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Abstract

The Design and Implementation of User-Schedulable Languages

by

Alex Reinking

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Jonathan Ragan-Kelley, Chair

This thesis details an emerging class of programming language designs, called user-schedulable
languages, that provide a safe and productive performance engineering environment for
modern, heterogeneous hardware. The defining trait of user-schedulable languages is the
division of program specification into two key parts: the algorithm, which defines functionally
what is to be computed, and the schedule, which defines how the computation should be carried
out. Importantly, algorithms have semantics independent of any schedule, and schedules are
semantics-preserving with respect to the algorithm. Thus, programmers are freed from a
large class of bugs. Because algorithm languages tend to be functional and domain-specific,
the scheduling language can be very expressive. Existing scheduling languages include
many program transformations, from accelerator offloading to tricky tiling and interleaving
strategies. Multiple schedules can be written for different sets of hardware targets and can
be maintained independently from one another.

Here, we formally analyze the design of an existing and widely deployed user-schedulable
language, Halide, and find and correct several serious bugs and design flaws through this
analysis. We also detail both the design and implementation of a new user-schedulable
language, Exo, whose design is informed by the lessons learned analyzing Halide. Unlike
Halide, which models scheduling as a parameter to a monolithic lowering process, Exo uses
a rewrite-based scheduling system. This system doubles as an instruction selection process
for custom accelerator hardware; importantly, these instructions can be specified in user
programs, rather than inside the compiler itself. We then discuss a novel, high-performance,
reference-counting memory management strategy suitable for recursive programs with highly
non-local control flow over a (co-)inductive data domain. Finally, practical considerations
for language design are discussed; these are lessons learned from maintaining and deploying
these systems in practice.
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Chapter 1

Introduction

For most of computing history, single-core CPU performance grew exponentially. As a result,
the general-purpose programming systems of that era prioritized programmer productivity
over performance. Given the context in which hardware upgrades could double performance
every two years or so, it made more sense to allocate developer time to shipping new features
rather than optimization.

However, at the turn of the century, physical limitations at small transistor sizes slowed
this growth. In response, hardware engineers began adding more CPU cores to their designs.
In 2005, both AMD and Intel released their first consumer-grade multi-core chips. Around
the same time, general-purpose GPU programming became more attractive when researchers
discovered that pixel shaders could be used to perform linear algebra. With the release of
CUDA in 2007, GPU acceleration became the norm for numerical workloads such as image
editing, scientific computing, and computer-aided design.

In more recent years, the rise of deep neural networks and other machine learning systems
has led to an explosion in demand for processing increasingly large data sets. Model training
often occurs in large data centers, and the trained models are deployed on a wide range of
devices, from servers to ”edge” devices like mobile phones. Because these systems are highly
compute- and power-intensive, there has never been a greater demand for efficiency at all
scales. In response, hardware engineers have designed purpose-built accelerators for these
applications. Modern hardware now includes a wide variety of accelerators, such as Apple’s
Neural Engine and Qualcomm’s Hexagon DSP.

However, the industry-standard programming languages for high-performance computing,
such as C and C++, still model execution as running on a single thread on a single CPU core.
Even though C gained a parallel memory model in 2011, fewer than half of C programmers
today can use the C11 standard due to the slow pace of adoption in the industry. Furthermore,
modern compilers are still unable to bridge the gap between simple code and fast code. Even
in the case of matrix multiplication on a single CPU core, there are several orders of magnitude
difference in both code size and throughput between a naive implementation and a fast one.
The fact that over 50 years of compilers research has not yielded a satisfactory solution to
this simpler problem suggests that traditional languages are not equipped to handle the new
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era of highly heterogeneous machines.
In this thesis, we examine an increasingly popular approach to language design called

user scheduling. These user-schedulable languages strike a balance between abstraction and
control in high-performance computing by separating the specification of what a program
should compute (known as the “algorithm”) from a schedule for how to compute it. In the
process, they make a novel language soundness claim: the result of a program should always
be the same, regardless of how it is scheduled.

Typically, the algorithm language describes the desired computation at a high level,
without low-level details like memory allocation or complex arithmetic in loop bounds and
indexing expressions. The scheduling language includes a series of directives that guide
the compilation of this algorithm to a target language, such as C, a lower-level IR, or the
algorithm language again. These directives include program transformations that adjust
performance, for example, by tiling iteration spaces for better cache locality or mapping
program fragments to specific accelerators.

We present the first formalization and metatheory of language soundness for a user-
schedulable language, the widely used array processing language Halide. Its soundness
guarantee is tricky to provide in the presence of schedules that introduce redundant recom-
putation and computation on uninitialized data, rather than simply reordering statements.
In addition, Halide ensures memory safety through a compile-time bounds inference engine
that determines safe sizes for every buffer and loop in the generated code, presenting a novel
challenge: formalizing and analyzing a language specification that depends on the results of
unreliable program synthesis algorithms. Our formalization has revealed flaws and led to
improvements in the practical Halide system, and we believe it provides a foundation for
the design of new languages and tools that apply programmer-controlled scheduling to other
domains.

High-performance kernel libraries are critical to exploiting accelerators and specialized
instructions in many applications. Because compilers are difficult to extend to support diverse
and rapidly-evolving hardware targets, and automatic optimization is often insufficient to
guarantee state-of-the-art performance, these libraries are commonly still coded and optimized
by hand, at great expense, in low-level C and assembly. To better support development of
high-performance libraries for specialized hardware, we propose a new programming language,
Exo, based on the principle of exocompilation: externalizing target-specific code generation
support and optimization policies to user-level code. Exo allows custom hardware instructions,
specialized memories, and accelerator configuration state to be defined in user libraries. It
builds on the idea of user scheduling to externalize hardware mapping and optimization
decisions. Schedules are defined as composable rewrites within the language, and we develop
a set of effect analyses which guarantee program equivalence and memory safety through
these transformations. We show that Exo enables rapid development of state-of-the-art
matrix-matrix multiply and convolutional neural network kernels, for both an embedded
neural accelerator and x86 with AVX-512 extensions, in a few dozen lines of code each.

Finally, we introduce Perceus, an algorithm for precise reference counting with reuse and
specialization. Starting from a functional core language with explicit control-flow, Perceus
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emits precise reference counting instructions such that (cycle-free) programs are garbage
free, where only live references are retained. This enables further optimizations, like reuse
analysis that allows for guaranteed in-place updates at runtime. This in turn enables a
novel programming paradigm that we call functional but in-place (FBIP). Much like tail-call
optimization enables writing loops with regular function calls, reuse analysis enables writing
in-place mutating algorithms in a purely functional way. We give a novel formalization of
reference counting in a linear resource calculus, and prove that Perceus is sound and garbage
free. We show evidence that Perceus, as implemented in Koka, has good performance and is
competitive with other state-of-the-art memory collectors.
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Chapter 2

Formal Semantics for the Halide
Language

This chapter is based on the work in Reinking, Bernstein, and Ragan-Kelley [133], which is
under submission, but available on arXiv.

2.1 Introduction

Halide is a domain-specific language used widely in industry to build high-performance
image and array processing pipelines for everything from YouTube, to every Android phone,
to Adobe Photoshop [71, 128, 130, 131]. As part of a new generation of user-schedulable
languages and compilers [6, 22, 42, 62, 77, 86, 114, 144, 172], its design separates the
specification of what is to be computed, known as the algorithm, from the specification of
when and where those computations should be carried out and placed in memory, known as
the schedule, while allowing both to be supplied by the programmer.

The key value of user scheduling is that programmers are relieved from troubleshooting
large classes of bugs that arise when optimizing programs for memory locality, parallelism, and
vectorization because these transformations are available in the scheduling language, rather
than being directly expressed in the algorithm. This enables a schedule-centric workflow
where the majority of effort is spent exploring different optimizations, not ensuring correctness
after each attempt. This allows performance engineers to optimize programs competitively
with the best hand-tuned C, assembly, and CUDA implementations, but with dramatically
less code and development time [130].

Halide specifies algorithms in a purely functional dataflow language of infinite arrays that
combines lazy and eager semantics. The schedule then guides compilation to generate some
particular eager, imperative implementation. Halide schedules include classic loop re-ordering
transformations, but their most unique constructs (compute-at, store-at) induce non-local
transformations that intentionally exploit redundant recomputation and computation on
uninitialized data—transformations well outside that classic model.
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So changing the schedule of a Halide program dramatically changes the computation, but
when is this safe and sound?

The safety and soundness of languages with user-controlled scheduling has never been
formally defined and analyzed, particularly in the presence of non-reordering transformations
(see chapter 6). This paper presents the first formal definition and analysis of the core of
Halide, and a general approach to the metatheory of similar languages. We focus on proving
a new safety and correctness guarantee unique to user-scheduled languages: regardless of
what schedule is supplied, a given algorithm should always produce the same result and be
memory-safe.

Formalizing the correctness of Halide is difficult for at least two reasons. First, traditional
formalisms for reasoning about the correctness of compiler transformations (especially loop
transformations) tend to reduce to dependence analysis of imperative code. This strategy is
only applicable to re-ordering transformations, and so we must build our proofs and reasoning
on a different structural basis (§2.3). Second, Halide’s design is built around a bounds
inference engine that assumes responsibility for synthesizing all loop and memory-buffer
bounds. Because the synthesis of finite bounds is undecidable in the general case with
data-dependent accesses and non-affine expressions, compliant bounds inference engines must
be allowed to fail. This opens the door to compliant but useless engines (which always
fail). We propose a solution to this conundrum, by specifying a reference algorithm to define
minimum compliant quality (§2.3.3).

Halide’s success in industry has, for better or worse, locked it in to its early design
decisions and has influenced the design of its peers. At the same time, these systems have
not historically been a subject of interest in formal programming languages. An important
consequence of our work has been to crisply define Halide’s semantics and metatheory and to
correct mistakes without dramatically overhauling the language (§2.9). We further expect
this effort can help the next wave of user-schedulable languages to create even more elegant
and useful systems without making the same compromises.

This chapter makes the following contributions:

• We give the first complete semantics and metatheory defining sound user-specified
scheduling of a high-performance array processing language: that programs are uncon-
ditionally memory safe and that their output is not changed by scheduling decisions.

• We give the first precise description of the core of the practical Halide system: the
algorithm language, scheduling operators, and bounds inference problem.

• We provide the first definition of Halide’s bounds inference feature as a program synthesis
problem, which was not previously understood as such.

• We apply our formalism to the practical Halide system, finding & fixing several bugs
and making design improvements in the process.
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g(0) g(1) g(2) g(3) g(4) g(5) g(6)

f(0) f(1) f(2) f(3) f(4) f(5)

(default schedule)

(a) Points of g are shown in purple, and points of f are
shown in orange. Dark arrows indicate dependencies;
for clarity, only those for f(0) and f(1) are shown.
Red arrows trace computation; all points of g are
computed first, and only then is f computed.

pipeline f(xmin, xlen) :

allocate g( ?memgx );

label g : label s0 :

forx in ?cpugx do

g[x]← . . . ;

allocate f( ?memfx );

label f : label s0 :

forx in (xmin, xlen) do

f [x]← g[x] + g[x+ 1];

(b) Loop nest IR with default schedule. Note the
holes that will be filled in by bounds inference.

results in

Figure 2.1: Example program with default execution order.

2.2 An Example Halide Program

To introduce key concepts and build intuition for the formalism to follow, we’ll consider a
minimal example that showcases the challenges present in analyzing the scheduling language.
Our example algorithm consists of two “funcs”, defined like so:

pipeline f() :

fun g(x) = . . . ;

fun f(x) = g(x) + g(x+ 1);

A func is the basic unit of computation. Halide funcs are defined on unbounded, n-
dimensional, integer lattices, and are not bounded, multidimensional arrays. The body of g
is deliberately left undefined since it is irrelevant to the upcoming discussion. The formula
describing a func must be total and non-recursive, so that any window of the func has defined
values. To run the pipeline, the user supplies as input 1 a desired window over which to
compute the last func in the pipeline. The program then returns an array (formalized as partial
functions) containing the computed values and which might be larger than requested. The
computational model is therefore demand-driven, unlike most contemporary array languages.
We will illustrate the evaluation of f on the window [0, 6), which will in turn necessitate
computing g on at least the window [0, 7).

In order to recover an imperative implementation, we lower the pipeline into a second,
imperative, target language with C-like semantics. While there exist sensible choices for loop

1For simplicity of formalization, we omit special treatment of input funcs, modeling these instead as
procedural funcs with no dependencies. However, the practical system does support input arrays (whose
bounds must be checked for consistency when the program starts running).
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g(0) g(1) g(2) g(3) g(4) g(5) g(6)

f(0) f(1) f(2) f(3) f(4) f(5)

split(⟨f, x⟩, xo, xi, 3);
compute-at(g, ⟨f, xo⟩);
store-at(g, ⟨f, xo⟩);

(a) This time the computation of f is split by 3, and
g is interleaved per-tile. Bounds inference causes g(3)
to be redundantly recomputed. This allows each tile
of f to be trivially parallelized.

pipeline f(xmin, xlen) :

allocate f( ?memfx );

label f : label s0 :

forxo in (xmin, (xlen + 2)/3) do

compute g as needed

forxi in [0, 3) do

letx = xmin + 3xo+ xi in

if x < xmin + xlen then

f [x]← g[x] + g[x+ 1];

(b) Loop nest IR with recomputing schedule. The
loops for g have been abbreviated for space, but are
identical to those in fig. 2.1b.

results in

Figure 2.2: Example program after tiling f by 3. This schedule illustrates Halide’s ability to
introduce redundant recomputation to achieve better producer-consumer locality.

g(0) g(1) g(2) g(3) g(4) g(5) g(6) g(7) g(8)

f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7)

split(⟨f, x⟩, xo, xi, 4, φRound)

(a) Overcompute occurs since bounds inference takes
the (symbolic) requested window into account. Here,
only [0, 6) of f is requested, so f(6) and f(7) may
contain any value. Thus g may be over-allocated with
g(7) and g(8) uninitialized.

pipeline f(xmin, xlen) :

compute g as needed

allocate f( ?memfx );

label f : label s0 :

forxo in (xmin, (xlen + 3)/4) do

forxi in [0, 4) do

letx = xmin + 3xo+ xi in

f [x]← g[x] + g[x+ 1];

(b) Loop nest IR with overcomputing schedule.
The loops for g have again been abbreviated. No-
tice that the if statement has disappeared.

results in

Figure 2.3: Example program after vectorizing f and rounding up. This schedule illustrates
Halide’s ability to introduce overcompute on uninitialized values to trade-off between compute
and storage efficiency.

iteration bounds and buffer sizes, our algorithm never specified these. Therefore, this initial
lowered program leaves symbolic holes in the code (prefixed with ‘?’).

To fill these holes, Halide performs bounds inference, which we formalize as a program
synthesis problem. We assume a bounds inference oracle that returns expressions to fill
every hole, satisfying derived memory safety and correctness conditions. However, since this
oracle is only required to meet safety and correctness conditions, there is no guarantee on
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the (parameterized) minimality of memory allocations or loop bounds. We will discuss this
complication in more detail shortly.

Now we will look at three different ways to schedule our pipeline.
First, the default schedule (fig. 2.1) computes all values required from each func before

progressing to the next func, in order of their definition. Note that xmin and xlen are variables
specifying the output window [xmin, xmin + xlen). Bounds inference could efficiently fill the
hole ?memfx with [xmin, xmin+xlen) and the holes ?cpugx and ?memgx with [xmin, xmin+xlen+1).
An inefficient solution could fill ?memgx with [xmin, xmin + 2 · xlen), but [xmin, xmin + xlen − 1)
is not allowed because the last access would write out of bounds.

For our second schedule of f (fig. 2.2), we will tile it so that we can parallelize it,
computing f in independent 3-element-wide tiles. This first scheduling directive says to
split(⟨f, x⟩, xo, xi, 3) the computation of f along dimension x by a factor of 3 into an outer
iteration dimension xo and inner iteration dimension xi. Then, the second directive tells
us compute-at(g, ⟨f, xo⟩), meaning to re-compute the necessary portion of g at f , within
iteration level xo, and then to store-at(g, ⟨f, xo⟩), similarly. In terms of imperative code,
this is simply a relocation of the loop nest computing g. Bounds inference will now be able to
infer much tighter bounds on g, since it only needs to be computed on a per-tile basis. For a
given value of xo, only 4 values of g need to be computed and stored for use by the xi loop.

Notice that the windows of g required by adjacent tiles of f overlap by one element.
In fig. 2.2a we can see that g(3) is required by both tiles of f because both f(2) and f(3)
depend on it. This ability to reduce synchronization and improve locality at the expense of
redundant recomputation is at the heart of why Halide is able to generate high-performance
code for modern micro-processors. It is also one reason why only using re-ordering loop
transformations is insufficient.

For our third and final schedule (fig. 2.3), we will tile the computation of f in order to
take advantage of fixed-width SIMD instructions (present on most CPUs today). To do so, we
call split again, but now provide an alternate tail-strategy : φRound. Rather than introducing
an if-guard, this strategy will cause f to be unconditionally evaluated in 4-wide tiles. If
the requested window is not a multiple of 4, it will be rounded up and extra points will be
computed.

Perhaps counter-intuitively, this over-compute strategy requires fewer instructions in a
vectorized implementation, since the entire loop tail can be computed with a single instruction,
rather than a variable number of scalar operations (e.g. in a loop epilogue). However, whereas
the window of allocated, computed, and valid values all coincided before, those 3 windows now
all uncouple. For the requested window [0, 6), f is allocated and computed on the window
[0, 8), whereas g is allocated on the window [0, 9) and computed on the window [0, 7). Since
neither g(7) nor g(8) are initialized, the values in f(6) and f(7) are themselves uninitialized.

The IR programs in figs. 2.1b, 2.2b and 2.3b show an important benefit of user-specified
scheduling: in a traditional high performance language like C, a programmer would need
to write loops and derive compute bounds by hand. By instead factoring these rewrites
into a small scheduling language, Halide programmers can efficiently explore the space of
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P ∈ Alg

T0 ∈ Tgt? T1 ∈ Tgt? Tn ∈ Tgt?

P ′
0 ∈ BI(T0) ⊆ Tgt P ′

1 ∈ BI(T1) P ′
n ∈ BI(Tn)

L

BI

S(s1,−)

BI

S(si,−)

BI

Figure 2.4: Compiling a program P with schedule S = s1; . . . ; sn entails first lowering P
to an IR program T0 and then applying each directive si in turn. At the end, the bounds
oracle BI fills the holes in Tn to produce a final program P ′

n. Shown in gray are intermediate
bounds oracle queries that are useful in the formal analysis, but are not part of compilation.

safe, equivalent programs. In this paper, we explain how—formally—this promise to Halide
programmers is justified.

2.3 Overview & Proof Structure

Given an initial program P0, and a schedule S = s1; . . . ; sn, let Pi be the result of applying
the scheduling primitive si to Pi−1. Intuitively, if we can show that our soundness property is
invariant under each possible primitive, then it must hold.

In loop-nest optimization this invariant was traditionally specified via dependence graphs:
first over lexical statements, and then over whole iteration spaces of statement instances. For
instance, Kennedy and Allen [85] formulate this invariant as the Fundamental Theorem of
Dependence, which states “any reordering transformation that preserves every dependence in
a program preserves the meaning of that program.” Unfortunately, this approach is strictly
limited to verifying the soundness of reordering transformations, i.e. those transformations
that permute the order in which statement instances occur, but never change those statements,
duplicate them, or introduce new ones.

We resolve this problem in our proof structure by including the original provenance of
the programs Pi in our soundness invariant. In Halide, this original reference program is the
algorithm, which is expressed in a functional, rather than imperative, language. Since the
functional algorithm does not specify order of execution, nor where and how values are stored
in memory buffers, this soundness principle accommodates a greater range of transformations.

Finally, loop transformations on array code inevitably require complicated reasoning
about various sets of bounds (e.g., for memory allocation) as transformations are performed.
In Halide, these complexities are managed by deferring bounds analyses until after scheduling
is performed, and by offloading those decisions to a bounds inference engine, which we treat
here as an oracle. More generally, we expect that advances in program synthesis will only
make the transformation of incomplete programs more common; this general approach should
work in a variety of new language designs.
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In order to handle the transformation of programs with holes, our soundness invariant
must be stated on sets of programs (completions) rather than individual programs. Thus,
rather than state that each transformed program is consistent with the algorithm reference,
we require that all completions are consistent—where defined.

2.3.1 Basic Definitions

Halide programs are specified via an algorithm program denoted P ∈ Alg, written in a
functional language with big-step semantics, defined in §2.4. We immediately lower this
algorithm into an imperative target language program with holes denoted T ∈ Tgt?. This
language is defined in §2.5. Lowering is specified via a function T = L(P ), defined in §2.6.

The lowered program is incomplete because it is missing various bounds. Halide’s bounds
inference completes a program with holes T ∈ Tgt? into a program without holes P ′ ∈ Tgt.
We model the bounds-inference procedure as a non-deterministic oracle BI, which defines a
set of completions BI(T ) via a syntactically derived synthesis problem, and returns one as
specified in §2.7. Thus, P ′ ∈ BI(T ) ⊆ Tgt.

The schedule for a Halide program is specified as a sequence of primitive scheduling
directives S = s1; . . . ; sn, defined in §2.8. Scheduling proceeds by sequentially transforming
a target program with holes T0 = L(P ) by each subsequent scheduling directive such that
Ti+1 = S(si, Ti). Consequently, a set of completions BI(Ti) is defined at each point in the
scheduling process. These intermediate completions are not used when simply compiling a
program, but are essential to analyzing the behavior of a scheduling directive by relating
the sets before and after the transformation. The fully scheduled program is given as
P ′
n ∈ BI(S(S,L(P ))). This structure is depicted in fig. 2.4.

2.3.2 Equivalence and Soundness of Programs

Halide makes two fundamental promises to programmers: memory safety and equivalence
under scheduling transformations. Here is how we formulate those promises.

Programs are defined as functions of input parameters and an output window. Thus, the
same program can be run multiple times to compute different windows into a conceptually
unbounded output array.

Definition 2.1 (Input and Output). Let P ∈ Alg or P ∈ Tgt be a program with m
parameters and an n dimensional output func. An input z to P is an assignment to those m
parameters and an assignment of n constant intervals defining an output window R(z). The
output of running P on z is a partial function f = P (z) where f(x) is defined on at least all
x ∈ R(z).

For a variety of reasons, a program may produce more than the requested output window
R(z). A program may even allocate padding space and fill it with garbage values in order
to align storage and/or computation. For these reasons, we only define equivalence up to
agreement on the specified output window:
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Definition 2.2 (Output equivalence). Let each of P and P ′ be either an algorithm or target
language program, with common input z. We say they have equivalent outputs P ≃z P

′, if
for every point x ∈ R(z), P (z)(x) = P ′(z)(x).

This definition of equivalence is sufficient to compare two complete programs. However,
because our soundness invariant must be stated on incomplete programs T ∈ Tgt?, we will
define the confluence of an algorithm with all completions of T . We will also have to account
for certain exceptional cases in which the output may actually not be equivalent. Namely,
if the original algorithm contains errors, then all bets are off, and if the completion of the
program fails to satisfy bounds-constraints, then equivalence cannot be guaranteed. This
latter case should be concerning; we will address it shortly.

Definition 2.3 (Algorithm confluence). Let P ∈ Alg be a Halide algorithm and let T ∈ Tgt?

be a target language program with holes. We say that T is confluent with P if for all
P ′ ∈ BI(T ) and all inputs z, either P (z) contains an error value in R(z), P ′(z) fails an
assertion check, or P ≃z P ′. Error values and assertion failures are detailed in §2.4.1 and
§2.5.2, respectively.

We are now able to state the two fundamental theorems about Halide. In stating
these theorems, we assume that algorithm language programs are valid (§2.4.2), as are
schedules (§2.8).

Theorem 2.1 (Memory safety). Let P ∈ Alg be a valid program, z an input, and S a valid
schedule. Then, for all target language programs P ′ ∈ BI(S(S,L(P ))), the computation P ′(z)
will not access any out of bounds memory (§2.5.2).

Memory safety will be guaranteed by the bounds inference oracle. The problem posed to
this oracle is defined in §2.7 such that safety is provided by construction.

Theorem 2.2 (Scheduling equivalence). Let P ∈ Alg be a valid program and S any valid
schedule. Then all target language programs P ′ ∈ BI(S(S,L(P ))) are confluent with P .

The preceding property constitutes our soundness invariant. Proving the theorem therefore
reduces to showing that this invariant is preserved first by lowering, and then by each
subsequent possible primitive scheduling transformation.

2.3.3 Bounds Inference and Language Specification

The definition of algorithm confluence permits the bounds inference oracle to insert assertion
checks that might fail into completed programs. This design presents a unique challenge:
a completion that always fails an assertion check is technically confluent with its original
algorithm, but is not useful. Less vacuously, as the bounds inference engine improves, the set
of scheduled programs for which we find good—or even just satisfactory—bounds changes.
Hopefully, the result is a strict improvement but regressions are possible and even likely in
the compiler.
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There is a strong case that Halide’s design is wrong because there are no guarantees that
any given program will continue to work without assertion failures when run on different
versions of the standard compiler, much less on alternative implementations. At a minimum,
such a fact runs counter to the spirit of specifying programming language behavior. So, we
might be tempted to try to re-design Halide.

Instead, we choose to tackle specifying Halide’s existing design for two main reasons.
First, Halide has been in industrial use for nearly a decade, shipped in many products, and
would benefit more from specification of its actual design than of an idealization. Second,
flexibility around bounds inference in Halide is essential to array processing and the ability
to reason about redundant re-computation and over-computation. An alternative to bounds
inference would be intriguing, but also constitute a novel advance in language design on its
own.

Our strategy is to supply a baseline, or a lower bound, for the quality of the bounds
inference any compliant implementation may have. We supply such a baseline in §2.7.2,
specified via a reference bounds engine. Bounds-inference implementations must be “at least
as good” as the baseline in the following sense:

Definition 2.4 (Bounds engine). Let P be a valid algorithm, S a valid schedule, and
T = S(S,L(P )). A map β : Tgt? → Tgt is a bounds engine if β(T ) ∈ BI(T ) for any such T .

Definition 2.5 (Bounds quality constraint). Let β0 be the reference bounds engine given in
§2.7.2. Let P be a valid algorithm, S a valid schedule, and z an input. A bounds engine β is
compliant with the bounds quality constraint if whenever (1) P (z) does not contain an error
value, (2) β0(T )(z) does not fail an assertion check, and (3) β0(T ) ≃z P , then β(T ) ≃z P .

Thus, any compliant implementation must produce a result on at least the set of programs
and schedules accepted by the reference bounds algorithm. In this way, programmers can be
assured some degree of portability between different compliant implementations (or across
versions of a single implementation). For the existing Halide compiler, this reference method
can be used to generate regression tests.

2.4 Algorithm Language

Here we describe the Halide algorithm language, whose purpose is to define the values that
the final, scheduled, program must compute. It is a somewhat unusual dataflow language,
consisting of funcs whose values are computed on-demand by their dependents, and which
might have one or more update stages, which eagerly and in-place update the func being
computed. This scheme preserves referential transparency of funcs, but the resulting mix of
eager and lazy semantics complicates any attempt to assign a simple denotation; this is why
we use a big-step semantics. Finally, the language is carefully designed with the scheduling
language in mind: it underspecifies issues pertaining to bounds and evaluation order, while
restricting the dependencies between funcs for the sake of analysis.
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R ::= rdom(r1 = I1, . . . , rk = Ik) rdom
U0 ::= e pure stage
U ::= R in (e1, . . . , en)← e if eP update stage
B ::= U0;U∗ func body
F ::= fun f(x1, . . . , xn) = {B} func
D ::= F | D;F definitions
P ::= pipeline f(p1, . . . , pm) = D pipeline

Z ::= P ; realize(z) realization
z ::= ⟨(I1, . . . , In), (c1, . . . , cm)⟩ input

(a) Algorithm language

c ::= i ∈ V constants
a ::= f [e1, . . . , en] func access
e ::= c | a | v | op(e1, . . . , ek) expression
I ::= (emin, elen) interval

v ::= x pure variable
| r reduction variable
| p parameter variable

op ::= + | − | × | div | mod arithmetic
| ∨ | ∧ | ¬ | < | > | = logical
| select | min | max conditional

(b) Expression language

Figure 2.5: High-level Halide syntax descriptions. These capture the core components of the
user-facing algorithm and expression languages in the production Halide language.

2.4.1 Algorithm Terms and Expressions

Our formalization of Halide (syntax in fig. 2.5a) focuses on the fundamental issues at play:
pure definitions, separable updates, and imperative updates. Along with pointwise evaluation,
these are the primary constructs that govern the structure of computation.

Programmers write pipelines P , which are a sequence of func definitions F . Each func
has some dimension n, associated loop variables x1, . . . , xn, and a body B. A func body is
made up of one or more stages. Each stage is made up of a reduction domain (or “rdom”) R,
a predicate eP , and a rule (e1, . . . , en)← e. The first stage U0 = e is known as the pure stage
and is equivalent to rdom() in (x1, . . . , xn)← e if 1.

A reduction domain repeats the stage rule for a fixed list of variables r1, . . . , rn (not
necessarily of the same dimension as the func in which it appears) which range over provided
intervals. These model a limited form of imperative updates on a func which happen before
any other func observes any of its values. The variable r1 is innermost (changes fastest),
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while rn is outermost. As we will see in §2.4.2, there are many restrictions on the form of
reduction domains and update stages.

Halide algorithms distinguish variables by their definition sites. The variables that are
bound by func definitions are lettered x and are called pure variables. The variables bound
by rdoms are lettered r and are called reduction variables. Finally, variables bound by the
top-level pipeline definitions are lettered p are are called parameter variables.

These parameters are optional and are always passed constants, never other pipelines or
funcs. A realization Z of a pipeline is a setting of the m parameters, plus n constant intervals
over which to evaluate the output func, the last one in the pipeline, which is also named in
its signature.

Figure 2.5b shows the syntax of the expression language. The set of values V = Z ∪
{εrdom, εmem} in the formal language extends2 Z with special error values, which behave as
follows:

Definition 2.6 (Error value). The special expression values εrdom < εmem encode a hierarchy
of errors. Any operation in the expression language involving one or more of these values
evaluates to the greatest among them.

Note the omission of arithmetic errors in this definition. These cannot arise because
all operations in the expression language are total. In particular, division and modulo by
zero are both defined to be zero. The reason for this is discussed further in §2.9. The other
errors, εrdom and εmem, respectively capture errors preventing ordinary execution of rdoms
(§2.4.3) and memory errors, which do not occur in the algorithm semantics. Memory errors
are possible in the target language (§2.5.2), but are prohibited by theorem 2.1.

There is no Boolean type in the expression language, so the logical operators interpret
their arguments according to the usual convention of using zero to represent “false” and
non-zero values to represent “true”. When a logical operator evaluates to “true”, it returns
1, specifically.

Finally, note that the expression language has no short-circuiting semantics. Thus, logical-
or and logical-and may not be used to conditionally evaluate points in another func, and
the “select” function (the common ternary-if operator) always fully evaluates all three of its
arguments.

2.4.2 Algorithm Validity Rules

Halide algorithms must adhere to several non-standard restrictions. This first rule constrains
the use of pure variables to facilitate flexible scheduling decisions.

Definition 2.7 (Syntactic separation restriction). Let func f be given by fun f(x1, . . . , xn) =
{U0; · · · ;Um}. The syntactic separation restriction states that for all pure variables xi and

2The practical system also supports floating-point and fixed-width integers, and faces standard semantic
issues with those.
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all stages Uj , if xi occurs anywhere in Uj then all accesses in Uj of the form f [e1, . . . , en] must
have ei ≡ xi. The update rule Uj = R in (. . . , ei, . . . )← e if eP must also have ei ≡ xi.

This rule is critical to the correctness of many scheduling directives and metatheory claims,
but it is quite subtle, so we show a few examples. First, it might be tempting to write an
in-place shift using the following func definition:

fun f(x) = {g[x]; (x)← f [x+ 1]}

but such an update diverges on f ’s unbounded domain since f(0) would need to first
compute f(1), which would need to compute f(2) and so on. Such updates are disallowed by
definition 2.7. It is also disallowed to use the variable in some places, but not others, as in:

fun f(x) = {g[x]; rdom(r = (0, 3)) in (x)← f [x] + f [r]}

The reason here is that, viewed as an in-place update to the values of f , the update cannot
be applied uniformly across the entire dimension x. On the other hand, a definition like

fun f(x) = {0; rdom(r = (0, 3)) in (x)← f [x] + g[x] + g[r]}

is legal since the restriction only applies to the func whose update stage is being defined. At
this point in the algorithm, all of g’s values are known, so there is no hazard. Intuitively,
updates that reference pure variables should augment the previous stage while remaining
well-founded.

