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Abstract

Indoor Scene Augmentation via Scene Graph Priors

by

Mohammad Keshavarzi

Master of Science, Plan II in Electrical Engineering and Computer Science

University of California, Berkeley

Associate Professor Bjoern Hartmann, Chair

In spatial computing experiences augmenting virtual objects to existing scenes requires a contextual
approach, where geometrical conflicts are avoided, and functional relationships to other objects are
maintained. Yet, due to the complexity and diversity of user environments, automatically predicting
contextual and adaptive placements of virtual content is considered a challenging task. Motivated
by this problem, in this paper we introduce SceneGen, a generative contextual scene augmentation
framework that predicts virtual object placement within existing scenes. SceneGen takes a scene
as input, and outputs positional and orientational probability maps for placing virtual content. We
formulate a novel spatial Scene Graph representation, which encapsulates explicit topological
properties between objects, object groups, and rooms. We use kernel density estimation to build a
multivariate conditional knowledge model trained using prior spatial Scene Graphs extracted from
real-world 3D scanned data as prior. To further capture orientational properties, we develop a fast
pose annotation tool to extend current real-world datasets with orientational labels. Furthermore, we
conduct comparative and user experiments to demonstrate the performance of our system in various
indoor scene augmentation scenarios. Finally, to demonstrate our system in action, we develop an
Augmented Reality application, in which objects can be contextually augmented in real-time.
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Chapter 1

Introduction

1.1 Spatial Limitations in Spatial Computing
Spatial Computing experiences such as augmented reality (AR) and virtual reality (VR) have

formed a newly exciting market in today’s technological space. New applications and experiences
are being launched daily across the categories of gaming, healthcare, design, education, and more.
However, for all of the countless applications available, they are physically constrained by the
geometry and semantics of the 3D user environment where existing furniture and building elements
are present [35, 40] . Contrary to traditional 2D graphical user interface, where a flat rectangular
region hosts digital content, 3D spatial computing environments are often occupied by physical
obstacles that are diverse and often times non-convex. Therefore, how one can assess content
placement in spatial computing experiences is highly dependent on the user’s target scene.

However, since different users may reside in different spatial environments, which differ in
dimensions, functions (rooms, workplace, garden, etc.), and open usable spaces, existing furniture
and their arrangements are often unknown to the developers, making it very challenging to design a
virtual experience that would adapt to all users’ environments. Currently, contextual placement is
addressed by asking users themselves to identify the usable spaces in their surrounding environments
or manually positioning the augmented object(s) within the scene. Then, virtual object placement
in most AR experiences is limited to specific surfaces and locations, e.g., placing objects naively
in front of the user with no scene understanding, or only using basic horizontal or vertical surface
detection. These simplistic strategies may work to some extent for small virtual objects, but
the methods break down for larger objects or complex scenes with multiple object augmentation
requirements. This limitation is further elevated in remote multi-user interaction scenarios, where
finding a common virtual ground physically accessible to all participants to augment their content
becomes challenging [19]. Hence, such experiences automatically become less immersive once the
users encounter implausible virtual object augmentation in their environments.
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1.2 Contrained Scene Synthesis
The task of adding objects to existing constructed scenes falls under the problem of constrained

scene synthesis. The work of [18, 31, 24, 38, 42, 57] are examples of such approach. However,
there are two major challenges in the general literature that create bottlenecks for virtual content
augmentation in spatial computing experiences. First, current scanned 3D datasets publicly available
are limited in size and diversity, and may not offer all the data required to capture topological
properties of the rooms. For instance, pose, the direction in which the object is facing, is a critical
feature for understanding the orientational property of an object, and yet, such a property is not
clearly annotated for any objects in many large-scale real-world datasets such as SUN-RGBD
and Matterport3D. Therefore, more recent research has adapted synthetic datasets, which do not
necessarily need to be manually annotated for pose prior information.

However, a critical drawback of using synthetic datasets is that it cannot capture the natural
transformation and topological properties of objects in real-world settings. Indeed, topological
relationships between objects in real-world scenes typically exceed theoretical design assumptions
of an architect, and instead capture contextual relationships from a living environment. Moreover,
the limitations of the modeling software for synthetic datasets can also introduce unwanted biases to
the generated scenes. The SUNCG [51] dataset, for instance, was built with Planner5D platform, an
online tool which any user around the world can use. However, it comes with modeling limitations
for generating rooms and furniture. Orientations are also snapped to right angles by default, which
makes most scenes in the dataset Manhattan-like. More importantly, there is no indication whether
the design is complete or not, namely, a user may just start playing with the software and then leave
at a random time, while the resulting arrangement is still captured as a legitimate human-modeled
arrangement in the dataset.

Second, recent models take advantage of implicit deep learning models and have shown promis-
ing results in synthesizing indoor scenes. Yet, these approaches fall short for content developers
to parameterize customized placement in relation to standard objects in the scene, and to generate
custom spatial functionalities. One major limitation of these studies is that they do not have direct
control over objects in the generated scene. For example, authors of [24] reported they could not
specify object counts or constrain the scene to contain a subset of objects. Such limitations come
from the implicit nature of such neural networks. Implicit models produce a black-box tool, which is
difficult to comprehend should a end-user wishes to tweak its functions. In cases where a new object
type (which has not been previously seen in prior datasets) need to be placed, implicit structures
may not provide abilities to take into account manually defined topological properties by a user.
Moreover, training deep neural networks requires large datasets, a bottleneck that we have discussed
above.

1.3 Research Objectives and Contributions
Motivated by these challenges, in this paper we introduce SceneGen, a generative contextual

augmentation framework that leverages explicit scene graph models to predict the functional
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placements of new virtual objects in a target indoor scene. Contrary to the implicit models,
SceneGen is based on clear, logical object attributes and their architectural relationships with other
objects and the room. In light of the existing body of literature on semantic scene graphs, we
leverage this approach to encapsulate the relevant object relationships for scene augmentation.
Scene graphs have already been in use for general scene generation tasks; they can also inform
the intelligent placement of virtual objects in physical scenes. We use kernel density estimation
(KDE) to build a multivariate conditional model to encapsulate explicit positioning and clustering
information for objects in various room types. This information will allow our algorithm to calculate
a probability distribution to place and orient the new object in a scene while satisfying their physical
and functional requirements. From the calculated probabilities, we generate a score for each
potential placement of the new object, visualized in a heat map over the room. Our system is
designed for both fully automated scene augmentation and also user-in-the-loop scenarios, allowing
the user to understand the influence of the relationship features and their impact on the results.

Our contributions can be summarized as follows:

1. We introduce a spatial Scene Graph representation which encapsulates positional and ori-
entational relationships of a scene. Our proposed Scene Graph captures pairwise topology
between objects, object groups, and the room.

2. We develop a prediction model for object contextual augmentation in existing scenes. We
construct an explicit Knowledge Model which is trained from Scene Graph representations
captured from real-world 3D scanned data.

3. To learn orientational relationships from real-world 3D scanned data, we have manually
labeled the Matterport3D dataset with pose directions using an open-source labeling tool for
fast pose labeling.

4. We develop an Augmented Reality (AR) application that scans a user’s room and generates
a Scene Graph based on the existing objects. Using our model, we sample poses across the
room to determine a probabilistic heat map of where the object can be placed. By placing
objects in poses where the spatial relationships are likely, we are able to augment scenes that
are realistic.

The proposed framework developed in this thesis can play a role in increasing the adoption of
Spatial Computing interfaces in everyday environments. The research would allow developers to
design content without knowing the target scene of the user itself. Content itself can adapt to the
target scene while addressing topological goals with the real and virtual objects. Such approach
can pave the way for developing Responsive Spatial Computing frameworks. Similar to responsive
web design [33], responsive spatial computing can be as a cost-effective alternative to hard-coded
applications due to its ability to house all of the code in a single program.

