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Abstract

Practical Solutions to Accelerating ASIC Design Development Using Machine Learning

by

Keertana Settaluri

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Borivoje Nikolić, Co-chair

Professor Krste Asanović, Co-chair

Application specific integrated circuits (ASICs) are ubiquitous in modern society, with their
high performance, low power, low area characteristics aptly utilized in state-of-the-art elec-
tronics and devices. As technology nodes scale, however, it becomes increasingly difficult
to bring innovation to circuit systems, as the complexity of design rules and the substan-
tial impact of layout parasitics not only delays time-to-market, but is also more expensive.
Emphasis is therefore placed on improving the ASIC design flow, with the primary focus
of addressing inefficiencies in this manual and iterative process. The implications of faster
ASIC development are far-reaching, allowing for rapid prototyping and better scaling in
complex and large System-on-Chip designs, reducing overall cost. Improving the chip de-
sign process, however, is challenging, as the iterative circuit, layout, and verification stages
heavily involve circuit designers, who often use circuit intuition to dictate crucial decisions.
Tools that accelerate the chip design process must therefore consider the unique constraints
posed by the ASIC domain in order to be practically utilized by circuit designers.

This thesis presents a method for analyzing the efficacy of automated ASIC design tools,
specifically by assessing the accuracy, practicability, automation, interpretability, general-
izability and run-time efficiency of the algorithm. This is established by presenting one
in-depth case study and two projects where machine learning can be used to address in-
efficiencies in ASIC design, and include: 1) an analog circuit design framework that uses
reinforcement learning (RL) to size parameters for a given circuit topology to meet a tar-
get specification, 2) an analog sub-clustering tool that uses graphical convolutional neural
networks (GCNNs), and 3) using convolutional neural networks (CNNs) to detect defects
in circuit yield. The goal is demonstrate that machine learning techniques can not only be
successfully used for these three applications, but can be comprehensively analyzed to obtain
practical and feasible solutions in circuit design.
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Specifically, the results of the RL analog circuit framework show that this solution achieves
state-of-the-art run-time efficiency across six unique circuit topologies of varying complexity
while considering layout parasitics. Additional analyses is also conducted to explain the
decision-making of the algorithm, establishing that the obtained performances are explain-
able and analyzable in the context of circuit design. Furthermore, for several non-linear
circuits, the algorithm obtains initial designs that are better than that of an expert, provid-
ing potential for better intuition into the boundaries of performance for these circuits.

The GCNN framework for analog sub-clustering project demonstrates that high run-time
efficiency with over 91% accuracy can be achieved while being fully automated, requiring
no input from the designer for classification. In addition, the algorithm successfully scales
to a variety of analog circuits, which is crucial in establishing practicality. The yield defect
detection framework using CNNs shows that ML can be applied to a post-silicon application,
successfully resulting in identification of yield defects in real and noisy scan diagnosis tests
while reducing the layout search space significantly.
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Chapter 1

Introduction

1.1 Motivation

Application-specific integrated circuits (ASICs) are ubiquitous in modern society, with their
high performance, low power, low area characteristics aptly utilized in state-of-art electronics
and devices. As a result, the ASIC market is growing by an estimated 8.6% every year, and
predicted to be valued at over $28 billion by 2026 [1]. This higher demand is not only fueling
technological innovation, but also reliance on ASICs to provide newer process technologies
at smaller form factors, faster speeds and better energy efficiency than their predecessors.

As technology nodes scale, however, it becomes increasingly difficult to bring innova-
tion to circuits, as the complexity of design rules and prominence of layout parasitics not
only delays time-to-market, but is also more expensive. In fact, the typical non-recurring
engineering (NRE) cost ranges in the tens of millions of dollars, with the development pro-
cess, consisting of creating goals and constraints, design space exploration, modelling and
simulation of the resulting design, creating the physical layout that passes various manufac-
turing checks, verifying that the circuit functions with this physical design, manufacturing
the design, and finally, verifying the design in physical silicon, taking many months to years
to complete [2]. In addition, productivity and quality standards are often difficult to meet
within a certain time-frame because the development process is iterative, with designers
cycling through the different stages many times in order to obtain a feasible design that
meets performance specifications. This is illustrated in part in Figure 1.1, where costly chip
re-spins alone, which require manufacturing the chip multiple times, significantly delay the
development process.

Significant emphasis is therefore placed on improving the ASIC design flow, with the
primary focus of addressing inefficiencies in this iterative and manual process. The implica-
tions of faster ASIC development are far-reaching, allowing for rapid prototyping and better
scaling in complex and large System-on-Chip (SoC) designs, reducing overall cost immensely.
Improving the chip design process, however, is challenging, as the iterative circuit, layout,
and verification stages heavily involve circuit designers, who often use circuit intuition, or
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their prior experience to dictate crucial decisions made to the current design. Tools that
accelerate the chip design process must consider the unique constraints posed by the ASIC
domain in order to be practically utilized by circuit designers.

