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Abstract

Towards Socially and Economically Beneficial Machine Learning

by

Wenshuo Guo

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

From digital platforms, automated transportation to healthcare, the rapid deployment of
machine learning has in many ways changed our everyday life. However, when learning
systems are deployed in the real world, they immediately face a complex social and economic
context which poses feasibility constraints, drives the underlying dynamics, and influences
the kinds of data that the systems can actually obtain. Optimizing a single offline objective
in isolation to these contexts can lead to severe unintended consequences at deployment and
hinder the improvement of social welfare that the system has the potential to bring.

In this thesis, I summarize my research works on developing learning algorithms that incor-
porate such social economic contexts into the design from three aspects: (i) Learning with
noisy input data; (ii) Learning with bandit-type user feedback; (iii) Learning under causal
dynamics. I will situate each of these with the particular applications of machine learning
on fair classification, resource allocation, auction and platform design.
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Chapter 1

Introduction

From digital platforms, automated transportation to healthcare, the rapid deployment of
machine learning has in many ways changed our everyday life. However, when learning
systems are deployed in the real world, they immediately face a complex social and economic
context which poses feasibility constraints, drives the underlying dynamics, and influences
the kinds of data that the systems can actually obtain. Optimizing a single offline objective
in isolation to these contexts can lead to severe unintended consequences at deployment and
hinder the improvement of social welfare that the system has the potential to bring.

In this thesis, I summarize my research works on developing learning algorithms that
incorporate such social economic contexts into the design from three aspects: (i) Learning
with noisy input data; (ii) Learning with bandit-type user feedback; (iii) Learning under
causal dynamics.

1.1 Robust Learning with Noisy Input Data

Real-world data almost always suffers from noise, and potential corruptions from adversaries.
The first part of this thesis is focused on developing robust learning algorithms towards input
noise and corruptions.

In Chapter 2, we studied the learning of revenue-optimal auctions for multiple bidders,
in a setting in which the samples can be corrupted adversarially [101]. We first consider
the information-theoretic limit in a population model, assuming exact knowledge of the
adversarially perturbed valuation distribution. We develop a theoretical algorithm which
obtains a tight upper bound on the revenue for the MHR and regular distributions, obtaining
the information-theoretic limit of the robustness guarantee. We then relax the population
model and derive sample complexity bounds for learning optimal auctions from samples.
We propose a practical algorithm which takes the corrupted samples as input, and provide
the sample complexity upper bounds for the MHR distribution case and the single-bidder
regular distribution case. We also provide accompanying sample complexity lower bounds,
and demonstrate a small gap relative to the corresponding upper bounds.
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In Chapter 3, we studied robust optimization algorithms in another context: fair clas-
sifications [217]. In particular, many existing fairness criteria for machine learning involve
equalizing some metric across protected groups such as race or gender. However, practi-
tioners trying to audit or enforce such group-based criteria can easily face the problem of
noisy or biased protected group information. In this work, we study the consequences of
näıvely relying on noisy protected group labels: we provide an upper bound on the fairness
violations on the true groups G when the fairness criteria are satisfied on noisy groups Ĝ.
We introduce two new approaches using robust optimization that, unlike the näıve approach
of only relying on Ĝ, are guaranteed to satisfy fairness criteria on the true protected groups
G while minimizing a training objective. We provide theoretical guarantees that one such
approach converges to an optimal feasible solution. Using two case studies, we show em-
pirically that the robust approaches achieve better true group fairness guarantees than the
näıve approach.

1.2 Online Learning with Bandit-Type User Feedback

Machine learning systems in the real world are constantly interacting with users. In the
second part of this thesis, we focus on developing online learning algorithms which learn
through the repeated interactions with users and feedback in an online environment.

In Chapter 4, we study online algorithms in the context of resource allocation in dis-
tributed systems [104]. In particular, the sharing of scarce resources among multiple rational
agents is one of the classical problems in economics. In exchange economies, which are used
to model such situations, agents begin with an initial endowment of resources and exchange
them in a way that is mutually beneficial until they reach a competitive equilibrium (CE).
The allocations at a CE are Pareto efficient and fair. Consequently, they are used widely
in designing mechanisms for fair division. However, computing CEs requires the knowledge
of agent preferences which are unknown in several applications of interest. In this work, we
explore a new online learning mechanism, which, on each round, allocates resources to the
agents and collects stochastic feedback on their experience in using that allocation. Its goal
is to learn the agent utilities via this feedback and imitate the allocations at a CE in the long
run. We quantify CE behavior via two losses and propose a randomized algorithm which
achieves sublinear loss under a parametric class of utilities. Empirically, we demonstrate the
effectiveness of this mechanism through numerical simulations.

In Chapter 5, we develop no-regret algorithms in the context of auction platforms where
the seller and buyer interact over multiple rounds [102]: Auctions with partially-revealed
information about items are broadly employed in real-world applications, but the underlying
mechanisms have limited theoretical support. In this work, we study a machine learning
formulation of these types of mechanisms, presenting algorithms that are no-regret from
the buyer’s perspective. Specifically, a buyer who wishes to maximize his utility interacts
repeatedly with a platform over a series of T rounds. In each round, a new item is drawn
from an unknown distribution and the platform publishes a price together with incomplete,
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“masked” information about the item. The buyer then decides whether to purchase the
item. We formalize this problem as an online learning task where the goal is to have low
regret with respect to a myopic oracle that has perfect knowledge of the distribution over
items and the seller’s masking function. When the distribution over items is known to the
buyer and the mask is a SimHash function mapping Rd to {0, 1}ℓ, our algorithm has regret
Õ((Tdℓ)1/2). In a fully agnostic setting when the mask is an arbitrary function mapping to
a set of size n and the prices are stochastic, our algorithm has regret Õ((Tn)1/2).

1.3 Causal Learning with Optimization-Dependent

Responses

In Chapter 6, we investigate in the intersection of causal inference and machine learning. In
particular, the intersection of causal inference and machine learning for decision-making is
rapidly expanding, but the default decision criterion remains an average of individual causal
outcomes across a population. In practice, various operational restrictions ensure that a
decision-maker’s utility is not realized as an average but rather as an output of a down-
stream decision-making problem (such as matching, assignment, network flow, minimizing
predictive risk). In Guo et al. [103], we develop a new framework for off-policy evaluation
with policy-dependent linear optimization responses: causal outcomes introduce stochasticity
in objective function coefficients. Under this framework, a decision-maker’s utility depends
on the policy-dependent optimization, which introduces a fundamental challenge of opti-
mization bias even for the case of policy evaluation. We construct unbiased estimators for
the policy-dependent estimand by a perturbation method, and discuss asymptotic variance
properties for a set of adjusted plug-in estimators. Lastly, attaining unbiased policy evalu-
ation allows for policy optimization: we provide a general algorithm for optimizing causal
interventions. We corroborate our theoretical results with numerical simulations.
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Chapter 2

Robust Learning of Optimal Auctions

2.1 Introduction

Arguably the fundamental difficulty in the design of optimal auctions is that real valuations
are private and unknown to the auction designer. Consider specifically the problem of
selling one item to multiple buyers. Suppose that we model the buyers’ valuations as arising
as independent draws from buyer-specific prior distributions. In this scenario, what is the
optimal mechanism in terms of the expected revenue? This problem was solved by Myerson
[171] through a characterization of virtual value functions. In particular, we can define a
virtual value function of each buyer based on their prior distributions. An optimal auction
then lets the buyer with the largest non-negative virtual value win the item, and charges the
winner a price that equals the threshold value above which she wins.1

Unfortunately, there is a further fundamental challenge in deploying these theoretical
results in practice, which is that in real-world settings the auction designer may not even
know the prior distributions on valuations. Instead, what the designer might hope for is
that there is a stream of previous transactions, or some other relevant auxiliary data, that
is helpful in inferring the buyers’ private distributions. This perspective has motivated an
active recent literature learning optimal auctions from samples [22, 52, 65, 75, 95, 96, 100,
116, 166, 167, 186, 187, 201]. In this line of work, the central question is: suppose we are
only able to access the prior distributions in the form of independent samples, how many
samples are sufficient and necessary for finding an approximately optimal auction?

While this merging of mechanism design and learning theory is appealing, a further con-
cern arises. Given the potentially adversarial setting of auction design, do we really believe
that the data that we observe are drawn in accord with our assumptions? More concretely,
is the learning of optimal auctions robust to adversarial corruptions of the samples? This
problem is arguably at the core of what it means to learn an optimal auction. It is a chal-
lenging problem; indeed, as we show in Counterexample 1 in Section 2.4, auction designs

1More generally, the optimal auction picks the winner based on the virtual value after an “ironing”
procedure.
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that are optimal in the absence of corruptions can become arbitrarily bad even if a small
portion of the samples are corrupted. Building on earlier work by Cai and Daskalakis [44]
and Brustle et al. [39], we tackle a key open problem—what is the best approximation to the
optimal revenue for arbitrary levels of corruption for distributions with unbounded support?
And what is the mechanism that achieves it?

In summary, in this work we explore the problem of the robust learning of optimal
auctions, where the samples of bidders’ valuations are subject to corruption and their support
is unbounded. In particular, we consider having access to samples that are drawn from
some distribution D̃ which is within a Kolmogorov-Smirnov (KS) distance α of the true
distribution D∗. Denote OPT as the maximum revenue we can achieve under the true
valuation distributions. Our goal is to design mechanisms that are guaranteed to achieve a
revenue of at least (1− ρ(α)) ·OPT for the smallest possible error ρ(α) and with the use of
a minimal number of samples.

Our results

We study the problem of learning revenue-optimal multi-bidder auctions from samples when
the samples of bidders’ valuations can be adversarially corrupted or drawn from distributions
that are adversarially perturbed. We summarize our main results as follows:

1. We derive tight upper bounds on the revenue we can obtain with a corrupted distribu-
tion under a population model. For distributions with monotone hazard rate (MHR),
and with total corruption α, we obtain an approximation ratio of 1−O(α) compared
to the optimal revenue under the true distribution (see Theorem 2.3.6). For regular
valuation distributions, where for total corruption α, we get an approximation ratio of
1−O(

√
α) (see Theorem 2.3.8).

2. To achieve these upper bounds, we propose a new theoretical algorithm for the pop-
ulation model (see Algorithm 1) that, given only an “approximate distribution” for
the bidder’s valuation, can learn a mechanism whose revenue is nearly optimal si-
multaneously for all “true distributions” that are α-close to the given distribution in
Kolmogorov-Smirnov distance. The proposed algorithm operates beyond the setting
of bounded distributions that have been studied in prior works; indeed, they apply to
general unbounded MHR and regular distributions.

3. We further show that these upper bounds under the population model cannot be further
improved (up to constant log factors), by providing matching lower bounds for both
the MHR and regular distributions (see Theorem 2.3.7 and Theorem 2.3.9).

4. Lastly, we derive sample complexity upper bounds for learning a near-optimal auc-
tion for both MHR and regular distributions with multiple bidders (Theorem 2.4.3
and Theorem 2.4.4), and propose a practical algorithm (see Algorithm 2) which takes
samples as input. We also provide accompanying sample complexity lower bounds
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(Theorem 2.4.5), and demonstrate a small gap relative to the corresponding upper
bounds which is of interest for future work.

Related work

Designing revenue optimal auctions is a classic problem in economic theory that has attracted
much research attention. We survey the most closely related work in two main areas.

Learning optimal auctions from samples. Recent work has explored settings of learn-
ing approximately optimal auction from samples, both for single-item auctions [52], and
multi-item auctions [21, 22, 166, 201]. Most recently, Guo et al. [100] provide a complete
set of sample complexity bounds for single-item auctions, by deriving matching upper and
lower bounds up to a poly-logarithmic factor. While these approaches have obtained fruitful
results on the sample complexity of learning optimal auctions, a key assumption that is com-
monly made in this work is that the samples are independently and identically drawn from
the bidders’ valuation distributions, with the goal of learning an auction which maximizes
the expected revenue on the underlying, unknown distribution over bidder valuations. A
major difference in our work is that we consider that the samples can suffer from potential
corruptions, which is a significantly more challenging setting.

Robustness of learning optimal auctions. Our paradigm on the robust learning of
optimal auctions is closely related to recent work that considers the learning of auctions
from mismatched distributions or corrupted samples. Cai and Daskalakis [44] consider a
multi-item auction setting, where there is a given “approximate distribution,” and the goal
is to compute an auction whose revenue is approximately optimal simultaneously for all “true
distributions” that are close to the given one. They provide an algorithm that achieves a
poly-α additive loss compared to the true optimal revenue. More recently, Brustle et al.
[39] consider learning multi-item auctions where bidders’ valuations are drawn from corre-
lated distributions that can be captured by Markov random fields. However, they make a
key simplifying assumption—that the bidders’ valuation for the items lie in some bounded
interval. Our results, by contrast, apply to the general setting of unbounded valuation dis-
tributions, a setting that requires new theoretical machinery. To the best of our knowledge,
our work constitutes the first analysis of the learnability of single-item optimal auctions from
corrupted samples for unbounded distributions.

Organization. In Section 2.2, we provide background on auction models and formally
state our problem. Section 2.3 contains our main theoretical statements for the population
model. We propose an algorithm that achieves optimal theoretical upper bounds, by pro-
viding matching lower bounds. Section 2.4 contains our main results on learning with finite
samples. We provide a practical algorithm that takes samples from the corrupted distribu-
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tion, and provides sample complexity upper and lower bounds for both the regular and MHR
distributions cases. We conclude in Section 2.5.

2.2 Preliminaries

We begin by formally defining the setting we study for robust learning of optimal auctions,
which includes the revenue objective and the general classes of valuation distributions that
we consider.

Auction models

Single-bidder setting. Consider one item for sale to one bidder. The bidder has a private

valuation v ∈ R+ for this item. We assume that v is a random variable distributed according
to the distribution D∗, with support R+, cumulative distribution function F , and probability
density function f .

It is well known that the optimal auction in this setting is a reserve price auction, such
that the task for the seller is to compute a reserve price p that optimizes revenue [171]. We
assume that the bidder has a quasi-linear utility that is equal to u(p) = v − p if she decides
to buy the item and u(p) = 0 otherwise. The seller aims to set p such that her expected
revenue—i.e., the received payment—is maximized. We consider the setting where both v
and D∗ are unknown to the seller. However, the seller can access i.i.d. samples that are
drawn from a distribution D̃, which is α-close to D with regard to the Kolmogorov distance:

Definition 2.2.1. (Kolmogorov-Smirnov distance) For probability measures µ and ν on R,
define

dk(µ, ν) = sup
x∈R
|µ((−∞, x))− ν((−∞, x))|.

It is well known that dk(µ, ν) ⩽ dTV (µ, ν), where dTV denotes the total variation (TV)
distance between µ and ν. The closeness of D̃ to D∗ is thus formalized as follows:

dk(D∗, D̃) ⩽ α,

for some α > 0.
Multi-bidder setting. Consider one item for sale to n bidders. Each bidder has a pri-
vate valuation, vi ∈ R+, where vi is independently drawn from the corresponding prior
distribution D∗

i . Thus, the valuations v = (v1, v2, · · · , vn) follow a product distribution
D∗ = D∗

1×· · ·×D∗
n. Each bidder submits a bid bi ⩾ 0. Denote all the bids as b = (b1, · · · , bn).

A mechanism in this setting consists of two rules: the allocation rule x(b) that takes the
bids b and outputs the probability xi(b) that each bidder i will receive the item, and the
payment rule p(b) that takes the bids b and outputs the payment of bidder i. Bidder i’s
utility is then ui(b) = vi · xi(b) − pi(b). The goal of the seller is to find a mechanism
that maximizes the expected revenue E[

∑
i∈[n] pi(b)], where the expectation is over v ∼ D∗,
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under the following Dominant Strategy Incentive Compatibility (DSIC) and the Individual
Rationality (IR) constraints:

ui(vi,b−i) ⩾ ui(bi,b−i) for all vi, bi ∈ R+ and all b−i ∈ Rn−1
+ (DSIC)

ui(vi,b−i) ⩾ 0 for all vi ∈ R+ and all b−i ∈ Rn−1
+ . (IR)

We consider the setting in which the valuations and the prior distributions are unknown to
the seller. Instead, the seller has access to a finite number of i.i.d. samples drawn from the
product distribution D̃ = D̃1 × · · · × D̃n, where each D̃i satisfies

dk(D∗
i , D̃i) ⩽ αi,

for some αi > 0,∀i ∈ [n].
Revenue objective. Letting D, D′ be product or single bidder distributions as described
above, we define MD to be the mechanism that achieves the optimal revenue for the value
distributions D and OPT(D) its expected revenue. Let also Rev(MD,D

′) be the expected
revenue of the mechanism MD when applied to a setting where the values are drawn with
respect to D′.

Monotone hazard rate (MHR) and regular distributions

For any bidder i with a valuation vi ∼ Di, define the virtual value function for this bidder

as ϕi(v)
def
= v − 1−Fi(v)

fi(v)
, where Fi and fi are the CDF and PDF of Di. The hazard rate of

the distribution Di is defined as the function fi(v)
1−Fi(v)

. Then, the distribution Di is said to be

regular if the virtual value ϕi(v) is monotonically non-decreasing in v. Further, distribution

Di has monotone hazard rate (MHR) if fi(v)
1−Fi(v)

is monotone non-decreasing.

2.3 The population model

In this section, we study the problem of learning optimal auction assuming that we have the
exact knowledge of the adversarially perturbed distributions D̃. We relax this assumption in
Section 2.4 where we show how to learn optimal auctions when we only have sample access
to D̃.

We begin in Section 2.3 with the description of our mechanism in the population model.
Then, in Section 2.3, we present our analysis for the population mechanism for Monotone
Hazard Rate distributions and we also present the sketch of our proof for the single-bidder
case. Similarly, in Section 2.3 we state our analysis for the population mechanism for regular
distributions and we present a proof sketch for the single-bidder case. Finally, we show
that our proposed mechanism achieves optimal (up to constants) guarantees among any
mechanism in the population model.
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Robust Myerson auction in the population model

Our algorithm assumes as an input the exact knowledge of a product distribution, D̃ =
D̃1×· · ·×D̃n, such that the dk(D∗

i , D̃i) ⩽ αi and its goal is to find a mechanism that achieves
approximately optimal revenue for D∗, where D∗ = ΠiD∗

i . Without further assumptions,
this is an impossible task, as we explain in Section 2.4 via an example. Thus we assume that
the algorithm possesses some additional knowledge regarding D∗

i , either that it is MHR or
regular, and the mechanism needs to exploit this additional property.

To utilize the additional property of the distributions D∗
i , our mechanism uses the im-

portant concept of the link function for MHR and regular distributions.

Definition 2.3.1 (Link Function). The link function hM(x;F ) for MHR distributions is
defined as hM(x;F ) = − ln(1−F (x)) and the link function hr(x;F ) for regular distributions
is defined as hr(x;F ) = 1/(1−F (x)). We also define the corresponding inverse link functions
h−1
M (x;h) = 1 − exp(−h(x)) and h−1

r (x;h) = 1 − 1/h(x). Observe that h−1
M (x;hM(x;F )) =

F (x) and h−1
r (x;hr(x;F )) = F (x). We may write hM(x) or hr(x) when F is clear from the

context.

We provide some intuition on the link function. First, by construction, the link function
of either an MHR distribution or a regular distribution is convex and non-decreasing. Second,
the link function is monotone with regard to F . These two properties are important when we
define the notion of a minimal MHR/regular distribution in a Kolmogorov ball, momentarily,
which will be used as a necessary step in our algorithm.

Importantly, the link function provides a convenient characterization of the optimal re-
serve price and optimal revenue for a distribution F that is MHR or regular. To see this,
first consider a single bidder with a valuation distribution F . Denote the optimal reserve
price for selling one item to her as x∗, and the optimal expected revenue as OPT(F ). Then,
when F is MHR, we show that x∗ is also the unique minimizer of (hM(x)− log(x)). On the
other hand, when F is regular, v∗ is the point where hr(x) intersects with its tangent line kx,
with k = 1/OPT(F ) (proof details in Appendix). Figure 2.1 illustrates such a useful property
for hM and hr explicitly, for a single-item, single-bidder auction.

Next, we formally define stochastic dominance between two distributions, and state the
property of strong revenue monotonicity.

Definition 2.3.2 (Stochastic dominance). Given two distributions D1 and D2 with CDFs
as F1 and F2. Then, we say D1 (first-order) stochastically dominates D2 if for every x ∈ X ,

F1(x) ⩽ F2(x),

denoted as D1 ⪰ D2. We say a product distribution D = ΠiDi (component-wise) stochasti-
cally dominates another product distribution D′ = ΠiD′

i if for every i, we have Di ⪰ D′
i.

Lemma 2.3.3 (Strong revenue monotonicity [100]). Let D, D′ be two product distributions
such that D′ ⪰ D, then, for M that is the optimal mechanism for D, we have:

Rev(M,D) ⩽ Rev(M,D′).



CHAPTER 2. ROBUST LEARNING OF OPTIMAL AUCTIONS 10

hM(F)

x

log(x) − log(OPT(F))

x

hr(F)

x x
(0,1)

x
OPT(F)

Figure 2.1: Optimal reserve price x∗ with regard to the link function, for a single-item single-
bidder auction with a valuation distribution F . (left) F is MHR; (right) F is regular.

Algorithm 1 Robust Myerson Auction in the Popula-
tion Model

1: Input: α1 . . . αn > 0, link function h(·), possibly
corrupted valuation distribution F̃ = Πn

i=1F̃i.
2: for i = 1. . . n do
3: Compute a minimal regular / MHR distribution

in Bdk,αi
(F̃i) according to Eq (2.1), denote as F̂i.

4: end for
5: Set F̂ = Πn

i=1F̂i.
6: Output Myerson’s optimal auction MF̂ w.r.t. the

distribution F̂ .

(0,1)

hr(F̃)

d(F, F̃) ≤ α

ĥ

x

Figure 2.2: A minimal regular
distribution in Bdk,α, in the space
transformed by applying the link
function.

The following lemma illustrates the importance of the link functions as well as their
connection with first-order stochastic dominance. The proof of this lemma is given in Ap-
pendix 2.6.

Lemma 2.3.4. A distribution with CDF F is MHR if and only if hM(x;F ) is a convex
function of x. Similarly, F is regular if and only if hr(x;F ) is a convex function of x.
Moreover, for two MHR (resp. regular) distributions F1 and F2, such that F1 ⪰ F2, we have
that hM(x;F1) ⩽ hM(x;F2) (resp. hr(x;F1) ⩽ hr(x;F2)) for all x.

A key idea used in our algorithm is the minimal MHR/regular distribution within a
Kolmogorov distance divergence ball. Formally,
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Definition 2.3.5. For a given distribution with its cumulative distribution function as F ,
denote the set of all the distributions that are α-close to F in Kolmogorov distance as
Bdk,α(F ):

Bdk,α(F )
def
= {F ′ : dk(F

′, F ) ⩽ α}.

Further, define a minimal MHR/regular distribution within Bdk,α(F ) as:

F̂ (x) = h−1(x; ĥ), where ĥ(x)
def
= max

F̃∈Bdk,α(F )

F̃ is MHR / regular

h
(
F̃ (x)

)
∀x ∈ R+. (2.1)

Figure 2.2 gives an illustration of a minimal regular distribution within Bdk,α(F ), in the
space transformed by the link function of regular distributions.

Analysis for MHR distributions

In this section we state the results for the performance of Algorithm 1 for MHR distributions
and we provide a proof sketch for the single-bidder case. The full proof of the following
theorem can be found in Appendix 2.7.

Theorem 2.3.6. Let D∗ = D∗
1×· · ·×D∗

n be a product distribution where every D∗
i is MHR.

Let also D̃ = D̃1 × · · · D̃n be any product distribution such that for all i ∈ [n] it holds that
dk(D∗

i , D̃i) ⩽ αi. If M̃ is the mechanism that Algorithm 1 outputs with input D̃ then it holds
that

Rev(M̃,D∗) ⩾

(
1− Õ

(
n∑

i=1

αi

))
·OPT(D∗).

In particular for n = 1, if α = α1, then we have that Rev(M̃,D∗) ⩾ (1−O (α)) ·OPT(D∗).

Proof sketch for n = 1. The first key step in our proof is the observation that, by construc-
tion, Algorithm 1 runs the Myerson optimal auction on an MHR distribution F̂ , such that
F̂ is stochastically dominated by any other MHR distribution that is within Bdk,α(F̃

′). On
the other hand we have dk(F

∗(x), F̃ (x)) ⩽ α. Applying the triangle inequality, we have
dk(F

∗(x), F̂ (x)) ⩽ 2α. It is then sufficient for us to bound the ratio of the optimal rev-
enue for any two MHR distributions F1 and F2, with dk(F1, F2) ⩽ 2α, and where F1 is
stochastically dominated by F2.

The key part of our proof then considers such F1, F2, and due to the fact that the ratio
of the revenues, OPTF1/OPTF2 , is scale invariant, we assume without loss of generality
that OPTF1 = 1. We then prove that this leads to h(P ∗

F1
) ⩽ 1. The result then follows

from two further key lemmas. First, for any reserve price x < P ∗
F1
, |h1(x) − h2(x)| =∣∣∣log (1−F2(x)

1−F1(x)

)∣∣∣. Further applying the fact that by assumption |F1(x)− F2(x)| ⩽ α we show

that |h1(x) − h2(x)| = O(α) for any reserve price x < P ∗
F1
. Second, using the fact that F1

is stochastically dominated by F2, we derive that P ∗
F2

⩽ P ∗
F1
. The conclusion then follows
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from bounding the ratio of s1(x) = h1(x)− log(x), and s2(x) = h2(x)− log(x), based on the
definition of P ∗

F1
and P ∗

F2
. ■

Next we show that the information-theoretic Algorithm 1 is optimal up to constants for
MHR distributions. We provide the proof of the following theorem in Appendix 2.8.

Theorem 2.3.7. Let M be any DSIC and IR mechanism that takes as input a product
distribution D̃ = D̃1×· · ·× D̃n. Then there exists a product distribution D∗ = D∗

1×· · ·×D∗
n

such that dk(D∗
i , D̃i) ⩽ α, D∗

i is MHR for every i, and

Rev(M,D∗) ⩽ (1− Ω̃(n · α)) ·OPT(D∗).

Analysis for regular distributions

In this section we state the results for the performance of Algorithm 1 for regular distributions
and we provide a proof sketch for the single-bidder case. The full proof of the following
theorem can be found in Appendix 2.7.

Theorem 2.3.8. Let D∗ = D∗
1×· · ·×D∗

n be a product distribution where every D∗
i is regular.

Let also D̃ = D̃1 × · · · D̃n be any product distribution such that for all i ∈ [n] it holds that
dk(D∗

i , D̃i) ⩽ αi. If M̃ is the mechanism that Algorithm 1 outputs with input D̃ then it holds
that

Rev(M̃,D∗) ⩾

1− 5 ·

√√√√ n∑
i=1

αi

 ·OPT(D∗).

Proof sketch for n = 1. We first prove a general result that for two regular distributions F
and F̄ , such that dk(F, F̄ ) ⩽ α, where F (x) is stochastically dominated by F̄ (x) for x ∈ R+.

The optimal revenue of these two distributions is close, formally OPT(F )

OPT(F̄ )
⩾ 1−O(

√
α). The

first key step replies on using the link function hr(x) =
1

1−F (x)
for regular distributions. Since

hr(x) preserves the same monotonicity property as F (x), we first derive a lower bound on
h̄r(x, F̄ ) that is h̄r(x, F̄ ) ⩾ hr(x, F ) − αh2r(x, F ), using the fact that dk(F, F̄ ) ⩽ α. This
bound gives us useful constraints to discuss in different cases in the following part of the
proof. Denote the corresponding optimal reserve prices for F and F̄ as P and P̄ . We discuss
separately two cases for h(P̄ ), where, for case 1 we have h(P̄ ) ⩽ 1√

α
, and for case 2, we have

h(P̄ ) > 1√
α
. Using the connection from the link function to the revenue (see Figure 2.1), case

1 directly leads to the conclusion that OPT(F )

OPT(F̄ )
⩾ 1−

√
α. Case 2 is more subtle and requires

a more careful argument. Lastly, by construction, Algorithm 1 runs the Myerson optimal
auction on a regular distribution F̂ , such that F̂ ⩾ F̂ ′(x) for all x ∈ R+, for any other
regular distribution F ′(x) such that dk(F

′(x), F̃ (x)) ⩽ α. Applying the triangle inequality
and combining with the conclusions obtained from the two cases concludes the proof. ■

Finally, we show that the information-theoretic Algorithm 1 is optimal up to constants
for regular distributions. We provide the proof of the following theorem in Appendix 2.8.
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Theorem 2.3.9. Let M be any DSIC and IR mechanism that takes as input a product
distribution D̃ = D̃1×· · ·× D̃n. Then there exists a product distribution D∗ = D∗

1×· · ·×D∗
n

such that dk(D∗
i , D̃i) ⩽ α, D∗

i is regular for every i, and

Rev(M,D∗) ⩽ (1− Ω(
√
n · α)) ·OPT(D∗).

2.4 Finite samples

We provide a practical algorithm that takes samples from the corrupted distribution D̃ as an
input. We show that this algorithm achieves almost optimal sample complexity for the MHR
distribution case and the single-bidder regular distribution case, whereas for the multi-bidder
regular distributions there is a small gap between our upper and lower bounds.

An important notion to explain our algorithm for the finite-sample case is the following
notion of the convex envelope.

Definition 2.4.1 (Convex Envelope). The convex envelope Conv(f) of a function f is a
function with the following property

Conv(f)(x) = sup{g(x) | g is convex and g ⩽ f over R+}.

In words, Conv(f) is the maximum convex function that is below f .

For our algorithm one important property of the convex envelope is expressed in the
following lemma whose proof is presented in Appendix 2.6.

Lemma 2.4.2. Let f be a non-decreasing piecewise constant function with k pieces, then
Conv(f) can be computed in time poly(k) and is a piecewise linear function with O(k) pieces.
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Algorithm 2 Robust Empirical Myerson Auction

1: Input: m i.i.d. samples from (possibly corrupted) value distribution D = Πn
i=1Di, link

function h(·).
2: Let E = Πn

i=1Ei be the empirical distribution, i.e., the uniform distribution over the
samples.

3: for i = 1 . . . n do

4: Construct Êi as following: let qEi(v) be the quantile of Ei; the quantile of Êi is as
follows:

qÊi(v) =

max

{
0, qEi(v)−

√
2qEi (v)(1−qEi (v)) ln(2mnδ−1)

m
− 4 ln(2mnδ−1)

m
− αi

}
if v > 0

1 if v = 0

5: Construct Ẽi such that h
(
Ẽi(·)

)
is the convex envelope of h

(
Ê(·)

)
, i.e.

Ẽi(·) = h−1
(
Conv

(
h(Êi(·))

))
6: end for

7: Set Ẽ = Πn
i=1Ẽi

8: Output Myerson’s optimal auction MẼ w.r.t. Ẽ.

The above algorithm resembles the main algorithm of [100] with the addition of step 5.
We first show that step 5 is necessary if we wish to obtain any non-trivial result in the robust
auction learning setting that we explore in this paper.

Counterexample 1. Imagine we have just one agent, i.e., n = 1, with true distribution
D∗ equal to an exponential distribution with parameter λ = 1. Also, to strengthen our
counterexample imagine that we have available an infinite number of samples, i.e., m→∞.
Now consider D̃ to be the corrupted distribution where probability mass α is removed from
the mass closer to 0 and it is placed as a point mass at the point c/α for some number c.
In this case, running Algorithm 2 without step 5 will result is implementing an auction with
reserve price that is very close to c/α. The probability though that the true agent with
distribution D∗ will buy this item goes to zero with a rate exp(−c/α) as c→∞. Hence, the
total revenue will be at most (c/α) · exp(−c/α) and therefore we can make the total revenue
to go to zero as we increase c → ∞. Observe that this counterexample works even though
we assumed that the initial distribution D∗ is MHR.

We next provide the analysis of the performance of Algorithm 2 for MHR and regular
distributions. The proof of the following result can be found in Appendix 2.9.
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Theorem 2.4.3 (Finite samples, Regular distribution). Let D∗ = D∗
1×· · ·×D∗

n be a product
distribution where every D∗

i is regular. Let also D̃ = D̃1× · · · D̃n be any product distribution
such that for all i ∈ [n] it holds that dk(D∗

i , D̃i) ⩽ αi. If M̃ is the mechanism that Algorithm 2
outputs with input m samples from D̃ and assume that m = Ω̃

(
maxi∈[n]

{
log(1

δ
)/α2

i

})
then

it holds that

Pr

Rev(M̃,D∗) ⩾

1−O

√√√√ n∑
i=1

αi

 ·OPT(D∗)

 ⩾ 1− δ.

Additionally, in the single-bidder case with n = 1 and α = α1 the sample requirement becomes
m = Ω̃

(
log(1

δ
)/α3/2

)
.

The corresponding theorem for MHR distributions is the following, whose proof can be
found in Appendix 2.9.

Theorem 2.4.4 (Finite samples, MHR distribution). Let D∗ = D∗
1 × · · · × D∗

n be a product
distribution where every D∗

i is MHR. Let also D̃ = D̃1 × · · · D̃n be any product distribution
such that for all i ∈ [n] it holds that dk(D∗

i , D̃i) ⩽ αi. If M̃ is the mechanism that Algorithm 2
outputs with input m samples from D̃ and assume that m = Ω̃

(
maxi∈[n]

{
log
(
1
δ

)
/α2

i

})
then

it holds that

Pr

(
Rev(M̃,D∗) ⩾

(
1− Õ

(
n∑

i=1

αi

))
·OPT(D∗)

)
⩾ 1− δ.

We make a few remarks about the sample complexity upper bounds in the sequel.
First, in both Theorem 2.4.3 and Theorem 2.4.4, the sample complexity upper bounds

depend in a simple way on the sum of all the fractions of corruptions for each bidder; i.e.,∑n
i=1 αi, indicating the important effect of the total amount of corruption. Second, for regular

distributions, in Theorem 2.4.3 we obtain a tight sample complexity bound for the single-
bidder case, with m = Ω̃

(
log(1

δ
)/α3/2

)
. For multi-bidder settings, our upper bound contains

a small gap, with m = Ω̃
(
maxi∈[n]

{
log(1

δ
)/α2

i

})
. Whether such a gap can be matched is

an interesting open question for future work. Lastly, comparing Theorem 2.4.3 and Theo-
rem 2.4.4, it appears that for the multi-bidder settings the sample complexity bounds are
of the same order, but we emphasize the key difference that for regular distributions this
sample size is needed to provide a much weaker guarantee on the revenue objective, which

is a
(
1−O

(√∑n
i=1 αi

))
fraction of the optimal revenue, while the guarantee for MHR

distributions is a (1−O (
∑n

i=1 αi)) fraction of the optimal revenue.
We next provide an information-theoretic lower bound that establishes the tightness of

our upper bounds for the single-bidder single-item case with regular and MHR distributions.

Theorem 2.4.5 (Sample complexity lower bounds). Let M be any DSIC and IR mechanism
for a single-item single-buyer setting that takes as input m samples from a distribution D̃.
If

Rev(M,D∗) ⩾ (1−O(
√
α)) ·OPT(D∗),
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for all distributions D∗ such that dk(D∗, D̃) ⩽ α, where D∗ is regular, thenm ⩾ Ω̃
(
log(2

δ
)/α3/2

)
.

Additionally, if
Rev(M,D∗) ⩾ (1−O(α)) ·OPT(D∗),

for all distributions D∗ such that dk(D∗, D̃) ⩽ α, where D∗ is MHR, we havem ⩾ Ω̃
(
log(2

δ
)/α3/2

)
.

Theorem 2.4.5 provides a general sample complexity lower bound on learning a near-
optimal auction with at least a (1 − O(

√
n · α)) fraction of the optimal revenue under the

true valuation distribution. In comparison to our upper bounds (see Theorem 2.4.3 and
Theorem 2.4.4), there is a small gap and we leave the nature of this gap as an open question
for future work.

2.5 Conclusion and future directions

We have studied the learning of revenue-optimal auctions for multiple bidders, in a setting in
which the samples can be corrupted adversarially. We first consider the information-theoretic
limit in a population model, assuming exact knowledge of the adversarially perturbed val-
uation distribution. We develop a theoretical algorithm which obtains a tight upper bound
on the revenue for the MHR and regular distributions, obtaining the information-theoretic
limit of the robustness guarantee. We then relax the population model and derive sample
complexity bounds for learning optimal auctions from samples. We propose a practical algo-
rithm which takes the corrupted samples as input, and provide the sample complexity upper
bounds for the MHR distribution case and the single-bidder regular distribution case. We
also provide accompanying sample complexity lower bounds, and demonstrate a small gap
relative to the corresponding upper bounds.

2.6 Appendix: Proofs of technical lemmas

Lemma 2.3.4. A distribution with CDF F is MHR if and only if hM(x;F ) is a convex
function of x. Similarly, F is regular if and only if hr(x;F ) is a convex function of x.
Moreover, for two MHR (resp. regular) distributions F1 and F2, such that F1 ⪰ F2, we have
that hM(x;F1) ⩽ hM(x;F2) (resp. hr(x;F1) ⩽ hr(x;F2)) for all x.

Proof. We first show that given the CDF of any MHR distribution F (x) : R+ → [0, 1],

hM(x)
def
= − log(1−F (x)) is a convex, non-decreasing function with h(0) = 0. (Without loss

of generality, we consider x ∈ [0,∞], i.e. argminx h(x) = 0.) We first present the analysis
for the case when the distribution is continuous and smooth, and then generalize the same
statement to discrete distributions.
MHR continuous distributions:

Denote the corresponding PDF of F (x) as f(x), and g(x)
def
= f(v)

1−F (v)
. By definition, F (0) = 0
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implies hM(0) = 0. Then, given that F (x) is MHR, we have that g(x) is monotone non-
decreasing. By construction,

(hM(x))′′ =

(
f(v)

1− F (v)

)′

= g′(x) ⩾ 0.

Therefore, hM(x) is convex. Moreover, since F (x) is a CDF thus non-decreasing, hM(x) =
− log(1 − F (x)) is also non-decreasing. We show that given any hM(x) : R+ → R+, such

that hM(x) is convex, non-decreasing, hM(0) = 0, and maxx hM(x) = ∞. Then, F (x)
def
=

1− exp(−hM(x)) is CDF of an MHR distribution.
By construction, hM(0) = 0 implies F (0) = 0, and maxx hM(x) implies maxx F (x) = 1.

Also given that hM(x) is convex, g′(x) =
(

f(v)
1−F (v)

)′
= (hM(x))′′ ⩾ 0, which by definition

implies F (x) is MHR.
MHR discrete distributions:

The lemma statement generalizes to the case when the valuation is discrete. We assume that
the valuation can take a discrete set of values {xi}, i = 1, · · · , n. Without loss of generality,
we will restrict these values to the set N0 with probability mass function P (x = i) = pi; i =
0 · · ·n. We define the discrete hazard rate as:

g(xi) =
P (x = i)

P (x ⩾ i)
.

Then, the valuation distribution is MHR iff the discrete hazard rate is non-decreasing:

g(xi+1) ⩾ g(xi), (2.2)

for all i = 0 · · ·n.
In this case, our link function will also be discrete. Further, denote si

def
= P (x ⩾ i), then

h(xi) = − log(P (x ⩾ xi)) = − log(si).

Then h(x) is convex if and only if for any i ⩾ 0,

h(xi+2)− h(xi+1) ⩾ h(xi+1 − h(xi). (2.3)

We show that Eq (2.2) and Eq (2.3) are equivalent. Notice that

h(xi+2)− h(xi+1) ⩾ h(xi+1 − h(xi)

⇐⇒ si+1

si+1 − pi+1

⩾
si

si − pi
⇐⇒ pi+1si ⩾ pisi+1

⇐⇒ pi+1

si+1

⩾
pi
si

⇐⇒ g(xi+1) ⩾ g(xi),
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which completes the proof.
Regular continuous distributions:

We further prove a similar statement for regular continuous distributions. First, given a
CDF of a regular distribution F (x),(

1

1− F (x)

)′′

=
(1− F (x))f(x)′ + 2f(x)2

(1− F (x))3
.

By definition, the virtual value function is ϕ(x)
def
= v − 1−F (x)

f(x)
, and

ϕ′(x) =
(1− F (x))f(x)′ + 2f(x)2

f(x)2
.

Therefore,
(

1
1−F (x)

)′′
and ϕ′(x) share the same sign. Moreover, the distribution with CDF as

F (x) is regular if and only if the virtual value ϕ(x) is monotonically non-decreasing, which

is ϕ′(x) ⩾ 0. Hence the regularity of F (x) implies that hr(x)
def
= 1

1−F (x)
is convex. Since F (x)

is a CDF thus non-decreasing, hr(x) =
1

1−F (x)
is also non-decreasing.

Regular discrete distributions:

Similar to the MHR distributions, the lemma statement generalizes to the case when the
valuation is discrete for regular distributions. Assume that the valuation can take a discrete
set of values {xi}, i = 1, · · · , n. Without loss of generality, we will restrict these values to
the set N0 with probability mass function P (x = i) = pi; i = 0 · · ·n. Further, consistent with
the proof for MHR distributions, we denote si

def
= P (x ⩾ i).

The discrete virtual value function is defined as:

ϕ(xi) = xi −
si
pi
,

and the valuation distribution is regular iff ϕ(x) is non-decreasing:

ϕ(xi+1) ⩾ ϕ(xi), (2.4)

for all i = 0 · · ·n.
In this case, our link function will again be discrete:

h(xi) =
1

P (x ⩾ xi)
=

1

si
.

and h(x) is convex if and only if for any i ⩾ 0,

h(xi+2)− h(xi+1) ⩾ h(xi+1)− h(xi). (2.5)
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We show that Eq (2.4) and Eq (2.5) are equivalent.

h(xi+2)− h(xi+1) ⩾ h(xi+1)− h(xi)

⇐⇒ 1

si+2

+
1

si
⩾

2

si+1

⇐⇒ 1

si+1 − pi+1

+
1

si
⩾

2

si+1

⇐⇒ s2i+1 + pipi+1 ⩾ sisi+1 − sipi+1.

⇐⇒ pipi+1 + pi+1si + si+1(si+1 − si) ⩾ 0

⇐⇒ pipi+1 + pi+1si − si+1pi ⩾ 0

(2.6)

Moreover, from the regularity condition Eq (2.4), we have

ϕ(xi+1) ⩾ ϕ(xi)

⇐⇒ i+ 1− si+1

pi+1

⩾ i− si
pi

⇐⇒ 1− si+1

pi+1

+
si
pi

⩾ 0

⇐⇒ pipi+1 + pi+1si − si+1pi ⩾ 0.

(2.7)

Combining (2.6) and (2.7) together completes the proof.
Stochastic dominance:

Lastly, we show that for two MHR (resp. regular) distributions F1 and F2, such that F1 ⪰ F2,
then we have that hM(x;F1) ⩽ hM(x;F2) (resp. hr(x;F1) ⩽ hr(x;F2)) for all x. This
follows directly from the monotonicity of the link functions and the definition of stochastic
dominance (see Definition 2.3.2).

Recall that the link function hM(x;F ) for MHR distributions is defined as hM(x;F ) =
− ln(1−F (x)), and the link function hr(x;F ) for regular distributions is defined as hr(x;F ) =
1/(1−F (x)). Therefore, for two MHR (resp. regular) distributions F1 and F2, F1(x) < F2(x)
implies hM(x, F1) < hM(x, F2) (resp. hr(x, F1) < hr(x, F2)), which completes the proof.

■

Lemma 2.4.2. Let f be a non-decreasing piecewise constant function with k pieces, then
Conv(f) can be computed in time poly(k) and is a piecewise linear function with O(k) pieces.

Proof. Given that f(x) is a non-decreasing piecewise constant function with k pieces, we
show that the following iterative procedure outputs its lower convex envelope Conv(f) ,
which can be computed in time poly(k) and is a piecewise linear function with O(k) pieces.
Figure 2.3 provides an illustration of the construction according to this procedure.
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Procedure 1 Computing lower convex envelope for non-decreasing piecewise constant func-
tions

1: Input: a piecewise constant function f(x) : R → R with k pieces. Denote the
left starting point of each piece and the end point as x0, . . . , xk.

2: Initialize: i← 0, i′ ← 0.
3: while i ⩽ k − 1 do
4: x̄i′ ← xi, g(x̄i′)← f(xi).
5: i′ ← i′ + 1.
6: Compute i← argmini<j⩽k

f(xj)−f(xi)

xj−xi
.

7: end while
8: x̄i′ ← xi, g(x̄i′)← f(xi); k

′ ← i′.
9: Return: a piecewise linear function g(x) : R → R with k′ < k pieces. The left

starting points of each piece and the end points are x̄0, . . . , x̄i′ , with the corresponding
function values as specified in the procedure.

x0 x1 x2

…

xk… x

f(x)

Conv( f )

(x̄0) (x̄1) (x̄2) (x̄k′ 
)

Figure 2.3: Lower convex envelope of a non-decreasing piecewise constant function f(x) .