Moreover the proposed system can facilitate a wide variety of spatial computing applications.
Augmenting virtual objects to scenes has been explored in online-shopping settings, and collabora-
tive environments require placing one user’s objects into another user’s surroundings. In addition,
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content creation of augmented and virtual reality experiences requires long hours of cross platform
development on current applications, so our system will allow faster scene generation and content
generation in AR/VR experiences.
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Chapter 2

Background

2.1 Scene Understanding
Semantic Scene Graphs form one part of the overall task of scene understanding. On this topic,

a progression of papers attempted to encapsulate human “common-sense” knowledge in various
ways: physical constraints and statistical priors [50], physical constraints and stability reasoning
[16], physics-based stability modeling [69], language priors [30], and statistical modeling with deep
learning [10]. A similar approach was detailed in [21] for 3D reconstruction, taking advantage of
the regularity and repetition of furniture arrangements in certain indoor spaces, e.g., office buildings.
In [59], the authors proposed a technique that potentially could be well suited to AR applications,
as it builds a 3D reconstruction of the scene through consecutive depth acquisitions, which could be
taken incrementally as a user moves within their environment. Some recent work has addressed
problems such as retrieving 3D layouts from 2D panoramic input [52, 22] or floorplan sketches
[20], building scenes from 3D point clouds [36, 49], and 3D plane reconstruction from a single
image [65, 28]. One can consult a recent overview of the topic in [29]. Our approach leverages
these works on scene understanding, because our model operates on the assumption that we already
have locations and bounding boxes of the existing objects in scene.

2.2 Semantic Scene Graphs
Semantic Scene Graphs have been applied to various tasks in the past, including image retrieval

[17], visual question answering [54], image caption generation [62], and more. The past research
can be divided into two approaches: (1) separate stages of object detection and graph inference,
and (2) joint inference of object classes and graph relationships. Papers that followed the first
approach often leverage existing object detection networks [41, 25, 66, 62, 9]. Similarly to other
scene understanding tasks, many methods also involved learning prior knowledge of common
scene structures in order to apply them to new scenes, such as physical constraints from stability
reasoning [61] or frequency priors represented as recurring scene motifs [66]. Most methods were
benchmarked based on the Visual Genome dataset [23]. However, recent studies found this dataset
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has an uneven distribution of examples across its data space. In response, researchers in [15]
and [9] proposed new networks to draw from an external knowledge base and to utilize statistical
correlations between objects and relationships, respectively. Our work focuses on the task of
construction and utilization of the semantic Scene Graph. Work of [55] utilized PointNet [37] and
Graph Convolutional Networks to regress a scene graph from the point cloud of a scene. Similar
to [55] and [66, 9], we also use statistical relationships and dataset priors; but unlike these papers,
we use a explicit graph representation combined with a KDE model, rather than deep convolution
networks to address user in the loop scenarios or semi-autonomous scene augmentation tasks.

2.3 Scene Synthesis
The general goal of indoor scene synthesis is to produce a feasible furniture layout of various

object classes which satisfy both functional and aesthetic criteria [67]. Early work of synthetic
generation focused on hard-coded rules, guideline and grammars, resembling a procedural approach
for this problem [3, 60, 14]. The work of [34] is a successful example of hard-coded design
guidelines as priors for the scene generation process. They extracted these guidelines through
consulting manuals on furniture layout [47, 58, 53] and interviewing professional designers who
specialize in arranging furniture. A similar approach is also seen in [64], while [63] attempted
synthesizing open world layouts with hard-coded factor graphs.

The work of [12] can be seen as one of the early adapters of example-based scene synthesis.
They synthesized scenes by training to build a probabilistic model based on Bayesian networks
and Gaussian mixtures. Their problem, however, was one of generating the entire scene, and they
utilized a more limited set of input example scenes. In the work of [18], a full 3D scene was
synthesized iteratively by adding a single object at a time. This system learned some priors similar
to ours, including pairwise and higher-order object relations. Compared to this work, we incorporate
additional priors, including objects’ relative position within the room bounds. The work of [27, 26]
and [13] also took room functions into account. While object topologies differ in various room
function, a major challenge in this approach is that not all spaces can be classified with a certain
room function. For instance, in a small studio apartment, the living room might serve additional
functions such as dining room and a study space. [44] also proposed a similar approach, involving a
Gaussian mixture model and kernel density estimation. However, their system targeted an inverse
problem of ours, namely, their problem received a selected object location as input and was asked
to predict an object type. We find our problem to be more relevant to the needs of a content creator
who knows what object they wish to place in scene, but does not have prior knowledge about a
user’s surroundings.

Another data-driven approach to scene generation involves modeling human activities and
interactions with the scene [11, 31, 13, 39]. Research following this approach generally seeks to
model and adjust the entire scene according to human actions or presence. There have also been a
number of interesting studies that take advantage of logical structures modeled for natural language
processing (NLP) scenarios. The work of [5, 4, 7, 32] are examples of such approach. More
specifically, [32] bears a minor resemblance to our approach, in training on object relations and the



CHAPTER 2. BACKGROUND 7

ability to augment an initial input scene. But unlike our work, it augments scenes by merging in
subscenes retrieved from a database. In contrast, we seek to add in individual objects, which is more
aligned with the needs of creators of augmented reality experiences. A series of papers (including
[46, 8, 1]) proposed generating a 3D scene representation by recreating the scene from RGB-D
image input, using retrieved and aligned 3D models. This research, however, involves recreating an
existing physical scene, and does not handle adding new objects.

More recent work endeavored to improve learning-based methods, using deep convolutional
priors [56], scene-autoencoding [24], and new representations of object semantics [2], to name
just a few. [68] addressed a related but distinct problem of synthesizing a scene by arranging and
grouping an input set of objects. The work of [42] is another example of using deep generative
models for scene synthesis. Their method sampled each object attribute with a single inference step
to allow constrained scene synthesis. This work was extended in PlanIt [57], where the authors
proposed a combination of two separate convolutional networks to address constrained scene
synthesis problems. They argued that object-level relationships can facilitate high-level planning
of how a room should be laid out, while room-level relationships perform well at placing objects
in precise spatial configurations. Similar to our scene graph approach is the work of [70], which
utilizes a dense scene graph for passing neural messages to augment an input 3D indoor scene with
new objects matching their surroundings. However, its scene graph representation does not cover
orientational relationships and only covers limited positional relationships between objects.

Our method differs from these studies in utilizing an explicit model rather than an implicit
structure and taking advantage of alternative discrete relationships with the room itself. Moreover,
our model can be trained on datasets that are significantly smaller in size, with faster training and
inference time. Furthermore, While work of [57, 70] extend pairwise object to object relations to
object to wall relations, we consider the room as a separate entity and simply evaluate whether
the object is on edge of the room, the corner of the room, or in the middle of the room. From an
architectural perspective, while the walls of indoor spaces are elements that create the encasement
of the room, the general location in which the object sits within the room plays a critical role in the
collective functionality of the overall space. Therefore, we show modeling the room relationship as
a separate explicit entity in the scene graph would benefit the scene augmentation process in both
fully automated and user in the loop scenarios.

Moreover, while our work maintains wide range of overlap with studies in the field of scene
synthesis, the main goal of our work is to facilitate AR/VR content generation in single-blind
scenarios, where content developers are not aware of target scenes. Therefore, in this paper we aim
to emphasize our explicit structure, which allows AR/VR developer to define new object categories
in which may not be available in large scale public datasets.
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Chapter 3

Methodology

3.1 SceneGen Overview
SceneGen is a framework to augment scenes with virtual objects using a generative model to

maximize the likelihood of the relationships captured in a spatial Scene Graph. Specifically, if given
a partially filled room, SceneGen augments it with one or more new virtual objects in a realistic
manner using an explicit model trained on relationships between objects in the real world. The
SceneGen workflow is shown in Figure 3.1.