Figure 1.1: Productivity and quality gap during ASIC development [3].

1.1.1 Automation of ASIC design

The goal is to automate areas of ASIC development that are innately inefficient or manual,
allowing designers to focus on other crucial aspects of the design flow, improving overall
development time and cost. Before determining specific algorithms that can be used to
address these inefficiencies, it is important to qualify the requirements for an automated tool,
that are unique to the ASIC design domain. Figure 1.2 summarizes the six key features,
explained below:

• Accurate: the proposed tool must be accurate, meaning that it achieves its objective
correctly. The specific ASIC subproblem generally dictates the tolerance for this con-
straint. For example, automated place and route algorithms often provide initially
infeasible designs, even with established CAD tools, versus DRC (design rule check)
or LVS (or layout versus schematic) checks must be fully accurate with no errors. The
accuracy metric can be represented in many ways, but should be specific to the ASIC
problem being solved as opposed to the proposed solution. For example, for a ma-
chine learning (ML) algorithm, training or deployment accuracy is traditionally used
to assess efficacy [4]. If, however, the proposed ASIC problem is optimization-related,
it is also important to also assess the ML solution under this context as well, perhaps
via an accuracy metric that compares the ML solution to an expert, or the percent
difference between the ML-obtained answer versus a CAD tool.
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Figure 1.2: Requirements for automation in ASIC design.

• Practicable: the proposed solution must be useful, meaning that within the confines
of the ASIC design sub-problem, it should consider all relevant requirements. This
includes quantifying any failures and understanding the design space or region where
the tool is successful. This analyses not only reveals the limitations of the tool, but
can be used to understand its behavior.

• Automated: the tool accelerates the design process compared to traditional methods.
The degree of automation can vary considerably, from requiring designers to be heavily
involved in the creation and maintenance of the tool’s functionality to being fully
autonomous with no intervention or hand-holding from the designer.

• Interpretable: the tool should make, to some degree, reasonable assumptions and de-
cisions on the ASIC sub-problem so that it reaches the objective in an interpretable
way. This is important, not only as a method to verify the efficacy of the tool, but
also to validate and obtain confidence that the tool can achieve objectives reliably.
This metric can be derived by comparing designer or CAD tool decision-making and
performance to that of the algorithm.

• Generalizable: the tool should function across process technologies, topologies, and SoC
designs in a well-defined and scalable manner, ideally with little to no modification of
the algorithm. This ensures that the algorithm remains applicable in the changing
landscape of ASIC chip design.

• Run-time efficient: the tool should reach the objective in a reasonable amount of time,
with nominal compute resources. The constraints vary widely based on the specific
ASIC development problem, but in general should require less resources and time than
the traditional designer/CAD tool approach. This metric is generally represented in
time and required compute machines or operations.
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Knowing these six baseline features, and to some degree understanding the trade-offs
between them, can not only help in selecting algorithms to address inefficiencies in ASIC
design, but also comprehensively assess their efficacy and practicality. The projects covered
in this thesis, and their design decisions, are qualified under these metrics.

1.2 Prior work

Electronic design automation (EDA) tools are a class of specialized programs solely de-
veloped and primarily used to aid in the design of ASICs. Traditional EDA tool-chains [5]
encompass multiple facets of the design process, from design methodology and data modeling
to physical hardware implementation, manufacturing checks, and logical synthesis. Though
these commercially licensed tools are used to partially automate the ASIC flow, they require
designers to be heavily involved in process-technology dependent processes, and face long
end-to-end run-times due to complex optimization algorithms [6]. Thus, recent research ef-
forts have focused on automating aspects of this existing flow, by either replacing the EDA
framework in its entirety, or appending additional algorithms that rely and interface with
existing EDA tools. In this section, seminal papers are presented based on frequently occur-
ring themes in the ASIC development process: decision-making, optimization, performance
prediction and automation of the end-to-end design flow [7]. These papers are discussed in
the context of the six ASIC automation requirements.

Traditionally, decision-making in the ASIC flow is left to the designer, who is responsible
for selecting specific tool-chains, hyperparameters and higher-level system design require-
ments that interface with the EDA framework. Several works address aspects of this decision
process, for example using a heterogeneous or deep neural network framework to automate
logic synthesis [8, 9], applying Bayesian optimization to select hyperparameters for neural
network accelerators [10], or selecting between differing circuit topologies with integer pro-
gramming [11] or simulation-based approaches [12]. These works enhance automation for
their specific sub-problems while demonstrating high fidelity and practicality, and could be
explored further to ensure interpretability and generalizability to different technology nodes
and unique designs.