First, the above procedure requires at most k2 rounds. We show that its output, g(x),
is the lower convex envelope for f(x). It is clear from construction that g(x) is piecewise
linear, with vertices at x̄0, . . . , x̄k′ . Moreover, g(x) ⩽ f(x) for all x by construction.

Next we show that g(x) is convex. Consider at a round t with i = it, 1 < 1 < k. Then,

step (6) computes it+1 = argminit<j⩽k
f(xj)−f(xit )

xj−xit
. Further denote minit<j⩽k

f(xj)−f(xit )

xj−xit
as

s(it). We show that s(it+1) ⩾ sit .
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Suppose that s(it+1) < sit . Then there exists j∗ > it+1 > it, such that

f(xj∗)− f(xit+1)

xj∗ − xit+1

<
f(xit+1)− f(xit)

xit+1 − xit
,

which further implies that

f(xj∗)− f(xit)
xj∗ − xit

<
f(xit+1)− f(xit)

xit+1 − xit
.

Since j∗ > it+1 > it, this contradicts the fact that it+1 = argminit<j⩽k
f(xj)−f(xit )

xj−xit
. Therefore

s(it+1) ⩾ sit , which means that the slope of each piece for g(x) is non-decreasing. Thus
g(x) is convex. Lastly, since g(x) has all vertices with the same function values as f(x),
i.e. g(x) = f(x) at all its vertices, and given that g(x) ⩽ f(x) for all x, the values at these
vertices are maximized and cannot be further improved. This completes the proof. ■

We further provide two lemmas which present useful properties of the link functions in
connection to the revenue.

Lemma 2.6.1. Given an MHR distribution with the CDF as F (x) : R+ → [0, 1]. De-

fine h(x)
def
= − log(1 − F (x)). Then, at any reserve price x, the expected revenue R(x) =

exp(−h(x) + log(x)). Moreover, the optimal reserve price P ∗
F is the minimizer of (h(x) −

log(x)).

Proof. First by construction, h(x)− log(x) = − log(R(x)). By definition, the optimal reserve
price maximizes the revenue R(x) = x(1− F (x)), thus

max x(1− F (x))
⇐⇒ min − log(x(1− F (x)))
⇐⇒ min − log(x)− log(1− F (x))
⇐⇒ min h(x)− log(x),

which completes the proof. ■

Lemma 2.6.2. Consider a valuation distribution D with CDF as F (x). Denote the optimal
reserve price as P ∗

F and the optimal expected revenue at P ∗
F as OPTF . Then P ∗

F should be
P ∗
F ⩽ e, assuming that OPTF ⩽ 1 and F (x) is MHR.

Proof. By Lemma 2.6.1, OPTF ⩽ 1 implies that,

h(P ∗
F ) = log(P ∗

F ) + b,

for some b ⩾ 0. Also by Lemma 2.3.4, h is convex. Combined with the fact that OPTF

is the optimal reserve price and the concavity of log(x), OPTF is the only point where
h(P ∗

F ) = log(P ∗
F ) + b holds.
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Now consider a linear function y = ax, a > 0, which is a tangent line of the function
log(x)+ b. Denote the tangent point as x∗. Solving the equation that a = (log(x))′ = 1

x
, and

ax = log(x) + b give that:
x∗ = e1−b ⩽ e.

Suppose that P ∗
F > x∗. Consider the linear function g(x) =

h(P ∗
F )

P ∗
F
x. Since x∗ is the

tangent point, there exists a point x̄ < P ∗
F , such that g(x̄) = log(x̄) + b. Further, since h is

convex, for any point 0 < x < P ∗
F , we have h(x) < g(x). By the continuity of log(x) and

h(x), there exists x̄′ < P ∗
F , such that h(x̄′) = log(x̄) + b. This implies that x̄′ achieves a

larger revenue than P ∗
F , and contradicts the fact that P ∗

F is the optimal reserve price. Hence,
P ∗
F < x∗ ⩽ e, which completes the proof. ■

2.7 Appendix: Proof of upper bounds for the

population model

We first prove the following technical lemma that connects the coordinate Kolmogorov dis-
tance with the difference in expectation of increasing functions.

Definition 2.7.1 (Increasing Functions and Sets). Let u : Rn → R, we say that u is
increasing if for every v = (v1, . . . , vn), v

′ = (v′1, . . . , v
′
n) such that v′i ⩾ vi, it holds that

u(v′) ⩾ u(v). We say that the subset A ⊆ Rn is increasing if and only if its characteristic
function 1A(x) is an increasing function of x.

Lemma 2.7.2. Let D = D1 × · · · × Dn, D′ = D′
1 × · · · × D′

n be product n-dimensional
distributions with dk(Di,D′

i) ⩽ αi. Then for every increasing function u : Rn → [0, ū] it
holds that ∣∣∣ E

v∼D
[u(v)]− E

v′∼D′
[u(v′)]

∣∣∣ ⩽ ū ·

(
n∑

i=1

αi

)
.

Proof. Our first step is to prove that the lemma holds for any function u that is a charac-
teristic function of an increasing set A and then we extend to all increasing functions.

Let u = 1A we have that Ev∼D[u(v)] = Prv∼D(v ∈ A). We define the sequence of
distributions Dj = D′

1×· · ·×D′
j×Dj+1×· · ·×Dn for j = 0, . . . , n, where obviously D0 = D

and Dn = D′. Now via triangle inequality we have that∣∣∣ Pr
v∼D

(v ∈ A)− Pr
v∼D′

(v ∈ A)
∣∣∣ ⩽ n∑

j=1

∣∣∣∣ Prv∼Dj

(v ∈ A)− Pr
v∼Dj−1

(v ∈ A)
∣∣∣∣ . (2.8)
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Let bj(v−j) be the threshold of the step function 1A(vj,v−j) when we fix v−j and we view
it as a function of vj. Now we have that

Pr
v∼Dj

(v ∈ A) =
∫
Rn

1A(xj,x−j) dD′
1(x1) · · · dD′

j(xj) · dDj+1(xj+1) · · · dDn(xn)

=

∫
Rn−1

(1−D′
j(bj(x−j))) dD′

1(x1) · · · dD′
j−1(xj−1) · dDj+1(xj+1) · · · dDn(xn)

similarly we have

Pr
v∼Dj−1

(v ∈ A) =
∫
Rn−1

(1−Dj(bj(x−j))) dD′
1(x1) · · · dD′

j−1(xj−1) · dDj+1(xj+1) · · · dDn(xn).

Combining these we get that∣∣∣∣ Prv∼Dj

(v ∈ A)− Pr
v∼Dj−1

(v ∈ A)
∣∣∣∣

⩽
∫
Rn−1

∣∣D′
j(bj(x−j))−Dj(bj(x−j))

∣∣ dD′
1(x1) · · · dD′

j−1(xj−1) · dDj+1(xj+1) · · · dDn(xn).

from the latter we can use the fact that dk(Dj,D′
j) ⩽ αj and we get that∣∣∣∣ Prv∼Dj

(v ∈ A)− Pr
v∼Dj−1

(v ∈ A)
∣∣∣∣ ⩽ αj.

Applying the above to (2.8) we get that∣∣∣ Pr
v∼D

(v ∈ A)− Pr
v∼D′

(v ∈ A)
∣∣∣ ⩽ n∑

j=1

αj. (2.9)

The last steps is to extend the above to arbitrary increasing functions. We are going
to approximate the increasing function u via a sequence of functions uk which uniformly
converges to u. Then we will show the statement of the lemma for every function uk which
by uniform convergence implies the lemma for u as well. We set Ai,k ≜ {x ∈ Rn | u(x) ⩾ i

k
ū}

and we define

uk(x) =
ū

k

k∑
i=1

1Ai,k
(x).

Observe from the above definition that uk → u uniformly and since u is increasing we also
have that all the sets Ai are increasing. Also observe that

E
v∼D

[uk(v)] =
ū

k

k∑
i=1

Pr
v∼D

(v ∈ Ai,k)
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therefore we get that∣∣∣ E
v∼D

[uk(v)]− E
v∼D′

[uk(v)]
∣∣∣ ⩽ ū

k

k∑
i=1

∣∣∣ Pr
v∼D

(v ∈ Ai,k)− Pr
v∼D′

(v ∈ Ai,k)
∣∣∣ .

Now we can apply (2.9) and we get∣∣∣ E
v∼D

[uk(v)]− E
v∼D′

[uk(v)]
∣∣∣ ⩽ ū ·

(
n∑

j=1

αj

)
.

Finally, since this is true for every uk and u converges uniformly to u the above should be
true for u as well and hence the lemma follows. ■

We are going to use Lemma 2.7.2 both for the regular distributions case and for the MHR
distributions case.

Monotone Hazard Rate Distributions—Proof of Theorem 2.3.6

In this section we show the part of the Theorem 2.3.6 related to n > 1. For the stronger
result for the case n = 1 we refer to Section 2.7.

Let D̃ be the corrupted product distribution that we observe, D̂ be the output dis-
tribution of Algorithm 1, D∗ be the original distribution that we are interested in. We
know from the description of Algorithm 1 for D̂ = D̂1 × · · · × D̂n that D̂i is MHR, that
dk(D̂i,D∗

i ) ⩽ αi and that D̂i ⪯ D∗
i . We also know that D∗

i is MHR. Finally, we know that
the output M of Algorithm 1 is the Myerson optimal mechanism for the distribution D̂ and
hence Rev(M, D̂) = OPT(D̂). So applying the strong revenue monotonicity lemma 2.3.3 we
have that

OPT(D̂) = Rev(M, D̂) ⩽ Rev(M,D∗). (2.10)

Therefore to show Theorem 2.3.6, it suffices to show that

OPT(D̂) ⩾

(
1− Õ

(
n∑

i=1

αi

))
·OPT(D∗). (2.11)

We are going to use the following result from [43] but with the formulation obtained in
Lemma 17 of [100], combined with the weak revenue monotonicity (Lemma 3 of [100]).

Theorem 2.7.3 ([43]). For any product MHR distribution D, and any 1
4
⩾ ε ⩾ 0 and

u ⩾ c · log
(
1
ε

)
OPT(D). Let tu(D1), . . . , tu(Dn) be the distributions obtained by truncating

D1, . . . , Dn at the value ū and let tu(D) be their product distribution, where c is an absolute
constant. Then, we have that

OPT(D) ⩾ OPT(tu(D)) ⩾ (1− ε) ·OPT(D).
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Now let ū = c · log
(
1
ε

)
OPT(D∗), then we also have that ū ⩾ c · log

(
1
ε

)
OPT(D̂) due

to weak revenue monotonicity (Lemma 3 of [100]). Hence, applying Theorem 2.7.3 we have
that

OPT(D̂) ⩾ OPT(tū(D̂)) and OPT(tū(D
∗)) ⩾ (1− ε) ·OPT(D∗). (2.12)

Since we know that dk(D̂i,D∗
i ) ⩽ αi we also have that dk(tū(D̂i), tū(D∗

i )) ⩽ αi. Let now
M∗

ū be the optimal mechanism for the distribution tū(D
∗). It is easy to see that the ex-post

revenue obtained from the mechanism M∗
ū is an increasing function of the observed bids.

Hence, we can apply Lemma 2.7.2 to the [0, ū] bounded distributions tū(D̂) and tū(D
∗) and

we get that

OPT(tū(D̂)) ⩾ Rev(M∗
ū , tū(D̂)) ⩾ Rev(M∗

ū , tū(D
∗))− ū ·

(
n∑

i=1

αi

)

= OPT(tū(D
∗))− ū ·

(
n∑

i=1

αi

)
. (2.13)

If we combine (2.12) and (2.13) then we have that

OPT(D̂) ⩾ (1− ε) ·OPT(D∗)− ū ·

(
n∑

i=1

αi

)
. (2.14)

Now we can substitute the value of ū to the above inequality and we get that

OPT(D̃) ⩾

(
1− c · log

(
1

ϵ

)
·

(
n∑

i=1

αi

)
− ε

)
·OPT(D).

Finally, setting ε =
∑n

i=1 αi we get

OPT(D̃) ⩾

(
1− (c+ 1) ·

(
n∑

i=1

αi

)
· log

(
1∑n

i=1 αi

))
·OPT(D).

Hence, (2.11) follows and as we explained this proves Theorem 2.3.6.

Regular Distributions—Proof of Theorem 2.3.8

Let D̃ be the corrupted product distribution that we observe, D̂ be the output distribution
of Algorithm 1, D∗ be the original distribution that we are interested in. We know from
the description of Algorithm 1 for D̂ = D̂1 × · · · × D̂n that D̂i is a regular distribution, that
dk(D̂i,D∗

i ) ⩽ αi and that D̂i ⪯ D∗
i . We also know that D∗

i is regular. Finally, we know that
the output M of Algorithm 1 is the Myerson optimal mechanism for the distribution D̂ and
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hence Rev(M, D̂) = OPT(D̂). So applying the strong revenue monotonicity lemma 2.3.3 we
have that

OPT(D̂) = Rev(M, D̂) ⩽ Rev(M,D∗). (2.15)

Therefore to show Theorem 2.3.8, it suffices to show that

OPT(D̂) ⩾

(
1− Õ

(
n∑

i=1

αi

))
·OPT(D∗). (2.16)

We are going to use the following theorem from [65], combined with the weak revenue
monotonicity (Lemma 3 of [100]).

Theorem 2.7.4 (Lemma 2 of [65]). Let D be a product of n regular distributions and
OPT(D) be the optimal revenue of D. Suppose 1

4
⩾ ε ⩾ 0 and u ⩾ 1

ε
OPT(D). Let tu(D1),

. . . , tu(Dn) be the distributions obtained by truncating D1, . . . , Dn at the value u and let
tu(D) be their product distribution. Then, we have that

OPT(D) ⩾ OPT(tu(D)) ⩾ (1− 4ε) ·OPT(D).

Now let ū = 1
ε
OPT(D∗), then we also have that ū ⩾ 1

ε
OPT(D̂) due to weak revenue

monotonicity (Lemma 3 of [100]). Hence, applying Theorem 2.7.4 we have that

OPT(D̂) ⩾ OPT(tū(D̂)) and OPT(tū(D
∗)) ⩾ (1− ε) ·OPT(D∗). (2.17)

Since we know that dk(D̂i,D∗
i ) ⩽ αi we also have that dk(tū(D̂i), tū(D∗

i )) ⩽ αi. Let now
M∗

ū be the optimal mechanism for the distribution tū(D
∗). It is easy to see that the ex-post

revenue obtained from the mechanism M∗
ū is an increasing function of the observed bids.

Hence, we can apply Lemma 2.7.2 to the [0, ū] bounded distributions tū(D̂) and tū(D
∗) and

we get that

OPT(tū(D̂)) ⩾ Rev(M∗
ū , tū(D̂)) ⩾ Rev(M∗

ū , tū(D
∗))− ū ·

(
n∑

i=1

αi

)

= OPT(tū(D
∗))− ū ·

(
n∑

i=1

αi

)
. (2.18)

If we combine (2.17) and (2.18) then we have that

OPT(D̂) ⩾ (1− ε) ·OPT(D∗)− ū ·

(
n∑

i=1

αi

)
. (2.19)

Now we can substitute the value of ū to the above inequality and we get that

OPT(D̃) ⩾

(
1− 1

ε
·

(
n∑

i=1

αi

)
− 4ε

)
·OPT(D).
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Finally, setting ε =
√∑n

i=1 αi we get

OPT(D̃) ⩾

1− 5 ·

√√√√ n∑
i=1

αi

 ·OPT(D).

Hence, (2.16) follows and as we explained this proves Theorem 2.3.8.

MHR Distributions – Proof of Theorem 2.3.6, n = 1 Case

In this subsection we show the part of the Theorem 2.3.6 related to n = 1, for which we
obtain a stronger result compared to the case n > 1. We first show a useful proposition:

Proposition 2.7.5. Consider two MHR distributions D1, D2 with CDFs as F1 and F2, such
that dk(D1,D1) ⩽ α, and F1(x) ⩾ F2(x) for all x ∈ R+. Denote the optimal expected revenue
under D1 and D2 as OPTF1 and OPTF2, and the corresponding optimal reserve prices as
P ∗
F1

and P ∗
F2
. Then,

(1 + αe)−1 ⩽
OPTF1

OPTF2

⩽ 1 + αe.

Proof. Consider two MHR distributionsD1, D2 with CDFs as F1 and F2, such that dk(D1,D1) ⩽
α, and F1(x) ⩾ F2(x) for all x ∈ R+. Denote the optimal expected revenue under D1 and D2

as OPTF1 and OPTF2 , and the corresponding optimal reserve prices as P ∗
F1

and P ∗
F2
. Without

loss of generality, we consider OPTF1 ⩾ OPTF2 . Further, since the ratio of the revenues, e.g.
OPTF1

OPTF2
is scale invariant, we assume without loss of generality that OPTF1 = 1.

By Lemma 2.6.2, we have P ∗
F1

⩽ e. By Lemma 2.6.1, OPTF1 = 1 implies that h1(P
∗
F1
) =

log(P ∗
F1
). Since P ∗

F1
⩽ e, we have

h1(P
∗
F1
) ⩽ 1

⇐⇒ − log(1− F1(P
∗
F1
)) ⩽ 1

⇐⇒ F1(P
∗
F1
) ⩽ 1− 1

e

⇐⇒ 1− F1(P
∗
F1
) ⩾

1

e
.

Therefore, since F1 is non-decreasing, for any x < P ∗
F1
, 1−F1(x) ⩾ 1

e
. So for any x < P ∗

F1
,

we have

|h1(x)− h2(x)| =
∣∣∣∣log(1− F2(x)

1− F1(x)

)∣∣∣∣
=

∣∣∣∣log(1 + F1(x)− F2(x)

1− F1(x)

)∣∣∣∣
⩽ log (1 + αe)

= O(α),
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where the at the second last step, the inequality follows from the fact that dk(D1,D1) ⩽ α,
and x < P ∗

F1
.

Further, F1(x) ⩾ F2(x) for all x ∈ R+ implies that h1(x) ⩾ h2(x) for all x ∈ R+.
Therefore, h1(P

∗
F1
) = log(P ∗

F1
) ⩾ h2(P

∗
F1
). Therefore, we have P ∗

F2
⩽ P ∗

F1
, and

|h1(P ∗
F2
)− h2(P ∗

F2
)| ⩽ log (1 + αe) .

Now define functions s1(x) = h1(x) − log(x), and s2(x) = h2(x) − log(x). Then by the
definition of P ∗

F1
, P ∗

F2
and Lemma 2.6.1,

min
x⩽P ∗

F1

s1(x) = s1(P
∗
F1
) ⩽ s1(P

∗
F2
)

⩽ s2(P
∗
F2
) + log (1 + αe)

= min
x⩽P ∗

F2

s2(x) + log (1 + αe) .

Therefore, by the definitions of s1 and s2,∣∣∣∣∣ min
x⩽P ∗

F1

s1(x)− min
x⩽P ∗

F2

s2(x)

∣∣∣∣∣ ⩽ log (1 + αe)

⇐⇒ | log(OPTF2)− log(OPTF1)| ⩽ log (1 + αe)

⇐⇒ − log (1 + αe) ⩽ log(OPTF2) ⩽ log (1 + αe)

⇐⇒ (1 + αe)−1 ⩽ OPTF2 ⩽ 1 + αe.

The above directly implies:

(1 + αe)−1 ⩽
OPTF1

OPTF2

⩽ 1 + αe.

which completes the proof. ■

Now we are ready to prove Theorem 2.3.6 for the n = 1 case.

Proof. First, by construction, Algorithm 1 runs the Myerson optimal auction on an MHR
distribution F̂ , such that F̂ ⩾ F̂ ′(x) for all x ∈ R+, for any MHR distribution F ′(x) such
that dk(F

′(x), F̃ (x)) ⩽ α. Also by assumption, dk(F
∗(x), F̃ (x)) ⩽ α. Therefore by triangle

inequality, dk(F
∗(x), F̂ (x)) ⩽ dk(F

∗(x), F̃ (x)) + dk(F̃ (x), F̂ (x)) ⩽ 2α.
Denote α′ = 2α. By Proposition 2.7.5,

(1 + α′e)
−1 ⩽

OPTF1

OPTF2

⩽ 1 + α′e.

Note that (1 + α′e)−1 = (1 + 2αe)−1 = 1−O(α), which completes the proof. ■
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2.8 Appendix: Proof of optimality for the upper

bounds

For these lower bounds we follow the idea of the lower bounds from [100] adapted to the
corrupted case that we consider in this paper. The lower bound constructions of [100] are
based on a family of distributions

H = {D | D1 = Db,Di = Dh or Di = Dℓ for all 2 ⩽ i ⩽ n}.

Observe that this family is characterized by the triplet of distributions Db, Dh, and Dℓ for
which we ask for the following conditions.

a) Db is a point mass at v0.

b) The propability of v ⩾ v2 is at most 1/n both when v ∼ Dh and when v ∼ Dℓ.

c) The probability of v1 > v ⩾ v2 is at least p both when v ∼ Dh and when v ∼ Dℓ.

d) For any value v such that v1 > v ⩾ v2, we have ϕℓ(v) +∆ ⩽ v0 ⩽ ϕh(v)−∆, where ϕℓ

is the virtual value function of Dℓ and correspondingly for ϕh.

e) For any value v such that v < v2, we have that ϕh(v), ϕℓ(v) ⩽ v0.

f) For any value v1 > v ⩾ v2 we have that the ratio dDh

dDℓ (v) is upper and lower bounded

by a constant, where dDh

dDℓ is the Radon–Nikodym derivative between Dh and Dℓ.

g) Dh is regular.

h) The point v1 is either +∞ or is a point mass and an upper bound on the support in
both Dℓ and Dh.

Under these conditions and using the exact same proof as the Lemma 18 from [100] we
can show the following.

Lemma 2.8.1. Let H be a class of distributions that satisfies the conditions a) - h) and
additionally satisfies the following.

i) We have that dk(Dℓ,Dh) ⩽ α/n.

Then any algorithm that is robust to a total corruption α in Kolmogorov distance across all
bidders achieves revenue of at most

OPT(D)− Ω(n · p ·∆)

for any distribution D ∈ H.
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MHR Distributions – Proof of Theorem 2.3.7

Let a = ln(n) − ln(1 − β), b = ln(n), v0 = a − 1, v1 = ln(n) − 2 · ln(1 − β), v2 = a,
p = β · (1− β)/n, ∆ = 1/2. Then we define Dℓ and Dh according to their CDFs F ℓ and F h

which are the following:

F ℓ(v) =

{
1− exp(−v) v < v1

0 v ⩾ v1
,

F h(v) =


1− exp

(
− b

a
· v
)

v < v2

1− exp
(
− v1−b

v1−a
· (v − a) + b

)
v2 ⩽ v < v1

0 v ⩾ v1

.

Observe also that for this choice of distributions it holds that

ϕℓ(v) =

{
v − 1 v < v1

v1 v ⩾ v1
,

ϕh(v) =


v − a

b
v < v2

v − v1−a
v1−b

v2 ⩽ v < v1

v1 v ⩾ v1

.

Now the conditions a) - h) are easy to verify. For the condition i) we observe that the maxi-
mum difference between the two CDFs is at v = v2 for which we have that

∣∣F ℓ(v2)− F h(v2)
∣∣ ⩽

β/n. Hence, Lemma 2.8.1 implies that the maximum revenue achievable by any robust mech-
anism is

OPT(D)− Ω(n · p ·∆) = OPT(D)− Ω(β).

Observe that since the maximum value of any bidder is at most ln(n) we have that the
maximum revenue is (

1− β

ln(n)

)
·OPT(D).

If we write this expression with respect to the amount of corruption per bidder, then we
have that the maximum possible revenue is(

1− n · α
ln(n)

)
·OPT(D).

Finally, we observe that all of Db, Dℓ, and Dh are MHR and hence Theorem 2.3.7 follows.

Regular Distributions – Proof of Theorem 2.3.9

For the case of regular distributions we will use the same distributions used by [100] in their
proof of their Theorem 2. In particular, let v0 = 3/2, v1 = +∞, v2 = 1 + 1

β
, p = β

n
, and
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∆ = 1/2. We define Dℓ and Dh through their CDFs as follows

F ℓ(v) = 1− 1

n · (v − 1)
,

F h(v) =


0 v < 1 + 1

n

1− 1
n·(v−1)

1 + 1
n
⩾ v < v2

1− 1−β
n·(v−2)

v ⩾ v2

.

The fact that these distributions satisfy a) - h) can be found in [100]. We will focus on
proving i). It is not hard to see that the two CDFs appears when v = v̄ = 1 + 1√

1−β
. For

this value we have ∣∣F ℓ(v̄)− F h(v̄)
∣∣ = 1

n

(
2− β − 2

√
1− β

)
⩽
β2

n
,

where the last inequality can be easily verifies for β ⩽ 1. Now setting α = β2

n
, observing

that n · p ·∆ = Ω(β), and observing that OPT(D) ⩽ O(1) we can apply Lemma 2.8.1 and
we get that the maximum possible revenue is(

1− Ω
(√

n · α
))
·OPT(D).

Finally by observing that all of Db, Dℓ, and Dh are regular Theorem 2.3.9 follows.

2.9 Appendix: Proofs of sample complexity bounds

Proof of Theorem 2.4.3, n > 1 case

This follows easily from Theorem 2.3.8 and the DKW inequality Dvoretzky et al. [76], Massart
[161] that states that the empirical CDF with m samples is close to the population CDF
with an error of at most

O

(√
log(1/δ)

m

)
with probability at least 1− δ. ■

Proof of Theorem 2.4.3, n = 1 Case

We present in this section a proof of Theorem 2.4.3 for the case with n = 1 and regular
distributions. In this case, we show that Algorithm 2 achieves the optimal sample complexity,
up to a poly-logarithmic factor.
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First, by [Lemma 5, Guo et al. [100]], we have that with probability at least 1 − δ, for
any value v ⩾ 0, the quantiles of D̃ and its empirical counterpart E satisfy that:

|qE(v)− qD̃(v)| ⩽

√
2qD̃(v)(1− qD̃(v)) ln(2mδ−1)

m
+

ln(2mδ−1)

m
. (2.20)

Further note that by construction, we have

qE − qÊ ⩽

√
2qE(v) (1− qE(v)) ln(2mδ−1)

m
+

4 ln(2mδ−1)

m
+ α.

Given that Algorithm 2 runs the Myerson optimal auction on Ẽ, which is a minimal
regular distribution that dominates Ẽ. Further, Ê ⪰ D∗ by construction, assuming Eq (2.20)
holds. Therefore, we have D∗ ⪰ Ẽ assuming Eq (2.20) holds. Applying Lemma 2.3.3 yields:

Rev(MẼ,D
∗) ⩾ Rev(MẼ, Ẽ) = OPT(Ẽ).

Therefore, the remaining task is to ensure that m is sufficiently large such that

OPT(Ẽ) ⩾ (1−
√
α)OPT(D∗).

We will use a useful lemma below which connects the ratio of revenues that we are
interested in with the value of link function at an optimal reserve price.

Lemma 2.9.1. Given two regular distributions D, D̄ with CDFs F, F̄ , such that F̄ ⪰ F
and dk(D, D̄) ⩽ β. Denote the optimal reserve price for F̄ as P̄ , and the optimal expected
revenue for F, F̄ as OPTF ,OPTF̄ . Then we have

OPTF

OPTF̄

⩾ 1− βhr(P̄ )

Proof. Recall that hr(x) =
1

1−F (x)
, and h̄r(x) =

1
1−F̄ (x)

. Then, F (x) ⩾ F̄ (x) implies hr(x) ⩾

h̄r(x).
By definition, dk(D, D̄) ⩽ β implies that maxx F (x)− F̄ (x) ⩽ β. So we have:

hr(x)− h̄r(x) =
F (x)− F̄ (x)

(1− F (x))(1− F̄ (x)
= (F (x)− F̄ (x))hr(x)h̄r(x) ⩽ βh2r(x),

where the last inequality follows from the fact that maxx F (x)−F̄ (x) ⩽ β, and hr(x) ⩾ h̄r(x).
Thus, for all x,

h̄R(x) ⩾ hr(x)− βh2r(x). (2.21)

Note that the expected revenue, R(x) = x(1 − F (x)), at any x, equals to x
hr(x)

, which

is the reciprocal of the slope for the linear function g(a) = hr(x) · a. Hence, the revenue is
maximized when the slope for the linear function g(a) = hr(x) · a is minimized.
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Denote the corresponding optimal reserve prices for F and F̄ as P and P̄ . Then at P̄ ,

h̄r(P̄ ) =
1

1− F̄ (P̄ )
=

1

OPTF̄

· P̄ .

Denote Rev(F, x) as the expected revenue with a reserve price at x for a valuation dis-
tribution with CDF as F . Then,

OPTF

OPTF̄

⩾
Rev(F, P̄ )

OPTF̄

=
h̄r(P̄ )

h(P̄ )
⩾
hr(P̄ )− βh2r(P̄ )

hr(P̄ )
= 1− βhr(P̄ ),

where the first inequality follows directly from the definition of the optimal revenue, and the
second inequality is from Eq (2.21). ■

Now we will use Lemma 2.9.1 to proceed. Denote the optimal reserve price for D∗ as P ∗.
Denote the link function applied to Ẽ and D∗ as h̃, h∗, respectively. Then, we will discuss
two cases for h̃(P ∗).

Case 1: h̃(P ∗) > 1√
α
. For this case, h̃(P ∗) > 1√

α
implies that qẼ(P ∗) <

√
α. Applying

[Lemma 5, Guo et al. [100]] and triangle inequalities, we have

|qẼ − qD∗| ⩽

√
2qẼ(v)

(
1− qẼ(v)

)
ln(2mδ−1)

m
+

4 ln(2mδ−1)

m
+ α.

Given that qẼ(P ∗) <
√
α, we have qẼ(1− qẼ) ⩽ qẼ ⩽

√
α. Therefore, it suffices to have√√

α

m
⩽ C1α,

for some universal constant C1 to ensure that |qẼ−qD
∗| = O(α), which impliesm ⩾ 1/{C2

1α
3/2}

for some universal constant C1.
Case 2: h̃(P ∗) ⩽ 1√

α
. For this case, h̃(P ∗) ⩽ 1√

α
implies that qẼ(P ∗) ⩾

√
α.

By lemma 2.9.1, we have that

OPTẼ

OPTD∗
⩾ 1− βh̃r(P ∗),

therefore it suffice to ensure that 1− βh̃r(P ∗) ⩾ 1− C2

√
α for some universal constant C2,

which implies that β ⩽ qẼ(P ∗) · C2

√
α. Applying [Lemma 5, Guo et al. [100]], it suffices to

have that

√
qẼ(P ∗)

m
⩽ β ⩽ qẼ(P ∗) ·C2

√
α, which yields that m > 1

C2
2αq

Ẽ
. Lastly, applying the

fact that we are in the case where qẼ(P ∗) ⩾
√
α we get that is suffices to have m > 1

C2
2α

3/2

for some universal constant C2. This completes the proof.
■
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Proof of Theorem 2.4.4

This follows easily from Theorem 2.3.6 and the DKW inequality [76, 161] that states that
the empirical CDF with m samples is close to the population CDF with an error of at most

O

(√
log(1/δ)

m

)

with probability at least 1− δ. ■

Proof of Theorem 2.4.5

We omit the details of this proof since it follows from Theorem 2 and Appendix E of [100]
applied for the case n = 1. The reason is that if we could get a better bound in our
corrupted case then this algorithm could be used to improve our sample complexity result
in the non-corrupted case.
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Chapter 3

Robust Optimization for Fairness
with Noisy Protected Groups

3.1 Introduction

As machine learning becomes increasingly pervasive in real-world decision making, the ques-
tion of ensuring fairness of ML models becomes increasingly important. The definition of
what it means to be “fair” is highly context dependent. Much work has been done on de-
veloping mathematical fairness criteria according to various societal and ethical notions of
fairness, as well as methods for building machine-learning models that satisfy those fairness
criteria [see, e.g., 54, 77, 87, 110, 141, 189, 216, 222].

Many of these mathematical fairness criteria are group-based, where a target metric is
equalized or enforced over subpopulations in the data, also known as protected groups. For
example, the equality of opportunity criterion introduced by Hardt et al. [110] specifies that
the true positive rates for a binary classifier are equalized across protected groups. The
demographic parity [77] criterion requires that a classifier’s positive prediction rates are
equal for all protected groups.

One important practical question is whether or not these fairness notions can be reliably
measured or enforced if the protected group information is noisy, missing, or unreliable. For
example, survey participants may be incentivized to obfuscate their responses for fear of
disclosure or discrimination, or may be subject to other forms of response bias. Social desir-
ability response bias may affect participants’ answers regarding religion, political affiliation,
or sexual orientation [138]. The collected data may also be outdated: census data collected
ten years ago may not an accurate representation for measuring fairness today.

Another source of noise arises from estimating the labels of the protected groups. For
various image recognition tasks (e.g., face detection), one may want to measure fairness
across protected groups such as gender or race. However, many large image corpora do not
include protected group labels, and one might instead use a separately trained classifier to
estimate group labels, which is likely to be noisy [41]. Similarly, zip codes can act as a noisy
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indicator for socioeconomic groups.
In this work, we focus on the problem of training binary classifiers with fairness con-

straints when only noisy labels, Ĝ ∈ {1, ..., m̂}, are available for m true protected groups,
G ∈ {1, ...,m}, of interest. We study two aspects: First, if one satisfies fairness constraints
for noisy protected groups Ĝ, what can one say with respect to those fairness constraints for
the true groups G? Second, how can side information about the noise model between Ĝ and
G be leveraged to better enforce fairness with respect to the true groups G?

Contributions: Our contributions are three-fold:

1. We provide a bound on the fairness violations with respect to the true groups G when
the fairness criteria are satisfied for the noisy groups Ĝ.

2. We introduce two new robust-optimization methodologies that satisfy fairness criteria
on the true protected groups G while minimizing a training objective. These method-
ologies differ in convergence properties, conservatism, and noise model specification.

3. We show empirically that unlike the näıve approach, our two proposed approaches are
able to satisfy fairness criteria with respect to the true groups G on average.

The first approach we propose (Section 3.5) is based on distributionally robust optimiza-
tion (DRO) [29, 71]. Let p denote the full distribution of the data, X, Y ∼ p. Let pj be the
distribution of the data conditioned on the true groups being j, so X, Y |G = j ∼ pj; and p̂j
be the distribution of X, Y conditioned on the noisy groups, so X, Y |Ĝ = j ∼ p̂j. Given an
upper bound on the total variation (TV) distance γj ⩾ TV (pj, p̂j) for each j ∈ {1, ...,m}, we
define p̃j such that the conditional distributions (X, Y |G̃ = j ∼ p̃j) fall within the bound γj
with respect to p̂j: γj ⩾ TV (p̃j, p̂j). Thus, the set of all such p̃j is guaranteed to include the
unknown true group distribution pj, for all j. Because it is based on the well-studied DRO
setting, this approach has the advantage of being easy to analyze. However, the results may
be overly conservative unless tight bounds {γj}mj=1 can be given.

Our second robust optimization strategy (Section 3.6) uses a robust re-weighting of the
data from soft protected group assignments, inspired by criteria proposed by Kallus et al.
[128] for auditing the fairness of ML models given imperfect group information. Extending
their work, we optimize a constrained problem to achieve their robust fairness criteria, and
provide a theoretically ideal algorithm that is guaranteed to converge to an optimal feasible
point, as well as an alternative practical version that is more computationally tractable.
Compared to DRO, this second approach uses a more precise noise model, P (Ĝ = k|G = j),
between Ĝ and G for all pairs of group labels j, k, that can be estimated from a small
auxiliary dataset containing ground-truth labels for both G and Ĝ. An advantage of this
more detailed noise model is that a practitioner can incorporate knowledge of any bias in
the relationship between G and Ĝ (for instance, survey respondents favoring one socially
preferable response over others), which causes it to be less likely than DRO to result in
an overly-conservative model. Notably, this approach does not require that Ĝ be a direct
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approximation of G—in fact, G and Ĝ can represent distinct (but related) groupings, or
even groupings of different sizes, with the noise model tying them together. For example, if
G represents “language spoken at home,” then Ĝ could be a noisy estimate of “country of
residence.”

3.2 Related work

Constrained optimization for group-based fairness metrics: The simplest techniques
for enforcing group-based constraints apply a post-hoc correction of an existing classifier
[110, 220]. For example, one can enforce equality of opportunity by choosing different decision
thresholds for an existing binary classifier for each protected group [110]. However, the
classifiers resulting from these post-processing techniques may not necessarily be optimal in
terms of accuracy. Thus, constrained optimization techniques have emerged to train machine-
learning models that can more optimally satisfy the fairness constraints while minimizing a
training objective [4, 53, 54, 69, 94, 173, 222].

Fairness with noisy protected groups: Group-based fairness notions rely on the
knowledge of protected group labels. However, practitioners may only have access to noisy or
unreliable protected group information. One may näıvely try to enforce fairness constraints
with respect to these noisy protected groups using the above constrained optimization tech-
niques, but there is no guarantee that the resulting classifier will satisfy the fairness criteria
with respect to the true protected groups [105].

Under the conservative assumption that a practitioner has no information about the
protected groups, Hashimoto et al. [112] applied DRO to enforce what Lahoti et al. [142]
refer to as Rawlsian Max-Min fairness. In contrast, here we assume some knowledge of
a noise model for the noisy protected groups, and are thus able to provide tighter results
with DRO: we provide a practically meaningful maximum total variation distance bound to
enforce in the DRO procedure. We further extend Hashimoto et al. [112]’s work by applying
DRO to problems equalizing fairness metrics over groups, which may be desired in some
practical applications [137].

Concurrently, Lahoti et al. [142] proposed an adversarial reweighting approach to improve
group fairness by assuming that non-protected features and task labels are correlated with
unobserved groups. Like Hashimoto et al. [112], Lahoti et al. [142] also enforce Rawlsian
Max-Min fairness with unknown protected groups, whereas our setup includes constraints
for parity based fairness notions.

Kallus et al. [128] considered the problem of auditing fairness criteria given noisy groups.
They propose a “robust” fairness criteria using soft group assignments and show that if a
given model satisfies those fairness criteria with respect to the noisy groups, then the model
will satisfy the fairness criteria with respect to the true groups. Here, we build on that work
by providing an algorithm for training a model that satisfies their robust fairness criteria
while minimizing a training objective.
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Lamy et al. [145] showed that when there are only two protected groups, one need only
tighten the “unfairness tolerance” when enforcing fairness with respect to the noisy groups.
Mozannar et al. [168] showed that if the predictor is independent of the protected attribute,
then fairness with respect to the noisy groups is the same as fairness with respect to the
true groups. When there are more than two groups, and when the noisy groups are included
as an input to the classifier, other robust optimization approaches may be necessary. When
using post-processing instead of constrained optimization, Awasthi et al. [15] showed that
under certain conditional independence assumptions, post-processing using the noisy groups
will not be worse in terms of fairness violations than not post-processing at all. In our work,
we consider the problem of training the model subject to fairness constraints, rather than
taking a trained model as given and only allowing post-processing, and we do not rely on
conditional independence assumptions. Indeed, the model may include the noisy protected
attribute as a feature.

Robust optimization: We use a minimax set-up of a two-player game where the un-
certainty is adversarial, and one minimizes a worst-case objective over a feasible set [28, 35];
e.g., the noise is contained in a unit-norm ball around the input data. As one such approach,
we apply a recent line of work on DRO which assumes that the uncertain distributions of
the data are constrained to belong to a certain set [71, 153, 172].

3.3 Optimization problem setup

We begin with the training problem for incorporating group-based fairness criteria in a
learning setting [4, 54, 69, 94, 110]. Let X ∈ X ⊆ RD be a random variable representing
a feature vector, with a random binary label Y ∈ Y = {0, 1} and random protected group
membership G ∈ G = {1, ...,m}. In addition, let Ĝ ∈ Ĝ = {1, ..., m̂} be a random variable
representing the noisy protected group label for each (X, Y ), which we assume we have access
to during training. For simplicity, assume that Ĝ = G (and m̂ = m). Let ϕ(X; θ) represent a
binary classifier with parameters θ ∈ Θ where ϕ(X; θ) > 0 indicates a positive classification.

Then, training with fairness constraints [4, 54, 69, 94, 110] is:

min
θ

f(θ) s.t. gj(θ) ⩽ 0,∀j ∈ G, (3.1)

The objective function f(θ) = E[l(θ,X, Y )], where l(θ,X, Y ) is any standard binary clas-
sifier training loss. The constraint functions gj(θ) = E[h(θ,X, Y )|G = j] for j ∈ G, where
h(θ,X, Y ) is the target fairness metric, e.g. h(θ,X, Y ) = 1

(
ϕ(X; θ) > 0

)
−E[1

(
ϕ(X; θ) > 0

)
]

when equalizing positive rates for the demographic parity [77] criterion (see [54] for more ex-
amples). Algorithms have been studied for problem (3.1) when the true protected group
labels G are given [see, e.g., 4, 54, 78].
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3.4 Bounds for the näıve approach

When only given the noisy groups Ĝ, one näıve approach to solving problem (3.1) is to
simply re-define the constraints using the noisy groups [105]:

min
θ

f(θ) s.t. ĝj(θ) ⩽ 0, ∀j ∈ G, (3.2)

where ĝj(θ) = E[h(θ,X, Y )|Ĝ = j], j ∈ G.
This introduces a practical question: if a model was constrained to satisfy fairness criteria

on the noisy groups, how far would that model be from satisfying the constraints on the true
groups? We show that the fairness violations on the true groups G can at least be bounded
when the fairness criteria are satisfied on the noisy groups Ĝ, provided that Ĝ does not
deviate too much from G.

Bounding fairness constraints using TV distance

Recall that X, Y |G = j ∼ pj and X, Y |Ĝ = j ∼ p̂j. We use the TV distance TV (pj, p̂j)
to measure the distance between the probability distributions pj and p̂j (see Appendix 3.10
and Villani [211]). Given a bound on TV (pj, p̂j), we obtain a bound on fairness violations
for the true groups when näıvely solving the optimization problem (3.2) using only the noisy
groups:

Theorem 3.4.1. (proof in Appendix 3.10.) Suppose a model with parameters θ satisfies
fairness criteria with respect to the noisy groups Ĝ: ĝj(θ) ⩽ 0, ∀j ∈ G. Suppose |h(θ, x1, y1)−
h(θ, x2, y2)| ⩽ 1 for any (x1, y1) ̸= (x2, y2). If TV (pj, p̂j) ⩽ γj for all j ∈ G, then the fairness
criteria with respect to the true groups G will be satisfied within slacks γj for each group:
gj(θ) ⩽ γj, ∀j ∈ G.

Theorem 3.4.1 is tight for the family of functions h that satisfy |h(θ, x1, y1)−h(θ, x2, y2)| ⩽
1 for any (x1, y1) ̸= (x2, y2). This condition holds for any fairness metrics based on rates such
as demographic parity, where h is simply some scaled combination of indicator functions.
Cotter et al. [54] list many such rate-based fairness metrics. Theorem 3.4.1 can be generalized
to functions h whose differences are not bounded by 1 by looking beyond the TV distance
to more general Wasserstein distances between pj and p̂j. We show this in Appendix 3.10,
but for all fairness metrics referenced in this work, formulating Theorem 3.4.1 with the TV
distance is sufficient.

Estimating the TV distance bound in practice

Theorem 3.4.1 bounds the fairness violations of the näıve approach in terms of the TV
distance between the conditional distributions pj and p̂j, which assumes knowledge of pj and
is not always possible to estimate. Instead, we can estimate an upper bound on TV (pj, p̂j)
from metrics that are easier to obtain in practice. Specifically, the following lemma shows
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that shows that if the prior on class j is unaffected by the noise, P (G ̸= Ĝ|G = j) directly
translates into an upper bound on TV (pj, p̂j).

Lemma 3.4.2. (proof in Appendix 3.10.) Suppose P (G = j) = P (Ĝ = j) for a given j ∈ G.
Then TV (pj, p̂j) ⩽ P (G ̸= Ĝ|G = j).

In practice, an estimate of P (G ̸= Ĝ|G = j) may come from a variety of sources.
As assumed by Kallus et al. [128], a practitioner may have access to an auxiliary dataset
containing G and Ĝ, but not X or Y . Or, practitioners may have some prior estimate of
P (G ̸= Ĝ|G = j): if Ĝ is estimated by mapping zip codes to the most common socioeconomic
group for that zip code, then census data provides a prior for how often Ĝ produces an
incorrect socioeconomic group.

By relating Theorem 3.4.1 to realistic noise models, Lemma 3.4.2 allows us to bound the
fairness violations of the näıve approach using quantities that can be estimated empirically.
In the next section we show that Lemma 3.4.2 can also be used to produce a robust approach
that will actually guarantee full satisfaction of the fairness violations on the true groups G.

