
Useful interpretability for real-world machine learning

Chandan Singh

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-40

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-40.html

May 8, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Useful interpretability for real-world machine learning

by

Chandan Singh

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

EECS

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Bin Yu, Chair
Professor Srigokul Upadhyayula

Professor Trevor Darrell

Spring 2022

Useful interpretability for real-world machine learning

Copyright 2022
by

Chandan Singh

1

Abstract

Useful interpretability for real-world machine learning

by

Chandan Singh

Doctor of Philosophy in EECS

University of California, Berkeley

Professor Bin Yu, Chair

The recent surge in highly successful, but opaque, machine-learning models has given rise
to a dire need for interpretability. This work addresses the problem of interpretability with
novel definitions, methodology, and scientific investigations, ensuring that interpretations
are useful by grounding them in the context of real-world problems and audiences. We
begin by defining what we mean by interpretability and some desiderata surrounding it,
emphasizing the underappreciated role of context. We then dive into novel methods for in-
terpreting/improving neural network models, focusing on how to best score, use, and distill
interactions. Next, we turn from neural networks to relatively simple rule-based models,
where we investigate how to improve predictive performance while maintaining an extremely
concise model. Finally, we conclude with work on open-source software and data for facilitat-
ing interpretable data science. In each case, we dive into a specific context which motivates
the proposed methodology, ranging from cosmology to cell biology to medicine. Code for
everything is available at � github.com/csinva.

https://github.com/csinva

i

Contents

Contents i

1 Overview 1
1.1 Part I: Post-hoc neural-network interpretations 2
1.2 Part II: Improving neural networks with interpretations 3
1.3 Part III: Rule-based interpretable modeling 4
1.4 Part IV: Open-source software and data . 4

2 Interpretability: for what and for whom? 6
2.1 Interpretation in the data science life cycle 8
2.2 The PDR desiderata for interpretations . 10
2.3 Model-based interpretability . 12
2.4 Post hoc interpretability . 17
2.5 Future work . 22

I Post-hoc neural-network interpretations 26

3 Hierarchical, disentangled interpretations (ACD) 27
3.1 Motivating the need for hierarchical interpretations 27
3.2 Background on feature importance . 29
3.3 Methods for contextual decomposition and ACD 30
3.4 ACD succeeds in providing useful qualitative and quantitative interpretation 32

4 Transformation importance (TRIM) 40
4.1 The need for transformation importance . 40
4.2 Calculating transformation importance . 41
4.3 Results for transformation importance . 42

5 Real-world problem: cosmological parameter prediction 45
5.1 Cosmological experiment details . 47

ii

II Leveraging neural-network interpretations to improve mod-
els 51

6 Penalizing explanations to align neural networks with prior knowledge
(CDEP) 52
6.1 Intro to directly improving models with explanations 52
6.2 Background on using interpretations as regularization 53
6.3 CDEP methodology . 54
6.4 CDEP improves predictive performance using domain knowledge 57
6.5 Limitations and extensions of CDEP . 64

7 Adaptive wavelet distillation from neural networks through interpretations 66
7.1 Intro to adaptive wavelet distillation . 66
7.2 Background on the wavelet transform . 68
7.3 Adaptive wavelet distillation through interpretations 69
7.4 AWD improves interpretability, prediction performance, and compression in

two scientific problems and in simulations 71
7.5 Discussion . 75

8 Real-world problem: molecular-partner prediction in cell biology 77
8.1 Experimental details for molecular partner-prediction 81

III Rule-based models for interpretable modeling 85

9 Fast interpretable greedy-tree sums 86
9.1 Introduction to FIGS . 86
9.2 FIGS: Algorithm description and runtime . 88
9.3 Background on tree-sums . 90
9.4 Theoretical evidence that FIGS adapts to additive structure 91
9.5 Simulations support theoretical results . 92
9.6 FIGS results on real-world datasets . 94
9.7 FIGS Discussion . 98

10 Hierarchical shrinkage for trees 100
10.1 Introduction to HS . 100
10.2 The Hierarchical Shrinkage (HS) algorithm 102
10.3 HS improves predictive performance on real-world datasets 104
10.4 HS improves RF interpretations by simplifying and stabilizing them 108
10.5 HS as ridge regression on supervised features 109
10.6 HS Discussion . 112

11 Real-world problem: clinical decision-rule development 113

iii

11.1 Intro to clinical decision rules . 113
11.2 Methods for clinical decision rule development with PCS 115
11.3 CDR Results . 118
11.4 Discussion on clinical decision rules . 120

IV Open-source software and data 126

12 imodels: a python library for interpretable modeling 127
12.1 Features . 128

13 Veridical-flow: a python package for building trustworthy data-science
pipelines with PCS 129
13.1 Statement of need . 129
13.2 Features . 130

14 Covid-19: county-level data curation and death forecasting 131

Bibliography 135

iv

Acknowledgments

During my PhD studies at Berkeley, I have been exceptionally lucky to learn and grow
with the help of (an unusually long list of) numerous talented researchers and professionals.
I am greatly thankful to the mentors, colleagues, and friends (not mutually exclusive!) who
helped me succeed in research and become who I am today.

First and foremost, I would like to thank my advisor, Bin Yu. She has been an incredible
mentor, teacher, and role model for me. Spending time with her has been nothing short
of a master class in tenacity, exploration, and diligence (not to mention a lot of fun!) Her
extensive efforts, unrelenting curiosity, and broad knowledge have granted me the rarest of
PhDs, spanning studies from the single cell to the cosmos to the emergency room to the
theory of deep learning. I dare say there is not a data scientist in the world who is more
helpful in more situations than Bin. On a personal level, she has gone far beyond the typical
requirements expected of an advisor, helping me with matters extending well beyond the
realm of technical questions. She has generously spent countless hours advising me, like in
the first months of the lockdown when we spent each day closely and frantically working to
do what we could to help forecast the pandemic progression at the county-level. Bin has
caringly dragged out of me ideas and work that I never knew possible; I owe her a great
debt of gratitude for all of her support as an advisor, both in research and in life. If I had a
do-over to do a hundred PhDs, I would pick Bin as an advisor every time.

Next, I am extremely thankful for the mentoring of Gokul Upadhyayula, the most
thoughtful scientist one could ever meet. Gokul taught me what it means to do some-
thing carefully; if he built a boat out of toothpicks and told me it was safe, I would gladly
sail it across the Atlantic – I’d know it was done right. I am incredibly lucky he shared

v

with me his breathtaking insights into the life of a cell and for patiently educating me about
not just scientific specifics, but the whole scientific process. I’m also grateful to the folks
in Gokul’s lab (particularly Xiongtao Ruan) who embodied and passed along to me many
secrets of good science.

I have also been very lucky to work with Dr. Aaron Kornblith. As we traded medical
expertise for machine-learning knowledge, Aaron’s pointed and direct questions often teased
out in me assumptions and answers I never would have seen otherwise (not to mention a
a whole lot about medical decision-making). I hope to emulate Aaron’s amiability, which
could charm a raccoon, and that of the many wonderful people I’ve had the chance to work
with through him, particularly Gabriel Devlin and Newton Addo.

I am grateful also to the other legendary members of my thesis and qualifying examination
committee: Trevor Darrell and Jennifer Listgarten. Their helpful feedback and comments
have been a valuable source of improvement to this thesis.

Among a sea of wonderful company here at Berkeley, I was fortunate to land among some
wonderful PhD student in the Yu Group. I worked closely with Jamie Murdoch my first years,
who introduced me to the mysteries of interpretability, and also how to be annoying in a
good way (i.e. direct). I wholeheartedly appreciate his knack for finding unique problems
and ideas in an already very crowded space. Raaz Dwivedi quickly became a good friend as
we spent years dreaming up what neural nets can do and why. His witty ideas always came
bundled with a joke and a smile, making even frustrating times fun. In my later years, Xiao
Li was a paragon of dependability and could not have been a better partner in the years we
spent poking at cellular data.

I am thankful also to the wonderful postdocs I have had the opportunity to work with.
Wooseok Ha has been an extraordinarily smart and kind friend (not to mention an extremely
hardworking collaborator) as we set on the course to do some genuinely useful interpretability.
His herculean efforts pulled the AWD paper over years of hurdles, resulting in the work I’m
proudest of today. More recently, Yan Shuo has been an excellent partner / cultivator of tree
ideas, and I’m grateful to have had the chance to work and grow together. I’m thankful also
to the cosmology crew - Francois Lanusse, and also Vanessa Boehm + Jia Liu - for inviting
us to explore mysteries beyond the world of machine-learning (and the world altogether).

I’m also deeply thankful to the Yu Group members who have been an invaluable fountain
of support and ideas during my stay at Berkeley. Laura Reiger, who visited us from Den-
mark, was a wonderfully persistent collaborator, wholeheartedly rejecting the notion that
interpretations could not be made useful. I also have had a wonderful time working with
James Duncan, whose rare love for code and calm coolness made for some of the nicest
collaborations I’ve ever had, even when things were virtual. I’ve quickly become friends with
Omer Ronen who has been a wonderful teammate in research (and basketball) + Abhineet
Agarwal, a great research collaborator. I was also lucky to work with and help advise various
undergrads whose skills and perseverance were far beyond any reasonable standard: Keyan
Nasseri (whose super-human work on imodels helped make it truly special), Rush Kapoor,
Summer Devlin, Chris Lu, Sahil Saxena, and Saarim Rahman. I am grateful to all of the
former and current Yu-Group members who have made my stay wonderful, particularly Karl

vi

Kumbier, Yuansi Chen, Reza Abbasi-Asl, Yu Wang, Tiffany Tang, Robbie Netzorg, Nikhil
Ghosh, Theo Saarinen, Nicholas Altieri, Rebecca Barter, Corrine Elliot, and Simon Walter.

I am thankful also to many folks outside of Berkeley who have helped my research get to
where it is. I was lucky to have learned from mentors during undergrad who spent countless
hours with me (when I surely wasn’t helpful at all) and whose advice and guidance propelled
me to pursue research: Yanjun Qi (who I was lucky to reconnect with during my PhD!),
William Levy, Srini Turaga, and Ben Arthur. I’m grateful also for the summer I spent under
the supervision of Pietro Perona at Amazon, working with Guha Balakrishnan and Luis
Goncalves. Additionally, for a wonderfully fun time at Pacmed AI in Amsterdam where I
was fortunate to work with Giovanni Cina and Michele Tonutti. More recently, I’ve also been
lucky to enjoy time with the team at Paige AI, especially Chris Kanan, Dilip Thiagarajan,
Brandon Rothrock, and Patricia Raciti.

I’m also thankful to the staff members in EECS, Statistics, and BAIR who have always
been more than generous with their help during the last 5 years, especially the incredible
Shirley Salanio.

During the last 5 years, I have been fortunate to know, befriend, and learn from innu-
merous people at Berkeley, of which I’ll only name a few: TMG (Alan Dong, Phong Nguyen,
Gautam Gunjala, Alex Reinking, Stanley Smith, Kieran Peleaux, and Alain Anton), BAIR
friends (Armin, Ashvin, Yeshwanth, Ashish, Zihao, Allan, ...), Canny lab folks (Roshan Rao,
David Chan, and Forrest Huang), and many, many more.

I’d particularly like to highlight Jamie Simon, whose unrelenting curiosity is inspiring
and will surely lead to great discoveries one day. Our nightly chats and weekend ventures
are the parts of Berkeley that shine brightest in my memory. I’d also like to sincerely thank
Saloni Singh, who has the largest heart of anyone I have ever known, and without whose
support I would not have been able to do this PhD.

Finally and most importantly, I would like to thank my family: Amma, Mom, Dad, Roli,
and all for their unconditional love and guidance; their (unimaginably large) support means
the world to me and I am the luckiest of people to have them. I undoubtedly could not have
achieved this without them, and hope I can make them proud with what I learned here.

vii

■-■ ■-■ I 1 .. 11
1■1 1■1

1

Chapter 1

Overview

8 Molecular
partner prediction

3 Hierarchical
interpretations

I Post-hoc neural-
network

interpretations

4 Transformation
importance

II Improving neural
networks with
interpretations

6 Explanation
regularization

IV Open-source
software + data

7 Distillation with
wavelets

5 Cosmological
parameter prediction

14 Covid-19
forecasting

III Rule-based
interpretable

modeling

9 Greedy-tree sums

10 Hierarchical
shrinkage

11 Clinical decision-
rule developement

12 imodels python
package

13 vflow python
package

+

🌱

Figure 1.1: Overview of this manuscript. Each column corresponds to a different part of
thesis, and chapters below the dotted line correspond to real-world problems motivating the
methodology in the chapters above. Code is available at � github.com/csinva.

https://github.com/csinva

CHAPTER 1. OVERVIEW 2

Machine-learning models have recently received considerable attention for their ability to
accurately predict a wide variety of complex phenomena. However, there is a growing real-
ization that, in addition to predictions, these models are capable of producing useful infor-
mation (i.e. interpretations) about domain relationships contained in data. More precisely,
interpretable machine learning can be defined as “the extraction of relevant knowledge from
a machine-learning model concerning relationships either contained in data or learned by the
model” [186] (see the next section for a much deeper discussion of this).

Interpretations have found uses both in their own right, e.g. medicine [153], science [13,
278], and policy-making [37] as well as in auditing predictions themselves in response to
issues such as regulatory pressure [97] and fairness [74]. In these domains, interpretations
have been shown to help with evaluating a learned model, providing information to repair
a model (if needed), and building trust with domain experts [47]. However, this increasing
role, along with the explosion in proposed interpretation techniques [186, 193, 291, 273, 90,
11, 300, 100] has raised considerable concerns about the use of interpretation methods in
practice [4]. Furthermore, it is unclear how interpretation techniques should be evaluated in
the real-world context to advance our understanding of a particular problem.

To do so, we first review some of the desiderata of interpretability, following our 2019
PNAS paper [186] (co-authored with Jamie Murdoch, Reza Abbasi-Asl, Karl Kumbier, and
Bin Yu). We then discuss some methods for critically evaluating interpretations. We then
expound on new methodology to address gaps in the interpretability of machine-learning
models. Crucially, this methodology is developed and evaluated in the context of real-world
problems in conjunction with domain experts. This work spans different levels, trying to
extract insight from black-box models, as well as replace them whenever possible with simpler
ones.

Fig. 1.1 shows an overview of this thesis, which aims to tackle the interpretability problem
strictly grounded in real-world problems. Part I begins by explaining different methods for
post-hoc interpretation of neural networks. These methods enable understanding interactions
between different features in a neural network, and are grounded in the context of cosmolog-
ical parameter prediction (Chapter 5). Part II then shows how these interpretation methods
can be used to directly improve neural networks, either through regularization (Chapter 6)
or through distillation (Chapter 7). This is showcased in the context of molecular partner
prediction (Chapter 8). Next, Part III introduces improved methodology for building highly
predictive rule-based models that are extremely concise, grounded in the problem of clinical
decision-rule development. Finally, Part IV introduces new open-source software and data
for inerpretable modeling.

1.1 Part I: Post-hoc neural-network interpretations

A vast line of prior work has focused on assigning importance to individual features, such
as pixels in an image or words in a document. Several methods yield feature-level impor-
tance for different architectures. They can be categorized as gradient-based [255, 264, 240,

CHAPTER 1. OVERVIEW 3

18], decomposition-based [185, 242, 17] and others [59, 83, 218, 303], with many similari-
ties among the methods [10, 159]. While many methods have been developed to attribute
importance to individual features of a model’s input, relatively little work has been de-
voted to understanding interactions between key features. These interactions are a crucial
part of interpreting modern deep-learning models, as they are what enable strong predictive
performance on structured data.

Part I covers two recent methods developed to extract the interactions between fea-
tures that an (already trained) DNN has learned. Chapter 3 covers agglomerative con-
textual decomposition (ACD), which generates hierarchical importances by greedily scoring
and combining group-level importances. This enables simple and effective visualization of
which features are important for an individual predicton. This work was published in ICLR
2019 [248], and was joint with Jamie Murdoch and Bin Yu.

ACD shows how to attribute importance to interactions between features. However, in
many cases, raw features such as pixels in an image or words in a document may not be
the most meaningful spaces to perform interpretation. When features are highly correlated
or features in isolation are not semantically meaningful, the resulting attributions need to
be improved. To remedy this problem, Chapter 4 introduces transformation importance
(TRIM), which allows for computing scores for interactions on transformations of a model’s
input. This was published in a 2020 ICLR workshop [252], joint with Wooseok Ha, Francois
Lanusse, Vanessa Boehm, and Bin Yu. Other methods have been recently developed for
understanding model interactions with varying degrees of computational cost and faithfulness
to the trained model [274, 273, 64].1.

Both these methods allow for better understanding in the context of cosmological param-
eter prediction (Chapter 5), where interpretability allows one to trust a model’s predictions
when applied to real astronomical data.

1.2 Part II: Improving neural networks with

interpretations

Given the introduced methods for interpreting interactions and transformations introduced
in Part I, Part II covers two methods for using these attributions to directly improve models.
This is an important and often overlooked step when introducing and evaluating interpreta-
tion methods, which helps to ground the utility of an interpretation with a direct use-case.

Chapter 6 introduces Contextual Decomposition Explanation Penalization (CDEP), which
directly regularizes interaction-importance scores during training, allowing a practitioner to
inject their domain knowledge into the training process. This can improve generalization
performance in interesting ways, depending on the context of the problem. CDEP was
published at ICML 2020 [223] and is joint with Laura Rieger, Jamie Murdoch, and Bin Yu.

1For a paper summarizing this part and related previous work, see [246]

CHAPTER 1. OVERVIEW 4

Chapter 7 shows how TRIM scores can be used to distill a fully trained neural network
into a simple data-driven wavelet model. Surprisingly, the distilled models actually improve
their predictive performance despite an incredible reduction in their size (e.g. going from
millions of parameters to ten). This work helps show how complex models along with
domain-expert knowledge can be combined to yield a final, interpretable model. This work
was published in Neurips 2021 [100] and is joint with Wooseok Ha, Francois Lanusse, Srigokul
Upadhyayula, and Bin Yu. It is then shown how AWD works in the context of molecular
partner prediction (Chapter 8), where it improve predictive performance in the limited-data
regime and drastically decrease model size and inference time.

1.3 Part III: Rule-based interpretable modeling

This section turns away from deep learning completely and focuses instead on rule-based
modeling. Whenever possible, fitting a simple model in the first place is preferable to fitting
a complex model and then inspecting it with post-hoc interpretations. A sufficiently simple
rule-based model can be completely understood, and is easy to simulate by hand, memorize,
and reason about counterfactuals with.

Chapter 9 introduces FIGS, a new method which extends the traditional CART decision
algorithm to the more flexible class of decision-tree sums. The algorithm is still greedy and
fast, but can now better capture certain structures in data, such as additivity. As a result,
FIGS can often achieve high predictive performance even with very few rules. This work is
currently a preprint [269] joint with Yan Shuo Tan, Keyan Nasseri, Abhineet Agarwal, and
Bin Yu.

Chapter 10 introduces Hierarchical Shrinkage (HS), a method for regularizing any decision-
tree algorithm. HS regularizes the value at any node in the true towards its parents, often
resulting in improved generalization accuracy. It can be applied posthoc and is extremely
fast, making it easy to apply in many situations. This work is currently a preprint [5] joint
with Abhineet Agarwal, Yan Shuo Tan, Omer Ronen, and Bin Yu.

Both FIGS and HS are then considered in the context of clinical decision-rule develop-
ment (Fig. 9.3, [135]), where interpretability of rules is crucial to their effective use in the
emergency room. This work is currently a preprint [135], co-led with Aaron Kornblith.

1.4 Part IV: Open-source software and data

In data-science and machine-learning, good open-source software and data repositories are
as useful (if not more) than good ideas. This part covers two python packages grown out of
the research above as well as a curated data repository for open-source modeling.

Chapter 12 covers imodels, a python package for fitting interpretable (mostly rule-based
models). The package is fully scikit-learn compatible and makes it easy to use cutting-
edge interpretable models such as FIGS and HS, as well as RuleFit [86] or Bayesian Rule

CHAPTER 1. OVERVIEW 5

Lists [143]. As of April 2021, it has 715+ github stars and 34k+ downloads from pypi.
imodels was published in JOSS [251] with Keyan Nasseri, Yan Shuo Tan, Tiffany Tang, and
Bin Yu.

Chapter 13 covers vflow, an ambitious python package trying to make stability analysis
simple. It provides users a simple interface for stability analysis, i.e. checking the robustness
of results from a data-science pipeline to various judgement calls made during modeling.
This ensures that arbitrary judgement calls made by data-practitioners (e.g. specifying
a default imputation strategy) do not dramatically alter the final conclusions made in a
modeling pipeline. This package was published in JOSS [71] with James Duncan, Rush
Kapoor, Abhineet Agarwal, and Bin Yu.

6

Chapter 2

Interpretability: for what and for
whom?

In the absence of a well-formed definition of interpretability, a broad range of meth-
ods with a correspondingly broad range of outputs (e.g. visualizations, natural language,
mathematical equations) have been labeled as interpretation. This has led to considerable
confusion about the notion of interpretability. In particular, it is unclear what it means
to interpret something, what common threads exist among disparate methods, and how to
select an interpretation method for a particular problem/audience.

In this chapter, we attempt to address these concerns. To do so, we first define inter-
pretability in the context of machine learning and place it within a generic data science
life cycle. This allows us to distinguish between two main classes of interpretation meth-

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 7

ods: model-based1 and post hoc. We then introduce the Predictive, Descriptive, Relevant
(PDR) framework, consisting of three desiderata for evaluating and constructing interpre-
tations: predictive accuracy, descriptive accuracy, and relevancy, where relevancy is judged
by a human audience. Using these terms, we categorize a broad range of existing methods,
all grounded in real-world examples2. In doing so, we provide a common vocabulary for
researchers and practitioners to use in evaluating and selecting interpretation methods. We
then show how our work enables a clearer discussion of open problems for future research.

Defining interpretable machine learning

On its own, interpretability is a broad, poorly defined concept. Taken to its full generality, to
interpret data means to extract information (of some form) from it. The set of methods falling
under this umbrella spans everything from designing an initial experiment to visualizing final
results. In this overly general form, interpretability is not substantially different from the
established concepts of data science and applied statistics.

Instead of general interpretability, we focus on the use of interpretations to produce
insight from ML models as part of the larger data-science life cycle. We define interpretable
machine learning as the extraction of relevant knowledge from a machine-learning model
concerning relationships either contained in data or learned by the model. Here, we view
knowledge as being relevant if it provides insight for a particular audience into a chosen
problem. These insights are often used to guide communication, actions, and discovery.
They can be produced in formats such as visualizations, natural language or mathematical
equations, depending on the context and audience. For instance, a doctor who must diagnose
a single patient will want qualitatively different information than an engineer determining
if an image classifier is discriminating by race. What we define as interpretable ML is
sometimes referred to as explainable ML, intelligible ML or transparent ML. We include
these headings under our definition.

Background on interpretable machine learning

Interpretability is a quickly growing field in machine learning, and there have been multiple
works examining various aspects of interpretations (sometimes under the heading explainable
AI). One line of work focuses on providing an overview of different interpretation methods
with a strong emphasis on post hoc interpretations of deep learning models [48, 99], some-
times pointing out similarities between various methods [159, 10]. Other work has focused on
the narrower problem of evaluating interpretations [68, 93] and what properties they should
satisfy [152]. These previous works touch on different subsets of interpretability, but do not
address interpretable machine learning as a whole, and give limited guidance on how inter-
pretability can actually be used in data-science life cycles. We aim to do so by providing a

1For clarity, throughout the thesis we use the term model to refer to both machine-learning models and
algorithms.

2Examples were selected through a non-exhaustive search of related work.

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 8

framework and vocabulary to fully capture interpretable machine learning, its benefits, and
its applications to concrete data problems.

Interpretability also plays a role in other research areas. For example, interpretability is
a major topic when considering bias and fairness in ML models [102, 30, 60]. In psychology,
the general notions of interpretability and explanations have been studied at a more abstract
level [126, 156], providing relevant conceptual perspectives. Additionally, we comment on
two related areas that are distinct but closely related to interpretability: causal inference
and stability.

Causal inference Causal inference [117] is a subject from statistics which is related, but
distinct, from interpretable machine learning. According to a prevalent view, causal inference
methods focus solely on extracting causal relationships from data, i.e. statements that
altering one variable will cause a change in another. In contrast, interpretable ML, and most
other statistical techniques, are used to describe general relationships. Whether or not these
relationships are causal cannot be verified through interpretable ML techniques, as they are
not designed to distinguish between causal and non-causal effects.

In some instances, researchers use both interpretable machine learning and causal infer-
ence in a single analysis [22]. One form of this is where the non-causal relationships extracted
by interpretable ML are used to suggest potential causal relationships. These relationships
can then be further analyzed using causal inference methods, and fully validated through
experimental studies.

Stability Stability, as a generalization of robustness in statistics, is a concept that ap-
plies throughout the entire data-science life cycle, including interpretable ML. The stability
principle requires that each step in the life cycle is stable with respect to appropriate pertur-
bations, such as small changes in the model or data. Recently, stability has been shown to
be important in applied statistical problems, for example when trying to make conclusions
about a scientific problem [292] and in more general settings [101]. Stability can be helpful
in evaluating interpretation methods and is a prerequisite for trustworthy interpretations.
That is, one should not interpret parts of a model which are not stable to appropriate per-
turbations to the model and data. This is demonstrated through examples in the text [208,
2, 22].

2.1 Interpretation in the data science life cycle

Before discussing interpretation methods, we first place the process of interpretable ML
within the broader data-science life cycle. Figure 2.1 presents a deliberately general de-
scription of this process, intended to capture most data-science problems. What is generally
referred to as interpretation largely occurs in the modeling and post hoc analysis stages,
with the problem, data and audience providing the context required to choose appropriate
methods.

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 9

Problem, Data,
& Audience Model

Post hoc
analysis

Iterate

Predictive
accuracy

Descriptive
accuracy

Figure 2.1: Overview of different stages (black text) in a data-science life cycle where inter-
pretability is important. Main stages are discussed in Sec. 2.1 and accuracy (blue text) is
described in Sec. 2.2.

Problem, data, and audience At the beginning of the cycle, a data-science practitioner
defines a domain problem that they would like to understand using data. This problem can
take many forms. In a scientific setting, the practitioner may be interested in relationships
contained in the data, such as how brain cells in a particular area of the visual system relate
to visual stimuli [225]. In industrial settings, the problem often concerns the predictive
performance or other qualities of a model, such as how to assign credit scores with high
accuracy [116], or do so fairly with respect to gender and race [60]. The nature of the
problem plays a role in interpretability, as the relevant context and audience are essential in
determining what methods to use.

After choosing a domain problem, the practitioner collects data to study it. Aspects of
the data-collection process can affect the interpretation pipeline. Notably, biases in the data
(i.e. mismatches between the collected data and the population of interest) will manifest
themselves in the model, restricting one’s ability to generalize interpretations generated from
the data to the population of interest.

Model Based on the chosen problem and collected data, the practitioner then constructs
a predictive model. At this stage, the practitioner processes, cleans, and visualizes data, ex-
tracts features, selects a model (or several models) and fits it. Interpretability considerations
often come into play in this step related to the choice between simpler, easier to interpret
models and more complex, black-box models, which may fit the data better. The model’s
ability to fit the data is measured through predictive accuracy.

Post hoc analysis Having fit a model (or models), the practitioner then analyzes it for
answers to the original question. The process of analyzing the model often involves using
interpretability methods to extract various (stable) forms of information from the model.
The extracted information can then be analyzed and displayed using standard data analysis

l

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 10

methods, such as scatter plots and histograms. The ability of the interpretations to properly
describe what the model has learned is denoted by descriptive accuracy.

Iterate If sufficient answers are uncovered after the post hoc analysis stage, the practitioner
finishes. Otherwise, they update something in the chain (problem, data, and/or model) and
iterate [29]. Note that they can terminate the loop at any stage, depending on the context
of the problem.

Interpretation methods within the PDR framework

In the framework described above, our definition of interpretable ML focuses on methods
in either the modeling or post hoc analysis stages. We call interpretability in the modeling
stage model-based interpretability (Sec. 2.3). This part of interpretability is focused upon the
construction of models that readily provide insight into the relationships they have learned.
In order to provide this insight, model-based interpretability techniques must generally use
simpler models, which can result in lower predictive accuracy. Consequently, model-based in-
terpretability is best used when the underlying relationship is sufficiently simple that model-
based techniques can achieve reasonable predictive accuracy, or when predictive accuracy is
not a concern.

We call interpretability in the post hoc analysis stage post hoc interpretability (Sec. 2.4).
In contrast to model-based interpretability, which alters the model to allow for interpretation,
post-hoc interpretation methods take a trained model as input, and extract information
about what relationships the model has learned. They are most helpful when the data is
especially complex, and practitioners need to train a black-box model in order to achieve
reasonable predictive accuracy.

After discussing desiderata for interpretation methods, we investigate these two forms of
interpretations in detail and discuss associated methods.

2.2 The PDR desiderata for interpretations

In general, it is unclear how to select and evaluate interpretation methods for a particu-
lar problem and audience. To help guide this process, we introduce the PDR framework,
consisting of three desiderata that should be used to select interpretation methods for a
particular problem: predictive accuracy, descriptive accuracy, and relevancy.

Accuracy

The information produced by an interpretation method should be faithful to the underly-
ing process the practitioner is trying to understand. In the context of ML, there are two
areas where errors can arise: when approximating the underlying data relationships with a
model (predictive accuracy) and when approximating what the model has learned using an

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 11

interpretation method (descriptive accuracy). For an interpretation to be trustworthy, one
should try to maximize both of the accuracies. In cases where either accuracy is not very
high, the resulting interpretations may still be useful. However, it is especially important
to check their trustworthiness through external validation, such as running an additional
experiment.

Predictive accuracy

The first source of error occurs during the model stage, when an ML model is constructed.
If the model learns a poor approximation of the underlying relationships in the data, any
information extracted from the model is unlikely to be accurate. Evaluating the quality of a
model’s fit has been well-studied in standard supervised ML frameworks, through measures
such as test-set accuracy. In the context of interpretation, we describe this error as predictive
accuracy.

Note that in problems involving interpretability, one must appropriately measure predic-
tive accuracy. In particular, the data used to check for predictive accuracy must resemble
the population of interest. For instance, evaluating on patients from one hospital may not
generalize to others. Moreover, problems often require a notion of predictive accuracy that
goes beyond just average accuracy. The distribution of predictions matters. For instance, it
could be problematic if the prediction error is much higher for a particular class. Finally, the
predictive accuracy should be stable with respect to reasonable data and model perturba-
tions. One should not trust interpretations from a model which changes dramatically when
trained on a slightly smaller subset of the data.

Descriptive accuracy

The second source of error occurs during the post hoc analysis stage, when interpretation
methods are used to analyze a fitted model. Oftentimes, interpretations provide an imper-
fect representation of the relationships learned by a model. This is especially challenging
for complex black-box models such as neural networks, which store nonlinear relationships
between variables in non-obvious forms.

. Definition We define descriptive accuracy, in the context of interpretation, as the
degree to which an interpretation method objectively captures the relationships learned by
machine learning models.

A common conflict: predictive vs descriptive accuracy

In selecting what model to use, practitioners are sometimes faced with a trade-off between
predictive and descriptive accuracy. On the one hand, the simplicity of model-based inter-
pretation methods yields consistently high descriptive accuracy, but can sometimes result in
lower predictive accuracy on complex datasets. On the other hand, in complex settings such
as image analysis, complicated models can provide high predictive accuracy, but are harder
to analyze, resulting in a lower descriptive accuracy.

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 12

Relevancy

When selecting an interpretation method, it is not enough for the method to have high
accuracy - the extracted information must also be relevant. For example, in the context of
genomics, a patient, doctor, biologist, and statistician may each want different (yet consis-
tent) interpretations from the same model. The context provided by the problem and data
stages in Figure 2.1 guides what kinds of relationships a practitioner is interested in learning
about, and by extension the methods that should be used.

. Definition We define an interpretation to be relevant if it provides insight for a
particular audience into a chosen domain problem.

Relevancy often plays a key role in determining the trade-off between predictive and
descriptive accuracy. Depending on the context of the problem at hand, a practitioner
may choose to focus on one over the other. For instance, when interpretability is used to
audit a model’s predictions, such as to enforce fairness, descriptive accuracy can be more
important. In contrast, interpretability can also be used solely as a tool to increase the
predictive accuracy of a model, for instance, through improved feature engineering.

Having outlined the main desiderata for interpretation methods, we now discuss how
they link to interpretation in the modeling and post hoc analysis stages in the data-science
life cycle. Figure 2.2 draws parallels between our desiderata for interpretation techniques
introduced in Sec. 2.2 and our categorization of methods in Sec. 2.3 and Sec. 2.4. In par-
ticular, both post hoc and model-based methods aim to increase descriptive accuracy, but
only model-based affects the predictive accuracy. Not shown is relevancy, which determines
what type of output is helpful for a particular problem and audience.

2.3 Model-based interpretability

We now discuss how interpretability considerations come into play in the modeling stage of
the data science life cycle (see Figure 2.1). At this stage, the practitioner constructs an ML
model from the collected data. We define model-based interpretability as the construction of
models that readily provide insight into the relationships they have learned. Different model-
based interpretability methods provide different ways of increasing descriptive accuracy by
constructing models which are easier to understand, sometimes resulting in lower predictive
accuracy. The main challenge of model-based interpretability is to come up with models
that are simple enough to be easily understood by the audience, while maintaining high
predictive accuracy.

In selecting a model to solve a domain problem, the practitioner must consider the
entirety of the PDR framework. The first desideratum to consider is predictive accuracy. If
the constructed model does not accurately represent the underlying problem, any subsequent
analysis will be suspect [34, 84]. Second, the main purpose of model-based interpretation
methods is to increase descriptive accuracy. Finally, the relevancy of a model’s output must

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 13

Generally
unchanged or

decrease
(data-dependent)

No Effect

Increase Increase

Model-based
interpretability

Post hoc
interpretability

Pr
ed

ict
iv

e
Ac

cu
ra

cy
De

sc
rip

tiv
e

Ac
cu

ra
cy

Figure 2.2: Impact of interpretability methods on descriptive and predictive accuracies.
Model-based interpretability (Sec. 2.3) involves using a simpler model to fit the data which
can negatively affect predictive accuracy, but yields higher descriptive accuracy. Post hoc
interpretability (Sec. 2.4) involves using methods to extract information from a trained model
(with no effect on predictive accuracy). These correspond to the model and post hoc stages
in Figure 2.1.

be considered, and is determined by the context of the problem, data, and audience. We
now discuss some common types of model-based interpretability methods.

Sparsity

When the practitioner believes that the underlying relationship in question is based upon a
sparse set of signals, they can impose sparsity on their model by limiting the number of non-
zero parameters. In this section, we focus on linear models, but sparsity can be helpful more
generally. When the number of non-zero parameters is sufficiently small, a practitioner can
interpret the variables corresponding to those parameters as being meaningfully related to the
outcome in question, and can also interpret the magnitude and direction of the parameters.
However, before one can interpret a sparse parameter set, one should check for stability
of the parameters. For example, if the signs/magnitudes of parameters, or the predictions
change due to small perturbations in the data set, the coefficients should not be interpreted
[149] .

When the practitioner is able to correctly incorporate sparsity into their model, it can im-
prove all three interpretation desiderata. By reducing the number of parameters to analyze,

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 14

sparse models can be easier to understand, yielding higher descriptive accuracy. Moreover,
incorporating prior information in the form sparsity into a sparse problem can help a model
achieve higher predictive accuracy and yield more relevant insights. Note that incorporating
sparsity can often be quite difficult, as it requires understanding the data-specific structure
of the sparsity and how it can be modelled.

Methods for obtaining sparsity often utilize a penalty on a loss function, such as LASSO
[271] and sparse coding [195], or on a model selection criteria such as AIC or BIC [7, 39].
Many search-based methods have been developed to find sparse solutions. These methods
search through the space of non-zero coefficients using classical subset-selection methods
(e.g. orthogonal matching pursuit [204]). Model sparsity is often useful for high-dimensional
problems, where the goal is to identify key features for further analysis. For instance, sparsity
penalties have been incorporated into random forests to identify a sparse subset of important
features [9].

In the following example from genomics, sparsity is used to increase the relevancy of an
interpretation by reducing the number of potential interactions to a manageable level.

. Ex. Identifying interactions among regulatory factors or biomolecules is an impor-
tant question in genomics. Typical genomic datasets include thousands or even millions of
features, many of which are active in specific cellular or developmental contexts. The mas-
sive scale of such datasets make interpretation a considerable challenge. Sparsity penalties
are frequently used to make the data manageable for statisticians and their collaborating
biologists to discuss and identify promising candidates for further experiments.

For instance, one recent study [208] uses a biclustering approach based on sparse canon-
ical correlation analysis (SCCA) to identify interactions among genomic expression features
in Drosophila melanogaster (fruit flies) and Caenorhabditis elegans (roundworms). Spar-
sity penalties enable key interactions among features to be summarized in heatmaps which
contain few enough variables for a human to analyze. This study also performs stability
analysis, finding their model to be robust to different initializations and perturbations to
hyperparameters.

Simulatability

A model is said to be simulatable if a human (for whom the interpretation is intended) is
able to internally simulate and reason about its entire decision-making process (i.e. how a
trained model produces an output for an arbitrary input). This is a very strong constraint
to place on a model, and can generally only be done when the number of features is low,
and the underlying relationship is simple. Decision trees [32] are often cited as a simulatable
model, due to their hierarchical decision-making process. Another example is lists of rules
[86, 143], which can easily be simulated. However, it is important to note that these models
cease to be simulatable when they become large. In particular, as the complexity of the
model increases (number of nodes in a decision tree, or the number of rules in a list), it
becomes increasingly difficult for a human to internally simulate.

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 15

Due to their simplicity, simulatable models have very high descriptive accuracy. When
they can also provide reasonable predictive accuracy, they can be very effective. In the
following example, a novel simulatable model is able to produce high predictive accuracy,
while maintaining the high levels of descriptive accuracy and relevancy normally attained by
small-scale rules-based models.

. Ex. In medical practice, when a patient has been diagnosed with atrial fibrillation,
caregivers often want to predict the risk that the particular patient will have a stroke in the
next year. Given the potential ramifications of medical decisions, it is important that these
predictions are not only accurate, but interpretable to both the caregivers and patients.

To make the prediction, [143] uses data from 12,586 patients detailing their age, gender,
history of drugs and conditions, and whether they had a stroke within a year of diagnosis. In
order to construct a model that has high predictive and descriptive accuracy, [143] introduce
a method for learning lists of if-then rules that are predictive of one year stroke risk. The
resulting classifier, displayed in Fig S1, requires only seven if-then statements to achieve
competitive accuracy, and is easy for even non-technical practitioners to quickly understand.

Although this model is able to achieve high predictive and descriptive accuracy, it is
important to note that the lack of stability in these types of models can limit their uses. If the
practitioner’s intent is to simply understand a model that is ultimately used for predictions,
these types of models can be very effective. However, if they want to produce knowledge
about the underlying dataset, the fact that the learned rules can change significantly when
the model is re-trained limits their generalizability.

Modularity

We define an ML model to be modular if a meaningful portion(s) of its prediction-making
process can be interpreted independently. A wide array of models satisfy modularity to
different degrees. Generalized additive models [104] force the relationship between variables
in the model to be additive. In deep learning, specific methods such as attention [129] and
modular network architectures [11] provide limited insight into a network’s inner workings.
Probabilistic models can enforce modularity by specifying a conditional independence struc-
ture which makes it easier to reason about different parts of a model independently [134].

The following example uses modularity to produce relevant interpretations for use in
diagnosing biases in training data.

. Ex. When prioritizing patient care for pneumonia patients in a hospital, one possible
method is to predict the likelihood of death within 60 days, and focus on the patients with a
higher mortality risk. Given the potential life and death consequences, being able to explain
the reasons for hospitalizing a patient or not is very important.

A recent study [47] uses a dataset of 14,199 pneumonia patients, with 46 features in-
cluding from demographics (e.g. age and gender), simple physical measurements (e.g. heart
rate, blood pressure) and lab tests (e.g. white blood cell count, blood urea nitrogen). To
predict mortality risk, they use a generalized additive model with pairwise interactions, dis-
played below. The univariate and pairwise terms (fj(xj) and fij(xi, xj)) can be individually

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 16

interpreted in the form of curves and heatmaps respectively.

g(E[y]) = β0 +
∑
j

fj(xj) +
∑
i6=j

fij(xi, xj) (2.1)

By inspecting the individual modules, the researchers found a number of counterintuitive
properties of their model. For instance, the fitted model learned that having asthma is
associated with a lower risk of dying from pneumonia. In reality, the opposite is true -
patients with asthma are known to have a higher risk of death from pneumonia. Because
of this, in the collected data all patients with asthma received aggressive care, which was
fortunately effective at reducing their risk of mortality relative to the general population.