The syntactic separation restriction extends the notion of purity from variables to stage
dimensions, which need not reference all of the func’s pure variables.

Definition 2.8 (Pure/reduction dimensions). For any pure variable xi and stage Uj, it is
said that i is a pure dimension in stage j if xi appears in Uj . Dimensions which are not pure
are called reduction dimensions.

Certain expressions in Halide may not refer to pure or reduction variables in order to
keep scheduling flexible and sound. Such expressions are called startup expressions to reflect
the fact that they are constant through the whole execution.

Definition 2.9 (Startup expression). In a pipeline P with parameters p1, . . . , pn, an expression
e is a startup expression iff e contains no func references and any variable v occurring in e is
identically one of pi for some i.

With this definition, we are finally ready to define validity for a program in the algorithm
language.

Definition 2.10 (Valid program). A program P ∈ Alg is valid if the bounds of all rdoms
are startup expressions, the names of all funcs are unique, the names of pure variables within
each func are unique, and the names of reduction variables within a single stage are unique.
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All stages must obey the syntactic separation restriction (definition 2.7). The output func
f in pipeline f(. . . ) must exist and be the last func defined. All funcs must be defined
before they are referenced by another func. The first stage of every func may not include a
self-reference (i.e., must be pure in all dimensions). Lastly, common type checking rules for
expressions (eg. func arity) must be respected.

2.4.3 Algorithm Semantics

The purpose of a Halide algorithm is to define the value of every point in every func (fig. 2.6).
Evaluation proceeds pointwise with no need to track bounds. Funcs are evaluated by
substitution [func-eval] as is standard for function calls. Compared to the target language,
which precomputes values of funcs as if they were arrays, these semantics are lazy.

While this laziness avoids reasoning about bounds, it complicates the semantics of the
comparatively eager rdom construct. How do we update a func in-place, when it is intuitively
meant to be pure? To resolve this tension we simply unroll rdoms [rdom-eval] into sequences
of point updates when and as they are encountered.

These simple point updates [update-eval] can then be thought of as shadowing the
previous func definition, similar to the functional definition of stores used by most operational
semantics for imperative languages. If the lookup point and update point coincide, then the
update rule is substituted, otherwise the existing value is used.

Lastly, we note that all valid algorithms terminate. This follows the intuition that Halide
pipelines are defining mathematical objects by supplying formulas to compute the values.

Lemma 2.3 (Algorithms terminate). Given any algorithm P ∈ Alg and input z, the output
of P (z) can be determined in a finite amount of time.

Proof. Since rdom bounds are startup expressions (definition 2.9) and no infinity value exists
in V, there is no way to loop infinitely. The program validity checks (definition 2.10) prevent
self-recursion in the function definitions. Functions must be declared before they are used, so
recursion is impossible. Thus, Halide algorithms always terminate. In fact, this also shows
Halide is not Turing-complete.

2.5 Target Language

In this section, we describe the target language (IR) to which the algorithm language compiles.
Unlike the algorithm language, it is similar to classic imperative languages, and programs in
this language have a defined execution order (which is modified by the schedule). It uses the
same expression language from §2.4.1 and has the same semantics for all expressions, save
func accesses, which become references to memory.
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∀y = (i1, . . . , in) ∈ I1 × · · · × In :
[
c/p

]
(D; f [i1, . . . , in]) ⇓ cy

[realize]
pipeline f(p) = D; realize

(
I, c

)
⇓ g(y) := cy

[const-eval]
D; c ⇓ c

(
D; e ⇓ c

)
D; f [c] ⇓ c′

[func-arg-eval]
D; f [e] ⇓ c′(

D; e ⇓ c
)

D;op(c) ⇓ c′
[op-eval]

D;op(e) ⇓ c′
f ̸= g D; f [c] ⇓ c′

[func-skip]
D; fun g[x] = {B}; f [c] ⇓ c′

D;
[
c/x

]
e ⇓ c′

[func-eval]
D; fun f [x] = {e}; f [c] ⇓ c′

D; fun f [x] = {U};
[
c/x

]
(select(e = x ∧ ep, eb, f [x])) ⇓ c′

[update-eval]
D; fun f [x] = {U ; rdom() in (e)← eb if ep}; f [c] ⇓ c′(

I = ⟨emin, elen⟩
) (

emin ⇓ cmin
) (

elen ⇓ clen
)

∃j.clenj < 0
[rdom-err]

D; fun f [x] = {· · · ; rdom(r = I) in · · · }; f [c] ⇓ εrdom

(
I = ⟨emin, elen⟩

) (
emin ⇓ cmin

) (
elen ⇓ clen

)
D; fun f [x] = {U ; unroll}; f [c] ⇓ c′

[rdom-eval]
D; fun f [x] = {U ; rdom(r = I) in (e)← eb if ep}; f [c] ⇓ c′

where

unroll =


[
cmin
k /rk

]
(rdom(r1 = I1, . . . , rk−1 = Ik−1) in (e)← eb if ep) ;

...[(
cmin
k + clenk − 1

)
/rk

]
(· · · )


Figure 2.6: Algorithm language natural semantics. Note that we use a metasyntactic notation,
· , which indicates that the covered expression is repeated for each numerical subscript, e.g.

(e = x∧ ep) ≡ (e1 = x1 ∧ · · · ∧ en = xn ∧ ep). Parentheses distinguish such terms from axioms.
The [realize] rule defines the points of a partial function g : (I1 × · · · × In)→ V.
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τ ::= serial | parallel traversal order
s ::= nop no operation
| assert e assertion
| s1 ; s2 sequencing
| allocate f(I1, . . . , In) allocate buffer
| f ℓ[e1, . . . , em]← e0 update buffer
| if e1 then s1 else s2 branching
| forτ x in I do s bounded loops
| letx = e in s let binding
| label ℓ : s statement label

P ::= pipeline f(p1, . . . , pm) : s pipeline

e ::= . . . | ?ℓ | f ℓ[. . . ] Tgt? expr

Figure 2.7: Halide IR syntax. Expressions and realizations are the same as in fig. 2.5b, but
are augmented with labeled holes for Tgt?. Labels ℓ are arbitrary and left uninterpreted.
Statement labels have no special semantics.

2.5.1 Syntax

Figure 2.7 presents the abstract syntax for the Halide IR. This language comes in two variants:
with holes (Tgt?) and without holes (Tgt). The lowering algorithm given in §2.6 translates
an algorithm to a program in Tgt? whose holes will be filled by bounds inference (§2.7). The
main difference between Tgt and similar imperative languages is that loops are restricted to
range-based for loops which can be marked for parallel traversal. Furthermore, these ranges
are given as minimum and length pairs, rather than minimum and maximum. Some syntax
may be annotated with labels, written ℓ. Labels are ignored by the semantics because they
are simply used as handles by the scheduling (§2.8) and bounds inference systems.

2.5.2 Semantics

In fig. 2.8 we give small-step semantics for the IR. Note that Σ is an environment for loop
variables and let bindings and σ is the store or heap in which memory is allocated.

These semantics are mostly standard, though there are a few instances where the semantics
can get stuck. We enumerate and define all the failure modes here:

Definition 2.11 (Assertion failure). If the execution of a program P ∈ Tgt gets stuck when
an assertion fails (i.e. the condition evaluates to 0), then we say P has failed an assertion
check.

Definition 2.12 (RDom failure). If the execution of a program P ∈ Tgt gets stuck because
a for loop has a negative extent, then we say P has encountered an rdom failure. This
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E ::= □
| E; s
| allocate f((cmin

1 , clen1 ), . . . , E, . . . , In)
| a← E
| E ← c
| if E then s1 else s2
| forℓ x inE do s
| letx = E in s
| f [c1, . . . , E, . . . , en]
| op(c1, . . . , E, . . . , ek)
| (E, elen)
| (cmin, E)
| assertE
| pipeline f(p) : E

⟨s | Σ | σ⟩ → ⟨s′ | Σ′ | σ′⟩
[Reduce]

⟨E[s] | Σ | σ⟩ → ⟨E[s′] | Σ′ | σ′⟩
v = Σ(x)

[Var]
⟨x | Σ | σ⟩ → ⟨v | Σ | σ⟩

[Nop]
⟨nop; s | Σ | σ⟩ → ⟨s | Σ | σ⟩

c ̸= 0
[Assert-True]

⟨assert c | Σ | σ⟩ → ⟨nop | Σ | σ⟩

[Let]
⟨letx = c in s | Σ | σ⟩ → ⟨s | Σ[x = c] | σ⟩

[Realize]
⟨pipeline f(p) : s; realize(c) | Σ | σ⟩ → ⟨pipeline f(p) : s | Σ [p = c] | σ⟩

σ(f) =
〈
f̂ , . . .

〉
[End]

⟨pipeline f(p) : nop | Σ | σ⟩ →
〈
f̂
∣∣∣ Σ ∣∣∣ σ〉

clen > 0 [For-Iter]〈
forx in (cmin, clen)do s

∣∣ Σ ∣∣ σ〉→ 〈
s; forx in (cmin + 1, clen − 1)do s

∣∣ Σ[x = cmin]
∣∣ σ〉

[For-Stop]〈
forx in (cmin, 0)do s

∣∣ Σ ∣∣ σ〉→ ⟨nop | Σ \{x} | σ⟩
c ̸= 0

[If-T]
⟨if c then s1 else s2 | Σ | σ⟩ → ⟨s1 | Σ | σ⟩

[If-F]
⟨if 0 then s1 else s2 | Σ | σ⟩ → ⟨s2 | Σ | σ⟩

InBounds(f [c], σ) σ′ = σ[f(c) = c′]
[Assn]

⟨f [c]← c′ | Σ | σ⟩ → ⟨nop | Σ | σ′⟩
σ′ = σ

[
f →

〈
λx. εmem, I

〉]
[Alloc]〈

allocate f
(
I
) ∣∣ Σ ∣∣ σ〉→ ⟨nop | Σ | σ′⟩

InBounds(f [c], σ)
[Read]

⟨f [c] | Σ | σ⟩ → ⟨σ(f [c]) | Σ | σ⟩
op(c) = c′

[Eval]
⟨op(c) | Σ | σ⟩ → ⟨c′ | Σ | σ⟩

Figure 2.8: Structural semantics for Tgt (without holes). Notice that there are four states
that can get stuck : (1) when assert false is encountered, (2) when a for loop extent is
negative, (3) when a read occurs out of bounds, and (4) when an assignment occurs out
of bounds. The latter two memory errors cannot happen in programs derived from the
scheduling and bounds inference processes by theorem 2.1.
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corresponds to the failure mode in the algorithm semantics (§2.4.3) where an invalid rdom
causes the program to return εrdom everywhere.

Definition 2.13 (Memory error). Recall that the [Read] and [Assn] rules assume their
accesses are in bounds. If the execution of a program P ∈ Tgt gets stuck when accessing
memory, we say P has attempted an out of bounds access or has encountered a memory error.

Recall that theorem 2.1 states that memory errors cannot occur in the execution of a
program which was derived from an algorithm via lowering, scheduling, and bounds inference.

The [alloc] rule updates the store σ with a mapping from the symbolic name of the func
to a pair of (1) a partial function f̂ (initially εmem everywhere) that records the values and
(2) the bounds that were stated at allocation time. The predicate InBounds(f [c], σ) uses this
data to check the fully evaluated point c ≡ (c1, . . . , cn) against the bounds stored in σ(f).

[assn] defines assigning to a point in a func in the store and [read] defines reading from
a func in the store. Assignment is modeled by shadowing the old value, ie. by redefining the
mapping of f in σ to a new partial function f̂ ′ which agrees with f̂ everywhere except at
the point being updated. We use the terse syntax σ′ = σ[f(c) = c′] to denote this operation.
Reading a value from a func is then a matter of simply evaluating the stored function.

2.6 Lowering

Halide algorithms are compiled to IR programs with holes by the lowering function L, defined
in fig. 2.9. The lowering function creates a sequence of top-level loop nests for every func in
the program. Inside these loops are assignments implementing the formulas for each stage
in the algorithm. Pure dimensions which do not appear in a stage are not lowered, and
reduction domains appear as innermost loops.

The lowering function also annotates certain fragments with labels to facilitate scheduling
and bounds inference. These labels appear in three places: first, they appear in label
statements which act as handles for the scheduling directives; second, they are attached to
the cpu and mem bounds holes ; finally, they are attached to func references. The following
lemma captures the structural invariant provided by the first set of these labels.

Lemma 2.4 (Loop naming). Given a valid algorithm P ∈ Alg and a valid schedule S ∈
Sched, any for loop in S(S,L(P )) is uniquely identified by (1) the func, (2) the specialization
(or lack thereof, see §2.8.1), and (3) the stage to which it belongs, as well as (4) the name of
its induction variable.

Specializations do not exist in initially lowered programs, but are a scheduling feature
(see §2.8.1) that enables replicating code behind one or more branches, each guarded by a
predicate. Each branch can be scheduled independently, and its predicate is used to simplify
the body. A common use case is to specialize a pipeline to common input sizes and reduce
bounds computations. If a func is not specialized, that data can be regarded as 0. In any
case, lemma 2.4 lets us relate syntax fragments in the IR to their provenance in the original
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L(pipeline f(p) : F ; fun f(x) = B) =

{
pipeline f

(
p, xmin, xlen

)
:

L(F );L(fun f(x) = B)

L(fun f(x) = B) =

{
allocate f

(
?memfx

)
label f : LB(f, x, B)

LB(f, x, U0; · · · ;Um) =


label s0 : LU(f, x, 0, U0)
...

label sm : LU(f, x,m,Um)

LU(f, x, i, R in e = eB if eP ) = LP (f, x, e, i,LR(R, if eP then f i[e]← eB))

LR(rdom(), s) = s

LR(rdom(r1 = I1, r = I), s) = LR(rdom(r = I), for r1 in I1 do s)

LP (f, (), (), i, s) = [f i−1/f ]s

LP (f, (x, y), (e, e′), i, s) =

{
LP

(
f, y, e′, i, forx in ?cpuf i

x do s
)

if x ≡ e

LP (f, y, e′, i, s) otherwise

Figure 2.9: Lowering algorithm with default eager schedule.

algorithm. The following lemma uses this to state that funcs are computed and allocated in
a valid order in the IR.

Lemma 2.5 (Dominance). Let P ∈ Alg and S ∈ Sched be a valid algorithm and schedule,
and let P ′ = S(S,L(P )). If a func f appears in the definition of a func g in P , then the loops
for f dominate the assignment statement for g in P ′. Furthermore, the allocate statement
for any func f dominates the loops for f in P ′.

The previous two lemmas hold just after lowering by construction. Each scheduling
directive needs to show that it maintains these invariants. Lowering also introduces a set of
labeled bounds holes, which will be filled by the bounds inference oracle (§2.7), and which
carry the following data.

Definition 2.14 (Bounds hole). A bounds hole is an entity in the expression language of
Tgt? that stands in for a hole-free expression. A bounds hole is labeled by (1) whether it is
an allocation hole (mem) or a compute hole (cpu), (2) whether it represents the minimum
(min) of an interval, or its length (len), (3) the associated func and dimension, and (4) if it is
a compute hole, the associated stage and specialization.

Across specializations, the last stage of a given func always uses a common bounds hole. We
omit the stage number when referring to the last stage of a func and we omit the specialization
number when the func is not specialized. Finally, we write ?memfx =

[
(?memfx)

min, (?memfx)
len
]
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B(pipeline f(p, xmin, xlen) : s) = . . .

∀p ∈ [−∞,∞] : B(s) ∧ [xmin, xlen] ∈?cpuf
B(assert e) = e

B(nop) = true

B(allocate f(. . . ); s) = ∃?memf : B(s)
B(s1; s2) = B(s1) ∧ B(s2)

B(label f : s) = ∃?cpuf : B(s)
B(let v = e in s) = Bcpu(e) ∧ let v = e inB(s)

B(if e then s1 else s2) = . . .

Bcpu(e) ∧ e⇒ B(s1) ∧ ¬e⇒ B(s2)
B(for v in[emin, elen]do s) = . . .

elen ≥ 0 ∧ ∀v ∈ [emin, elen] : B(s)
B
(
f i,j [e]←e0

)
= e ∈?memf ∧ Bcpu(e) ∧ Bmem(e0)

∧ e ∈?cpuf i,j ⇒ Bcpu(e0)

where

Bcpu(f i,j [e]) = Bcpu(e) ∧ e ∈?memf ∧ e ∈?cpuf i,j

Bmem(f [e]) = Bcpu(e) ∧ e ∈?memf

Remaining cases for Bcpu,Bmem fold with union.

(a) Query extraction function p = B(T ) produces predicate
from program T ∈ Tgt?.

β0(∀v ∈ I : b,Γ) = β0(b,Γ[v 7→ I])

β0(b1 ∧ b2,Γ) = β0(b1, β0(b2,Γ))

β0(e⇒ b,Γ) = β0(b,Γ)

β0

(
∃ ?ℓ : b,Γ

)
= β0(b,Γ)

β0(let v = e in b,Γ) = β0(b,Γ[v 7→ I(e,Γ)])

β0

(
e ∈ ?ℓ,Γ

)
= Γ

[
?ℓ 7→ Γ(?ℓ) ∪ I(e,Γ)

]
Note: [ωmin

i , ωlen
i ] = I(ei) below.

I(e1 + e2,Γ) = [ωmin
1 + ωmin

2 , ωlen
1 + ωlen

2 − 1]

(standard interval arithmetic rules elided)

I(e1 div e2,Γ) = [−M, 2M − 1]

where M = max(−ωmin
1 , ωmin

1 + ωlen
1 − 1)

I
(
f ℓ[e],Γ

)
= [−∞,∞]

I(v,Γ) = Γ(v)

I(c,Γ) = [c, 1]

(b) Baseline bounds engine β0(p) applies naive
interval arithmetic rules to queries produced by
B.

Figure 2.10: Overview of the bounds inference system, showing query extraction and the
baseline bounds engine β0.

for the allocation bounds interval for func f , dimension x. By analogy, ?cpuf i,j
x denotes the

compute bounds interval for func f , dimension x, stage i, and specialization j.

Finally, the labels attached to func references (f ℓ[. . . ]) record the previous stage and
current specialization. This helps the bounds extraction procedure (§2.7) construct the
necessary predicates to ensure safety and correctness.
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2.7 Bounds Inference

Previous work on Halide discusses bounds inference in terms of a particular algorithm used
to fill the bounds holes. Improvements to the compiler regularly change the results of this
algorithm, resulting in an unstable definition in practice.

In order to abstract over the ever-changing bounds inference algorithm, we pose bounds
inference as a program synthesis problem via an oracle query. While the resulting satisfiabil-
ity problem is undecidable in general, this definition provides previously underformulated
soundness conditions for any bounds inference algorithm. Queries to this oracle are defined
as follows:

Definition 2.15 (Bounds oracle query). Let P ∈ Alg be an algorithm and let S ∈ Sched
be a schedule for it so T = S(S,L(P )). Then a query to the bounds oracle O is the predicate
p = B(T ). The oracle responds with some set of hole substitutions Γ ∈ O(p) that is compatible
with T . Hence, the set BI(T ) = {[Γ]T | Γ ∈ O(B(T ))}.

Recall from definition 2.14 that there are two kinds of bounds. The compute bounds define
regions over which the points in the buffers must have non-error values that agree with those
defined by the original algorithm. The allocation bounds enclose the compute bounds, and
further includes at least all points read from or written to. As we saw in the example (§2.2),
this gap can be exploited by overcompute strategies during scheduling (§2.8.2).

2.7.1 Bounds constraint extraction

The algorithm for extracting the bounds constraints for a program T ∈ Tgt? is shown in
fig. 2.10a. The extraction traverses the AST of the program and translates every statement
into a logical condition with existentially quantified holes.

This extraction encodes a few important correctness conditions. First, if a point being
computed lies in the compute bounds, then all of the accesses on the right hand side of
the assignment must be in the compute bounds of their funcs. (What happens outside the
compute bounds stays outside the compute bounds.) Second, accesses occurring anywhere
inside an expression that is used for indexing or branching must be in the compute bounds
as well. Finally, every point that is read anywhere in the program must at least be in the
allocation bounds, in order to preserve memory safety.

This second point is particularly important: splitting loops in data-dependent update
stages (such as when computing a histogram) will introduce if statements whose values
must not be errors resulting from reading uninitialized memory. The rule for let is similarly
motivated; let expressions are only introduced by scheduling directives to hold expressions
used for indexing (§2.8), so accesses there must be in the compute bounds.
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2.7.2 Reference algorithm

Figure 2.10b gives the baseline bounds inference algorithm β0. It works by scanning the
extracted constraint and performing interval arithmetic (via I) on the terms, naively trying
to symbolically satisfy the consequent of each implication without using its predicate (ie.
unconditionally). β0 merges these intervals to determine safe coverings for each hole. Because
the constraint is extracted from the fully scheduled target program, it can rely on the
association order of ∧ to reflect the sequencing order in the original program and ensure that
we make inferences about holes backwards through the dependencies. Since β0 only produces
a list of substitutions, it does not meet the bounds engine definition (definition 2.4) on its
own. However, it is easily lifted to a bounds engine by applying the substitutions whenever
every hole is determined and no ±∞ appears in the substitutions. When this is not the case,
it simply fails by replacing the body with assert false.

Beyond the näıvety of the algorithm, interval arithmetic has an inherent dependency
problem. The classic example is x2 + x, where x ∈ [−1, 1] and so x2 ∈ [0, 1]. Adding these
bounds gives [−1, 2], which is slightly wider than the true bounds: [−1

4
, 2]. This is because

interval arithmetic treats x2+x as x2+y, where y varies independently over the same interval
as x. These errors can accumulate rapidly as expressions grow larger.

The algorithm β0 is only meant to be a baseline; and, although it is quite näıve, it
still identifies tight bounds for the example in §2.2. The practical system contains many
improvements over this, including analyses of function value ranges, of correlated differences
and sums, and of conditionally-correct simplifications backed by path-sensitive analysis.

2.7.3 Metatheory

Finally, we state the main lemmas concerning the structure of solutions to the bounds
inference problem.

Lemma 2.6 (Memory safety). All programs resulting from bounds inference P ′ ∈ BI(T ), are
memory safe.

Lemma 2.7 (Compute bounds confluent). Let P ∈ Alg, P ′ ∈ BI(L(P )), and let f be a
func in P . If all of the points in compute bounds of funcs preceding f are confluent with P ,
then the loop nest for f computes values confluent with P .

The proofs of these lemmas are deferred to the appendices. Together, they form the base
case of the inductive proof that the scheduling directives are sound.

2.8 Scheduling Language

We formalize scheduling by directly mutating programs in Tgt?. Because some directives —
like split — must be applied after certain other directives, we require that schedules be ordered
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S ::= s1; . . . ; sn schedule program
ℓ ::= ⟨f, i, j, v⟩ loop names (lemma 2.4)
τ ::= serial | parallel traversal orders
φ ::= φGuard | φShift | φRound split strategies

s ::= specialize(f, e1, . . . , en) Specialization (§2.8.1)

| split(ℓ, xo, xi, e, φ) Loops (§2.8.2)
| fuse(ℓ, x)
| swap(ℓ)
| traverse(ℓ, τ)

| compute-at(f, ℓg) Compute (§2.8.3)

| store-at(f, ℓg) Storage (§2.8.4)

| bound(f, x, emin, elen) Bounds (§2.8.5)
| bound-extent(f, x, elen)
| align-bounds(f, x, em, er)

Figure 2.11: The Halide scheduling language. The s definition is grouped by phase of
scheduling (presented in order).

into phases3 as indicated in fig. 2.11. Scheduling directives use loop names to determine their
targets.

In fig. 2.12 we show the IR transformations for each scheduling directive. In each
subsequent section, we describe each phase and enumerate its restrictions, but defer safety
proofs to the appendices. For each phase, we require an inductive lemma like the following:

Lemma 2.8 (Scheduling phase is sound). Let P ∈ Alg be a valid algorithm and let Ti ∈ Tgt?

be the result of lowering P and applying scheduling directives up through this phase. Let s be
a scheduling directive in this phase, then Ti+1 = S(s, Ti) is confluent with P .

2.8.1 Specialization Phase

Certain scheduling decisions may be more or less efficient, depending on program parameters.
For instance, simpler schedules tend to work better for small output sizes.

Specialization duplicates an existing func’s code for each of n conditions, and introduces
labels that allow later scheduling directives to operate differently on each instance. These
conditions, like all expressions in the scheduling language, are required to be start-up
expressions. In our formal system, schedules may give at most one specialization directive
per func. The following lemma captures an essential property of specializations, namely that
only one specialization is “active” during any given run.

3The practical system sorts directives into phases automatically.
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Lemma 2.9 (Unique active specialization). Given algorithm P ∈ Alg and a schedule
S ∈ Sched, let P ′ ∈ BI(S(S,L(P ))). Then for any input z, P ′(z) will evaluate exactly one
specialization for any given func f .

It is also important to note that the transformation attaches the specialization instance
to func references inside the copied (and original) statements. As per definition 2.14, the rule
in fig. 2.12 should be interpreted to exclude the final stage when attaching this information.

2.8.2 Loops Phase

Halide provides several standard loop transformations to change the order of computations.
A loop can be split into two nested loops, two nested loops can be fused into a single loop,
a loop may be swapped with the immediately nested loop, and loops may be traversed in
parallel. Swapping and parallelization apply only to pure loops, a manifestation of pure
dimensions in the target IR. We define these here:

Definition 2.16 (Pure loop). Let v be the loop variable for some loop in a program P ∈ Tgt?.
We say v and its associated loop are pure if v is one of the pure dimensions of its associated
func, if it is the result of splitting a pure loop, or if it is the result of fusing two pure loops
together. We letter the iteration variable of pure loops x. All other loops are reduction loops,
lettered r.

We may split a loop ℓ by a split factor of e into an outer loop iterated by xo and inner
loop iterated by xi. This division may produce a remainder, which is handled by choice
of a tail strategy (denoted φ): (1) guard ing the body with an if ; (3) shift ing the last loop
iteration inwards, causing recomputation; or (3) round ing the loop bounds upward, causing
overcomputation of the func and affecting upstream bounds. Shifting and rounding are only
allowed on pure stages.

Two nested loops can be fused together into a single loop whose extent is the product
of the original extents, provided both loops are pure or both are reduction loops. This is
approximately an inverse to the split directive, and is useful for controlling the granularity
of parallelism. Immediately nested loops can be swapped as long as the swap does not
reorder two reduction loops. Finally, each pure loop can also be traversed in either serial or
parallel order. All variable names introduced by these directives must be new, unique, and
non-conflicting.

2.8.3 Compute Phase

To narrow the scope of computation, the labeled statement for computing a func f may be
moved from the top level to just inside any loop as long as the labeled statement continues
to dominate all external accesses to f .

The closer a producer is computed to its consumer, the less of the producer needs to be
computed per iteration of the consumer. The expectation is that bounds inference will use
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label f : s
specialize(f,e1,...,en)−−−−−−−−−−−−−−→

label f :
if e1 then label z1 : [f i,1/f i]s
...
else if en then label zn : [f i,n/f i]s
else label z0 : [f i,0/f i]s

forx in bdo
forx′ in b′ do s

swap(ℓ)−−−−−→
forx′ in b′ do
forx in bdo s

forx in bdo s
traverse(ℓ,τ)−−−−−−−−→

forτ x in bdo s

label f : s1 . . .
label g : . . .
label s0 : . . .
forx · · · : s2

compute-at(f,⟨g,x⟩)−−−−−−−−−−−−−→
label g : . . .
label s0 : . . .
forx · · · : (label f : s1); s2

allocate f(. . . ) . . .
label g : . . .

label s0 : . . .
forx · · · : s2

store-at(f,⟨g,x⟩)−−−−−−−−−−−→
label g : . . .

label s0 : . . .
forx · · · : (allocate f(. . . ); s2)

label f : s
bound(f,x,emin,elen)−−−−−−−−−−−−−→

label f :
assert ?cpufx = [emin, elen] ; s

label f : s
bound-extent(f,x,elen)−−−−−−−−−−−−−−−→

label f :
assert (?cpufx)

len = elen ; s

label f : s
align-bounds(f,x,em,er)−−−−−−−−−−−−−−−−→

label f :
assert (?cpufx)

min % em = er ;
assert (?cpufx)

len % em = 0 ; s

forx in (emin, elen)do s
split(ℓ,xo,xi,e

fac,φ)−−−−−−−−−−−−−→
forxo in (0,

⌈
elen/efac

⌉
)do

forxi in (0, efac)do
push-down(φ, s)

where φ is φGuard(s) =

{
letx = emin + xi + efac · xo in

if x < emin + elen do s

or φShift(s) =


letx = emin + xi

+min(efac · xo,

max(0, elen − efac))

in s

or φRound(s) = letx = emin + xi + efac · xo in s

forx1 in (emin
1 , elen1 )do

forx2 in (emin
2 , elen2 )do s

fuse(ℓ,y)−−−−−−→
for y in (0, elen1 elen2 )do
push-down(φ, s)

where φ(s) =

{
letx1 = emin

1 + ⌊y/elen2 ⌋ in
letx2 = emin

2 + y%elen2 in s

push-down(φ, forx in I do s) = forx in I dopush-down(φ, s)

push-down(φ, letx = e in s) = letx = e inpush-down(φ, s)

push-down(φ, s) = φ(s)

Figure 2.12: Scheduling directives over the IR
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the additional flexibility granted by the additional loop iteration information to derive tighter
bounds. This directive therefore controls how much of a func to compute before computing
part of its consumers.

2.8.4 Storage Phase

Each func is tied to a particular piece of memory when it is computed. Halide offers some
control over how much memory a func occupies during the run of a pipeline. The store-at
directive (analogous to compute-at above) moves the allocation statement to just inside any
loop such that the allocation still dominates all accesses of the func it allocates.

Bounds inference is then free to choose a more precise size for the allocation based on the
code that follows, and the particular values of the variables of the loops that enclose it.

2.8.5 Bounds Phase

Additional domain knowledge might allow a user to derive superior bounds functions than
those inferred. Halide provides directives to give hints to the bounds engine just before
querying it.

The first two directives, bound and bound-extent, assert equality of bounds holes to
provided startup expressions. The third directive, align-bounds, adds assertions that constrain
the divisibility and position of the window. The minimum is constrained to have a particular
remainder modulo a factor which is declared to divide the extent. These assertions affect the
bounds inference query such that the inferred computation window will expand to meet these
requirements. Recall that these assertions are allowed to fail without violating confluence
(definition 2.3).

2.8.6 Practical directives

Halide provides many more scheduling directives that are out of scope for this work. It
has directives for assigning loops to coprocessors like GPUs and DSPs, and directives
for prefetching and memoization. It has two additional traversal orders that apply only to
constant-extent loops after bounds inference has completed and are semantically uninteresting:
vectorize, which asks Halide to vectorize the loop, and unroll, which simply unrolls the
loop. Some of the most esoteric directives may require more substantial adjustments to these
semantics.

2.9 Practical impact

These formalization efforts have influenced Halide’s design, and we have found and fixed bugs
where actual and expected behavior differed in significant ways.



CHAPTER 2. FORMAL SEMANTICS FOR THE HALIDE LANGUAGE 29

Negative rdom extents. While formalizing the behavior of reduction domains (§2.4.3),
we discovered that the practical system had not defined the behavior of loops with negative
extents [69]. Test cases designed to probe the behavior suggested that Halide treated such
loops as no-ops; however, there could be instances wherein a negative extent is treated
as unsigned, which would silently wrap to a very large positive integer. While unsigned
underflow is a well-known problem, Halide has the additional obligation of making sure that
no scheduling transforms accidentally introduce this behavior even if it’s absent in the original
code. We worked with the developers to determine that this situation should be treated as
an error that can be checked at program startup (recall definition 2.9), as formalized here.

Impure identity functions. The practical system has several APIs for computing the
results of a pipeline. One such API intended to match the interface formalized here (§2.4,
§2.5): the user supplies the desired compute bounds (see §2.7) and receives a buffer containing
at least the requested values.

For efficiency, another API allows a user to supply their own output buffer, rather than
delegating the allocation to Halide. In this case, the pipeline checks at startup that the
supplied buffer is at least as large as the buffer it would have allocated. However, when the
simple API was implemented in terms of this advanced API, it incorrectly assumed that the
compute bounds and allocation bounds would be equal. This led to vexing errors on pipelines
whose outputs were scheduled to overcompute [65].

