
Social Dynamics of Machine Learning for Decision

Making

Lydia Liu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-41

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-41.html

May 8, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
My time at Berkeley has been more than I could have imagined, and for
that I am deeply grateful to the many people who have not only supported
my journey in research, but touched my life.
 
I am fortunate to have not one but two very supportive PhD advisors, Moritz
Hardt and Michael Jordan, who are both relentlessly forward thinkers. [...]



Social Dynamics of Machine Learning for Decision Making

by

Lydia Tingruo Liu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Moritz Hardt, Co-chair
Professor Michael I. Jordan, Co-chair

Professor Chris Shannon

Spring 2022



Social Dynamics of Machine Learning for Decision Making

Copyright 2022
by

Lydia Tingruo Liu



1

Abstract

Social Dynamics of Machine Learning for Decision Making

by

Lydia Tingruo Liu

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Moritz Hardt, Co-chair

Professor Michael I. Jordan, Co-chair

From education to hiring, consequential decisions in society increasingly rely on data-driven
algorithms. Yet the long-term impact of algorithmic decision making is largely ill-understood,
and there exist serious challenges to ensuring equitable benefits, in theory and practice. In
this thesis, I examine the social dynamics of machine learning algorithms from two angles: (i)
long-term fairness of algorithmic decisions, and (ii) long-term stability in matching markets.

In computer science, the subject of algorithmic fairness has received much attention, yet the
understanding that algorithms can have disparate impact on populations through various
dynamic mechanisms is recent. We contribute to this evolving understanding by presenting
two different models of the dynamic interactions of machine learning algorithms and popu-
lations of interest. First, we introduce the notion of delayed impact—the welfare impact of
decision-making algorithms on populations after decision outcomes are observed, motivated,
for example, by the change in average credit scores after a new loan approval algorithm is
applied. We demonstrate that several statistical criteria for fair machine learning proposed
by the research community, if applied as a constraint to decision-making, can result in harm
to the welfare of a disadvantaged population. Next, we consider a dynamic setting where
individuals invest in a positive outcome based on their expected reward from an algorith-
mic decision rule. We show that undesirable long-term outcomes arise due to heterogeneity
across groups and the lack of realizability, and study the effectiveness of interventions such
as ‘decoupling’ the decision rule by group and providing subsidies.

Adjacent to the question of long-term fairness, another challenge faced in the utilization of
machine learning for societal benefit is that of social choice. In markets, individual learning
objectives—typically conceived—may conflict with the long-term social objective of reach-
ing an efficient market outcome. Motivated by repeated matching problems in online mar-
ketplaces and platforms, we study two-sided matching markets where participants match
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repeatedly and gain imperfect information about their preferences through matching. Due
to competition, one participant’s attempt to learn their preferences may affect the utility
of other participants. We design a machine learning algorithm for a market platform that
enables the market as a whole to learn their preferences efficiently enough to quickly attain
a notion of market fairness known as stability. Further, we study a decentralized version
of the aforementioned problem, and design learning algorithms for participants to strate-
gically avoid competition given past data, thus removing the need for a central platform.
We also investigate whether strategic participants with the temptation to act independently
should still follow the algorithm’s recommendations, showing several positive results on the
algorithms’ incentive compatibility.
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Chapter 1

Introduction

From admissions to hiring, consequential decisions increasingly rely on data-driven algo-
rithms. Yet the widespread use of machine learning (ML) techniques in decision-making
remains controversial, due to striking examples of racial and gender bias, a lack of trans-
parency in data collection and algorithm design, as well as harmful outcomes for vulnerable
populations. The long-term impact of algorithmic decision making is largely ill-understood,
and there exist serious challenges to ensuring equitable benefits, in theory and in practice.

When an algorithm makes decisions in applications such as hiring, lending and admis-
sions, these decisions often impact multiple stakeholders and may have longer-term conse-
quences in society at large. Existing computational and statistical tools for building ML
algorithms do not usually account for broader social dynamics.

In this thesis, we examine algorithms within their societal context, focusing on the long-
term distributive impact of ML algorithms on populations. We develop dynamic models of
how algorithmic systems distribute value and opportunity among diverse stakeholders, and
apply ensuing insights to design interventions that bring machine learning technology into
alignment with societal values—fairness and long-term welfare.

The following chapters address two settings, broadly:

1. Long-term fairness of algorithmic decisions: In Chapters 2 and 3, we study the dy-
namic interactions of machine learning algorithms and populations, for the purpose of
mitigating disparate impact in lending and hiring. By presenting two different math-
ematical models where the dynamic interactions of machine learning algorithms and
populations render standard algorithmic fairness interventions ineffective, even harm-
ful, we demonstrate that a view toward long-term outcomes in the discussion of “fair”
machine learning is necessary.

2. Long-term stability in matching markets: In Chapters 4 and 5, we articulate new de-
sign challenges for data-driven decision systems in matching markets that arise from
the interplay between uncertainty and competition. Motivated by repeated matching
problems in online marketplaces and platforms, we examine dynamic two-sided match-
ing markets where participants learn about their preferences over time, and propose
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new learning algorithms for market participants to ensure long-term preference learning
and stability, as well as incentive compatibility. A centralized platform is considered
in Chapter 4, whereas Chapter 5 studies a decentralized matching market.

The material presented in this thesis is based on previously published work co-authored
with Sarah Dean, Esther Rolf, Max Simchowitz, Moritz Hardt [Liu et al., 2018], Ashia
Wilson, Nika Haghtalab, Adam Kalai, Christian Borgs, and Jennifer Chayes [Liu et al.,
2020b], Horia Mania, Feng Ruan, and Michael I. Jordan [Liu et al., 2020a, 2021a].

1.1 Long-term fairness of algorithmic decisions

Existing scholarship on fairness in automated decision-making criticizes unconstrained ma-
chine learning for its potential to harm historically underrepresented or disadvantaged groups
in the population [Executive Office of the President, 2016, Barocas and Selbst, 2016]. Con-
sequently, a variety of algorithmic fairness criteria have been proposed as constraints on
standard machine learning objectives [Calders et al., 2009, Dwork et al., 2012, Zafar et al.,
2017, Hardt et al., 2016c]. Even though, in each case, these constraints are clearly intended
to protect the disadvantaged group by an appeal to intuition, the concern has been raised
that narrow technical definitions of fairness will continue to reproduce discriminatory out-
comes [Benjamin, 2019]. Meanwhile, recent work has begun to demonstrate that algorithms
can have disparate impact on populations through various dynamic mechanisms [e.g. Ensign
et al., 2018, Fuster et al., 2022]

In Chapter 2, we introduce the notion of delayed impact—the welfare impact of decision-
making algorithms on populations after decision outcomes are observed—motivated, for
example, by the change in average credit scores after a new loan approval algorithm is applied.
We demonstrate that two statistical criteria previously proposed for fair machine learning—
demographic parity and equality of opportunity—if applied as a constraint to decision-making,
will not in general promote the welfare improvement of a disadvantaged group and could
even result in harm, under reasonable circumstances.

In Chapter 3, we consider a different dynamic setting motivated by applications such as
hiring and school admissions, where individuals invest in a positive outcome based on their
expected reward from an algorithmic decision rule, thus generalizing Coate and Loury [1993]’s
model of labor markets to more flexible feature distributions. We show that undesirable equi-
libria, in terms of a low long-term rate of skill investment, arise due to heterogeneity across
groups and the lack of realizability. We also study the effectiveness of fairness-promoting
interventions such as “decoupling” the decision rule by group [Dwork et al., 2018] and pro-
viding subsidies, finding that decoupling can be beneficial in the short term, but harmful
under longer-term dynamics.
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1.2 Long-term stability in matching markets

How should rational learning agents act when they have to compete in the same uncertain
social environment, such as a market? While there has been a long line of work on learning in
games [Fudenberg and Levine, 1998, Hu et al., 1998, Littman, 1994], recent developments in
statistical learning theory and online learning have opened the door to a new line of work that
aims to quantify precisely the amount of data players require to achieve good performance
in games with stochasticity. The problems studied are motivated by a range of modern
applications, from modeling competition among firms [Mansour et al., 2018, Aridor et al.,
2019] to implementing protocols for wireless networks [Liu and Zhao, 2010, Cesa-Bianchi
et al., 2016, Shahrampour et al., 2017]. A particularly salient application is the online
marketplace1, where two sides of a market need to be matched and market participants have
uncertainty about their preferences, leading to a need for exploration and statistical learning.

Even in the more complex setting involving multiple players participating in a two-
sided matching market, the multi-armed bandit problem can be extended to model how
players simultaneously learn and acquire information about their preferences, while satisfying
economic constraints. Such a blend of bandit learning with two-sided matching markets was
proposed by Das and Kamenica [2005], who formulated a problem in which the players and
the arms form the two sides of the market, and each side has preferences over the other side.
In contrast to the classical formulation of matching markets [Gale and Shapley, 1962], the
preferences of the players are assumed to be unknown a priori and must be learned from the
rewards that are received when arms are pulled successfully.

In Chapter 4, we introduce the first bandit algorithm for two-sided markets with theoreti-
cal guarantees, focusing on a centralized setting in which the players are able to communicate
with a central platform that computes matchings for the entire market. We define a notion
of regret called stable regret, which is the average reward a player obtains less the rewards
achieved under a stable matching with respect to the true preferences of the market. We
show that an algorithm that combines the upper confidence bound principle from the ban-
dit literature [Lai and Robbins, 1985b] with the Gale-Shapley algorithm from the matching
market literature [Gale and Shapley, 1962] can achieve low stable regret. In other words,
the algorithm enables the market as a whole to learn their preferences efficiently enough
to approximately attain a stable market outcome, at the optimal rate. The learning rate
provided quantifies exactly how much the sample complexity of preference learning increases
when there is an added social objective of reaching a stable matching.

In Chapter 5, we study a decentralized version of the aforementioned problem, and design
learning algorithms for participants to strategically avoid competition given past data, thus
removing the need for a central platform. Indeed, most online marketplaces have varying
degrees of decentralization, that is, there is no central clearinghouse and players are unable
to coordinate their actions with each other directly. However, players may observe limited

1Examples include online labor markets (Upwork, TaskRabbit, Handy), online crowdsourcing platforms
(Amazon Mechanical Turk), online dating services (Match.com) and peer-to-peer sharing platforms (Airbnb).
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information about past matchings, hence motivating the setting we consider. New theoretical
challenges also arise in the decentralized setting, in both the design and the analysis of
algorithms.

In both chapters, we ask whether strategic participants with the temptation to act inde-
pendently at any time should still follow the algorithm’s recommendations. We show several
positive results on the algorithms’ long-term incentive compatibility, as well as a negative
result for the decentralized setting, where long-term incentive compatibility may be more
challenging.

Algorithms: 
computational and 
statistical modeling

Populations: 
behavioral and 

economic modeling

Society: 
values, ethics, normsContext

Time

Figure 1.1: Nested model of contexts in algorithmic decision making

In this thesis, we seek to examine algorithms within their broader societal context. We
do so by considering their interactions with stakeholders at both the population and the in-
dividual level. As seen in Figure 1.1, this goes beyond existing computational and statistical
tools and involves behavioral and economic modeling in tandem. Time (e.g., short-term v.s.
long-term) is also an important context for algorithmic decision making, as the interactions
between algorithms, populations, and society at large are dynamic.

Understanding and improving the impact of machine decision-making ultimately tran-
scends computational research [Abebe et al., 2020]. The final layer of the nested model
considers the values, ethics and norms that are promoted by algorithmic systems. Questions
such as fairness that involve moral judgment within context cannot be resolved by computa-
tional expertise alone, or even primarily. In high-stakes domains such as education [Madaio
et al., 2021, Liu et al., 2021b] and credit [Heaven, 2022], where machine learning tools have
become prevalent, issues of disparate impact and long-term implications of algorithmic tools
are increasingly urgent and pertinent. Further interdisciplinary work is needed to bridge the
gap between the prevailing technical understanding of machine learning and the perspective
of domain practitioners and policy makers on fairness and social good.
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Chapter 2

Delayed Impact of Fair Machine
Learning

2.1 Introduction

Machine learning commonly considers static objectives defined on a snapshot ofthe popu-
lation at one instant in time; consequential decisions, in contrast, reshape the population
over time. Lending practices, for example, can shift the distribution of debt and wealth
in the population. In this chapter, we formally examine under what circumstances fairness
criteria do indeed promote the long-term well-being of disadvantaged groups measured in
terms of a temporal variable of interest. Going beyond the standard classification setting, we
introduce a one-step feedback model of decision-making that exposes how decisions change
the underlying population over time.

Our running example is a hypothetical lending scenario. There are two groups in the
population with features described by a summary statistic, such as a credit score, whose
distribution differs between the two groups. The bank can choose thresholds for each group
at which loans are offered. While group-dependent thresholds may face legal challenges
[Ross and Yinger, 2006], they are generally inevitable for some of the criteria we examine.
The impact of a lending decision has multiple facets. A default event not only diminishes
profit for the bank, it also worsens the financial situation of the borrower as reflected in a
subsequent decline in credit score. A successful lending outcome leads to profit for the bank
and also to an increase in credit score for the borrower.

When thinking of one of the two groups as disadvantaged, it makes sense to ask what
lending policies (choices of thresholds) lead to an expected improvement in the score distribu-
tion within that group. An unconstrained bank would maximize profit, choosing thresholds
that meet a break-even point above which it is profitable to give out loans. One frequently
proposed fairness criterion, sometimes called demographic parity, requires the bank to lend
to both groups at an equal rate. Subject to this requirement the bank would continue to
maximize profit to the extent possible. Another criterion, originally called equality of oppor-
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tunity, equalizes the true positive rates between the two groups, thus requiring the bank to
lend in both groups at an equal rate among individuals who repay their loan. Other criteria
are natural, but for clarity we restrict our attention to these three.

Do these fairness criteria benefit the disadvantaged group? When do they show a clear
advantage over unconstrained classification? Under what circumstances does profit maxi-
mization work in the interest of the individual? These are important questions that we begin
to address in this work.

Contributions

We introduce a one-step feedback model that allows us to quantify the long-term impact of
classification on different groups in the population. We represent each of the two groups A
and B by a score distribution πA and πB, respectively. The support of these distributions
is a finite set X corresponding to the possible values that the score can assume. We think
of the score as highlighting one variable of interest in a specific domain such that higher
score values correspond to a higher probability of a positive outcome. An institution chooses
selection policies τA, τB : X → [0, 1] that assign to each value in X a number representing
the rate of selection for that value. In our example, these policies specify the lending rate at
a given credit score within a given group. The institution will always maximize their utility
(defined formally later) subject to either (a) no constraint, or (b) equality of selection rates,
or (c) equality of true positive rates.

We assume the availability of a function ∆ : X → R such that ∆(x) provides the expected
change in score for a selected individual at score x. The central quantity we study is the
expected difference in the mean score in group j ∈ {A,B} that results from an institutions
policy, ∆µj defined formally in Equation (2.2). When modeling the problem, the expected
mean difference can also absorb external factors such as “reversion to the mean” so long
as they are mean-preserving. Qualitatively, we distinguish between long-term improvement
(∆µj > 0), stagnation (∆µj = 0), and decline (∆µj < 0). Our findings can be summarized
as follows:

1. Both fairness criteria (equal selection rates, equal true positive rates) can lead to
all possible outcomes (improvement, stagnation, and decline) in natural parameter
regimes. We provide a complete characterization of when each criterion leads to each
outcome in Section 2.3.

• There are a class of settings where equal selection rates cause decline, whereas
equal true positive rates do not (Corollary 2.3.5),

• Under a mild assumption, the institution’s optimal unconstrained selection policy
can never lead to decline (Proposition 2.3.1).

2. We introduce the notion of an outcome curve (Figure 2.1) which succinctly describes
the different regimes in which one criterion is preferable over the others.
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3. We perform experiments on FICO credit score data from 2003 and show that under
various models of bank utility and score change, the outcomes of applying fairness
criteria are in line with our theoretical predictions.

4. We discuss how certain types of measurement error (e.g., the bank underestimating
the repayment ability of the disadvantaged group) affect our comparison. We find
that measurement error narrows the regime in which fairness criteria cause decline,
suggesting that measurement should be a factor when motivating these criteria.

5. We consider alternatives to hard fairness constraints.

• We evaluate the optimization problem where fairness criterion is a regularization
term in the objective. Qualitatively, this leads to the same findings.

• We discuss the possibility of optimizing for group score improvement ∆µj di-
rectly subject to institution utility constraints. The resulting solution provides
an interesting possible alternative to existing fairness criteria.

We focus on the impact of a selection policy over a single epoch. The motivation is that
the designer of a system usually has an understanding of the time horizon after which the
system is evaluated and possibly redesigned. Formally, nothing prevents us from repeatedly
applying our model and tracing changes over multiple epochs. In reality, however, it is
plausible that over greater time periods, economic background variables might dominate the
effect of selection.

Reflecting on our findings, we argue that careful temporal modeling is necessary in order
to accurately evaluate the impact of different fairness criteria on the population. Moreover,
an understanding of measurement error is important in assessing the advantages of fairness
criteria relative to unconstrained selection. Finally, the nuances of our characterization
underline how intuition may be a poor guide in judging the long-term impact of fairness
constraints.

Related work

Recent work by Hu and Chen [2018b] considers a model for long-term outcomes and fairness
in the labor market. They propose imposing the demographic parity constraint in a tem-
porary labor market in order to provably achieve an equitable long-term equilibrium in the
permanent labor market, reminiscent of economic arguments for affirmative action [Foster
and Vohra, 1992]. The equilibrium analysis of the labor market dynamics model allows for
specific conclusions relating fairness criteria to long term outcomes. Our general framework
is complementary to this type of domain specific approach.

[Fuster et al., 2022] consider the problem of fairness in credit markets from a different
perspective. Their goal is to study the effect of machine learning on interest rates in different
groups at an equilibrium, under a static model without feedback.
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Ensign et al. [2018] consider feedback loops in predictive policing, where the police more
heavily monitor high crime neighborhoods, thus further increasing the measured number
of crimes in those neighborhoods. While the work addresses an important temporal phe-
nomenon using the theory of urns, it is rather different from our one-step feedback model
both conceptually and technically.

Demographic parity and its related formulations have been considered in numerous pa-
pers [e.g. Calders et al., 2009, Zafar et al., 2017]. Hardt et al. [2016c] introduced the equality
of opportunity constraint that we consider and demonstrated limitations of a broad class of
criteria. Kleinberg et al. and Chouldechova [2017] point out the tension between “calibration
by group” and equal true/false positive rates. These trade-offs carry over to some extent to
the case where we only equalize true positive rates [Pleiss et al., 2017].

A growing literature on fairness in the “bandits” setting of learning [see Joseph et al.,
2016, et sequelae] deals with online decision making that ought not to be confused with
our one-step feedback setting. Finally, there has been much work in the social sciences on
analyzing the effect of affirmative action [see e.g., Keith et al., 1985, Kalev et al., 2006].

2.2 Problem Setting

We consider two groups A and B, which comprise a gA and gB = 1− gA fraction of the total
population, and an institution which makes a binary decision for each individual in each
group, called selection. Individuals in each group are assigned scores in X := [C], and the
scores for group j ∈ {A,B} are distributed according πj ∈ SimplexC−1. The institution selects
a policy τ := (τA, τB) ∈ [0, 1]2C , where τj(x) corresponds to the probability the institution
selects an individual in group j with score x. One should think of a score as an abstract
quantity which summarizes how well an individual is suited to being selected; examples are
provided at the end of this section.

We assume that the institution is utility-maximizing, but may impose certain constraints
to ensure that the policy τ is fair, in a sense described in Section 2.2. We assume that there
exists a function u : C → R, such that the institution’s expected utility for a policy τ is
given by

U(τ ) =
∑

j∈{A,B} gj
∑

x∈X τj(x)πj(x)u(x). (2.1)

Novel to this work, we focus on the effect of the selection policy τ on the groups A and B.
We quantify these outcomes in terms of an average effect that a policy τj has on group j.
Formally, for a function ∆(x) : X → R, we define the average change of the mean score µj

for group j

∆µj(τ ) :=
∑

x∈X πj(x)τj(x)∆(x) . (2.2)

We remark that many of our results also go through if ∆µj(τ ) simply refers to an abstract
change in well-being, not necessarily a change in the mean score. Furthermore, it is possible
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to modify the definition of ∆µj(τ ) such that it directly considers outcomes of those who
are not selected.1 Lastly, we assume that the success of an individual is independent of
their group given the score; that is, the score summarizes all relevant information about
the success event, so there exists a function ρ : X → [0, 1] such that individuals of score x
succeed with probability ρ(x).

We now introduce the specific domain of credit scores as a running example in the rest
of the paper, after which we present two more examples showing the general applicability of
our formulation to many domains.

Example 2.2.1 (Credit scores). In the setting of loans, scores x ∈ [C] represent credit
scores, and the bank serves as the institution. The bank chooses to grant or refuse loans to
individuals according to a policy τ . Both bank and personal utilities are given as functions
of loan repayment, and therefore depend on the success probabilities ρ(x), representing the
probability that any individual with credit score x can repay a loan within a fixed time frame.
The expected utility to the bank is given by the expected return from a loan, which can be
modeled as an affine function of ρ(x): u(x) = u+ρ(x) + u−(1−ρ(x)), where u+ denotes the
profit when loans are repaid and u− the loss when they are defaulted on. Individual outcomes
of being granted a loan are based on whether or not an individual repays the loan, and a
simple model for ∆(x) may also be affine in ρ(x): ∆(x) = c+ρ(x) + c−(1− ρ(x)), modified
accordingly at boundary states. The constant c+ denotes the gain in credit score if loans are
repaid and c− is the score penalty in case of default.

Example 2.2.2 (Advertising). A second illustrative example is given by the case of adver-
tising agencies making decisions about which groups to target. An individual with product
interest score x responds positively to an ad with probability ρ(x). The ad agency experi-
ences utility u(x) related to click-through rates, which increases with ρ(x). Individuals who
see the ad but are uninterested may react negatively (becoming less interested in the prod-
uct), and ∆(x) encodes the interest change. If the product is a positive good like education
or employment opportunities, interest can correspond to well-being. Thus the advertising
agency’s incentives to only show ads to individuals with extremely high interest may leave
behind groups whose interest is lower on average. A related historical example occurred in
advertisements for computers in the 1980s, where male consumers were targeted over female
consumers, arguably contributing to the current gender gap in computing.

Example 2.2.3 (College Admissions). The scenario of college admissions or scholarship al-
lotments can also be considered within our framework. Colleges may select certain applicants
for acceptance according to a score x, which could be thought encode a “college preparedness”

1 If we consider functions ∆p(x) : X → R and ∆n(x) : X → R to represent the average effect of
selection and non-selection respectively, then ∆µj(τ ) :=

∑
x∈X πj(x) (τj(x)∆p(x) + (1− τj(x))∆n(x)). This

model corresponds to replacing ∆(x) in the original outcome definition with ∆p(x) −∆n(x), and adding
a offset

∑
x∈X πj(x)∆n(x). Under the assumption that ∆p(x) − ∆n(x) increases in x, this model gives

rise to outcomes curves resembling those in Figure 2.1 up to vertical translation. All presented results hold
unchanged under the further assumption that ∆µ(βMaxUtil) ≥ 0.
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measure. The students who are admitted might “succeed” (this could be interpreted as grad-
uating, graduating with honors, finding a job placement, etc.) with some probability ρ(x)
depending on their preparedness. The college might experience a utility u(x) corresponding
to alumni donations, or positive rating when a student succeeds; they might also show a drop
in rating or a loss of invested scholarship money when a student is unsuccessful. The stu-
dent’s success in college will affect their later success, which could be modeled generally by
∆(x). In this scenario, it is challenging to ensure that a single summary statistic x captures
enough information about a student; it may be more appropriate to consider x as a vector
as well as more complex forms of ρ(x).

While a variety of applications are modeled faithfully within our framework, there are
limitations to the accuracy with which real-life phenomenon can be measured by strictly
binary decisions and success probabilities. Such binary rules are necessary for the definition
and execution of existing fairness criteria, (see Sec. 2.2) and as we will see, even modeling
these facets of decision making as binary allows for complex and interesting behavior.

The Outcome Curve

We now introduce important outcome regimes, stated in terms of the change in average group
score. A policy (τA, τB) is said to cause active harm to group j if ∆µj(τj) < 0, stagnation if
∆µj(τj) = 0, and improvement if ∆µj(τj) > 0. Under our model, MaxUtil policies can be
chosen in a standard fashion which applies the same threshold τ MaxUtil for both groups, and
is agnostic to the distributions πA and πB. Hence, if we define

∆µMaxUtil
j := ∆µj(τ

MaxUtil) (2.3)

we say that a policy causes relative harm to group j if ∆µj(τj) < ∆µMaxUtil
j , and relative

improvement if ∆µj(τj) > ∆µMaxUtil
j . In particular, we focus on these outcomes for a disad-

vantaged group, and consider whether imposing a fairness constraint improves their outcomes
relative to the MaxUtil strategy. From this point forward, we take A to be disadvantaged or
protected group.

Figure 2.1 displays the important outcome regimes in terms of selection rates βj :=∑
x∈X πj(x)τj(x). This succinct characterization is possible when considering decision rules

based on (possibly randomized) score thresholding, in which all individuals with scores above
a threshold are selected. In Section 2.5, we justify the restriction to such threshold policies by
showing it preserves optimality. In Section 2.5, we show that the outcome curve is concave,
thus implying that it takes the shape depicted in Figure 2.1. To explicitly connect selection
rates to decision policies, we define the rate function rπ(τj) which returns the proportion of
group j selected by the policy. We show that this function is invertible for a suitable class
of threshold policies, and in fact the outcome curve is precisely the graph of the map from
selection rate to outcome β 7→ ∆µA(r−1

πA
(β)). Next, we define the values of β that mark

boundaries of the outcome regions.
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Figure 2.1: The above figure shows the outcome curve. The horizontal axis represents the
selection rate for the population; the vertical axis represents the mean change in score. (a)
depicts the full spectrum of outcome regimes, and colors indicate regions of active harm,
relative harm, and no harm. In (b): a group that has much potential for gain, in (c): a
group that has no potential for gain.

Definition 2.2.1 (Selection rates of interest). Given the protected group A, the following
selection rates are of interest in distinguishing between qualitatively different classes of out-
comes (Figure 2.1). We define βMaxUtil as the selection rate for A under MaxUtil; β0 as
the harm threshold, such that ∆µA(r−1

πA
(β0)) = 0; β∗ as the selection rate such that ∆µA

is maximized; β as the outcome-complement of the MaxUtil selection rate, ∆µAr
−1
πA

(β)) =

∆µA(r−1
πA

(βMaxUtil)) with β > βMaxUtil.

Decision Rules and Fairness Criteria

We will consider policies that maximize the institution’s total expected utility, potentially
subject to a constraint: τ ∈ C ∈ [0, 1]2C which enforces some notion of “fairness”. Formally,
the institution selects τ∗ ∈ argmax U(τ ) s.t. τ ∈ C. We consider the three following
constraints:

Definition 2.2.2 (Fairness criteria). The maximum utility (MaxUtil) policy corresponds to
the null-constraint C = [0, 1]2C, so that the institution is free to focus solely on utility. The
demographic parity (DemParity) policy results in equal selection rates between both groups.
Formally, the constraint is C =

{
(τA, τB) :

∑
x∈X πA(x)τA =

∑
x∈X πB(x)τB

}
. The equal op-
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portunity (EqOpt) policy results in equal true positive rates (TPR) between both group, where

TPR is defined as TPRj(τ ) :=
∑

x∈X πj(x)ρ(x)τ (x)∑
x∈X πj(x)ρ(x)

. EqOpt ensures that the conditional proba-

bility of selection given that the individual will be successful is independent of the population,
formally enforced by the constraint C = {(τA, τB) : TPRA(τA) = TPRB(τB)} .

Just as the expected outcome ∆µ can be expressed in terms of selection rate for threshold
policies, so can the total utility U . In the unconstrained cause, U varies independently over
the selection rates for group A and B; however, in the presence of fairness constraints the
selection rate for one group determines the allowable selection rate for the other. The
selection rates must be equal for DemParity, but for EqOpt we can define a transfer function,
G(A→B), which for every loan rate β in group A gives the loan rate in group B that has
the same true positive rate. Therefore, when considering threshold policies, decision rules
amount to maximizing functions of single parameters. This idea is expressed in Figure 2.2,
and underpins the results to follow.

2.3 Results

In order to clearly characterize the outcome of applying fairness constraints, we make the
following assumption.

Assumption 1 (Institution utilities). The institution’s individual utility function is more
stringent than the expected score changes, u(x) > 0 =⇒ ∆(x) > 0. (For the linear form
presented in Example 2.2.1, u−

u+
< c−

c+
is necessary and sufficient.)

This simplifying assumption quantifies the intuitive notion that institutions take a greater
risk by accepting than the individual does by applying. For example, in the credit setting,
a bank loses the amount loaned in the case of a default, but makes only interest in case of
a payback. Using Assumption 1, we can restrict the position of MaxUtil on the outcome
curve in the following sense.

Proposition 2.3.1 (MaxUtil does not cause active harm). Under Assumption 1, 0 ≤
∆µMaxUtil ≤ ∆µ∗.

We direct the reader to Section 2.9 for the proof of the above proposition, and all subse-
quent results presented in this section. The results are corollaries to theorems presented in
Section 2.6.

Prospects and Pitfalls of Fairness Criteria

We begin by characterizing general settings under which fairness criteria act to improve
outcomes over unconstrained MaxUtil strategies. For this result, we will assume that group
A is disadvantaged in the sense that the MaxUtil acceptance rate for B is large compared to
relevant acceptance rates for A.
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Figure 2.2: Both outcomes ∆µ and institution utilities U can be plotted as a function of
selection rate for one group. The maxima of the utility curves determine the selection rates
resulting from various decision rules.

Corollary 2.3.2 (Fairness Criteria can cause Relative Improvement). (a) Under the assump-
tion that βMaxUtil

A < β and βMaxUtil
B > βMaxUtil

A , there exist population proportions g0 < g1 < 1
such that, for all gA ∈ [g0, g1], βMaxUtil

A < βDemParity
A < β. That is, DemParity causes relative

improvement.
(b) Under the assumption that there exist βMaxUtil

A < β < β′ < β such that βMaxUtil
B >

G(A→B)(β), G(A→B)(β′), there exist population proportions g2 < g3 < 1 such that, for all
gA ∈ [g2, g3], βMaxUtil

A < βEqOpt
A < β. That is, EqOpt causes relative improvement.

This result gives the conditions under which we can guarantee the existence of settings in
which fairness criteria cause improvement relative to MaxUtil. Relying on machinery proved
in Section 2.6, the result follows from comparing the position of optima on the utility curve
to the outcome curve. Figure 2.2 displays a illustrative example of both the outcome curve
and the institutions’ utility U as a function of the selection rates in group A. In the utility
function (2.1), the contributions of each group are weighted by their population proportions
gj, and thus the resulting selection rates are sensitive to these proportions.

As we see in the remainder of this section, fairness criteria can achieve nearly any position
along the outcome curve under the right conditions. This fact comes from the potential
mismatch between the outcomes, controlled by ∆, and the institution’s utility u.

The next theorem implies that DemParity can be bad for long term well-being of the
protected group by being over-generous, under the mild assumption that ∆µA(βMaxUtil

B ) < 0:
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Corollary 2.3.3 (DemParity can cause harm by being over-eager). Fix a selection rate β.
Assume that βMaxUtil

B > β > βMaxUtil
A . Then, there exists a population proportion g0 such

that, for all gA ∈ [0, g0], βDemParity
A > β. In particular, when β = β0, DemParity causes active

harm, and when β = β, DemParity causes relative harm.

The assumption ∆µA(βMaxUtil
B ) < 0 implies that a policy which selects individuals from

group A at the selection rate that MaxUtil would have used for group B necessarily lowers
average score in A. This is one natural notion of protected group A’s ‘disadvantage’ relative
to group B. In this case, DemParity penalizes the scores of group A even more than a naive
MaxUtil policy, as long as group proportion gA is small enough. Again, small gA is another
notion of group disadvantage.

Using credit scores as an example, Corollary 2.3.3 tells us that an overly aggressive
fairness criterion will give too many loans to people in a protected group who cannot pay
them back, hurting the group’s credit scores on average. In the following theorem, we show
that an analogous result holds for EqOpt.

Corollary 2.3.4 (EqOpt can cause harm by being over-eager). Suppose that βMaxUtil
B > G(A→B)(β)

and β > βMaxUtil
A . Then, there exists a population proportion g0 such that, for all gA ∈ [0, g0],

βEqOpt
A > β. In particular, when β = β0, EqOpt causes active harm, and when β = β,

EqOpt causes relative harm.

We remark that in Corollary 2.3.4, we rely on the transfer function, G(A→B), which for
every loan rate β in group A gives the loan rate in group B that has the same true positive
rate. Notice that if G(A→B) were the identity function, Corollary 2.3.3 and Corollary 2.3.4
would be exactly the same. Indeed, our framework (detailed in Section 2.6 and Section 2.9)
unifies the analyses for a large class of fairness constraints that includes DemParity and
EqOpt as specific cases, and allows us to derive results about impact on ∆µ using general
techniques. In the next section, we present further results that compare the fairness criteria,
demonstrating the usefulness of our technical framework.

Comparing EqOpt and DemParity

Our analysis of the acceptance rates of EqOpt and DemParity in Section 2.6 suggests that it
is difficult to compare DemParity and EqOpt without knowing the full distributions πA,πB,
which is necessary to compute the transfer function G(A→B). In fact, we have found that
settings exist both in which DemParity causes harm while EqOpt causes improvement and
in which DemParity causes improvement while EqOpt causes harm. There cannot be one
general rule as to which fairness criteria provides better outcomes in all settings. We now
present simple sufficient conditions on the geometry of the distributions for which EqOpt is
always better than DemParity in terms of ∆µA.