In this instance, if the model were used without having been interpreted, pneumonia
patients with asthma would have have been de-prioritized for hospitalization. Consequently,
the use of ML would increase their likelihood of dying. Fortunately, the use of an inter-
pretable model enabled the researchers to identify and correct errors like this one, better
ensuring that the model could be trusted in the real world.

Domain-based feature engineering

While the type of model is important in producing a useful interpretation, so are the features
that are used as inputs to the model. Having more informative features makes the relation-
ship that needs to be learned by the model simpler, allowing one to use other model-based
interpretability methods. Moreover, when the features have more meaning to a particular
audience, they become easier to interpret.

In many individual domains, expert knowledge can be useful in constructing feature sets
that are useful for building predictive models. The particular algorithms used to extract
features are generally domain-specific, relying both on the practitioner’s existing domain
expertise and insights drawn from the data through exploratory data analysis. For example,
in natural language processing, documents are embedded into vectors using tf-idf [211].
Moreover, using ratios, such as the Body Mass Index (BMI), instead of raw features can
greatly simplify the relationship a model learns, resulting in improved interpretations. In the
example below, domain knowledge about cloud coverage is exploited to design three simple
features that increase predictive accuracy while maintaining the high descriptive accuracy
of a simple predictive model.

. Ex. When modelling global climate patterns, an important quantity is the amount
and location of arctic cloud coverage. Due to the complex, layered nature of climate models,
it is beneficial to have simple, easily auditable, cloud coverage models for use by down-stream
climate scientists.

In [241], the authors use an unlabeled dataset of arctic satellite imagery to build a model
predicting whether each pixel in an image contains clouds or not. Given the qualitative
similarity between ice and clouds, this is a challenging prediction problem. By conducting
exploratory data analysis and utilizing domain knowledge through interactions with climate

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 17

scientists, the authors identify three simple features that are sufficient to cluster whether
or not images contain clouds. Using these three features as input to quadratic discriminant
analysis, they achieve both high predictive accuracy and transparency when compared with
expert labels (which were not used in developing the model).

Model-based feature engineering

There are a variety of automatic approaches for constructing interpretable features. Two
examples are unsupervised learning and dimensionality reduction. Unsupervised methods,
such as clustering, matrix factorization, and dictionary learning, aim to process unlabelled
data and output a description of their structure. These structures often shed insight into
relationships contained within the data and can be useful in building predictive models.
Dimensionality reduction focuses on finding a representation of the data which is lower-
dimensional than the original data. Methods such as principal components analysis [121],
independent components analysis [24], and canonical correlation analysis [114] can often
identify a few interpretable dimensions, which can then be used as input to a model or to
provide insights in their own right. Using fewer inputs can not only improve descriptive
accuracy, but can increase predictive accuracy by reducing the number of parameters to
fit. In the following example, unsupervised learning is used to represent images in a low-
dimensional, genetically meaningful, space.

. Ex. Heterogeneity is an important consideration in genomic problems and associated
data. In many cases, regulatory factors or biomolecules can play a specific role in one con-
text, such as a particular cell type or developmental stage, and have a very different role
in other contexts. Thus, it is important to understand the “local” behavior of regulatory
factors or biomolecules. A recent study [287], uses unsupervised learning to learn spatial
patterns of gene expression in Drosophila (fruit fly) embryos. In particular, they use sta-
bility driven nonnegative matrix factorization to decompose images of complex spatial gene
expression patterns into a library of 21 “principal patterns”, which can be viewed as pre-
organ regions. This decomposition, which is interpretable to biologists, allows the study of
gene-gene interactions in pre-organ regions of the developing embryo.

2.4 Post hoc interpretability

We now discuss how interpretability considerations come into play in the post hoc analysis
stage of the data-science life cycle. At this stage, the practitioner analyzes a trained model in
order to provide insights into the learned relationships. This is particularly challenging when
the model’s parameters do not clearly show what relationships the model has learned. To aid
in this process, a variety of post hoc interpretability methods have been developed to provide
insight into what a trained model has learned, without changing the underlying model. These
methods are particularly important for settings where the collected data is high-dimensional
and complex, such as with image data. In these settings, interpretation methods must

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 18

deal with the challenge that individual features are not semantically meaningful, making
the problem more challenging than on datasets with more meaningful features. Once the
information has been extracted from the fitted model, it can be analyzed using standard,
exploratory data analysis techniques, such as scatter plots and histograms.

When conducting post hoc analysis, the model has already been trained, so its predic-
tive accuracy is fixed. Thus, under the PDR framework, a researcher must only consider
descriptive accuracy and relevancy (relative to a particular audience). Improving on each of
these criteria are areas of active research.

Most widely useful post hoc interpretation methods fall into two main categories: prediction-
level and dataset-level interpretations, which are sometimes referred to as local and global
interpretations, respectively. Prediction-level interpretation methods focus on explaining in-
dividual predictions made by models, such as what features and/or interactions led to the
particular prediction. Dataset-level approaches focus on the global relationships the model
has learned, such as what visual patterns are associated with a predicted response. These two
categories have much in common (in fact, dataset-level approaches often yield information
at the prediction-level), but we discuss them separately, as methods at different levels are
meaningfully different. Prediction-level insights can provide fine-grained information about
individual predictions, but often fail to yield dataset-level insights when it is not feasible to
examine a sufficient amount of prediction-level interpretations.

Dataset-level interpretation

When a practitioner is interested in more general relationships learned by a model, e.g.
relationships that are relevant for a particular class of responses, they use dataset-level
interpretations. For instance, this form of interpretation can be useful when it is not feasible
for a practitioner to look at a large number of local predictions. In addition to the areas
below, we note that there are other emerging techniques, such as model distillation [58, 90].

Interaction and feature importances

Feature importance scores, at the dataset-level, try to capture how much individual features
contribute, across a dataset, to a prediction. These scores can provide insights into what
features the model has identified as important for which outcomes, and their relative impor-
tance. Methods have been developed to score individual features in many models including
neural networks [194], random forests, [33, 261], and generic classifiers [8].

In addition to feature importances, methods exist to extract important interactions be-
tween features. Interactions are important as ML models are often highly nonlinear and
learn complex interactions between features. Methods exist to extract interactions from
many ML models, including random forests [22, 136, 64] and neural networks [273, 1]. In
the below example, the descriptive accuracy of random forests is increased by extracting
Boolean interactions (a problem-relevant form of interpretation) from a trained model.

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 19

. Ex. High-order interactions among regulatory factors or genes play an important role
in defining cell-type specific behavior in biological systems. Thus, extracting such interac-
tions from genomic data is an important problem in biology.

A previous line of work considers the problem of searching for biological interactions
associated with important biological processes [22, 136]. To identify candidate biological
interactions, the authors train a series of iteratively re-weighted RFs and search for stable
combinations of features that frequently co-occur along the predictive RF decision paths.
This approach takes a step beyond evaluating the importance of individual features in an
RF, providing a more complete description of how features influence predicted responses. By
interpreting the interactions used in RFs, the researchers identified gene-gene interactions
with 80% accuracy in the Drosophila embryo and identify candidate targets for higher-order
interactions.

Statistical feature importances

In some instances, in addition to the raw value, we can compute statistical measures of
confidence as feature importance scores, a standard technique taught in introductory statis-
tics classes. By making assumptions about the underlying data generating process, models
like linear and logistic regression can compute confidence intervals and hypothesis tests for
the values, and linear combinations, of their coefficients. These statistics can be helpful
in determining the degree to which the observed coefficients are statistically significant. It
is important to note that the assumptions of the underlying probabilistic model must be
fully verified before using this form of interpretation. Below we present a cautionary ex-
ample where different assumptions lead to opposing conclusions being drawn from the same
dataset.

. Ex. Here, we consider the lawsuit Students for Fair Admissions, Inc. v. Harvard
regarding the use of race in undergraduate admissions to Harvard University. Initial reports
by Harvard’s Office of Institutional Research used logistic regression to model the probability
of admission using different features of an applicant’s profile, including their race [192]. This
analysis found that the coefficient associated with being Asian (and not low income) had a
coefficient of -0.418 with a significant p-value (<0.001). This negative coefficient suggested
that being Asian had a significant negative association with admission probability.

Subsequent analysis from both sides in the lawsuit attempted to analyze the modeling
and assumptions to decide on the significance of race in the model’s decision. The plaintiff’s
expert report [14] suggested that race was being unfairly used by building on the original
report from Harvard’s Office of Institutional Research. It also incorporates analysis on more
subjective factors such as “personal ratings” which seem to hurt Asian students’ admission.
In contrast, the expert report supporting Harvard University [43] finds that by accounting for
certain other variables, the effect of race on Asian students acceptance is no longer significant.
Significances derived from statistical tests in regression or logistic regression models at best
establish association, but not causation. Hence the analyses from both sides are flawed.

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 20

This example demonstrates the practical and misleading consequences of statistical feature
importances when used inappropriately.

Visualizations

When dealing with high-dimensional datasets, it can be challenging to quickly understand
the complex relationships that a model has learned, making the presentation of the results
particularly important. To help deal with this, researchers have developed a number of differ-
ent visualizations which help to understand what a model has learned. For linear models with
regularization, plots of regression coefficient paths show how varying a regularization param-
eter affects the fitted coefficients. When visualizing convolutional neural networks trained
on image data, work has been done on visualizing filters [297, 193], maximally activating
responses of individual neurons or classes [180], understanding intra-class variation [282],
and grouping different neurons [300]. For Long Short Term Memory Networks (LSTMs), re-
searchers have focused on analyzing the state vector, identifying individual dimensions that
correspond to meaningful features (e.g. position in line, within quotes) [124], and building
tools to track the model’s decision process over the course of a sequence [260].

In the following example, relevant interpretations are produced by using maximal acti-
vation images for identifying patterns that drive the response of brain cells.

. Ex. A recent study visualizes learned information from deep neural networks to
understand individual brain cells [2]. In this study, macaque monkeys were shown images
while the responses of brain cells in their visual system (area V4) were recorded. Neural
networks were trained to predict the responses of brain cells to the images. These neural
networks produce accurate fits, but provide little insight into what patterns in the images
increase the brain cells response without further analysis. To remedy this, the authors
introduce DeepTune, a method which provides a visualization, accessible to neuroscientists
and others, of the patterns which activate a brain cell. The main intuition behind the method
is to optimize the input of a network to maximize the response of a neural network model
(which represent a brain cell).

The authors go on to analyze the major problem of instability. When post hoc visualiza-
tions attempt to answer scientific questions, the visualizations must be stable to reasonable
perturbations; if there are changes in the visualization due to the choice of a model, it is
likely not meaningful. The authors address this explicitly by fitting eighteen different models
to the data and using a stable optimization over all the models to produce a final consensus
DeepTune visualization.

Analyzing trends and outliers in predictions

When interpreting the performance of an ML model, it can be helpful to look not just at
the average accuracy, but also at the distribution of predictions and errors. For example,
residual plots can identify heterogeneity in predictions, and suggest particular data points
to analyze, such as outliers in the predictions, or examples which had the largest prediction

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 21

errors. Moreover, these plots be used to analyze trends across the predictions. For instance,
in the example below, influence functions are able to efficiently identify mislabelled data
points.

Prediction-level interpretation

Prediction-level approaches are useful when a practitioner is interested in understanding
how individual predictions are made by a model. Note that prediction-level approaches can
sometimes be aggregated to yield dataset-level insights.

Feature importance scores

The most popular approach to prediction-level interpretation has involved assigning impor-
tance scores to individual features. Intuitively, a variable with a large positive (negative)
score made a highly positive (negative) contribution to a particular prediction. In the deep
learning literature, a number of different approaches have been proposed to address this
problem [264, 240, 18, 242, 185, 59, 218, 303], with some methods for other models as well
[158]. These are often displayed in the form of a heat map highlighting important features.
Note that feature importance scores at the prediction-level can offer much more information
than feature importance scores at the dataset-level. This is a result of heterogeneity in a
nonlinear model: the importance of a feature can vary for different examples as a result of
interactions with other features.

While this area has seen progress in recent years, concerns have been raised about the
descriptive accuracy of these methods. In particular, [4] shows that many popular methods
produce similar interpretations for a trained model versus a randomly-initialized one, and
are qualitatively very similar to an edge detector. Moreover, it has been shown that some
feature importance scores for CNNs are doing (partial) image recovery which is unrelated to
the network decisions [190].

. Ex. When using ML models to predict sensitive outcomes, such as whether a person
should receive a loan or a criminal sentence, it is important to verify that the algorithm is
not discriminating against people based on protected attributes, such as race or gender. This
problem is often described as ensuring ML models are “fair”. In [60], the authors introduce
a variable importance measure designed to isolate the contributions of individual variables,
such as gender, among a set of correlated variables.

Based on these variable importance scores, the authors construct transparency reports,
such as the one displayed in Fig S2. This figure displays the importance of features used to
predict that ”Mr. Z” is likely to be arrested in the future (an outcome which is often used
in predictive policing), with each bar corresponding to a feature provided to the classifier,
and the y axis displaying the importance score for that feature. In this instance, the race
feature is the largest value, indicating that the classifier is indeed discriminating based on
race. Thus, in this instance, prediction-level feature importance scores can identify that a
model is unfairly discriminating based on race.

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 22

Alternatives to feature importances

While feature importance scores can provide useful insights, they also have a number of
limitations [4, 112]. For instance, they are unable to capture when algorithms learn inter-
actions between variables. There is currently an evolving body of work centered around
uncovering and addressing these limitations. These methods focus on explicitly capturing
and displaying the interactions learned by a neural network [184, 249], alternative forms of
interpretations such as textual explanations [226], influential data points [133], and analyzing
nearest neighbors [46, 201].

2.5 Future work

Having introduced the PDR framework for defining and discussing interpretable machine
learning, we now leverage it to frame what we feel are the field’s most important challenges
moving forward. Below, we present open problems tied to each of the chapter’s three main
sections: interpretation desiderata (Sec. 2.2), model-based interpretability (Sec. 2.3), and
post hoc interpretability (Sec. 2.4).

Measuring interpretation desiderata

Currently, there is no clear consensus in the community around how to evaluate interpretation
methods, although some recent work has begun to address it [68, 152, 93]. As a result, the
standard of evaluation varies considerably across different work, making it challenging both
for researchers in the field to measure progress, and for prospective users to select suitable
methods. Within the PDR framework, to constitute an improvement, a new interpretation
method must improve at least one desideratum (predictive accuracy, descriptive accuracy, or
relevancy) without unduly harming the others. While improvements in predictive accuracy
are easy to measure, measuring improvements in descriptive accuracy and relevancy remains
a challenge.

Measuring descriptive accuracy

One way to measure an improvement to an interpretation method is to demonstrate that
its output better captures what the ML model has learned, i.e. its descriptive accuracy.
However, unlike predictive accuracy, descriptive accuracy is generally very challenging to
measure or quantify [112]. As a fall-back, researchers often show individual, cherry-picked,
interpretations which seem “reasonable”. These kinds of evaluations are limited and unfalsi-
fiable. In particular, these results are limited to the few examples shown, and not generally
applicable to the entire dataset.

While the community has not settled on a standard evaluation protocol, there are some
promising directions. In particular, the use of simulation studies presents a partial solution.
In this setting, a researcher defines a simple generative process, generates a large amount

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 23

of data from that process, and trains their ML model on that data. Assuming a proper
simulation setup, a sufficiently powerful model to recover the generative process, and suf-
ficiently large training data, the trained model should achieve near-perfect generalization
accuracy. To compute an evaluation metric, they can then check whether their interpreta-
tions recover aspects of the original generative process. For example, [273, 274] train neural
networks on a suite of generative models with certain built-in interactions, and test whether
their method successfully recovers them. Here, due to the ML model’s near-perfect gener-
alization accuracy, we know that the model is likely to have recovered some aspects of the
generative process, thus providing a ground truth against which to evaluate interpretations.
In a related approach, when an underlying scientific problem has been previously studied,
prior experimental findings can serve as a partial ground truth to retrospectively validate
interpretations [22].

Demonstrating relevancy to real-world problems

Another angle for developing improved interpretation methods is to improve the relevancy of
interpretations for some audience or problem. This is normally done by introducing a novel
form of output, such as feature heatmaps [264], rationales [142], feature hierarchies [249] or
identifying important elements in the training set [133]. A common pitfall in the current
literature is to focus on the novel output, ignoring what real-world problems it can actually
solve. Given the abundance of possible interpretations, it is particularly easy for researchers
to propose novel methods which do not actually solve any real-world problems.

There have been two dominant approaches for demonstrating improved relevancy. The
first, and strongest, is to directly use the introduced method in solving a domain problem.
For instance, in one example discussed above [22], the authors evaluated a new interpretation
method (iterative random forests) by demonstrating that it could be used to identify mean-
ingful biological Boolean interactions for use in experiments. In instances like this, where the
interpretations are used directly to solve a domain problem, their relevancy is indisputable.
A second, less direct, approach is the use of human studies, often through services like Ama-
zon’s Mechanical Turk. Here, humans are asked to perform certain tasks, such as evaluating
how much they trust a model’s predictions [249]. While challenging to properly construct
and perform, these studies are vital to demonstrate that new interpretation methods are, in
fact, relevant to any potential practitioners. However, one shortcoming of this approach is
that it is only possible to use a general audience of AMT crowdsourced workers, rather than
a more relevant, domain-specific audience.

Model-based

Now that we have discussed the general problem of evaluating interpretations, we highlight
important challenges for the two main sub-fields of interpretable machine learning: model-
based and post hoc interpretability. Whenever model-based interpretability can achieve
reasonable predictive accuracy and relevancy, by virtue of its high descriptive accuracy it

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 24

is preferable to fitting a more complex model, and relying upon post hoc interpretability.
Thus, the main focus for model-based interpretability is increasing its range of possible use
cases by increasing its predictive accuracy through more accurate models and transparent
feature engineering. It is worth noting that sometimes a combination of model-based and
post hoc interpretations is ideal.

Building accurate and interpretable models

In many instances, model-based interpretability methods fail to achieve a reasonable predic-
tive accuracy. In these cases, practitioners are forced to abandon model-based interpretations
in search of more accurate models. Thus, an effective way of increasing the potential uses for
model-based interpretability is to devise new modeling methods which produce higher pre-
dictive accuracy while maintaining their high descriptive accuracy and relevance. Promising
examples of this work include the previously discussed examples on estimating pneumo-
nia risk from patient data [47] and Bayesian models for generating rule lists to estimate a
patient’s risk of stroke [143]. Detailed directions for this work are suggested in [230].

Tools for feature engineering

When we have more informative and meaningful features, we can use simpler modeling
methods to achieve a comparable predictive accuracy. Thus, methods that can produce
more useful features broaden the potential uses of model-based interpretations. The first
main category of work lies in improved tools for exploratory data analysis. By better en-
abling researchers to interact with and understand their data, these tools (combined with
domain knowledge) provide increased opportunities for them to identify helpful features. Ex-
amples include interactive environments [132, 207, 270], tools for visualization [21, 283, 281],
and data exploration tools [168, 284, 251]. The second category falls under unsupervised
learning, which is often used as a tool for automatically finding relevant structure in data.
Improvements in unsupervised techniques such as clustering and matrix factorization could
lead to more useful features.

Post hoc

In contrast to model-based interpretability, much of post hoc interpretability is relatively
new, with many foundational concepts still unclear. In particular, we feel that two of the
most important questions to be answered are what an interpretation of an ML model should
look like, and how post hoc interpretations can be used to increase a model’s predictive
accuracy. It has also been emphasized that in high stakes decisions practitioners should be
very careful when applying post hoc methods with unknown descriptive accuracy [230].

CHAPTER 2. INTERPRETABILITY: FOR WHAT AND FOR WHOM? 25

What should an interpretation of a black-box look like

Given a black-box predictor and real-world problem, it is generally unclear what format, or
combination of formats, is best to fully capture a model’s behavior. Researchers have pro-
posed a variety of interpretation forms, including feature heatmaps [264], feature hierarchies
[249] and identifying important elements in the training set [133]. However, in all instances
there is a gap between the simple information provided by these interpretations and what
the model has actually learned. Moreover, it is unclear if any of the current interpretation
forms can fully capture a model’s behaviour, or if a new format altogether is needed. How
to close that gap, while producing outputs relevant to a particular audience/problem, is an
open problem.

Using interpretations to improve predictive accuracy

In some instances, post hoc interpretations uncover that a model has learned relationships a
practitioner knows to be incorrect. For instance, prior interpretation work has shown that a
binary husky vs. wolf classifier simply learns to identify whether there is snow in the image,
ignoring the animals themselves [218]. A natural question to ask is whether it is possible
for the practitioner to correct these relationships learned by the model, and consequently
increase its predictive accuracy. Given the challenges surrounding simply generating post
hoc interpretations, research on their uses has been limited [229, 296], particularly in modern
deep learning models. However, as the field of post hoc interpretations continues to mature,
this could be an exciting avenue for researchers to increase the predictive accuracy of their
models by exploiting prior knowledge, independently of any other benefits of interpretations.

26

Part I

Post-hoc neural-network
interpretations

27

Chapter 3

Hierarchical, disentangled
interpretations (ACD)

3.1 Motivating the need for hierarchical

interpretations

The success of deep neural networks (DNNs) can largely be attributed to their ability to learn
complex, non-linear, relationships between variables. A major hurdle for interpretability is
finding a way to to effectively visualize these relationships has led DNNs to be characterized
as black boxes. In this chapter, we introduce the use of hierarchical interpretations to explain

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 28

DNN predictions. Our proposed method, agglomerative contextual decomposition (ACD)1,
is a general technique that can be applied to a wide range of DNN architectures and data
types. Given a prediction from a trained DNN, ACD produces a hierarchical clustering of
the input features, along with the contribution of each cluster to the final prediction. This
hierarchy is optimized to identify clusters of features that the DNN learned are predictive
(see Fig. 3.1).

The development of ACD consists of two novel contributions. First, importance scores for
groups of features are obtained by generalizing contextual decomposition (CD), a previous
method for obtaining importance scores for LSTMs [184]. This work extends CD to arbi-
trary DNN architectures, including convolutional neural networks (CNNs). Second, most
importantly, we introduce the idea of hierarchical saliency, where a group-level importance
measure, in this case CD, is used as a joining metric in an agglomerative clustering pro-
cedure. While we focus on DNNs and use CD as our importance measure, this concept is
general, and could be readily applied to any model with a suitable measure for computing
importances of groups of variables.

We demonstrate the utility of ACD on both long short term memory networks (LSTMs)
[109] trained on the Stanford Sentiment Treebank (SST) [254] and CNNs trained on MNIST
[139] and ImageNet [233]. Through human experiments, we show that ACD produces intu-
itive visualizations that enable users to better reason about and trust DNNs. In particular,
given two DNN models, we show that users can use the output of ACD to select the model
with higher predictive accuracy, and that overall they rank ACD as more trustworthy than
prior interpretation methods. In addition, we demonstrate that ACD’s hierarchy is robust
to adversarial perturbations [265] in CNNs.

1Code and scripts for running ACD and experiments available at https://github.com/csinva/

hierarchical-dnn-interpretations

https://github.com/csinva/hierarchical-dnn-interpretations
https://github.com/csinva/hierarchical-dnn-interpretations

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 29

DNN Prediction

DNN

negative
ACD Interpretation

Positive

Negative

not very good

very good

not very good

not very good

Figure 3.1: ACD illustrated through the toy example of predicting the phrase “not very good”
as negative. Given the network and prediction, ACD constructs a hierarchy of meaningful
phrases and provides importance scores for each identified phrase. In this example, ACD
identifies that “very” modifies “good” to become the very positive phrase “very good”,
which is subsequently negated by ”not” to produce the negative phrase “not very good”.
Best viewed in color.

3.2 Background on feature importance

Interpreting DNNs is a growing field [186] spanning a range of techniques including feature
visualization [193, 291], analyzing learned weights [273] and others [90, 11, 300]. Our work
focuses on local interpretations, where the task is to interpret individual predictions made
by a DNN.

Local interpretation Most prior work has focused on assigning importance to individual
features, such as pixels in an image or words in a document. There are several methods
that give feature-level importance for different architectures. They can be categorized as
gradient-based [255, 264, 240, 18], decomposition-based [185, 242, 17] and others [59, 83,
218, 303], with many similarities among the methods [10, 159].

By contrast, there are relatively few methods that can extract the interactions between
features that a DNN has learned. In the case of LSTMs, [184] demonstrated the limitations of
prior work on interpretation using word-level scores, and introduced contextual decomposi-
tion (CD), an algorithm for producing phrase-level importance scores from LSTMs. Another
simple baseline is occlusion, where a group of features is set to some reference value, such as
zero, and the importance of the group is defined to be the resulting decrease in the prediction
value [297, 145]. Given an importance score for groups of features, no existing work addresses
how to search through the many possible groups of variables in order to find a small set to

[ill

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 30

show to users. To address this problem, this work introduces hierarchical interpretations as
a principled way to search for and display important groups.

Hierarchical importance Results from psychology and philosophy suggest that people
prefer explanations that are simple but informative [103, 214] and include the appropriate
amount of detail [126]. However, there is no existing work that is both powerful enough to
capture interactions between features, and simple enough to not require a user to manually
search through the large number of available feature groups. To remedy this, we propose a
hierarchical clustering procedure to identify and visualize, out of the considerable number of
feature groups, which ones contain meaningful interactions and should be displayed to the
end user. In doing so, ACD aims to be informative enough to capture meaningful feature
interactions while displaying a sufficiently small subset of all feature groups to maintain
simplicity.

3.3 Methods for contextual decomposition and ACD

This section introduces ACD through two contributions: Sec. 3.3 proposes a generalization
of CD from LSTMs to arbitrary DNNs, and Sec. 3.3 explains the main contribution: how to
combine these CD scores with hierarchical clustering to produce ACD.

Extending contextual decomposition (CD) importance scores to
general DNNs

In order to generalize CD to a wider range of DNNs, we first reformulate the original CD
algorithm into a more generic setting than originally presented. For a given DNN f(x), we
can represent its output as a SoftMax operation applied to logits g(x). These logits, in turn,
are the composition of L layers gi, such as convolutional operations or ReLU non-linearities.

f(x) = SoftMax(g(x)) = SoftMax(gL(gL−1(...(g2(g1(x)))))) (3.1)

Given a group of features {xj}j∈S, our generalized CD algorithm, gCD(x), decomposes the
logits g(x) into a sum of two terms, β(x) and γ(x). β(x) is the importance measure of the
feature group {xj}j∈S, and γ(x) captures contributions to g(x) not included in β(x).

gCD(x) = (β(x), γ(x)) (3.2)

β(x) + γ(x) = g(x) (3.3)

To compute the CD decomposition for g(x), we define layer-wise CD decompositions gCDi (x) =
(βi, γi) for each layer gi(x). Here, βi corresponds to the importance measure of {xj}j∈S to
layer i, and γi corresponds to the contribution of the rest of the input to layer i. To maintain

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 31

the decomposition we require βi + γi = gi(x) for each i. We then compute CD scores for the
full network by composing these decompositions.

gCD(x) = gCDL (gCDL−1(...(gCD2 (gCD1 (x))))) (3.4)

Previous work [184] introduced decompositions gCDi for layers used in LSTMs. The gener-
alized CD described here extends CD to other widely used DNNs, by introducing layer-wise
CD decompositions for convolutional, max-pooling, ReLU non-linearity and dropout lay-
ers. Doing so generalizes CD scores from LSTMs to a wide range of neural architectures,
including CNNs with residual and recurrent architectures.

At first, these decompositions were chosen through an extension of the CD rules detailed
in [184], yielding a similar algorithm to that developed concurrently by [94]. However, we
found that this algorithm did not perform well on deeper, ImageNet CNNs. We subsequently
modified our CD algorithm by partitioning the biases in the convolutional layers between γi
and βi in Equation 3.5, and modifying the decomposition used for ReLUs in Equation 3.10.

When gi is a convolutional or fully connected layer, the layer operation consists of a
weight matrix W and a bias b. The weight matrix can be multiplied with βi−1 and γi−1

individually, but the bias must be partitioned between the two. We partition the bias
proportionally based on the absolute value of the layer activations. For the convolutional
layer, this equation yields only one activation of the output; it must be repeated for each
activation.

βi = Wβi−1 +
|Wβi−1|

|Wβi−1|+ |Wγi−1|
· b (3.5)

γi = Wγi−1 +
|Wγi−1|

|Wβi−1|+ |Wγi−1|
· b (3.6)

When gi is a max-pooling layer, we identify the indices, or channels, selected by max-pool
when run by gi(x), denoted max idxs below, and use the decompositions for the correspond-
ing channels.

max idxs = argmax
idxs

[maxpool(βi−1 + γi−1; idxs)] (3.7)

βi = βi−1[max idxs] (3.8)

γi = γi−1[max idxs] (3.9)

Finally, for the ReLU, we update our importance score βi by computing the activation of
βi−1 alone and then update γi by subtracting this from the total activation.

βi = ReLU(βi−1) (3.10)

γi = ReLU(βi−1 + γi−1)− ReLU(βi−1) (3.11)

For a dropout layer, we simply apply dropout to βi−1 and γi−1 individually, or multiplying
each by a scalar. Computationally, a CD call is comparable to a forward pass through the
network f .

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 32

Agglomerative Contextual Decomposition (ACD)

Given the generalized CD scores introduced above, we now introduce the clustering proce-
dure used to produce ACD interpretations. At a high-level, our method is equivalent to
agglomerative hierarchical clustering, where the CD interaction is used as the joining metric
to determine which clusters to join at each step. This procedure builds the hierarchy by
starting with individual features and iteratively combining them based on the interaction
scores provided by CD. The displayed ACD interpretation is the hierarchy, along with the
CD importance score at each node.

More precisely, algorithm 1 describes the exact steps in the clustering procedure. After
initializing by computing the CD scores of each feature individually, the algorithm itera-
tively selects all groups of features within k% of the highest-scoring group (where k is a
hyperparameter, fixed at 95 for images and 90 for text) and adds them to the hierarchy.

Each time a new group is added to the hierarchy, a corresponding set of candidate groups
is generated by adding individual contiguous features to the original group. For text, the
candidate groups correspond to adding one adjacent word onto the current phrase, and
for images adding any adjacent pixel onto the current image patch. Candidate groups are
ranked according to the CD interaction score, which is the difference between the score of
the candidate and original groups.

ACD terminates after an application-specific criterion is met. For sentiment classification,
we stop once all words are selected. For images, we stop after some predefined number of
iterations and then merge the remaining groups one by one using the same selection criteria
described above.

Algorithm 1 is not specific to DNNs; it requires only a method to obtain importance scores
for groups of input features. Here, we use CD scores to arrive at the ACD algorithm, which
makes the method specific to DNNs, but given a feature group scoring function, Algorithm 1
can yield interpretations for any predictive model. CD is a natural score to use for DNNs
as it aggregates saliency at different scales and converges to the final prediction once all the
units have been selected.

3.4 ACD succeeds in providing useful qualitative and

quantitative interpretation

We now present empirical validation of ACD on both LSTMs trained on SST and CNNs
trained on MNIST and ImageNet. First, we introduce the reader to our visualization in
Sec. 3.4, and how it can (anecdotally) be used to understand models in settings such as diag-
nosing incorrect predictions, identifying dataset bias, and identifying representative phrases
of differing lengths. We then provide quantitative evidence of the benefits of ACD in Sec. 3.4
through human experiments and demonstrating the stability of ACD to adversarial pertur-
bations.

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 33

Algorithm 1 Agglomeration algorithm.
ACD(Example x, model, hyperparameter k, function CD(x, blob; model))

initialize
tree = Tree() # tree to output
scoresQueue = PriorityQueue() # scores, sorted by importance
for feature in x :

scoresQueue.push(feature, priority=CD(x, feature; model))

iteratively build up tree
while scoresQueue is not empty :

selectedGroups = scoresQueue.popTopKPercentile(k) # pop off top k elements
tree.add(selectedGroups) # Add top k elements to the tree

generate new groups of features based on current groups and add them to the queue
for selectedGroup in selectedGroups :

candidateGroups = getCandidateGroups(selectedGroup)
for candidateGroup in candidateGroups :

scoresQueue.add(candidateGroup, priority=CD(x, candidateGroup;model)-
CD(x,selectedGroup; model))

return tree

Experimental details

We first describe the process for training the models from which we produce interpretations.
As the objective of this paper is to interpret the predictions of models, rather than increase
their predictive accuracy, we use standard best practices to train our models. All models
are implemented using PyTorch. For SST, we train a standard binary classification LSTM
model2, which achieves 86.2% accuracy. On MNIST, we use the standard PyTorch exam-
ple3, which attains accuracy of 97.7%. On ImageNet, we use a pre-trained VGG-16 DNN
architecture [244] which attains top-1 accuracy of 42.8%. When using ACD on ImageNet,
for computational reasons, we start the agglomeration process with 14-by-14 superpixels in-
stead of individual pixels. We also smooth the computed image patches by adding pixels
surrounded by the patch. The weakened models for the human experiments are constructed
from the original models by randomly permuting a small percentage of their weights. For
SST/MNIST/ImageNet, 25/25/0.8% of weights are randomized, reducing test accuracy from
85.8/97.7/42.8% to 79.8/79.6/32.3%.

2model and training code from https://github.com/clairett/pytorch-sentiment-classification
3model and training code from https://github.com/pytorch/examples/tree/master/mnist

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 34

Qualitative experiments

Before providing quantitative evidence of the benefits of ACD, we first introduce the visual-
ization and demonstrate its utility in interpreting a predictive model’s behavior.

Understanding predictive models using ACD

In the following examples, we demonstrate the use of ACD to diagnose incorrect predictions
in SST and identify dataset bias in ImageNet. These examples are only a few of the potential
uses of ACD.

Text example - diagnosing incorrect predictions In the first example, we show the
result of running ACD for our SST LSTM model in Figure 3.2. We can use this ACD
visualization to quickly diagnose why the LSTM made an incorrect prediction. In particular,
note that the ACD summary of the LSTM correctly identifies two longer phrases and their
corresponding sentiment a great ensemble cast (positive) and n’t lift this heartfelt enterprise
out of the ordinary (negative). It is only when these two phrases are joined that the LSTM
inaccurately predicts a positive sentiment. This suggests that the LSTM has erroneously
learned a positive interaction between these two phrases. Prior methods would not be capable
of detecting this type of useful information.

Figure 3.2: ACD interpretation of an LSTM predicting sentiment. Blue is positive sentiment,
white is neutral, red is negative. The bottom row displays CD scores for individual words
in the sentence. Higher rows display important phrases identified by ACD, along with their
CD scores, converging to the model’s (incorrect) prediction in the top row. (Best viewed in
color)

Vision example - identifying dataset bias Fig. 3.3 shows an example using ACD for
an ImageNet VGG model. Using ACD, we can see that to predict “puck”, the CNN is not
just focusing on the puck in the image, but also on the hockey player’s skates. Moreover, by

a great ensemble cast can't lift this heartfelt enterprise out of the familiar.

n't lift this heartfelt enterprise out of the familiar.

a great ensemble cast this heartfelt enterprise out of the familiar.

a great ensemble

I great ensemble

~ii06186MUI
heartfelt enterprise

a great ensemble cast ca n't lift this heartfelt enterprise out of the familiar

CD score

6

4

- 2

-0

- -2

-4

-6

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 35

comparing the fifth and sixth plots in the third row, we can see that the network is only able
to distinguish between the class “puck” and the other top classes when the orange skate and
green puck patches merge into a single orange patch. This suggests that the CNN has learned
that skates are a strong corroborating features for pucks. While intuitively reasonable in the
context of ImageNet, this may not be desirable behavior if the model were used in other
domains.

Figure 3.3: ACD interpretation for a VGG network prediction, described in 3.4. ACD shows
that the CNN is focusing on skates to predict the class “puck”, indicating that the model
has captured dataset bias. The top row shows the original image, logits for the five top-
predicted classes, and the CD superpixel-level scores for those classes. The second row shows
separate image patches ACD has identified as being independently predictive of the class
“puck”. Starting from the left, each image shows a successive iteration in the agglomeration
procedure. The third row shows the CD scores for each of these patches, where patch colors in
the second row correspond to line colors in the third row. ACD successfully finds important
regions for the target class (such as the puck), and this importance increases as more pixels
are selected. Best viewed in color.

Identifying top-scoring phrases

When feasible, a common means of scrutinizing what a model has learned is to inspect its
most important features, and interactions. In Table 3.1, we use ACD to show the top-scoring
phrases of different lengths for our LSTM trained on SST. These phrases were extracted
by running ACD separately on each sample in SST’s validation set. The score of each

puck prediction logits CD (puck) CD (ski) CD (broom) CD (ski mask) CD (knee pad)

(lJ 10
u
C
re
t:
0

5 Q.

E =
..c
~ = re 0 - ..
0..

;;;;;; liiiii =
..::,t_ ~ E ..::,t_ "'O
u Vl Vl re
::::i 0 re 0..
0.. 0 E (lJ ..0

~
(lJ
C

Vl ..::,t_

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 36

Length Positive Negative
1 pleasurable, sexy, glorious nowhere, grotesque, sleep
3 amazing accomplishment., great fun. bleak and desperate, conspicu-

ously lacks.
5 a pretty amazing accomplishment. ultimately a pointless endeavour.
8 presents it with an unforgettable vi-

sual panache.
my reaction in a word: disap-
pointment.

Table 3.1: Top-scoring phrases of different lengths extracted by ACD on SST’s validation
set. The positive/negative phrases identified by ACD are all indeed positive/negative.

phrase was then computed by averaging over the score it received in each occurrence in a
ACD hierarchy. The extracted phrases are clearly reflective of the corresponding sentiment,
providing additional evidence that ACD is able to capture meaningful positive and negative
phrases.

Quantitative experiments

Having introduced our visualization and provided qualitative evidence of its uses, we now
provide quantitative evidence of the benefits of ACD.

Human experiments

We now demonstrate through human experiments that ACD allows users to better trust and
reason about the accuracy of DNNs. Human subjects consist of eleven graduate students at
the author’s institution, each of whom has taken a class in machine learning. Each subject
was asked to fill out a survey with two types of questions: whether, using ACD, they could
identify the more accurate of two models and whether they trusted a models output. In
both cases, similar questions were asked on three datasets (SST, MNIST and ImageNet),
and ACD was compared against three baselines: CD [184], Integrated Gradients (IG) [264],
and occlusion [145, 297].

Identifying an accurate model The objective of this section was to determine if subjects
could use a small number of interpretations produced by ACD in order to identify the more
accurate of two models. For each question in this section, two example predictions were
chosen. For each of these two predictions, subjects were given interpretations from two
different models (four total), and asked to identify which of the two models had a higher
predictive accuracy. Each subject was asked to make this comparison using three different
sets of examples for each combination of dataset and interpretation method, for 36 total

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 37

Figure 3.4: Results for human studies. A. Binary accuracy for whether a subject correctly
selected the more accurate model using different interpretation techniques B. Average rank
(from 1 to 4) of how much different interpretation techniques helped a subject to trust a
model, higher ranks are better.

comparisons. To remove variance due to examples, the same three sets of examples were
used across all four interpretation methods.

The predictions shown were chosen to maximize disagreement between models, with SST
also being restricted to sentences between five and twenty words, for ease of visualization.
To prevent subjects from simply picking the model that predicts more accurately for the
given example, for each question a user is shown two examples: one where only the first
model predicts correctly and one where only the second model predicts correctly. The two
models considered were the accurate models of the previous section and a weakened version
of that same model (details given in Sec. 3.4).

Fig 3.4A shows the results of the survey. For SST, humans were better able to identify
the strongly predictive model using ACD compared to other baselines, with only ACD and
CD outperforming random selection (50%). Based on a one-sided two-sample t-test, the gaps
between ACD and IG/Occlusion are significant, but not the gap between ACD and CD. In
the simple setting of MNIST, ACD performs similarly to other methods. When applied to
ImageNet, a more complex dataset, ACD substantially outperforms prior, non-hierarchical
methods, and is the only method to outperform random chance, although the gaps between
ACD and other methods are only statistically suggestive (p-values fall between 0.15 and
0.07).

Evaluating trust in a model In this section, the goal is to gauge whether ACD helps a
subject to better trust a model’s predictions, relative to prior techniques. For each question,
subjects were shown interpretations of the same prediction using four different interpretation
methods, and were asked to rank the interpretations from one to four based on how much they
instilled trust in trust the model. Subjects were asked to do this ranking for three different
examples in each dataset, for nine total rankings. The interpretations were produced from

0.7

[o.6
>,

~ 0.5

:i
8 0.4
Ctl

E o.3
QJ
(.)

Q) 0.2
0..

0.1

0.0

A

-""-
C

~
ti
5
C
Ctl
QJ

:::2'

SST MNIST lmageNet

B

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

SST MNIST lmageNet

ACD
CD
IG

Occlusion

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 38

the more accurate model from the previous section, and the examples were chosen using
the same criteria as the previous section, except they were restricted to examples correctly
predicted by the more accurate model.

