas, it in turn requires the use of an additional agent, which must be
located in a different failure domain, that records all inputs to the primary. Existing work
assume that this agent is run on a different server than the primary in order to meet this
requirement.

Why do these techniques not suffice for the edge? We assume that each edge location
has a limited number of servers; this is both due to economic necessity (there are many more
edges than cloud datacenters) and limitations of available space, power, and cooling. Thus,
techniques such as Remus would not be appropriate for edges since their use would require
doubling the required compute resources. Moreover, we assume that one common failure
model for the edge is a complete site failure (as these edge sites are often small and not
equipped with multiple power sources and the like). Given this assumption, recovering from
an edge failure often requires failing over to a replica at a different edge, and these edges might

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 34

only be connected via wide-area networks. Prior work [27] has made similar assumptions
when handling client mobility. As a result, neither state machine replication nor primary-
backup replication are suited to the edge use case: recent works including WPaxos [2] and
Mencius [44] report that consensus protocols when run on the wide area impose per-message
latencies of 100-200ms and can only support 10,000 operations per second or less. While,
some of the recent literature on wide-area replication [20, 63, 46] have built on conflict-
free replicated data types [61] (CRDTs) in order to address these performance limitations,
adopting CRDT based techniques requires changes to application logic and a restructuring
of application state, and hence these techniques cannot be used with general applications.

Given these various limitations, for CESSNA we have chosen to adapt the record and
replay based mechanisms for the edge. This requires designing CESSNA so we can survive
the failure of an entire edge location, which obviates most traditional record and replay
designs which store the recordings nearby. Instead, we rely on the client and server for
message logging since this maximizes the extent of fate sharing; recovery is possible if and
only if the two endpoints are up and connected, which is exactly the fate-sharing semantics
that client-server applications have (and which traditional record and replay solutions do
not achieve).

We later define the sufficient correctness requirement for CESSNA (in Section 3.2.2),
but here we just note that this consistency model is different than previously discussed
models in the sense that it is defined per session (and not per application, or for a specific
request), and while it is stricter than eventual consistency, it allows for recovery using replay
based mechanisms, despite the ordering problem that the edge setting presents. We further
elaborate on this aspect in Section 3.3.

Relation to other consistency models: Previous work has looked at several consistency
models for distributed data stores. This includes a variety of weaker models such as AM-
BROSIA [24], Bayou [66], and the proposal by Nightingale et al [50]; and reformulations of
existing models [13]. Consistency models in distributed data stores dictate when updates are
visible to different clients. While we similarly describe a consistency model in this chapter,
the goal of our model is to reason about when updates are stable, i.e., about the state of an
application after failures. These different goals render these models incomparable in both
efficacy and performance.

3.2 Our Approach

3.2.1 Computational Model

Our design imposes no restrictions on how clients or servers are built. In particular, it does
not preclude the use of mechanisms at the application level for recovering from client or
server failures, or the use of replication or other techniques to increase the resiliency of the
server or client. Our focus in this chapter is preserving correctness after a change at the

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 35

edge due to mobility or failure. Thus, in what follows we assume a single (logical) client and
a single (logical) server.

We assume that in the applications we consider both the client and the server can send
packets to the edge, and that the edge can send packets to both the client and the server.
A client starts a session when it first contacts an edge. All messages between this client
and the edge, and between the edge and the server that corresponds to this client session,
are considered part of this session. In our model, we assume that a session can either
be terminated explicitly (being torn down by client or server) or implicitly (i.e., due to
client failure, server failure, or when no functional edge is reachable). We also assume that
communication between clients, edges, and servers is over TCP connections, so that message
delivery is in-order and all lost messages will be retransmitted.

The Edge We assume that the edge is stateful on a per-session basis: that is, a new edge
process (or set of processes) is instantiated to handle each client session. We assume that the
edge state for each session depends on the data sent and received within the session, on the
order in which messages are processed at the edge, and on non-deterministic events such as
timers and thread scheduling. Further, we require that the edge application software (i.e.,
the code run at the edge) be designed so that state updates are atomic and each message is
processed using only one version of the state.

We focus on providing edge fault tolerance on a per-session basis. We make no assumption
on the number of edge nodes that can fail. For example, a single edge node can fail, but
entire edge site failures are also possible. We would like to provide survivability such that as
long as at least one edge node is available, not necessarily geographically close to the failed
edge, the session can be recovered. When a single edge node fails, we would like support
recovery mechanisms that recover quickly to a physically co-located edge node. However, in
the case of a complete site failure, in order to ensure survivability, we would like support
recovery to a completely different site.

Servers We place no restrictions on the behavior of the server. Similar to the existing
client-server paradigm, the server can service multiple clients simultaneously.

Clients Similarly, we place no restrictions on the behavior of clients. We assume that
clients can be mobile, and as a result they might connect to different edges over time. Note,
however, that the client-server paradigm assumes that clients do not interact with other
clients directly, but instead all such interactions are mediated through the server. Thus, to
preserve this, we do not consider interactions between clients at the edge, and assume that
all state at the edge belongs to a single client-server connection.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 36

App1
Client

Local
Recovery
Service

Cache

Runtime engine

App1
Edge

App2
Edge

Edge Rack

Client

ToR switch

Client Agent

Edge Agent

Server Agent

Server Agent

Edge API

Edge API

Data packets
Control packets

Key

Conn
Hndlr

Conn
Hndlr

Conn
Hndlr

Conn
Hndlr

App1 Server

App2 Server

App2
Client Server(s)

Figure 3.1: The general design of our framework.

3.2.2 Consistency Requirement

We focus on the case where a client is initially connected to one edge, but then must switch
to another due to the failure of the first edge or because of client mobility. Our goal is
to ensure that the processing of messages (from either client or server) at this new edge is
consistent with what would have happened at the old edge if it had continued functioning.

We formally define the required correctness guarantee as output message consistency :
messages emitted by a correctly recovered edge must be consistent with messages sent by
the original edge before the failure and received by the client or server. This means that the
recovered edge must be restored to the last committed state – the state at the last time the
failed edge emitted a message that was received by either the client or the server. Note that
our consistency guarantees do not require that edges be restored to the state right before
failure (or mobility), only to the last committed state. This is sufficient for achieving output
message consistency because only the last committed state is visible to the client or server.

Moreover, we want to achieve this level of consistency while maintaining reasonable
performance and ensuring both transparency (client and server logic should not need to be
changed to support edge recovery, though the edge logic might need to be aware of the
recovery mechanism) and survivability (edge failure does not kill the session, as long as there
exists a reachable edge to fail over to; this edge can be physically co-located with the failed
edge or in a completely different site).