This confusion had a surprising consequence: adding an unscheduled identity func to the
end of the pipeline would compile to a copy of the former output, and which would have
equal compute and allocation bounds. So, from the perspective of the user, identity functions
were impure since they had side effects due to bounds inference. After reaching clarity on
these issues through our formalism, we worked with the Halide authors to fix this behavior.
The latest release correctly returns the full, possibly overallocated, buffer.

Arithmetic error semantics. As discussed in §2.7.1, values used in control flow or indexing
must be well-defined regardless of the schedule. Data-dependent accesses in rdom conditions
and update locations might necessitate computing points not required by the default schedule,
especially when over-computing strategies are employed. Similarly, computation outside the
compute bounds must be side-effect free, even when processing uninitialized values. One
consequence of this is that integer division and modulo must be made into total functions,
similar to IEEE 754 arithmetic.

We constructed test cases for the practical system that crashed due to integer division
by zero happening outside of the compute bounds [67]. We worked with the Halide authors
to define these operations to return zero and implemented the new behavior with runtime
checks. The compiler leverages its existing bounds analyses to eliminate these checks when it
can, for instance when dividing by a non-zero constant.

One might wonder why the convention x mod 0 ≡ 0 was chosen in favor of the more
typical x mod 0 ≡ x. Both conventions were tried and the former produced tighter bounds
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equations in practice; in short, it is better to bound (x mod y) by y than by x, which is
typically much wider.

This change also impacted concurrent work on verifying Halide’s term-rewriting expression
simplifier. As Newcomb et al. [116] report, these new semantics invalidated dozens of existing
rewrite rules and required many new proofs of correctness for valid rules.

Compute bounds for indexing accesses. Another consequence of the rules in §2.7.1
is that accesses that occur inside indexing expressions must have well-defined values, which
means that the points must be in the compute bounds. However, the practical system did not
implement this rule; it instead relied on an unsound analysis of the bounds of a func’s value
to compute the bounds in the indexing expression and did not widen the compute bounds to
fit the accessed point. We were able to construct a real crash based on this insight in [63]
and provided a patch to the compiler.

Race conditions in rdom predicates It is unsafe to parallelize a loop that contains
an RDom whose predicate depends on values written by that loop. Race conditions on the
values read by the predicate can lead to non-deterministic behavior. We discovered that the
compiler was missing these checks. We constructed a real instance of non-determinism based
on this insight [68] and provided a patch to the compiler[64].

Compute-with directive. Compute-with was a scheduling directive intended to interleave
the computation of two or more independent funcs by fusing their outermost loops together.
This could benefit performance by reducing memory traffic if the two funcs shared many
reads from a common producer. However, the prototype implementation did not consider
dependencies between the stages of a single func (§2.4.3), nor did it consider specializations
(§2.8.1). We discovered cases where compute-with could move the pure stage of a func after
one of its update stages, resulting in crashes and mangled outputs [66].

We worked with the Halide authors to define the feature, but due to little widespread use
(perhaps owing to these bugs, in part) and the highly complex implementation, the feature
was deprecated instead. We look forward to designing a sound replacement in future work.

Future work We believe this work provides a foundation to study the new class of languages
with user-controlled scheduling. One major question is how they could incorporate abstraction
and module systems. Another is whether alternative bounds inference algorithms, based on
our program synthesis formulation, could be useful in practice and in other settings.

2.10 Proofs of Theorems and Lemmas

Lemma 2.10 (Loop phase naming). The loop phase preserves loop names as described in
lemma 2.4.
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Proof. All loop phase directives replace loops of a given func, specialization, and stage with
similarly localized loops, albeit with different loop variables. Since conflicts between loop
variable names are prohibited, loops remain uniquely named.

Definition 2.17 (Narrowing program). Let P1, P2 ∈ BI(T ) where T is a program scheduled
from some algorithm. We say that P1 ≤ P2 iff for all inputs z, every execution of any
allocation or loop in P1(z) has a corresponding execution in P2(z) and the bounds I1 for
P1(z) are contained in the bounds I2 for P2(z). (Here “corresponding” means that the two
statements are at the same lexical site, executing with identical environments Σ.)

Lemma 2.11 (Narrowing executions match). Let P1 ≤ P2 as above. Then after the execution
of corresponding loops for some func f on intervals I1 and I2, the contents of the buffer for f
agree on I1.

Proof of lemma 2.11. Let SI(P, z) denote the set of assignment executions in P (z). By defi-
nition, SI(P1, z) ⊆ SI(P2, z). Let SI(P2, z)|I1 be the set of assignment statement executions
in P2(z) which write which write to a point of f in I1. Then SI(P1, z) ⊇ SI(P2, z)|I1 . Thus
there are no writes to values in I1 in P2 that do not also occur in P1. Furthermore, all of
these computed values depend only on the values computed in both programs. This follows
from the assignment rule of B.

For the next three proofs, note that if an expression appearing in an access is unbounded
then there is no possible bounds query result. So without loss of generality, we may assume
that some satisfying bounds actually do exist, since confluence is vacuous otherwise.

Proof of lemma 2.6. First recall that by lemma 2.5, every access to a func f is dominated by
the allocate statement for f . The rule for accesses in B (see fig. 2.10a) explicitly requires that
every point read or written is contained in the allocation bounds (Mem) of the associated
func. Thus P ′ will always satisfy the InBounds condition.

Proof of lemma 2.7. This proof proceeds by induction over prefixes of the syntactic structure
of the algorithm P ∈ Alg and corresponding prefixes of the initially lowered program
P ′ ∈ BI(L(P )).

Recall from the definition of the bounds extraction function B (§2.7.1) that each of f ’s
stages’ loop bounds cover the compute bounds. lemma 2.5 ensures that the func is realized
before it is read.

Thus, as a base case, if f consists of only a pure stage, we are done because the static
lack of self-reference and reduction dimensions makes each assignment statement in that
stage completely independent of every other (this is ensured by definition 2.7). The assign-
ment exactly matches the algorithm’s expressions and only reads from compute bounds by
assumption.

Inductively, if f has n stages the claim holds, we argue that adding another stage s to
f preserves the claim. Bounds extraction ensures that every access in s is included in the
allocation bounds and assignments writing to a point in the compute bounds read only within
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the compute bounds of other funcs and f . By the induction hypothesis on stages, the values
in the compute bounds of the buffer for f (and all other funcs) are correct just before s runs.

Recall the structure of the loop nest for s. The outermost for loops correspond to pure
dimensions and range over bounds holes, which are constrained to cover the compute bounds
of f . The innermost for loops implement any reduction domain in the stage and have bounds
supplied by the algorithm. If the stage is guarded by a condition, it is included within the
innermost for loop. Finally, a single assignment statement corresponding to the update rule
for the stage is the innermost statement.

We need to show that the code produced by lowering for s will compute confluent values
for f . Consider a point p in the compute bounds of f after the stage runs. The stage s
separates pure dimensions from reduction dimensions of p. Let xp be the assignment to pure
dimensions induced by p. Consider the definition of s in the algorithm. It consists of a series
of simple updates after unrolling the rdom all of which share values xp in common. Now,
observe the iteration of the pure loops of s in the target language which coincide with xp.
This iteration is guaranteed to occur by the covering of the compute bounds by the loop
bounds. The content of this iteration is a sequence of assignments corresponding to the
unrolled rdom (as in the big step semantics in fig. 2.6). Lastly, any other x′

p ≠ xp touches no
memory in common with this iteration because of syntactic separation (definition 2.7).

Lemma 2.12 (Lowering is sound). P ′ ∈ BI(L(P )) is confluent with P for all P ∈ Alg.

Proof of lemma 2.12. Let z be any input. If P (z) contains an error, then we are done. Since
lowering does not create any assertion statements, failing one is not possible. All lowered
programs trivially respect dominance. Finally the argument in lemma 2.7 applies inductively
over the lowered code.

Proof of lemma 2.9. If f has no specializations, then its only compute statement is considered
the default specialization. Valid schedules have at most one specialization directive per func,
so there is one block of if-then statements for each func, each containing a compute statement
for f . Since the conditions of those branches are startup expressions, the input z determines
which one will be taken every time the block is encountered. Proofs that each subsequent
phase of scheduling preserves this invariant appear in §2.10.

Lemma 2.13 (Specialization is sound). Let P ∈ Alg be a valid algorithm and let Ti ∈ Tgt?

be the result of lowering P and applying scheduling directives up through this phase. Let s be
a scheduling directive in this phase, then Ti+1 = S(s, Ti) is confluent with P .

Proof of lemma 2.13. Let z be a valid input for P , P ′
i ∈ BI(Ti), and P ′

i+1 ∈ BI(Ti+1). If
P (z) contains an error, we are done; and no assertions are present until the bounds phase;
so we may assume P ≃z P

′
i . By assumption, s is a specialization of some func f . Now by

lemma 2.9, exactly one branch of f is taken in any execution P ′
i+1(z). This preserves producer

domination as required by lemma 2.5.
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Lemma 2.14 (Loop phase is sound). Let P ∈ Alg be a valid algorithm and let Ti ∈ Tgt? be
the result of lowering P and applying scheduling directives up through this phase. Let s be a
scheduling directive in this phase, then Ti+1 = S(s, Ti) is confluent with P .

Proof of lemma 2.14. Lemma 2.13 ensures that Ti is confluent as long as we have not yet
reached this phase. So we may inductively assume confluence before issuing any such s. As
before, s does not introduce assertions, so we need only assess output equivalence. Each
directive s operates locally on loops in a single stage, so therefore we need only show that the
transformation of this stage is observationally equivalent; i.e. the state of the buffers before
and after the stage is the same within the compute bounds.

Suppose s = split(⟨. . . , v⟩, vo, vi, efac). We may check that the values v ranges over are
unchanged; this means that B(Ti) is logically equivalent to B(Ti+1). Since the scopes of holes
have also not changed (K(Ti) = K(Ti+1)), the sets of bounds query results are identical. Thus
there is a bijection between programs P ′

i ∈ BI(Ti) and P ′
i+1 ∈ BI(Ti+1), s.t. corresponding

holes have been filled with identical expressions. These two programs execute the same
statement instances in the same order; therefore the effect on buffers is identical.

The argument for the fuse directive proceeds analogously, as do the arguments for the
overcomputation and inward-shifting split strategies that apply only to single-stage (pure)
funcs, which are adjusted for the expanding compute bounds and identically recomputed
points, respectively.

For swap and traverse, consider the loop nest for the stage of f . Analogously to the
proof of lemma 2.7, syntactic separation ensures that distinct iterations of pure loops access
f at disjoint sets of points. Since split and fuse preserve the sets and order of accesses as
they introduce new loops, two writes agree on their pure dimensions iff the pure loop variable
values agree.

But this means that two assignments touch the same memory of f only if the values of
the pure loops are the same. Since traverse parallelizes over a single pure loop, no two tasks
touch the same memory. And swap interchanges two pure loops, so the writes which do
touch memory in common are not interchanged with respect to one another.

Lemma 2.15 (Compute phase is sound). Let P ∈ Alg be a valid algorithm and let Ti ∈ Tgt?

be the result of lowering P and applying scheduling directives up through this phase. Let s
be a compute-at directive moving the func f to some location ℓg. Then Ti+1 = S(s, Ti) is
confluent with P .

Proof of lemma 2.15. Let P ′
i ∈ BI(Si) and let {P ′′

i } be the set of programs resulting from
applying s to P ′

i . Let P
′
i+1 ∈ BI(Ti+1). First observe that any P ′′

i computes the same values
as P ′

i because the compute statement for f computes all of the points ever needed in P ′′
i

and dominates all of its consumer funcs. This also implies that P ′′
i ∈ BI(Ti+1).

Now suppose P ′
i+1 is not one of the P ′′

i . Then for each z, if P (z) does not contain an
error, then there is some P ′′

i ≥ P ′
i+1 (see definition 2.17). By lemma 2.11, P ′

i+1 computes the
exact same values of f on the narrower range, which bounds inference guarantees is sufficient
for confluence.
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Lemma 2.16 (Storage phase is sound). Let P ∈ Alg be a valid algorithm and let Ti ∈ Tgt?

be the result of lowering P and applying scheduling directives up through this phase. Let s be
a store-at directive, then Ti+1 = S(s, Ti) is confluent with P .

Proof of lemma 2.16. Lemma 2.6 required only dominance of the allocate statement over
all accesses to the associated func for correctness. This is preserved by definition.

Lemma 2.17 (Bounds phase is sound). Let P ∈ Alg be a valid algorithm and let Ti ∈ Tgt?

be the result of lowering P and applying scheduling directives up through this phase. Let s be
a scheduling directive in this phase, then Ti+1 = S(s, Ti) is confluent with P .

Proof of lemma 2.17. The directives in this phase only mutate programs by adding assertions
to them, the only side effect of which is to transition to an error state. Thus in any non-
erroring execution of any Pi ∈ BI(Si), there is some Pi ∈ BI(Ti) whose behavior exactly
matches Pi+1.



35

Chapter 3

Exocompilation for Productive
Programming of Hardware
Accelerators

This chapter is based on the work in Ikarashi, Bernstein, Reinking, Genc, and Ragan-Kelley
[80], which was published at PLDI ’22.

3.1 Introduction

Modern computers are increasingly comprised of accelerators. From neural and cryptogra-
phy engines, to image signal processors, to GPUs, a state-of-the-art system-on-chip (SoC)
today includes dozens of different specialized accelerators. Even within their main CPUs,
performance improvement increasingly comes via new instructions performed by specialized
functional units. This specialized hardware is orders of magnitude more efficient than software
running on general-purpose hardware, but most applications are only able to realize this
performance and efficiency insofar as key low-level libraries of high-performance kernels (e.g.,
BLAS, cuDNN, MKL, etc.) are optimized to exploit the hardware.

While the role played by high-performance kernel libraries is increasingly critical, there is
little programming language support for the performance engineers who write them. Progress
continues to be made after decades of effort on fully-automatic compiler optimization, but
state-of-the-art kernels—from linear algebra, to deep learning, to signal processing and
cryptography—are still predominantly written by hand, directly in low-level C and hardware-
specific intrinsics or assembly, or with lightweight metaprogramming (e.g., macros or C++
templates) of such low-level code. As a result, developing and tuning these libraries is
enormously labor intensive, limiting the range of accelerated routines and creating barriers
to deploying new or improved accelerators.

Developing accelerated high-performance libraries is a unique software engineering task,
with several unusual characteristics. First, in contrast to conventional programs on general-
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purpose processors, the hardware-software interfaces to accelerators are both complex—
including specialized memories, exposed configuration state, and complex operations—and
highly diverse, with different complexities unique to each accelerator. Second, the rates of
change at different levels in the stack—from applications to hardware ISA—are inverted:
accelerator architectures change more rapidly than the essential functions which run on them
(e.g., mobile phone SoCs are rebuilt every year, with major revisions to nearly every accelerator
block, while the BLAS standard changes much more slowly), and the implementation of these
functions to most efficiently use the hardware is iterated more quickly, still. This is especially
acute during accelerator development, where target application workloads are often fixed,
while both the hardware architecture and kernels mapping to it are iteratively co-designed to
maximize performance and efficiency.

In this paper, we propose exocompilation as a new approach to programming language
and compiler support for developing hardware-accelerated high-performance libraries. The
principle of exocompilation is to externalize as much accelerator-specific code-generation logic
and optimization policy from the compiler as possible, instead exposing them at the user
level to high-performance library writers. Specifically, we externalize accelerator specification
to user-level libraries, and we build on the idea of user scheduling, popularized by languages
like Halide and TVM [22, 130], to externalize hardware mapping and optimization decisions.

We develop a new language and compiler called Exo based on this principle of exo-
compilation. Exo allows custom hardware instructions to be user-defined and abstracted
as procedures. It also allows specialized memories and accelerator configuration state to
be defined in user code, without modifying the core compiler. User scheduling enables a
rich space of optimization and hardware mapping choices to be directly explored by the
performance engineer, rather than requiring an automated optimizer to always make perfect
decisions.

In contrast to optimization by manually rewriting low-level code, scheduling transforma-
tions are concise and safe. They elide many details like array and loop re-indexing (which can
be automatically inferred), while guaranteeing both functional equivalence and memory safety.
Different schedules best optimize the same library function for different hardware, or even for
different parameter values, and specialized versions for each case can be generated from a
single source algorithm. Arbitrary program fragments can be replaced during scheduling with
equivalent user-defined accelerator instructions, or specialized subroutines, using a unification
procedure that automates the transformation of essential arguments and array indexing.

Finally, in contrast to languages like Halide and TVM, Exo implements user scheduling
via composable rewrite rules. This allows the scheduling language itself to be easily extended,
since each operator defines an independent rewrite, rather than interacting with all others in
a monolithic lowering process.

We explore what is required of safety analyses for such a language, and define a set of effect
analyses which support guarantees of program equivalence and memory safety after scheduling
(§3.5). We make the simplifying assumption of affine loops and array indexing, which has
been shown to be sufficient for many kernels of interest in high-performance libraries [43].
Nonetheless, accelerator configuration introduces global mutable state which breaks the
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classic “static control program” assumption, and requires introducing approximation into
the analyses. Our analyses are then defined in a ternary logic, which distinguishes effects
which definitely occur (necessary for, e.g., eliminating redundant setting of configuration
state) from those which maybe occur (relevant for reasoning about the statement reorderings
which emerge from many loop transformations).

Finally, we perform a series of case studies applying Exo to optimizing high-performance
kernels for specialized hardware. We develop user-level backends for the Berkeley Gemmini
neural network accelerator [51] (a software-controlled systolic array similar to many TPU-like
architectures) and x86-64 with AVX-512. For each target, we focus on optimizing matrix
multiply and convolutional neural network layers—among the most highly-optimized kernels
in common libraries. Using Exo, we were able to easily develop implementations competitive
with state-of-the-art libraries in a few days and a few dozen lines of code.

3.2 Example

Today’s large machine learning models (and scientific computing) rely on highly tuned matrix-
matrix multiplication kernels (aka. GEMM). In order to introduce Exo, we will show how
to write and optimize such GEMM kernels, targeting one to an accelerator ISA designed to
resemble machine learning accelerators. These accelerators all focus on the efficient execution
of small (e.g. 16× 16), dense matrix-matrix multiplication instructions.

Optimizing these kernels is primarily an exercise in orchestrating data movement, and only
secondarily a matter of selecting compute instructions, such as the actual matrix multiplication
primitive. Therefore, we need to explicitly schedule loads and stores from custom, explicitly
managed accelerator memories. Lastly, much of the behavior of hardware accelerators is
controlled by infrequently changing configuration state. Instructions to configure such state
usually flush the accelerator pipeline.

To model a particular hardware accelerator, users must define custom memories, instruc-
tions and configuration state. This work is done once per accelerator, written as a hardware
library. Throughout the example, we will indicate whether each piece of code lives in the
application (GEMM) or can be abstracted out into a reusable description of the hardware.

3.2.1 Exo Procedures, Compilation, and Scheduling

Consider matrix-matrix multiplication, written in Exo:

in app.py

@proc

def gemm(A: R[128, 128] @ DRAM, B: ..., C: ...):

for i in seq(0, 128):

for j in seq(0, 128):

for k in seq(0, 128):
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C[i, j] += A[i, k] * B[k, j]

Exo is embedded in Python, and the function decorator @proc indicates the beginning of
an Exo function. Function arguments are given by the syntax

⟨name⟩:⟨type⟩[⟨size⟩] @ ⟨memory⟩

R is an abstract type for all numeric data types, which can be specialized to specific precision
types such as f32 and i8 via scheduling operations. For simplicity, the ⟨size⟩ in this example
is constant, but usually refers dependently to other function arguments. The @ symbol is
a memory specification; @DRAM means that the buffer is expected to be in DRAM. Finally,
for i in seq(0, 128) is a sequential for loop that ranges from 0 to 127 (inclusive).

Exo compiles to C source code in the expected way:

app.c (generated)

void gemm(float *A, float *B, float *C) {

for (int i=0; i<128; i++) {

for (int j=0; i<128; i++) {

for (int k=0; i<128; i++) {

C[128*i + j] += A[128*i + k] * B[128*k + j];

} } } }

In order to target our accelerator, we need to expose a 16× 16 matrix-multiplication as
the inner loop nest. We do this by using scheduling operations to rewrite the procedure. In
particular, we split(i,16,io,ii) (sim. for j, k) and then reorder() the loops (see §3.3.3)
to produce the following tiled matrix multiplication:

in app.py

def gemm(A: R[128, 128] @ DRAM, B: ..., C: ...):

for io in seq(0, 8):

for jo in seq(0, 8):

for ko in seq(0, 8):

for ii in seq(0, 16):

for ji in seq(0, 16):

for ki in seq(0, 16):

C[16*io+ii, 16*jo+ji] += A[..] * B[..]

3.2.2 Memories

Many accelerators—including ours in this example—have explicitly-managed memories.
Performance critically depends on how data movement to and from these memories is
interleaved with other computation. Therefore Exo puts scheduling of data movement in the
hands of the programmer. The first step in doing this, is to define custom memories on a
per-accelerator basis. For example,
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in hw lib.py

class ACCUMULATOR(Memory):

def alloc(...):

return f"{prim_type} {name} = hw_malloc({sz});"

def free(...):

return f"hw_free({name});"

def read(...): # also write, reduce

raise MemGenError('memory is not addressable')

If a buffer is annotated with accumulator instead of DRAM, then these alloc and
free macros will determine the C code that is generated when that buffer is allocated or
freed. (see §3.3) Furthermore, note that the accumulator memory explicitly disables code
generation for reading, writing and accumulating into individual locations, preventing direct
access from C. Instead, we will only allow custom instructions (see below) to access this
custom memory.

Supposing we have written custom accumulator and scratchpad memories, we use
stage_mem scheduling operations to stage C, A, and B into these memories:

in app.py

def gemm(...):

res: R[...] @ ACCUMULATOR

a : R[...] @ SCRATCHPAD

b : R[...] @ SCRATCHPAD

for io in seq(0, 8):

for jo in seq(0, 8):

... # Load C to res

for ko in seq(0, 8):

# Load A to a

for ii in seq(0, 16):

for ki in seq(0, 16):

a[...] = A[...]

... # Load B to b

# Matmul of a and b

for ii in seq(0, 16):

for ji in seq(0, 16):

for ki in seq(0, 16):

res[..]+=a[..]*b[..]

... # Store res to C

3.2.3 Instructions

We can clearly see opportunities in the above code to map loops to semantically equivalent
accelerator instructions. However, to do this safely and soundly, the compiler needs definitions
of our accelerator instructions in terms of Exo’s semantics. The key idea of exocompilation
is to provide users with a framework for defining these instructions in libraries, without
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modifying the compiler itself. Below, we show an example of such a definition for the
scratchpad load.

in hw lib.py

@instr("config_ld({src}.strides[0]);\n"

"mvin({src}.data, {dst}.data, {m}, {n});")

def ld_data(n: size, m: size,

src: [R][n, m] @ DRAM,

dst: [R][n, 16] @ SCRATCHPAD):

assert m <= 16

for i in seq(0, n):

for j in seq(0, m):

dst[i,j] = src[i,j]

Notice that this function has been annotated with @instr rather than @proc. This
indicates that the declaration asserts equivalence between the Exo code in the body and
the C code template (i.e. macro) in the annotation. The resulting ld_data function may
be scheduled and called like any other function, but Exo’s C code generator will instead
emit the C code “config_ld({src}.strides...)”, with argument placeholders {src} and
{dst} substituted appropriately.

Exo provides a replace() scheduling directive (§3.3.4) for matching code in one procedure
with the body of another procedure (including an @instr like ld_data), then replacing the
matched code with an appropriate procedure call.

3.2.4 Configuration State

We could issue this directive now to schedule the accelerator instructions, however, the C
code has fused the expensive config_ld instruction to the mvin instruction we are really
interested in scheduling. Since the stride does not actually change during the kernel, this will
cause the accelerator pipeline to repeatedly flush and stall. We must somehow schedule the
configuration instruction independently of the actual load.

Therefore, we need a way to define hardware state. The following code models the stride
configuration state in Exo.

in hw lib.py

@config

class ConfigLoad:

src_stride : stride

@instr("config_ld({s});")

def config_ld_def(s : stride):

ConfigLoad.src_stride = s

Here, ConfigLoad defines a global struct of configuration variables, here containing a
single src_stride field that models the state of the stride hardware parameter. We also
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write an instruction definition, config_ld_def, that updates the src_stride field. Now we
can write a new instruction for the 16× 16 load without the config_ld setup:

in hw lib.py

@instr("mvin({src}.data, {dst}.data, {m}, {n});")

def real_ld_data(...):

assert ConfigLoad.src_stride ==

stride(src, 0)

# same as ld_data

Using scheduling instructions, we will rewrite the body of ld_data into a call to config_

ld_def(), followed by a call to real_ld_data(). First, we use the configwrite_at()

scheduling operation to rewrite ld_data into the following:

in hw lib.py

def ld_data(...):

assert m <= 16

ConfigLoad.src_stride = stride(src, 0)

for i in seq(0, n):

for j in seq(0, m):

dst[i,j] = src[i,j]

Unlike previous scheduling operations, configwrite_at() only partially preserves pro-
cedure equivalence—the new ld_data() is only equivalent up to the configuration state
ConfigLoad.src_stride. In general, Exo needs to reason about this kind of program
equivalence modulo configuration state (see definition 3.1 and §3.6.2).

Since the statement ConfigLoad.src_stride = . . . is equivalent to the body of config_
ld_def, and the statement for i in seq(. . .): . . . is equivalent to the body of real_ld_
data, we can now replace() the body of ld_data with the two calls, as desired:

in hw lib.py

def ld_data(...):

assert m <= 16

config_ld_def(stride(src, 0))

real_ld_data(n, m, src, dst)

By following this same procedure, we can create instruction abstractions for our 16x16
matmul and store instructions. At last, we can replace the code in gemm with calls to ld_data
and inline its definition.

in app.py

def gemm(...):

res: R[...] ...

for io in seq(0, 8):

for jo in seq(0, 8):
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... # Loading C to res

for ko in seq(0, 8):

config_ld_def(stride(A, 0))

real_ld_data(16, 16, A[...], a[...])

... # etc. etc.

We will hoist the call to config_ld_def using scheduling operations reorder_stmts(),
fission_after(), as well as remove_loop(). Doing so will require Exo’s program analysis to
both reason about when different statements commute (can be reordered) as well as when they
are idempotent (allowing the loop to be removed). To further complicate matters, the presence
of global, mutable configuration state means that fully precise analyses are undecidable, and
thus impossible in Exo. By using a ternary logic (§3.5), Exo can distinguish between memory
locations that are definitely written to (a necessary condition for idempotency) and locations
that are maybe written to (the relevant condition for commutativity).

in app.py

def gemm(...):

config_ld(stride(A, 0))

res: R[...] ...

for io in seq(0, 8):

for jo in seq(0, 8):

... # Loading C to res

for ko in seq(0, 8):

real_ld_data(16, 16, A[...], a[...])

... # etc. etc.

All of the above code transformations are achievable using the scheduling primitives
discussed in §3.3. Full definitions of the memory, configuration, and load instructions for the
Gemmini accelerator can be found in §3.15.

3.3 The Exo Language and System

The Exo system consists of an imperative programming language (§3.3.1), means of defining
hardware targets via libraries (§3.3.2), and a rewrite-based scheduling system (§3.3.3 and 3.3.4).
Figure 3.1 shows the Exo system from the standpoint of a particular program being compiled.
In this section, we explain each part of this process.

3.3.1 The Exo Language

Exo is a familiar imperative language in the mold of the static control program model [43].
It supports for-loops, if-conditions, arrays and procedures, but not while-loops or recursion.
A BNF grammar for its formal core is defined later (fig. 3.2). In addition to that grammar,
the full language supports stride values and expressions, as well as memory annotations,
both of which were shown in the example (§3.2).
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Type Check

*.exo Bounds Check

Assert Check

Memory/Precision Check

Codegen
*.c

Frontend
Backend

User schedules via rewrites (§3.3)

User defined (§3.2):
• Memory
• Config
• Instructions

.split()

.reorder()
…
.unroll()
.inline()
.replace()  (§3.4)

Figure 3.1: Exo system overview

Six relatively standard (but not universally adopted) features of Exo are worth discussing
further: (1) control/data separation, (2) mutable global control state, (3) dependently typed
arrays [165], (4) array windowing/slicing, (5) explicit += reduction primitives, and (6) static
assertions.

1. Exo is built around a distinction between control and data values. Control values (types
int, bool, size, etc.) are constrained so that they may be analyzed more precisely.
Arithmetic on integer control values must be quasi-affine, meaning that values can
only be multiplied, divided, or modulo-ed by an integer literal. Expressions inside loop
bounds and branches must be control values. Meanwhile, data values (types R, f32, i8,
etc.) are floating-point or fixed-point numbers stored in scalars or arrays. There are no
restrictions on allowed computations between data values.

2. Configuration state (§3.2) is introduced via structs of variables using @config and
modeled formally as global variables (§3.4). Unlike the other sources of control values,
configuration state is mutable. Consistent with the idea of static control programs,
Exo currently prohibits any dependence of control values on data-values, regardless of
whether those control variables are local or global.

3. Dependently typed arrays allow sizes to be specified by control value expressions of
strictly positive value. Exo then performs static bounds checks, guaranteeing memory
safety without incurring any of the costs of dynamic bounds checks. This is made
possible by the control/data separation idea.

4. Arrays in Exo are further extended with support for windowing (aka. slicing) via the
x[lo:hi] syntax. Creating a window does not copy data; instead, reading from and
writing to locations in a window accesses the underlying buffer (e.g. if y = x[3:8]

then y[2] == x[3+2]). In particular, note that windows may be lower-dimensional
than their underlying buffers by slicing some indices, while point-accessing others. For
instance, x[0:n,j] creates a 1-dimensional window on column j of matrix x.

5. In addition to primitive reading and writing, reduction via the += syntax is supported
as a special commutative and associative operation from the point of view of program
analysis.

6. Finally, we allow static assertions about control values to be made at the beginning of
procedures. These assertions act as pre-conditions and not as dynamic tests. Program
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analysis within a procedure may assume its asserted pre-conditions, whereas a calling
procedure is only valid if it ensures that the callee’s pre-conditions are true.

Backend Checks: Precision and Memory

Type-checking, bounds-checking, and assertion checking are all front-end checks on Exo code.
By contrast, consistency of data-variable precision types as well as consistency of memory
annotations are performed as back-end checks immediately prior to code generation. Exo
requires all data-expressions to have consistent precision, (e.g. multiplying an f32 and i8 is
forbidden) but inserts type-casts as necessary just before writing or reducing data values.

Code Generation

Exo is designed to generate human-readable C-code that is more or less a syntactic translation
of the corresponding Exo code. This enables the programmer to more easily integrate Exo
with existing tools and workflows. There are a few non-obvious details with this translation
that merit discussion. First, all data values (including scalars, buffers, and windows) are
passed by pointer rather than by value. This is necessary even in the case of scalars to
allow “returning” modified scalar values to a caller. Second, windows are compiled to structs
containing both the data pointer and stride values, since the static size of a window is
insufficient to compute a linear address into the underlying buffer. Lastly, we translate static
assertions into compiler-specific optimization hints to help improve downstream analyses and
optimizations.

3.3.2 Hardware Targets as Libraries

To add support for a new hardware accelerator to Exo, programmers write a library, rather
than a compiler backend. These libraries use three key features of the Exo language:
(1) memories, (2) instructions, and (3) configuration state. Using these features, an Exo
programmer can hand-write code to target a given accelerator, or use scheduling to rewrite a
simple program into one targeting a given accelerator (§3.3.3).

Defining hardware in libraries has two advantages over defining hardware in compiler
backends (as Halide, TVM, LLVM and most compilers do). First, hardware vendors do not
need to maintain compiler forks in order to protect proprietary details of their hardware.
Second, the cost of adding support for new hardware is significantly reduced. Our experience
adding support for new hardware to both Exo and Halide suggests that the library approach
requires at least an order of magnitude less development time.

Memories

By default, all Exo buffers are assumed to reside in system DRAM and are managed using
standard malloc and free. However, hardware accelerators often require modeling buffers
that are resident in special accelerator memories, are pinned to special address ranges in
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the global address space, or otherwise exhibit strange behavior. To support these scenarios,
Exo allows users to tag buffer and window types with a memory annotation. For example,
x : f32[n] @ MEM says that the vector x lives in a custom memory MEM. These custom
memories are defined by sub-classing a Memory base class (§3.2) and overloading methods.