Fig 3.4B shows the average ranking received by each method/dataset pair. ACD sub-
stantially outperforms other baselines, particularly for ImageNet, achieving an average rank
of 3.5 out of 4, where higher ranks are better. As in the prior question, we found that the
hierarchy only provided benefits in the more complicated ImageNet setting, with results on
MNIST inconclusive. For both SST and ImageNet, the difference in mean ranks between
ACD and all other methods is statistically significant (p-value less than 0.005) based on
a permutation test, while on MNIST only the difference between ACD and occlusion is
significant.

ACD hierarchy is robust to adversarial perturbations

While there has been a considerable amount of work on adversarial attacks, little effort has
been devoted to qualitatively understanding this phenomenon. In this section, we provide
evidence that, on MNIST, the hierarchical clustering produced by ACD is largely robust to
adversarial perturbations. This suggests that ACD’s hierarchy captures fundamental features
of an image, and is largely immune to the spurious noise favored by adversarial examples.

To measure the robustness of ACD’s hierarchy, we first qualitatively compare the inter-
pretations produced by ACD on both an unaltered image and an adversarially perturbed
version of that image. Empirically, we found that the extracted hierarchies are often very
similar. To generalize these observations, we introduce a metric to quantify the similarity
between two ACD hierarchies. This metric allows us to make quantitative, dataset-level
statements about the stability of ACD feature hierarchies with respect to adversarial inputs.
Given an ACD hierarchy, we compute a ranking of the input image’s pixels according to
the order in which they were added to the hierarchy. To measure the similarity between
the ACD hierarchies for original and adversarial images, we compute the correlation be-
tween their corresponding rankings. As ACD hierarchies are class-specific, we average the
correlations for the original and adversarially altered predictions.

We display the correlations for five different attacks (computed using the Foolbox package
[213], each averaged over 100 randomly chosen predictions, in Table 3.2. As ACD is the first
local interpretation technique to compute a hierarchy, there is little prior work available
for comparison. As a baseline, we use our agglomeration algorithm with occlusion in place
of CD. The resulting correlations are substantially lower, indicating that features detected
by ACD are more stable to adversarial attacks than comparable methods. These results
provide evidence that ACD’s hierarchy captures fundamental features of an image, and is
largely immune to the spurious noise favored by adversarial examples.

CHAPTER 3. HIERARCHICAL, DISENTANGLED INTERPRETATIONS (ACD) 39

Attack Type ACD Agglomerative Occlusion
Saliency [202] 0.762 0.259
Gradient attack 0.662 0.196
FGSM [96] 0.590 0.131
Boundary [36] 0.684 0.155
DeepFool [179] 0.694 0.202

Table 3.2: Correlation between pixel ranks for different adversarial attacks. ACD achieves
consistently high correlation across different attack types, indicating that ACD hierarchies
are largely robust to adversarial attacks. Using occlusion in place of CD produces substan-
tially less stable hierarchies.

40

Chapter 4

Transformation importance (TRIM)

4.1 The need for transformation importance

ACD allows one to attribute importance to interactions between features. However, in many
cases, raw features such as pixels in an image or words in a document may not be the most
meaningful spaces to perform interpretation. When features are highly correlated or features
in isolation are not semantically meaningful, the resulting attributions need to be improved.

To meet this challenge, we propose TRIM (Transformation Importance), an approach for
attributing importance to transformations of the input features (see Fig. 4.1). This is critical
for making interpretations relevant to a particular audience/problem, as attributions in a
domain-specific feature space (e.g. frequencies or principal components) can often be far more
interpretable than attributions in the raw feature space (e.g. pixels or biological readings).
Moreover, features after transformation can be more independent, semantically meaningful,
and comparable across data points. This idea is related to existing works suggesting the
use of a “simplified input-representation” [218, 159], but we generalize these works beyond
transformations which map existing features into simplified binary features. The work here
focuses on combining TRIM with contextual decomposition (CD), an existing attribution
method [184], although TRIM can be combined with any local interpretation method.

We focus on cosmology example, where attributing importance to transformations helps
understand cosmological models in a more interpretable feature space. Specifically, we con-
sider weak gravitational lensing convergence maps, i.e. maps of the mass distribution in the
Universe integrated up to a certain distance from the observer. In a cosmological experi-
ment (e.g. a galaxy survey), these mass maps are obtained by measuring the distortion of
distant galaxies caused by the deflection of light by the mass between the galaxy and the ob-
server [20]. These maps contain a wealth of physical information of interest to cosmologists,
such as the total matter density in the universe, Ωm. Current research aims at identifying
the most informative features in these maps for inferring the true cosmological parameters.
The traditional summary statistic for lensing maps is the power spectrum which is known to
be sub-optimal for parameter inference. Tighter parameter constraints can be obtained by

CHAPTER 4. TRANSFORMATION IMPORTANCE (TRIM) 41

including higher-order statistics, such as the bispectrum [57] and peak counts [148]. However,
DNN-based inference methods claim to improve on constraints based on these traditional
summaries [220, 219, 82].

On top of the accurate predictive power of a DNN, here it is also important to understand
what the model learns. Knowing which features are important provides deeper understanding
and can be used to design optimal experiments or analysis methods. Moreover, because these
models are trained on numerical simulations (realizations of the Universe with different
cosmological parameters), it is important to validate that the model uses physical features
rather than latching on to numerical artifacts in the simulations. TRIM shows promise for
understanding and validating that the DNN learns appropriate physical features by analyzing
attributing importance in the spectral domain.

4.2 Calculating transformation importance

x s
!"

f ’(s)
f(x)

TRIM(s)
!"#$x’
x - x’

Figure 4.1: TRIM: Attributing importance to a transformation of an input Tθ(x) given a
model f(x).

We aim to interpret the prediction made by a model f given a single input x. The input
x is in some domain X , but we desire an explanation for its representation s in a different
domain S, defined by a mapping T : X → S, such that s = T (x). For example, if x is an
image, s may be its Fourier representation, and T would be the Fourier transform. Notably,
this process is entirely post-hoc: the model f is already fully trained on the domain X .
By reparametrizing our network as shown in Fig. 4.1, we can obtain attributions in the
domain S. If we require that the mapping T be invertible, so that x = T−1(s), we can
represent each data point x with its counterpart s in the desired domain, and our function
to interpret becomes f ′ = f ◦T−1; the function f ′ can be interpreted with any existing local
interpretation method attr (e.g. LIME [218], Integrated Gradients [264])).1 Once we have
the reparameterized function f ′(s), we need only specify which part of the input to interpret
to define TRIM:

Definition 1. Given a model f , an input x, a mask M , a transformation T , and an
attribution method attr,

1Note that if the transformation T is not perfectly invertible (i.e. x 6= x′), then the residuals x− x′ may
also be required for local interpretation. For example, they are required for any gradient-based attribution
method to aid in computing ∂f ′/∂s.

CHAPTER 4. TRANSFORMATION IMPORTANCE (TRIM) 42

TRIM(s) = attr (f ′; s)

where f ′ = f ◦ T−1, s = M � T (x)

Here M is a mask used to specify which parts of the transformed space to interpret and �
denotes elementwise multiplication.

In the work here, the choice of attribution method attr is CD, as it can disentangle
the importance of features and their interactions, and has been rigorously evaluated using
real data [184], human experiments [249], and during model training [222]. In this case,
attr (f ;x′, x) represents the CD score for the features x′ as part of the input x. Different
from previous work, this formulation does not require that x′ simply be a binary masked
version of x. Rather, the selection of the mask M allows a human/domain scientist to decide
which transformed features to score. In the case of image classification, rather than simply
scoring a pixel, one may score the contribution of a frequency band to the prediction f(x).
In this case, T is the FFT and M is a mask which is zero for frequencies outside of the band
and 1 for frequencies inside of the band, so that x′ represents the bandpass-filtered image.

This general setup allows for attributing importance to a wide array of transformations.
For example, T could be any invertible transform (e.g. a wavelet transform), or a linear
projection (e.g. onto a sparse dictionary). Moreover, we can parameterize the transforma-
tion Tθ and learn the parameters θ to produce a desirable representation (e.g. sparse or
disentangled).

4.3 Results for transformation importance

We investigate a text-classification setting using TRIM. We train a 3-layer fully connected
DNN with ReLU activations on the Kaggle Fake News dataset2, achieving a final test accu-
racy of 94.8%. The model is trained directly on a bag-of words representation, but TRIM can
provide a more succinct space via a topic model transformation (learned via latent dirichlet
allocation [27]). Fig. 4.2 shows the mean attributions for different topics when the model
predicts Fake. Interestingly, the topic with the highest mean attribution contain recognizable
words such as clinton and emails.

2https://www.kaggle.com/c/fake-news/overview

https://www.kaggle.com/c/fake-news/overview

CHAPTER 4. TRANSFORMATION IMPORTANCE (TRIM) 43

250 0 250 500 750 1000 1250
Mean TRIM Score (CD)

trump president obama donald people house election said party white
said percent new year company million 000 money years companies

mr said trump president ms court new mrs campaign house
said mr ms new la like york year city years

said police people state city syria attack officers killed military
russia united states government russian war foreign china president military

news twitter com 2016 media facebook 2017 breitbart video
people world black israel political state women war america students

like just people time don know way life make good
clinton hillary election campaign fbi trump emails investigation comey email

Figure 4.2: TRIM attributions for a fake-news classifier based on a topic model transfor-
mation. Each row shows one topic, labeled with the top ten words in that topic. Higher
attributions correspond to higher contribution to the class fake. Calculated over all points
which were accurately classified as fake in the test set (4,160 points).

In the case of a perfectly invertible transformation, such as the Fourier transform, TRIM
simply measures the ability for the underlying attribution method (in this case CD) to
correctly attribute importance in the transformed space. As such, we can rely on the careful
evaluation of contextual decomposition in previous work, where it has been shown to (1)
accurately recover known feature importances and feature interactions [184], (2) correctly
inform human decision-making and be robust to adversarial perturbations [249], and (3)
reliably alter a neural network’s predictions when regularized appropriately [222].

On top of these evaluations, we add synthetic simulations showing the ability of CD
to recover known groundtruth feature importances. Features are generated i.i.d. from a
standard normal distribution. Then, a binary classification outcome is defined by selecting
a random frequency and testing whether that frequency is greater than its median value.
Finally, we train a 3-layer fully connected DNN with ReLU activations to learn this classifi-
cation task and then test the ability of different methods to assign this frequency the highest
importance. Table 4.1 shows the percentage of errors made by different methods in such a
setup. CD has the lowest error on average, compared to popular baselines.

CD DeepLift [242] SHAP [159] Integrated Gradients [264]

0.4 ± 0.282 3.6 ± 0.833 4.0 ± 0.897 4.2 ± 0.876

Table 4.1: Error (%) in recovering a groundtruth important frequency in simulated data
using different attribution methods with TRIM, averaged over 500 simulated datasets.

Discussion The results here show promise for TRIM to enable deeper understanding in
cosmology and suggest potential uses for TRIM across a variety of different domains. More-
over, the TRIM experiments here can be extended to a much broader class of transformations,

■
Ha I

I
I
■ • --

CHAPTER 4. TRANSFORMATION IMPORTANCE (TRIM) 44

which could be selected by a domain expert or optimized to exhibit different desirable prop-
erties. Ultimately, we hope TRIM can contribute to a new wave of scientific discovery using
machine learning.

45

Chapter 5

Real-world problem: cosmological
parameter prediction

We now turn to a cosmology example, where attributing importance to transformations
helps understand cosmological models in a more meaningful feature space. Specifically, we
consider weak gravitational lensing convergence maps, i.e. maps of the mass distribution
in the Universe integrated up to a certain distance from the observer. In a cosmological
experiment (e.g. a galaxy survey), these mass maps are obtained by measuring the distortion
of distant galaxies caused by the deflection of light by the mass between the galaxy and the
observer [20]. These maps contain a wealth of physical information of interest to cosmologists,
such as the total matter density in the universe, Ωm. Current research aims at identifying
the most informative features in these maps for inferring the true cosmological parameters,
with DNN-based inference methods often obtaining state-of-the-art results [220, 219, 82].

CHAPTER 5. REAL-WORLD PROBLEM: COSMOLOGICAL PARAMETER
PREDICTION 46

In this context, it is important to not only have a DNN that predicts well, but also under-
stand what it learns. Knowing which features are important provides deeper understanding
and can be used to design optimal experiments or analysis methods. Moreover, because this
DNN is trained on numerical simulations (realizations of the Universe with different cos-
mological parameters), it is important to validate that it uses physical features rather than
latching on to numerical artifacts in the simulations. TRIM can help understand and vali-
date that the DNN learns appropriate physical features by analyzing attributing importance
in the spectral domain.

A DNN is trained to accurately predict Ωm from simulated weak gravitational lensing
convergence maps (full details in [252]). To understand what features the model is using, we
desire an interpretation in the space of the power spectrum. The images in Fig. 5.1 show
how different information is contained within different frequency bands in the mass maps.
The plot in Fig. 5.1 shows the TRIM attributions with CD (normalized by the predicted
value) for different frequency bands when predicting the parameter Ωm. Interestingly, the
most important frequency band for the predictions seems to peak at scales around ` = 104

and then decay for higher frequencies.1 A physical interpretation of this result is that the
DNN concentrates on the most discriminative part of the Power Spectrum, i.e. at scales
large enough not to be dominated by sample variance, and smaller than the frequency cutoff
at which the simulations lose power due to resolution effects.

2.5 103 5 103 104 2.5 104

Central scale (angular multipole)

0.2

0.4

0.6

TR
IM

 S
co

re
 (C

D)

Original = 1350 = 2700 = 4050 = 5400

Figure 5.1: Different scales (i.e. frequency bands) contribute differently to the prediction
of Ωm. Each blue line corresponds to one testing image and the red line shows the mean.
Images show the features present at different scales. The bandwidth is ∆` =2,700.

Fig. 5.2 shows some of the curves from Fig. 5.1 separated based on their cosmology, to
show how the curves vary with the value of Ωm. Increasing the value of Ωm increases the
contribution of scales close to ` = 104, making other frequencies relatively unimportant. This
seems to correspond to known cosmological knowledge, as these scales seem to correspond to
galaxy clusters in the mass maps, which are structures very sensitive to the value of Ωm.The
fact that the importance of these features vary with Ωm would seem to indicate that at lower
Ωm the model is using a different source of information, not located at any single scale, for
making its prediction.

1Here the unit of frequency used is angular multipole `.

t t t '

CHAPTER 5. REAL-WORLD PROBLEM: COSMOLOGICAL PARAMETER
PREDICTION 47

2.5 103 5 103 104 2.5 104

Central scale (angular multipole)

0.1

0.2

0.3

0.4

0.5

0.6

TR
IM

 S
co

re
 (C

D)

m=0.20 m=0.28 m=0.33 m=0.38

Figure 5.2: TRIM attributions vary with the value of Ωm.

5.1 Cosmological experiment details

These simulations use the publicly available MassiveNuS simulation suite [155], composed of
101 different N-body simulations spanning a range of cosmologies varying three parameters:
the total neutrino mass Σmν , the normalization of the primordial power spectrum As, and
the total matter density Ωm. These simulations are run at a single resolution of 10243

particles for a 512 Mpc/h box size, and then ray-traced to obtain lensing convergence maps
at source redshifts ranging from zs =1.0 to zs = 1100. To build our dataset, we select 10
different cosmologies, listed in Table 5.1, each of which provides 10,000 mass maps at source
redshift zs = 1. We rebin these maps to size 256x256 with a pixel resolution of 0.8 arcmin.

mν Ωm 109As
0.0 0.3 2.1

0.06271 0.3815 2.2004
0.06522 0.2821 1.8826
0.06773 0.4159 1.6231
0.07024 0.2023 2.3075
0.07275 0.3283 2.2883
0.07526 0.3355 1.5659
0.07778 0.2597 2.4333
0.0803 0.2783 2.3824
0.08282 0.2758 1.8292

Table 5.1: Parameter values used in cosmology simulations.

Peak counting algorithm

Here we describe the peak counting algorithm developed in [219] to compare the perfor-
mance of various filters. In weak lensing, peaks are defined as local maxima on the lensing
convergence maps. In the original peak counting algorithm, a histogram is made for each
convergence map based on counting the raw pixel (height) values of the peaks on the maps

n n n n
~

~ ~ ~
~ '

CHAPTER 5. REAL-WORLD PROBLEM: COSMOLOGICAL PARAMETER
PREDICTION 48

(see Fig. 5.3). At training time, the mean histograms and the covariance matrices are then
created for each setting of the cosmological parameters ξ = (mν ,Ωm, 109As); and at test
time, individual histograms are compared to the mean histograms via the distance

dh,ξ = (h− µξ)>Σ−1
ξ (h− µξ),

and the parameters ξ with the lowest distance dh,ξ is selected as prediction values. Here
h represents the histogram for a given map, and µξ,Σξ, respectively, represent the mean
histogram and the covariance matrix of the histograms for a cosmology with parameters ξ.

In [219], the peak counting algorithm is generalized to exploit more information around
the peaks compared with the height of the peaks. Inspired by the first layer of the trained
CNN for parameter estimation, they propose to use peak steepness based on the isotropic
Laplace filter,

L = −10

3

 −0.05 −0.2 −0.05
−0.2 1 −0.2
−0.05 −0.2 −0.05

 ,

which computes the difference of the peaks and the surrounding pixel values, or the Roberts
cross kernels,

Rx =

(
0 1
−1 0

)
, Ry =

(
1 0
0 −1

)
,

which compute the gradient at the peaks. For the Laplace filter, the peak steepness values are
calculated via convolving the filter with the input images at the position of the peaks. For the
Roberts cross kernels, the two filters Rx and Ry are applied to the 4 adjacent 2×2 pixel blocks

around the peaks and the magnitudes are calculated via Gi =
√
G2
x,i +G2

y,i, i = 1, . . . , 4,

where Gx,i and Gy,i are the sub-images after convolve Rx and Ry with the i-th adjacent pixel
blocks. Then the sum of the 4 magnitudes

∑4
i=1Gi is used to get the peak steepness values.

Here we further use the wavelet filters distilled by AWD as peak-finding filters in the peak
counting algorithm. To match the size of the distilled AWD filters with that of the Laplace
filter or Roberts cross kernels, we extract 3 × 3 subfilters from the wavelet filters where a
majority of the mass is concentrated on. This results in 4 different 3×3 filters, corresponding
to three wavelet filters (LH,HL,HH) and one approximation filter (LL), which are then used
as peak-finding filters to calculate the histograms of the peak steepness values. Fig. 5.3
shows the distributions of peak steepness values using various filters mentioned above.

CHAPTER 5. REAL-WORLD PROBLEM: COSMOLOGICAL PARAMETER
PREDICTION 49

0

200

400

600

800
(A) AWD filters

(m , m, As) = (0.0, 0.3, 2.1)
(m , m, As) = (0.0627, 0.3815, 2.2004)
(m , m, As) = (0.0652, 0.2821, 1.8826)
(m , m, As) = (0.0677, 0.4159, 1.6231)

0

200

400

600

800

(B) Laplace filter
(m , m, As) = (0.0, 0.3, 2.1)
(m , m, As) = (0.0627, 0.3815, 2.2004)
(m , m, As) = (0.0652, 0.2821, 1.8826)
(m , m, As) = (0.0677, 0.4159, 1.6231)

0

200

400

600
(C) Roberts cross kernels

(m , m, As) = (0.0, 0.3, 2.1)
(m , m, As) = (0.0627, 0.3815, 2.2004)
(m , m, As) = (0.0652, 0.2821, 1.8826)
(m , m, As) = (0.0677, 0.4159, 1.6231)

0

200

400

600

800

(D) Peak heights
(m , m, As) = (0.0, 0.3, 2.1)
(m , m, As) = (0.0627, 0.3815, 2.2004)
(m , m, As) = (0.0652, 0.2821, 1.8826)
(m , m, As) = (0.0677, 0.4159, 1.6231)

Figure 5.3: Peak steepness distributions using various filters.

To run the peak-counting algorithm with various filters, we need to select the number,
width, and range of bins. For the Laplace filter and Roberts cross kernels, we use the same
settings as [219] which runs bins from 0 to 0.22 in 0.01 wide. In the case of the wavelet filters,
we keep the same number of bins while the range is chosen via the algorithm’s performance
on a held-out validation set. The resulting bin is then used to evaluate the prediction
performance on the test set.

Wavelet activation maps

As part of our interpretability analysis, we now show images that highlight important features
for predicting Ωm (total fraction of matter in the universe) in Fig. 5.4. To create the images,
for each map we calculate feature attributions on the wavelet domain extracted by AWD
using TRIM (here we use IG [264] to get attributions). Then only the wavelet coefficients
with top 600 attributions (out of 73, 839) are retained to transform back to the image domain
using inverse wavelet transform. We can see that the activation maps highlight localized
regions in the original maps that correspond to the high intensity peaks and voids. This
is consistent with the known cosmology theory that these peaks contain high constraining
power to predict cosmological parameters of the universe.

,o
,o
,o
,o

,o
,o
,o
,o

CHAPTER 5. REAL-WORLD PROBLEM: COSMOLOGICAL PARAMETER
PREDICTION 50

Original image Activation map

Figure 5.4: Wavelet activation maps for individual images made by the AWD model.

51

Part II

Leveraging neural-network
interpretations to improve models

52

Chapter 6

Penalizing explanations to align
neural networks with prior knowledge
(CDEP)

6.1 Intro to directly improving models with

explanations

While much work has been put into developing methods for explaining DNNs, relatively little
work has explored the potential to use these explanations to help build a better model. Some
recent work proposes forcing models to attend to certain regions [40, 176, 70], penalizing the
gradients or expected gradients of a neural network [229, 19, 70, 228, 154, 76], or using
layer-wise relevance propagation to prune/improve models [263, 290]. A newly emerging line
of work investigates how domain experts can use explanations during the training loop to
improve their models (e.g. [237]).

Here, we cover contextual decomposition explanation penalization (CDEP), a method
which leverages CD to enable the insertion of domain knowledge into a model [223]. Given
prior knowledge in the form of importance scores, CDEP works by allowing the user to di-
rectly penalize importances of certain features or feature interactions. This forces the DNN
to not only produce the correct prediction, but also the correct explanation for that predic-
tion. CDEP can be applied to arbitrary DNN architectures and is often orders of magnitude
faster and more memory efficient than recent gradient-based methods [229, 76]; CDEP offers
significant computational improvements, since, unlike gradient-based attributions, the CD
score is computed along the forward pass, only first derivatives are required for optimiza-
tion, early layers can be frozen, and all activations of a DNN do not need to be cached to
perform backpropagation; furthermore, with gradient-based methods the training requires
the storage of activations and gradients for all layers of the network as well as the gradient
with respect to the input, whereas penalizing CD requires only a small constant amount of

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 53

memory more than standard training.1

Prediction

Explanation

Label

Desired
Explanation

Figure 6.1: CDEP allows practitioners to penalize both a model’s prediction and the corre-
sponding explanation.

While we focus on the use of contextual decomposition, which allows the penalization
of both feature importances and interactions [184, 249], CDEP can be readily adapted for
existing interpretation techniques, as long as they are differentiable. Moreover, CDEP is
a general technique, which can be applied to arbitrary neural network architectures, and
is often orders of magnitude faster and more memory efficient than recent gradient-based
methods, allowing its use on meaningful datasets.

We demonstrate the effectiveness of CDEP via experiments across a wide array of tasks.
In the prediction of skin cancer from images, CDEP improves the prediction of a classifier
by teaching it to ignore spurious confounders present in the training data.

In a variant of the MNIST digit-classification task where the digit’s color is used as a
misleading signal, CDEP regularizes a network to focus on a digit’s shape rather than its
color. Finally, simple examples show how CDEP can help mitigate fairness issues, both in
text classification and risk prediction.

6.2 Background on using interpretations as

regularization

Explanation methods Many methods have been developed to help explain the learned
relationships contained in a DNN. For local or prediction-level explanation, most prior work
has focused on assigning importance to individual features, such as pixels in an image or
words in a document. There are several methods that give feature-level importance for
different architectures. They can be categorized as gradient-based [255, 264, 240, 18, 221],
decomposition-based [185, 242, 17] and others [59, 83, 218, 303], with many similarities

1Code, notebooks, scripts, documentation, and models for reproducing experiments here and using CDEP
on new models available at https://github.com/laura-rieger/deep-explanation-penalization.

https://github.com/laura-rieger/deep-explanation-penalization

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 54

among the methods [10, 159]. However, many of these methods have been poorly evaluated
so far [4, 190], casting doubt on their usefulness in practice. Another line of work, which we
build upon, has focused on uncovering interactions between features [184], and using those
interactions to create a hierarchy of features displaying the model’s prediction process [249,
252].

Uses of explanation methods While much work has been put into developing methods
for explaining DNNs, relatively little work has explored the potential to use these explana-
tions to help build a better model. Some recent work proposes forcing models to attend to
regions of the input which are known to be important [40, 176], although it is important to
note that attention is often not the same as explanation [119].

An alternative line of work proposes penalizing the gradients of a neural network to
match human-provided binary annotations and shows the possibility to improve performance
[229, 19, 70] and adversarial robustness [228]. Two recent papers extend these ideas by
penalizing gradient-based attributions for natural language models [154] and to produce
smooth attributions [76]. [70] applies a similar idea to improve image segmentation by
incorporating attention maps into the training process.

Predating deep learning, Zaidan, Eisner, and Piatko (2007) consider the use of “annotator
rationales” in sentiment analysis to train support vector machines. This work on annotator
rationales was recently extended to show improved explanations (not accuracy) in particular
types of CNNs [262].

Other ways to constrain DNNs While we focus on the use of explanations to con-
strain the relationships learned by neural networks, other approaches for constraining neural
networks have also been proposed. A computationally intensive alternative is to augment
the dataset in order to prevent the model from learning undesirable relationships, through
domain knowledge [28], projecting out superficial statistics [279] or dramatically altering
training images [92]. However, these processes are often not feasible, either due to their
computational cost or the difficulty of constructing such an augmented data set. Adversarial
training has also been explored [301]. These techniques are generally limited, as they are
often tied to particular datasets, and do not provide a clear link between learning about a
model’s learned relationships through explanations, and subsequently correcting them.

6.3 CDEP methodology

In the following, we will first establish the general form of the augmented loss function. We
then describe Contextual Decomposition (CD), the explanation method proposed by [184].
Based on this, we introduce CDEP and point out its desirable computational properties for
regularization. In Sec. 6.3 we describe how prior knowledge can be encoded into explanations
and give examples of typical use cases. While we focus on CD scores, which allow the

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 55

penalization of interactions between features in addition to features themselves, our approach
readily generalizes to other interpretation techniques, as long as they are differentiable.

Augmenting the loss function

Given a particular classification task, we want to teach a model to not only produce the
correct prediction but also to arrive at the prediction for the correct reasons. That is, we
want the model to be right for the right reasons, where the right reasons are provided by
the user and are dataset-dependent. Assuming a truthful explanation method, this implies
that the explanation provided by the DNN for a particular decision should be aligned with
a pre-supplied explanation encoding our knowledge of the underlying reasons.

To accomplish this, we augment the traditional objective function used to train a neural
network, as displayed in Eq. (6.1) with an additional component. In addition to the standard
prediction loss L, which teaches the model to produce the correct predictions by penalizing
wrong predictions, we add an explanation error Lexpl, which teaches the model to produce
the correct explanations for its predictions by penalizing wrong explanations.

In place of the prediction and labels fθ(X), y, used in the prediction error L, the explana-
tion error Lexpl uses the explanations produced by an interpretation method explθ(X), along
with targets provided by the user explX . As is common with penalization, the two losses are
weighted by a hyperparameter λ ∈ R:

θ̂ = argmin
θ

Prediction error︷ ︸︸ ︷
L (fθ(X), y)

+λLexpl (explθ(X), explX)︸ ︷︷ ︸
Explanation error

(6.1)

The precise meaning of explX depend on the context. For example, in the skin cancer
image classification task described in Sec. 6.4, many of the benign skin images contain band-
aids, while none of the malignant images do. To force the model to ignore the band-aids in
making their prediction, in each image explθ(X) denotes the importance score of the band-aid
and explX would be zero. These and more examples are further explored in Sec. 6.4.

CDEP objective function

We substitute the (A)CD scores introduced in Chapter 3 into the generic equation in Eq. (6.1)
to arrive at CDEP as it is used in this paper. While we use CD for the explanation method
explθ(X), other explanation methods could be readily substituted at this stage. In order to
convert CD scores to probabilities, we apply a SoftMax operation to gCD(x), allowing for
easier comparison with the user-provided labels explX . We collect from the user, for each
input xi, a collection of feature groups xi,S, xi ∈ Rd, S ⊆ {1, ..., d}, along with explanation
target values explxi,S , and use the ‖ · ‖1 loss for Lexpl.

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 56

This yields a vector β(xj) for any subset of features in an input xj which we would like
to penalize. We can then collect ground-truth label explanations for this subset of features,
explxj and use it to regularize the explanation. Using this we arrive at the equation for the
weight parameters with CDEP loss:

θ̂ = argmin
θ

Prediction error︷ ︸︸ ︷∑
i

∑
c

− yi,c log fθ(xi)c +λ
∑
i

∑
S

||β(xi,S)− explxi,S ||1︸ ︷︷ ︸
Explanation error

(6.2)

In the above, i indexes each individual example in the dataset, S indexes a subset of the
features for which we penalize their explanations, and c sums over each class.

Updating the model parameters in accordance with this formulation ensures that the
model not only predicts the right output but also does so for the right (aligned with prior
knowledge) reasons. It is important to note that the evaluation of what the right reasons
are depends entirely on the practitioner deploying the model. As with the class labels, using
wrong or biased explanations will yield a wrong and biased model.

Encoding domain knowledge as explanations

The choice of ground-truth explanations explX is dependent on the application and the exist-
ing domain knowledge. CDEP allows for penalizing arbitrary interactions between features,
allowing the incorporation of a very broad set of domain knowledge.

In the simplest setting, practitioners may precisely provide groundtruth human explana-
tions for each data point. This may be useful in a medical image classifications setting, where
data is limited and practitioners can endow the model with knowledge of how a diagnosis
should be made. However, collecting such groundtruth explanations can be very expensive.

To avoid assigning human labels, one may utilize programmatic rules to identify and
assign groundtruth importance to regions, which are then used to help the model identify
important/unimportant regions. For example, Sec. 6.4 uses rules to identify spurious patches
in images which should have zero importance and Sec. 6.4 uses rules to identify and assign
zero importance to words involving gender.

In a more general case, one may specify importances of different feature interactions. For
example in Sec. 6.4 we specify that the importance of pixels in isolation should be zero, so
only interactions between pixels can be used to make predictions. This prevents a model
from latching onto local cues such as color and texture when making its prediction.

Computational considerations

Previous work has proposed ideas similar to Eq. (6.1), where the choice of explanation
method is based on gradients [229, 76]. However, using such methods leads to three main
complications which are solved by our approach.

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 57

The first complication is the optimization process. When optimizing over gradient-based
attributions via gradient descent, the optimizer requires the gradient of the gradient, requir-
ing that all network components be twice differentiable. This process is computationally
expensive and optimizing it exactly involves optimizing over a differential equation, often
making it intractable. In contrast, CD attributions are calculated along the forward pass
of the network, and as a result, can be optimized plainly with back-propagation using the
standard single forward-pass and backward-pass per batch.

A second advantage from the use of CD in Eq. (6.2) is the ability to quickly finetune a
pre-trained network. In many applications, particularly in transfer learning, it is common to
finetune only the last few layers of a pre-trained neural network. Using CD, one can freeze
early layers of the network and quickly finetune final layers, as the calculation of gradients
of the frozen layers is not necessary.

Third, CDEP incurs much lower memory usage than competing gradient-based methods.
With gradient-based methods the training requires the storage of activations and gradients
for all layers of the network as well as the gradient with respect to the input (which can
be omitted in normal training). Even for the simplest gradient-based methods, this more
than doubles the required memory for a given batch and network size, sometimes becoming
prohibitively large. In contrast, penalizing CD requires only a small constant amount of
memory more than standard training.

6.4 CDEP improves predictive performance using

domain knowledge

The results here demonstrate the efficacy of CDEP on a variety of datasets using diverse
explanation types. Sec. 6.4 shows results on ignoring spurious patches in the ISIC skin cancer
dataset [52], Sec. 6.4 details experiments on converting a DNN’s preference for color to a
preference for shape on a variant of the MNIST dataset [139], Sec. 6.4 showcases the use
of CDEP to train a neural network that aligns better with a pre-defined fairness measure,
and Sec. 6.4 shows experiments on text data from the Stanford Sentiment Treebank (SST)
[254].2

Ignoring spurious signals in skin cancer diagnosis

In recent years, deep learning has achieved impressive results in diagnosing skin cancer, with
predictive accuracy sometimes comparable to human doctors [77]. However, the datasets
used to train these models often include spurious features which make it possible to attain
high test accuracy without learning the underlying phenomena [285]. In particular, a popular
dataset from ISIC (International Skin Imaging Collaboration) has colorful patches present
in approximately 50% of the non-cancerous images but not in the cancerous images as can

2All models were trained in PyTorch [203].

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 58

Benign

half of data polluted with patchesMalignant

Figure 6.2: Example images from the ISIC dataset. Half of the benign lesion images include
a patch in the image. Training on this data results in the neural network overly relying on
the patches to classify images. We aim to avoid this with our method.

be seen in Fig. 6.2 [52]. An unpenalized DNN learns to look for these patches as an indicator
for predicting that an image is benign as can be seen in Fig. 6.3. We use CDEP to remedy
this problem by penalizing the DNN placing importance on the patches during training.

The task in this section is to classify whether an image of a skin lesion contains (1) benign
melanoma or (2) malignant melanoma. In a real-life task, this would for example be done
to determine whether a biopsy should be taken. The ISIC dataset consists of 21,654 images
with a certain diagnosis (19,372 benign, 2,282 malignant), each diagnosed by histopathology
or a consensus of experts. We excluded 2247 images since they had an unknown or not
certain diagnosis.

To obtain the binary maps of the patches for the skin cancer task, we first segment the
images using SLIC, a common image-segmentation algorithm [3]. Since the patches are a
different color from the rest of the image, they are usually their own segment. Subsequently
we take the mean RGB and HSV values for all segments and filter for segments in which the
mean was substantially different from the typical caucasian skin tone. Since different images
were different from the typical skin color in different attributes, we filtered for those images
recursively. As an example, in the image shown in the appendix in Fig. S3, the patch has a
much higher saturation than the rest of the image.

After the spurious patches were identified, we penalized them with CDEP to have zero
importance. For classification, we use a VGG16 architecture [244] pre-trained on the Im-
ageNet Classification task[63]3 and freeze the weights of early layers so that only the fully
connected layers are trained. To account for the class imbalance present in the dataset, we
weigh the classes to be equal in the loss function.

Table 6.1 shows results comparing the performance of a model trained with and without

3Pre-trained model retrieved from torchvision.

https://pytorch.org/docs/stable/torchvision/models.html

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 59

CDEP. We report results on two variants of the test set. The first, which we refer to as “no
patches” only contains images of the test set that do not include patches. The second also
includes images with those patches. Training with CDEP improves the AUC and F1-score
for both test sets.

Table 6.1: Results from training a DNN on ISIC to recognize skin cancer (averaged over
three runs). Results shown for the entire test set and for only the images the test set that
do not include patches (“no patches”). The network trained with CDEP generalizes better,
getting higher AUC and F1 on both. Std below 0.006 for all AUC and below 0.012 for all
F1.

AUC (no patches) F1 (no patches) AUC (all) F1 (all)

Vanilla (No patches) 0.87 0.57 0.92 0.55
Vanilla 0.93 0.67 0.96 0.67
RRR 0.76 0.45 0.87 0.45
CDEP 0.95 0.73 0.97 0.73

In the first row of Table 6.1, the model is trained using only the data without the spurious
patches, and the second row shows the model trained on the full dataset. The network trained
using CDEP achieves the best F1 score, surpassing both unpenalized versions.

Interestingly, the model trained with CDEP also improves when we consider the entire
(biased) dataset, indicating that the model does in fact generalize better to all examples.
We also compared our method against the method introduced in 2017 by Ross, Hughes,
and Doshi-Velez (RRR). For this, we restricted the batch size to 16 (and consequently use a
learning rate of 10−5) due to memory constraints.4

Using RRR did not improve on the base AUC, implying that penalizing gradients is
not helpful in penalizing higher-order features.5 In fact, using RRR severely decreased
performance in all considered metrics, implying that penalizing gradients not only does not
help but impedes the learning of relevant features.

Visualizing explanations To investigate how CDEP altered a DNN’s explanations, we
visualize GradCAM heatmaps [198, 240] on the ISIC test dataset with a regularized and
unregularized network in Fig. 6.3. As expected, after penalizing with CDEP, the DNN
attributes less importance to the spurious patches, regardless of their position in the image.

4A higher learning rate yields NaN loss and a higher batch size requires too much GPU RAM, necessi-
tating these settings. Due to this a wider sweep of hyperparameters was not possible.

5We were not able to compare against the method recently proposed in [76] due to its prohibitively slow
training and large memory requirements.

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 60

Figure 6.3: Visualizing heatmaps for correctly predicted exampes from the ISIC skin cancer
test set. Lighter regions in the heatmap are attributed more importance. The DNN trained
with CDEP correctly captures that the patch is not relevant for classification.

More examples are shown in the appendix. Anecdotally, patches receive less attribution
when the patch color was far from a Caucasian human skin tone, perhaps because these
patches are easier for the network to identify.

Combating inductive bias on variants of the MNIST dataset

In this section, we investigate CDEP’s ability to alter which features a DNN uses to per-
form digit classification, using variants of the MNIST dataset [139] and a standard CNN
architecture for this dataset retrieved from PyTorch 6.

ColorMNIST Similar to one previous study [147], we alter the MNIST dataset to include
three color channels and assign each class a distinct color, as shown in Fig. 6.4. An unpe-
nalized DNN trained on this biased data will completely misclassify a test set with inverted
colors, dropping to 0% accuracy (see Table 6.2), suggesting that it learns to classify using
the colors of the digits rather than their shape.

6Retrieved from github.com/pytorch/examples/blob/master/mnist.

https://github.com/pytorch/examples/blob/master/mnist/main.py

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 61

Figure 6.4: ColorMNIST: the shapes remain the same between the training set and the test
set, but the colors are inverted.

Here, we want to see if we can alter the DNN to focus on the shape of the digits rather
than their color. We stress that this is a toy example where we artificially induced a bias;
while the task could be easily solved by preprocessing the input to only have one color
channel, this artificial bias allows us to measure the DNN’s reliance on the confounding
variable color in end-to-end training. By design, the task is intuitive and the bias is easily
recognized and ignored by humans. However, for a neural network trained in a standard
manner, ignoring the confounding variable presents a much greater challenge.

Interestingly, this task can be approached by minimizing the contribution of pixels in
isolation (which only represent color) while maximizing the importance of groups of pixels
(which can represent shapes). To do this, we penalize the CD contribution of sampled single
pixel values, following Eq. (6.2). By minimizing the contribution of single pixels we encourage
the network to focus instead on groups of pixels. Since it would be computationally expensive
and not necessary to apply this penalty to every pixel in every training input, we sample
pixels to be penalized from the average distribution of nonzero pixels over the whole training
set for each batch.

Table 6.2 shows that CDEP can partially divert the network’s focus on color to also focus
on digit shape. We compare CDEP to two previously introduced explanation penalization
techniques: penalization of the squared gradients (RRR) [229] and Expected Gradients (EG)
[76] on this task. For EG we additionally try penalizing the variance between attributions
of the RGB channels (as recommended by the authors of EG in personal correspondence).
None of the baselines are able to improve the test accuracy of the model on this task above
the random baseline, while CDEP is able to significantly improve this accuracy to 31.0%.
We show the increase of predictive accuracy with increasing penalization in the appendix.
Increasing the regularizer rate for CDEP increases accuracy on the test set, implying that
CDEP meaningfully captured and penalized the bias towards color.

DecoyMNIST For further comparison with previous work, we evaluate CDEP on an
existing task: DecoyMNIST [76]. DecoyMNIST adds a class-indicative gray patch to a
random corner of the image. This task is relatively simple, as the spurious features are

T
e

st

T
ra

in
in

g

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 62

Table 6.2: Test Accuracy on ColorMNIST and DecoyMNIST. CDEP is the only method
that captures and removes color bias. All values averaged over thirty runs. Predicting at
random yields a test accuracy of 10%.