In this paper, we first introduce a novel Scene Graph that connects the objects and the room
(both represented as nodes) using spatial relationships (represented as edges) in Section 3.2. For
each object, these relationships are determined by positional and orientational features between
itself and other objects, object groups, and the room.

In Section 3.3 we show how from a dataset of rooms, we can extract these Scene Graphs to
construct a Knowledge Model that is used to train explicit models that approximate the probability
density functions of position and orientation relationships for a given object using kernel density
estimation. In order to augment a scene with a virtual object, SceneGen samples possible positions
and orientations in a scene, building updated Scene Graphs for each sample. We estimate the
probability of each sample and place an object at the most likely pose. SceneGen also shares a heat
map of the likelihood of each sample to suggest alternate high probability placements. This can be
repeated to augment multiple virtual objects.

Our implementation of SceneGen is built using data extracted from the Matterport3D dataset as
priors and is detailed in Section3.4. As using object scans results in unoriented bounding boxes in
Matterport3D, we develop an application to facilitate the labeling of the facing direction of each
object.

We assess the effectiveness of SceneGen in Sections ?? and 4.4 for eight categories of objects
across several types of room including bedroom, living room, hallway, and kitchen. In order to
understand the effectiveness of each relationship on predicting where and how a new object should
be placed, we run a series of ablation tests on each feature. We use K-fold cross validation to
partition the Matterport3D dataset, building the Knowledge Model on a training set and assessing
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Figure 3.1: End-to-end workflow of SceneGen shows the main modules of our framework to
augment rooms with virtual objects. Left: the training procedure including scene prior processing
for the Knowledge Model creation. Right: the test time procedure of sampling and prediction.

how well the model can replace removed objects from a validation set. Additionally, we carry
out a user study to analyze how SceneGen compares with a random placement and the reference
scene in placing new objects into virtual rooms and to evaluate the value of a heat map showing the
probability of all samples.

Finally, Section 4.6 details an Augmented Reality mobile application that we have developed
to demonstrate the user experience when employing SceneGen to add new virtual objects. This
application locally computes the semantic segmentation and generates a Scene Graph before
estimating sample probabilities on an external server, and then parses and visualizes the prediction
results.

3.2 Scene Representation

Graph Representation based on Extracted Features
In this section, we introduce a novel spatial Scene Graph that prepresents a room and objects in

it as a graph using extracted spatial features. A Scene Graph G is defined by nodes representing
objects, object groups, and the room, and by its edges representing the spatial relationships between
the nodes. While various objects hold different individual functions (eg. a chair to sit, a table to
dine, etc), their combinations and topological relationships tend to generate the main functional
purpose of the space. In other words, spatial functions are created by the pairwise topologies of
objects and their relationships with the room. In our proposed Scene Graph representation, we
intend to explicitly extract a wide variety of positional and orientational relationships that can be
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Figure 3.2: Our proposed Scene Graph representation is extracted from each scene capturing
orientation and position based relationships between objects in a scene (pairwise) and between
objects and the room itself. Visualization shows only a subset of features for clarity.

present between objects. We model descriptive topologies that are commonly utilized by architects
and interior designers to generate spatial functionalities in a given space. Therefore, our Scene
Graph representation can also be described as a function map, where objects (nodes) and their
relationships (edges) correspond to a single or multiple spatial functionalities in a scene. Figure 3.2
illustrates two examples of our Scene Graph representation, where a subset of topological features
are visualized in the graph.
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Definitions for Room and Objects
We consider a room or a scene in 3D space where its floor is on the flat (x,y)-plane and the

z-axis is orthogonal to the (x,y)-plane. In this orientation, we denote the room space in a floor-plan
representation as R, namely, an orthographic projection of its 3D geometry plus a possible adjacency
relationship that objects in R may overlap on the (x,y)-plane but on top of one another along the
z-axis. Specifically, the “support” relationship is defined in Section 3.2. This can also be viewed as
a 2.5-D representation of the space.

Further denote the k-th object (e.g., a bed or a table) in R as Ok. The collection of all n objects
in R is denoted as O = {O1,O2, ...On}. B(Ok) represents the bounding box of the object Ok. Ȯk
represents the center of the object Ok. Every object Ok has a label to classify its type. Related to the
same R, we also have a set of groups G = {g1, ...,gm}, where each group gi contains all objects of
the same type within R.

Furthermore, each Ok has a primary axis ak and a secondary axis bk. For Frontal Facing objects,
ak represents the orientation of the object. ak and bk are both unit vectors such that bk is a π

2 radian
counter clockwise rotation of ak. We define θak and θbk to be the angle in radians represented by ak
and bk respectively.

For each room R, we define W = {W1,W2, ...,Wl} where each Wk is a wall of the l-sided room.
In the floor plan representation, Wk is represented by a 1D line segment. We also introduce a
distance function δ (a,b) as the shortest distance between a and b objects. For example, δ (B(Ok), Ṙ)
is the shortest distance between the bounding box of Ok and the center of the room R.

Positional Relationships
We first introduce features for objects based on their spatial positions in a scene. We include

both pairwise relationships between objects (eg. between a chair and a desk), object groups (eg.
between a dining table and dining chairs), and relationships between an object and the room.

Object to Room Relationships

RoomPosition: The room position feature of an object denotes whether an object is at the middle,
edge, or corner of a room. This is based on how many walls an object is less than ρ distance from:

RoomPosition(Ok,R) = ∑
Wi∈(W )

1(δ (B(Ok,Wi)< ρ). (3.1)

In other words, if RoomPosition(Ok,R)≥ 2, the object is near at least 2 walls of a room, and hence
is near a corner of the room; if RoomPosition(Ok,R) = 1, the object is near only one wall of the
room and is at the edge of the room; otherwise, the object is not near any wall and is in the middle
of the room.
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Object to Object Group Relationships

AverageDistance: For each object, and each group of objects we calculate the average distance
between that object and all objects within that group. For cases where the object is a member of the
group, we do not count the distance between the object in question and itself in the average.

AverageDistance(Ok,gi) = ∑
O j∈gi

j ̸=k

δ (B(Ok),B(O j))/ ∑
O j∈gi

j ̸=k

1. (3.2)

SurroundedBy: For each object, and each group of objects, we compute how many objects in
the group are within a distance ε of the object. For cases where the object is a member of the group,
we do not count the object in question.

SurroundedBy(Ok,gi) = ∑
O j∈gi

j ̸=k

1(δ
(
B(O j),B(Ok))< ε

)
. (3.3)

Object Support Relationships

Support: An object is considered to be supported by a group if is directly on top of an object from
the group, or supports a group if it is directly underneath an object from the group.

Support(Ok,gi) =


1 ∃O j ∈ gi where Ok is on top of O j;
−1 ∃O j ∈ gi where Ok is under O j;
0 otherwise.

(3.4)

Orientation Relationships
We categorize the objects in our scenes into three main groups:

1. Gomn: Omnidirectional objects such as coffee tables and house plants that have no clear
front-facing direction;

2. Gfrf: Frontal Facing objects such as beds and chairs that can be oriented to face in a specific
direction;

3. Gin: Inside Facing objects such as paintings and storage that are always facing opposite to
the wall of the room where they are situated.

In this section we discuss features applicable to objects with a defined facing decisions, and not for
Omnidirectional objects.
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Object to Room Relationships

We first define an indicator equation that is 1 if a ray extending from the center in the direction dk of
an object intersects a wall Wi:

f (Ȯk,dk,Wi) = 1(∃γ ≥ 0|Ȯk + γdk ∈Wi). (3.5)

TowardsCenter: An object is considered to be facing towards the center of the room, if an ray
extending from the center of the object intersects one of the furthest l

2 walls from the object:

c1 =Wi∈(W ) δ (Ȯk,Wi);
c2 =Wi∈(W\c1) δ (Ȯk,Wi);
...
c l

2
=Wi∈(W\c1...c l

2−1
) δ (Ȯk,Wi).