Exo allows custom memories to change code generation for buffer alloc, free, and
windowing via string interpolation. The author of a custom memory chooses whether to allow
standard reading and writing the buffer (e.g., if the memory simply changes the memory
management policy) or disable all usual accessing of the memory. The latter option is ideal
for modeling hardware scratchpads, which should only be accessed using custom instructions.
Such improper accesses are prevented by “backend checks.” In general, memory annotations
are ignored during scheduling.

Instructions

Instructions in Exo are procedures that are annotated with a macro/string-template. For
example, given a vector load procedure with the signature load(n : size, dst : f32[n],

src : f32[n]), we can make it into an instruction by annotating it with @instr("hw_

ld({src},{dst},{n})") instead of @proc. When code generating calls to instructions, this
annotation string is used instead of a sub-procedure call. Arguments are interpolated into
the template as strings. This works as well for scheduling fine-grained intrinsics as it does for
coarse-grained calls to existing microkernels or library calls.

As a result, the annotated Exo procedure has no effect on code generation, but instead
serves as a semantic specification of the instruction for the purposes of checking correctness
and program equivalence (for scheduling). This approach to an instruction mechanism has the
following benefits and tradeoffs. First, programmers need not learn any additional specification
language beyond Exo. Second, Exo entrusts programmers with the responsibility of verifying
the link between the Exo procedure and annotation. Third and finally, programmers can use
instructions in clever ways, including as an escape hatch. For example, a prefetch instruction
can be modeled using a no-op procedure and thereby be inserted anywhere.

Configuration State

As we saw in §3.2, Exo models hardware configuration state via global structs of control
variables annotated by @config. When defining configurations, programmers have the choice
of realizing them as DRAM-resident data or disabling direct access to the configuration state
(similar to disabling direct reading and writing of a memory). In the latter case, no global
struct is generated.

3.3.3 Scheduling via Rewrites

Rather than directly writing code that uses a hardware library, Exo users transform a simple
program into an equivalent, but more complex and high-performance version, targeted to the
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Table 3.1: Some primitive Exo scheduling operators. Each operator rewrites s0 ⇝ s1 within
a procedure p. This sort of rewrite-based scheduling makes it easier to expand the list of
primitive operators, since the correctness of each operator is independent of the correctness
of each other operator.

Command Transform

p.reorder(i,j)
for i:

for j:
⇝

for j:

for i:

p.split(i,c,io,ii) for i<I: ⇝
for io<I/c:

for ii<c:

p.unroll(i) for i: ⇝
for 0:

...

p.inline(foo) inline a callsite of foo in p

p.set memory(a,MEM’) a @ MEM ⇝ a @ MEM’

p.set precision(a,typ’) a : typ ⇝ a : typ’

p.call eqv(foo,foo’) call foo’ at a callsite of foo

p.bind expr(a,a’) s ⇝
a’ : R

a’ = a

s[a 7→ a’]

p.stage mem(a,a’,s) s ⇝

a’ : R[]

for i:

a’ = a

s[a |7→ a’]

for i:

a = a’

p.bind_config(config,a) s ⇝
config = a

s[a 7→ config]

p.lift_alloc(a:R)

for i:

a : R

s

⇝
a : R

for i:

s

p.fission_after(s1)

for i:

s1

s2

⇝

for i:

s1

for i:

s2

(continued on next page)
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Table 3.1, continued

Command Transform

p.reorder_stmts(s1,s2)
s1

s2
⇝

s2

s1

p.configwrite_at(s,config,e) s ⇝
s

config = e

p.replace(s,foo) s ⇝ foo(<<inferred>>)

p.add_guard(s,e) s ⇝
if e: s

else: s

p.fuse_loop(i)

for i:

s1

for i:

s2

⇝
for i:

s1

s2

p.lift_if(if c: s)
for i:

if c: s
⇝

if c:

for i: s

p.partition_loop(i,c)

for i in lo,hi:

⇝
for i in lo,c:

for i in c,hi:

p.remove_loop(i)
for i:

s
⇝ s

specific hardware accelerator. This transformation is accomplished via successive rewriting of
the application—a process called scheduling.

Because Exo is an embedded DSL, schedules are written as meta-programs in the host
language (Python). Each primitive scheduling operator (table 3.1) takes a procedure p plus
some other arguments as input, and returns an equivalent, rewritten procedure as output.
Most of these operators require pointing at a location within the procedure. In our prototype,
this is accomplished via simple syntactic pattern matching strings. For instance, src : _

points at the first allocation of a buffer named src, and for i in _: _ #2 points at the
third loop in p with an iteration variable named i. This API is currently being re-designed,
but was sufficient to demonstrate the benefits of rewrite-based scheduling.

Exo advances the idea of user-scheduling in two important ways. First, like Lift and
Elevate [61, 141] but unlike Halide and TVM, scheduling operators are rewrites of programs,
rather than arguments to a monolithic lowering process. As a result, the implementation
and correctness of a scheduling primitive is independent of each other primitive. This makes
the Exo implementation much simpler and easier to maintain. Importantly, Exo rewrites
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imperative rather than functional programs (Lift and Elevate). This makes checking the
correctness of primitive rewrites more complex (§3.5 and 3.14).

Second, Exo supports scheduling of programs decomposed into procedures. This happens
via the inline(), call_eqv(), and replace() primitives. inline() simply inlines a proce-
dure’s body at some call site, and replace() can be thought of as the inverse of inline()
(see next section). call_eqv() on the other hand replaces a call to some sub-procedure f

with a call to an equivalent sub-procedure f’. This equivalence is tracked by provenance,
since the Exo system records the sequence of transformations by which f was transformed
into f’. This concept of an equivalent sub-procedure is complicated by those scheduling
primitives which pollute configuration state (e.g. bind_config()). To handle these, Exo
tracks a lattice of different equivalence relations, modulo different parts of the configuration
state (§3.6).

This provenance tracking system also enables an important optimization: when construct-
ing SMT queries we may use the simplest equivalent (including configuration) definition of a
procedure when constructing SMT queries. This is necessary to keep the cost of calling the
solver low as scheduling complicates a procedure.

3.3.4 Code Replacement & Instruction Selection

The replace() scheduling primitive takes a designated statement block s and replaces it
with a call to a designated sub-procedure foo. In particular, when foo is an @instr, this
rewriting performs instruction selection. In other cases, it allows Exo programmers to manage
code size trade-offs, as well as more neatly abstract and organize their code.

Our implementation of replace() is based on a form of unification modulo linear equalities.
First, we attempt to unify (i.e. pattern match) the body of the sub-procedure foo with
the designated statement block s. When doing this, the arguments of foo are designated
as unknowns, the free variables of s as known symbols and any symbols introduced/bound
in the body of foo or within s are unified. The ASTs are required to match exactly with
respect to statements, and with respect to all expressions which are not simply integer typed
control. Equivalences between integer typed control expressions are recorded as a system of
linear equations to be solved in a second step.

If Exo did not support windowing, then we could determine expressions for the unknown
argument variables by symbolically solving the resulting linear system of equations. However,
the possibility of windowing expressions as arguments forces us to make categorical choices
between different possible windowing expressions, resulting in disjunctions as well as conjunc-
tions of linear equalities. For example, if replace is asked to infer a 1-dimensional window
onto a 2-dimensional buffer x, it could infer an expression of the form x[i,jlo:jhi] or of
the form x[ilo:ihi,j]. To handle this complication, we observe that all inferred integer
expressions must be affine combinations of the known, free variables. Therefore, we can
transform our symbolic linear system problem into a linear system in the unknown coefficients
of these affine expressions. Once encoded in this way, we can discharge the problem to an
SMT solver.
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3.4 Formal Core Language

In order to define our program analysis, we provide a formal definition of the core of Exo,
including a denotational semantics. The core idea is that statements denote store-transforming
functions of type Σ→ Σ. Using these semantics we can define equivalence of Exo programs
as functional equivalence of their denotations. A scheduling transformation can then be said
to be safe when it transforms between equivalent Exo programs.

3.4.1 Mathematical Model of Exo Programs

The main concept in our mathematical model of Exo programs is the store, which represents
the program state at any given point during its execution. The simplest model of a store σ ∈ Σ
would be a partial function from variable names to values. However, we must complicate this
naive model in a few ways. Rather than present the full definitions (available in §3.9) we will
focus on a high level gloss of the ideas here.

Control values are modeled as Boolean or integer values (in B and Z) while data values are
modeled as real numbers (in R). Names of variables are drawn from a set of identifiers Name.
Additionally, we rely on exceptional values to capture errors ϵ and unknown or uninitialized
data ⊥. For simplicity, we assume that all built in functions on data (basic arithmetic and
the math library) are total, so that e.g. 0/0 is not an error.

The first complication is that we need to model buffers and windows. Buffers can be
thought of as maps from coordinate tuples to data Zm → (R ⊎ {⊥, ϵ}), where ⊥ designates
uninitialized but allocated memory, whereas ϵ designates out-of-bounds memory. These
buffers are placed in the store Σ at special addresses ℓ ∈ Name that are disjoint from names
used in the program. Then windows can be modeled as a pair of a buffer address ℓ and
affine-indexing function ϕ ∈ Zn → Zm. For instance, reading a window at coordinates i
would translate to the lookup σ(ℓ)(ϕ(i)).

Having modeled buffers and windows, we can define stores σ ∈ Σ as partial functions
from Name to buffers, windows, or control values. In order to further capture the concept
of program crashes (which should never happen for well-typed, well-bounded and assertion-
satisfying programs) we expand the domain of stores to include the special value ϵ. We may
assume that all functions are strict with respect to ϵ, meaning that once a program crashes it
remains crashed.

3.4.2 Syntax, Semantics, and Well-Typed Programs

The syntax for the formal core of Exo is straightforward (fig. 3.2). The denotation of a
statement or procedure s is written S JsK and is a function Σ → Σ. The full definition of
denotations for expressions, statements and procedures are deferred to §3.9. Note again
that this core language makes no reference to user-defined instructions or memories. This
is because the core program analysis is blind to those features—which only affect code
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generation. This separation is what allows us to make the program analysis extensible to
new hardware backends.

Our focus in this paper is not on basic type-checking (which is standard) or even bounds-
checking and assertion-checking (which are straightforward based on prior work and repur-
posing our later analysis machinery). However, it is worth re-iterating what guarantees all of
these front-end checks provide for Exo programs. First, all integer-valued control expressions
are constrained to be quasi-affine. Second, all windowing and accessing of buffers and windows
is statically guaranteed to be in-bounds. Lastly, any procedure call is guaranteed to satisfy
the asserted pre-conditions of the called procedure. Mutation of non-global control values
is also prohibited. The quasi-affine restriction in particular is what allows us to translate
arbitrary control expressions into SAT queries modulo the Linear Integer Arithmetic (LIA)
theory, and thus discharge problems to an SMT solver.

3.4.3 Program Equivalence

Definition 3.1 (program equivalence). Let s1, s2 both be Stmt or Proc. These two programs
are equivalent, written s1 ∼= s2 when the store-transforming functions they denote are
equivalent S Js1K = S Js2K on valid input stores—i.e. stores which are not in an error state
and satisfy any precondition assertions of s1 and s2, which are equivalent.

As discussed in §3.2, we often want to reason about programs that are equivalent “up-
to/excluding a set of globals L” because many transformations end up polluting configuration
state. We define a lattice of weaker equivalence relations:

Definition 3.2 (program equivalence modulo globals). Let s1, s2 both be Stmt or Proc, and
let L ⊆ Nameglobal be a set of globals to ignore. The two programs are equivalent “modulo
L”, written s1 ∼=L s2 when ∀σ, x ̸∈ L. S Js1Kσ x = S Js2Kσ x, with the same caveats about
valid input stores.

3.5 Effect Analysis & Transformation of Programs

Our analysis of Exo programs is based on an effect analysis. An effect a extracted from
a statement s characterizes which functions f : Σ → Σ the statement s could possibly
denote S JsK. This effect analysis allows us to determine when code transformations like
s1;s2 ⇝ s2;s1 and s1;s2 ⇝ s2 are valid.

This analysis will require us to define (1) effect-expressions and environments, (2) a global
symbolic data-flow analysis, (3) location sets as a symbolic abstraction of store locations,
and finally (4) effects as an abstraction of programs. We can then state safety conditions for
various program rewrites using these building blocks.
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τa : ArgType ::= bool — int — R[e∗]
τs : SigType ::= (x : τa)→ τs — unit

τ : Type ::= τa — R

note: we use ·∗ to mean 0 or more

e : Expr ::= x variables
— op(e∗) built-in operations
— e[e∗] array read
— win(e, w∗) window expression

w : WinCoord ::= e point-access
— e..e interval-access

op ∈
{

+, -, *, /, mod, and, or, not,
==, <, <=, >, >=

}
∪ Literals

s : Stmt ::= s;s sequencing
| if e then s guards
| for x in e..e do s sequential loops
| alloc x(e∗) array allocation
| e[e∗]= e array write
| e[e∗]+= e array reduce
| x = e global write
| p(e∗) sub-procedure call

pdef : Proc ::=
proc p : τs
assert e
do s

L : Lib ::=
globals (x : τ)∗

pdef ∗

Figure 3.2: Abstract Syntax for Exo core language

3.5.1 Ternary Logic

When extended with ⊥, B becomes a ternary logic with the values true (true or T ), false
(false or F ), and unknown (⊥). Intuitively, this ternary logic will allow us to distinguish
between statements that are definitely true, and statements that may be true. As detailed in
§3.10, this logic can be encoded in classical logic for the purposes of targeting SMT solvers.

We define two additional operators for collapsing back down from ternary to classical
logic. D p (“definitely p”) is defined by DT = T , D⊥ = F , and DF = F ; M p (“maybe p”)
is defined by MT = T , M⊥ = T , and MF = F .



CHAPTER 3. EXOCOMPILATION FOR PRODUCTIVE PROGRAMMING OF
HARDWARE ACCELERATORS 52

3.5.2 Effect Expressions

Effect Expressions both give us a way of expressing symbolic values and of encoding sentences
in a first-order logic, for discharging to an SMT solver.

Definition 3.3 (Effect Expressions). We define the following grammar of effect-expressions

ee : EffExpr ::= x | c | ⊥ | op(ee∗) | ee? ee else ee | ∀x.ee

where every expression either has sort bool or sort int. The operators are the same as the
bool and int operators from fig. 3.2. Recall that in the case of int operators, the pseudo-affine
condition means that the quotient for / and mod must be a constant, and one side of ∗ must
be a constant.

Definition 3.4 (Effect Environments).

γ : EffEnv = (Nameglobal ⊎ Namelocal)→ EffExpr

are partial functions that default to mapping x to x, not ⊥.
Effect environments abstract functions Σ→ Σ with respect to control values, not stores

Σ. This is why they may appear to be impredicative (mapping x to x by default). We define
substitution γ(ee) in the usual way. Using this, we can define composition of two effect
environments (γ · γ′)x = γ(γ′(x)), which may also be resolved by substituting with γ inside
the expressions bound by γ′. This definition of substitution extends naturally up to our later
definitions of location sets LocSet, and effects a.

3.5.3 Global Dataflow

The major complication in our program analyses is handling mutable, global control state—
which makes precise analysis of program control logic undecidable. Our dataflow analysis
is symbolic (producing effect environments as a result) and control-sensitive (symbolic
values reflect guards wrapped around statements). However we must make some kind of
approximation to force convergence on loops. We use a very simple heuristic, expressed
symbolically: If every loop iteration does not change the value of a global variable x, then
the loop behaves as an identity function. Otherwise, the loop drives x to the uncertain value
⊥. This usually suffices because configuration state that depends on the loop iteration is
usually meaningless outside of the loop.

We define global dataflow analysis ValG : Stmt→ EffEnv precisely in §3.11, along with
lifting of expressions to effect expressions Lift : Expr→ EffExpr.

3.5.4 Location Sets

Definition 3.5 (Location Set).

L : LocSet ::= ∅ | {x, ee∗} | L ∪ L |
⋃

x L
| L ∩ L | L − L | filter(ee,L)
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Location sets symbolically abstract sets of global and heap locations in the store.
These sets support a set membership predicate ( ∈ ) : (Name× EffExprn)→ LocSet→

EffExpr and an is-empty predicate ( = ∅) : LocSet→ EffExpr, both in the expected way (see
§3.12 for details)

Note that because effect expressions are a ternary logic, these location sets express upper
and lower bounds on a set of locations: points definitely not in the set, points definitely in
the set, and a penumbra of points ambiguously in the set. We collapse these sets down to
“classical sets” using the aforementioned operators: DL meaning points definitely in the set,
and ML meaning points that might be in the set. Thus x ∈ DL means D(x ∈ Ls) and
x ̸∈ML means D(x ̸∈ L).

3.5.5 Effects

Definition 3.6 (Effects).

a : Effect ::= a;a | ∅ | Guard(ee, a) | Loop(x, a)
| GlobalRead(x) | GlobalWrite(x)
| Read(x, ee∗) | Write(x, ee∗)
| Reduce(x, ee∗) | Alloc(x)

This definition allows us to define the obvious translation of expressions (Eff e : Expr→
Effect) and statements (Eff : Stmt→ Effect) into effects (see §3.13). Effects then allow us to
define read, write, and reduce location sets.

To start, we define the set of buffers allocated by and visible to subsequent state-
ments/effects:

A : Effect→ LocSet
A Alloc(x) = {x}
A (a1;a2) = A(a1) ∪A(a2)
A = ∅

Definition 3.7 (Locations of an Effect). LetRdG, WrG, RdH, WrH, andR+H, be functions
Effect→ LocSet. To avoid redundancy, define common cases for all such functions F :

F : Effect→ LocSet
F Guard(ee, a) = filter(ee,F a)
F Loop(x, a) =

⋃
xF a′

Sequencing is defined differently for read and write sets:

RdG (a1;a2) = RdG(a1) ∪ (RdG(a
′
2)−WrG(a1)−A(a1))

WrG (a1;a2) = WrG(a1) ∪ (WrG(a
′
2)−A(a1))

RdH (a1;a2) = RdH(a1) ∪ (RdH(a
′
2)−WrH(a1)−A(a1))

WrH (a1;a2) = WrH(a1) ∪ (WrH(a
′
2)−A(a1))

R+H (a1;a2) = R+H(a1) ∪ (R+H(a
′
2)−A(a1))
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Each function detects its corresponding leaf-node:

RdG GlobalRead(x) = {x}
WrG GlobalWrite(x) = {x}
RdH Read(x, ee1, . . . , een) = {x, ee1, . . . , een}
WrH Write(x, ee1, . . . , een) = {x, ee1, . . . , een}
R+H Reduce(x, ee1, . . . , een) = {x, ee1, . . . , een}
F = ∅

From these five primitive sets we can define six other useful sets:

Rd a = RdG a ∪RdH a
Wr a = WrG a ∪WrH a
R+ a = R+H a−WrH a
All a = Rd a ∪Wr a ∪R+H a
Mod a = Wr a ∪R+H a
RW a = Rd a ∪Wr a

3.5.6 Effects as Abstraction

The different objects we have talked about so far each abstract some part of the program. For
instance, the dataflow analysis of a statement ValG JsK is an abstraction of its denotation
S JsK with respect to global values. Similarly, the effect extracted from an expression Eff e JeK
abstracts its denotation E JeK, and the effect extracted from a statement Eff JsK abstracts its
denotation S JsK. But what do we mean by this?

The effect abstraction a for a statement s with denotation f guarantees a few properties.
First, it provides an analogue of the “frame axiom” from separation logic. If a location x lies
outside of MMod(a), then it is unmodified: fσx = σx. Second, if a location is in the write
set x ∈ DWr(a), then the post-hoc value at that location fσx is determined solely by the
values at read locations y ∈MRd(a). Third, if a location is reduced to x ∈ DR+(a), then
the difference between the initial and final value at that location fσx − σx is determined
solely by values at read locations y ∈MRd(a). Finally, so long as the values at read locations
y ∈ MRd(a) are determined, then one of the three previous cases applies to every store
location, even if we can’t be certain which set(s) the location is in.

Even more simply in the case of expression abstraction, the effect a of an expression e
with denotation f : Σ→ Val guarantees one property: The value fσ is solely determined by
the values at read locations y ∈MRd(a).

3.5.7 Basic Program Rewrites

The preceding analysis objects allow us to turn program equivalence checks into SMT queries.
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Reorder statements The rewrite s1;s2 ⇝ s2;s1 is safe when Commutes Eff Js1K Eff Js2K
holds. Commutativity of statements is defined as non-interference of effects. A special
exception must be made for locations that are reduced.

Definition 3.8 (Commutativity).

Commutes a1 a2 =

D

(
Wr(a1) ∩All(a2) = ∅ ∧ Wr(a2) ∩All(a1) = ∅
R+(a1) ∩Rd(a2) = ∅ ∧ R+(a2) ∩Rd(a1) = ∅

)
Shadow statement The rewrite s1;s2 ⇝ s2 is safe when Shadows Eff Js1K Eff Js2K holds.
Whereas commutativity requires reasoning about what definitely doesn’t intersect (and
hence what memory might be touched), shadowing requires reasoning positively about what
definitely is overwritten—which is why a one-sided approximation sets is insufficient.

Definition 3.9 (Shadowing).

Shadows a1 a2 =
∀x ∈MMod(a1)⇒ (x ̸∈MRd(a2) ∧ x ∈ DWr(a2))

New config write The rewrite s⇝ s;xg=e is always safe, but only results in code that is
equivalent modulo {xg}. As we will soon see (§3.6.2), performing this rewrite in a context
requires satisfying additional conditions, but in isolation it is very simple.

3.5.8 Loop Rewrites

When working with rewrites of loops, it is convenient to abbreviate notation for an iteration
variable being in bounds. If the variable x occurs in for x in elo..ehi do , then let Bd(x) =
Lift JeloK ≤ x < Lift JehiK in the following.

Loop reordering One of the most basic non-trivial loop transformations is loop-reordering.
When can we rewrite for x do for y do s into for y do for x do s? This transformation
is valid when the loop bounds commute with the body, and when any loop iterations that
are moved past each other commute. To formulate these conditions, let ax be the effect of
the x-loop’s bound-expressions and ay similarly for the y-loop. Let x′, y′ be copies of these
iteration variables s.t. s′ = [x 7→ x′][y 7→ y′]s. Let a = Eff JsK and a′ = Eff Js′K. Then the
reordering condition may be precisely stated as

(∀x, y. MBd(x, y)⇒ Commutes((ax;ay), a))

∧
(
∀x, y, x′, y′. M(Bd(x, y, x′, y′) ∧ x < x′ ∧ y′ < y)

⇒ Commutes(a, a′)

)
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Loop fusion & fission Another basic loop transformation is to fuse two loops to-
gether, or in reverse to fission one loop in two. When can we rewrite for x do s1;s2
into (for x do s1);for x do s2? This is possible when the loop bound commutes with the first
statement, and when the statements that get reordered commute with each other. Letting
ax be the effect of the loop bounds, a1 = Eff Js1K, s′2 = [x 7→ x′]s2 and a′2 = Eff Js′2K we can
state fission conditions precisely as

(∀x. MBd(x)⇒ Commutes(ax, a1)) ∧
(∀x, x′. M(Bd(x, x′) ∧ x′ < x)⇒ Commutes(a1, a

′
2))

Loop removal In order for the rewrite for x do s ⇝ s to be safe, the variable x must
not be free in s, s must be idempotent, and the loop must run for at least one iteration. If
a = Eff JsK, then these conditions are precisely

(∃x. DBd(x)) ∧ Shadows(a, a)

3.6 Contextual Analyses

In order to make our program rewriting primitives useful, we must be able to modify some
fragment of a procedure in a context. In this section, we define one-holed statement contexts,
define how to process them, and extend equivalences between statements to account for
context.

3.6.1 Contexts & Derived Quantities

Definition 3.10 (Contexts).

C : Ctxt ::= • | C;s | s;C | for x in e..e do C
| if e then C

The expression C[s] means a statement resulting from substituting the hole (•) in context C
with statement s. Similarly, we can have a Proc context: proc p : τs assert e do C.

We define three derived quantities from a context/statement pair C/s: (1) CtrlPred JCK s :
EffExpr, a predicate expressing under what conditions the statement s will execute; (2)
PreValG JCK s : EffEnv, capturing the dataflow values right before executing s; and (3)
PostEff JCK s : Effect, telling us the effect of context code that executes after s. See §3.14 for
details.

3.6.2 Context Extension

Using these tools we can get from an argument of the form s1 ∼= s2 back up to an argument
of the form C[s1] ∼= C[s2]. Thus, we can reach into the body of some procedure and perform
a local rewrite, while maintaining equivalence of the overall procedure.
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Consider a context C with statements s1 and s2, as well as a set of global names L to
consider equivalence “up to.”

Let p = CtrlPred C s1
γ = PreValG C s1
a = PostEff C s1
L′ = M(L −WrG a)

s′1, s
′
2 = γ(s1), γ(s2)

If (Mp⇒ s′1
∼=L s′2) ∧D(RdG a ∩ L = ∅)

Then C[s1] ∼=L′ C[s2]

3.7 Case Studies

3.7.1 Gemmini

Using Exo, we developed highly-optimized schedules for Gemmini [51], a DNN accelerator,
which significantly outperformed DNN kernel implementations that had been handwritten by
Gemmini’s designers.

We targeted Gemmini’s default architectural instantiation, which include a 16x16 systolic
array that performs block matrix multiplications, a 256KB scratchpad for quantized inputs
and weights, and a 64KB accumulator for partial sums. Gemmini’s instruction set architecture
(ISA) includes low-level instructions to move strided matrices to and from the scratchpad, as
well as instructions to calculate dot products and perform non-linear activations on this data.

Gemmini also ships with a hand-written C library for common DNN kernels. This library
wraps calls to Gemmini’s low-level ISA in statically-scheduled, hand-tuned loops. However,
Gemmini can also be built with hardware loop unrollers that dynamically schedule these
kernels to maximize overlap between data loads, data stores, and matrix multiply operations.
The hardware implementations typically run much faster than the software implementations at
the cost of hardware complexity, area, power consumption, and reduced scheduling flexibility.
The hardware kernels also have fixed loop orders and dataflows, while the software can adapt
these to different tensor shapes.

We implemented kernels for matrix multiply (matmul) and convolutional (conv) layers in
Exo and compared their performance against Gemmini’s handwritten C library and hardware
loop unrollers. The results are shown in figs. 3.3a and 3.3b, respectively. The tensor shapes
in both are selected from those in a ResNet-50 DNN with a batch size of 4.

On average, Exo-generated code outperforms Gemmini’s handwritten C library by 3.5×
on the matmul sizes listed above, and achieves 67% of the performance of the hardware loop
unrollers. For the convolutions listed, it runs 2.9× faster than the handwritten library, and is
competitive with the hardware loop unroller, achieving 79% of its performance.

Note that the hardware loop unrollers use optional hardware resources (increasing area
and power consumption) which are not available to Exo or the handwritten C library.
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(a) matmul utilization (as a percentage of peak FLOPS). X axis labels are the size of matrices in N ×M ×K.

56 x 64 x 64 28 x 128 x 128 14 x 256 x 256
0

20

40

60

80

100

% 
Ut

ili
za

tio
n

25% 27% 25%

71% 72% 78%

95% 91% 94%

Old-lib Exo-lib Hardware

(b) conv utilization (as a percentage of peak FLOPS). X axis labels are the shape of convolution in output
dimension × output channel × input channel.

Figure 3.3: Performance of Exo-generated code on the Gemmini DNN accelerator. Exo-
generated code achieves much higher performance than the DNN kernels hand-written by the
designers of Gemmini (Old-lib). Gemmini’s dynamically-scheduled hardware loop unrollers
(Hardware) outperform Exo by using additional hardware resources, but therefore require
additional chip area and power consumption.
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However, we expect that changing Gemmini’s ISA to support coarser-granularity instructions
and better schedules may be able to close this performance gap in the future, providing
software-programmable performance comparable to the inflexible hardware loop-unrollers.

Finally, Exo enabled faster co-design of Gemmini’s hardware-software interface. When we
started targeting Gemmini, its low-level hardware configuration instructions had many side
effects which made optimizations difficult to reason about, limiting the performance we could
achieve. We worked with the Gemmini hardware designers to disaggregate these configuration
instructions into more orthogonal components; e.g. instructions which configured Gemmini’s
memory units would no longer have any side effects on the arithmetic units. 46 lines in
Gemmini’s handwritten C library had to be updated after this change, compared to only 5
in Exo’s implementation. Exo made it easier for programmers to target fluid and changing
hardware targets, which is common when developing new accelerators.

3.7.2 x86

As an acid test of the language design, we optimized matrix-matrix multiplication (sgemm)
for x86, where we can compare against state-of-the-art libraries that run near theoretical
peak compute throughput. We chose to target single-core x86 with AVX512 extensions.1

Recall that the computation is given by C += A ·B where C is M ×N , A is M ×K, and
B is K ×N . Our Exo implementation decomposes the problem as follows: at the deepest
level of blocking, a register-blocked micro-kernel accumulates the inner dimension into a
6× 64 panel of C, the output matrix. The level above the micro-kernel handles edge cases by
dispatching to specialized versions of the micro-kernel for each edge case. Along the bottom,
five distinct kernels are needed as they are always 64 elements wide and never 0 or 6 tall;
similarly, four distinct kernels are needed along the right. The variable tail on the right
edge is handled by masked loads. Finally, one level above this handles staging memory and
blocking.

Every one of these routines was produced by scheduling and specializing a single, naive
implementation of sgemm consisting of three nested loops. Unification and equivalent-call
replacement were crucial for avoiding any sort of error-prone, manual optimization.

The performance results are shown in fig. 3.4. All benchmarks were run on an Intel
i7-1185G7 at 4.3 GHz, a Tiger Lake CPU with AVX-512 instructions and peak single-precision
floating-point performance of 137.60 GFLOPs. We tested our sgemm against the hand-
optimized implementations in Intel’s MKL and the open-source OpenBLAS in two experiments.
First (fig. 3.4a), we tested square matrices, so M = N = K. Each implementation performs
quite closely (within measurement noise), between 80-95% of theoretical peak FLOPS across
the parameter range.

Second (fig. 3.4b), we tested our sgemm on a fixed workload, but with a variable
aspect ratio for C. Specifically, we fix the inner dimension K = 512 and the product

1Although multi-core implementations are valuable, single-core workloads are representative of practice
(ML inference in interactive web services is often run batch-parallel on single-core kernels), and the baselines
are highly-optimized.
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(b) sgemm performance with fixed workload and variable output aspect ratio. K = 512 and M ×N = 5122,
with the ratio of M to N varying. We match OpenBLAS performance across aspect ratios.

Figure 3.4: sgemm performance compared to state-of-the-art libraries on x86. Benchmarks
were run on one core of an Intel i7-1185G7 running at 4.3GHz.

MN = 5122, then we sweep across the ratio M/N keeping the total FLOP count identical
across experiments. Here, Exo matches OpenBLAS almost exactly, but MKL pulls ahead of
both implementations when the aspect ratio is very far from square. MKL includes more
specialized kernels for these extreme aspect ratios, which would be natural to do with further
scheduling in Exo, as well.

For a final experiment, we tried to replicate the convolutional layer performance of a
highly-tuned implementation provided by the Halide project. State of the art convolutions
specialize or JIT-compile code templates to particular input, output, and kernel sizes. In
Halide’s case, it specialized to a batch size of 5, a kernel size of 3 × 3, an output size of
80× 100, and 128 channels for both input and output. There is no padding and unit stride is
used.

We configured Intel’s oneDNN convolution to use these parameters and scheduled a basic
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Impl. N W H IC OC % of peak
Exo 5 82 102 128 128 40.50%

Halide 5 82 102 128 128 40.59%
oneDNN 5 82 102 128 128 40.55%

Table 3.2: Summary of x86 conv performance results. Single-threaded performance of
various implementations with no padding and unit stride. A ReLU activation is applied.
Benchmarks were run on an Intel i7-1185G7 running at 4.3GHz on a single core. The size
was chosen to match the previously-published hand-scheduled Halide implementation. All
three specialize or JIT to tune their code to specific sizes.

description of convolution in Exo to these parameters, too. The results are shown in table 3.2.
Our conv performs almost identically to the optimized baselines.

Overall, we believe these results show that Exo can be used to achieve performance
competitive with state-of-the-art, highly hand-tuned libraries on x86.

3.7.3 Code Size

Table 3.3 summarizes some statistics regarding the size of Exo programs relative to hand-
written C baselines.