Optimization problems in the ASIC design process include applications like deep neural
network compression [13], multi-objective tasks such as creating designs to minimize power
or other specifications, selecting or generating topologies, or determining parameters for a
circuit topology that meet a given target performance. Often, solutions for these design
issues are either formulated as numerical or black-box optimization problems. Geometric
programming [14] and constraint-based methods have been used in numerical formulations
for parameters in a circuit topology and multi-objective design tasks [15], but have not yet
been robustly tested for scalability or generalizability, as they are generally applicable in
certain specific, and well-defined cases. Evolutionary methods like genetic algorithms and
machine learning techniques have been used extensively in designing circuits [16, 17, 18,
19], and are automated, accurate solutions that require more analysis to prove accuracy,
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reliability, and interpretability.
Performance prediction algorithms accelerate the design flow by providing alternative

approximate modeling that provides quicker end-to-end run-time in iterative processes. Ex-
amples include power prediction modeling based on a library of pre-modeled components
[20], routing congestion prediction with deep graph neural networks [21], clock-tree prog-
nostication using generative adversarial networks [22], or layout-parasitic prediction using
machine learning techniques [23]. In general, prediction algorithms range in automation,
with the least automated, most manual methods requiring designers to hand-encode accu-
rate models, and the most automated methods demonstrating feasible results but are not
extensively tested for interpretability and generalizability.

Full end-to-end design flow automation encompasses the entire EDA flow, and can range
from full custom design of digital or analog circuit blocks to larger heterogeneous system-level
designs. Generator-based methodologies provide a feasible semi-automated and accurate
solution by encouraging designers to manually codify designer intent for a given circuit
topology, which can then be reused or regenerated for varying specifications, becoming a
more agile process [24, 25]. More ambitious, and still-in-progress initiatives are looking into
fully automated end-to-end design using machine learning or other automation techniques
[3, 26], but still require accuracy and practicality verification.

In summary, prior automation works provide promising and successful approaches to
different aspects of the ASIC design process, and vary vastly in methodology depending on
the particular sub-problem they solve. These approaches range in degree of automation,
generalizability, accuracy, and interpretability.

1.3 Thesis scope and outline

This thesis will focus on how applying various machine learning (ML) techniques can suc-
cessfully automate different areas of ASIC development, while showing analysis to support
that ML can address the six main baseline requirements, which are accuracy, practicability,
automation, interpretability, generalizability and run-time efficiency. The goal is to demon-
strate that ML techniques have the potential to practically accelerate inefficiencies in the
ASIC flow, by presenting one in-depth case study and two initial projects which include: 1)
an analog circuit design framework that uses reinforcement learning (RL) to size parameters
for a given circuit topology to meet a target specification, 2) using convolutional neural net-
works (CNNs) to detect defects in physical silicon that affect circuit yield, and 3) an analog
sub-clustering tool that uses graph CNNs to group analog circuits. These projects are dis-
cussed in the context of the six requirements, and new analyses, metrics, and comparisons
are used to validate their efficacy and feasibility. Specifically:

• Chapter 2 introduces and discusses using RL to size a two-stage amplifier and two-stage
amplifier with negative gm load, and demonstrates that this automated framework has
high accuracy, is interpretable and run-time efficient.
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• Chapter 3 expands these results by testing on a complex parasitic-sensitive two-stage
folded-cascode circuit to show that the algorithm is scalable, practicable, and general-
izable.

• Chapter 4 discusses results on difficult-to-design ring amplifier and comparator topolo-
gies, and further analyzes and validates that the framework is generalizable and accu-
rate.

• Chapter 5 discusses initial results on applying GCNNs to cluster analog sub-circuits
to identify critical structures to automate the generation of analog layouts.

• Chapter 6 presents initial results and analyses on applying CNNs to detect systematic
layout defects in standard cells for circuit yield.

• Chapter 7 concludes the thesis with overall discussion on the three projects, in addition
to providing directions to future work in this area.
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Chapter 2

Reinforcement Learning for
Well-Defined Circuit Topologies

This chapter presents a machine-learning optimization framework trained by using deep rein-
forcement learning to find post-layout circuit parameters to meet a given target specification,
while also gaining knowledge about the entire design space through a sparse sub-sampling
training technique. We show that this approach:

• generalizes across four well-defined circuit topologies of varying complexity,
• is accurate, as it obtains performances that meet at least 96.3% of tested target design

specifications, while also considering post-layout simulations, which is an important
part of the the design process,

• is up to 40× more run-time efficient compared to prior work, and
• is practical, as the failures in the tool reflect design constraints as opposed to anomalies

in the framework.