3.3 CESSNA’s Design

In this section we describe the design of CESSNA (illustrated in Figure 3.1). The line of
reasoning behind the design is straightforward. When moving to a new edge, we need to

f---------
1

,
I

I
I

' I

' ' I
I I

___ __;':..._~ I

----~'~,, I I I I I

l i __ U I - ii<~~~, __J

------------------------------~

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 37

ensure that, before this new edge processes new packets from the client or server, it has
established the last committed state of the previous edge (which is the old edge’s state when
it sent the last message that reached the client or server). The näıve approach to achieving
this involves replaying at the new edge all the messages processed at the old edge before it
reached its last committed state. However, the information for doing so is dispersed: the
client knows which messages it has sent, the server knows which messages it has sent, but
only the edge knows which of those messages were received, and in what order they were
processed. Moreover, while the edge knows which messages it has sent, only the client and
server know which of those were received. In addition, only the edge can capture the state
needed to resolve nondeterminism in its processing of messages. All of this information
must be effectively and efficiently combined to accomplish the faithful restoration of the last
committed state in the new edge.

We also must deal with some more practical issues. For instance, for a mere ordering
of the messages to be sufficient, the processing of messages must be atomic (in short, the
processing of messages must be serializable). Also, the näıve approach would result in an
infinitely growing set of messages that need to be replayed. We use checkpoints in order to
truncate the sequence of messages that need to be replayed during failure recovery.

These are the issues that are addressed by CESSNA. The resulting design has two main
pieces – the edge platform, and the client/server platform – which we now describe. Before
doing so, we note that our data plane protocol (to be described later) provides reliable,
ordered, message-oriented delivery.

3.3.1 Edge platform

General Properties: The edge is the only entity that knows in what order it received
messages and what sources of nondeterminism affected the processing of those messages.
We address the first with an interleave log, which records the order in which messages
were processed by the edge application. However, many common programming patterns
can introduce nondeterminism (or at least what appears to be nondeterminism from the
perspective of the inputs). The most obvious of these is any program which utilizes the
results from a random number generator, but can also include interactions with the OS
scheduler (e.g., due to threading), and using timekeeping functions. The CESSNA edge
platform captures these external inputs as events that are added to the interleave log, so that
when replayed at the new edge it can arrive at the same state as the old edge. To properly
capture all such sources of nondeterminism, we require that edge applications utilize our
edge API, which we show in Table 3.1 and describe below.

Every time a message is sent out from the edge, it contains the incremental update to
the interleave log, so with every message from the edge, at least one of the client and the
server has been sent the most up-to-date interleave log.3 As we argue more formally in

3Because we use strong message ordering semantics on the client-edge and server-edge connections, where
messages are read in order, we can use incremental logs to reconstruct the full logs.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 38

Method Description

send msg to client(msg) Send a message to client
send msg to server(msg) Send a message to server

cache read(obj name, [func]) Read an object from cache
set timeout(func, time) Start a timer

random() Generate random number
now() Retrieve current time

lock acquire(lock) Acquire a lock
lock release(lock) Release a lock

Table 3.1: Methods provided by the Edge Application API.

Section 3.4, this is the key to guaranteeing output message consistency. The CESSNA edge
framework adds the CESSNA data plane header to all outgoing packets, and each packet
carries incremental logs.

Since the interleave log can grow arbitrarily large over time, which would require the
playback of an arbitrarily long set of messages, we will periodically take a checkpoint of the
current state so that previous portions of the interleave log can be truncated. The taking of
a checkpoint is entered into the interleave log as an event, so one can know which messages
were processed after each checkpoint. The checkpoint is then sent to the client or server so
they can use it in the recovery process.

Checkpoints can be taken with tools included in Docker [16], KVM [36], and VMware [72].
An alternative approach is to build edge application code using explicitly checkpointable data
structures. We prototype both approaches.

In order to identify incoming and outgoing messages, and to treat messages atomically, we
designed the CESSNA data plane protocol, which is a simple layer-7 encapsulation protocol.
The protocol’s header contains a sequence number and allows us to attach any updates to the
interleave log. We wrap all messages with this header, which precedes any layer-7 payload.

We equip the edge with an edge agent, which is the control plane orchestrator of a single
edge. It communicates with agents in the clients and in the servers, and provisions an edge
application instance for each new session. The term edge here is flexible, and may refer to
a single physical machine providing edge services, a single rack of such machines, or several
racks – all of which can be managed by a single edge agent.

Edge API: We designed an edge application API that provides the methods shown in
Table 3.1. In addition to the methods described in the table, the API also provides the
following three event handler methods, which are to be overridden by the application.
accept connection is called when a client connects. The receipt of messages from the
client or server result in calls to recv client msg or recv server msg as appropriate.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 39

The underlying framework maintains connections to both the client and the server. It
runs a control loop that continually reads available data from these connections and trig-
gers the appropriate event handler as described above. While doing that, it maintains the
aforementioned interleave log.

Based on the application configuration, the underlying framework may, after it finishes
handling an incoming message, request that the edge agent take a checkpoint of the appli-
cation. The framework waits until the checkpoint is taken before reading and handling the
next message.4

Nondeterministic operations: We introduce the now and random methods for retrieving
the current time and random number generation respectively. When not being used for
replay, these methods call the corresponding underlying runtime’s function, store the result
in the interleave log with identification of the calling thread, and return the result. We allow
timers via a set timeout method. When the timer expires, the user-provided function is
invoked by the main thread immediately after the current message (if any) is finished being
processed. The sequence relative to other events/messages is stored in the interleave log.

Thread scheduling is another source of nondeterminism. To capture this, we require that
threads be created using our API, which wraps the underlying runtime’s threading capabil-
ities but manages thread identifiers and synchronizes thread startup. The event handlers
for accepting connections and reading messages are only invoked from the main thread of
a CESSNA edge application (though it can then dispatch messages to other threads). Any
thread is free to invoke other API methods, including the ones used to send messages. If
threads share data, they must use explicit locks (mutexes). Our lock acquire method logs
every acquire operation to the interleave log after successful acquisition. Upon replay, the
locks maintain the same order of acquisition. We note that our API could be extended to
include other types of concurrent data structures and synchronization tools using the same
technique we use for locks.
Edge Cache: Each edge runtime has a shared content cache that can be used by multiple
instances of the same edge application. In order to guarantee the correctness of a replay
process, the cache is read-only for edge applications. As is typical behavior for edge caches
(e.g., in CDNs and Cloudlets [57]), the cache fetches missing items from the server, so every
read operation to the cache returns a result.

3.3.2 Client/Server Platform

There is a very little difference between a client and a server in our design. A host, ei-
ther client or server, is just an application running atop our host platform, which manages
communication with the edge. Our host platform consists of a host agent and a connection
handler. The host agent is responsible for edge discovery, establishing a session with the edge
and its management. In case of an edge failure or client migration, it is also responsible for

4We return to the issue of checkpoints in Section 3.6, where we note that checkpoints can be incrementally
computed, greatly reducing the time the framework needs to wait.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 40

reestablishing the session through another edge. The connection handler encapsulates out-
going packets to add the CESSNA data plane header, buffers these messages, decapsulates
incoming messages, and stores the received interleave log.