On x86, our SGEMM schedule instantiates many specialized micro-kernels for handling
loop tail cases at higher levels. Unlike Gemmini, it does not have SGEMM-specific hardware
to utilize that might reduce the scheduling burden. Even so, the basic algorithm is expressed
in 11 statements (the function signature, three loops, an accumulation statement, and a
handful of size assertions) and 162 scheduling directives. The generated C code totals 831
source lines of code This already constitutes a nearly 5x code size reduction, but a comparison
to OpenBLAS (an established open-source implementation) is even more favorable: at least
1690 source lines of code2 make up that implementation. MKL is more complex, still.

Although the x86 conv implementation is “only” half the size of the equivalent generated
C, it is much more flexible since other specialized versions can be quickly instantiated by
meta-programming the schedule in Python. The size of the most comparable open-source
implementation, Intel’s oneDNN, is difficult to measure; just one file in the implementation
measures well over 5000 source lines of code3. The size of the Halide code and schedule was
nearly identical to ours: 64 relevant lines, compared to 62.

The story is similar for our Gemmini kernels. Both the matmul and conv Exo implemen-
tations are an order of magnitude smaller than the original, handwritten C implementations.
The large generated code sizes reflect the high degree of loop unrolling in the generated
schedules. A real application would likely either resort to the C preprocessor to manage this

2Summing the source line counts of the files mentioned in kernel/x86 64/KERNEL.SKYLAKEX for non-
transposed SGEMM gives a very loose lower bound

3src/cpu/x64/jit avx512 common conv kernel.cpp
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App. Platform C (gen) C (ref) Alg. Sched.
matmul Gemmini 462 313 23 43
conv Gemmini 8317 450 26 44
sgemm x86 846 >1,690 11 162
conv x86 102 >5,400 23 39

Table 3.3: Source code sizes for matrix multiplication and convolutional layer on Gemmini
and x86. Gemmini implements a fixed-point matrix multiply neural network layer (with
fused ReLU activation), while x86 implements the BLAS SGEMM kernel. Both implement a
standard 2D convolutional layer with ReLU activation. The Exo sources are counted in lines
of code for the algorithm and number of directives for the schedule. This is compared to the
size of both the Exo-generated C and state-of-the-art reference implementations (Gemmini
standard library, OpenBLAS, and oneDNN, respectively) in source lines of code.

complexity, or not attempt the transformation at all (or as aggressively) beyond whatever
the C compiler might choose to do automatically.

3.8 Limitations & Future Work

Multi-Core Semantics Although the instruction replacement directive (§3.3.4) enables
users to access fine-grained intra-instruction or SIMD parallelism, Exo does not currently
model multi-core parallelism. Näıvely, we could introduce a parallel for-loop with OpenMP-
like semantics. Our effect analysis is powerful enough to conservatively check that different
loop iterations touch strictly disjoint regions of memory. However, there is no single platform
independent approach to threading—which clashes with our design goal of externalizing
hardware backends. A more ambitious solution would find some way to externalize both the
semantics and primitives associated with different kinds of threading. (e.g. pthreads, CUDA,
MPI, etc.)

Alternatively, the .replace() directive applied to a no-op instruction can serve an escape
hatch to, for example, inject OpenMP pragmas around a given loop. We tested this on our
conv implementation and observed that our new implementation still matches Halide, while
both pull ahead of oneDNN by 25% (flops) on 8 or more threads.

Automatic Scheduling We have not yet written any autoschedulers [1, 21, 115, 173]
for Exo, but plan to. We expect Exo autoscheduling to differ from prior systems in two
essential ways. First, because hardware targets are externalized, idiosyncratic, and frequently
proprietary, we do not expect any one single autoscheduling strategy to work across all
accelerators. Second, because Exo schedules are composable (as successive rewrites) rather
than monolithic, Exo autoschedulers can also be developed compositionally. This opens up
the possibility of developing libraries of re-usable mid-level scheduling operators built from
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semi-automated combinations of primitive scheduling operators. With time, whole suites of
optimization passes could be written—entirely external to the Exo compiler.

3.9 Definitions for the core language

3.9.1 Mathematical Model of Exo programs

We present a simple denotational-style semantics. Our goal is to describe the set of
stores/states, and store-transforming functions, which statements and procedures denote.

Definition 3.11 (names). Our namespace Name is partitioned into three parts: data, local,
and global.

We refer to booleans B and integers Z as control values, and “real numbers”4 R as data
values.

Definition 3.12 (exceptional values). We use three kinds of exceptional values: unknown
(⊥), memory error (ϵm), and type error (ϵτ ), with unknowns for each basic type (⊥B, ⊥Z,
⊥R). We use an information order s.t. ϵτ ⊑ ϵm ⊑ ⊥R, ϵτ ⊑ ⊥, and values are otherwise
un-ordered. A well-typed program ought not produce ϵτ , and a well-bounded program ought
not produce ϵm.

Definition 3.13 (buffers). The heap part of the store holds buffers, defined over all possible
dimensionalities as partial functions Buf =

⋃∞
m=0 (Zm → (R ⊎ {⊥, ϵm})). These partial

functions will default to ϵm as the least informative value. Thus, reading un-allocated memory
results in a memory error.

Definition 3.14 (windows). In Exo, memory is accessed through “windows,” which are
slices of multi-dimensional arrays. An n-dimensional window identifies a buffer in the heap
and potential indexing transformation: Winn = Namedata ×

⋃∞
m=n(Zn → Zm). The functions

ϕ ∈ Zn → Zm must be defined as injective translations in the following sense: ϕi(x) = xj + c
or ϕi(x) = c, and ϕ is injective (no two output coordinates depend on the same input
coordinate).

Definition 3.15 (values). The set of control values is Valc = B ⊎ Z ⊎ {⊥}. The set of
argument values further includes windows Vala = Valc ⊎

⋃∞
n=0 Winn. Finally, the set of all

values includes scalars and errors as well Val = Vala ⊎ R ⊎ {ϵτ , ϵm} The information ordering
on exceptional values is extended s.t. all non-exceptional values x are pairwise unordered,
and ⊥ ⊑ x with respect to each domain. This ordering forms a meet(⊓) semi-lattice.

4As we discussed in the example (§3.2) our semantics is insensitive to questions of how the data values
are approximated in finite precision—one may safely replace R in this paper with rationals Q without any
loss of meaning.
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Definition 3.16 (functions on values). Given a function f : D1 ×D2 → Val where Di ⊆ Val,
the extension of f to all values f ′ : Val×Val→ Val is f ′(x, y) = f(x, y) when (x, y) ∈ D1×D2,
f ′(x, y) = x ⊓ y otherwise. Thus, exceptional values pre-empt each other, and applying
a function to values of the wrong type produces a type error. In this way, functions are
monotonic w.r.t. the information order. Arbitrary n-ary functions are extended similarly.

Definition 3.17 (stores). A store (aka. state) is either an error value or a tuple of partial
functions: Σ = {ϵτ , ϵm} ⊎ (Σdata × Σlocal × Σglobal) where

Σdata = Namedata → Buf
Σlocal = Namelocal → Vala
Σglobal = Nameglobal → Valc

and the default value in these partial functions is ϵτ . The information ordering is extended
to stores as well. We write σ(x) instead of σlocal(x) when the meaning is clear from context.

Definition 3.18 (heap vs. stack). When calling sub-procedures we need to restrict the store
to only the non-local parts. For σ ∈ Σ, let heap(σ) = (σdata, ∅, σglobal) for non-error stores.
When returning from a procedure call, we overwrite the local heap and globals with the
results of running the sub-procedure: σ[heap 7→ σ′] = (σ′

data, σlocal, σ
′
global).

Definition 3.19 (functions on stores). Given a function f : (Σ− {ϵτ , ϵm})→ Σ, we lift it
to a function Σ → Σ by propagating error values, as expected. Thus, store functions are
monotonic.

E : Expr→ Σ→ Val

E JxKσ = σ(x)

E Jop(e1, . . . , ek)Kσ = ôp(E Je1Kσ, . . . ,E JekKσ)
E Je0[e1, . . . , en]Kσ = σ(ℓ, φ(e′1, . . . , e

′
n))

E Jwin(e0, w1, . . . , wm)Kσ = (ℓ, φ ◦ ϕwin(w
′
1, . . . , w

′
m))

E Jelo..ehiKσ = (E JeloKσ,E JehiKσ)
where ℓ, φ = E Je0Kσ

e′i = E JeiKσ w′
i = E JwiKσ

ϕwin() = ()

ϕwin(i, u2, . . .) = p(i) ◦ ϕwin(u2, . . .)

ϕwin((ilo, ihi), u2, . . .) = λx.cons(x+ ilo) ◦ ϕwin(u2, . . .)

cons(i, (y1, . . . , yn)) = (i, y1, . . . , yn)

Figure 3.5: Expression Denotations

3.9.2 Syntax and Semantics of Exo programs

The syntax and denotations for Exo programs are given in figs. 3.2 and 3.5 to 3.7.
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S : Stmt→ Σ→ Σ

S Js1;s2Kσ = (S Js2K ◦ S Js1K)σ

S Jif e then sKσ =

{
S JsKσ, if E JeKσ = true

σ, otherwise

S Jfor x in elo..ehi do sKσ = ϕm−1 ◦ · · · ◦ ϕn

where n,m = E JeloKσ,E JehiKσ
ϕk = λσ′.S JsK (σ′[i 7→ k])

S Jalloc x(e1, . . . , ek)Kσ = σ

[
ℓ 7→ buf(e⃗′)

x 7→ (ℓ, id)

]
where ℓ is a fresh name

e′i = E JeiKσ
S Jx = eKσ = σ[x 7→ E JeKσ]

S Je0[e1, . . . , ek]= erhsKσ = σ [(ℓ, ı̂) 7→ e′rhs]

S Je0[e1, . . . , ek]+= erhsKσ = σ [(ℓ, ı̂)⊕7→ e′rhs]

where ℓ, φ = E Je0Kσ
ı̂ = φ(e′1, . . . , e

′
k)

S Jp(e1, . . . , en)Kσ = σ[heap 7→ σ′]

where σ′ = call(p, e⃗′, σ)

for proc p : (x1 : τ1)→ · · · (xn : τn)→ () assert e do s,

argi(p) = xi

call(p, e⃗′, σ) = P JpK (heap(σ)[argi(p) 7→ e′i])

buf(e⃗′) = [u⃗ 7→ ⊥ | 0 ≤ ui < e′i]

Figure 3.6: Statement Denotations

P : Proc→ Σ→ Σ

P

u

v
proc p : τs
assert e
do s

}

~σ =

{
ϵm, if E JeKσ ̸= true
S JsKσ, otherwise

Figure 3.7: Procedure Denotations
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3.10 Encoding Ternary Logic

Recall our language of effect-expressions

ee : EffExpr ::= x | c | ⊥ | op(ee∗) | ee? ee else ee | ∀x.ee

with op ∈ {+,−, ∗, /,mod,∧,∨,¬,=, <,>,≤,≥}
We may encode this language for standard SMT solvers as follows. Represent a value in

Z∪ {⊥} by a value in Z×B and a value in B∪ {⊥} by a value in B×B, s.t. the meaning of
the encoding is defined by Val(x, true) = x and Val(x, false) = ⊥. Accordingly, we can pull
back the definitions of the various operators as follows.

For op ∈ {+,−, ∗, /,mod,=, <,>,≤,≥} with inputs of int sort, the rule is simple and
illustrated by +:

(x1, d1) + (x2, d2) 7→ (x1 + x2, d1 ∧ d2)

For operators on inputs of bool sort, we may take advantage of Boolean short-circuiting
to produce known values even when some input is unknown. Such definitions are key to
extracting useful information from the ternary logic. These operators are

(x1, d1) ∧ (x2, d2) 7→

x1 ∧ x2,
(d1 ∧ d2)∨
(¬x1 ∧ d1)∨
(¬x2 ∧ d2)


(x1, d1) ∨ (x2, d2) 7→

x1 ∨ x2,
(d1 ∧ d2)∨
(x1 ∧ d1)∨
(x2 ∧ d2)


¬(x, d) 7→ (¬x, d)

∀x1.(x2, d2) 7→
(
(∀x1.x2),

(∀x1.d2)∨
(∃x1.(¬x2 ∧ d2))

)
(x1, d1)? (x2, d2) else (x3, d3) 7→

(x1? x2 else x3, d1 ∧ (x1? d2 else d3))

3.11 Global Dataflow Definitions

We specify a lifting from expressions to EffExpr in a reasonably obvious way
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Definition 3.20 (lifting effect-expressions).
Lift : Expr→ EffExpr

Lift JxK =

{
(x, id), if x : R[ . . . ]
x, otherwise

Lift Jop(e1, . . . , en)K =
let eei = Lift JeiK

in op(ee1, . . . , een)
Lift Je0[e1, . . . , en]K = ⊥

Lift Jwin(e0, w1, . . . , wn)K =


let x, φ = Lift Je0K

w′
i = Lift JwiK

φ′ = φ ◦ ϕwin

in (x, φ′(w′
1, . . . , w

′
n))

Global dataflow analysis is defined precisely as follows:

Definition 3.21 (Global Values).
ValG : Stmt→ EffEnv
ValG Js1;s2K = (ValG s1) · (ValG s2)
ValG Jif e then sK = [x 7→ vif | x ∈ G]

where vif = (Lift JeK? G x else x)
ValG Jfor i in elo..ehi do sK

= [x 7→ (fix x)? x else ⊥ | x ∈ G]
where G = ValG JsK

bdi = Lift JeloK ≤ i < Lift JehiK
Fi,x = (bdi ⇒ G x = x)
fix x = ∀i : int. Fi,x

ValG Jx = eK = [x 7→ Lift JeK]
ValG = ∅

3.12 Location Set Membership

∈: Name× EffExprn → LocSet→ EffExpr
xs ∈ ∅ = false

xs ∈ {y, ee1, . . . , een} = x = y ∧
∧n

i=0 ee
′
i = eei

where xs = (x, ee′1, . . . , ee
′
n)

xs ∈ L1 ∪ L2 = (xs ∈ L1) ∨ (xs ∈ L2)
xs ∈

⋃
x L = ∃x(xs ∈ L)

xs ∈ L1 ∩ L2 = (xs ∈ L1) ∧ (xs ∈ L2)
xs ∈ L1 − L2 = (xs ∈ L1) ∧ (xs ̸∈ L2)

xs ∈ filter(ee,L) = ee ∧ (xs ∈ L)

( = ∅) : LocSet→ EffExpr
(L = ∅) = ∀xs.(xs ̸∈ L)
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3.13 Effect Extraction

Definition 3.22 (Effect of an Expression). In the following, we sometimes combine effects
using ∪ in place of ; to indicate that since we are strictly combining read-effects, the order
of composition is irrelevant.

Eff e JxK =

{
GlobalRead(x), if x ∈ Nameglob
∅, otherwise

Eff e Jop(e1, . . . , en)K =
⋃n

i=1 Eff e JeiK

Eff e Je0[e1, . . . , en]K =


let x, φ = Lift Je0K

eei = Lift JeiK
a′ =

⋃n
i=0 Eff e JeiK

φee = φ(ee1, . . . , een)
in a′ ∪Read(x, φee)

Eff e Jwin(e0, w1, . . . , wn)K = Eff e Je0K ∪
⋃n

i=1 Eff e JwiK

Definition 3.23 (Effect of a Statement).
Eff Js1;s2K

= Eff Js1K ;ValG Js1K (Eff Js2K)
Eff Jif e then sK

= Eff e JeK ;Guard(Lift JeK ,Eff JsK)
Eff Jfor x in elo..ehis do K

=

[
(Eff e JeloK ∪ Eff e JehiK);
Loop(x,Guard(bds,G(Eff JsK)))

where bds = Lift JeloK ≤ x < Lift JehiK
G = ValG Jfor x in elo..ehis do K

Eff Jalloc x(e1, . . . , en)K
=

⋃n
i=1 Eff e JeiK

Eff Je0[e1, . . . , en]= erK

=


let x, φ = Lift Je0K

eei = Lift JeiK
in (Eff e JerK ∪

⋃n
i=0 Eff e JeiK) ;

Write(x, φ(ee1, . . . , een))
Eff Je0[e1, . . . , en]+= erK

=


let x, φ = Lift Je0K

eei = Lift JeiK
in (Eff e JerK ∪

⋃n
i=0 Eff e JeiK) ;

Reduce(x, φ(ee1, . . . , een))
Eff Jx = eK

= Eff e JeK ;GlobalWrite(x)
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3.14 Context Analysis

Definition 3.24 (Control Predicate).
CtrlPred : Ctxt→ Stmt→ EffExpr
CtrlPred J•K s = true
CtrlPred JC;s2K s = CtrlPred JCK s
CtrlPred Js1;CK s = ValG Js1K (CtrlPred JCK s)
CtrlPred Jif e then CK s = Lift JeK ∧ CtrlPred JCK s
CtrlPred Jfor x in elo..ehi do CK s

= bds ∧G(CtrlPred JCK s)
where sb = [x 7→ x′](C[s])

G = ValG Jfor x′ in elo..x do sbK
bds = Lift JeloK ≤ x < Lift JehiK

CtrlPred Jproc p : τs assert e do CK s
= Lift JeK ∧ CtrlPred JCK s

Definition 3.25 (Pre-statement Global Values).
PreValG : Ctxt→ Stmt→ EffEnv
PreValG J•K s = ∅
PreValG JC;s2K s = PreValG JCK s
PreValG Js1;CK s = (ValG Js1K) · (PreValG JCK s)
PreValG Jif e then CK s = PreValG JCK s
PreValG Jfor x in elo..ehi do CK s

= G · (PreValG JCK s)
where sb = [x 7→ x′](C[s])

G = ValG Jfor x′ in elo..x do sbK

Definition 3.26 (Post-statement Effect).
PostEff : Ctxt→ Stmt→ Effect
PostEff J•K s = ∅
PostEff JC;s2K s = (PostEff JCK s);ValG C[s](a2)

where a2 = Eff Js2K
PostEff Js1;CK s = ValG Js1K (PostEff JCK s)
PostEff Jif e then CK s = Guard(Lift JeK ,PostEff JCK s)
PostEff Jfor x in elo..ehi do CK s

= (γ ·G)(a1;Gx(a2))
where sb = [x 7→ x′](C[s])

γ = [xlo 7→ Lift JeloK][xhi 7→ Lift JehiK]
G = ValG Jfor x′ in xlo..x do sbK
a1 = Guard(xlo ≤ x′ < xhi,PostEff JCK s)
Gx = ValG Jif xlo ≤ x < xhi then sbK
a2 = Eff Jfor x′ in x+ 1..xhi do sbK
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Note that all three of these rules expose the loop iteration variable as a free-variable in
the resulting object. This represents the “current loop iteration”. If a property can be shown
for all values of this free-variable, then we can recover the property by induction.

3.15 Gemmini User Library

This section includes a user library defined for Gemmini accelerators. It consists of full
definitions of Gemmini scratchpad (GEMM_SCRATCH), Gemmini accumulator
(GEMM_ACCUM), Gemmini load instruction (ld_i8), and Gemmini load configuration and a
config load instruction (ConfigLoad). A complete list of Gemmini user library functionality
can be found in Exo’s GitHub repository (https://github.com/exo-lang/exo).

3.15.1 User-defined Gemmini scratchpad memory

class GEMM_SCRATCH(Memory):

@classmethod

def global_(cls):

_here_ = os.path.dirname(os.path.abspath(__file__))

return _configure_file(Path(_here_) / 'gemm_malloc.c',

heap_size=100000,

dim=16)

@classmethod

def alloc(cls, new_name, prim_type, shape, srcinfo):

if len(shape) == 0:

return f"{prim_type} {new_name};"

size_str = shape[0]

for s in shape[1:]:

size_str = f"{s} * {size_str}"

if not _is_const_size(shape[-1], 16):

raise MemGenError(f"{srcinfo}: "

"Cannot allocate GEMMINI Scratchpad Memory "

"unless innermost dimension is exactly 16. "

f"got {shape[-1]}")

return (f"{prim_type} *{new_name} = "

f"({prim_type}*) ((uint64_t)gemm_malloc ({size_str} *

sizeof({prim_type})));")↪→

@classmethod

def free(cls, new_name, prim_type, shape, srcinfo):

if len(shape) == 0:

return ""

return f"gemm_free((uint64_t)({new_name}));"

@classmethod

https://github.com/exo-lang/exo
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def window(cls, basetyp, baseptr, indices, strides, srcinfo):

# assume that strides[-1] == 1

# and that strides[-2] == 16 (if there is a strides[-2])

assert len(indices) == len(strides) and len(strides) >= 2

prim_type = basetyp.basetype().ctype()

offset = " + ".join(

[f"({i}) * ({s})" for i, s in zip(indices, strides)])

return (f"*({prim_type}*)((uint64_t)( "

f"((uint32_t)((uint64_t){baseptr})) + "

f"({offset})/16))")

3.15.2 User-defined Gemmini accumulator memory

class GEMM_ACCUM(Memory):

@classmethod

def global_(cls):

_here_ = os.path.dirname(os.path.abspath(__file__))

return _configure_file(Path(_here_) / 'gemm_acc_malloc.c',

heap_size=100000,

dim=16)

@classmethod

def alloc(cls, new_name, prim_type, shape, srcinfo):

if len(shape) == 0:

return f"{prim_type} {new_name};"

size_str = shape[0]

for s in shape[1:]:

size_str = f"{s} * {size_str}"

if not _is_const_size(shape[-1], 16):

raise MemGenError(f"{srcinfo}: "

"Cannot allocate GEMMINI Accumulator Memory "

"unless innermost dimension is exactly 16. "

f"got {shape[-1]}")

return (f"{prim_type} *{new_name} = "

f"({prim_type}*) ((uint32_t)gemm_acc_malloc ({size_str} *

sizeof({prim_type})));")↪→

@classmethod

def free(cls, new_name, prim_type, shape, srcinfo):

if len(shape) == 0:

return ""

return f"gemm_acc_free((uint32_t)({new_name}));"

@classmethod

def window(cls, basetyp, baseptr, indices, strides, srcinfo):

# assume that strides[-1] == 1

# and that strides[-2] == 16 (if there is a strides[-2])

assert len(indices) == len(strides) and len(strides) >= 2

prim_type = basetyp.basetype().ctype()
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offset = " + ".join([f"({i}) * ({s})"

for i, s in zip(indices, strides)])

return (f"*({prim_type}*)((uint64_t)( "

f"((uint32_t)((uint64_t){baseptr})) + "

f"({offset})/16))")

3.15.3 User-defined Gemmini load instruction

_gemm_ld_i8 = ("gemmini_extended3_config_ld({src}.strides[0]*1, "+

"1.0f, 0, 0);\n"+

"gemmini_extended_mvin( &{src_data}, "+

"((uint64_t) &{dst_data}), {m}, {n} );")

@instr(_gemm_ld_i8)

def ld_i8(

n : size,

m : size,

src : [i8][n, m] @ DRAM,

dst : [i8][n, 16] @ GEMM_SCRATCH,

):

assert n <= 16

assert m <= 16

assert stride(src, 1) == 1

assert stride(dst, 0) == 16

assert stride(dst, 1) == 1

for i in seq(0, n):

for j in seq(0, m):

dst[i,j] = src[i,j]

3.15.4 User-defined Gemmini load configuration

@config decorates a Python class which is parsed and compiled as an Exo configuration
object. Below is a configuration object for Gemmini load which has a stride parameter.

@config

class ConfigLoad:

src_stride : stride

Below is the instruction procedure with Gemmini instruction string for setting the load
configuration defined above. This instruction sets ConfigLoad.src_stride to the stride

argument, thus changing the hardware parameter state.

_gemm_config_ld_i8 = ("gemmini_extended3_config_ld({src_stride}, "+

"1.0f, 0, 0);\n")

@instr(_gemm_config_ld_i8)

def config_ld_i8(

src_stride : stride

):

ConfigLoad.src_stride = src_stride
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Chapter 4

Perceus: Precise Reference Counting
with Reuse and Specialization

This chapter is based on the work in Reinking, Xie, Moura, and Leijen [135], which was a
distinguished paper at PLDI ’21.

4.1 Introduction

Reference counting [29], with its low memory overhead and ease of implementation, used to
be a popular technique for automatic memory management. However, the field has broadly
moved in favor of generational tracing collectors [107], partly due to various limitations
of reference counting, including cycle collection, multi-threaded operations, and expensive
in-place updates.

In this work we take a fresh look at reference counting. We consider a programming
language design that gives strong compile-time guarantees in order to enable efficient reference
counting at run-time. In particular, we build on the pioneering reference counting work in
the Lean theorem prover [153], but we view it through the lens of language design, rather
than purely as an implementation technique.

We demonstrate our approach in the Koka language [94, 96]: a functional language with
mostly immutable data types together with a strong type and effect system. In contrast to
the dependently typed Lean language, Koka is general-purpose, with support for exceptions,
side effects, and mutable references via general algebraic effects and handlers [125, 126]. Using
recent work on evidence translation [166, 167, 168], all these control effects are compiled into
an internal core language with explicit control flow. Starting from this functional core, we can
statically transform the code to enable efficient reference counting at runtime. In particular:

• Due to explicit control flow, the compiler can emit precise reference counting instructions
where a (non-cyclic) reference is dropped as soon as possible. We call this garbage free
reference counting as only live data is retained (§4.2.2).
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• We show that precise reference counting enables many optimizations, in particular drop
specialization which removes many reference count operations in the fast path (§4.2.3),
reuse analysis which updates (immutable) data in-place when possible (§4.2.4), and
reuse specialization which removes many in-place field updates (§4.2.5). The reuse
analysis shows the benefit of a holistic approach: even though the surface language has
immutable data types with strong guarantees, we can use dynamic run-time information,
e.g. whether a reference is unique, to update in-place when possible.

• The in-place update optimization is guaranteed, which leads to a new programming
paradigm that we call FBIP: functional but in-place (§4.2.6). Just like tail-call opti-
mization lets us write loops with regular function calls, reuse analysis lets us write
in-place mutating algorithms in a purely functional way. We showcase this approach
by implementing a functional version of in-order Morris tree traversal [113], which is
stack-less, using in-place tree node mutation via FBIP.

• We present a formalization of general reference counting using a novel linear resource
calculus, λ1, which is closely based on linear logic (§4.3), and we prove that reference
counting is sound for any program in the linear resource calculus. We then present the
Perceus algorithm as a deterministic syntax-directed version of λ1, and prove that it
is both sound (i.e. never drops a live reference), and garbage free (i.e. only retains
reachable references).

• We demonstrate Perceus by providing a full implementation for the strongly typed
functional language Koka [88]. The implementation supports typed algebraic effect
handlers using evidence translation [167] and compiles into standard C11 code. The
use of reference counting means no runtime system is needed and Koka programs can
readily link with other C/C++ libraries.

• We show evidence that Perceus, as implemented for Koka, competes with other state-of-
the-art memory collectors (§4.4). We compare our implementation in allocation intensive
benchmarks against OCaml, Haskell, Swift, and Java, and for some benchmarks to C++
as well. Even though the current Koka compiler does not have many optimizations
(besides the ones for reference counting), it has outstanding performance compared
to these mature systems. As a highlight, on the tree insertion benchmark, the purely
functional Koka implementation is within 10% of the performance of the in-place
mutating algorithm in C++ (using std::map [49]).

Even though we focus on Koka in this chapter, we believe that Perceus, and the FBIP
programming paradigm we identify, are both broadly applicable to other programming
languages with similar static guarantees for explicit control flow. There is an accompanying
technical report [134] containing all the proofs and further benchmark results.
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4.2 Overview

Compared to a generational tracing collector, reference counting has low memory overhead
and is straightforward to implement. However, while the cost of tracing collectors is linear
in the live data, the cost of reference counting is linear in the number of reference counting
operations. Optimizing the total cost of reference counting operations is therefore our main
priority. There are at least three known problems that make reference counting operations
expensive in practice and generally inferior to tracing collectors:

• Concurrency : when multiple threads share a data structure, reference count operations
need to be atomic, which is expensive.

• Precision: common reference counted systems are not precise and hold on to objects
too long. This increases memory usage and prevents aggressive optimization of many
reference count operations.

• Cycles : if object references form a cycle, the runtime needs to handle them separately,
which re-introduces many of the drawbacks of a tracing collector.

We handle each of these issues in the context of an eager, functional language using
immutable data types together with a strong type and effect system. For concurrency,
we precisely track when objects can become thread-shared (§4.2.7). For precision, we
introduce Perceus, our algorithm for inserting precise reference counting operations that
can be aggressively optimized. In particular, we eliminate and fuse many reference count
operations with drop specialization (§4.2.3), turn functional matching into in-place updates
with reuse analysis (§4.2.4), and minimize field updates with reuse specialization (§4.2.5).

Finally, although we currently do not supply a cycle collector, our design has two
mitigations that reduces the occurrences of cycles in the first place. First, (co)inductive data
types and eager evaluation prevent cycles outside of explicit mutable references, and it is
statically known where cycles can possibly be introduced in the code (§4.2.7). Second, being a
mostly functional language, mutable references are not often used – moreover, reuse analysis
greatly reduces the need for them since in-place mutation is typically inferred.

The reference count optimizations are our main contribution and we start with a detailed
overview in the following sections, ending with details about how we mitigate the impact of
concurrency and cycles.

4.2.1 Types and Effects

We start with a brief introduction to Koka [94, 96] – a strongly typed, functional language
that tracks all (side) effects. For example, we can define a squaring function as:

fun square( x : int ) : total int { x * x }
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Here we see two types in the result: the effect type total and the result type int. The
total type signifies that the function can be modeled semantically as a mathematically
total function, which always terminates without raising an exception (or having any other
observable side effect). Effectful functions get more interesting effect types, like:

fun println( s : string ) : console ()

fun divide( x : int, y : int ) : exn int

where println has a console effect and divide may raise an exception (exn when dividing
by zero. It is beyond the scope of this chapter to go into full detail, but a novel feature
of Koka is that it supports typed algebraic effect handlers which can define new effects like
async/await, iterators, or co-routines without needing to extend the language itself [93, 95,
96].

Koka uses algebraic data types extensively. For example, we can define a polymorphic list
of elements of type a as:

type list<a> {

Cons ( head : a, tail : list<a> )

Nil

}

We can match on a list to define a polymorphic map function that applies a function f to
each element of a list xs:

fun map( xs : list<a>, f : a -> e b ) : e list<b> {

match(xs) {

Cons (x,xx) -> Cons (f(x), map(xx, f))

Nil -> Nil

}

}

Here we transform the list of generic elements of type a to a list of generic elements of type b.
Since map itself has no intrinsic effect, the overall effect of map is polymorphic, and equals the
effect e of the function f as it is applied to every element. The map function demonstrates
many interesting aspects of reference counting and we use it as a running example in the
following sections.

4.2.2 Precise Reference Counting

An important attribute that sets Perceus apart is that it is precise: an object is freed as soon
as no more references remain. By contrast, common reference counting implementations tie
the liveness of a reference to its lexical scope, which might retain memory longer than needed.
Consider:

fun foo() {

val xs = list(1,1000000) // create large list

val ys = map(xs, inc) // increment elements
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fun map( xs : list<a>, f : a -> e b ) : e list<b> {

match(xs) {

Cons (x,xx) -> Cons (f(x), map(xx, f))

Nil -> Nil

}

}

(a) A polymorphic map function

(a)

(b) (c) (d)

(e) (f) (g)

fun map ( xs, f ) {

match(xs) {

Cons (x, xx) {

dup(x); dup(xx); drop(xs)

Cons ( dup(f)(x), map(xx, f) )

}

Nil { drop(xs); drop(f); Nil }

}

}

(b) dup/drop insertion (§4.2.2)

fun map( xs, f ) {

match(xs) {

Cons (x, xx) {

dup(x); dup(xx)

if (is-unique(xs))

then drop(x); drop(xx);

free(xs)

else decref(xs)

Cons (dup(f)(x), map(xx, f))

}

Nil { drop(xs); drop(f); Nil }

}

}

(c) drop specialization (§4.2.3)

fun map( xs, f ) {

match(xs) {

Cons (x, xx) {

if (is-unique(xs))

then free(xs)

else dup(x); dup(xx);

decref(xs)

Cons (dup(f)(x), map(xx, f))

}

Nil { drop(xs); drop(f); Nil }

}

}

(d) push down dup and fuse (§4.2.3)

fun map( xs, f ) {

match(xs) {

Cons (x, xx) {

dup(x); dup(xx);

val ru = drop-reuse(xs)

Cons@ru(dup(f)(x),

map(xx, f))

}

Nil { drop(xs); drop(f); Nil }

}

}

(e) reuse token insertion (§4.2.4)

fun map( xs, f ) {

match(xs) {

Cons (x, xx) {

dup(x); dup(xx);

val ru = \

if (is-unique(xs))

then drop(x); drop(xx); &xs

else decref(xs); NULL

Cons@ru(dup(f)(x), map(xx, f))

}

Nil { drop(xs); drop(f); Nil }

}

}

(f) drop-reuse specialization (§4.2.5)

fun map( xs, f ) {

match(xs) {

Cons (x, xx) {

val ru = \

if (is-unique(xs))

then &xs

else dup(x); dup(xx);

decref(xs); NULL

Cons@ru(dup(f)(x), map(xx, f))

}

Nil { drop(xs); drop(f); Nil }

}

}

(g) push down dup and fuse (§4.2.5)

Figure 4.1: Drop specialization and reuse analysis for map.

print(ys)

}

Many compilers emit code similar to:

fun foo() {

val xs = list(1,1000000)

val ys = map(xs, inc)

print(ys)

drop(xs)

drop(ys)

}

where we use a colored background for generated operations. The drop(xs) operation
decrements the reference count of an object and, if it drops to zero, recursively drops all
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children of the object and frees its memory. These “scoped lifetime” reference counts are
used by the C++ shared_ptr<T> (calling the destructor at the end of the scope), Rust’s
Rc<T> (using the Drop trait), and Nim (using a finally block to call destroy) [169]. It is
not required by the semantics, but Swift typically emits code like this as well [50].