3.5 Robust Approach 1: Distributionally robust

optimization (DRO)

While Theorem 3.4.1 provides an upper bound on the performance of the näıve approach,
it fails to provide a guarantee that the constraints on the true groups are satisfied, i.e.
gj(θ) ⩽ 0. Thus, it is important to find other ways to do better than the näıve optimization
problem (3.2) in terms of satisfying the constraints on the true groups. In particular, suppose
in practice we are able to assert that P (G ̸= Ĝ|G = j) ⩽ γj for all groups j ∈ G. Then
Lemma 3.4.2 implies a bound on TV distance between the conditional distributions on the
true groups and the noisy groups: TV (pj, p̂j) ⩽ γj. Therefore, any feasible solution to the
following constrained optimization problem is guaranteed to satisfy the fairness constraints
on the true groups:

min
θ∈Θ

f(θ) s.t. max
p̃j :TV (p̃j ,p̂j)⩽γj

p̃j≪p

g̃j(θ) ⩽ 0, ∀j ∈ G, (3.3)

where g̃j(θ) = EX,Y∼p̃j [h(θ,X, Y )], and p̃j ≪ p denotes absolute continuity.

General DRO formulation

A DRO problem is a minimax optimization [71]:

min
θ∈Θ

max
q:D(q,p)⩽γ

E
X,Y∼q

[l(θ,X, Y )], (3.4)
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where D is some divergence metric between the distributions p and q, and l : Θ×X×Y → R.
Much existing work on DRO focuses on how to solve the DRO problem for different diver-
gence metrics D. Namkoong and Duchi [172] provide methods for efficiently and optimally
solving the DRO problem for f -divergences, and other work has provided methods for solv-
ing the DRO problem for Wasserstein distances [81, 153]. Duchi and Namkoong [71] further
provide finite-sample convergence rates for the empirical version of the DRO problem.

Solving the DRO problem

An important and often difficult aspect of using DRO is specifying a divergence D and bound
γ that are meaningful. In this case, Lemma 3.4.2 gives us the key to formulating a DRO
problem that is guaranteed to satisfy the fairness criteria with respect to the true groups G.

The optimization problem (3.3) can be written in the form of a DRO problem (3.4)
with TV distance by using the Lagrangian formulation. Adapting a simplified version of
a gradient-based algorithm provided by Namkoong and Duchi [172], we are able to solve
the empirical formulation of problem (3.4) efficiently. Details of our empirical Lagrangian
formulation and pseudocode are in Appendix 3.11.

3.6 Robust Approach 2: Soft group assignments

While any feasible solution to the distributionally robust constrained optimization problem
(3.3) is guaranteed to satisfy the constraints on the true groups G, choosing each γj = P (G ̸=
Ĝ|G = j) as an upper bound on TV (pj, p̂j) may be rather conservative. Therefore, as an
alternative to the DRO constraints in (3.3), in this section we show how to optimize using
the robust fairness criteria proposed by Kallus et al. [128].

Constraints with soft group assignments

Given a trained binary predictor, Ŷ (θ) = 1(ϕ(θ;X) > 0), Kallus et al. [128] proposed a
set of robust fairness criteria that can be used to audit the fairness of the given trained
model with respect to the true groups G ∈ G using the noisy groups Ĝ ∈ Ĝ, where G = Ĝ
is not required in general. They assume access to a main dataset with the noisy groups
Ĝ, true labels Y , and features X, as well an auxiliary dataset containing both the noisy
groups Ĝ and the true groups G. From the main dataset, one obtains estimates of the
joint distributions (Ŷ (θ), Y, Ĝ); from the auxiliary dataset, one obtains estimates of the joint
distributions (Ĝ, G) and a noise model P (G = j|Ĝ = k) ∀j ∈ G, k ∈ Ĝ.

These estimates are used to associate each example with a vector of weights, where
each weight is an estimated probability that the example belongs to the true group j.
Specifically, suppose that we have a function w : G × {0, 1} × {0, 1} × Ĝ → [0, 1], where
w(j | ŷ, y, k) estimates P (G = j|Ŷ (θ) = ŷ, Y = y, Ĝ = k). We rewrite the fairness constraint

E[h(θ,X, Y )|G = j] = E[h(θ,X,Y )P (G=j|Ŷ (θ),Y,Ĝ)]
P (G=j)

(derivation in Appendix 3.12), and estimate
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this using w. We also show how h can be adapted to the equality of opportunity setting in
Appendix 3.12.

Given the main dataset and auxiliary dataset, we limit the possible values of the function
w(j | ŷ, y, k) using the law of total probability (as in [128]). The set of possible functions w
is given by:

W(θ) =
{
w :

∑
ŷ,y∈{0,1} w(j|ŷ,y,k)P (Ŷ (θ)=ŷ,Y=y|Ĝ=k)=P (G=j|Ĝ=k),∑m

j=1 w(j|ŷ,y,k)=1,w(j|ŷ,y,k)⩾0 ∀ŷ,y∈{0,1},j∈G,k∈Ĝ

}
. (3.5)

The robust fairness criteria can now be written in terms of W(θ) as:

max
w∈W(θ)

gj(θ, w) ⩽ 0, ∀j ∈ G where gj(θ, w) =
E[h(θ,X, Y )w(j|Ŷ (θ), Y, Ĝ)]

P (G = j)
. (3.6)

Robust optimization with soft group assignments

We extend Kallus et al. [128]’s work by formulating a robust optimization problem using soft
group assignments. Combining the robust fairness criteria above with the training objective,
we propose:

min
θ∈Θ

f(θ) s.t. max
w∈W(θ)

gj(θ, w) ⩽ 0, ∀j ∈ G, (3.7)

where Θ denotes the space of model parameters. Any feasible solution is guaranteed to
satisfy the original fairness criteria with respect to the true groups. Using a Lagrangian,
problem (3.7) can be rewritten as:

min
θ∈Θ

max
λ∈Λ
L(θ, λ) (3.8)

where the Lagrangian L(θ, λ) = f(θ) +
∑m

j=1 λj maxw∈W(θ) gj(θ, w), and Λ ⊆ Rm
+ .

When solving this optimization problem, we use the empirical finite-sample versions of
each expectation. As described in Proposition 9 of Kallus et al. [128], the inner maximization
(3.6) over w ∈ W(θ) can be solved as a linear program for a given fixed θ. However, the
Lagrangian problem (3.8) is not as straightforward to optimize, since the feasible set W(θ)
depends on θ through Ŷ . While in general the pointwise maximum of convex functions is con-
vex, the dependence ofW(θ) on θ means that even if gj(θ, w) were convex, maxw∈W(θ) gj(θ, w)
is not necessarily convex. We first introduce a theoretically ideal algorithm that we prove
converges to an optimal, feasible solution. This ideal algorithm relies on a minimization
oracle, which is not always computationally tractable. Therefore, we further provide a prac-
tical algorithm using gradient methods that mimics the ideal algorithm in structure and
computationally tractable, but does not share the same convergence guarantees.
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Ideal algorithm

The minimax problem in (3.8) can be interpreted as a zero-sum game between the θ-player
and λ-player. In Algorithm 3, we provide an iterative procedure for solving (3.8), where
at each step, the θ-player performs a full optimization, i.e., a best response over θ, and the
λ-player responds with a gradient ascent update on λ.

For a fixed θ, the gradient of the Lagrangian L with respect to λ is given by ∂L(θ, λ)/∂λj =
maxw∈W(θ) gj(θ, w), which is a linear program in w. The challenging part, however, is the
best response over θ; that is, finding a solution minθ L(θ, λ) for a given λ, as this involves a
max over constraints W(θ) which depend on θ. To implement this best response, we formu-
late a nested minimax problem that decouples this intricate dependence on θ, by introducing
Lagrange multipliers for the constraints inW(θ). We then solve this problem with an oracle
that jointly minimizes over both θ and the newly introduced Lagrange multipliers (details
in Algorithm 5 in Appendix 3.13).

The output of the best-response step is a stochastic classifier with a distribution θ̂(t) over
a finite set of θs. Algorithm 3 then returns the average of these distributions, θ̄ = 1

T

∑T
t=1 θ̂

t,
over T iterations. By extending recent results on constrained optimization [53], we show in
Appendix 3.13 that the output θ̄ is near-optimal and near-feasible for the robust optimization
problem in (3.7). That is, for a given ϵ > 0, by picking T to be large enough, we have that
the objective Eθ∼θ̄ [f(θ)] ⩽ f(θ∗) + ϵ, for any θ∗ that is feasible, and the expected violations
in the robust constraints are also no more than ϵ.

Algorithm 3 Ideal Algorithm

Require: learning rate ηλ > 0, estimates of P (G = j|Ĝ = k) to specify W(θ), ρ, ρ′

1: for t = 1, . . . , T do
2: Best response on θ: run the oracle-based Algorithm 5 to find a distribution θ̂(t) over

Θ s.t. Eθ∼θ̂(t)

[
L(θ, λ(t))

]
⩽ minθ∈Θ L(θ, λ(t)) + ρ.

3: Estimate gradient ∇λL(θ̂(t), λ(t)): for each j ∈ G, choose δ(t)j s.t.

δ
(t)
j ⩽ Eθ∼θ̂(t)

[
maxw∈W(θ) gj(θ, w)

]
⩽ δ

(t)
j + ρ′

4: Ascent step on λ: λ̃
(t+1)
j ← λ

(t)
j + ηλ δ

(t)
j , ∀j ∈ G; λ(t+1) ← ΠΛ(λ̃

(t+1))
5: end for
6: return θ̄ = 1

T

∑T
t=1 θ̂

(t)

Practical algorithm

Algorithm 3 is guaranteed to converge to a near-optimal, near-feasible solution, but may be
computationally intractable and impractical for the following reasons. First, the algorithm
needs a nonconvex minimization oracle to compute a best response over θ. Second, there
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are multiple levels of nesting, making it difficult to scale the algorithm with mini-batch or
stochastic updates. Third, the output is a distribution over multiple models, which can be
be difficult to use in practice [174].

Therefore, we supplement Algorithm 3 with a practical algorithm, Algorithm 6 (see
Appendix 3.14) that is similar in structure, but approximates the inner best response routine
with two simple steps: a maximization over w ∈ W(θ(t)) using a linear program for the
current iterate θ(t), and a gradient step on θ at the maximizer w(t). Algorithm 6 leaves room
for other practical modifications such as using stochastic gradients. We provide further
discussion in Appendix 3.14.

3.7 Experiments

We compare the performance of the näıve approach and the two robust optimization ap-
proaches (DRO and soft group assignments) empirically using two datasets from UCI [70]
with different constraints. For both datasets, we stress-test the performance of the different
algorithms under different amounts of noise between the true groups G and the noisy groups
Ĝ. We take l to be the hinge loss. The specific constraint violations measured and additional
training details can be found in Appendix 3.15.

Generating noisy protected groups: Given the true protected groups, we syntheti-
cally generate noisy protected groups by selecting a fraction γ of data uniformly at random.
For each selected example, we perturb the group membership to a different group also se-
lected uniformly at random from the remaining groups. This way, for a given γ, P (Ĝ ̸=
G) ≈ P (Ĝ ̸= G|G = j) ≈ γ for all groups j, k ∈ G. We evaluate the performance of the
different algorithms ranging from small to large amounts of noise: γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

Case study 1 (Adult): equality of opportunity

We use the Adult dataset from UCI [70] collected from 1994 US Census, which has 48,842
examples and 14 features (details in Appendix 3.15). The classification task is to determine
whether an individual makes over $50K per year. For the true groups, we use m = 3 race
groups of “white,” “black,” and “other.” As done by [54, 87, 223], we enforce equality of
opportunity by equalizing true positive rates (TPRs). Specifically, we enforce that the TPR
conditioned on each group is greater than or equal to the overall TPR on the full dataset
with some slack α, which produces m true group fairness criteria, {gTPR

j (θ) ⩽ 0} ∀j ∈ G
(details on the constraint function h in Appendix 3.11 and 3.12).

Case study 2 (Credit): equalized odds

We consider another application of group-based fairness constraints to credit default pre-
diction. Fourcade and Healy [86] provide an in depth study of the effect of credit scoring
techniques on the credit market, showing that this scoring system can perpetuate inequity.
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Enforcing group-based fairness with credit default predictions has been considered in a va-
riety of prior works [5, 26, 30, 33, 87, 97, 110, 216]. Following Hardt et al. [110] and Grari
et al. [97], we enforce equalized odds [110] by equalizing both true positive rates (TPRs) and
false positive rates (FPRs) across groups.

We use the “default of credit card clients” dataset from UCI [70] collected by a company in
Taiwan [221], which contains 30,000 examples and 24 features (details in Appendix 3.15). The
classification task is to determine whether an individual defaulted on a loan. We use m = 3
groups based on education levels: “graduate school,” “university,” and “high school/other”
(the use of education in credit lending has previously been studied in the algorithmic fairness
and economics literature [30, 93, 146]). We constrain the TPR conditioned on each group to
be greater than or equal to the overall TPR on the full dataset with a slack α, and the FPR
conditioned on each group to be less than or equal to the overall FPR on the full dataset.
This produces 2m true group-fairness criteria, {gTPR

j (θ) ⩽ 0, gFPRj (θ) ⩽ 0} ∀j ∈ G (details
on constraint functions h in Appendix 3.11 and 3.12).
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Figure 3.1: Case study 1 (Adult): maximum true group constraint violations on test set for
the Naive, DRO, and soft assignments (SA) approaches for different group noise levels γ on
the Adult dataset (mean and standard error over 10 train/val/test splits). The black solid
line represents the performance of the trivial “all negatives” classifier, which has constraint
violations of 0. A negative violation indicates satisfaction of the fairness constraints on the
true groups.

Results

In case study 1 (Adult), the unconstrained model achieves an error rate of 0.1447 ± 0.0012
(mean and standard error over 10 splits) and a maximum constraint violation of 0.0234 ±
0.0164 on test set with respect to the true groups. The model that assumes knowledge
of the true groups achieves an error rate of 0.1459 ± 0.0012 and a maximum constraint
violation of −0.0469± 0.0068 on test set with respect to the true groups. As a sanity check,
this demonstrates that when given access to the true groups, it is possible to satisfy the
constraints on the test set with a reasonably low error rate.
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Figure 3.2: Case study 2 (Credit): maximum true group constraint violations on test set
for the Naive, DRO, and soft assignments (SA) approaches for different group noise levels γ
on the Credit dataset (mean and standard error over 10 train/val/test splits). This figure
shows the max constraint violation over all TPR and FPR constraints, and Figure 3.6 in
Appendix 3.15 shows the breakdown of these constraint violations into the max TPR and
the max FPR constraint violations.
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Figure 3.3: Error rates on test set for different group noise levels γ on the Adult dataset
(left) and the Credit dataset (right) (mean and standard error over 10 train/val/test splits).
The black solid line represents the performance of the trivial “all negatives” classifier. The
soft assignments (SA) approach achieves lower error rates than DRO, and as the noise
level increases, the gap in error rate between the naive approach and each robust approach
increases.

In case study 2 (Credit), the unconstrained model achieves an error rate of 0.1797±0.0013
(mean and standard error over 10 splits) and a maximum constraint violation of 0.0264 ±
0.0071 on the test set with respect to the true groups. The constrained model that assumes
knowledge of the true groups achieves an error rate of 0.1796 ± 0.0011 and a maximum
constraint violation of −0.0105± 0.0070 on the test set with respect to the true groups. For
this dataset, it was possible to satisfy the constraints with approximately the same error rate
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on test as the unconstrained model. Note that the unconstrained model achieved a lower
error rate on the train set than the constrained model (0.1792 ± 0.0015 unconstrained vs.
0.1798± 0.0024 constrained).

For both case studies, Figures 3.1 and 3.2 show that the robust approaches DRO (center)
and soft group assignments (SA) (right) satisfy the constraints on average for all noise levels.
As the noise level increases, the näıve approach (left) has increasingly higher true group
constraint violations. The DRO and SA approaches come at a cost of a higher error rate
than the näıve approach (Figure 3.3). The error rate of the näıve approach is close to
the model optimized with constraints on the true groups G, regardless of the noise level γ.
However, as the noise increases, the näıve approach no longer controls the fairness violations
on the true groups G, even though it does satisfy the constraints on the noisy groups Ĝ
(Figures 3.4 and 3.7 in Appendix 3.15). DRO generally suffers from a higher error rate
compared to SA (Figure 3.3), illustrating the conservatism of the DRO approach.

3.8 Conclusion and future directions

We explore the practical problem of enforcing group-based fairness for binary classification
given noisy protected group information. In addition to providing new theoretical analysis of
the näıve approach of only enforcing fairness on the noisy groups, we also propose two new
robust approaches that guarantee satisfaction of the fairness criteria on the true groups. For
the DRO approach, Lemma 3.4.2 gives a theoretical bound on the TV distance to use in the
optimization problem. For the soft group assignments approach, we provide a theoretically
ideal algorithm and a practical alternative algorithm for satisfying the robust fairness criteria
proposed by Kallus et al. [128] while minimizing a training objective. We empirically show
that both of these approaches managed to satisfy the constraints with respect to the true
groups, even under difficult noise models.

In follow-up work, Narasimhan et al. [175] provide a general method for enforcing a
large number of constraints at once, and enforce constraints concurrently on many possible
realizations of noisy protected groups under a given noise model. This can be seen as an
extension of the Soft Group Assignments approach that we propose in Section 3.6, which
Narasimhan et al. [175] describe in their Appendix.

One additional avenue of future work is to empirically compare the robust approaches
when the noisy groups have different dimensionality from the true groups (Appendix 3.11).
Second, the looseness of the bound in Lemma 3.4.2 can lead to over-conservatism of the DRO
approach, suggesting a need to better calibrate the DRO neighborhood. Finally, it would
be valuable to study the impact of distribution mismatch between the main dataset and the
auxiliary dataset.
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3.9 Discussions on the broader impact

As machine learning is increasingly employed in high stakes environments, any potential ap-
plication has to be scrutinized to ensure that it will not perpetuate, exacerbate, or create new
injustices. Aiming to make machine learning algorithms themselves intrinsically fairer, more
inclusive, and more equitable plays an important role in achieving that goal. Group-based
fairness [87, 110] is a popular approach that the machine learning community has used to
define and evaluate fair machine learning algorithms. Until recently, such work has generally
assumed access to clean, correct protected group labels in the data. Our work addresses
the technical challenge of enforcing group-based fairness criteria under noisy, unreliable, or
outdated group information. However, we emphasize that this technical improvement alone
does not necessarily lead to an algorithm having positive societal impact, for reasons that
we now delineate.

Choice of fairness criteria First, our work does not address the choice of the group-
based fairness criteria. Many different algorithmic fairness criteria have been proposed,
with varying connections to prior sociopolitical framing [119, 176]. From an algorithmic
standpoint, these different choices of fairness criteria have been shown to lead to very different
prediction outcomes and tradeoffs [87]. Furthermore, even if a mathematical criterion may
seem reasonable (e.g., equalizing positive prediction rates with demographic parity), Liu et al.
[155] show that the long-term impacts may not always be desirable, and the choice of criteria
should be heavily influenced by domain experts, along with awareness of tradeoffs.

Choice of protected groups In addition to the specification of fairness criteria, our work
also assumes that the true protected group labels have been pre-defined by the practitioner.
However, in real applications, the selection of appropriate true protected group labels is itself
a nontrivial issue.

First, the measurement and delineation of these protected groups should not be over-
looked, as “the process of drawing boundaries around distinct social groups for fairness
research is fraught; the construction of categories has a long history of political struggle
and legal argumentation” [108]. Important considerations include the context in which the
group labels were collected, who chose and collected them, and what implicit assumptions
are being made by choosing these group labels. One example is the operationalization of
race in the context of algorithmic fairness. Hanna et al. [108] critiques “treating race as an
attribute, rather than a structural, institutional, and relational phenomenon.” The choice
of categories surrounding gender identity and sexual orientation have strong implications
and consequences as well [98], with entire fields dedicated to critiquing these constructs. Ja-
cobs and Wallach [122] provide a general framework for understanding measurement issues
for these sensitive attributes in the machine-learning setting, building on foundational work
from the social sciences [24].

Another key consideration when defining protected groups is problems of intersectionality
[55, 115]. Group-based fairness criteria inherently do not consider within-group inequality



CHAPTER 3. ROBUST OPTIMIZATION FOR FAIRNESS WITH NOISY
PROTECTED GROUPS 49

[132]. Even if we are able to enforce fairness criteria robustly for a given set of groups, the
intersections of groups may still suffer [41].

Domain specific considerations Finally, we emphasize that group-based fairness criteria
simply may not be sufficient to mitigate problems of significant background injustice in
certain domains. Abebe et al. [1] argue that computational methods have mixed roles in
addressing social problems, where they can serve as diagnostics, formalizers, and rebuttals,
and also that “computing acts as synecdoche when it makes long-standing social problems
newly salient in the public eye.” Moreover, the use of the algorithm itself may perpetuate
inequity, and in the case of credit scoring, create stratifying effects of economic classifications
that shape life-chances [86]. We emphasize the importance of domain specific considerations
ahead of time before applying any algorithmic solutions (even “fair” ones) in sensitive and
impactful settings.

3.10 Appendix: Proofs for Section 3.4

This section provides proofs and definitions details for the theorems and lemmas presented
in Section 3.4.

Proofs for TV distance

Definition 3.10.1. (TV distance) Let c(x, y) = 1(x ̸= y) be a metric, and let π be a
coupling between probability distributions p and q. Define the total variation (TV) distance
between two distributions p, q as

TV (p, q) = inf
π

E
X,Y∼π

[c(X, Y )]

s.t.

∫
π(x, y)dy = p(x),

∫
π(x, y)dx = q(y).

Theorem 3.4.1. (proof in Appendix 3.10.) Suppose a model with parameters θ satisfies
fairness criteria with respect to the noisy groups Ĝ: ĝj(θ) ⩽ 0, ∀j ∈ G. Suppose |h(θ, x1, y1)−
h(θ, x2, y2)| ⩽ 1 for any (x1, y1) ̸= (x2, y2). If TV (pj, p̂j) ⩽ γj for all j ∈ G, then the fairness
criteria with respect to the true groups G will be satisfied within slacks γj for each group:
gj(θ) ⩽ γj, ∀j ∈ G.

Proof. For any group label j,

gj(θ) = gj(θ)− ĝj(θ) + ĝj(θ) ⩽ |gj(θ)− ĝj(θ)|+ ĝj(θ).

By Kantorovich-Rubenstein theorem (provided here as Theorem 3.10.2), we also have

|ĝj(θ)− gj(θ)| = | E
X,Y∼p̂j

[h(θ,X, Y )]− E
X,Y∼pj

[h(θ,X, Y )]| ⩽ TV (pj, p̂j).
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By assumption that θ satisifes fairness constraints with respect to the noisy groups Ĝ, ĝj(θ) ⩽
0. Thus, we have the desired result that gj(θ) ⩽ TV (pj, p̂j) ⩽ γj.

Note that if pj and p̂j are discrete, then the TV distance TV (pj, p̂j) could be very large.
In that case, the bound would still hold, but would be loose. ■

Theorem 3.10.2. (Kantorovich-Rubinstein).1 Call a function f Lipschitz in c if |f(x) −
f(y)| ⩽ c(x, y) for all x, y, and let L(c) denote the space of such functions. If c is a metric,
then we have

Wc(p, q) = sup
f∈L(c)

E
X∼p

[f(X)]− E
X∼q

[f(X)].

As a special case, take c(x, y) = I(x ̸= y) (corresponding to TV distance). Then f ∈ L(c)
if and only if |f(x)− f(y)| ⩽ 1 for all x ̸= y. By translating f , we can equivalently take the
supremum over all f mapping to [0, 1]. This says that

TV (p, q) = sup
f :X→[0,1]

E
X∼p

[f(X)]− E
X∼q

[f(X)]

Lemma 3.4.2. (proof in Appendix 3.10.) Suppose P (G = j) = P (Ĝ = j) for a given j ∈ G.
Then TV (pj, p̂j) ⩽ P (G ̸= Ĝ|G = j).

Proof. For probability measures pi and p̂i, the TV distance is given by

TV (pi, p̂i) = sup{|pi(A)− p̂i(A)| : A is a measurable event}.

Fix A to be any measurable event for both pi and p̂i. This means that A is also a measurable
event for p, the distribution of the random variables X, Y . By definition of pi, pi(A) =
P (A|G = i). Then

|pi(A)− p̂i(A)| = |P (A|G = i)− P (A|Ĝ = i)|
= |P (A|G = i, Ĝ = i)P (Ĝ = i|G = i)

+ P (A|G = i, Ĝ ̸= i)P (Ĝ ̸= i|G = i)

− P (A|Ĝ = i, G = i)P (G = i|Ĝ = i)

− P (A|Ĝ = i, G ̸= i)P (G ̸= i|Ĝ = i)|

= |P (A|G = i, Ĝ = i)
(
P (Ĝ = i|G = i)− P (G = i|Ĝ = i)

)
− P (Ĝ ̸= G|G = i)

(
P (A|G = i, Ĝ ̸= i)− P (A|Ĝ = i, G ̸= i)

)
|

= |0− P (Ĝ ̸= G|G = i)
(
P (A|G = i, Ĝ ̸= i)− P (A|Ĝ = i, G ̸= i)

)
|

⩽ P (Ĝ ̸= G|G = i)

1Edwards, D.A. On the Kantorovich–Rubinstein theorem. Expositiones Mathematicae, 20(4):387-398,
2011.
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The second equality follows from the law of total probability. The third and the fourth
equalities follow from the assumption that P (G = i) = P (Ĝ = i), which implies that
P (Ĝ = G|G = i) = P (G = Ĝ|Ĝ = i) since

P (G = Ĝ|G = i) =
P (G = Ĝ, G = i)

P (G = i)
=
P (G = Ĝ, Ĝ = i)

P (Ĝ = i)
= P (G = Ĝ|Ĝ = i).

This further implies that P (Ĝ ̸= i|G = i) = P (G ̸= i|Ĝ = i).
Since |pi(A)− p̂i(A)| ⩽ P (Ĝ ̸= G|G = i) for any measurable event A, the supremum over

all events A is also bounded by P (Ĝ ̸= G|G = i). This gives the desired bound on the TV
distance. ■

Generalization to Wasserstein distances

Theorem 3.4.1 can be directly extended to loss functions that are Lipschitz in other metrics.
To do so, we first provide a more general definition of Wasserstein distances:

Definition 3.10.3. (Wasserstein distance) Let c(x, y) be a metric, and let π be a coupling
between p and q. Define the Wasserstein distance between two distributions p, q as

Wc(p, q) = inf
π

E
X,Y∼π

[c(X, Y )]

s.t.

∫
π(x, y)dy = p(x),

∫
π(x, y)dx = q(y).

As a familiar example, if c(x, y) = ||x − y||2, then Wc is the earth-mover distance, and
L(c) is the class of 1-Lipschitz functions. Using the Wasserstein distance Wc under different
metrics c, we can bound the fairness violations for constraint functions h beyond those
specified for the TV distance in Theorem 3.4.1.

Theorem 3.10.4. Suppose a model with parameters θ satisfies fairness criteria with respect
to the noisy groups Ĝ:

ĝj(θ) ⩽ 0 ∀j ∈ G.

Suppose the function h satisfies |h(θ, x1, y1) − h(θ, x2, y2)| ⩽ c((x1, y1), (x2, y2)) for any
(x1, y1) ̸= (x2, y2) w.r.t a metric c. If Wc(pj, p̂j) ⩽ γj for all j ∈ G, then the fairness
criteria with respect to the true groups G will be satisfied within slacks γj for each group:

gj(θ) ⩽ γj ∀j ∈ G.

Proof. By the triangle inequality, for any group label j,

|gj(θ)− g(θ)| ⩽ |gj(θ)− ĝj(θ)|+ ĝj(θ)
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By Kantorovich-Rubenstein theorem (provided here as Theorem 3.10.2), we also have

|ĝj(θ)− gj(θ)| = | E
X,Y∼p̂j

[h(θ,X, Y )]− E
X,Y∼pj

[h(θ,X, Y )]|

⩽ Wc(pj, p̂j).

By the assumption that θ satisifes fairness constraints with respect to the noisy groups
Ĝ, ĝj(θ) ⩽ 0. Therefore, combining these with the triangle inequality, we get the desired
result. ■

3.11 Appendix: Details on DRO formulation for TV

distance

Here we describe the details on solving the DRO problem (3.3) with TV distance using the
empirical Lagrangian formulation. We also provide the pseudocode we used for the projected
gradient-based algorithm to solve it.

Empirical Lagrangian Formulation

We rewrite the constrained optimization problem (3.3) as a minimax problem using the
Lagrangian formulation. We also convert all expectations into expectations over empirical
distributions given a dataset of n samples (X1, Y1, G1), ..., (Xn, Yn, Gn).

Let nj denote the number of samples that belong to a true group G = j. Let the empirical
distribution p̂j ∈ Rn be a vector with i-th entry p̂ij =

1
nj

if the i-th example has a noisy group

membership Ĝi = j, and 0 otherwise. Replacing all expectations with expectations over the
appropriate empirical distributions, the empirical form of (3.3) can be written as:

min
θ

1

n

n∑
i=1

l(θ,Xi, Yi)

s.t. max
p̃j∈Bγj (p̂j)

n∑
i=1

p̃ijh(θ,Xi, Yi) ⩽ 0 ∀j ∈ G
(3.9)

where Bγj(p̂j) = {p̃j ∈ Rn : 1
2

∑n
i=1 |p̃ij − p̂ij| ⩽ γj,

∑n
i=1 p̃

i
j = 1, p̃ij ⩾ 0 ∀i = 1, ..., n}.

For ease of notation, for j ∈ {1, 2, ...,m}, let

f(θ) =
1

n

n∑
i=1

l(θ,Xi, Yi)

fj(θ, p̃j) =
n∑

i=1

p̃ijh(θ,Xi, Yi).
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Then the Lagrangian of the empirical formulation (3.9) is

L(θ, λ) = f(θ) +
m∑
j=1

λj max
p̃j∈Bγ(p̂j)

fj(θ, p̃j)

and problem (3.9) can be rewritten as

min
θ

max
λ⩾0

f(θ) +
m∑
j=1

λj max
p̃j∈Bγ(p̂j)

fj(θ, p̃j)

Moving the inner max out of the sum and rewriting the constraints as ℓ1-norm constraints:

min
θ

max
λ⩾0

max
p̃j∈Rn,p̃j⩾0,
j=1,...,m

f(θ) +
m∑
j=1

λjfj(θ, p̃j)

s.t. ||p̃j − p̂j||1 ⩽ 2γj, ||p̃j||1 = 1 ∀j ∈ {1, ...,m}

(3.10)

Since projections onto the ℓ1-ball can be done efficiently [72], we can solve problem (3.10)
using a projected gradient descent ascent (GDA) algorithm. This is a simplified version of
the algorithm introduced by Namkoong and Duchi [172] for solving general classes of DRO
problems. We provide pseudocode in Algorithm 4.

Projected GDA Algorithm for DRO

Algorithm 4 Project GDA Algorithm

Require: learning rates ηθ > 0, ηλ > 0, ηp > 0, estimates of P (G ̸= Ĝ|Ĝ = j) to specify γj.

1: for t = 1, . . . , T do

2: Descent step on θ:
θ(t+1) ← θ(t) − ηθ∇θf(θ

(t))− ηθ
∑m

j=1 λ
(t)
j ∇θfj(θ

(t), p̃
(t)
j )

3: Ascent step on λ:
λ
(t+1)
j ← λ

(t)
j + ηλfj(θ, p̃

(t)
j )

4: for j = 1, ...,m do
5: Ascent step on p̃j: p̃

(t+1)
j ← p̃

(t)
j + ηpλ

(t)
j ∇p̃jfj(θ

(t), p̃
(t)
j )

6: Project p̃
(t+1)
j onto ℓ1-norm constraints : ||p̃(t+1)

j − p̂j||1 ⩽ 2γj, ||p̃(t+1)
j ||1 = 1

7: end for
8: end for
9: return θ(t

∗) where t∗ denotes the best iterate that satisfies the constraints in (3.3) with
the lowest objective.
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Equalizing TPRs and FPRs using DRO

In the two case studies in Section 3.7, we enforce equality of opportunity and equalized odds
[110] by equalizing true positive rates (TPRs) and/or false positive rates (FPRs) within
some slack α. In this section, we describe in detail the implementation of the constraints for
equalizing TPRs and FPRs under the DRO approach.

To equalize TPRs with slack α under the DRO approach, we set

g̃TPR
j (θ) =

EX,Y∼p[1(Y = 1)1(Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Y = 1)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α. (3.11)

The first term corresponds to the TPR for the full population. The second term estimates
the TPR for group j. Setting α = 0 exactly equalizes true positive rates.

To equalize FPRs with slack α under the DRO approach, we set

g̃FPRj (θ) =
EX,Y∼p̃j [1(Y = 0)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0)1(Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α. (3.12)

The first term estimates the FPR for group j. The second term corresponds to the FPR for
the full population. Setting α = 0 exactly equalizes false positive rates.

To equalize TPRs for Case Study 1, we apply m constraints,{
maxp̃j :TV (p̃j ,p̂j)⩽γj ,p̃j≪p g̃

TPR
j (θ) ⩽ 0

}
∀j ∈ G.

To equalize both TPRs and FPRs simultaneously for Case Study 2, we apply 2m con-
straints,

{
maxp̃j :TV (p̃j ,p̂j)⩽γj ,p̃j≪p g̃

TPR
j (θ) ⩽ 0,maxp̃j :TV (p̃j ,p̂j)⩽γj ,p̃j≪p g̃

FPR
j (θ) ⩽ 0

}
∀j ∈ G.

h(θ,X, Y ) for equalizing TPRs and FPRs

Since the notation in Section 3.5 and in the rest of the paper uses generic functions h to
express the group-specific constraints, we show in Lemma 3.11.1 that the constraint using
g̃TPR
j (θ) in Equation (3.11) can also be written as an equivalent constraint in the form of
Equation (3.3), as

g̃TPR
j (θ) = E

X,Y∼p̃j
[hTPR(θ,X, Y )]

for some function hTPR : Θ×X × Y → R.

Lemma 3.11.1. Denote Ŷ as 1(ϕ(X; θ) > 0). Let hTPR(θ,X, Y ) be given by

hTPR(θ,X, Y ) =
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

))
.

Then

EX,Y∼p[1(Y = 1)1(Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Y = 1)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α ⩽ 0

⇐⇒ E
X,Y∼p̃j

[hTPR(θ,X, Y )] ⩽ 0.
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Proof. Substituting the given function hTPR(θ,X, Y ), and using the fact that
EX,Y∼p̃j [1(Y = 1)] ⩾ 0:

E
X,Y∼p̃j

[hTPR(θ,X, Y )] ⩽ 0

⇐⇒ E
X,Y∼p̃j

[
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

))]
⩽ 0

⇐⇒ − E
X,Y∼p̃j

[1(Ŷ = 1, Y = 1)]− E
X,Y∼p̃j

[
1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

)]
⩽ 0

⇐⇒ − E
X,Y∼p̃j

[1(Ŷ = 1, Y = 1)]− α E
X,Y∼p̃j

[1(Y = 1)]

+
EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
E

X,Y∼p̃j
[1(Y = 1)] ⩽ 0

⇐⇒ EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Ŷ = 1, Y = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α ⩽ 0

■

By similar proof, we also show in Lemma 3.11.2 that the constraint using g̃FPRj (θ) in
Equation (3.12) can also be written as an equivalent constraint in the form of Equation
(3.3), as

g̃FPRj (θ) = E
X,Y∼p̃j

[hFPR(θ,X, Y )]

for some function hFPR : Θ×X × Y → R.

Lemma 3.11.2. Denote Ŷ as 1(ϕ(X; θ) > 0). Let hFPR(θ,X, Y ) be given by

hFPR(θ,X, Y ) =
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α +

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

))
.

Then

EX,Y∼p̃j [1(Y = 0)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0)1(Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α ⩽ 0

⇐⇒ E
X,Y∼p̃j

[hFPR(θ,X, Y )] ⩽ 0.
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Proof. Substituting the given function hFPR(θ,X, Y ), and using the fact that
EX,Y∼p̃j [1(Y = 0)] ⩾ 0:

E
X,Y∼p̃j

[hFPR(θ,X, Y )] ⩽ 0

⇐⇒ E
X,Y∼p̃j

[
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α +

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

))]
⩽ 0

⇐⇒ E
X,Y∼p̃j

[1(Ŷ = 1, Y = 0)]− E
X,Y∼p̃j

[
1(Y = 0)

(
α +

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

)]
⩽ 0

⇐⇒ E
X,Y∼p̃j

[1(Ŷ = 1, Y = 0)]− α E
X,Y∼p̃j

[1(Y = 0)]

− EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
E

X,Y∼p̃j
[1(Y = 0)] ⩽ 0

⇐⇒
EX,Y∼p̃j [1(Ŷ = 1, Y = 0)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α ⩽ 0

■

DRO when Ĝ and G have different dimensionalities

The soft assignments approach is naturally formulated to be able to handle G ∈ G =
{1, ...,m} and Ĝ ∈ Ĝ = {1, ..., m̂} when m̂ ̸= m. The DRO approach can be extended to
handle this case by generalizing Lemma 3.4.2 to TV (pj, p̂i) ⩽ P (Ĝ ̸= i|G = j), j ∈ G, i ∈ Ĝ,
and generalizing the DRO formulation to have the true group distribution pj bounded in a
TV distance ball centered at p̂i. Empirically comparing this generalized DRO approach to
the soft group assignments approach when m̂ ̸= m is an interesting avenue of future work.

3.12 Appendix: Further details for soft group

assignments approach

Here we provide additional technical details regarding the soft group assignments approach
introduced in Section 3.7.

Derivation for E[h(θ,X, Y )|G = j]

Here we show E[h(θ,X, Y )|G = j] = E[h(θ,X,Y )P (G=j|Ŷ ,Y,Ĝ)]
P (G=j)

, assuming that h(θ,X, Y ) depends

on X through Ŷ , i.e. Ŷ = 1(ϕ(θ,X) > 0). Using the tower property and the definition of
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conditional expectation:

E[h(θ,X, Y )|G = j] =
E[h(θ,X, Y )1(G = j)]

P (G = j)

=
E[E[h(θ,X, Y )1(G = j)|Ŷ , Y, Ĝ]]

P (G = j)

=
E[h(θ,X, Y )E[1(G = j)|Ŷ , Y, Ĝ]]

P (G = j)

=
E[h(θ,X, Y )P (G = j|Ŷ , Y, Ĝ)]

P (G = j)

(3.13)

Equalizing TPRs and FPRs using soft group assignments

In the two case studies in Section 3.7, we enforce equality of opportunity and equalized odds
[110] by equalizing true positive rates (TPRs) and/or false positive rates (FPRs) within
some slack α. In this section, we describe in detail the implementation of the constraints for
equalizing TPRs and FPRs under the soft group assignments approach.

To equalize TPRs with slack α under the soft group assignments approach, we set

gTPR
j (θ, w) =

E[1(Y = 1)1(Ŷ = 1)]

E[1(Y = 1)]
− E[1(Y = 1)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α. (3.14)

The first term corresponds to the TPR for the full population. The second term estimates
the TPR for group j as done by Kallus et al. [128] in Equation (5) and Proposition 8. Setting
α = 0 exactly equalizes true positive rates.

To equalize FPRs with slack α under the soft group assignments approach, we set

gFPRj (θ, w) =
E[1(Y = 0)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]
− E[1(Y = 0)1(Ŷ = 1)]

E[1(Y = 0)]
− α. (3.15)

The first term estimates the FPR for group j as done previously for the TPR. The second
term corresponds to the FPR for the full population. Setting α = 0 exactly equalizes false
positive rates.

To equalize TPRs for Case Study 1, we applym constraints,
{
maxw∈W(θ) g

TPR
j (θ, w) ⩽ 0

}
∀j ∈

G. To equalize both TPRs and FPRs simultaneously for Case Study 2, we apply 2m con-
straints,

{
maxw∈W(θ) g

TPR
j (θ, w) ⩽ 0,maxw∈W(θ) g

FPR
j (θ, w) ⩽ 0

}
∀j ∈ G.

h(θ,X, Y ) for equalizing TPRs and FPRs

Since the notation in Section 3.6 and in the rest of the paper uses generic functions h to
express the group-specific constraints, we show in Lemma 3.12.1 that the constraint using



CHAPTER 3. ROBUST OPTIMIZATION FOR FAIRNESS WITH NOISY
PROTECTED GROUPS 58

gTPR
j (θ, w) in Equation (3.14) can also be written as an equivalent constraint in the form of
Equation (3.6), as

gTPR
j (θ, w) =

E[hTPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

for some function hTPR : Θ×X × Y → R.

Lemma 3.12.1. Denote Ŷ as 1(ϕ(X; θ) > 0). Let hTPR(θ,X, Y ) be given by

hTPR(θ,X, Y ) =
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

))
.

Then

E[1(Y = 1)1(Ŷ = 1)]

E[1(Y = 1)]
− E[1(Y = 1)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α ⩽ 0

⇐⇒ E[hTPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

⩽ 0.

for all j ∈ G, P (G = j) > 0.

Proof. Substituting the given function hTPR(θ,X, Y ), and using the fact that P (G = j) > 0
and E[1(Y = 1)w(j|Ŷ , Y, Ĝ)] ⩾ 0:

E[hTPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

⩽ 0

⇐⇒ E[hTPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)] ⩽ 0

⇐⇒ E

[
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

))
w(j|Ŷ , Y, Ĝ)

]
⩽ 0

⇐⇒ −E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]

− E

[
1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

)
w(j|Ŷ , Y, Ĝ)

]
⩽ 0

⇐⇒ −E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]− αE[1(Y = 1)w(j|Ŷ , Y, Ĝ)]

+
E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]
E[1(Y = 1)w(j|Ŷ , Y, Ĝ)] ⩽ 0

⇐⇒ E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]
− E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α ⩽ 0

■
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By similar proof, we also show in Lemma 3.12.2 that the constraint using gFPRj (θ, w) in
Equation (3.15) can also be written as an equivalent constraint in the form of Equation (3.6),
as

gFPRj (θ, w) =
E[hFPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]

P (G = j)

for some function hFPR : Θ×X × Y → R.

Lemma 3.12.2. Denote Ŷ as 1(ϕ(X; θ) > 0). Let hFPR(θ,X, Y ) be given by

hFPR(θ,X, Y ) =
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α +

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

))
.

Then

E[1(Y = 0)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]

− E[1(Y = 0)1(Ŷ = 1)]

E[1(Y = 0)]
− α ⩽ 0

⇐⇒ E[hFPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

⩽ 0.

for all j ∈ G, P (G = j) > 0.

Proof. Substituting the given function hFPR(θ,X, Y ), and using the fact that P (G = j) > 0
and E[1(Y = 0)w(j|Ŷ , Y, Ĝ)] ⩾ 0:

E[hFPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

⩽ 0

⇐⇒ E[hFPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)] ⩽ 0

⇐⇒ E

[
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α +

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

))
w(j|Ŷ , Y, Ĝ)

]
⩽ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]

− E

[
1(Y = 0)

(
α +

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

)
w(j|Ŷ , Y, Ĝ)

]
⩽ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]− αE[1(Y = 0)w(j|Ŷ , Y, Ĝ)]

− E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)] ⩽ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]

− E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]
− α ⩽ 0

■
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3.13 Appendix: Optimality and feasibility for the

Ideal algorithm

Optimality and feasibility guarantees

We provide optimality and feasibility guarantees for Algorithm 3 and optimality guarantees
for Algorithm 5.

Theorem 3.13.1 (Optimality and Feasibility for Algorithm 3). Let θ∗ ∈ Θ be such
that it satisfies the constraints max

w∈W(θ)
gj(θ

∗, w) ⩽ 0, ∀j ∈ G and f0(θ
∗) ⩽ f(θ) for every

θ ∈ Θ that satisfies the same constraints. Let 0 ⩽ f0(θ) ⩽ B, ∀θ ∈ Θ. Let the space
of Lagrange multipliers be defined as Λ = {λ ∈ Rm

+ | ∥λ∥1 ⩽ R}, for R > 0. Let Bλ ⩾
maxt ∥∇λL(θ(t), λ(t))∥2. Let θ̄ be the stochastic classifier returned by Algorithm 3 when run
for T iterations, with the radius of the Lagrange multipliers R = T 1/4 and learning rate
ηλ = R

Bλ

√
T
Then:

Eθ∼θ̄ [f(θ)] ⩽ f(θ∗) + O
(

1

T 1/4

)
+ ρ

and

Eθ∼θ̄

[
max

w∈W(θ)
gj(θ, w)

]
⩽ O

(
1

T 1/4

)
+ ρ′

Thus for any given ϵ > 0, by solving Steps 2 and 4 of Algorithm 3 to sufficiently small
errors ρ, ρ′, and by running the algorithm for a sufficiently large number of steps T , we can
guarantee that the returned stochastic model is ϵ-optimal and ϵ-feasible.

Proof. Let λ̄ = 1
T

∑T
t=1 λ

(t). We will interpret the minimax problem in (3.8) as a zero-sum
between the θ-player who optimizes L over θ, and the λ-player who optimizes L over λ.
We first bound the average regret incurred by the players over T steps. The best response
computation in Step 2 of Algorithm 3 gives us:

1

T

T∑
t=1

E
θ∼θ̂(t)

[
L(θ, λ(t))

]
⩽

1

T

T∑
t=1

min
θ∈Θ
L(θ, λ(t)) + ϵ

⩽ min
θ∈Θ

1

T

T∑
t=1

L(θ, λ(t)) + ρ

= min
θ∈Θ
L(θ, λ̄) + ρ

⩽ min
θ∈Θ

max
λ∈Λ
L(θ, λ) + ρ

⩽ f(θ∗) + ρ. (3.16)
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We then apply standard gradient ascent analysis for the projected gradient updates to λ in
Step 4 of the algorithm, and get:

max
λ∈Λ

1

T

T∑
t=1

m∑
j=1

λjδ
(t)
j ⩾

1

T

T∑
t=1

m∑
j=1

λ
(t)
j δ

(t)
j − O

(
R√
T

)
.