(3.6)

TowardsCenter(Ok) = f (Ȯk,ak,c1)∨ ...∨ f(Ȯk,ak,c l
2−1). (3.7)

AwayFromWall: An object is considered facing away from a wall if it is oriented away from and
is normal to the closest wall to the object:

c1 =Wi∈(W ) δ (B(Ok),Wi);
AwayFromWall(Ok) = f(Ȯk,−ak,c1)∧ (ak ⊥ ci).

(3.8)

DirectionSimilarity: An object has a similar direction as one or more objects within a constant
ε distance from the object if the other objects are facing in the same direction or in the opposite
direction (π radians apart) from the first object subject to some small angular error ϕ:

Same(Ok) = ∑
O j∈O, j ̸=k

δ(B(Ok),B(O j))≤ε

1(|θak −θa j | ≤ ϕ),

Opp(Ok) = ∑
O j∈O, j ̸=k

δ(B(Ok),B(O j))≤ε

1(|π −|θak −θa j || ≤ ϕ),

DirectionSimilarity(Ok) = [Same(Ok),Opp(Ok)] ∈ R2.

(3.9)

Object to Object Group Relationships

We first define an indicator function that is 1 if a ray extending from the center of the object in
direction dk intersects the bounding box of a second object:

h(Ȯk,dk,B(O j)) = 1(∃γ ≥ 0|Ȯk + γdk ∈ B(O j)). (3.10)
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Facing: Between an object and a group of objects we count how many objects of the group are
within a distance ε of the object and are in the direction of the primary axis of the first object:

Facing(Ok,gi) = ∑
O j∈gi, j ̸=k

δ (B(Ok),B(O j))≤ε

h(Ȯk,ak,B(O j)). (3.11)

NextTo: Between an object and a group of object we count how many objects of the group are
within a distance ε of the object and are in the direction of the positive or negative secondary axis
of the first object:

NextTo(Ok,gi) = ∑
O j∈gi, j ̸=k

δ(B(Ok),B(O j))≤ε

h
(
Ȯk,±bk,B(O j)

)
. (3.12)

3.3 Knowledge Model

Feature Vectors for Position and Orientation
To evaluate the plausibility of a new arrangement, we compare its corresponding Scene Graph

with a population of viable Scene Graphs priors. By extracting Scene Graphs from a corpus of
rooms, we construct a Knowledge Model which serves as our spatial priors for the position and
orientation relationships of each object group. For each object instance, we assemble a data vector
for positional features from G . For Frontal Facing objects, we similarly create a data vector for
orientational features. First we define the following that represent an object’s relationships with all
groups G = {g1, ...,gm}:

AD(Ok) = [AverageDistance(Ok,gi)|i = 1, · · · ,m] ∈ Rm,
S(Ok) = [SurroundedBy(Ok,gi)|i = 1, · · · ,m] ∈ Rm,
F(Ok) = [Facing(Ok,gi)|i = 1, · · · ,m] ∈ Rm,
NT(Ok) = [NextTo(Ok,gi)|i = 1, · · · ,m] ∈ Rm,
SP(Ok) = [Support(Ok,gi)|i = 1, · · · ,m] ∈ Rm.

(3.13)

This allows us to construct data arrays, dp (Ok) and do (Ok), containing features that relate to the
position and orientation of an objects respectively. RoomPosition is also included in the data array
for orientational features, do, since the other features of do are strongly correlated with an object’s
position in the room. This is abbreviated as RP. We also abbreviate TowardsCenter as TC and
DirectionSimilarity as DS. For succinctness, when using these abbreviations for our features, the
parameter Ok is dropped:

dp (Ok) = [RP ∈ R,AD ∈ Rm,SP ∈ Rm,S ∈ Rm] ∈ R3m+1,
do (Ok) = [RP ∈ R,TC ∈ R,DS ∈ R2,F ∈ Rm,NT ∈ Rm] ∈ R2m+4.

(3.14)

Finally, given one feature vector per object for position and orientation, respectively, we can
collect more samples from a database, which we will discuss in Section 3.4, to form our Knowledge
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Model. The model collects feature vectors separately with respect to different object types in
multiple room spaces. To do so, we introduce gi, j to collect all of the i-th type objects in room
R j, j = 1, · · · ,r. Without loss of generality, we assume that the i-th object type is the same across
all rooms. Therefore, we can collect all the objects of the same i-th type from a database as

gi,∗ =
r⋃

j=1

gi, j.

Then Dp(gi,∗) and Do(gi,∗) represent the collections of all feature vectors in (3.14) from objects in
gi,∗:

Dp(gi,∗) = {dp (Ok) |∀Ok ∈ gi,∗},
Do(gi,∗) = {do (Ok) |∀Ok ∈ gi,∗}.

(3.15)

Scene Augmentation
Given the feature samples for the same type of object in (3.15), now we can estimate their

likelihood distribution. In particular, given an object placement O of the i-th type, we seek to
estimate the likelihood function for its position features:

P(dp(O)|Dp(gi,∗)). (3.16)

If O is Frontal Facing, we also seek to estimate the likelihood function for its orientation features:

P(do(O)|Do(gi,∗)). (3.17)

However, if O is an Inside Facing object, then with certainty its orientation will be determined by
that of its adjacent wall. Similarly, an Omnidirectional object O has no clear orientation. Therefore,
for these categories of objects, estimation of their orientation likelihood is not needed. In this
section, we discuss how to estimate (3.16) and (3.17)

We can approximate the shape of these distributions using multivariate kernel density estimation
(KDE). Kernel density estimation is a non-parametric way to create a smooth function approximating
the true distribution by summing kernel functions, K, placed at each observation Xi...Xn [48]:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x−Xi

h

)
. (3.18)

This allows us to estimate the probability distribution function (PDF) of the position and orientation
relationships from the spatial priors in our Knowledge Model, Dp(gi,∗),Do(gi,∗) for each group gi.

SceneGen Algorithm
Algorithm 1 describes the SceneGen algorithm. Given a room model R and a set of existing

objects O = {O1,O2, ...On}, the algorithm evaluates the position and orientation likelihood of
augmenting a new object O′ and recommends its most likely poses.

Figure 3.1 shows how potential scene graphs are created for sampled placements. For scenes
where multiple objects need to be added, we repeat Algorithm 1 for each additional object.
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Algorithm 1: SceneGen Algorithm
Given a training database, calculate Dp(gi,∗) and Do(gi,∗) as prior.
For a given room R, construct the Scene Graph G of its objects O .
while Sample the position of O′ of type i in R do

Calculate P(dp(O′)|Dp(gi,∗)).
while Sample the orientation of O′ ∈ [0,2π) do

Calculate P(do(O′)|Do(gi,∗))
end

end
Generate a heat map displaying the likelihood distributions.
Make recommendation to place O′ at the highest probability pose.

3.4 Implementation
In this section, we discuss the implementation detail of SceneGen based on the relationship data

learned from the Matterport3D dataset.

Dataset
Matterport3D [6] is a large-scale RGB-D dataset containing 90 building-scale scenes. The

dataset consists of various building types with diverse architecture styles, including numerous
spatial functionalities and furniture layouts. Annotations of building elements and furniture have
been provided with surface reconstruction as well as 2D and 3D semantic segmentation.

Pose Standardization

In order to use the Matterport3D dataset as prior for SceneGen, we must make a few modi-
fications to standardize object orientation using an annotation tool that we have also developed.
In particular, different from Section 3.2, our annotation tool interacting with the dataset is fully
in 3D environment (i.e., through Unity 3D). After the annotation, the relationship data then are
consolidated back to the 2.5-D representation conforming to the computation of the SceneGen
models.