Implementing reference counting this way is straightforward and integrates well with
exception handling where the drop operations are performed as part of stack unwinding.
But from a performance perspective, the technique is not always optimal: in the previous
example, the large list xs is retained in memory while a new list ys is built. Both exist for
the duration of print, after which a long, cascading chain of drop operations happens for
each element in each list.

Perceus takes a more aggressive approach where ownership of references is passed down
into each function: now map is in charge of freeing xs, and ys is freed by print: no drop

operations are emitted inside foo as all local variables are consumed by other functions, while
the map and print functions drop the list elements as they go. In this example, Perceus
generates the code for map as given in fig. 4.1b. In the Cons branch, first the head and tail
of the list are dupped, where a dup(x) operation increments the reference count of an object
and returns itself. The drop(xs) then frees the initial list node. We need to dup f as well as
it is used twice, while x and xx are consumed by f and map respectively.

At first blush, this seems more expensive than the scoped approach but, as we will see,
this change enables many further optimizations. More importantly, transferring ownership,
rather than retaining it, means we can free an object immediately when no more references
remain. This both increases cache locality and decreases memory usage. For map, the memory
usage is halved: the list xs is deallocated while the new list ys is being allocated.

4.2.3 Drop Specialization

Once we change to precise, ownership-based reference counting, there are many further
optimization opportunities. After the initial insertion of dup and drop operations, we perform
a drop specialization pass. The basic drop operation is defined in pseudocode as:

fun drop( x ) {

if (is-unique(x)) then drop children of x; free(x)

else decref(x)

}

and drop specialization essentially inlines the drop operation specialized at a specific con-
structor. Figure 4.1c shows the drop specialization of our map example. Note that we only
apply drop specialization if the children are used, so no specialization takes place in the Nil
branch.

Again, it appears we made things worse with extra operations in each branch, but we can
perform another transformation where we push down dup operations into branches followed
by standard dup/drop fusion where corresponding dup/drop pairs are removed. Figure 4.1d
shows the code that is generated for our map example.
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After this transformation, almost all reference count operations in the fast path are gone.
In our example, every node in the list xs that we map over is unique (with a reference count
of 1) and so the if (is-unique(xs)) test always succeeds, thus immediately freeing the
node without any further reference counting.

4.2.4 Reuse Analysis

There is more we can do. Instead of freeing and immediately allocating a fresh Cons node, we
can try to reuse xs directly as first described by Ullrich and de Moura [153]. Reuse analysis
is performed before emitting the initial reference counting operations. It analyses each match

branch, and tries to pair each matched pattern to allocated constructors of the same size
in the branch. In our map example, xs is paired with the Cons constructor. When such
pairs are found, and the matched object is not live, we generate a drop-reuse operation that
returns a reuse token that we attach to any constructor paired with it:

fun map( xs, f ) {

match(xs) {

Cons (x,xx) {

val ru = drop-reuse(xs)

Cons@ru( f(x), map(xx, f) )

}

Nil -> Nil

}

}

The Cons@ru annotation means that (at runtime) if ru==NULL then the Cons node is allocated
fresh, and otherwise the memory at ru is of the right size and can be used directly. Figure 4.1e
shows the generated code after reference count insertion. Compared to the program in fig. 4.1b,
the generated code now consumes xs using drop-reuse(xs) instead of drop(xs).

Just like with drop specialization we can also specialize drop-reuse. The drop-reuse
operation is specified in pseudocode as:

fun drop-reuse ( x ) {

if (is-unique(x)) then drop children of x; &x

else decref(x); NULL

}

where &x returns the address of x. Figure 4.1f shows the code for map after specializing the
drop-reuse. Again, we can push down and fuse the dup operations, which finally results in
the code shown in fig. 4.1g. In the fast path, where xs is uniquely owned, there are no more
reference counting operations at all! Furthermore, the memory of xs is directly reused to
provide the memory for the Cons node for the returned list – effectively updating the list
in-place.
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4.2.5 Reuse Specialization

The final transformation we apply is reuse specialization, by which we can further reuse un-
changed fields of a constructor. A constructor expression like Cons@ru(x,xx) is implemented
in pseudocode as:

fun Cons @ru( x, xx ) {

if (ru!=NULL )

then { ru->head := x; ru->tail := xx; ru } // in-place

else Cons (x,xx) // malloc’d

}

However, for our map example there would be no benefit to specializing as all fields are
assigned. Thus, we only specialize constructors if at least one of the fields stays the same. As
an example, we consider insertion into a red-black tree [58]. We define red-black trees as:

type color { Red ; Black }

type tree {

Leaf

Node ( color: color, left: tree, key: int,

value: bool, right: tree )

}

The red-black tree has the invariant that the number of black nodes from the root to any
of the leaves is the same, and that a red node is never a parent of red node. Together this
ensures that the trees are always balanced. When inserting nodes, the invariants need to be
maintained by rebalancing the nodes when needed. Okasaki’s algorithm [119] implements this
elegantly and functionally (the full algorithm can be found in the accompanying technical
report [134]):

fun bal-left( l : tree, k : int, v : bool, r : tree ): tree {

match(l) {

Node (_, Node (Red , lx, kx, vx, rx), ky, vy, ry)

-> Node (Red , Node (Black , lx, kx, vx, rx), ky, vy,

Node (Black , ry, k, v, r))

...

}

fun ins( t : tree, k : int, v : bool ): tree {

match(t) {

Leaf -> Node (Red , Leaf , k, v, Leaf )

Node (Red , l, kx, vx, r) // second branch

-> if (k < kx) then Node (Red , ins(l, k, v), kx, vx, r)

...

Node (Black , l, kx, vx, r)

-> if (k < kx && is-red(l))

then bal-left(ins(l,k,v), kx, vx, r)

...

}

}
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void inorder( tree* root, void (*f)(tree* t) ) {

tree* cursor = root;

while (cursor != NULL /* Tip */ ) {

if (cursor->left == NULL) {

// no left tree, go down the right

f(cursor->value);

cursor = cursor->right;

} else {

// has a left tree

tree* pre = cursor->left; // find the predecessor

while(pre->right != NULL && pre->right != cursor) {

pre = pre->right;

}

if (pre->right == NULL) {

// first visit, remember to visit right tree

pre->right = cursor;

cursor = cursor->left;

} else {

// already set, restore

f(cursor->value);

pre->right = NULL;

cursor = cursor->right;

} } } }

Figure 4.2: Morris in-order tree traversal algorithm in C.

For this kind of program, reuse specialization is effective. For example, if we look at the
second branch in ins we see that the newly allocated Node has almost all of the same fields
as t except for the left tree l which becomes ins(l,k,v). After reuse specialization, this
branch becomes:

Node (Red , l, kx, vx, r) { // second branch

val ru = if (is-unique(t))

then &t

else { dup(l); dup(kx); dup(vx); dup(r); NULL }

if (dup(k) < dup(kx)) {

val y = ins(l,k,v)

if (ru!=NULL) then { ru->left := y; ru } // fast path

else Node (Red , y, kx, vx, r)

}

In the fast path, where t is uniquely owned, t is reused directly, and only its left child is
re-assigned as all other fields stay unchanged. This applies to many branches in this example
and saves many assignments.

Moreover, the compiler inlines the bal-left function. At that point, every matched Node

constructor has a corresponding Node allocation – if we consider all branches we can see that
we either match one Node and allocate one, or we match three nodes deep and allocate three.
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With reuse analysis this means that every Node is reused in the fast path without doing any
allocations!

Essentially this means that for a unique tree, the purely functional algorithm above adapts
at runtime to an in-place mutating re-balancing algorithm (without any further allocation).
Moreover, if we use the tree persistently [118], and the tree is shared or has shared parts, the
algorithm adapts to copying exactly the shared spine of the tree (and no more), while still
rebalancing in place for any unshared parts.

4.2.6 A New Paradigm: Functional but In-Place (FBIP)

The previous red-black tree rebalancing showed that with Perceus we can write algorithms
that dynamically adapt to use in-place mutation when possible (and use copying when used
persistently). Importantly, a programmer can rely on this optimization happening, e.g. they
can see the match patterns and match them to constructors in each branch.

This style of programming leads to a new paradigm that we call FBIP: “functional but in
place”. Just like tail-call optimization lets us describe loops in terms of regular function calls,
reuse analysis lets us describe in-place mutating imperative algorithms in a purely functional
way (and get persistence as well). Consider mapping a function f over all elements in a
binary tree in-order:

type tree {

Tip

Bin ( left: tree, value : int, right: tree )

}

fun tmap( t : tree, f : int -> int ) : tree {

match(t) {

Bin (l,x,r) -> Bin ( tmap(l,f), f(x), tmap(r,f) )

Tip -> Tip

}

}

This is already quite efficient as all the Bin and Tip nodes are reused in-place when t is
unique. However, the tmap function is not tail-recursive and thus uses as much stack space
as the depth of the tree.

In 1968, Knuth posed the problem of visiting a tree in-order while using no extra stack-
or heap space [87] (For readers not familiar with the problem it might be fun to try this
in your favorite imperative language first and see that it is not easy to do). Since then,
numerous solutions have appeared in the literature. A particularly elegant solution was
proposed by Morris [113]. This is an in-place mutating algorithm that swaps pointers in
the tree to “remember” which parts are unvisited. It is beyond this chapter to give a full
explanation, but a C implementation is shown in fig. 4.2. The traversal essentially uses a
right-threaded tree to keep track of which nodes to visit. The algorithm is subtle, though.
Since it transforms the tree into an intermediate graph, we need to state invariants over the
so-called Morris loops [104] to prove its correctness.
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type visitor {

Done

BinR ( right:tree, value : int, visit : visitor )

BinL ( left:tree, value : int, visit : visitor )

}

type direction { Up ; Down }

fun tmap( f : int -> int, t : tree,

visit : visitor, d : direction ) : tree {

match(d) {

Down -> match(t) { // going down a left spine

Bin (l,x,r) -> tmap(f,l,BinR (r,x,visit),Down ) // A

Tip -> tmap(f,Tip ,visit,Up ) // B

}

Up -> match(visit) { // go up through the visitor

Done -> t // C

BinR (r,x,v) -> tmap(f,r,BinL (t,f(x),v),Down ) // D

BinL (l,x,v) -> tmap(f,Bin (l,x,t),v,Up ) // E

} } }

Figure 4.3: FBIP in-order tree traversal algorithm in Koka.

We can derive a functional and more intuitive solution using the FBIP technique. We
start by defining an explicit visitor data structure that keeps track of which parts of the
tree we still need to visit. In Koka we define this data type as visitor given in fig. 4.3.
(Interestingly, our visitor data type can be generically derived as a list of the derivative of
the tree data type1 [79, 106]). We also keep track of which direction we are going, either
Up or Down the tree.

We start our traversal by going downward into the tree with an empty visitor, expressed
as tmap(f, t, Done , Down ). The key idea is that we are either Done (C ), or, on going
downward in a left spine we remember all the right trees we still need to visit in a BinR (A )
or, going upward again (B ), we remember the left tree that we just constructed as a BinL

while visiting right trees (D ). When we come back (E ), we restore the original tree with the
result values. Note that we apply the function f to the saved value in branch D (as we visit
in-order), but the functional implementation makes it easy to specify a pre-order traversal
by applying f in branch A , or a post-order traversal by applying f in branch E .

Looking at each branch we can see that each Bin matches up with a BinR , each BinR

with a BinL , and finally each BinL with a Bin . Since they all have the same size, if the tree
is unique, each branch updates the tree nodes in-place at runtime without any allocation,
where the visitor structure is effectively overlaid over the tree nodes while traversing the
tree. Since all tmap calls are tail calls, this also compiles to a loop and thus needs no extra

1Conor McBride [106] describes how we can generically derive a zipper [79] visitor for any recursive
type µx. F as a list of the derivative of that type, namely list ( ∂

∂x F |x =µx.F) . In our case, calculating the
derivative of the inductive tree, we get µx. 1 + (tree × int × x) + (tree × int × x), which corresponds to the
visitor datatype.
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stack or heap space.
Finally, just like with re-balancing tree insertion, the algorithm as specified is still purely

functional: it uses in-place updating when a unique tree is passed, but it also adapts gracefully
to the persistent case where the input tree is shared, or where parts of the input tree are
shared, making a single copy of those parts of the tree.

4.2.7 Static Guarantees and Language Features

So far we have shown that precise reference counting enables powerful analyses and optimiza-
tions of the reference counting operations. In this section, we use Koka as an example to
discuss how strong static guarantees at compile-time can further allow the precise reference
counting approach to be integrated with non-trivial language features.

Non-Linear Control Flow

An essential requirement of our approach is that programs have explicit control flow so that
it is possible to statically determine where to insert dup and drop operations. However, it is
in tension with functions that have non-linear control flow, e.g. may throw an exception, use
a longjmp, or create an asynchronous continuation that is never resumed. For example, if we
look at the code for map before applying optimizations, we have:

fun map( xs, f ) {

match(xs) {

Cons (x,xx) {

dup(x); dup(xx); drop(xs); dup(f)

Cons ( f(x). map(xx, f) )

}

...

If f raised an exception and directly exited the scope of map, then xx and f would leak and
never be dropped. This is one reason why a C++ shared_ptr is tied to lexical scope; it
integrates nicely with the stack unwinding mechanism for exceptions that guarantees each
shared_ptr is dropped eventually.

In Koka, we guarantee that all control-flow is compiled to explicit control-flow, so our
reference count analysis does not have to take non-linear control-flow into account. This is
achieved through effect typing (§4.2.1) where every function has an effect type that signifies
if it can throw exceptions or not. Functions that can throw are compiled into functions that
return with an explicit error type that is either Ok , or Error if an exception is thrown. This
is checked and propagated at every invocation2.

For example, for map the compiled code (before optimization) becomes like:

2Koka actually generalizes this using a multi-prompt delimited control monad that works for any control
effect, with essentially the same principle.
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fun map( xs, f ) {

match(xs) {

Cons (x,xx) {

dup(x); dup(xx); drop(xs); dup(f)

match(f(x)) {

Error (err) -> { drop(xx); drop(f); Error (err); }

Ok (y) -> {

match(map(xx, f)) {

Error (err) -> drop(y); Error (err)

Ok (ys) -> Cons (y,ys)

}

...

At this point all errors are explicitly propagated and all control-flow is explicit again. Note
the we have no reference count operations on the error values as these are implemented as
value types which are not heap allocated.

This is similar to error handling in Swift [81] (although it requires the programmer to
insert a try at every invocation), and also similar to various C++ proposals [145] where
exceptions become explicit error values.

The example here is specialized for exceptions but the actual Koka implementation uses a
generalized version of this technique to implement a multi-prompt delimited control monad [60]
instead, which is used in combination with evidence translation [167] to express general
algebraic effect handlers (which in turn subsume all other control effects, like exceptions,
async/await, probabilistic programming, etc).

Concurrent Execution

If multiple threads share a reference to a value, the reference count needs to be incremented
and decremented using atomic operations which can be expensive. Ungar et al. [154] report
slowdowns up to 50% when atomic reference counting operations are used. Nevertheless, in
languages with unrestricted multi-threading, like Swift, almost all reference count operations
need to assume that references are potentially thread-shared.

In Koka, the strong type system gives us additional guarantees about which variables may
need atomic reference count operations. Following the solution of Ullrich and de Moura [153],
we mark each object with whether it can be thread-shared or not, and supply an internal
polymorphic operation tshare : forall a. a -> io () which marks any object and its
children recursively as being thread-shared. Even though marking is linear, it happens at
most once for any object since shared objects cannot be unshared. All objects start out as
unshared, and are only marked through explicit operations. In particular, when starting a
new thread, the argument passed to the thread is marked as thread-shared. The only other
operation that can cause thread sharing is setting a thread-shared mutable reference but this
is quite uncommon in typical Koka code. The drop and dup operations can be implemented
efficiently by avoiding atomic operations in the fast path by checking the thread-shared flag.

For example, drop may be implemented in C as:
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static inline void drop( block_t* b ) {

if (b->header.thread_shared) {

if (atomic_dec(&b->header.rc) == 1) drop_free(b);

} else if (b->header.rc-- == 1) drop_free(b);

}

However, this may still present quite some overhead as many drop operations are emitted.
In Koka we encode the reference count for thread-shared objects as a negative value. This

enables us to use a single inlined test to see if we need to take the slow path for either a
thread-shared object or an object that needs to be freed; and we can use a fast inlined path
for the common case3:

static inline void drop( block_t* b ) {

if (b->header.rc <= 1) { drop_check(b); } // slow path

else { b->header.rc--; }

}

The drop_check function checks if the reference count is 1 to release it, or otherwise it adjusts
the reference count atomically. We also use the negative values to implement a sticky range
where very large reference counts (230 in our implementation) stay without being further
adjusted (preventing overflow, and keeping them alive for the rest of the program).

Mutation

Mutation in Koka is done through explicit mutable references. Here we look at first-class
mutable reference cells, but Koka also has second-class mutable local variables that can be
more convenient. A mutable reference cell is created with ref, dereferenced with (!) and
updated using (:=):

fun ref( init : a ) : st<h> ref<h,a>

fun (!)( r : ref<h,a> ) : st<h> a

fun (:=)( r : ref<h,a>, x : a ) : st<h> ()

where each operation has a stateful effect st<h> in some heap h. A reference cell of type
ref<h,a> is a first-class value that contains a reference to a value of type a. As such, there
are always two reference counts involved: that of the reference itself, and that of value that
is referenced.

When a mutable reference cell is thread-shared, this presents a problem as an update
operation may race with a read operation to update the reference counts. The pseudocode
implementation of both operations is:

fun (!)( r ) {

val x = r->value

dup(x)

x

}

fun (:=)( r, x ) {

val y = r->value

r->value := x

drop(y)

}

3Since the thread-shared sign-bit is stable, we can do the test b->header.cr <= 1 without needing
expensive atomic operations and can use a memory_order_relaxed atomic read.



CHAPTER 4. PERCEUS: PRECISE REFERENCE COUNTING WITH REUSE AND
SPECIALIZATION 87

The read operation (!) first reads the current reference in x, and then increments its reference
count. Suppose though that before the dup, the thread is suspended and another thread
writes to the same reference: it will read the same object into y, update the reference, and
then drop y – and if y has a reference count of 1 it will be freed! When the other thread
resumes, it will now try to dup the just-freed object.

To make this work correctly, we need to perform both operations atomically, either through
a double-CAS [33], using hazard pointers [52, 109], or using some other locking mechanism.
Either way, this can be quite expensive. Fortunately, in our setting, we can avoid the slow
path in most cases. First of all, since FBIP allows for the efficiency of in-place updates with a
purely functional specification (§4.2.6), we expect mutable references to be a last resort rather
than the default. Secondly, as discussed in §4.2.7, we can also check if a mutable reference is
actually thread-shared and thus avoid the atomic code path almost all of the time.

Cycles

A known limitation of reference counting is that it cannot release cyclic data structures. Just
like with mutability, we try to mitigate its performance impact by reducing the potential
for this to occur in the first place. In Koka, almost all data types are immutable and either
inductive or coinductive. It can be shown that such data types are never cyclic (and functions
that recurse over such data types always terminate).

In practice, mutable references are the main way to construct cyclic data. Since mutable
references are uncommon in our setting, we leave the responsibility to the programmer to
break cycles by explicitly clearing a reference cell that may be part of a cycle. Since this
strategy is also used by Swift, a widely used language where most object fields are mutable,
we believe this is a reasonable approach to take for now. However, we have plans for future
improvements: since we know statically that only mutable references are able to form a cycle,
we could generate code that tracks those data types at run time and may perform a more
efficient form of incremental cycle collection.

Summary

In summary, we have shown how static guarantees at compile-time can be used to mitigate the
performance impact of concurrency and the risk of cycles. This work does not yet present a
general solution to all problems with reference counting and future work is required to explore
how cycles can be handled more efficiently, and how well Perceus can be used with implicit
control flow. Yet, we expect that our approach gives new insights in the general design space
of reference counting, and showcase that precise reference counting can be a viable alternative
to other approaches. In practice, we found that Perceus has good performance, which is
discussed in §4.4.
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Expressions
e ::= v | e e (value, application)

| val x = e; e (bind)
| match x { pi → ei } (match)

| dup x; e (duplicate)

| drop x; e (drop)

| match e { pi → ei } (match expr)

v ::= x | λx. e (variables, functions)
| C v1 . . . vn (constructor of arity n)

p ::= C b1 . . . bn (pattern)
b ::= x | (binder or wildcard)
Contexts ∆,Γ ::= ∅ | ∆ ∪ x
Syntactic shorthands

e1; e2 ≜ val x = e1; e2 sequence, x /∈ fv(e2)

λ . e ≜ λx. e x /∈ fv(e)

λx. e ≜ λysx. e ys = fv(e)

Figure 4.4: Syntax of the linear resource calculus λ1.

4.3 A Linear Resource Calculus

In this section we present a novel linear resource calculus, λ1, which is closely based on
linear logic. The operational semantics of λ1 is formalized in an explicit heap with reference
counting, and we prove that the operational semantics is sound. We then formalize Perceus as
a sound and precise syntax-directed algorithm of λ1 and thus provide a theoretic foundation
for Perceus.

4.3.1 Syntax

Figure 4.4 defines the syntax of our linear resource calculus λ1. It is essentially an untyped
lambda calculus extended with explicit binding as val x = e1; e2, and pattern matching as
match. We assume all patterns in the match are mutually exclusive, and all pattern binders
are distinct. Syntactic constructs in gray are only generated in derivations of the calculus and
are not exposed to users. Among those constructs, dup and drop form the basic instructions
of reference counting.

Contexts ∆,Γ are multisets containing variable names. We use the compact comma
notation for summing (or splitting) multisets. For example, (Γ, x) adds x to Γ, and (Γ1,Γ2)
appends two multisets Γ1 and Γ2. The set of free variables of an expression e is denoted by
fv(e), and the set of bound variables of a pattern p by bv(p).
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∆
↑
| Γ

↑
⊢ e

↑
⇝ e′

↓
(↑ is input, while ↓ is output)

[var]
∆ | x ⊢ x ⇝ x

∆ | Γ, x ⊢ e ⇝ e′ x ∈ ∆,Γ
[dup]

∆ | Γ ⊢ e ⇝ dup x; e′

∆ | Γ ⊢ e ⇝ e′
[drop]

∆ | Γ, x ⊢ e ⇝ drop x; e′

∆,Γ2 | Γ1 ⊢ e1 ⇝ e′1 ∆ | Γ2 ⊢ e2 ⇝ e′2 [app]
∆ | Γ1,Γ2 ⊢ e1 e2 ⇝ e′1 e′2

∅ | Γ, x ⊢ e ⇝ e′ Γ = fv(λx. e)
[lam]

∆ | Γ ⊢ λx. e ⇝ λΓx. e′

x /∈ ∆,Γ1,Γ2 ∆,Γ2 | Γ1 ⊢ e1 ⇝ e′1 ∆ | Γ2, x ⊢ e2 ⇝ e′2 [bind]
∆ | Γ1,Γ2 ⊢ val x = e1; e2 ⇝ val x = e′1; e′2

∆ | Γ, bv(pi) ⊢ ei ⇝ e′i [match]
∆ | Γ, x ⊢ match x { pi 7→ ei } ⇝ match x { pi 7→ e′i }

∆,Γi+1, . . .,Γn | Γi ⊢ vi ⇝ v′i 1 ≤ i ≤ n
[con]

∆ | Γ1, . . .,Γn ⊢ C v1 . . . vn ⇝ C v′1 . . . v′n

Figure 4.5: Declarative linear resource rules of λ1.

E ::= □ | E e | v E
| val x = E; e

e −→ e′ [eval]
E[e] 7−→ E[e′]

(app) (λx. e) v −→ e[x := v]
(bind) val x = v ; e −→ e[x := v]
(match) match (C v1 . . . vn) { pi → ei }

−→ ei[x1 := v1, . . . , xn := vn]
with pi = C x1 . . . xn

Figure 4.6: Standard strict semantics for λ1.
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4.3.2 The Linear Resource Calculus

The derivation ∆ | Γ ⊢ e ⇝ e′ in fig. 4.5 reads as follows: given a borrowed environment
∆, a linear environment Γ, an expression e is translated into an expression e′ with explicit
reference counting instructions. We call variables in the linear environment owned.

The key idea of λ1 is that each resource (i.e., owned variable) is consumed exactly once.
That is, a resource needs to be explicitly duplicated (in rule [dup]) if it is needed more than
once; or be explicitly dropped (in rule [drop]) if it is not needed. The rules are closely related
to linear typing.

Following the key idea, the variable rule [var] consumes a resource when we own and
only own x exactly once in the owned environment. For example, to derive the K combinator,
λx y. x, we need to apply [drop] to be able to discard y, which gives λx y. drop y;x.

The [app] rule splits the owned environment Γ into two separate contexts Γ1 and Γ2 for
expression e1 and e2 respectively. Each expression then consumes its corresponding owned
environment. Since Γ2 is consumed in the e2 derivation, we know that resources in Γ2 are
surely alive when deriving e1, and thus we can borrow Γ2 in the e1 derivation. The rule is
quite similar to the [let!] rule of Wadler’s linear type rules [161, p. 14] where a linear type
can be “borrowed” as a regular type during evaluation of a binding.

Borrowing is important as it allows us to conduct a dup as late as possible, or otherwise we
will need to duplicate enough resources before we can divide the owned environment. Consider
λf g x. (f x) (g x). Without borrowing, we have to duplicate x before the application,
resulting in λf g x. dup x; (f x) (g x). With the borrowing environment it is now possible to
derive a translation with the dup right before passing x to f : λf g x. (f (dup x;x)) (g x)).
Notice rule [dup] allows dup from the borrowing environment, where [drop] only applies to
the owned environment.

The [lam] rule is interesting as it essentially derives the body of the lambda independently.
The premise Γ = fv(λx.e) requires that exactly the free variables in the lambda are owned
– this corresponds to the notion that a lambda is allocated as a closure at runtime that
holds all free variables of the lambda (and thus the lambda expression consumes the free
variables). The body of a lambda is evaluated only when applied, so it is derived under
an empty borrowed environment only owning the argument and the free variables (in the
closure). The translated lambda is also annotated with Γ, as λΓx. e, so we know precisely
the resources the lambda should own when evaluated in a heap semantics. We often omit the
annotation when it is irrelevant.

The [bind] rule is similar to application and borrows Γ2 in the derivation for the bound
expression. This is the main reason to not consider val x = e1; e2 as syntactic sugar for
(λx. e2) e1. The [match] rule consumes the scrutinee and owns the bound variables in each
pattern for each branch. For constructors (rule [con]), we divide the owned environment
into n parts for each component, and allow each component derivation to borrow the owned
environment of the components derived later.

We use the notation ⌈e⌉ to erase all drop and dup in the expression e. We can now state
that derivations leave expressions unchanged except for inserting dup/drop operations: if
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H : x→ (N+, v)
E ::= □ | E e | x E | val x = E; e
| C x1 . . . xi E vj . . . vn

H | e −→r H
′ | e′

[eval]
H | E[e] 7−→r H

′ | E[e′]

(lamr) H | (λys x. e) −→r H, f 7→1 λysx. e | f fresh f
(conr) H | C x1 . . . xn −→r H, z 7→1 C x1 . . . xn | z fresh z

(appr) H | f z −→r H | dup ys; drop f ; e[x := z]
(f 7→n λysx. e) ∈ H

(matchr) H | match x {pi → ei} −→r H | dup ys; drop x; ei[xs := ys]
with pi = C xs and (x 7→n C ys) ∈ H

(bindr) H | val x = y; e −→r H | e[x := y]

(dupr) H, x 7→n v | dup x; e −→r H, x 7→n+1 v | e
(dropr) H, x 7→n+1 v | drop x; e −→r H, x 7→n v | e if n ⩾ 1
(dlamr) H, x 7→1 λysz.e | drop x; e −→r H | drop ys; e
(dconr) H, x 7→1 C ys | drop x; e −→r H | drop ys; e

Figure 4.7: Reference-counted heap semantics for λ1.

∆ | Γ ⊢ e⇝ e′ then e = ⌈e′⌉.

4.3.3 Semantics

Figure 4.6 defines standard semantics for λ1 using strict evaluation contexts [164]. The
evaluation contexts uniquely determine where to apply an evaluation step. As such, evaluation
contexts neatly abstract from the usual implementation context of a stack and program
counter. Rule (match) relies on the internal form of expression match e{pi → ei} : after
substitution app, values may appear in positions where only variables were allowed, and this
is exactly what enables us to do pattern match on a data constructor.

In fig. 4.7 we define our target semantics of a reference counted heap, so sharing of values
becomes explicit and substitution only substitutes variables. Here, each heap entry x 7→n v
points to a value v with a reference count of n (with n ⩾ 1). In these semantics, values other
than variables are allocated in the heap with rule (lamr) and rule (conr). The evaluation rules
discard entries from the heap when the reference count drops to zero. Any allocated lambda
is annotated as λysx. e to clarify that these are essentially closures holding an environment
ys and a code pointer λx. e. Note that it is important that the environment ys is a multi-set.
After the initial translation, ys will be equivalent to the free variables in the body (see rule
[lam]), but during evaluation substitution may substitute several variables with the same
reference. To keep reference counts correct, we need to keep considering each one as a separate
entry in the closure environment.
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When applying an abstraction, rule (appr) needs to satisfy the assumptions made when
deriving the abstraction in rule [lam]. First, the (appr) rule inserts dup to duplicate variables
ys, as these are owned in rule [lam]. It then drops the reference to the closure itself. Rule
(matchr) is similar to rule (appr), which duplicates the newly bound pattern bindings and
drops the scrutinee4. Rule (bindr) simply substitutes the bound variable x with the resource
y.

Duping a resource is straightforward as rule dupr merely increments the reference count of
the resource. Dropping is more involved. Rule dropr just decrements the reference count when
there are still multiple copies of it. But when the reference count would drop to zero, rule
dlamr and rule dconr actually free a heap entry and then dynamically insert drop operations
to drop their fields recursively.

The tricky part of the reference counting semantics is showing correctness. We prove this
in two parts. First, we prove that the reference counting semantics is sound and corresponds
to the standard semantics. Below we use heaps as substitutions on expressions. We write
[H]e to mean H applied as a substitution to expression e.

Theorem 4.1 (Reference-counted heap semantics is sound). If we have ∅ | ∅ ⊢ e⇝ e′ and
e 7−→∗ v, then we also have ∅ | e′ 7−→∗

r H | x with [H]x = v.

To prove this theorem we need to maintain strong invariants at each evaluation step to
ensure a variable is still alive if it is going to be referred-to later. Second, we prove that the
reference counting semantics never hold on to unused variables. We first define the notion of
reachability.

Definition 4.1 (Reachability). We say a variable x is reachable in terms of a heap H and
an expression e, denoted as reach(x,H | e), if (1) x ∈ fv(e); or (2) for some y, we have
reach(y,H | e) ∧ y 7→n v ∈ H ∧ reach(x,H | v).

With reachability, we can formally show:

Theorem 4.2 (Reference counting leaves no garbage). Given ∅;∅ ⊢ e⇝ e′, and ∅ | e′ 7−→∗
r

H | x, then for every intermediate state Hi | ei, we have for all y ∈ dom(Hi), reach(y,Hi | ei).