We then plug the upper and lower bounds for the gradient estimates δ
(t)
j ’s from Step 3 of

the Algorithm 3 into the above inequality:

max
λ∈Λ

1

T

T∑
t=1

m∑
j=1

λj

(
E

θ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
+ ρ′

)

⩾
1

T

T∑
t=1

m∑
j=1

λ
(t)
j E

θ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
− O

(
R√
T

)
.

which further gives us:

max
λ∈Λ

{
m∑
j=1

λj E
θ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
+ ∥λ∥1ρ′

}

⩾
m∑
j=1

λ
(t)
j E

θ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
− O

(
R√
T

)
.

Adding 1
T

∑T
t=1 Eθ∼θ̂(t) [f(θ)] to both sides of the above inequality, we finally get:

1

T

T∑
t=1

E
θ∼θ̂(t)

[
L(θ, λ(t))

]
⩾ max

λ∈Λ

{
1

T

T∑
t=1

E
θ∼θ̂(t)

[L(θ, λ)] + ∥λ∥1ρ′
}
− O

(
R√
T

)
. (3.17)

Optimality. Now, substituting λ = 0 in (3.17) and combining with (3.16) completes the
proof of the optimality guarantee:

E
θ∼θ̄

[f(θ)] ⩽ f0(θ
∗) + O

(
R√
T

)
+ ρ

Feasibility. To show feasibility, we fix a constraint index j ∈ G. Now substituting λj = R
and λj′ = 0,∀j′ ̸= j in (3.17) and combining with (3.16) gives us:

1

T

T∑
t=1

E
θ∼θ̂(t)

[
f(θ) +R max

w∈W(θ)
gj(θ, w)

]
⩽ f(θ∗) + O

(
R√
T

)
+ ρ + Rρ′.

which can be re-written as:

E
θ∼θ̄

[
max

w∈W(θ)
gj(θ, w)

]
⩽

f(θ∗) − Eθ∼θ̄ [f(θ)]

R
+ O

(
1√
T

)
+

ρ

R
+ ρ′.

⩽
B

R
+ O

(
1√
T

)
+

ρ

R
+ ρ′,

which is our feasibility guarantee. Setting R = O(T 1/4) then completes the proof. ■
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Algorithm 5 Best response on θ of Algorithm 3

Require: λ′, learning rate ηw > 0, estimates of P (G = j|Ĝ = k) to specify constraints
rg,ĝ’s, κ

1: for q = 1, . . . , Q do
2: Best response on (θ, µ): use an oracle to find find θ(q) ∈ Θ and µ(q) ∈Mm such that:

ℓ(θ(q),µ(q),w(q);λ′) ⩽ min
θ∈Θ,µ∈Mm

ℓ(θ,µ,w(q);λ′) + κ,

for a small slack κ > 0.
3: Ascent step on w:

w
(q+1)
j ← ΠW∆

(
w

(q)
j + ηw∇wj

ℓ(θ(q),µ(q),w(q);λ′)
)
,

where ∇wj
ℓ(·) is a sub-gradient of ℓ w.r.t. wj.

4: end for
5: return A uniform distribution θ̂ over θ(1), . . . , θ(Q)

Best Response over θ

We next describe our procedure for computing a best response over θ in Step 2 of Algorithm
3. We will consider a slightly relaxed version of the best response problem where the equality
constraints in W(θ) are replaced with closely-approximating inequality constraints.

Recall that the constraint set W(θ) contains two sets of constraints (3.5), the total
probability constraints that depend on θ, and the simplex constraints that do not depend
on θ. So to decouple these constraint sets from θ, we introduce Lagrange multipliers µ for
the total probability constraints to make them a part of the objective, and obtain a nested
minimax problem over θ, µ, and w, where w is constrained to satisfy the simplex constraints
alone. We then jointly minimize the inner Lagrangian over θ and µ, and perform gradient
ascent updates on w with projections onto the simplex constraints. The joint-minimization
over θ and µ is not necessarily convex and is solved using a minimization oracle.

We begin by writing out the best-response problem over θ for a fixed λ′:

min
θ∈Θ
L(θ, λ′) = min

θ∈Θ
f(θ) +

m∑
j=1

λ′j max
wj∈W(θ)

gj(θ, wj), (3.18)

where we use wj to denote the maximizer overW(θ) for constraint gj explicitly. We separate
out the the simplex constraints in W(θ) (3.5) and denote them by:

W∆ =

{
w ∈ RG×{0,1}2×Ĝ

+

∣∣∣∣ m∑
j=1

w(j | ŷ, y, k) = 1, ∀k ∈ Ĝ, y, ŷ ∈ {0, 1}
}
,

where we represent each w as a vector of values w(i|ŷ, y, k) for each j ∈ G, ŷ ∈ {0, 1}, y ∈
{0, 1}, and k ∈ Ĝ. We then relax the total probability constraints in W(θ) into a set of
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inequality constraints:

P (G = j|Ĝ = k) −
∑

ŷ,y∈{0,1}

w(j | ŷ, y, k)P (Ŷ (θ) = ŷ, Y = y|Ĝ = k) − τ ⩽ 0

∑
ŷ,y∈{0,1}

w(j | ŷ, y, k)P (Ŷ (θ) = ŷ, Y = y|Ĝ = k) − P (G = j|Ĝ = k) − τ ⩽ 0

for some small τ > 0. We have a total of U = 2×m× m̂ relaxed inequality constraints, and
will denote each of them as ru(θ, w) ⩽ 0, with index u running from 1 to U . Note that each
ru(θ, w) is linear in w.

Introducing Lagrange multipliers µ for the relaxed total probability constraints, the op-
timization problem in (3.18) can be re-written equivalently as:

min
θ∈Θ

f(θ) +
m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

{
gj(θ, wj)−

U∑
u=1

µj,u ru(θ, wj)

}
,

where note that each wj is maximized over only the simplex constraints W∆ which are
independent of θ, andM = {µj ∈ Rm×m̂

+ | ∥µj∥1 ⩽ R′}, for some constant R′ > 0. Because
each wj and µj appears only in the j-th term in the summation, we can pull out the max
and min, and equivalently rewrite the above problem as:

min
θ∈Θ

max
w∈Wm

∆

min
µ∈Mm

f(θ) +
m∑
j=1

λ′j

(
gj(θ, wj)−

U∑
u=1

µj,u ru(θ, wj)︸ ︷︷ ︸
ω(θ,µj ,wj)

)

︸ ︷︷ ︸
ℓ(θ,µ,w;λ′)

, (3.19)

where w = (w1, . . . , wm) and µ = (µ1, . . . , µm). We then solve this nested minimax problem
in Algorithm 5 by using an minimization oracle to perform a full optimization of ℓ over (θ,
µ), and carrying out gradient ascent updates on ℓ over wj.

We now proceed to show an optimality guarantee for Algorithm 5.

Theorem 3.13.2 (Optimality Guarantee for Algorithm 5). Suppose for every θ ∈ Θ,
there exists a w̃j ∈ W∆ such that ru(θ, w̃j) ⩽ −γ, ∀u ∈ [U ], for some γ > 0. Let 0 ⩽
gj(θ, wj) ⩽ B′, ∀θ ∈ Θ, wj ∈ W∆. Let Bw ⩾ maxq ∥∇w ℓ(θ

(q),µ(q),w(q);λ′))∥2. Let θ̂ be the
stochastic classifier returned by Algorithm 5 when run for a given λ′ for Q iterations, with
the radius of the Lagrange multipliers R′ = B′/γ and learning rate ηw = R′

Bw

√
T
. Then:

E
θ∼θ̂

[L(θ, λ′)] ⩽ min
θ∈Θ
L(θ, λ′) + O

(
1√
Q

)
+ κ.

Before proving Theorem 3.13.2, we will find it useful to state the following lemma.
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Lemma 3.13.3 (Boundedness of Inner Lagrange Multipliers in (3.19)). Suppose for
every θ ∈ Θ, there exists a w̃j ∈ W such that ru(θ, w̃j) ⩽ −γ, ∀u ∈ [U ], for some γ > 0. Let
0 ⩽ gj(θ, wj) ⩽ B′, ∀θ ∈ Θ, wj ∈ W∆. Let M = {µj ∈ RK

+ | ∥µj∥1 ⩽ R′} with the radius of
the Lagrange multipliers R′ = B′/γ. Then we have for all j ∈ G:

max
wj∈W∆

min
µj∈M

ω
(
θ, µj, wj

)
= max

wj∈W∆: ru(θ,wj)⩽0,∀u
gj(θ, wj).

Proof. For a given j ∈ G, let w∗
j ∈ argmax

wj∈W∆: ru(θ,wj)⩽0,∀u
gj(θ, wj). Then:

gj(θ, w
∗
j ) = max

wj∈W∆

min
µj∈RK

+

ω
(
θ, µj, wj

)
, (3.20)

where note that µj is minimized over all non-negative values. Since the ω is linear in both
µj and wj, we can interchange the min and max:

gj(θ, w
∗
j ) = min

µj∈RK
+

max
wj∈W∆

ω
(
θ, µj, wj

)
.

We show below that the minimizer µ∗ in the above problem is in fact bounded and present
inM.

gj(θ, w
∗
j ) = max

wj∈W
ω
(
θ, µ∗

j , wj

)
= max

wj∈W

{
gj(θ, wj) −

K∑
k=1

µ∗
j,k rk(θ, wj)

}
⩾ gj(θ, w̃j) − ∥µ∗

j∥1 max
k∈[K]

rk(θ, w̃j)

⩾ gj(θ, wj) + ∥µ∗
j∥1γ ⩾ ∥µ∗

j∥1γ.

We further have:
∥µ∗

j∥1 ⩽ gj(θ, wj)/γ ⩽ B′/γ. (3.21)

Thus the minimizer µ∗
j ∈M. So the minimization in (3.20) can be performed over onlyM,

which completes the proof of the lemma. ■

Equipped with the above result, we are now ready to prove Theorem 3.13.2.

Proof of Theorem 3.13.2. Let w̄j =
1
Q

∑Q
q=1w

(q)
j . The best response on θ and µ gives us:

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , w

(q)
j

))

⩽
1

Q

Q∑
q=1

min
θ∈Θ,µ∈Mm

(
f(θ) +

m∑
j=1

λ′j ω
(
θ, µj, w

(q)
j

))
+ κ
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=
1

Q

Q∑
q=1

(
min
θ∈Θ

f(θ) +
m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj, w

(q)
j

))
+ κ (j-th summation term depends on µj alone)

⩽ min
θ∈Θ

1

Q

Q∑
q=1

(
f(θ) +

m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj, w

(q)
j

))
+ κ

⩽ min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j min
µj∈M

1

Q

Q∑
q=1

ω
(
θ, µj, w

(q)
j

)}
+ κ

= min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj, w̄j

)}
+ κ

⩽ min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j max
wj∈W

min
µj∈M

ω
(
θ, µj, wj

)}
+ κ (by linearity of ω in wj)

= min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j max
wj : ru(θ,wj)⩽0,∀u

gj(θ, wj)
}

+ κ (from Lemma 3.13.3)

= min
θ∈Θ
L(θ, λ′) + κ. (3.22)

Applying standard gradient ascent analysis to the gradient ascent steps on w (using the fact
that ω is linear in w)

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , w

(q)
j

))

⩾ max
w∈Wm

∆

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , wj

))
− O

(
1√
Q

)

=
1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆

ω
(
θ(q), µ

(q)
j , wj

))
−O

(
1√
Q

)
(j-th summation term depends on wj alone)

⩾
1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

ω
(
θ(q), µj, wj

))
− O

(
1√
Q

)
(by linearity of ω in wj and µj)

= E
θ∼θ̂

[
f(θ) +

m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

ω
(
θ, µj, wj

)]
− O

(
1√
Q

)

= E
θ∼θ̂

[
f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆: ru(θ,wj)⩽0,∀u

gj(θ, wj)

]
− O

(
1√
Q

)
(from Lemma 3.13.3)

= E
θ∼θ̂

[L(θ, λ′)] − O
(

1√
Q

)
. (3.23)

Combining (3.22) and (3.23) completes the proof. ■
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Algorithm 6 Practical Algorithm

Require: learning rates ηθ > 0, ηλ > 0, estimates of
P (G = j|Ĝ = k) to specify W(θ)

1: for t = 1, . . . , T do
2: Solve for w given θ using linear programming or a gradient method:

w(t) ← maxw∈W(θ(t))

∑m
j=1 λ

(t)
j gj(θ

(t), w)

3: Descent step on θ:
θ(t+1) ← θ(t) − ηθδ(t)θ , where

δ
(t)
θ = ∇θ

(
f0(θ

(t)) +
∑m

j=1 λ
(t)
j gj

(
θ(t), w(t+1)

))
4: Ascent step on λ:

λ̃
(t+1)
j ← λ

(t)
j + ηλgj

(
θ(t+1), w(t+1)

)
∀j ∈ G

λ(t+1) ← ΠΛ(λ̃
(t+1)),

5: end for
6: return θ(t

∗) where t∗ denotes the best iterate that satisfies the constraints in (3.7) with
the lowest objective.

3.14 Appendix: Discussions on the Practical

algorithm

Here we provide the details of the practical Algorithm 6 to solve problem (3.8). We also
further discuss how we arrive at Algorithm 6. Recall that in the minimax problem in (3.8),
restated below, each of the m constraints contain a max over w:

min
θ∈Θ

max
λ∈Λ

f(θ) +
m∑
j=1

λj max
w∈W(θ)

gj(θ, w).

We show below that this is equivalent to a minimax problem where the sum over j and max
over w are swapped:

Lemma 3.14.1. The minimax problem in (3.8) is equivalent to:

min
θ∈Θ

max
λ∈Λ

max
w∈W(θ)

f(θ) +
m∑
j=1

λjgj(θ, w). (3.24)

Proof. Recall that the space of Lagrange multipliers Λ = {λ ∈ Rm
+ | ∥λ∥1 ⩽ R}, for R > 0.

So the above maximization over Λ can be re-written in terms of a maximization over the
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m-dimensional simplex ∆m and a scalar β ∈ [0, R]:

min
θ∈Θ

max
β∈[0,R], ν∈∆m

f(θ) + β

m∑
j=1

νj max
w∈W(θ)

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
ν∈∆m

m∑
j=1

νj max
w∈W(θ)

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + βmax
j∈G

max
w∈W(θ)

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
w∈W(θ)

max
j∈G

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
w∈W(θ)

max
ν∈∆m

m∑
j=1

νjgj(θ, w)

= min
θ∈Θ

f(θ) + max
β∈[0,R], ν∈∆m

max
w∈W(θ)

m∑
j=1

βνjgj(θ, w)

= min
θ∈Θ

f(θ) + max
λ∈Λ

max
w∈W(θ)

m∑
j=1

λjgj(θ, w),

which completes the proof. ■

The practical algorithm outlined in Algorithm 6 seeks to solve the re-written minimax
problem in (3.24), and is similar in structure to the ideal algorithm in Algorithm 3, in that it
has two high-level steps: an approximate best response over θ and gradient ascent updates
on λ. However, the algorithm works with deterministic classifiers θ(t), and uses a simple
heuristic to approximate the best response step. Specifically, for the best response step, the
algorithm finds the maximizer of the Lagrangian over w for a fixed θ(t) by e.g. using linear
programming:

w(t) ← max
w∈W(θ(t))

m∑
j=1

λ
(t)
j gj(θ

(t), w),

uses the maximizer w(t) to approximate the gradient of the Lagrangian at θ(t):

δ
(t)
θ = ∇θ

(
f0(θ

(t)) +
m∑
j=1

λ
(t)
j fj

(
θ(t), w(t+1)

) )
and performs a single gradient update on θ:

θ(t+1) ← θ(t) − ηθδ(t)θ .

The gradient ascent step on λ is the same as the ideal algorithm, except that it is simpler
to implement as the iterates θ(t) are deterministic:

λ̃
(t+1)
j ← λ

(t)
j + ηλfj

(
θ(t+1), w(t+1)

)
∀j ∈ G;

λ(t+1) ← ΠΛ(λ̃
(t+1)).
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3.15 Appendix: Additional experiment details and

results

We provide more details on the experimental setup as well as further results.

Additional experimental setup details

This section contains further details on the experimental setup, including the datasets used
and hyperparameters tuned. All categorical features in each dataset were binarized into one-
hot vectors. All numerical features were bucketized into 4 quantiles, and further binarized
into one-hot vectors.

For the näıve approach, we solve the constrained optimization problem (3.2) with respect
to the noisy groups Ĝ. For comparison, we also report the results of the unconstrained
optimization problem and the constrained optimization problem (3.1) when the true groups
G are known. For the DRO problem (3.3), we estimate the bound γj = P (Ĝ ̸= G|G = j)
in each case study. For the soft group assignments approach, we implement the practical
algorithm (Algorithm 6).

In the experiments, we replace all expectations in the objective and constraints with
finite-sample empirical versions. So that the constraints will be convex and differentiable,
we replace all indicator functions with hinge upper bounds, as in Davenport et al. [61] and
Eban et al. [78]. We use a linear model: ϕ(X; θ) = θTX. The noisy protected groups Ĝ are
included as a feature in the model, demonstrating that conditional independence between Ĝ
and the model ϕ(X; θ) is not required here, unlike some prior work [15]. Aside from being
used to estimate the noise model P (G = k|Ĝ = j) for the soft group assignments approach2,
the true groups G are never used in the training or validation process.

Each dataset was split into train/validation/test sets with proportions 0.6/0.2/0.2. For
each algorithm, we chose the best iterate θ(t

∗) out of T iterates on the train set, where we de-
fine best as the iterate that achieves the lowest objective value while satisfying all constraints.
We select the hyperparameters that achieve the best performance on the validation set (de-
tails in Appendix 3.15). We repeat this procedure for ten random train/validation/test splits
and record the mean and standard errors for all metrics3.

Adult dataset

For the first case study, we used the Adult dataset from UCI [70], which includes 48,842
examples. The features used were age, workclass, fnlwgt, education, education num, mar-
ital status, occupation, relationship, race, gender, capital gain, capital loss, hours per week,

2If P (G = k|Ĝ = j) is estimated from an auxiliary dataset with a different distribution than test, this
could lead to generalization issues for satisfying the true group constraints on test. In our experiments, we
lump those generalization issues in with any distributional differences between train and test.

3When we report the “maximum” constraint violation, we use the mean and standard error of the
constraint violation for the group j with the maximum mean constraint violation.
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and native country. Detailed descriptions of what these features represent are provided by
UCI [70]. The label was whether or not income bracket was above $50,000. The true pro-
tected groups were given by the race feature, and we combined all examples with race other
than “white” or “black” into a group of race “other.” When training with the noisy group
labels, we did not include the true race as a feature in the model, but included the noisy
race labels as a feature in the model instead. We set α = 0.05 as the constraint slack.

The constraint violation that we report in Figure 3.1 is taken over a test dataset with n
examples (X1, Y1, G1), ..., (Xn, Yn, Gn), and is given by:

max
j∈G

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 1)∑n

i=1 1(Yi = 1)
−
∑n

i=1 1(Ŷ (θ)i = 1, Yi = 1, Gi = j)∑n
i=1 1(Yi = 1, Gi = j)

− α,

where Ŷ (θ)i = 1(ϕ(θ;Xi) > 0).
Section 3.12 shows how we specifically enforce equality of opportunity using the soft

assignments approach, and Section 3.11 shows how we enforce equality of opportunity using
DRO.

Credit dataset

For the second case study, we used default of credit card clients dataset from UCI [70] col-
lected by a company in Taiwan [221], which contains 30000 examples and 24 features. The
features used were amount of the given credit, gender, education, education, marital status,
age, history of past payment, amount of bill statement, amount of previous payment. De-
tailed descriptions of what these features represent are provided by UCI [70]. The label was
whether or not default was true. The true protected groups were given by the education
feature, and we combined all examples with education level other than “graduate school” or
“university” into a group of education level “high school and others”. When training with
the noisy group labels, we did not include the true education as a feature in the model, but
included the noisy education level labels as a feature in the model instead. We set α = 0.03
as the constraint slack.

The constraint violation that we report in Figure 3.1 is taken over a test dataset with n
examples (X1, Y1, G1), ..., (Xn, Yn, Gn), and is given by:

max
j∈G

max(∆TPR
j ,∆FPR

j )

where

∆TPR
j =

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 1)∑n

i=1 1(Yi = 1)
−
∑n

i=1 1(Ŷ (θ)i = 1, Yi = 1, Gi = j)∑n
i=1 1(Yi = 1, Gi = j)

− α

and

∆FPR
j =

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 0, Gi = j)∑n

i=1 1(Yi = 0, Gi = j)
−
∑n

i=1 1(Ŷ (θ)i = 1, Yi = 0)∑n
i=1 1(Yi = 0)

− α
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and Ŷ (θ)i = 1(ϕ(θ;Xi) > 0).
Section 3.12 shows how we specifically enforce equalized odds using the soft assignments

approach, and Section 3.11 shows how we enforce equalized odds using DRO.

Optimization code

For all case studies, we performed experiments comparing the näıve approach, the DRO
approach (Section 3.5) and the soft group assignments approach (Section 3.6). We also
compared these to the baselines of optimizing without constraints and optimizing with con-
straints with respect to the true groups. All optimization code was written in Python and
TensorFlow 4. All gradient steps were implemented using TensorFlow’s Adam optimizer 5,
though all experiments can also be reproduced using simple gradient descent without mo-
mentum. We computed full gradients over all datasets, but minibatching can also be used
for very large datasets.

Table 3.1: Hyperparameters tuned for each approach

Hparam Values tried Relevant approaches Description

ηθ {0.001,0.01,0.1} all approaches learning rate for θ
ηλ {0.25,0.5,1.0,2.0} all except unconstrained learning rate for λ
ηp̃j {0.001, 0.01, 0.1} DRO learning rate for p̃j
ηw {0.001, 0.01, 0.1} soft assignments learning rate using

gradient methods for w

Hyperparameters

The hyperparameters for each approach were chosen to achieve the best performance on
the validation set on average over 10 random train/validation/test splits, where “best” is
defined as the set of hyperparameters that achieved the lowest error rate while satisfying
all constraints relevant to the approach. The final hyperparameter values selected for each
method were neither the largest nor smallest of all values tried. A list of all hyperparameters
tuned and the values tried is given in Table 3.1.

For the näıve approach, the constraints used when selecting the hyperparameter values
on the validation set were the constraints with respect to the noisy group labels given in
Equation (3.2). For the DRO approach and the soft group assignments approach, the respec-
tive robust constraints were used when selecting hyperparameter values on the validation

4Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. tensor-
flow.org.

5https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/AdamOptimizer
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set. Specifically, for the DRO approach, the constraints used were those defined in Equa-
tion (3.3), and for the soft group assignments approach, the constraints used were those
defined in Equation (3.7). For the unconstrained baseline, no constraints were taken into
account when selecting the best hyperparameter values. For the baseline constrained with
access to the true group labels, the true group constraints were used when selecting the best
hyperparameter values.

Hinge relaxations of all constraints were used during training to achieve convexity. Since
the hinge relaxation is an upper bound on the real constraints, the hinge-relaxed constraints
may require some additional slack to maintain feasibility. This positive slack β was added
to the original slack α when training with the hinge-relaxed constraints, and the amount
of slack β was chosen so that the relevant hinge-relaxed constraints were satisfied on the
training set.

All approaches ran for 750 iterations over the full dataset.

Additional experiment results

This section provides additional experiment results. All results reported here and in the
main paper are on the test set (averaged over 10 random train/validation/test splits).

Case study 1 (Adult)

This section provides additional experiment results for case study 1 on the Adult dataset.
Figure 3.4 that the näıve approach, DRO approach, and soft assignments approaches all

satisfied the fairness constraints for the noisy groups on the test set.
Figure 3.5 confirms that the DRO approach and the soft assignments approaches both

managed to satisfy their respective robust constraints on the test set on average. For the
DRO approach, the constraints measured in Figure 3.5 come from Equation (3.3), and for
the soft assignments approach, the constraints measured in Figure 3.5 come from Equation
(3.7). We provide the exact error rate values and maximum violations on the true groups
for the Adult dataset in Table 3.2.

Case study 2 (Credit)

This section provides additional experiment results for case study 2 on the Credit dataset.
Figure 3.6 shows the constraint violations with respect to the true groups on test sepa-

rated into TPR violations and FPR violations. For all noise levels, there were higher TPR
violations than FPR violations. However, this does not mean that the FPR constraint was
meaningless – the FPR constraint still ensured that the TPR constraints weren’t satisfied
by simply adding false positives.

Figure 3.7 confirms that the näıve approach, DRO approach, and soft assignments ap-
proaches all satisfied the fairness constraints for the noisy groups on the test set.
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Figure 3.4: Maximum fairness constraint violations with respect to the noisy groups Ĝ on
the test set for different group noise levels γ on the Adult dataset. For each noise level,
we plot the mean and standard error over 10 random train/val/test splits. The black solid
line illustrates a maximum constraint violation of 0. While the näıve approach (left) has
increasingly higher fairness constraints with respect to the true groups as the noise increases,
it always manages to satisfy the constraints with respect to the noisy groups Ĝ
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Figure 3.5: Maximum robust constraint violations on the test set for different group noise
levels P (Ĝ ̸= G) on the Adult dataset. For each noise level, we plot the mean and standard
error over 10 random train/val/test splits. The black dotted line illustrates a maximum
constraint violation of 0. Both the DRO approach (left) and the soft group assignments
approach (right) managed to satisfy their respective robust constraints on the test set on
average for all noise levels.

Figure 3.8 confirms that the DRO approach and the soft assignments approaches both
managed to satisfy their respective robust constraints on the test set on average. For the
DRO approach, the constraints measured in Figure 3.8 come from Equation (3.3), and for
the soft assignments approach, the constraints measured in Figure 3.8 come from Equation
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Table 3.2: Error rate and fairness constraint violations on the true groups for the Adult
dataset (mean and standard error over 10 train/test/splits).

DRO Soft Assignments
Noise Error rate Max G Viol. Error rate Max G Viol.

0.1 0.152 ± 0.001 0.002 ± 0.019 0.148 ± 0.001 -0.048 ± 0.002
0.2 0.200 ± 0.002 -0.045 ± 0.003 0.157 ± 0.003 -0.048 ± 0.002
0.3 0.216 ± 0.010 -0.044 ± 0.004 0.158 ± 0.005 0.002 ± 0.030
0.4 0.209 ± 0.006 -0.019 ± 0.031 0.188 ± 0.003 -0.016 ± 0.016
0.5 0.219 ± 0.012 -0.030 ± 0.032 0.218 ± 0.002 0.004 ± 0.006

(3.7).
We provide the exact error rate values and maximum violations on the true groups for

the Credit dataset in Table 3.3.

Table 3.3: Error rate and fairness constraint violations on the true groups for the Credit
dataset (mean and standard error over 10 train/test/splits).

DRO Soft Assignments
Noise Error rate Max G Viol. Error rate Max G Viol.

0.1 0.206 ± 0.003 -0.006 ± 0.006 0.182 ± 0.002 0.000 ± 0.005
0.2 0.209 ± 0.002 -0.008 ± 0.008 0.182 ± 0.001 0.004 ± 0.005
0.3 0.212 ± 0.002 -0.006 ± 0.006 0.198 ± 0.001 -0.025 ± 0.007
0.4 0.210 ± 0.002 -0.017 ± 0.008 0.213 ± 0.001 -0.028 ± 0.005
0.5 0.211 ± 0.003 -0.015 ± 0.006 0.211 ± 0.001 -0.014 ± 0.004
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Figure 3.6: Case study 2 (Credit): Maximum true group TPR (top) and FPR (bottom)
constraint violations for the Naive, DRO, and soft assignments (SA) approaches on test
set for different group noise levels γ on the Credit dataset (mean and standard error over
10 train/val/test splits). The black solid line represents the performance of the trivial “all
negatives” classifier, which has constraint violations of 0. A negative violation indicates
satisfaction of the fairness constraints on the true groups.
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Figure 3.7: Maximum fairness constraint violations with respect to the noisy groups Ĝ on
the test set for different group noise levels γ on the Credit dataset. For each noise level,
we plot the mean and standard error over 10 random train/val/test splits. The black solid
line illustrates a maximum constraint violation of 0. While the näıve approach (left) has
increasingly higher fairness constraints with respect to the true groups as the noise increases,
it always manages to satisfy the constraints with respect to the noisy groups Ĝ
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Figure 3.8: Maximum robust constraint violations on the test set for different group noise
levels P (Ĝ ̸= G) on the Credit dataset. For each noise level, we plot the mean and standard
error over 10 random train/val/test splits. The black dotted line illustrates a maximum
constraint violation of 0. Both the DRO approach (left) and the soft group assignments
approach (right) managed to satisfy their respective robust constraints on the test set on
average for all noise levels.
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Chapter 4

Learning Competitive Equilibria in
Exchange Economies with Bandit
Feedback

4.1 Introduction

An exchange economy (EE) is a classical micro-economic construct used to model situa-
tions where multiple rational agents share a finite set of scarce resources. Such scenarios
arise frequently for applications in operations management, urban planning, crowd sourc-
ing, wireless networks, and sharing resources in data centers [51, 67, 89, 111, 118, 197]. In
an EE, agents share a set of resources consisting of multiple resource types. They begin
with an initial endowment and then exchange these resources among themselves based on
a price system. This exchange process allows two agents to trade different resource types
if they find it mutually beneficial to do so. Under certain conditions, continually trading
in this manner results in a competitive equilibrium (CE), where the allocations have desir-
able Pareto-efficiency and fairness properties. EEs have attracted much research attention,
historically since they are tractable models to study human behavior and price determi-
nation in real-world markets, and more recently for designing multi-resource fair division
mechanisms [18, 19, 40, 58, 63, 204].

One of the most common use cases for fair division, which will be especially pertinent
in this work, occurs in the context of shared computational resources. For instance, in a
data center shared by an organization, we wish to allocate resources such as CPUs, memory,
and GPUs to different users who wish to share this cluster in a way that is Pareto-efficient
(so that the resources are put into good use) and fair (for long-term user satisfaction).
Here, unlike in real world economies where agents might trade with each other until they
reach an equilibrium, the equilibrium is computed using a central mechanism (e.g. a cluster
manager) based on the preferences submitted by the agents to obtain an allocation with
the above properties. Indeed, fair division mechanisms are a staple in many popular multi-
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tenant cluster management frameworks used in practice, such as Mesos [113], Quincy [120],
Kubernetes [42], and Yarn [209]. Due to this strong practical motivation, a recent line of work
has studied such fair division mechanisms for resource sharing in a compute cluster [48, 91, 92,
178], with some of them based on exchange economies and their variants [107, 143, 207, 224].

However, prior work on EEs and fair division typically assumes knowledge of the agent
preferences, in the form of a utility function which maps an allocation of them resource types
to the value the agent derives from the allocation. For instance, in the above example, an
application developer needs to quantify how well her application performs for each allocation
of CPU/memory/GPU she receives. At best, doing so requires the laborious and often
erroneous task of profiling their application [64, 165], and at worst, it can be infeasible
due to practical constraints [190, 210]. However, having received an allocation, application
developers find it easier to report feedback about the utilities based on the performance
they achieved. Moreover, in many real-world systems, this feedback scheme can often be
automated [113].

Contributions & summary of results

We study a multi-round mechanism for computing CE in an exchange economy so as to
generate fair and efficient allocations when the exact utilities are unknown a priori. A
central mechanism is used to learn the user utilities over time via feedback from the agents.
At the beginning of each round, the mechanism generates allocations; at the end of the
round, agents report feedback on the allocation they received. The mechanism then uses
this information to better learn the preferences. In particular, we focus on applications for
fair division where a centralized mechanism can compute an allocation of these resources on
each round, say, by estimating the utilities and finding their equilibria.

In this pursuit, we first formalize this online learning task and construct two loss func-
tions: the first LCE directly builds on the definition of a CE, while the latter LPE is motivated
by the fairness and Pareto-efficiency considerations that arise in fair division. To make the
learning problem tractable, we focus on a parametric class of utilities which include the con-
stant elasticity of substitution (CES) utilities which feature prominently in the econometric
literature and other application-specific utilities used in the systems literature.

We develop a randomized online mechanism which efficiently learns utilities over rounds
of allocations while simultaneously striving to achieve Pareto-efficient and fair allocations.
We show that this mechanism achieves Õ(

√
T ) loss for the two loss functions with both in-

expectation and high-probability upper bounds (Theorems 4.4.1 and 4.4.2), under a general
family of utility functions. To the best of our knowledge, this is the first work that studies CE
without knowledge of user utilities; as such different analysis techniques are necessary. For
instance, finding a CE is distinctly different from a vanilla optimization task, and common
strategies in bandit optimization such as upper-confidence-bound (UCB) based algorithms
do not apply (details in 4.4). Instead, our algorithm uses a sampling procedure to balance the
exploration-exploitation trade-off. We develop new techniques both to bound the losses and
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to analyse the algorithm. Finally, we corroborate these theoretical insights with empirical
simulations.

Related work

Our work builds on a rich line of literature at the intersection of microeconomics and ma-
chine learning. This richness is not surprising: many real world systems are economic and
multi-agent in nature, where decisions taken by or for one agent are weighed against the con-
siderations of others, especially when these agents have competing goals such as in resource
allocation, matching markets, and in auction-like settings.

As in this work, several works have studied online learning formulations to handle situa-
tions where the agents’ preferences are not known a priori, but can be learned from repeated
interactions [12, 17, 21, 75, 124, 129]. Our setting departs from these as we wish to learn agent
preferences in an exchange economy, with a focus on designing fair division mechanisms.

Since the seminal work of Varian [207], fair division of multiple resource types has received
significant attention in the game theory, economics, and computer systems literature. One
of the most common perspectives on this problem is as an exchange economy (or as a Fisher
market, which is a special case of an EE). Moreover, fair allocation mechanisms have been
deployed in many practical resource allocation tasks when compute resources are shared by
multiple users. Due to space constraints, we defer a more detailed overview on this line of
works in Appendix 4.11.

Notably, in all of the above cases, an important requirement for the mechanism is that
agent utilities be known ahead of time. Some work has attempted to lift this limitation
by making explicit assumptions on the utility, but it is not clear that if these assumptions
hold in practice [147, 224]. Recently, Kandasamy et al. [130] provides a general method
for learning agent utilities for fair division using feedback. However, they only study a
single-resource setting and do not do not explore multiple resource types. Crucially, in the
multi-resource setting, one agent can exchange a resource of one type for a different type of
resource from another user, so that both are better off after the exchange. Thus, learning in
a multi-resource setting is significantly more challenging than the single-resource case since
there is no notion of exchange, and requires new analysis techniques.

4.2 Background

We first present some necessary background material on exchange economies, their compet-
itive equilibria, and fair division mechanisms.

Exchange economies

In an exchange economy, we have n agents and m divisible resource types. Each agent i ∈ [n]
has an endowment, ei = (ei1, . . . , eim), where eij can be viewed the amount of resource j agent



CHAPTER 4. LEARNING COMPETITIVE EQUILIBRIA IN EXCHANGE
ECONOMIES WITH BANDIT FEEDBACK 79

i brings to the economy for trade. In the shared compute cluster example, ei may represent
agent i’s contribution to this cluster. Without loss of generality we assume

∑
i∈[n] ei1 = 1 so

that the space of resources is denoted by [0, 1]m.
We denote an allocation of these resources to the n agents by x = (x1, x2, . . . , xn), where

xi ∈ [0, 1]m and xij denote the amount of resource j that is allocated to agent i. The set of
all feasible allocations is therefore X = {x :

∑m
i=1 xij ⩽ 1, xij ⩾ 0,∀i ∈ [n], j ∈ [m]}.

An agent’s utility function is simply ui : [0, 1]m → [0, 1], where ui(xi) represents her
valuation for an allocation xi she receives. Here ui is non-decreasing, i.e., ui(xi) ⩽ ui(x

′
i) for

all xi ⩽ x′i element-wise (more allocations will not hurt).
In an exchange economy, agents exchange resources based on a price system. We denote

a price vector by p, where p ∈ Rm
+ and 1⊤p = 1 (the normalization accounts for the fact that

only relative prices matter). Here pj denotes the price for resource j. Given a price vector
p, an agent i has a budget p⊤ei, which is the monetary value of her endowment according
to the prices in p. As this is an economy, a rational agent will then seek to maximize her
utility under her budget:

di(p) = argmax
xi∈[0,1]m

ui(xi) subject to p⊤xi ⩽ p⊤ei. (4.1)

While generally, the preferred allocations di(p) form a set, for simplicity we will assume it is
a singleton and treat di as a function which outputs an allocation for agent i. This is justified
under very general conditions [160, 208]. We refer to di(p) chosen in the above manner as
the agent i’s demand for prices p.

Competitive equilibria – definition, existence and uniqueness: A natural way to
allocate resources to agents is to set prices p for the resources, and have the agents maximize
their utility under this price system. That is, we allocate x(p) = (x1, . . . , xn). Unfortunately,
such an allocation may be infeasible, and even if it were, it may not result in an efficient
allocation. However, under certain conditions, we can compute a competitive equilibrium
(CE), where the prices have both of the desired properties:

Definition 4.2.1 (Competitive (Walrasian) Equilibrium). A CE is a pair of allocations and
prices (x⋆, p⋆) such that (i) the allocations are feasible and (ii) all agents maximize their
utilities under the budget induced by prices p⋆. Precisely,∑

i∈[n]

x⋆i,j ⩽
∑
i∈[n]

eij = 1, ∀ j ∈ [m],

x⋆i = di(p
⋆), ∀ i ∈ [n].

Some definitions of a CE require that the first condition above being an exact equality
(e.g., [160]). However, when the utilities are strictly increasing (which will be the case in the
sequel), both definitions coincide [208].



CHAPTER 4. LEARNING COMPETITIVE EQUILIBRIA IN EXCHANGE
ECONOMIES WITH BANDIT FEEDBACK 80

Utilities. In general, CEs do always exist but may not be unique. However, one impor-
tant class of utilities that guarantee this condition with much attention in the fair divi-
sion literature is the constant elasticity of substitution (CES) utility. Due to its favorable
properties, CES utilities are widely-studied in many fair division works, and most of the
existing algorithms that generate fair and efficient allocations assume CES utilities or its
sub-classes [160, 208]. CES utilities are also ubiquitous in the microeconomics literature; due
to this flexibility in interpolating between perfect substitutability and complementary, they
are also able to approximate several real-world utility functions. Moreover, computationally,
there are efficient methods for computing a CE in the CES and related classes [38, 224, 225].
In contrast, even when CE exist, they may be hard to find under more general classes of
utilities [208].

Example 4.2.2 (CES utilities). A CES utility takes the form ui(x) =
(∑m

j=1 θijx
ρ
i

)1/ρ
where

ρ is the elasticity of substitution, and θi = (θi1, . . . , θim) is an agent-specific parameter. When
ρ = 1, this corresponds to linear utilities where goods are perfect substitutes. As ρ → ∞,
the utilities approach perfect complements.

Fair division

We describe exchange economies which are used in fair-division mechanisms. We first for-
mally define the fair division problem.

In a standard mechanism for fair division when the utilities are inputs, each agent truth-
fully1 submits her utility ui to the mechanism. The mechanism then returns an allocation
x ∈ X that are not only efficient but also fair, which satisfies the following two requirements:
sharing incentive (SI) and Pareto-efficiency (PE). An allocation x = (x1, . . . , xm) satisfies SI
if the utility an agent receives is at least as much as her utility when using her endowment,
i.e. ui(xi) ⩾ ui(ei). This simply states that she is never worse off than if she had kept her
endowment to herself, so she has the incentive to participate in the fair division mechanism.

A feasible allocation x is said to be PE if the utility of one agent can be increased only
by decreasing the utility of another. Rigorously, an allocation x dominates another x′, if
ui(xi) ⩾ uj(x

′
i) for all i ∈ [n] and there exists some i ∈ [n] such that ui(xi) > ui(x

′
i). An

allocation is Pareto-efficient if it is not dominated by any other point. We denote the set of
Pareto-efficient allocations by PE . One advantage of the PE requirement, when compared
to other formalisms which maximize social or egalitarian welfare, is that it does not compare
the utility of one agent against that of another. The utilities are useful solely to specify an
agent’s preferences over different allocations.

EEs in fair division: The above problem description for fair division naturally renders
itself to a solution based on EEs. By treating the resource allocation environment as an

1Unlike some previous works on fair division [91, 130, 178], we do not study strategic considerations,
where agents may attempt to manipulate outcomes in their favor by falsely submitting their utilities.
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exchange economy, we may compute its equilibrium to determine the allocations for each
agent. Then, the SI property follows from the fact that each agent is maximizing her utility
under her budget, and an agent’s endowment (trivially) falls under her budget. The PE
property follows from the first theorem of welfare economics [160, 208]. Several prior works
have used this connection to design fair-division mechanisms for many practical applica-
tions [58, 207, 224].

Computing a CE: In order to realize a CE allocation in a fair division mechanism,
the mechanism needs to compute a CE given a set of utilities. One way to do this is
via tatonnement [208]. While there are general procedures, such as tatonnement [208],
they are not guaranteed to converge to an equilibrium even when it exists; moreover, even
when they do, the rate of convergence can be slow. This has led to the development of
efficient procedures for special classes of functions. One such method is proportional response
dynamics (PRD) [224, 225] which converges faster under CES utilities [225] and other classes
of utilities [224] when ei = αi1m for all i ∈ [n] (with

∑
i αi = 1). In fact, in our evaluations,

we adopt PRD for computing a CE, which is a subroutine of the learning algorithm.
We note that in the context of fair division, the CE allocations are more pertinent than

the CE prices. While the prices are used to compute fair allocations, they are not used
directly in their own right.

4.3 Online learning formulation

We formalize online learning an equilibrium in an exchange economy under bandit feedback,
when the exact agent utilities are unknown a priori. We consider a multi-round setting,
where in each round t, the mechanism selects (xt, pt), where xt = (xt,1, . . . , xt,n) ∈ X are
the allocations for each agent for the current round, and pt are the prices for units of each
resource.

The agents, having experienced their allocation, report stochastic feedback {yt,i}i∈[n],
where yt,i is σ sub-Gaussian and E[yt,i|xt,i] = ui(xt,i). The mechanism then uses this infor-
mation to compute allocations for the next round. As described in Section 4.1, this set up is
motivated by use cases in data center resource allocations, where jobs (agents) cannot state
their utility upfront, but can report feedback on their performance in an automated way.

Going forward, we slightly abuse notation when referring to the allocations. When i ∈ [n]
indexes an agent, xi = (xi1, . . . , xim) ∈ [0, 1]m denotes the allocation to agent i. When t
indexes a round, xt = (xt,1, . . . , xt,n) ∈ X will refer to an allocation to all agents, where
xt,i = (xt,i,1, . . . , xt,i,m) ∈ [0, 1]m denotes i’s allocation in that round. The intended meaning
should be clear from context.
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Losses

We study two losses for this setting. The first loss is based directly on the definition of
an equilibrium (Def. 4.2.1). For a ∈ R, denote a+ = max(0, a). We define the CE loss
ℓCE of an allocation–price pair (x, p) as the sum, over all agents, of the difference between
the maximum attainable utility under price p and the utility achieved by allocation x. The
T -round loss LCE

T is the sum of ℓCE(xt, pt) losses over T rounds. We have:

ℓCE(x, p)
def
=

n∑
i=1

(
max

x′
i:p

⊤x′
i⩽p⊤ei

ui(x
′
i)− ui(x)

)+

,

LCE
T

def
=

T∑
t=1

ℓCE(xt, pt).

(4.2)

It is straightforward to see that for a CE pair (x⋆, p⋆), we have ℓCE(x⋆, p⋆) = 0. As this loss
is based directly on the definition of a CE, it captures many of the properties of a CE.

Our second loss is motivated by the fair division use case. Recall from Sec. 4.2 that in
fair division, while prices are useful in computing CE allocations, they have no value in their
own right. Therefore, we will motivate our loss function based on the sharing incentive (SI)
and Pareto-efficiency (PE) desiderata for fair division. It is composed of two parts. We
define the SI loss ℓSI for an allocation x as the sum, over all agents, of how much they are
worse off than their endowment utilities. We define the PE loss ℓPE for an allocation x as
the minimum sum, over all agents, of how much they are worse off than some Pareto-efficient
utilities. Next, we define the fair division loss ℓFD as the maximum of ℓSI and ℓPE. Finally,
we define the T -round loss LFD

T for the online mechanism as the sum of ℓFD(xt) losses over
T rounds. We have:

ℓSI(x)
def
=

n∑
i=1

(ui(ei)− ui(xi))
+ ,

ℓPE
def
= inf

x′∈PE

n∑
i=1

(ui(x
′
i)− ui(xi))

+
,

ℓFD(x)
def
= max

(
ℓPE(x), ℓSI(x)

)
,

LFD
T

def
=

T∑
t=1

ℓFD(xt). (4.3)

Note that individually achieving either small ℓSI or ℓPE is trivial: if an agent’s utility is strictly
increasing, then by allocating all the resources to this agent we have zero ℓPE as such an
allocation is Pareto-efficient; moreover, by simply allocating each agent their endowment we
have zero ℓSI . In ℓFD, we require both to be simultaneously small which necessitates a clever
allocation that accounts for agents’ endowments and utilities. One intuitive interpretation of
the PE loss is that it can be bounded above by the L1 distance to the Pareto-front in utility
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space; i.e. denoting the set of Pareto-efficient utilities by UPE = {{ui(xi)}i∈[n];x ∈ PE} ⊂
Rn, and letting u(x) = (u1(x1), . . . , un(xn)) ∈ Rn, we can write, ℓPE(x) ⩽ minu∈UPE

∥u −
u(x)∥1.