In client-edge-server applications, the client does not connect directly to a known server,
but to an edge – potentially one of many. Determination of which edge to connect to may
depend on the application, client and edge locations, and other factors. Existing service
discovery techniques, such as DNS or IP anycast [23, 69] can be used for this purpose.

3.3.3 Recovery

CESSNA supports multiple forms of recovery, but we begin with the most basic, where re-
covery is at a new edge that is remote and cold (leaving discussion of local and hot recovery
variations until later in the section). These different recovery mechanisms are complemen-
tary, applying to different failure scenarios (e.g., server or site failures), and can be deployed
in parallel, but all ensure output message consistency.

First, assume that the client notices that the edge has not been responsive, or is otherwise
malfunctioning. The client then initiates a recovery process by sending a message to a new
edge, which it knows about via some discovery process (as mentioned above); from this point
onward, the client ignores all subsequent messages from the old edge. This initiation message
contains the sequence number of the client’s most recent edge checkpoint (if it has one), its
current version of the interleave log (suitably truncated due to the checkpoint), and the set
of messages sent by the client that are contained in that log (and any more recent messages).

The new edge then sends a message to the server notifying it of the recovery process,
and the server responds with the sequence number of its most recent checkpoint, its current
version of the interleave log, and the set of messages sent by the server that are contained
in that log (and any more recent messages). Once it is notified of this recovery process, the
server ignores all subsequent messages from the old edge. The new edge then retrieves the
most recent checkpoint from the client or server, verifies its integrity, and selects the most
recent version of the two interleave logs. The new edge now restores the checkpoint and
replays the messages and nondeterministic operations from the most recent interleave log in
the proper order. At this point, the new edge has achieved the last committed state. It then
replays any additional messages that it was sent by the client and server (interleaving them
arbitrarily) and announces to both the client and the server that it is ready to handle new
messages.

The message replay process is described in Algorithm 1. There are two subtle points.
The first is that replaying the same inputs at the new edge will prompt the new edge to
produce the same outputs as the old edge did when responding to these events originally. As
the CESSNA dataplane protocol uniquely identifies all messages by sequence number, the
recipient can trivially discard such duplicates. However, for efficiency, the algorithm simply
filters them during replay. The second subtle aspect is the treatment of nondeterminisitic
operations. During replay, a calls random or now do not generate new values, and we instead
return values from the interleave log. Observe that if a value is not logged in the interleave

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 41

Algorithm 1 Edge application replay algorithm (main thread)
Input:
- client order - interleave log known to client
- server order - interleave log known to server
- client msgs - client’s message replay
- server msgs - server’s message replay
- checkpoint seq - sequence number of the restored checkpoint
- mrc - messages received by client
- mrs - messages received by server
- threads wait evt - an event on which all threads but the main
thread are waiting if trying to invoke an API method. Initially
this event is set (so threads wait).

1: Initialize client and server connections
2: Trim client order, server order to start from after the entry of checkpoint seq, if exists, or set to []

otherwise.
3: ordering ← longest(client order, server order)

% Take the longest interleave log provided by both the
% client and the server, starting from after the checkpoint.

4: ordering[thread id] ← split(ordering)
% Per-thread interleave log

5: out ordering ← merge(mrc, mrs)
% Merge log of outgoing messages. Use this log to reorder
% outgoing messages.

6: threads wait evt.clear() % Let threads invoke API calls
7: for each idx in ordering[main thread] do
8: if idx is a timer event then
9: Mark timer as already executed
10: Process timer event immediately
11: else
12: Let msg be the message with index idx in either client msgs or server msgs
13: Replay msg : if replay emits messages, suppress those seen by client or server (based on mrc, mrs).

Reorder emitted messages based on out ordering.
14: If replay calls random or now, find result in

ordering[main thread] and return it. If not found, generate new result.
15: end if
16: end for
17: Replay all remaining messages in client msgs and server msgs, in any interleave order, without output

suppression. Also handle waiting events.
18: Wait for all threads to finish going over their ordering
19: Start processing new data from client and server

log, then the operation was not successfully completed before the last committed state, and
we can normally reexecute this operation. Similarly, callbacks for timers and cache reads are
replayed in the order logged without delay.

CESSNA also maintains the same order of lock acquisition as indicated in the interleave
log. When an edge application is multithreaded, the interleave log stores the ID of the thread
corresponding to each entry for all types of entries. Upon replay, the recovery algorithm bases

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 42

the order of outgoing messages on this information, and blocks threads when necessary to
produce the same ordering of output messages as originally.
Other recovery scenarios: The above describes how we recover in the most general remote
recovery case, when the location of the new edge was arbitrary and all state was stored at the
client and server. However, for better performance, we simultaneously support local recovery,
which is when the new edge is close to the old edge (perhaps even in the same rack). Local
recovery uses a local recovery service, which is responsible for storing checkpoints, message
logs, and interleave logs for multiple sessions. This service can be deployed per physical
machine, or per rack of multiple machines. The local recovery service has a direct connection
to the top of rack switch’s tap port, so it can reconstruct the corresponding TCP sessions
and extract incoming and outgoing CESSNA data plane messages to construct its local copy
of message logs and the interleave log.5 It also receives checkpoints directly from the edge
agent and stores them. The local recovery process then works in exactly the same way as
the remote recovery process (per session), but utilizes local checkpoints and logs rather than
waiting for client and server to send these.

CESSNA maintains these two recovery mechanisms side-by-side during normal operation.
Upon recovery, if recovering to a physically close edge, local recovery is used. Otherwise,
remote recovery is selected. To achieve even faster recovery, CESSNA provides an optional
hot backup mechanism in which a designated alternate edge is running adjacent to the active
edge. The alternate edge does not process any incoming messages, but is updated with every
new checkpoint that is taken. In case of a failure, the alternate edge is ready to immediately
fetch the relevant message and interleave logs from the local recovery service and then execute
the recovery algorithm, saving the time it takes to start a new edge application instance and
to restore a checkpoint.

3.4 Formalizing Our Guarantees

The previous discussion of CESSNA’s design has many moving parts, which obfuscates the
properties it can ensure. Here we collect the various assumptions about our solution, and
summarize which properties they collectively guarantee. Due to space constraints, we do
not formally define and prove these guarantees here, but rather provide an outline through
a short discussion.