For each object Ok, the Matterport3D dataset supplies labeled oriented 3D bounding boxes B(O)
aligned to the (x,y)-plane. This is defined by a center position Ȯ, primary axis a, secondary axis b,
an implicit tertiary axis c, and r ∈ R3 denotes the radius vector of O. However, the Matterport3D
dataset does not provide information about which labeled direction the object is facing or aligns
with the z-axis. Hence, it will rely on our labeling tool to resolve the ambiguities.

To provide a consistent definition, we describe a scheme to label these axes such that the primary
axis a points in the direction the object is facing as a∗. Since we know that only one of these three
axes has a z component, we shall store this in the third axis c∗ and define b∗ to be orthogonal to
a∗ on the x,y plane. The box size r will also be updated to correspond to the correct axes. By
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Figure 3.3: In our annotation tool, a camera is orbited around each object to facilitate labeling of
object orientations.

constraining these aligned axes to be right handed, for a given a∗ we have:

c∗ .
= [0,0,1], b∗ .

= c∗×a∗. (3.19)

In order to correctly relabel each object, we have developed an application to facilitate the
identification of the correct primary axis for all the Frontal Facing objects and supplemented this to
the updated data set. For each object, we view the house model mesh at different camera positions
around the bounding box in order to determine the primary axis of the object as displayed in Figure
3.3. Our annotation tool shown in Figure 3.4 allows a labeler to select from two possible directions
at each camera position or can move the camera clockwise or counter clockwise to get a better view.
Once a selection is made, the orienting axis a∗ can be determined. We then use (3.19) to standardize
the axes. Using the annotation tool, the average time for each object to be labeled is 2.6 seconds.
For example, if a MatterPort3D house had 80 Frontal Facing objects that needs to be labeled, it
would take an estimate of only 3.5 minutes for the annotation task of the house.

Category Reduction

For this study, we have reduced the categories of object types considered for building our
model and placing new objects. Though the Matterport3D dataset includes many different types
of furniture, organized with room labels to describe furniture function (e.g. “dining chair” versus
“office chair”), we found that the dataset has a limited amount of instances for many object categories.
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Figure 3.4: A labeler using our annotation tool can select which direction the object is facing or
move to the next camera to get a better view. The selection is used to automatically standardize the
axes of each object’s bounding box.
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Because we build statistical models for each object category, we require an adequate representation
of each category. Thus, we reduce the categories to a sufficiently represented subset, and filter
objects that do not fall in these categories for the purposes of this study.

We group the objects into 8 coarse categories: G = {Bed, Chair, Decor, Picture, Sofa, Storage,
Table, TV}. Each of these categories has a specific type of orientation, as described in Section 3.2.
Of these categories, Frontal Facing objects are Gfrf = {Bed, Chair, Sofa, TV}, Omnidirectional
objects are Gomn = {Decor, Table}, and Inside Facing objects are Gin = {Picture, Storage}.

For room types, we consider the set { library, living room, meeting room, TV room, bedroom,
rec room, office, dining room, family room, kitchen, lounge} to avoid overly specialized rooms
such as balconies, garages and stairs. We also filter rooms which hold more than 95% unoccupied
areas to avoid unusual empty rooms that come without any spatial arrangements. After the data
reduction, a total of 1,326 rooms and 7,017 objects are in our training and validation sets. The
object and room categories used can be expanded if sufficient data are available.

Knowledge Model
We use the processed dataset as prior to train the SceneGen Knowledge Model. The procedure

first estimates each object Ok according to (3.14), and subsequently constructs Dp(gi,∗) and Do(gi,∗)
in (3.15) for categories in G and Gfrf respectively. Given our priors, we estimate the likelihood
functions P(dp(O)|Dp(gi,∗)) and P(do(O)|Dp(gi,∗)) from (3.16) and (3.17) using Kernel Density
Estimation.

We utilize a KDE library developed by [45] with a normal reference rule of thumb bandwidth
with ordered, discrete variable types. We make an exception for AverageDistance, which is continu-
ous. When there are no objects of a certain group, gi in a room, the value of AverageDistance(Ok,gi)
is set to a large constant (1000), and we use a manually tuned bandwidth (0.1) to reduce the impact
of this on the rest of the distribution.

Furthermore, we found for this particular dataset, a subset of features, Facing, TowardsCenter
and RoomPosition, are most impactful in predicting orientation as detailed in Section 4.4. Therefore,
while we model all of the orientational features, we only use the Facing, TowardsCenter and
RoomPosition features for our implementation of SceneGen and in the User Studies. Finally, due to
overlapping bounding boxes in the dataset, calculating object support relationships (SP) precisely is
not possible. Thus in our implementation, we allow the certain natural overlaps defined heuristically
instead of using these features. A visualization of our priors from the Matterport3D dataset can be
seen in Figure 3.5.

We use Algorithm 1 to augment a room R with an object of type i and generate a probability
heat map. This can be repeated in order to add multiple objects. To speed up computation in
this implementation, we first sample positions, and then sample orientations at the most probable
position, instead of sampling orientations at every possible position.

Figure 3.6 shows how our implementation of SceneGen adds a new object to a scene and
examples of scenes are augmented with multiple objects iteratively is shown in Figure 3.7. The
illustrated heatmaps are color-coded based on their normalized probability rank. In positional
visualizations, the top k of valid samples are rendered from zero opacity to a dark solid color (high
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Figure 3.5: Visualization of the Knowledge Model built from Scene Graphs extracted from the
Matterport3D Dataset shows for each group of objects: (a) frequency of each Room Position, (b)
frequency the object is surrounded by multiple objects from another group, (c) frequency the object
is facing an object from another group, (d) frequency the object is facing towards the center of the
room or not.

probability), while in orientational visualizations angular samples are color-coded from red (low
probability) to red (high probability).

Computation Time We train and evaluate our model using a machine with an 4-core Intel i7-
4770HQ CPU and 16GB of RAM. In training, creating our Knowledge Model and estimating
distributions for 8 categories of objects takes approximately 12 seconds. In testing, it takes ≈2
seconds to extract a scene graph and generate a heat map indicating the probabilities of 250 sampled
poses.
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Figure 3.6: Scene Gen places objects into scenes by extracting a Scene Graph from each room,
sampling positions and orientations to create probability maps, and then placing an object in the
most probable pose. (a) A sofa placed in a living room, (b) a bed placed in a bedroom, (c) a chair
placed in an office, (d) A table placed in a family room, (e) a storage placed in a bedroom.
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Figure 3.7: Examples of adding multiple virtual objects to a scene using SceneGen. Each object
is placed in the most likely position and orientation iteratively into a partially decorated room.
Top: A bed, storage, and sofa are first extracted from the room model, then reorganized in a viable
alternative to the dataset ground truth; Middle: Two sofas and a table are reorganized by SceneGen
to a living room in an arrangement similar to ground truth; Bottom: A sofa, a table are reorganized,
and another sofa and a table are added to a family room, showing an augmented scene with new
virtual objects comparing to the ground truth.
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Chapter 4

Experiments

4.1 Ablation Studies
To evaluate our prediction system, we run ablation studies, examining how the presence or

absence of particular features affects our object position and orientation prediction results. We use a
K = 4-fold cross validation method on our ablation studies, with 100 rooms in each validation set
and the remaining rooms in our training set.

Position Features Evaluation
The full position prediction model, SceneGen, trains three features: AverageDistance (AD),

SurroundedBy (S), RoomPosition (RP). The combination is denoted as AD+S+RP. We further
consider three reduced versions of our system: AD+RP, using only AverageDistance and RoomPo-
sition features; S+RP, using only Surrounding and RoomPosition features; and RP, solely using the
RoomPosition feature.