Vanilla CDEP RRR Expected Gradients

ColorMNIST 0.2 ± 0.2 31.0 ± 2.3 0.2 ± 0.1 10.0 ± 0.1

DecoyMNIST 60.1 ± 5.1 97.2 ± 0.8 99.0 ± 1.0 97.8 ± 0.2

not entangled with any other feature and are always at the same location (the corners).
Table 6.2 shows that all methods perform roughly equally, recovering the base accuracy.
Results are reported using the best penalization parameter λ, chosen via cross-validation
on the validation set. We provide details on the computation time, and memory usage in
Table S1, showing that CDEP is similar to existing approaches. However, when freezing
early layers of a network and finetuning, CDEP very quickly becomes more efficient than
other methods in both memory usage and training time.

Fixing bias in COMPAS

In all examples so far, the focus has been on improving generalization accuracy. Here, we
turn to improving notions of fairness in models while preserving prediction accuracy instead.

We train and analyze DNNs on the COMPAS dataset [138], which contains data for
predicting recidivism (i.e whether a person commits a crime / a violent crime within 2 years)
from many attributes. Such models have been used for the purpose of informing whether
defendants should be incarcerated and can have very serious implication. As a result, we
examine and influence the model’s treatment of race, restricting our analysis to the subset
of people in the dataset whose race is identified as black or white (86% of the full dataset).
All models were fully connected DNNs with two hidden layers of size 5, ReLU nonlinearity,
and dropout rate of 0.1 (see appendix for details).

We analyze the effect of CDEP to alter models with respect to one particular notion
of fairness: the wrongful conviction rate (defined as the fraction of defendants who are
recommended for incarceration, but did not recommit a crime in the next two years). We
aim to keep this rate low and relatively even across races, similar to the common “equalized
odds” notion of fairness [67]; note that a full investigation of fairness and its most appropriate
definition is beyond the scope of the work here.

Table 6.3 shows results for different models trained on the COMPAS dataset. The first
row shows a model trained with standard procedures and the second row shows a model
trained with the race of the defendants hidden. The unregularized model in the first row has

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 63

a stark difference in the rates of false positives between black and white defendants. Black
defendants are more than twice as likely to be misclassified as high-risk for future crime.
This is in-line with previous analysis of the COMPAS dataset [138].

Obscuring the sensitive attribute from the model does not remove this discrepancy. This
is due to the fact that black and white people come from different distributions (e.g. black
defendants have a different age distribution).

The third row shows the results for CDEP, where the model is regularized to place more
importance on the race feature and its interactions, encouraging it to learn the dependence
between race and the distribution of other features. By doing so, the model achieves a
lower wrongful conviction rate for both black and white defendants, as well as bringing these
rates noticeably closer together by disproportionally lowering the wrongful conviction rate
for black defendants. Notably, the test accuracy of the model stays relatively fixed despite
the drop in wrongful conviction rates.

Table 6.3: Fairness measures on the COMPAS dataset. WCR stands for wrongful conviction
rate the fraction of innocent defendants who are recommended for incarceration). All values
averaged over five runs.

Test acc WCR(Black) WCR(White)

Vanilla 67.8±1.0 0.47± 0.03 0.22±0.03
Race hidden 68.5±0.3 0.44±0.02 0.23±0.01
CDEP 68.8±0.3 0.39±0.04 0.20± 0.01

Fixing bias in text data

To demonstrate CDEP’s effectiveness on text, we use the Stanford Sentiment Treebank
(SST) dataset [254], an NLP benchmark dataset consisting of movie reviews with a binary
sentiment (positive/negative). We inject spurious signals into the training set and train a
standard LSTM 7 to classify sentiment from the review.

We create three variants of the SST dataset, each with different spurious signals which
we aim to ignore (examples in the appendix). In the first variant, we add indicator words
for each class (positive: ‘text’, negative: ‘video’) at a random location in each sentence. An
unpenalized DNN will focus only on those words, dropping to nearly random performance
on the unbiased test set. In the second variant, we use two semantically similar words (‘the’,
‘a’) to indicate the class by using one word only in the positive and one only in the negative
class. In the third case, we use ‘he’ and ‘she’ to indicate class (example in Fig. 6.5). Since
these gendered words are only present in a small proportion of the training dataset (∼ 2%),

7Retrieved from github.com/clairett/pytorch-sentiment-classification.

https://github.com/clairett/pytorch-sentiment-classificatio

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 64

Positive
pacino is the best she’s been in years and keener is marvelous
she showcases davies as a young woman of great charm, generosity and diplomacy

Negative
i’m sorry to say that this should seal the deal - arnold is not, nor will he be, back.
this is sandler running on empty, repeating what he’s already done way too often.

Figure 6.5: Example sentences from the SST dataset with artificially induced bias on gender.

for this variant, we report accuracy only on the sentences in the test set that do include the
pronouns (performance on the test dataset not including the pronouns remains unchanged).
Table 6.4 shows the test accuracy for all datasets with and without CDEP. In all scenarios,
CDEP is successfully able to improve the test accuracy by ignoring the injected spurious
signals.

Table 6.4: Results on SST. CDEP substantially improves predictive accuracy on the unbiased
test set after training on biased data.

Unpenalized CDEP

Random words 56.6 ± 5.8 75.4 ± 0.9
Biased (articles) 57.8 ± 0.8 68.2 ± 0.8
Biased (gender) 64.2 ± 3.1 78.0 ± 3.0

6.5 Limitations and extensions of CDEP

In this work we introduce a novel method to penalize neural networks to align with prior
knowledge. Compared to previous work, CDEP is the first of its kind that can penalize
complex features and feature interactions. Furthermore, CDEP is more computationally
efficient than previous work, enabling its use with more complex neural networks.

We show that CDEP can be used to remove bias and improve predictive accuracy on a
variety of toy and real data. The experiments here demonstrate a variety of ways to use
CDEP to improve models both on real and toy datasets. CDEP is quite versatile and can
be used in many more areas to incorporate the structure of domain knowledge (e.g. biology
or physics). The effectiveness of CDEP in these areas will depend upon the quality of the
prior knowledge used to determine the explanation targets.

CHAPTER 6. PENALIZING EXPLANATIONS TO ALIGN NEURAL NETWORKS
WITH PRIOR KNOWLEDGE (CDEP) 65

Future work includes extending CDEP to more complex settings and incorporating more
fine-grained explanations and interaction penalizations. We hope the work here will help
push the field towards a more rigorous way to use interpretability methods, a point which
will become increasingly important as interpretable machine learning develops as a field [68,
186].

66

Chapter 7

Adaptive wavelet distillation from
neural networks through
interpretations

7.1 Intro to adaptive wavelet distillation

One promising approach to constructing interpretable models without sacrificing prediction
performance is model distillation. Model distillation [108] transfers the knowledge in one
model (i.e., the teacher), into another model (i.e., the student), where the student model
often has desirable properties, such as being more interpretable than the teacher model.
Recent works have considered distilling a DNN into inherently interpretable models such
as a decision tree [90, 58, 144] or a global additive model [267], with some success. Here,
we consider distilling a DNN into a learnable wavelet transform, which is a powerful tool
to describe signals both in time (spatial) and frequency domains that has found numerous
successful applications in physical and biomedical sciences.

Pre-trained
DNN

𝛹 𝛹-1

Wavelet
transform 𝛹

X "𝑌

DNN attributions for wavelet coefficients

"𝑋

Figure 7.1: Adaptive wavelet distillation uses attributions from a trained DNN to improve
its wavelet transform, while satisfying constraints for reconstruction error and wavelet con-
straints.

- 0 -0 - - ~ l-------------< -

+~---

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 67

Wavelets have many properties amenable to interpretation: they can form an orthogonal
basis, identify a sparse representation of a signal, and tile different frequencies and spatial
locations (and sometimes rotations), allowing for multiresolution analysis. Most previous
work has focused on hand-designed wavelets for different scenarios rather than wavelets
which adapt to given data. Recent work has explored wavelets which adapt to an input
data distribution, under the name optimized wavelets or adaptive wavelets [216, 234, 151,
31, 107, 215, 120, 266]. Moreover, some work has used wavelets as part of the underlying
structure of a neural network, as in wavelet networks [299], wavelet neural networks [298,
65], or the scattering transform [165, 38]. However, none of them utilize wavelets for model
interpretability.

Fig. 7.1 outlines Adaptive Wavelet Distillation (AWD), our approach for distilling a
wavelet transform from a trained DNN. A key novelty of AWD is that it uses attributions
from a trained DNN to improve the learned wavelets;1 this incorporates information not just
about the input signals, as is done in previous work, but also about the target variable and
the inductive biases present in the DNN.2

This paper deviates significantly from a typical NeurIPS paper. While there has been
an explosion of work in “interpretable machine learning” [177], there has been very limited
development and grounding of these methods in the context of a particular problem and
audience. This has led to much confusion about how to develop and evaluate interpretation
methods [4, 68]; in fact, a major part of the issue is that interpretability cannot be properly
defined without the context of a particular problem and audience [186]. As interpretability
and scientific machine learning enter a new era, researchers must ground themselves in real-
world problems and work closely with domain experts.

This paper focuses on scientific machine learning—providing insight for a particular sci-
entific audience into a chosen scientific problem— and from its outset, was designed to solve
a particularly challenging cosmology problem in close collaboration with cosmologists. We
showcase how AWD can inform relevant features in a fundamental problem in cosmology:
inferring cosmological parameters from weak gravitational lensing convergence maps.3 In
this case, AWD identifies high-intensity peaks in the convergence maps and yields an easily
interpretable model which outperforms state-of-the-art neural networks in terms of predic-
tion performance. We next find that AWD successfully provides prediction improvements
in another scientific application (now in collaboration with cell-biology experts): molecular-
partner prediction. In this case, AWD allows us to vet that the model’s use of clathrin
corresponds to our domain knowledge about how clathrin must build up slowly then fall
in order to predict a successful event. In both cases, the wavelet models from AWD fur-
ther extract compressed representations of the input in comparison to the standard wavelet
model while concisely explaining model behavior. We hope that the depth and grounding of
the scientific problems in this work can spur further interpretability research in real-world

1By attributions, we mean feature importance scores given input data and a pre-trained DNN.
2Though we focus on DNNs, AWD works for any black-box models for which we can attain attributions.
3For the purpose of this work, we work with simulated lensing maps.

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 68

problems, where interpretability can be evaluated by and enrich domain knowledge, beyond
benchmark data contexts such as MNIST [139] where the need for interpretability is less
cogent.

7.2 Background on the wavelet transform

Wavelet transform

Wavelets are a class of functions that are localized both in the time and frequency domains.
In the classical setting, each wavelet is a variation of a single wavelet ψ, called the mother
wavelet. A family of discrete wavelets can be created by scaling and translating the mother
wavelet in discrete increments:{

ψj,n(t) =
1√
2j
ψ

(
t− 2jn

2j

)}
(j,n)∈Z2

, (7.1)

where each wavelet in the family ψj,n(t) represents a unique scale and translation of ψ. With
a carefully constructed wavelet ψ (see []), the family of wavelets (7.1) forms an orthonormal
basis of L2(R). Namely, any signal x ∈ L2(R) can be decomposed into

x =
∑
n

∑
j

dj[n]ψj,n, (7.2)

where the wavelet (or detail) coefficients dj[n] at scale 2j are computed by taking the inner
product with the basis functions, dj[n] = 〈x, ψj,n〉 =

∫
x(t)ψj,n(t)dt. The decomposition (7.2)

requires an infinite number of scalings to calculate the discrete wavelet transform. To make
this decomposition computable, the scaling function φ is introduced so that

x =
∑
n

aJ [n]φJ,n +
∑
n

J∑
j

dj[n]ψj,n, (7.3)

where φJ,n(t) = 2−J/2φ(2−Jt−n) represent different translations of φ at scale 2J and aJ [n] =
〈x, φJ,n〉 are the corresponding approximation coefficients. Conceptually, the φJ,n form an
orthogonal basis of functions that are smoother at the given scale 2J , and therefore can be
used to decompose the smooth residuals not captured by the wavelets [164].

A fundamental property of the discrete wavelet transform is that the approximation and
detail coefficients at scale 2j+1 can be computed from the approximation coefficients of the
previous scale at 2j [163, 173]. To see this, let us define the two discrete filters, lowpass filter
h and highpass filter g

h[n] = 〈 1√
2
φ(t/2), φ(t− n)〉 and g[n] = 〈 1√

2
ψ(t/2), φ(t− n)〉. (7.4)

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 69

Then the following recursive relations hold between the approximation and detail coefficients
at two consecutive resolutions:{

aj+1[p] =
∑

n h[n− 2p]aj[n] = aj ? h̄[2p];

dj+1[p] =
∑

n g[n− 2p]aj[n] = aj ? ḡ[2p],
(7.5)

where we denote h̄[n] = h[−n] and ḡ[n] = g[−n]. Conversely, the approximation coefficients
at scale 2j can be recovered from the coarser-scale approximation and detail coefficients using

aj[p] =
∑
n

h[p− 2n]aj+1[n] +
∑
n

g[p− 2n]dj+1[n]. (7.6)

Together, these recursive relations lead to the filter bank algorithm, the cascade of discrete
convolution and downsampling, which can be efficiently implemented in timeO (Signal length).
The discrete wavelet transform can be extended to two dimensions, using a separable (row-
column) implementation of 1D wavelet transform along each axis (see []).

Transformation Importance (TRIM)

The work here requires the ability to compute attributions which identify important features
given input data and a trained DNN. For this, we rely on TRIM from Chapter 4, an approach
which attributes importance to features in a transformed domain (here, the wavelet domain)
via a straightforward model reparameterization.

7.3 Adaptive wavelet distillation through

interpretations

Adaptive wavelet distillation (AWD) aims to learn a wavelet transform which effectively
represents the input data as well as captures information about a model trained to predict
a response using the input data. Depending on a problem’s context, the resulting wavelet
model may or not be sufficiently interpretable for use, or may or not provide similar or better
prediction performance as the pre-trained model f . However, we provide two scientific data
problems in section 7.4 where we can do both. In fact, the AWD method has been developed
in the context of solving the cosmology problem.

We now detail how AWD wavelets can be built upon to form an extremely simple model
in various contexts (see Sec. 7.4). We first require that the wavelet transform is invertible,
allowing for reconstruction of the original data. This ensures that the transform does not
lose any information in the input data. We next assure that the learned wavelet is a valid
wavelet: the wavelet function ψ and the corresponding scaling function φ span a sequence of
subspaces satisfying the multiresolution axioms [162]. Finally, we add the distillation part
of AWD. We calculate the attribution scores of a given model f for each coefficient in the
wavelet representation, and try to find a wavelet function ψ that makes these attributions

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 70

sparse. Intuitively, this ensures that the learned wavelet should find a representation which
can concisely explain a model’s prediction. Writing the discrete wavelet transform using the
discrete filters h and g (see Eq. (7.4)), we now give a final optimization problem for AWD:

minimize
h,g

L(h, g) =
1

m

∑
i

‖xi − x̂i‖2
2︸ ︷︷ ︸

Reconstruction loss

+
1

m

∑
i

W (h, g, xi;λ)︸ ︷︷ ︸
Wavelet loss

+ γ
∑
i

‖TRIMΨ,f (Ψxi)‖1︸ ︷︷ ︸
Interpretation loss

,

(7.7)
where Ψ denotes a wavelet transform operator induced by ψ, and x̂i denotes the recon-
struction of the data point xi. Here λ, γ > 0 represent hyperparameters that are tuned by
users. The only parameters optimized are the lowpass filter h and the highpass filter g. The
corresponding scaling and wavelet functions can be obtained from (h, g) via the following

mapping [164]: φ̂(w) =
∏∞

p=1
ĥ(2−pw)√

2
and ψ̂(w) = 1√

2
ĝ(w/2)φ̂(w/2), where φ̂ and ψ̂ represent

the Fourier transforms of φ and ψ respectively.

Wavelet loss The wavelet loss ensures that the learned filters yield a valid wavelet trans-
form. In contrast to the wavelet constraints used in [216], our formulation introduces ad-
ditional terms that ensure almost sufficient and necessary conditions on the filters (h, g)
to build an orthogonal wavelet basis. Specifically, [164, Theorem 7.2] states the following
sufficient conditions on the lowpass filter: if h satisfies∑

n

h[n] =
√

2 and |ĥ(w)|2 + |ĥ(w + π)|2 = 2 for all w, (7.8)

as well as some mild conditions, it can generate a scaling function such that the scaled and
translated family of the scaling function forms an orthonormal basis of the space of multires-
olution approximations of L2(R). [41, Theorem 3] further shows that the orthogonality of
translates of the scaling function implies that the lowpass filter is orthogonal after translates
by 2, i.e.,

∑
n

h[n]h[n− 2k] =

{
1 if k = 0

0 otherwise
, and as a result, ‖h‖2 = 1. (7.9)

Hence the conditions (7.8), (7.9) characterize the almost sufficient and necessary conditions
on the lowpass filter. Moreoever, [164, Theorem 7.3] shows that the valid highpass filter can
be constructed from the lowpass filter: in the time domain, it can be written as

g[n] = (−1)nh[N − 1− n], (7.10)

where N is the support size of h. Together with (7.9), we can also deduce that the highpass
filter has mean zero, i.e.,

∑
n g[n] = 0 which is necessary for the filter g. See [] for further

details.

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 71

Finally, we want the learned wavelet to provide sparse representations so we add the `1

norm penalty on the wavelet coefficients. Combining all these constraints via regularization
terms, we define the wavelet loss at the data point xi as

W (h, g, xi;λ) = λ‖Ψxi‖1 + (
∑
n

h[n]−
√

2)2 + (
∑
n

g[n])2 + (‖h‖2
2 − 1)2

+
∑
w

(|ĥ(w)|2 + |ĥ(w + π)|2 − 2)2 +
∑
k

(
∑
n

h[n]h[n− 2k]− 1k=0)2,

where g is set as in (7.10) and λ > 0 controls strength of the sparsity of the wavelet repre-

sentations. We enforce the penalty (|ĥ(w)|2 + |ĥ(w + π)|2 − 2)2, only at the discrete values
of w ∈ {2πk

N
, k = 1, . . . , N} through the discrete Fourier transform. Notice that the wavelet

loss does not introduce any additional hyperparameters besides λ. In fact, we empirically
observe that the sum of penalty terms, except the sparsity penalty, remains very close to zero
as long as the filters (h, g) are initialized using known wavelet filters and the interpretation
loss is not enforced too strongly.

Interpretation loss The interpretation loss enables the distillation of knowledge from
the pre-trained model f into the wavelet model. It ensures that attributions in the space
of wavelet coefficients Ψxi are sparse, where the attributions of wavelet coefficients is calcu-
lated by TRIM [252], as described in Sec. 7.2. This forces the wavelet transform to produce
representations that concisely explain the model’s predictions at different scales and loca-
tions. The hyperparameter γ controls the overall contribution of the interpretation loss;
large values of γ can result in large numerical differences from satisfying the conditions of
the mathematical wavelet filters. To our knowledge, this is the first method which uses
interpretations from a pre-trained model to improve a wavelet representation. This enables
the wavelets to not only adapt to the distribution of the inputs, but also gain information
about the predicted outputs through the lens of the model f .

7.4 AWD improves interpretability, prediction

performance, and compression in two scientific

problems and in simulations

Fig. 7.3 shows a visual schematic of the distillation and prediction setup for one synthetic and
two scientific data problems in this section, whose details will be discussed in the following
subsections.4

4In all experiments, the wavelet function is computed from the corresponding lowpass filter using the
PyWavelets package [141] and building on the Pytorch Wavelets [56, Chapter 3] package.

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 72

Linear model on
largest coefficients

LSTM

Resnet

Fully connected netA

C

B

Distilled waveletSynthetic data Groundtruth wavelet

CME events Distilled wavelet

Distilled waveletCosmological mass maps

Figure 7.2: Distillation and prediction setup for the three scenarios in Sec. 7.4. (A) In
synthetic simulations, AWD is able to recover groundtruth wavelet (DB5) that are linked
to a response variable (Sec. 7.4). (B) Wavelets distilled by AWD from an LSTM trained
to predict molecular partners capture biologically meaningful properties of a large build
up in clathrin fluorescence followed by a sharp drop and enable prediction using only a
few key coefficients (Chapter 8). (C) AWD finds wavelets that are efficient at capturing
cosmological information in weak lensing convergence maps and can improve state-of-the-art
performance of cosmological parameter inference using an AWD-based simple peak-counting
algorithm (Sec. 7.4).

Synthetic data

We begin our evaluation using simulations to verify whether AWD can recover groundtruth
wavelets from noisy data. In these simulations, the inputs xi are generated i.i.d. from a
standard Gaussian distribution N (0, 1). To generate the response variable, the inputs are
transformed into the wavelet domain using Daubechies (DB) 5 wavelets [61], and the response
is generated from a linear model yi = 〈Ψxi, β〉+ εi, where the true regression coefficients are
2 for a few selected locations at a particular scale and 0 otherwise; the noise εi is generated
i.i.d. from a Gaussian distributionN (0, 0.12). Then, a 3-layer fully connected neural network
with ReLU activations is trained on the pairs of xi, yi to accurately predict this response.
Note that for any non-singular matrix A, the mapping x 7→ 〈A−1Ψx,A>β〉 predicts the
response equally well, but the representations in the groundtruth wavelet explain the model’s

~ --► + ~ +
-)d r-L·· ► +- y

Peak counting predicts fl m

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 73

2 4 6 8 10 12

0.25

0.00

0.25

0.50

0.75 DB5+noise
Sym5
Coif2

time

va
lu

e

DB5+noise
Sym5
Coif2
Groundtruth

Figure 7.3: AWD accurately identifies the groundtruth important wavelet in simulated data.
(A) Plots of the initial lowpass filters. (B) Final wavelets extracted by AWD.

prediction most concisely. The challenge is then to accurately distill the groundtruth wavelet
(DB5) from this DNN. This task is fairly difficult: AWD must not only select which scale and
locations are important, it must also precisely match the shape of h and g to the groundtruth
wavelet.

Fig. 7.3 shows the performance of AWD on this task. We initialize the AWD lowpass
filter to different known lowpass filters corresponding to DB5 (and add noise), Symlet 5, and
Coiflet 2 (shown in Fig. 7.3(A)) and then optimize the objective given in Eq. (7.7). In order to
recover the groundtruth, we select hyperparameters λ and γ that minimize the distance to the
groundtruth wavelet ψ?. Distance is measured via d(ψ, ψ?) = min{mink‖ψk − ψ?‖2,mink‖ψ̃k − ψ?‖2},
where ψk is the wavelet ψ circular shifted by k and ψ̃ is the wavelet ψ flipped in the left/right
direction. That is, d calculates the minimum `2 distance between two wavelets under cir-
cular shifts and left/right flip. When the two wavelets have different size of support, the
shorter wavelet is zero-padded to the length of the longer [216]. Fig. 7.3(B) shows that
for each different initialization, we find that the distilled wavelet gets considerably closer to
the groundtruth wavelet. In particular, the results for DB5+noise and Coiflet 2 are nearly
identical to the groundtruth and cannot be distinguished in the plot. This is particularly
impressive since the support size of Coiflet 2 differs from that of the groundtruth wavelet,
making the task more difficult. Overall, these results demonstrate the ability of AWD to
distill key information out of a pre-trained neural network.

Estimating a fundamental parameter surrounding the origin of
the universe

We now focus on a cosmology problem, where AWD helps replace DNNs with a more inter-
pretable alternative. Specifically, we consider weak gravitational lensing convergence maps,
i.e., maps of the mass distribution in the universe integrated up to a certain distance from

• • ...L

J l
• • • ...L

• ...L

• ' • • • • • • • I I I I • • I • • • • •
• • •

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 74

the observer. In a cosmological experiment (e.g. a galaxy survey), these mass maps are
obtained by measuring the distortion of distant galaxies caused by the deflection of light by
the mass between the galaxy and the observer [20]. These maps contain a wealth of phys-
ical information of interest, such as the total matter density in the universe, Ωm. Current
cosmology research aims to identify the most informative features in these maps for infer-
ring the cosmological parameters such as Ωm. The traditional summary statistic for lensing
maps is the power spectrum which is known to be sub-optimal for parameter inference.
Tighter parameter constraints can be obtained by including higher-order statistics, such as
the bispectrum [57] and peak counts [148]. However, DNN-based inference methods claim
to improve on constraints based on these traditional summaries [220, 219, 82].

Here, we aim to improve the predictive power of DNN-based methods while gaining in-
terpretability by distilling a predictive AWD model. In this context, it is critically important
to obtain interpretability, as it provides deeper understanding into what information is most
important to infer Ωm and can be used to design optimal experiments or analysis methods.
Moreover, because these models are trained on numerical simulations (realizations of the
Universe with different cosmological parameters), it is important to validate that the model
uses reasonable features rather than latching on to numerical artifacts in the simulations.
We start by training a model to predict Ωm from simulated weak gravitational lensing con-
vergence maps. We train a DNN5 to predict Ωm from 100,000 mass maps simulated with 10
different sets of cosmological parameter values at the universe origin from the MassiveNuS

simulations [155] (full simulation details given in Chapter 5), achieving an R2 value of 0.92
on the test set (10,000 mass maps); Fig. 7.2C shows an example mass map.

We again construct an interpretable model using the wavelets distilled by AWD from the
trained DNN. To make predictions, we use the simple peak-counting algorithm developed in
a previous work [219], which convolves a peak-finding filter with the input images. Then,
these peaks are used to regress on the outcome. In contrast to the fixed filters such as
Laplace or Roberts cross used in previous works [219], here we use the wavelets distilled by
AWD, which result in three 2D wavelet filters (LL, LH, HL) and the 2D approximation filter
(LL). The size of the distilled AWD filters is 12×12 and inspection of these filters shows
a majority of the mass is concentrated on 3×3 subfilters (see Fig. 7.2C). Then we extract
those subfilters to use for peak-finding filters—by doing so, the size of the filters match with
those used in [219] (additional details given in Sec. 5.1). The hyperparameters for AWD are
selected by evaluating the predictive model’s performance on a held-out validation set.

Table 7.1 shows the results of predicting using the peak-finding algorithm with various
filters. The evaluation metric is the RMSE (Root mean square error). Its performance again
outperforms the fully trained neural network (Resnet) model and the standard non-adaptive
wavelet (DB5) model, as well as other baseline methods using Laplace filter and Roberts
cross filter (see Sec. 5.1 for details on how these filters are defined). Moreover, as can be
seen in the compression rate, the AWD wavelet provides more efficient representations for
the mass maps as well as concise explanation for the DNN’s predictions compared to the DB

5The model’s architecture is Resnet 18 [105], modified to take only one input channel.

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 75

5 wavelet.

Table 7.1: Performance comparisons for different models in cosmological parameter predic-
tion. The lower RMSE and compression rate indicate better results. For RMSE, standard
deviations are estimated from 10, 000 bootstrap samples.

AWD
(Ours)

Roberts-
Cross

Laplace DB5
Wavelet

Resnet

Regression (RMSE ×10−2) 1.029
(0.033)

1.259
(0.039)

1.369
(0.047)

1.569
(0.048)

1.156
(0.024)

Compression rate 0.610 N/A N/A 0.620 N/A

Fig. 7.2C shows the learned AWD filters corresponding to the best distilled wavelet. The
learned wavelet filters are symmetric and resemble the ”matched filters” which have been
used in the past to identify peaks on convergence maps in the cosmology literature [167,
236]. We expect from cosmology knowledge that much information is contained in the peaks
of the convergence maps (their amplitude, shape, and numbers), so this indeed matches our
expectations based on physics. The high predictive performance further demonstrates that
the AWD filters are more efficient at capturing cosmological information and better adapted
to the shape of the peaks, than standard wavelets could do.

Moreover, the adaptive wavelet distillation allows us to look at ”wavelet activation maps”
(see Fig. 5.4) to localize on locations in the convergence maps where important information
is concentrated. In other words, we can indeed see that the AWD wavelet concentrates
on identifying high intensity peaks, which is where most of the ”localized” information is
expected from theory.

7.5 Discussion

In this work, we introduce AWD, a method to distill adapative wavelets from a pre-trained
supervised model such as DNNs for interpretation. Doing so enables AWD to automatically
detect and adapt to aspects of data that are important for prediction in an interpretable man-
ner. The benefits of distilling relevant predictive information captured in a DNN are demon-
strated through applications to synthetic and real data in two scientific settings. Overall,
AWD allows us to interpret a DNN in terms of conventional wavelets, bringing interpretabil-
ity with domain insights while simultaneously improving compression and computational
costs, all while preserving or improving predictive power.

Future work Here, we test our method with the saliency attribution method; many ad-
vanced interpretation techniques have been developed in the past years and the comparison

CHAPTER 7. ADAPTIVE WAVELET DISTILLATION FROM NEURAL NETWORKS
THROUGH INTERPRETATIONS 76

between different interpretation techniques must be carefully explored in the context of a
particular problem and audience. When optimizing the objective Eq. (7.7) via gradient de-
scent, it requires the gradient of the gradient, which is computationally expensive especially
for large data and network sizes. A wavelet-based distillation approach that is computa-
tionally more amenable is an interesting direction for future research. The current work
learns a single-layer wavelet transform, but the complex nature of modern datasets often
require strong nonlinearities. Future work could extend AWD beyond a single-layer wavelet
transform, e.g. by borrowing ideas from scattering transform [38] or to other interpretable
models [231, 251]. This would allow for bridging closer to deep learning while keeping in-
terpretability, which can be effectively applied to other areas, such as computer vision and
natural-image classification. We hope to continue this line of research in order to improve the
interpretability and computational efficiency of DNN models across many domains ranging
from physical and biomedical sciences to computer vision and information technology.

77

Chapter 8

Real-world problem:
molecular-partner prediction in cell
biology

We now turn our attention to a crucial question in cell biology: understanding clathrin-
mediated endocytosis (CME) [130, 106]. It is the primary pathway by which things are
transported into the cell, making it essential functions of higher eukaryotic life [169]. Many
questions about this process remain unanswered, prompting a line of studies aiming to better
understand this process [123]. One major challenge with CME analysis is the ability to
readily distinguish between abortive coats (ACs) and successful clathrin-coated pits (CCPs).
Doing so enables an understanding of what mechanisms allow for successful endocytosis.
This is a challenging problem where DNNs have recently been shown to outperform classical

CHAPTER 8. REAL-WORLD PROBLEM: MOLECULAR-PARTNER PREDICTION
IN CELL BIOLOGY 78

statistical and ML methods.
Fig. 8.1 shows the pipeline for this challenging problem. A tracking algorithm is run

on videos of cells to identify a time-series trace for each endocytic event [6]. An LSTM
model [109] is then trained to classify which endocytic events are successful from the ex-
tracted time-series traces and CD scores identify which parts of the traces the model uses.
Using these CD scores, domain experts are able to validate that the model does, in fact,
use reasonable features such as the max value of the time-series traces and the length of the
trace.

-

Videos of cells LSTM model

A C

+ +

+
+

+
--
-

-
-

-

B D

+

CD Score
InterpretationExtracted traces Distilled wavelet model

E

Figure 8.1: Molecular partner prediction pipeline. (A) Tracking algorithms run on videos
of cells identify (B) time-series traces of endocytic events. (C) An LSTM model learns to
classify which endocytic events are successful and (D) CD scores identify which parts of the
traces the model uses. (E) AWD distills the LSTM model into a simple wavelet model which
is able to obtain strong predictive performance.

However, the LSTM model is still relatively difficult to understand and computationally
intensive. To create an extremely transparent and concise model, we distill the model into
a relatively simple LSTM model. We use AWD to learn an adaptive wavelet and then fit
a predictive model on this wavelet by extracting only the maximum 6 wavelet coefficients
at each of 5 scales. By taking the maximum coefficients, these features are expected to
be invariant to the specific location where a CME event occurs in the input data. This
results in a final model with 30 coefficients (6 wavelet coefficients at 5 scales). These wavelet
coefficients are used to train a linear model, and the best hyperparameters are selected via
cross-validation on the training set.

Fig. 8.2 shows qualitatively how the learned wavelet function ψ changes as a function of
the interpretation penalty γ (increasing to the right) and the sparsity penalty λ (increasing
downwards). In the initial stage of training, we initialize the lowpass filter to correspond
to the Daubechies (DB) 5 wavelet. Different combinations of the penalties lead to vastly
different learned wavelets, though they all tend to reveal edge-detecting characteristics for a
reasonable range of hyperparameter values.

The red box in Fig. 8.2 highlights the best learned wavelet (for one particular run)
extracted by AWD corresponding to the setting of hyperparameters λ = 0.005 and γ = 0.043.
Table 8.1 compares the results for AWD to the original LSTM and the initialized, non-

- Clathrin

- - Aux;nn

.... la--•• - l_f - .J ..

..,J_ L_ ' ' . ·-
-

CHAPTER 8. REAL-WORLD PROBLEM: MOLECULAR-PARTNER PREDICTION
IN CELL BIOLOGY 79

Figure 8.2: Varying sparsity and interpretation penalty yields different valid wavelets.
Wavelet highlighted in red is selected by cross-validation and yields the best prediction
performance.

adaptive DB5 wavelet model, where the performance is measured via a standard R2 score, a
proportion of variance in the response that is explained by the model. The AWD model not
only closes the gap between the standard wavelet model (DB5) and the neural network, it
considerably improves the LSTM’s performance (a 10% increase in the R2 score). Moreover,
we calculate the compression rates of the AWD wavelet and DB5—these rates measure the
proportion of wavelet coefficients in the test set, in which the magnitude and the attributions
are both above 10−3. The AWD wavelet exhibits much better compression than DB5 (an 18%
reduction), showing the ability of AWD to simultaneously provide sparse representations and
explain the LSTM’s predictions concisely. The AWD model also dramatically decreases the
computation time at test time, a more than 200-fold reduction when compared to LSTM.

In addition to improving prediction accuracy, AWD enables domain experts to vet their
experimental pipelines by making them more transparent. By inspecting the learned wavelet,
AWD allows for checking what clathrin signatures signal a successful CME event; it indicates
that the distilled wavelet aims to identify a large buildup in clathrin fluorescence (correspond-
ing to the building of a clathrin-coated pit) followed by a sharp drop in clathrin fluorescence
(corresponding to the rapid deconstruction of the pit). This domain knowledge is extracted
from the pre-trained LSTM model by AWD using only the saliency interpretations in the
wavelet space.

Increasing interpretation penalty y ---+

0 (1 00001 0 00018 C 0:)034 0 00062 0 00113 0 00207 000379 0 0069~ 0 01274 0023~(, 0 04231 001848 0 14384 026367 0 48l2:9 08858} 1 6l378 2 976 :iS 5 45559 10 0 . - . -

++~+1+++++++++++++++-t-t-
++1++1+ + + + + + ++ + + + + + + ++ -t-++~+1+ + + + + I+ ++ + + + + + _,

~ ++ -t-++1+++ + + + + + ++ + + + + + ~ - ++ -t
++1++1+ + + + + .I .I 1+ rt-+ + + + ~ -++ -t ' I I

CHAPTER 8. REAL-WORLD PROBLEM: MOLECULAR-PARTNER PREDICTION
IN CELL BIOLOGY 80

Table 8.1: Performance comparisons for different models in molecular-partner prediction.
AWD substantially improves predictive accuracy, compression rate, and computation time
on the test set. A higher R2 score, and lower compression factor, and lower computation
time indicate better results. For AWD, values are averaged over 5 different random seeds.

AWD (Ours) Standard Wavelet (DB5) LSTM

Regression (R2 score) 0.262 (0.001) 0.197 0.237
Compression factor 0.574 (0.010) 0.704 N/A
Computation time 0.0002s 0.0002s 0.0449s

To see the effect of interpretation loss on learning the wavelet transforms and increased
performance, we also learn the wavelet transform while setting the interpretation loss to be
zero. In this case, the best regression R2 score selected via cross-validation is 0.231, and the
adaptive wavelets without the interpretation loss still outperforms the baseline wavelet but
fail to outperform the neural network models.

Diving further into the model’s interpretability, Fig. 8.3 shows how the final model makes
a single prediction. The different wavelet coefficients are extracted before being linearly
combined to make the final prediction.

CHAPTER 8. REAL-WORLD PROBLEM: MOLECULAR-PARTNER PREDICTION
IN CELL BIOLOGY 81

0.84 x

0.65 x

0.11 x

Wavelet
coefficient

…

Learned
linear

weights

0.92

0.84

0.21

Σ
Sum

Threshold

Successful

Abortive

Figure 8.3: Interpreting a single prediction made by the wavelet model. The model takes
the fitted clathrin amplitude shown in (A) and predicts that the event is successful. (B,
C, D) show the three most important features for making this prediction. Each blue curve
represents the input reconstruction for a single wavelet at a single scale. The curves in (B)
and (C) seem to capture meaningful components of the clathrin signal, as they find a gradual
rise in the signal, a large peak in the signal, and finally a steep drop in the signal at the end.
The model is simply a linear combination of wavelet coefficients: each blue curve yields a
coefficient which is then multiplied by a learned weight. The final prediction of successful
or abortive is then made by thresholding the sum of these products. In this case, the first
2 coefficients dominate the prediction, and contributions for all remaining coefficients (some
of which are omitted) are considerably less. For abortive predictions, the wavelet coefficients
are usually much smaller (or negative).

8.1 Experimental details for molecular

partner-prediction

This section gives an overview of the data collected with regards to clathrin-mediated en-
docytosis in Sec. 8.1. For a more detailed overview, see [106]. The cells are derived from
a breast-cancer line and placed on 2D slips with the Shiga toxin. Two fluorescent markers
were used: clathrin was tagged with RFP and auxilin with EGFP. The data was collected

~ +------:-+ ---.Jr

D

~ ~ 2 l ~ ~ ~ 1
Eo~
-e E_m
"'-- 0

~~,---~--~,--~~--~,--~,---~, --~,---~,

+ +

0 5 10 15 20 25 30 35 40
Time (s)

CHAPTER 8. REAL-WORLD PROBLEM: MOLECULAR-PARTNER PREDICTION
IN CELL BIOLOGY 82

at a frequency of 1 Hertz.
In order to convert the raw fluorescence images to time-series traces, we use tracking code

from previous work [6]. The tracking fits a Gaussian curve to the images (with standard
deviation given by the imaging parameters). When the fit to the first channel (i.e. clathrin)
is significant,1 the track is recorded and a fit is forced to the second channel (i.e. auxilin).
The amplitudes of each track over time are then extracted. Fig. 8.4 shows some examples of
extracted clathrin traces.

(a) Successful events (b) Abortive events

Figure 8.4: Clathrin traces (model inputs) for randomly selected events.

The AWD filters were trained for 100 epochs with Adam optimizer with a learning
rate of 0.001. The experiment was run multiple times with respect to the randomness
of mini-batches in the training procedure. All experiments were run on an AWS instance of
p3.16xlarge for a few days.

Distilled scaling functions and wavelets

Here we show the best wavelets selected by cross-validation and the corresponding scaling
functions for 5 different runs of the experiments. The results are stable across multiple
runs, all capturing information about how rapid changes in the clathrin trace is useful for
predicting the auxilin response.

1Here, significant is defined to be p-value less than 0.05, but the results are not sensitive to this precise
threshold.

CHAPTER 8. REAL-WORLD PROBLEM: MOLECULAR-PARTNER PREDICTION
IN CELL BIOLOGY 83

scaling function wavelet function

Figure 8.5: Optimal scaling and wavelet functions extracted by AWD across five random
seeds.

Varying sparsity and interpretation penalty

Fig. 8.6 shows the learned wavelets distilled by AWD as the interpretation penalty γ and
the sparsity penalty λ vary. Unlike Fig. 8.2 where the lowpass filter is initialized to the
DB 5 wavelet in the initial stage of training, here the lowpass filter is initialized to that
corresponding to the Sym 5 wavelet. For large values of γ, the learned wavelets captures
qualitatively the same biological features as those shown in Fig. 8.2.

L+
L+
L+
L+
L+

CHAPTER 8. REAL-WORLD PROBLEM: MOLECULAR-PARTNER PREDICTION
IN CELL BIOLOGY 84

Figure 8.6: Varying sparsity and interpretation penalty yields different valid wavelets. In the
initial stage of training, the lowpass filter is initialized to that corresponding to the Symlet
5 wavelet.

Increasing interpretation penalty r -.

+ + + + ++ + + + + + + +-1r + + + + ++!+
+ + + + ++ + + + + + ,-, -++ + _Jr + + ++1+
+ + + + +++ + + + + 1-,~ J,+ + + + + ++1+
+ + + + +++ + + + + I+ ++ + + + 1-++~~
+ + + + +1+ + + + + + + 1++ + + I+ + ++ ,_ t-

85

Part III

Rule-based models for interpretable
modeling

86

Chapter 9

Fast interpretable greedy-tree sums

9.1 Introduction to FIGS

Modern machine-learning methods such as random forests [33], gradient boosting [87, 49],
and deep learning [140] display impressive predictive performance, but are complex and
opaque, leading many to call them “black-box” models. This is unfortunate, as model
interpretability is critical in many applications [230, 186], particularly in high-stakes settings
such as medicine, biology, and policy-making. Interpretability allows models to be audited
for general validation, errors, biases, and therefore also more amenable to improvement by
domain experts. It facilitates counterfactual reasoning, which is the bedrock of scientific
insight, and it instills trust/distrust in a model when warranted. As an added benefit,

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 87

interpretable models tend to be faster and more computationally efficient than black-box
models.