The FD loss is more interpretable as it is stated in terms of the SI and PE requirements
for fair division. On the other hand, the CE loss is less intuitive. Moreover, in EEs, while
prices help us determine the allocations, they do not have value on their own. Given this,
the CE loss has the somewhat undesirable property that it depends on the prices pt. That
said, since the CE loss is based directly on the definition of a CE, it captures other properties
of a CE that are not considered in ℓFD (see an example in Appendix 4.11). It is also worth
mentioning that either loss cannot be straightforwardly bounded in terms of the other.

Note that we have presented a basic version of the online learning framework as it provides
a simplest platform to study the learning problem of efficient and fair allocations. For
instance, one could consider richer settings where the utilities might change over time with
certain contextual information. While these settings are beyond the scope of this work, we
believe the analysis techniques and intuitions developed here are also insightful in analysing
other variant settings.

Model and assumptions

To make the learning problem tractable, we make some additional assumptions on the prob-
lem. We consider the following parametric class of utility functions P .

Let ϕj : [0, 1]→ [0, 1] be an increasing function which maps the allocation xij of resource
j to agent i to some feature value. For brevity, we will write ϕ : [0, 1]m → [0, 1]m, such that
ϕ(xi) = (ϕ1(xi1), ϕ2(xi2), . . . , ϕm(xim)); Next, let µ : R+ → [0, 1] be an increasing function.
Finally, let Θ ⊂ Rm

+ be a set of positive parameters. Then, we consider the following class
of utilities P :

P =

{
{ui}ni=1; ui(xi) = µ

(
θ⊤i ϕ(xi)

)
for some θi ∈ Θ, ∀i ∈ [n]

} (4.4)

An agent’s utility then takes the form ui(xi) = µ(θ∗i
⊤ϕ(xi)) where the featurization ϕ and

the function µ are known, but the true parameters θ∗i ∈ Θ are unknown and need to be
learned by the mechanism.

We consider the above class of functions for the following reasons. First, observe that
it represents a valid class of utilities in that for all positive θ, the utilities are increasing
in the allocations. Second, a CE is guaranteed to exist uniquely in this class. Third, from
a practical point of view, it subsumes a majority of utilities studied in the fair division
literature, such as linear utilities, the CES utilities from Example 4.2.2 [18, 19, 40, 58, 204],
and other application-specific utilities [210, 224], Fourth, also from a practical point of view,
the CE can be efficiently computed on this class [225]. Finally, it also allows us to leverage
techniques for estimating generalized linear models in our online learning mechanism [47, 84].
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We will also assume the following regularity conditions on P to avoid some degenerate
cases in our analysis. First, µ is continuously differentiable, it is Lipschitz-continuous with
constant Lµ, and Cµ = infθ∈Θ,x∈X µ̇

(
θ⊤ϕ(x)

)
> 0. Second, Θ ⊂ [θmin,∞)m, where θmin > 0.

These assumptions can be relaxed (albeit with a more involved analysis), or replaced by
other equivalent regularity conditions [47, 84], without affecting the main analysis ideas or
take-aways in this paper. Our results also apply when µ, ϕ, and Θ can be defined separately
for each agent, but we assume they are the same to simplify the exposition.

4.4 Algorithm and theoretical results

Algorithm 7 A Randomized Alg. for Learning in EEs

1: Input: number of initialization sub-phases M ⩾ 1, confidence parameters {δt}t⩾1.
2: t← 0
3: for ℓ = 1, . . . ,M do // Initialization phase
4: for k = 1, . . . ,max(m,n) do
5: t← t+ 1, xt ← (0m, . . . ,0m)
6: for h = 1, . . . ,min(m,n) do
7: if m < n then
8: xt,h+k−1,j ← 1 for all j ∈ [m].
9: else
10: xt,i,h+k−1 ← 1 for all i ∈ [n].
11: end if
12: end for
13: Allocate xt and observe rewards {yt,i}i∈[n].
14: end for
15: end for
16: while True do // Round for learning phase
17: t← t+ 1
18: for i = 1, 2, . . . , n do

19: Compute Qt,i
def
=
∑t−1

s=1 ϕ(xs,i)ϕ(xs,i)
⊤

20: Compute

θ̄t,i = argminθ∈Θ

∥∥∥∥∑t−1
s=1 ϕ(xs,i)

(
µ(θ⊤ϕ(xs,i))− ys,i

)∥∥∥∥
Q−1

t,i

21: Sample θ′t,i ∼ N (θ̄t,i, α
2
tQ

−1
t,i ). // See (4.5) for αt.

22: θt,i ← argminθ′∈Θ ∥θ′t,i − θ′∥. // Projection
23: end for
24: Choose allocations and prices xt, pt = CE({ut,i}ni=1), where ut,i(·) = µ(θ⊤t,iϕ(·))
25: Observe rewards {yt,i}i∈[n].
26: end while
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We present a randomized online learning algorithm for learning the agents’ utilities and
generating fair and efficient allocations. Note that this algorithm not only needs to learn the
unknown utilities quickly, but should also simultaneoulsy find the CE allocation. This latter
aspect introduces new challenges in our setting. For instance, the most popular approach
for stochastic optimization under bandit feedback are based on upper-confidence-bounds
(UCB). However, finding a CE cannot be straightforwardly framed as a vanilla optimization
procedure and hence UCB procedures do not apply. Instead, our proposed algorithm uses
a key randomized sampling step, which tradeoffs between exploration and exploration while
maintaining the utilities’ shape constraints in every round for computing the CE (details in
proof sketch).

The algorithm, outlined in Algorithm 7, takes input parameters M and {δt}t⩾1 whose
values we will specify shortly. It begins with an initialization phase forM sub-phases (line 3),
each of length min(n,m). During each sub-phase, we allocate each resource entirely to each
user for at least one round. This initialization phase ensures that some matrices we define
subsequently are well conditioned.

After the initialization phase, the algorithm operates on each of the remaining rounds
as follows. For each user, it first computes quantities Qt,i ∈ Rm×m and θ̄t,i ∈ Rm as defined
in lines 19, and 20. As we explain shortly, θ̄t,i can be viewed as an estimate of θ∗i based on
the data from the first t − 1 rounds. The algorithm then samples θ′t,i ∈ Rm from a normal
distribution with mean θ̄t,i and co-variance α2

tQt,i, where, αt is defined as:

α2
t = 4

κ2σ2

C2
µ

m log(t) log

(
m

δt

)
,

κ = 3 + 2 log
(
1 + 2∥ϕ(1)∥22

)
.

(4.5)

The sampling distribution, which is centered at our estimate θ̄t,i, is designed to balance the
exploration-exploitation trade-off on this problem. Next, it projects the sampled θ′i,t onto Θ
to obtain θt,i.

In line (24), the algorithm obtains an allocation and price pair xt, pt by computing the
CE on the θt,i values obtained above, i.e. by pretending that ut,i(·) = µ(θ⊤t,iϕ(·)) is the utility
for user i.

It is important to note that the computation of the CE happens as a subroutine of the
mechanism, and users will simply receive the allocations xt. The mechanism collects the
rewards {yt,i}i∈[n] from each user and then repeats the same for the remaining rounds. As
we discussed in Sec. 4.2, there are different ways to compute a CE efficiently in our setting,
including tatonnement or the proportional response dynamics (PRD) algorithm [225] which
we implemented. Given that our algorithm focus on learning the efficient and fair allocations,
we do not focus on the computation complexity of CE in this work. Empirically, we find
PRD converges quickly in the simulations.

Computation of θ̄it: It is worth explaining steps 19–20 used to obtain the estimate θ̄it for
user i’s parameter θ∗i . Recall that for each agent i, the mechanism receives stochastic rewards
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yt,i where yt,i is a σ sub-Gaussian random variable with E[yt,i] = ui(xt,i) in round t. Therefore,
given the allocation-reward pairs {(xs,i, ys,i)}t−1

s=1, the maximum quasi-likelihood estimator

θ̂MLE
t,i for θi is defined as the maximizer of the quasi-likelihood L(θ) =

∑t−1
s=1 log pθ(ys,i|xs,i),

where pθ(yi|xi) is as defined below. Here, µ(ν) = ∂b(ν)
∂ν

and c(·) is a normalising term. We
have:

pθ(yi|xi) = exp
(
yiθ

⊤ϕ(xsi)− b(θ⊤ϕ(xsi)) + c(yi)
)
. (4.6)

Upon differentiating, we have that θ̂MLE
t,i is the unique solution of the estimating equation:

t−1∑
s=1

ϕ(xsi)
(
µ
((
θ̂MLE
t,i

)⊤
ϕ(xs,i)

)
− ysi

)
= 0.

In other words, θMLE
t,i would be the maximum likelihood estimate for θ∗i if the rewards yt,i

followed an exponential family likelihood as shown in (4.6). Our assumptions are more
general; we only assume the rewards are sub-Gaussian centred at µ(θ∗i

⊤ϕ(xt,i)). However, this
estimate is known to be consistent under very general conditions, including when the rewards
are sub-Gaussian [47, 84]. Since θ̂MLE

t,i might be outside of the set of feasible parameters Θ,

this motivates us to perform the projection in the Q−1
t,i norm to obtain θ̄t,i as defined in

line 20. Here, Qt,i, defined in line (19), is the design matrix obtained from the data in the
first t− 1 steps.

On the algorithm design: It is worth comparing the design of our algorithm against
prior work in the bandit literature under similar parametric assumptions [59, 84, 154, 188].
For instance, in a CE, each agent is maximizing their utility under a budget constraint.
Therefore, a seemingly natural idea is to adopt a UCB based procedure, which is the most
common approach for stochastic optimization under bandit feedback [14]. However, adopting
a UCB-style method for our problem proved to be unfruitful. Consider using a UCB of
the form µ(θ̄⊤itϕ(·)) + Uit(·), where Uit quantifies the uncertainty in the current estimate.
Unfortunately, a CE is not guaranteed to exist for utilities of the above form, which means
that finding a suitable allocation can be difficult. An alternative idea is to consider UCBs of
the form µ(θ̂⊤t,iϕ(·)) where θ̂t,i is an upper confidence bound on θ∗i (recall that both θ∗i and ϕ

are non-negative). While CEs are guaranteed to exist for such UCBs, θ̂t,i is not guaranteed
to uniformly converge to θ∗i , resulting in linear loss.

Instead, our algorithm takes inspiration from classical Thompson sampling (TS) proce-
dure for multi-armed bandits in the Bayesian paradigm [203]. The sampling step in line 21 is
akin to sampling from the posterior beliefs in TS. It should be emphasized that the sampling
distributions on each round cannot be interpreted as the posterior of some prior belief on θ∗i .
In fact, they were designed so as to put most of their mass inside a frequentist confidence
set for θ∗i .
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Upper bounds on the loss

The following two theorems are the main results bounding the loss terms LFD, LCE for
Algorithm 7. In the first theorem, we are given a target failure probability of at most δ. By
choosing δt appropriately, we obtain an infinite horizon algorithm for which both loss terms
are Õ(

√
T ) with probability at least 1− δ. In the second theorem, with a given time horizon

T , we obtain an algorithm whose expected losses are Õ(
√
T ).

Theorem 4.4.1. Assume the conditions in Section 4.3. Let δ > 0 be given. Choose δt =
2δ

nπ2t2
. Then, the following upper bounds on LFD, LCE hold for Algorithm 7 with probability

at least 1− δ.

LFD(T ), LCE(T ) ∈ O
(
n
(
m+ m2

√
M

)√
T
(
log(nT/δ) + log(T )

))
.

Theorem 4.4.2. Assume the conditions in Section 4.3. Let T > M max(m2, n) be given.
Choose δt =

1
T
. Then, the follow upper bounds on LFD, LCE hold for Algorithm 7.

E[LFD(T )], E[LCE(T )] ∈ O
(
n
(
m+ m2

√
M

)√
T (log(T ))

)
,

Above, probabilities and expectations are with respect to both the randomness in the
observations and the sampling procedure. Both theorems show that we can learn with respect
to both losses at

√
T rate. Note that the rates depend on the number of initialization sub-

phases M . By choosing M = m2, we get a Õ(nm
√
T ) bound. However, this also requires a

large initialization phase, which may not be feasible in practice. We can instead choose M
to be small, but this leads to correspondingly worse asymptotic bounds.
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Figure 4.1: The CE loss LCE
T vs the number of rounds T , evaluated with m = 3 resource

types and n = 5 agents with CES utilities. We present results for ρ = 0.5, ρ = 0.75, and
ρ = 1 respectively (see Example 4.2.2). All figures show results which are averaged over 10
runs, and the shaded region shows the standard error at each time T .

Proof sketch. Our proof uses some prior martingale concentration results from the bandit
literature [84, 188], and additionally, we use some high level intuitions from prior frequentist
analyses of Thompson sampling [7, 133, 170]. At the same time, we also require novel
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techniques, both to bound the loss terms, and analyse the algorithm. Our proof for bounding
LCE
T first defines high probability events At,i, Bt,i for each agent i and round t. At,i captures

the event that the estimated θ̄t,i is close to θ
∗
i in Qt,i norm. We upper bound P(Ac

t,i) using the
properties of the maximum quasi-likelihood estimator on GLMs [47, 84] and a martingale
argument. Bt,i captures the event that the sampled θt,i is close to θ̄t,i in Qt,i norm. Given
these events, we then bound the instantaneous losses ℓCE(xt, pt) by a super martingale with
bounded differences. The final bound is obtained by an application of the Azuma inequality.

Another key ingredient in this proof is to show that the sampling step also explores
sufficiently–the Bit event only captures exploitation; since the sampling distribution is a
multi-variate Gaussian, this can be conveniently argued using an upper bound on the stan-
dard normal tail probability. While bounding LFD uses several results and techniques as
above, it cannot be directly related to LCE, and requires a separate analysis.

4.5 Experiments

We evaluated Algorithm 7 with simulations. To the best of our knowledge, this is the first
online algorithm studying fair and efficient allocations with unknown utilities with multiple
heterogeneous resource types, and there are no existing natural baselines. There is also no
straightforward adaptation of the method described in Kandasamy et al. [130] for single
resource types since they do not consider the exchange of resources. We evaluated based on
two types of utilities.

1. CES utilities: Described in Example 4.2.2.

2. Amdahl’s utilities: The Amdahl’s utility function, described in Zahedi et al. [224], is
used to model the performance of jobs distributed across heterogeneous machines in a data
center. This utility is motivated by Amdahl’s Law [8], which models a job’s speed up in terms
of the fraction of work that can be parallelized. Let 0 < fij < 1 denote the parallel fraction of
user i’s job on machine type j. Then, an agent’s Amdahl utility is: ui(x) =

∑m
j=1 θijϕij(xij),

where ϕij(xij) = xij/fi+(1−fi)xij. ϕij(xij) is the relative speedup produced by allocation xij.
Both CES and Amdahl utilities belong to our class P given in (4.4).

We focus our evaluation on the CE loss; computing the FD loss is computationally expen-
sive as it requires taking an infimum over the Pareto-front (more details in Appendix 4.11).
Our first set of experiments consider an environment with m = 3 resource types and n = 5
agents, all of whom have CES utilities. We conduct three experiments with different values
for the elasticity of substitution ρ. Our second set of experiments consider an environment
with m = 2 resource types and n = 8 agents, all of whom have Amdahl’s utilities, where the
results are similar and thus included in Appendix 4.10. We conduct three experiments with
different values for the parallel fraction fij. All experiments are run for T = 2000 rounds,
where we set δ = 1

T
. The results are given in Figure 4.1. They show that the CE loss grows
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sublinearly with T which indicates that the algorithm is able to learn utilities and compute
a CE.

To compute the CE at line 24 of Algorithm 7, we use the proportional response dynamics
procedure from [38, 225] with 20 iterations. To compute LCE, we need to maximize each
agent’s utility subject to a budget. Full experimental details and additional results are
included in Appendix 4.10.

4.6 Conclusion and future directions

We introduced and studied the problem of online learning a competitive equilibrium in an
exchange economy, without a priori knowledge of agents’ utilities. We quantify the learning
performance via two losses, the first motivated from the definition of an equilibrium, and
the second by fairness and Pareto-efficiency considerations in fair division. We develop a
randomized algorithm which achieves Õ(nm

√
T ) loss after T rounds under both losses, and

corroborate these theoretical results with simulations. While our work takes the first step
towards sequentially learning a market equilibrium in exchange economies, an interesting
avenue for future work would be to study learning approaches in broader classes of agent
utilities and market dynamics.

Our work addresses the technical challenge of efficient and fair allocations when agents’
utilities are unknown, with a specific fairness notion on sharing incentives. However, we
emphasize that there are other notions of fairness in the fair division literature, with varying
connections to prior sociopolitical framing. On a broader societal level, this work, as with
many other fair allocation algorithms, if being applied to scenarios where the choice of fairness
criteria is not appropriate can lead to potential negative impact. Thus, we emphasize that
whether our model is applicable to certain applications should be carefully evaluated by
domain experts, along with awareness of the tradeoffs involved.

4.7 Appendix: Technical lemmas

We first provide some useful technical lemmas.

Lemma 4.7.1. Suppose that Z is a χ2
m random variable, i.e. Z =

∑m
k=1 Z

2
k , where for all

k, Zk are i.i.d. random variables drawn from N (0, 1). Then,

P (Z > m+ α) =

{
e−

α
8 α > m

e−
α2

8m α ⩽ m.

Proof. Suppose that X is sub-exponential random variable with parameters (ν, b) and ex-
pectation µ. Applying well known tail bounds for sub-exponential random variables (e.g.



CHAPTER 4. LEARNING COMPETITIVE EQUILIBRIA IN EXCHANGE
ECONOMIES WITH BANDIT FEEDBACK 90

[214]) yields:

P (X > µ+ α) =

{
e−

α2

2ν2 0 ⩽ α ⩽ ν2

b
, and

e−
α
2b α > ν2

b
.

The lemma follows from the fact that a χ2
m random variable is sub-exponential with param-

eters (ν, b) = (2, 4). ■

Lemma 4.7.2. (Lower bound for normal distributions) Let Z be a random variable Z ∼
N (0, 1), then P (Z > t) ⩾ 1

t+
√
t2+4

√
2
π
e−

t2

2 .

Proof. First, from Abramowitz et al. [2] (7.1.13) we have,

ex
2

∫ ∞

x

e−t2dt ⩾
1

x+
√
x2 + 2

.

Set t =
√
2x, then the above equation yields:

P (Z > t) =
1√
2π

∫ ∞

t

e−
x2

2 dx ⩾
1

t+
√
t2 + 4

√
2

π
e−

t2

2 ,

which completes the proof. ■

Lemma 4.7.3. (Azuma-Hoeffding inequality[214]) Let (Zs)s⩾0 be a super martingale w.r.t.
a filtration (Ft)t⩾0. Let (Bt)t⩾0 be predictable processes w.r.t. (Ft)t⩾0, such that |Zs−Zs−1| ⩽
Bs for all s ⩾ 1 almost surely. Then for any δ > 0,

P

ZT − Z0 ⩽

√√√√2 log

(
1

δ

) T∑
t=1

B2
t

 ⩾ 1− δ.

Lemma 4.7.4. ∀x ∈ [0, c], c > 0, we have x ⩽ c
log(1+c)

log(1 + x).

Proof. The result follows immediately from the fact that the function f(x)
def
= x

log(1+x)
is

non-decreasing on (0,∞). ■

Lemma 4.7.5. (Lemma 1, Filippi et al. [84]) Let (Fk, k ⩾ 0) be a filtration, (mk; k ⩾
0) be an Rd-valued stochastic process adapted to (Fk). Assume that ηk is conditionally
sub-Gaussian in the sense that there exists some R > 0 such that for any γ ⩾ 0, k ⩾

1, E[exp(γηk)|Fk−1] ⩽ exp
(

γ2R2

2

)
almost surely. Then, consider the martingale ξt =∑t

k=1mk−1ηk and the process Mt =
∑t

k=1mk−1m
⊤
k−1. Assume that with probability one, the

smallest eigenvalue of Md is lower bounded by some positive constant λ0, and that ∥mk∥2 ⩽
cm almost surely for any k ⩾ 0. Then, the following holds true: for any 0 < δ < min(1, d/e)
and t > max(d, 2), with probability at least 1− δ,

∥ξt∥M−1
t

⩽ κR
√
2d log(t) log(d/δ),

where κ =
√

3 + 2 log(1 + 2 c2m
λ0
).
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4.8 Appendix: Bounding LCE

First, consider any round t. We will let Ft
def
= σ

(
{(xis, yis)

n,t−1
i=1,s=1}}

)
denote the σ-algebra

generated by the observations in the first t − 1 rounds. Clearly, {Ft}t⩾0 is a filtration. We
will denote Et[·|Ft] = Et[·] to be the expectation when conditioning on the past observations

up to round t− 1. Similarly, define Pt(·)
def
= P (·|Ft) = E[1(·)|Ft].

Recall that {δt}t⩾0 are inputs to the algorithm. Similarly, let {δ2t}t⩾0 be a sequence. We
will specify values for both sequences later in this proof. Given these, further define the
following quantities on round t:

β1t
def
=

2

Cµ

κσ
√

2m log(t)

√
log

(
m

δt

)

β2t
def
=
√
αt(m+ γ2t) where, γ2t

def
= max

(
8 log

(
1

δ2t

)
,

√
8m log

(
1

δ2t

))
β3t

def
= Lµ(β1t + β2t).

Here, recall that Lµ is the Lipschitz constant of µ(·), Cµ is such that Cµ
def
= infθ∈Θ,x∈X µ̇

(
θ⊤ϕ(x)

)
,

and αt is a sequence that is defined and used in Algorithm 7.
Next, we consider the following two events:

Ait
def
= {∥θ∗i − θ̄it∥Qit

⩽ β1t},

Bit
def
= {∥θ̄it − θit∥Qit

⩽ β2t}.

where Qit
def
=
∑t−1

s=1 ϕ(xis)ϕ(xis)
⊤ is a design matrix that corresponding to the first t − 1

steps.
Lastly, define

ρit(x)
def
= ∥ϕ(x)∥Q−1

it
=
√
ϕ⊤(x)Q−1

it ϕ(x),

and
Sit

def
= {x ∈ X : ui(x

∗
it)− ui(x) ⩾ β3tρit(x)} ,

where x∗
it = argmaxy∈X ,p⊤

t y⩽p⊤
t ei

ui(y). Here, we used X to denote the set of feasible alloca-
tions for one agent: {x ∈ Rm : 0 ⩽ x ⩽ 1}.

Intuitively, x̃it is the best true optimal affordable allocation for agent i in round t under
the price function pt. Since the set {y ∈ X ,p⊤

t y ⩽ p⊤
t ei} is a compact set, the maximum is

well defined.
Now we begin our analysis with the following lemmas.

Lemma 4.8.1. For any round t > t0, Pt(Ait) ⩾ 1− δ1t.
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Proof. Define function git(θ) =
∑t−1

s=1 µ
(
θ⊤ϕ(xis)

)
ϕ(xis). Then by the fundamental theorem

of calculus, we have
git(θit)− git(θit) = Git(θ

∗
i − θ̄it),

where Git =
∫ 1

0
∇git

(
sθ∗i + (1− s)θ̄it

)
ds, and

∇git(θ) =
t−1∑
s=1

ϕ(xis)ϕ(xis)
⊤µ′(θ⊤ϕ(xis)).

By the definition of Cµ and Qit, we have that Git ⪰ CµQit ⪰M · I, where the last inequality
follows due to the initialisation scheme. Therefore, Git is invertible and moreover,

G−1
it ⪯

1

Cµ

Q−1
it . (4.7)

We can write,
θ∗i − θ̄it = G−1

it

(
git(θit)− git(θ̄it)

)
. (4.8)

Therefore, we have, (
θ∗i − θ̄it

)⊤
Qit

(
θ∗i − θ̄it

)
=
(
git(θit)− git(θ̄it)

)⊤
G−1

it QitG
−1
it

(
git(θit)− git(θ̄it)

)
⩽

1

C2
µ

(
git(θit)− git(θ̄it)

)
Q−1

it

(
git(θit)− git(θ̄it)

)
=

1

C2
µ

∥∥(git(θit)− git(θ̄it))∥∥Q−1
it
,

where the first equality follows from Eq (4.7), and the inequality follows from Eq (4.8).
Therefore,

∥θ∗i − θ̄it∥Qit
⩽

1

Cµ

∥∥(git(θit)− git(θ̄it))∥∥Q−1
it

⩽
2

Cµ

∥∥(git(θit)− git(θ̄MLE
it )

)∥∥
Q−1

it

=
2

Cµ

∥∥∥∥∥
t−1∑
s=1

ϕ(xis)(Yis − µ
(
ϕ(xis)

⊤θ∗i
)
)

∥∥∥∥∥
Q−1

it

.

where the second inequality is from the triangle inequality, and the last equality is from the
definition of θMLE

it and git.
Let Ait denote the event that∥∥∥∥∥

t−1∑
s=1

ϕ(xis)(Yis − µ
(
ϕ(xis)

⊤θ∗i
)
)

∥∥∥∥∥
Q−1

it

⩽ κσ
√
2m log(t)

√
log

(
d

δt

)
,

then we have Ait holds with probability at least δt by Lemma 4.7.5.
■
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Lemma 4.8.2. For any round t > t0, Pt(Bit) ⩾ 1− δ2t.

Proof. First, recall that Bit = {∥θ̄it − θit∥Qit
⩽ β2t}. We can now write,

P (Bc
it) = P (∥θit − θ̄it∥Qit

> β2t)

⩽ P (∥θ′it − θ̄it∥Qit
> β2t)

= P (∥θ′it − θ̄it∥α−1
t Qit

> α
− 1

2
t β2t)

= P (
√
Z >

√
Mtγ2t),

where Z =
(
θit − θ̄it

)⊤
α−2
t Qit

(
θit − θ̄it

)
. The first step simply uses the fact that since θ̄it

is already inside Θ (see line 17 in Algorithm 1), projecting θ′it to be inside Θ after sampling
only brings it even closer to θ̄it.

Note that Z is a χ2
m random variable. This follows from the fact that

θit ∼ N (θ̄it, α
2
tQ

−1
it ),

therefore we have
α−1
t Q

1/2
it

(
θit − θ̄it

)
∼ N (0, Im).

Denote y = α−1
t Q

1/2
it

(
θit − θ̄it

)
, then Z = y⊤y is a χ2

m random variable.

Therefore, by Lemma 4.7.1, and the definition that γ2t = max
(
8 log( 1

δ2t
),
√

log( 1
δ2t
)
)
, we

have
P (Bc

it) = P (Z > n+ γ2t) ⩽ δ2t,

which completes the proof. ■

Lemma 4.8.3. Let x be arbitrary such that x ∈ X . Then,

Pt(uit(x) > ui(x)|Ait) ⩾ q0,

with q0 =
√

2
π

1√
2+

√
6
1
e
≈ 0.075.

Proof. First, notice that

uit(x) > ui(x) ⇐⇒ µ
(
θ⊤itϕ(x)

)
> µ

(
(θ∗i )

⊤ϕ(x)
)

⇐⇒ θ⊤itϕ(x) > (θ∗i )
⊤ϕ(x)

⇐⇒
(
θit − θ̄it

)⊤
ϕ(x)

αtρit(x)
>

(
θ∗i − θ̄it

)⊤
ϕ(x)

αtρit(x)
.
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Since θit ∼ N (θ̄it, α
2
tQ

−1
it ), we have(

θit − θ̄it
)⊤
ϕ(x) ∼ N (0, α2

tϕ(x)
⊤Q−1

it ϕ(x)), =⇒
(
θit − θ̄it

)⊤
ϕ(x) ∼ N (0, α2

tρ
2
it(x)).

=⇒
(
θit − θ̄it

)⊤
ϕ(x)

αtρit(x)
∼ N (0, 1).

From the above we have that

Pt (uit(x) > ui(x)|Ait) = Pt

(
Z >

(
θit − θ̄it

)⊤
ϕ(x)

αtρit(x)

∣∣∣∣Ait

)
,

where Z ∼ N (0, 1) is sampled independently of the observations, since the randomness
in Algorithm 7 can be assumed to be independent of the randomness in the observations.
Therefore, under the event Ait,∣∣∣∣∣

(
θit − θ̄it

)⊤
ϕ(x)

αtρit(x)

∣∣∣∣∣ =
∣∣∣∣∣∣
(
θit − θ̄it

)⊤
Q

1
2
itQ

− 1
2

it ϕ(x)

αtρit(x)

∣∣∣∣∣∣
⩽
∥θit − θ̄it∥Qit

∥ϕ(x)∥Q−1
it

αtρit(x)

⩽
βit
αt

=

√
8

α0

.

Here, the first inequality follows from the definition of the matrix norm and the definition
of Ait, and the second inequality follows from the definition of β1t.

Therefore, by Lemma 4.7.2, we have

Pt(uit(x) > ui(x)|Ait)

= PZ∼N (0,1)(Z >

√
8

α0

)

⩾

√
2

π

1√
8/α2

0 +
√

4 +
√

8/α2
0

e
− 4

α2
0 .

Setting α2
0 = 4, we have

Pt (uit(x) > ui(x)|Ait) ⩾

√
2

π

1√
2 +
√
6

1

e
≈ 0.075,

which completes the proof. ■

Lemma 4.8.4. Let θ1, θ2 ∈ Θ ∈ Rm. Let Q ⪰ 0, Q ∈ Rm×m be a positive semi-definite
matrix, and ρQ(x) =

√
ϕ(x)⊤Q−1ϕ(x). Then,∣∣µ(θ⊤1 ϕ(x))− µ(θ⊤2 ϕ(x))∣∣ ⩽ Lµ∥θ1 − θ2∥Q · ρQ(x).
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Proof. This follows from the Lipschitz properties of µ and the following simple calculations:∣∣µ(θ⊤1 ϕ(x))− µ(θ⊤2 ϕ(x))∣∣ ⩽ Lµ|(θ1 − θ2)⊤ϕ(x)|
= Lµ|(θ1 − θ2)⊤Q

1
2Q− 1

2ϕ(x)|
⩽ Lµ∥θ1 − θ2∥Q∥ϕ(x)∥Q−1

= Lµ∥θ1 − θ2∥Q · ρQ(x).

■

Lemma 4.8.5. For any round t > t0, Pt(xit /∈ Sit) ⩾ q0(1− δt)− δ2t.

Proof. First, when event Bit holds, by lemma 4.8.4, we have that for all x,

|uit(x)− ūit(x)| ⩽ Lµβ2tρit(x).

Note that by definition, uit(x) = µ
(
(θit)

⊤ϕ(x)
)
, and ūit(x) = µ

(
(θ̄it)

⊤ϕ(x)
)
. Therefore,

ūit(x)− uit(x) > −Lµβ2tρit(x). (4.9)

On the other side, under event Ait, by lemma 4.8.4, we have that for all x,

|ui(x)− ūit(x)| ⩽ Lµβ1tρit(x). (4.10)

Moreover, recall that by definition for any x ∈ Sit,

ui(x
∗
it)− ui(x) ⩾ β3tρit(x). (4.11)

Therefore, consider any x ∈ Sit, and under the condition that Ait ∩ Bit ∩ {uit(x∗
it) >

ui(x
∗
it)}, we have

uit(x
∗
it)− uit(x) > ui(x

∗
it)− uit(x)

= (ui(x
∗
it)− ui(x)) + (ui(x)− ūit(x)) + (ūit(x)− uit(x))

> 0,

(4.12)

where the last inequality follows from combining equations Eq (4.9), Eq (4.10), Eq (4.11)
and the definition of β3t. Hence, Eq (4.12) implies that, under the same condition, xit /∈ Sit
since by construction, xit maximizes uit under the budget, thus

uit(xit) ⩾ uit(x
∗
it),

This further implies that,

Pt(xit /∈ Sit) ⩾ Pt (uit(x
∗
it) > uit(x),∀x ∈ Sit)

⩾ Pt (uit(x
∗
it) > uit(x),∀x ∈ Sit|Ait ∩Bit{ui(x∗

it) > ui(x)})



CHAPTER 4. LEARNING COMPETITIVE EQUILIBRIA IN EXCHANGE
ECONOMIES WITH BANDIT FEEDBACK 96

× P (Ait ∩Bit ∩ {ui(x∗
it) > ui(x)})

= P (Ait ∩Bit ∩ {ui(x∗
it) > ui(x)})

⩾ P (Ait ∩ {ui(x∗
it) > ui(x)})− P (Bc

it)

= P ({ui(x∗
it) > ui(x)}|Ait)P (Ait)− P (Bc

it)

⩾ q0(1− δt) + δ2t.

Here, the second and third inequality both from the law of total probability and rearranging
terms, and the last inequality follows from Lemma 4.8.1, Lemma 4.8.2 and Lemma 4.8.3,
which completes the proof. ■

Lemma 4.8.6. For t ⩾ max(t0, t
′
0),

Et[ℓit] ⩽
5

q0
β3tEt[ρit(xit)] + δt + δ2t.

Here, ℓit = (ui(x
∗
it)− ui(xit))

+, and t′0 is chosen such that, ∀t > t′0, δt <
1
4
, δ2t <

q0
4
.

Proof. First, define
x′
it = argmin

x:p⊤t ⩽p⊤t ei,x/∈Sit

ρit(x).

This implies that,

E
t
[ρit(xit)] ⩾ E

t
[ρit(xit)|xit /∈ Sit]P (x /∈ Sit) ⩾ ρit(x

′
it)P (x /∈ Sit).

Therefore, by Lemma 4.8.5, we have

ρit(x
′
it) ⩽

Et[ρit(xit)]

q0(1− δt)− δ2t
.

Select t′0 such that, ∀t ⩾ t′0, δt =
1
4
, and δ2t ⩽

q0
4
, then we have:

ρit(x
′
it) ⩽

2

q0
E
t
[ρit(xit)].

Also, under Ait ∩Bit,

∥θ∗i − θit∥Qit
⩽ ∥θ∗i − θ̄it∥Qit

+ ∥θ̄it − θit∥Qit
⩽ β1t + β2t,

where the first inequality follows from triangle inequality, and the second one follows from
the definitions of Ait and Bit. Hence,

|µit(x)− µi(x) ⩽ Lµ(β1t + β2t)ρit(x) = β3tρit(x).

Therefore, we have

ℓit = ui(x
∗
it)− ui(xit)
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= ui(x
∗
it)− ui(x′

it) + ui(x
′
it)− ui(xit)

⩽ 2β3tρit(x
′
it) + β3tρit(xit)

⩽
4

q0
β3t E[ρit(xit)] + β3tρit(xit).

which further yields

Et[ℓit] ⩽ E
t
[ℓit|Ait ∩Bit] + E

t
[ℓit|Ac

it ∪Bc
it]P (A

c
it ∪Bc

it)

⩽
4

q0
β3t E[ρit(xit)] + β3t E

t
[ρit(xit)] + δt + δ2t

⩽
5

q0
β3tEt[ρit(xit)] + δt + δ2t,

(4.13)

which completes the proof. ■

Lemma 4.8.7. Let δ′ > 0. Define LiT =
∑T

t=1 ℓit. Then, with probability at least 1− δ′,

LiT ⩽
T∑
t=1

(δt + δ2t) + Õ

(
m2

√
M

√
T

(
log(T ) + log

(
1

δ′

)))
Proof. First, define for s > 1,

uis = ℓis −
5β3s
q0

ρis(xis)− (δs + δ2s),

and vit =
∑t

s=1 uis, with vi0 = 0 and ui0 = 0. We show that {vit}, t ⩾ 0 is a super-martingale
with respect to the filtration (Ft)t⩾0.

First,

E
t
[uit] = E

t
[ℓit]−

5β3t
q0

E
t
[ρit(xit)]− (δt + δ2t) ⩽ 0.

Moreover,

|vit − vi,t−1| ⩽ |ℓit|+
5β3t
q0
|ρit(xit)|+ (δt + δ2t)

⩽ 1 +
5β3t
q0

∥ϕ(1)∥2√
M

+ 1

⩽
7β3t
q0

∥ϕ(1)∥2√
M

≜ Dt.

Therefore, by Lemma 4.7.3, with probability at least 1− δ′, we have that

viT − vi,0 ⩽

√√√√s log

(
1

δ′

T∑
t−1

D2
t

)
⩽

7β3t
q0
∥ϕ(1)∥2

√
2 log( 1

δ′
)

M
T.
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Therefore, we have

LiT =
T∑

s=1

ℓis ⩽
T∑
t=1

(δt + δ2t) +
5β3t
q0

T∑
t=1

ρit(xt) +
7β3t
q0
∥ϕ(1)∥2

√
2 log( 1

δ′
)

M
T. (4.14)

Now it remains to bound
∑T

t=1 ρit(xt). Since Qit ⪰ MI, by the definition of ρit(xit), we
have

ρitxit ⩽
∥ϕ(1)∥2√

M
.

Hence, by Lemma 4.7.4 and rearranging terms, we have

T∑
t=t0

ρ2it(xit) ⩽
∥ϕ(1)∥22
M

1

log
(
1 + ∥ϕ(1)∥2√

M

) T∑
t=t0

log
(
1 + ϕ⊤(xit)Q

−1
it ϕ(xit)

)
. (4.15)

Also notice that,

T∑
t=t0

log
(
1 + ϕ⊤(xit)Q

−1
it ϕ(xit)

)
= logΠT

t=t0

(
1 + ∥ϕ(xit)∥2Q−1

it

)
= log

det(QiT )

det(Qi,t0)
.

Note that the trace of Qi,t+1 is upper-bounded by t · ∥ϕ(1)∥2, then given that the trace
of the positive definite matrix QiT is equal to the sum of its eigenvalues, we have that
det(QiT ) ⩽

(
t ∥ϕ(1)∥22

)m
. Moreover, det(Qi,t0) ⩾ (M)m, therefore,

T∑
t=t0

log
(
1 + ϕ⊤(xit)Q

−1
it ϕ(xit)

)
⩽ m log

(
∥ϕ(1)∥22T

M

)
.

Combining with Eq (4.15), and applying Cauchy-Schwartz inequality, we have

T∑
t=t0

ρit(xit) ⩽

√√√√T

T∑
t=t0

ρ2it(xit) ⩽
√
T

√√√√∥ϕ(1)∥22
M

m

log
(
1 + ∥ϕ(1)∥2√

M

) log

(
∥ϕ(1)∥22T

M

)
. (4.16)

Putting together Eq (4.14) and Eq (4.16), with the fact that ∥ϕ(1)∥2 = O(
√
m), e.g.

∥ϕ(1)∥2 ⩽ cϕ
√
m, we have that with probability at least 1− δ′,

LiT ⩽
T∑
t=1

(δt + δ2t) +
β3t
q0

√
T√
M

5cϕm

√√√√ 1

log
(
1 + ∥ϕ(1)∥2

m

) log

(
∥ϕ(1)∥22T

M

)
+ 7cϕ

√
m

√
2 log(

1

δ′
)


=

T∑
t=1

(δt + δ2t) + Õ

(
m2

√
M

√
T

(
log(T ) + log

(
1

δ′

)))
,

where the last step comes from the fact that β3t = Õ(m). This completes the proof. ■
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Proof of Theorem 4.4.1 for LCE

Corollary 4.8.8. With probability at least 1− δ′,

LCE
T ⩽ n

T∑
t=1

(δ1t + δ2t) + Õ

(
n
m2

√
M

√
T

(
log(T ) + log(

1

δ′
)

))
Proof. This a direct result from Lemma 4.8.7 and the definition of LCE

T : With probability
at least 1− δ′,

LCE
T =

n∑
i=1

T∑
t=1

(
max

y:p(y)⩽p(ei)
ui(y)− ui(xit)

)+

⩽ n
T∑
t=1

(δt + δ2t) + Õ

(
n
m2

√
M

√
T

(
log(T ) + log

(
1

δ′

)))
.

■

Proof. Choose δt = δ2t =
2δ

nπ2t2
. Then,

T∑
t=1

(δt + δ2t) ⩽
2

3
δ.

Also choose δ′ = δ
3
, then by Corollary 4.8.8, with probability at least 1− δ,

LCE
T = O

(
n
m2

√
M

√
T

(
log

(
δ

3

)
+ log(T ))

))
.

■

Proof of Theorem 4.4.2 for LCE

Proof. Choose δ1t = δ2t = δ′ = 1
T
. Denote the event where LCE

T = O
(
n m2

√
M

√
T
(
log
(
δ
3

)
+ log(T ))

))
holds as E .

Then, by Lemma 4.8.7,

E[LCE
T ] = E[LCE

T |E ] + E[LCE
T |Ec]P (Ec) ⩽ 2 +O

(
n
m2

√
M

√
T

(
log

(
δ

3

)
+ log(T ))

))
.

where M ⩾ m. This completes the proof. ■
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4.9 Appendix: Bounding LFD

Recall that the definition of ℓFD is directly based on the requirements of Pareto efficiency and

fair share: ℓFD(x)
def
= max

(
ℓPE(x), ℓSI(x)

)
, where ℓPE(x) = minx′∈PE

∑n
i=1 (ui(x

′
i)− ui(xi))

+;

and ℓSI(x) =
∑n

i=1 (ui(ei)− ui(xi))
+.

To bound LFD, we first provide a useful lemma which shows that ℓSI is a weaker notion
than ℓCE.

Lemma 4.9.1. For any allocation x and price p, ℓSI(x) ⩽ ℓCE(x, p).

Proof. This simply uses the fact that an agent’s endowment is always affordable under any
price vector p. Therefore,

ℓSI(x) =
n∑

i=1

(ui(ei)− ui(xi))
+

⩽
n∑

i=1

(
max

y:p⊤y⩽p⊤ei
ui(y)− ui(x)

)+

,∀p

= ℓCE(x, p),

■

Having lemma 4.9.1 at hand, the key remaining task is to bound ℓPE. We will show
that this can be achieved by an analogous analysis as in Section 4.8, but with some key
differences.

First, we define S̃it (in comparison to Sit used in Section 4.8):

S̃it
def
= {x ∈ X : ui(x

∗
i )− ui(x) ⩾ β3tρit(x)} ,

where x∗ ∈ Rn×m is the unique equilibrium allocation. Note that S̃it shares a similar spirit
as Sit, which is used in Section 4.8, but with a different referencing point x∗.

We show a key lemma which provides a lower bound on P (x ̸∈ S̃it).

Lemma 4.9.2. For any round t > t0, Pt(xit /∈ S̃it) ⩾ q0(1− δt)− δ2t.

Proof. First, when event Bit holds, by lemma 4.8.4, we have that for all x,

|uit(x)− ūit(x)| ⩽ Lµβ2tρit(x).

Note that by definition, uit(x) = µ
(
(θit)

⊤ϕ(x)
)
, and ūit(x) = µ

(
(θ̄it)

⊤ϕ(x)
)
. Therefore,

ūit(x)− uit(x) > −Lµβ2tρit(x). (4.17)

On the other side, under event Ait, by lemma 4.8.4, we have that for all x,

|ui(x)− ūit(x)| ⩽ Lµβ1tρit(x). (4.18)
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Moreover, recall that by definition for any x ∈ S̃it,

ui(x
∗
i )− ui(x) ⩾ β3tρit(x). (4.19)

Therefore, consider any x ∈ S̃it, and under the condition that Ait ∩ Bit ∩ {uit(x∗
i ) >

ui(x
∗
i )}, we have

uit(x
∗
i )− uit(x) > ui(x

∗
i )− uit(x)

= (ui(x
∗
i )− ui(x)) + (ui(x)− ūit(x)) + (ūit(x)− uit(x))

> 0,

(4.20)

where the last inequality follows from combining equations Eq (4.17), Eq (4.18), Eq (4.19)
and the definition of β3t. Moreover, recall that xit maximizes uit under the budget, thus

uit(xit) ⩾ uit(x
∗
i ),

Therefore, Eq (4.20) implies that, xit /∈ S̃it. This further implies,

Pt(xit /∈ S̃it) ⩾ Pt

(
uit(x

∗
i ) > uit(x),∀x ∈ S̃it

)
⩾ Pt

(
uit(x

∗
i ) > uit(x),∀x ∈ S̃it|Ait ∩Bit{ui(x∗

it) > ui(x)}
)

· P (Ait ∩Bit ∩ {ui(x∗
it) > ui(x)})

= P (Ait ∩Bit ∩ {ui(x∗
i ) > ui(x)})

⩾ P (Ait ∩ {ui(x∗
i ) > ui(x)})− P (Bc

it)

= P ({ui(x∗
i ) > ui(x)}|Ait)P (Ait)− P (Bc

it)

⩾ q0(1− δt) + δ2t.