Corollary 2.3.5 (EqOpt may avoid active harm where DemParity fails). Fix a selection rate
β. Suppose πA,πB are identical up to a translation with µA < µB, i.e. πA(x) = πB(x +
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(µB − µA)). For simplicity, take ρ(x) to be linear in x. Suppose

β >
∑
x>µA

πA.

Then there exists an interval [g1, g2] ⊆ [0, 1], such that ∀gA > g1, βEqOpt < β while
∀gA < g2, βDemParity > β. In particular, when β = β0, this implies DemParity causes
active harm but EqOpt causes improvement for gA ∈ [g1, g2], but for any gA such that
DemParity causes improvement, EqOpt also causes improvement.

To interpret the conditions under which Corollary 2.3.5 holds, consider when we might
have β0 >

∑
x>µA

πA. This is precisely when ∆µA(
∑

x>µA
πA) > 0, that is, ∆µA > 0

for a policy that selects every individual whose score is above the group A mean, which is
reasonable in reality. Indeed, the converse would imply that group A has such low scores
that even selecting all above average individuals in A would hurt the average score. In such a
case, Corollary 2.3.5 suggests that EqOpt is better than DemParity at avoiding active harm,
because it is more conservative. A natural question then is: can EqOpt cause relative harm
by being too conservative?

Corollary 2.3.6 (DemParity never loans less than MaxUtil, but EqOpt might). Recall the
definition of the TPR functions TPRj, and suppose that the MaxUtil policy τ MaxUtil is such
that

βMaxUtil
A < βMaxUtil

B and TPRA(τ MaxUtil) > TPRB(τ MaxUtil) (2.4)

Then βEqOpt
A < βMaxUtil

A < βDemParity
A . That is, EqOpt causes relative harm by selecting at a

rate lower than MaxUtil.

The above theorem shows that DemParity is never stingier than MaxUtil to the protected
group A, as long as a A is disadvantaged in the sense that MaxUtil selects a larger proportion
of B than A. On the other hand, EqOpt can select less of group A than MaxUtil, and by
definition, cause relative harm. This is a surprising result about EqOpt, and this phenomenon
arises from high levels of in-group inequality for group A. Moreover, we show in Section 2.9
that there are parameter settings where the conditions in Corollary 2.3.6 are satisfied even
under a stringent notion of disadvantage we call CDF domination, described therein.

2.4 Relaxations of Constrained Fairness

Fairness Under Measurement Error

Next, consider the implications of an institution with imperfect knowledge of scores. Under
a simple model in which the estimate of an individual’s score X ∼ π is prone to errors e(X)

such that X + e(X) := X̂ ∼ π̂. Constraining the error to be negative results in the setting
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that scores are systematically underestimated. In this setting, it is equivalent to consider
the CDF of underestimated distribution π̂ to be dominated by the CDF true distribution
π, that is

∑
x≥c π̂(x) ≤

∑
x≥c π(x) for all c ∈ [C]. Then we can compare the institution’s

behavior under this estimation to its behavior under the truth.

Proposition 2.4.1 (Underestimation causes underselection). Fix the distribution of B as
πB and let β be the acceptance rate of A when the institution makes the decision using perfect
knowledge of the distribution πA. Denote β̂ as the acceptance rate when the group is instead
taken as π̂A. Then βMaxUtil

A > β̂MaxUtil
A and βDemParity

A > β̂DemParity
A . If the errors are further

such that the true TPR dominates the estimated TPR, it is also true that βEqOpt
A > β̂EqOpt

A .

Because fairness criteria encourage a higher selection rate for disadvantaged groups
(Corollary 2.3.2), systematic underestimation widens the regime of their applicability. Fur-
thermore, since the estimated MaxUtil policy underloans, the region for relative improvement
in the outcome curve (Figure 2.1) is larger, corresponding to more regimes under which fair-
ness criteria can yield favorable outcomes. Thus the potential for measurement error should
be a factor when motivating these criteria.

Outcome-based alternative

As explained in the preceding sections, fairness criteria may actively harm disadvantaged
groups. It is thus natural to consider a modified decision rule which involves the explicit
maximization of ∆µA. In this case, imagine that the institution’s primary goal is to aid
the disadvantaged group, subject to a limited profit loss compared to the maximum possible
expected profit UMaxUtil. The corresponding problem is as follows.

max
τA

∆µA(τA) s.t. UMaxUtil
A − U(τ ) < δ . (2.5)

Unlike the fairness constrained objective, this objective no longer depends on group B and
instead depends on our model of the mean score change in group A, ∆µA.

Proposition 2.4.2 (Outcome-based solution). In the above setting, the optimal bank policy
τA is a threshold policy with selection rate β = min{β∗, βmax}, where β∗ is the outcome-
optimal loan rate and βmax is the maximum loan rate under the bank’s “budget”.

The above formulation’s advantage over fairness constraints is that it directly optimizes
the outcome of A and can be approximately implemented given reasonable ability to predict
outcomes. Importantly, this objective shifts the focus to outcome modeling, highlighting
the importance of domain specific knowledge. Future work can consider strategies that are
robust to outcome model errors.
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2.5 Optimality of Threshold Policies

Next, we move towards statements of the main theorems underlying the results presented in
Section 2.3. We begin by establishing notation which we shall use throughout. Recall that
◦ denotes the Hadamard product between vectors. We identify functions mapping X → R
with vectors in RC . We also define the group-wise utilities

Uj(τj) :=
∑
x∈X

πj(x)τj(x)u(x) , (2.6)

so that for τ = (τA, τB), U(τ ) := gAUA(τA) + gBUB(τB).
First, we formally describe threshold policies, and rigorously justify why we may always

assume without loss of generality that the institution adopts policies of this form.

Definition 2.5.1 (Threshold selection policy). A single group selection policy τ ∈ [0, 1]C is
called a threshold policy if it has the form of a randomized threshold on score:

τc,γ =


1, x > c

γ, x = c

0, x < c

, for some c ∈ [C] and γ ∈ (0, 1] . (2.7)

As a technicality, if no members of a population have a given score x ∈ X , there may
be multiple threshold policies which yield equivalent selection rates for a given population.
To avoid redundancy, we introduce the notation τj ∼=πj

τ ′j to mean that the set of scores
on which τj and τ ′j differ has probability 0 under πj; formally,

∑
x:τj(x)6=τj(x) πj(x) = 0. For

any distribution πj, ∼=πj
is an equivalence relation. Moreover, we see that if τj ∼=πj

τ ′j , then
τj and τ ′j both provide the same utility for the institution, induce the same outcomes for
individuals in group j, and have the same selection and true positive rates. Hence, if (τA, τB)
is an optimal solution to any of MaxUtil, EqOpt, or DemParity, so is any (τ ′A, τ

′
B) for which

τA ∼=πA
τ ′A and τB ∼=πB

τ ′B.
For threshold policies in particular, their equivalence class under ∼=πj

is uniquely deter-
mined by the selection rate function,

rπj
(τj) :=

∑
x∈X

πj(x)τj(x) , (2.8)

which denotes the fraction of group j which is selected. Indeed, we have the following lemma
(proved in Section 2.9):

Lemma 2.5.1. Let τj and τ ′j be threshold policies. Then τj ∼=πj
τ ′j if and only if rπj

(τj) =
rπj

(τ ′j ). Further, rπj
(τj) is a bijection from Tthresh(πj) to [0, 1], where Tthresh(πj) is the set of

equivalence classes between threshold policies under ∼=πj
. Finally, πj ◦ r−1

πj
(βj) is well defined.
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Remark that r−1
πj

(βj) is an equivalence class rather than a single policy. However, πj ◦
r−1
πj

(τj) is well defined, meaning that πj ◦ τj = πj ◦ τ ′j for any two policies in the same
equivalence class. Since all quantities of interest will only depend on policies τj through
πj ◦ τj, it does not matter which representative of r−1

πj
(βj) we pick. Hence, abusing notation

slightly, we shall represent Tthresh(πj) by choosing one representative from each equivalence
class under ∼=πj

2.
It turns out the policies which arise in this away are always optimal in the sense that,

for a given loan rate βj, the threshold policy r−1
πj

(βj) is the (essentially unique) policy which
maximizes both the institution’s utility and the utility of the group. Defining the group-wise
utility,

Uj(τj) :=
∑
x∈X

u(x)πj(x)τj(x) , (2.9)

we have the following result:

Proposition 2.5.2 (Threshold policies are preferable). Suppose that u(x) and ∆(x) are
strictly increasing in x. Given any loaning policy τj for population with distribution πj, then
the policy τ thresh

j := r−1
πj

(rπj
(τj)) ∈ Tthresh(πj) satisfies

∆µj(τ
thresh
j ) ≥ ∆µj(τj) and Uj(τ thresh

j ) ≥ Uj(τj) . (2.10)

Moreover, both inequalities hold with equality if and only if τj ∼=πj
τ thresh
j .

The map τj 7→ r−1
πj

(rπj
(τj)) can be thought of transforming an arbitrary policy τj into a

threshold policy with the same selection rate. In this language, the above proposition states
that this map never reduces institution utility or individual outcomes. We can also show
that optimal MaxUtil and DemParity policies are threshold policies, as well as all EqOpt
policies under an additional assumption:

Proposition 2.5.3 (Existance of optimal threshold policies under fairness constraints).
Suppose that u(x) is strictly increasing in x. Then all optimal MaxUtil policies (τA, τB)
satisfy τj ∼=πj

r−1
πj

(
rπj

(τj)
)

for j ∈ {A,B}. The same holds for all optimal DemParity policies,
and if in addition u(x)/ρ(x) is increasing, the same is true for all optimal EqOpt policies.

To prove proposition 2.5.2, we invoke the following general lemma which is proved using
standard convex analysis arguments (in Section 2.9):

Lemma 2.5.4. Let v ∈ RC, and let w ∈ RC
>0, and suppose either that v(x) is increasing

in x, and v(x)/w(x) is increasing or, ∀x ∈ X , w(x) = 0. Let π ∈ SimplexC−1 and fix
t ∈ [0,

∑
x∈X π(x) ·w(x)]. Then any

τ ∗ ∈ arg max
τ∈[0,1]C

〈v ◦ π, τ 〉 s.t. 〈π ◦w, τ 〉 = t (2.11)

satisfies τ ∗ ∼=π r
−1
π (rπ(τ ∗)). Moreover, at least one maximizer τ ∗ ∈ Tthresh(π) exists.

2One way to do this is to consider the set of all threshold policies τc,γ such that, γ = 1 if πj(c) = 0 and
πj(c− 1) > 0 if γ = 1 and c > 1.
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Proof of Proposition 2.5.2. We will first prove Proposition 2.5.2 for the function Uj. Given
our nominal policy τj, let βj = rπj

(τj). We now apply Lemma 2.5.4 with v(x) = u(x) and
w(x) = 1. For this choice of v and w, 〈v, τ 〉 = Uj(τ ) and that 〈πj ◦w, τ = rπj

(τ ). Then, if
τj ∈ arg maxτ Uj(τ ) s.t. rπj

(τ ) = βj, Lemma 2.11 implies that τj ∼=πj
r−1
πj

(rπj
(τj)).

On the other hand, assume that τj ∼=πj
r−1
πj

(
rπj

(τj)
)
. We show that r−1

πj
(rπj

(τj)) is a

maximizer; which will imply that τj is a maximizer since τj ∼=πj
r−1
πj

(rπj
(τj)) implies that

Uj(τj) = τj ∼=πj
r−1
πj

(rπj
(τj)). By Lemma 2.5.4 there exists a maximizer τ ∗j ∈ Tthresh(π), which

means that τ ∗j = r−1
πj

(rπj
(τ ∗j )). Since τ ∗j is feasible, we must have rπj

(τ ∗j ) = rπj
(τj), and

thus τ ∗j = r−1
πj

(rπj
(τj)), as needed. The same argument follows verbatim if we instead choose

v(x) = ∆(x), and compute 〈v, τ 〉 = ∆µj(τ ).

We now argue Proposition 2.5.3 for MaxUtil, as it is a straightforward application of
Lemma 2.5.4. We will prove Proposition 2.5.3 for DemParity and EqOpt separately in Sec-
tions 2.6 and 2.6.

Proof of Proposition 2.5.3 for MaxUtil. MaxUtil follows from lemma 2.5.4 with v(x) = u(x),
and t = 0 and w = 0.

Quantiles and Concavity of the Outcome Curve

To further our analysis, we now introduce left and right quantile functions, allowing us to
specify thresholds in terms of both selection rate and score cutoffs.

Definition 2.5.2 (Upper quantile function). Define Q to be the upper quantile function
corresponding to π, i.e.

Qj(β) = argmax{c :
C∑
x=c

πj(x) > β} and Q+
j (β) := argmax{c :

C∑
x=c

πj(x) ≥ β} . (2.12)

Crucially Q(β) is continuous from the right, and Q+(β) is continuous from the left.
Further, Q(·) and Q+(·) allow us to compute derivatives of key functions, like the mapping
from selection rate β to the group outcome associated with a policy of that rate, ∆µ(r−1

π (β)).
Because we take π to have discrete support, all functions in this work are piecewise linear,
so we shall need to distinguish between the left and right derivatives, defined as follows

∂−f(x) := lim
t→0−

f(x+ t)− f(x)

t
and ∂+f(y) := lim

t→0+

f(y + t)− f(y)

t
. (2.13)

For f supported on [a, b], we say that f is left- (resp. right-) differentiable if ∂−f(x) exists
for all x ∈ (a, b] (resp. ∂+f(y) exists for all y ∈ [a, b)). We now state the fundamental
derivative computation which underpins the results to follow:
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Lemma 2.5.5. Let ex denote the vector such that ex(x) = 1, and ex(x
′) = 0 for x′ 6= x.

Then πj ◦ r−1
πj

(β) : [0, 1]→ [0, 1]C is continuous, and has left and right derivatives

∂+

(
πj ◦ r−1

πj
(β)
)

= eQ(β) and ∂−

(
πj ◦ r−1

πj
(β)
)

= eQ+(β) . (2.14)

The above lemma is proved in Section 2.9. Moreover, Lemma 2.5.5 implies that the
outcome curve is concave under the assumption that ∆(x) is monotone:

Proposition 2.5.6. Let π be a distribution over C states. Then β 7→ ∆µ(r−1
π (β)) is concave.

In fact, if w(x) is any non-decreasing map from X → R, β 7→ 〈w, r−1
π (β)〉 is concave.

Proof. Recall that a univariate function f is concave (and finite) on [a, b] if and only (a) f
is left- and right-differentiable, (b) for all x ∈ (a, b), ∂−f(x) ≥ ∂+f(x) and (c) for any x > y,
∂−f(x) ≤ ∂+f(y).

Observe that ∆µ(r−1
π (β)) = 〈∆,π ◦ r−1

π (β)〉. By Lemma 2.5.5, π ◦ r−1
π (β) has right and

left derivatives eQ(β) and eQ+(β). Hence, we have that

∂+∆µ(βB) = ∆(Q(βB)) and ∂−∆µ(βB) = ∆(Q+(βB)) . (2.15)

Using the fact that ∆(x) is monotone, and that Q ≤ Q+, we see that ∂+∆µ(f−1
π (βB)) ≤

∂−∆µ(f−1
π (βB)), and that ∂∆µ(f−1

π (βB)) and ∂+∆µ(f−1
π (βB)) are non-increasing, from which

it follows that ∆µ(f−1
π (βB)) is concave. The general concavity result holds by replacing ∆(x)

with w(x).

2.6 Proofs of Main Theorems

We are now ready to present and prove theorems that characterize the selection rates under
fairness constraints, namely DemParity and EqOpt. These characterizations are crucial for
proving the results in Section 2.3. Our computations also generalize readily to other linear
constraints, in a way that will become clear in Section 2.6.

A Characterization Theorem for DemParity

In this section, we provide a theorem that gives an explicit characterization for the range
of selection rates βA for A when the bank loans according to DemParity. Observe that the
DemParity objective corresponds to solving the following linear program:

max
τ=(τA,τB)∈[0,1]2C

U(τ ) s.t. 〈πA, τA〉 = 〈πB, τB〉 .

Let us introduce the auxiliary variable β := 〈πA, τA〉 = 〈πB, τB〉 corresponding to the selec-
tion rate which is held constant across groups, so that all feasible solutions lie on the green
DP line in Figure 2.3. We can then express the following equivalent linear program:

max
τ=(τA,τB)∈[0,1]2C ,β∈[0,1]

U(τ ) s.t. β = 〈πj, τj〉, j ∈ {A,B} .
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Figure 2.3: Considering the utility as a function of selection rates, fairness constraints
correspond to restricting the optimization to one-dimensional curves. The DemParity (DP)
constraint is a straight line with slope 1, while the EqOpt (EO) constraint is a curve given
by the graph of G(A→B). The derivatives considered throughout Section 2.6 are taken with
respect to the selection rate βA (horizontal axis); projecting the EO and DP constraint curves
to the horizontal axis recovers concave utility curves such as those shown in the lower panel
of Figure 2.2 (where MaxUtil in is represented by a horizontal line through the MU optimal
solution).

This is equivalent because, for a given β, Proposition 2.5.3 says that the utility maximizing
policies are of the form τj = r−1

πj
(β). We now prove this:

Proof of Proposition 2.5.3 for DemParity. Noting that rπj
(τj) = 〈πj, τj〉, we see that, by

Lemma 2.5.4, under the special case where v(x) = u(x) and w(x) = 1, the optimal solution
(τ ∗A(β), τ ∗B(β)) for fixed rπA

(τA) = rπB
(τB) = β can be chosen to coincide with the threshold

policies. Optimizing over β, the global optimal must coincide with thresholds.

Hence, any optimal policy is equivalent to the threshold policy τ = (r−1
πA

(β), r−1
πB

(β)),
where β solves the following optimization:

max
β∈[0,1]

U
((
r−1
πA

(β), r−1
πB

(β)
))

. (2.16)

We shall show that the above expression is in fact a concave function in β, and hence the set
of optimal selection rates can be characterized by first order conditions. This is presented
formally in the following theorem:
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Theorem 2.6.1 (Selection rates for DemParity). The set of optimal selection rates β∗ sat-
isfying (2.16) forms a continuous interval [β−DemParity, β

+
DemParity], such that for any β ∈ [0, 1],

we have

β < β−DemParity if gAu (QA(β)) + gBu (QB(β)) > 0 ,

β > β+
DemParity if gAu

(
Q+

A (β)
)

+ gBu
(
Q+

B (β)
)
< 0 .

Proof. Note that we can write

U
((
r−1
πA

(β), r−1
πB

(β)
))

= gA〈u,πA ◦ r−1
πA

(β)〉+ gB〈u,πB ◦ r−1
πB

(β)〉 .

Since u(x) is non-decreasing in x, Proposition 2.5.6 implies that β 7→ U
((
r−1
πA

(β), r−1
πB

(β)
))

is concave in β. Hence, all optimal selection rates β∗ lie in an interval [β−, β+]. To further
characterize this interval, let us us compute left- and right-derivatives.

∂+U
((
r−1
πA

(β), r−1
πB

(β)
))

= ∂+gA〈u,πA ◦ r−1
πA

(β)〉+ ∂+gB〈u,πB ◦ r−1
πB

(β)〉
= gA〈u, ∂+

(
πA ◦ r−1

πA
(β)
)
〉+ gB〈u, ∂+

(
πB ◦ r−1

πB
(β)
)
〉

Lemma 2.5.5
= gA〈u, eQA(β)〉+ gB〈u, eQB(β)〉
= gAu(QA(β)) + gBu(QB(β)) .

The same argument shows that

∂−U((r−1
πA

(β), r−1
πB

(β))) = gAu(Q+
A (β)) + gBu(Q+

B (β)).

By concavity of U
((
r−1
πA

(β), r−1
πB

(β)
))

, a positive right derivative at β implies that β < β∗ for
all β∗ satisfying (2.16), and similarly, a negative left derivative at β implies that β > β∗ for
all β∗ satisfying (2.16).

With a result of the above form, we can now easily prove statements such as that in
Corollary 2.3.3 (see Section 2.9 for proofs), by fixing a selection rate of interest (e.g. β0) and
inverting the inequalities in Theorem 2.6.1 to find the exact population proportions under
which, for example, DemParity results in a higher selection rate than β0.

EqOpt and General Constraints

Next, we will provide a theorem that gives an explicit characterization for the range of
selection rates βA for A when the bank loans according to EqOpt. Observe that the EqOpt

objective corresponds to solving the following linear program:

max
τ=(τA,τB)∈[0,1]2C

U(τ ) s.t. 〈wA ◦ πA, τA〉 = 〈wB ◦ πB, τB〉 , (2.17)
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where wj = ρ
〈ρ,πj〉

. This problem is similar to the demographic parity optimization in (2.16),

except for the fact that the constraint includes the weights. Whereas we parameterized
demographic parity solutions in terms of the acceptance rate β in equation (2.16), we will
parameterize equation (2.17) in terms of the true positive rate (TPR), t := 〈wA ◦ πA, τA〉.
Thus, (2.17) becomes

max
t∈[0,tmax]

max
(τA,τB)∈[0,1]2C

∑
j∈{A,B}

gjUj(τj) s.t. 〈wj ◦ πj, τj〉 = t, j ∈ {A,B} , (2.18)

where tmax = minj∈{A,B}{〈πj,wj〉} is the largest possible TPR. The magenta EO curve in
Figure 2.3 illustrates that feasible solutions to this optimization problem lie on a curve
parametrized by t. Note that the objective function decouples for j ∈ {A,B} for the inner
optimization problem,

max
τj∈[0,1]C

∑
j∈{A,B}

gjUj(τj) s.t. 〈wj ◦ πj, τj〉 = t . (2.19)

We will now show that all optimal solutions for this inner optimization problem are πj-a.e.
equal to a policy in Tthresh(πj), and thus can be written as r−1

πj
(βj), depending only on the

resulting selection rate.

Proof of Proposition 2.5.3 for EqOpt. We apply Lemma 2.5.4 to the inner optimization in (2.19)

with v(x) = u(x) and w(x) = ρ(x)
〈ρ,πj〉

. The claim follows from the assumption that u(x)/ρ(x)

is increasing by optimizing over t.

This selection rate βj is uniquely determined by the TPR t (proof appears in Section 2.9):
Suppose that w(x) > 0 for all x. Then the function

T
j,wj

(β) := 〈r−1
πj

(β),πj ◦wj〉

is a bijection from [0, 1] to [0, 〈πj,w〉]. Hence, for any t ∈ [0, tmax], the mapping from TPR
to acceptance rate, T−1

j,wj
(t), is well defined and any solution to (2.19) is πj-a.e. equal to the

policy r−1
πj

(T−1
j,wj

(t)). Thus (2.18) reduces to

max
t∈[0,tmax]

∑
j∈{A,B}

gjUj
(
r−1
πj

(
T−1

j,wj
(t)
))

. (2.20)

The above expression parametrizes the optimization problem in terms of a single variable.
We shall show that the above expression is in fact a concave function in t, and hence the set
of optimal selection rates can be characterized by first order conditions. This is presented
formally in the following theorem:
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Theorem 2.6.2 (Selection rates for EqOpt). The set of optimal selection rates β∗ for group A
satsifying (2.18) forms a continuous interval [β−EqOpt, β

+
EqOpt], such that for any β ∈ [0, 1], we

have

β < β−EqOpt if gA
u(QA(β))

wA(QA(β))
+ gB

u(QB(G
(A→B)
w (β)))

wB(QB(G
(A→B)
w (β)))

> 0 ,

β > β+
EqOpt if gA

u(Q+
A (β))

wA(Q+
A (β))

+ gB
u(Q+

B (G
(A→B)
w (β)))

wB(Q+
B (G

(A→B)
w (β)))

< 0 .

Here, G
(A→B)
w (β) := T−1

B,wB
(T−1

A,wA
(β)) denotes the (well-defined) map from selection rates βA

for A to the selection rate βB for B such that the policies τ ∗A := r−1
πA

(βA) and τ ∗B := r−1
πB

(βB)
satisfy the constraint in (2.17).

Proof. Starting with the equivalent problem in (2.20), we use the concavity result of Lemma 2.9.1.
Because the objective function is the positive weighted sum of two concave functions, it is
also concave. Hence, all optimal true positive rates t∗ lie in an interval [t−, t+]. To further
characterize [t−, t+], we can compute left- and right-derivatives, again using the result of
Lemma 2.9.1.

∂+

∑
j∈{A,B}

gjUj
(
r−1
πj

(T−1
j,wj

(t))
)

= gA∂+UA
(
r−1
πA

(T−1
A,wA

(t))
)

+ gA∂+UA
(
r−1
πA

(T−1
A,wA

(t))
)

= gA
u(QA(T−1

A,wA
(t)))

wA(QA(T−1
A,wA

(t)))
+ gB

u(QB(T−1
B,wB

(t)))

wB(QB(T−1
B,wB

(t)))

The same argument shows that

∂−
∑

j∈{A,B}

gjUj
(
r−1
πj

(T−1
j,wj

(t))
)

= gA
u(Q+

A (T−1
A,wA

(t))

wA(Q+
A (T−1

A,wA
(t)))

+ gB
u(Q+

B (T−1
B,wB

(t)))

wB(Q+
B (T−1

B,wB
(t)))

.

By concavity, a positive right derivative at t implies that t < t∗ for all t∗ satisfying (2.20),
and similarly, a negative left derivative at t implies that t > t∗ for all t∗ satisfying (2.20).

Finally, by Lemma 2.6, this interval in t uniquely characterizes an interval of acceptance
rates. Thus we translate directly into a statement about the selection rates β for group A
by seeing that T−1

A,wA
(t) = β and T−1

B,wB
(t) = G

(A→B)
w (β).

Lastly, we remark that the results derived in this section go through verbatim for any
linear constraint of the form 〈w,πA ◦ τA〉 = 〈w,πB ◦ τB〉, as long as u(x)/w(x) is increasing
in x, and w(x) > 0.

2.7 Simulations

We examine the outcomes induced by fairness constraints in the context of FICO scores for
two race groups. FICO scores are a proprietary classifier widely used in the United States
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Figure 2.4: The empirical payback rates as a function of credit score and CDF for both
groups from the TransUnion TransRisk dataset.

to predict credit worthiness. Our FICO data is based on a sample of 301,536 TransUnion
TransRisk scores from 2003 [US Federal Reserve, 2007], preprocessed by Hardt et al. [2016c].
These scores, corresponding to x in our model, range from 300 to 850 and are meant to
predict credit risk. Empirical data labeled by race allows us to estimate the distributions
πj, where j represents race, which is restricted to two values: white non-Hispanic (labeled
“white” in figures), and black. Using national demographic data, we set the population
proportions to be 18% and 82%.

Individuals were labeled as defaulted if they failed to pay a debt for at least 90 days
on at least one account in the ensuing 18-24 month period; we use this data to estimate
the success probability given score, ρj(x), which we allow to vary by group to match the
empirical data (see Figure 2.4). Our outcome curve framework allows for this relaxation;
however, this discrepancy can also be attributed to group-dependent mismeasurement of
score, and adjusting the scores accordingly would allow for a single ρ(x). We use the success
probabilities to define the affine utility and score change functions defined in Example 2.2.1.
We model individual penalties as a score drop of c− = −150 in the case of a default, and in
increase of c+ = 75 in the case of successful repayment.

In Figure 2.5, we display the empirical CDFs along with selection rates resulting from
different loaning strategies for two different settings of bank utilities. In the case that the
bank experiences a loss/profit ratio of u−

u+
= −10, no fairness criteria surpass the active harm

rate β0; however, in the case of u−
u+

= −4, DemParity overloans, in line with the statement
in Corollary 2.3.3.

These results are further examined in Figure 2.6, which displays the normalized outcome
curves and the utility curves for both the white and the black group. To plot the MaxUtil

utility curves, the group that is not on display has selection rate fixed at βMaxUtil. In this
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Figure 2.5: The empirical CDFs of both groups are plotted along with the decision thresholds
resulting from MaxUtil, DemParity, and EqOpt for a model with bank utilities set to (a)
u−
u+

= −4 and (b) u−
u+

= −10. The threshold for active harm is displayed; in (a) DemParity

causes active harm while in (b) it does not. EqOpt and MaxUtil never cause active harm.

figure, the top panel corresponds to the average change in credit scores for each group under
different loaning rates β; the bottom panels shows the corresponding total utility U (summed
over both groups and weighted by group population sizes) for the bank.

Figure 2.6 highlights that the position of the utility optima in the lower panel determines
the loan (selection) rates. In this specific instance, the utility and change ratios are fairly
close, u−

u+
= −4, and c−

c+
= −2, meaning that the bank’s profit motivations align with

individual outcomes to some extent. Here, we can see that EqOpt loans much closer to
optimal than DemParity, similar to the setting suggested by Corollary 2.3.2.

Although one might hope for decisions made under fairness constraints to positively affect
the black group, we observe the opposite behavior. The MaxUtil policy (solid orange line)
and the EqOpt policy result in similar expected credit score change for the black group.
However, DemParity (dashed green line) causes a negative expected credit score change in
the black group, corresponding to active harm. For the white group, the bank utility curve
has almost the same shape under the fairness criteria as it does under MaxUtil, the main
difference being that fairness criteria lowers the total expected profit from this group.

This behavior stems from a discrepancy in the outcome and profit curves for each popula-
tion. While incentives for the bank and positive results for individuals are somewhat aligned
for the majority group, under fairness constraints, they are more heavily misaligned in the
minority group, as seen in graphs (left) in Figure 2.6. We remark that in other settings
where the unconstrained profit maximization is misaligned with individual outcomes (e.g.,
when u−

u+
= −10), fairness criteria may perform more favorably for the minority group by

pulling the utility curve into a shape consistent with the outcome curve.
By analyzing the resulting affects of MaxUtil, DemParity, and EqOpt on actual credit
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score lending data, we show the applicability of our model to real-world applications. In
particular, some results shown in Section 2.3 hold empirically for the FICO TransUnion
TransRisk scores.
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Figure 2.6: The outcome and utility curves are plotted for both groups against the group
selection rates. The relative positions of the utility maxima determine the position of the
decision rule thresholds. We hold u−

u+
= −4 as fixed.
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2.8 Discussion

In this chapter, we presented a model of the welfare impact of a decision rule over one
time period. This simple model already suggests the importance of considering longer-
term outcomes in the discussion of “fair” machine learning.3 Without a careful model of
delayed outcomes, we cannot foresee the impact a fairness criterion would have if enforced
as a constraint on a classification system. However, if such an accurate outcome model
is available, we showed that there are more direct ways to optimize for positive outcomes
than via existing fairness criteria. We outlined such an outcome-based solution in Section
2.4. Specifically, in the credit setting, the outcome-based solution corresponds to giving out
more loans to the protected group in a way that reduces profit for the bank compared to
unconstrained profit maximization, but avoids loaning to those who are unlikely to benefit,
resulting in a maximally improved group average credit score. The extent to which such a
solution could form the basis of successful regulation depends on the accuracy of the available
outcome model.

This raises the question if our model of outcomes is rich enough to faithfully capture
realistic phenomena. By focusing on the impact that selection has on individuals at a given
score, we model the effects for those not selected as zero-mean. For example, not getting
a loan in our model has no negative effect on the credit score of an individual.4 This does
not mean that wrongful rejection (i.e., a false negative) has no visible manifestation in our
model. If a classifier has a higher false negative rate in one group than in another, we expect
the classifier to increase the disparity between the two groups (under natural assumptions).
In other words, in our outcome-based model, the harm of denied opportunity manifests as
growing disparity between the groups. The cost of a false negative could also be incorporated
directly into the outcome-based model by a simple modification (see Footnote 1). This
may be fitting in some applications where the immediate impact of a false negative to the
individual is not zero-mean, but significantly reduces their future success probability.

In essence, the formalism we propose requires us to understand the two-variable causal
mechanism that translates decisions to outcomes. This can be seen as relaxing the require-
ments compared with recent work on avoiding discrimination through causal reasoning that
often required stronger assumptions [Kusner et al., 2017, Nabi and Shpitser, 2017, Kilbertus
et al., 2017]. In particular, these works required knowledge of how sensitive attributes (such
as gender, race, or proxies thereof) causally relate to various other variables in the data.
Our model avoids the delicate modeling step involving the sensitive attribute, and instead
focuses on an arguably more tangible economic mechanism. Nonetheless, depending on the
application, such an understanding might necessitate greater domain knowledge and addi-
tional research into the specifics of the application. This is consistent with much scholarship

3Follow up work by D’Amour et al. [2020] and Williams and Kolter [2019] have also examined the equilib-
rium behavior of the presented model, via simulations and theoretical analysis under structural assumptions,
respectively.

4In reality, a denied credit inquiry may lower one’s credit score, but the effect is small compared to a
default event.
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that points to the context-sensitive nature of fairness in machine learning.

2.9 Omitted proofs

Optimality of Threshold Policies

Proof of Lemma 2.5.1

We begin with the first statement of the lemma. Suppose τj ∼=πj
τ ′j . Then there exists a set

S ⊂ X such that πj(x) = 0 for all x ∈ S, and for all x /∈ S, τj(x) = τ ′j (x). Thus,

rπ(τj)− rπj
(τ ′j ) =

∑
x∈X

πj(x)(τj(x)− τ ′j (x))

=
∑
x∈S

πj(x)(τj(x)− τ ′j (x)) = 0 .

Conversely, suppose that rπj
(τj) = rπj

(τ ′j ). Let τj = τc,γ and τ ′j = τc′,γ′ as in Definition 2.5.1.
We now have the following cases:

1. Case 1: c = c′. Then τj(x) = τ ′j (x) for all x ∈ X − {c}. Hence,

0 = rπ(τj)− rπj
(τ ′j ) = π(x)(τj(c)− τ ′j (c)) .