An edge application is a state machine, which has an initial state and a transition func-
tion. The latter is merely the application logic that responds to inputs : messages (from the
client and the server) and events (e.g., thread scheduling and time based decisions). Our
correctness guarantee, which we call output message consistency, translates to guaranteeing
that upon recovery, CESSNA reinstates a state machine with the same initial state and tran-
sition function (i.e., same application), positioned at the last committed state of the original

5We assume that if TLS is used, it is terminated before the ToR switch of the edge application, as done
by Google [40] and others. ToR tap port access is a requirement for using CESSNA’s local recovery option
though, as noted previously, other solutions could be used for local recovery.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 43

state machine before it failed. We define the last committed state as one where transitioning
to the state produced a message that was successfully received by the client or serve.

CESSNA provides output message consistency by reconstructing the lineage of messages
and events at the client and the server. We piggyback updates to the interleave log on every
message sent to client and server. Thus we are guaranteed that at least one of them has an
up-to-date interleave log, which can be used to recover state starting from the initial system
state. When recovering from a checkpoint, we merely replay the interleave log starting from
an intermediate point to arrive at the last committed state.

3.5 Implementation

In order to evaluate the CESSNA design, we implemented two prototypes: each of our
prototypes targets a different runtime engine.

The first, which we refer to as Container Isolated CESSNA (§3.5.1) is built on top of
Docker and relies on Docker’s checkpointing mechanism [16]. The use of Docker containers
simplifies the adoption of CESSNA since the only code changes required are at the edge,
where the changes are needed in order to enable message replay.

However, this ease of adoption comes at the cost of checkpoint overheads: Docker’s check-
pointing mechanisms are agnostic to application semantics, and thus container checkpoints
include not just application data but also local state from the stack and other information
which is unnecessary for replay.

The second, which we call Software Isolated CESSNA (§3.5.2), is built to provide check-
pointable data structures. Programs need to be modified in order to use these checkpointable
data structures, but this reduces checkpoint overheads since developers explicitly mark out
what data is semantically essential for recovery, and Software Isolated CESSNA does not
checkpoint any additional data.

We implemented both approaches in order to show that (a) CESSNA can be employed by
existing edge applications with minimal changes in order to achieve fault tolerance; and (b)
the cost of fault tolerance can be made negligible for future CESSNA-aware edge applications.
We describe both implementations below.

3.5.1 Container Isolated CESSNA (CI-CESSNA)

CI-CESSNA is our transparent implementation that uses Docker, and can provide fault toler-
ance for any application that uses TCP for communication between client, edge, and server.
The client and server code can transparently use CI-CESSNA via the socket interposition
layer and connection handlers (described below). For the edge code, we require the applica-
tion to be written using CESSNA’s Edge API in order enable message replay, however no
changes are required to the application logic.

Below we describe the client, edge, and server components that comprise CI-CESSNA.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 44

Client/Server Components

Client Socket Interposition Layer: The socket interposition layer is used to allow un-
modified client applications to use CESSNA transparently. It is a small piece of C++ code
that interposes on socket connect() calls. If the call is associated with a CESSNA applica-
tion, a new session is created and the interposed code connects to the corresponding local
connection handler.

The interposition layer is a shared library that is loaded dynamically using the LD PRELOAD

environment variable. This enables applications written in any language to use the library
with no modification. Only CESSNA applications need to preload the interposition layer,
so it does not affect other applications on the client machine.
Host Agent: The host agent is responsible for receiving checkpoints and for managing
session life-cycles. The host agent communicates with its corresponding edge agent out-of-
band, in parallel to the application session using a REST API over HTTP. Messages are
encoded with JSON. In each host, the host agent is also responsible for starting a connection
handler for each session.
Connection Handler: Connection handlers are implemented as TCP proxies, which im-
plement the CESSNA data plane protocol and provide the host agents with the outgoing
message logs and interleave logs extracted from incoming messages. In a client host, the
client application connects to the TCP proxy, and the TCP proxy connects to the edge on
behalf of the client. In a server host, the TCP proxy accepts connections from the edge on
behalf of the server, and the TCP proxy connects to the server.

Edge Components

Edge Agent: The edge agent manages checkpoints and communications with the host
agents. The edge agent may run on a different physical machine than the runtime engine,
and can manage multiple Docker engines on multiple physical machines. Upon receiving a
new session request, the edge agent forwards it to the corresponding server and waits for a
response. When a response arrives, it spins up a container that runs the application’s edge
code.
Checkpoint and Recovery: The edge agent is responsible for taking checkpoints when
requested by an application. To checkpoint state we use Docker’s checkpoint create com-
mand which pauses the container, takes a checkpoint, and then resumes the container. To
restore the checkpoint, we use Docker’s start command with the checkpoint flag and ID.
We measure the latency associated with these processes in Section 3.6. The checkpoint files
are compressed and, depending on configuration, sent to the required remote destination(s).

-

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 45

Using CI-CESSNA

Edge Application API: We provide a CESSNA edge library to applications which imple-
ments the Edge API described in Section 3.3.1. The recovery process is also handled by the
Edge API in case the application starts in a recovery mode. The edge library also provides
additional methods for managing an application’s life-cycle (e.g., initialization, shutdown).
Programmers can create a new edge application by subclassing the CESSNA application
class (provided by the edge library) and overriding methods for handling edge events (e.g.,
recv client msg which is invoked when a message is received).

3.5.2 Software Isolated CESSNA (SI-CESSNA)

In order to minimize checkpoint size we implemented a library of checkpointable data struc-
tures and communication primitives. Our original implementation was in Rust, and used
gRPC for communication between client, edge and server. Subsequently, in order to apply
CESSNA’s methods to the Rocket Video Analytics Platform [4], we used the same techniques
to implement CESSNA in C#. Since Rocket directly makes use of TCP sockets, our C#
implementation also uses TCP sockets instead of gRPC or other RPC libraries.

In order to use the Rust implementation of SI-CESSNA, the client and server must
be written using the Host API provided by CESSNA, but no application logic changes are
required. For the C# implementation of SI-CESSNA, the client and server can transparently
use CESSNA using the socket interposition layer and connection handlers as described above.
When using SI-CESSNA (both Rust and C#), the edge must be written using CESSNA’s
Edge API, and requires the use CESSNA’s checkpointable data structures.

Client/Server Components

Host API: For the Rust implementation, we provide a Host API for the client and server
that allows them to establish a session and send and receive gRPC messages. For the C#
implementation, we can use the socket interposition layer as described in section 3.5.1. The
host API also includes modules to provide the functionalities of the host agent as described
in Section 3.3.2.

Edge Components

API for improved checkpoint and recovery: The edge library provides a set of data
structures for which we can compute checkpoints. We checkpoint the application state by
serializing and saving the contents of these data structures, and restore them by deserializing
the stored checkpoints. Edge applications then must use these data structures to store any
state that persists across messages.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 46

Figure 3.2: Median overhead of applica-
tions with CI-CESSNA, error bars drawn
at 5th and 95th percentile latencies.

Figure 3.3: Median overhead of applica-
tions with SI-CESSNA, error bars drawn at
5th and 95th percentile latencies.