Here, the second and third inequality both from the law of total probability and rearranging
terms, and the last inequality follows from Lemma 4.8.1, Lemma 4.8.2 and Lemma 4.8.3,
which completes the proof. ■

Lemma 4.9.3. At any round t > t0, define x′′
it

def
= argminx̸∈S̃it,p⊤

t y⩽p⊤
t ei

ρit(xit), then we have

ℓPE(xt) ⩽
∑
i∈[n]

bPEit ,

with probability at least 1− δt − δ2t, and bPEit = 2β3tρit(x
′′
it) + β3tρit(xit).

Proof. Begin with the definition of ℓPE, we have

ℓPE(xt) = min
x∈PE

∑
i∈[n]

(ui(xi)− ui(xit))
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⩽
∑
i∈[n]

(ui(x
∗
i )− ui(xit))

=
∑
i∈[n]

(ui(x
∗
i )− ui(x′′it)) +

∑
i∈[n]

(ui(x
′′
i )− ui(xit))

⩽ β3t
∑
i∈[n]

ρit(x
′′
it) +

∑
i∈[n]

(ui(x
′′
i )− ui(xit)) ,

where the last inequality follows from this definition. Moreover, we have

ui(x
′′
it) ⩽ uit(x

′′
it) + β3tρit(x

′′
it),

and
ui(xit) ⩾ uit(xit)− β3tρit(xit).

under the event Ait ∩Bit, by Eq (4.17) and Eq (4.18). Putting these together yields

ℓPE(xt) ⩽ 2β3t
∑
i∈[n]

ρit(x
′′
it) + β3t

∑
i∈[n]

ρit(xit)
def
=
∑
i∈[n]

bPEit ,

which completes the proof. ■

Now we show that the above result leads to the lemma below, which shows a analogous
guarantee as we obtained in lemma 4.8.6.

Lemma 4.9.4. For t ⩾ max(t0, t
′
0),

Et[
∑
i∈[n]

ℓFDit ] ⩽
5

q0
β3tEt[

∑
i∈[n]

ρit(xit)] + n(δt + δ2t).

Here, t′0 is chosen such that, ∀t > t′0, δt <
1
4
, δ2t <

q0
4
.

Proof. First, note that, by the definition of x′′
it,

E
t
[ρt(xit)] ⩾ E

t
[ρt(xit)|xit /∈ Sit]P (x /∈ Sit) ⩾ ρit(x

′′
it)P (x /∈ Sit).

Moreover, combining the above with Lemma 4.9.2, we have

ρit(x
′′
it) ⩽

Et[ρit(xit)]

q0(1− δt)− δ2t
.

Select t′0 such that, ∀t ⩾ t′0, δt =
1
4
, and δ2t ⩽

q0
4
, then we have:

ρit(x
′′
it) ⩽

2

q0
E
t
[ρit(xit)].
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Also, under Ait ∩Bit,

∥θ∗i − θit∥Qit
⩽ ∥θ∗i − θ̄it∥Qit

+ ∥θ̄it − θit∥Qit
⩽ β1t + β2t,

where the first inequality follows from triangle inequality, and the second one follows from
the definitions of Ait and Bit. Hence,

|µit(x)− µi(x) ⩽ Lµ(β1t + β2t)ρit(x) = β3tρit(x).

Therefore, we have ∑
i∈[n]

bPEit ⩽ 2β3t
∑
i∈[n]

ρit(x
′′
it) + β3t

∑
i∈[n]

ρit(xit)

⩽
4

q0
β3t E[

∑
i∈[n]

ρit(xit)] + β3t
∑
i∈[n]

ρit(xit).

Moreover, by Lemma 4.9.1 and eq (4.13) which holds under the same condition of Ait∩Bit,
we have ∑

i∈[n]

ℓFDit ⩽
∑
i∈[n]

max{ℓPEit , ℓSIit }

⩽ 2β3t
∑
i∈[n]

ρit(x
′′
it) + β3t

∑
i∈[n]

ρit(xit)

⩽
4

q0
β3t E[

∑
i∈[n]

ρit(xit)] + β3t
∑
i∈[n]

ρit(xit).

Therefore, we have

Et[
∑
i∈[n]

ℓFDit ] ⩽ Et[
∑
i∈[n]

bPEit ] ⩽
4

q0
β3t E[

∑
i∈[n]

ρit(xit)] + β3t E
t
[
∑
i∈[n]

ρit(xit)] + n(δt + δ2t)

⩽
5

q0
β3tEt[

∑
i∈[n]

ρit(xit)] + n(δt + δ2t),

which completes the proof. ■

With the above lemmas at hand, we are now ready to provide a proof of Theorem 4.4.1
for LFD

T .

Proof of Theorem 4.4.1 for LFD

Proof. Lemma 4.9.4 shows a analog guarantee as we obtained in lemma 4.8.6 for the LFD loss
function. Therefore, following the same steps in lemma 4.8.7, we have that with probability
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at least 1− δ′ where δ′ will be specified momentarily,

LFD
T =

T∑
t=t0

n∑
i=1

ℓFDit

⩽ n

T∑
t=1

(δt + δ2t) +
nβ3t
q0

√
T√
M

(
5cϕm

√√√√ 1

log
(
1 + ∥ϕ(1)∥2√

M

) log

(
∥ϕ(1)∥22T

M

)

+ 7c2ϕ
√
m

√
2 log(

1

δ′
)

)
= n

T∑
t=1

(δt + δ2t) + Õ

(
n
m2

√
M

√
T

(
log(T ) + log

(
1

δ′

)))
,

(4.21)

Choose δt = δ2t =
2δ

nπ2t2
. Then,

T∑
t=1

(δt + δ2t) ⩽
2

3
δ.

Also choose δ′ = δ
3
, then by Eq (4.21), with probability at least 1− δ,

LFD
T = O

(
nm2

√
M

√
T

(
log

(
δ

3

)
+ log(T ))

))
.

■

Proof of Theorem 4.4.2 for LFD

Proof. The theorem results follow from eq (4.21). Choose δ1t = δ2t = δ′ = 1
T
and denote the

event where LFD
T = O

(
nm2
√
M

√
T
(
log
(
δ
3

)
+ log(T ))

))
holds as E . Then,

E[LFD
T ] = E[LPE

T |E ] + E[LFD
T |Ec]P (Ec) ⩽ O

(
nm2

√
M

√
T

(
log

(
δ

3

)
+ log(T ))

))
,

where M ⩾ m. This completes the proof. ■

4.10 Appendix: Additional experimental details and

results

In this section, we present the simulation results with the Amdahl utilities, as described in
Section 3.7, and additional implementation details.

Figure 4.2 presents the simulation results for agents with the Amdahl’s utilities.
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Figure 4.2: The CE loss LCE
T vs the number of rounds T . evaluated with m = 2 resource

types and n = 8 agents and Amdahl’s utilities. The three figures correspond to fi = 0.2,
fi = 0.3, and fi = 0.5 (as in Section 3.7). All figures show results which are averaged over
10 runs, and the shaded region shows the standard error at each time T .

Empirically, we compute LCE by maximizing each agent’s utility subject to the budget
constraint. We approximate this by randomly sampling feasible allocations y from a simplex,
accept those that cost no more price than the agent’s endowment, lastly take the maximum.
We sampled up to 50 accepted samples in each round. All experiments are run on a AWS
EC2 p3.2xlarge machine.

4.11 Appendix: Further discussions

Further Background on Fair Division and Exchange Economies

Since the seminal work of Varian [207], fair division of multiple resource types has received
significant attention in the game theory, economics, and computer systems literature. We
provide more background on the related works in the fair division literature and their appli-
cations in this section.

Among the theoretical works in fair division, one of the most common perspectives on
this problem is as an exchange economy (or as a Fisher market, which is a special case of an
EE) [18, 19, 40, 58, 107, 160, 204, 207].

Fair allocation mechanisms have been deployed in many practical resource allocation tasks
when compute resources are shared by multiple users [224]. There have also been applications
of other market-based resource allocation schemes for data centers and power grids [42, 113,
143, 209, 219]. One line of work in this setting studied fair division when the resources in
question are perfect complements; some examples include dominant resource fairness and
its variants [68, 91, 92, 107, 152, 178]. Although the assumption of perfect complement
resource types leads to computationally simple mechanisms, in many practical applications,
there is ample substitutability between resources, and hence the above mechanisms can be
inappropriate. For example, in compute clusters, CPUs and GPUs are often interchangeable
for many jobs, albeit with different performance characteristics. Indeed, in this work, we
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in particular focused on the applications of EE and fair division mechanisms for computing
resource allocation.

Computation of the FD loss

We note that one main challenge for computing the FD loss is that we need to approximate
the Pareto Front and then take a minimum over it. To approximate it, even in the sim-
plest two agent two resource set up, this requires grid search on a 4D space which can be
computationally prohibitive. In our experiments, the dimensions are 15 (3 resources by 5
agents) and 16 (2 resources by 8 agents), for which grid search is not feasible. Given that
efficient computations over the Pareto frontier have remain a technical challenge, we focused
the evaluations on the CE loss in this work.

On the loss functions

We provide an example to demonstrate that the FD loss (4.3), while more interpretable than
the CE loss (4.2), may not capture all properties of an equilibrium.

For this consider the following example with n = 3 agents and m = 2 resources where
the endowments of agent 1, agent 2, and agent 3 are e1 = (0.45, 0.05), e2 = (0.45, 0.05), and
e3 = (0.1, 0.9) respectively. Their utilities are:

u1(x1) = 0.1x11 + x12, u2(x2) = 0.2x21 + x22, u3(x3) = x31 + 0.1x32.

The utilities of the three users if they were to simply use their endowment is, u1(e1) =
0.1 × 0.45 + 0.05 = 0.095, u2(e2) = 0.14, and u3(e3) = 0.19. We find that while agents 1
and 2 benefit more from the second resource, they have more of the first resource in their
endowments and vice versa for agent 3. By exchanging resources, we can obtain a more
efficient allocation.

The unique equilibrium prices for the two goods are p⋆ = (1/2, 1/2) and the allocations
are x⋆1 = (0, 0.5) for agent 1, x⋆2 = (0, 0.5) for agent 2, and x⋆3 = (1.0, 0.0) for agent 3. The
utilities of the agents under the equilibrium allocations are u1(x1) = 0.5, u2(x2) = 0.5, and
u3(x3) = 1.0. Here, we find that by the definition of CE, ℓPE(x⋆, p⋆) = 0. It can also be
verified that ℓFD(x⋆, p⋆) = 0.

In contrast, consider the following allocation for the 3 users: x1 = (0.35, 0.49) for agent
1, x2 = (0.35, 0.49) for agent 2, and x3 = (0.3, 0.02) for agent 3. Here, the utilities are
u1(x1) = 0.1 × 0.35 + 0.49 = 0.525, u2(x2) = 0.56, and u3(x3) = 0.3002. This allocation is
both PE (as the utility of one user can only be increased by taking resources from someone
else), and SI (as all three users are better off than having their endowments). Therefore,
ℓFD((x1, x2, x3)) = 0. However, user 3 might complain that their contribution of resource 2
(which was useful for users 1 and 2) has not been properly accounted for in the allocation.
Specifically, there do not exist a set of prices p for which ℓPE(x, p) = 0. This example
illustrates the role of prices in this economy: it allows us to value the resources relative to
each other based on the demand.
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Chapter 5

No-Regret Learning in
Partially-Informed Auctions

5.1 Introduction

Selling mechanisms play a crucial role in economic theory and have a wide range of applica-
tions across many industries [11, 79, 163, 164, 181]. Under the canonical mechanism design
model, buyers choose whether or not to buy items for sale based on their true values for
those items. This fundamental model, however, assumes that the buyers know exactly how
much they value the items for sale, which is often not the case.

One of the overriding reasons that a buyer may not know their true values is information
asymmetry: the seller may purposefully obfuscate information about an item for sale. For
example, the seller may hide information about the item in the hopes of better revenue [90].
Alternatively, information about the item may be private, and thus the seller may wish to
protect this sensitive information by only revealing partial information about the item. For
instance, in online advertising auctions, bids represent how much advertisers are willing to
pay to display their ad to a particular user. Historically, advertisers have bid based on
uniquely identifying information about users, but there has been a growing effort to protect
users’ privacy by obfuscating this sensitive information [80, 99, 123].

In these scenarios, the buyer only has partial information about the item for sale but still
must decide whether to make a purchase. This raises the question: how should a buyer
determine their purchase strategy with only incomplete item information?

We study posted-price auctions—a fundamental mechanism family that is appealingly
interpretable—with incomplete item information. In particular, the seller reveals obfuscated
(“masked”) information about the item using a fixed, unknown masking function. We study
an online setting where, at each round, a fresh item is drawn from an unknown distribution
(for example, a distribution over users visiting a webpage). The seller sets a price and the
buyer chooses whether to buy the item based on the incomplete information that the seller
provides. We propose no-regret learning algorithms for the buyer that achieve sub-linear
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Item distribution Prices Masking function h Regret

Known Adversarial SimHash h : [0, 1]d → {0, 1}ℓ O(
√
Tdℓ log(Tℓ/δ)) (Theorem 5.3.5)

Unknown Stochastic Arbitrary h : X → [n] O(
√
T (n log T/n + log 1/δ)) (Theorem 5.4.3)

Unknown Adversarial Arbitrary h : X → [n] Õ(T 2/3n1/3) (Remark 5.4.5)

Table 5.1: Summary of regret bounds which hold with probability at least 1− δ.

regret compared to an oracle buyer who has perfect knowledge of the item distribution as
well as the seller’s masking function.

Our results

We study no-regret learning with incomplete item information in two settings:

1. First, we propose an algorithm for a setting where the item distribution is known to
the buyer and the mask is a SimHash function mapping [0, 1]d to {0, 1}ℓ. In other
words, each item is defined by d real-valued features and the seller reveals ℓ bits about
the item to the buyer, as defined by a function that is unknown to the buyer. This
model has been studied from an applied perspective in the context of ad auctions [80].
We provide an algorithm with regret O(

√
Tdℓ log(Tℓ/δ)).

2. Next, we study a setting where the masking function is an arbitrary mapping from the
set of all items, denoted X , to a finite set of size n. We propose an online learning
algorithm with regret O(

√
T (n log T/n + log 1/δ)) when the prices are stochastic, where

T is the length of the horizon.

In the first setting where the masking function is a SimHash function mapping [0, 1]d

to {0, 1}ℓ, the domain of the masking function is of size n = 2ℓ, so our regret bound of
Õ((Tdℓ)1/2) is exponentially better than the latter regret bound.

We summarize these results in Table 5.1.

Related work

This work draws on several threads of research on designing auctions with incomplete infor-
mation, learning to bid, and privacy-preserving simple auctions.

Auction design with incomplete information. Auctions with incomplete value in-
formation have attracted much research attention. Several prior works have explored auc-
tion design where the information about the item may be incomplete to the buyer or the
seller [10, 31, 32, 82, 88, 149, 150, 185]. In particular, Ganuza [88] studied the incentives
of the auctioneer to release signals about the item to the buyers that refine their private
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valuations before a second-price auction. In their model, the seller reveals a noisy item
feature vector which is an unbiased estimator of the true one. Bergemann and Pesendorfer
[31] considered single-item multi-bidder auctions where the seller decides how accurately the
bidders can learn their valuations. However, all of this prior work is limited to offline set-
tings; they did not explore online purchase strategies that the buyer can adopt. To the best
of our knowledge, this work constitutes the first analysis of no-regret learning algorithms in
partially-informed posted-price auctions.

Learning to bid with an unknown value. Instead of focusing the problem from the
side of the auctioneer who aims to maximize revenue over repeated rounds, another active
line of research studies bidding strategies for the bidders when they do not know their
values [23, 66, 83, 218]. Feng et al. [83] considered a single-item multi-bidder setting where
the bidder learns to bid via partial feedback, and provide algorithms with regret rates against
the best fixed bid in hindsight. Dikkala and Tardos [66] explored a setting where bidders
need to experiment in order to learn their valuations. The key difference between this work
and ours is that our algorithms exploit the available “partial” information instead of having
zero knowledge about the item being sold. This partial information model allows us to trade
off between the amount of information revealed about the item and the regret. Moreover,
we compete with the best purchase policy, rather than the best fixed bid in hindsight.

Private auctions. Our theoretical model is motivated by recent work on designing privacy-
enhanced auctions for practical usage. An important application of these auctions is online
advertising, where the items being auctioned are user queries and the auctioner must trade
off between user privacy and revenue maximization [62, 80, 99, 123, 183]. Epasto et al.
[80] present a detailed exploration of Chrome’s Federated Learning of Cohorts (FLoC) API,
where user information is masked. Our contribution is to provide a formal treatment of such
auctions, including providing algorithms that have theoretical guarantees in the setting of
arbitrary masking functions that are unknown to the buyer.

5.2 Preliminaries

We begin by defining formally the setting we study for auctions with partial information.

Setup

We consider a setting where there is a single seller and a single buyer. There is a distribution
P over items which are elements of an abstract set X . The buyer has a bounded valuation,
v∗(x) ∈ [0, H] for every item x ∈ X and some H ∈ R+

1. The seller and buyer interact over

1The assumption that there is a bound on the maximum amount that the agents value the item is widely
made in prior research. In our main application—ad auctions—the value of an impression is typically very
cheap, so this assumption is mild.
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a series of T rounds. At each round t ∈ [T ], the seller draws an item xt
iid∼ P and sets a price

pt(xt) ∈ [0, H] for the item. The seller does not reveal xt to the buyer, but rather reveals
some partial information h(xt) ∈ Y where h : X → Y is a fixed “masking” function that
maps to an abstract set Y .

We assume that the price function pt does not give any more information about xt

than that is provided by the masking function h. In other words, if h(x) = h(x′), then
pt(x) = pt(x

′), which implies

E[v∗(x) | h(x), p(x)] = E[v∗(x) | h(x)]. (5.1)

The buyer uses a strategy st : Y × R → {0, 1} to decide whether to buy the item
given the partially revealed item information and the price. Here st(h(xt), pt(xt)) = 1 if
and only if the buyer buys the item. Letting bt = st(h(xt), pt(xt)), the buyer’s utility is
ut = bt(v

∗(xt)− pt(xt)) ∈ [−H,H]. We summarize this process below.

Procedure 2 Online model

1: for t = 1, 2, . . . , T do
2: Seller selects a price function pt : X → [0, H].
3: Item xt is sampled from P .
4: Seller publishes item information h(xt) and a price pt(xt).
5: Buyer decides whether or not to buy: bt = st(h(xt), pt(xt)) ∈ {0, 1}.
6: Buyer obtains reward ut = (v∗(xt)− pt(xt)) · bt.
7: if bt then // item is purchased
8: Buyer observes xt.
9: end if

10: end for

Example 5.2.1 (Advertising auctions). We instantiate our model in the context of advertis-
ing auctions, taking inspiration from Epasto et al. [80]. The seller is a platform and the buyer
is an advertiser. Each item x ∈ X describes a user who visits the platform. For example,
X = Rd might denote features that uniquely identify each user. On round t, the advertiser
has a value v∗(xt) for the opportunity to show the user xt an ad. In order to preserve user
privacy, the platform does not reveal xt to the advertiser, but rather some summary h(xt).
For example, Epasto et al. [80] study a setting where h is a SimHash function, so xt ∈ Rd

and h(xt) ∈ Rℓ for some ℓ < d. The platform sets a price pt(xt) which the advertiser pays
to show the user an ad.

We study this problem from the perspective of the buyer: how should they select the
strategy st at each round to maximize their utility? We study two settings: a setting where
the distribution P is unknown to the buyer and the prices are stochastic (Section 5.4) and
a model where P is known to the buyer with adversarial prices (Section 5.3).
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Regret and the optimal strategy

We measure the regret of the buyer in our online model with regard to the optimal strategy
s∗ of a myopic buyer2 who has perfect knowledge of the distribution P and the masking
function h, but not the realized item xt. To make this dependence on the environment clear,
in any single round, we use the notation s∗(h(x), p(x), h,P) to denote the optimal strategy
(we drop the subscript t for simplicity). More formally, s∗ maximizes the expected utility:

argmax
s∈S

E
x∼P

[(v∗(x)− p(x))s(h(x), p(x), h,P) | h(x)],

where S represents the set of all decision functions s(·) : Y × R× {h(·),P} → {0, 1}.

Definition 5.2.2. The buyer’s (expected) regret with respect to the optimal strategy s∗,
denoted RT , is defined as

E
[ T∑

t=1

(
v∗(xt)− pt(xt)

)
s∗ (h(xt), pt(xt), h(·),P)

−
(
v∗(xt)− pt(xt)

)
st (h(xt), pt(xt))

]
. (5.2)

In the following proposition, we identify the form of the optimal strategy s∗. The proof
is in Appendix 5.6.

Proposition 5.2.3. The strategy s∗ that maximizes Ex∼P [(v
∗(x)−p(x))s∗(h(x), p(x), h,P) |

h(x)] is

s∗(h(x), p(x), h,P) = 1

(
E

x∼P
[v∗(x) | h(x)] > p(x)

)
.

Even when the buyer has no information about the distribution P (Section 5.4), we show
that he can guarantee low regret with respect to s∗ with either stochastic or adversarial
prices, in polynomial per-round runtime. When the distribution P is known (Section 5.3),
we provide an algorithm with exponentially better regret.

5.3 Known item distribution

First, we focus on a specific class of masking functions, SimHash, motivated by recent prac-
tical applications in ad auctions [80]. Here, X is a feature space [0, 1]d and the masking
function h is a SimHash function that is unknown to the buyer. In other words, there are
ℓ unknown vectors w1, . . . ,wℓ ∈ Rd such that the masking function, denoted as hw with
w = (w1, . . . ,wℓ), is hw(x) = (sgn(w1 · x), . . . , sgn(wℓ · x))⊤.

We consider the setting where the distribution of the items is known to the buyer (for
example, via historical data). We provide an algorithm that achieves a regret Õ(

√
Tdℓ)

2A myopic buyer optimizes his utility separately in each round.
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even under adversarial prices. Since the masking function maps to a set of size n = 2ℓ, the
regret only depends logarithmically on n. As we detail in the subsequent Section 5.4, this
algorithm achieves exponentially better regret compared to the algorithm we present where
the distribution P over items is unknown and the masking function is arbitrary.

Algorithm 8 Explore-then-Commit (Known Distribution)

1: Input: horizon T , distribution P, d, ℓ ∈ N+, and δ ∈ (0, 1).
2: Compute t′ =

√
4Tdℓ log(ℓ/δ).

3: for t = 1, 2, . . . , t′ do // Exploration phase

4: Receive h(xt), price pt(xt) where xt
iid∼ P .

5: Make decision bt = 1 and observe xt.
6: end for

7: Use linear programming to compute ŵ = (ŵ1, . . . , ŵℓ) such that hŵ(xi) = hw(xi) for all
i ∈ [t′].

8: for t = t′ + 1, t′ + 2, . . . , T do // Exploitation phase

9: Receive hw(xt), price pt(xt) where xt
iid∼ P .

10: Obtain an estimate Ẑt of Ex∼P [v
∗(x) | x ∈ h−1

ŵ (hw(xt))] using the Integration Algo-
rithm by Lovász and Vempala [157].

11: Make decision bt = 1(Ẑt ⩾ pt(xt)).
12: end for

Algorithm 8 begins with an exploration phase of length t′ = Õ(
√
Tdℓ), during which the

buyer buys the item in each round. The algorithm then uses linear programming to solve
for separators ŵ = (ŵ1, . . . , ŵℓ), ŵj ∈ Rd for all j ∈ [ℓ], such that sgn(wj ·xi) = sgn(ŵj ·xi)
for all j ∈ [ℓ] and i ∈ [t′]. During the rest of the rounds t ∈ {t′ + 1, . . . , T}, the algorithm
exploits. Since the optimal strategy is to buy if Ex∼P [v∗(x) | hw(x) = hw(xt)] ⩾ p(xt)
(Prop. 5.2.3), the algorithm uses hw(xt) and ŵ = (ŵ1, . . . , ŵℓ) to compute an estimate of
Ex∼P [v∗(x) | hw(x) = hw(xt)].

The intuition behind the estimate is the following. Letting h−1
w (xt) = {x : hw(x) =

hw(xt)} (a convex polytope), we have that Ex∼P [v∗(x) | hw(x) = hw(xt)] = Ex∼P [v∗(x) | x ∈ h−1
w (hw(xt))].

Since the buyer does not know w, we cannot compute the set h−1
w (hw(xt)), but we can com-

pute the set h−1
ŵ (hw(xt)) using the estimated separators that we have obtained after the

exploration phase. Even still, the conditional expectation Ex∼P
[
v∗(x) | x ∈ h−1

ŵ (hw(xt))
]

may be challenging to compute in high dimensions. Therefore, we use a sampling algorithm
by Lovász and Vempala [157] to compute an estimate Zt of Ex∼P [v

∗(x) | x ∈ h−1
ŵ (hw(xt))].

The buyer buys the item if Zt ⩾ pt(xt).
To compute the estimate Zt, Lovász and Vempala [157] require that if π is the density

function of P , then v∗(x)π(x) is log-concave and “well-rounded.” Many well-studied distri-
butions are log-concave, including the normal, exponential, uniform, and beta distributions,
among many others. Moreover, every concave function that is nonnegative on its domain
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is log-concave. If v∗ and π are log-concave, then v∗(x)π(x) is also log-concave. For ex-
ample, the Cartesian product of single-dimensional log-concave distributions (exponential,
logistic, extreme value, Laplace, and beta distributions, among many others) is log-concave.
Log-concavity has also been widely-assumed in prior works in machine learning and high-
dimensional statistics [e.g., 20, 191].

The function v∗(x)π(x) is well-rounded if for any A ⊆ X , the distribution defined by

fπ(A) =
∫
A v∗(x)π(x)dx∫
X v∗(x)π(x)dx

is neither too spread out nor too concentrated. We include the formal

definition in Appendix 5.7 (Def. 5.7.1). Every log-concave function can be brought to a
well-rounded position by an affine transformation of the space in polynomial time [157].

Regret analysis. We now prove that the regret of Algorithm 8 is Õ(
√
Tdℓ). To do so, we

must contend with two sources of error: the fact that we use the learned linear separators
ŵ instead of w and the estimation error introduced by the sampling algorithm.

We begin our analysis by proving that for any y ∈ {0, 1}ℓ in the image of hw : X →
{0, 1}ℓ, the agent’s expected value conditioned on x ∈ h−1

ŵ (y) is close to its true expected

value conditioned on x ∈ h−1
w (y). In this section, we use the notation ϵ = ℓ

t′

(
d ln 2et′

d
+ ln 2ℓ

δ

)
.

Lemma 5.3.1. For any y ∈ {0, 1}ℓ, with probability at least 1− δ over x1, . . . ,xt′ ∼ P,∣∣E [v∗(x)|x ∈ h−1
ŵ (y)

]
− E

[
v∗(x)|x ∈ h−1

w (y)
]∣∣ ⩽ Hϵ.

Proof. We can decompose the set h−1
ŵ (y) as

h−1
ŵ (y) =

(
h−1
ŵ (y) ∩ h−1

w (y)
)
∪
(
h−1
ŵ (y) \ h−1

w (y)
)
.

We can therefore write

E
x∼P

[
v∗(x) | x ∈ h−1

ŵ (y)
]

=E
[
v∗(x) | x ∈

(
h−1
ŵ (y) ∩ h−1

w (y)
)]

· Pr
[
x ∈

(
h−1
ŵ (y) ∩ h−1

w (y)
)]

+E
[
v∗(x) | x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]

· Pr
[
x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]
.

Similarly, we can write

E
x∼P

[
v∗(x) | x ∈ h−1

w (y)
]

=E
[
v∗(x) | x ∈

(
h−1
ŵ (y) ∩ h−1

w (y)
)]

· Pr
[
x ∈

(
h−1
ŵ (y) ∩ h−1

w (y)
)]

+E
[
v∗(x) | x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]

· Pr
[
x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]
.
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Matching terms, we have that∣∣∣ E
x∼P

[
v∗(x) | x ∈ h−1

ŵ (y)
]
− E

[
v∗(x) | x ∈ h−1

w (y)
]∣∣∣

=
∣∣E [v∗(x) | x ∈ (h−1

ŵ (y) \ h−1
w (y)

)]
· Pr

[
x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]

− E
[
v∗(x) | x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]

·Pr
[
x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]∣∣ .

We know that x ∈
(
h−1
ŵ (y) \ h−1

w (y)
)
if and only if hŵ(x) = y and hw(x) ̸= y, which

means that hŵ(x) ̸= hw(x). The following claim bounds Pr[hŵ(x) = y and hw(x) ̸= y] ⩽
Pr[hŵ(x) ̸= hw(x)].

Claim 5.3.2. With probability 1− δ, Prx∼P [hŵ(x) ̸= hw(x)] ⩽ ϵ.

Proof of Claim 5.3.2. For a fixed i ∈ [ℓ], by the standard PAC learning generalization bound
in the realizable setting (e.g., Theorem 4.8 by Anthony and Bartlett [9]), we have that with
probability 1− δ

ℓ
,

Pr[sgn(wi · x) ̸= sgn(ŵi · x)] ⩽
1

t′

(
d ln

2et′

d
+ ln

2ℓ

δ

)
.

Therefore, with probability 1− δ,

Pr
x∼P

[hŵ(x) ̸= hw(x)]

=Pr[∃i ∈ [ℓ] such that sgn(wi · x) ̸= sgn(ŵi · x)] ⩽ ϵ,

as claimed. ■

By Claim 5.3.2 and the fact that v∗(x) ∈ [0, H], we therefore know that E
[
v∗(x) | x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]
·

Prx∼P
[
x ∈

(
h−1
ŵ (y) \ h−1

w (y)
)]
∈ [0, Hϵ]. By a symmetric argument, E

[
v∗(x) | x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]
·

Prx∼P
[
x ∈

(
h−1
w (y) \ h−1

ŵ (y)
)]
∈ [0, Hϵ]. Therefore, the lemma statement holds. ■

Lemma 5.3.1 guarantees that Ex∼P
[
v∗(x) | x ∈ h−1

ŵ (y)
]
is a good approximation of E [v∗(x) | x ∈ h−1

w (y)]
—which is the key quantity needed to compute the optimal policy (see Prop. 5.2.3). However,
this estimate may be difficult to compute when x is high dimensional, despite the fact that
P is known. The integration algorithm of Lovász and Vempala [157] allows us to estimate
it in polynomial time, as we summarize in the following lemma.

Lemma 5.3.3. Suppose that v∗(x)π(x) is log-concave and well-rounded. Then for any y ∈
{0, 1}ℓ, with probability at least 1− δ, we can compute a constant A in polynomial time such
that |A− Ex∼P [v∗(x) | x ∈ h−1

w (y)]| ⩽ Hϵ.
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Proof. By Lemma 5.3.1, with probability at least 1− δ/2,∣∣∣ E
x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

ŵ (hw(x))
]

− E
x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

w (hw(x))
]∣∣∣ ⩽ ϵH.

By definition

E
x̃∼P

[v∗(x̃) | x̃ ∈ h−1
ŵ (hw(x))]

=

∫
x̃∈h−1

ŵ
(hw(x))

v∗(x̃)π(x̃)dx̃.

Then, by Lovász and Vempala [157, Theorem 1.3], in polynomial runtime with probability
of at least 1− δ/2, we can compute a constant A, such that∣∣∣A− E

x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

ŵ (hw(x))
]∣∣∣

⩽ ϵ · E
x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

ŵ (hw(x))
]
⩽ ϵH.

By the triangle inequality and a union bound, we have that with probability of at least
1− δ, we can compute a value A such that∣∣∣A− E

x̃∼P

[
v∗(x̃) | x̃ ∈ h−1

w (hw(x))
]∣∣∣ ⩽ 2ϵH,

which completes the proof. ■

Lemma 5.3.4. In each round t ∈ {t′ + 1, . . . , T} of the exploitation phase in Algorithm 8,
with probability at least 1−δ, the expected instantaneous regret incurred in round t is at most

2Hℓ

t′

(
d ln

2et′

d
+ ln

ℓ · 2ℓ+2

δ

)
.

Proof. Given hw(xt) and price p(xt), denote the estimated value of Ex∼P
[
v∗(x) | x ∈ h−1

ŵ (hw(xt))
]

obtained using the sampling algorithm (Alg 8, step 10) as A(hw(xt)). For simplicity of nota-
tion, we denote the decision of the oracle policy as s∗ and the decision of the learned policy
as st:

s∗ = 1

(
E

x∼P

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
> p(xt)

)
,

st = 1

(
A(hw(xt)) > p(xt)

)
.

Now we bound the expected instantaneous regret in round t:

E
xt∼P

[(v∗(xt)− p(xt)) s
∗ − (v∗(xt)− p(xt)) st]
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= E
xt∼P

[(v∗(xt)− p(xt)) (s
∗ − st)] .

Let ∆ denote the difference ∆ = s∗−st, so ∆ ∈ {−1, 0, 1} is a random variable that depends
on xt. By the law of total expectation,

E
xt∼P

[(v∗(xt)− p(xt)) s
∗ − (v∗(xt)− p(xt)) st]

= E
xt∼P

[
E

x∼P

[
(v∗(x)− p(xt))∆ | x ∈ h−1

w (hw(xt))
]]

= E
xt∼P

[(
E

x∼P

[
v∗(x)|x ∈ h−1

w (hw(xt))
]
− p(xt)

)
∆
]
.

The variable ∆ is only nonzero when s∗ ̸= st. Let E denote the event where s∗ ̸= st and let
pE = Pxt∼P [E]. Then

E
xt∼P

[(v∗(xt)− p(xt)) s
∗ − (v∗(xt)− p(xt)) st]

⩽E
xt

[∣∣∣E
x

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
− p(xt)

∣∣∣ ∣∣∣ E] · pE
⩽E

xt

[∣∣∣E
x

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
− p(xt)

∣∣∣ ∣∣∣ E] .
By definition, when event E happens, we know that

A(hw(xt)) < p(xt) ⩽ E
x
[v∗(x) | x ∈ h−1

w (hw(xt))] or

E
x∼P

[v∗(x) | x ∈ h−1
w (hw(xt))] < p(xt) ⩽ A(hw(xt)),

where in either case we have that∣∣∣ E
x∼P

[v∗(x) | x ∈ h−1
w (hw(xt))]− p(xt)

∣∣∣
⩽
∣∣∣ E
x∼P

[v∗(x) | x ∈ h−1
w (hw(xt))]− A(hw(xt))

∣∣∣ .
Given δ′ ∈ (0, 1), let ϵ′ = ℓ

t′

(
d ln 2et′

d
+ ln 4ℓ

δ′

)
. By Lemma 5.3.3, for any value of hw(x) ∈ Y ,

with probability at least 1− δ′,∣∣∣ E
x∼P

[v∗(x) | x ∈ h−1
w (hw(xt))]− A(hw(xt))

∣∣∣ ⩽ 2ϵ′H.

Setting δ′ = δ/|Y| = δ/2ℓ, by a union bound over elements in Y , we have that with probability
at least 1− δ,

E
xt∼P

[(v∗(xt)− p(xt)) s
∗ − (v∗(xt)− p(xt)) st]

⩽ E
xt∼P

[∣∣∣ E
x∼P

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
− p(xt)

∣∣∣ ∣∣∣ E]
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⩽ E
xt

[∣∣∣E
x

[
v∗(x) | x ∈ h−1

w (hw(xt))
]
− A(hw(xt))

∣∣∣ ∣∣∣ E]
⩽

2Hℓ

t′

(
d ln

2et′

d
+ ln

ℓ · 2ℓ+2

δ

)
,

which completes the proof. ■

This instantaneous regret bound then implies a regret bound for Algorithm 8, the proof
of which is in Appendix 5.7.

Theorem 5.3.5. With probability at least 1−δ, the regret of Algorithm 8 is RT = O(
√
Tdℓ log(Tℓ/δ)).

In Algorithm 8, we assumed that we knew the horizon T . This assumption can be lifted
via a doubling trick; see Appendix 5.7.

5.4 General masking functions

We next consider a more general setting where in each round, an item xt is drawn from
an unknown distribution P and a published price pt is drawn from some fixed unknown
distribution. We study the case where the masking function is an arbitrary mapping h :
X → [n]. In this setting, is there a no-regret strategy that the buyer can use?

We answer this question in the affirmative, building on the classical Exp4.VC algo-
rithm [36]. Out of the box, Exp4.VC has per-round runtime that is exponential in n, but we
exploit the structure of our problem setting to obtain a polynomial per-round runtime. We
prove that this algorithm has a regret bound of O(

√
T (n log T/n + log 1/δ)) with probability

at least 1− δ.

Exp4.VC algorithm

Based on the optimal strategy from Proposition 5.2.3, we define an infinite set of policies
that take as input (pt, h(xt)) and return decisions in {0, 1} indicating whether or not the
buyer should buy the item. Each policy is defined by a vector v ∈ [0, H]n as follows:
πv(pt, h(xt)) = 1(v[h(xt)] ⩾ pt). The optimal strategy from Proposition 5.2.3 corresponds
to the strategy πv with v = (E[v∗(x) | h(x) = 1], . . . ,E[v∗(x) | h(x) = n]). We use the
notation Π = {πv | v ∈ [0, H]n} to denote the set of all such policies.

A key observation is that our problem can be framed as a contextual bandit problem with
an oblivious adversary and an infinite set of contexts. At each round t = 1, . . . , T , the buyer
observes stochastic context (pt, h(xt)) and makes a purchase decision. This is a contextual
bandit problem with two arms: the first arm corresponds to the decision “no purchase” and
the second arm corresponds to the decision “purchase.” The reward of the first arm is always
zero, while the reward of pulling the second arm depends on the item xt and the price pt.

We prove that the class of policies Π has a VC dimension of n, which allows us to
adapt Exp4.VC from Beygelzimer et al. [36], a generic contextual bandits algorithm for
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Algorithm 9 Exp4.VC with an unknown distribution

1: Input: T ⩾ 0, δ ∈ (0, 1).

2: Set τ =
√
Tn log eT

n
+ log 2

δ
.

3: for t = 1, 2, . . . , τ do // Initialization phase

4: Receive h(xt), price pt where xt
iid∼ P .

5: Make decision bt ∼ Bern(0.5) at random.
6: end for

7: for i = 1, 2, . . . , n do // Extract a finite subset of policies
8: Let i1, i2, . . . , imi

∈ [τ ] be the set of indices where h(xij) = i for all j ∈ {1, 2, . . . ,mi}
9: Define Vi = {0, pi1 , pi2 , . . . , pimi

}
10: end for
11: Define V = ×n

i=1Vi
12: Set γ =

√
log |V|
2(T−τ)

and wv
τ+1 = 1 for all v ∈ V .

13: for t = τ + 1, . . . , T do // Exp.4 subroutine

14: Receive h(xt), price pt where xt
iid∼ P .

15: Get advice vectors ξvt ∈ {0, 1}2 for all v ∈ V where ξvt = (1 −
πv(pt, h(xt)), πv(pt, h(xt))).

16: Set Wt =
∑

v∈V w
v
t and define ξ̄t ∈ (0, 1)2 as

ξ̄t[0] = (1− 2γ)
∑
v∈V

wv
t ξ

v
t [0]

Wt

+ γ

ξ̄t[1] = (1− 2γ)
∑
v∈V

wv
t ξ

v
t [1]

Wt

+ γ.

17: Draw decision bt ∼ Bern(ξ̄t[1]) and receive reward ut = (v∗(xt)− pt)bt.
18: Set r̂t = (btut/ξ̄t[1], 0)

⊤.

19: for v ∈ V do
20: Set

Cv
t =

γ

2

(
ξvt · r̂t +

1∑
b=0

ξvt [b]

ξ̄
v
t [b]

√
log |V|/δ

2(T − τ)

)
21: Set wv

t+1 = wv
t expC

v
t

22: end for

23: end for

policy classes with finite VC dimension. Algorithm 9 begins with an initialization phase of
length τ . In this phase, the buyer chooses their action uniformly at random and collects
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tuples {(h(xt), pt)}τt=1. The algorithm then uses these tuples to identify a finite (though
exponentially large), representative subset of policies in Π. In particular, using the collected
tuples, the algorithm partitions Π into a finite set of equivalence classes where two policies
π, π′ are equivalent if they agree on the set of τ collected tuples. Then the buyer constructs
a finite set of policies Π′ by selecting one policy from each equivalence class. Algorithm 9
does this by first defining for each i ∈ [n] a set Vi ⊂ R which is the set of all prices from
the first τ rounds for items xt with h(xt) = i. The finite set Π′ of policies is then defined as
Π′ = {πv : v ∈ ×n

i=1Vi}. We prove that Π′ contains a policy from each equivalence class in
Lemma 5.4.2.

In the remaining rounds, Algorithm 9 follows the Exp4.P strategy [36] which runs multi-
plicative weight updates on each of the selected policies πv with v ∈ ×n

i=1Vi. Out-of-the-box,
Exp4.VC would therefore have a per-round runtime that is exponential in n since ×n

i=1Vi is
exponentially large. However, with a careful analysis, we show that in our setting these
multiplicative weight updates can be computed in polynomial time.

Regret

The key first step is to show that although the set of all policies we need to consider Π is
infinite, it has a finite VC dimension. The full proof is in Appendix 5.8.

Lemma 5.4.1. The VC dimension of Π is n.

Proof sketch. First, we show that the functions in Π cannot be used to label n+ 1 contexts
in all possible ways. Given n+ 1 contexts (h(x1), p1), . . . , (h(xn+1), pn+1), by the pigeonhole
principle there must exist at least two items xi and xj that have the same index: h(xi) =
h(xj). Therefore, for any policy πv, the decisions for these two items are determined by the
same threshold v[h(xi)] = v[h(xj)]. Without loss of generality, assume that pi < pj. There
is no policy πv where the decision is to purchase item j but not purchase item i because this
would imply that pj ⩽ v[h(xj)] = v[h(xi)] < pi. However, with fewer than n+1 items, since
all items can use a different threshold, their decisions do not interfere with each other. ■

Next, in order to invoke the regret bound of Exp4.VC , we verify that Π′ is a representative
set of policies. Formally, suppose we partition Π into a set of equivalence classes where
policies π and π′ are equivalent if they agree on the set of τ tuples collected in the initalization
phase. We prove that Π′ contains a policy from each equivalence class.

Lemma 5.4.2. Let V be defined as in Algorithm 9. Then

{(πv(h(x1), p1), . . . , πv(h(xτ ), pτ )) : v ∈ [0, H]n}
= {(πv(h(x1), p1), . . . , πv(h(xτ ), pτ )) : v ∈ V} .

The proof of this lemma can be found in Appendix 5.8.
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Lemmas 5.4.1 and 5.4.2 imply the following regret bound:3

Theorem 5.4.3. With probability 1 − δ, Algorithm 9 achieves a regret rate that is RT =
O(
√
T (n log T/n + log 1/δ)).

Proof. This theorem follows directly from Lemmas 5.4.1 and 5.4.2 and Theorem 5 of Beygelz-
imer et al. [36]. ■

Computational Complexity

The key challenge in applying Exp4.VC out-of-the-box is that it computes multiplicative
weight updates over every policy πv with v ∈ V—an exponential number of policies. We
show that by exploiting our problem structure, we can perform these multiplicative weight
updates in each round in polynomial time. In particular, we show that we can efficiently
compute the purchase probabilities ξ̄t[0] and ξ̄t[1] without computing the multiplicative
weights wv

t for each v ∈ V explicitly, and therefore Algorithm 9 can be run with polynomial
per-round runtime. Intuitively, rather than sum over every vector in V = ×n

i=1Vi as in the
definitions of ξ̄t[0] and ξ̄t[1], we show how to sum over individual elements in ∪n

i=1Vi, of
which there are τ + n = Õ(

√
Tn+ n). We provide the complete proof in Appendix 5.8.

Theorem 5.4.4. The purchase probabilities ξ̄t[0] and ξ̄t[1] in Algorithm 9 can be computed
in O(n+ τ) = O(n+

√
Tn log(T/n) + log(1/δ)) time.

Proof sketch. Our proof begins with the observation that for each index i ∈ [n], the thresh-
olds 0 ⩽ pi1 ⩽ · · · ⩽ pimi

in Vi divide the price range [0, H] into mi + 1 non-overlapping
“buckets”: [0, pi1), [pi2 , pi3), . . . , [pimi

, H]. Using the notation m = maximi, the total num-
ber of buckets is O(mn). Each context (h(xt), pt) corresponds to exactly one bucket:
the bucket [pij , pij+1

) containing pt where h(xt) = i. Moreover, the decision of each pol-
icy in each bucket is constant since the policies all use the same thresholds, namely, the
boundaries of these buckets. Given a vector v ∈ V and a bucket k, let avk ∈ {0, 1} be
the policy’s recommendation of “buy” or “do not buy” for any item that falls in that
bucket. This allows us to rewrite the policy decision ξvt as an alternative sum: ξvt =(∑

k:avk=0 1(item in k),
∑

k:avk=1 1(item in k)
)⊤

. Intuitively, 1(item in k) is only nonzero for

the bucket that this item belongs to, and the policy’s decision for the item is the same as
the policy’s decision for that bucket. Using this fine-grained argument, we then show that
all the purchase probabilities ξ̄t[0] and ξ̄t[1] can be computed in polynomial time without
explicitly computing the exponentially many weights wv

t . ■

Remark 5.4.5. Under adversarial prices, we can run n independent copies of an algorithm
for Lipschitz contextual bandits (for example, the algorithm from Section 8.3 of the textbook
by Slivkins et al. [198]) to obtain an expected regret bound of Õ(T 2/3n1/3).