This implies that either τj(c) = τ ′j (c), and thus τj(x) = τ ′j (x) for all x ∈ X , or otherwise
π(c) = 0, in which case we still have τj ∼=πj

τ ′j (since the two policies agree every outside
the set {c}).

2. Case 2: c 6= c′. We assume assume without loss of generality that c′ < c ≤ C.
Since the policies τc′,1 and τc′+1,0 are identity for c′ < C, we may also assume without
loss of generality that γ′ ∈ [0, 1). Thus for all x ∈ S := {c′, c′ + 1, . . . , C}, we have
τ ′j (x) < τj(x). This implies that

0 = rπ(τj)− rπj
(τ ′j )

=
∑
x∈S

πj(x)(τj(x)− τ ′j (x))

≥ min
x∈S

(τj(c)− τ ′j (x)) ·
∑
x∈S

π(x) .

Since minx∈S(τj(c)− τ ′j (x)) > 0, it follows that
∑

x∈S πj(x) = 0, whence τj ∼=πj
τ ′j .

Next, we show that rπ is a bijection from Tthresh(π)→ [0, 1]. That rπ is injective follows
immediately from the fact if rπj

(τ ) = rπj
(τ ′j ), then τj ∼=πj

τ ′j . To show it is surjective, we
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exhibit for every β ∈ [0, 1] a threshold policy τc,γ for which rπj
(τc,γ) = β. We may assume

β < 1, since the all-ones policy has a selection rate of 1.
Recall the definition of the inverse CDF

Qj(β) := argmax{c :
C∑
x=c

π(x) > β} .

Since β < 1, Qj(β) ≤ C. Let β+ =
∑C

x=Qj(β) π(x), and let β− =
∑C

x=Qj(β)+1 π(x). Note

that by definition, we have β− ≤ β < β+, and β+ − β− = π(Qj(β)). Hence, if we define

γ = β−β−
β+−β− , we have

rπj
(τQj(β),γ) = π(Qj(β))γ +

C∑
x=Qj(β)+1

π(x) = β− + (β+ − β−)γ = β− + β − β− = β .

Proof of Lemma 2.5.4

Given τ ∈ [0, 1]C , we define the normal cone at τ as NC(τ ) := ConicalHull{z : τ + z ∈
[0, 1]C}. We can describe NC(τ ) explicitly as:

NC(τ ) := {z ∈ RC : zi ≤ 0 if τi = 0, zi ≥ 0 if τi = 1} .

Immediately from the above definition, we have the following useful identity, which is that
for any vector g ∈ RC ,

〈g, z〉 ≤ 0 ∀z ∈ NC(τ ), if and only if ∀x ∈ X ,


τ (x) = 0 g(x) < 0

τ (x) = 1 g(x) > 0

τ (x) ∈ [0, 1] g(x) = 0

. (2.21)

Now consider the optimization problem (2.11). By the first order KKT conditions, we

know that for any optimizer τ∗ of the above objective, there exists some λ̂ ∈ R such that,
for all z ∈ NC(τ∗)

〈z,v ◦ π + λ̂π ◦w〉 ≤ 0 .

By (2.21), we must have that

τ∗(x) =


0 π(x)(v(x) + λ̂w(x)) < 0

1 π(x)(v(x) + λ̂w(x)) > 0

∈ [0, 1] π(x)(v(x) + λ̂w(x)) = 0

.

Now τ∗(x) is not necessarily a threshold policy. To conclude the theorem, it suffices to
exhibit a threshold policy τ̃∗ such that τ∗(x) ∼=π τ̃∗. (Note that τ̃∗(x) will also be feasible
for the constraint, and have the same objective value; hence τ̃∗ will be optimal as well.)
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Given τ∗ and λ̂, let c∗ = min{c ∈ X : v(x) + λ̂w(x) ≥ 0}. If either (a) w(x) = 0 for
all x ∈ X and v(x) is strictly increasing or (b) v(x)/w(x) is strictly increasing, then the
modified policy

τ̃∗(x) =


0 x < c∗

τ∗(x) x = c∗

1 x > c∗

,

is a threshold policy, and τ∗(x) ∼=π τ̃∗. Moreover, 〈w, τ̃∗〉 = 〈w, τ̃∗〉 and 〈π, τ̃∗〉 = 〈π, τ̃∗〉,
which implies that τ̃∗ is an optimal policy for the objective in Lemma 2.5.4.

Proof of Lemma 2.5.5

We shall prove

∂+

(
πj ◦ r−1

πj
(β)
)

= eQj(β) , (2.22)

where the derivative is with respect to β. The computation of the left-derivative is analogous.
Since we are concerned with right-derivatives, we shall take β ∈ [0, 1). Since πj ◦ r−1

πj
(β) does

not depend on the choice of representative for r−1
πj

, we can choose a canonical representation

for r−1
πj

. In Section 2.9, we saw that the threshold policy τQj(β),γ(β) had acceptance rate β,
where we had defined

β+ =
C∑

x=Qj(β)

π(x) and β− =
C∑

x=Qj(β)+1

π(x) , (2.23)

γ(β) =
β − β−
β+ − β−

. (2.24)

Note then that for each x, τQj(β),γ(β)(x) is piece-wise linear, and thus admits left and right
derivatives. We first claim that

∀x ∈ X \ {Qj(β)}, ∂+τQj(β),γ(β)(x) = 0 . (2.25)

To see this, note that Qj(β) is right continuous, so for all ε sufficiently small, Qj(β + ε) =
Qj(β). Hence, for all ε sufficiently small and all x 6= Q(β), we have τQj(β+ε),γ(β+ε)(x) =
τQj(β+ε),γ(β+ε)(x), as needed. Thus, Equation (2.25) implies that ∂+πj ◦ r−1

πj
(β) is supported

on x = Qj(β), and hence

∂+πj ◦ r−1
πj

(β) = ∂+πj(x)τQj(β),γ(β)(x)
∣∣
x=Qj(β)

· eQj(β) .
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To conclude, we must show that ∂+πj(x)τQj(β),γ(β)(x)
∣∣
x=Qj(β)

= 1. To show this, we have

1 = ∂+(β)

= ∂+(rπj
(τQj(β),γ(β))) since rπj

(τQj(β),γ(β)) = β ∀β ∈ [0, 1)

= ∂+

(∑
x∈X

π(x) · τQj(β),γ(β)(x)

)
= ∂+π(x) · τQj(β),γ(β)(x)

∣∣
x=Qj(β)

, as needed.

Characterization of Fairness Solutions

Derivative Computation for EqOpt

In this section, we prove Lemma 2.6, which we recall below. Suppose that w(x) > 0 for
all x. Then the function

T
j,wj

(β) := 〈r−1
πj

(β),πj ◦wj〉

is a bijection from [0, 1] to [0, 〈πj,w〉]. We will prove Lemma 2.6 in tandem with the
following derivative computation which we applied in the proof of Theorem 2.6.2.

Lemma 2.9.1. The function

Uj(t;wj) := Uj
(
r−1
πj

(
T−1

j,wj
(t)
))

is concave in t and has left and right derivatives

∂+Uj(t;wj) =
u(Qj(T

−1
j,wj

(t)))

wj(Qj(T−1
j,wj

(t)))
and ∂−Uj(t;wj) =

u(Q+
j (T−1

j,wj
(t)))

wj(Q
+
j (T−1

j,wj
(t)))

.

Proof of Lemmas 2.6 and 2.9.1. Consider a β ∈ [0, 1]. Then, πj ◦ r−1
πj

(β) is continuous and
left and right differentiable by Lemma 2.5.5, and its left and right derivatives are indicator
vectors eQj(β) and eQ+

j (β), respectively. Consequently, β 7→ 〈wj,πj ◦r−1
πj

(β)〉 has left and right

derivatives wj(Q(β)) and wj(Q
+(β)), respectively; both of which are both strictly positive

by the assumption w(x) > 0. Hence, T
j,wj

(β) = 〈wj,πj ◦ r−1
πj

(β)〉 is strictly increasing in β,
and so the map is injective. It is also surjective because β = 0 induces the policy τj = 0
and β = 1 induces the policy τj = 1 (up to πj-measure zero). Hence, T

j,wj
(β) is an order

preserving bijection with left- and right-derivatives, and we can compute the left and right
derivatives of its inverse as follows:

∂+T
−1
j,wj

(t) =
1

∂+Tj,wj
(β)
∣∣
β=T−1

j,wj
(t)

=
1

wj(Qj(T−1
j,wj

(t)))
,
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and similarly, ∂−T
−1
j,wj

(t) = 1
wj(Q+(T−1

j,wj
(t)))

. Then we can compute that

∂+Uj(rπj
(T−1

j,wj
(t))) = ∂+U(rπj

(β))
∣∣
β=T−1

j,wj
(t))
· ∂+Tj,wj

(sup(t))

=
u(Qj(T

−1
j,wj

(t)))

wj(Qj(T−1
j,wj

(t)))
.

and similarly ∂−Uj(rπj
(T

j,wj
(t))) =

U(Q+
j (T−1

j,wj
(t)))

wj(Q
+
j (T−1

j,wj
(t)))

. One can verify that for all t1 < t2, one

has that ∂+Uj(rπj
(T−1

j,wj
(t1))) ≥ ∂−Uj(rπj

(T−1
j,wj

(t2))), and that for all t, ∂+Uj(rπj
(T−1

j,wj
(t))) ≤

∂−Uj(rπj
(T−1

j,wj
(t))). These facts establish that the mapping t 7→ Uj(rπj

(T−1
j,wj

(t))) is concave.

Proofs of Main Results

We remark that the proofs in this section rely crucially on the characterizations of the
optimal fairness-constrained policies developed in Section 2.6. We first define the notion of
CDF domination, which is referred to in a few of the proofs. Intuitively, it means that for
any score, the fraction of group B above this is higher than that for group A. It is realistic to
assume this if we keep with our convention that group A is the disadvantaged group relative
to group B.

Definition 2.9.1 (CDF domination). πA is said to be dominated by πB if ∀a ≥ 1,
∑

x>a πA <∑
x>a πB. We denote this as πA ≺ πB.

Frequently, we shall use the following lemma:

Lemma 2.9.2. Suppose that πA ≺ πB. Then, for all β > 0, it holds that QA(β) ≤ QB(β)
and u(QA(β)) ≤ u(QA(β))

Proof. The fact that QA(β) ≤ QB(β) follows directly from the definition of monotonicty of
u implies that u(QA(β)) ≤ u(QB(β)).

Proof of Proposition 2.3.1

The MaxUtil policy for group j solves the optimization

max
τj∈[0,1]C

Uj(τj) = max
βj∈[0,1]

Uj(r−1
πj

(βj)) .

Computing left and right derivatives of this objective yields

∂+Uj(r−1
πj

(βj)) = u(Qj(β)), ∂−Uj(r−1
πj

(βj)) = u(Q+
j (β)) .



CHAPTER 2. DELAYED IMPACT OF FAIR MACHINE LEARNING 34

By concavity, solutions β∗ satisfy

β < β∗ if u(Qj(β)) > 0 ,

β > β∗ if u(Q+
j (β)) < 0 .

(2.26)

Therefore, we conclude that the MaxUtil policy loans only to scores x s.t. u(x) > 0, which
implies ∆(x) > 0 for all scores loaned to. Therefore we must have that 0 ≤ ∆µMaxUtil. By
definition ∆µMaxUtil ≤ ∆µ∗.

Proof of Corollary 2.3.2

We begin with proving part (a), which gives conditions under which DemParity cases relative
improvement. Recall that β is the largest selection rate for which U(β) = U(βMaxUtil

A ).
First, we derive a condition which bounds the selection rate βDemParity

A from below. Fix an
acceptance rate β such that βMaxUtil

A < β < min{βMaxUtil
B , β}. By Theorem 2.6.1, we have

that DemParity selects to group A with rate higher than β as long as

gA ≤ g1 :=
1

1− u(QA(β))
u(QB(β))

.

By (2.26) and the monotonicity of u, u(QA(β)) < 0 and u(QB(β)) > 0, so 0 < g1 < 1.
Next, we derive a condition which bounds the selection rate βDemParity

A from above. First,
consider the case that βMaxUtil

B < β, and fix β′ such that βMaxUtil
B < β′ < β. Then DemParity

selects group A at a rate βA < β′ for any proportion gA. This follows from applying The-
orem 2.6.1 since we have that u(Q+

A (β′)) < 0 and u(Q+
B (β′)) < 0 by (2.26) and the mono-

tonicity of u.
Instead, in the case that βMaxUtil

B > β, fix β′ such that β < β′ < βMaxUtil
B . Then DemParity

selects group A at a rate less than β′ as long as

gA ≥ g0 :=
1

1− u(Q+
A (β′))

u(Q+
B (β′))

.

By (2.26) and the monotonicity of u, 0 < g0 < g1. Thus for gA ∈ [g0, g1], the DemParity

selection rate for group A is bounded between β and β′, and thus DemParity results in
relative improvement.

Next, we prove part (b), which gives conditions under which EqOpt cases relative improve-
ment. First, we derive a condition which bounds the selection rate βEqOpt

A from below. Fix
an acceptance rate β such that βMaxUtil

A < β and βMaxUtil
B > G(A→B)(β). By Theorem 2.6.2,

EqOpt selects group A at a rate higher than β as long as

gA > g3 :=
1

1− 1
κ
· ρ(QB(G(A→B)(β)))

u(QB(G(A→B)(β)))

u(QA(β))
ρ(QA(β))

.
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By (2.26) and the monotonicity of u, u(QA(β)) < 0 and u(QB(G(A→B)(β))) > 0, so g3 > 0.
Next, we derive a condition which bounds the selection rate βEqOpt

A from above. First, con-
sider the case that there exists β′ such that β′ < β and βMaxUtil

B < G(A→B)(β′) . Then EqOpt

selects group A at a rate less than this β′ for any gA. This follows from Theorem 2.6.2 since
we have that u(Q+

A (β′)) < 0 and u(Q+
B (G(A→B)(β′))) < 0 by (2.26) and the monotonicity of

u.
In the other case, fix β′ such that β < β′ < β and βMaxUtil

B > G(A→B)(β′). By Theo-
rem 2.6.2, EqOpt selects group A at a rate lower than β′ as long as

gA > g2 :=
1

1− 1
κ
· ρ(Q+

B (G(A→B)(β′)))

u(Q+
B (G(A→B)(β′)))

u(Q+
A (β′))

ρ(Q+
A (β′))

.

By (2.26) and the monotonicity of u, 0 < g2 < g3. Thus for gA ∈ [g2, g3], the EqOpt

selection rate for group A is bounded between β and β′, and thus EqOpt results in relative
improvement.

Proof of Corollary 2.3.3

Recall our assumption that β > βMaxUtil
A and βMaxUtil

B > β. As argued in the above proof
of Corollary 2.3.2, by (2.26) and the monotonicity of u, u(QA(β)) < 0 and u(QB(β)) > 0.
Applying Theorem 2.6.1, DemParity selects at a higher rate than β for any population
proportion gA ≤ g0, where g0 = 1/(1 − u(QA(β))

u(QB(β))
) ∈ (0, 1). In particular, if β = β0, which we

defined as the harm threshold (i.e. ∆µA(r−1
πA

(β0)) = 0 and ∆µA is decreasing at β0), then

by the concavity of ∆µA, we have that ∆µA(r−1
πA

(βDemParity
A )) < 0, that is, DemParity causes

active harm.

Proof of Corollary 2.3.4

By Theorem 2.6.2, EqOpt selects at a higher rate than β for any population proportion gA ≤
g0, where g0 = 1/(1− 1

κ
· ρ(QB(G(A→B)(β)))

u(QB(G(A→B)(β)))

u(QA(β))
ρ(QA(β))

). Using our assumptions βMaxUtil
B > G(A→B)(β)

and β > βMaxUtil
A , we have that u(QB(G(A→B)(β))) > 0 and u(QA(β)) < 0, by (2.26) and

the monotonicity of u. This verifies that g0 ∈ (0, 1). In particular, if β = β0, then by the
concavity of ∆µA, we have that ∆µA(r−1

πA
(βEqOpt

A )) < 0, that is, EqOpt causes active harm.

Proof of Corollary 2.3.5

Applying Theorem 2.6.1, we have

−1− gA
gA

u(QA(β)) < u(QB(β)) =⇒ βDemParity > β .
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Applying Theorem 2.6.2, we have:

u(QB(G(A→B)(β))) · 〈ρ,πB〉
〈ρ,πA〉

· ρ(Q+
A (β))

ρ(Q+
B (G(A→B)(β)))

< −1− gA
gA

u(Q+
A (β)) =⇒ βEqOpt < β .

By Corollaries 2.3.3 and 2.3.4, choosing gA < g2 := 1/(1 − u(QA(β))
u(QB(β))

) and gA > g1 := 1/(1 −
1
κ
· ρ(Q+

B (G(A→B)(β)))

u(Q+
B (G(A→B)(β)))

u(Q+
A (β))

ρ(Q+
A (β))

) satisfies the above.

It remains to check that g1 < g2. Since we assumed β >
∑

x>µA
πA, we may apply

Lemma 2.9.3 to verify this.
Thus we indeed have sufficient conditions for βDemParity > β > βEqOpt. In particular, if

β = β0, then by the concavity of ∆µA, we have that ∆µA(r−1
πA

(βEqOpt
A )) > 0, that is, EqOpt

causes improvement, and ∆µA(r−1
πA

(βDemParity
A )) < 0, that is, DemParity causes active harm.

Lastly, because βDemParity > βEqOpt, it is always true that ∆µA(r−1
πA

(βDemParity
A )) > 0 =⇒

∆µA(r−1
πA

(βEqOpt
A )) > 0, using the concavity of the outcome curve.

Lemma 2.9.3 (Comparison of DemParity and EqOpt selection rates). Fix β ∈ [0, 1]. Suppose
πA,πB are identical up to a translation with µA < µB. Also assume ρ(x) is affine in x.

Denote κ = 〈ρ,πB〉
〈ρ,πA〉

. Then,

β >
∑
x>µA

πA

implies u(QB(G(A→B)(β))) · κ · ρ(QA(β))

ρ(QB(G(A→B)(β)))
< u(QB(β)).

Proof. If we have β >
∑

x>µA
πA, by lemma 2.9.4, we must also have µB

µA
< QB(β0)

QA(β0)
. This

implies κ =
∑

x πB(x)ρ(x)∑
x πA(x)ρ(x)

< ρ(QB(β))
ρ(QA(β0))

by linearity of expectation and linearity of ρ. Therefore,

κ · ρ(QA(β))

ρ(QB(β0))
< 1 (2.27)

Further, using G(A→B)(β) > β from lemma 2.9.4 and the fact that u(x)
ρ(x)

is increasing in

x, we have u(QB(G(A→B)(β)))

ρ(QB(G(A→B)(β)))
< u(QB(β))

ρ(QB(β))
. Therefore, u(QB(G(A→B)(β))) · κ · ρ(QA(β0))

ρ(QB(G(A→B)(β0)))
<

κ · u(QB(β))
ρ(QB(β))

· ρ(QA(β)) < u(QB(β)) where the last inequality follows from (2.27).

We use the following technical lemma in the proof of the above lemma.

Lemma 2.9.4. If πA,πB that are identical up to a translation with µA < µB, then

G(β) > β ∀ β , (2.28)

β >
∑
x>µ

πA =⇒ µB

µA
<

QB(β)

QA(β)
. (2.29)
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Proof. For (2.28), observe that TPRA = ρ(µA) < TPRB = ρ(µB). For any β, we can
write QB(β) = µB + c and QA(β) = µA + c for some c, since πA,πB that are identical
up to translation by µA − µB. Thus, by computation, we can see that for Q(β) < µ,
∂+G

(A→B)(β) > 1 and for Q(β) < µ, ∂+G
(A→B)(β) < 1. Since G(A→B) is monotonically

increasing on [0, 1], we must have G(A→B)(β) > β for every β ∈ [0, 1].
For (2.29), we have β >

∑
x>µ πA, we can again write QB(β) = µB−c and QA(β) = µA−c,

for some c > 0. Then it is clear than we have µB

µA
< QB(β)

QA(β)
.

Proof of Corollary 2.3.6

Proof. βMaxUtil
A < βMaxUtil

B implies gA · u(QA(βMaxUtil
A )) + gB · u(QB(βMaxUtil

A )) > 0, which by
Theorem 2.6.1, implies βMaxUtil

A < βDemParity
A .

TPRA(τ MaxUtil) > TPRB(τ MaxUtil) implies G(A→B)(βMaxUtil
A ) > βMaxUtil

B and so
u(QB(G(A→B)(βMaxUtil

A ))) < 0. Therefore by Theorem 2.6.2, we have that βMaxUtil
A >

βEqOpt
A .

We now give a very simple example of πA ≺ πB where Theorem 3.5 holds. The construc-
tion of the example exemplifies the more general idea of using large in-group inequality in
group A to skew the true positive rate at MaxUtil, making TPRA(τ MaxUtil) > TPRB(τ MaxUtil).

Example 2.9.1 (EqOpt causes relative harm). Let C = 6, and let the utility function be
such that u(4) = 0. Suppose πA(5) = 1− 2ε,πA(1) = 2ε and πB(5) = 1− ε,πB(3) = ε.

We can easily check that πA ≺ πB. However, for any ε ∈ (0, 1/4), we have that

TPRB(τ MaxUtil) = 5(1−ε)
5(1−ε)+3ε

< TPRA(τ MaxUtil) = 5(1−2ε)
5(1−2ε)+2ε

.

Proof of Proposition 2.4.1

Denote the upper quantile function under π̂ as Q̂. Since π̂ ≺ π, we have Q̂(β) ≤ Q(β). The
conclusion follows for MaxUtil and DemParity from Theorem 2.6.1 by the monotonicity of
u.

If we have that TPRA(τ ) > T̂PRA(τ ) ∀ τ , that is, the true TPR dominates estimated
TPR, the conclusion for EqOpt follows from Theorem 2.6.2, by the same argument as in the
proof of Corollary 2.3.6.

Proof of Proposition 2.4.2

By Proposition 2.5.6, β∗ = argmaxβ ∆µA(β) exists and is unique. β0 = max{β ∈ [βMaxUtil
A , 1] :

U(βMaxUtil
A ) − UA(β) ≤ δ} which exists and is unique, by the continuity of ∆µA and Propo-

sition 2.5.6.
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Chapter 3

Disparate Equilibria of Algorithmic
Decision Making

3.1 Introduction

In the last chapter, we found that popular definitions of algorithmic fairness do not take into
account longer-term impact, even in one time period. In this chapter, we examine how the
long-term effectiveness of algorithmic decision making depends on societal level dynamics.
On one hand, deployed decision making models are updated periodically to assure high
performance on the target distribution. On the other hand, deployed models can reshape the
underlying populations thus biasing how the model is updated in the future. This complex
interplay between algorithmic decisions, individual-level responses, and exogeneous societal
forces can lead to pernicious long term effects that reinforce or even exacerbate existing
social injustices [Crawford, 2017, Whittaker et al., 2018]. Harmful feedback loops have
been observed in automated decision making in several contexts including recommendation
systems [Pariser, 2011, Conover et al., 2011, Chaney et al., 2018], predictive policing [Ensign
et al., 2018], admission decisions [Lowry and Macpherson, 1988, Barocas and Selbst, 2016],
and credit markets [Fuster et al., 2022, Aneja and Avenancio-Leon, 2019]. These examples
underscore the need to better understand the dynamics of algorithmic decision making, in
order to align decisions made about people with desirable long-term societal outcomes.

Automated decision-making algorithms rely on observable features to predict some vari-
able of interest. In a setting such as hiring, decision making models assess features such
as scores on standardized tests, resume, and recommendation letters, to identify individuals
that are qualified for the job. However, equally qualified people from different demographic
groups tend to have different features, due to implicit societal biases (e.g., letter writers
describe competent men and women differently), gaps in resources (e.g., affluent students
can afford different extra-curriculars) and even distinct tendencies in self-description (e.g.,
gender can be inferred from biographies [De-Arteaga et al., 2019]). Therefore, a model’s
ability to identify qualified individuals can widely vary across different groups.
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The deployed model’s ability to identify qualified members of a group affects an indi-
vidual’s incentive to invest in their qualification. This is because one’s decision to acquire
qualification—not observed directly by the algorithm—comes at a cost. Moreover, individ-
uals that are identified by the model as qualified (whether or not they are truly qualified)
receive a reward. Consequently, people invest in acquiring qualifications only when their
expected reward from the assessment model beats the investment cost.

Rational individuals are aware that upon investing they would develop features that are
similar to those of qualified individuals in their group, so they gauge their own expected
reward from investing by the observed rewards of their group.1 If qualified people from one
group are not duly identified and rewarded, fewer people from that group are incentivized
to invest in qualifications in the future. This reduces the overall fraction of qualified people
in that group, or the qualification rate. As the assessment model is updated to maximize
overall institutional profit on the new population distribution, it may perform even more
poorly on qualified individuals from a group with relatively low qualification rate, further
reducing the group’s incentive to invest.

To understand and mitigate the challenges to long-term welfare and fairness posed by
such dynamics, we propose a formal model of sequential learning and decision-making where
at each round a new batch of individuals rationally decide whether to invest in acquiring
qualification and the institution updates its assessment rule (a classifier) for assessing and
thus rewarding individuals. We study the long-term behavior of these dynamics by char-
acterizing their equilibria and comparing these equilibria based on several metrics of social
desirability. Our model can be seen as an extension of Coate and Loury [1993]’s widely
cited work to explicitly address heterogeneity in observed features across groups. While
Coate and Loury [1993]’s model focuses on a single-dimensional feature space, i.e., scores,
and assessment rules that act as thresholds on the score, our model considers general, pos-
sibly high-dimensional, feature spaces and arbitrary assessment rules, which are typical in
high-stakes domains such as hiring and admissions.

We find that two major obstacles to obtaining desirable long-term outcomes are hetero-
geneity across groups and lack of realizability within a group. Realizability—the existence
of a (near) perfect way to assess qualifications of individuals from visible features—leads to
equilibria that are (near) optimal on several metrics, such as the resulting qualification rates,
their uniformity across groups, and the institution’s utility. We study (near) realizability
and the lack thereof in Sections 3.3 and 3.5 respectively. Heterogeneity across groups, i.e.,
lack of a single assessment rule that perfectly assesses individuals from all groups, necessi-
tates tradeoffs in the quality of equilibria across different groups. We study heterogeneity,
as well as interventions for mitigating its negative effects, in Section 3.4. In Section 3.6, we
empirically study a more challenging setting where the groups are heterogeneous as well as
highly non-realizable, via simulations with a FICO credit score dataset [US Federal Reserve,
2007] that has been widely used for illustration in the algorithmic fairness literature.

Interventions. To mitigate the aforementioned tradeoffs, we consider two common inter-

1Strong group identification effects can also be seen in empirical studies [Hoxby and Avery, 2013].
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ventions: decoupling the decision policy by group and subsidizing the cost of investment,
especially when the cost distribution inherently differs by group. Our model of dynamics
sheds a different light on these interventions, complementary to previous work. We show
that decoupling [Dwork et al., 2018]—using group-specific assessment rules—achieves opti-
mal outcomes when the problem is realizable within each group, but can significantly hurt
certain groups when the problem is non-realizable and there exist multiple equilibria after
decoupling. In particular, decoupling can hurt a group with low initial qualification rate if
the utility-maximizing assessment rule for a single group is more disincentivizing to indi-
viduals than a joint assessment rule, thereby reinforcing the status quo and preventing the
group from reaching an equilibrium with higher qualification rate.

We also study subsidizing individuals’ investment cost (e.g. subsidizing tuition for a top
high school), especially when the cost distribution is varied across different groups. We find
that these subsidies increase the qualification rate of the disadvantaged group at equilibrium,
regardless of realizability. We note that our subsidies, which affect the qualification of
individuals directly, are different than those studied under strategic manipulation [Hu et al.,
2019] that involve subsidizing individual’s cost to manipulate their features without changing
the underlying qualification (e.g. subsidizing SAT exam preparation without changing the
student’s qualification for college) and could have adverse effects on disadvantaged groups.
Instead, our theoretical findings resonates with extensive empirical work in economics on
the effectiveness of subsidizing opportunities for a disadvantaged group to directly improve
their outcomes, such as moving to better neighborhoods to access better educational and
environmental resources [Chetty et al., 2016].

Related work. The work presented in this chapter is related to a rich body of work on
algorithmic fairness in dynamic settings [Liu et al., 2018, Hu and Chen, 2018a, Hashimoto
et al., 2018, Zhang et al., 2019, Mouzannar et al., 2019], strategic classification [Hu et al.,
2019, Milli et al., 2019, Kleinberg and Raghavan, 2019], as well as statistical discrimination
in economics [Arrow, 1973, Coate and Loury, 1993, Arrow, 1998]. We present a detailed
discussion of the similarities and differences in Section 3.7.

3.2 A Dynamic Model of Algorithmic Decision

Making

In this section we introduce a model of automated decision making with feedback. We
first introduce the notation used throughout the paper and then describe the details of the
interactions between individuals and an institution, and the resulting dynamical system.

Notation

We consider an instance space X , where X ∈ X denotes the features of an individual that
are observable by the institution. We also consider a label space Y = {0, 1} where Y = 1
indicates that an individual has the qualifications desired by the institution and Y = 0
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Y

X

y
A

Figure 3.1: Causal graph for the individual investment model. The individual intervenes
on the node for qualification, Y—this corresponds to do(Y = y))—which then affects the
distribution of their features X, depending on the group A.

otherwise. We denote the set of all protected/group attributes by A where A ∈ A denotes
an individual’s protected attribute. We denote the group proportions by na := P(A = a) for
all a ∈ A. Furthermore, we denote the qualification rate in group a ∈ A by πa := P(Y = 1 |
A = a). An individual from group A = a who has acquired label Y = y (to become qualified
or not)2 receives features X distributed according to P(X = x | Y = y, A = a). This is
illustrated in Figure 3.1.

We also consider a set of parameters Θ that are used for assessing qualifications. We
use Ŷθ ∈ Y parameterized by θ ∈ Θ to denote the assessed qualification of an individual.
We assume that Ŷθ only depends on the features X, which may or may not contain A or
its proxies. In later sections, we will also discuss interventions that allow us to use Ŷθ that
explicitly depends on group membership A. We respectively define the true positive rate and
false positive rate of θ ∈ Θ on group a ∈ A by

TPRa(θ) = P(Ŷθ = 1 | Y = 1, A = a), and

FPRa(θ) = P(Ŷθ = 1 | Y = 0, A = a).

Model Description

Individual’s Rational Response We consider a setting where an individual decides
whether to acquire qualifications, that is, to invest in obtaining label Y = 1, prior to ob-
serving their feature X. The decision to acquire qualification depends on the qualification
assessment rule θ ∈ Θ currently implemented by the institution. We will characterize the
groups’ qualification rates as the best-response to θ by function πbr(θ) = (πbra (θ))a∈A.

To get label Y = 1 an individual has to pay a cost C > 0. In any group, C is distributed
randomly according to the cumulative distribution function (CDF), G(·).3 After deciding

2This can be seen as the individual performing a do-intervention on Y [see e.g., Pearl, 2009]. Thus we
may write do(Y = 1) for making the decision to acquire qualifications. Our model (Figure 3.1) assumes that
Y is not the child of any node, so we have P(· | do(Y = y)) = P(· | Y = y). Hence we drop the do-operator
whenever we condition on Y .

3For the rest of this work, unless otherwise stated, we assume that the distribution of costs, G, is the
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whether to acquire qualifications, an individual gets features X and is assessed by θ. An
individual (from any group and regardless of actual qualification) receives a payoff of w > 0 if
they are assessed to be qualified and payoff of 0 otherwise. Therefore, the expected utility an
individual from group a receives from acquiring qualification Y = 1 is wP[Ŷθ = 1|Y = 1, A =
a] − C = wTPRa(θ) − C whereas the expected utility for not acquiring the qualification is
wP[Ŷθ = 1|Y = 0, A = a] = wFPRa(θ). Given the qualification assessment parameter θ ∈ Θ,
an individual from group a acquires qualification if and only if the benefit outweighs the
costs, that is

w(TPRa(θ)− FPRa(θ)) > C. (3.1)

Then each group’s qualification rate as a function of a qualification assessment parameter
θ is

πbra (θ) := P(Y = 1 | A = a) = P(C < w(TPRa(θ)− FPRa(θ)))

= G(w(TPRa(θ)− FPRa(θ))).

Institution’s Rational Response We consider an institution that has to choose a qualifi-
cation assessment parameter for accepting individuals to maximize its utility. We assume
that the institution gains pTP > 0 for accepting a qualified individual and loses cFP > 0 for
accepting an unqualified individual. Then the expected utility of the institution for applying
parameter θ is

pTPP(Ŷθ = 1, Y = 1)− cFPP(Ŷθ = 1, Y = 0)

= pTP

∑
a∈A

TPRa(θ)πana −
∑
a∈A

cFPFPRa(θ)(1− πa)na.

This illustrates that the utility maximizing parameter is a function of π = (πa)a∈A, i.e., the
rate of qualification in each group. We denote this function by θbr(π), defined as follows:

θbr(π) := argmax
θ∈Θ

pTP

∑
a∈A

TPRa(θ)πana −
∑
a∈A

cFPFPRa(θ)(1− πa)na.

To ensure the above object (and the resulting dynamics) are well-defined, when multiple
parameters θ achieve the optimal utility we assume that θbr(π) is uniquely defined using a
fixed and well-defined tie-breaking function.

Throughout this paper we assume that the institution has exact knowledge of many
quantities such as TPRa(θ), FPRa(θ), and na. In a nutshell, we assume that we have infinitely
many samples from the underlying distributions. We discuss this further in Section 3.8, and
leave the finite sample version of these results to future work.