Edge Application API: We provide applications the same API as described in Section
3.3.1. In addition, the API provides the interface for creating and using checkpointable data
structures, which are periodially checkpointed.

The recovery process is also handled by the Edge API in case the application starts in a
recovery mode.

3.6 Evaluation

We evaluate CESSNA by addressing two questions, which we discuss in the sections below:
(i) what are the overheads imposed by CESSNA in the absence of failures, and (ii) how long
does it take to recover when an edge fails. To answer these questions, we developed four new
applications and ported three existing applications to make use of CESSNA, which we now
describe.

3.6.1 Applications on CESSNA

We implemented some sample applications atop CI-CESSNA (denoted by ∗) and some atop
SI-CESSNA (denoted by †). For comparison, we also create a baseline version of each
application, which runs without CESSNA’s recovery functionality.

The applications we developed are:

Blind Forwarder ∗†: A simple edge application that forwards every message it receives
to the other side of the edge. This is not a meaningful edge application, but it allows us to
easily analyze the impact/overhead of CESSNA.

350

J300
a,
E 250
i=
g'200
·;;;

IC 150 e
o,_ 100
a,

"' ~ 50

IZZl Baseline
c:::::J WARPS

Blind Forwarder Http Compression

350
czz:a Baseline

J 300 c:::::J WARPS
a,
E 250
i=
g-200
·;;;

IC 150 e
o,_ 100
a,

"' ~ 50

Blind Forwarder Scrabble

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 47

Figure 3.4: Latency overhead of the recovery process when the client, edge, and server are
all in Virginia and remote recovery is as noted.

local remote0

100

200

300

400

Re
st

or
e

ov
er

he
ad

 (m
s)

Figure 3.5: Median time taken to restore background subtraction state locally and remotely,
error bars drawn at 5th and 95th percentile latencies.

Multi-Player Games: We wrote Battleship∗ and Scrabble† games from scratch to use
the edge to provide fast responses to user actions and to offload user-related state and
computation from the server. Specifically, the edge verifies user actions (e.g., did the user
chose valid words in Scrabble, or did they hit or miss a ship in Battleship), and synchronizes
the game state with the server. In these applications, the edge reduces the response latency
to the clients. For instance, in our setting (which we describe later), when submitting a

iz:::::::::;a Container Isolation C=:J Software Isolation

QJ

ro 103
u
VI

O'I
0

vi' 102

E
VI
QJ

-~ 101,
~
QJ
>
8 100
QJ

c:::
Local Hot Local No Remote Remote Remote
Backup Hot Backup Virginia California Frankfurt

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 48

0 10 20 30 40 50
State Size (MB)

0

200

400

600

800

1000

Re
co

ve
ry

 T
im

e
(m

s)

(a) SI-CESSNA

0 10 20 30 40 50
State Size (MB)

0

1000

2000

3000

4000

5000

Re
co

ve
ry

 T
im

e
(m

s)

(b) CI-CESSNA

Figure 3.6: Recovery time as a function of state size.

Scrabble move, the client experienced a median response latency of 414 µs with an edge,
compared to 75.9ms without an edge.

Existing Games: We modified for two existing open-source multiplayer games, Pong† and
Snake∗, by adding a stateful edge component. All rule checking and game object rendering
is done at the edge, improving latency and reducing computation at the client. The main
difference between these two games and the previous ones is that these are more similar to
real-life multiplayer games: players are constantly in motion, and hundreds of messages are
sent between the client, the edge, and the server each second.

Stateful Compression ∗: This edge application offloads compression from clients. Data
is sent uncompressed between the client and the edge, and compressed between the edge and
the server. We also extended this application to support de/compression of HTTP requests
and streamed, chunked responses (similarly to [49]), and tested it with an unmodified Apache
Tomcat 7 web server and an unmodified web-browser.

Video Analytics Application †: We extended the Microsoft Rocket Video Analytics
Platform [4] in order to incorporate fault-tolerance. The Rocket platform is an extensible
software stack meant for live analysis of video streams (e.g., traffic cameras). The platform
consists of a pipeline where the decoded frame is first passed through the OpenCV back-
ground subtraction module, then processed by a chain of Deep Neural Networks (DNNs).
Prior work [29] has shown that running background subtraction and the first few DNNs at
the edge can significantly reduce the amount of data forwarded to the cloud, by allowing the
pipeline to filter out frames with no actionable information and by reducing the number of
pixels contained in each frame. In order to do the latter, the background subtraction module

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 49

must compute a scene background, which it does by averaging 120 frames spread over two
minutes of video. Edge failure can result in a loss of this computed background, and during
recovery the framework must either transfer additional data to the cloud (thus increasing
network requirements) or pause analysis while the background is recomputed. Since the
DNNs used by Rocket assume that inputs have already gone through an initial background
subtraction step, Rocket currently pauses analysis while the background is recomputed, and
this results in user-visible interruption. The other modules in this pipeline, including the
DNNs, are all stateless.

In order to enable fault tolerance for Rocket, we modified the background subtraction
module (specifically the OpenCV and OpenCVSharp libraries) to use SI-CESSNA data struc-
tures for storing the background and intermediate frames which are periodically averaged in
order to compute a new background. We then use CESSNA to checkpoint this state, and
restore it during failover, thus providing fault tolerance.

While our Rocket edge makes use of CESSNA-SI’s checkpointable data structures, the
current version does not make use of message replay from the clients (the cameras) because
Rocket assumes the cameras have no computational capability (and thus have no ability to
store the log and send it to the edge during recovery). While this precludes perfect state
recovery, the partial state recovery from the checkpoints is sufficient to minimize disruption
to the analytics pipeline. This limitation can be easily addressed in the future by the use of
smart cameras.

This set of applications gave us a wide range of test cases. In the measurements to
follow, for brevity we only discuss one or two of them for each question, but we measured
the performance of all of them and the results presented here are representative of the broader
set.

3.6.2 Performance Evaluation

We evaluated the performance of CESSNA by deploying it on multiple machines (of type
m5.xlarge) in the AWS network, in different geographic locations.

What is the overhead in normal operation?

We first look at the overheads imposed by CESSNA in handling packets (where it must ex-
tract the message and interleave logs from the header and append to local copies). Figure 3.2
shows the median edge processing latency for blind forwarding and for HTTP compression
implemented on CI-CESSNA. CESSNA’s overhead is well below 100 µs. Figure 3.3 shows
the median edge processing latency for Scrabble implemented on SI-CESSNA. When us-
ing SI-CESSNA, the results include time for generating checkpoints in addition to time
for extracting message and interleave logs. As a result, SI-CESSNA adds 120 µs of edge
processing time, due to the persisting of board state updates to disk after receiving every
message (discussed below). These per-packet processing delays are minimal compared to

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 50

typical round-trip times. The overhead added at the client and the server due to CESSNA’s
encapsulation is negligible.