2.1 Introduction to analog design and sizing

Analog design is an important part of the ASIC development process, as analog circuits are
responsible for filtering, amplifying and retaining fidelity in continuous time-domain signals.
Even though analog blocks in analog and mixed-signal (AMS) chips do not take as much
area as their digital counterparts, the design effort that goes into creating these blocks is still
dominated by analog circuits, primarily because they require significant manual design effort.
Today’s designers are confronted with higher simulation workloads that result from more
corners and parasitic elements, tougher design challenges due to difficult-to-predict parasitic
effects, and more layout effort because of generally higher device count and restrictive design
rules [27]. In order to reduce time-to-market, it therefore becomes crucial to identify and
automate time-consuming analog procedures in an efficient and accurate manner.

Analog sizing is one aspect of analog design, where a designer selects parameters for a
given circuit topology such that it meets a known target specification. This process can be
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summarized as a guided multi-objective optimization problem, where designers are heavily
involved in the iteration process and are responsible for understanding the tradeoffs between
specification and parameters in order to find a feasible solution. Analog sizing is a difficult
problem, however, primarily because it involves multiple schematic and layout simulations
at different stages of the design process, and these often rely on designers to manually create
the required circuit layout, which, when simulated, can take a long time. In addition, the
traditional analog design process relies on designer intuition to drastically reduce the range
of possible parameters in the search space. Even though this methodology can be manually
scripted into a program, simulation results in newer technology nodes are difficult to predict
due to enhanced parasitic effects. The relationship between parameters and specification can
also vastly vary depending on the circuit topology, which ranges in complexity and variety,
greatly increasing the number of tunable parameters in the design space, while also making
any fixed circuit-specific methodology infeasible for a scalable analog sizing tool.

2.2 Prior analog sizing tools

Developing a practical and accurate analog sizing algorithm requires understanding the
unique constraints imposed by considering layout parasitics, which are a result of the physical
elements of the circuit, such as wires, adding previously unmodeled resistances, capacitances,
and inductances to the design. In particular, post-layout simulation is not only a manual
process that takes significantly more time than its schematic counterpart, but also leads to
large, often unpredictable variability in the simulation results. This then dictates that a
sizing approach requires minimal simulations to converge to the target specification, while
also being robust and accurate in situations where large variations in performance exist due
to parasitics. We discuss prior work in both of these contexts.

Traditionally, expert circuit designers employ a knowledge-based analog circuit synthesis
methodology [28, 29, 30, 31], where design considerations and parameter selection algorithms
are manually codified or formulated as templates in an effort to encapsulate the designer’s
knowledge. This strategy, however, still requires circuit designers to be heavily involved in
the sizing process, and though efficient in converging to a specification, it is not automated,
and often does not consider parasitics explicitly as its effects are difficult to model. In
addition it requires a large overhead in defining any new specification.

Equation-based methods [32] manually or automatically obtain constraint equations that
are then optimized or solved. These solvers require very few, if any, simulation iterations,
but involve manual equation formulations, do not consider parasitics, and only allow circuits
with known dependencies to be characterized.

Bayesian optimization, genetic algorithms and their optimization-based variants have also
been utilized extensively, primarily via stochastic sampling to simulate a certain population
of design points which are either mutated based on a fixed cost function to produce new,
potentially more fit points that are simulated again in the next iteration [17], or used to gen-
erate surrogate models [33]. Genetic algorithms, traditionally, require many simulations to
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converge and are not reliable, as the converged result heavily depends on how well the initial
stochastic sampling reflects the true design space. In addition, they require the algorithm to
be re-started whenever a change is made to the goal. Though Bayesian optimization solutions
[33] are more sample efficient, formulating a Gaussian Process model is more expensive as the
dimensionality of the data increases, meaning that this solution is potentially prone to issues
in scalability. Several works exist that attempt to reduce the inefficiency of these algorithms,
primarily via learning [34, 35, 16, 36]. [34], [35], and [36] do not, however, demonstrate results
with layout parasitics, making it difficult to claim the reliability and practicality of these
results. Authors in [16] demonstrate that their combined neural-network-boosted genetic
algorithm can function on complex circuits with post-layout simulation following parasitic
extraction (PEX), but the algorithm requires many PEX simulations to converge, making
it difficult to scale to more complex circuits. Bayesian optimization methods [33], despite
being more sample efficient, have not yet been proven with parasitic simulations.