Although we choose not to focus on game-theoretical aspects in this work, we note that
our model can be thought of as a large game [Kalai, 2004] or a game with a continuum of
players [Schmeidler, 1973].

same for every group. In Section 3.4 and 3.6, we will consider the implications of having different cost
distributions by group.
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Dynamical System and Equilibria. We are primarily interested in the evolution of quali-
fication rate, π, over time. Given a current rate of qualification π the assessment parameter
used by the institution in the next step is θbr(π), which in turn leads to a qualification rate
of πbr(θbr(π)) in the next step. Therefore, we define a dynamical system for a given initial
state π(0) such that at time t we are in state π(t) = Φ(π(t− 1)), where Φ = πbr ◦ θbr.

We say that the aforementioned dynamical system is at equilibrium if π = Φ(π). Equiva-
lently, we are at an equilibrium if π = limn→∞Φn(π(0)) is well-defined for some π(0), where
Φn is an n-fold composition of Φ. We call such values of π equilibria, or equivalently, fixed
points of Φ.

In general, Φ may have multiple fixed points that demonstrate different characteristics.
We therefore compare the fixed points of Φ on several metrics of societal importance.

1. Stability: We say that an equilibrium π∗ is stable if there is a non-zero measure set of
initial states π(0) ∈ [0, 1] for which π∗ = limn→∞Φn(π(0)). In particular, if there exists a
neighborhood around π∗ such that all points converge to π∗ under the dynamics, we say
that π∗ is locally stable. As such, stable fixed points are robust to small perturbations in
the qualification rate, which can occur due to random measurement errors.

2. Qualification Rate of Group a: Recall that the qualification rate, πa, is the fraction of
individuals in group a who invested in qualifications. Since it is more desirable to have a
high qualification rate in each group, we may compare equilibria based on πa. We refer
to G(w) as the optimal qualification rate in group a, which is the maximum achievable
qualification rate corresponding to the perfect assessment rule.4

3. Balance: We may be interested in equilibria where the qualification rate is similar across
groups, that is, to prioritize equilibria with smaller maxa1,a2∈A |π∗a1

− π∗a2
|. When this

quantity is 0 we say that π∗ is fully balanced.

4. Institutional utility: We may compare equilibria based on their corresponding institution
utility.

Examples From the Real World

Let us instantiate our model in the setting of two important applications from the real world.

College Admissions Consider the college admission setting, where X corresponds to the
features that the college can observe, e.g., a candidate’s test scores and letters of recommen-
dation. Y indicates whether the candidate meets the qualifications required to succeed in the
program. C is the cost of investing in the qualifications, e.g., the money and opportunity cost
of studying or taking additional courses to obtain the required qualifications. A candidate

4If group a has a group-specific cost distribution, Ga, then we refer to Ga(w) as the optimal qualification
rate in group a.
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from group a will develop features from distribution P[X = x|Y = y, A = a], where y = 1
indicates a qualified candidate. The differences in the feature distribution between groups
can be attributed to several factors such as resources that are available to different groups,
e.g., letters of recommendations for qualified female and male candidates often emphasize
different traits. θ is the decision parameter used by the college, e.g., Ŷθ = 1 when the candi-
date has SAT score of > 1400 and an excellent recommendation letter. The college accepts
applicants by trading off between the utility gain, pTP, of admitting qualified candidates and
utility cost, cFP, of admitting an unqualified candidates. The candidate is incentivized to
acquire the qualifications for the college based on the long term benefit (described in Equa-
tion (3.1)) that depends on their expected gain w from completing a college degree and how
likely it is to be admitted to college for a qualified or unqualified member of the group the
candidate belongs to.

Hiring Consider the hiring setting, where X corresponds to the features that the firm can
observe, e.g., a candidate’s CV. Y indicates whether the applicant meets the qualifications
required by the firm, e.g., having the required knowledge and the ability to work in a team.
C is the cost of acquiring the qualifications required by the firm, e.g., the (monetary and
opportunity) cost of acquiring a college degree or working on a team project. Parameter
θ is the hiring parameter used by the firm, e.g., Ŷθ = 1 when the applicant has a software
engineering degree and two years of experience. The firm accepts candidates according to
utility maximization involving pTP, the profit from hiring a qualified candidate, and cFP,
the cost of hiring an unqualified candidate e.g., the loss in productivity or the the cost to
replace the employee. The candidate is incentivized to acquire the qualifications for the job
based on factors including their expected salary w and how likely it is to be hired by the
firm given how the firm has hired qualified or unqualified candidates from the group the
candidate belongs to (Eq. (3.1)).

We also consider a stylized example of lending in Section 3.6.

3.3 Importance of (Near) Realizability

We start our theoretical investigation of dynamic algorithmic decision making with the classi-
cal model of realizability. In the theory of machine learning, a distribution is called realizable
if there is a decision rule in the set Θ whose error on the distribution is 0. Analogously, we
call a setting realizable when there is a decision rule θopt ∈ Θ that perfectly classifies every
individual from every group, that is TPRa(θ

opt) = 1 and FPRa(θ
opt) = 0 for all a ∈ A.

Realizability is a widely used assumption and is the basis of seminal works such as Boost-
ing [Freund and Schapire, 1997]. At a high level, realizability corresponds to the assumption
that there is an unknown ground truth assessment rule, for example, in a hypothetical set-
ting where x includes all the information that is sufficient for assessing one’s qualification,
and the chosen set of decision rules is rich enough to contain it.
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In static realizable applications of machine learning, the goal is to (approximately) recover
θopt from data. We show that in the our dynamic setting, under realizability, the unique
non-zero equilibrium of Φ is where individuals respond to θopt. Furthermore, each group
attains their optimal qualification rate at this equilibrium.

Proposition 3.3.1 (Perfect classfication). If there exists θ ∈ Θ such that TPRa(θ) = 1 and
FPRa(θ) = 0 for all a ∈ A, then there is a unique non-zero equilibrium with π∗a = G(w) for
all a ∈ A.

While realizability is a common assumption in the theory of machine learning, it rarely
captures the subtleties that exist in automated decision making in practice. Next, we consider
a mild relaxation of realizability and consider a setting where a near-perfect decision rule θ ∈
Θ exists such that TPRa(θ) ≥ 1−ε and FPRa(θ) ≤ ε. As we show (and prove in Section 3.9),
when there is a single near-realizable group the main message of Proposition 3.3.1 remains
effectively the same. That is, all equilibria that are reachable from initial points that are
not too extreme approximately maximize the group’s qualification rate.

Theorem 3.3.2 (Equilibria under near-realizability). Let |A| = 1 and assume that pTP =
cFP = 1. Assume that for fixed ε ∈ (0, 1) , s ∈ (0, 1/2), G is LG-Lipschitz with property that
1− s ≥ G(w) ≥ s+ LGwε

s
, and there is θ ∈ Θ such that

TPR(θ) ≥ 1− ε and FPR(θ) ≤ ε.

Then for any initial investment π(0) ∈ [s, 1− s], π∗ = limn→∞Φn(π(0)) is such that

π∗ ≥ G(w(1− ε/s)).

A nice aspect of the above results is that the assumption of realizability or near-realizability
can be validated from the data. That is, the decision maker can compute whether there is
θ ∈ Θ such that TPR(θ) ≥ 1 − ε and FPR(θ) ≤ ε. If so, then the decision maker can rest
assured that the dynamical system is on the path towards achieving near optimal invest-
ment by the individuals. Another nice aspect of these results is the characterization of the
equilibria in terms of the CDF of the cost distribution. This allows us to use this framework
for studying interventions that change the cost function directly. One such intervention is
subsidizing the cost for individuals so that the cumulative distribution function of the cost,
given by G(x), is increased by a sufficient amount at every cost level x. The following corol-
lary, proved in Section 3.9, shows that under this kind of subsidy, the equilibria reached by
the dynamics will have higher qualification rate than any fixed point of the dynamics before
subsidy, as long as the initial points are not too extreme. As we are considering different
cost distribution functions in the following corollary, we denote the dynamics corresponding
to cost distribution function G as ΦG.
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Corollary 3.3.3 (Subsidizing the cost of investment). Let |A| = 1 and assume that pTP =
cFP = 1. Assume that for fixed ε ∈ (0, 1) , s ∈ (0, 1/2), G is LG-Lipschitz with property that
1− s ≥ G(w) ≥ s+ LGwε

s
, and there is θ ∈ Θ such that

TPR(θ) ≥ 1− ε and FPR(θ) ≤ ε.

Let π∗ > 0 be a fixed point of the dynamics ΦG. Suppose Ḡ is a strictly increasing, LḠ-
Lipschitz CDF such that 1− s ≥ Ḡ(x) ≥ s+ LḠwε

s
and Ḡ(x(1− ε/s)) ≥ G(x) for all x in the

domain of G. Then for any initial investment π(0) ∈ [s, 1 − s], there exists a π̄ ≥ π∗, such
that π̄ = limn→∞Φn

Ḡ
(π(0)).

3.4 Group Realizability

In this section, we investigate how the nature of equilibria evolves as the assumption of
realizability is relaxed to allow for heterogeneity across groups. Specifically, we consider
the case where there exists a perfect assessment rule for each group, but not when the
groups are combined. We call this “group-realizability”. Our results illustrate that without
realizability or near-realizability, the utility-maximizing assessment rule can be very sensitive
to the relative qualification rates in different groups, resulting in multiple equilibria, at which
groups may experience disparate outcomes.

In sections 3.4 and 3.4, we study group-realizability under two different and complemen-
tary settings. The first setting considers features that are drawn from a multivariate Gaussian
distribution and assumes that in each group the qualified individuals are perfectly separated
from unqualified ones by a group-specific hyperplane. This is a benign setting where no
group is inherently disadvantaged — group features and performance of assessment rules are
symmetric up to a reparameterization of the space. The second setting considers features
that are uniformly distributed scalar scores and assumes that qualified and unqualified in-
dividuals in a group are separated by a group-specific threshold, where one is higher than
the other. - This model captures the natural setting where the feature (score) and as-
sessment rules inherently favor one group, e.g., SAT scores are known to be skewed by race
[Card and Rothstein, 2007]. We use the aforementioned stylized settings to demonstrate the
salient characteristics of equilibria that one might anticipate under group-realizability. We
find that stable equilibria tend to favor one group or the other. This is especially surpris-
ing in the multivariate Gaussian case where the two groups are identical up to a change in
the representation of the space. We also study the existence of balanced equilibria, where
both groups acquire qualification at the same rate. We find that when balanced equilibria
exist they tend to be unstable, that is, no initial qualification rate (except for the balanced
equilibrium itself) will converge to the balanced equilibrium under the dynamics.

We consider two natural interventions in overcoming the challenges of group-realizability
as outlined above. As group-realizability poses even greater challenges when the costs of
investment are unequally distributed between groups, in Section 3.4 we consider the impact
of subsidizing the cost of acquiring qualification for one group. In Section 3.4, we consider
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Figure 3.2: Equilibria in the Multivariate Gaussian case (left) and the Uniform case (right)

the impact of decoupling, that is, we allow the institution to use different assessment rules
for different groups assuming the group attributes are available. This is in contrast to the
typical setting where institutions are constrained to using the same assessment rule across
all groups, which may be the case when data on the protected attribute is not available or
when the use of protected attributes for assessment is regulated.

Uniformly Distributed Scalar X

We consider X = [0, 1], the class of assessment paramters Θ = [0, 1], and assessment decision
Ŷh = 1{X > h} for all h ∈ Θ that represent all threshold decision policies. Consider two
groups a1, a2. Let X be a score that is uniformly distributed over [0, 1] where in group ai
those with score more than hi are qualified and those with score at most hi are unqualified.
This is depicted in Figure 3.2 (right). Formally,

P(X = x | Y = y, A = ai) =

{
1{x > hi}/(1− hi) for y = 1 and

1{x ≤ hi}/hi for y = 0
.

We make the following assumption to simplify notation.

Assumption 2. We assume na1 ·pTP = na2 ·cFP. We also assume that the cost for acquiring
qualifications is uniformly distributed on [0, 1] (i.e. G(c) = c) in both groups.5

5Our results also generalize to the setting where the CDF for the cost G : [0, 1] → [0, 1] is an arbitrary
strictly increasing function.



CHAPTER 3. DISPARATE EQUILIBRIA OF ALGORITHMIC DECISION MAKING48

We show that when w is in a certain range, there are two unbalanced stable equilibria
corresponding to assessment parameters h1 or h2, which respectively lead to the optimal
qualification rate for groups a1 or a2 but low qualification rate for the other group. There
is also a more balanced but unstable equilibrium at some threshold hmid between h1 and
h2. Outside of this range of w, there is only one equilibrium in which one of the groups
achieves its optimal qualification rate. These findings are summarized in the following two
propositions.

Proposition 3.4.1. Define g :− (1−h1)(−wh2
2+h2(1−h1)−wh1(1−h1))

w((1−h1)2−h2
2))

. Note that g ∈ (0, h2 − h1)

for any w. Let w ∈ (wl, wu) where

wl :=
(1− h1)2

(1− h2)h2 + (1− h1)2
, wu :=

h2(1− h1)

h2
2 + h1(1− h1)

. (3.2)

Given Assumption 2, there exists two stable equilibria at

h = h1, πa1 = w, πa2 = w · h1

h2

, and (3.3)

h = h2, πa1 = w · 1− h2

1− h1

, πa2 = w, . (3.4)

and a unique non-zero unstable equilibrium at

h = hmid := h1 + g, πa1 = w · 1− h1 − g
1− h1

, πa2 = w · h1 + g

h2

.

When w = 1− h1, the unstable equilibrium is fully balanced.

Proposition 3.4.2. Given Assumption 2 when w < wl there exists one stable equilibrium
defined by Equation 3.4, and when w > wu there exists one stable equilibrium defined by
Equation 3.3.

The details of the proofs are presented in Section 3.9. At a high level, if the wage is
not too low or too high, both thresholds h1 and h2 correspond to stable equilibria, at which
either group a1 or a2 is perfectly classified. The equilibrium corresponding to hmid, where
the classifier has the same true positive and false positive rates in both groups, is unstable
and subsequently harder to achieve.

In Table 3.1, we compare these equilibria in terms of metrics introduced in Section 3.2,
under the assumptions of Proposition 3.4.1. We use standard notation � and ∼ to denote
preference and indifference respectively. For example, we find that in terms of balance
in qualification rates, the stable equilibrium associated with h1 is more balanced that the
stable equilibrium associated with h2, but both are always less balanced unstable equilibrium
associated with hmid. Details of the computation are deferred to Table 3.3 in Section 3.9.
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Ranking of Equilibria

Stability h1, h2 are stable.
hmid is unstable

Qualification rate of group a1

h1 � hmid � h2

Qualification rate of group a2

h2 � hmid � h1

Balance of qualification rates
hmid � h1 � h2

Institution’s Utility no ranking

Table 3.1: Comparison of equilibria for uniform features. In this table we refer to each
equlibria using the associated threshold decision policy.

Multivariate Gaussian X

We consider X = Rd and Θ = Sd−1, where Sd−1 is the set of d-dimensional unit vectors.
Let Ŷh = 1{X>h ≥ 0} for all h ∈ Θ denote separating hyperplane policies and ∠h,h′ :=
1
π

arccos( h>h′

‖h‖‖h′‖) denote the angle between two vectors, normalized by the constant π. We
consider two groups a1 and a2 associated respectively with vectors h1 and h2, such that
∠h1,h2 6= 0. We assume the groups have equal size, i.e., na1 = na2 . For each group, the
feature distribution is a d-dimensional spherical Gaussian centered at the origin such that
the qualified individuals are in halfspace 1{X>hi ≥ 0} and the unqualified individuals in
halfspace 1{X>hi < 0}. Formally, for x ∈ Rd and i ∈ {1, 2},

P(X = x | Y = y, A = ai) =

{
2φ(x)1{x>hi ≥ 0} for y = 1 and

2φ(x)1{x>hi < 0} for y = 0,

where φ(x) is the density of the spherical d-dimensional Gaussian. This is depicted in
Figure 3.2 (left).

Assumption 3. We assume that the CDF for the cost of acquiring qualifications is a strictly
increasing function G : [0, 1]→ [0, 1] and is the same in both groups.

As we will see, the relative gain (loss) of the institution for accepting a qualified (unqual-
ified) individual, that is pTP/cFP, plays a role in the nature of the equilibria. The following
proposition characterizes the equilibria when this value is strictly positive, that is, when the
benefit of true positives outweighs the cost of false positives. Notably, similar to the previous
setting of uniform scores, the current setting also has two stable equilibria that each favor
one group at the expense of the other, as well as a balanced equilibrium that is unstable.
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Proposition 3.4.3. Given Assumption 3 and pTP > cFP, there exists two stable equilibria,
at

h = h1, πa1 = G(w) πa2 = G (w · (1− 2∠h1,h2)) ,

h = h2, πa1 = G (w(1− 2∠h1,h2)) πa2 = G(w).

There is a unique non-zero unstable equilibrium at

h = hmid, πa1 = G (w(1− ∠h1,h2)) πa2 = G (w(1− ∠h1,h2)) ,

where hmid := h1+h2

‖h1+h2‖ .

Let us briefly comment on the high level proof idea and defer the full argument to Section
3.9. Since pTP > cFP, the institution cares more about accepting true positives than avoiding
false positives. Therefore, the utility-maximizing h is determined by the group that has a
higher qualification rate and thus has a higher fraction of positives — this is h1 (resp. h2)
whenever πa1 > πa2 (resp. πa1 < πa2). When qualification rates are equal between the two
groups, the institution maximizes its utility at any h that is a convex combination of h1

and h2, but the unique h that would induce equal qualification rate is h = hmid, where the
classifier has the same true positive and false positive rates in both groups.

An unfortunate implication of this result is that the dynamics will always converge to
an unbalanced qualification rate, except when the initial levels of investment are exactly the
same. Even though a fully balanced equilibrium exists, it is unstable and therefore not robust
to small perturbations in either the qualification rates or the classifier, which in practice is
unavoidable given sampling noise.

In Table 3.2, we compare these equilibria in terms of metrics introduced in Section 3.2.
For example, we find that in terms of institutional utility, the stable equilibria associated with
h1 and h2 are equally preferred, and are both strictly preferred to the unstable equilibrium
associated with hmid. This implies that the institution has no incentive at all to keep the
dynamics at the unstable equilibrium, even though it induces balanced investment. Exact
values are deferred to Table 3.4 in Section 3.9.



CHAPTER 3. DISPARATE EQUILIBRIA OF ALGORITHMIC DECISION MAKING51

Ranking of Equilibria

Stability h1, h2 are stable.
hmid is unstable

Qualification rate of group a1

h1 � hmid � h2

Qualification rate of group a2

h2 � hmid � h1

Balance of qualification rate hmid � h1 ∼ h2

Institution’s Utility h1 ∼ h2 � hmid

Table 3.2: Comparison of equilibria for Multivariate Gaussian features. In this table we refer
to each equlibria using the associated hyperplane.

Interestingly, when pTP < cFP, there are no stable equilibria; instead there exists a stable
limit cycle between h1 and h2. This is stated informally in the following proposition.

Proposition 3.4.4. Given Assumption 3 and pTP < cFP, there exists no stable equilibria.
Instead there exists a limit cycle and one non-trivial unstable equilibrium.

Intuitively, the cycle is caused by misaligned incentives between the institution and the
individuals. Since the institution finds false positives more costly than false negatives, it
prefers the hyperplane that classifies more false positives correctly. At each time step, it
will choose the hyperplane associated with the group that has a lower qualification rate,
prompting that group to invest more in the next time step. Strikingly, even a simple group-
realizable model involving multivariate Gaussian distributions demonstrates a large range of
limiting behaviors. In Section 3.6, we also observe the existence of limit cycles in simulations
with real data distributions.

Different Costs of Investment by Group

Thus far we have assumed that all groups have the same distribution of the cost of invest-
ment, G. In reality, the cost of investment may be distributed differently in each group; a
disadvantaged group might on average experience higher (monetary or opportunity) costs.
For example, low income families who may have to take out loans to pay for college tuition
incur high interest rates. This is a compelling setting that reflects deep-seated disparities
in access to opportunity between demographic groups in the real world; an analogous setting
has been considered by works on strategic classification, where the costs for manipulating
features is posited to differ across groups [Hu et al., 2019, Milli et al., 2019].

In this section, we consider the ramifications of differences in investment cost across
groups, focusing on the setting of Section 3.4. We show that the disadvantage from having
higher costs is amplified under group-realizability. Specifically, suppose that group a1 (resp.
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a2) has costs distributed according to cumulative distribution function G1 (resp. G2), and
that group a1 is disadvantaged in terms of costs. The following result observes that if G1

sufficiently dominates G2, then there exists no stable equilibrium that encourages optimal
investment from group a1 and no equilibrium that is balanced for both groups, in sharp
contrast to the characterization in Proposition 3.4.3. The proof is deferred to Appendix 3.9.

Proposition 3.4.5. Consider the multi-variate Gaussian setting of Section 3.4. Suppose
G1 and G2 are such that G1(w) < G2(w(1− 2∠h1,h2)), then there exists a single non-trivial
equilibrium at h2, which is also stable. The level of investment by group a1 (resp. a2) is
G1(w(1− 2∠h1,h2) (resp. G2(w)).

Effect of subsidies In this situation, an intervention that would effectively raise the equi-
librium level of investment by the disadvantaged group is to subsidize the cost of investment.
In particular, as long as we replace G1 with a stochastically dominated distribution Ḡ1 such
that Ḡ1 > G2(w(1− 2∠h1,h2)), under the new dynamics Φsub, h1 will again be a stable equi-
librium, and there will also exist a more balanced, unstable equilibrium at h = h̄mid, which
is some convex combination of h1 and h2. At all equilibria of Φsub, group a1 will have higher
levels of investment than G1(w(1− 2∠h1,h2)).

However, this improvement may come at a cost to the advantaged group, since Φsub has
multiple equilibria and some of them have group a2 investing less than G2(w). Still one might
argue that the equilibria of Φsub are more equitable, since the dynamics without subsidies
always result in optimal investment by group a2 and low investment by group a1.

Decoupling the Assessment Rule by Group

The models we studied in Sections 3.4 and 3.4 suggest that applying the same, or “joint”,
assessment rule to heterogeneous groups results in undesirable trade-offs—between balance,
stability, and other metrics—at all equilibria, even though there exists a perfect assessment
rule for each group separately.

Decoupling the classifier by group is a natural intervention in this setting. Namely, the
institution may choose a group-specific θa ∈ Θ to assess individuals from group a ∈ A,
assuming that the group attribute information is available. This corresponds to choosing θa
that maximizes the utility that the institution derives from each group separately. Thus we
now consider the decoupled dynamics Φdec where the institution uses group-specific assess-
ment rules, i.e., for all a ∈ A

θbra (πa) := argmax
θa∈Θ

pTPTPRa(θa)πa − cFPFPRa(θa)(1− πa).6 (3.5)

6As when we defined the joint dynamics (Section 3.2), when the argmax is not unique, we assume ties
are broken according to a fixed and well-defined order.
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As in the standard joint setting individuals still acquire qualification according to their
group utility as follows

πbra (θa) := G(w(TPRa(θa)− FPRa(θa))).

We denote by πdec ∈ [0, 1]|A| the equilibria of the decoupled dynamics, Φdec =
(
πbra ◦ θbra

)
a∈A.

It is not hard to see that decoupling is helpful in a group-realizable setting. That is, the
qualification rates of the decoupled equilibrium πdec Pareto-dominates the qualification rates
of all equilibria π under a joint assessment rule, whenever group-realizability holds.

Proposition 3.4.6 (Decoupling). Consider a group-realizable setting, that is, for every a ∈
A, there exists a perfect assessment rule θopt

a ∈ Θ such that TPRa(θ
opt
a ) − FPRa(θ

opt
a ) = 1.

Then Φdec has a unique stable equilibrium πdec, where πdec
a = G(w). Moreover, for any

equilibrium π of the joint dynamics Φ, πdec
a ≥ πa for all a ∈ A. Furthermore, if there is no

perfect assessment rule, i.e.,

max
θ∈Θ

∑
a∈A

na(TPRa(θ)− FPRa(θ)) < 1,

then for some a ∈ A, πdec
a > πa.

This proposition directly follows from Proposition 3.3.1.
Indeed, decoupling always helps in the group-realizable setting—not only does it not

decrease any group’s equilibrium qualification rate, it also increases the equilibrium qual-
ification rate of at least one group when realizability across all groups does not hold. In
Sections 3.5 and 3.6 we examine decoupling in the absence of group-realizability and see
that those cases are not as clear-cut. When group-realizability does not hold, in some cases
decoupling is still helpful while in others it can significantly harm one group.

3.5 Beyond group-realizability: Multiple equilibria

within group

We have so far considered settings where the learning problem is realizable (or almost real-
izable) within each group. This is a common assumption in various prior works, such as Hu
et al. [2019]. As we saw in Section 3.4, there may be multiple undesirable equilibria when
a joint assessment rule is used in a group-realizable setting, but these undesirable equilibria
disappear in the decoupled dynamics.

In many application domains, realizability does not hold even at a group level. That is to
say, no assessment rule in Θ can perfectly separate qualified and unqualified individuals even
within one group. This may be due to the fact that mapping individuals to the visible feature
space X involves loss of information or there may be other sources of stochasticity in the
domain [Corbett-Davies and Goel, 2018], making it impossible to provide a high accuracy
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assessment of individuals’ qualifications. A key consequence of the lack of realizability is
that even for a single group, the optimal classifier now can vary greatly with πa, the group’s
qualification rate. As a result, our guarantees about the near-optimality of stable equilibria
(Theorem 3.3.2) no longer hold, and there could exist multiple stable equilibria each corre-
sponding to a different qualification rate within a group. In this section, we investigate the
existence of bad equilibria for a single group and its implications on decoupling when the
learning problem is not group-realizable. For the rest of this section, we consider a single
group, i.e., |A| = 1 and suppress a in the notation.

In the following proposition (proved in Section 3.9), we characterize conditions under
which multiple equilibria exists for arbitrary feature spaces and assessment rules. This is
a generalization of a classical result from Coate and Loury [1993] that considers a one-
dimensional feature space; we restate and prove the classical result as a consequence of
Proposition 3.5.1 in Section 3.9.

Proposition 3.5.1 (Multiple equilibria in arbitrary feature spaces). Let Φ be as defined in
Section 3.2. For any qualification rate π, let

β(π) := TPR(θbr(π))− FPR(θbr(π)),

be the difference between true and false positive rates of the institution’s utility maximizing
assessment rule with respect to π. Assume β(π) is continuous, the CDF of the cost G
is continuous and that there exists θ ∈ Θ such that P(Ŷθ = 1) = 0 and θ′ ∈ Θ such that
P(Ŷθ′ = 1) = 1, i.e., there is a assessment rule that accepts everyone and an assessment rule

that rejects everyone. Also suppose the likelihood ratio φ(x) := P(X=x|Y=0)
P(X=x|Y=1)

is strictly positive
on X .

If x < G(wβ(x)) for some x ∈ (0, 1), then there exists at least two distinct non-zero
equilibria where π = Φ(π). If in addition β is differentiable, an equilibrium at π is locally
stable whenever G′(wβ(π)) < |β′(π)|, where G′ and β′ denote the derivatives of G and β
respectively.

Proposition 3.5.1 describes conditions under which there exists more than one equilibrium
in the dynamics modeled in Section 2. Given a differentiable β(π), one can always construct
a monotonically increasing G, such that the dynamics Φ has any number of locally stable
equilibria. The implication of having multiple equilibria is that the dynamics may converge
to different equilibrium qualification rates depending on the initial investment, even for a
single group. This makes the setting particularly hard to analyze.

Nevertheless, the following result, proved in Section 3.9, shows that even in the non-
realizable setting, subsidizing the cost of investment by changing the distribution G to a
stochastically dominant distribution Ḡ will create a new equilibrium that has a higher quali-
fication rate. In other words, subsidies in the non-realizable setting also improve the quality
of equilibria. However, the new equilibrium is not guaranteed to be locally stable. We see
some ramifications of this empirically in the next section.
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Proposition 3.5.2 (Subsidies without realizability). Suppose π∗ > 0 is an equilibrium for
the dynamics ΦG, where the cost of investment is distributed according to G on [0, 1]. Let Ḡ
be a CDF that is stochastically dominated by G, that is, Ḡ(x) > G(x) for all x ∈ (0, 1), and
both G and Ḡ are strictly increasing. Then there exists π̄ > π∗ such that π̄ is an equilibrium
for ΦḠ.

3.6 Simulations with non-realizability

In this section we present results from numerical experiments examining the effects of de-
coupling and subsidies under our model of dynamics, in the absence of group-realizability.
We consider a stylized semi-synthetic experiment, based on a widely used FICO credit score
dataset from a 2007 Federal Reserve report [US Federal Reserve, 2007]. Importantly, only
aggregate statistics were reported and the data we accessed does not contain sensitive or
private information. Our modeling assumptions may not be realistic for this dataset (see
Section 3.8) and our simulations should not be interpreted as policy recommendations. In-
stead, these experiments help us illustrate qualitatively the types of dynamics one may find
using real world data.

Stylized Model. We describe how our model can be instantiated to a highly stylized
example of credit scoring and lending. Assume a loan applicant either has the means to
repay a loan or not. If they have the means to repay, they always repay (Y = 1); otherwise
they always default (Y = 0). In order to have the means to repay, applicants must make an
ex ante investment at the cost of C, whose distribution is P(C < c) = G(c). This represents
costly actions an individual has to take in order to acquire the financial ability to repay
loans, e.g. working at a stable job or taking job preparation classes. Applicants from group
a who have the means to repay receive credit scores X drawn from fa1 and those who don’t
receive credit scores drawn from fa0 . The decision of the bank is to approve or reject a loan
applicant, given their credit scores.

Dataset. FICO scores are widely used in the United States to predict credit worthiness.
The dataset, which contains aggregate statistics, is based on a sample of 301,536 TransUnion
TransRisk scores from 2003 [US Federal Reserve, 2007] and has been preprocessed by Hardt
et al. [2016b]. These scores, corresponding to X in our model, range from 300 to 850. For
simplicity, we rescale the scores so that they are between 0 and 1. Individuals were labeled as
defaulted if they failed to pay a debt for at least 90 days on at least one account in the ensuing
18-24 month period. The data is also labeled by race, which is the group attribute A that
we use. We compute empirical conditional feature distributions P(X = x | A = a, Y = y)
from the available data and fit Beta distributions7 to these to obtain fa0 , fa1 .

We treat these distributions as if they came from our model as shown in Figure 3.1,
for the sole purpose of illustration. This is not to claim that our modeling assumptions
hold on this dataset, as discussed earlier. Given the lending domain is complex, our aim is

7We simulate 100,000 samples from the empirical PDF (see Figure 3.3) and fit a Beta distribution by
maximum likelihood estimation.
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Figure 3.3: Score distributions conditioning on repayment outcome (Y ) for different race
groups

not to faithfully represent this particular domain with our model, but to simulate feature
distributions that exhibit group heterogeneity and non-realizability, hence extending our
consideration beyond the idealized settings of Sections 3.3 and 3.4.

Figure 3.3 shows the histograms as well as the fitted Beta distributions for fa0 , fa1 , where
a is the race attribute. It is clear that group-realizability does not hold even approximately,
since there is significant overlap in the distributions of credit scores for people who repaid
and for people who did not repay.

Decoupling and Multiple Stable Equilibria

Although decoupling is guaranteed to improve the qualification rate at equilibrium over using
a joint decision rule for every group (Sections 3.3 and 3.4), this is not necessarily true in
the non-realizable setting. In fact, even when G is the uniform distribution on [0, 1] in all
groups (i.e. the cost of investment C is uniformly distributed on [0, 1], as we considered
in Section 3.4), decoupling did not benefit all groups. As can be seen from Figure 3.6
in Appendix 3.9, while the White and Asian groups had a higher qualification rate after
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Improvement in �nal quali�cation rate after decoupling

Initial quali�cation rate
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Figure 3.4: Effects of decoupling in presence of multiple equilibria. We vary the initial
qualification rate in the x-axis.

decoupling, the Black and Hispanic groups saw their equilibrium qualification rate decrease.
On the other hand, the effects of decoupling were small in this case (less than 3 percent
points difference in the final qualification rate).

We now show that the effect of decoupling can be drastic depending on G. Recall that in
Section 3.5, we showed that multiple equilibria, with possibly vastly different qualification
rates, may exist under the non-realizable setting even when there is a only single group. In
general the existence of multiple equilibria depends on properties of G, that is, how the cost
of investment is distributed in a group. In Figure 3.4, we show the change in equilibrium
investment level after decoupling for an experiment with two groups, Asian and Hispanic.
The two plots each correspond to a different bimodal Gaussian distribution for G, truncated
to [0, 1], that have been chosen such that the decoupled dynamics have multiple stable
equilibria for the Hispanic (right) and the Asian (left) respectively8.

In both plots, we can see that the effects of decoupling depend on the initial qualification
rate. If the initial qualification rate was too low, or too high, the decoupled dynamics
converge to an equilibrium where one of the groups invest in qualifications at a much lower
level than they would under the joint dynamics.9

Subsidizing the Cost of Investment

In this experiment, we consider if subsidizing the cost of investment of one group by chang-
ing G improves their new equilibrium qualification rate, under both decoupled and joint
dynamics. Specifically, we vary the cost of investment in the Black group.

8The right (resp. left) plot is generated using a bimodal normal distribution for G with modes at 0.57
and 0.74 (resp. at 0.57 and 0.63).

9See Figure 3.7 in Appendix 3.9 for the converged qualification rates of both groups.
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Subsidizing one group under joint and decoupled dynamics

Black (joint)

Black (decoupled)

White (joint)

White (decoupled)

Asian (joint)

Asian (decoupled)

Hispanic (joint)

Hispanic (decoupled)

Figure 3.5: Effects of raising the average cost of investment, by varying the mean of G on
the x-axis.