Checkpointing is a more complicated story. Ideally, a checkpoint would be taken when
the application begins and then incrementally updated as each message arrives. This is how
we implemented checkpointing in SI-CESSNA, and the 120 µs overhead reported above is due
to this incremental updating. However, Docker does not support incremental updating, so
CI-CESSNA must periodically take full checkpoints. Assuming the checkpoint size is 10MB,
this requires freezing packet processing for roughly 360ms which is a sizable delay (suggesting
that checkpoints should be taken infrequently). However, incremental checkpointing is widely
available in other container and VM orchestration systems, and as reported on in [56] this
can reduce pause intervals to a low 2–4ms.

We next look at the overhead imposed by SI-CESSNA on the video analytics application
due to checkpointing. For this experiment, we process a video of frame size 768× 576 with
a total of 795 frames, which requires checkpointing 43MB of state.

The median overhead of taking a checkpoint is 121ms. However, scene backgrounds –
which are found by computing the moving average of input video frames over time – change
slowly over the course of several seconds or even minutes. As a result one need not checkpoint
at the granularity of a single frame, and checkpointing once every second or even minute
suffices, thus reducing checkpointing overhead. The time to checkpoint increases linearly as
the checkpoint state size grows.

In terms of bandwidth overhead, our data plane protocol adds between 12 bytes (host
→ edge messages) to 36 bytes (edge → host) to each message. It is currently optimized for
simplicity and not size, but even this straightforward version adds less than 2% overhead to
1500 byte packets. Messages on the control plane are rare and short except for checkpoints
(where size is dependent on the application, and on whether they are incremental or not).

How long does it take to recover?

Figure 3.4 shows the latency overhead of the recovery process, for both local and remote
recovery. In order to test this, we used a version of the blind forwarder which stored arbitrary
state of a given size so we can control the size of the snapshot. We crashed the active edge
and measured additional latency during recovery.

CI-CESSNA: Local recovery with a hot backup incurs a latency overhead of 21ms (me-
dian result), which is mostly due to our recovery algorithm (Algorithm 1). Local recovery
of a 10MB checkpoint without a hot backup incurs 585ms overhead. The additional over-
head is mainly due to Docker’s checkpoint restore command (68%), while the CI-CESSNA
agent incurs another 27% for preparing the checkpoint, decompressing it, and verifying the
recovered container before resuming the session. Remote recovery also adds link latencies.

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 51

SI-CESSNA: There is a substantial improvement in recovery using SI-CESSNA: the la-
tency overhead for local recovery with a hot backup is 0.71ms (median result), while the
overhead for local recovery without a hot backup is 46ms when restoring a 10MB checkpoint.
Remote recovery in the same AWS region has 183ms latency overhead. The replay process
in this experiment replayed 50 messages. Replaying more messages would have linearly
increased the overhead, at a rate of about 10s of µs per replayed message; for reasonable
numbers of messages this would add very little additional delay.

For the video analytics application, our experiment setup consisted of two machines (each
with an Intel Xeon CPU E5-2660 v3, 128GB RAM) in the same rack. Figure 3.5 shows the
time it would take to (a) restore a checkpoint stored locally (from a file), and (b) transmit
and restore a checkpoint at a nearby edge connected via a 1Gbps link with a measured min
RTT of 116 µs. The median overhead to recover locally is 83ms and the median overhead to
recover remotely is 450ms. A major component in remote recovery time is the transmission
of the checkpoint (the theoretical transmission time of the 43MB checkpoint at 1Gbps is
340ms), with the restore process (from memory) only taking around a median of 62ms.
The time to transmit a checkpoint can be reduced by either compressing checkpoints or using
faster links.

Figures 3.6a and 3.6b show the time for local recovery without a hot backup as a function
of the checkpoint size when using SI-CESSNA and CI-CESSNA respectively. Recovery time
for both grows linearly with increase in checkpoint size. In our approach, checkpoints only
capture state associated with a single session, so we expect that checkpoints could be small
in many cases, leading to reasonable recovery times.

3.6.3 Summary and Discussion

Our results suggest that CESSNA can support a wide range of applications, that stateful
processing can be beneficial, and that the performance overheads can be reasonable. For
instance, SI-CESSNA has low packet processing overheads (even while continuously taking
checkpoints), and can recover from failure in less than 1ms with a local hot standby, and in
less than 50ms for a local cold standby. However, SI-CESSNA requires applications to be
written in a supported language (at present C# or Rust), which may hinder adoption.

CI-CESSNA is easier to adopt as it imposes no limitation on the choice of application
language for the client and the server (the edge API for CI-CESSNA is currently provided
only in Python). The packet processing latencies remain low, but the checkpoint delays
can be substantial, and in turn the recovery delays are similarly inflated by Docker’s slow
processing of checkpoints. However, if failures are infrequent, these delays might be tolerable.

Deployment and Scalability Since CESSNA is based on sessions, it handles each client-
edge-server session independently of other sessions. Therefore, it is relatively simple to deploy
and scale. Standard load balancing techniques can be used to select an edge machine given
a new session request. A single edge agent can manage edge sessions on multiple physical
machines. Moreover, if migration of an existing session is needed, the process is inherently

CHAPTER 3. FAULT TOLERANCE AT THE EDGE 52

supported as the existing edge process can be killed and a new one will automatically recover
and continue to serve the application (with some transient delay due to the recovery process
as described above).

3.7 Conclusion

While strongly stateful edge computation is already in use, its correctness and reasonable
performance under failure and mobility is typically not guaranteed by current approaches.
We propose a framework, applicable to any session-oriented application whose edge obeys our
requirements from clients and servers, that provides correctness and reasonable performance
for such applications. Moreover, we provide two reference implementations for our proposed
design: one shows that our design can be easily deployed using industry standard runtime
engines, but introduces some (reasonable) overheads; the other shows that using an optimized
API and runtime environment leads to significantly lower performance overheads. Both
implementations demonstrate that message replay and checkpoint based mechanisms can be
adopted to provide fault tolerance at the edge.

53

Bibliography

[1] Marcos K Aguilera et al. “Microsecond consensus for microsecond applications”. In:
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). 2020, pp. 599–616.

[2] Ailidani Ailijiang et al. “WPaxos: Wide Area Network Flexible Consensus”. In: IEEE
Transactions on Parallel and Distributed Systems 31 (2019), pp. 211–223.

[3] Akamai: Cloudlet Applications. https : / / www . akamai . com / us / en / products /

performance/cloudlets/.

[4] Ganesh Ananthanarayanan et al. Project Rocket platform—designed for easy, customiz-
able live video analytics—is open source. Microsoft Research Blog. Jan. 2020. url:
https://www.microsoft.com/en-us/research/publication/project-rocket-

platform-designed-for-easy-customizable-live-video-analytics-is-open-

source/.