3By running n copies of Exp4.VC in parallel for each context, we would obtain a regret bound of
O(
√
Tn log(Tn/δ)), but by using a more careful analysis in this section, we improve the dependence on

n.



CHAPTER 5. NO-REGRET LEARNING IN PARTIALLY-INFORMED AUCTIONS 121

5.5 Conclusion and future directions

We presented learning algorithms for buyers who participate in auctions with limited item
information. This model captures a broad set of practical applications, including advertising
auctions. Our algorithms are no-regret with respect to an oracle buyer who has perfect
knowledge of the distribution over items and the masking function that the seller uses to
obfuscate the item information. We proposed no-regret learning algorithms in a variety of
settings, including when the distribution over items is either known or unknown to the buyer,
and when the prices are either stochastic or adversarial.

To the best of our knowledge, this is the first result on no-regret learning strategies for
buyers with partial item information. Many interesting questions remain open for future
research. First, we have assumed that the valuation is bounded, and it would be an interest-
ing direction for future research to extend our results to unbounded distributions. Second,
we focused on posted-prices in this work. It would be interesting to consider extensions
to second-price auctions with partial item information. With stochastic prices, the problem
seems potentially feasible, but adversarial prices might pose challenges because the adversary
could block the learner from estimating the second-highest bid. Moreover, can the platform
release partial information in a way that optimally trades off between revenue and privacy?
When the distribution over items is unknown, our algorithm works with general masking
functions. Can better purchasing strategies be developed by exploiting the properties of a
specific set of masking functions?

5.6 Appendix: Proofs for Section 5.2

Proposition 5.2.3. The strategy s∗ that maximizes Ex∼P [(v
∗(x)−p(x))s∗(h(x), p(x), h,P) |

h(x)] is

s∗(h(x), p(x), h,P) = 1

(
E

x∼P
[v∗(x) | h(x)] > p(x)

)
.

Proof. For a decision b ∈ {0, 1}, let Rb denote the expected utility of buying or not buying
an item given the published information and price:

Rb
def
= E[(v∗(x)− p(x)) · b | h(x), p(x)]
= E[(v∗(x)− p(x)) · b | v∗(x) ⩾ p(x), h(x), p(x)] · P[v∗(x) ⩾ p(x) | h(x), p(x)]
− E[(p(x)− v∗(x)) · b | v∗(x) < p(x), h(x), p(x)] · P[v∗(x) < p(x) | h(x), p(x)].

Then, by definition, the optimal strategy s∗(h(x), p(x), p,P) = 1(R1 > R0) = 1(R1 > 0).
Further, letting x+ = max{0, x}, by the law of total expectation,

E[(v∗(x)− p(x))+ | h(x), p(x)]
= E[(v∗(x)− p(x)) | v∗(x) ⩾ p(x), h(x), p(x)] · P[v∗(x) ⩾ p(x) | h(x), p(x)]
+ E[0 | v∗(x) < p(x), h(x), p(x)] · P(v∗(x) < p(x) | h(x), p(x))
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= E[(v∗(x)− p(x)) | v∗(x) ⩾ p(x), h(x), p(x)] · P[v∗(x) ⩾ p(x) | h(x), p(x)].

Similarly, letting x− = −min{0, x},

E[(v∗(x)− p(x))− | h(x), p(x)]
= E[(p(x)− v∗(x)) | v∗(x) < p(x), h(x), p(x)] · P(v∗(x) < p(x) | h(x), p(x)).

Therefore, the optimal strategy is:

s∗(h(x), p(x), h, p,P) = 1
(
E[(v∗(x)− p(x))+ | h(x), p(x)]− E[(v∗(x)− p(x))− | h(x), p(x)] > 0

)
= 1 (E[(v∗(x)− p(x)) | h(x), p(x)] > 0)

= 1 (E[v∗(x) | h(x), p(x)] > p(x)) .

The lemma statement then follows from Equation (5.1). ■

5.7 Appendix: Proofs for Section 5.3

Definition 5.7.1 (Lovász and Vempala [157]). Define the centroid of fπ as cf =
∫
xdfπ.

Define the variance of fπ as var(fπ) =
∫
∥x − cf∥2dfπ. Also denote L(θ) as the level set

{x : v∗(x)π(x) ⩾ θ}.

Theorem 5.3.5. With probability at least 1−δ, the regret of Algorithm 8 is RT = O(
√
Tdℓ log(Tℓ/δ)).

Proof. First, in the exploration phase, the total regret is upper bounded by Ht′.
Now consider the regret in the exploitation phase. Notice that, we would have obtained

{xi, hw(xi)}t
′
i=1 number of i.i.d. samples from the exploration phase.

Let ϵ = ℓ
t′

(
d ln 2et′

d
+ ln ℓ·2ℓ+2

δ′

)
. By Lemma 5.3.4 and a union bound over all rounds,

with probability at least 1 − δ′T , the total expected regret incurred by Algorithm 8 is
RT ⩽ Ht′ + 2ϵH(T − t′).

Let t′ =
√
Tdℓ log

(
2ℓ
δ′

)
, we have

RT ⩽ H

√
Tdℓ log

(
2ℓ

δ′

)
+2Hℓd

√
T

dℓ log
(
2ℓ
δ′

) log(2ℓ

d

√
Tdℓ log

(
2ℓ

δ′

))
+2Hℓ

√
T

dℓ log
(
2ℓ
δ′

) log(ℓ2ℓ+2

δ′

)
.

Note that log
(

ℓ2ℓ+2

δ′

)
= log

(
ℓ
δ′

)
+ ℓ log(4) ⩽ log

(
ℓ
δ′

)
+ d log(4). Setting δ′ = δ/T , we have

that with probability at least 1− δ,

RT = Õ

(√
Tdℓ log

(
2ℓT

δ

))
. (5.3)

This completes the proof. ■
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Algorithm for an unknown horizon T

In Theorem 5.3.5, we assumed that we knew the time horizon T , which allowed us to set
the correct length for the exploration phase. This assumption can be lifted by using the
doubling trick which runs the algorithm in independent intervals that are doubling in length,
as summarized by Algorithm 10. The regret bound remains the same up to constant factors.

Algorithm 10 Explore-then-Commit with Unknown Horizon

1: Input: starting epoch length T0.
2: for i = 1, 2, . . . do
3: Ti ← 2iT0.
4: Run Algorithm 8 with T = Ti.
5: end for

Corollary 5.7.2. Suppose that v∗(x)π(x) is logconcave and well-rounded. Then with prob-
ability at least 1− δ, the regret of Algorithm 10 is RT = Õ(

√
Tdℓ log(Tℓ/δ)).

Proof. Denote the total expected accumulated regret as RT , and the expected accumulated
regret in each interval with length Ti as RTi

. Denote the number of intervals as m ⩽ log2
2T
T0
.

Then, by Theorem 5.3.5 we have that for some universal constant C and with probability at
least 1− δ′m:

RT ⩽
m∑
i=1

RTi

⩽
m∑
i=1

C

√
Tidℓ log

(
2ℓTi
δ′

)

⩽ C
√
dℓ

m∑
i=1

√
Ti

(
log

(
2ℓ

δ′

)
+ log Ti

)

⩽ C
√
dℓ

(√
log

(
2ℓ

δ′

)
·

m∑
i=1

√
2iT0 +

m∑
i=1

√
2iT0 log(2iT0)

)

= O

(√
dℓT log

(
2ℓ

δ′

))
.

Let δ′ = δ/m and note that m ⩽ log2
2T
T0
, applying a union bound over all intervals, we have

that with probability at least 1− δ,

RT = Õ

(√
dℓT log

(
2ℓ

δ

))
.

This completes the proof. ■
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5.8 Appendix: Proofs for Section 5.4

Lemma 5.4.1. The VC dimension of Π is n.

Proof. We argue that any function contained in Π cannot be used to label n+1 input points
in all possible ways. For simplicity denote h(x) = y ∈ [n]. Consider a set of input points
{yi, pi}n+1

i=1 . By the pigeonhole principle there must exist at least two elements (yi, pi), (yj, pj)
such that yi = yj and pi ̸= pj. Therefore by definition, we have that for any v ∈ Rn,

πv(yi, pi) = 1(v[yi] > pi) = 1(v[yj] > pi),

πv(yj, pj) = 1(v[yj] > pj) = 1(v[yi] > pj).

Without loss of generality, assume that pi < pj. Then the pair of labels πv(yi, pi) = 1 and
πv(yj, pj) = 0 can never be achieved for any v ∈ Rn. Thus V Cdim(Π) < n+ 1.

Next, consider a set of n input points {(i, 0.5)}ni=1. Each point in this set is labeled
using a different index i, so all possible combinations of labels can be achieved using vectors
v ∈ {0, 1}n. Thus we conclude that V Cdim(Π) = n.

■

Lemma 5.4.2. Let {(h(x1), p1), . . . , (h(xτ ), pτ )} be a subset of [n] × [0, H]. For each
i ∈ [n], let i1, i2, . . . , imi

∈ [τ ] be the set of indices where h(xij) = i for all j ∈ {1, 2, . . . ,mi}.
Define Vi = {0, pi1 , pi2 , . . . , pimi

} and V = ×n
i=1Vi. Then

πv(h(x1), p1)
...

πv(h(xτ ), pτ )




v∈[0,H]n

=


πv(h(x1), p1)

...
πv(h(xτ ), pτ )




v∈V

.

Proof. We will show that for every v ∈ [0, H]n, there exists a vector v0 ∈ ×n
i=1Vi such that

πv(h(xj), pj) = πv0(h(xj), pj) for every j ∈ [τ ]. To this end, fix an index i ∈ [n] and without
loss of generality, let i1, i2, . . . , imi

be sorted such that 0 := pi0 < pi1 < pi2 < · · · < pimi
.

Let i′ ∈ {0, 1, 2, . . . , imi
} be the largest index such that v[i] ⩾ pi′ . Define v0[i] = pi′ . For

every index ij ⩽ i′, we know that v[i] ⩾ pi′ = v0[i] ⩾ pij , so πv(h(xij), pij) = 1(v[i] ⩾
pij) = 1 = 1(v0[i] ⩾ pij) = πv0(h(xij), pij). Meanwhile, for every index ij > i′, we know
that pi′ = v0[i] ⩽ v[i] < pij . Therefore, πv(h(xij), pij) = 0 = πv0(h(xij), pij). In either case,
we have that πv(h(xij), pij) = πv0(h(xij), pij). Since this is true for every index i ∈ [n], the
lemma statement holds. ■

Theorem 5.4.4. The purchase probabilities ξ̄t[0] and ξ̄t[1] in Algorithm 9 can be computed
in O(n+ τ) = O(n+

√
Tn log(T/n) + log(1/δ)) time.

Proof. Label the elements of Vi as 0 := pi,0 < pi,1 < · · · < pi,mi
. Let m = maxmi. For

the ease of notation, define the variables pi,mi+1 = pi,mi+2 = · · · pi,m = H. For each i ∈ [n],
j ∈ {1, . . . ,m}, and t ∈ {τ + 1, τ2, . . . , T}, we define the variable

di,j(t) = 1(h(xt) = i and pt ∈ (pi,j−1, pi,j]).
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We also set di,0(t) = 1(h(xt) = i and pt = 0). Next, for each v ∈ ×n
i=1Vi, i ∈ [n], and

j ∈ {0, . . . ,m}, we define the variable avi,j = 1(v[i] ⩾ pi,j).

Claim 5.8.1. For b ∈ {0, 1},
ξvt [b] =

∑
(i,j):avi,j=b

di,j(t). (5.4)

Proof of Claim 5.8.1. First, let it = h(xt). If pt = 0, define jt = 0 and otherwise, define jt
such that pt ∈ (pit,jt−1, pit,jt ]. Therefore, di,j(t) = 1 if (i, j) = (it, jt) and di,j(t) = 0 otherwise.
This means that ∑

(i,j):avi,j=b

di,j(t) = 1(avit,jt = b). (5.5)

We split the proof into two cases: b = 0 and b = 1.

Case 1: b = 0. We know that ξvt [0] = 1− πv(pt, h(xt)) = 1(v[h(xt)] < pt) = 1(v[it] < pt).
If ξvt [0] = 0, then v[it] ⩾ pt. Since v ∈ V , we know that v[it] = pit,j for some j ∈ [m].

Moreover, since pt ∈ (pit,jt−1, pit,jt ], the fact that v[it] ⩾ pt means that v[it] ⩾ pit,jt . There-
fore, avit,jt = 1. By Equation (5.5), this means that

∑
(i,j):avi,j=0 di,j(t) = 0, so Equation (5.4)

holds.
Meanwhile, if ξvt [0] = 1, then v[it] < pt ⩽ pit,jt . Therefore, a

v
it,jt = 0. By Equation (5.5),

this means that
∑

(i,j):avi,j=0 di,j(t) = 1, so Equation (5.4) holds.

Case 2: b = 1. We know that ξvt [1] = 1(v[it] ⩾ pt).
If ξvt [1] = 0, then v[it] < pt. By the same logic as the previous case, this means that

avit,jt = 0. By Equation (5.5), this means that
∑

(i,j):avi,j=1 di,j(t) = 0, so Equation (5.4) holds.

Meanwhile, if ξvt [1] = 1, then v[it] ⩾ pt. By the same logic as the previous case, avit,jt = 1.
By Equation (5.5), this means that

∑
(i,j):avi,j=1 di,j(t) = 1, so Equation (5.4) holds. ■

This means that

ξvt · r̂t =
1∑

b=0

∑
(i,j):avi,j=b

di,j(t)r̂t[b]

=
n∑

i=1

m∑
j=0

di,j(t)
(
r̂t[0]1(a

v
i,j = 0) + r̂t[1]1(a

v
i,j = 1)

)
=

n∑
i=1

m∑
j=0

di,j(t)r̂t[a
v
i,j].

Similarly,

1∑
b=0

ξvt [b]

ξ̄
v
t [b]

=
1∑

b=0

∑
(i,j):avi,j=b

di,j(t)

ξ̄
v
t [b]

=
n∑

i=1

m∑
j=0

di,j(t)

ξ̄
v
t [a

v
i,j]
.
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Therefore,

wv
t+1 = wv

t exp

(
γ

2

(
ξvt · r̂t +

1∑
b=0

ξvt [b]

ξ̄
v
t [b]

√
log |V|/δ

2(T − τ)

))
= wv

t exp

(
n∑

i=1

m∑
j=0

di,j(t)favi,j(t)

)
,

where

favi,j(t) =
γ

2

(
r̂t[a

v
i,j] +

1

ξ̄
v
t [a

v
i,j]

√
log |V|/δ

2(T − τ)

)
.

We can therefore write

wv
t+1 =

t∏
τ=1

exp

(
n∑

i=1

m∑
j=0

di,j(τ)favi,j(τ)

)

= exp

(
t∑

τ=1

n∑
i=1

m∑
j=0

di,j(τ)favi,j(τ)

)

= exp

(
n∑

i=1

m∑
j=0

t∑
τ=1

di,j(τ)favi,j(τ)

)

=
n∏

i=1

m∏
j=0

exp

(
t∑

τ=1

di,j(τ)favi,j(τ)

)
.

Letting gi,j(t, b) = exp
(∑t

τ=1 di,j(τ)fb(τ)
)
, we have that

wv
t+1 =

n∏
i=1

m∏
j=0

gi,j(t, a
v
i,j).

Let b1, . . . , bm be the set ofm increasing bit vectors b1 = (1, 0, 0, . . . , 0), b2 = (1, 1, 0, . . . , 0),
b3 = (1, 1, 1, . . . , 0), . . . , bm = (1, 1, 1, . . . , 1). For each i ∈ [n] and bj, define

gi(t, bj) = gi,1(t, bj[1])gi,2(t, bj[2]) · · · gi,m(t, bj[m]).

We now prove the following claim.

Claim 5.8.2. The normalizing constant Wt can be computed in polynomial time as

Wt =
n∏

i=1

mi∑
j=1

gi(t, bj).

Proof of Claim 5.8.2. We first write

Wt =
∑
v∈V

wv
t
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=
∑
v∈V

n∏
i=1

m∏
j=0

gi,j(t, a
v
i,j)

=
∑
v∈V

n∏
i=1

m∏
j=0

gi,j(t,1(v[i] ⩾ pi,j))

=

m1∑
j1=0

· · ·
mn∑
jn=0

n∏
i=1

m∏
j=0

gi,j(t,1(pi,ji ⩾ pi,j)).

This last equality holds because V = ×n
i=1Vi and Vi = {pi,0, . . . , pi,mi

}. Moreover,

Wt =

m1∑
j1=0

· · ·
mn∑
jn=0

n∏
i=1

ji∏
j=0

gi,j(t, 1)
m∏

j=ji+1

gi,j(t, 0)

because pi,ji ⩾ pi,j for all j ⩽ ji and pi,ji < pi,j for all j > ji.
By definition of the vectors b1, . . . , bm,

Wt =

m1∑
j1=0

· · ·
mn∑
jn=0

n∏
i=1

gi(t, bji) =
n∏

i=1

mi∑
j=1

gi(t, bj),

as claimed. ■

We next prove that ξ̄t can be computed in polynomial time. To do so, let h(xt) = it. If
pt = 0, define jt = 0 and otherwise, define jt such that pt ∈ (pit,jt−1, pit,jt ]. Next, define m̄i

as follows:

m̄i =

{
jt − 1 if i = it

mi otherwise.

Similarly, define mi as follows:

mi =

{
jt if i = it

0 otherwise.

Then ξ̄t has the following form:

Claim 5.8.3. The probabilities ξ̄t can be computed in polynomial time as:

ξ̄t[0] =
1

Wt

n∏
i=1

m̄i∑
ji=0

gi(t, bji)

and

ξ̄t[1] =
1

Wt

n∏
i=1

mi∑
ji=mi

gi(t, bji).



CHAPTER 5. NO-REGRET LEARNING IN PARTIALLY-INFORMED AUCTIONS 128

Proof of Claim 5.8.3. Recall that ξvt [0] = 1(v[it] < pt). Therefore,

∑
v∈V

wv
t ξ

v
t [0] =

∑
v∈V

n∏
i=1

m∏
j=0

gi,j(t, a
v
i,j)ξ

v
t [0]

=
∑
v∈V

n∏
i=1

m∏
j=0

gi,j(t, a
v
i,j)1(v[it] < pt)

=

m1∑
j1=0

· · ·
mn∑
jn=0

(
n∏

i=1

gi(t, bji)

)
1(pit,jit < pt).

This last equality holds because V = ×n
i=1Vi and Vi = {pi,0, . . . , pi,mi

}. Without loss of
generality, suppose that it = 1, so 1(pit,jit < pt) = 1(p1,j1 < pt). Then

∑
v∈V

wv
t ξ

v
t [0] =

m1∑
j1=0

· · ·
mn∑
jn=0

(
n∏

i=1

gi(t, bji)

)
1(p1,j1 < pt)

=

m1∑
j1=0

1(p1,j1 < pt)

(
m2∑
j2=0

· · ·
mn∑
jn=0

(
n∏

i=1

gi(t, bji)

))
.

Since pt = 0 if jt = 0 and otherwise pt ∈ (p1,jt−1, p1,jt ] we have that 1(p1,j1 < pt) = 1 if and
only if j1 ⩽ jt − 1. Therefore,

∑
v∈V

wv
t ξ

v
t [0] =

jt−1∑
j1=0

(
m2∑
j2=0

· · ·
mn∑
jn=0

(
n∏

i=1

gi(t, bji)

))
=

m̄1∑
j1=0

· · ·
m̄n∑
jn=0

n∏
i=1

gi(t, bji) =
n∏

i=1

m̄i∑
ji=0

gi(t, bji).

Similarly, since ξvt [1] = 1(v[it] ⩾ pt), we have

∑
v∈V

wv
t ξ

v
t [1] =

m1∑
j1=0

· · ·
mn∑
jn=0

(
n∏

i=1

gi(t, bji)

)
1(pit,jit ⩾ pt).

Without loss of generality, suppose that it = 1, so 1(pit,jit ⩾ pt) = 1(p1,j1 ⩾ pt). Then

∑
v∈V

wv
t ξ

v
t [1] =

m1∑
j1=0

1(p1,j1 ⩾ pt)

(
m2∑
j2=0

· · ·
mn∑
jn=0

(
n∏

i=1

gi(t, bji)

))
.

Since pt = 0 if jt = 0 and otherwise pt ∈ (p1,jt−1, p1,jt ] we have that 1(p1,j1 ⩾ pt) = 1 if and
only if j1 ⩾ jt. Therefore,

∑
v∈V

wv
t ξ

v
t [0] =

m1∑
j1=jt

(
m2∑
j2=0

· · ·
mn∑
jn=0

(
n∏

i=1

gi(t, bji)

))
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=

m1∑
j1=m1

· · ·
mn∑

jn=mn

n∏
i=1

gi(t, bji)

=
n∏

i=1

mi∑
ji=mi

gi(t, bji).

■

Lastly, note that in the initialization phase of Algorithm 9, every decision bt is computed
with O(1) time. In the Exp4 subroutine, by Claim 5.8.2 and Claim 5.8.3, every iteration is
also computed in polynomial time. Therefore the theorem statement holds. ■
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Chapter 6

Off-Policy Evaluation with
Policy-Dependent Optimization
Response

6.1 Introduction

The interface of causal inference and machine learning offers to “deliver the right intervention,
at the right time, to the right person”. An extensive line of research studies off-policy
evaluation (OPE) and learning—evaluating the average causal outcomes under alternative
personalized treatment assignment policies that differ from the treatment assignment which
generated the data (and may have introduced confounding), so that one may optimize over
the best such treatment rule [13, 73, 126, 135, 159, 202, 226]. Most of this work is based
on the assumption that the appropriate decision criterion is an average of individuals across
a population. But various operational restrictions or settings imply that a decision-maker’s
utility is often not realized as an average but rather as an output of a downstream planning
or decision-making problem.

For example, in studying the effects of price incentives in a matching market (e.g., on a
ride-share platform), a firm’s revenue is not realized until it matches riders to drivers under
certain constraints [158, 162]. While the marketplace may offer incentives to drive or accept
rides and induce causal effects on individuals, the final utility is determined by the new
matches, taking into account operational constraints and structure.

As another example, although job training (and personalized provision thereof) is com-
monly touted in causal inference and machine learning papers as a promising example for
personalized treatment policy assignment [13, 135, 136], labor economists voice a general
concern that “the possible existence of equilibrium effects on the efficiency of the programs
seems quite real” [56, p.541]. The equilibrium concern is that personalized provision of job
training may not lead to actual beneficial gains at the population level due to externalities
(substitution effects/congestion in matching) of the labor search process in a finite market.
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While impressive cluster-randomized trials have been deployed to assess these effects [57], it
would be useful if there exists a framework that can model the equilibrium effect and eval-
uate treatment policies directly based on available data of individual-level causal effects. In
some settings, population-level impacts may be well-modeled as a downstream optimization
response. The development of such a framework is our focus in the current paper.

We study a new framework for policy evaluation and optimization where there is a per-
sonalized treatment policy on individual-level outcomes, and a policy-dependent optimization
response. The key difference between this model and previous work on off-policy evaluation
and optimization is that: although treatments realize causal effects on individuals, a treat-
ment policy’s value depends on a further downstream policy-dependent optimization. We
study how to evaluate different policies without bias (off-policy evaluation) and how to op-
timize for the optimal policy under this framework (policy optimization).

Our contributions are as follows: we first introduce the model of policy-dependent op-
timization response1, which we formulate as a nonconvex stochastic optimization problem.
For off-policy evaluation, we develop a framework of policy-dependent optimization response,
decompose the bias that arises in this framework (“optimization bias”) and show how to
control it via the design of estimators for the policy-dependent estimand. Finally, we pro-
vide a general algorithm for optimizing causal interventions. We corroborate the theoretical
results with experimental comparisons.

Related work

We highlight the most relevant work from causal inference, off-policy evaluation, and opti-
mization under uncertainty in the main text. We include additional or tangential discussion
in Section 6.7.

There is an extensive literature on off-policy evaluation and optimization [see, e.g., 73,
159, 200, 226]. Relative to this line of work, we focus on the introduction of a downstream
decision response, arising for example from operational constraints.

The case of constrained policies has been considered in the OPE literature. Our setting
is conceptually different but overlaps in some application contexts. Specifically, we decou-
ple the downstream policy-dependent response, i.e. over a similar constraint space, from
treatment decisions that have causal effects. For example, Bhattacharya [37] studies the
setting of “roommate assignment” with discrete types; i.e., perfect bipartite matching. A
crucial difference is that in their setting, the causal treatment of interest is the assignment
decision to the other individual type; while in our setting the causal treatment only affects
certain parameters of the assignment decision, such as edge costs. We instantiate an analo-
gous example in our framework to highlight our decoupled causal intervention and prediction
decisions. Consider a setting with a causal intervention, such as a diversity information inter-
vention affecting a student’s probability of getting along with various types. Here the policy

1For terminology, we use policy-dependent (optimization) response or downstream policy-dependent
response to refer to the same concept.
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performs treatments on individual’s diversity information, and the final assignment deci-
sion is policy-dependent response. Other work considers resource-budgeted allocation [139],
which is structured because of reformulation of thresholds [156]. Sun [199] studies sharp
asymptotics for the additional challenge of stochasticity in the budget.

Some works that illustrate the embedding of causal effect estimates in optimization-based
decision problems include [184], although their formulation is ultimately a mixed-integer
optimization.

In contrast to an extensive line of work on heterogeneous causal effect estimation [140,
193, 212], often crucially leveraging simpler structure of the treatment contrast rather than
the conditional outcomes, in this work we require estimation of the latter due to the down-
stream optimization and distributional convergence for the perturbation method. In turn,
combining causal outcome estimation with adjustments for optimization bias requires differ-
ent properties of the estimation strategy, namely plug-in estimation of a modified regression
model; we focus on estimators that modify the first-order conditions of a regression model to
algebraically achieve an AIPW-type adjustment as discussed in Bang and Robins [25]. See
also Chernozhukov et al. [50], Scharfstein et al. [192], Shi et al. [195], Tran et al. [205].

This work focuses on the challenge of optimization bias for policy evaluation introduced in
our setting, for generic linear optimization problems. This well-known challenge of in-sample
optimization bias (“sample average approximation bias”) fundamentally demarcates the sta-
tistical regime of optimization under uncertainty from sample mean estimation [27, 194].
Recent work develops bagging, jackknife, perturbation and variance-corrected perturbation
approaches for bias adjustment [106, 121, 131, 144]. We extend a perturbation method of
Ito et al. [121] to the setting of nonlinear predictions.

6.2 Preliminaries

We first define the setting for off-policy evaluation with policy-dependent responses. We
distinguish between the causal decision policy π and the downstream optimization response
x. The causal decision policy π intervenes on individual units, while the policy-dependent
responses are solutions to a downstream optimization problem on the causal responses of all
the units.

1. Off-policy evaluation. We first describe the single time step off-policy policy eval-
uation and optimization problem [see 74, 114, for further context]. Let covariates be W ∈
W ⊆ Rd, binary treatment be T ∈ {0, 1}2, and potential outcomes be c(T ). Denote the
covariates’ distribution as P . Without loss of generality we consider lower is better for c;
e.g. we minimize costs. We consider a setting of learning causal responses from a dataset
of tuples D1 = {(Wi, Ti, ci)}ni=1 where treatment is assigned randomly or in an observational
setting; henceforth we call this the observational / experimental dataset.

2The extension to non-binary treatments is immediate.
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We let πt : W 7→ [0, 1] denote a personalized policy mapping from covariates to a (prob-
ability of) treatment t. Later we will focus on parameterized policies, such as πt(w) =
sigmoid(φ⊤w) or policies that admit global enumeration. The goal of off-policy learning is
to optimize the causal interventions (aka policies) by estimating average outcomes induced
by any given policy. Throughout we will follow the convention that, a random variable c(πt)
denotes c(πt) = c(t)1(Zt = t), where Zπ ∈ {0, 1} is a Bernoulli random variable of policy
assignment: Zπ ∼ Bern(π1). Then, the (random) outcome for a given covariate with policy
π is:

c(π) =
∑

t c(πt) =
∑

t c(t)1(Zπ = t).
The average treatment effect (ATE) of a policy π(·) is then E[c(π)], where the expectation

is taken over the randomness of the covariates W ∼ P , assignments induced by π, and c
conditional on realized treatment t and covariates.

2. Policy-dependent responses. Policy-dependent optimization solves a downstream
stochastic linear optimization problem over a decision problem x ∈ X ⊆ Rm on the m units
given a causal intervention policy. In particular, m represents the dimension of the down-
stream decision problem. Relative to the downstream decision problem, causal outcomes
may enter either as uncertain objective coefficients (in c) or constraint capacities (in b).3

Dimensionality of the responses. We consider two different asymptotic regimes: an out-
of-sample, fixed-dimension, fixed-m regime and an in-sample, growing-dimension, growing-n
regime. We formalize the former regime, the main focus of the paper, in the following
assumption.

Assumption 6.2.1 (Out-of-sample, fixed-dimension regime). As n → ∞, the dimension
of the optimization problem m, given by a new draw of contexts D2 = {Wi}1:m remains
finite. The decision-dependent response on m units is measurable with respect to D2. Let

ci(π)
def
= E[c(π(w)|w = Wi], we have that the policy value v∗π is:

v∗π = E[minx{
∑m

i=1 ci(π)xi : Ax ⩽ b}]. (6.1)

Assumption 6.2.1 defines our policy-dependent estimand in this regime. The expectation
is taken over the randomness of the policy π and the randomness of the finite samples {wi}mi=1.
The main text focuses on statements in the regime of Assumption 6.2.1. Evaluating regret
with respect to a fixed dimension is standard or implicit in the predictive optimization
literature.4

3Throughout the text we focus on uncertainty in c for notational clarity; strong duality implies the
same results hold for uncertainty in the constraint right-hand-side, b. The decision is made conditionally on
context information W but prior to realizations of potential outcomes, aka a policy-dependent response.

4The predictive optimization literature instead views each dimension of the decision variable as a multi-
variate outcome; relative to that, our regime can be interpreted as the setting of a scalar-valued contextual
response.
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Assumption 6.2.2 (In-sample, growing-dimension regime). As n → ∞, the limit of the
objective function is an expectation over contexts.5 The estimand is:

v∗π = E[minx{E[c(π)x] : Ax ⩽ b}]. (6.2)

Recall that a policy maps from covariates to a (probability of) treatment. Assump-
tion 6.2.2 precisely takes an expectation over the two sources of randomness: the outer
expectation is taken over the randomness of the policy, and the inner expectation is taken
over the randomness of the covariates w.

The limiting object in the growing-dimension regime is a “fluid limit” or asymptotic
regime: informally we assume a meaningfully constrained optimization in the limit. We
instantiate our framework in the following example.

Example 6.2.3 (Min-cost bipartite matching). Our framework is precisely motivated by
the practical challenges in causal inference tasks, where the problem of “policy dependent”
optimizations pops up repeatedly. For instance, for price incentives in a matching market
(such as a rideshare platform), the revenue/welfare outcome is not realized until the riders
and drivers are matched under constraints. As another example, consider a manager wants
to assign agents to different jobs, and assigning an agent to a job is associated with some cost.
Our goal is to assign each agent to at most one job such that the overall cost is minimized.
To incentivize the workers to complete the jobs, the company might want to provide some
bonus to the agents. However, the overall efficiency and total payments are not realized until
all the assignments are determined.

The above type of application can be modeled as a min-cost bipartite matching problem,
which is well known to have a totally unimodular linear relaxation. Clearly, the agents (or
riders) and the jobs (or passenger requests) form the two sides of nodes for the matching.
The edge costs in the matching stand for the cost or payment for an agent to complete
that job. A treatment (T = 1) serves as intervention on the edge costs for that agent,
and the covariates W could be any observable features of the agents, such as preferences,
demographic information, etc. Given any allocation rule of the bonuses, the manager faces
a downstream min-cost bipartite matching:

minx∈{0,1}|E|

{∑
e∈E ce(π)xe :

∑
e∈N (i) xe = 1,∀i ∈ V

}
. (6.3)

Here N (i) is the set of all edges contains node i, the ce are the edge costs, and x = {xe}e∈E
represents the matching where xe = 1 means that edge e is selected6.

In Section 6.11 we include an additional example of predictive risk optimization, beyond
linear optimization, which requires a different estimation strategy.

5Assume the constraint b scales with n in a meaningful problem-dependent way so that constraints are
neither all slack nor infeasible in the limit.

6In the later analysis we use the linear relaxation with xe ∈ [0, 1] (continuous interval). For bipartite
matching because of total unimodularity the linear relaxation is tight and equivalent to integral formulation.
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3. Policy optimization with policy-dependent responses. Putting together the
pieces of the previous subsections, the off-policy optimization over candidate policies π ∈ Π
is:

minπ∈Π minx∈X {
∑m

i=1 ci(π)xi : Ax ⩽ b} , (6.4)

where m represents the dimension of the decision problem (e.g., the number of edges in
Example 6.2.3), and x denotes the whole response vector {xi}i∈[m].

We illustrate this framework by revisiting our examples.

Example 6.2.4 (Policy optimization for Example 6.2.3, min-cost matching). In the min-cost
bipartite matching example, the optimal assignments with a given policy π can be solved via
the linear program in Equation (6.3). Suppose that we want to find the best intervention
policy which gives the lowest matching cost. Then, the policy optimization problem is:

minπ∈Π minx∈X

{∑
e∈E ce(π)xe :

∑
e∈N (i) xe = 1,∀i;xe ⩾ 0,∀e

}
,

where Π denotes the set of all policies that are of interest.

6.3 Problem description: optimization bias

We focus on off-policy evaluation in view of the downstream optimization over the decision
variables x = {xi}i∈[m]. We first discuss plug-in estimation approaches without causal ad-
justment to introduce the challenge of optimization bias in this regime. We then discuss
causal estimation in Section 6.4.

From estimation bias to optimization bias. Denote µt(w) = E[c(t) | W = w] as
the conditional outcome mean of the population with treatment t and covariates w. We
consider “predict-then-optimize” approaches which learn some µ̂t(w) = E[c | W = w, T = t]
and optimize with respect to it, so that our estimator is:

v̂π = minx∈X

{∑m
i=1

∑
t∈{0,1} πt(wi)µ̂t(wi)xi : Ax ⩽ b

}
.

Note that due to the estimation and minimization step, v̂π is not an unbiased estimator
for v∗π. Define the overall error of v̂π with respect to the target estimand of Equation (6.1) as:
err = v∗π − E [v̂π]. We decompose the overall error into two parts: the estimation bias of the
plug-in estimator, and the optimization bias. Denote ṽπ, the best-in-class feasible estimate
using the true conditional expectations µ∗

t :

ṽπ = minx∈X

{∑m
i=1

∑
t∈{0,1} πt(wi)µt(wi)xi : Ax ⩽ b

}
.

Then, the estimation and optimization biases are:
(by triangle inequality, |err| ⩽ |biasest|+ |biasopt|)

biasest = E[v̂π]− E[ṽπ], biasopt = v∗π − E[ṽπ].
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Out of sample, fixed m (Assumption 6.2.1) In-sample, growing n (Assumption 6.2.2, Section 6.10)
Evaluation Policy optimization Evaluation Policy optimization

AIPW N/A Sample splitting (finite VC-dim x)
Uniform generalization
requires problem-dependent
structure (finite VC-dim x)

WDM Perturbation method Uniform generalization
from out-of-sample
risk bounds

Perturbation

GRDR Perturbation method
Perturbation
Doubly-robust estimation

Table 6.1: Summary of regimes and estimation properties. The main text provides meth-
ods for Assumption 6.2.1. Additional structural restrictions permit extensions for Assump-
tion 6.2.2.

In-sample estimation bias due to optimization. It is well known that in-sample es-
timation of the value of optimization problems is biased; e.g., v̂ is a biased estimate for
the true objective value v∗π due to optimization. Ito et al. [121] studies a bias correction for
affine linear objectives with an unbiased estimate of a parameter θ. To understand the source
of the bias due to optimization, observe that clearly

∑m
i=1 µt(wi)xi ⩾ minx

∑m
i=1 µt(wi)xi.

The inequality remains valid when evaluating expectations over training datasets so that
E[
∑m

i=1 µt(wi)xi] ⩾ E[minx

∑m
i=1 µt(wi)xi]. Noting that the RHS is the true objective v∗π, we

obtain in general the well-known optimistic bias, that E[ṽπ] ⩾ v∗π. In the policy evaluation
setting, our estimates converge to the LHS, ṽπ, so that our estimator v̂π is in general a biased
estimate of the decision-dependent policy value even if we obtain unbiased estimates of the
cost coefficient.

6.4 Causal estimation with policy-dependent

responses

In this section we present an estimation approach building upon a perturbation method that
adjusts for the aforementioned optimization bias. We summarize tradeoffs among estimation
strategies in different regimes in Table 6.1 and possible extensions and additional structure
in Section 6.10.

Estimating causal effects: estimation bias

Assumption 6.4.1 (Ignorability, overlap, SUTVA). For all t, c(t) ⊥⊥ T | W . The evaluation
policy is absolutely continuous with respect to treatment probabilities in the training dataset.
Assume the stable unit treatment value assumption.

Confounding-adjusted plug-in estimators. In general, plug-in estimation of µ̂t(W )
does not admit unbiased predictions because of selection bias and model misspecification.
Existing importance-sampling based estimators, e.g. the inverse propensity weighting (IPW)
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estimator and the doubly-robust augmented inverse probability weighting (AIPW) uses the
propensity score to adjust confounding, under Assumption 6.4.1. Note importance sampling
cannot directly be applied in our main regime of interest with out-of-sample evaluation as
in Assumption 6.2.1, see Section 6.8 for a detailed overview.

We depart from previous work in off-policy evaluation, in view of the optimization bias
adjustment (detailed in the next section), and study estimation methods that are plug-
in estimates for OPE: E[c(π)] =

∑
t E[πt(W )µ̂t(W )], for some outcome model µ̂t that is

confounding-adjusted.
Note that IPW/AIPW-type estimators cannot be applied in the out-of-sample regime

of Assumption 6.2.1. However, we may obtain out-of-sample risk bounds on the decision
regret in this regime by virtue of out-of-sample generalization risk bounds on the generated
regressors. We include more detailed discussion in Appendix 6.10.

Weighted direct method (WDM). Outcome regression, learning µ̂t(W ) = E[c | T =
t,W ] directly from D1, is sometimes called the direct method. However, when µ̂ is a misspec-
ified regression model such a method incurs bias. Nonetheless, re-weighting the estimation
µ̂ (maximum likelihood, empirical risk minimization) by the inverse probability weights 1/e
is known to adjust for the covariate shift; by a similar argument as that of [45, 196, 215].
We call this approach weighted direct method (WDM), which solves:

µ̂WDM
t ∈ argminµ E

[
I(T=t)
et(W )

(c− µt(W ))2
]
. (6.5)

Doubly-robust direct method (GRDR). We also consider an approach that achieves
doubly-robust estimation of the treatment-effect due to Bang and Robins [25]. [See also
192, 205]. This approach has been used for CATE estimation [50, 195]. The inverse propen-
sity score reweighted treatment indicator is added as a covariate in the model, inducing
coefficients ϵ0, ϵ1. Define

µ̂GRDR = µ(W ) + ϵ1(T/e1(W )) + ϵ0((1− T )/e0(W )).

Optimizing over µ̂ by (nonlinear) least-squares yields the following first-order optimality
conditions for θGRDR = [θ̄, ϵ1, ϵ0]:

E[(c− µ̂)∇θµ̂] = 0,E[(c− µ̂)(T/e1(W ))] = 0,E[(c− µ̂)((1− T )/e0(W ))] = 0. (6.6)

Bang and Robins [25] show that the first-order optimality conditions ensure that plug-in
estimation of an average treatment effect with the model is equivalent to AIPW, hence
doubly-robust. Because it is designed primarily for estimation of the ATE, its use as an
outcome predictor is more speculative. Although one can verify that its output is covariate-
conditionally equivalent to CATE in expectation, and one can use this fact to again regress
upon the pseudooutcomes, this final procedure would require re-verifying asymptotic conver-
gence; we don’t outline those arguments here. We include further discussion on the different
estimation interpretations of GRDR in the two regimes in Appendix 6.10.
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Estimating the decision-dependent estimand

Our procedure is adapted from the perturbation method of Ito et al. [121] which we describe
here for completeness; we extend it from linear to nonlinear predictors. The method of
Ito et al. [121] focuses on one parameter that we denote ξ = [θ, γ], where we assume as
outlined in Assumption 6.4.4 that it encompasses parameters of the outcome and propensity
model (respectively). Define the policy-induced outcome model, µπ(w) =

∑
t πt(w)µt(w), the

estimation error δ = ξ̂ − ξ∗, and the (parametrized) optimal solution at a given predictive
model x(ξ). The perturbation method is motivated by a finite-difference approximation to
the optimization bias induced by estimation error δ. Define the auxiliary functions given a
scalar ϵ parametrizing the direction of δ:

η(ϵ) = Eδ [
∑m

i=1 x(ξ
∗ + ϵδ)π(W ; ξ∗)] , ϕ(ϵ) = Eδ [

∑m
i=1 x(ξ

∗ + ϵδ)π(W ; ξ∗ + ϵδ)] .

We require regularity conditions for derivatives of these functions to exist:

Assumption 6.4.2 (Perturbation method assumptions). (i) The optimal solution x(ξ) is
unique. (ii) ξ̂ is an unbiased estimator of ξ∗.

We generalize Prop. 3 of Ito et al. [121] for nonlinear models.

Proposition 6.4.3. We have η(ϵ) = ϕ(ϵ)− ϵϕ′(ϵ) +O(ϵ2).

The plug-in estimated optimal value v̂π unbiasedly estimates ϕ(1). Note ϕ′(1) is equiva-
lent to the value of the bias. The perturbation method estimates ϕ′(1) by (ϕ(1+h)−ϕ(1))/h
for some small h.

It remains to estimate ϕ(1 + h). First we obtain s samples of the perturbed parameter

ξ̂h = ξ∗ + (1 + h)δ, denoted as {ξ̂(j)h }sj=1. Each replicate of ξ̂(j) leads to an optimization

estimate v̂(j) = minx

∑m
i=1 xiµ̂π(wi, ξ̂

(j)
h ). The debiased estimator is:

ρh = v̂(0) − 1
h
(v̂(0) − 1

s

∑s
j=1 v̂

(j))

Our Proposition 6.4.3 then implies asymptotic unbiasedness (cf. Prop. 4 of Ito et al. [121]) so
that limh→0 E[ρh] = E[minx

∑m
i=1 xiµ̂π(wi, ξ

∗)]. We summarize the method in Algorithm 11.

Asymptotic variance of estimation methods. We discuss the asymptotic variance
of the weighted direct method and GRDR via classical asymptotic analysis of generated
regressors (specifically, stacked estimation equations of GMM) [177]. We summarize this
framework in Section 6.8 for completeness and include the main result here that we invoke.7

7Asymptotic normality of these approaches is taken as given in Bang and Robins [25], Cao et al. [45] and
so we include these statements for completeness. For exposition and context of Donsker-type conditions in
semiparametric inference, see Kennedy [134] or other references.
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Algorithm 11 Perturbation method, Alg. 2 of [121])

1: Input: Estimation strategy ⋄ ∈ {WDM,GRDR}; h: finite different parameter; π: pol-
icy.

2: Estimate ξ̂⋄ = [θ̂⋄, γ̂⋄] for µ̂
⋄ from D1

3: v̂(0) ← minx∈X
∑m

i=1 xi
∑

t∈{0,1} πt(wi)µ̂
⋄
t (wi; ξ̂⋄)

4: Generate {ξ(j)⋄ }sj=1: if by parametric bootstrap, learn ξ̂
(j)
⋄ from N

(1+h)2
samples randomly

chosen from D1 with replacement.
Otherwise if using Σ̂, estimator of asymptotic variance of ξ, approximate the distribution

of ξ∗ + (1 + h)δ. Add ξ̂ to θ̂ where δ̂ ∼ N(0, (1+h)2−1
N

Σ̂). Then set ξ̂
(j)
⋄ = ξ̂ + δ̂j.

5: for j = 1, . . . , S : do
6: v̂(j) ← minx∈X

∑m
i=1 xi

∑
t∈{0,1} πt(wi)µ̂

⋄
t (wi; ξ̂

(j)
⋄ ).

7: end for
8: Output ρh = v̂0 − 1

h
(v̂(0) − 1

s

∑s
j=1 v̂

(j)).