We evaluate each system using the K-fold method described above. In this study, we remove
each object in the validation set, one at a time, and use our model to predict where the removed
object should be positioned. The orientation of the replaced object will be the same as the original.
We compute the distance between the original object location and our system’s prediction.

However, as inhabitants of actual rooms, we are aware that there is often more than one
plausible placement of an object, though some may be more optimal than others. Thus, we raise the
question of whether there is more than one ground truth or correct answer for our object placement
problem. Hence, in addition to validating our model’s features, our first ablation study validates
them in relation to the simple approach of taking the single highest-scored location from our
system. Meanwhile, our second ablation study uses the top 5 highest-scored locations, opening up
examination to multiple potential “right answers. ”
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Orientation Features Evaluation
We run a similar experiment to evaluate our orientation prediction models for Frontal Facing

objects. Our Scene Graphs capture five relationships based on the orientation of the objects: Facing
(F), TowardsCenter (C), NextTo (NT), DirectionSimilarity (DS), and RoomPosition (RP). We assess
models based on several combinations of these relationships.

We evaluate each of these models using the same K-fold approach, removing the orientation
information of each object in the validation set, and then using our system to predict the best
orientation, keeping the object’s position constant. We compare the angular difference between the
predicted and the original orientations.

4.2 Comparative Studies
We compare the performance system of our system with SceneGraphNet [70] in both quantitative

and qualitative experiments. The experiments are similar to the K-fold ablation study trained on
the MatterPort3D dataset mentioned in the previous section, where we remove each object in the
validation set dataset, and compare the model’s ability to predict where the removed object should be
positioned. However, due to the fact that SceneGraphNet does not predict orientations of the object
placement, we only limit the experiment to positional calculations only. In our qualitative results,
we used the original orientation of the ground truth as a basis for SceneGraphNet’s augmentation.

SceneGraphNet utilizes a neural message passing approach to the scene synthesis problem.
However, the system is primarily designed to predict the probability distribution over the type of
objects given a query position in a scene. To get the probability distribution for placement of a
specific object across a scene, their code was augmented with a sampling mechanism similar to
SceneGen to evaluate all possible coordinates which fit in the room. Next, each coordinate was fed
as an input to the SceneGraphNet procedure to predicts the probability distribution for all categories
at that position. Using this exhaustive search approach, we are able to calculate the most probable
location to place an specific object category in the scene.

4.3 User Evaluation
We conduct user studies with a designed 3D application based on our prediction system to

evaluate the plausibility of our predicted positions and the usefulness of our heat map system.
We recruited 40 participants, of which 8 were trained architects. To ensure unbiased results, the
participants were randomly divided into 4 groups. Each group of users were shown 5 scenes
from each of the 5 levels for a total of 25 scenes. The order these scenes were presented in was
randomized for each user and they were not told which level a scene was at.

We reconstructed 34 3D scenes from our dataset test split, where each scene had one object
randomly removed. In this reconstruction process, we performed some simplification and regularized
the furniture designs using prefabricated libraries, so that users would evaluate the layout of the
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room, rather than the design of the object itself, while matching the placement and size of each
object. An example of this scene reconstruction and simplification can be seen in Figure 4.5(a-b).

The five defined levels test different object placement methods as shown in Figure 4.5(c-g) to
replace the removed object. Levels I and II are both random placements, generated at run time
for each user. The Level I system initially places the object in a random position and orientation
in the scene. The Level II system places the object in an open random position and orientation,
where the placement does not overlap with the room walls or other objects. Levels III and IV
use SceneGen predictions. The Level III system places the object in the position and orientation
predicted by SceneGen. Level IV also places the object in the predicted position and orientation,
but also overlays a probability map. The Level V system places the object at the position it appears
in the Matterport3D dataset, i.e., the ground truth.

We recorded the users’ Likert rating of the plausibility of the initial object placement on a
scale of 1 to 5 (1 = implausible/random,3 = somewhat plausible, 5 = very plausible). We also
recorded whether the user chose to adjust the initial placement, the Euclidean distance between the
initial placement and the final user-chosen placement, the orientation change between the initial
orientation and the final user-chosen orientation. No comparison was made between the scenes by
the participants and the scores were to be given to each scene independent to another. We expect
higher initial Likert ratings and smaller adjustments to position and orientation for levels initialized
by our system than for levels initialized to random positions.

Each participant used an executable application on a desktop computer. The goal of the study
was explained to the user and they were shown a demonstration of how to use the interface. For
each scene, the user was shown a 3D room and an object that was removed. After inspecting
the initial scene and clicking “place object,” the object was placed in the scene using the method
corresponding to the level of the scene. In Level IV Scenes, the probability heat map was also
visualized. Note that participants were not aware whether Level IV was generating results from the
our system, random, or ground truth. The user was shown multiple camera angles and was able to
pan, zoom and orbit around the 3D room to evaluate the placement.

For each scene, the user was first asked to rate the plausibility of placement on a Likert Scale
from 1-5. Following this, the user was asked if they wanted to move the object to a new location.
If they answered “no,” the user would progress to the next scene. If they answered “yes,” the
UI displayed transformation control handles (position axis arrows, rotation axis circles) to object
position and orientation. After moving the object to the desired location, the user could save the
placement and progress to the next scene. An IRB approval was maintained ahead of the experiment.

4.4 Ablation & Comparative Study Results

Position Features
In Figure 4.1, we plot the cumulative distance between the ground truth position and the top

position prediction, and in Figure 4.2, we plot the cumulative distance between the ground truth
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Figure 4.1: Distance between a ground truth object’s position and where SceneGen and other ablated
versions of our system predict the object should be re-positioned is shown in a cumulative density
plot.

position and the nearest out of the the top 5 position predictions, using our full system and three
ablated versions.

We find that the full SceneGen system predicts a placement most similar to ground truth than
any of the ablated versions, followed by the models using AverageDist and RoomPosition features
(AD+RP), and SurroundedBy and RoomPosition (S+RP). The predictions furthest from the ground
truth are generated by only using the RoomPosition (RP) feature. These curves are consistent
between the best and the closest of the top 5 predicted positions, and the fact indicates that each of
our features for position prediction contributes to the accuracy of the final result.

In addition, when the top 5 predictions are considered, we see that each system we assess is
able to identify high probability zones closer to the ground truth compared to only using the best
prediction. This is supported by the slope of the curves in Figure 4.2, which rise much more sharply
than in Figure 4.1. This difference provides support for the importance of predicting multiple
locations instead of simply returning the highest-scored locations. A room can contain multiple
plausible locations for a new object, so the system’s predicted location with the highest score may
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Figure 4.2: Distance between the ground truth object’s position and the nearest of the 5 highest
probability positions predicted by SceneGen and other ablated versions of our system is shown in a
cumulative density plot.

not necessarily be same as the ground truth. For this reason, our system returns probabilities across
sampled positions using a heat map to show multiple viable predictions for any placement query.

Table 4.1 shows the mean distance of the position prediction to ground truth position separated
by object categories in all SceneGen ablation and also SceneGraphNet. We find that the object
categories where the full SceneGen system outperforms its ablations are chairs, storage, and decor.
For beds and TVs, SceneGen only produces the closest placements out of the system versions when
considering the top five predictions. For pictures and tables, SceneGen’s top prediction is closest to
ground truth, and is only slightly further when comparing the nearest of the top 5 predictions.

Furthermore, our results indicate SceneGen outperforming SceneGraphNet in all categories in
the positional placement experiment. Figure 4.3 illustrates a qualitative comparison for the object
augmentation tasks between the two systems on MatterPort3D scenes. While both systems show
their ability to predict plausible placement in relation to other objects in the target scene, we observe
a slightly better performance in SceneGen when taking into account the object’s position in relation
to the room.
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Table 4.1: Distance between ground truth and predicted position for different models, with smallest
distances for each object type in bold (ablation study). Topology features are abbreviated as follows:
AverageDistance as AD, SurroundedBy as S, and RoomPosition as RP.