Reinforcement learning (RL) has been applied to analog sizing as well, where an agent
traverses the design space while trying to maximize a reward function. [37] explores initial
results using this method, but only tests with NGSpice as the simulator, which is not re-
flective of the true complexity of state-of-the-art processes. [38] and [25] and use enhanced
RL methods with recurrent or graph convolutional neural networks, respectively, that are
trained using policy gradients. These algorithms do not consider layout effects and train
the agent to meet only one target specification, requiring many circuit simulations to con-
verge to other targets. [25] does however, show initial promise in using generalization to
transfer information across topologies. [39] accelerates RL convergence by incorporating
local constraint satisfaction while considering process corners, but fails to consider layout
parasitics.

Despite the existence of automated layout-synthesis tools [40], prior sizing algorithms
opt to use parasitics models [41, 42, 43, 44, 45, 46] to approximate layout effects without
impacting simulation time. Approximate models show initial promise in predicting parasitic
effects, but need to be further analyzed for accuracy and scalability on more complex circuits
in newer and more parasitic-dominant technology nodes. Methodologies also exist that use
lookup tables a-priori to simulate all relevant designs, but are time consuming and not
scalable, as they require collecting a large number of layout simulations [47]. Authors in
[44] propose a neural network metamodel that performs optimization in a sample efficient
manner, requiring just two layout simulations to converge to a solution. Their methodology,
however, requires a designer to manually create layout, and only tests on smaller-order
circuits.

In summary, there is need for an accurate and reliable method for solving analog circuit
sizing, that not only considers the many stages of the design process that experts use to
validate an analog design, from schematic, layout and process-corner simulations, but must
also do so with reasonable run-times. This, in addition to understanding how and why the
tool works, is crucial in the adoption of any sizing framework in the analog design community.
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2.3 Introduction to machine learning

Machine learning (ML) is a growing field that studies the computational processes used
by humans and machines [48], and is often used to solve complex tasks such as natural
language processing, medical diagnosis, or speech recognition. ML encompasses a broad
range of algorithms for classification, regression, optimization, recognition, clustering, and
more, with new algorithms being developed as active research areas. Most ML methods
take advantage of data by attempting to extract patterns within the data, or relationships
between sets of data. The amount of data required, however, varies depending on the specific
algorithm.

Determining whether ML is the right solution for a given task greatly depends on the
type of problem, and is generally applied in cases where:

• deterministic rules cannot be codified easily for the task by using a simple algorithm,
making it too difficult for a human to accurately code rules, and the

• existing solutions cannot scale in complexity to larger or more complicated data [49].

Traditional ML techniques are often seen as a black box; to the user the objective is
reached but the process the algorithm uses to obtain it is unknown. Recently, researchers
have looked into increasing the transparency and controllability of automated ML systems
[50], allowing the efficacy, accuracy, interpretability and practicability of the algorithm to be
analyzed. This analysis is especially important in tasks where reliability is crucial. It is the
intent of this thesis to demonstrate application-specific study for a traditionally black-box
ML algorithm, in the hopes of convincing the reader that ML methods can be understood
effectively.

2.4 Reinforcement learning framework

Reinforcement learning (RL) is a class of techniques under machine learning that consists of
an agent that interacts with its environment through a trial-and-error process that mimics
learning in humans. It is a simulation-in-the-loop method, and relies on the ability to verify
outputs from a true simulation source.

At each environment step, the RL agent, which contains a neural network, observes the
state of the environment and takes an action sampled from the output of this probabilistic
distribution. The environment then returns a new state which is used to calculate the reward
for taking that action. The agent iterates through a trajectory of multiple environment steps,
accumulating the rewards at each step, until the target is met or a predetermined maximum
number of steps is reached. After running multiple trajectories, the neural network is updated
to maximize the expected accumulated reward using policy gradients.

Unlike other ML techniques, reinforcement learning captures a designer’s manual iterative
approach to analog sizing. Crucially, RL attempts to learn the “how” of a problem through its
training process, relying on a reward function to traverse the objective space in a combination
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of random search and reward-directed behavior. This not only aids in modelling complex
behaviors, but also enables better transferability and generalization of the algorithm to
changes in the environment. We make use of this fact in Section 2.4.5 to consider layout
parasitic simulations, removing the need to have the algorithm train off of this expensive
and difficult-to-collect data.

2.4.1 RL analog sizing setup

Let N be the number of parameters to tune in a circuit, and M be the number of different
target design specifications that the circuit should try to achieve. We define the parameter
space as x ∈ ZN and the target design specification space as y ∈ RM , where y is normalized
to a fixed range. The parameter space, originally continuous in RN , is discretized to K grids:
{x ∈ ZN : 0 ≤ xi < K, i = 1, ..., N}.