We use a truncated normal distribution for G and vary its mean (on the x-axis) for a
single group, while keeping the other groups’ G unchanged (mean of 0.6).

Figure 3.5 shows that subsidizing the cost of investment is effective in raising the equi-
librium investment level of a group, both in the joint learning and decoupled learning case.
Interestingly, large amounts of subsidy for a single group reduced the equilibrium investment
levels of other groups. As also suggested by theoretical results in section 3.4, subsidizing the
qualification rate of one group does sometimes entail a tradeoff in the qualification rates of
other possibly more advantaged groups.

Interestingly, lowering the mean cost of investment in the Black group below 0.35 caused
the final qualification rate to decrease. This is not a contradiction of Proposition 3.5.2, which
argues that equilibria improve under subsidies but does not guarantee that the dynamics will
converge to the improved equilibrium. In this case, the decoupled dynamics for the Black
group (where the mean cost of investment is 0.30) actually converged to a limit cycle and the
final qualification rate in the plot is an average of the points in the limit cycle. Limit cycles
are a challenging object to study in dynamical systems and game theory. While we have
commented on their existence in a simple model in group-realizable setting of Section 3.4,
we leave their implications in the general non-realizable setting to future work.
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3.7 Related Work

We follow a growing line of work on how machine learning algorithms interact with human
actors in a dynamic setting, with the goal of understanding and mitigating disparate impact.

Recent work examine the long-term impact of group fairness criteria [see e.g., Barocas
et al., 2018, Chapter 2] on automated decision making systems: Liu et al. [2018] show
that static fairness criteria fail to account for the delayed impact that decisions have on the
welfare of disadvantaged groups. In the context of hiring, however, Hu and Chen [2018a] find
that applying the demographic parity constraint in a temporary labor market achieves an
equitable long-term equilibrium in the permanent labor market by raising worker reputations.

Prior work on the fairness of machine learning has examined tradeoffs between fairness
criteria [Kleinberg et al., Chouldechova, 2017], as well as the incompatibility between risk
minimization and fairness criteria [Liu et al., 2019], assuming that the qualification rates
differ across groups. These results concern the static setting, whereas we highlight the fact
that qualification rates tend to change in response to the decision rules.

Another line of work [Hashimoto et al., 2018, Zhang et al., 2019] analyzes a dynamic model
where users respond to errors made by an institution by leaving the user base uniformly
at random, and demonstrate how the risk-minimizing approach to machine learning can
amplify representation disparity over time. This is complementary to our work which models
individuals as rational decision makers who may or may not have the incentive to acquire
the positive label. In particular, Hashimoto et al. [2018] show that equilibria with equal user
representation from all groups can be unstable, and that robust learning can stabilize such
equilibria. Unlike in our model, the user representation model does not distinguish between
positive and negative labels, and thus do not distinguish between false negative and false
positive errors. This is a crucial distinction in high-stakes decision making as different error
types present asymmetric incentives for individuals, as explained in Section 3.2; for example,
a high false positive rate in hiring would encourage under-qualified job applicants.

Hu et al. [2019] and Milli et al. [2019] study the disparate impact of being robust towards
strategic manipulation [see e.g., Hardt et al., 2016a], where individuals respond to machine
learning systems by manipulating their features to get a better classification. In contrast
to our model (Figure 3.5), their setting models the individual as intervening directly on
their features, X, and this is assumed to have no effect on their qualification Y . This
assumption applies to features that are easy to ‘game’ (e.g. scores on standardized tests can
be improved by test preparation classes) but is less applicable to features that more directly
correspond to investment in one’s qualifications (e.g. taking AP courses in high school). Hu
et al. [2019] also show that subsidizing the costs of the disadvantaged group to strategically
manipulate their features can sometimes lead to harmful effects. Kleinberg and Raghavan
[2019] and Khajehnejad et al. [2019] study decision policies that incentivize individuals to
directly manipulate their features X to optimize particular notions of utility.

Our work is also related to the topic of statistical discrimination in economics [Phelps,
1972, Arrow, 1973, 1998], which studies how disparate market outcomes at equilibrium can
arise from imperfect information. This line of work often involves wage discrimination,
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whereas we assume the wage is fixed and standard for all groups. Coate and Loury [1993]
proposed a model of rational individual investment in the labor market under a fixed wage
and showed that affirmative action may lead to an undesirable equilibrium where one group
still invests sub-optimally. The model in our work is most closely related to their model,
with two key distinctions: 1) We allow features X to be multi-dimensional, whereas Coate
and Loury [1993] assumes that X is a one-dimensional ‘noisy signal’. 2) We consider the
case where the conditional feature distributions, P(X = x | Y = y, A = a), differ by groups
whereas Coate and Loury [1993] assumes that the groups are identically distributed. Under
our models, if the conditional feature distributions were shared across groups, then any hiring
policy will result in fully balanced equilibria where all groups have the same qualification
rate and are hired at the same rate. This does not corroborate with reality, where conditional
feature distributions do in fact differ across groups and we routinely observe institutions
applying the same model to all individuals only to see obviously discriminatory outcomes
[Dastin, 2019]. By modeling feature heterogeneity across groups, we find it necessarily leads
to disparate equilibria.

Recently, Mouzannar et al. [2019] studied the equilibria of qualification rates under a
generic class of dynamics, focusing on contractive maps and the effects of affirmative action.
In contrast, our work motivates a model of dynamics based on rational investment, and this
typically leads to non-contractive dynamics. We are both interested in balanced equilibria,
which they termed ‘social equality’.

Finally, our work studies two interventions for finding more desirable equilibria: decou-
pling the classifier and subsidizing the cost of investment. Several works, including Dwork
et al. [2018] and Ustun et al. [2019], have studied decoupled classifiers in the static classifi-
cation setting. Our work sheds light on when such interventions are useful in the dynamic
decision making setting.

3.8 Discussion and Future Work

In this chapter, we have made the following contributions:

1. We proposed a dynamic model of decision making where individuals invest rationally
based on the current assessment rule. We studied the properties of equilibria under these
dynamics.

2. We showed that common properties of real data, namely heterogeneity across groups and
the lack of realizability, lead to undesirable tradeoffs at equilibria, resulting in long term
outcomes that disadvantage one or more groups.

3. We considered two interventions—decoupling and subsidizing the cost of investment—and
showed that they have a significant impact on the nature of equilibria both in theory and
in numerical experiments.

We now discuss the limitations of the current work and avenues for future research.
Questions related to sampling and its ramifications for the nature of equilibria are challenging
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and warrant further study. This work assumed that the institution can estimate the true
and false positive rates over the entire population, even though it really can only observe
the qualification of candidates after hiring them. This is known as the selective labeling
problem, which could introduce bias. In theory, unbiased estimates can be achieved by a
small degree of random sampling and appropriate reweighting [see e.g., Kilbertus et al.,
2019], but this is still a large problem in practice that requires domain-specific knowledge
and solutions [De-Arteaga et al., 2018, Kallus and Zhou, 2018].

Our model assumed that individuals make a rational decision to invest and can affect
their qualification Y directly. This assumption could be reasonable in settings like hiring, for
example, where investing to acquire skills usually leads to increased competence. In some
settings, however, individuals may be unable to effectively intervene on Y . For example,
a business loan applicant who is a good business operator could still default on their loan
due to external economic shocks or other forms of disadvantage that have not been taken
into account. In this case, the current model does not fully capture the complex societal
processes that lead to a positive outcome. Our work nonetheless shows that even in an
idealized setting where individuals can effectively and rationally intervene on their outcome
labels Y , underlying factors such as heterogeneity across groups and non-realizability already
lead to undesirable tradeoffs at equilibrium. We leave the extensions of the current model
beyond rational individual investment to future work.

3.9 Omitted proofs and supplementary material

Proof of Theorem 3.3.2

For any π ∈ [s, 1− s], consider the profit-maximizing classifier,

θbr(π) = argmax
θ∈Θ

TPR(θ) · π − FPR(θ) · (1− π).

Let π(0) be the initial qualification rate. For ease of notation, denote θ∗ = θbr(π(0)). We
examine the new qualification rate π1 under the best response model θ∗. Since there exists a
θ such that TPR(θ) ≥ 1− ε and FPR(θ) ≤ ε, we have TPR(θ) ·π−FPR(θ) · (1−π) ≥ π− ε.
It follows that

TPR(θ∗) · π − FPR(θ∗) · (1− π) = π(TPR(θ∗)− FPR(θ∗)) + (2π − 1)FPR(θ∗) ≥ π − ε

Rearranging this inequality gives the following lower bound on TPR(θ∗)− FPR(θ∗):

TPR(θ∗)− FPR(θ∗) ≥ π − ε− (2π − 1)FPR(θ∗)

π
(3.6)
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For π < 1/2, it follows from (3.6) that

TPR(θ∗)− FPR(θ∗) ≥ π − ε
π

(using FPR(θ∗) ≥ 0)

≥ 1− ε

s
(3.7)

For π > 1/2, we have

FPR(θ∗) ≤ πTPR(θ∗)− π + ε

1− π
≤ ε

1− π
.

Substituting this into (3.6) gives:

TPR(θ∗)− FPR(θ∗) ≥
π − ε− (2π − 1) ε

1−π

π
= 1− ε

1− π
≥ 1− ε

s
(3.8)

Therefore the new qualification rate π1 satisfies π1 > G(w(1− ε/s)).
Notice that π1 ≤ G(w) ≤ 1 − s and π1 > G(w(1 − ε/s)) ≥ G(w) − LGwε/s ≥ s, so we

may repeat the argument to conclude that the qualification rate in the limit must be greater
than G(w(1− ε/s)).

Proof of Corollary 3.3.3

From Theorem 3.3.2 applied to investment level Ḡ, we can conclude π̄ ≥ Ḡ(w(1− ε/s)). By
assumption Ḡ(w(1− ε/s)) ≥ G(w), thus it remains to show G(w) ≥ π. However, this follows
immediately from the fact that 1 ≥ TPR(θ)− FPR(θ), ∀θ ∈ Θ.

Supplementary material and proofs for Section 3.4

Proof of Proposition 3.4.1 . First consider the policy Ŷ1 = 1{X > h1}. Given this policy,

we have πa1 = G(w) and πa2 = G(w(1 − h2−h1

h2
)) = G

(
w · h1

h2

)
. Ŷ1 is optimal for this π if

the gain from true positives in group a offsets the loss from false positives in group a2 for
X ∈ [h1, h2], i.e. we need

G(w) · na1 · pTP

1− h1

>

(
1−G

(
w · h1

h2

))
· na2 · cFP

h2

. (3.9)

Now consider the policy Ŷ2 = 1{X > h2}. Given this policy, we have πa1 = G
(
w · 1−h2

1−h1

)
and πa2 = G(w). Ŷ2 is optimal for this π if the gain from true positives in group a fails to
offset the loss from false positives in group a2, for X ∈ [h1, h2], i.e. we need

G
(
w · 1−h2

1−h1

)
· na · pTP

1− h1

<
(1−G (w)) · na2 · cFP

h2

. (3.10)
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Direct computation shows that (3.9) and (3.10) are satisfied as long as w lies in the interval(
h2(1− h1)

h2
2 + h1(1− h1)

,
(1− h1)2

(1− h2)h2 + (1− h1)2

)
.

Both equilibria above are stable since (3.9) and (3.10) hold with strict inequality. For all
small enough perturbations to (πa1 , πa2), h1 (or h2) will still remain as the profit maximizing
threshold.

There exists an equilibrium at h = h1 + g if we have

G(w · 1−h1−g
1−h1

)

1− h1

=
1−G(w · h1+g

h2
)

h2

(3.11)

Direct computation shows that the above equation is satisfied by a unique value of

g =
(1− h1)(−wh2

2 + h2(1− h1)− wh1(1− h1))

w((1− h1)2 − h2
2))

,

and that πa1 = w(1−h1−g)
1−h1

= πa2 = w(h1+g)
h2

if w = 1− h1.

For an illustration of Proposition 3.4.1, consider an example where na1 · pTP = na2 · cFP,
G(c) = c for c < 1 (uniformly distributed cost of investment), and h1 = 0.4, h2 = 0.8, which
gives h1/h2 = 0.5. Let w = 0.6. We compute:

G(w)

1− h1

= 1,
1−G

(
w · h1

h2

)
h2

= 0.875,
G
(
w · 1−h2

1−h1

)
1− h1

= 1/3,
1−G(w)

h2

= 1/2,

and check that these satisfy the assumptions.
In this example, note that the first equilibrium has qualification rate 0.6 and 0.3 for

groups a and a2 respectively, while the second equilibrium has qualification rate 0.2 and 0.6
respectively. The first equilibrium might be more desirable since there is higher qualification
rate overall, though neither equilibrium has equal qualification rates across the two groups.

Comparison of equilibria We can compare the equilibria described in Proposition 3.4.1
in terms of metrics shown in Table 3.3. There is no fixed ranking for the Institution’s utility;
instead the ranking varies depending on the values of h1, h2, and w.

Lemma 3.9.1 (Skill acquisition in group a1). Let w ∈ (wl, wu), as defined in (3.2). Then
for h1, h2, as defined in Proposition 3.4.1, we have

w · 1− h2

1− h1

<
(w − h2)(1− h1)

(1− h1)2 − h2
2

< w (3.12)
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Equilibrium h h1 h2 hm := h1 + g Ranking

Stability Stable Stable Unstable -

Qualification
rate in group a1,
πa1

w w · 1−h2

1−h1

(w−h2)(1−h1)

(1−h1)2−h2
2

h1 � hm � h2

(Lem. 3.9.1)

Qualification
rate in group a2,
πa2

w · h1

h2
w (1−h1)2−wh2

(1−h1)2−h2
2

h2 � hm � h1

(Lem. 3.9.2)

Balance in qual-
ification rate
|πa1 − πa2|

w · h2−h1

h2
w · h2−h1

1−h1

|1−h1−w|
h2−(1−h1) hm � h1 � h2

(Lem. 3.9.3)

Table 3.3: Comparison of equilibria for uniform scores. In this table we refer to each equlibria
using the associated threshold decision policy.

Proof. First we show that (w−h2)(1−h1)

(1−h1)2−h2
2
< w for all w ∈ (wl, wu). It suffices to show that(

1− h2

w

)
(1− h1) ≤ (1− h1)2 − h2

2

holds for w = wu, since the LHS is strictly increasing in w. We may check by computation
that the above in fact holds with equality.

Next we show that (w−h2)(1−h1)

(1−h1)2−h2
2
> w · 1−h2

1−h1
for all w ∈ (wl, wu). This amounts to showing

that (
1− h2

w

)
(1− h1)2 ≥ (1− h2)((1− h1)2 − h2

2)),

for w = wl, since the LHS is strictly increasing in w. We may check by computation that
the above in fact holds with equality.

Lemma 3.9.2 (Qualification rate in group a2). Let w ∈ (wl, wu), as defined in (3.2). Then
for h1, h2, as defined in Proposition 3.4.1, we have

w · h1

h2

<
(1− h1)2 − wh2

(1− h1)2 − h2
2

< w (3.13)

Proof. First we show that (1−h1)2−wh2

(1−h1)2−h2
2
< w for all w ∈ (wl, wu). It suffices to show that

(1− h1)2

w
− h2 ≤ (1− h1)2 − h2

2)

holds for w = wl, since the LHS is strictly decreasing in w. We may check by computation
that the above in fact holds with equality.
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Next we show that w · h1

h2
< (1−h1)2−wh2

(1−h1)2−h2
2

for all w ∈ (wl, wu). This amounts to showing

that
h2(1− h1)2

w
− h2

2 ≥ h1((1− h1)2 − h2
2)

for w = wu, since the LHS is strictly decreasing in w. We may check by computation that
the above in fact holds with equality.

Lemma 3.9.3 (Unstable Equilibrium is the most balanced). Let w ∈ (wl, wu), as defined in
(3.2). Then for h1, h2, as defined in Proposition 3.4.1, we have

|1− h1 − w|
h2 − (1− h1)

< w · h2 − h1

h2

< w · h2 − h1

1− h1

(3.14)

Proof. First note that since h2 > 1− h1 by assumption, we have w · h2−h1

h2
< w · h2−h1

1−h1
, so it

suffices to show that
|1−h1

w
− 1|

h2 − (1− h1)
<
h2 − h1

h2

for all w ∈ (wl, wu). Consider the first case: w ∈ (wl, 1− h1]. We want to show

1−h1

w
− 1

h2 − (1− h1)
<
h2 − h1

h2

. (3.15)

Since the LHS is decreasing in w, it suffices to show that (3.15) holds for w = wl. By
computation, we have following:

1−h1

wl
− 1

h2 − (1− h1)
<
h2 − h1

h2

⇐⇒ (h2 + 1)(h2 − h1)(h1 + h2 − 1) > 0, (3.16)

which is indeed satisfied since we have h2 > h1 and h2 > 1− h1 by assumption.
Now consider the second case: w ∈ (wl, 1− h1). We want to show

1− 1−h1

w

h2 − (1− h1)
<
h2 − h1

h2

. (3.17)

Since the LHS is increasing in w, it suffices to show that (3.17) holds for w = wu. By
computation, we have following:

1− 1−h1

wu

h2 − (1− h1)
<
h2 − h1

h2

<
h2 − h1

h2

⇐⇒ (h2 − h1)(h1 + h2 − 1) > 0, (3.18)

which is indeed satisfied since we have h2 > h1 and h2 > 1− h1 by assumption.
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Supplementary material and proofs for Section 3.4

Proof of Proposition 3.4.3 . Denote r := pTP

cFP
. For any hyperplane h, we may compute the

true positive rate and false positive rate for a group with hyperplane hi as follows:

TPRai = 1− ∠h,hi , FPRai = ∠h,hi . (3.19)

Therefore, for any investment levels (πa1 , πa2), the firm solves the following profit maximiza-
tion problem:

h∗ = argmax
h∈Sd−1

rπa1(1− ∠h,h1)− (1− πa1)∠h,h1 + rπa2(1− ∠h,h2)− (1− πa2)∠h,h2

= argmax
h∈Sd−1

(1− r)πa1∠h,h1 + (1− r)πa2∠h,h2 − (∠h,h1 + ∠h,h2).

The last term ∠h,h1 + ∠h,h2 is minimized whenever h is in the convex hull of h1 and h2.
Then it is clear that for r > 1, the profit is maximized at h = h1 whenever πa1 > πa2 , at
h = h2 whenever πa1 < πa2 , and at any h in the convex hull of h1 and h2 whenever πa1 = πa2 .

To conclude that h = h1 and h = h2 are indeed stable equilibria, we check the best
response qualification rates by both groups at h = h1 and h = h2 satisfies the optimality con-
ditions. For h = h1, we have πbra1

(h1) = G(w) and πbra2
(h1) = G (w · (1− 2∠h1,h2)), and indeed

πbra1
> πbra2

, by the monotonicity of G. For h = h2, we have πbra1
(h2) = G (w · (1− 2∠h1,h2))

and πbra2
(h2) = G(w), and indeed πbra1

< πbra2
.

Now we identify the unstable equilibrium, which is h = hmid, because the qualification
rate is indeed equal for both groups under this policy, i.e., we have

πbra1
= G(w(1− 2∠h1,hmid

)) = G(w(1− ∠h1,h2)) = G(w(1− 2∠h2,hmid
)) = πbra2

.

When both groups are investing at this rate, we may assume that the institution’s best
response involves breaking ties among all utility-maximizing hyperplanes to choose hmid.
This ensures that the dynamics are well-defined. Notice that this is an unstable equilibrium,
since this is the unique value of h such that πbra2

(h) = πbra2
(h), and any deviation from equal

qualification rates will change the profit-maximizing hyperplane to h1 or h2.

Proof of Proposition 3.4.4 . Following the proof of Proposition 3.4.3, we find that for pTP <
cFP, the profit is maximized at h = h1 whenever πa1 < πa2 , at h = h2 whenever πa1 > πa2 ,
and at any h in the convex hull of h1 and h2 whenever πa1 = πa2 .

Checking the qualification rate at h = h1 (resp. h = h2), we find that πbra1
(h1) = G(w) and

πbra2
(h1) = G (w · (1− ∠h1,h2)), so πbra1

(h1) > πbra2
(h1). Similarly, we have πbra1

(h2) < πbra2
(h2).

This implies there is a 2-point limit cycle at h = h1 and h = h2.
As before, the unstable equilibrium is at h = hmid, because the qualification rate is indeed

equal for both groups under this policy. Notice that this is an unstable equilibrium, since
this is the unique value of h such that πbra2

(h) = πbra2
(h).
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Equilibrium h h1 h2 hmid Ranking by
metric

Stability Stable Stable Unstable -
Qualification
rate in group
a1, πa1

w w(1− 2∠) w(1− ∠) h1 � hmid �
h2

Qualification
rate in group
a2, πa2

w(1− 2∠) w w(1− ∠) h2 � hmid �
h1

Balance in
qualifica-
tion rate
|πa1 − πa2|

2w∠ 2w∠ w∠ hmid � h1 ∼
h2

Institution’s
utility

pTPw(2 − 3∠) +
2(pTP− cFP)w∠2

pTPw(2 − 3∠) +
2(pTP− cFP)w∠2

pTPw(2 − 3∠) +
(pTP − cFP)w∠2

h1 ∼ h2 �
hmid

Table 3.4: Comparison of equilibria for Multivariate Gaussian features

Comparison of equilibria In Table 3.4, we compare the equilibria described in Proposi-
tion 3.4.3 on several metrics. We use ∠ to denote ∠h1,h2 .

Supplementary material for Section 3.4

Proof of Proposition 3.4.5 . First notice that by assumption, h = h1 cannot be at equilib-
rium. It is easy to check that G1(w(1 − 2∠h1,h2)) ≤ G1(w) < G2(w(1 − 2∠h1,h2)) ≤ G2(w),
so h = h2 is still at a stable equilibrium. Now, for any h that is a convex combination of
h1 and h2, we have G1(w(1− 2∠h,h1)) ≤ G1(w) < G2(w(1− 2∠h1,h2)) ≤ G2(w(1− 2∠h,h2)),
implying that G1(w(1 − 2∠h,h1)) 6= G2(w(1 − 2∠h,h2)) for all h that maximize institutional
utility, so no other fixed points exist.

Supplementary material and proofs for Section 3.5

We first prove Proposition 3.5.1.

Proof of Proposition 3.5.1. When π = 1, the institution’s best response is to accept everyone
regardless of their features, so β(1) = TPR(θ′)− FPR(θ′) = 1− 1 = 0.10

10Recall that FPR(θ) := P(Ŷθ = 1 | do(Y = 0)), which is well-defined even when P(Y = 0) = 0.



CHAPTER 3. DISPARATE EQUILIBRIA OF ALGORITHMIC DECISION MAKING68

Note that 1−π
π
→∞ as π → 0. This, together with the fact that φ(x) is strictly positive

means that there must exist π̄ > 0 such that pTP

cFP
< 1−π̄

π̄
φ(x) for all x ∈ X . Therefore, for all

π ≤ π̄, the institution’s best response is to accept no one regardless of their features, so we
have that β(π) = TPR(θ)− FPR(θ) = 0− 0 = 0 for π ≤ π̄.

Since G(0) = 0, we have that π̄ > G(wβ(π̄)) = 0 and 1 > G(wβ(1)) = 0. By assumption
there exists x < G(wβ(x)) for some x ∈ (0, 1), and by the above discussion, we must have
x ∈ (π̄, 1). Hence there must be at least 2 solutions to π = Φ(π) in (π̄, 1) and in particular
they are non-zero. The condition for local stability follows directly from chain rule.

The following result from Coate and Loury [1993] establishes conditions under which
multiple equilibria exists for a single group when the features X = [0, 1] represent a score
and the assessment rule is a threshold function. For completeness, we show that it can be
derived as a consequence of Proposition 3.5.1.

Proposition 3.9.4 (Proposition 1 of Coate and Loury [1993]). Consider the case where
X = [0, 1] is a space of one-dimensional scores, Θ = [0, 1], and Ŷθ = 1{X > θ} for all
θ ∈ Θ. Denote the conditional score CDFs as

F1(x) := P(X < x | Y = 1), F0(x) := P(X < x | Y = 0).

Let f1(x), f0(x) be the point densities of F1 and F0, respectively. Let φ(x) := f0(x)
f1(x)

be the

likelihood ratio at x. Let r := pTP

cFP
be the ratio of net gain to loss for the firm. Assume

φ(x) is strictly decreasing — i.e. as score increases, candidate is more likely to be skilled
— continuous and strictly positive on [0, 1]. Further assume that G(c) is continuous and

G(w(F0(θ) − F1(θ))) > φ(θ)
r+φ(θ)

for some θ ∈ (0, 1). Then there exists at least two distinct
non-zero equilibria.

Proof of Proposition 3.9.4. Note that for any θ, TPR(θ)− FPR(θ) = F0(θ)− F1(θ). There-
fore, the group’s qualification rate in response to assessment parameter θ is

πbr(θ) = G(w(F0(θ)− F1(θ))). (3.20)

Since φ(x) is strictly decreasing, the utility maximizing assessment rule θ in response to
the qualification rate π is

θbr(π) = inf

{
x ∈ [0, 1] : r ≥ 1− π

π
· φ(x)

}
. (3.21)

Since φ(x) is continuous and strictly positive, we must also have that F0, F1 are continuous,
and so in particular β(π) = F0(θbr(π)) − F1(θbr(π)) is continuous. By assumption, G is
continuous and there exists x ∈ (0, 1) such that x < G(wβ(x)) since θbr(π) is surjective.
Therefore, the claim follows from Proposition 3.5.1.

Proposition 3.5.2 follows from the monotonicity of the CDF, G.

Proof of Proposition 3.5.2. By assumption, we have that Ḡ−1(π∗) < G−1(π∗), so Ḡ−1(π∗) <
wβ(π∗). Since Ḡ−1(1) > β(1), we must have Ḡ−1(π̄) = wβ(π) for some π̄ ∈ (π∗, 1).
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Supplementary material for Section 3.6

We collect here additional figures for Section 3.6.
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Figure 3.6: Effects of decoupling without multiple equilibria. G is the uniform distribution
on [0, 1] for all groups and the reward is w = 1. The decoupled equilibria are unique for this
choice of G.
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Figure 3.7: Effects of decoupling in presence of multiple equilibria. We vary the initial
level of investment in the x-axis. A different bimodal Gaussian distribution G was used to
generated each plot.
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Chapter 4

Competing Bandits in a Centralized
Matching Market

4.1 Introduction

In previous chapters, we examined algorithmic decision making and its potentially disparate
impact on populations over time. In our stylized models, institutional decision makers employ
decision rules that minimize current population risk, without explicitly accounting for future
outcomes and data collection. In this chapter and next, we turn to the different setting of on-
line learning, where decision makers are repeatedly confronted with the same decisions under
uncertainty, and must simultaneously optimize for current outcomes—“exploitation”—and
future outcomes through data collection—“exploration”.

We focus on the multi-arm bandit (MAB) problem, a core machine-learning problem in
which there are K actions giving stochastic rewards, and the learner must discover which
action gives maximal expected reward [Bubeck and Cesa-Bianchi, 2012, Lai and Robbins,
1985a, Lattimore and Szepesvari, 2019, Thompson, 1933]. The bandit problem highlights
the fundamental tradeoff between exploration and exploitation. Regret bounds quantify this
tradeoff. We study an economic version of the problem in which there are multiple players
solving a bandit problem, and there is competition—if two or more players pick the same
arm, only one of the players is given a reward.1 We assume that the arms have a preference
ordering over the players—a key point of departure from the line of work on multi-player
bandits with collisions [Bubeck et al., 2020b, Cesa-Bianchi et al., 2016, Liu and Zhao, 2010,
Shahrampour et al., 2017]—and this ordering is unknown a priori to the players.

We are motivated by problems involving two-sided markets that link producers and con-
sumers or workers and employers, where each side sees the other side via a recommendation
system, and where there is scarcity on the supply side (for example, a restaurant has a lim-

1Note that Mansour et al. [2018] and Aridor et al. [2019] have used the term “competing bandits” for a
different problem formulation where a user can choose between two different bandit algorithms; this differs
from our setting where multiple learners compete over scarce resources.
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ited number of seats, a street has a limited capacity, or a worker can attend to one task at
a time). The overall goal is an economic one—we wish to find a stable matching between
producers and consumers. (In the end of this section, we illustrate an application in online
labor markets.) In the context of two-sided markets the arms’ preferences can be explict,
e.g. when the arms represent entities in the market with their own utilities for the other
side of the market, or implicit, e.g. when the arms represent resources their “preferences”
encode the skill levels of the players in securing those resources.

To determine the appropriate notions of equilibria in our multi-player MAB model, we
turn to the literature on stable matching in two-sided markets Gale and Shapley [1962],
Gusfield and Irving [1989], Roth and Sotomayor [1990], Knuth [1997], Roth [2008]. Since its
introduction by Gale and Shapley [1962], the stable matching problem has had high practical
impact, leading to improved matching systems for high-school admissions and labor markets
Roth [1984], house allocations with existing tenants Abdulkadiroglu and Sonmez [1999],
content delivery networks Maggs and Sitaraman [2015], and kidney exchanges Roth et al.
[2005].

In spite of these advances, standard matching models tend to assume that entities in
the market know their preferences over the other side of the market. Models that allow
unknown preferences usually assume that preferences can be discovered through one or few
interactions Ashlagi et al. [2017a], e.g., one interview per candidate in the case of medical
residents market Roth [1984], Roth and Sotomayor [1990]. These assumptions do not capture
the statistical uncertainty inherent in problems where data informs preferences. We defer
an in-depth discussion of related work to Chapter 5, Section 5.8.

In contrast, our work is motivated by modern matching markets which operate at scale
and require repeated interactions between the two sides of the market, leading to exploration-
exploitation tradeoffs. We consider two-sided markets in which entities on one side of the
market do not know their preferences over the other side, and develop matching and learning
algorithms that can provably attain a stable market outcome in this setting. Our contribu-
tions are as follows:

• We introduce a new model for understanding two-sided markets in which one side of
the market does not know its preferences over the other side, but is allowed multiple
rounds of interaction. Our model combines work on multi-armed bandits with work on
stable matchings. In particular, we define two natural notions of regret, based on stable
matchings of the market, which quantify the exploration-exploitation trade-off for each
individual player.

• We extend the Explore-then-Commit (ETC) algorithm for single player MAB to our multi-
player setting. We prove O(log(n)) problem-dependent upper bounds on the regret of each
player.

• In addition to the known limitations of ETC for single player MAB, in Section 4.3 we
discuss other issues with ETC in the multi-player setting. To address these issues we in-
troduce a centralized version of the well-known upper confidence bound (UCB) algorithm.
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We prove that centralized UCB achieves O(log(n)) problem-dependent upper bounds on
the regret of each player. Moreover, we show that centralized UCB is approximately
incentive compatible in a long-term sense.

Most of the above results can be extended to the case where arms also have uncertain
preferences over players in a straightforward manner. For the sake of simplicity, we focus
on the setting where one side of market initiates the exploration and leave extensions of our
results to future work.

Online labor markets Our model is applicable to matching problems that arise in online
labor markets (e.g., Upwork and Taskrabbit for freelancing, Handy for housecleaning) and
online crowdsourcing platforms (e.g., Amazon Mechanical Turks). In this case, the employ-
ers, each with a stream of similar tasks to be delegated, can be modeled as the players, and
the workers can be modeled as the arms. For an employer, the mean reward received from
each worker when a task is completed corresponds to how well the task was completed (e.g.,
did the Turker label the picture correctly?). This differs for each worker due to differing
skill levels, which the employer does not know a priori and must learn by exploring different
workers. A worker has preferences over different types of tasks (e.g., based on payment or
prior familiarity the task) and can only work on one task at a time; hence they will pick
their most preferred task to complete out of all the tasks that are offered to them.

4.2 Problem setting

We denote the set of N players by N = {p1, p2, . . . , pN} and the set of K arms by K =
{a1, a2, . . . , aK}. We assume N ≤ K. At time step t, each player pi selects an arm mt(i),
where mt ∈ KN is the vector of all players’ selections.

When multiple players select the same arm only one player is allowed to pull the arm,
according to the arm’s preferences via a mechanism we detail shortly. Then, if player pi
successfully pulls arm mt(i) at time t, they are said to be matched to mt(i) at time t and
they receive a stochastic reward Xi,mt(t) sampled from a 1-sub-Gaussian distribution with
mean µi(mt(i)).

Each arm aj has a fixed known ranking πj of the players, where πj(i) is the rank of
player pi. In other words, πj is a permutation of [N ] and πj(i) < πj(i

′) implies that arm aj
prefers player pi to player pi′ . If two or more players attempt to pull the same arm aj, there
is a conflict and only the top-ranked player successfully pulls the arm to receive a reward;
the other player(s) pi′ is said to be unmatched and does not receive any reward, that is,
Xi′,mt(t) = 0. As a shorthand, the notation pi �j pi′ means that arm aj prefers player pi
over pi′ . When arm aj is clear from context, we simply write pi � pi′ . Similarly, the notation
aj �i aj′ means that pi prefers arm aj over aj′ , i.e. µi(j) > µi(j

′).
Given the full preference rankings of the arms and players, arm aj is called a valid match

of player pi if there exists a stable matching according to those rankings such that aj and



CHAPTER 4. COMPETING BANDITS IN A CENTRALIZED MATCHING MARKET74

pi are matched. We say aj is the optimal match of player pi if it is the most preferred valid
match. Similarly, we say aj is the pessimal match of player pi if it is the least preferred valid
match. Given complete preferences, the Gale-Shapley (GS) algorithm [Gale and Shapley,
1962] finds a stable matching after repeated proposals from one side of the market to the
other. The matching returned by the GS algorithm is always optimal for each member of
the proposing side and pessimal for each member of the non-proposing side [Knuth, 1997].