System Bed Chair Storage Decor Picture Table Sofa TV Overall
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

AD+S+RP (SceneGen) 1.58 0.87 2.26 1.35 2.27 1.45 2.71 1.71 2.80 1.99 2.15 1.47 2.56 1.58 2.49 1.52 2.40 1.54
AD + RP 1.40 0.95 2.40 1.47 2.55 1.67 2.79 1.96 2.95 2.03 2.26 1.46 2.58 1.58 2.39 1.731 2.49 1.65
S + RP 1.85 1.32 2.46 1.56 2.46 1.64 3.38 2.14 2.82 1.92 2.67 1.72 2.53 1.64 2.51 1.55 2.67 1.73

RP 1.99 1.31 2.95 2.31 2.75 1.53 3.12 2.56 2.95 2.21 2.70 1.57 2.55 1.72 2.95 2.32 2.80 1.96
SceneGraphNet [70] 1.91 1.56 3.01 2.49 2.37 1.95 3.14 2.70 3.36 2.94 3.80 3.31 3.57 3.12 3.97 3.40 3.25 2.80

Table 4.2: Angular difference in radians between ground truth and predicted orientation for different
model architectures (ablation study). Topology features are abbreviated as follows: Facing as F,
TowardsCenter as C, RoomPosition as (RP), NextTo as NT, DirectionSimilarity as DS.

System Bed Chair Sofa TV Overall

F+C+RP (SceneGen) 0.65 0.98 0.67 0.66 0.85
F only 1.13 1.66 1.51 0.91 1.54
F+C 1.13 1.55 1.18 0.49 1.35
F+C+NT 1.18 1.53 1.23 0.46 1.35
F+C+DS 1.54 1.55 1.21 0.59 1.39
F+C+DS+NT 1.22 1.50 1.23 0.63 1.35

Orientation Features Results
In our orientational ablation studies, we assess the ability of various versions of our model

to reorient Frontal Facing objects from test scenes. In Figure 4.4, we plot the angular difference
between the ground truth orientation and the top orientation prediction from various versions of our
system. The base model includes only Facing (F), and is the lowest performing. We find that the
system that also includes TowardsCenter and RoomPosition features performs best overall. We use
this system (F+C+RP) in our implementation of SceneGen. The other four versions of our system
perform similarly to each other overall.

Table 4.2 shows the results of the orientation ablation study separated by object category. In this
case, the system with Facing, TowardsCenter and RoomPosition features (F+C+RP) outperforms
all other versions across on all categories except for TVs, where the system that includes Facing,
TowardsCenter and NextTo (F+C+NT) produces the least deviation. In fact, all three of the systems
that included either DirectionSimilarity or NextTo, predict the orientation of TVs more closely than
the overall best performing system, but perform more poorly on other objects such as beds when
compared with systems without those features. This suggests that for other datasets, these features
could be more effective in prediction orientations.
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Figure 4.3: Comparison between SceneGraphNet [70] (left/yellow) and our proposed system
(right/red) for the scene augmentation task on example MatterPort3D scenes. Objects are removed
and augmented back into the scene via the constrained scene augmentation models. Illustration
includes augmentation comparison of a bed (top), sofa+ table (middle) in an office, and a storage
(bottom).
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Figure 4.4: Cumulative density plot indicates angular difference between ground truth orientation
and our system’s predicted orientation for SceneGen and other subsets of orientation features. The
range is [0,π).

4.5 User Study Results

Plausibility of Placement Results
We show the distributions of Likert ratings by levels in Figure 4.6. We also run a one-way

ANOVA test on the Likert ratings of initial placements, finding significant differences between all
pairs of levels except for Levels IV and V. In other words, the ratings for Level IV’s representation
of our prediction system are not significantly different from ground truth placements. Across
multiple tests, we see that Level IV result ratings are significantly different from levels based on
randomization, while those from Level III are not as significant. The difference between Levels
III and IV could support our conjecture that accounting for multiple “right answer” placements
improves the predictions.
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Figure 4.5: Users are shown scene models that are simplified based on original Matterport3D
rooms. An object is reorganized using each of five levels of the systems. Level I places the object
randomly in the room. Level II replaces the object randomly at an open space. Levels III and IV use
SceneGen to predict the most likely placement and orientation, and Level IV further shows a heat
map visualizing the underlying probability score at each sampled position. In Level V, the user sees
the original placement in the ground truth . When providing scores during experiment, the user has
multiple camera angles available and is able to pan, zoom, and orbit around the room to evaluate
the placement.

Position Prediction Results
We analyze how participants’ choices to adjust placement vary across different scene levels.

Results of this can be seen in Figure 4.7. A one-way ANOVA test of the distance users moving
objects from its placements finds a significant difference (p = 1.8622e38) between two groupings
of levels: 1) Levels I and II (with higher means), and 2) Levels III, IV, and V (with lower means).
The differentiation in groupings supports the plausibility of our system’s position prediction over
random placements.

Orientation Prediction Results
A one-way ANOVA test is also performed on the change in object orientation from the partici-

pants’ manual adjustment, and finds a significant difference (p = 1.8112e16) between a different
pair of level groupings: 1) Levels I, II, and III, and 2) Levels IV and V. In Figure 4.8, we show the
distributions of angular difference between the initial object orientation and the final user-chosen
orientation, for each level. The levels IV and V have distributions are most concentrated at no
rotation by the user. In Levels I and II, the users rotate objects more than half of the time, with
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Figure 4.6: Users rank the plausibility of object placement averaged on the Likert Scale from 1 to 5.
(1= Implausible/ Random, 3= Somewhat Plausible, 5 = Very Plausible). Scores are displayed in a
box plot separated by the user study level.

an average rotation greater than π

6 radians. A vast majority of objects placed by Levels III, IV, V
systems are not rotated by the user, lending support to the validity of our prediction system.

4.6 Augmented Reality Application
To demonstrate a way to integrate our prediction system in action, we have implemented an

augmented reality application that augments a scene using SceneGen. Users can overlay bounding
boxes over the existing furniture to see the object bounds used in our predictions. On inserting a
new object to the scene, the user can visualize a portability map to observe potential positions. Our
Augmented Reality application consists of five main modules: (i) local semantic segmentation of
the room; (ii) local Scene Graph generation (iii) heat map generation which is developed on an
external server (iv) local data parsing and visualization; and finally (v) the user interface. A brief
demonstration of the AR application’s interface and workflow is shown in Figure 4.9.
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Figure 4.7: Cumulative density plot indicates the distance an object is moved from its predicted
placement in each level by users.

Semantic segmentation of the room can be done either manually or automatically, using in-
tegrated tools available on augmented reality devices. However, as not all current AR devices
are equipped with depth-sensing capturing hardware, we use techniques previously introduced by
[43], allowing the user themselves to manually generate and annotate semantic bounding boxes
of objects of the target scene. The data acquired are then converted to our proposed spatial Scene
Graph, resulting in an abstract representation of the scene. Both semantic segmentation and graph
generation modules are performed locally on the AR devices, ensuring the privacy of the raw spatial
data of the user.