2.4.2 Trajectory generation

Upon reset, the circuit parameters are initialized to a fixed center point K
2

. The deep neural
network (DNN) then uses the observed performance o (created by simulating the circuit)
and target specification o∗, as well as current parameters p to output a probabilistic distri-
bution that is sampled to determine whether to increment, decrement, or retain the same
value for each circuit parameter (shown in Figure 2.1). The agent has H total simulation
steps to reach o∗, where H is nominally set to K. If the objective is reached before H steps,
the trajectory ends. We note that the fixed reset point is chosen strategically to ensure the
agent reaches all K points in the parameter space within the allocated H steps.

Figure 2.1: Reinforcement learning algorithm showing that the input to the network are
the current performance, target specification, and current parameters, and the output is a
probabilistic distribution that is sampled to determine whether to increment, decrement, or
retain each circuit parameter.
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2.4.3 RL agent

We choose a three-layer neural network, each with 50 neurons, to map between state and
actions in the reinforcement-learning framework, whose system level diagram is shown in
Figure 2.2. This architecture is selected primarily because its ease of training; other methods
like recurrent networks are harder and more variable to train, requiring additional hand-
tuning of hyperparameters.

As with most ML algorithms, the architecture details were tuned and selected iteratively
for one circuit topology, based on the highest converged reward after training. In our studies,
we find that three layers are deep enough to model the complexities of parameters to target
specification in analog sizing, while not overfitting to specific regions of the design space.
It is emphasized that this architecture, along with the RL-associated hyperparameters such
as training batch size and horizon length, are agnostic to topology and technology on the
circuits we have tested on, meaning that the network does not require hand-tuning for each
application.

Figure 2.2: Top level system diagram showing that AutoCkt takes as input a circuit netlist,
its simulation testbench, and a target design specification to find parameters for the circuit
such that it meets the specification.

2.4.4 Training with schematic simulations

To train the RL agent, we select M different target specifications to allow the agent to
understand many different regions of the design space. Specifically, these M targets are
chosen by randomly sampling each metric in the specification between a pre-defined minimum
and maximum range set by the user, and dictated the circuit topology and application. L
trajectories are generated, whose targets are chosen from M . The reward for each trajectory
is obtained by accumulating the rewards for every action, formulated as the unweighted sum
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of the bounded normalized differences between each schematic-simulated metric performance,
o, and its target, o∗, multiplied by a scaling constant, β:

ro = min(β
o− o∗

o+ o∗
, 0) (2.1)

r =
∑
o∈o

ro (2.2)

β is 1 for metrics being maximized, −1 for metrics being minimized, and −1 < β < 0
for minimized metrics that are not hard constraints, such as power. Thus, more negative
rewards are given for being further below target metrics being maximized or further above
target metrics being minimized. The agent is not rewarded for over-satisfying any one given
metric; ro is clipped to zero for such cases.

If the sum of all ro reward components is zero, the obtained performance meets the
target specification, and the agent receives an additional positive scalar term of 10. In our
studies, this scalar term allows the algorithm to train faster, as it gets a distinct and higher
continuous R in cases where it meets the target. This broad reward formulation allows for
the same function to be used in the variety of different amplifiers we have tested, without
the need for tuning to specific circuit topologies.

R =

{
r, if r < 0

10 + r, if r = 0
(2.3)

To make training more sample efficient, we utilize the sequential sizing methodology em-
ployed by expert designers. In particular, once an initial guess about parameters is made,
designers first run DC operating point to ensure transistors are in the expected region of
operation. After this verification, AC simulation is used to obtain gain, unity-gain band-
width, phase margin, and power values. Once these are again verified, transient and noise
simulations are obtained for the final metrics.

By following these steps, designers gain intuition about how valid each stage of the
simulation process is, reducing overall run-time. For instance, when parameters are randomly
selected for a folded-cascode circuit topology, 85% of the designs do not pass DC operating
point. Since the average run-time for the entire testbench is 43 seconds, designers save time
in the sizing process by not having to run needless simulations.

In the algorithm, if at any point a testbench is invalid, subsequent testbenches are not run
and the target metrics from those simulations are set to −1, which is the smallest negative
number in the bounded reward function in Equation 2.1. In addition to reducing simulation
time, this technique also breaks down a multi-step optimization problem to easier sub-goals,
allowing the agent to learn quicker. These validity tests are agnostic to the specific circuit
type or topology, meaning that this methodology can be ported to many different designs.
The algorithm also functions without this technique, as is demonstrated in one of the circuit
topologies later in the results.
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To train the RL agent, a batch of trajectories is collected with the schematic simulator,
and the rewards, states (comprised of o, o∗, and p) and actions (increment, decrement or
retain each parameter) are used to update the weights of the neural network with gradient
descent. Proximal policy optimization (PPO) [51] (summarized in Figure 2.3) is a policy
gradient method that finds a precise local optima as opposed to other approaches like simu-
lated annealing, which are approximate, and is used to formulate the objective function that
maximizes the average accumulated reward. PPO is specifically known to be more stable
and efficient during training by controlling how large the policy updates are at each iteration.