Decision trees are a prime example of interpretable models [32, 87, 209, 231, 251]. They
can be easily visualized and simulated even by non-experts, and thus fit naturally into the
operating human-in-the-loop AI workflow of many organizations. While they are flexible,
and thus have the potential to adapt to complex data, they often tend to be outperformed
by black-box models in terms of prediction accuracy. However, this performance gap is not
intrinsic to interpretable models, e.g. see examples in [231, 100, 175, 251]. Indeed, in this
paper, we will show how this gap can be partially bridged by carefully examining how and
why decision trees fall short, and then directly targeting these weaknesses.

Our starting point is the observation that decision trees can be statistically inefficient at
fitting regression functions with additive components [268]. To illustrate this, consider the
following toy example: y = 1X1>0 + 1X2>0 · 1X3>0. 1 The two components of this function
can be individually implemented by trees with 1 split and 2 splits respectively. However,
implementing their sum with a single tree requires at least 5 splits, as we are forced to
combine their tree structures in a fractal manner: a copy of the second tree has to be grown
out of every leaf node of the first tree (see Fig. 9.1). Indeed, it is easy to see that a single
tree f implementing the sum of independent tree functions f1, . . . , fk satisfies

#leaves(f) ≥
K∏
k=1

#leaves(fk),

and so is much more complicated than simply encoding the function in terms of the original
trees in the summation.

This need to grow a deep tree implies two statistical weaknesses of decision trees when
fitting them to additive generative models. First, growing a deep tree greatly increases
the probability of splitting on noisy features. Second, leaves in a deep tree contain fewer
samples, which means that the tree predictions have higher variance. These two weaknesses
could be avoided if we could fit a separate decision tree to each additive component of the
generative model and present their sum as our model estimate. Existing ensemble methods
are unable to disentangle the separate additive components, because they fit each tree either
individually (random forests), or sequentially (gradient boosting).

To address these weaknesses, we propose Fast Interpretable Greedy-Tree Sums (FIGS),
a novel yet natural algorithm which is able to grow a flexible number of trees simultaneously.
This procedure is based on a simple modification to Classification and Regression Trees
(CART) [32], allowing it to adapt to additive structure if present by starting new trees, while
still maintaining the ability of CART to adapt to higher-order interaction terms. Meanwhile,
the running time of FIGS remains largely similar to CART due to the similarity of the two

1This toy model is an instance of a Local Spiky and Sparse (LSS) model [23], which is potentially
grounded in real biological mechanisms whereby an outcome is related to interactions of inputs which display
thresholding behavior.

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 88

FIGS X1> 0
+

X1> 0
+

X2> 0

X3> 0

Best split

CART
X1> 0

X1> 0
+

X2> 0
+

X1> 0

X2> 0

X1> 0

X2> 0

X3> 0

X2> 0

X3> 0

. . .
Iteration 1

Iteration 1 2 3 4

2 3 6

Potential
splits

Figure 9.1: FIGS algorithm overview for learning the toy function y = 1X1>0 +1X2>0 ·1X3>0.
FIGS greedily adds one node at a time, considering splits not just in an individual tree
but within an ensemble of trees. This can lead to much more compact models, as it avoids
repeated splits (e.g. in the final CART model shown in the top-right).

algorithms. FIGS also remains interpretable by keeping the total number of splits in the
model limited, allowing for the model to be easily visualized and simulated by hand.

While CART cannot achieve the minimax rate for fitting (generalized) additive genera-
tive models with C1 component functions even with oracle access to the optimal tree struc-
ture [268], we show that FIGS can do so under this setting (Theorem 1). In a population
setting, we also show that FIGS is able to disentangle separate additive components (The-
orem 2) without any constraints on the component functions. We verify both theorems in
finite-sample simulations, showing situations where FIGS even outperforms random forests.
Meanwhile, extensive experiments across a wide array of real-world datasets show that FIGS
achieves state-of-the-art performance while maintaining a concise, interpretable model (e.g.
having less than 20 total splits). In particular, they greatly improve upon the predictive
performance of CART, and this improvement hints at the presence of approximate additive
structure in many of these datasets.

In what follows, Sec. 9.2 introduces FIGS, Sec. 9.3 covers related work, Sec. 9.4 establishes
two theoretical results underpinning its performance, Sec. 9.5 shows simulations supporting
these two results, and Sec. 9.6 shows extensive experiments suggesting FIGS predicts well
with very few splits on real-world datasets.

9.2 FIGS: Algorithm description and runtime

FIGS proposes a natural but powerful extension to CART which forms a sum of trees rather
than a single tree. The total number of splits in the model is restricted by a threshold
(chosen either by a user or cross-validation). Given this threshold, the greedy algorithm
flexibly determines how to allocate these splits among a variable number of trees.

~
/"---..

/"---.. /"---.. / ., 0 0 0 /"---.. /"---..
0/"---..0 0/"---..0 • 0 0 •

• /"---.. /"---..

0 0 0 0
0/"---..0 • /"---.. /"---..

/"---.. 0 0 0 • 0 0

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 89

Formally, suppose we are given training data Dn = {(xi, yi)}ni=1. When growing a tree,
CART chooses for each node t the split s that maximizes the (weighted) impurity decrease
in the responses y. This has the formula

∆̂(s, t,y) :=
∑
xi∈t

(yi − ȳt)2 −
∑
xi∈tL

(yi − ȳtL)2 −
∑
xi∈tR

(yi − ȳtR)2,

where tL and tR denote the left and right child nodes of t respectively. We call such a split s
a potential split, and note that for each step in the algorithm, CART actualizes the potential
split with the largest impurity decrease value.

FIGS extends CART to greedily grow a small tree-sum (see Algorithm 2). That is, at
each iteration of FIGS, the algorithm chooses either to make a split on one of the current
K trees f̂1, . . . , f̂K in the sum, or to add a new stump to the sum. To make this decision, it
still applies the CART splitting rule detailed above to identify potential splits, but instead
of using the original response vector, it makes use of the leave-f̂k-out residual vector r

(−k)
i =

yi−
∑

l 6=k f̂l(xi) to compute the impurity decrease for each tree f̂k. FIGS makes only one split
among the K + 1 potential splits: The one corresponding to the largest impurity decrease.
The prediction over each of the new leaf nodes is defined to be the mean of the r

(−k)
i values

for samples it contains. At inference time, the prediction is made by summing the predictions
of each tree.

Algorithm 2 FIGS fitting algorithm.

1: FIGS(X : features, y : outcomes, stopping threshold)
2: trees = []
3: while count total splits(trees) < stopping threshold : :
4: all trees = join(trees, build new tree()) # add new tree
5: potential splits = []
6: for :tree in all trees:
7: y residuals = y – predict(all trees except tree)
8: for :leaf in tree:
9: potential split = split(X , y residuals, leaf)

10: potential splits.append(potential split)

11: best split = split with min impurity(potential splits)
12: trees.insert(best split)

FIGS is related to backfitting [35], but differs from it in important ways: FIGS neither
assumes a fixed number of component predictors, nor updates them in a cyclic manner; in
fact, FIGS coordinates a competition among the trees being fitted at each iteration, thus
mitigating backfitting’s potential to overfit to residuals.

Due to its similarity to CART, FIGS supports many natural modifications that are used
in CART trees. For example, different impurity measures can be used; here we use Gini
impurity for classification and mean-squared-error for regression. Additionally, FIGS could
benefit from pruning or by being used as part of an ensemble model.

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 90

Run-time analysis The run-time complexity for FIGS to grow a model with m splits
in total is O(dm2n2), where d the number of features, and n the number of samples. In
contrast, CART has a run-time of O(dmn2). Both of these worst-case run-times given above
are quite fast, and the gap between them is relatively benign as we usually make a small
number of splits for the sake of interpretability.

Selecting the model’s stopping threshold. Choosing a threshold on the total num-
ber of splits can be done similar to CART: using a combination of the model’s predictive
performance and domain knowledge on how interpretable the model needs to be. Alterna-
tively, the threshold can be selected using an impurity decrease threshold [32] rather than
a hard threshold on the number of splits. We discuss potential data-driven choices of the
threshold in the Discussion (Sec. 9.7).

9.3 Background on tree-sums

There is a long history of greedy methods for learning individual trees, e.g. C4.5 [209],
CART [32], and ID3 [210]. Recent work has proposed global optimization problems rather
than greedy algorithms for trees, which can incur a high computational cost but improve
performance given a fixed rule budget [150, 115, 26]. However, due to the limitations of a
single tree, all these methods suffer from the problem of having repeated splits or repeated
subtrees [200], a failure we will quantify in the results section.

Besides trees, there are a variety of other interpretable methods such as rule lists [143,
12] or rule sets [53, 62]; for an overview and python implementation, see [251].

Also similar to the work here are methods that learn an additive model of rules, where a
rule is defined to be an axis-aligned, rectangular region in the input space. RuleFit [86] is a
popular method that learns a model by first extracting rules from multiple greedy decision
trees fit to the data and then learning a linear model using those rules as features. FIGS is
able to improve upon RuleFit by greedily selecting higher-order interactions when needed,
rather than simply using all rules from some pre-specified tree depth. MARS [88] greedily
learns an additive model of splines in a manner similar to FIGS, but loses interpretability
as a result of using splines rather than rules.

Loosely related to this work are additive models of trees, such as Random Forest [33],
gradient-boosted trees [85], BART [51] and AddTree [157], which use tree ensembles as a
way to boost predictive accuracy without focusing on finding an interpretable model. Also
loosely related are posthoc methods which aim to help understand a black-box model, but
ultimately cannot be as interpretable as an individual interpretable model [160, 87, 64].

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 91

9.4 Theoretical evidence that FIGS adapts to

additive structure

Tight generalization upper bounds have proved elusive for CART due to the complexity of
analyzing the tree growing procedure, and are difficult for FIGS for the same reason. How-
ever, even if we knew the optimal tree structure for CART, having to use empirical averages
instead of population means for the prediction over each leaf leads to an `2 generalization
lower bound of Ω(n−2/(d+2)) when the data is generated from an additive model with C1

component functions, which is much worse than the minimax rate of Õ
(
dn−2/3

)
for this

problem [268]. In comparison, assuming that we know the optimal tree structures, but not
the optimal tree predictions, we are able to derive a much faster rate for models comprising
sums of trees.

To formalize our theorem, consider a collection of trees C = {T1, T2, . . . , TL}, We define
a tree-sum model on C to be a function f̃ that is a sum of component functions f̃1, . . . , f̃L,
with f̃l implementable by Tl, for l = 1, . . . , L. Now suppose we are given training data
Dn = {(xi, yi)}ni=1. Define a tree-sum model on C to be best-fit with respect to Dn if it is an
empirical `2 risk minimizer in this class of models.For each query point x, this must satisfy
the best-fit property that

f̃l(x) =
1

N(tl(x))

∑
xi∈tl(x)

(
yi −

∑
k 6=l

f̃k(xi)

)
, (9.1)

where tl(x) is the leaf in Tl containing x, and that this property is satisfied approximately
by FIGS because of the update formula.

Our generative model: Let x be a random variable with distribution π on [0, 1]d.
Suppose that we have independent blocks of features I1, . . . , IK , of sizes d1, . . . , dK . For each
k, let Pk : [0, 1]d → [0, 1]Ik denote the projection onto the coordinates in Ik. Let y = f(x) + ε
where E{ε | x} = 0 and

f(x) =
K∑
k=1

fk(Pk(x)) + f0. (9.2)

Theorem 1 (Generalization upper bounds using oracle tree structure). Given the
generative model described above, further suppose the distribution πk of each independent
block xIk has a continuous density, each fk in (9.2) is C1, with ‖∇fk‖2 ≤ βk, and that ε
is homoskedastic with variance E{ε2 | x} = σ2. Then there exists an oracle collection of K
trees C = {T1, . . . , TK}, with Tk splitting only on features in Ik for each k, and a best-fit
tree-sum model on C with respect to Dn, f̃ =

∑K
k=1 f̃k, for which we have the following `2

upper bound on the complement of a vanishing event E:

EDn,x

{
(f̃(x)− f(x))21{Ec}

}
≤

K∑
k=1

ck

(
σ2

n

) 2
dk+2

. (9.3)

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 92

Here, ck := 8(dkβ
2
k‖πk‖∞)

dk
dk+2 , while P{E} = O(n−2/(dmax+2)) where dmax = maxk dk is the

size of the largest feature block in (9.2).

It is instructive to consider two extreme cases: If dk = 1 for each k, then we have
an upper bound of O

(
dn−2/3

)
. If on the other hand K = 1, we have an upper bound of

O
(
n−2/(d+2)

)
. Both (partially oracle) bounds match the well-known minimax rates for their

respective inference problems [212], hinting that FIGS might be able adapt to both additive
structure as well as higher-order interactions. We also believe that (9.3) is the minimax rate
in general for any block structure.

We note that the error event E is due to the query point possibly landing in leaf nodes
containing very few or even zero training samples, which can be thus be detected and avoided
in practice by imputing a default value.

The proof builds on recent work [131] which shows how to interpret CART as a “local
orthogonal greedy procedure”: Growing a CART tree corresponds to greedily adding to a
set of engineered linear predictors. This interpretation has a natural extension to FIGS, but
at the cost of orthogonality.

Our next result shows that FIGS is able to disentangle the different additive components
of f into distinct trees as intended, if the algorithm is run in the large sample limit.

Theorem 2 (Oracle disentanglement). Suppose we run Algorithm 2 with the following
oracle modifications:

1. Split impurities are defined via:

∆(s, t, r) := π(t)Var{r | x ∈ t} (9.4)

− π(tL)Var{r | x ∈ tL} − π(tR)Var{r | x ∈ tR}

2. The prediction over each new leaf node is defined to be the population mean of the
residual function r(−k) over the leaf.

At any number of iterations, let f̂ =
∑K′

k=1 f̂k denote the working model. Then for each tree

f̂k, the set of features split upon is contained within a single index set Ik for some k.

The number of terms K ′ in the fitted model need not be equal to K. Note that the two
modifications are equivalent to running FIGS in the large sample limit, as for any function
h(x, y), we have n−1∆̂(s, t, h)→ ∆(s, t,h) and h̄t → E{h | t} as n→∞.

9.5 Simulations support theoretical results

Sec. 9.5 shows simulations supporting Theorem 1 and Sec. 9.5 shows simulations supporting
Theorem 2.

--

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 93

FIGS achieves fast rates for `2 generalization error for additive
models

Fig. 9.2 investigates the `2 generalization error for FIGS as a function of the number of
training samples used. As predicted by Theorem 1, FIGS error decreases at a faster rate
than that of either CART or Random Forest (RF). We simulated data via a sparse sum of
squares model y =

∑20
j=1 x

2
j + ε with x ∼ Unif([0, 1]50), and ε ∼ N(0, 0.01).

102 103

Number of Samples (n)

10 1

100

M
SE

FIGS
 slope : 1.38

CART
 slope : 0.14
RF
 slope : 0.28

Figure 9.2: FIGS test error rate for additive data decreases faster than CART and random
forest (RF), as predicted by Theorem 1. Averaged over 4 runs (errors bars are standard
error of the mean and are often within the points).

FIGS disentangles additive components of additive models

To investigate disentanglement (Theorem 2), we add interactions into our generating model,
and set

y =
4∑
i=0

x3i+1x3i+2x3i+3 + ε,

while keeping the other parameters as before and using 2,500 training samples to fit FIGS.
When training FIGS on this data, we hope that each tree learned by the algorithm will
contain splits only from a single interaction. Fig. 9.3 shows that this is largely what happens.
Let Tl be the number of trees learned by FIGS on dataset l, and set T =

∑10
l=1 Tl. Given

the collection of all trees a single index, we construct the T by 15 matrix M , whose (i, j)-th
entry is the number of splits in tree i on feature j. We then compute the pairwise cosine
similarities between the columns of M , displaying the results in Fig. 9.3. Note that pairs
of features that never get split upon on in the same tree have a similarity value of 0, while
pairs of features that always have the same number of splits in each tree have a value of 1.
Fig. 9.3 shows that the empirically observed similarity values are remarkably close to this
ideal.

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 94

Ground truth interactions FIGS learned interactions

Figure 9.3: FIGS disentangles interactions into different additive components, as predicted
by Theorem 2. When fitted to a sum of three-way interactions, FIGS correctly places
interacting terms into the same tree (dark blocks).

9.6 FIGS results on real-world datasets

This section gives a brief overview of the datasets analyzed here before Sec. 9.6 shows FIGS’s
predictive performance and Sec. 9.6 shows its ability to identify additive structures in real-
world data.

For classification, we study four large datasets previously used to evaluate rule-based
models [280] along with the two largest UCI binary classification datasets used in the classic
Random-Forest paper [33, 15] (overview in Table 9.1). For regression, we study all datasets
used in the Random-Forest paper with at least 200 samples along with three of the largest
non-redundant datasets from the PMLB benchmark [227]. 80% of the data is used for
training/3-fold cross-validation and 20% of the data is used for testing.

FIGS predicts well with few splits on real-world datasets

Fig. 9.4 shows the models’ performance results (on test data) as a function of the number
of splits in the fitted model2. For both classification and regression, FIGS is compared
to CART, RuleFit, and Boosted Stumps (CART stumps learned via gradient-boosting).
For classification, we additionally compare against C4.5 and for regression we additionally
compare against CART using the mean-absolute-error (MAE) splitting-criterion. We finally
also add a Random Forest black-box baseline with 100 trees, which uses many more splits
than all the other models. 3

2For RuleFit, each term in the linear model is counted as one split
3We also compare against Gradient-boosting with decision trees of depth 2, but find that it is outper-

formed by CART in this limited-rule regime, so we omit these results for clarity. We also attempt to compare
to optimal tree methods, such as GOSDT [150], but find that they are unable to fit the dataset sizes here.

- 0.2 - 0.2

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 95

Name Samples Features

C
la

ss
ifi

ca
ti

on

Readmission 101763 150
Credit [288] 30000 33
Recidivism 6172 20
Juvenile [197] 3640 286
German credit 1000 20
Diabetes [253] 768 8

R
eg

re
ss

io
n

Breast tumor [227] 116640 9
CA housing [199] 20640 8
Echo months [227] 17496 9
Satelite image [227] 6435 36
Abalone [188] 4177 8
Diabetes [75] 442 10
Friedman1 [88] 200 10
Friedman2 [88] 200 4
Friedman3 [88] 200 4

Table 9.1: Real-world datasets analyzed here: classification (top panel), regression (bottom
panel).

The top two rows of Fig. 9.4 show results for classification (measured using the ROC area
under the curve, i.e. AUC), and the bottom three rows show results for regression (measured
using R2. On average, FIGS outperforms baseline models when the number of splits is very
low. The performance gain from FIGS over other baselines is larger for the datasets with
more samples (e.g. the top row of Fig. 9.4), matching the intuition that FIGS performs better
because of its increased flexibility. For two of the large datasets (Credit and Recidivism),
FIGS even outperforms the black-box Random Forest baseline, despite using less than 15
rules. For the smallest classification dataset (Diabetes), FIGS performs extremely well with
very few (less than 10) rules, but starts to overfit as more rules are added.

FIGS diagnoses possible additive structures in real-world datasets

Fig. 9.5 shows an example comparing individual models learned by FIGS and CART on the
Diabetes classification dataset [25, 253]. In this dataset, eight risk factors were collected and
used to predict the onset of diabetes within five years. The dataset consists of 768 female
subjects from the Pima Native American population near Phoenix, AZ, USA 268 of the
subjects developed diabetes, which is treated as a binary label.

Fig. 9.5 shows two models, one learned by FIGS and one learned by CART. In both
models, a higher prediction corresponds to a higher risk of developing diabetes. Both achieve
roughly the same performance (FIGS yields an AUC of 0.820 whereas CART yields an AUC
of 0.817), but the models have some key differences. The FIGS model includes fewer features
and fewer total rules than the CART model, making it easier to understand in its entirety.

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 96

C
la

ss
ifi

ca
ti

on

0 5 10 15 20
Number of splits

0.50

0.55

0.60

0.65
AU

C
Readmission (n = 101763)

0 5 10 15 20
Number of splits

0.60

0.65

0.70

0.75

Credit (n = 30000)

0 10 20 30
Number of splits

0.60

0.65

0.70

0.75

Random Forest

FIGS
CART
RulefitBoosted Stumps

C4.5

Recidivism (n = 6172)

0 5 10 15 20
Number of splits

0.5

0.6

0.7

0.8

0.9

AU
C

Juvenile (n = 3640)

0 5 10 15 20
Number of splits

0.5

0.6

0.7

0.8
German credit (n = 1000)

0 5 10 15 20
Number of splits

0.65

0.70

0.75

0.80

Diabetes (n = 768)

R
eg

re
ss

io
n

0 5 10 15 20
Number of splits

0.00

0.05

0.10

0.15

R
2

Breast tumor (n = 116640)

0 5 10 15 20
Number of splits

0.2

0.4

0.6

0.8
California housing (n = 20640)

0 10 20 30
Number of splits

0.2

0.4

0.6

0.8
Random Forest
FIGS
CART (MSE)
CART (MAE)
Rulefit
Boosted Stumps

Satellite image (n = 6435)

0 5 10 15 20
Number of splits

0.1

0.2

0.3

0.4

R
2

Echo months (n = 17496)

0 5 10 15 20
Number of splits

0.1

0.2

0.3

0.4

0.5

Abalone (n = 4177)

0 5 10 15 20
Number of splits

0.0

0.1

0.2

0.3

0.4
Diabetes regr (n = 442)

0 5 10 15 20
Number of splits

0.0

0.2

0.4

0.6

0.8

R
2

Friedman3 (n = 200)

0 5 10 15 20
Number of splits

0.0

0.2

0.4

0.6

0.8

1.0
Friedman2 (n = 200)

0 5 10 15 20
Number of splits

0.2

0.4

0.6

Friedman1 (n = 200)

Figure 9.4: FIGS performs extremely well using very few splits, particularly when the dataset is
large. Top two rows show results for classification datasets (measured by AUC of the ROC curve)
and the bottom three rows show results for regression datasets (measured by R2). Errors bars show
standard error of the mean, computed over 6 random data splits.

?. ------- r ~

r ~ ~
~ .. ~

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 97

Moreover, the FIGS model completely decouples interactions between features, making it
clear that each of the features contributes independently of one another, something which
any single-tree model is unable to do.

The FIGS model makes its prediction by summing the contribution for the leaf-node
of each tree in the model (where some trees consist of only one split). For example, if a
subject’s plasma glucose is greater than 166, their BMI (body-mass index) is greater than
29, and their age is less than 29, then their final risk score is 0.55 + 0.26 + 0 = 0.81. To make
this prediction, the CART model must instead use an interaction between plasma glucose
and BMI.

FIGS CART

128 < PG < 166Plasma
Glucose

BMI
≥ 29

Age
≥ 29 +0.17

+0.26

+0.55

≤ 128

≥166

+0.22

-0.06
Plasma
glucose

≥ 156BMI
≥ 30

Plasma
glucose

≥ 128

Age
≥ 30

Plasma
glucose

≥ 162

BMI
≥ 27

Num
pregnancies

≥ 7

0.62

0.20

0.86

0.60

0.42

0.06

0.09

0.60

Figure 9.5: Comparison between FIGS and CART on the diabetes dataset. FIGS learns a
simpler model, which disentangles interactions between features. Both models achieve the
same generalization performance (FIGS yields an AUC of 0.820 whereas CART yields 0.817.)

Next, Fig. 9.6 investigates whether FIGS avoids the issue of repeated rules. It shows
the fraction of rules which are repeated within a learned model as a function of the to-
tal number of rules in the model. We define a rule to be repeated if the model contains
another rule using the same feature and a threshold whose value is within 0.01 of the origi-
nal rule’s threshold.4 FIGS consistently learns fewer repeated rules than CART, one signal
that it is avoiding learning redundant subtrees by separately modeling additive components.
For clarity, Fig. 9.6 shows only the largest three datasets studied here, but other datasets
demonstrate the same relationship.

4This result is stable to reasonable variation in the choice of this threshold.

•
•

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 98

0 10 20 30
Number of splits

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fr
ac

tio
n

of
 sp

lit
s t

ha
t a

re
 re

pe
at

ed
FIGS (Readmission)

CART (Readmission)

FIGS (Recidivism)

CART (Recidivism)

FIGS (Credit)

CART (Credit)

Figure 9.6: FIGS learns less redundant models than CART. As a function of the number of
rules in the learned model, we plot the fraction of rules, repeated for three different datasets.
Error bars show standard error of the mean, computed over 6 random splits.

9.7 FIGS Discussion

FIGS is a powerful and natural extension to CART which achieves improved predictive
performance over popular baseline tree-based methods across a wide array of datasets while
maintaining interpretability by using very few splits.

FIGS has many natural extensions. It is a greedy algorithm, but could be extended by
using a global optimization algorithm over the class of tree-sum models. Alternatively, a
FIGS model could be distilled into a simpler model (e.g. a single tree or rule-list). Addition-
ally, the class of FIGS models could be further extended to include linear terms or allow for
summations of trees to be present at split nodes, rather than just at the root. Future work
could also explore using FIGS (or a randomized version of FIGS), for interaction detection,
building off of Theorem 2 and Fig. 9.3.

In this work, we vary the total number of splits in the model and analyze the performance.
As mentioned earlier, this regularization parameter in FIGS can be tuned as done in CART.
In some situations, a data-driven choice of threshold may be desirable. As seen in Sec. 9.6,
using cross-validation (CV) to select the threshold almost always leads to the largest allowed
value for the total number of splits for the datasets and parameter ranges that we considered.
This is not surprising as CV doesn’t consider stability or interpretability when selecting a
model. Future work can use criteria related to BIC [239] or stability in combination with
CV [149] for selecting this threshold based on data. In future work, one could also vary the
total number of splits and number of trees separately, helping to build prior knowledge into
the fitting process.

CHAPTER 9. FAST INTERPRETABLE GREEDY-TREE SUMS 99

FIGS as proposed has some potential limitations. It is more flexible than CART, and
as such could potentially overfit to small data faster than CART. To mitigate overfitting,
FIGS’s flexibility could be penalized via novel regularization techniques, such as regularizing
individual leaves or regularizing a linear model formed from the rules extracted by FIGS.
Alternatively, FIGS might be distilled into an even simpler rule-based model to impose more
regularization. We note however, that the potential for overfitting does not materialize in
our experiments (e.g. Fig. 9.4), perhaps since starting a new tree helps combat the problem
of estimating the mean value of a leaf node with very few points. We hope FIGS can pave
the way towards more transparent and interpretable modeling that can improve machine-
learning practice going forward, particularly in high-stakes domains such as medicine and
policy making.

100

Chapter 10

Hierarchical shrinkage for trees

10.1 Introduction to HS

Decision tree models, used for supervised learning since the 1960s [182, 172, 210], have
recently attained renewed prominence because they embody key elements of interpretability:
shallow trees are easily described and visualized, and can even be implemented by hand.
While the precise definition and utility of interpretability have been a subject of much debate
[186, 69, 230, 231], all agree that it is an important notion in high-stakes decision-making,
such as medical-risk assessment and criminal justice. For this reason, decision trees have
been widely applied in both areas [256, 137, 143, 12].

By far the most popular decision tree algorithm is Classification and Regression Trees
(CART) [32]. These can be ensembled to form a Random Forest (RF) [33] or used as

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 101

0 1 2 3 4
X

3

2

1

0

1

2

3
Y Groundtruth

CART

hsCART

0 1 2 3 4
X

2

0

2

4

6

Y

Groundtruth

CART
hsCART

Figure 10.1: Example of HS for toy univariate regression problems. HS regularizes model
predictions to improve estimates in noisy leaves that have few samples. CART is fit to the
data in the blue dots and then HS is applied posthoc (hsCART).

weak learners in Gradient Boosting (GB) [87]; both algorithms have achieved state-of-the-
art performance over a wide class of prediction problems [45, 44, 80, 196, 113], and are
implemented in popular machine learning packages such as ranger [286], scikit-learn

[205], and imodels [251]. Variants of these algorithms, such as iterative random forest for
finding stable interactions [22], have found use in scientific applications.

In view of the widespread use of tree-based methods, we seek to provide a new lens
on their regularization. On the one hand, decision trees often obey traditional statistical
wisdom in that they need to be regularized to prevent overfitting. In practice, this is carried
out by specifying an early stopping condition for tree growth, such as a maximum depth,
or alternatively, pruning the tree after it is grown [89]. These procedures, however, only
regularize tree models via their tree structure, and it is usually taken for granted that the
prediction over each leaf should be the average response of the training samples it contains.
We show that this can be very limiting: shrinking these predictions in a hierarchical fashion
can significantly reduce generalization error in both regression and classification settings (e.g.
see Fig. 10.1).

On the other hand, trees used in an RF are usually not explicitly regularized and in-
terpolate the data by being grown to purity (e.g. see the default settings of scikit-learn
and ranger). Instead, RF prevents overfitting by relying upon the randomness injected into
the algorithm during tree growth, which acts as a form of implicit regularization [33, 171].
We show that apart from this implicit regularization, more regularization, in the form of
hierarchical shrinkage, does improve generalization even while using a smaller ensemble for
many data sets.

Equally important, regularizing RFs also improves the quality of their post-hoc interpre-
tations. RFs are usually interpreted via their feature and interaction importances, which
have been used to provide scientific insight in areas such as remote sensing and genomics [50,
22, 78]. The reproducibility and scientific meaning of such interpretations become question-
able when the underlying RF model has poor predictive performance [186], or when they are
highly sensitive to data perturbations [292]. We show that HS improves the interpretability

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 102

of RF by both simplifying and stabilizing its decision boundaries and SHAP values [159] on
a number of real-world data sets.

Our proposed method, which we call Hierarchical Shrinkage (HS), is an extremely fast
and simple yet effective algorithm for the post-hoc regularization of any tree-based model.
It does not alter the tree structure, and instead replaces the average response (or prediction)
over a leaf in the tree with a weighted average of the mean or average responses over the leaf
and each of its ancestors. The weights depend on the number of samples in each leaf, and are
controlled by a single regularization parameter λ that can be tuned efficiently via generalized
cross validation. HS is agnostic to the way the tree is constructed and can be applied post-
hoc to trees constructed with greedy methods such as CART and C4.5 [209], as well optimal
decision trees grown via dynamic programming or integer optimization techniques [150].

A more naive form of shrinkage, which we call leaf-based shrinkage (LBS), appears as
part of XGBoost [49]: whenever a new tree is grown, the average response (prediction) over
each leaf is shrunk directly towards the sample mean of the responses. LBS also occurs1

in Bayesian Additive Regression Trees (BART) [51], which grows an ensemble of trees via a
backfitting MCMC algorithm. Comparing LBS to HS on several real-world datasets shows
that HS uniformly has better predictive performance than LBS.

We explain the advantages of HS by building on recent work which uses decision stumps
associated to each interior node of a tree to construct a new (supervised) feature represen-
tation [131]. The original tree model is recovered as the linear model obtained by regressing
the responses on the supervised features. We show that HS is exactly the ridge regression
solution in this supervised feature space, while LBS can also be viewed as ridge regression,
but with a different (supervised) feature space (of the same dimension) that relies only on
the leaf nodes. This allows us to use ridge regression calculations heuristically to partially
explain both the reasonableness of the shrinkage scaling in HS, as well as our empirical
evidence that HS achieves consistently better predictive accuracy than LBS (see Sec. 10.5).

The rest of the paper is organized as follows. Sec. 10.2 gives a formal statement of HS,
and discusses several computational considerations. Sec. 10.5 discuss the interpretation of
HS as ridge regression on the supervised features. Sec. 10.3 presents the results of exten-
sive numerical experiments on simulated and real world data sets that illustrate the gains
in prediction accuracy from applying the method. Sec. 10.4 shows how HS improves the
interpretability of RFs.

10.2 The Hierarchical Shrinkage (HS) algorithm

Throughout this paper, we work in the supervised learning setting where we are given a
training setDn = {(xi, yi)}ni=1, from which we learn a tree model f̂ for the regression function.

1When conditioned on the structure of a given tree, as well as all other trees in the ensemble, the posterior
distribution for the contribution of a leaf node is a product of Gaussian likelihood functions centered at the
model residuals as well as a Gaussian prior. A simple calculation shows that the posterior mean can be
obtained from the residual mean via LBS.

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 103

Given a query point x, let tL ⊂ tL−1 ⊂ · · · ⊂ t0 denote its leaf-to-root path, with tL and t0
representing its leaf node and the root node respectively. For any node t, let N(t) denote the
number of samples it contains, and Êt{y} the average response. The tree model prediction
can be written as the telescoping sum:

f̂(x) = Êt0{y}+
L∑
l=1

(
Êtl{y} − Êtl−1

{y}
)
.

HS transforms f̂ into a shrunk model f̂λ via the formula:

f̂λ(x) := Êt0{y}+
L∑
l=1

Êtl{y} − Êtl−1
{y}

1 + λ/N(tl−1)
, (10.1)

where λ is a hyperparameter chosen by the user, for example by cross validation. We
emphasize that HS maintains the tree structure, and only modifies the prediction over each
leaf node.

Since HS continues to make a constant prediction over each leaf node, our method thus
comprises a one-off modification of these values. This can be computed in O(m) time, where
m is the total number of nodes in the tree. No other aspects of the underlying data structure
are modified, with test time prediction occurring in exactly the same way as in the original
tree. Moreover, our method HS does not even need to see the original training data, and only
requires access to the fitted tree model. These features make it extremely lightweight and
easy to implement, as we have done in the open-source package imodels [251]. By applying
HS to each tree in an ensemble, it can be generalized to methods such as RF and gradient
boosting.

While not typically done, it is possible to regularize RFs via other hyperparameters such
as maximum tree depth. Tuning these hyperparameters, however, requires refitting the RF
at every value in a grid. This quickly becomes computationally expensive, even for moderate
dataset sizes2, over multiple folds in a cross-validation (CV) set up. In contrast, since HS
is applied post-hoc, we only need to fit the RF once per CV fold, leading to potentially
enormous time savings. In addition, due to the connection between our method and ridge
regression, it is even possible to get away with fitting the RF only once by using generalized
cross-validation [95]3.

We also note the formula for LBS:

f̂ lλ(x) := Êt0{y}+
ÊtL{y} − Êt0{y}

1 + λ/N(tL)
. (10.2)

2Many popular tree-building algorithms such as CART have a run time of O(pn2) for constructing a
binary tree.

3This allows for efficient computation of leave-one-out cross-validation error, which can be used to select
λ, without refitting the RF.

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 104

Expanding this into a telescoping sum similar to (10.1), we see that the major difference
between the two formulas is that whereas LBS shrinks each term by the same factor, HS
shrinks each term by a different amount, with the amount of shrinkage controlled by the
number of samples in the ancestor. This increased flexibility leads to better prediction
performance for the final model, as evidenced by our results presented in the next section.

10.3 HS improves predictive performance on

real-world datasets

Data overview

In this section, we study the performance of HS on a collection of classification and regression
datasets selected as follows. For classification, we consider a number of datasets used in the
classic Random Forest paper [33, 15], as well as two that are commonly used to evaluate rule-
based models [280]. For regression, we consider all regression datasets used by [33] with at
least 200 samples, as well as a variety of data-sets from the PMLB benchmark [227] ranging
from small to large sample sizes. Table 10.1 displays the number of samples and features
present in each dataset. In all cases, 2/3 of the data is used for training (hyperparameters
are selected via 3-fold cross-validation on this set) and 1/3 of the data is used for testing.

Name Samples Features

C
la

ss
ifi

ca
ti

on

Heart 270 15
Breast cancer 277 17
Haberman 306 3
Ionosphere [243] 351 34
Diabetes [253] 768 8
German credit 1000 20
Juvenile [197] 3640 286
Recidivism 6172 20

R
eg

re
ss

io
n

Friedman1 [88] 200 10
Friedman3 [88] 200 4
Diabetes [75] 442 10
Geographical music 1059 117
Red wine 1599 11
Abalone [188] 4177 8
Satellite image [227] 6435 36
CA housing [199] 20640 8

Table 10.1: Real-world datasets analyzed here for classification (top panel) and regression
(bottom panel).

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 105

HS improves prediction performance for commonly used tree
methods

The prediction performance results for classification and regression are plotted in Fig. 10.3A
and Fig. 10.3B respectively, with the number of leaves, as a proxy for the model complexity,
plotted on the x-axis. We consider trees grown using four different techniques: CART,
CART with cost-complexity pruning (CCP), C4.5, and GOSDT [150], a method that grows
optimal trees in terms of the cost-complexity penalized misclassification loss.

For each of the four tree-growing methods, we grow a tree to a fixed number of leaves
m,4 for several different choices of m ∈ {2, 4, 8, 12, 15, 20, 24, 28, 30, 32} (in practice, m would
be pre-specified by a user or selected via cross-validation). For each tree, we compute its
prediction performance before and after applying HS, where the regularization parameter for
HS is selected from the set λ ∈ {0.1, 1.0, 10.0, 25.0, 50.0, 100.0} via cross-validation. Results
for each experiment are averaged over 10 random data splits. We observe that HS (solid
lines in Fig. 10.3A,B) does not hurt prediction in any of our data sets, and often leads to
substantial performance gains. For example, taking m = 15, we observe an average increase
in relative predictive performance (measured by AUC) of 6.2%, 6.5%, 8% for HS applied to
CART and CART with CCP, and C4.5 respectively for the classification data sets. For the
regression data sets with m = 15, we observe an average relative increase in R2 performance
of 9.8%, 10.1% for CART and CART with CCP respectively.

As expected, the improvements tend to be larger when m increases and for smaller
datasets (e.g. the top row of Fig. 10.3A and Fig. 10.3B), although for larger datasets we see
substantial improvements using HS once the number of leaves in the model is increased.

The fact that improvements hold for CART (CCP) shows that the effect of HS is not en-
tirely replicated by tree structure regularization, and instead, the two regularization methods
can be used synergistically. Indeed, applying HS can lead to the selection of a larger tree.
Since tree models are sometimes used for subgroup search, larger trees from HS could allow
for the discovery of otherwise undetected subgroups.

Fig. 10.2 shows a simulation result analyzing the bias-variance tradeoff for CART with
and without HS. Here, data is generated from a linear model with Gaussian noise added
during training. While predictive performance curves are often U-shaped because of the
bias-variance tradeoff, those for HS are monotonic since HS is able to effectively reduce
variance. The optimal regularization parameter λ decreases with the total number of leaves;
this is corroborated by our calculations in Sec. 10.5.

HS outperforms LBS

We next compare the performance of HS to that of leaf-based shrinkage (LBS), which is
used in XGBoost. Fig. 10.3C shows that hsCART tends to outperform CART (LBS), when
repeating the same experiments as in Fig. 10.3A).

4For CART (CCP), we grow the tree to maximum depth, and tune the regularization parameter to yield
m leaves.

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 106

0 20 40 60 80 100 120 140
Number of Leaves

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r

50

60

70

80

90CART MSE

hsCART MSE

CART Variance

hsCART Bias2

CART Bias2

hsCART Variance

Figure 10.2: Test error for CART with HS (hsCART) stays low as the number of leaves
increases, whereas CART test error increases due to overfitting. Data is simulated from a
linear model with Gaussian noise.

HS improves prediction performance for RF

As mentioned earlier, trees in an RF are typically grown to purity without any constraints on
depth or node size. Nonetheless, [171] argues that the mtry parameter5, which controls the
degree of feature sub-selection, “serves much the same purpose as the shrinkage penalty in
explicitly regularized regression procedures like lasso and ridge regression.” This parameter
is typically set to a default value6, and is not tuned. We compare the performance of
regularizing RF via HS against maximum tree depth and mtry, tuning the hyperparameter
for each method via cross validation. We repeat this for several different choices of B, the
number of trees in the RF, and like before, average the results over 10 random data splits.

The results, displayed in Fig. 10.3D show that HS significantly improves the prediction
accuracy of RF across the datasets we considered. Moreover, HS clearly outperforms the two
RF-regularization methods (using depth and mtry) in all but one dataset (breast-cancer).
This is especially promising because HS is also the fastest and easiest method to implement,
as it does not require refitting the RF. Moreover, hsRF tends to achieve its maximum per-
formance with fewer trees than RF without regularization; as a consequence, RF with HS
is often able to achieve the same performance with an ensemble that is five times smaller,
allowing us to achieve large savings in computational resources.

We also compare hsRF to the predictive performance of BART, and observe that hsRF
and BART are comparable in terms of prediction performance. However, hsRF is much
faster to fit than BART (typically 10-15 times faster) and we can also apply HS to BART.

5This parameter is denoted mtry in ranger and max features in scikit-learn.
6Typically

√
p for classification and p/3 for regression, where p is the number of features.

. .
l

. . . .
• I
• I .
. i .
~ .

I, _.,,,.
: __.
A , ..