[5] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. “The datacenter as
a computer: Designing warehouse-scale machines”. In: Synthesis Lectures on Computer
Architecture 13.3 (2018), pp. i–189.

[6] Kenneth P. Birman and Thomas A. Joseph. “Exploiting virtual synchrony in dis-
tributed systems”. In: SOSP ’87. 1987.

[7] Luiz Fernando Bittencourt et al. “Towards Virtual Machine Migration in Fog Comput-
ing”. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Com-
puting (3PGCIC) (2015).

[8] Anita Borg, Jim Baumbach, and Sam Glazer. “A message system supporting fault
tolerance”. In: SOSP ’83. 1983.

[9] Broadcom. Broadcom Trident4/BCM56880 Series. https://www.broadcom.com/
products / ethernet - connectivity / switching / strataxgs / bcm56880 - series.
2020.

[10] Mike Burrows. “The Chubby lock service for loosely-coupled distributed systems”. In:
OSDI. 2006.

[11] Tushar Deepak Chandra and Sam Toueg. “Unreliable failure detectors for reliable
distributed systems”. In: J. ACM 43 (1996), pp. 225–267.

https://www.akamai.com/us/en/products/performance/cloudlets/
https://www.akamai.com/us/en/products/performance/cloudlets/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-for-easy-customizable-live-video-analytics-is-open-source/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-for-easy-customizable-live-video-analytics-is-open-source/
https://www.microsoft.com/en-us/research/publication/project-rocket-platform-designed-for-easy-customizable-live-video-analytics-is-open-source/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series

BIBLIOGRAPHY 54

[12] James C. Corbett et al. “Spanner: Google’s Globally-Distributed Database”. In: 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12).
Hollywood, CA: USENIX Association, Oct. 2012, pp. 261–264. isbn: 978-1-931971-
96-6. url: https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/corbett.

[13] Natacha Crooks et al. “Seeing is Believing: A Client-Centric Specification of Database
Isolation”. In: PODC. 2017, pp. 73–82.

[14] Brendan Cully et al. “Remus: High Availability via Asynchronous Virtual Machine
Replication”. In: NSDI. 2008.

[15] Huynh Tu Dang et al. “P4xos: Consensus as a network service”. In: IEEE/ACM Trans-
actions on Networking 28.4 (2020), pp. 1726–1738.

[16] Docker Checkpoint and Restore. https://github.com/docker/cli/blob/master/
experimental/checkpoint-restore.md. 2018.

[17] George W. Dunlap et al. “Execution Replay of Multiprocessor Virtual Machines”.
In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments. 2008, pp. 121–130.

[18] GeorgeW. Dunlap et al. “ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay”. In: ACM SIGOPS Oper. Syst. Rev. 36.SI (Dec. 2003), pp. 211–
224.

[19] Durable Functions Overview. https://docs.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-overview. 2019.

[20] Vitor Enes et al. “Efficient Synchronization of State-Based CRDTs”. In: 2019 IEEE
35th International Conference on Data Engineering (ICDE) (2019), pp. 148–159.

[21] etcd. https://coreos.com/etcd/.

[22] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. “Impossibility of dis-
tributed consensus with one faulty process”. In: Journal of the ACM (JACM) 32.2
(1985), pp. 374–382.

[23] Michael J. Freedman, Karthik Lakshminarayanan, and David Mazières. “OASIS: Any-
cast for Any Service”. In: NSDI. 2006.

[24] Jonathan Goldstein et al. “A.M.B.R.O.S.I.A: Providing Performant Virtual Resiliency
for Distributed Applications”. In: Proc. VLDB Endow. 13.5 (2020), pp. 588–601.

[25] Rachid Guerraoui et al. “Can 100 machines agree?” In: arXiv preprint arXiv:1911.07966
(2019).

[26] Rachid Guerraoui et al. “Throughput optimal total order broadcast for cluster envi-
ronments”. In: ACM Transactions on Computer Systems (TOCS) 28.2 (2010), pp. 1–
32.

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://github.com/docker/cli/blob/master/experimental/checkpoint-restore.md
https://github.com/docker/cli/blob/master/experimental/checkpoint-restore.md
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://coreos.com/etcd/

BIBLIOGRAPHY 55

[27] Kiryong Ha et al. Adaptive VM Handoff Across Cloudlets. Tech. rep. Carnegie Mellon
University, 2015.

[28] Yotam Harchol et al. “Making edge-computing resilient”. In: Proceedings of the 11th
ACM Symposium on Cloud Computing. 2020, pp. 253–266.

[29] Kevin Hsieh et al. “Focus: Querying Large Video Datasets with Low Latency and Low
Cost”. In: 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). 2018.

[30] Patrick Hunt et al. “ZooKeeper: Wait-free Coordination for Internet-scale Systems.”
In: ATC. 2010.

[31] Intel Corporation. Intel Tofino. https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch/tofino-series/tofino.

html. 2020.

[32] Sagar Jha et al. “Derecho: Fast state machine replication for cloud services”. In: ACM
Transactions on Computer Systems (TOCS) 36.2 (2019), pp. 1–49.

[33] Xin Jin et al. “NetChain:Scale-Free Sub-RTT Coordination”. In: 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18). 2018, pp. 35–
49.

[34] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. “ZAB: High-performance
broadcast for primary-backup systems”. In: DSN. 2011.

[35] Marios Kogias and Edouard Bugnion. “HovercRaft: Achieving Scalability and Fault-
Tolerance for Microsecond-Scale Datacenter Services”. In: Proceedings of the Fifteenth
European Conference on Computer Systems. EuroSys ’20. Heraklion, Greece: Associ-
ation for Computing Machinery, 2020. isbn: 9781450368827. doi: 10.1145/3342195.
3387545. url: https://doi.org/10.1145/3342195.3387545.

[36] Jonathan Corbet. Checkpoint/Restart in Userspace. LWN https://lwn.net/Articles/

572125/. 2013.

[37] Leslie Lamport. “Fast paxos”. In: Distributed Computing 19.2 (2006), pp. 79–103.

[38] Leslie Lamport. Generalized Consensus and Paxos. Tech. rep. MSR-TR-2005-33. Mi-
crosoft Research, 2005.

[39] Leslie Lamport. “Paxos made simple”. In: ACM SIGACT News (Distributed Comput-
ing Column) 32, 4 (Whole Number 121, December 2001) (2001), pp. 51–58.

[40] Adam Langley et al. “The QUIC Transport Protocol: Design and Internet-Scale De-
ployment”. In: SIGCOMM. 2017, pp. 183–196.

[41] L Leslie. “The part-time parliament”. In: ACM Transactions on Computer Systems
16.2 (1998), pp. 133–169.