We denote by m and m the functions from N to K that define the optimal and pessimal
matchings of the players according to the true preferences of the players and arms. Then, it
is natural to define the player-optimal stable regret of player pi as

Ri(n) := nµi(m(i))−
n∑
t=1

EXi,mt(t), (4.1)

because when the arms’ mean rewards are known the GS algorithm outputs the optimal
matching m, and in online learning, regret is generally defined so that the reward of the
player is as good as the reward of playing the best action in hindsight at every time step.
However, as we show in the sequel, there is a desirable class of centralized algorithms which
cannot achieve sublinear player-optimal stable regret. Therefore, we also consider the player-
pessimal stable regret defined by

Ri(n) := nµi(m(i))−
n∑
t=1

EXi,mt(t). (4.2)

Throughout we assume that the players cannot observe each other’s rewards or confidence
intervals for the arms’ mean rewards. Now, we described a so-called “centralized” setting that
determines how players may interact with arms—via a coordinating platform. In Chapter 5,
we discuss a “decentralized” setting, where such a platform is absent.

Centralized: At each time step the players are required to send a ranking of the arms
to a matching platform. Then, the platform decides the action vector mt. In this work we
consider two platforms. The first platform (shown in on the left of Table 4.1) outputs a
random assignment for a number of time steps and then computes the player-optimal stable
matching according to the players’ preferences. The second platform (shown on the right of
Table 4.1) takes in the player’s preferences at each time step and outputs a stable matching
between the players and arms. Both platforms ensure that there will be no conflicts between
the players. The first platform corresponds to an explore-then-commit strategy. When the
second platform is used the players must rank arms in a way which enables exploration and
exploitation. We show that ranking according to upper confidence bounds yields O(log(n))
player-pessimal stable regret.
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input: h, and the preference ranking πj of
all arms aj ∈ K, the horizon length n

1: for t = 1, . . . , T do
2: if t ≤ hK then
3: mt(i)← at+i−1 (mod K)+1, ∀i.
4: else if t = hK + 1 then
5: Receive rankings r̂i,t from all pi.
6: Compute player-optimal stable

matching mt(i) according to r̂i,t and πj.
7: else
8: mt(i)← mhK+1(i), ∀i.

input: the preference ranking πj of all
arms aj ∈ K

1: for t = 1, . . . , T do
2: Receive rankings r̂i,t from all pi.
3: Compute player-optimal stable

matching mt according to all r̂i,t and
πj.

Table 4.1: (left) Explore-then-Commit Platform. (right) Gale-Shapley Platform.

4.3 Multi-player bandits with a platform

Centralized Explore-then-Commit

In this section we give a guarantee for the explore-then-commit planner defined in Algo-
rithm 4.1(left). At each iteration, each player pi updates their mean reward for arm j to
be

µ̂i,j(t) =
1

Ti,j(t)

t∑
s=1

1{ms(i) = j}Xi,ms(s), (4.3)

where Ti,j(t) =
∑t

s=1 1{mt(i) = j} is the number of times player pi successfully pulled arm
aj. At each time step, player pi ranks the arms in decreasing order according to µ̂i,j(t) and
sends the resulting ranking r̂i,t to the platform. As seen in Table 4.1, for the first hK time
steps, the platform assigns players to arms cyclically, ensuring that each player samples every
arm h times. We now provide a regret analysis of centralized ETC. The proof is deferred to
Section 4.3.

Theorem 4.3.1. Suppose all players rank arms according to the empirical mean rewards
(4.3) and submit their rankings to the explore-then-commit platform. Let ∆i,j = µi(m(i))−
µi(j), ∆i,max = maxj ∆i,j, and ∆ = mini∈[N ] minj : ∆i,j>0 ∆i,j > 0. Then, the expected player-
optimal regret of player pi is upper bounded by

Ri(n) ≤ h

K∑
j=1

∆i,j + (n− hK)∆i,maxNK exp

(
−h∆2

4

)
. (4.4)
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In particular, if h = max
{

1, 4
∆2 log

(
1 + n∆2N

4

)}
, we have

Ri(n) ≤ max

{
1,

4

∆2
log

(
1 +

n∆2N

4

)} K∑
j=1

∆i,j +
4K∆i,max

∆2
log

(
1 +

n∆2N

4

)
. (4.5)

This result shows that centralized ETC achieves O(log(n)) player-optimal stable regret
when the number of exploration rounds is chosen apriopriately. As is the case for single
player ETC, centralized ETC requires knowledge of both the horizon n and the minimum
gap ∆ [see, e.g., Lattimore and Szepesvari, 2019, Chapter 6]. However, a glaring difference
between the the settings is that in the latter the regret of each player scales with 1/∆2,
where ∆ is the minimum reward gap between the optimal match and a suboptimal arm
across all players. In other words, the regret of an player might depend on the suboptimality
gap of other players. Example 4.3.1 shows that this dependence is real in general and not
an artifact of our analysis. Moreover, while single player ETC achieves O(

√
n) problem-

independent regret, Example 4.3.1 shows that centralized ETC does not have this desirable
property. Finally,

∑K
j=1 ∆i,j could be negative for some players. Therefore, some players can

have negative player-optimal regret, an effect that never occurs in the single player MAB
problem.

Example 4.3.1 (The dependence on 1/∆2 cannot be improved in general). Let N = {p1, p2}
and K = {a1, a2} with true preferences:

p1 : a1 � a2 a1 : p1 � p2

p2 : a2 � a1 a2 : p1 � p2.

The player-optimal stable matching is given by m(1) = 1 and m(2) = 2. Both a1 and a2

prefer p1 over p2. Therefore, at the end of the exploration stage p1 is matched to their top
choice arm while p2 is matched to the remaining arm. In order for p2 to be matched to
their optimal arm, p1 must correctly determine that they prefer a2 over a1. The number of

exploration rounds would then have to be Ω(1/∆
2

1,2) where ∆1,2 = µ1(2) − µ1(2). Hence,

when ∆1,2 ≤ 1/
√
n, the regret of p2 is Ω(n∆2,1). Figure 4.1a depicts this effect empirically;

we observe that a smaller gap ∆1,2 causes p1 to have larger regret.

Proof of Theorem 4.3.1

First we present two instructive lemmas that are used in the proof of Theorem 4.3.1, Through-
out the remainder of this section, we say the ranking r̂i,t submitted by pi at time t is valid
if whenever an arm aj is ranked higher than m(i), i.e. r̂i,j(t) < r̂i,m(i)(t), it follows that
µi(j) > µi(m(i)).

Lemma 4.3.2. If all the players submit valid rankings to the planner, then the GS-algorithm
finds a match m such that µi(m(i)) ≥ µi(m(i)) for all players pi.
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Proof. First we show that true player optimal matching m is stable according to the rankings
submitted by the players when all those rankings are valid. Let aj be an arm such that
r̂i,j(t) < r̂i,m(i)(t) for an player pi. Since r̂i,t is valid, it means pi prefers aj over m(i)
according to the true preferences also. However, since m is stable according to the true
preferences, arm aj must prefer player m−1(j) over pi, where m−1(j) is aj’s match according
to m or the emptyset if aj does not have a match. Therefore, according to the ranking r̂i,t,
pi has no incentive to deviate to arm aj because that arm would reject her. Now, since m is
stable according to the rankings r̂i,t, we know that the GS-algorithm will output a matching
which is at least as good as m for all players according to the rankings r̂i,t. Since all the
rankings are valid, it follows that the GS-algorithm will output a matching m which is as
least as good as m according to the true preferences also, i.e., µi(m(i)) > µi(m(i)).

Lemma 4.3.3. Consider the player pi and let ∆i,j = µi(m(i))−µi(j) and ∆i,min = minj : ∆i,j>0 ∆i,j.

Then, if pi follows the Explore-then-Commit platform (see Table 4.1(a)), we have

P(r̂i,hK is invalid ) ≤ Ke−
h∆

2
i,min
2 .

Proof. Throughout this proof we denote t = hK as a shorthand. In order for the ranking r̂i,t
to not be valid there must exist an arm aj such that µi(m(i)) > µi(j), but r̂i,j(t) < r̂i,m(i)(t).
This can happen only when µ̂i,j(t) ≥ µ̂i,m(i)(t). The probability of this event is equal to

P
(
µ̂i,j(t) ≥ µ̂i,m(i)(t)

)
= P

(
µ̂i,m(i)(t)− µi(m(i))− µ̂i,j(t) + µi(j) ≤ µi(j)− µi(m(i))

)
≤ P

(
µ̂i,m(i)(t)− µi(m(i))− µ̂i,j(t) + µi(j) ≤ ∆i,min

)
.

Since each player pulls each arm exactly h times during the exploration stage and since the
rewards from each arm are 1-sub-Gassian, we know that µ̂i,j′(t) − µi(j′) − µ̂i,j(t) + µi(j) is√

2/h-sub-Gaussian. Therefore,

P
(
µ̂i,j(t) ≥ µ̂i,m(i)(t)

)
≤ e−

h∆2
i

4 .

The conclusion follows by a union bound over all possible arms aj.

Proof of Theorem 4.3.1. During the exploration stage each player pi pulls each arm aj ex-
actly h times. Therefore, the expected player-optimal stable regret of player pi after the first
hK time steps is exactly equal to h

∑K
j=1 ∆i,j (note that ∆i,j might be negative for some

values of j). The player-optimal stable regret pi from time hK + 1 to time n is at most
(n−hK)∆i,max. However, from Lemma 4.3.2 we know that pi can incurr positive regret only
if there exists a player who submits an invalid ranking at time hK+1. Lemma 4.3.3, together
with a union bound over all players, ensures that the probability there exists a player who

submits an invalid ranking is at most N exp
(
−h∆2

4

)
. This completes the proof.
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Centralized UCB

In the previous section we saw that centralized ETC achieves O(log(n)) player-optimal regret
for all players. However, centralized ETC must know the horizon n and the minimum gap ∆
between an optimal arm and a suboptimal arm. While knowing the horizon n is feasible in
certain scenarios, knowing ∆ is not plausible. It is known that single player ETC achieves
O(n2/3) when the number of exploration rounds is chosen deterministically without knowing
∆, and there are also known methods for adaptively choosing the number of exploration
rounds so that single player ETC achieves O(log(n)) Lattimore and Szepesvari [2019]. How-
ever, in our setting, the O(n2/3) guarantee does not hold because the suboptimality gaps of
one player affect the regret of other players, and the known adaptive stopping times cannot
be implemented because the platform does not observe the players’ rewards. Therefore, it is
necessary to find methods which do not need to know ∆.

Another drawback of centralized ETC is that it requires players to learn concurrently.
It thus does not take prior knowledge of preferences into account and forces that player to
explore arms which might be suboptimal for them. The Gale-Shapley Platform shown in
Table 4.1(right) resolves this problem, always outputting the player-optimal matching given
the rankings received from the players. We derive an upper bound on the regret in this
setting when all players use upper confidence bounds to rank arms. In Section 4.3 we show
this method is incentive compatible.

Before proceeding with the analysis we define more precisely the UCB method employed
by each player and also introduce several technical concepts. At each time step the platform
matches player pi with arm mt(i). Each player pi successfully pulls arm mt(i), receives
reward Xi,mt(t), and updates their empircal mean for mt(i) as in (4.3). They then compute
the upper confidence bound

ui,j(t) =

{
∞ if Ti,j(t) = 0,

µ̂i,j(t) +
√

3 log t
2Ti(t−1)

otherwise.
(4.6)

Finally, each player pi orders the arms according to ui,j(t) and computes the ranking r̂i,t+1

so that a higher upper confidence bound means a better rank, e.g. arg maxj ui,j(t) is ranked
first in r̂i,t+1.

Let m be an injective function from the set of players N to the set of arms K; hence
m is the matching where m(i) is the match of player i. Then, let Tm(t) be the number of
times matching m is played by time t. For a matching m to be played at time t it must be
stable according to the current preference rankings of the players and the fixed rankings of
the arms, i.e. according to r̂i,t for all pi ∈ N and πj for all aj ∈ K. We call such matchings
achievable. We say a matching is truly stable if it is stable according to the true preferences
induced by the mean rewards of the arms. For player pi and arm p` we consider the set Mi,`

of non-truly stable, achievable matchings m such that m(i) = `. Let ∆i,` = µi(m(i))−µi(`).
Then, since any truly-stable matching yields regret smaller or equal than zero for all
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players, we can upper bound the regret of player i as follows:

Ri(n) ≤
∑

` : ∆i,`>0

∆i,`

 ∑
m∈Mi,`

ETm(n)

 . (4.7)

For any matching m that is non-truly stable there must exist an player pj and an arm ak,
different from arm m(j), such that the pair (pj, ak) is a blocking pair according to the true
preferences µ, i.e. µj(k) > µj(m(j)) and arm ak is either unmatched or πk(j) < πk(m

−1(k)).
We say the triplet (pj, ak, ak′) is blocking when pj is matched with ak′ and the pair (pj, ak)
is blocking. Let Bj,k,k′ be the set of all matches blocked by the triplet (pj, ak, ak′). Given a
set S of matchings, we say a set Q of triplets (pj, ak, ak′) is a cover of S if⋃

(pj ,ak,ak′ )∈Q

Bj,k,k′ ⊇ S.

Let C(S) denote the set of covers of S. Also, let ∆j,k,k′ = µj(k)− µj(k′). Now we state our
result.

Theorem 4.3.4. When all players rank arms according to the upper confidence bounds (5.12)
and submit their preferences to the Gale-Shapley Platform, the regret of player pi up to time
n satisfies

Ri(n) ≤
∑

` : ∆i,`>0

∆i,`

 min
Q∈C(Mi,`)

∑
(pj ,ak,ak′ )∈Q

(
5 +

6 log(n)

∆2
j,k,k′

) .
Theorem 4.3.4 offers a problem-dependent O(log(n)) upper bound guarantee on the

player-pessimal stable regret of each player pi. Similarly to the case of centralized ETC,
the regret of one player depends on the suboptimality gaps of other players. However, we
saw in Section 4.3 that centralized ETC achieves O(log(n)) player-optimal stable regret, a
stronger notion of regret. Example 5.11.1 shows that centralized UCB cannot yield sublinear
player-optimal stable regret in general.

Example 4.3.2 (Centralized UCB does not achieve sublinear player-optimal stable regret).
Let N = {p1, p2, p3} and K = {a1, a2, a3}, with true preferences given by:

p1 : a1 � a2 � a3 a1 : p2 � p3 � p1

p2 : a2 � a1 � a3 a2 : p1 � p2 � p3

p3 : a3 � a1 � a2 a3 : p3 � p1 � p2.

The player-optimal stable matching is (p1, a1), (p2, a2), (p3, a3). When p3 incorrectly ranks
a1 � a3 and the other two players submit their correct rankings, the Gale-Shapley Platform
outputs the matching (p1, a2), (p2, a1), (p3, a3). In this case p3 will never correct their mistake
because they never get matched with a1 again, and hence their upper confidence bound for
a1 will never shrink. Figure 4.1b illustrates this example; the optimal regret for p1 and p2 is
seen to be linear in n.
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Proof of Theorem 4.3.4. Let Lj,k,k′(n) be the number of times player pj pulls arm ak′ when
the triplet (pj, ak, ak′) is blocking the matching selected by the platform. Then, by definition∑

m∈Bj,k,k′

Tm(n) = Lj,k,k′(n). (4.8)

By the definition of a blocking triplet we know that if pj pulls ak′ when (pj, ak, ak′) is blocking,
they must have a higher upper confidence bound for ak′ than for ak. In other words, we are
trying to upper bound the expected number of times the upper confidence bound on ak′ is
higher than that of the better arm ak when we have the guarantee that each time this event
occurs ak′ is successfully pulled. Therefore, standard analysis for the single player UCB [e.g.,
Bubeck and Cesa-Bianchi, 2012, Chap. 2] shows that

ELj,k,k′(n) ≤ 5 +
6 log(n)

∆2
j,k,k′

. (4.9)

The conclusion follows from equations (4.7) and (4.8).

To better understand the guarantee of Theorem 4.3.4 we consider two examples in which
the markets have a special structure which enables us to simplify the upper bound on the
regret. Moreover, in Corollary 4.3.5 we consider the a worst case upper bound over possible
coverings of matchings.

Example 4.3.3 (Global preferences). Let N = {p1, · · · , pN} and K = {a1, · · · , aK}. We
assume the following preferences: pi : a1 � · · · � aK and aj : p1 � · · · � pN . In other
words all players have the same ranking over arms, and all arms have the same ranking over
players. Hence, the unique stable matching is (p1, a1), (p2, a2), . . . , (pN , aN). Moreover, for
any pi and a` we can cover the set of matchings Mi,` with the triplets (pi, ak, a`) for all k
with 1 ≤ k ≤ i. Then, Theorem 4.3.4 implies (4.10) once we observe that ∆i,k,` ≥ ∆i,` for
all k ≤ i.

Ri(n) ≤ 5i
K∑

`=i+1

∆i,` +
K∑

`=i+1

6i log(n)

∆i,`

. (4.10)

Figure 4.1c illustrates this example empirically, displaying the optimal (also pessimal) regret
of 5 out of 20 players. The 1st-ranked player has sublinear regret, consistent with (4.10),
while the 20th-ranked player has negative regret and our upper bound is indeed 0.

Example 4.3.4 (Unique pairs). Let N = {p1, · · · , pN} and K = {a1, · · · , aN} and assume
that player pi prefers arm ai the most and that arm ai prefers player pi the most. Therefore,
the unique stable matching is (p1, a1), (p2, a2), . . . , (pN , aN). Then, we can cover each set
Mi,` with the triplet (pi, ai, a`). Therefore, Theorem 4.3.4 implies (4.11); note that the right-
hand side is identical to the guarantee for single player UCB:

Ri(n) ≤ 5
K∑
`6=i

∆i,` +
N∑
`6=i

6 log(n)

∆i,`

. (4.11)
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Corollary 4.3.5. Let ∆ = mini minj,j′ |µi(j)−µi(j′)|. When all players follow the centralized
UCB method, the regret of pi can be upper bounded as follows

Ri(n) ≤ max
`

∆i,`

(
6NK2 + 12

NK log(n)

∆2

)
.

Proof We consider the covering (j, k, k′) composed of all possible triples with µj(k) > µj(k
′).

Then, Theorem 4.3.4 implies the result because
∑

k′ : µj(k′)<µj(k)
1

∆2
j,k,k′
≤
∑K

`=1
1

`2∆2 ≤ 2
∆2 .
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Figure 4.1: The empirical performance of centralized UCB in the settings described in Examples
4.3.1, 5.11.1, and 4.3.3. The experimental details for each figure is given below.

Figure 4.1a. This figure represents an empirical evaluation of Example 4.3.1. In this
setting, there are two agents and two arms. Player p2 receives Gaussian rewards from the
arms a1, a2 with means 0 and 1 respectively and variance 1. Player p1 receives Gaussians
rewards ∆ and 0 from the arms a1 and a2. Both arms prefer p1 over p2. Figure 4.1a shows
the regret of each agent as a function of ∆ when we run centralized UCB with horizon 400
and average over 100 trials.

Figure 4.1b. This figure represents an empirical evaluation of Example 4.3.1. The rewards
of the arms for each agent are Gaussian with variance 1. The have mean rewards of the arms
are set so that the preference structure shown in Example 4.3.1 is satisfied. For agents p1 and
p2, the gap in mean rewards between consecutive arms is 1. For agent p3 the gap in mean
reward between arms a1 and a3 is 0.05. Figure 4.1b shows the performance of centralized
UCB, averaged over 100 trials, as a function of the horizon.

Figure 4.3.3. This figure represents an empirical evaluation of Example 4.3.3 when there
are 20 agents and 20 arms. The rewards of the arms are Guassian with variance 1. The
mean reward gap between consecutive arms is 0.1. Figure 4.1b shows the performance of
centralized UCB, averaged over 50 trials, as a function of the horizon.
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Honesty and Strategic Behavior

Classical results show that in the player-proposing GS algorithm, no single player can im-
prove their match by misrepresenting their preferences, assuming that the other players and
arms submit their true preferences [Roth, 1982, Dubins and Freedman, 1981]. The result
generalizes to coalition of players. Moreover, when there is a unique stable matching, the
Dubins-Freedman Theorem says that no arms or players can benefit from misrepresenting
their preferences [Dubins and Freedman, 1981].

The ETC Platform does not allows players to choose which arms to explore. In this case,
the classical results on honesty in player-proposing GS apply; the players are incentivized
to submit the rankings according to their current mean estimates. When players have some
degree of freedom to explore over multiple rounds, it is no longer clear if any players, or
arms, can benefit from misrepresenting their preferences in some of the rounds. In general,
one player’s preferences can influence not only the matches of other players, but also their
reward estimates. One might be able to improve their regret by capitalizing on the ranking
mistakes of other players. The possibilities for long-term strategic behavior are more diverse
than in the single-round setting.

We now show that when all players except one submit their UCB-based preferences to
the GS Platform, the remaining player has an incentive to also submit preferences based on
their UCBs, so long as they do not have multiple stable arms.

First, we establish the following lemma, which is an upper bound on the expected number
of times the remaining player can pull an arm that is better than their optimal match,
regardless of what preferences they might have submitted to the platform.

Lemma 4.3.6. Let T il (n) be the number of times an player i pulls an arm l such that the
mean reward of l for i is greater than i’s optimal match. Then

E [T il (n)] ≤ min
Q∈C(Mi,`)

∑
(j,k,k′)∈Q

(
5 +

6 log(n)

∆2
j,k,k′

)
(4.12)

Proof. If player i is matched with arm l in any round, the matching m must be unstable
according true preferences. We claim that there must exist a blocking triplet (j, k, k′) where
j 6= i.

Arguing by contradiction, we suppose otherwise, that all blocking triplets in m only
involve player i. By Theorem 4.2 in Abeledo and Rothblum [1995], we can go from the
matching m to a µ-stable matching, by iteratively satisfying block pairs in a ‘gender consis-
tent’ order O. To satisfy a blocking pair (k, j), we break their current matches, if any, and
match (k, j) to get a new matching. Doing so, player i can never get a worse match than
l or become unmatched as the algorithm proceeds, so the matching remains unstable—a
contradiction. Hence there must exist a j 6= i such that j is part of a blocking triplet in m.
In particular, player j must be submitting its UCB preferences.
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The result then follows from the identity

E [T il (n)] =
∑

m∈Mi,`

ETm(n),

and Equation 4.9

Lemma 4.3.6 directly implies the following lower bound on the remaining player’s optimal
regret.

Proposition 4.3.7. Suppose all players other than pi submit preferences according to the
UCBs (5.12) to the GS Platform. Then the following upper bound on player i’s optimal
regret holds:

Ri(n) ≥
∑

` : ∆i,l<0

∆i,l

 min
Q∈C(Mi,`)

∑
(j,k,k′)∈Q

(
5 +

6 log(n)

∆2
j,k,k′

) . (4.13)

Therefore, there is no sequence of preferences that an player can submit to the GS Plat-
form that would give them negative optimal regret greater than O(log n) in magnitude.
When there is a unique stable matching, Proposition 4.3.7 shows that no player can gain
significantly in terms of stable regret by submitting preferences other than their UCB rank-
ings.

When there exist multiple stable matchings, however, Proposition 4.3.7 leaves open the
question of whether any player can submit a sequence of preferences that achieves super-
logarithmic negative pessimal regret for themselves, when all other players are playing their
UCB preferences. In other words, can an player do significantly better than its pessimal
stable arm, by possibly deviating from their UCB rankings? This is an interesting direction
for future work.
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Chapter 5

Competing Bandits in a Decentralized
Matching Market

5.1 Introduction

In the last chapter, we focused on a centralized setting in which the players are able to
communicate with a central platform that computes matchings for the entire market. We
defined a notion of regret called stable regret, which is the average reward a player obtains
less the rewards achieved under a stable matching with respect to the true preferences of the
market. We showed that an algorithm that combines the upper confidence bound principle
from the bandit literature [Lai and Robbins, 1985b] with the Gale-Shapley algorithm from
the matching market literature [Gale and Shapley, 1962] can achieve low stable regret.

In this chapter, we discuss a decentralized version of the problem, where the actions of
the players cannot be coordinated by a central platform, and our goal is to find a viable
algorithm for the decentralized case. The decentralized setting is arguably a more useful
formulation in practice. Indeed, most online marketplaces are decentralized, that is, there is
no central clearinghouse and players are unable to coordinate their actions with each other
directly. However, players may observe limited information about past matchings, such as
their own conflicts.

New theoretical challenges arise in the decentralized setting, in both the design and the
analysis of algorithms. Given that players may use past matchings to inform their current
play (e.g., to avoid conflicts), a player who has statistical uncertainty about their preferences
over arms may impose externalities on other players not only at the current time step but also
into the future. In essence, the decentralized formulation more fully exposes the challenges
of the economic and learning aspects of the problem.

We propose a solution for the decentralized version of the two-sided matching bandit
problem. Although a version of multiplayer Explore-Then-Commit can be extended to the
decentralized setting, the stable regret attained is suboptimal (Section 5.10). Our primary
contribution is a new multiplayer bandit algorithm, Decentralized Conflict-Avoiding Upper
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Confidence Bound (CA-UCB), that is guaranteed to yield for all players a stable regret that
grows polylogarithmically with the number of rounds of interaction between players and
arms, also known as the time horizon, n. In particular, to prove this regret guarantee we
roughly showed that the market converges to a stable matching at a polylogarithmic rate.
When the arms have the same preferences over players we offer a better guarantee. In this
case we prove that the stable regret grows at most logarithmically with the time horizon.
Informally, we can state our results as follows.

Theorem 5.1.1 (Informal main results). Suppose we have a market with N players and
K arms, with arbitrary preferences, and let ∆ be the minimum absolute gap between the
mean rewards of different arms. Then, if all players run the CA-UCB algorithm for T steps,
the probability that the market is unstable at time T is O(log(T )2/T ) (see Theorem 5.5.1).
Moreover, the players’ stable regret satisfies

R(n) = O
(
ρN

4 log(n)2

∆2

)
, for some ρ > 1. (Corollary 5.5.2)

When the arms have the same preferences over players, the players’ stable regret satisfies

R(n) = O
(
N2K

log(n)

∆2

)
. (Theorem 5.4.1)

Moreover, if N − 1 players implement the CA-UCB algorithm, the remaining player cannot
significantly improve their regret by running a different algorithm (Proposition 5.6.1).

The CA-UCB algorithm is simple and does not require communication between players.
There are two features of this algorithm that enable players to avoid conflicts. Firstly, when
implementing this algorithm a player observes the actions of other players in the previous
round and avoids attempting an arm if that arm was previously pulled by a better player
for it. Secondly, players randomly decide whether to choose the same arm as at the previous
time step or to make a new decision. When players implement our method conflicts can still
occur, but our analysis shows that the expected number of conflicts would be small.

The rest of the chapter is organized as follows: In Section 5.2, we review the matching
bandits problem, following the presentation in the previous chapter, and fully specify the de-
centralized setting that is our focus. In Section 5.3, we motivate and introduce the algorithm
that is the subject of our regret analyses in Sections 5.4 and 5.5. In Section 5.6, we discuss
the incentive compatibility of this algorithm, showing one positive and one negative result.
Our theoretical guarantee on the performance of CA-UCB exhibits an exponential depen-
dence on the size of the market. In Section 5.7 we show empirically that this dependence
is an artifact of our analysis; CA-UCB performs much better in practice than these results
suggest. In Section 5.8, we survey the related literatures, and in Section 5.9, we present a
thorough discussion of our results, as well as avenues for future work. In Section 5.10, we
analyze a suboptimal algorithm based on explore-then-commit for the decentralized setting,
for comparison; in Section 5.11, we include omitted examples and proofs.
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5.2 Problem Setting

We consider a multiplayer multi-armed bandit problem with N players and K stochastic
arms, with N ≤ K. We denote the set of players by N = {p1, p2, . . . , pN} and the set
of arms by K = {a1, a2, . . . , aK}. At time step t, each player pi attempts to pull an arm
mt(i) ∈ K.

When multiple players attempt to pull the same arm, only one player will successfully
pull the arm, according to the arm’s preferences via a mechanism we detail shortly. Then, if
player pi successfully pulls arm mt(i) at time t, they are said to be matched to mt(i) at time t
and they receive a stochastic reward, Xi,mt(t), sampled from a 1-sub-Gaussian distribution
with mean µi(mt(i)) > 0.

For each player pi we assume µi(j) 6= µi(j
′) for all distinct arms, aj and aj′ . If µi(j) >

µi(j
′), we say that player pi truly prefers aj to aj′ , and denote this as aj �pi aj′ .
Each arm aj has a fixed, known, and strict preference ordering over all the players, �aj .

In other words, pi �aj pi′ indicates that arm aj prefers player pi to player pi′ . If two or more
players attempt to pull the same arm aj, there is a conflict and only the most preferred
player successfully pulls the arm to receive a reward; the other player(s) pi′ is said to be
unmatched and does not receive any reward, that is, Xi′,mt(t) = 0.

A stable matching [Gale and Shapley, 1962] of players and arms is one where no pair of
player and arm would prefer to be matched with each other over their respective matches.
Given the full preferences of the arms and players, arm aj is called a achievable match
of player pi if there exists a stable matching according to those preferences such that aj
and pi are matched. We say aj is the optimal match of player pi if it is the most preferred
achievable match. Similarly, we say aj is the pessimal match of player pi if it is the least
preferred achievable match. We denote by m and m the functions from N to K that define
the optimal and pessimal matches of a player according to the true preferences of the players
and arms.

In the decentralized matching setting, a notion of stable regret, as introduced in Chapter 4,
is useful for analyzing the performance of learning algorithms. We consider a player’s player-
pessimal stable regret, where the baseline for comparison is the mean reward of the arm that
is the player’s pessimal match.1 It is defined as follows for player pi:

Ri(n) := nµi(m(i))−
n∑
t=1

EXi,mt(t). (5.1)

The above notion of stable regret considers regret from the perspective of the players
only, that is, we are primarily interested in how the players perform with respect to their

1We can define analogously the player-optimal stable regret corresponding to the player’s optimal match,
denoted Ri(n). The player-pessimal stable regret and player-optimal stable regret tend to coincide in many
real-world markets, such as in unbalanced random matching markets [Ashlagi et al., 2017b] where the stable
matching is essential unique. This is as well the case when players are globally ranked. In this work, we
focus on the player-pessimal stable regret.
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stable arms over time. Focusing on the welfare of one side of the market is consistent with
the stable matching literature, in particular that on school choice, where one side of the
market (the schools) are said to have “priorities”, rather than “preferences”, for the other
side of the market (the students), and it is the students’ welfare that is of primary interest
[Abdulkadiroglu and Snmez, 2003, Abdulkadiroglu et al., 2006].2 Recently, [Cen and Shah,
2021] studied fairness and social welfare in the context of matching markets.

In order to fully specify the problem we need to clarify what information the players have
access to. We consider the following decentralized setting:

Decentralized with Conflict Information At each round, each player attempts to pull
an arm, with the choice of arm based on only their rewards and observations from previous
rounds. At the end of the round, all players can observe the winning player for each arm.
They can see their own rewards only if they successfully pull an arm. They cannot see the
rewards of other players. We also assume that all players know, for each arm, which players
are ranked higher than themselves.3

5.3 Algorithm: Decentralized Conflict-Avoiding UCB

In the single-player multi-armed bandit (MAB) the player must explore different arms in
order to identify the arms with the highest mean payoff. At the same time, the player must
keep selecting arms that seem to give high payoff in order to accumulate a large reward
over time. The upper confidence bounds (UCB) algorithm offers an elegant solution to this
exploration-exploitation dilemma. As the name suggests, UCB maintains upper confidence
bounds on the arms’ mean payoffs and selects the arm with the largest upper confidence
bound. Then, the UCB algorithm updates the upper confidence bound corresponding to the
selected arm according to the reward observed.

In the aforementioned decentralized model, however, a player cannot implement UCB
obliviously of other players’ actions given the possibility of conflicts. Let us discuss this
issue from the perspective of player p1. Suppose p1 chooses arm a1, and suppose player p2

chooses a1 at the same time. Then, if a1 prefers p2 over p1, a conflict arises and player p1

receives no reward. In addition to not receiving a reward, in this case, player p1 does not
learn anything new about the distribution of rewards offered by arm a1. Therefore, in the
decentralized case players must balance exploration and exploitation while avoiding conflicts
that they would lose.

2We thank a reviewer for pointing out this connection to the economics literature.
3This assumption allows for a cleaner analysis of our algorithm. Our results can be generalized to the

setting where players do not know this information initially because the arms know their own preferences
and the conflicts between players are resolved deterministically. It is sufficient for each player to assume in
the beginning that they are the most preferred player by every arm. Then, each lost conflict reveals which
players are more preferred by which arms. This procedure would introduce at most KN2 conflicts.
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Algorithm 1 CA-UCB with random delays

Input: λ ∈ [0, 1)
1: for t = 1, . . . , T do
2: for i = 1, . . . , N do
3: if t = 1 then
4: Set upper confidence bound to ∞ for all arms.
5: Sample an index j ∼ 1, . . . , K uniformly at random. Sets A

(i)
t ← aj.

6: else
7: Draw D(i)(t) ∼ Ber(λ) independently.
8: if D(i)(t) = 0 then
9: Update plausible set S(i)(t) for player pi:

S(i)(t) := {aj : pi �aj pk or pi = pk, where Ā(k)(t− 1) = aj}.

10: Pulls a ∈ S(i)(t) with maximum upper confidence bound. Sets A
(i)
t ← a.

11: else
12: Pulls A

(i)
t−1. Sets A

(i)
t ← A

(i)
t−1.

13: if pi wins conflict then
14: Update upper confidence bound for arm A

(i)
t .