Figure 2.3: Proximal policy optimization framework setup using Ray [52].

Training sessions are conducted several times to ensure that AutoCkt, the reinforcement
learning framework, is robust to variations in random seed. Training ends when the mean
reward is greater than or equal to 0, signifying that the agent reaches the training target
specifications for most trajectories. This training process is summarized in Algorithm 1. We
use OpenAI Gym and Ray, a framework [52] for running distributed reinforcement-learning
tasks, to efficiently implement the algorithm across a many-core CPU.

The framework and results on four example circuits across different simulation envi-
ronments including NGSpice, Spectre and the Berkeley analog generator (BAG) [53] are
described in more detail in the next section.

2.4.5 Deployment

During deployment, the trained agent generates trajectories when given unique target speci-
fications, different from those in training. The generalization algorithm uses BAG to consider
layout parasitics.

BAG allows designers to create, verify, and use process-portable circuit generators. The
generator-based flow, shown in Figure 2.4, begins with a design script that notes the specific
circuit topology, sizes of each device, and layout strategies. This information is then used as
input to the schematic and layout generators, which takes a pre-defined schematic template
and maps the input parameters to sizing of each component in the circuit or follows scripted
layout strategies that can handle variations in sizes, respectively. Designers are responsible
for creating comprehensive generator scripts such that the designs achieve DRC/LVS clean
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Algorithm 1: Sparse sub-sampling training algorithm

1 Initialize O∗ ← RMxN

2 env ← schematic simulator

3 while
∑

R
N
< 0 do

4 Dataset← []
5 for len(batchsize) do
6 o∗ ← O∗

7 t = Collect Trajectory(o∗, horizon length, env)
8 Dataset ← append(Dataset, t)
9 R← append(R, reward(t))

10 PPO Update NN Weights(R,Dataset)

11 end

12 end

Figure 2.4: Diagram of generator-based design using BAG [55].

results for a wide range of parameter combinations. Testbench generators are also manually
created to instantiate, run, and parse the results for each design. These testbenches inte-
grate with existing CAD tool-chains that run and synthesize simulation results. Specifically,
BAG integrates with a simulator tool called ADE-XL, which displays simulation data in
hierarchical arrangement related to the circuit design, processes signal data, and provides
calculator functions that allow for a variety of analyses [54].

We demonstrate the use of transfer learning, summarized in Algorithm 2, to show that an
RL agent trained by running inexpensive schematic simulations is able to transfer knowledge
to a different environment. This new environment, which then runs PEX simulations in BAG,
is used to deploy the agent. The agent is given 2∗H number of steps to meet the target in this
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Algorithm 2: Deployment Algorithm Considering Layout Parasitics

1 o∗ ← RM

2 env ← parasitic simulator
3 while True do
4 o, p ← step(o, o∗, p, env)
5 layout reward = calc reward (o, o∗)
6 if layout reward ≥ 0.0 then
7 return p, o, (reached ← True)
8 step count + = H
9 if step count > H then

10 return p, o, (reached ← False)

11 end

new parasitic simulation environment. In the results, there exist two forms of deployment:
1) where the trained agent is run on schematic-only simulations and 2) where the deployment
is solely with PEX. Note that no re-training is required once the environment has changed
to post-layout extraction.

2.5 Transimpedance amplifier results

AutoCkt’s performance is demonstrated on a simple transimpedance amplifier (Figure 2.5)
in 45nm BSIM predictive technology. The action space for each transistor consists of two
separate parameters shown in array notation [start, end, increment]: width ([2, 10, 2] ∗ µm)
and multiplier ([2, 32, 2]). The feedback resistor action space consists of two parameters:
number of resistors in series ([2, 20, 2]) and number of resistors in parallel ([1, 20, 1]). The
fixed unit resistance is 5.6kΩ. The target metrics of interest are settling time ([5, 500] ∗ ps),
cutoff frequency ([5.0e8, 7.0e9] ∗Hz) and input-referred noise ([100e−8, 500e−6] ∗ Vrms). The
schematic has a fixed input and load capacitance of 50fF and 1pF , respectively, and were
chosen based on prior transimpedance amplifier specifications in this technology. For this
circuit topology, we do not employ the simulation-reduction technique mentioned in Section
2.4.5, to demonstrate the functionality of the framework without this feature. Figure 2.6
shows the mean episode reward over time increasing to greater than zero after training has
completed, meaning that the agent has learned to reach the positive reward state across
multiple target specifications.