[42] Jialin Li et al. “Just say NO to paxos overhead: Replacing consensus with network
ordering”. In: OSDI. 2016.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://doi.org/10.1145/3342195.3387545
https://doi.org/10.1145/3342195.3387545
https://doi.org/10.1145/3342195.3387545
https://lwn.net/Articles/572125/
https://lwn.net/Articles/572125/

BIBLIOGRAPHY 56

[43] Barbara Liskov and James Cowling. Viewstamped Replication Revisited. Tech. rep.
MIT-CSAIL-TR-2012-021. MIT, July 2012.

[44] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo. “Mencius: building efficient
replicated state machines for WANs”. In: OSDI. 2008.

[45] Parisa Jalili Marandi et al. “Ring Paxos: A high-throughput atomic broadcast pro-
tocol”. In: 2010 IEEE/IFIP International Conference on Dependable Systems & Net-
works (DSN). IEEE. 2010, pp. 527–536.

[46] Christopher Meiklejohn and Peter Van Roy. “Lasp: a language for distributed, coordination-
free programming”. In: PPDP. 2015.

[47] Iulian Moraru, David G Andersen, and Michael Kaminsky. “There is more consensus
in egalitarian parliaments”. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. 2013, pp. 358–372.

[48] Multi-access Edge Computing (MEC); Phase 2: Use Cases and Requirements. https:
//www.etsi.org/deliver/etsi_gs/MEC/001_099/002/02.01.01_60/gs_

MEC002v020101p.pdf. 2018.

[49] NGINX Inc. Compression and Decompression. https://docs.nginx.com/nginx/
admin-guide/web-server/compression/. 2019.

[50] Edmund B. Nightingale et al. “Rethink the Sync”. In: OSDI. 2006, pp. 1–14.

[51] Brian M Oki and Barbara H Liskov. “Viewstamped replication: A new primary copy
method to support highly-available distributed systems”. In: Proceedings of the seventh
annual ACM Symposium on Principles of distributed computing. 1988, pp. 8–17.

[52] Diego Ongaro and John Ousterhout. “In search of an understandable consensus algo-
rithm”. In: USENIX ATC. 2014.

[53] Haochen Pan et al. “Rabia: Simplifying State-Machine Replication Through Random-
ization”. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 2021, pp. 472–487.

[54] Dan RK Ports et al. “Designing distributed systems using approximate synchrony in
data center networks”. In: 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). 2015, pp. 43–57.

[55] Home Security Systems — Smart Home Automation — Ring. https://ring.com/.
2020.

[56] Adam Ruprecht et al. “VM Live Migration At Scale”. In: VEE. 2018.

[57] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In: IEEE Computer
50.1 (2017), pp. 30–39.

[58] Mahadev Satyanarayanan et al. “The Case for VM-Based Cloudlets in Mobile Com-
puting”. In: IEEE Pervasive Computing 8.4 (2009), pp. 14–23.

https://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/02.01.01_60/gs_MEC002v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/02.01.01_60/gs_MEC002v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/02.01.01_60/gs_MEC002v020101p.pdf
https://docs.nginx.com/nginx/admin-guide/web-server/compression/
https://docs.nginx.com/nginx/admin-guide/web-server/compression/
https://ring.com/

BIBLIOGRAPHY 57

[59] Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam. “The design of a practical
system for fault-tolerant virtual machines”. In: Operating Systems Review 44 (2010),
pp. 30–39.

[60] Fred B Schneider. “Implementing fault-tolerant services using the state machine ap-
proach: A tutorial”. In: ACM Computing Surveys (CSUR) 22.4 (1990), pp. 299–319.

[61] Marc Shapiro et al. “Conflict-Free Replicated Data Types”. In: SSS. 2011.

[62] Justine Sherry et al. “Rollback-Recovery for Middleboxes”. In: Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM
2015, London, United Kingdom, August 17-21, 2015. 2015.

[63] Jan Skrzypczak, Florian Schintke, and Thorsten Schütt. “Linearizable State Machine
Replication of State-Based CRDTs without Logs”. In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing (2019).

[64] Michael Stonebraker et al. “The End of an Architectural Era: (It’s Time for a Complete
Rewrite)”. In: VLDB ’07. Vienna, Austria: VLDB Endowment, 2007, pp. 1150–1160.
isbn: 9781595936493.

[65] Jeff Terrace and Michael J Freedman. “Object storage on CRAQ: High-throughput
chain replication for read-mostly workloads”. In: USENIX Annual Technical Confer-
ence. 2009.

[66] Douglas B Terry et al. “Managing update conflicts in Bayou, a weakly connected
replicated storage system”. In: ACM SIGOPS Operating Systems Review 29.5 (1995),
pp. 172–182.

[67] Robbert Van Renesse and Deniz Altinbuken. “Paxos made moderately complex”. In:
ACM Computing Surveys (CSUR) 47.3 (2015), pp. 1–36.

[68] Robbert Van Renesse and Fred B Schneider. “Chain Replication for Supporting High
Throughput and Availability.” In: OSDI. Vol. 4. 2004.

[69] Limin Wang, Vivek S. Pai, and Larry L. Peterson. “The Effectiveness of Request
Redirection on CDN Robustness”. In: OSDI. 2002.

[70] Wyze — Making Great Technology Accessible — Smart Home Devices. https://wyze.
com/. 2020.

[71] Zhuolong Yu et al. “Netlock: Fast, centralized lock management using programmable
switches”. In: Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures, and protocols
for computer communication. 2020, pp. 126–138.

[72] Irene Zhang et al. “Optimizing VM Checkpointing for Restore Performance in VMware
ESXi”. In: USENIX Annual Technical Conference. 2013.

https://wyze.com/
https://wyze.com/

	Contents
	Introduction
	RingWorld: Datacenter Fault Tolerance
	CESSNA: Edge Fault Tolerance
	Co-Authored/Previously Published Work

	Fault Tolerance in Datacenters
	Background
	Safety and Liveness for RSMs
	Programmable Switches

	System Model
	RingWorld
	Overview
	Protocol
	Adding Servers to a Rack
	Handling Rack Failures
	Connecting a rack to the ring (Rejoins)
	Ring size changes
	Analysis

	Evaluation
	Throughput vs. Latency
	Server Failures
	ToR Failures

	Related Work
	Conclusion

	Fault Tolerance at the Edge
	Background and Related Work
	Current Edge Computing Efforts
	Fault Tolerance and Message Replay

	Our Approach
	Computational Model
	Consistency Requirement

	CESSNA's Design
	Edge platform
	Client/Server Platform
	Recovery

	Formalizing Our Guarantees
	Implementation
	Container Isolated CESSNA (CI-CESSNA)
	Software Isolated CESSNA (SI-CESSNA)

	Evaluation
	Applications on CESSNA
	Performance Evaluation
	Summary and Discussion

	Conclusion

	Bibliography