Assumption 6.4.4 (Estimators via GMM with generated regressors). Suppose the propen-
sity score e and outcome model µ are indexed by true parameters γ∗, θ∗ that solve the respec-
tive estimating equations E[h(W, γ∗)] = 0, E[g(W, θ∗, γ∗)] = 0. The functions et(w), µt(w)
are in a Donsker class.

Remark 6.4.5 (Strength of assumptions). Algorithm 11 requires both unbiased and asymp-
totically normal predictions—stronger conditions than merely inference on the ATE. The
Donsker assumption preserves asymptotic normality with generated regressors. The frame-
work allows for nonparametric estimation via linear sieves (but not some high-dimensional
regimes; see Ackerberg et al. [3]).

Theorem 6.4.6 (Thm. 6.1, eq. 6.12 of Newey and McFadden [177]). Suppose Assump-
tion 6.4.4 holds. Let Ĝα, Ĝθ, Ĥ denote the Jacobian matrices of partial derivatives of the mo-
ment conditions g, h with respect to the respective parameters, i.e. Ĝγ = n−1

∑n
i=1∇γg(wi, θ̂, γ̂).

Let V̂γ = (Ĥ−1ĥi)(Ĥ
−1ĥi)

⊤. Then an estimator of the asymptotic variance is:
V̂θ = Ĝ−1

θ

(
n−1

∑n
i=1 ĝiĝ

⊤
i

)
(Ĝ−1

θ )⊤ + Ĝ−1
θ ĜγV̂γĜ

⊤
γ (Ĝ

−1
θ )⊤.

Since V̂γ depends only on the specification of the propensity score, to completely specify

the asymptotic variance for the above formula we state the mixed terms Ĝγ, Ĝθ.

Proposition 6.4.7 (Asymptotic normality of WDM). Let et(w), µt(w) satisfy Assump-
tion 6.4.4 with the moment condition gt(W, θ, γ) = et(W ; γ)−1(c− µt(W ; θ))2 and g = [g0, g1].
Then

Ĝγ =

[
En[2T (c− µ(W ; θ)) ∂

∂θ
(e−1

1 (W, γ))∂µ
∂θ
]

En[2(1− T )(c− µ(W ; θ)) ∂
∂θ
(e−1

0 (W, γ))∂µ
∂θ
]

]
.
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Algorithm 12 Subgradient method for policy optimization

1: Input: step size η, linear objective function f .

2: for j = 1, 2, · · · do
3: At φk, obtain a subgradient in subdifferential S∗(πk

φ) = {x∗ : f(x∗; πk
φ) =

minx f(x; π
k
φ)}

4: Compute subgradient ∇φ(minx f(x; π
k
φ))← ∇φf(x

∗; πφ)

5: Update subgradient step: φk+1 ← φk − η∇φ

(
minx f(x; π

k
φ)
)

6: end for

These formulas are generally computable from standard output of optimization solvers for
nonlinear least squares: gradients and Hessians. In practice, using the parametric bootstrap
may be simpler at a higher computational cost.

Optimizing Causal Interventions

Algorithm 11 provides estimation for a fixed policy. We now discuss how to optimize over
policies; e.g., implementing the outer optimization over policies minπ∈Π in Equation (6.4). We
focus on the case where the policy πt(w) is parametrized by and differentiable in a parameter
φ ∈ Ψ. For example, for the logistic policy parameterization, πt(w) = sigmoid(φ⊤

t w). We
consider a robust subgradient method, based on Danskin’s theorem, detailed in Algorithm 12.
Such an approach is a common heuristic used in adversarial machine learning.

We solve the inner optimization problem to full optimality in line 3 and take (sub)gradient
steps for the outer optimization. We evaluate (sub)gradients of the inner optimization solu-
tion in line 3 by evaluating the gradient of the objective with respect to φ, fixing the inner
optimization variable x∗. Danskin’s theorem implies that ∇φ is a subgradient [60]. The inner
minimization can be solved via a linear optimization oracle for any fixed choice of policy.
This use of the linear optimization oracle can be beneficial when special problem structures,
such as matching and network flows, may also admit readily-available algorithmic solutions
to full optimization.

The perturbation method is compatible with our optimization procedure because the bias-
adjusted perturbation estimated from Algorithm 11 is affine in the optimization problems
corresponding to each parameter replicate. Hence, run Algorithm 11 with an expanded
linear objective over the s-product space x′ ∈ X s where f(x̃, π) = v̂

(0)
π (x̃0) − 1

h
(v̂

(0)
π (x̃0) −

1
s

∑s
j=1 v̂

(j)
π (x̃j)).

So, re-optimize x̃∗j ∈ argminx∈X
∑m

i=1 xiµ̂
⋄
π(wi; ξ̂

(j)
⋄ ) and apply Danskin’s theorem to each

optimization problem in the sum over v̂
(j)
π comprising f(x′, π). In fact, though adversarial

machine learning focuses on min-max rather than our min-min optimization problem, this
particular approach is simply subgradient descent on a nonconvex function (the solution to
the inner optimization).
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Figure 6.1: (In-sample estimation of µ̂1(W ) − µ̂0(W ), with model mis-specification). Com-
parison of direct / WDM / GRDR to the oracle. (a) Conditional estimation error averaged
over ten random train sets; shaded area indicates std. error. (b) Bias / variance comparison
with varying training data size.

6.5 Experimental evaluations

Since real data suitable for both policy evaluation and downstream optimization is unavail-
able, we focus on synthetic data and downstream bipartite matching. We first illustrate
estimation properties of the different approaches before showing the improvement obtained
via policy optimization. Though we are not aware of prior approaches that are directly com-
parable for optimizing causal policy with a downstream optimization-dependent response,
we include more comparisons to nonparametric estimators (e.g. causal forests [212]), and
full implementation details.

1. Causal effect estimation. First, we investigate and illustrate the properties of dif-
ferent estimators. We generated dataset D1 = {(W,T, c)} with covariate W ∼ N (0, 1),
confounded treatment T , and outcome c. Treatment is drawn with probability

πb
t (W ) = (1 + e−φ1W+φ2)−1

, φ1 = φ2 = 0.5. The true outcome model is given by a degree-2 polynomial,8

ct(w) = polyθ(t, w) + ϵ

, where ϵ ∼ N (0, 1). . In Figure 6.1a and 6.1b, we illustrate the (covariate-conditional) esti-
mation error of the three estimators. In the mis-specified setting that induces confounding,
the outcome model is a vanilla linear regression over W without the polynomial expansion.
The direct method results in more bias under mis-specification, while WDM and GRDR are
robust as expected.

8If not stated otherwise we spread the coefficients as polyθ(t, w) = (1, w, t, w2, wt, t2) · ([5, 1,−1, 2, 2,−1])⊤.
Additional supporting experiments under other nonlinear data-generating processes are in Appendix 6.12.
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Figure 6.2: (Policy evaluation via pertur-
bation method (Algorithm 11). Compari-
son of direct / WDM / GRDR estimators
over increasing size of training data (av-
eraged over ten runs).
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Figure 6.3: (Policy optimization). Subgradi-
ent policy optimization with direct / WDM /
GRDR estimation methods and a fixed test set.
Averaged over ten random training datasets of
size=1000.

2. Policy evaluation. We compare the perturbation method (Algorithm 11) with three
different estimators (direct, WDM, and GRDR). In both the well-specified / mis-specified
model setting, we evaluate the mean-squared-error (MSE) of the estimated policy value with
the three estimators, where the MSE is computed with regard to the ground-truth outcome
model. Training data size n increases from 500 to 2000 samples. We scaled the MSE down
by the number of edges (a constant) and computed the MSE in terms of the averaged cost
per edge in the matching.

For the policy-dependent optimization, we evaluate a min-cost bipartite matching prob-
lem, where the causal policy intervene on the edge costs (as detailed in Example 6.2.3).
Specifically, the bipartite graph contains m = 500 left side nodesW1, · · · ,Wm, and m

′ = 300
right side nodes. The policy πt applies treatments to the left side nodes and the outcome
is the edge cost of edges with that node. While we grow the training data size, we fixed
m,m′ (with m > m′) and evaluate over ten random draw of train/test data for each value
of n. Figure 6.2 plots the results. When there is mis-specification, even a large training
dataset cannot bring bias correction for the direct method, where both WDM and GRDR
enjoy smaller and decreasing MSE.

We also conduct an ablation study for the corresponding performance in the mis-specified
setting (i.e., no bootstrapping in Alg. 11). Results indicate that the perturbation method is
helpful for MSE reduction for both WDM and GRDR. We further conduct evaluations with
different bootstrap replicates’ sizes, and the above conclusions remain robust for different
replicate sizes (additional results in Appendix 6.12).

3. Policy optimization. Lastly, we integrate the policy evaluation and the sub-gradient
method (Alg 12) to conduct policy optimization. At each iteration of Alg 12, the perturbation
algorithm (Alg 11) and one of the three different estimation methods are applied to evaluate
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the policy objective. We consider a logistic policy πt(W ) = sigmoid(φ1 ·W +φ2). To study
the convergence and the effectiveness of the subgradient algorithm for minimization, we fix
a test set and perform subgradient descent over 60 iterations for each run. We average the
policy values at each iteration over ten runs, where in each run we generate a random set of
training data and a random initialization of the starting policy.

We compare to the oracle estimator using the ground truth outcome model (Oracle OPT).
Results are presented in Figure 6.3. Again, WDM and GRDR quickly converge to the oracle
estimation, while the large bias of the direct method leads to poor policy optimization. We
further evaluate the impact of average random selected initial policies to the performance,
and compared Figure 6.3 with the results using a fixed initial policy. We observe that in this
relatively low-dimensional example, the policy value converges to estimation-oracle-optimal
after a few iterations (additional results and full training details in Appendix 6.12).

6.6 Conclusion and future directions

We studied a new framework for causal policy optimization with a policy-dependent optimiza-
tion response. We proposed evaluation algorithms and analysis to address the fundamental
challenge of an additional optimization bias. Simulations for both the policy evaluation and
optimization algorithms demonstrate the effectiveness of this approach. Interesting further
directions include studying individual fairness of optimal allocations in applications such
as school assignments or job matching, and/or computational improvements to the policy
optimization algorithms.

6.7 Appendix: Further related works and

comparisons

Other variants of off-policy evaluation and optimization with global dependence
on the population. There is also a line of work on off-policy evaluation, for example evalu-
ating policies by non-average functionals over populations (median [148], quantile [46, 182]);
but estimation crucially depends on specific reformulations based on problem structure.
These functionals are typically risk deviations and reformulated in relation to estimation of
quantiles rather than generic optimization formulations. In contrast, our debiasing is more
general and independent of the functional form of the risk deviation beyond the second-stage
problem being a stochastic linear optimization problem. However, risk deviations typically
lead to min-max problems, while our formulation has aligned objective functions of treat-
ment and response and is inherently a partial optimization of a nonconvex problem, hence
a min-min problem.

Such min-max formulations also appear in sensitivity analysis and approaches to un-
observed confounding via min-max robustness [125, 127] and similar algorithms for policy
optimization appear there. However, the formulation of this work focuses specifically on
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generic optimization problems in a different conceptual setting. Estimation is quite different
due to the requirement of compatibility of estimation and a perturbation approach.

Our focus on the downstream global system response bears a distant conceptual re-
semblance to interference [117], but is fundamentally very different: we require the causal
response satisfies the stable unit treatment value assumption (SUTVA), while the source of
interaction across units (analogous to the exposure mapping) is completely known to and
under the control of the decision-maker.

Lastly, recent work develops specialized estimation more closely using the structure of
economic systems, such as marketplace interference [151] or mean-field equilibrium [169,
213]. This work is often closely coupled with the application structure. Our use of policy-
dependent structure is coarse, considering only a generic linear optimization response and
in turn adjusting for the introduced optimization bias.

Decision-dependent classifier shift. Our last example of estimating decision-dependent
predictive loss is broadly motivated by decision-dependent distribution shifts but focuses
on settings with distinct treatments, rather than other frameworks where a classifier is a
treatment studying model-based or utility-model based approaches [109, 180].

Structured prediction. Finally, although there is extensive work on structured predic-
tion in machine learning, our framework is very different: while structured prediction maps
contextual inputs to the space of complex outputs (the space of network flows, matchings;
the optimization decision vector), our data environment consists of contexts and separable,
unit-dependent outcomes.

6.8 Appendix: Additional details for estimation

Preliminaries

Adjusting for confounding: IPW and AIPW. In general, plug-in estimation of µ̂t(W )
does not admit unbiased predictions because of selection bias and model misspecification. A
key object that adjusts for selection bias is the

propensity score: et(W ) = P(T = t | W ).
Although importance sampling cannot directly be applied in our main regime of interest

with out-of-sample evaluation as in Assumption 6.2.1, we introduce key properties which
can be used to debias outcome models. (See Section 6.10 for discussion of an alternative
in-sample OPE regime).

Inverse propensity weighting (IPW) transforms treatment-conditional expectations to the
population expectation—by iterated expectations and Assumption 6.4.1 (ignorability), we
have: ∑

t

E
[
E
[
c
I[Zπ = t]

et(W )
| W

]]
=
∑
t

E
[
c
I[Zπ = t]

et(W )

]
=
∑
t

E[c(πt)] = E[c(π)]. (6.7)
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In general, doubly-robust augmented inverse probability weighting (AIPW) estimation im-
proves the variance when both models are well-specified and achieves overall unbiasedness
under unbiasedness of either outcome or propensity:∑

t E
[
πt(W )I[Zπ = t]( I[T=t]

et(W )
(c− µt(W )) + µt(W ))

]
= E[c(π)].

6.9 Appendix: Proofs

Asymptotic variance of two-step estimation via GMM asymptotic variance We
first recall a general framework for deriving asymptotic variance with generated regressors
as discussed in [177]. This section is summarized from the presentation in there to keep
derivations self-contained.

We focus on the approach based on the asymptotic variance for GMM, viewing the
nuisance estimations as “stacked” moment equations for θ̂ (second-stage estimate) and γ̂
(the first-stage estimation). Then, applying blockwise inversion to the GMM asymptotic

variance obtains the asymptotic variance of the (parameter) vector,

[
θ
γ

]
in terms of the first

component (top left block).
Stack the moment equations for θ̂, γ̂ to get:

E[g(W, θ0, γ0)] = 0,

E[h(W, γ0] = 0.

Note adaptivity occurs iff Gγ = ∇γ E[g(W, θ0, γ0)] = 0
Define the following sample Jacobians of moment conditions with respect to the param-

eters:

Ĝθ = n−1

n∑
i=1

∇θg(wi, θ̂, γ̂), Ĝγ = n−1

n∑
i=1

∇γg(wi, θ̂, γ̂), Ĥ = n−1

n∑
i=1

∇γh(wi, γ̂).

For short introduce notation for the empirical moments ĝi, ĥi:

ĝi = g(wi, θ̂, γ̂), ĥi = h(wi, γ̂),

so that we can define the sample second moment matrix Ω̂ as follows:

Ω̂ = n−1

n∑
i=1

(ĝi, ĥi)
⊤(ĝi, ĥi).

The estimator for asymptotic variance is given by:

V̂ =

[
Ĝθ Ĝγ

0 Ĥ

]−1

Ω−1

[
Ĝθ Ĝγ

0 Ĥ

]−1
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=

[
Ĝ−1

θ −Ĝ−1
θ ĜγĤ

−1

0 Ĥ−1

]
Ω̂

[
Ĝ−1

θ −Ĝ−1
θ ĜγĤ

−1

0 Ĥ−1

]
.

If the moment functions are uncorrelated then the first-step estimation increases the
second-step variance. We may obtain a simplification as follows. Let ϕ̂i = −Ĥ−1ĥi. Then
the upper left block is

V̂θ = Ĝ−1
θ

[
n−1

n∑
i=1

{
ĝi + Ĝγψ̂i

}{
ĝi + Ĝγψ̂i

}′
]
Ĝ−1

θ .

For V̂γ = n−1
∑n

i=1 ϕ̂iϕ̂
′
i, an asymptotic variance estimator for θ̂ is

V̂θ = Ĝ−1
θ

(
n−1

n∑
i=1

ĝiĝ
′
i

)
(Ĝ−1

θ )′ + Ĝ−1
θ ĜγV̂γ(Ĝγ)

′(Ĝ−1
θ )′.

Outcome regressions with generated regressors

In the appendix we also discuss an approach based on GRDR .

Proposition 6.9.1 (Asymptotic normality of GRDR). Let et(w), µ(w) satisfy Assump-
tion 6.4.4 with the moment condition for µ given by Equation (6.6). Then

Ĝγ =

En[2(ϵ1(
∂
∂γ
e−1
1 (W ; γ))) + ϵ0(

∂
∂γ
e−1
0 (W ; γ)))∂µ

∂θ̃

−En[2T (c− µ(W ; θ))( ∂
∂γ
e−1
1 (W ; γ))]

−En[2(1− T )(c− µ(W ; θ))( ∂
∂γ
e−1
0 (W ; γ))]

 .
Proof of Proposition 6.4.7.

En[∇γg(W ; θ, β)] = En

[
T (
∂e

∂γ
e−1) · 2(c− µ(W ; β))

∂µ

∂θ̃

]
.

■

Proof of Proposition 6.9.1, GRDR, [25]. The stacked estimation equations are as follows,
for the parameters [γ, θ, ϵ1, ϵ0]:

− E
[
2(T − eT (W ; γ))

∂e

∂γ

]
= 0,

− E
[
2(c− µ̃(W ; θ)

∂µ

∂θ

]
= 0,

− E[2T (c− µ̃1(W ; θ)e−1
1 (W ; γ)] = 0,

− E[2(1− T )(c− µ̃0(W ; θ)e−1
0 (W ; γ)] = 0
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and the Jacobian of partial derivatives is:

Gγ =

E[2(ϵ1( ∂
∂γ
e−1
1 (W ; γ))) + ϵ0(

∂
∂γ
e−1
0 (W ; γ)))∂µ

∂θ

−E[2(c− µ(W ; θ))T ( ∂
∂γ
e−1
1 (W ; γ))]

−E[2(c− µ(W ; θ))(1− T )( ∂
∂γ
e−1
0 (W ; γ)]

 .
■

Nonlinear Generalization of Perturbation Method

Preliminaries. We include the proof for completeness. It is the same argument of Ito et al.
[121] with the addition of linear expansions of the nonlinear model µ around the parameter
ξ.

Let µ denote a generic prediction model which may depend nonlinearly upon its param-
eter ξ. Define for our context the true-optimal-decision x(ξ∗), and sample-optimal-decision
x̂(ξ̂):

x∗ ∈ argmax
m∑
i=1

µ∗(Wi, ξ
∗)xi,

x̂ ∈ argmax
m∑
i=1

µ(Wi; ξ̂)xi.

Define the auxiliary functions η, ϕ evaluated along paths indexed by ϵ:

η(ϵ) = Eδ

[
m∑
i=1

x(ξ∗ + ϵδ)µ(Wi; ξ
∗)

]
,

ϕ(ϵ) = Eδ

[
m∑
i=1

x(ξ∗ + ϵδ)µ(Wi; ξ
∗ + ϵδ)

]
.

We focus on the case exclusively where the function f of interest is affine, i.e. so that
f(z∗, ξ∗) =

∑m
i=1 z

∗
i g(ξ

∗;Xi).

Proof of Proposition 6.4.3. Let ξ∗ϵ = ξ∗ + ϵδ. First, we will show

η(ϵ)− ϕ(ϵ) = ϵ Eδ

[
m∑
i=1

x̂i(∇ξµ
∣∣∣
ξϵ
δ)

]
+O(ϵ2). (6.8)

and then that ϵϕ′(ϵ) equals the right-hand-side of the above.
Step 1 (Showing Equation (6.8)):
Expand the definition of η, ϕ and apply a Taylor expansion of µ(Wi; ξ

∗+ϵδ) from µ(Wi; ξ
∗).

η(ϵ)− ϕ(ϵ) = Eδ

[
m∑
i=1

(
x̂iµ(Wi; ξ

∗)− x̂iµ(Wi; ξ̂)
)]

= Eδ

[
m∑
i=1

x̂i

(
µ(Wi; ξ

∗)− µ(Wi; ξ̂)
)]
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= Eδ

[
m∑
i=1

x̂i

(
ϵ(∇ξµ

∣∣∣
ξϵ
δ) +O(∥ϵδ∥22)

)]
.

Step 2: ϵϕ′(ϵ) = RHS of Equation (6.8).
Let ξ∗ϵ+h = ξ∗ + (ϵ+ h)δ.
By definition,

ϕ′(ϵ) = lim
h→0

ϕ(ϵ+ h)− ϕ(ϵ)
h

= lim
h→0

1

h

(
Eδ

[
m∑
i=1

xi(ξ
∗
ϵ+h)µ(Wi; ξ

∗
ϵ+h)−

m∑
i=1

xi(ξ
∗
ϵ )µ(Wi; ξ

∗
ϵ )

])
.

Add / subtract x̂(ξϵ)µ(Wi; ξϵ) :

ϕ′(ϵ) = lim
h→0

{
1

h

(
Eδ

[
m∑
i=1

(
xi(ξ

∗
ϵ+h)µ(Wi; ξ

∗
ϵ ) + xi(ξ

∗
ϵ+h)(µ(Wi; ξ

∗
ϵ+h)− µ(Wi; ξ

∗
ϵ ))
)])

− 1

h

(
Eδ

[
m∑
i=1

xi(ξ
∗
ϵ )µ(Wi; ξ

∗
ϵ )

)]}

= lim
h→0

{
1

h

(
Eδ

[
m∑
i=1

(xi(ξ
∗
ϵ+h)− xi(ξ∗ϵ ))µ(Wi; ξ

∗
ϵ ) +

m∑
i=1

(xi(ξ
∗
ϵ+h)(µ(Wi; ξ

∗
ϵ+h)− µ(Wi; ξ

∗
ϵ ))

])}

= lim
h→0

{
1

h

(
Eδ

[
m∑
i=1

(xi(ξ
∗
ϵ+h)− xi(ξ∗ϵ ))µ(Wi; ξ

∗
ϵ ) +

m∑
i=1

(xi(ξ
∗
ϵ+h)(µ(Wi; ξ

∗
ϵ+h)− µ(Wi; ξ

∗
ϵ ))

])}
.

The last line follows by a Taylor expansion of µ from ξ∗ϵ to ξ∗ϵ+h and noting that the first
term converges as x does, limh→0

1
h
(
∑m

i=1(xi(ξ
∗
ϵ+h)− xi(ξ∗ϵ ))µ(Wi; ξ

∗
ϵ )) = 0. under regularity

conditions common in perturbation analysis of stochastic programs, such as uniqueness of
the solution.

Therefore, interchanging limits and the expectation:

ϕ′(ϵ) = Eδ

[
lim
h→0

{
1

h

(
m∑
i=1

xi(ξ
∗
ϵ+h)(∇ξµ

∣∣∣
ξϵ
(hδ) +O(∥hϵ∥22))

)}]

= Eδ

[
lim
h→0

{
m∑
i=1

xi(ξ
∗
ϵ+h)(∇ξµ

∣∣∣
ξϵ
δ +O(h)

}]

= Eδ

[
m∑
i=1

xi(ξ
∗
ϵ )(∇ξµ

∣∣∣
ξϵ
δ)

]
.

■
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6.10 Appendix: Alternative asymptotic regime

(Assumption 6.2.2)

In the main text we focused on a fixed-dimension regime. We describe some extensions that
may be possible to handle an in-sample, growing dimension, growing-n regime described in
Assumption 6.2.2. We do generally require additional structural information to apply more
familiar OPE estimators such as IPW/AIPW and other adaptations of bias adjustment
methods.

The strongest such additional structural knowledge is that the optimization is highly
structured so as to admit a finite VC dimension; to circumvent issues related to the growing
dimension.

Assumption 6.10.1. x(π,W ) has finite VC dimension.

Such a structural characterization is established in special cases such as multi-knapsack
linear programs [206], or large-market limits of stable matching markets [16]; but need not
hold in general.

Preliminaries

For completeness, we describe the analogous estimands/estimators for the in-sample, growing-
n regime as described in the main text for the out-of-sample, fixed-m regime.

Plug-in estimation is evaluated on the training dataset as follows:

v̂π = min
x∈X

n−1

n∑
i=1

∑
t∈{0,1}

πtµ̂t(wi)xi : Ax ⩽ b

 . (6.9)

We describe extensions of approaches to handle in-sample bias in this growing-dimension
setting, although we generally require more structure on the problem. As described in
Assumption 6.2.2 we typically require a problem-dependent asymptotic scaling; for example
that we jointly scale up the problem size as well as the constraints. We provide a concrete
example for Example 6.2.3.

Example 6.10.2 (Fluid limit for Example 6.2.3). The number of workers is αn and the
number of jobs is βn.

Sample splitting

We first discuss an analogous sample splitting extension of Ito et al. [121] which combines
their sample splitting procedure with standard cross-fitting for doubly robust estimators [49].
However, a naive extension requires four folds and is therefore expected to perform poorly
in finite samples.
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Let K denote the number of folds, we will exposit the case of two folds and the K-fold
generalization is standard. Denote two main folds of the data, Ik1 , Ik2 denoting the index
sets for the data, and Ik1e , Ik1µ be subfolds of Ik1 (respectively subfolds for Ik2). As suggested
by the notation, we use distinct subfolds Ik1e , Ik1µ to learn the nuisance estimates e, µ (from
the respective subfold).

The main difference from standard cross-fitting is that in Assumption 6.10.1 we assume
the optimization problem is well-parametrized in covariates: the optimization solution is well-
described as a function of x(W ). We also require that there is a sensible way of sampling
datapoints and projecting the feasible set X onto each subsampled index set. E.g. when
subsampling in a matching example, after subsampling nodes the new feasible set in each
index set X1,X2 preserves all edges between nodes in the original feasible set X .

Let Γt(Oi; e, µ) denote the score associated with observation Oi = (Wi, Ti, ci) under ei-
ther IPW or AIPW, with input nuisance functions e, µ. For example, as in Section 6.4,
ΓIPW
t (O; e, µ) = I[T=t]c

et(w)
and ΓAIPW

t (O; e, µ) = I[T=t](c−µt(w)
et(w)

+ µt(w).
As is standard in cross-fitting we use distinct main folds in order to estimate nuisances

(indexed by parameters ξ) for input into x̂: that is,

x̂1(ξ̂2;W ) ∈ argmin
x(W )∈X2

1

|I2|
∑
i∈I2

∑
t∈{0,1}

πt(Wi)Γt(Oi; e
−k(i), µ−k(i))xi,

and analogously for x̂2.
Then evaluation estimates the value within each fold using the optimal solution from the

other fold:

v̂1 =
1

|I2|
∑
i∈I2

∑
t∈{0,1}

πt(Wi)Γ(Oi; e
−k(i), µ−k(i))x̂1(ξ̂1,Wi),

and we return the average over folds, 1
2
(v̂1 + v̂2) or more generally the average of {v̂k}k∈K .

When K > 2, for each fold k, we will use two subfolds I−k,e and I−k,µ to estimate e, µ,
and then obtain x̂−k from I−k. We evaluate the estimated objective with x̂−k, êk and µ̂k and
average over all folds.

Proposition 6.10.3 (Unbiased estimation by sample splitting.). 1
K

∑K
i v̂k = E[ṽ]

Proof. Immediate from standard analysis of AIPW and sample-splitting of [121]. ■

Comparison of estimation properties in the two regimes
(Table 6.1)

Out-of-sample, fixed-dimension. IPW/AIPW-type estimators cannot be applied in the
out-of-sample regime of Assumption 6.2.1, by definition of the regime. However, we may
obtain out-of-sample risk bounds on the decision regret in this regime, simply by virtue of out-
of-sample generalization risk bounds on the generated regressors. For example, we effectively
assume near-parametric regimes for the propensity score so that the conditions of Theorem 1
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of Bertail et al. [34], providing a generalization risk bound for two-stage reweighted empirical
risk minimization with estimated weights (as in our Section 6.4), are met. Under assumption
of uniformly bounded decision variables, applying the Cauchy-Schwarz inequality directly
implies that statistical estimation consistency of our estimation approaches imply decision
regret consistency, so that the estimation bias vanishes at a Op(n

− 1
2 ) rate. (However the

statistical rate of optimization bias adjustment remains unclear).

In-sample, growing-dimension, growing-n. An analogous extension to sample split-
ting as in Ito et al. [121] is possible in highly structured situations satisfying Assump-
tion 6.10.1. For a fixed optimization solution x, uniform generalization over π ∈ Π is a
consequence of uniform generalization with a stochastic (bounded) envelope function. How-
ever, in this regime, uniform generalization over both π ∈ Π and x ∈ X is difficult because
in the regime of Assumption 6.2.2, the dimension of the optimization grows as n→∞. Typ-
ical approaches to uniform convergence would require x∗(π,W ) (the optimal optimization
solution at a fixed π) to converge uniformly over the space of policies and W .

Different estimation interpretations of GRDR in the two regimes. Note that ben-
efits of GRDR in terms of doubly-robust estimation of the ATE (mixed-bias, rate double-
robustness) are only relevant in the in-sample regime of Assumption 6.2.2. Recent work
does show this specification obtains empirical benefits for confounded outcome estimation,
in appeal to the sufficient balancing properties of the propensity score, that may also apply
to the regime of Assumption 6.2.1.

6.11 Appendix: Beyond linearity: decision-dependent

classifier risk

The downstream optimization can also in turn be a prediction risk problem: treatments shift
distributions upon which predictive risk models are trained [179]. For example, the medi-
cal system simultaneously treats individuals but is also interested in large-scale predictive
models from passively collected electronic health records, trained upon the realizations of
health outcomes of the entire population, and so may generate distribution shifts in these
predictive risk models [6, 85]. Therefore, the post-treatment predictive risk model introduces
a downstream causal-policy dependent optimization response.

In the previous sections, we focused on linear optimization because plug-in estimation
is consistent when the random variable enters linearly into the optimization problem. The
challenge with nonlinearity is that such plug-in-approaches are no longer consistent and can
introduce policy-dependent nuisance estimation functions.

Nonetheless, special structure of the problem can admit alternative estimation strategies.
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Problem setup

Example 6.11.1 (Decision-dependent classifier drift.). We shift to notation more typical in
statistics/machine learning to emphasize the setting. We model decision-dependent shift of
predictive risk models in a repeated measurement setting.9 Our observation trajectories10

each comprise of (L0, Y0, T0, L1(T0), Y1(T0)): baseline covariates (L0, Y0), time-0 treatment
T0 ∈ {0, 1}, and post-treatment covariates and outcome (L1(T0), Y1(T0)).

For example, L could measure patient state and Y a cardiac event within a given time
period. Upon observation of (L0, Y0) a patient is treated with T0; for example with more
aggressive or wait-and-see treatment depending on Y0(T0). While optimal treatment regimes
focus on averages of individual-level outcomes Y1(T0); in our policy-dependent response set-
ting we model the problem of, for example, continuously monitoring “feedback loops” that
may surface in predictive risk models that may generally be trained using large electronic
health record databases. Said differently, we could have modeled this abstractly as a pol-
icy evaluation with the augmented set of “covariates”, jointly (L0, Y0), and “outcomes”
(L1(T0), Y1(T0)). However, we focus on the ultimate downstream predictive risk model which
depends (nonlinearly) on all the outcomes of the population’s units. The policy evaluation
problem could evaluate the predictive loss of the downstream predictive model f(L1(π), β),
where there is downstream optimization of the squared loss over β.

min
β

E[(Y1(π)− f(L1(π), β))
2]. (6.10)

The causal graph of Section 6.11 describes the two-stage observation of individuals11,
comprising observation trajectories (L0, Y0, T0, L1(T0), Y1(T0)). We consider in the general
case a two-stage setting with a treatment affecting covariates and outcomes; upon which a
predictive risk model is trained.

Example 6.11.2 (Policy optimization for Example 6.11.1, policy-dependent prediction.).
Consider the case of two different treatments with similar (conditional) average treatment
effects, but one induces higher variability in outcomes which increases the fundamental noise
level in the regression: harming the population prediction model and incurring higher loss.
Optimizing between these two treatments, scalarizing population outcomes by the global
term would result in choosing the less variable treatment.

Therefore, in this framework we may be interested in the following scalarized policy
optimization problem:

min
π

min
β
λE[Y1(π)] + (1− λ)E[(Y1(π)− f(L1(π), β))

2].

9That is, observing covariates and outcomes from the same unit, measured at different time periods.
10We are therefore modeling “feedback loops” between outcomes Y0 and the treatments administered to

manage them via temporally distinct repeated measurements.
11We do not consider for now the causal effects of the prediction model, although this could be a direction

for future work.
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L0

Y0

L1

T Y1

Figure 6.4: Causal diagram for decision-dependent classifier drift.

Estimation

Plug-in estimators. Our goal is off-policy evaluation of predictive risk model (parameter)
solving the downstream prediction risk optimization after treatment under treatment regime
π:

β∗ ∈ argmin
β

E[(Y1(π)− f(L1(π); β)
2].

However for the special case that we consider of linear regression response (squared loss,
linear parametrization), we may orthogonalize the first-order optimality conditions of the
policy-dependent optimization, e.g. recognizing that, β∗ solves the first order conditions

E[L⊤
1 (Y1 − L1β)] = 0. (6.11)

Hence for the case of least squares and linear regression, we may focus on estimation re-
finements for β: observe that the estimation requires estimation of certain transformations
of (X1, Y1) unit’s downstream outcome, x1y1 and x⊤1 x1, and we may estimate the following
matrix-regression or vector-valued regression nuisance estimates:

E[L1Y1 | T = t,X0, Y0], E[L1L
⊤
1 | T = t, L0, Y0]

Hence standard AIPW-type approaches can be applied with the above nuisances and the
censored observations l1y1(t), l0y0(t).

This suggests that when β is our parameter of interest (or functions thereof), we can
leverage double robustness. And, if we have a small space of policies we can optimize by
enumeration. However the same challenges regarding nonlinearity remain if we want to
estimate the final squared loss of θ.

Remark 6.11.3 (Restriction to linear models and the challenge for generalization to nonlin-
ear models). Note that the challenge with generalizing to non-least-squares losses or nonlin-
ear predictors is that due to nonlinearity, doubly-robust estimation of outcome X1 need not
provide the same benefits of bias reduction. Although an alternative approach is to instead
estimate the squared loss as the composite outcome E[(Y1(t)− θ⊤L1(t))

2 | t, L0, Y0] because of
our policy-dependent response optimizing over θ, we would have policy-dependent nuisance
functions so this becomes intractable.
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6.12 Appendix: Additional experiment details and

results

In this section, we provide more details on the experimental setup as well as further results.

Causal effect estimation setup

Fr the causal effect estimation we generated the training dataset D1 = {(W,T, c)} with co-
variate W ∼ N (0, 1), confounded treatment T , and outcome c. Treatment is drawn with
probability πb

t (W ) = 1
1+e−φ1W+φ2

, φ1 = φ2 = 0.5. The true outcome model is given by a
degree-2 polynomial:

polyθ(t, w) = (1, w, t, w2, wt, t2) · ([5, 1,−1, 2, 2,−1])⊤.

We generate the outcome samples as ct(w) = polyθ(t, w) + ϵ, where ϵ ∼ N (0, 1). All random
samples are generated using numpy.random package. In the mis-specified setting that induces
confounding, the outcome model is a vanilla linear regression overW without the polynomial
expansion.

In Fig. 6.1a and Fig. 6.1b in the main text, we illustrate the (covariate-conditional)
estimation over the covariates’ landscape for the direct method, the weighted direct method
(WDM), and the doubly robust method (GRDR) when there is a model mis-specification.
We provide the estimation results without model mis-specification in Fig. 6.5.

−10 −5 0 5 10
Covariate W

−60

−40

−20

0

20

40

̂ μ 1
(W

)−
̂ μ 0
(W

)

Direct
WDM

GRDR
Oracle

Figure 6.5: (In-sample estimation of µ̂1(W ) − µ̂0(W ), no model mis-specification). Com-
parison of direct / weighted direct (WDM) / doubly robust method (GRDR) to the oracle
estimator for estimation of conditional ATE over different covariate values. Results are av-
eraged over ten random training datasets; shading area indicates the standard error.

When there is no model mis-specification that that induces confounding, we observe that
both the three estimation methods perform well against the oracle estimation.
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Policy evaluation

For policy evaluation, we compare the perturbation method (Algorithm 11) when being ap-
plied with three different estimators (direct, WDM, and GRDR). For consistency, through-
out the evaluations, we follow the same true outcome model and covariate distribution as in
the previous subsection for causal effect estimation. In both the well-specified model setting
and the mis-specified model setting, the mean-squared-error (MSE) of the estimated policy
value with the three estimators is computed with regard to the ground truth outcome model
(aka oracle).

When evaluating Algorithm 11, we generated S = 20 bootstrap replicates. The down-
stream matching problem is evaluated with m = 500 left-hand-side nodes, and m′ = 300
right-hand-side nodes. The min-cost matching requires each node to be matched to no
more than one node on the other side, and was computed by the linear sum assignment

function of the scipy.optimize package in Python 3. We evaluated a fixed logistic policy
πt(W ) = sigmoid(ϕ ·W + b) with ϕ = 1, b = 0.5.

500 1000 1500 2000
training data size

10−3

10−2

10−1

100

M
SE

Direct (no perturb.)
WDM (no perturb.)
GRDR (no perturb.)

Figure 6.6: (In-sample estimation of µ̂1(W ) − µ̂0(W ) with model mis-specification, no per-
turbation applied). Comparison of direct / weighted direct (WDM) / doubly robust method
(GRDR) over increasing size of training data. Results are averaged over ten random training
datasets; shading area indicates the standard error.

Figure 6.2 shows that when there is mis-specification, even a large training dataset cannot
bring bias correction for the direct method, where both WDM and GRDR enjoy smaller and
decreasing MSE. As an ablation study, we also compare to the corresponding performance
in the mis-specified setting when we do not perform the perturbations (i.e. no bootstrapping
in Alg. 11). In detail, we directly return v̂(0) without doing the later bootstrap procedure.
Figure 6.6 indicates that the perturbation method is helpful for MSE reduction for both
WDM and GRDR.

We further conduct evaluations with different bootstrap replicates’ sizes (controlled by
variable h in Algorithm 11). We include these results in Table 6.2. Results in Table 6.2 show
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Table 6.2: (Perturbation method, varying replicate size.) Performance for different esti-
mator/model combinations. Mean-squared-errors (MSE) are computed with regard to the
oracle outcome model.

Estimation h = 1 h = 2 h = 3 h = 4

Mis-specified model
Direct 0.59±0.05 0.70±0.05 0.76±0.06 0.70±0.06
WDM 0.00031±0.0001 0.00042±0.0002 0.00041±0.0002 0.00048 ±0.0003
GRDR 0.00040±0.0002 0.00046±0.0002 0.00031±0.0001 0.00035±0.0001

Well-specified model
Direct 0.00079±0.0004 0.00067±0.0004 0.00062±0.0003 0.00024±0.0002
WDM 0.00076±0.0004 0.00067±0.0003 0.00080±0.0002 0.00031±0.0001
GRDR 0.00082±0.0002 0.00067±0.0002 0.00080±0.0002 0.00031±0.0001

that WDM and GRDR remain more superior and that is robust with different replicate sizes.
For the evaluations over different h values, we used training data with 3000 samples. In each
iteration, the number of bootstrap replicates is 20.

Policy optimization

For policy optimization, we implemented the subgradient method as in Algorithm 12, and
obtained causal effect estimators from Algorithm 11.

In detail, for a given training dataset, we first obtained S + 1 outcome estimators (i.e.
{µ̂⋄

t (wi; ξ̂⋄), µ̂
⋄
t (wi; ξ̂⋄)

(j), j = 1 · · ·S} in Algorithm 11) via bootstrap. Then, at each iteration
of running subgradient descent, we evaluate the current policy using the S + 1 outcome
estimators respectively, and obtain S + 1 subgradients of it. We then aggregate these sub-
gradients by the bootstrap aggregation (as in Step 6, Algorithm 11).

We evaluate subgradients of the inner optimization solution in Algorithm 12 (step 4) by
evaluating the gradient of the objective with respect to φ, fixing the inner optimization vari-
able x∗. The fact that ∇φ is a subgradient is a consequence of Danskin’s theorem [60]. The
inner minimization (the matching problem) is again solved by the linear sum assignment

function of the scipy.optimize package in Python 3.
To further study the impact of the random initial policies to begin with the subgradient

descent algorithm, in Figure 6.7 we obtained the corresponding results of Figure 6.3, but
with a fixed initial policy. We observe that again WDM and GRDR quickly converges to the
oracle estimation, while the large bias of the direct method leads to poor policy optimization.
Moreover, in this relatively low-dimension example, although random initialization of the
policy leads to a larger variance in earlier iterations, the policy value convergences to oracle
policy objective quickly after a few iterations.

For the evaluations of policy optimization, we used training datasets with size 1000, and
a downstream min-cost matching with m = 100,m′ = 60. The learning rate was tuned over
[0.01, 0.1, 1]. All of our evaluations were run on a 2.3 GHz 8-Core Intel Core i9 CPU. All the
differentiation operations were handled by the automatic differentiation library in JAX.
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Figure 6.7: (Policy optimization (fixed test set)). Results of subgradient policy optimization
with direct / weighted direct (WDM) / doubly robust (GRDR) estimation methods and a
fixed test set. Averaged over ten random training datasets of size 1000.

Additinal comparisons and evaluations

Additional evaluations with more complex non-linear outcome model. We con-
duct further robustness checks with nonlinear data-generating processes: exponential and
quadratic. The outcome is ct(w) = a1+ a2 exp(b1+ b2w)+ c1t+ c2tw

2+ ϵ, where ϵ ∼ N (0, 1)
is an external noise, and [a1, a2, b1, b2, c1, c2] = [5, 0.05, 0.5,−2,−2,−1]. We fit this function
with nonlinear least squares (scipy.optimize.curve fit). Indeed, Figure 6.8 shows that the
direct method is sensitive to the model mis-specification bias without using a near-specified
nonlinear curve fit. However the weighted direct method (WDM) and the doubly robust
estimator (GRDR) remain robust; even if starting with misspecified parametric models.
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Figure 6.8: (In-sample estimation of µ̂1(W )− µ̂0(W ) for exponential function, (a) without /
(b) with curve fit. Comparisons of the CATE estimates with nonparametric estimators. (c)
without / (d) with model mis-specification.
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Additional comparison to non-parametric estimators. We further compare our es-
timators against existing CATE estimators (although in general, these estimators tuned
to estimate contrasts may improve upon differencing outcome models). We compared the
DM/WDM/GRDR to the Causal Random Forests estimator proposed in (Wager and Athey,
2018) 12, following the setup in Section 5.1. Moreover, we also compared how the CATE
estimators affect the policy evaluation task with the perturbation method (section 5.2). In
Figure6.8(c,d) comparing CATE estimates, the non-parametric random forest estimator is in-
deed unbiased, while the naive direct method has a large bias under model mis-specification.
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Figure 6.9: (Policy evaluation via perturbation method (Algorithm 1). Comparison of direct
/ WDM / GRDR / Causal Forests estimators over increasing size of training data.

12Based on implementation by Battocchi et al, EconML: A Python Package for ML-Based Heterogeneous
Treatment Effects Estimation.
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[66] N. Dikkala and É. Tardos. Can credit increase revenue? In International Conference
on Web and Internet Economics, pages 121–133. Springer, 2013.

[67] I. Dissanayake, J. Zhang, and B. Gu. Task division for team success in crowdsourcing
contests: Resource allocation and alignment effects. Journal of Management Informa-
tion Systems, 32(2):8–39, 2015.

[68] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial. No justified
complaints: On fair sharing of multiple resources. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 68–75, 2012.

[69] M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil. Empirical risk
minimization under fairness constraints. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[70] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.

ics.uci.edu/ml.

[71] J. Duchi and H. Namkoong. Learning models with uniform performance via distribu-
tionally robust optimization. arXiv preprint arXiv:1810.08750, 2018.

[72] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto
the ℓ1-ball for learning in high dimensions. In International Conference on Machine
Learning (ICML), 2008.

[73] M. Dud́ık, J. Langford, and L. Li. Doubly robust policy evaluation and learning. arXiv
preprint arXiv:1103.4601, 2011.

[74] M. Dud́ık, D. Erhan, J. Langford, and L. Li. Doubly robust policy evaluation and
optimization. Statistical Science, 29(4):485–511, 2014.

[75] M. Dud́ık, N. Haghtalab, H. Luo, R. E. Schapire, V. Syrgkanis, and J. W. Vaughan.
Oracle-efficient online learning and auction design. In 2017 IEEE 58th Annual Sym-
posium on Foundations of Computer Science, pages 528–539. IEEE, 2017.

[76] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the
sample distribution function and of the classical multinomial estimator. The Annals
of Mathematical Statistics, pages 642–669, 1956.

[77] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through aware-
ness. In Innovations in Theoretical Computer Science (ITCS), pages 214–226. ACM,
2012.



BIBLIOGRAPHY 165

[78] E. Eban, M. Schain, A. Mackey, A. Gordon, R. A. Saurous, and G. Elidan. Scalable
learning of non-decomposable objectives. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2017.

[79] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized
second-price auction: Selling billions of dollars worth of keywords. American economic
review, 97(1):242–259, 2007.
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