To see intuitively how p1 can achieve such conflict avoidance let us assume that there are
only two players and that all arms prefer p2. Then, from the perspective of p2, the problem
is identical with the single-player MAB problem and therefore p2 can achieve small regret by
using the standard UCB method. Since p2 aims to minimize their own regret, p2 will sample
the arm that gives them the highest mean payoff most of the time. More precisely, there can
be at most O(log(T )) time steps when p2 does not sample the best arm for themself.

On the other hand, p1 must minimize the number of times they select the same arm as
p2 because they would lose the conflicts with p2. Because most of the time player p2 chooses
the best arm for themselves, the following simple heuristic allows player p1 to avoid choosing
the same arm as p2 most of the time: player p1 should not select the arm p2 chose at the
previous time step.

It turns out that this conflict-avoidance heuristic, combined with the UCB method, gives
rise to an algorithm that provably achieves small regret for all players. We call this method
Decentralized Conflict-Avoiding Upper Confidence Bound, or CA-UCB for short, and detail
it in Algorithm 1. Before introducing our algorithm, let us first introduce some notation for
the players’ actions. We use A(i)(t) to denote the player pi’s attempted arm at time t, and
Ā(i)(t) to denote the player i’s successfully pulled arm at time t. When the player fails to
pull an arm successfully because of a lost conflict, we have Ā(i)(t) = ∅.

According to Algorithm 1, at each time step t each player pi independently samples a
biased Bernoulli random variable D(i)(t) with mean λ ∈ [0, 1). When D(i)(t) comes up 1, the



CHAPTER 5. COMPETING BANDITS IN A DECENTRALIZED MATCHING
MARKET 89

player chooses the same arm as they did at the previous time step. We will soon return to
explain the rationale behind staying on the same arm as the previous time step with some
probability. For now, let us focus on the case where D(i)(t) comes up 0.

When the Bernoulli random variable D(i)(t) comes up 0, the player constructs a plausible
set of arms that includes all arms except those that the player would not have been able to
pull successfully at the previous time step. In other words, the player pi will consider an arm
plausible, only if in the previous time step t − 1, the arm was not pulled by a player that
the arm strictly prefers to pi. Then, the player chooses the arm in the plausible set with the
highest upper confidence bound, which is updated as in the single-player UCB method. We
formally define the upper confidence bound in Equation 5.12 of Section 5.4.

We refer to the parameter λ as the delay probability. When λ = 0 the actions of the
players that implement CA-UCB are deterministic functions of the history up to that point.
This property has no impact on the algorithm’s convergence when the players are globally
ranked (i.e., all arms have the same preferences), as shown in Section 5.4. However, for more
general preference structures, if all players implement CA-UCB with delay probability zero,
they can enter into infinite loops. The following simple example showcases this failure mode.

Example 5.3.1 (2-player globally ranked arms). Consider the following setting with two
players and two arms:

p1 : a1 � a2 a1 : p1 � p2

p2 : a1 � a2 a2 : p2 � p1.

In this case the unique stable matching is (p1, a1), (p2, a2).

Suppose both players in Example 5.3.1 implement CA-UCB with zero probability of
delay. Through a random initialization of CA-UCB it is possible that both players select
arm a1 at the first time step. Then, p2 loses the conflict and at the next step will choose
a2, which is the only arm in their plausible set. On the other hand, the UCB of player p1

for arm a2 is positive infinity at this point because they have not pulled it yet. Hence, p1

attempts to pull a2 at the second time step. Since a2 prefers p2, p1 loses the conflict and
their UCB for arm a2 remains infinite. The same argument shows that both players will
keep choosing the same arm, alternating between a1 and a2. As long as they stay in this
cycle, both players experience a constant stable regret. We showcase another example of
when deterministic conflict-avoiding might fail in Appendix 5.11.

To break such cycles CA-UCB incorporates randomness via the delay probability. As we
will see, for arbitrary preferences and delay probability λ ∈ (0, 1), the CA-UCB algorithm
achieves O(log(T )2) regret, with the hidden constant depending on λ, the gap between mean
rewards, and the number of players and arms. On the other hand, the size of the regret that
we obtain depends exponentially on the number of players, regardless of the choice of λ. We
can obtain stronger results by making additional assumptions on the structure of preferences.
In particular, if the players are globally ranked, then we obtain a polynomial dependence on
the number of players; moreover, we obtain O(log(T )) regret. We begin with this specialized
setting in Section 5.4 and turn to the general case in Section 5.5.
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5.4 Globally Ranked Players

In this section, we prove regret bounds for the CA-UCB algorithm, Algorithm 1, without
random delays (i.e., with λ = 0). We assume all arms have the same preferences over players,
whereas each player may have arbitrary preferences over arms. This preference structure is
made precise in the following assumption.

Assumption 4 (Globally ranked players). We assume the players are globally ranked: for
any pi, pi′ where i < i′, and any arm aj, we have pi �aj pi′.

In other words, more preferred players have lower indices. Under this assumption, there
is a unique stable matching in the market. By re-indexing the arms we can assume without
loss of generality that the stable player-arm pairs are {(pi, ai)}Ni=1. Under such an indexing,
the following critical property holds: for any player pi and any arm aj with j > i, pi must
prefer ai over aj; that is, ai �pi aj. Also, since the stable matching is unique, there is a
single notion of stable regret, that is, for any player pk, we have Rk(n) := Rk(n) = Rk(n).

Our goal in this section is to prove an upper bound on the stable regret of a player, taking
into account their ranking in the market. We use the following notation to denote the gaps
in mean rewards of arms for players pi, pj:

∆
(i)
j := µi(i)− µi(j) and ∆

(i)
∅ := µi(i). (5.2)

We use ∆2 := mini<j |∆(i)
j |2 to denote the minimum squared gap.

Theorem 5.4.1 (Stable regret under globally ranked players). Suppose each player runs
Algorithm 1 with λ = 0. The following regret bound holds for any player pk and any horizon
T ≥ 2:

Rk(n) ≤ 6k2

(
log n

∆2
+ 1

)
·
(

(K − k)∆
(k)
∅ + k

∑
i:ak�pk

ai

∆
(k)
i

)
. (5.3)

This result shows that the stable regret of any player in the market is logarithmic in
the horizon n, matching the known lower bound for single-player stochastic bandits [Lai
and Robbins, 1985b]. Moreover, the regret scales cubically with the rank of the player and
linearly with the number of arms. It is useful to compare this result to the corresponding
stable regret in the centralized setting (a direct corollary of Theorem 4.3.4), also under
Assumption 4:

Rk(n) ≤ 6k
K∑

l=k+1

(
∆

(k)
l +

log n

∆
(k)
l

)
. (5.4)

We see that in the centralized setting, the dependence on the rank k is linear instead of cubic.
Moreover, the dependence on the reward gap is reduced to

∑
i>k 1/∆

(k)
i , which matches

the optimal dependence on the reward gaps in the classical single-player bandit problem
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[Lai and Robbins, 1985b]. In the decentralized setting where players are globally ranked,
Sankararaman et al. [2020] showed a instance dependent lower bound suggesting that the
dependence on 1/∆2 cannot be improved upon in general. We further discuss lower bounds
in Section 5.9.

Before we proceed to the proof of Theorem 5.4.1, we introduce the following notation,
and establish two technical lemmas.

• A(k)(t) ∈ [K] is the arm attempted by pk at time t;

• Ā(k)(t) ∈ [K] ∪ {∅} is outcome of pk’s attempt at time t;

• T (k)
i (t) is the total number of attempts by pk of ai up to time t;

• Tk,i(t) is the total number of successful attempts by pk of ai up to time t.

The following events are central to our analysis:

Λ
(j)
l [t] =

{
Ā(j)(t) = al, aj ∈ S(j)(t)

}
. (5.5)

In plain language, Λ
(j)
l [t] denotes the event in which a player pj chooses to pull an arm al

over a stable matching arm aj that belongs to the plausible set at time t.
The next lemma shows that if a player pk pulls a suboptimal arm ai (with i > k) at time

t, then there must be some same or better-ranked player pj (with j ≤ k), who, though having
its matching arm aj in their plausible set, chose to pull a suboptimal arm al (with l > j) at
some time t′ between times t− k and t.

Lemma 5.4.2 (Suboptimal pulls). For any player pk and arm ai such that ak �pk ai,{
Ā(k)(t) = ai

}
⊆ Λ

(k)
i [t]

⋃( ⋃
1≤j<l≤k

⋃
t−k≤t′<t

Λ
(j)
l [t′]

)
. (5.6)

Proof. The key to the proof is the following observation. Suppose the event
{
Ā(k)(t) = ai

}
takes place. Then, one of the two things must happen:

• ak ∈ S(k)(t), in which case the event Λ
(k)
i [t] occurs by definition.

• ak 6∈ S(k)(t), in which case some better-ranked player, say pu with u < k, must have
pulled the arm ak at time t− 1 according to the definition of Algorithm 1.

This observation translates to the following assertion: for any player pk and arm ai where
i 6= k, we have {

Ā(k)(t) = ai
}
⊆ Λ

(k)
i [t]

⋃(⋃
u<k

{
Ā(u)(t− 1) = ak

})
. (5.7)

We can now prove the lemma by induction on k.
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Base case k = 1: This is trivially true, due to the fact that the top-ranked player p1 has
all the arms in their plausible set at all times t, and thus, for any arm ai,{

Ā(1)(t) = ai
}

=
{
Ā(1)(t) = ai, ai ∈ S(1)(t)

}
= Λ

(1)
i [t].

Induction step: We assume (5.6) for all k < m and prove it also holds for k = m. Let
arm ai be such that am �pm ai. By equation (5.7), we have

{
Ā(m)(t) = ai

}
⊆ Λ

(m)
i [t]

⋃( ⋃
u<m

{
Ā(u)(t− 1) = am

})
. (5.8)

By our assumptions we know that au �pu am when u < m. Consequently, we can apply the
induction hypothesis for player pu, with u < m, and arm am and time t− 1, to obtain that{

Ā(u)(t− 1) = am
}
⊆ Λ(u)

m [t− 1]
⋃( ⋃

1≤j<l≤u

⋃
t−u≤t′<t−1

Λ
(j)
l [t′]

)
.

Taking the union over u < m on both sides yields the inclusion⋃
u<m

{
Ā(u)(t− 1) = am

}
⊆

⋃
1≤j<l≤m

⋃
t−m≤t′<t

Λ
(j)
l [t′]. (5.9)

By substituting equation (5.9) into equation (5.8), we obtain the conclusion.

The next lemma tells a similar story as Lemma 5.4.2; it shows that when pk has a conflict,
there must be some better player pj, with j < k, who chooses to pull a suboptimal arm al
at some time t′ between times t− k and t although they have the matching arm aj in their
plausible set.

Lemma 5.4.3 (Conflicts). For any player pk, we have the inclusion{
Ā(k)(t) = ∅

}
⊆

⋃
1≤j<k
j<l≤K

⋃
t−k≤t′≤t

Λ
(j)
l [t′]. (5.10)

Proof. Player pk can have a conflict on any of the arms a1, a2, . . . , aK . We have

{
Ā(k)(t) = ∅

}
=

K⋃
l=1

{
Ā(k)(t) = ∅, A(k)(t) = al

}
.

For all m ≥ k we observe that pk can have a conflict on al only if there is a player pj with
j < k who successfully pulls arm am at time t. In this case we have{

Ā(k)(t) = ∅, A(k)(t) = am
}
⊆
⋃
j<k

{
Ā(j)(t) = am

}
.
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We can then apply Lemma 5.4.2 to each event
{
Ā(j)(t) = am

}
.

We now have to analyze the events
{
Ā(k)(t) = ∅, A(k)(t) = am

}
with m < k. Since{

Ā(k)(t) = ∅, A(k)(t) = am
}
⊆
{
A(k)(t) = am

}
,

it suffices to prove by induction that

k−1⋃
m=1

{
A(k)(t) = am

}
⊆

⋃
1≤j<k
j<l≤K

⋃
t−k≤t′≤t

Λ
(j)
l [t′]. (5.11)

The base case k = 1 is obvious since the left-hand side is the empty set. Now, we assume
the induction hypothesis holds for all k < k′ and we prove it for k = k′. If

{
A(k′)(t) = am

}
holds, we know that pm at time t− 1 did not attempt to pull am. They either attempted to
pull an arm am′ with m′ > m or with m′ < m. In the former case, the induction step follows
from Lemma 5.4.2. In the latter case, we can apply our induction hypothesis. The result
follows.

The final ingredient we need to prove Theorem 5.4.1 is the UCB argument for a single
player. This is given in the following display. For completeness, we provide an elementary
proof in Section 5.11.

Lemma 5.4.4 (UCB bound). Suppose we use the following upper confidence bounds in
Algorithm 1:

ui,j(t) =

{
∞ if Ti,j(t) = 0,

µ̂i,j(t) +
√

3 log t
2Ti,j(t−1)

otherwise.
(5.12)

Then, for any player pi, arms aj, ak, such that aj ≺i ak, we have, for n > 0:

n∑
t=1

P
(
{ui,j(t) > ui,k(t)} ∩

{
Ā(i)(t) = j

})
≤ 6

∆2
log(T ) + 6.

Proof of Theorem 5.4.1. We bound the regret of player pk. By definition, their regret is

Rk(n) ≤ ∆
(k)
∅ · E [Tk,∅(n)] +

∑
i:ak�pk

ai

∆
(k)
i · E [Tk,i(n)] , (5.13)

where, because of our assumption on the indexing of arms, the last summation can also be
written simply as a sum over all i ∈ {k + 1, . . . , K}.
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Upper bounding E [Tk,i(n)]. By definition,

E [Tk,i(n)] =
n∑
t=1

P
(
Ā(k)(t) = ai

)
. (5.14)

We now bound the probability P
(
Ā(k)(t) = ai

)
for each t. Lemma 5.4.2 yields

P(Ā(k)(t) = ai) ≤ P(Λ
(k)
i [t]) +

∑
1≤j<l≤k

∑
t−k≤t′<t

P(Λ
(j)
l [t′]). (5.15)

Summing from t = 1 to n, and using equation (5.14), we obtain the bound

E [Tk,i(n)] ≤
∑

1≤t≤T

P(Λ
(k)
i [t]) +

∑
1≤t≤n

∑
1≤j<l≤k

∑
t−k≤t′≤t

P(Λ
(j)
l [t′])

≤
∑

1≤t≤T

P(Λ
(k)
i [t]) + (k + 1)

∑
1≤j<l≤k

∑
1≤t≤n

P(Λ
(j)
l (t)).

(5.16)

Recall that for all players pj and arms al with l > j, and time t > 0,

Λ
(j)
l (t) ⊆ {uj,l(t) > uj,i(t)} ∩

{
Ā(j)(t) = l

}
.

Therefore, using Lemma 5.4.4, we can show that the following upper bound holds:∑
1≤t′≤n

P(Λ
(j)
l (t′)) ≤ 6

(
log n

|∆(j)
l |2

+ 1

)
. (5.17)

Substituting equation (5.17) into equation (5.16) yields the bound

E [Tk,i(n)] ≤ 6

(
log n

|∆(k)
i |2

+ 1

)
+ 6(k + 1)

∑
1≤j<l≤k

(
log n

|∆(j)
l |2

+ 1

)
≤ 6k3

(
log n

∆2
+ 1

)
. (5.18)

Recall that ∆2 = mini6=j |∆(i)
j |2.

Upper bounding E [Tk,∅(n)]. By definition,

E [Tk,∅(n)] =
n∑
t=1

P
(
Ā(k)(t) = ∅

)
. (5.19)

Lemma 5.4.3 and a derivation mutatis mutandis to the argument from equation (5.15)
to (5.18) yields

E [T∅,i(n)] ≤ 6(k + 1)
∑

1≤j<k
j<l≤K

(
log n

|∆(j)
l |2

+ 1

)
≤ 6k2(K − k)

(
log n

∆2
+ 1

)
.

(5.20)

Substitute (5.18) and (5.20) into (5.13) to complete the proof of the theorem.
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5.5 Arbitrary Preferences on Both Sides of the

Market

In this section, we analyze the convergence of Algorithm 1 under arbitrary preference lists for
both sides of the market. Note that in this setting, the stable matching may not be unique.
We consider throughout the randomized version of Algorithm 1, with delay probability λ > 0.

Without the assumption of shared preferences among the arms, the analysis of the conver-
gence of Algorithm 1 becomes more challenging. In fact, it is not obvious that Algorithm 1,
or any other algorithm, can achieve sublinear player regret against the pessimal stable match-
ing for any set of preferences. As seen in Example 5.11.1 in Appendix 5.11, decentralized
coordination among players can be difficult even in small markets with only three players. In
order to prove the regret bound in Section 5.4, we relied heavily on the structure conferred
by the global ranking of players. Without this particular structure, we have to appeal to
more general results about stable matching. This generality also comes at a cost: the regret
bound we prove in this section is polylogarithmic in the horizon and has an exponential
dependence on the number of players.

Before introducing the main result, we first present some essential notation. Recall that
N = {pi}Ni=1 denotes the set of players, and K = {ai}Ki=1 denotes the set of arms. We denote
the attempted actions (i.e., arms) at time t as

mt : N 7→ K, where mt(pi) := A(i)(t).

We note that mt in general does not have to be a matching between players and arms,
because two or more players may attempt to pull the same arm. However, whenever there
are no conflicts, mt is indeed a matching (an injective map) between players and arms, so we
can distinguish the set of attempted actions that coincide with a stable matching. We thus
refer to m : N 7→ K as stable if m indeed coincides with a stable matching between players
and arms.

We denote the set of stable attempted actions as

M∗ := {M |M : N 7→ K,M is stable}.

Let ∆ = mini,j,k |µi(j) − µi(k)| denote the minimum reward gap between any two arms for
any player. We also define the constant ε := (1 − λ)λN−1, which depends on the delay
probability λ.

Our goal in this section is to prove the following upper bound on the probability that
the market is in an unstable configuration when running the algorithm. More formally, we
bound the sum, over t, of probabilities that the attempted actions at time t yield an unstable
matching. Understanding how this quantity depends on the horizon and various problem
parameters enables us to provide a general regret bound for Algorithm 1.
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Theorem 5.5.1 (Convergence to stability of Algorithm 1 for arbitrary preferences). Let
N,K ≥ 2, T ≥ 2, and suppose we run Algorithm 1 with delay probability λ ∈ (0, 1). Then,

T∑
t=1

P(mt 6= M∗) ≤ 24 · N
5K2

εN4+1
log(T )

(
1

∆2
log(T ) + 3

)
. (5.21)

As a corollary of Theorem 5.5.1, we have the following upper bound on the pessimal
stable regret of any player.

Corollary 5.5.2 (Pessimal stable regret of Algorithm 1 for arbitrary preferences). The
following inequality holds for the agent-pessimal regret of player pk up to time n:

Rk(n) ≤ 24 ·max
a`∈K

∆k,`

(
N5K2

εN4+1
log(T )

(
1

∆2
log(T ) + 3

))
,

where ∆k,` = max{µk(m(k))− µk(`), µk(m(k))}.

In short, we find that the stable regret of Algorithm 1 is O((log n)2). Unlike in previous
sections where we derived player-specific stable regret bounds that depended on the ranking
of the player, or the ranking of their stable arm, in the current setting the players have no
particular ranking. Corollary 5.5.2 is derived from a general bound on the probabilities that
the matching of the entire market is unstable.

Proof sketch We begin by sketching the main ideas in the proof of Theorem 5.5.1. There
are two main technical ingredients that are new to the current section: the first is the
observation that in the event that each player’s UCB rankings of the arms in their plausible
set are correct (colloquially we refer to this event as “no statistical mistakes”), and the
previous matching was stable, then running one step of Algorithm 1 will preserve the stability
of the matching with probability one. This is established in Lemma 5.5.3. Therefore, if the
matching at time t is unstable, it must be either be that some player had incorrect UCB
rankings, or there were no statistical ranking mistakes but the matching at time t − 1 was
unstable.

In Lemma 5.5.4, we generalize this statement to consider histories of arbitrary length.
That is, if a matching at time t is unstable, it must either be that some player had incorrect
UCB rankings over the last h time steps, or there were no ranking mistakes in all the last h
time steps but the matchings reached were unstable.

As in Section 5, we know how to upper bound the probability that a player had incorrect
UCB rankings when running Algorithm 1 with λ > 1. Recall that this entailed a simple
adaptation of the single-player UCB argument (Lemma 5.4.4). The new problem we face is
that of controlling the probability that there were no ranking mistakes but the matchings in
all the last h time steps were unstable. It turns out that a classical result from the stable
matching literature [Abeledo and Rothblum, 1995] gives us a way to argue that this probabil-
ity is exponentially small in the length of the history considered (Lemma 5.5.7). Intuitively,
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we are using the fact that Algorithm 1, when there are no ranking mistakes, is essentially
resolving blocking pairs—pairs of players and arms that would prefer to be matched with
each other over their current matches—in a randomized fashion, but following an order that
is consistent with player preferences (Lemma 5.5.6). This is crucial for establishing that
Algorithm 1 will always reach a stable matching with enough steps, as long as there are no
ranking mistakes.

Finally, our analysis needs to balance the tradeoff inherent in the choice of the length
of history considered, h. If we consider a longer history length, there can be many ranking
mistakes made in this window, hence contributing to a higher probability of an unstable
matching. On the other hand, a longer history length with no ranking mistakes means that
there is a higher probability that a stable matching can be reached. By choosing h to depend
on the time step t, we are able to achieve a log(n)2 dependence on the horizon n in the final
bound (5.21).

Before presenting the technical lemmas, we first rigorously define the events of interest
that were alluded to in the proof sketch.

1. Let Et denote the event that, for every player, the arm that has the highest mean
reward in their plausible set coincides with the arm with the highest UCB in their
plausible set at time t:

Et :=
⋂
pi∈N

{
argmax
aj∈S(i)(t)

µi(j) = argmax
aj∈S(i)(t)

ui,j(t)

}
. (5.22)

Let Ec
t denote the complement of this event.

2. Let F
(i)
j,k (t) denote the event that player pi’s UCB for arm aj is greater than their UCB

for arm ak at time t:
F

(i)
j,k (t) = {ui,j(t) > ui,k(t)} .

The following lemma shows that if the current matching is stable, then one step of
Algorithm 1 under the event defined in (5.22) preserves the stability of the current matching.

Lemma 5.5.3 (Preservation of Stability). Assume mt ∈ M∗. Then mt+1 ∈ M∗ on the
event Et+1.

Proof. We show mt+1 = mt on event Et+1. Let m = mt. Assume Et+1 happens. Suppose,
for a contradiction, that some player p attempts an arm a 6= m(p) at time t + 1. Let p′ be
the player that a is matched to at time t, that is, M(a) = p′, if a is matched at time t, and
let p′ = ∅, otherwise. Note that since p is matched with m(p) at time t, m(p) must belong to
the plausible set of p at time t+ 1 by definition of the algorithm. Since p attempts a 6= m(p)
at t+ 1, this implies that (i) p truly prefers a over m(p) by definition of Et+1 and (ii) a truly
prefers p over p′, since a must be in the plausible set of p at time t + 1. Thus (p, a) are
a blocking pair for the matching m, contradicting the assumption that m ∈ M∗. Thus we
have shown mt+1 = mt = m ∈M∗.
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In the next lemma, we apply Lemma 5.5.3 repeatedly to show that the event that the
current matching is unstable can be decomposed into prior events that occurred up to K
steps in the past. Specifically, if the current matching is unstable, then either the UCB
ranking of arms were wrong at some point in the history of length K (that is, (5.22) was
false), or the matching was unstable for K consecutive steps even though (5.22) was true in
all K steps.

Lemma 5.5.4 (Inclusion for unstable matching event). We have the following inclusion that
holds for any 0 ≤ K < t− 1:

{mt 6∈M∗} ⊆

(
K⋃
s=0

Ec
t−s

)⋃(
K⋂
s=0

(Et−s ∩ {mt−s−1 /∈M∗})

)
.

Proof. This is an immediate consequence of Lemma 5.5.3. In fact, Lemma 5.5.3 shows

{mt 6∈M∗} ⊆ Ec
t ∪ (Et ∩ {mt−1 /∈M∗}). (5.23)

This shows Lemma 5.5.4 holds for K = 0. A simple induction argument shows that
Lemma 5.5.4 holds for general K > 0, K < t− 1.

Lemma 5.5.4 suggests that in order to derive an upper bound on the probability that mt

is unstable, we can separately bound the probabilities of the event that the UCB ranking of
arms has an error, and the event that the matching was unstable for K consecutive steps
even though UCB rankings were correct in all K steps. The following lemma addresses the
former.

Lemma 5.5.5 (Probability of ranking error event). The following inequality holds for any
t > 0:

P(Ec
t ) ≤ ε−1 ·

∑
(i,j,k),:aj≺iak

P(F
(i)
j,k (t) ∩ Ā(i)(t) = j).

Proof. The key is the following observation. That Ec
t happens implies the existence of some

player pi and arms aj, ak in their plausible set at time t, such that while the arm aj achieves
the highest UCB with respect to player pi, the player truly prefers arm ak over aj, Hence,
this implies

P(Ec
t ) ≤

∑
(i,j,k),:aj≺iak

P(ui,j(t) > ui,k(t) ∩ {j = argmax
j′

ui,j′(t)}).

Recall F
(i)
j,k (t) = {ui,j(t) > ui,k(t)}. Lemma 5.5.5 now follows if we can show

P(F
(i)
j,k (t) ∩ {j = argmax

j′
ui,j′(t)}) ≤ ε−1 · P(F

(i)
j,k (t) ∩ Ā(i)(t) = j).

To see this, note that the player pi will successfully pull aj if player pi doesn’t draw a random
delay and all the rest of the players draw the random delay (meaning they all attempt the
same arm as they attempted in the last round). By independence of the random draws, this
event happens with probability at least ε = (1− λ)λN−1.
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Having established this lemma, we can now easily apply the UCB argument as given in
Lemma 5.4.4 to bound the relevant quantity,

∑T
t=1 P(Ec

t ).
We proceed to analyze the probability of the event that the matching was unstable for

K consecutive steps even though UCB rankings were correct in all K steps. Essentially, this
requires us to establish how quickly the decentralized conflict-avoiding procedure converges
to a stable matching when there are no statistical errors in the rankings of arms. To do so,
we invoke a result from the stable matching literature [Abeledo and Rothblum, 1995]. First,
we introduce the notion of a blocking pair that is player-consistent.

Definition 1 (Player-consistent blocking pair). A blocking pair (pi, aj) in a matching µ is
player-consistent if

aj �pi ak for any k such that (pi, ak) is a blocking pair in µ. (5.24)

In other words, if player pi most prefers the aj out of all the arms that prefer pi over
the player that they are matched to in µ, then the blocking pair (pi, aj) is player-consistent.
Notice that in Algorithm 1, at time t, if the UCB rankings are accurate, then each player
pi (who did not draw a random delay) will attempt precisely the arm aj where (pi, aj) is a
player-consistent blocking pair in the matching µ induced by the previous attempted actions
mt−1, by the definition of the plausible set.

We also require the following definition of resolving a blocking pair, in the context of
running one step of Algorithm 1.

Definition 2 (Resolution of blocking pair). Given attempted actions mt /∈M∗ and a blocking
pair (pi, aj) in the matching induced by mt, we say that mt+1 is obtained by resolving (pi, aj),
if mt+1(pi) = aj and mt+1(p) = mt(p) for all p ∈ N , p 6= pi.

We are ready to establish a key result—that there is a strictly positive probability that
a single player-consistent blocking pair is resolved in one step of Algorithm 1.

Lemma 5.5.6 (Positive probability of resolving a single blocking pair). Assume mt−1 is
unstable. Let (pi, aj) be a blocking pair in mt−1 that is player-consistent. Condition on the
event Et. Then, with probability at least ε = (1 − λ)λN−1, (pi, aj) is the only blocking pair
to be resolved at time t, i.e.,

P (mt(pi) = aj,mt(p) = mt−1(p) ∀p ∈ N , p 6= pi | Et) ≥ ε. (5.25)

Proof. Assume Et holds. Let (pi, aj) be any blocking pair that is player-consistent. First,
we show pi has probability at least λ of pulling the arm aj conditioned on all of the other
players attempting the same arm as they pulled at time t. Indeed, since (pi, aj) is a blocking
pair of mt−1, it means that aj is in the plausible set of pi at time t. As Et occurs, and aj
is the top choice among all the arms in pi’s plausible set, the player pi has probability at
least λ of attempting aj, and will be successful if all other players stay on the same arm as
they pulled at time t. Second, independently, each of the rest of the N − 1 players have
probability at least (1− λ) of attempting the same arm that they attempted at time t− 1.
Together, this proves equation (5.25).
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Now we can finally show that the event that the matching was unstable for K consecutive
steps even though UCB rankings were correct in all K steps happens with a probability that
is exponentially small in K, as stated formally in the lemma below.

Lemma 5.5.7 (Probability of not reaching a stable matching). For any 0 ≤ K < t− 1, the
following inequality holds:

P

(
K⋂
s=0

({mt−s−1 6∈M∗} ∩ Et−s)

)
≤ (1− εN4

)bK/N
4c. (5.26)

Proof. The result is a direct consequence of Lemma 5.5.6 and the theorem below.

Theorem 5.5.8 (Theorem 4.2 in Abeledo and Rothblum [1995]). Given any unstable match-
ing µ0, there exists a sequence of blocking pairs of length at most N4 such that resolving the
sequence of blocking pairs reaches a stable matching. Moreover, this sequence of blocking
pairs results from resolving blocking pairs in a player-consistent order, that is, any block-
ing pair (pi, aj) resolved in the current matching µ is player-consistent with respect to the
matching µ.

We now prove Lemma 5.5.7 using Lemma 5.5.6 and Theorem 5.5.8.

1. We first show Lemma 5.5.7 holds when K = N4. Let E = ∩Ks=0Et−s. Condition on the
event that E happens. Condition on the matching µ = mt−K−1. By Theorem 5.5.8 and
Lemma 5.5.6, we know that with probability at least εN

4
, a stable matching will be

reached within N4 steps of the algorithm. Since this holds for arbitrary µ = mt−K−1,
we obtain

P

(
K⋂
s=0

{mt−s−1 6∈M∗} | E

)
≤ 1− εN4

.

Thus, we have

P

(
K⋂
s=0

({mt−s−1 6∈M∗} ∩ Et−s)

)
≤ P

(
K⋂
s=0

{mt−s−1 6∈M∗} | E

)
≤ 1− εN4

.

2. We next generalize the result to K > N4. This is straightforward, as the random seeds
x in Algorithm 1 are mutually independent for any non-overlapping blocks of N4 steps.

Note that in order for this bound to be meaningful, we require K � ε−N
4
N4.

Finally, we are now fully equipped to prove the main result of this section.
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Proof. of Theorem 5.5.1 Let 0 ≤ ht < t be a time window that we are free to choose in
a way that depends on the time t. By Lemma 5.5.4 and the union bound, we have

P (mt 6∈M∗) ≤ P

(
ht⋂
s=0

(Et−s ∩ {mt−s−1 /∈M∗})

)
+

ht∑
s=0

P(Ec
t−s).

Let gt = bht/N4c. Lemmas 5.5.5 and 5.5.7 immediately yield the following:

P (mt 6∈M∗) ≤ (1− εN4

)gt + ε−1

ht∑
s=0

∑
(i,j,k),:aj≺iak

P(F
(i)
j,k (t− s) ∩ Ā(i)(t− s) = j).

Summing these inequalities over t up to T , we obtain

T∑
t=1

P (mt 6∈M∗) ≤
T∑
t=1

(1− εN4

)gt + ε−1

T∑
t=1

ht∑
s=0

∑
(i,j,k),:aj≺iak

P(F
(i)
j,k (t− s) ∩ Ā(i)(t− s) = j)

=
T∑
t=1

(1− εN4

)gt + ε−1
∑

(i,j,k),:aj≺iak

hT∑
s=0

∑
t:s≤ht
1≤t≤T

P(F
(i)
j,k (t− s) ∩ Ā(i)(t− s) = j)

(5.27)

We seek upper bounds for the terms on the right-hand side. Focus on the second term in
equation (5.27). Recall the standard UCB Lemma (e.g., Lemma 5.4.4):∑

t:s≤ht
1≤t≤T

P(F
(i)
j,k (t− s) ∩ Ā(i)(t− s) = j) ≤ 6 ·

(
1

∆2
log(T ) + 1

)
, for each s.

Substituting this bound into equation (5.27) yields

T∑
t=1

P (mt 6∈M∗) ≤
T∑
t=1

(1− εN4

)gt + 6ε−1NK2 (hT + 1)

(
1

∆2
log(T ) + 1

)
, (5.28)

where we have used the fact that there are at most NK2 triplets (i, j, k) such that aj ≺i
ak. We now choose a specific sequence (ht) to optimize the upper bound. Let B ≥ 1 be
determined later. Set ht = min{t, B}− 1. With this choice of ht, and after some elementary
computations, we can bound the first term in equation (5.28) by

T∑
t=1

(1− εN4

)gt ≤ 3 ·
T∑
t=1

exp(−htεN
4

/N4) ≤ 6 ·

(
T exp

(
−Bε

N4

2N4

)
+
N4

εN4

)
.
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The second term in equation (5.28) is bounded by 6ε−1BNK2
(

1
∆2 log(T ) + 1

)
, since hT < B

by definition. Consequently, these two bounds lead to the following (that holds for all B)

T∑
t=1

P (mt 6∈M∗) ≤ 6 ·

(
T exp

(
−Bε

N4

2N4

)
+
N4

εN4 +
1

ε
NK2B

(
1

∆2
log(T ) + 1

))
.

By carefully setting B = 2
⌈
N4

εN4 log (T )
⌉
, we obtain the final bound as desired

T∑
t=1

P (mt 6∈M∗) ≤ 24 · N
5K2

εN4+1
log(T ) ·

(
1

∆2
log(T ) + 3

)
.