----------------:

. .
• • ■ ■ ■ ■ ■ / \ I ,­

l ~

1
.. ,

··-··-··-··-··-· i\ ·-··-·· - ■ ■-■■- ■ ■ -■■

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 107

(A
)

C
la

ss
ifi

ca
ti

o
n

0 5 10 15 20 25
0.725

0.750

0.775

0.800

0.825

0.850

AU
C

heart (n = 270, p = 15)

hsCART
hsCART (CCP)
CART
CART (CCP)

0 10 20 30
0.55

0.60

0.65

0.70
breast-cancer (n = 277, p = 17)

0 10 20 30

0.55

0.60

0.65

haberman (n = 306, p = 3)

0 5 10 15
0.75

0.80

0.85

0.90

0.95 ionosphere (n = 351, p = 34)

0 10 20 30
Number of Leaves

0.70

0.75

0.80

AU
C

diabetes (n = 768, p = 8)

0 10 20 30
Number of Leaves

0.65

0.70

0.75
german-credit (n = 1000, p = 20)

0 10 20 30
Number of Leaves

0.60

0.65

0.70

0.75

0.80

0.85
juvenile (n = 3640, p = 286)

0 10 20 30
Number of Leaves

0.625

0.650

0.675

0.700

0.725

0.750
recidivism (n = 6172, p = 20)

(B
)

R
eg

re
ss

io
n

0 10 20 30

0.30

0.35

0.40

0.45

0.50

0.55

R
2

friedman1 (n = 200, p = 10)

hsCART
hsCART (CCP)
CART
CART (CCP)

0 10 20 30
0.60

0.65

0.70

0.75

0.80
friedman3 (n = 200, p = 4)

0 10 20 30
0.10

0.15

0.20

0.25

0.30

0.35
diabetes-regr (n = 442, p = 10)

0 10 20 30
0.35

0.40

0.45

0.50

0.55

geographical-music (n = 1059, p = 117)

0 10 20 30
Number of Leaves

0.10

0.15

0.20

0.25

0.30

0.35

R
2

red-wine (n = 1599, p = 11)

0 10 20 30
Number of Leaves

0.2

0.3

0.4

0.5
abalone (n = 4177, p = 8)

0 10 20 30
Number of Leaves

0.5

0.6

0.7

0.8

satellite-image (n = 6435, p = 36)

0 10 20 30
Number of Leaves

0.3

0.4

0.5

0.6

0.7
california-housing (n = 20640, p = 8)

(C
)

L
B

S
co

m
p

ar
is

on
s

5 10 15 20 25
0.725

0.750

0.775

0.800

0.825

0.850

AU
C

heart (n = 270, p = 15)

hsCART
CART (LBS)
CART

20 40 60

0.575

0.600

0.625

0.650

0.675

0.700
breast-cancer (n = 277, p = 17)

20 40 60

0.55

0.60

0.65

haberman (n = 306, p = 3)

5 10 15
0.75

0.80

0.85

0.90

0.95
ionosphere (n = 351, p = 34)

20 40 60 80
Number of Leaves

0.70

0.75

0.80

AU
C

diabetes (n = 768, p = 8)

25 50 75 100 125
Number of Leaves

0.65

0.70

0.75
german-credit (n = 1000, p = 20)

50 100 150 200
Number of Leaves

0.60

0.65

0.70

0.75

0.80

0.85
juvenile (n = 3640, p = 286)

100 200 300 400
Number of Leaves

0.625

0.650

0.675

0.700

0.725

0.750
recidivism (n = 6172, p = 20)

(D
)

R
F

C
om

p
ar

is
on

s

0 20 40 60 80 100

0.84

0.86

0.88

0.90

0.92

AU
C

heart (n = 270, p = 15)

hsRF
RF CV (depth)
RF CV (m_try)
RF
BART

0 20 40 60 80 100

0.68

0.70

0.72

0.74

0.76

breast-cancer (n = 277, p = 17)

0 20 40 60 80 100
0.60

0.62

0.64

0.66

0.68

0.70

haberman (n = 306, p = 3)

0 20 40 60 80 100
0.94

0.96

0.98

1.00
ionosphere (n = 351, p = 34)

0 20 40 60 80 100
Number of Trees

0.76

0.78

0.80

0.82

0.84

AU
C

diabetes (n = 768, p = 8)

0 20 40 60 80 100
Number of Trees

0.700

0.725

0.750

0.775

0.800

0.825
german-credit (n = 1000, p = 20)

0 20 40 60 80 100
Number of Trees

0.800

0.825

0.850

0.875

0.900

0.925
juvenile (n = 3640, p = 286)

0 20 40 60 80 100
Number of Trees

0.650

0.675

0.700

0.725

0.750

0.775
recidivism (n = 6172, p = 20)

Figure 10.3: Hierarchical Shrinkage (solid lines) often improves predictive performance across
various datasets, particularly for small datasets. (A) Top two rows show results for classification
datasets (measured by AUC of the ROC curve) and (B) the next two rows show results for regression
datasets (measured by R2). HS often significantly improves the performance over CART, CART
with CCP, and (C) leaf-based shrinkage. (D) HS even improves results for Random Forests as a
function of the number of trees. Across all panels, errors bars show standard error of the mean
computed over 10 random data splits. Note that the y-axis scales differ across plots.

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 108

10.4 HS improves RF interpretations by simplifying

and stabilizing them

In addition to improving predictive performance, HS reduces variance and removes sampling
artifacts, resulting in (i) simplified boundaries, (ii) stabilized feature importance scores, and
(iii) making it easier to interpret interactions in the model.

0 25 50 75 100 125 150 175
A2

0

10

20

30

40

50

60

A6

RF (AUC 0.733)

0
1

0 25 50 75 100 125 150 175
A2

0

10

20

30

40

50

60

A6

hsRF (AUC 0.787)

0
1

Figure 10.4: Comparison of decision boundary learned by RF vs hsRF on the Diabetes
dataset, when fitted using only two features. HS prevents overfitting by creating a smoother,
simpler decision boundary, resulting in improved performance and interpretability.

Fig. 10.4 shows an example of simplification: smoothing decision boundaries. On the
diabetes dataset [253], RF can achieve strong performance (AUC 0.733) even when fitted to
only two features. When HS is applied to this RF, the performance increases (to an AUC of
0.787), but the decision boundary also becomes considerably smoother and less fragmented.
Since these two features are the only inputs to the model, these smooth boundaries enable
a user to identify much clearer regions for high-risk predictions.

In models with many features, post-hoc interpretations, such as SHAP scores [159], can
help a practitioner understand how a model makes its predictions. Fig. 10.5 shows that HS
improves the stability of SHAP scores. Stability is measured using the variance of SHAP
values when models are fit to 100 random train-test splits of the breast-cancer dataset. This
makes the model interpretations less sensitive to minor data perturbations and thus more
trustworthy. Moreover, these improvements in stability persist even for datasets such as
Heart, Diabetes, and Ionosphere, for which HS does not greatly improve prediction perfor-
mance. Hence, HS can improve the stability and interpretability of RF, even when it does
not improve its predictive performance.

■

..

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 109

de
g-

m
al

ig
_2

.0

in
v-

no
de

s

ag
e

tu
m

or
-s

ize

br
ea

st

no
de

-c
ap

s

de
g-

m
al

ig
_1

.0

de
g-

m
al

ig
_0

.0

irr
ad

ia
t

br
ea

st
-q

ua
d_

0.
00.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

SH
AP

 V
ar

ia
bi

lit
y

RF
hsRF

Figure 10.5: Comparison of SHAP plots learnt by Random Forests on the breast-cancer
dataset before / after applying HS. HS displays lower variability across different data per-
turbations (without dropping in predictive performance), indicating enhanced stability.

Fig. 10.6 shows an example investigating the SHAP scores across the breast-cancer
dataset for a trained RF. After applying HS, the SHAP values for each feature often cluster
much more nicely. Each cluster corresponds to a group of samples for which a feature con-
tributes a similar amount to the predicted response, regardless of the value of other features.
As a result, each cluster can be interpreted without taking into account feature interactions,
simplifying the user’s interpretation. Since HS improves the model’s predictive performance,
the clustered SHAP scores suggest that HS improves performance by regularizing some un-
necessary interactions in the model, and makes the fitted function closer to being additive,
which allows for simpler interpretations.

10.5 HS as ridge regression on supervised features

Recent work by showed that decision trees are linear models on features obtained via super-
vised feature learning [131]. To see this, consider a tree model f̂ , with a fixed indexing of its
interior nodes {t0, t1, . . . , tm−1}. We first associate to each node t the decision stump

ψt(x) =
N(tR)1{x ∈ tL} −N(tL)1{x ∈ tR}√

N(tL)N(tR)
, (10.3)

where tL and tR denote the left and right children of t respectively. This is a tri-valued
function that is positive on the left child, negative on the right child, and zero everywhere
else. Concatenating the decision stumps together yields a supervised feature map via Ψ(x) =(
ψt0(x), . . . , ψtm−1(x)

)
and a transformed training set Ψ(Dn) ∈ Rn×m. One can easily check

that these feature vectors are orthogonal in Rn, and furthermore that their squared `2 norms
are the number of samples contained in their corresponding nodes: ‖ψti‖2 = N(ti).

--

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 110

More interestingly, on work showed (see Lemma 3.2 therein) that we have functional
equality between the tree model and the kernel regression model with respect to the super-

vised feature map Ψ [131] was able to show , or in other words, f̂(x) = β̂
T

Ψ(x), where
β̂ = Ψ(Dn)†y. An easy extension of his proof yields the following result.

Theorem 3. Let β̂λ be the solution to the ridge regression problem

min
β

{
n∑
i=1

(
βTΨ(xi)− yi

)2
+ λ‖∗‖β2

}
. (10.4)

We have the functional equality f̂λ(x) = β̂
T

λΨ(x).

Since the decision stumps (10.3) are orthogonal, we can decompose (10.4) into m inde-
pendent univariate ridge regression problems, one with respect to each node t:

min
β

{
n∑
i=1

(βψt(xi)− yi)2 + λβ2

}
. (10.5)

Next, we use this connection of HS to ridge regression to argue heuristically that the
same λ works well for each regression subproblem (10.5). This helps to justify our choice of
denominator for each term in the HS formula (10.1) (a different choice would have led to a
rescaling of the features ψti .)

Assume for the moment that the tree structure and hence the feature map is independent
of the responses, which can be achieved via sample splitting. This is known in the literature

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
SHAP value

node-caps

breast-quad_0.0

breast-quad_1.0

deg-malig_1.0

breast

inv-nodes

irradiat

age

tumor-size

deg-malig_2.0

RF

-0.02 0.00 0.02 0.04 0.06
SHAP value

node-caps

breast-quad_0.0

breast-quad_1.0

deg-malig_1.0

breast

inv-nodes

irradiat

age

tumor-size

deg-malig_2.0

hsRF

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

Va
lu

e

Figure 10.6: Comparison of SHAP values for RF on the breast-cancer dataset before/after
applying HS with features arranged by importance. Each point represents a single sample
in the dataset. HS leads to more clustered SHAP values for each feature, reflecting less
heterogentity in the SHAP values of each feature.

.......
.-c

......... -• ········- - 1--

•

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 111

as the “honesty condition”, and has been widely used to simplify the analysis of tree-based
methods [16]. Define β∗ ∈ Rm to have the value

β∗(t) :=

√
N(tL)N(tR)

N(t)
(E{y | tL} − E{y | tR}), (10.6)

for the coordinate associated with each node t. For any query point x, βT∗Ψ(x) gives the
mean response over the leaf t(x) containing it. Furthermore, knowing Ψ(x) is equivalent to
knowing the leaf containing x. Putting these two facts together show that the population
residuals ri := yi − βT∗Ψ(x) satisfy E{ri | Ψ(xi)} = 0, so that we have a generative linear
model, in which we can calculate that the optimal regularization parameter for (10.5) is
equal to λopt(t) = σ2(t)/β∗(t)

2, where σ2(t) is roughly equal to the conditional variance7 of
the residual over t.

Given the connection between impurity and residual variance, if the tree model f̂ con-
sidered in this section is grown using an impurity decrease stopping condition, we should
expect the residual variance to be relatively similar over all leaves, so that σ2(t) also does
not vary too much over different nodes. Meanwhile

(E{y | tL} − E{y | tR})2 ≈ diam(t)2 ≈ 2−2depth(t)/p (10.7)

where p is the dimension of the original feature space. Since the maximum depth is typ-
ically O(log n), λopt(t) also does not vary too much across different nodes, and we do not
lose too much by using a common value of λ across all the univariate subproblems (10.5)
corresponding to different decision stump features.

A more naive (supervised) tree-based feature map is the one-hot encoding of an original
feature vector obtained by treating the leaf index as a categorical variable. We denote this
using Ξ. While Ξ can be obtained from Ψ via an invertible linear transformation, the two
maps result in different kernels, and thus different ridge regression problems. Indeed, the
ridge regression solution with respect to Ξ is equivalent to performing LBS on the tree model.
The leaf indicator features are also orthogonal, so we may similarly decompose this ridge
regression problem into independent univariate subproblems, one for each leaf. However,
in this case, the population regression vector βl∗, for which βlT∗ Ξ(x) gives the expected
response over each leaf, has coordinates equal to the population expectation over the leaves:
βl∗(t) = E{y | t}. As such, the optimal regularization parameters for different leaf nodes
could be very different, and we lose more by having to use a common value of λ.

In practice, sample splitting is rarely done, and the feature map depends on the responses.
Nonetheless, we believe that the heuristics detailed above continue to hold to a certain extent
as shown in our experimental results.

7More precisely, it is equal to N(tL)
N(t) Var{r | tR}+ N(tR)

N(t) Var{r | tL}.

CHAPTER 10. HIERARCHICAL SHRINKAGE FOR TREES 112

10.6 HS Discussion

HS is a fast yet powerful regularization procedure that can be applied to any tree-based model
without changing its structure. In our experiments, HS never hurts prediction performance,
and often leads to substantial gains in both predictive performance and interpretability.
HS is partly motivated by previous non-minimax-optimal generalization lower bounds for
decision trees that predict using average responses over each leaf [268], pointing to a possible
limitation of averaging.HS allows us to break this inferential barrier by pooling information
from multiple leaves.

The work here naturally suggests many exciting future directions regarding the regular-
ization of trees and RFs. First, replacing ridge regression with more sophisticated linear
methods such as lasso or elastic net can result in other promising regularization methods. In
addition, HS could improve other structured rule-based models, such as rule lists and tree
sums [269].

Meanwhile, we have only scratched the surface of the relationships between regularization,
robustness, and interpretability. Indeed, the connection between HS and ridge regression
suggests the relevance of observations that ridge regression helps with robust generalization.
Furthermore, we have seen that the simpler and smoother decision boundaries resulting
from HS are more likely to generalize well. Hence, we conjecture that HS could improve
the predictive performance of RF with respect to covariate shift. Moreover, the improved
clustering and stability of SHAP scores after applying HS suggest that regularization via HS
could improve the identification of important features, even when using alternative methods
such as MDI.

113

Chapter 11

Real-world problem: clinical
decision-rule development

11.1 Intro to clinical decision rules

Background Blunt intra-abdominal injury is a leading cause of preventable death and
disability in children in the U.S. [128]. Computed tomography scans (CT) are the refer-
ence standard to diagnose intra-abdominal injury. In the last 30 years, CT use in children
has increased without proportional improvements in clinical outcomes [170]. Indiscrimi-
nate use of CT is associated with an increased risk of radiation-induced malignancy [174].
Uncertainty and the lack of evidence in emergency department risk-stratification strategies
lead to wide variation in CT use [166]. Furthermore, variability in practice increases cost

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 114

and reduces effectiveness, efficiency, and quality of pediatric trauma care [276]. The Pe-
diatric Emergency Care Applied Research Network (PECARN) prospectively developed a
clinical decision instrument (CDI) to identify children after blunt torso trauma at very low
risk for intra-abdominal injury undergoing acute intervention to decrease indiscriminate CT
use [110].

Importance Emergency care requires rapid and accurate decisions across a diverse group
of patients and practices. CDIs reduce variability for high-prevalence conditions by offering
the potential for more accurate and reliable diagnostic strategies than clinician judgment
alone [55]. However, before widespread use, CDIs require external validation. External
validation is considered a more robust test of diagnostic performance than internal valida-
tion, and is critical to understanding the reliability of CDIs as they are generalized to new
populations [224, 122]. If the CDI performs poorly during external validation, it may be
refined, reconsidered, or even abandoned [98]. However, prospective external validation may
be expensive and cumbersome. Therefore, introducing a step to assess a CDI before external
validation can ensure that it is developed and modeled to be as predictive and stable as
possible, to increase the chance of successful external validation.

Recent progress in data science has led to innovative frameworks to assess the predic-
tion performance and stability of healthcare-related diagnostic models, such as CDIs. The
Predictability-Computability-Stability (PCS) framework is a unified approach to data science
that protects against instability induced by subjective decisions made during the data sci-
ence lifecycle [292, 146]. PCS has improved drug-response prediction [146], gene-interaction
search [22], and drug subgroup discovery in clinical trials [73]; these case-studies suggest
that PCS may improve the CDI development and validation process before further invest-
ment into external validation. In addition to predictability as a reality check, two critical
aspects of PCS are interpretability and stability analysis. To undergo PCS vetting, a CDI
must be developed using interpretable methods, ensuring reproducibility [230]. Stability
measures how much a CDI varies as choices made during the data science life cycle (includ-
ing data cleaning and modeling), such as reasonable data alterations or different modeling
techniques [293]. Here, multiple CDIs are developed by subsampling the original PECARN
dataset. First, they are screened based on their test characteristics (predictability) and inter-
pretability before assessing the variability of the importances of different predictor variables
across high-performing CDIs (variable-level stability).

Goals of This Investigation The main objective of this study was to demonstrate the
use of the PCS data science framework in vetting clinical decision instrument development
(methods in Section 2.1 and results in Section 3.1). The secondary objective was to assess
and externally validate the original PECARN clinical decision instrument for identifying
children at very low risk of intra-abdominal injuries undergoing acute intervention after
blunt torso trauma (methods in Section 2.2 and results in Section 3.2). Section 4 provides a
discussion before Section 5 provides a conclusion.

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 115

11.2 Methods for clinical decision rule development

with PCS

We analyzed two independent prospectively collected datasets from two large pediatric re-
search networks, PECARN and the Pediatric Surgical Research Collaborative (PedSRC).
This secondary analysis of anonymized data was deemed exempt from review by the Uni-
versity of California, San Francisco, and Medical University of South Carolina institutional
review boards. There were two objectives of this study. The first (Section 2.1) was to
demonstrate the PCS framework for improving CDI development. The second (Section 2.2)
was to assess prediction performance and stability of the original PECARN CDI on external
validation.

Objective 1: Demonstrate PCS Data Science Framework for
Improving CDI Development

We followed the PCS framework, which goes beyond traditional reporting guidelines to
assess the impact of reasonable human judgment calls by conducting reasonable data/model
perturbations across the entire data science lifecycle [55, 293]. PCS offers a framework to
assess a CDI for diagnostic performance based on predictive performance (i.e. sensitivity and
specificity) and computational needs, putting weight on stability. During the development
of a CDI, investigators make many “judgment calls”, i.e. subjective decisions which may
lead to variability in the final developed CDI. PCS recommends that investigators ensure
that study conclusions are stable to any such judgment calls. These judgment calls can be
checked by measuring the stability of conclusions when alternative “reasonable” judgment
calls are made. Reasonable judgment calls are those solicited through direct engagement
between clinicians and data scientists (see the Discussion section for a more detailed look at
PCS in the context of CDIs).

In this study, the PCS framework was applied to CDI development, including all CDI de-
velopment and validation stages (it could also be applied to the data cleaning stage, but was
not done here). First, the PCS framework (1) defines the clinical problem, then reviews all
aspects of (2) collecting and preprocessing data, and (3) develops CDIs using interpretable
and rule-based models. Next, these CDIs are vetted for their (4) predictive performance
(predictability) and the importance of predictor variables. Last, PCS (5) supports the inter-
pretation of results by identifying variability in all the PCS steps (stability), ensuring CDIs
are developed to be supported by both data and domain knowledge (provider input). In
addition, PCS guided all aspects of data documentation and analysis; code is available on
Github1 [98].

1https://github.com/csinva/iai-clinical-decision-rule

https://github.com/csinva/iai-clinical-decision-rule

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 116

Development and Validation Dataset

The PECARN dataset is a prospective cohort of 12,044 children after blunt torso trauma
between May 2007 and January 2010 in 20 emergency departments [110]. Predictor variables
were collected prospectively using a standard data collection tool. We used the PECARN
definition for the a priori outcome of interest of intra-abdominal injury undergoing acute
intervention.

Following the original PECARN methods, we excluded any variable that was missing
more than 5%, and used predictor variables with at least moderate inter-rater agreement,
with the lower bound of the 95% confidence interval (CI) of the k measurements being
at least 0.4 [289]. Missing values for a predictor variable were imputed via its median,
and we manually combined predictors that conveyed redundant information based on their
correlations.

Original PECARN CDI Development. Redevelopment of the PECARN CDI en-
sures the replicability of the original trial. We followed the original PECARN development
and internal cross-validation process to redevelop the PECARN CDI to identify children at
very low risk for intra-abdominal injuries undergoing acute intervention [110]. We used a
Classification and Regression Trees (CART) rule list [32], which involves binary recursive
partitioning using the Gini criterion [257].

PCS CDI Development. We developed several alternative CDIs (corresponding to
different judgment calls during modeling) to compare the predictive performance and perform
stability analysis of the PECARN CDI. The following models were used to develop CDIs:
logistic regression, CART decision trees, rule lists [32], Bayesian Rule Lists [143], iterative
Random Forests [22], RuleFit [86], Optimal sparse decision trees‘[150], Fast interpretable
greedy-tree sums [269] and manual subgroup analysis. Each rule-based predictive model
was chosen for its interpretability, taking the form of either a parsimonious list, tree, or set
of binary rules. We used a stratified splitting technique to divide the PECARN dataset
into a development set (i.e. a training set), 7,985 children (66%), and a validation set,
4,059 children (34%). Predictive models were fit using the imodels python package [251]2.
Hyperparameters were selected via manual tuning using only the development dataset.

CDI Predictive Performance. We calculated standard diagnostic statistics to re-
port CDI performance. We used sensitivity and specificity curves to compare the diagnos-
tic test characteristics of each CDI in the PECARN development and internal validation
datasets. Furthermore, many more test characteristics were reported for each CDI, includ-
ing their positive predictive value and Brier score (which helps evaluate the calibration of
a CDI) [232]. The CDIs were ranked heuristically from the sensitivity-specificity curves
by weighting (threshold-dependent) sensitivity five times more than specificity. CDIs with
poor predictive performance (i.e., achieving a sensitivity below 90%) were eliminated before
further analysis.

CDI Stability. We assessed CDI stability by performing side-by-side comparisons of
the PECARN CDI and alternative CDIs. To assess predictor-variable stability, we report

2https://github.com/csinva/imodels version 0.2.5

https://github.com/csinva/imodels

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 117

the frequency and non-zero permutation-importance score of each predictor variable for
each CDI [33]. The permutation importance measures the effect a predictor variable has
on the overall prediction model’s error. If a predictor variable is important, permuting or
shuffling the value increases the model’s error. The predictor variables with high permutation
importance, especially across many different CDIs have greater stability.

We also compared the variability of diagnostic test characteristics between the PECARN
development and internal validation datasets to assess the generalization of the model (i.e.
stability of the predictive performance). Large changes in test characteristics suggest that
the model is unstable in generalizing to new data. Moreover, a CDI can be unstable even
when being re-developed to the same data. This is because many models contain some
randomness in fitting, which can produce a different result when a model is re-developed.
Therefore, we also measure randomness when each model is re-developed as a marker of
stability. Prediction models were then ranked based on predictive performance (sensitivity
and specificity), and then on variable-level stability.

Objective 2: Predictability and Stability of the Original PECARN
CDI on External Validation

External Validation Dataset

The PedSRC dataset is based on a prospective cohort of 2,188 children with blunt trauma
at 14 non-PECARN Level I pediatric trauma centers [259]. Predictor variables were col-
lected prospectively using a standard data collection tool. The PedSRC study defined intra-
abdominal injury as any injury to an intra-abdominal structure identified on abdominal CT
or at laparotomy. We matched the a priori PedSRC outcome of intra-abdominal injury
undergoing intervention to the PECARN outcome.

We matched predictor and outcome variables between the datasets through distribution
assessment and expert review. To ensure consistent matching, all variable linkages between
datasets were reviewed by domain experts, including PECARN and PedSRC study principal
investigators, to ensure biologic plausibility and ensure original data definition was congruent
between the respective datasets. Variables with subjectivity were further screened, original
documentation reviewed, and expert authorship team consensus was used to match variables.
The same missing data strategy was used on the PedSRC and PECARN datasets.

PCS External Validation. To externally validate each CDI, we calculated threshold-
bound and threshold-free standard diagnostic statistics. We calculated sensitivity, specificity,
negative and positive predictive values, positive and negative likelihood ratios. We also in-
cluded false positives, false negatives, accuracy, and F1 score. The F1 score, an accuracy
indicator, emphasizes the clinical relevance of sensitivity over specificity and ranges from 1
(best value) to 0 (worst value). We used sensitivity-specificity curves to compare the test
characteristics of each candidate CDI on the external test dataset. We ranked predictor vari-
able importance by assessing each variable’s redundancy and weighted predictive power on

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 118

the external validation dataset. Finally, we assessed overall CDI performance by evaluating
the diagnostics test characteristics and variable importance.

We considered clinical context, predictive performance, computational speed, and sta-
bility to assign each CDI a rank. To compare the PCS framework to external validation,
we first ranked predictive performance and stability. As the goal of the CDI is to limit
unnecessary CT use in children after blunt torso trauma, we set a comparison threshold for
predictive performance as a sensitivity five times more than specificity with a lower bound
sensitivity of at least 95%. We calculated standard diagnostic statistics to report CDI per-
formance, including sensitivity, specificity, negative and positive predictive values, positive,
negative likelihood ratios, false positives, false negatives, accuracy, and F1 score. We also
ranked predictor variable importance by assessing each variable’s redundancy and weighted
predictive power on the external validation dataset. Similarly, we measured overall stability
as the proportion of the CDI’s predictive performance assigned to predictor variables with
the highest and lowest variable-level stability.

11.3 CDR Results

Results for Objective 1: Demonstrating the PCS Framework in
CDI Development

Characteristics of Study Patients. The PECARN dataset included 12,044 children
(Table 1). In PECARN, the mean (SD) age was 10.3 (5.4) years (1,167 patients <2 years),
ranging from 0 to 18 years. The PedSRC external validation dataset included 2,188 children.
The mean (SD) age was 7.8 (4.6) years (216 patients <2 years), ranging from 0 to 15 years.
The PedSRC had a higher prevalence of motor vehicle collisions, compared to the PECARN
development and validation datasets, 46.3% vs. 31.8% and 31.4%, and children with intra-
abdominal injuries undergoing acute intervention, 2.8% vs. 1.7% and 1.7%, respectively
(Table 1).

Clinical Decision Instrument Development. We replicated the original PECARN
CDI development using the PECARN dataset and redeveloped the identical seven ordered
decision predictor variables in the PECARN rule list. The randomness for all re-developed
models had no effect on any of the final CDIs performances.

Clinical Decision Instrument Internal Validation. Each CDI had a decline in
performance between the development and internal validation PECARN datasets (Fig. 11.1);
however, the magnitude of the performance drop differed between different CDIs. The greater
the magnitude in reduction suggests a less stable model. For example, the Iterative Random
Forest CDI (red) and CART decision tree (orange) had the largest decline in performance
between the development and validation datasets, suggesting that the prediction model was
overfitting to the development dataset. In contrast, a fitted Bayesian rule list (blue), CART
rule list (green), and Rule fit (purple) all retained similar predictive accuracy between de-

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 119

Table 11.1: Patient demographics and outcomes of the PECARN dataset split into develop-
ment and validation (80:20), and the PedSRC external validation dataset.

PECARN PedSRC
Total
(N=12,044)

Development
(n=7,985)

Internal
Validation
(n=4,059)

External
Validation
(N=2,188)

Age <2 years
(%)

1167 (9.7%) 761 (9.5%) 406 (10%) 216 (9.9%)

Sex Male (%) 7384 (61.3%) 4887 (61.2%) 2497 (61.5%) N/A
MVC (%) 3832 (31.8%) 2505 (31.4%) 1327 (32.7%) 1014 (46.3%)
CT scan (%) 5,179 (43.0%) 3,393 (42.5%) 1,786 (44.0%) 967 (44.2%)
IAI (%) 761 (6.3%) 485 (6.1%) 276 (6.8%) 261 (11.9%)
IAI-I (%) 203 (1.7%) 133 (1.7%) 70 (1.7%) 62 (2.8%)

PECARN: Pediatric Emergency Care Applied Research Network; PedSRC: Pediatric Surgery Research
Collaborative; MVC: motor vehicle collision; CT scan: computed tomography; IAI: intra-abdominal injury;

IAI-I: intra-abdominal injury undergoing acute intervention

velopment and validation. Table 2 summarizes the results of threshold-specific weights in
which the sensitivity is weighted five times more heavily as specificity.

Predictability The original PECARN, Rule Fit, and Bayesian Rule List had minimal
changes in performance between the development and internal validation datasets, suggesting
relatively high predictability for these CDIs (Fig. 11.1B). In contrast, CART Rule List,
CART Decision Tree, and Iterative Random Forest had greater proportional declines in
performance, suggesting lower predictability when heterogeneity in datasets was introduced.

Predictor-variable stability The most stable predictor variables were abdominal trauma/seat
belt sign, Glasgow Coma Scale Score < 14, and abdominal tenderness. These three variables
were the most frequent recurring predictor variables between CDIs. These three variables
also had the highest non-zero permutation scores between the different CDIs. Therefore,
it was recognized that the top three performing predictor variables were selected in the
PECARN CDI and the four top-performing CDIs.

Results for Objective 2: External Validation of PECARN CDI

Distributions and Variable Matching for the external validation dataset. Pre-
dictor and outcome variables between the PECARN and PedSRC datasets were matched
and evaluated for variable-level distributions (Fig. 11.2). Most variables had direct matches
between datasets. The distribution of variables was well-matched except for the PECARN
dataset inclusion of patients 15-17 years, and the lower frequency of children presenting after
motor vehicle collisions (MVC).

External validation predictive performance. The original PECARN CDI success-
fully identified all but six children with intra-abdominal injuries undergoing acute interven-
tions (sensitivity 97%, specificity 42.5%) on the PECARN dataset (Table 2b). On external
validation using the PedSRC dataset, the original PECARN CDI maintained high prediction
performance with an external validation sensitivity of 97.0% and specificity 44.0% (Table
2c). However, the original PECARN CDI missed two children with intra-abdominal injuries
undergoing acute interventions.

The top-performing three predictor variables of the PECARN CDI identified 60/62 pa-
tients with intra-abdominal injuries undergoing acute interventions in the PedSRC dataset,
corresponding to 100% of the CDI’s predictive power (blue box, Fig. 11.3). The remaining
four predictor variables (red box) did not add to the predictive performance of the PECARN
CDI on the PedSRC dataset. The Brier score was 0.026, suggesting the predicted risk is
well-calibrated when using the original PECARN CDI. The same three predictor variables
also captured the majority of the predictive power in the original PECARN validation, iden-
tifying 186 of 201 outcomes. The additional four predictor variables substantially reduce the
CDI’s specificity. However, without these variables, the CDI misses 11 IAI-I patients in the
PECARN dataset, resulting in an unacceptably low sensitivity.

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 120

Figure 11.1: Sensitivity-specificity curves for clinical decision instruments to evaluate chil-
dren after blunt torso trauma on the PECARN (a) development dataset (b) internal valida-
tion dataset, and (c) external validation on the PedSRC. The clinical decision instruments
were then ranked by predictability from best to worst (top to bottom).

Tying together Objective 1 & 2: Comparing PCS Predictions to
External Validation

The ranked overall performance of the CDI on external validation matched that of the
PCS framework prediction rankings (Fig. 11.1C). This suggests that the results obtained
from the PCS framework yielded useful information about the CDI’s external validation
performance, prior to collecting or analyzing the external validation dataset. In addition,
the predictive performance was similar between internal validation and external validation
(using the PedSRC dataset). However, most CDIs slightly improved their performances,
suggesting that the CDIs are not overfitting to the PECARN dataset (Table 2c). The
original PECARN CDI, Bayesian rule list, and Rule Fit had similar performances as in the
PECARN datasets. In contrast, Iterative Random Forest, CART decision tree, and CART
rule list had large declines in predictive performance (Fig. 11.1C).

11.4 Discussion on clinical decision rules

In the discussion, first we seek to describe PCS in the context of CDI development and
vetting focusing on three key topics: predictability, stability, and interpretability. Next, we
exemplify these three topics and their implications for the PECARN CDI.

a. Development (PECARN) b. Internal Validation (PECARN)

+
•

70 80 90 100 70 80 90 100
Sensitivity (%) Sensitivity (%)

c. External Validation (PedSRC)

70 80 90 100
Sensitivity (%)

Itcratfrc Random
Forest

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 121

Table 11.3: Predictive performance of the clinical decision instruments with sensitivity
weighted five times more heavily as specificity. (a) PECARN Development dataset, (b)
PECARN Internal Validation Dataset, (c) PedSRC External Validation Dataset.

(a)
PECARN
Develop-
ment
Dataset

PECARN Bayesian
Rule List

CART
Decision
Tree

CART
Rule List

Iterative
Random
Forest

Rule
Fit

Sensitivity 98% 89% 95% 94% 98% 95%
Specificity 43% 59% 58% 29% 70% 47%
F1 score 0.056 0.07 0.07 0.04 0.10 0.06
Brier score 0.016 0.02 0.58 0.02 0.01 0.08

(b)
PECARN
Internal
Validation
Dataset

PECARN Bayesian
Rule List

CART
Decision
Tree

CART
Rule List

Iterative
Random
Forest

Rule
Fit

Sensitivity 94% 90% 84% 91% 71% 97%
Specificity 41% 58% 56% 28% 68% 33%
F1 score 0.053 0.07 0.06 0.04 0.07 0.04
Brier score 0.016 0.02 0.59 0.02 0.02 0.08

(c)
PedSRC
External
Validation
Dataset

PECARN Bayesian
Rule List

CART
Decision
Tree

CART
Rule List

Iterative
Random
Forest

Rule
Fit

Sensitivity 96.8% 95% 94% 90% 81% 97%
Specificity 44.0% 60% 60% 39% 63% 55%
F1 score 0.091 0.12 0.12 0.07 0.11 0.11
Brier score 0.026 0.03 0.56 0.03 0.03 0.09

Contextualizing PCS in the context of CDI development

Predictability The predictive performance of a CDI serves as the benchmark in the clinical
literature. The concept of diagnostic test characteristics, such as sensitivity and speci-
ficity, are well-described and clinically used metrics for predictability. For example, pre-
vious literature has found that the PECARN CDI has a higher sensitivity than clinical
judgment alone [289]. This study sought to evaluate the predictability of a CDI using

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 122

Figure 11.2: Matched demographic and predictor variables from PECARN and PedSRC
datasets visually represented for overall distributions.
*GCS: Glasgow Coma Scale score; bpm: beats per minute; ATV: all-terrain vehicle; PECARN: Pediatric

Emergency Care Applied Research Network; PedSRC: Pediatric Surgical Research Collaboration

threshold-dependent discriminative metrics (i.e., sensitivity) and threshold-free metrics (i.e.
sensitivity-specificity curves). We found that the PECARN, Bayesian, and Rule Fit CDIs
were the most predictable on external validation (PedSRC). However, CDIs used in clinical
practice are designed to make predictions on varying populations, over time, and within
differing conditions. Therefore, before using a CDI in clinical practice, investigators should
validate how well a CDI will perform under varying conditions.

Stability Stability should be checked for all aspects of the data science lifecycle. Here,
we largely focus on predictor-level stability, estimating how the feature importance of each
predictor variable changes as a result of different judgment calls made during modeling.
We also examine the stability of both the predictive performance and individual predictors
to different calls made during data preprocessing. For example, we tried using GCS as a
continuous predictor variable compared to different binary thresholds. The effect of this and
many other judgment calls were found to be minimal and are omitted here (but can be found
on our github).

Interpretability Interpretability enables the integration of domain expertise for the
development and implementation of a CDI [217, 191, 304]. In contrast, black-box machine-

17r 15

110
"' 5

"
0

0.0 2.5 5.0 7.5

~ 12 ''C "' 9

"' u
" 6

3

0 25 50 75

e "o ~ ! 200

~ 150

i 100 ·

• 50 :c

- 0 t o 10 20 30

~ 200
- 175

; 150

lll 12s

[100

"C 75

~ 50
25

{ 0 o 20 40
111 Study population (%)

~
:,

~ ·.:;

Ill
Ill E Unknown

.... " c 'tl Severe

tf ~- None

"'"' GI C
Q 'f Moderate

0
"ti
.c

"'
Mild

Unknown

White (Non-Hi spanic)

'C Native Hawa iian or other Pacific Islander

:5
w

" u
"' 0:

Hispan ic

Black or African American

Asian

American Indian or Alas ka Native

Unknown

:§' Pedestrian/bicyclist struck by moving veh icle

0
E
Ill
"i:
"' .c
u

" ::;:

Object struck abdomen

Motorcycle/ATV/Scooter col lision

Motor vehicle coll ision

Fall from an elevation

Fall down sta irs

Bike coll ision/fall

::: ~ g ~
Study population (%)

Distracting pain

Left costal tenderness

Vomit/wretch

Abdominal pain

Seatbelt sign

Abdominal trauma

Costal tenderness

Thoracic trauma

Right costal tenderness

Hypotension

Abdominal distention

Decreased breath sounds

0

- PECARN

- PedSRC

10 20 30
Study population (%)

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 123

Figure 11.3: Prediction tree for the original PECARN clinical decision instrument on (a)
PECARN internal validation dataset, and (b) PedSRC external validation dataset. The blue
box shows that the top three predictor variables retained all the predictive power for the
clinical decision instrument on external validation. The red box shows the predictor variables
without prediction power on external validation. From the top of the rule to the bottom,
risks for the identified subgroups monotonically decrease, although risks are systematically
higher on the PedSRC data.

learning models lack interpretability and may fail for unknown reasons when externally
validated [302]. Post-hoc interpretations, such as permutation importance used here, can
offer some interpretability [159, 64, 5, 249], but are not a substitute for developing an
interpretable model [230, 269, 251, 187]. Therefore, we only consider parsimonious rule-based
models. Each CDI is represented as a straightforward set or list of logical rules (IF:THEN
statements), which can then be visualized. We restrict each model to a reasonable number
of logical steps (fewer than 10), so each CDI can be assessed in real-time. We additionally
fit logistic regression and optimal decision tree models, but found that they had poor; we
find that fast interpretable greedy-tree sums learn precisely the same rules as CART so we
omit this model here. PCS offers clear documentation guidelines to ensure the process is
replicable, reproducible, and interpretable [293].

As stated, black-box machine-learning models lack interpretability and may fail for un-
known reasons when tested on new populations [191]. Examples of such complex models are
neural networks, random forests, and support vector machines. However, even seemingly

PECARN Dataset External Validation dataset
(PedSRC)

203/12044 62/2188
Abdominal wall trauma/ seatbelt sign I Abdominal wall trauma/ seatbelt sign

I t
91/10081 112/1963 18/1708 44/480

GCS 3-13 GCS 3-13

t t
53/9255 38/826 8/1441 10/267

Abdominal tenderness Abdominal tenderness

t t
17/6723 36/2532 2/1216 6/255

Thoracic wall trauma Thoracic wall trauma

t t
11 /5768 6/955 2/1123 0/93

Abdominal pain

t
Abdominal pain

t
9/5463 2/305 2/993 0/130

Decreased or no breath sounds I Decreased or no breath sounds

8/5429 1/34 2/993 oYo

i Vomiting

t i Vomiting

t
6/5034 2/395 2/937 0/56

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 124

simple models such as logistic regression or decision trees can become uninterpretable if they
are large enough and have too many steps [230]. Pennell (2020) utilized such models to
re-evaluate the PECARN dataset [206]. The authors concluded that they had developed
and validated a novel risk model using modern machine learning techniques. However, these
complex machine-learning models lack the interpretability to integrate judgment, thus not
allowing review nor the recognition of bias, which may build mistrust in the user [304].
Therefore, we use interpretable models with visual representation to allow stability analysis
and ensure the integration of clinical judgment within the CDI [217].

Implications for the PECARN CDI

As the second aim of this paper, we assessed the prediction performance and the stability of
the original PECARN CDI for identifying children at very low risk of intra-abdominal injuries
undergoing acute intervention after blunt torso trauma on external validation. Clinically,
there is no standard, generalizable, validated strategy to identify children after blunt torso
trauma in whom CT scans can safely be avoided. Instead, providers use ad hoc strategies
that are inaccurate, and may fail to identify life-threatening injuries, leading to over-reliance
on diagnostic imaging [110, 42, 161, 127]. In 2013, PECARN sought to address the variability
in accuracy and consistency by prospectively developing a CDI for children after blunt torso
trauma [110].