In the accompanying technical report [134], we further show that the reference counts are
exactly equal to the number of actual references to the resource. Notably, to capture the
essence of precise reference counting, λ1 does not model mutable references (§4.2.7). From
theorem 4.2 we see that mutable references are indeed the only source of cycles. A natural
extension of the system is to include mutable references and thus cycles. In that case, we
could generalize theorem 4.2, where the conclusion would be that for all resource in the heap,
it is either reachable from the expression, or it is part of a cycle.

4A difference between (appr) and (matchr) is that, for application, the free variables ys are dynamic
and thus the duplication must be done at runtime. In contrast, a match knows the the bound variables in a
pattern statically. In practice, we therefore generate the required dup and drop operations during elaboration
for each branch – this is essential as that enables the further optimizations as shown in §4.2.2.
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∆
↑
| Γ

↑
⊢s e

↑
⇝ e′

↓
∆ ∩ Γ = ∅ Γ ⊆ fv(e) fv(e) ⊆ ∆,Γ

multiplicity of each member in ∆,Γ is 1

[svar]
∆ | x ⊢s x ⇝ x

[svar-dup]
∆, x | ∅ ⊢s x ⇝ dup x;x

∆,Γ2 | Γ− Γ2 ⊢s e1 ⇝ e′1 ∆ | Γ2 ⊢s e2 ⇝ e′2 Γ2 = Γ ∩ fv(e2)
[sapp]

∆ | Γ ⊢s e1 e2 ⇝ e′1 e′2

x ∈ fv(e) ys = fv(λx. e) ∅ | ys, x ⊢s e ⇝ e′ ∆1 = ys− Γ
[slam]

∆,∆1 | Γ ⊢s λx. e ⇝ dup ∆1;λ
ys x. e′

x /∈ fv(e) ys = fv(λx. e) ∅ | ys ⊢s e ⇝ e′ ∆1 = ys− Γ
[slam-d]

∆,∆1 | Γ ⊢s λx. e ⇝ dup ∆1;λ
ys x. (drop x; e′)

x ∈ fv(e2)

x /∈ ∆,Γ

∆,Γ2 | Γ− Γ2 ⊢s e1 ⇝ e′1
∆ | Γ2, x ⊢s e2 ⇝ e′2 Γ2 = Γ ∩ (fv(e2)− x)

[sbind]
∆ | Γ ⊢s val x = e1; e2 ⇝ val x = e′1; e

′
2

x /∈ fv(e2),∆,Γ

∆,Γ2 | Γ− Γ2 ⊢s e1 ⇝ e′1
∆ | Γ2 ⊢s e2 ⇝ e′2 Γ2 = Γ ∩ fv(e2)

[sbind-d]
∆ | Γ ⊢s val x = e1; e2 ⇝ val x = e′1; drop x; e′2

∆ | Γi ⊢s ei ⇝ e′i Γi = (Γ, bv(pi)) ∩ fv(ei) Γ′
i = (Γ, bv(pi))− Γi

[smatch]
∆ | Γ, x ⊢s match x { pi 7→ ei } ⇝ match x { pi 7→ drop Γ′

i; e
′
i }

∆,Γi+1, . . .,Γn | Γi ⊢s vi ⇝ v′i 1 ⩽ i ⩽ n Γi = (Γ− Γi+1 − · · · − Γn) ∩ fv(vi)
[scon]

∆ | Γ ⊢s C v1 . . . vn ⇝ C v′1 . . . v
′
n

Figure 4.8: Syntax-directed linear resource rules of λ1.
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These theorems establish the correctness of the reference-counted heap semantics. However,
correctness does not imply precision, ie. that the heap is garbage free. Eventually all live
data is discarded but it may well hold on to live data too long by delaying drop operations.
As an example, consider y 7→1 () | (λx. x) (drop y; ()), where y is reachable but dropped too
late: it is only dropped after the lambda gets allocated. In contrast, a garbage free algorithm
would produce y 7→1 () | drop y; (λx. x) (). In the next section we present Perceus as a syntax
directed algorithm of the linear resource calculus and show that it is garbage free.

4.3.4 Perceus

Figure 4.8 defines the syntax directed derivation ⊢s for our resource calculus and as such
specifies our Perceus algorithm. Like before, ∆ | Γ ⊢s e⇝ e′ translates an expression e to e′

under an borrowed environment ∆ and an owned environment Γ. During the derivation, we
maintain the following invariants: (1) ∆ ∩ Γ = ∅; (2) Γ ⊆ fv(e); (3) fv(e) ⊆ ∆,Γ; and (4)
multiplicity of each member in ∆,Γ is 1. We ensure these properties hold by construction at
any step in a derivation.

The Perceus rules are set up to do precise reference counting: we delay a dup operation
to come as late as possible, pushing them out to the leaves of a derivation; and we generate a
drop operation as soon as possible, right after a binding or at the start of a branch.

Rule [svar-dup] borrows x by inserting a dup. The [sapp] rule now deterministically finds
a good split of the environment Γ. We pass the intersection of Γ with the free variables in
e2 to the e2 derivation. Otherwise the rule is the same as in the declarative system. For
abstraction and binding we have two variants: one where the binding is actually in the
free variables of the expression (rule [slam] and [sbind]), and one where the binding can be
immediately dropped as it is unused (rule [slam-d] and [sbind-d]). In the abstraction rule,
we know that Γ ⊆ fv(λx. e) and thus Γ ⊆ ys. If there are any free variables not in Γ, they
must be part of the borrowed environment (as ∆1) and these must be duplicated to ensure
ownership. The bind rules are similarly constructed as a mixture of [sapp] and [slam].

The [smatch] rule is interesting as in each branch there may be variables that can to be
dropped as they no longer occur as free variables in that branch. The owned environment
Γi in the ith branch is the intersection of (Γ, bv(pi)) and the free variables in that branch;
any other owned variables (as Γ′

i) are dropped at the start of the branch. Rule [scon]

deterministically splits the environment Γ as in rule [sapp].
We show that the Perceus algorithm is sound by showing that for each rule there exists a

derivation in the declarative linear resource calculus.

Theorem 4.3 (Syntax directed translation is sound.). If ∆ | Γ ⊢s e ⇝ e′ then also
∆ | Γ ⊢ e⇝ e′.

More importantly, we prove that any translation resulting from the Perceus algorithm is
precise, where any intermediate state in the evaluation is garbage free:
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Theorem 4.4 (Perceus is precise and garbage free). If ∅ | ∅ ⊢s e⇝ e′ and ∅ | e′ 7−→∗
r H | x,

then for every intermediate state Hi | ei that is not at a dup/drop operation (ei ̸= E[dropx; e′i]
and ei ̸= E[dupx; e′i]), we have that for all y ∈ dom(Hi), reach(y,Hi | ⌈ei⌉).

This theorem states that after evaluating any immediate reference counting instruction,
every variable in the heap is reachable from the erased expression. This rules out, for example,
y 7→1 () | (λx. x)(drop y; ()) as y is not in the free variables of the erased expression. Just
like theorem 4.2, if the system is extended with mutable references, then theorem 4.4 could
be generalized such that every resource is either reachable from the erased expression, or it is
part of a cycle.

The implementation of Perceus is further extended with the optimizations described in
§4.2. As the component transformations, including inlining and dup/drop fusion, are standard,
the soundness of those optimizations follows naturally and a proof is beyond the scope of
this chapter.

4.4 Benchmarks

In this section we discuss initial benchmarks of Perceus as implemented in Koka, versus
state-of-the-art memory reclamation implementations in various other languages. Since we
compare across languages we need to interpret the results with care – the results depend
not only on memory reclamation but also on the different optimizations performed by each
compiler and how well we can translate each benchmark to that particular language. We
view these results therefore mostly as evidence that the Perceus reference counting technique
is viable and can be competitive and not as a direct comparison of absolute performance
between systems.

As such, we selected only benchmarks that stress memory allocation, and we tried to
select mature comparison systems that use a range of memory reclamation techniques and
are considered best-in-class. The systems we compare are:

• Koka 2.0.3, compiling the generated C code with gcc 9.3.0 using a customized version of
the mimalloc allocator [97]. We also run Koka “no-opt” with drop/reuse specialization
and reuse analysis disabled to measure the impact of those optimizations.

• OCaml 4.08.1. This has a stop-the-world generational collector with a minor and major
heap. The minor heap uses a copying collector, while a tracing collector is used for the
major heap [37, 111, Chap.22]. The Koka benchmarks correspond essentially one-to-one
to the OCaml versions.

• Haskell, GHC 8.6.5. A highly optimizing compiler with a multi generational garbage
collector. The benchmark sources again correspond very closely, but since Haskell has
lazy semantics, we used strictness annotations in the data structures to speed up the
benchmarks, as well as to ensure that the same amount of work is done.
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Figure 4.9: Relative execution time and peak working set with respect to Koka. Using a
6-core 64-bit AMD 3600XT 3.8Ghz with 64GiB 3600Mhz memory, Ubuntu 20.04.
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• Swift 5.3. The only other language in this comparison where the compiler uses reference
counting [24, 154]. The benchmarks are directly translated to Swift in a functional
style without using direct mutation. However, we translated tail-recursive definitions
to explicit loops with local variables.

• Java SE 15.0.1. Uses the HotSpot JVM and the G1 concurrent, low-latency, generational
garbage collector. The benchmarks are directly translated from Swift.

• C++, gcc 9.3.0 using the standard libc allocator. A highly optimizing compiler
with manual memory management. Without automatic memory management, many
benchmarks are difficult to express directly in C++ as they use persistent and partially
shared data structures. To implement these faithfully would essentially require manual
reference counting. Instead, we use C++ as our performance baseline: if provided, we
either use in-place updates without supporting persistence (as in rbtree which uses
std::map) or we do not reclaim memory at all (as in deriv, nqueens, and cfold).

The benchmarks are all chosen to be medium sized and non-trivial, and all stress memory
allocation with little computation. Most of these are based on the benchmark suite of Lean
[153] and all are available in the Koka repository [88]. The execution times and peak working
set as the median over 10 runs and normalized to Koka are given in fig. 4.9 (each benchmark
runs between 1 to 5 seconds for Koka, and uses up to 300MiB of memory). When a benchmark
is not available for a particular language, it is marked as “NA” in the figures.

• rbtree: this benchmark performs 42 million insertions into a red-black balanced tree
and after that folds over the tree counting the true elements. Here the reuse analysis
of Koka (as shown in §4.2.4) is doing well compared to the other systems. OCaml
is close in performance – rebalancing generates lots of short-lived object allocation
which are a great fit a minor heap copying-collector with fast aggregated bump-pointer
allocation. The C++ benchmark is implemented using the in-place updating std::map

implementation, which internally uses an optimized red-black tree implementation
[49]. Surprisingly, the purely functional Koka implementation is within 10% of the
C++ performance. Since the insertion operations are the same, we believe this is
partly because C++ allocations must be 16-byte aligned while the Koka allocator can
use 8-byte alignment in the allocations and thus allocate a bit less (as apparent in
fig. 4.9, and similarly, bump pointer allocation in OCaml can be faster than general
malloc/free). Java performs close to C++ here but also uses almost 10× the memory
of Koka (1.7GiB vs. 170MiB, fig. 4.9). This can be reduced to about 1.5× by providing
tuning parameters on the command line but that also made it slower on our system. This
benchmark also shows the potential effectiveness of the reference count optimizations
where the “no-opt” version is more than 2× slower. However, in benchmarks with lots
of sharing, like deriv and nqueens, the optimizations are less effective. More generally,
we expect a GC to do better when reuse optimization is not triggered, and there is lots
of short-lived object allocation.
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• rbtree-ck: it has been suggested that rbtree is biased to reference counting as it has
no shared subtrees and thus reuse analysis can use in-place updates all the time. The
rbtree-ck benchmark remedies this and is a variant of rbtree that keeps a list of every
5th tree generated and thus shares many subtrees. This pattern occurs often in practice,
for example in compilers using scoped environments, or in backtracking searches where
the original state is shared among different exploratory branches. Again though the
reference counting strategy outperforms all other systems. Haskell and OCaml are now
relatively slower than in rbtree – we conjecture this is due to extra copying between
generations, and perhaps due to increased tracing cost. We have no C++ version of this
benchmark as that would essentially require a persistent implementation of std::map.

• deriv: calculates the derivative of large symbolic expressions (up to 10M nodes).
Interestingly, the memory usage of OCaml is slightly less here than Koka – since
Perceus is garbage free we would expect though that Koka always uses less memory
than a GC based system. From studying the generated code of OCaml we believe that
it is because the optimizing OCaml compiler can avoid some allocations by applying
inlining with “case of case” transformations [123] which the naive Koka compiler is not
(yet) doing. It is also interesting to see that the “no-opt” Koka is only just slightly slower
than optimized Koka here. This is probably due to the sharing of many sub-expressions
when calculating the derivative – this in turn causes the code resulting from drop/reuse
specialization and reuse analysis to mostly use the “slow” path which is equivalent to
the one in “no-opt”.

• nqueens: calculates all solutions for the n-queens problem of size 13 into a list, and
returns the length of that list. The solution lists share many sub-solutions and, as in
deriv, for the C++ version we do not free any memory (but do allocate the same
objects as the other benchmarks). Again, Koka is quite competitive even with the large
amount of shared structures, and the peak working set is significantly lower.

• cfold: performs constant-folding over a large symbolic expression (2M nodes). This
benchmark is similar to the deriv benchmark and manipulates a complex expression
graph. Koka does significantly better than other systems. Just as in deriv, we see that
OCaml uses slightly less memory as it can avoid some allocations by optimizing well.
The “no-opt” version of Koka also uses 11% less memory; this is because the reuse
analysis essentially holds on to memory for later reuse. Just like with scoped based
reference counting that may lead to increased memory usage in some situations.

An interesting overall observation is that the reference counting implementation of Swift
seems less effective than Koka – this may be partly due to the language and compiler, but we
also believe that this may be a confirmation of our initial hypothesis where we argue that a
combination of static compiler optimizations with dynamic runtime checks (e.g. is-unique)
are needed for best results. As discussed for example in §4.2.7, some of the optimizations we
perform are difficult to do in Swift as the static guarantees of the language are not strong
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enough. More research is needed though to confirm this as there may be other causes well
unrelated to reference counting as such.

Finally, we also ran our benchmarks using just atomic operations for our reference counts
to see the impact of the thread-shared flag. We observed a slowdown from 5% (rbtree) up to
59% (nqueens) across our benchmarks. This matches the observations by Ungar et al.[154]
who performed a similar experiment in Swift.

4.5 Conclusion and Future Work

In this chapter we present Perceus, a precise reference counting system with reuse and
specialization, which is built upon λ1, a novel linear resource calculus closely based on linear
logic. Our implementation in Koka is competitive with other mature memory collectors
over our benchmark suite but more experimentation in larger systems is needed. We would
like to integrate selective “borrowing” into Perceus – this would make certain programs no
longer be garbage free, but we believe it could deliver further performance improvements
if judiciously applied. It also remains to be seen how to handle cycle collection efficiently.
Finally, the explicit control-flow is not zero-cost (like C++ exception handling), and it would
be interesting to see if this can be improved further.
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Chapter 5

Practical considerations for DSL
design in the C ecosystem

Programming systems research does not happen in a vacuum; a successful project will be
used by programmers who are not only familiar with, but critically depend upon, decades of
prior art. Therefore, if a research project is to have a practical impact, every incompatibility
must measurably offset its cost with some clear benefit to its users. This chapter explores
some practical considerations for language designers in the HPC space; these lessons were
learned throughout the author’s role as an open source maintainer for Halide, specifically for
its build system, testing, continuous integration, and release cycle.

We focus in particular on C and C++ because they remain the primary implementation
languages in most performance-sensitive domains. Operating system kernels, device drivers,
databases, CAD tools, AAA video games, and more, are all typically written in C or C++.
Even Python-based deep-learning frameworks, like TensorFlow, PyTorch, and Jax, spend
the majority of their execution time in high-performance kernels written in C/C++. Indeed,
Python performance infamously depends on maximizing the time spent executing C-code
modules, rather than plain Python modules [11].

Even the burgeoning category of “better C” languages like Nim, Odin, Rust, and Zig
all maintain compatibility with existing C code. Among these, Nim compiles to C code
outright, while the others target LLVM and so rely on typical C-compatible linkers. Zig and
Nim maintain ABI compatibility with C, while Rust and Odin provide first-class features
for binding to C libraries. When these languages conservatively reject a performance-critical
program, these interoperability features provide an important escape hatch.

It is therefore imperative that the DSL researcher understands the practical challenges in
the C ecosystem. We will touch on two in this chapter. We first examine challenges with
writing and generating correct, portable, high-performance C code. Then, we cover two issues
with build systems in this context: the challenges of writing a correct build system for an
ordinary C program and of integrating a DSL compiler into existing build systems.
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5.1 Compiling DSLs to C

Writing a compiler backend is a daunting task, even with the advent of reusable compiler
backends like LLVM [90]. Although LLVM can dramatically simplify compiler engineering, it
is not perfect, and several issues prevent it from being an obvious choice for a new compiler.

First, LLVM is a very heavy dependency, consisting of millions of lines of code. It
takes hours to compile on commodity hardware and compiles to gigabytes of binary code.
Debugging issues with LLVM is complex and time-consuming, and upstreaming bug-fixes
requires significant investment into to the project (either social or financial). The LLVM API
and IR formats are incompatible between major releases, meaning downstream compilers
must continuously upgrade or risk obsolescence. As a result, bindings to LLVM for languages
besides C/C++ (like Python and Haskell) tend to lag several versions behind.

Second, LLVM supports only a handful of popular processor architectures. By contrast,
GCC can compile C to AVR, Motorola 68k, MSP430, VAC, and dozens of less-common
architectures that are still in use today. Unfortunately, GCC’s intermediate representation
(GIMPLE) is not effectively reusable outside of GCC. When designing a new architecture, it is
common to prioritize writing a C compiler for it, but these compilers are usually proprietary.

Finally, C code is easier to read, generate, and debug, than LLVM. It is higher level,
which makes mapping common control structures simpler. A variety of mature tools exist
for analyzing and debugging C code. Compiling a higher level language to LLVM typically
requires one or more IRs to apply language-specific optimizations before LLVM code can be
emitted; see Rust’s MIR [105], and Swift’s SIL [146].

For these reasons and more, many programming languages (especially research languages)
compile to C instead [32, 72, 74, 91, 94, 117], including Exo (chapter 3). Some languages, like
Standard ML [112], Chapel [17], and Halide [129] have optional C backends for expanding
compatibility beyond their default backends. Even C++ originally compiled to C when it was
still called “C with classes”[142].

5.1.1 Undefined integer behavior

Yet, C is a veritable minefield of undefined or implementation-defined behavior and precarious
performance cliffs. Some of the worst and most subtle bugs come from the misuse of integer
types in C. Indeed, very little can be assumed about how the basic types work at all. Language
authors must be aware of the differences between C’s integer semantics and their language’s
integer semantics when writing a compiler.

For one, the number of bits in a byte is not standardized. Although POSIX defines a
char (a “byte”) to have 8 bits exactly, C has no such restriction. Prior to C11, one char

did not even have to fit an octet (to support 7-bit systems). Since C11, a byte must consist
of at least 8 bits, but could be wider. No version of the C standard enforces that integers
be represented in two’s complement form. However, C++20 and beyond does require two’s
complement integers. The rules governing the widths of int, short, and long allow them to
all be equal in size.
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One solution to is to always generate the sized types from stdint.h, such as int32 t,
which specify an exact bit width. If your source language has an 8-bit signed integer type, it
should be stored in an int8 t after translation. The existence of this type is implementation-
defined, so compilers for exotic DSP architectures with 16-bit bytes (like the C55x series
from TI [148]) will correctly reject programs that use it (or, perhaps, emulate it with more
expensive operations). Such targets tend to have other peculiarities [147], too, so special care
needs to be taken when supporting them, anyway.

Another issue is that C’s rules for type promotion are byzantine. When an operation is
performed across two integer types, one is “promoted” to the other’s type. For a concise
example, consider the expression -1L > 1U; the value of this expression is implementation
defined. On systems (such as POSIX x86-641) where long is wider than unsigned int,
the shorter unsigned int will be promoted to long and the comparison will evaluate to 0.
However, on systems (such as x86-32) where the sizes are the same, then unsigned wins
instead; this means that the value -1 will wrap to UINT MAX, which is guaranteed to be greater
than 1, hence the expression evaluates to 1. When generating code, care should be taken to
ensure that types align prior to C code generation.

Even when all the types agree, expressing certain “obvious” operation identities can be
unsafe or invoke undefined behavior. For instance, x << 0 is safe only when x is positive
since shifting a negative value by any number of bits, including zero, is undefined. Double
negations, i.e. -(-x), are also tricky because negating the most negative signed value is
undefined (and in fact traps on some architectures).

These operations, rather than doing nothing, indicate to modern compilers that certain
undefined behaviors do not happen on paths that reach them; this can result in hard to detect
bugs (and even security vulnerabilities) when the compiler uses this information to delete
edge case checks. Due to function inlining, these problems can appear very far from the
implicating code. As such, arithmetic simplifications in accordance with the source language’s
semantics should be performed prior to C code generation.

Enumerating all integer undefined and implementation-defined behaviors, to say nothing
of all such behavior, is out of scope for this chapter. The reader is referred to Dietz et al. [36]
for further understanding the full scope of this problem. The difficulty of mapping integer
semantics from a DSL source language to C should at this point be evident. For more on
undefined behavior generally, the reader is directed to Chen [20], Lattner [89], Lee et al. [92],
and Regehr [132].

5.1.2 Vectorization

Although C/C++ remain the most popular choices for writing high-performance SIMD code,
the standard has so far declined to add vector types or SIMD to the language specification.
Hence, such programs will necessarily be less portable than their scalar counterparts. The
main decision, then, is how to break portability in the narrowest way possible.

1But not Microsoft x86-64! It sets int and long to the same size for backwards compatibility reasons.
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One popular approach is to leverage compiler-specific features. GCC and Clang both
provide an architecture-independent vector type extension that is simple to use and target
with a code generator. For example, to declare a type that holds eight floating point values
and a function to compute a fused multiply-add (FMA), one could write:

typedef float float8 __attribute__((vector_size(8 * sizeof(float))));

float8 do_fma(float8 x, float8 y, float8 z) {

return x + y * z;

}

Clang 15, targeting x86, compiles this to a single FMA instruction (plus a return). On ARM
NEON, however, it compiles to two FMAs plus the requisite loads and stores since NEON
vectors are only four floats wide. On the one hand, this might be convenient since the code
does not need to be modified for the new architecture in order to compile; on the other, it is
difficult to audit the assembly for a large program using these features. Nothing indicates
that an 8-wide vector doesn’t exist on the target.

This extension is only one of many alternatives implemented in C compilers. The IBM
XL C compiler supports a separate vector type extension based on AltiVec. OpenCL C has
yet another extension unique to it. The Microsoft C compiler lacks any vector extension. The
Intel compiler (prior to adopting the Clang frontend) supports the GCC extensions described
above. ARM defines a set of language extensions for NEON and SVE vectors; Clang attempts
to support every aforementioned extension. Among all these options, the GCC-compatible
extensions are the most feature-complete.

Somewhat more portable is to use vector intrinsics, C functions that directly model certain
vector assembly instructions. When targeting x86 systems the <immintrin.h> header is
portable across most major C compilers, including Intel’s, GCC, Clang, and MSVC. Similarly,
the <arm neon.h> header provides intrinsics for ARM NEON vectors. The example above
written with x86 intrinsics would be:

#include <immintrin.h>

__m256 do_fma(__m256 x, __m256 y, __m256 z) {

return _mm256_fmadd_ps(x, y, z);

}

Exo, described in chapter 3, side-steps this portability issue by generating exclusively
standard C11 in the core compiler. Because users achieve vectorization by defining custom
instructions via C code strings, they retain control over the relevant portability trade-offs.
Naturally, users will not exclude their own toolchain. We believe this is a good design, though
we hope to add abstract vector types and operations in the future.
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void stencil_sum(float *input, int m, int n, float *output) {

for (int jo = 0; jo < ((n - 2) / 64); jo++) {

for (int io = 0; io < ((m - 2) / 64); io++) {

float tile_buf[66 * 64] = {0};

// First loop nest:

for (int ji = 0; ji < 66; ji++) {

for (int ii = 0; ii < 64; ii++) {

tile_buf[64 * ji + ii] =

input[m * (jo * 64 + ji) + io * 64 + ii]

+ input[m * (jo * 64 + ji) + io * 64 + ii + 1]

+ input[m * (jo * 64 + ji) + io * 64 + 2 + ii];

} }

// Second loop nest

for (int ji = 0; ji < 64; ji++) {

for (int ii = 0; ii < 64; ii++) {

output[(m - 2) * (64 * jo + ji) + 64 * io + ii] =

tile_buf[64 * ji + ii]

+ tile_buf[64 * (ji + 1) + ii]

+ tile_buf[64 * (ji + 2) + ii];

} } } } }

Figure 5.1: A simple two-stage stencil that exhibits several subtle vectorization issues on
Clang 11.0.1 with flags -O2 -ffast-math -mavx. The input and output should be declared
restrict to indicate that they cannot alias. The second loop nest vectorizes cleanly, but the
first does not. There are several resolutions: (1) the subexpression 2 + ii can be rewritten
to ii + 2, (2) the loop counter variables can be changed to long or int fast32 t, or (3)
the literal 2 can be manually expanded to a long by writing it as 2L.

The one common strategy that does not work, however, is to trust the C compiler to
automatically vectorize code. Consider the simple two-stage stencil in fig. 5.12. It consists of
two loop nests: the first computes a horizontal sum and the second computes a vertical sum.
Clang 11.0.1 (using flags -O2 -ffast-math -mavx) compiles the second loop to this:

.LBB0_15:

vmovups ymm0, ymmword ptr [rsp + rcx + 384]

vaddps ymm0, ymm0, ymmword ptr [rsp + rcx + 128]

vaddps ymm0, ymm0, ymmword ptr [rsp + rcx + 640]

vmovups ymmword ptr [rax - 224], ymm0

# ... seven similar repetitions elided ...

add rcx, 256

add rax, rdx

cmp rcx, 16384

jne .LBB0_15

This is reasonable vector code for this loop. The loads, stores, and additions are exactly

2For an interactive version of this example, see https://godbolt.org/z/nrM3E6Wcz for the original code
only and https://godbolt.org/z/eYdMK44z3 for a side-by-side comparison.

https://godbolt.org/z/nrM3E6Wcz
https://godbolt.org/z/eYdMK44z3
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void stencil_sum(float const * restrict input,

int64_t m, int64_t n,

float * restrict output) {

for (int_fast32_t jo = 0; jo < ((n - 2) / 64); jo++) {

for (int_fast32_t io = 0; io < ((m - 2) / 64); io++) {

float tile_buf[66 * 64] = {0};

// First loop nest:

for (int_fast32_t ji = 0; ji < 66; ji++) {

for (int_fast32_t ii = 0; ii < 64; ii++) {

tile_buf[64 * ji + ii] =

input[m * (jo * 64 + ji) + io * 64 + ii]

+ input[m * (jo * 64 + ji) + io * 64 + ii + 1]

+ input[m * (jo * 64 + ji) + io * 64 + ii + 2];

} }

// Second loop nest

for (int_fast32_t ji = 0; ji < 64; ji++) {

for (int_fast32_t ii = 0; ii < 64; ii++) {

output[(m - 2) * (64 * jo + ji) + 64 * io + ii] =

tile_buf[64 * ji + ii]

+ tile_buf[64 * (ji + 1) + ii]

+ tile_buf[64 * (ji + 2) + ii];

} } } } }

Figure 5.2: A corrected version of the program in fig. 5.1. This version uses precise types at
the API boundary, including correct const qualifications. It uses the int fast32 t type for
loop iteration counters, which is no worse than before in terms of overflow correctness, but
prevents excess sign extensions. Finally, commuting terms in index expressions are sorted.

those in the original program, with nothing extraneous in between. On the other hand, the
first loop is not so lucky. It is compiled to:

.LBB0_12:

lea edi, [rdx + r10]

imul edi, r13d

add edi, dword ptr [rsp + 120] # 4-byte Folded Reload

mov rsi, rdx

movsxd rdi, edi

vmovups ymm0, ymmword ptr [rbx + 4*rdi + 4]

vaddps ymm0, ymm0, ymmword ptr [rbx + 4*rdi]

lea ebp, [rdi + 2]

movsxd rbp, ebp

vaddps ymm0, ymm0, ymmword ptr [rbx + 4*rbp]

shl rsi, 6

vmovups ymmword ptr [rsp + 4*rsi + 128], ymm0

# ... seven similar repetitions elided ...

.LBB0_13: # in Loop: Header=BB0_5 Depth=3

# ... five instructions elided ...

.LBB0_5: # Parent Loop BB0_2 Depth=1
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# ... ten instructions elided ...

jl .LBB0_12

This is a mess. Many instructions are dedicated to computing addresses, some intermediate
values have spilled onto the stack, the loop control logic has ballooned from three instructions
to increment a loop counter to fifteen (elided for space) instructions with extra jumps and
labels. Why isn’t this code as tidy as the previous code?

It turns out there are at least three different, surprising, ways to get better code generation:

1. Rewrite the sub-expression 2 + ii to ii + 2.

2. Replace the 2 in that same expression with 2L.

3. Use (on this platform) long everywhere instead of int.

The underlying reason common to each of these cases is that the type of a pointer is wider
than int on this platform. Hence, sign-extension IR instructions must be emitted to preserve
C’s semantics. However, this frustrates common sub-expression elimination in this case,
and so the expression m * (jo * 64 + ji) + io * 64 + ii is not factored out of all three
indices. Downstream, this disables important loop optimizations that eliminate the index
math in the loop. The latter two points strategically remove the sign extensions, which allow
LLVM’s CSE to work correctly and the loop is then vectorized cleanly.

The situation is even worse on newer versions of Clang (all through 15.0.0, the latest at
time of writing), which emit no vector operations for the first loop whatsoever. Additionally,
versions of GCC below 11.1 are unable to generate good vector code for this example, and
even good versions do so only at the highest optimization level (lower levels vectorize, but
do not unroll the loop, as should be done). So automatic vectorization is unreliable both
between compiler vendors and across versions from a single vendor.

An improved version of this program can be found in fig. 5.2, but this should only serve
to underscore the following: automatic vectorization is fickle and attempting to anticipate its
peculiarities from a code generator is quixotic. Do not design DSL compilers that expect
auto-vectorization to happen in C.

This is one area where targeting LLVM directly can pay off. LLVM has built in vector
types for generic vector backends, but also exposes finer-grained instruction selection. One
pitfall is that LLVM’s loop optimizations assume that their input was produced by Clang
and so tend to de-optimize vector code3. Hopefully MLIR will further increase the level of
abstraction and reliability at which one can generate good vector code for common platforms.

5.1.3 Compiler optimization

Vectorization is not the only compiler optimization that is too unreliable for C code generation.
C optimizers are engineered to process code written by humans and tend to struggle on

3In fact, Halide offers an option to disable them; eventually, they will be disabled by default.
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machine generated code. For instance, some optimizations scale super-linearly with the
number of basic blocks in a function, so very large functions can be slow to optimize. On
the other hand, breaking a computation up into many small functions will stress inlining
heuristics and risk wasting too much runtime on function call overhead. In the next few
sections, we will look at commonly missed optimizations that particularly affect DSL authors.

Recursion

Control flow in numerical DSLs tends to be oriented around for-loops, which have a direct
translation to C. Optimizing this sort of flat, static control flow has been the subject of
decades of engineering effort in C compilers, and so one can generally expect such loops and
basic blocks to be well optimized.

However, considerably less effort has been spent optimizing across functions calls. Compiler
engineers familiar with functional languages like Haskell and OCaml might be surprised to
learn that C compilers often miss opportunities for profitable function inlining, recursion
elimination, and more. These missed optimizations can render recursive programs unsuitable
for practical use, as their consumption of stack space becomes prohibitively high4.