Once the Scene Graph is generated, it is sent to a remote server where SceneGen engine can
calculate positional and orientation augmentation probability maps for all object categories for the
target scene. Such approach would allow faster computation time, since current AR devices come
with limited computational and memory resources. The results are sent back to the local device, in
which can be parsed and visualized using the Augmented Reality GUI. For simplicity, we limit the
positional sampling to be only on the floor. However, based on the object category, if an object is
already present on that location, the probability map will render on top of the object to maintain a
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Figure 4.8: Radial histograms display distribution of how much a user rotates an object from its
orientation in each level of the user study.
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Figure 4.9: Augmented Reality application demonstrates how SceneGen can be used to add virtual
objects to a scene. Top Left: the target scene, Top Right: adding a TV, Middle Left: adding a table,
Middle Right: adding a sofa. A probability map displays how likely each position is. Bottom: the
AR application with virtual objects is compared to the original scene.
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clearer visualization of the probability map.
The instantiation system can toggle between two modes: Manual and SceneGen. In Manual

mode, the object is placed in front of the user, on the intersection of the camera front-facing vector
direction with the floor. This would normally result in augmenting the object in the middle of
the screen. While such conventional approach allows the user control the initial placement by
determining the pose of the AR camera, in many cases additional movements are necessary to place
the object in a plausible final location. In such cases, the user can then further move and rotate
the objects to its desirable location. In SceneGen mode, the virtual object is augmented using the
prediction of our system, resulting in faster and contextual placements.
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Chapter 5

Discussion and Conclusions

5.1 Discussion

Features and Predictions
The Scene Graph we introduce in this paper is designed to capture spatial relationships between

objects, object categories, and the room. Overall, we have found that each of the relationships we
have presented improves the SceneGen algorithm’s ability to augment virtual objects in realistic
placements in a scene. These relationships are important to understand the functional purposes of
the space in addition to the individual objects. Our approach can also be extended to predicting the
best category of new object type to augment by running an exhaustive search on all the categories
for a given input room coordinate.

In SceneGen, RoomPosition is used as a feature in predicting both orientation and position of
an object. While this is a feature based solely on the position of the object, it also has a strong
impact on how it should be oriented. For example, a chair in a corner of the room is very likely to
face towards the center of the room, while a chair in the middle of the room is more likely to face
towards a table or a sofa. When analyzing our placement predictions probability maps and our user
study results, we have observed that the best orientation is not only affected by the nearby objects
but also by the sampled position within the room.

Explicit Knowledge Model
In our evaluation of SceneGen, we have found a number of benefits in using an explicit model to

predict object placements. One benefit is that if we want to define a non-standard object to be placed
in relation with standard objects by specifying your own relationship distributions, it is feasible with
our system but would not be possible for implicit models. For example, in a collaborative virtual
environment, where special markers are desired to be placed near each user, one could directly
specify distributions for relationships such as NextTo chair and Facing table without retraining an
implicit model such as neural networks.
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Another benefit is that explicit models can be easily examined directly to understand why
objects are being placed where they are. For example, the Bed orientation feature distribution, based
on the Matterport3D priors in Figure 3.5, marginalized with respect to all other variables except
TowardsCenter show that beds are nearly 5 times as likely to face the center of the room, while
marginalizing features except position of the Storage show that a storage is found in a corner of a
room 63% of the time, along an edge 33% of the time, and only in the middle of the room in 4% of
occurrences.

Dataset
One important consideration in our choice of dataset is that we aim to learn spatial relationships

for real world scenes. One can imagine idiosyncrasies of lived-in rooms, such as an office chair that
is not always tucked into a desk but often left rotated away from it or a dining table pushed into a
wall to create more space in a family room. Using personal living spaces, from the Matterport3D
dataset, as our priors, we can capture these relationships that exist only in real world, lived-in
scenes.

One drawback of using the Matterport3D dataset is that it is not as large as some synthetic
datasets. For instance, the SUNCG [51] synthetic dataset, which was unavailable during the course
of our study holds more than 45,000 environments, while our model was trained on only 1,326
rooms from the Matterport3D dataset. In our implementation, we were forced to group objects into
broader groups to ensure adequate representation to ensure that all object categories are represented
well enough to approximate the distribution of a large feature space. A larger dataset would have
allowed us to model more diverse object categories in a data-driven approach.

Another downside of using a real-world dataset is its accuracy in labeling where many human
errors occur in this labour intensive process. Such mismatches are unlikely to happen in synthetic
datasets as the geometry is already assigned in a digital format. To mitigate some of these concerns,
we have developed a labeling application that allows us to determine the correct orientation of each
objects, and also filter out rooms with corrupted scans and inaccurate labeling.

Subjectivity of Placements
Where and how an object is placed in a scene is often very subjective and preferences can differ

between users. This is demonstrated by the Likert scale plausibility ratings in Level V reference
scenes in the user studies. Figures 4.6 and 5.2 show that some users would only give scores of
somewhat plausible to scenes that are modelled from real world ground truth Matterport3D rooms.
This supports providing a heat map of probabilities for each sampled placement, as alternate high
probability positions may be more preferable to different users. Our results also indicate that most
users prefer level IV scenes, with the heat map, compared to level III scenes, even though the
placements use the same SceneGen models. This suggests that the inclusion of the heat map guides
the users towards the system’s placement and may help in convincing them of the viability and
reasoning for such a choice.
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Figure 5.1: Top 5 highest probability positions for placing sofa (a,b), table (c) and TV (d) predicted
by SceneGen (green) are compared to the user placements (red) showing that different users’s
preferences do vary and SceneGen find the clusters as the users’ best consensus.

We also see that some users move objects to other high probability alternatives as seen in Figure
5.1. This is a similar result to the position prediction experiment, which compares the ground truth
position to the closest of SceneGen’s top 5 predictions and shows that while the reference position
may not always be the top prediction, it was often one of the top predictions. Moreover, results in
Figure 5.2 show the subjectivity of an object placement is highly dependent on the size and type
of object itself. In any room, there are very few natural places to put a bed. Hence the results for
placing beds cluster in one or two high probability locations. Other objects such as decor are more
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likely to be subject to user preferences.

Figure 5.2: The plausibility score for each object category on the Likert Scale given by users is
compared between the average scores from SceneGen Levels III and IV (left) and the ground truth
Level V (right).

5.2 Conclusion
In this paper we introduce a framework to augment scenes with one or more virtual objects using

an explicit generative model trained on spatial relationship priors. Scene Graphs from a dataset
of scenes are aggregated into a Knowledge Model and used to train a probabilistic model. This
explicit model allows for direct analysis of the learned priors and allows for users to input custom
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relationships to place non-standard objects alongside traditional objects. SceneGen places the object
in the highest probability pose and also offers alternate highly likely placements.

We implement SceneGen using the Matterport3D, a dataset composed of 3D scans of lived-in
rooms, in order to understand object relationships in a real world setting. The features that SceneGen
extracts to build our Scene Graph are assessed through an ablation study, identifying how each
feature contributes to our model’s ability to predict realistic object placements. User Studies also
demonstrate that SceneGen is able to augment scenes in a much more plausible way than system
that places objects randomly or in open spaces. We also found that different users have their own
preferences for where an object should be placed. Suggesting multiple high probability possibilities
through a heat map allows users an intuitive visualization of the augmentation process.

There are of course, limitations to our work. While SceneGen is able to iteratively add objects
to a scene, the resulting layout is dependent on the order in which objects are placed. Such approach
does not consider all possible permutations of the possible arrangements. In addition, it can narrow
down the open possible spaces for later objects, forcing placements that are far from optimal.
Moreover, in scenarios where a large number of objects are to be augment, the current approach may
not have the ability to fit all the objects within the usable space, as initial placements are not aware
of upcoming objects. Future work can comprise of incorporating floorplanning methodologies with
the current sampling mechanism allowing a robust search in the solution space, while addressing
combinatorial arrangement.

Moreover, SceneGen is a framework that naturally fits into spatial computing applications. We
demonstrate this in a augmented reality application that augments a scene with a virtual object using
SceneGen. Contextual scene augmentation can be useful in augmenting collaborative mixed reality
environments or in other design applications, and using this framework allows for fast and realistic
scene and content generation. We plan on improving our framework in providing the option to
contextually augment non-standard objects by parameterizing topological relationships, a feature
that would facilitate content creation for future spatial computing workflows.
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