We used two uniquely matched prospectively collected but independent datasets to assess
the CDI predictions and stability on external validation. Through this process, we reexam-
ined the original PECARN findings using alternative reasonable statistical models and found
the original PECARN CDI to be high performing. The PECARN CDI was highly predictive
across the development, internal validation, and external validation datasets. Therefore,
PECARN has strong predictive performance, which measures how well a CDI predicts in
heterogeneous cohorts. We also found that three predictor variables made up the entirety of
the predictive power on external validation: abdominal wall trauma, Glasgow Coma Scale
Score <14, and abdominal tenderness. This is not surprising, as these three variables were
also the most stable based on the PCS framework and made up the majority of the predictive
power on the PECARN dataset (identifying 94.4% of the correctly predicted IAI-I patients).

Through the PCS framework, we found that the predictability, and stability of the original
PECARN CDI warrants further investment and investigation, including prospective external
validation. In contrast, if we found that the model or predictor variables were unstable in
the original study, we would recommend against further validation. Our study can serve as
an example for how investigators may evaluate the predictability and stability of a CDI for
inherent weakness, prior to investing in a prospective external validation.

We found that if PCS could be successfully integrated as a novel step into prediction
and diagnostic model development before external validation, there is a potential to stream-
line and evaluate CDIs to improve performance or expose weaknesses and avoid further
investment in CDIs with poor stability. This is important because many CDIs have reduced
accuracy during external validation [272]. Introducing a PCS step between CDI develop-

CHAPTER 11. REAL-WORLD PROBLEM: CLINICAL DECISION-RULE
DEVELOPMENT 125

ment and external validation, or using PCS directly for CDI development before external
validation, will allow researchers, funders, and clinicians to understand better how CDIs may
perform on future populations before external validation, impact analysis, or implementation
into clinical practice. However, PCS is not able to replace external validation.

There are limitations to this study. First, we sought to develop high performing but
interpretable CDIs. Therefore, we chose only rule-based models, including simple regression-
based and complex machine learning models with interpretable visual outputs. The inclusion
of less interpretable models may have improved diagnostic accuracy but interfered with
conducting stability analysis, introducing domain expertise, and more easily recognizing
bias. Second, the PECARN and PedSRC datasets were collected from different research
groups. There is a potential for partial verification bias on external validation because the
PedSRC dataset was not based on consecutive patient enrollment, and follow-up was limited
to medical record review. Third, three predictor variables did not match between datasets.
Two variables could not be matched because they were present in only one of the datasets:
gender (PECARN only) and femur fracture (PedSRC only). The third predictor variable
was distracting injury (prospectively collected in PECARN but retrospectively aggregated
in PedSRC). Given the limitations of this study, we believe prospective external validation
is required before implementing the CDI.

126

Part IV

Open-source software and data

127

Chapter 12

imodels: a python library for
interpretable modeling

imodels is a Python package for concise, transparent, and accurate predictive modeling.
It provides users a simple interface for fitting and using state-of-the-art interpretable models,
all compatible with scikit-learn [205] These models can often replace black-box models while
improving interpretability and computational efficiency, all without sacrificing predictive
accuracy. In addition, the package provides a framework for developing custom tools and
rule-based models for interpretability.

Recent advancements in machine learning have led to increasingly complex predictive
models, often at the cost of interpretability. There is often a need for models which are
inherently interpretable [230, 186], particularly in high-stakes applications such as medicine,
biology, and political science. In these cases, interpretability can ensure that models behave

CHAPTER 12. IMODELS: A PYTHON LIBRARY FOR INTERPRETABLE
MODELING 128

Figure 12.1: Examples of different supported model forms. The bottom of each box shows
predictions of the corresponding model as a function of X1 and X2.

reasonably, identify when models will make errors, and make the models more trusted by
domain experts. Moreover, interpretable models tend to be much more computationally
efficient then larger black-box models.

Despite the development of many methods for fitting interpretable models [178], imple-
mentations for such models are often difficult to find, use, and compare to one another.
imodels aims to fill this gap by providing a simple unified interface and implementation for
many state-of-the-art interpretable modeling techniques.

12.1 Features

Interpretable models can take various forms. Fig. 12.1 shows four possible forms a model
in the imodels package can take. Each form constrains the final model in order to make
it interpretable, but there are different methods for fitting the model which differ in their
biases and computational costs. The imodels package contains implementations of various
such methods and also useful functions for recombining and extending them.

Rule sets consist of a set of rules which each act independently. There are different
strategies for deriving a rule set, such as Skope-rules [54] or Rulefit [86]. Rule lists are
composed of a set of rules which act in sequence, and include models such as Bayesian rule
lists [143] or the oneR algorithm [111]. Rule trees are similar to rule lists, but allow branching
after rules. This includes models such as CART decision trees [32]. Algebraic models take a
final form of simple algebraic expressions, such as supersparse linear integer models [275].

Rule set

x, x,

x,

Rule list

IF X1< 5:

ELSE If X2< 4:

ELSE If X1> 6:

ELSE

x,

p(+) = 0.3

p(+) = 0.9

p(+) = 0.7

p(+) = 0.5

Rule tree

IF X2> 6

------------p(+): 0.2 0.9

x,

x,

IF X2> 4

------------0.8 0.6

Algebraic models

x,

x,

129

Chapter 13

Veridical-flow: a python package for
building trustworthy data-science
pipelines with PCS

VeridicalFlow is a Python package for simplifying building reproducible and trustworthy
data-science pipelines using the PCS framework [293]. It provides users a simple interface
for stability analysis, i.e. checking the robustness of results from a data-science pipeline to
various judgement calls made during modeling. This ensures that arbitrary judgement calls
made by data-practitioners (e.g. specifying a default imputation strategy) do not dramat-
ically alter the final conclusions made in a modeling pipeline. In addition to wrappers fa-
cilitating stability analysis, VeridicalFlow also automates many cumbersome coding aspects
of python pipelines, including experiment tracking and saving, parallelization, and caching,
all through integrations with existing python packages. Overall, the package helps to code
using the PCS (predictability-computability-stability) framework, by screening models for
predictive performance, helping automate computation, and facilitating stability analysis.

13.1 Statement of need

Predictability, computability, and stability are central concerns in modern statistical/machine-
learning practice, as they are required to help vet that findings reflect reality, can be rea-
sonably computed, and are robust as the many judgement calls during the data-science life
cycle which often go unchecked [293].

The package focuses on stability, but also provides wrappers to help support and im-
prove predictability and computability. Stability is a common-sense principle related to
notions of scientific reproducibility [81, 118], sample variability, robust statistics, sensitivity
analysis [235], and stability in numerical analysis and control theory. Moreover, stability
serves as a prerequisite for understanding which parts of a model will generalize and can be
interpreted [186].

CHAPTER 13. VERIDICAL-FLOW: A PYTHON PACKAGE FOR BUILDING
TRUSTWORTHY DATA-SCIENCE PIPELINES WITH PCS 130

Importantly, current software packages offer very little support to facilitate stability
analyses. VeridicalFlow helps fill this gap by making stability analysis simple, reproducible,
and computationally efficient. This enables a practitioner to represent a pipeline with many
different perturbations in a simple-to-code way, while using prediction analysis as a reality
check to screen out poor models.

13.2 Features

Using VeridicalFlow ’s simple wrappers easily enables many best practices for data science,
and makes writing pipelines easy.

Stability Computability Reproducibility

Replace a single function
(e.g. preprocessing) with a
set of functions represent-
ing different judgement calls
and easily assess the stabil-
ity of downstream results

Automatic parallelization
and caching throughout the
pipeline

Automatic experiment
tracking and saving

Table 13.1: Three key aspects of VeridicalFlow.

The main features of VeridicalFlow center around stability analysis. The central concept
is to replace given functions with a set of functions subject to different pipeline perturbations
that are documented and argued for in PCS documentation [293]. Then, a set of useful anal-
ysis functions and computations enable easily assessing the stability to these perturbations
on top of predictive screening for reality checks.

The package also helps users to improve the efficacy of their computational pipeline.
Computation is (optionally) handled through Ray [183], which easily facilitates paralleliza-
tion across different machines and along different perturbations of the pipeline. Caching is
handled via joblib, so that individual parts of the pipeline do not need to be rerun.

Experiment-tracking and saving are (optionally) handled via integration with MLFlow [295],
which enables automatic experiment tracking and saving.

131

Chapter 14

Covid-19: county-level data curation
and death forecasting

In recent times, the COVID-19 pandemic has dramatically changed the shape of our global
society and economy to an extent modern civilization has never experienced. Unfortunately,
the vast majority of countries, the United States included, were thoroughly unprepared for
the situation we now find ourselves in. There are currently many new efforts aimed at
understanding and managing this evolving global pandemic. This article, together with the
data we have collated (and continue to update), represents one such effort.

Our goals are to provide access to a large data repository combining data from a range
of different sources and to forecast short-term (up to 2 weeks) COVID-19 mortality at the
county level in the United States. We also provide uncertainty assessments of our forecasts
in the form of prediction intervals based on conformal inference [277].

Predicting the short-term impact (e.g., 1 or 2 weeks in the future) of the virus in terms of
the number of deaths is critical for many reasons. Not only can it help elucidate the overall
fallout of the virus, but it can also help guide difficult policy decisions, such as whether or not
to impose or ease lockdowns, and where to send much-needed personal protective equipment
(PPE). While many other studies focus on predicting the long-term (several months or a
year) trajectory of COVID-19, these approaches are currently difficult to verify due to a lack
of long-term COVID-19 data.1 On the other hand, predictions for immediate short-term
trajectories are much easier to verify and are more likely to be accurate than long-term
forecasts since there are comparatively fewer uncertainties involved, for example, due to
policy change or behavioral changes in society. So far, the vast majority of predictive efforts
have focused on modeling COVID-19 case counts or death counts at the national or state
level [79], rather than the more fine-grained county level that we consider in this article. To
the best of our knowledge, ours was the first work on county-level forecasts.2

1In the time since the first version of this article in May 2020, such longer-term predictions are likely
now more verifiable.

2At the time of our first submission to arXiv on May 16, 2020, we were not aware of any concurrent
work on county-level forecasts.

CHAPTER 14. COVID-19: COUNTY-LEVEL DATA CURATION AND DEATH
FORECASTING 132

The predictions we produce in this article focus on recorded cumulative death counts,
rather than recorded cases since recorded cases fail to accurately capture the true prevalence
of the virus due to previously limited testing availability. Moreover, comparing different
counties based on the number recorded cases is difficult since some counties conducted more
tests than others: the number of positive tests does not equal the number of actual cases.
While the proportion of tests that are positive is more comparable across different counties,
our modeling approach focuses on recorded death counts rather than proportions, since
these are not influenced by testing biases. It is worth noting, however, that the recorded
death count is likely to be an undercount of the number of true number COVID-19 deaths,
since evidence implies that many deaths that occurred outside of hospitals were often not
counted.3 Nonetheless, the recorded death count is generally believed to be more reliable
than the recorded case count, and recent efforts have been made to ensure that COVID-19
death counts are more accurately recorded, for example, by including probable deaths and
deaths occurring at home [189].

We first introduce our data repository and summarize the data sources contained within,
as well as discussing any sources of bias in the data. This data repository is being up-
dated continuously (as of October 2020) and includes a wide variety of COVID-19–related
information in addition to the county-level case counts and death counts.

Next, we introduce our predictive approach, wherein we fit a range of different exponential
and linear predictor models using our curated data. Each predictor captures a different
aspect of the behaviors exhibited by COVID-19, both spatially and temporally, that is,
across regions and time. The predictions generated by the different methods are combined
using an ensembling technique by [238], and we refer to the ensemble model as the combined
linear and exponential predictors (CLEP).

We also develop uncertainty estimates for our predictors in the form of prediction inter-
vals, which we call maximum (absolute) error prediction intervals (MEPI). The ideas behind
these intervals come from conformal inference [277] where the prediction interval coverage is
well defined as the empirical proportion of days when the observed cumulative death counts
fall inside the prediction intervals.

The results detail the evaluation of the predictors and the prediction intervals for the
forecasts 3, 5, 7, and 14 days into the future. We use the data from January 23, 2020, the
day after the first COVID-19 confirmed case (on January 22) in the United States [258],
and report the prediction performance over the period March 22, 2020, to June 20, 2020.
Overall, we find that CLEP predictions are adaptive to the exponential and subexponential
nature of COVID-19 outbreak, with errors of around 15% for 7-day-ahead predictions, and
errors of around 30% for 14-day-ahead predictions. We also provide detailed results for our
prediction intervals MEPI from April 11, 2020, to June 20, 2020. And we observe that
MEPIs are reasonably narrow and cover the recorded number of deaths for more than 90%
of days for most of the counties in the United States.

Making both the data and the predictive algorithms used in this article accessible to oth-

3For the period up to June 21, 2020, considered in this article, for example, see [125]

CHAPTER 14. COVID-19: COUNTY-LEVEL DATA CURATION AND DEATH
FORECASTING 133

COVID-19 Data Repository
COVID-19 Cases/Deaths + County-level Data + Hospital-level Data

CLEP Ensemble + MEPI intervals VisualizationsMultiple county-level
predictors

Time

C
O

VI
D

-1
9

de
at

hs

Predictor 1

Predictor 2

Predictor 3

Time

Ensemble
predictor

Prediction
intervals

C
O

VI
D

-1
9

de
at

hs

Figure 14.1: An overview of the article. We curate an extensive data repository
combining data from multiple data sources. We then build several predictors for county-
level predictions of cumulative COVID-19 death counts, and develop an ensembling proce-
dure combined linear and exponential predictors (CLEP) and a prediction interval scheme
maximum (absolute) error prediction intervals (MEPI) for these predictions. Both CLEP
and MEPI are generic machine learning methods and can be of independent interest.
All the data, and predictions are publicly available at GitHub repo (https://github.
com/Yu-Group/covid19-severity-prediction). Visualizations are available at https:

//covidseverity.com/ and https://geodacenter.github.io/covid/map.html, in col-
laboration with the Center for Spatial Data Science at the University of Chicago.

ers is key to ensuring their usefulness. Thus the data, code, and predictors we discuss in this
article are open source on GitHub (https://github.com/Yu-Group/covid19-severity-prediction)
and are also updated daily with several visualizations at https://covidseverity.com.
While the results in this article contain case and death information at county level in the
United States from January 23, 2020, to June 20, 2020; the data, forecasts, and visualizations
in the GitHub repository and on our website continue to be updated daily. See Figure 14.1
for a high-level summary of the contributions made in this work.

We also reflect on the lessons learned from this process in a short perspective piece [294].

0
GitHub

tbci.\"c\u fiork limes

liiiihhdii~li · .

+

I i&#iifiiifili · f Nii

n
open source

initiat ive"

https://github.com/Yu-Group/covid19-severity-prediction
https://github.com/Yu-Group/covid19-severity-prediction
https://covidseverity.com/
https://covidseverity.com/
https://geodacenter.github.io/covid/map.html
https://github.com/Yu-Group/covid19-severity-prediction
https://covidseverity.com

134

Appendix

This thesis omits some of the work done during my PhD. For example this includes work com-
pleted over summers, such as my work on using GANs for causal matching [245]. It also omits
work that is still incomplete, including some deep-learning theory work on quantifying com-
plexity using minimum-description length [72], interpretation work on tree ensembles [64],
and using computer vision for hummingbird tracking4. I was also fortunate to be play a
small part in some larger projects, such as NL-Augmenter [66]. It also does not mention my
computational-neuroscience research, which was started during my undergraduate studies
but mostly completed at the early start of my PhD [247, 181, 250, 91].

Funding I have been very fortunate to be supported financially throughout my PhD by
The Center for Science of Information (CSoI), a US NSF Science and Technology Center
under grant agreement CCF-0939370. I also gratefully acknowledge research support by
grants ARO W911NF1710005, ONR N00014-16-1-2664, NSF DMS-1613002, and NSF IIS
1741340.

4https://github.com/csinva/hummingbird-tracking

https://github.com/csinva/hummingbird-tracking

135

Bibliography

[1] Reza Abbasi-Asl and Bin Yu. “Structural Compression of Convolutional Neural Net-
works Based on Greedy Filter Pruning”. In: arXiv preprint arXiv:1705.07356 (2017).

[2] Reza Abbasi-Asl et al. “The DeepTune framework for modeling and characterizing
neurons in visual cortex area V4”. In: bioRxiv (2018), p. 465534.

[3] Radhakrishna Achanta et al. “SLIC superpixels compared to state-of-the-art super-
pixel methods”. In: IEEE transactions on pattern analysis and machine intelligence
34.11 (2012), pp. 2274–2282.

[4] Julius Adebayo et al. “Sanity checks for saliency maps”. In: Advances in Neural
Information Processing Systems. 2018, pp. 9505–9515.

[5] Abhineet Agarwal et al. “Hierarchical Shrinkage: improving the accuracy and inter-
pretability of tree-based methods”. en. In: arXiv:2202.00858 [cs, stat] (Feb. 1, 2022).
arXiv: 2202.00858. url: http://arxiv.org/abs/2202.00858.

[6] François Aguet et al. “Advances in analysis of low signal-to-noise images link dynamin
and AP2 to the functions of an endocytic checkpoint”. In: Developmental cell 26.3
(2013), pp. 279–291.

[7] Hirotugu Akaike. “Factor analysis and AIC”. In: Selected Papers of Hirotugu Akaike.
Springer, 1987, pp. 371–386.

[8] André Altmann et al. “Permutation importance: a corrected feature importance mea-
sure”. In: Bioinformatics 26.10 (2010), pp. 1340–1347.

[9] Dhammika Amaratunga, Javier Cabrera, and Yung-Seop Lee. “Enriched random
forests”. In: Bioinformatics 24.18 (2008), pp. 2010–2014.

[10] Marco Ancona et al. “Towards better understanding of gradient-based attribution
methods for Deep Neural Networks”. In: 6th International Conference on Learning
Representations (ICLR 2018). 2018.

[11] Jacob Andreas et al. “Neural module networks”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2016, pp. 39–48.

[12] Elaine Angelino et al. “Learning certifiably optimal rule lists for categorical data”.
In: arXiv preprint arXiv:1704.01701 (2017).

http://arxiv.org/abs/2202.00858

BIBLIOGRAPHY 136

[13] Christof Angermueller et al. “Deep learning for computational biology”. In: Molecular
systems biology 12.7 (2016), p. 878.

[14] PETER S. arcidiacono. “Exhibit A: EXPERT REPORT OF PETER S. ARCIDIA-
CONO”. In: http://samv91khoyt2i553a2t1s05i-wpengine.netdna-ssl.com/wp-content/uploads/2018/06/Doc-
415-1-Arcidiacono-Expert-Report.pdf (2018).

[15] Arthur Asuncion and David Newman. UCI machine learning repository. 2007.

[16] Susan Athey and Guido Imbens. “Recursive partitioning for heterogeneous causal
effects”. In: Proceedings of the National Academy of Sciences 113.27 (2016), pp. 7353–
7360.

[17] Sebastian Bach et al. “On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation”. In: PloS one 10.7 (2015), e0130140.

[18] David Baehrens et al. “How to explain individual classification decisions”. In: Journal
of Machine Learning Research 11.Jun (2010), pp. 1803–1831.

[19] Yujia Bao et al. “Deriving machine attention from human rationales”. In: arXiv
preprint arXiv:1808.09367 (2018).

[20] Matthias Bartelmann and Peter Schneider. “Weak gravitational lensing”. In: Physics
Reports 340.4-5 (2001), pp. 291–472. doi: 10.1016/S0370-1573(00)00082-X. arXiv:
astro-ph/9912508 [astro-ph].

[21] RL Barter and B Yu. “Superheat: Supervised heatmaps for visualizing complex data”.
In: arXiv preprint arXiv:1512.01524 (2015).

[22] Sumanta Basu et al. “Iterative random forests to discover predictive and stable high-
order interactions”. en. In: Proceedings of the National Academy of Sciences 115.8
(Feb. 20, 2018). publisher: National Academy of Sciences section: Biological Sciences
PMID: 29351989, pp. 1943–1948. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.
1711236115.

[23] Merle Behr et al. “Provable Boolean Interaction Recovery from Tree Ensemble ob-
tained via Random Forests”. In: arXiv preprint arXiv:2102.11800 (2021).

[24] Anthony J Bell and Terrence J Sejnowski. “An information-maximization approach
to blind separation and blind deconvolution”. In: Neural computation 7.6 (1995),
pp. 1129–1159.

[25] PeterH Bennett, ThomasA Burch, and Max Miller. “Diabetes mellitus in American
(Pima) indians”. In: The Lancet 298.7716 (1971), pp. 125–128.

[26] Dimitris Bertsimas and Jack Dunn. “Optimal classification trees”. In: Machine Learn-
ing 106.7 (2017), pp. 1039–1082.

[27] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent dirichlet allocation”. In:
Journal of machine Learning research 3.Jan (2003), pp. 993–1022.

https://doi.org/10.1016/S0370-1573(00)00082-X
https://arxiv.org/abs/astro-ph/9912508
https://doi.org/10.1073/pnas.1711236115
https://doi.org/10.1073/pnas.1711236115

BIBLIOGRAPHY 137

[28] Tolga Bolukbasi et al. “Man is to computer programmer as woman is to homemaker?
debiasing word embeddings”. In: Advances in neural information processing systems.
2016, pp. 4349–4357.

[29] George EP Box. “Science and statistics”. In: Journal of the American Statistical
Association 71.356 (1976), pp. 791–799.

[30] Danah Boyd and Kate Crawford. “Critical questions for big data: Provocations for a
cultural, technological, and scholarly phenomenon”. In: Information, communication
& society 15.5 (2012), pp. 662–679.

[31] Laurent Brechet et al. “Compression of biomedical signals with mother wavelet opti-
mization and best-basis wavelet packet selection”. In: IEEE Transactions on Biomed-
ical Engineering 54.12 (2007), pp. 2186–2192.

[32] L. Breiman et al. Classification and Regression Trees. Monterey, CA: Wadsworth
and Brooks, 1984. url: https://www.routledge.com/Classification- and-

Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418.

[33] Leo Breiman. “Random Forests”. en. In: Machine Learning 45.1 (Oct. 1, 2001), pp. 5–
32. issn: 1573-0565. doi: 10.1023/A:1010933404324.

[34] Leo Breiman et al. “Statistical modeling: The two cultures (with comments and a
rejoinder by the author)”. In: Statistical science 16.3 (2001), pp. 199–231.

[35] Leo Breiman and Jerome H Friedman. “Estimating optimal transformations for mul-
tiple regression and correlation”. In: Journal of the American statistical Association
80.391 (1985), pp. 580–598.

[36] Wieland Brendel, Jonas Rauber, and Matthias Bethge. “Decision-Based Adversarial
Attacks: Reliable Attacks Against Black-Box Machine Learning Models”. In: arXiv
preprint arXiv:1712.04248 (2017).

[37] Tim Brennan and William L Oliver. “The emergence of machine learning techniques
in criminology”. In: Criminology & Public Policy 12.3 (2013), pp. 551–562.

[38] Joan Bruna and Stéphane Mallat. “Invariant scattering convolution networks”. In:
IEEE transactions on pattern analysis and machine intelligence 35.8 (2013), pp. 1872–
1886.

[39] Kenneth P Burnham and David R Anderson. “Multimodel inference: understanding
AIC and BIC in model selection”. In: Sociological methods & research 33.2 (2004),
pp. 261–304.

[40] Kaylee Burns et al. “Women also snowboard: Overcoming bias in captioning models”.
In: arXiv preprint arXiv:1803.09797 (2018).

[41] Sidney Burrus, Ramesh Gopinath, and Haitao Guo. “Introduction to wavelets and
wavelet transforms: a primer”. In: Englewood Cliffs (1997).

https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418
https://www.routledge.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418
https://doi.org/10.1023/A:1010933404324

BIBLIOGRAPHY 138

[42] Andrew J. Capraro, David Mooney, and Mark L. Waltzman. “The use of routine lab-
oratory studies as screening tools in pediatric abdominal trauma”. eng. In: Pediatric
Emergency Care 22.7 (July 2006). PMID: 16871106, pp. 480–484. issn: 1535-1815.
doi: 10.1097/01.pec.0000227381.61390.d7.

[43] David Card. “Exhibit 33: Report of David Card”. In: https://projects.iq.harvard.edu/files/diverse-
education/files/legal - card report revised filing.pdf (2018).

[44] Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. “An empirical evalua-
tion of supervised learning in high dimensions”. In: Proceedings of the 25th Interna-
tional Conference on Machine learning. 2008, pp. 96–103.

[45] Rich Caruana and Alexandru Niculescu-Mizil. “An empirical comparison of super-
vised learning algorithms”. In: Proceedings of the 23rd International Conference on
Machine learning. 2006, pp. 161–168.

[46] Rich Caruana et al. “Case-based explanation of non-case-based learning methods.”
In: Proceedings of the AMIA Symposium. American Medical Informatics Association.
1999, p. 212.

[47] Rich Caruana et al. “Intelligible models for healthcare: Predicting pneumonia risk and
hospital 30-day readmission”. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM. 2015, pp. 1721–1730.

[48] Supriyo Chakraborty et al. “Interpretability of deep learning models: a survey of
results”. In: Interpretability of deep learning models: a survey of results. 2017.

[49] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In:
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining. 2016, pp. 785–794.

[50] Xi Chen and Hemant Ishwaran. “Random forests for genomic data analysis”. In:
Genomics 99.6 (2012), pp. 323–329.

[51] Hugh A Chipman, Edward I George, and Robert E McCulloch. “BART: Bayesian
additive regression trees”. In: The Annals of Applied Statistics 4.1 (2010), pp. 266–
298.

[52] Noel Codella et al. “Skin Lesion Analysis Toward Melanoma Detection 2018: A Chal-
lenge Hosted by the International Skin Imaging Collaboration (ISIC)”. In: arXiv
preprint arXiv:1902.03368 (2019).

[53] William W Cohen and Yoram Singer. “A simple, fast, and effective rule learner”. In:
AAAI/IAAI 99.335-342 (1999), p. 3.

[54] Skope Collaboration. Skope-rules. 2021. url: https://github.com/scikit-learn-
contrib/skope-rules.

https://doi.org/10.1097/01.pec.0000227381.61390.d7
https://github.com/scikit-learn-contrib/skope-rules
https://github.com/scikit-learn-contrib/skope-rules

BIBLIOGRAPHY 139

[55] Gary S. Collins et al. “Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD): The tripod statement”. In: Journal of
Clinical Epidemiology 68.2 (2015). publisher: The Authors, pp. 112–121. doi: 10.
1016/j.jclinepi.2014.11.010.

[56] Fergal Cotter. “Uses of Complex Wavelets in Deep Convolutional Neural Networks”.
PhD thesis. University of Cambridge, 2020.

[57] William R Coulton et al. “Constraining neutrino mass with the tomographic weak
lensing bispectrum”. In: Journal of Cosmology and Astroparticle Physics 2019.05,
043 (2019), p. 043. doi: 10.1088/1475-7516/2019/05/043. arXiv: 1810.02374
[astro-ph.CO].

[58] Mark Craven and Jude W Shavlik. “Extracting tree-structured representations of
trained networks”. In: Advances in neural information processing systems. 1996, pp. 24–
30.

[59] Piotr Dabkowski and Yarin Gal. “Real Time Image Saliency for Black Box Classifiers”.
In: arXiv preprint arXiv:1705.07857 (2017).

[60] Anupam Datta, Shayak Sen, and Yair Zick. “Algorithmic transparency via quanti-
tative input influence: Theory and experiments with learning systems”. In: Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE. 2016, pp. 598–617.

[61] I DAUBECHIES. “Orthonormal bases of compactly supported wavelets”. In: Com-
mun. Pure Appl. Math. 41 (1988), pp. 909–996.

[62] Krzysztof Dembczyński, Wojciech Kot lowski, and Roman S lowiński. “Maximum like-
lihood rule ensembles”. In: Proceedings of the 25th international conference on Ma-
chine learning. 2008, pp. 224–231.

[63] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR09.
2009.

[64] Summer Devlin et al. “Disentangled Attribution Curves for Interpreting Random
Forests and Boosted Trees”. In: arXiv preprint arXiv:1905.07631 (2019).

[65] J. Dheeba, N. Albert Singh, and S. Tamil Selvi. “Computer-aided detection of breast
cancer on mammograms: A swarm intelligence optimized wavelet neural network ap-
proach”. In: Journal of Biomedical Informatics 49 (2014), pp. 45–52. issn: 1532-
0464. doi: https : / / doi . org / 10 . 1016 / j . jbi . 2014 . 01 . 010. url: https :

//www.sciencedirect.com/science/article/pii/S1532046414000124.

[66] Kaustubh D Dhole et al. “NL-Augmenter: A Framework for Task-Sensitive Natural
Language Augmentation”. In: arXiv preprint arXiv:2112.02721 (2021).

[67] William Dieterich, Christina Mendoza, and Tim Brennan. “COMPAS risk scales:
Demonstrating accuracy equity and predictive parity”. In: Northpointe Inc (2016).

[68] Finale Doshi-Velez and Been Kim. “A roadmap for a rigorous science of interpretabil-
ity”. In: arXiv preprint arXiv:1702.08608 (2017).

https://doi.org/10.1016/j.jclinepi.2014.11.010
https://doi.org/10.1016/j.jclinepi.2014.11.010
https://doi.org/10.1088/1475-7516/2019/05/043
https://arxiv.org/abs/1810.02374
https://arxiv.org/abs/1810.02374
https://doi.org/https://doi.org/10.1016/j.jbi.2014.01.010
https://www.sciencedirect.com/science/article/pii/S1532046414000124
https://www.sciencedirect.com/science/article/pii/S1532046414000124

BIBLIOGRAPHY 140

[69] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable ma-
chine learning”. In: arXiv preprint arXiv:1702.08608 (2017).

[70] Mengnan Du et al. “Learning credible deep neural networks with rationale regular-
ization”. In: arXiv preprint arXiv:1908.05601 (2019).

[71] James Duncan et al. “VeridicalFlow: a Python package for building trustworthy data
science pipelines with PCS”. In: Journal of Open Source Software 7.69 (2022), p. 3895.

[72] Raaz Dwivedi et al. “Revisiting minimum description length complexity in overpa-
rameterized models”. In: arXiv preprint arXiv:2006.10189 (2020).

[73] Raaz Dwivedi et al. “Stable Discovery of Interpretable Subgroups via Calibration
in Causal Studies”. en. In: International Statistical Review 88.S1 (2020), S135–S178.
issn: 1751-5823. doi: 10.1111/insr.12427.

[74] Cynthia Dwork et al. “Fairness through awareness”. In: Proceedings of the 3rd inno-
vations in theoretical computer science conference. ACM. 2012, pp. 214–226.

[75] Bradley Efron et al. “Least angle regression”. In: The Annals of statistics 32.2 (2004),
pp. 407–499.

[76] Gabriel Erion et al. “Learning Explainable Models Using Attribution Priors”. In:
arXiv preprint arXiv:1906.10670 (2019).

[77] Andre Esteva et al. “Dermatologist-level classification of skin cancer with deep neural
networks”. In: Nature 542.7639 (2017), p. 115.

[78] Jeffrey S Evans et al. “Modeling species distribution and change using random forest”.
In: Predictive Species and Habitat Modeling in Landscape Ecology. Springer, 2011,
pp. 139–159.

[79] NM Ferguson et al. Impact of non-pharmaceutical interventions (NPIs) to reduce
COVID19 mortality and healthcare demand. 2020. url: https://www.imperial.ac.
uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-

College-COVID19-NPI-modelling-16-03-2020.pdf.

[80] Manuel Fernández-Delgado et al. “Do we need hundreds of classifiers to solve real
world classification problems?” In: The Journal of Machine Learning Research 15.1
(2014), pp. 3133–3181.

[81] Ronald Aylmer Fisher et al. “The design of experiments.” In: The design of experi-
ments. 2nd Ed (1937). doi: 10.1038/137252a0.

[82] Janis Fluri et al. “Cosmological constraints with deep learning from KiDS-450 weak
lensing maps”. In: Physical Review D 100.6, 063514 (2019), p. 063514. doi: 10.1103/
PhysRevD.100.063514. arXiv: 1906.03156 [astro-ph.CO].

[83] Ruth C Fong and Andrea Vedaldi. “Interpretable explanations of black boxes by
meaningful perturbation”. In: arXiv preprint arXiv:1704.03296 (2017).

https://doi.org/10.1111/insr.12427
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://doi.org/10.1038/137252a0
https://doi.org/10.1103/PhysRevD.100.063514
https://doi.org/10.1103/PhysRevD.100.063514
https://arxiv.org/abs/1906.03156

BIBLIOGRAPHY 141

[84] David A Freedman. “Statistical models and shoe leather”. In: Sociological methodology
(1991), pp. 291–313.

[85] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting algorithm”.
In: icml. Vol. 96. Citeseer. 1996, pp. 148–156.

[86] J. H. Friedman and B. E. Popescu. “Predictive Learning Via Rule Ensembles”. In:
The Annals of Applied Statistics 2.3 (2008), pp. 916–954. doi: 10.1214/07-aoas148.

[87] Jerome H Friedman. “Greedy function approximation: a gradient boosting machine”.
In: Annals of statistics (2001), pp. 1189–1232.

[88] Jerome H Friedman. “Multivariate adaptive regression splines”. In: The annals of
statistics (1991), pp. 1–67.

[89] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The Elements of Statistical
Learning. Vol. 1. 10. Springer Series in Statistics New York, 2001.

[90] Nicholas Frosst and Geoffrey Hinton. “Distilling a Neural Network Into a Soft Decision
Tree”. In: arXiv preprint arXiv:1711.09784 (2017).

[91] Jan Funke et al. “Large scale image segmentation with structured loss based deep
learning for connectome reconstruction”. In: IEEE transactions on pattern analysis
and machine intelligence 41.7 (2018), pp. 1669–1680.

[92] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture; increasing
shape bias improves accuracy and robustness”. In: arXiv preprint arXiv:1811.12231
(2018).

[93] Leilani H Gilpin et al. “Explaining Explanations: An Approach to Evaluating Inter-
pretability of Machine Learning”. In: arXiv preprint arXiv:1806.00069 (2018).

[94] Fréderic Godin et al. “Explaining Character-Aware Neural Networks for Word-Level
Prediction: Do They Discover Linguistic Rules?” In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. 2018, pp. 3275–3284.

[95] Gene H. Golub, Michael Heath, and Grace Wahba. “Generalized Cross-Validation as
a Method for Choosing a Good Ridge Parameter”. In: Technometrics 21.2 (1979),
pp. 215–223. doi: 10 . 1080 / 00401706 . 1979 . 10489751. eprint: https : / / www .

tandfonline.com/doi/pdf/10.1080/00401706.1979.10489751. url: https:

//www.tandfonline.com/doi/abs/10.1080/00401706.1979.10489751.

[96] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harness-
ing adversarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

[97] Bryce Goodman and Seth Flaxman. “European Union regulations on algorithmic
decision-making and a” right to explanation””. In: arXiv preprint arXiv:1606.08813
(2016).

https://doi.org/10.1214/07-aoas148
https://doi.org/10.1080/00401706.1979.10489751
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1979.10489751
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1979.10489751
https://www.tandfonline.com/doi/abs/10.1080/00401706.1979.10489751
https://www.tandfonline.com/doi/abs/10.1080/00401706.1979.10489751

BIBLIOGRAPHY 142

[98] Steven M. Green, David L. Schriger, and Donald M. Yealy. “Methodologic standards
for interpreting clinical decision rules in emergency medicine: 2014 update”. In: An-
nals of Emergency Medicine 64.3 (2014). publisher: American College of Emergency
Physicians, pp. 286–291. doi: 10.1016/j.annemergmed.2014.01.016.

[99] Riccardo Guidotti et al. “A Survey Of Methods For Explaining Black Box Models”.
In: arXiv preprint arXiv:1802.01933 (2018).

[100] Wooseok Ha et al. “Adaptive wavelet distillation from neural networks through in-
terpretations”. In: Advances in Neural Information Processing Systems 34 (2021).

[101] Frank R Hampel et al. Robust statistics: the approach based on influence functions.
Vol. 196. John Wiley & Sons, 2011.

[102] Moritz Hardt, Eric Price, Nati Srebro, et al. “Equality of opportunity in supervised
learning”. In: Advances in neural information processing systems. 2016, pp. 3315–
3323.

[103] Gilbert H Harman. “The inference to the best explanation”. In: The philosophical
review 74.1 (1965), pp. 88–95.

[104] Trevor Hastie and Robert Tibshirani. “Generalized Additive Models”. In: Statistical
Science 1.3 (1986), pp. 297–318.

[105] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[106] Kangmin He et al. “Dynamics of Auxilin 1 and GAK in clathrin-mediated traffic”.
In: Journal of Cell Biology 219.3 (2020).

[107] James M Hereford, David W Roach, and Ryan Pigford. “Image compression using pa-
rameterized wavelets with feedback”. In: Independent Component Analyses, Wavelets,
and Neural Networks. Vol. 5102. International Society for Optics and Photonics. 2003,
pp. 267–277.

[108] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 (2015).

[109] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[110] James F Holmes et al. “Identifying children at very low risk of clinically important
blunt abdominal injuries.” In: Annals of emergency medicine 62.2 (Aug. 2013). pub-
lisher: Elsevier Inc., 107–116.e2. doi: 10.1016/j.annemergmed.2012.11.009.

[111] Robert C Holte. “Very simple classification rules perform well on most commonly
used datasets”. In: Machine learning 11.1 (1993), pp. 63–90. doi: 10 . 1023 / A :

1022631118932.

[112] Giles Hooker. “Generalized functional anova diagnostics for high-dimensional func-
tions of dependent variables”. In: Journal of Computational and Graphical Statistics
16.3 (2007), pp. 709–732.

https://doi.org/10.1016/j.annemergmed.2014.01.016
https://doi.org/10.1016/j.annemergmed.2012.11.009
https://doi.org/10.1023/A:1022631118932
https://doi.org/10.1023/A:1022631118932

BIBLIOGRAPHY 143

[113] Giles Hooker and Lucas Mentch. “Bridging Breiman’s Brook: From Algorithmic Mod-
eling to Statistical Learning”. In: Observational Studies 7.1 (2021), pp. 107–125.

[114] Harold Hotelling. “Relations between two sets of variates”. In: Biometrika 28.3/4
(1936), pp. 321–377.

[115] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. “Optimal sparse decision trees”. In:
Advances in Neural Information Processing Systems (NeurIPS) (2019).

[116] Cheng-Lung Huang, Mu-Chen Chen, and Chieh-Jen Wang. “Credit scoring with a
data mining approach based on support vector machines”. In: Expert systems with
applications 33.4 (2007), pp. 847–856.

[117] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and
biomedical sciences. Cambridge University Press, 2015.

[118] Peter Ivie and Douglas Thain. “Reproducibility in scientific computing”. In: ACM
Computing Surveys (CSUR) 51.3 (2018), pp. 1–36. doi: 10.1145/3186266.

[119] Sarthak Jain and Byron C Wallace. “Attention is not Explanation”. In: arXiv preprint
arXiv:1902.10186 (2019).

[120] Dhruv Jawali, Abhishek Kumar, and Chandra Sekhar Seelamantula. “A Learning Ap-
proach for Wavelet Design”. In: ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 5018–5022.

[121] IT Jolliffe. “Principal component analysis”. In: (1986).

[122] A. C. Justice, K. E. Covinsky, and J. A. Berlin. “Assessing the generalizability of
prognostic information”. eng. In: Annals of Internal Medicine 130.6 (Mar. 16, 1999).
PMID: 10075620, pp. 515–524. issn: 0003-4819. doi: 10.7326/0003-4819-130-6-
199903160-00016.

[123] Marko Kaksonen and Aurélien Roux. “Mechanisms of clathrin-mediated endocytosis”.
In: Nature Reviews Molecular Cell Biology 19.5 (2018), p. 313.

[124] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. “Visualizing and understanding
recurrent networks”. In: arXiv preprint arXiv:1506.02078 (2015).

[125] Josh Katz, Denise Lu, and Margot Sanger-katz. “U.S. Coronavirus Death Toll Is Far
Higher Than Reported, C.D.C. Data Suggests”. In: The New York Times (2020).
url: https://www.nytimes.com/interactive/2020/04/28/us/coronavirus-
death-toll-total.html.

[126] Frank C Keil. “Explanation and understanding”. In: Annu. Rev. Psychol. 57 (2006),
pp. 227–254.