5.6 Strategy and Incentive Compatibility

In this section, we examine the CA-UCB algorithm from the perspective of incentive com-
patibility.

Thus far we have given stable regret guarantees for each player, when all players follow
the same algorithm, whether assuming a global ranking of players (Theorem 5.4.1), or with-
out making assumptions on the market’s preferences (Theorem 5.5.1). Given these results,
a natural question to consider, in the decentralized setting, is whether the players are in-
deed incentivized to run the same algorithm as everyone else. In other words, could any
single player benefit from running a different algorithm, when all other players are running
Algorithm 1?

A positive result for globally ranked players

In the setting of Section 5.4, when players are globally ranked, we can show that the gains
from deviating are limited. The following proposition gives an lower bound on the stable
regret of the deviating player that scales logarithmically in the horizon n, for any algorithm
that they run. This implies that the time-averaged gains from deviating must vanish quickly
as learning progresses.

Proposition 5.6.1 (Incentive compatibility under globally ranked players). Under Assump-
tion 4, suppose that all players other than player pk run Algorithm 1 with λ = 0, and pk can
run any algorithm. The following lower bound on player pk’s stable regret holds:

Rk(n) ≥ 6k2(K − k)

(
log n

∆2
+ 1

)(
min

j:∆
(k)
j <0

∆
(k)
j

)
. (5.29)
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This result follows from a simple application of the same arguments that we developed
to prove Theorem 5.4.1. The key idea is as follows. A deviating player that is rank k in
the market can successfully pull an arm ai that they prefer to their stable arm, only if the
better-ranked player pi is not pulling their stable arm ai in the same round. This can only
happen if pi or a better-ranked player had a mistake in their UCB rankings and pulled a
suboptimal arm within the last k rounds, since all players other than pk are indeed following
the CA-UCB algorithm. The gains to deviating are limited for player pk when all the arms
have the same preferences, precisely because pk cannot affect the actions of better ranked
players. A complete proof can be found in Appendix 5.11.

A negative result

Given that we have a general stable regret guarantee for arbitrary preferences, established
in Section 5.5, one might ask if there also exists a general incentive compatibility result for
Algorithm 1. Unfortunately, the answer is a negative one. The following proposition shows,
by way of counterexample, that there can be no blanket incentive compatibility guarantee
for Algorithm 1 without making additional assumptions, such as on the preference structure.

Proposition 5.6.2. Consider the market of three players and three arms with preferences as
given in Example 5.11.2. When two players p1 and p2 run Algorithm 1 with any λ ∈ (0, 1/4),
there exists a sequence of actions {A(3)(t)}t=1...n for player p3 such that p3’s stable regret can
be upper bounded as:

R3(n) ≤ −C1 · n+ C2

(
1

∆2
log(T ) + 1

)
, (5.30)

where C1 and C2 are constants that depend only on λ,∆
(3)
1 ,∆

(3)
∅ . Moreover, there exists

∆
(3)
1 ,∆

(3)
∅ such that C1 is strictly positive.

The above upper bound on the deviating player p3’s stable regret shows that there exists
a set of preferences and arm reward gaps such that a player could make significant gains over
their stable arm by not running Algorithm 1. We defer the full description of Example 5.11.2
and the proof of Proposition 5.6.2 to Section 5.11. In this example, p3 has stable arm
a3 but prefers a1. Because the arms have idiosyncratic preferences (as opposed to shared
preferences), p3 could pull a suboptimal arm in order to ‘trick’ p1 into not attempting a1

two rounds later, by exploiting the conflict avoidance mechanism; p3 can then successfully
pull a1 for one round, with some probability. As long as the reward for p3 from a1 is large
enough, p3 is guaranteed a strictly negative stable regret that is linear in the horizon n.

We have shown that Algorithm 1 is not incentive compatible in the fully general setting.
It therefore remains an open question whether there exists an algorithm with low stable
regret, under arbitrary preferences, that also has an incentive compatibility guarantee under
the same.
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5.7 Simulation experiments for random preferences

In our theoretical analysis we considered two cases: markets in which the players are globally
ranked (i.e. all arms have the same preferences over players) and markets with arbitrary
preferences. For the first case Theorem 5.4.1 we were able to prove a regret upper bound
that resembles the guarantee derived in the centralized case in Chapter 4. However, in the
case of general markets our guarantee (Theorem 5.5.1) has an exponential dependence on
the size of the market.

In this section, through empirical evaluations we show that the true performance of our
proposed method is likely better than our guarantee suggests for markets with randomly
drawn preferences. More precisely, we perform two sets of simulations. In the first set, we
investigate how the average regret and market stability depend on the size of the market
in balanced markets—markets with an equal number of players and arms—with preferences
drawn from a distribution that will be specified later. We find that empirically the algorithm
converges more slowly for larger number of players as expected, though the dependence on
the number of players, N , appears to be significantly better than the exponential dependence
appearing in Theorem 5.5.1.

In the second set of experiments, we vary the heterogeneity of the players’ preferences.
We perform this experiment because one might expect that in markets in which different
players have the same preferences there would be more conflicts (since different players have
an incentive to attempt the same arms). Despite this intuition, our simulations show that
CA-UCB performs equally well in markets with different level of heterogeneity. To sum up,
our simulations show that not only is Theorem 5.5.1 overly pessimistic, but that CA-UCB
avoids conflicts equally well in different markets.

For all experiments we use Algorithm 1 with delay probability λ = 0.1. We now present
the details of our simulations.

Varying the size of the market. We examine balanced markets of sizeN ∈ {5, 10, 15, 20},
and sample each player’s and arm’s ordinal preferences uniformly at random. For all play-
ers the reward gaps between consecutively ranked arms are chosen to be equal to ∆ = 1,
regardless of the market size. The rewards are normally distributed with unit variance. We
sampled ten markets as such, and run Algorithm 1 once on each market.

For each market size N , we plot the mean, over ten markets, of the following two quan-
tities: (i) the maximum average regret among players, maxk∈N Rk(n), and (ii) the averaged
market stability

∑T
t=1 P (mt 6∈M∗) for horizon n up to 5000. As can be seen in Figure 5.1,

both the average regret and the market stability converge more slowly for larger markets.
However, the dependence on N appears to be much better than exponential.

Varying the heterogeneity of the players’ preferences. We examine balanced mar-
kets of size 10, and sample each arm’s ordinal preferences uniformly at random. To sample
the mean rewards µk(i) of arm ai for player pk we rely on random utility model used by
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Ashlagi et al. [2017b], with a slight modification:

xi
i.i.d.∼ Uniform([0, 1])

εi,k
i.i.d.∼ Logistic(0, 1)

µ
(k)
i = βxi + εi,k

µk(i) = #{j : µ
(k)
j ≤ µ

(k)
i }

The intermediate utilities µ
(k)
i are sampled according to random utility model used by Ashlagi

et al. [2017b]. We map these random utilities to µk(i) so that the reward gaps between
consecutively ranked arms are kept constant at ∆ = 1. The parameter β > 0 determines the
degree of correlation between the players’ preferences. As β increases the correlation between
the players’ preferences also increases. In fact, in the limit as β → ∞, all the players share
the same preferences with probability 1.

As before, the rewards are normally distributed with unit variance. We sample ten
markets for each β value, and plot the maximum average regret among players as well as
the averaged market stability for horizon n up to 5000 in Figure 5.2. As can be seen, there
is no discernible difference in the convergence of Algorithm 1 in terms of regret or market
stability, for markets with different levels of preference heterogeneity.
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Figure 5.1: Varying the number of players. The plot on the left shows the maximum average
regret among players and the plot on the right shows the averaged market stability.
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Figure 5.2: Varying the heterogeneity of the players’ preferences. The plot on the left shows
the maximum average regret among players and the plot on the right shows the averaged
market stability. The larger the β parameter, the more correlated the players’ preferences
are on average.

5.8 Related Work

There has been significant recent interest in stochastic multi-armed bandits problems with
multiple, interacting players [Cesa-Bianchi et al., 2016, Shahrampour et al., 2017]. In one
formulation, known as bandits with collision, multiple players choose from the same set of
arms, and if two or more players choose the same arm, no reward is received by any player [Liu
and Zhao, 2010, Anandkumar et al., 2011, Avner and Mannor, 2014, Bistritz et al., 2020,
Bubeck et al., 2020a,b, Kalathil et al., 2014, Rosenski et al., 2016, Lugosi and Mehrabian,
2018]. In this setting, players are typically assumed to be cooperative, that is, their goal is to
maximize the collective reward. Bistritz and Leshem [2018] and Boursier and Perchet [2020]
consider the setting where agents have heterogeneous preferences over arms, and the latter
work also analyzes the effect of selfish players whose goal is to maximize individual rewards.
Avner and Mannor [2016] and Darak and Hanawal [2019] considered a “stable configuration”
as a solution concept in the heterogeneous player preference setting; however, because the
arms do not have preferences in their setting, their notion of “stability” is distinct from that
of two-sided stable matching. Bubeck et al. [2020b] also delineated the optimal rates for the
non-stochastic version of the cooperative problem.

In Chapter 4, we introduced a multi-player stochastic multi-armed bandits problem mo-
tivated by two-sided matching markets, where arms also have preferences, and in case of
collision only the most preferred player receives a reward. Unlike in the aforementioned
line of work, where the natural goal is to find a maximum matching between players and
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arms, a more appropriate goal here is to find a stable matching. In the centralized setting,
where a platform can coordinate the actions of players at each round, our algorithm com-
bining the upper confidence bound method and the deferred acceptance algorithm attains
O(log(T )/∆2) stable regret, which is order-optimal. In Section 5.10, we analyze a suboptimal
algorithm based on explore-then-commit for the decentralized setting. Follow-up work by
Sankararaman et al. [2020] on the decentralized setting analyzed an order-optimal algorithm
for globally ranked players. A more detailed discussion of this work is in Section 5.9.

The two-sided stable matching problem with preference learning has been studied in other
dynamic settings under different assumptions. Given the large space of modeling choices,
there has been a flowering of research on two-sided matching models that highlight different
challenges introduced by uncertainty and decentralization. One modeling choice is to define
arrival and departure processes for market participants, as opposed to analyzing a fixed set
of players and arms. Johari et al. [2017] studied a sequential matching problem in which
the market participants satisfy certain arrival processes, and the participants on the demand
side of the market have a ‘type’ that is learned through bandit feedback.

Another choice is how one formulates the cost of preference learning. Ashlagi et al.
[2017a], which studies the costs of communication and learning for stable matching, formu-
lates preference learning as querying a costly but noiseless choice function. Different players
can query their choice functions independently; thus there is no congestion in the preference
learning process. Many models studied in the literature on information acquisition in two
sided matching [see Lee and Schwarz, 2009, Immorlica et al., 2020, and references therein]
also do not capture congestion in the information acquisition stage. In some markets, how-
ever, obtaining information about the other side of the market itself could lead to congestion
and thus the need for strategic decisions. For example, Roth and Sotomayor [1990, chap.
10] note that graduating medical students go to interviews to ascertain their own preferences
for hospitals, but the collection of interviews that a student can schedule is limited. In the
model that is studied in the current work, congestion in preference learning is captured by
conflicts when two or more players attempt to pull the same arm.

Other models of uncertainty in two-sided matching that do not explicitly consider pref-
erence learning have also been studied. In this setting, there has been much interest in
decentralized models. For example, Niederle and Yariv [2009] studied a decentralized mar-
ket game in which firms make directed offers to workers, agents have aligned preferences,
and equilibrium outcomes under preference uncertainty are analyzed. Arnosti et al. [2014]
employed mean field modeling to analyze the welfare costs of not knowing the availability
of agents, as opposed to preferences. Ashlagi et al. [2019] considered providing match rec-
ommendations to participants in markets for which both sides of the market propose with
some probability, and a successful match occurs only in the case of a mutual proposal. Dai
and Jordan [2020] study a single-stage matching problem with uncertain preferences where
players learn from historical data and act in a decentralized manner.

Lastly, the empirical aspects of stable matching in decentralized settings have also gar-
nered significant research interest [Das and Kamenica, 2005, Echenique and Yariv, 2012, Pais
et al., 2012].
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5.9 Discussion

In this section, we discuss the strengths and limitations of Algorithm 1, in the context of
broader themes in decentralized matching and multiplayer bandit learning. We also suggest
future research directions motivated by our current findings.

Single-phase algorithm One advantage of Algorithm 1 is its simplicity, specifically the
fact that it does not involve separate phases or subroutines. Recent work by Sankararaman
et al. [2020] studied an algorithm (‘UCB-D3’) for decentralized matching bandits, assuming
globally ranked players, that proceeds in phases of exponentially increasing length; each
phase comprises of a learning stage, where players choose arms according to their own UCBs,
followed by a communication subroutine, where players broadcast their preferred arms to
other players. In contrast, our algorithm does not require players to keep track of which
phase they are in, or when to begin a subroutine. Not having separate algorithmic phases is
desirable because multiple phases requires players to synchronize their transition from one
phase to the next. In ‘more decentralized’ situations this may not be possible. For example,
players may enter the market at different times, or leave the market for a number of rounds
only to return later [see e.g., Akbarpour et al., 2020]. The CA-UCB algorithm can be run
in such cases without modification and is still guaranteed to have small regret.

Dependence of stable regret on market size While both UCB-D3 and our method
are guaranteed to achieve O(log(T )/∆2) stable regret for globally ranked players, the regret
guarantee for UCB-D3 has a better dependence on the number of arms (which upper bounds
the number of players). In the worst case, the guarantee on the regret of UCB-D3 depends on
the square of the number of arms while the guarantee on the regret of our method depends
on the cube of the number of arms. The optimal order-dependence on the rank k and the
number of arms K is still an open question, since the lower bound [e.g., Corollary 6 in
Sankararaman et al., 2020] and upper bounds currently do not match. Another interesting
question is whether UCB-D3’s better regret guarantee under these assumptions translates to
better performance in practice; an in-depth empirical comparison of UCB-D3 and CA-UCB
will be needed and is beyond the scope of the current work.

Random delays Another important feature of Algorithm 1 is the injection of additional
randomness through each player’s independently drawn random delays. Randomization is
key for this algorithm to achieve a O(log(T )2) regret guarantee in the case of arbitrary two-
sided preferences. Intuitively, the added randomness allows players to escape conflict cycles,
as illustrated in Examples 5.3.1 and 5.11.1. Technically, it allows us to leverage a result from
Abeledo and Rothblum [1995]) to show that the players must converge to a stable matching
(which may not be unique), in a low-regret sense. Nevertheless, repeating one’s previous
action with a constant probability at every step could be considered wasteful. Are there
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other, more efficient ways of utilizing randomness as an implicit coordination mechanism
than random delays?

Improving the stable regret under arbitrary preferences While Algorithm 1 is the
first method to provably achieve polylogarithmic regret in markets with arbitrary prefer-
ences, we believe there is a significant room for the development of better algorithms. In
particular, for markets with arbitrary preferences, the regret guarantee for our method de-
pends exponentially on the number of players. This dependence arises because our regret
analysis hinges on a reduction to the convergence rate of the corresponding randomized
decentralized matching dynamics under known preferences. As shown in Ackermann et al.
[2008] and Hoffman et al. [2013], existing randomized dynamics for decentralized matching
under known preferences have worst-case convergence time that is exponential in the number
of market participants. While this may suggest that there is indeed a real computational
barrier in the arbitrary preferences setting, it might be possible to improve upon the expo-
nential dependence by considering sub-classes of two-sided preferences or randomly drawn
preferences. For example, Algorithm 1 has improved rates if we assume that the players are
globally ranked.

It is also not clear that the O((log n)2) dependence on the horizon is optimal in this set-
ting, even though it is unavoidable given our analysis strategy and our algorithm. Obtaining
a regret bound that depends polynomially on the number of players and arms and has an
optimal order dependence on the horizon may require a new algorithm.

Information available to players A player that implements CA-UCB must observe the
successful arm pulls of all other players. On one hand, by leveraging this information our
algorithm ensures that players avoid conflicts most of the time. On the other hand, it is not
clear that such information is absolutely necessary for achieving sublinear regret in general
markets. For example, UCB-D3 [Sankararaman et al., 2020], which achieves sublinear regret
in the setting of globally ranked players, does not require players to see the actions of other
players. However, players must participate in a rank estimation routine, which relies on the
assumption that the players are ranked globally.

Conclusion and open questions In this work we have made progress on the problem
of stochastic bandits in decentralized matching markets. Still, many open questions remain.
We conclude by highlighting the most intriguing directions for future inquiry:

1. Better algorithms and matching lower bounds. Even though algorithms such as UCB-
D3 [Sankararaman et al., 2020] and CA-UCB have stable regret that is almost order-
optimal in the setting of globally ranked players, there is still a lot of room for im-
provement in the setting of arbitrary preferences. Is there a large class of preferences
for which one can show matching upper and lower regret bounds, in terms of the
dependence on the horizon, the reward gap, and size of the market?
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2. Incentive compatibility in the decentralized setting. Unlike in the centralized setting
(Chapter 4), where a single algorithm was shown to be incentive compatible given
any set of preferences, decentralization appears to pose more challenges for incentive
compatibility. As seen in Section 5.6, the randomized conflict avoidance mechanism of
Algorithm 1 can be strategically exploited by a deviating player when arm preferences
are uncorrelated. How fundamental is this difficulty to the decentralized setting, and
can it be overcome by a better algorithm?

5.10 Decentralized Explore-Then-Commit

In the decentralized setting of the matching bandits problem, we propose a simple algorithm
based on Explore-Then-Commit (ETC) that can achieve low player-optimal regret, albeit
at a suboptimal rate. A key observation behind this algorithm is that the Gale-Shapley
algorithm can be implemented with simultaneous proposing [see e.g. Roth, 2007, Theorem
1], hence a central platform is not necessary for the players to reach a stable matching. We
analyze this simple algorithm in order to motivate the search for more efficient algorithms
in the decentralized setting.

Description of the algorithm There are three stages. Stage 1 has HK rounds. In stage 1
(“Exploration”), every K rounds, each player independently samples a random permutation
of arms and attempts arms in that order. Agents update the respective sample means of the
arms only if the pull was successful. In stage 2 (“Simultaneous Proposing GS”), each round
each player attempts the arm with the highest sample mean that they haven’t had a conflict
on in Stage 2. Stage 2 continues for N rounds. In stage 3 (“Exploitation”), every player
keeps pulls the last arm they pulled successfully in stage 2.

In the following result, we analyze the regret of the decentralized ETC.

Proposition 5.10.1 (Regret bound for decentralized ETC). Consider Decentralized ETC
with stage 1 lasting HK rounds. Let ∆i,j , ∆i,max and ∆ be defined as before in Theorem

4.3.1. Let ρN,K :=
(
1− 1

K

)N−1
. The expected player-optimal regret of player pi is upper

bounded by

Ri(n) ≤ HKµi(m(i)) + (n−HK)∆i,maxNK

(
2 exp

(
−
Hρ2

N,K

2

)
+ exp

(
−HρN,K∆2

8

))
.

(5.31)

Proof. Suppose stage 1 lasts HK rounds. Fix the agent. For any particular attempt on arm
i, let Yi denote the event of a successful pull. The probability of a successful pull is bounded
from below by the probability of a successful pull for an agent that is the least preferred by
the arm attempted.

pi := P{Yi = 1} ≥
(

1− 1

K

)N−1

=: ρN,K
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Let Ti be the number of times arm i was pulled in stage 1. By the independence of the
random permutations sampled, we have that Ti ∼ Binomial(H, pi). We can use a standard
tail bound:

P{Ti ≤ t} ≤ exp

(
−2

(Hpi − t)2

H

)
Stage 2 gives rise to a matching that is stable according to the order of the average

rewards (R̂i
j(T )), after N rounds. This is essentially the Gale-Shapley algorithm but with

simultaneous proposals.
Now we bound the probability that this matching is agent optimal according to the true

preferences. If any agent j ranks arm k and arm k′ wrongly, we must have R̂k
j (H) > R̂k′

j (H)
but µj(k

′) > µj(k). Therefore, we may bound the probability of a blocking pair using the sub-

Gaussianity of R̂k
j (H)− R̂k′

j (H). Let Ak,k′ denote the event {(R̂k′
j − R̂k

j )− (µj(k
′)−µj(k)) ≤

−(µj(k
′)− µj(k))}.

P(Ak,k′) =
∑
j,j′<H

P(Ak,k′ ∩ Tk = j ∩ Tk′ = j′)

=
∑
j∧j′<h

P(Ak,k′ ∩ Tk = j ∩ Tk′ = j′) +
∑
j∧j′≥h

P(Ak,k′ ∩ Tk = j ∩ Tk′ = j′)

≤ P(Tk < h) + P(Tk′ < h) +
∑
j∧j′≥h

P(Ak,k′ | Tk = j, Tk′ = j′) · P(Tk = j, Tk′ = j′)

≤ P(Tk < h) + P(Tk′ < h) +
∑
j∧j′≥h

exp

(
−(j ∧ j′)(∆k,k′)

2

4

)
P(Tk = j, Tk′ = j′)

≤ P(Tk < h) + P(Tk′ < h) + exp

(
−h(∆k,k′)

2

4

)
.

Choosing h = 1
2
Hpi gives

P(Ak,k′) ≤ 2 exp

(
−Hp

2
i

2

)
+exp

(
−Hpi(∆k,k′)

2

8

)
≤ 2 exp

(
−
Hρ2

N,K

2

)
+exp

(
−HρN,K∆2

8

)
By Lemma 4.3.2, we only have to consider k′ = m(i) and k such that ∆i,k > 0, so there

are at most K such pairs, for each agent.

5.11 Omitted examples and proofs

Example 5.11.1

In this section, we present a second counterexample in which CA-UCB without random
delays (i.e., λ = 0) would fail to converge to a stable matching and the players can enter
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into a conflict cycle. In this example, neither the arms nor the players are globally ranked.
In contrast to Example 5.3.1, the type of coordination failure seen in Example 5.11.1 is
unrelated to the failure of the players to learn their rewards. In fact, they can enter into
such a cycle even after they have acquired perfect information on all the arms.

Example 5.11.1 (3-player market with non-unique stable matching). Let the set of players
be N = {p1, p2, p3} and the set of arms be K = {a1, a2, a3}, with true preferences given by:

p1 : a3 � a2 � a1 a1 : p3 � p2 � p1

p2 : a1 � a3 � a2 a2 : p1 � p3 � p2

p3 : a2 � a1 � a3 a3 : p2 � p1 � p3.

Then the conflict-avoiding algorithm cycles even when the preferences of the players are
known. Suppose the players are following Algorithm 1, and their UCB rankings for the arms
always coincide with their true preferences. The cycle it enters is as follows:

• Time t: p1 and p3 conflict on a2, p1 wins.

p2 pulls a1.

• Time t+ 1: p3 attempts a1 because a2 is not in its plausible set. p2 and p3 conflict on
a1, p3 wins.

p1 pulls a3 because a3 was not pulled by any player at time t.

• Time t+ 2: p2 attempts a3 because a1 is not in its plausible set. p1 and p2 conflict on
a3, p2 wins.

p3 pulls a2 because a2 was not pulled by any player at time t+ 1

At time t + 3, the players attempt the same actions as they did at time t, entering into a
cycle where there is a conflict at every round henceforth.

Previous work has found other examples where sequentially resolving blocking pairs in an
unstable matching leads to cycling [Knuth, 1997, Roth and Vande Vate, 1990, Abeledo and
Rothblum, 1995]. Example 5.11.1 shows that players following the decentralized conflict-
avoiding protocol (where more than one blocking pair may be resolved at every time step)
can also enter into cycles.

These examples highlight the failure modes of decentralized conflict-avoiding algorithms.
One way to escape these failure modes is by introducing randomness, such that the prob-
ability of coordination failures becomes exponentially small. This is the motivation for
incorporating random delays into Algorithm 1.
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Proof of Lemma 5.4.4

Proof. Our proof is essentially identical to the single-agent UCB analysis in Section 2.2
of Bubeck and Cesa-Bianchi [2012]. Assuming that the event

F
(i)
j,k (t) = {ui,j(t) > ui,k(t)}

is true, then at least one of the three following events must occur:

E1(t) =

{
µ̂i,j(t) > µ

(i)
j +

√
3 log t

2T̄
(i)
j (t)

}
,

E2(t) =

{
µ̂i,k(t) +

√
3 log t

2T̄
(i)
k (t)

< µ
(i)
k

}
,

E3(t) =

{
T̄

(i)
j (t) ≤ 6

∆2
log(t)

}
.

To see this, suppose that none of three events E1(t), E2(t) and E3(t) occur. Then,

µ̂i,k(t) +

√
3 log(t)

2Ti,k(t)
≥ µi(k) ≥ µi(j) + ∆ ≥ µi(j) +

√
6 log(t)

Ti,j(t)

≥ µ̂i,j(t) +

√
3 log(t)

2Ti,j(t)

which is a contradiction because the left-hand side equals ui,k(t) and the right-hand side
equals ui,j(t).

Let u > 0 be some value to be chosen later. Then, we have

T∑
t=1

1{F (i)
j,k (t) ∩ Ā(i)(t) = j} =

T∑
t=1

1{F (i)
j,k (t) ∩ Ā(i)(t) = j ∩ Ti,j(t) ≤ u}

+
T∑
t=1

1{F (i)
j,k (t) ∩ Ā(i)(t) = j ∩ Ti,j(t) > u}.

Therefore, if we choose u = 6
∆2 log(t), we obtain

T∑
t=1

1{F (i)
j,k (t) ∩ Ā(i)(t) = j} = u+

T∑
t=u+1

1{F (i)
j,k (t) ∩ Ā(i)(t) = j ∩ Ti,j(t) > u}

≤ u+
T∑

t=buc+1

1{E1(t)}+
T∑

t=buc+1

1{E2(t)}.
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We are left to establish an upper bound on P(E1(t)) and P(E2(t)). We can do this by a simple
application of a union bound and concentration:

P(E1(t)) ≤ P

(
∃s ∈ {1, 2, . . . t} : µ̂i,j(s) +

√
3 log(t)

2s
≤ µ

(i)
j

)

≤
t∑

s=1

P

(
µ̂i,j(s) +

√
3 log(t)

2s
≤ µ

(i)
j

)

≤
t∑

s=1

1

t3
=

1

t2
,

where the last inequality follows by a standard concentration argument for independent
sub-Gaussian random variables. The probability of E2(t) occurring can be upper bounded
similarly. Then, using

∑∞
t=1 t

2 = π2

6
yields the conclusion.

Proof of Proposition 5.6.1

Proof. By definition, player pk’s regret can be lower-bounded as follows:

Rk(n) ≥
∑

i:ai�pk
ak

∆
(k)
i · E [Tk,i(n)] ≥

(
min

i:∆
(k)
i <0

∆
(k)
i

)
·
∑

i:ai�pk
ak

E [Tk,i(n)] . (5.32)

Since ai �pk ak implies that i < k, we may proceed to upper bound
∑

i:i<k E [Tk,i(n)]. We
claim that the following inclusion is true:

k−1⋃
i=1

{
Ā(k)(t) = ai

}
⊆

⋃
1≤j<k
j<l≤K

⋃
t−k≤t′≤t

Λ
(j)
l [t′]. (5.33)

The argument is as follows. If
{
Ā(k)(t) = ai

}
holds for some i, we know that pi at time t

did not attempt to pull ai. They either attempted to pull an arm ai′ with i′ > i or with
i′ < i. Since we know that pi is running Algorithm 1, in the former case, we can apply
Lemma 5.4.2 to player pi; in the latter case, we can apply equation (5.11), also to player pi.
This establishes equation (5.33).

Since all players pj with j < k are running Algorithm 1, we may apply Lemma 5.4.4 to
yield ∑

i:i<k

E [Tk,i(n)] ≤ 6(k + 1)
∑

1≤j<k
j<l≤K

(
log n

|∆(j)
l |2

+ 1

)
≤ 6k2(K − k)

(
log n

∆2
+ 1

)
. (5.34)

Substituting the above into (5.32) yields the desired lower bound.
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Proof of Proposition 5.6.2

Example 5.11.2. Let the set of players be N = {p1, p2, p3} and the set of arms be K =
{a1, a2, a3}, with true preferences given by:

p1 : a1 � a3 � a2 a1 : p2 � p1 � p3

p2 : a2 � a1 � a3 a2 : p3 � p2 � p1

p3 : a1 � a3 � a2 a3 : p3 � p1 � p2.

The unique stable matching in this case is (p1, a1), (p2, a2), (p3, a3).

Proof. Let D(3)(t)
i.i.d.∼ Ber(λ) for any t. The set of actions that player p3 can play, for

t = 1, · · · , n, to get negative stable regret is as follows:

A(3)(t) =


a2 if t = 3m− 2

a3 if t = 3m− 1 and D(3)(t) = 0

a2 if t = 3m− 1 and D(3)(t) = 1

a1 if t = 3m

, for m ∈ N. (5.35)

By the definition of p3’s regret, and using the fact that ∆
(k)
∅ > max{∆(3)

1 ,∆
(3)
2 } > 0, we

have:
R3(n) ≤ ∆

(3)
1 · E [T3,1(n)] + ∆

(3)
∅ · (T − E [T3,1(n)]) . (5.36)

Thus it suffices to lower bound the expected number of times that p3 successfully attempts
a1.

Define the following events:

Ω1
t := {F (2)

3,1 (t) ∩ A(2)(t) = a3}c,

Ω2
t := {F (2)

1,2 (t) ∩ A(2)(t) = a1}c.

We first show the following inclusion, for any m ∈ N:

Ω1
3m−1∩Ω2

3m∩{D(2)(3m−1) = D(3)(3m−1) = D(2)(3m) = D(1)(3m) = 0} ⊆ {Ā(3)(3m) = a1}.
(5.37)

We can simply check that this holds:

• At time 3m− 2, p3 attempts and successfully pulls a2.

• At time 3m− 1, p2 pulls a1, since a2 is not in its plausible set, D(2)(3m− 1) = 0 and
the event Ω1

3m−1 holds. p3 pulls a3, since D(3)(3m− 1) = 0.

• At time 3m, p1 does not pull a1, since a1 is not in its plausible set and D(1)(3m) = 0.
p2 does not pull a1, since a2 is in its plausible set, D(2)(3m) = 0 and the event Ω2

3m

holds. Thus p3 successfully pulls a1.
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Taking expectation of (5.37) and rearranging gives

P
(
Ā(3)(3m) = a1

)
≥ 1− P

((
Ω1

3m−1 ∩ Ω2
3m ∩ {D(2)(3m− 1) = D(3)(3m− 1) = D(2)(3m) = D(1)(3m) = 0}

)c)
≥ 1−

(
P((Ω1

3m−1)c) + P((Ω2
3m)c) + 4λ

)
, (5.38)

where the last inequality follows from a union bound.
It is useful to upper bound the following:

bn/3c∑
m=1

P((Ω1
3m−1)c) + P((Ω2

3m)c)

=

bn/3c∑
m=1

P
(
F

(2)
3,1 (3m− 1) ∩ A(2)(3m− 1) = a3

)
+ P

(
F

(2)
1,2 (3m) ∩ A(2)(3m) = a1

)
≤ 1

λ(1− λ)

bn/3c∑
m=1

P
(
F

(2)
3,1 (3m− 1) ∩ Ā(2)(3m− 1) = a3

)
+ P

(
F

(2)
1,2 (3m) ∩ Ā(2)(3m) = a1

)
≤ 1

λ(1− λ)

n∑
t=1

P
(
F

(2)
3,1 (t) ∩ Ā(2)(t) = a3

)
+ P

(
F

(2)
1,2 (t) ∩ Ā(2)(t) = a1

)
≤ 1

λ(1− λ)
· 12 ·

(
1

∆2
log(T ) + 1

)
, (5.39)

where the last inequality follows from Lemma 5.4.4.
Now, we sum (5.38) over m = 1, · · · , bn/3c to get:

E [T3,1(n)] ≥
bn/3c∑
m=1

P
(
Ā(3)(3m) = a1

)
≥ (1− 4λ) · bn/3c −

bn/3c∑
m=1

P((Ω1
3m−1)c) + P((Ω2

3m)c)

≥ (1− 4λ) · bn/3c − 1

λ(1− λ)
· 12 ·

(
1

∆2
log(T ) + 1

)
,

where the last two inequalities follow from Equation (5.38) and Equation (5.39).
Thus we have

R3(n) ≤ ∆
(3)
1 ·
(

(1− 4λ) · bn/3c − 1

λ(1− λ)
· 12 ·

(
1

∆2
log(n) + 1

))
+∆

(3)
∅ ·
(

2

3
n

)
. (5.40)

Note that ∆
(3)
1 < 0, and 1 − 4λ > 0 by assumption. Upon rearranging terms, we get the

desired result.



117

Bibliography

A. Abdulkadiroglu and T. Snmez. School choice: A mechanism design approach. American
economic review, 93(3):729–747, 2003.

A. Abdulkadiroglu and T. Sonmez. House allocation with existing tenants. Journal of
Economic Theory, 88(2):233–260, 1999.

A. Abdulkadiroglu, P. Pathak, A. E. Roth, and T. Sonmez. Changing the boston school
choice mechanism. Technical report, National Bureau of Economic Research, 2006.

R. Abebe, S. Barocas, J. Kleinberg, K. Levy, M. Raghavan, and D. G. Robinson. Roles for
computing in social change. In Proceedings of the 2020 Conference on Fairness, Account-
ability, and Transparency, FAT* ’20, page 252260, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450369367.

H. Abeledo and U. G. Rothblum. Paths to marriage stability. Discrete Applied Mathematics,
63:1–12, 10 1995.

H. Ackermann, P. W. Goldberg, V. S. Mirrokni, H. Röglin, and B. Vöcking. Uncoordinated
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