These types of problems plague even formally verified systems, such as [162]. The system
described in the paper synthesizes the following code to copy a singly linked list:

void sll_copy(loc r) {

loc x2 = READ_LOC(r, 0);

if (x2 == NULL) {

return;

} else {

int v = READ_INT(x2, 0);

loc nxt = READ_LOC(x2, 1);

WRITE_LOC(r, 0, nxt);

sll_copy(r);

loc y12 = READ_LOC(r, 0);

loc y2 = (loc)malloc(2 * sizeof(loc));

WRITE_LOC(r, 0, y2);

WRITE_LOC(y2, 1, y12);

WRITE_INT(y2, 0, v);

return;

}

}

This program is recursive, but not tail -recursive. To be efficient, the compiler would need
to perform a program transformation called tail recursion modulo cons [98]. TRMC applies
to functions whose recursive calls would be in tail position, except that the recursive value

4Microsoft Windows has a default stack size of only 1MB, which is tiny. The Halide compiler, which uses
recursion to manage tree traversals, has to manually offload work onto a separate thread (actually a “fiber”)
with a larger stack space allocated.
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is passed to a data constructor. TRMC safely converts such functions into an effectful
destination-passing style, allowing normal tail-recursion elimination to proceed.

However, I know of no C compiler that performs TRMC, including the latest versions of
Clang, GCC, MSVC, and Intel ICC. This program therefore uses O(n) auxiliary stack space
when copying a list of n elements. Although it is formally verified to produce a true copy
without violating heap integrity, it cannot actually be deployed. The formalism in the paper
does not model a call stack and so constraints on resource consumption due to recursion
cannot be stated to the synthesizer.

Yet, the paper admirably dedicates an entire section to explaining how its intermediate
DSL is faithfully translated to C. The loc type and read/write macros in the code above
are designed to avoid undefined behavior that would come from punning pointer and integer
types. Clearly, much thought was put into C code generation but, as Donald Knuth might
say, the program was only proven correct, not tried.

An accompanying blog post[55] positions this work as “synthesising completely correct
C-code” and “removing any need to trust fallible human developers”. Yet, this stack space
issue reminds us that formal verification can only prove properties it was asked to prove, and
that accounting for every constraint is not necessarily easier than writing a correct program.
This is my attempt:

typedef struct node node;

struct node { int64_t data; node *next; };

node *sll_copy(node const *cur) {

node *new_list = NULL, *prev = NULL;

for (; cur; cur = cur->next) {

node *tail = malloc(sizeof(*tail));

tail->data = cur->data;

if (new_list == NULL) {

new_list = tail;

} else {

prev->next = tail;

}

prev = tail;

}

if (prev) { prev->next = NULL; }

return new_list;

}

It is not especially difficult to see this program produces a true copy of the input list using
constant stack space and while avoiding undefined behavior. It also uses a somewhat more
idiomatic API: the function returns a pointer to the new list, rather than writing it back to
the source location, and uses a struct type for nodes instead of an array of untagged unions.
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Memory layout

The primary language feature for creating data structures in C is the struct, which is a
nominal product type over a list of members. Empty structs are not portable between C and
C++, as they are given different sizes, and so should be avoided during code generation. The
void type should be preferred.

The memory layout of a struct is dictated by the declaration order of its members and the
compilation target. Members are placed in memory in the same order as their declaration but
padding might be inserted between members to ensure proper alignment for the target. The
compiler is not allowed to reorder struct members into a more compact layout. Generated
structs will need to sort their members for optimal layout prior to C code generation.

When choosing a memory layout, there are several competing pressures to consider. First,
although the C standard does not guarantee anything about the size or amount of padding
for a struct, it does guarantee that no padding is present before the first member. This rule
explicitly allows casting a pointer to a struct to a pointer to its first member, which can be
used to efficiently implement a form of single-inheritance subtyping. Second, large structs
will want to place temporally correlated members next to one another, ideally not crossing a
cache line boundary. Third, the members should be arranged to minimize padding, which is
simply wasted space. Finally, flexible array members may only occur last.

Many compilers offer language extensions for controlling struct layout more precisely.
Most compilers offer a #pragma pack directive that eliminates padding at the cost of extra
computation time to extract members. This is most useful at data serialization boundaries,
where knowing the exact layout of a struct is important. It is not typically a good idea to use
packed structs for normal data representation since the extraction costs can be quite high.

Arrays of structs are laid out in memory with each element placed whole, one after the
other, with members and padding interleaved. As such, iterating over a single member of
each array element (such as just the red channel in an image), forces the cache to load unused
data and padding. Thus, it can be very profitable to represent arrays of structs (AoS) as
structs of arrays (SoA), instead, with one array dedicated to each member of the original
struct. The Dex[121] language always represents arrays of product types in SoA format.

There are several strategies for implementing SoA. The simplest is to define a record-
keeping struct that holds the size and start pointers for n arrays, one for each member of
the original struct. This requires n+ 1 allocations and frees, each, to create and destroy the
SoA. This is easy to implement and is broadly portable. It also enables some interesting data
structure operations, like swapping out one member array for another, or freeing a member if
its lifetime is shorter than the other members.

If the number of allocations or memory fragmentation are an overriding concern, one can
use a flexible array member to hold the data for all n arrays. The start pointers in the SoA
point into the flexible array member, with care taken to ensure that alignment is respected.
This way, a single call to malloc and free can allocate and release the entire SoA. Note that
flexible array members are not standard C++. In practice, however, every major compiler
supports them.
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Communicating assumptions

It is typical for a DSL to have stricter semantics than C, and for these semantics to enable
optimizations that are not possible in C without making stronger assumptions about the
structure of a program.

For instance, in C, pointers are allowed to alias one another freely. This forces the compiler
to be conservative about ordering accesses to memory when manipulating multiple pointers
simultaneously. The restrict keyword, when applied to a pointer declaration, promises the
compiler that the given pointer will not alias any other pointer in scope. This is fairly coarse,
but is essential to achieving high performance out-of-place computations.

Other assumptions can be communicated via non-portable language extensions such as
Clang’s builtin assume function, which takes a boolean expression that should be assumed
to be true after the call. This is useful for communicating alignment constraints on a pointer,
assuring the compiler a value (such as the length of a list) is positive, and so forth.

Absent explicit features for communicating assumptions, one can place the assumption in
a branch that, if violated, would surely invoke undefined behavior. This is unreliable, so a
standard way to communicate these assumptions is being added in C++23.

Security considerations

Some compiler optimizations have serious security implications. For instance, calls to the
standard memset and memcpy functions are commonly elided by modern C compilers, even
though they have highly optimized implementations. This unfortunately means that these
functions must not be used when writing to memory is required, such as when clearing a buffer
that stores a cryptographic secret or communicating with an MMIO device. The functions
memset s and memcpy s were introduced in C11 to guarantee that copies actually happen.

5.2 Building C and C++ programs

Once one has written a fast C program, one will most likely need to share that program
with colleagues, artifact review committees, industry contacts, and so forth. Yet, none of
these people are guaranteed to use the same compiler, operating system, or even processor
architecture. Thus, portability must be considered. Each person should be able to build and
run the code or, if they cannot, understand precisely why it is impossible.

Unfortunately, C is unusual in that there are innumerable competing implementation
and platform combinations, each with mutually incompatible interfaces and non-standard
extensions. Any assumption based on the behavior of a single point in this space is unlikely
to hold elsewhere, even on supposedly similar systems.

Merely building a C program is shockingly complex, much more so than is widely appreci-
ated, and even in the best-case scenario where the code itself adheres strictly to language
standards. There is no standardized build system for C or C++, and so nearly every project
ends up developing some amount of custom tooling for driving their builds.
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The DSL author will encounter challenges integrating their new languages into existing
build systems without an understanding of the challenges involved with building C and C++

code in the first place. It is easy to unintentionally introduce portability constraints.

5.2.1 Writing a build system

To illustrate this, consider the Makefile. Makefiles are taught in nearly every top-tier computer
science program as the preferred way to build C code. Yet, the examples of Makefiles appearing
in these curricula [3, 4, 40, 41, 56, 102, 120, 122, 127] contain serious portability bugs and
demonstrate bad practices5.

Let us examine one Makefile taken from MIT OpenCourseWare[3]. It builds an application,
program, from two source files: main.c and iodat.c. The latter has a corresponding header
file which is included by both source files. What is non-portable about the following?

program: main.o iodat.o

cc -o program main.o iodat.o

main.o: main.c

cc -c main.c

iodat.o: iodat.c

cc -c iodat.c

There is very much that is non-portable. One of its most basic mistakes is to hard-code
the compiler as cc. This makes switching the compiler to cross-compile the program for
another architecture needlessly difficult. One would have to write a wrapper script, also
named cc, that forwards its arguments to the real compiler to avoid patching or outright
replacing the build. There is an established convention to use the $(CC) variable to invoke
the C compiler.

It also makes some strong assumptions about the compiler command line. First, it assumes
the compiler understands the -c and -o flags at all, which is not the case with at least the
Microsoft compiler. Second, it assumes that an appropriate output filename will be computed
from the input filename when none is specified. It would not be surprising to learn that some
compiler considers this an error.

The commands are also incomplete. POSIX systems generally expect certain environment
variables to affect the command lines of compiler invocations. In particular, the CFLAGS

and LDFLAGS variables should be expanded into compiler and linker commands, respectively.
Without these, the Makefile must be edited to enable program optimizations.

There are also some basic engineering flaws. Each rule repeats the names of files in
both the dependency list and the command. Discrepancies between these lists, especially as
the Makefile grows, will be hard to notice and pinpoint when errors arise. In a command
specification, the automatic variable $^ expands to the full list of dependencies and should
be used instead.

5One Makefile[75], written in 1998 at UC Berkeley, stands out as the only (nearly) correct example.
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There is no attempt to establish dependencies on header files, whether they are part of
the project (such as iodat.h) or provided by the system. If a header is changed, or the
system is upgraded, the project must be rebuilt from scratch. There is also no attempt to
establish dependencies on the Makefile commands themselves, so incremental builds cannot
accurately update files whose command lines changed6.

Finally, and this is common to many Makefiles, it writes build outputs directly to the
source directory. This runs the risk of overwriting files unintentionally, and frustrates common
workflows that keep separate binary directories for incompatible configurations. For instance,
one might use one directory to keep the artifacts for a build that has debugging features and
instrumentation enabled and another directory for an optimized build.

The lecture goes on to correct a few of these issues, but even so, the lesson fails to teach
students to write robust build systems. Again, MIT is not an outlier in this respect; sadly,
most top-tier computer science programs fail to teach these skills, too. More disappointing
is that these pitfalls have been well known for decades. The 1998 article “Recursive Make
Considered Harmful”[110] details some particularly egregious misuses of Make, but also
discusses a correct approach to declaring header and inter-project dependencies.

Such discussions tend to implicitly assume that Make is a single system, but this is not
true. There are in fact many implementations of Make, including GNU Make, yes, but also
BSD Make and Microsoft NMake. Each one supports mutually incompatible extensions on
top of a tiny and inexpressive core language. For instance, BSD Make uses the variable
${.IMPSRC} to refer to the implicit source file in a so-called “suffix rule”. GNU Make uses
“$<” for this, instead. NMake uses “$<” too, but then uses a distinct syntax for declaring the
suffix rule in the first place.

So even writing a perfect Makefile, with none of the aforementioned issues, using one
implementation of Make is no guarantee of portability to another one. The solution is to use
an abstraction layer. For example, CMake[26] can express a correct, portable build system
for this same program in only three lines of code:

cmake_minimum_required(VERSION 3.24)

project(example LANGUAGES C)

add_executable(program main.c iodat.c)

This isn’t an argument to use CMake specifically, but it is perhaps an argument to stop
teaching Make as a C build system. Similar benefits can be found by using any modern build
system, including Bazel[10], Meson[149], and others.

Still, this is not a panacea. Even when the operating system and compiler is predetermined,
portability concerns remain. In 2021, the Linux kernel attempted to enable a “warnings as
errors” compiler setting, which backfired badly.

Linux is highly configurable and exposes hundreds of settings; multiplied by a few
dozen compiler versions and a handful of target architectures, the total number of build

6In fairness, this is quite tricky to accomplish with any flavor of Make
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configurations is staggering. Probabilistically speaking, there is no reason to believe that
every point in this combinatorially large space would be free of compiler warnings. And
indeed, it is not the case.

The backlash was swift. Within a day, the Linux Kernel Mailing List was abuzz with users
whose continuous integration systems were broken by this change. After some discussion, it
was decided that warnings-as-errors should be enabled by default only for builds that are
explicitly meant to test the build process itself.

Ultimately, this fiasco could easily have been avoided by following the golden rule of build
specification: include in the specification exactly what must be included, no more or less.

Warning flags never impact the correctness of a build or code generation. They must
therefore be enabled through the build system’s injection facilities. These include the
CFLAGS environment variable for Make and compatible systems, and the CMAKE C FLAGS

and CMAKE COMPILE WARNING AS ERROR variables in CMake. On the other hand, the list of
source files always matters. Configuring include paths and library linking flags are also
non-negotiable.

One trickier case is source files that use SIMD intrinsics; such files usually require special
compiler configuration in order to compile successfully. Enabling these flags on a per-source-
file basis is not necessarily safe, since it can impact the ABI. In these cases, the appropriate
response is to run a test compilation to check whether the user has already configured the
build system correctly. If so, do nothing. When this is not the case, a configuration point
may be added that contains a presumed flag that will be added. For AVX2, this might be
-mavx2 on Clang and GCC and /arch:AVX2 on MSVC. It is acceptable to use heuristics to
determine a default value7.

Even small projects must be aware of these issues. The sensitivity of warning flags is not
stable between versions of a single compiler. New warnings are sometimes added to the default
settings, which would make upgrading the compiler nearly impossible if warnings-as-errors is
enabled.

This anecdote should caution a C developer to be mindful of the combinatorially large
space of development environments that exist. One should never ship a C build system with
warnings promoted to errors by default. Yet, warnings should not be ignored and one’s
development process should not allow merging code with known warnings.

The best solution is usually to provide some mechanism for injecting these flags from out-
side the build. Makefiles that respect CFLAGS allow the user to set -Wall -Werror when their
compiler supports it. The CMake CMAKE C FLAGS and CMAKE COMPILE WARNING AS ERROR

variables serve a similar purpose. In any case, these injection points can be set by CI systems
and developers who are working directly on a project, but ignored by users who simply wish
to integrate said project into another system.

7To support runtime dispatch between kernels with different ISA mixes, run test compiles for each
ISA extension and include only those kernels whose requirements are met. If no kernels match, issue a
configure-time error. Include logic to report which kernels were enabled in the build output. Ideally, empower
the user to disable runtime dispatch and force a single kernel.
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In all, there is enough to make one’s head spin, and the discussion has so far been limited
to build systems and compiler settings. Here are a few concrete recommendations that will
help any project play nicely with other systems.

1. A build system is software, too, and should be tested. Free continuous integration
systems have emerged in the last five or six years that provide easy access to Windows,
macOS, and Linux machines on the cloud. This is perhaps the single most effective
way to achieve basic portability.

2. Every hard-coded compiler flag is a liability. The build definitions should limit them-
selves only to settings that are absolutely required to produce usable binaries on any
platform. Warning flags are not in this category. Common sets of settings can be stored
in non-portable build scripts strictly as a convenience. These scripts should not sit on
the critical path between obtaining the code and running it.

Speaking from experience developing Exo, the Chipyard build system was a constant
source of delays and confusion. Time spent dealing with bugs and restarting from scratch on
failures cost our team multiple person-weeks of time. Eventually, I spent two days writing a
new build system for the pieces of the code that we needed. Scaled up to an entire industry,
the consequences of bad build systems on research productivity are disturbing.

5.2.2 Integration with existing build systems

In the previous section, we saw that Make’s lack of abstraction for the C and C++ compilation
process makes it a cumbersome choice for building portable software. However, the solutions
provided by modern build systems tend to be more rigid and restricted than is necessary.

The most effective way to integrate a new DSL compiler into an existing build system
depends on two major factors: the format of the compiler output and the discovery of
dependencies needed for a compiler invocation.

Output format

Most build systems can easily handle DSL compilers that output C or C++ source code (as
discussed in §5.1). As an example, CMake provides a function called add custom command

that defines a rule for producing a set of object files from a set of input files using a given
program. If the output files are plain C, they can be added to the list of sources for an
executable or library target.

However, if the compiler intends to output a binary, things get more complex. Somehow,
the DSL compiler will need a description of the target platform to use, and there is no
standard or portable format for describing platforms, so a custom solution is needed for each
build system. Halide, for example, must translate CMake’s toolchain descriptions into a
“target string”, which is then translated to API calls to LLVM. We must also do this in Bazel,
and we have seen users attempt to do it in Meson (though, so far, only incorrectly).
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There is also the question of whether it is better to emit object files or fully prepared build
artifacts like executables or libraries. In general, it is better to emit object files. First, the
end user might need to configure the linker specially, such as to rename certain symbols for
ABI versioning, or for including multiple copies of the library. This is impossible to do once
the linker has run. Second, the semantics of each are different: linking object files into a final
artifact is guaranteed to preserve global constructors. However, linking to a static library
will strip symbols that are not directly referenced by the linkee, including these constructors.
This is particularly annoying when trying to register a plugin to an object factory. This
pitfall does not apply to shared libraries, but then the target platform must support shared
libraries to begin with (not guaranteed on embedded platforms) and on other platforms, the
cost of the library loader increases. Finally, whole-program or link-time optimizations work
better with object files.

Dependency specification

When source files change, the build system needs to be able to bring dependent targets up
to date. In the simplest case, this is a function only of the command line arguments to the
DSL compiler. For instance, lex and yacc accept an input file argument and an output path
argument that fully determines the dependency edges. This is good.

Other languages are more complex: Fortran (and now C++20) has a module system that
requires scanning the source code in order to determine a language-level module graph which
must be communicated to the build system. Again, this is highly build-system specific,
but one popular approach is implemented in Ninja[103]. This involves running a separate
command that writes a list of dependencies to a file; ninja runs this command and remembers
the output when bringing a target up to date. Note that higher-order versions of this are
possible, but inadvisable.

A simpler case of discovered dependencies can be found in C and LATEX, which both
have features for including another file directly into the token stream. This differs from
above because the dependencies can be determined while the compiler is running, not in a
separate discovery pass. In these cases, it is a de facto standard to write out lists of discovered
dependencies in Makefile format to a file with a .d extension alongside the normal compiler
output.

Staging

Compiling a Halide program involves two calls to a C++ compiler: one to create a so-called
“generator” executable, which acts as the compiler, and another to link the final executable
or library containing the emitted object. This structure is called staging : one program is
written that must be run to produce another.

Staging has many successful implementations in other contexts, including Terra in Lua
[35] and LMS in Scala [136]. However, experience suggests it is a poor fit for C++. In
cross-compiling scenarios, two separate C++ toolchains (or at least separate and mutually
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incompatible configurations of the same toolchain) are needed, one for each of the steps above
(generate and link). This is a serious issue for some build systems. CMake has a deeply
ingrained assumption that a single toolchain is active; therefore Halide projects using CMake
must be built twice. We provide helpers to avoid redundant work and to make this easier,
but engineering them was challenging. Makefiles, too, have only a single set of variables to
control the compiler selection and no de-facto standards have emerged. Meson does maintain
a separate notion of a “host” toolchain that suffices for Halide’s purposes, but Meson does
not provide any means of abstracting build rules for custom languages and so is a poor fit for
DSLs.
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Chapter 6

Related Work

This thesis is rooted in a great body of prior art on compiler construction, formal semantics,
language runtimes, and performance engineering. This chapter presents a brief tour of this
work to place this thesis in context.

6.1 User-schedulable languages

The idea of explicit control over compiler transformations developed earlier in many script- or
pragma-based compiler tools from the high-performance computing space, including Xlang[38],
Sequoia[42], POET[170], Orio[70], OpenMP[31], and CHiLL[19]. The definition of parametric
spaces of optimizations, which lies at the heart of user-scheduling, was originally introduced
by SPIRAL[48].

The computational and scheduling models of Halide evolved through a series of extensions
and generalizations[128, 129, 130, 143] before they were formalized in this work. Halide’s
algorithm language is closely related to both array languages and image processing DSLs such
as Popi[76] and Shantzis[139]. Notable array languages include APL[82] and ZPL[18], as well
as more recent developments such as Chapel[17], Accelerate[16] (for Haskell), and Futhark[74].
Halide’s computational model is most closely related to that of the lazy functional image
language Pan[39]. Bounds inference is related to array shape analyses and type systems
[73, 83, 84]. Our treatment of bounds inference is (to the best of our knowledge) the first
formulation via a constraint-based program synthesis problem [59].

A growing family of high performance DSLs since the introduction of Halide have di-
rectly adopted the concept of a programmer-visible scheduling language, including Legion[9],
TVM[22], TACO[86, 156], GraphIt[172], SWIRL[157], FireIron[62], and Taichi[77].

The polyhedral loop optimization community has explored user-scheduling in its own
context, in such systems as PENCIL[5], URUK[27, 28, 54], CHiLL[19], and Tiramisu[6].
ISL[158] is a reusable system for manipulating integer sets and polyhedral program schedules;
its internal representation of schedules as “schedule trees”[159] is similar to Halide’s original
conception of schedules.
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Egg[163], ELEVATE[61], and the X language[38] all provide generic transformation or
rewriting infrastructure. These could be used to implement the mechanism of a scheduling
language like Exo’s, but do not provide the definitions and metatheory needed to establish
correctness for it or any specific language.

6.2 Program analysis

Virtually all of these languages and systems do not have formally specified semantics, proofs
of soundness, or other such metatheory. POET[170] and TeML[144] are notable exceptions
for being defined formally, but their scheduling or transformation languages are not shown to
be correctness-preserving. Legion defined a core calculus and proved a form of soundness for
their dynamic, user-configurable distributed scheduler[150]. However, many of the details are
unnecessary for formalizing Halide, and redundant recomputation and overcomputation on
uninitialized values, both essential to Halide, remain outside their scope.

The correctness of many compiler transformations has been treated in the context of
verified compilers like CompCert [14, 140, 151]. The closest component to the present work
is the CompCert instruction-scheduling optimization, which is designed to be applied after
register allocation. (By contrast, we are concerned with less local and harder-to-validate loop
transformations.) Verification is based on the translation validation strategy, where a certified
validator program attempts to prove that the pre- and post-optimization programs are
equivalent. This strategy is effective in the CompCert scenario because (a) it is (potentially)
generic with respect to the choice of optimization pass and (b) when validation fails, Comp-
Cert can always (correctly) fall back to a less optimized version of the code. Once scheduling
is exposed to the user (our scenario), these design choices are inappropriate. The semantics
must make predictable and defensible guarantees to users about the results of schedules that
they write.

Concurrent work by Newcomb et al. [116] uses program synthesis to build a verified
term-rewriting expression simplifier for the Halide expression language. Their verification
conditions are based on the expression language semantics described in this work. More
concurrent work by Clément and Cohen [25] applies translation validation to an affine subset
of Halide, and can verify individual compiler outputs. However, this goal differs from the
present work, which attempts to verify a full formal specification of Halide.

Exo builds on attempts to formalize guarantees of safety and equivalence under scheduling
in Halide[133]. In sharp contrast to Halide, Exo adopts the approach of implementing
scheduling via algebraic rewrites within a core language. While prior systems which follow
this approach work mostly on restricted functional languages, where equivalence before and
after rewrites is straightforward (and often not formally checked) [61, 100, 141], Exo rewrites
imperative code, and relies on effect analyses which reduce to SMT for verification.

Exo’s framework for verifying equivalence and safety builds on several threads from type
systems and dependence analysis. Dependently-typed arrays, especially as adapted in the
formalization of Halide, inform Exo’s treatment of memory safety[83, 84, 165]. Dependence
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analysis, especially on static control programs, forms a common basis for reasoning about
the safety of loop transformations [43, 47].

6.2.1 Polyhedral analysis

When combined with reasoning about affine indexing, this is the basis of polyhedral compila-
tion[44]. CHiLL and Tiramisu defer correctness claims to polyhedral dependence analysis
using ISL[158]. As will be discussed in §2.3, dependence analysis is only sufficient to justify
re-ordering transformations—not transformations such as Halide’s compute-at, which recom-
pute or over-compute values and might introduce novel statement instances. For instance, in
correspondence with authors of the Tiramisu paper and system[30], we discovered that the
relevant safety checks for compute-at transformations had neither been implemented in the
system artifact, nor described in the paper.

Older automated polyhedral analyses[43] work on static control programs with denotational
or functional semantics. In that setting, dataflow and dependence graphs are equivalent. This
is also the case for functional DSLs such as PolyMage[114], which also supports redundant
recomputation. Recent developments in the Alpha system[171] are notable for maintaining a
complete denotational form of the program throughout transformation, not just a dependence
analysis. As with Halide, functional semantics are crucial for reasoning about such non-re-
ordering code transformations.

6.2.2 Effect types

In contrast, Exo’s approach builds on effect types, as proposed by Gifford and Lucassen[53].
While these approaches are distinct, the earliest foundations of dependencies for program
parallelization define conditions on read and write sets closely related to our effect analyses[13].

Despite this difference, Exo can be seen as a polyhedral compiler, in the sense that it is
built on linear integer arithmetic and static control programs. However, the program analysis
used in Exo goes beyond what is normally called “polyhedral analysis” in two respects:
mutable control state (for which we must rely on an approximating symbolic dataflow analysis
§3.5.3), and justifying code deletion/insertion (§3.5.7 and 3.6.2). Both of these phenomena
are necessary to support scheduling of hardware accelerators that make use of configuration
state. They also force us to adopt ternary logic at the base of our program analysis in order
to safely propagate the dataflow approximations. If configuration state were eliminated, Exo
would more closely resemble traditional polyhedral compilers focused purely on reordering
statement instances.

6.3 Instruction selection

Exo’s instruction/procedure mapping mechanism is related to the classic problem of instruction
selection[2]. Traditional instruction selection applies local pattern matching rules to replace
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small IR fragments with equivalent instructions, but this struggles to effectively exploit
accelerator instructions which correspond to large, complex program fragments. Recent work
applies more powerful search techniques to target more complex SIMD instructions using
program synthesis[124] and equality saturation[155]. Exo allows substitution of much larger
program fragments with arbitrary equivalent procedures, under explicit programmer control,
and allows these substitutions to be interleaved with further scheduling transformations rather
than confined to the compiler backend. TVM provides a related “tensorization” directive
for replacing loop fragments with instructions asserted as equivalent[22], but it lacks the
combination of automation and checking provided by Exo’s unification procedure.

6.4 Reference counting systems

Perceus is closely based on the reference counting algorithm in the Lean theorem prover as
described by Ullrich and de Moura [153]. They describe reuse analysis based on reset/reuse
instructions, and describe both reference counting based on ownership (i.e. precise) but also
support borrowed parameters. We extend their work with drop- and reuse specialization,
and generalize to a general purpose language with side-effects and complex control flow. We
also introduce a novel formalization of reference counting with the linear resource calculus,
and define our algorithm in terms of that. As such, the Perceus algorithm may differ from
Lean’s as that is specified over a lower-level calculus that uses explicit partial application
nodes (pap) and has no first-class lambda expressions. Schulte [138] describes an algorithm
for inserting reference count instructions in a small first-order language and shows a limited
form of reuse analysis, called “reusage” (transformation T14).

Using explicit reference count instructions in order to optimize them via static analysis is
described as early as Barth [8]. Mutating unique references in place has traditionally focused
on array updates [78], as in functional array languages like Sisal [108] and SaC [57, 137].
Férey and Shankar [46] provide functional array primitives that use in-place mutation if the
array has a unique reference; we plan to add these to Koka. We believe this would work
especially well in combination with reuse-analysis for BTree-like structures using trees of
small functional arrays.

The λ1 calculus is closely based on linear logic. Turner and Wadler [152] give a heap-based
operational interpretation which does not need reference counts as linearity is tracked by the
type system. In contrast, Chirimar, Gunter, and Riecke [23] give an interpretation of linear
logic in terms of reference counting, but in their system, values with a linear type are not
guaranteed to have a unique reference at runtime.

Generally, a system with linear types [161], like linear Haskell [12], or the uniqueness
typing of Clean [7, 160], can offer static guarantees that the corresponding objects are unique
at runtime, so that destructive updates can always be performed safely. However, this usually
also requires writing multiple versions of a function for each case (unique versus shared
argument). By contrast, reuse analysis relies on dynamic runtime information, and thus reuse
can be performed generally. This is also what enables FBIP to use a single function that
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can be used for both unique or shared objects (since the uniqueness property is not part of
the type). These two mechanisms could be combined: if our system is extended with unique
types, then reuse analysis could statically eliminate corresponding uniqueness checks.

The Swift language is widely used in iOS development and uses reference counting with
an explicit representation in its intermediate language. There is no reuse analysis but, as
remarked by Ullrich and de Moura [153], this may not be so important for Swift as typical
programs mutate objects in-place. There is no cycle collection for Swift, but despite the
widespread usage of mutation this seems to be not a large problem in practice. Since it can
be easy to create accidental cycles through the self pointer in callbacks, Swift has good
support for weak references to break such cycles in a declarative manner. Ungar, Grove, and
Franke [154] optimize atomic reference counts by tagging objects that can be potentially
thread-shared. Later work by Choi, Shull, and Torrellas [24], uses biased reference counting
to avoid many atomic updates.

The CPython implementation also uses reference counting, and uses ownership-based
reference counts for parameters but still only drops the reference count of local variables
when exiting the frame. Another recent language that uses reference counting is Nim. The
reference counting method is scope-based and uses non-atomic operations (and objects cannot
be shared across threads without extra precautions). Nim can be configured to use ORC
reference counting which extends the basic ARC collector with a cycle collection [169]. Nim
has the acyclic annotation to identify data types that are (co)-inductive, as well as the
(unsafe) cursor annotation for variables that should not be reference counted.

In our work we focus on precise and garbage free reference counting which enables static
optimization of reference count instructions. On the other extreme, Deutsch and Bobrow [34]
consider deferred reference counting—any reference count operations on stack-based local
variables are deferred and only the reference counts of fields in the heap are maintained.
Much like a tracing collector, the stack roots are periodically scanned and deferred reference
counting operations are performed. Levanoni and Petrank [99] extend this work and present
a high performance reference counting collector for Java that uses the sliding view algorithm
to avoid many intermediate reference counting operations and needs no synchronization on
the write barrier.
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Chapter 7

Conclusion

7.1 Impact

This thesis advances the design and implementation of three languages: Halide, Exo, and Koka.
It provides a framework for understanding the metatheory of user-schedulable languages,
rooted in Halide’s design, and refines that framework in the design of Exo. The thesis
addresses semantic issues related to program transformations that alter the set of statement
instances, globally visible hardware configuration state, and object lifetimes, and develops
practical solutions for instruction selection for accelerator hardware and reference counting
efficiency.

Building a formal model of Halide identified and resolved many important design issues
and made the practical system more stable. It has informed other ongoing efforts to formalize
parts of Halide, including its expression simplification and bounds inference systems. We are
currently working with industry partners to further Exo’s development and meet the needs
of the next generation of accelerator hardware.

I am particularly optimistic about Perceus’s impact. It is already being used as the core
memory management system for new programming languages, including Roc [45], a language
under development by members of the Elm community. Perceus was also cited in the keynote
talk at the International Symposium on Memory Management as a particularly promising
new research direction [15]. The reuse system in Perceus was further advanced by Lorenzen
and Leijen [101].

7.2 Future work

There are many exciting research directions for future work. We are most excited about
exploring parts of the user-schedulable language design space in between Halide and Exo: in
particular, the phase ordering from the Halide formalism suggests that a similar decomposition
could be useful in the exocompilation settings. For example, one could imagine designing
a multi-level algorithm language where certain high-level features are eliminated at certain
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user-controlled stages. The scheduling language could operate on these features at a higher
level while they are still available. This appears to be a particularly promising approach for
handling tail cases in tiling and vectorization, both of which Exo currently struggles with.

There is much work to be done designing more expressive scheduling languages. One
ongoing project is to have the scheduling directives operate on cursors, which are rewrite-stable
pointers into a procedure. A cursor into a procedure can be forwarded to another procedure
that was derived from it. This forwarding operation might be subject to certain semantic or
structural constraints. For instance, it might be desirable to have the forwarding operation
be homomorphic over the dependent effect type of the selected code fragment. On the other
hand, this might be too restrictive: perhaps certain transformations care more about the
structure of the selection than its meaning.

Exo’s instruction selection features might be possible to retrofit into Halide, at least at
the level of defining new intrinsics as libraries and scheduling these intrinsics into algorithm
expressions via the scheduling language. A system of proxy expressions already exists for
computing the bounds of external Halide func definitions; it might be possible to generalize
this to entire funcs, at least when the bounds are affine.
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[14] Yves Bertot, Benjamin Grégoire, and Xavier Leroy. “A Structured Approach to
Proving Compiler Optimizations Based on Dataflow Analysis”. In: Types for Proofs and
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