[127] M. S. Keller et al. “The utility of routine trauma laboratories in pediatric trauma
resuscitations”. In: Am J Surg 188.6 (Dec. 2004). edition: 2004/12/28, pp. 671–8. issn:
0002-9610 (Print) 0002-9610 (Linking). doi: 10.1016/j.amjsurg.2004.08.056.

https://doi.org/10.1145/3186266
https://doi.org/10.7326/0003-4819-130-6-199903160-00016
https://doi.org/10.7326/0003-4819-130-6-199903160-00016
https://www.nytimes.com/interactive/2020/04/28/us/coronavirus-death-toll-total.html
https://www.nytimes.com/interactive/2020/04/28/us/coronavirus-death-toll-total.html
https://doi.org/10.1016/j.amjsurg.2004.08.056

BIBLIOGRAPHY 144

[128] Mary Ella Kenefake, Matthew Swarm, and Jennifer Walthall. “Nuances in pediatric
trauma”. eng. In: Emergency Medicine Clinics of North America 31.3 (Aug. 2013).
PMID: 23915597, pp. 627–652. issn: 1558-0539. doi: 10.1016/j.emc.2013.04.004.

[129] Jinkyu Kim and John F Canny. “Interpretable Learning for Self-Driving Cars by
Visualizing Causal Attention.” In: ICCV. IEEE. 2017, pp. 2961–2969.

[130] Tom Kirchhausen, David Owen, and Stephen C Harrison. “Molecular structure, func-
tion, and dynamics of clathrin-mediated membrane traffic”. In: Cold Spring Harbor
perspectives in biology 6.5 (2014), a016725.

[131] Jason M. Klusowski. “Universal Consistency of Decision Trees in High Dimensions”.
In: arXiv preprint arXiv:2104.13881 (2021).

[132] Thomas Kluyver et al. “Jupyter Notebooks-a publishing format for reproducible com-
putational workflows.” In: ELPUB. 2016, pp. 87–90.

[133] Pang Wei Koh and Percy Liang. “Understanding black-box predictions via influence
functions”. In: arXiv preprint arXiv:1703.04730 (2017).

[134] Daphne Koller, Nir Friedman, and Francis Bach. Probabilistic graphical models: prin-
ciples and techniques. MIT press, 2009.

[135] Aaron E Kornblith et al. “Predictability and Stability Testing to Assess Clinical De-
cision Instrument Performance for Children After Blunt Torso Trauma”. In: medRxiv
(2022). doi: 10.1101/2022.03.08.22270944. eprint: https://www.medrxiv.org/
content/early/2022/03/08/2022.03.08.22270944.full.pdf. url: https:

//www.medrxiv.org/content/early/2022/03/08/2022.03.08.22270944.

[136] Karl Kumbier et al. “Refining interaction search through signed iterative Random
Forests”. In: arXiv preprint arXiv:1810.07287 (2018).

[137] Nathan Kuppermann et al. “Identification of children at very low risk of clinically-
important brain injuries after head trauma: a prospective cohort study”. In: The
Lancet 374.9696 (2009), pp. 1160–1170.

[138] Jeff Larson et al. “How we analyzed the COMPAS recidivism algorithm”. In: ProP-
ublica (5 2016) 9 (2016).

[139] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun.
com/exdb/mnist/ (1998).

[140] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), p. 436.

[141] Gregory Lee et al. “PyWavelets: A Python package for wavelet analysis”. In: Journal
of Open Source Software 4.36 (2019), p. 1237.

[142] Tao Lei, Regina Barzilay, and Tommi Jaakkola. “Rationalizing neural predictions”.
In: arXiv preprint arXiv:1606.04155 (2016).

https://doi.org/10.1016/j.emc.2013.04.004
https://doi.org/10.1101/2022.03.08.22270944
https://www.medrxiv.org/content/early/2022/03/08/2022.03.08.22270944.full.pdf
https://www.medrxiv.org/content/early/2022/03/08/2022.03.08.22270944.full.pdf
https://www.medrxiv.org/content/early/2022/03/08/2022.03.08.22270944
https://www.medrxiv.org/content/early/2022/03/08/2022.03.08.22270944

BIBLIOGRAPHY 145

[143] Benjamin Letham et al. “Interpretable classifiers using rules and Bayesian analysis:
Building a better stroke prediction mode”. In: The Annals of Applied Statistics 9.3
(2015), pp. 1350–1371. doi: 10.1214/15-aoas848.

[144] Jiawei Li et al. “TNT: An Interpretable Tree-Network-Tree Learning Framework Us-
ing Knowledge Distillation”. In: Entropy 22.11 (2020), p. 1203.

[145] Jiwei Li, Will Monroe, and Dan Jurafsky. “Understanding neural networks through
representation erasure”. In: arXiv preprint arXiv:1612.08220 (2016).

[146] Xiao Li et al. “A stability-driven protocol for drug response interpretable prediction
(staDRIP)”. In: arXiv:2011.06593 [q-bio, stat] (Nov. 16, 2020). arXiv: 2011.06593.
url: http://arxiv.org/abs/2011.06593.

[147] Yi Li and Nuno Vasconcelos. “REPAIR: Removing Representation Bias by Dataset
Resampling”. In: arXiv preprint arXiv:1904.07911 (2019).

[148] Zack Li et al. “Constraining neutrino mass with tomographic weak lensing peak
counts”. In: Physical Review D 99.6, 063527 (2019), p. 063527. doi: 10 . 1103 /

PhysRevD.99.063527. arXiv: 1810.01781 [astro-ph.CO].

[149] Chinghway Lim and Bin Yu. “Estimation stability with cross-validation (ESCV)”. In:
Journal of Computational and Graphical Statistics 25.2 (2016), pp. 464–492.

[150] Jimmy Lin et al. “Generalized and scalable optimal sparse decision trees”. In: Inter-
national Conference on Machine Learning. PMLR. 2020, pp. 6150–6160.

[151] Jing Lin and MJ Zuo. “Gearbox fault diagnosis using adaptive wavelet filter”. In:
Mechanical systems and signal processing 17.6 (2003), pp. 1259–1269.

[152] Zachary C Lipton. “The mythos of model interpretability”. In: arXiv preprint arXiv:1606.03490
(2016).

[153] Geert Litjens et al. “A survey on deep learning in medical image analysis”. In: Medical
image analysis 42 (2017), pp. 60–88.

[154] Frederick Liu and Besim Avci. “Incorporating Priors with Feature Attribution on
Text Classification”. In: arXiv preprint arXiv:1906.08286 (2019).

[155] Jia Liu et al. “MassiveNuS: cosmological massive neutrino simulations”. In: JCAP
2018.3, 049 (2018), p. 049. doi: 10.1088/1475-7516/2018/03/049. arXiv: 1711.
10524 [astro-ph.CO].

[156] Tania Lombrozo. “The structure and function of explanations”. In: Trends in cognitive
sciences 10.10 (2006), pp. 464–470.

[157] José Marcio Luna et al. “Building more accurate decision trees with the additive tree”.
In: Proceedings of the national academy of sciences 116.40 (2019), pp. 19887–19893.

[158] Scott M Lundberg, Gabriel G Erion, and Su-In Lee. “Consistent Individualized Fea-
ture Attribution for Tree Ensembles”. In: arXiv preprint arXiv:1802.03888 (2018).

https://doi.org/10.1214/15-aoas848
http://arxiv.org/abs/2011.06593
https://doi.org/10.1103/PhysRevD.99.063527
https://doi.org/10.1103/PhysRevD.99.063527
https://arxiv.org/abs/1810.01781
https://doi.org/10.1088/1475-7516/2018/03/049
https://arxiv.org/abs/1711.10524
https://arxiv.org/abs/1711.10524

BIBLIOGRAPHY 146

[159] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model pre-
dictions”. In: Advances in Neural Information Processing Systems. 2017, pp. 4768–
4777.

[160] Scott M Lundberg et al. “Explainable AI for trees: From local explanations to global
understanding”. In: arXiv preprint arXiv:1905.04610 (2019).

[161] Prashant Mahajan et al. “Comparison of Clinician Suspicion Versus a Clinical Pre-
diction Rule in Identifying Children at Risk for Intra-abdominal Injuries after Blunt
Torso Trauma”. In: Academic Emergency Medicine 22.9 (2015), pp. 1034–1041. doi:
10.1111/acem.12739.

[162] Stephane Mallat. “A theory for multiresolution signal decomposition: the wavelet
representation”. In: IEEE transactions on pattern analysis and machine intelligence
11.7 (1989), pp. 674–693.

[163] Stephane Mallat. “Multiresolution approximations and wavelet orthonormal bases of
L2(R)”. In: Transactions of the American mathematical society 315.1 (1989), pp. 69–
87.

[164] Stéphane Mallat. A wavelet tour of signal processing, Third edition: The sparse way.
Academic Press, 2008.

[165] Stéphane Mallat. “Group invariant scattering”. In: Communications on Pure and
Applied Mathematics 65.10 (2012), pp. 1331–1398.

[166] J. R. Marin et al. “Variation in Computed Tomography Imaging for Pediatric Injury-
Related Emergency Visits”. In: J Pediatr 167.4 (Oct. 2015). edition: 2015/08/04, 897–
904 e3. issn: 1097-6833 (Electronic) 0022-3476 (Linking). doi: 10.1016/j.jpeds.
2015.06.052.

[167] Matteo Maturi et al. “An optimal filter for the detection of galaxy clusters through
weak lensing”. In: Astronomy & Astrophysics 442.3 (2005), pp. 851–860.

[168] Wes McKinney et al. “Data structures for statistical computing in python”. In: Pro-
ceedings of the 9th Python in Science Conference. Vol. 445. Austin, TX. 2010, pp. 51–
56.

[169] Harvey T McMahon and Emmanuel Boucrot. “Molecular mechanism and physiolog-
ical functions of clathrin-mediated endocytosis”. In: Nature reviews Molecular cell
biology 12.8 (2011), p. 517.

[170] J. A. Meltzer et al. “Association of Whole-Body Computed Tomography With Mor-
tality Risk in Children With Blunt Trauma”. In: JAMA Pediatr 172.6 (June 1, 2018).
edition: 2018/04/10, pp. 542–549. issn: 2168-6211 (Electronic) 2168-6203 (Linking).
doi: 10.1001/jamapediatrics.2018.0109.

[171] Lucas Mentch and Siyu Zhou. “Randomization as regularization: a degrees of freedom
explanation for random forest success”. In: arXiv preprint arXiv:1911.00190 (2019).

https://doi.org/10.1111/acem.12739
https://doi.org/10.1016/j.jpeds.2015.06.052
https://doi.org/10.1016/j.jpeds.2015.06.052
https://doi.org/10.1001/jamapediatrics.2018.0109

BIBLIOGRAPHY 147

[172] Robert Messenger and Lewis Mandell. “A modal search technique for predictive nom-
inal scale multivariate analysis”. In: Journal of the American Statistical Association
67.340 (1972), pp. 768–772.

[173] Yves Meyer. Wavelets and Operators: Volume 1. 37. Cambridge university press, 1992.

[174] Diana L. Miglioretti et al. “The use of computed tomography in pediatrics and the
associated radiation exposure and estimated cancer risk”. eng. In: JAMA pediatrics
167.8 (Aug. 1, 2013). PMID: 23754213 PMCID: PMC3936795, pp. 700–707. issn:
2168-6211. doi: 10.1001/jamapediatrics.2013.311.

[175] Arnaud Mignan and Marco Broccardo. “One neuron versus deep learning in aftershock
prediction”. In: Nature 574.7776 (2019), E1–E3.

[176] Masahiro Mitsuhara et al. “Embedding Human Knowledge in Deep Neural Network
via Attention Map”. In: arXiv preprint arXiv:1905.03540 (2019).

[177] Christoph Molnar. Interpretable machine learning. Lulu. com, 2019.

[178] Christoph Molnar. Interpretable machine learning. A Guide for Making Black Box
Models Explainable. Lulu. com, 2020. url: https : / / christophm . github . io /

interpretable-ml-book/.

[179] Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deepfool: a
simple and accurate method to fool deep neural networks”. In: Proceedings of 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). EPFL-
CONF-218057. 2016.

[180] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. “Deepdream-a code ex-
ample for visualizing neural networks”. In: Google Research 2 (2015), p. 5.

[181] Danielle Morel, Chandan Singh, and William B Levy. “Linearization of excitatory
synaptic integration at no extra cost”. In: Journal of Computational Neuroscience
44.2 (2018), pp. 173–188.

[182] James N Morgan and John A Sonquist. “Problems in the analysis of survey data,
and a proposal”. In: Journal of the American Statistical Association 58.302 (1963),
pp. 415–434.

[183] Philipp Moritz et al. “Ray: A distributed framework for emerging AI applications”. In:
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). 2018, pp. 561–577.

[184] W James Murdoch, Peter J Liu, and Bin Yu. “Beyond word importance: Contextual
decomposition to extract interactions from LSTMs”. In: arXiv preprint arXiv:1801.05453
(2018).

[185] W James Murdoch and Arthur Szlam. “Automatic rule extraction from long short
term memory networks”. In: arXiv preprint arXiv:1702.02540 (2017).

https://doi.org/10.1001/jamapediatrics.2013.311
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

BIBLIOGRAPHY 148

[186] W. James Murdoch et al. “Definitions, methods, and applications in interpretable
machine learning”. In: Proceedings of the National Academy of Sciences of the United
States of America 116.44 (2019), pp. 22071–22080. doi: 10.1073/pnas.1900654116.

[187] W. James Murdoch et al. “Interpretable machine learning: definitions, methods, and
applications”. In: arXiv preprint arXiv:1901.04592 (2019).

[188] Warwick J Nash et al. “The population biology of abalone (haliotis species) in tas-
mania. i. blacklip abalone (h. rubra) from the north coast and islands of bass strait”.
In: Sea Fisheries Division, Technical Report 48 (1994), p411.

[189] Quang P Nguyen and Kara W Schechtman. “Confirmed and Probable COVID-19
Deaths, Counted Two Ways”. In: The COVID Tracking Project (2020). url: https:
/ / covidtracking . com / blog / confirmed - and - probable - covid - 19 - deaths -

counted-two-ways.

[190] Weili Nie, Yang Zhang, and Ankit Patel. “A theoretical explanation for perplexing be-
haviors of backpropagation-based visualizations”. In: arXiv preprint arXiv:1805.07039
(2018).

[191] Beau Norgeot et al. “Minimum information about clinical artificial intelligence mod-
eling: the MI-CLAIM checklist”. eng. In: Nature Medicine 26.9 (Sept. 2020). PMID:
32908275 PMCID: PMC7538196, pp. 1320–1324. issn: 1546-170X. doi: 10.1038/
s41591-020-1041-y.

[192] Harvard University Office of Institutional Research. “Exhibit 157: Demographics of
Harvard College Applicants”. In: http://samv91khoyt2i553a2t1s05i-wpengine.netdna-
ssl.com/wp-content/uploads/2018/06/Doc-421-157-May-30-2013-Report.pdf (2018), pp. 8–
9.

[193] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visualization”.
In: Distill 2.11 (2017), e7.

[194] Julian D Olden, Michael K Joy, and Russell G Death. “An accurate comparison
of methods for quantifying variable importance in artificial neural networks using
simulated data”. In: Ecological Modelling 178.3-4 (2004), pp. 389–397.

[195] Bruno A Olshausen and David J Field. “Sparse coding with an overcomplete basis
set: A strategy employed by V1?” In: Vision research 37.23 (1997), pp. 3311–3325.

[196] Randal S Olson et al. “Data-driven advice for applying machine learning to bioin-
formatics problems”. In: Biocomputing 2018: Proceedings of the Pacific Symposium.
World Scientific. 2018, pp. 192–203.

[197] Joy D Osofsky. “The effects of exposure to violence on young children (1995).” In:
Carnegie Corporation of New York Task Force on the Needs of Young Children; An
earlier version of this article was presented as a position paper for the aforementioned
corporation. (1997).

https://doi.org/10.1073/pnas.1900654116
https://covidtracking.com/blog/confirmed-and-probable-covid-19-deaths-counted-two-ways
https://covidtracking.com/blog/confirmed-and-probable-covid-19-deaths-counted-two-ways
https://covidtracking.com/blog/confirmed-and-probable-covid-19-deaths-counted-two-ways
https://doi.org/10.1038/s41591-020-1041-y
https://doi.org/10.1038/s41591-020-1041-y

BIBLIOGRAPHY 149

[198] Utku Ozbulak. PyTorch CNN Visualizations. https://github.com/utkuozbulak/
pytorch-cnn-visualizations. 2019.

[199] R Kelley Pace and Ronald Barry. “Sparse spatial autoregressions”. In: Statistics &
Probability Letters 33.3 (1997), pp. 291–297.

[200] Giulia Pagallo and David Haussler. “Boolean feature discovery in empirical learning”.
In: Machine learning 5.1 (1990), pp. 71–99.

[201] Nicolas Papernot and Patrick McDaniel. “Deep k-nearest neighbors: Towards confi-
dent, interpretable and robust deep learning”. In: arXiv preprint arXiv:1803.04765
(2018).

[202] Nicolas Papernot et al. “The limitations of deep learning in adversarial settings”. In:
Security and Privacy (EuroS&P), 2016 IEEE European Symposium on. IEEE. 2016,
pp. 372–387.

[203] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).

[204] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad.
“Orthogonal matching pursuit: Recursive function approximation with applications
to wavelet decomposition”. In: Conf. Rec. 27th Asilomar Conf. Signals, Syst. Comput.
IEEE. 1993, pp. 40–44.

[205] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal
of machine Learning research 12.Oct (2011), pp. 2825–2830. url: http://jmlr.org/
papers/v12/pedregosa11a.html.

[206] Christopher Pennell et al. “Risk assessment for intraabdominal injury following blunt
trauma in children”. In: Journal of Trauma and Acute Care Surgery Publish Ah
(2020). issn: 0000000000. doi: 10.1097/ta.0000000000002717.

[207] Fernando Pérez and Brian E Granger. “IPython: a system for interactive scientific
computing”. In: Computing in Science & Engineering 9.3 (2007).

[208] Harold Pimentel, Zhiyue Hu, and Haiyan Huang. “Biclustering by sparse canonical
correlation analysis”. In: Quantitative Biology 6.1 (2018), pp. 56–67.

[209] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[210] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986),
pp. 81–106.

[211] Juan Ramos et al. “Using tf-idf to determine word relevance in document queries”.
In: Proceedings of the first instructional conference on machine learning. Vol. 242.
2003, pp. 133–142.

[212] Garvesh Raskutti, Martin J Wainwright, and Bin Yu. “Minimax-Optimal Rates For
Sparse Additive Models Over Kernel Classes Via Convex Programming.” In: Journal
of Machine Learning Research 13.2 (2012).

https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/utkuozbulak/pytorch-cnn-visualizations
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1097/ta.0000000000002717

BIBLIOGRAPHY 150

[213] Jonas Rauber, Wieland Brendel, and Matthias Bethge. “Foolbox v0. 8.0: A python
toolbox to benchmark the robustness of machine learning models”. In: arXiv preprint
arXiv:1707.04131 (2017).

[214] Stephen J Read and Amy Marcus-Newhall. “Explanatory coherence in social expla-
nations: A parallel distributed processing account.” In: Journal of Personality and
Social Psychology 65.3 (1993), p. 429.

[215] Daniel Recoskie. “Learning Sparse Orthogonal Wavelet Filters”. In: (2018).

[216] Daniel Recoskie and Richard Mann. “Learning sparse wavelet representations”. In:
arXiv preprint arXiv:1802.02961 (2018).

[217] Brendan M. Reilly and Arthur T. Evans. “Translating clinical research into clinical
practice: impact of using prediction rules to make decisions”. eng. In: Annals of In-
ternal Medicine 144.3 (Feb. 7, 2006). PMID: 16461965, pp. 201–209. issn: 1539-3704.
doi: 10.7326/0003-4819-144-3-200602070-00009.

[218] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should i trust you?:
Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM. 2016,
pp. 1135–1144.

[219] Dezső Ribli, Bálint Ármin Pataki, and István Csabai. “An improved cosmological
parameter inference scheme motivated by deep learning”. In: Nature Astronomy 3.1
(2019), p. 93.

[220] Dezső Ribli et al. “Weak lensing cosmology with convolutional neural networks on
noisy data”. In: Monthly Notices of the Royal Astronomical Society 490.2 (2019),
pp. 1843–1860. doi: 10.1093/mnras/stz2610. arXiv: 1902.03663 [astro-ph.CO].

[221] Laura Rieger and Lars Kai Hansen. “Aggregating explainability methods for neural
networks stabilizes explanations”. In: arXiv preprint arXiv:1903.00519 (2019).

[222] Laura Rieger et al. “Interpretations are useful: penalizing explanations to align neural
networks with prior knowledge”. In: arXiv preprint arXiv:1909.13584 (2019).

[223] Laura Rieger et al. “Interpretations are useful: penalizing explanations to align neural
networks with prior knowledge”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 8116–8126.

[224] Richard D. Riley et al. “External validation of clinical prediction models using big
datasets from e-health records or IPD meta-analysis: opportunities and challenges”.
eng. In: BMJ (Clinical research ed.) 353 (June 22, 2016). PMID: 27334381 PMCID:
PMC4916924, p. i3140. issn: 1756-1833. doi: 10.1136/bmj.i3140.

[225] Anna W Roe et al. “Toward a unified theory of visual area V4”. In: Neuron 74.1
(2012), pp. 12–29.

[226] Anna Rohrbach et al. “Grounding of textual phrases in images by reconstruction”.
In: European Conference on Computer Vision. Springer. 2016, pp. 817–834.

https://doi.org/10.7326/0003-4819-144-3-200602070-00009
https://doi.org/10.1093/mnras/stz2610
https://arxiv.org/abs/1902.03663
https://doi.org/10.1136/bmj.i3140

BIBLIOGRAPHY 151

[227] Joseph D Romano et al. “PMLB v1. 0: an open source dataset collection for bench-
marking machine learning methods”. In: arXiv preprint arXiv:2012.00058 (2020).

[228] Andrew Slavin Ross and Finale Doshi-Velez. “Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input gradients”.
In: Thirty-second AAAI conference on artificial intelligence. 2018.

[229] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. “Right for the right
reasons: Training differentiable models by constraining their explanations”. In: arXiv
preprint arXiv:1703.03717 (2017).

[230] Cynthia Rudin. “Please Stop Explaining Black Box Models for High Stakes Deci-
sions”. In: arXiv preprint arXiv:1811.10154 (2018).

[231] Cynthia Rudin et al. “Interpretable Machine Learning: Fundamental Principles and
10 Grand Challenges”. In: arXiv preprint arXiv:2103.11251 (2021).

[232] Kaspar Rufibach. “Use of Brier score to assess binary predictions”. English. In: Jour-
nal of Clinical Epidemiology 63.8 (Aug. 1, 2010). publisher: Elsevier PMID: 20189763,
pp. 938–939. issn: 0895-4356, 1878-5921. doi: 10.1016/j.jclinepi.2009.11.009.

[233] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: In-
ternational Journal of Computer Vision 115.3 (2015), pp. 211–252.

[234] Phil Sallee and Bruno Olshausen. “Learning sparse multiscale image representations”.
In: Advances in neural information processing systems 15 (2002), pp. 1351–1358.

[235] Andrea Saltelli. “Sensitivity analysis for importance assessment”. In: Risk analysis
22.3 (2002), pp. 579–590. doi: 10.1111/0272-4332.00040.

[236] Fabian Schmidt and Eduardo Rozo. “Weak-lensing Peak Finding: Estimators, Filters,
and Biases”. In: The Astrophysical Journal 735.2 (2011), p. 119.

[237] Patrick Schramowski et al. “Making deep neural networks right for the right scientific
reasons by interacting with their explanations”. In: Nature Machine Intelligence 2.8
(2020), pp. 476–486.

[238] Gerald DT Schuller et al. “Perceptual audio coding using adaptive pre-and post-filters
and lossless compression”. In: IEEE Transactions on Speech and Audio Processing
10.6 (2002), pp. 379–390.

[239] Gideon Schwarz. “Estimating the dimension of a model”. In: The annals of statistics
(1978), pp. 461–464.

[240] Ramprasaath R Selvaraju et al. “Grad-cam: Visual explanations from deep networks
via gradient-based localization”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 618–626.

[241] Tao Shi et al. “Daytime arctic cloud detection based on multi-angle satellite data
with case studies”. In: Journal of the American Statistical Association 103.482 (2008),
pp. 584–593.

https://doi.org/10.1016/j.jclinepi.2009.11.009
https://doi.org/10.1111/0272-4332.00040

BIBLIOGRAPHY 152

[242] Avanti Shrikumar et al. “Not just a black box: Learning important features through
propagating activation differences”. In: arXiv preprint arXiv:1605.01713 (2016).

[243] Vincent G Sigillito et al. “Classification of radar returns from the ionosphere using
neural networks”. In: Johns Hopkins APL Technical Digest 10.3 (1989), pp. 262–266.

[244] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[245] Chandan Singh, Guha Balakrishnan, and Pietro Perona. “Matched sample selection
with GANs for mitigating attribute confounding”. In: arXiv preprint arXiv:2103.13455
(2021).

[246] Chandan Singh, Wooseok Ha, and Bin Yu. “Interpreting and improving deep-learning
models with reality checks”. In: arXiv preprint arXiv:2108.06847 (2021).

[247] Chandan Singh and William B Levy. “A consensus layer V pyramidal neuron can
sustain interpulse-interval coding”. In: PloS one 12.7 (2017), e0180839.

[248] Chandan Singh, W James Murdoch, and Bin Yu. “Hierarchical Interpretations for
Neural Network Predictions”. en. In: International Conference on Learning Repre-
sentations (2019), p. 26. url: https://openreview.net/forum?id=SkEqro0ctQ.

[249] Chandan Singh, W. James Murdoch, and Bin Yu. “Hierarchical interpretations for
neural network predictions”. In: International Conference on Learning Representa-
tions. 2019. url: https://openreview.net/forum?id=SkEqro0ctQ.

[250] Chandan Singh, Beilun Wang, and Yanjun Qi. “A constrained, weighted-l1 mini-
mization approach for joint discovery of heterogeneous neural connectivity graphs”.
In: arXiv preprint arXiv:1709.04090 (2017).

[251] Chandan Singh et al. “imodels: a python package for fitting interpretable models”. In:
Journal of Open Source Software 6.61 (2021), p. 3192. doi: 10.21105/joss.03192.
url: https://doi.org/10.21105/joss.03192.

[252] Chandan Singh et al. Transformation Importance with Applications to Cosmology.
2020. arXiv: 2003.01926 [stat.ML].

[253] Jack W Smith et al. “Using the ADAP learning algorithm to forecast the onset of
diabetes mellitus”. In: Proceedings of the annual symposium on computer application
in medical care. American Medical Informatics Association. 1988, p. 261.

[254] Richard Socher et al. “Recursive deep models for semantic compositionality over a
sentiment treebank”. In: Proceedings of the 2013 conference on empirical methods in
natural language processing. 2013, pp. 1631–1642.

[255] Jost Tobias Springenberg et al. “Striving for simplicity: The all convolutional net”.
In: arXiv preprint arXiv:1412.6806 (2014).

[256] Henry J Steadman et al. “A classification tree approach to the development of ac-
tuarial violence risk assessment tools”. In: Law and Human Behavior 24.1 (2000),
pp. 83–100.

https://openreview.net/forum?id=SkEqro0ctQ
https://openreview.net/forum?id=SkEqro0ctQ
https://doi.org/10.21105/joss.03192
https://doi.org/10.21105/joss.03192
https://arxiv.org/abs/2003.01926

BIBLIOGRAPHY 153

[257] I. G. Stiell and G. A. Wells. “Methodologic standards for the development of clinical
decision rules in emergency medicine”. eng. In: Annals of Emergency Medicine 33.4
(Apr. 1999). PMID: 10092723, pp. 437–447. issn: 0196-0644. doi: 10.1016/s0196-
0644(99)70309-4.

[258] Erin K Stokes et al. “Coronavirus disease 2019 case surveillance—United States, Jan-
uary 22–May 30, 2020”. In: Morbidity and Mortality Weekly Report 69.24 (2020),
p. 759.

[259] Christian J. Streck et al. “Identifying Children at Very Low Risk for Blunt Intra-
Abdominal Injury in Whom CT of the Abdomen Can Be Avoided Safely”. In: vol. 224.
issue: 4. Journal of the American College of Surgeons. 2017, 449–458.e3. doi: 10.
1016/j.jamcollsurg.2016.12.041. url: http://linkinghub.elsevier.com/
retrieve/pii/S1072751517300376.

[260] Hendrik Strobelt et al. “Visual analysis of hidden state dynamics in recurrent neural
networks”. In: CoRR, abs/1606.07461 (2016).

[261] Carolin Strobl et al. “Conditional variable importance for random forests”. In: BMC
bioinformatics 9.1 (2008), p. 307.

[262] Julia Strout, Ye Zhang, and Raymond J Mooney. “Do Human Rationales Improve
Machine Explanations?” In: arXiv preprint arXiv:1905.13714 (2019).

[263] Jiamei Sun et al. “Explain and improve: LRP-inference fine-tuning for image caption-
ing models”. In: Information Fusion 77 (2022), pp. 233–246.

[264] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep
networks”. In: ICML (2017).

[265] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv preprint
arXiv:1312.6199 (2013).

[266] Cheng Tai and E Weinan. “Multiscale adaptive representation of signals: I. the basic
framework”. In: The Journal of Machine Learning Research 17.1 (2016), pp. 4875–
4912.

[267] Sarah Tan et al. “Learning global additive explanations for neural nets using model
distillation”. In: arXiv preprint arXiv:1801.08640 (2018).

[268] Yan Shuo Tan, Abhineet Agarwal, and Bin Yu. “A cautionary tale on fitting decision
trees to data from additive models: generalization lower bounds”. In: arXiv preprint
arXiv:2110.09626 (2021).

[269] Yan Shuo Tan et al. “Fast Interpretable Greedy-Tree Sums (FIGS)”. en. In: arXiv:2201.11931
[cs, stat] (Jan. 27, 2022). arXiv: 2201.11931. url: http://arxiv.org/abs/2201.
11931.

[270] RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc.
Boston, MA, 2016. url: http://www.rstudio.com/.

https://doi.org/10.1016/s0196-0644(99)70309-4
https://doi.org/10.1016/s0196-0644(99)70309-4
https://doi.org/10.1016/j.jamcollsurg.2016.12.041
https://doi.org/10.1016/j.jamcollsurg.2016.12.041
http://linkinghub.elsevier.com/retrieve/pii/S1072751517300376
http://linkinghub.elsevier.com/retrieve/pii/S1072751517300376
http://arxiv.org/abs/2201.11931
http://arxiv.org/abs/2201.11931
http://www.rstudio.com/

BIBLIOGRAPHY 154

[271] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of
the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[272] D.B. Toll et al. “Validation, updating and impact of clinical prediction rules: A re-
view”. en. In: Journal of Clinical Epidemiology 61.11 (Nov. 2008), pp. 1085–1094.
issn: 08954356. doi: 10.1016/j.jclinepi.2008.04.008.

[273] Michael Tsang, Dehua Cheng, and Yan Liu. “Detecting statistical interactions from
neural network weights”. In: arXiv preprint arXiv:1705.04977 (2017).

[274] Michael Tsang et al. “Can I trust you more? Model-Agnostic Hierarchical Explana-
tions”. In: arXiv preprint arXiv:1812.04801 (2018).

[275] Berk Ustun and Cynthia Rudin. “Supersparse linear integer models for optimized
medical scoring systems”. In: Machine Learning 102.3 (2016), pp. 349–391. doi: 10.
1007/s10994-015-5528-6.

[276] Adam M. Vogel et al. “Variability in the evalution of pediatric blunt abdominal
trauma”. eng. In: Pediatric Surgery International 35.4 (Apr. 2019). PMID: 30426222,
pp. 479–485. issn: 1437-9813. doi: 10.1007/s00383-018-4417-z.

[277] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a ran-
dom world. Springer Science & Business Media, 2005.

[278] Mai-Anh T Vu et al. “A shared vision for machine learning in neuroscience”. In:
Journal of Neuroscience (2018), pp. 0508–17.

[279] Haohan Wang et al. “Learning Robust Representations by Projecting Superficial
Statistics Out”. In: arXiv preprint arXiv:1903.06256 (2019).

[280] Tong Wang. “Gaining Free or Low-Cost Interpretability with Interpretable Partial
Substitute”. In: Proceedings of the 36th International Conference on Machine Learn-
ing. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of
Machine Learning Research. PMLR, 2019, pp. 6505–6514. url: http://proceedings.
mlr.press/v97/wang19a.html.

[281] Michael Waskom et al. “Seaborn: statistical data visualization”. In: URL: https://seaborn.
pydata. org/(visited on 2017-05-15) (2014).

[282] Donglai Wei et al. “Understanding intra-class knowledge inside CNN”. In: arXiv
preprint arXiv:1507.02379 (2015).

[283] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer, 2016.

[284] Hadley Wickham. tidyverse: Easily Install and Load the ’Tidyverse’. 2017. url: https:
//CRAN.R-project.org/package=tidyverse.

https://doi.org/10.1016/j.jclinepi.2008.04.008
https://doi.org/10.1007/s10994-015-5528-6
https://doi.org/10.1007/s10994-015-5528-6
https://doi.org/10.1007/s00383-018-4417-z
http://proceedings.mlr.press/v97/wang19a.html
http://proceedings.mlr.press/v97/wang19a.html
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidyverse

BIBLIOGRAPHY 155

[285] Julia K. Winkler et al. “Association Between Surgical Skin Markings in Dermoscopic
Images and Diagnostic Performance of a Deep Learning Convolutional Neural Net-
work for Melanoma RecognitionSurgical Skin Markings in Dermoscopic Images and
Deep Learning Convolutional Neural Network Recognition of MelanomaSurgical Skin
Markings in Dermoscopic Images and Deep Learning Convolutional Neural Network
Recognition of Melanoma”. In: JAMA Dermatology (Aug. 2019). issn: 2168-6068.
doi: 10.1001/jamadermatol.2019.1735. eprint: https://jamanetwork.com/

journals/jamadermatology/articlepdf/2740808/jamadermatology_winkler\

_2019_oi_190038.pdf. url: https://doi.org/10.1001/jamadermatol.2019.
1735.

[286] Marvin N Wright, Andreas Ziegler, et al. “ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C++ and R”. In: Journal of Statistical Software
77.i01 (2017).

[287] Siqi Wu et al. “Stability-driven nonnegative matrix factorization to interpret spa-
tial gene expression and build local gene networks”. In: Proceedings of the National
Academy of Sciences 113.16 (2016), pp. 4290–4295.

[288] I-Cheng Yeh and Che-hui Lien. “The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients”. In: Expert Systems
with Applications 36.2 (2009), pp. 2473–2480.

[289] Kenneth Yen et al. “Interobserver agreement in the clinical assessment of children with
blunt abdominal trauma”. In: Academic Emergency Medicine 20.5 (2013), pp. 426–
432. doi: 10.1111/acem.12132.

[290] Seul-Ki Yeom et al. “Pruning by explaining: A novel criterion for deep neural network
pruning”. In: Pattern Recognition 115 (2021), p. 107899.

[291] Jason Yosinski et al. “Understanding neural networks through deep visualization”.
In: arXiv preprint arXiv:1506.06579 (2015).

[292] Bin Yu. “Stability”. In: Bernoulli 19.4 (2013), pp. 1484–1500.

[293] Bin Yu and Karl Kumbier. “Veridical data science”. In: Proceedings of the National
Academy of Sciences of the United States of America 117.8 (2020), pp. 3920–3929.
doi: 10.1073/pnas.1901326117.

[294] Bin Yu and Chandan Singh. “Seven Principles for Rapid-Response Data Science:
Lessons Learned from Covid-19 Forecasting”. In: arXiv preprint arXiv:2108.08445
(2021).

[295] Matei Zaharia et al. “Accelerating the machine learning lifecycle with MLflow”. In:
IEEE Data Eng. Bull. 41.4 (2018), pp. 39–45. doi: 10.1145/3399579.3399867.

[296] Omar Zaidan, Jason Eisner, and Christine Piatko. “Using “annotator rationales” to
improve machine learning for text categorization”. In: Proceedings of NAACL HLT.
2007, pp. 260–267.

https://doi.org/10.1001/jamadermatol.2019.1735
https://jamanetwork.com/journals/jamadermatology/articlepdf/2740808/jamadermatology_winkler_2019_oi_190038.pdf
https://jamanetwork.com/journals/jamadermatology/articlepdf/2740808/jamadermatology_winkler_2019_oi_190038.pdf
https://jamanetwork.com/journals/jamadermatology/articlepdf/2740808/jamadermatology_winkler_2019_oi_190038.pdf
https://doi.org/10.1001/jamadermatol.2019.1735
https://doi.org/10.1001/jamadermatol.2019.1735
https://doi.org/10.1111/acem.12132
https://doi.org/10.1073/pnas.1901326117
https://doi.org/10.1145/3399579.3399867

BIBLIOGRAPHY 156

[297] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional
networks”. In: European conference on computer vision. Springer. 2014, pp. 818–833.

[298] Jun Zhang et al. “Wavelet neural networks for function learning”. In: IEEE transac-
tions on Signal Processing 43.6 (1995), pp. 1485–1497.

[299] Qinghua Zhang and Albert Benveniste. “Wavelet networks”. In: IEEE transactions
on Neural Networks 3.6 (1992), pp. 889–898.

[300] Quanshi Zhang et al. “Interpreting CNN knowledge via an Explanatory Graph”. In:
arXiv preprint arXiv:1708.01785 (2017).

[301] Tianyuan Zhang and Zhanxing Zhu. “Interpreting Adversarially Trained Convolu-
tional Neural Networks”. In: arXiv preprint arXiv:1905.09797 (2019).

[302] Esra Zihni et al. “Opening the black box of artificial intelligence for clinical decision
support: A study predicting stroke outcome”. In: PLoS ONE 15.4 (2020), pp. 1–15.
issn: 1111111111. doi: 10.1371/journal.pone.0231166.

[303] Luisa M Zintgraf et al. “Visualizing deep neural network decisions: Prediction differ-
ence analysis”. In: arXiv preprint arXiv:1702.04595 (2017).

[304] Joseph J Zorc, James M Chamberlain, and Lalit Bajaj. “Machine Learning at the
Clinical Bedside-The Ghost in the Machine.” In: JAMA pediatrics 162.1 (May 2019),
W1–W73. doi: 10.1001/jamapediatrics.2019.1075.

https://doi.org/10.1371/journal.pone.0231166
https://doi.org/10.1001/jamapediatrics.2019.1075

	Contents
	Overview
	Part I: Post-hoc neural-network interpretations
	Part II: Improving neural networks with interpretations
	Part III: Rule-based interpretable modeling
	Part IV: Open-source software and data

	Interpretability: for what and for whom?
	Interpretation in the data science life cycle
	The PDR desiderata for interpretations
	Model-based interpretability
	Post hoc interpretability
	Future work

	Post-hoc neural-network interpretations
	Hierarchical, disentangled interpretations (ACD)
	Motivating the need for hierarchical interpretations
	Background on feature importance
	Methods for contextual decomposition and ACD
	ACD succeeds in providing useful qualitative and quantitative interpretation

	Transformation importance (TRIM)
	The need for transformation importance
	Calculating transformation importance
	Results for transformation importance

	Real-world problem: cosmological parameter prediction
	Cosmological experiment details

	Leveraging neural-network interpretations to improve models
	Penalizing explanations to align neural networks with prior knowledge (CDEP)
	Intro to directly improving models with explanations
	Background on using interpretations as regularization
	CDEP methodology
	CDEP improves predictive performance using domain knowledge
	Limitations and extensions of CDEP

	Adaptive wavelet distillation from neural networks through interpretations
	Intro to adaptive wavelet distillation
	Background on the wavelet transform
	Adaptive wavelet distillation through interpretations
	AWD improves interpretability, prediction performance, and compression in two scientific problems and in simulations
	Discussion

	Real-world problem: molecular-partner prediction in cell biology
	Experimental details for molecular partner-prediction

	Rule-based models for interpretable modeling
	Fast interpretable greedy-tree sums
	Introduction to FIGS
	FIGS: Algorithm description and runtime
	Background on tree-sums
	Theoretical evidence that FIGS adapts to additive structure
	Simulations support theoretical results
	FIGS results on real-world datasets
	FIGS Discussion

	Hierarchical shrinkage for trees
	Introduction to HS
	The Hierarchical Shrinkage (HS) algorithm
	HS improves predictive performance on real-world datasets
	HS improves RF interpretations by simplifying and stabilizing them
	HS as ridge regression on supervised features
	HS Discussion

	Real-world problem: clinical decision-rule development
	Intro to clinical decision rules
	Methods for clinical decision rule development with PCS
	CDR Results
	Discussion on clinical decision rules

	Open-source software and data
	imodels: a python library for interpretable modeling
	Features

	Veridical-flow: a python package for building trustworthy data-science pipelines with PCS
	Statement of need
	Features

	Covid-19: county-level data curation and death forecasting
	Bibliography