The trained agent is then deployed on 500 randomly chosen target specifications in the
range specified above, summarized in Table 2.1. The results show that AutoCkt has a 25.1×
speedup compared to a vanilla genetic algorithm, labelled required simulation count (RSC)
in Table 2.1. Additionally, it is able to generalize to 97.4% of the design space, meeting
487 targets. Note the genetic-algorithm efficiency is determined by the best result obtained
when sweeping initial population sizes and several target specifications.
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Table 2.1: Comparison of prior analog sizing methods with required simulation count to
converge and number of specifications reached versus tested: transimpedance amplifier.

Metric Required Simulation Count # Specs Reached / # Specs Tested
Genetic Algorithm 376 N/A

This Work 15 487/500

Figure 2.5: Simple transimpedance amplifier schematic.

Figure 2.6: Mean episode reward for transimpedance amplifier.
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2.6 Two-stage amplifier

AutoCkt is now tested on a more complex, yet common two-stage operational amplifier
circuit with frequency compensation (Figure 2.7) in 45nm BSIM predictive technology. The
design of this topology is well studied, with the equations used in AC simulations to obtain
a target gain (Av), unity-gain bandwidth (UGBW ), and phase margin (pm) dictating the
values for each parameter in the circuit.

Figure 2.7: Two-stage operational amplifier schematic.

2.6.1 Manual design procedure

Specifically, the compensation capacitor (Cc) is chosen by considering the phase margin
requirement, which for a nominal 60◦ requirement is equal to:

Cc =

√
3GMin

ω2Ao

=

√
3gMin1,Min2

gMgm/CL

(2.4)

where GMin is first stage transconductance, ω2 is the second pole location assuming the
load capacitance is dominant, and Ao is the gain at the 60◦ phase margin.

The unity-gain frequency is then given by

UGBW =
GMin

2πCc

(2.5)
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With Equations 2.4 and 2.5, the transconductance of the Mgm transistor can be obtained,
with which Mgm’s drain current, ID,Mgm, can be calculated. Assuming nominal overdrive
voltage through Mgm, chosen based on output voltage swing requirements,

ID,Mgm =
gMgmVov,Mgm

2
(2.6)

The size of Mgm is then:

(
W

L
)Mgm =

g2Mgm

2ID,MgmµpCox

(2.7)

Mload2 is calculated using the same overdrive voltage requirement as before:

(
W

L
)Mload2

=
2ID,Mgm

µnCoxV 2
ov,load2(1 + λnVout)

(2.8)

The gain of the second stage, Av2, is then:

Av2 = gm,Mgm(ro,Mgm||ro,load2) (2.9)

To design the first stage of the amplifier, a nominal bias current is used to ensure that a
power specification is met, which then dictates the tail current of the differential pair. With
these requirements, gMin1,Min2 is now:

gMin1,Min2 = Av1(λn + λp)ID,Min (2.10)

The compensation capacitance can then be calculated using Equation 2.5. The sizes of
the Min transistors is:

(
W

L
)Min

=
g2Min1,Min2

2ID,MinµnCox

(2.11)

The current mirror load transistors’ (Mload) gate-to-source and by KVL the drain-to-
source voltages must be equal to the gate-to-source voltage of Mgm in order to be in satura-
tion. Therefore the sizes can then be derived by:

(
W

L
)Mload

=
2ID,Min

µnCoxV 2
ov,Mgm(1 + λp(Vov,Mgm + Vt0))

(2.12)

The Mtail transistor is sized by considering Mload2, such that they receive the correct
currents through their branches:

(
W

L
)Mtail

= (
W

L
)Mload

ID,tail

ID,load2

(2.13)

The width to length ratio of Mmir is chosen to be a multiple of Mtail and Mload2, to
correctly provide the required current through each of these branches from the current source.
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Initially, the lengths of the devices are selected to be minimum channel length to minimize
area.

These equations dictate the detailed procedure used by analog circuit designers to obtain
a target specification. Despite this, however, successfully sizing this operational amplifier
involves iteration, with the procedure only providing an initial starting point which often
does not meet its target in the first iteration. We thus move to automate this sizing process
with reinforcement learning, and discuss the framework setup in the next section.

Figure 2.8: Mean episode reward for two-stage amplifier.

2.6.2 Operational amplifier reinforcement learning setup

The operational amplifier topology is shown in Figure 2.7. The action space for every transis-
tor width in the schematic is [1, 100, 1]∗0.5µm, chosen by nominally sampling around typical
transistor sizes for each parameter. The compensation capacitor ranges from [0.1, 10.0, 0.1]∗
1pF . The design specifications of interest are gain ([200, 400] ∗ V/V ), unity-gain band-
width ([1.0e6, 2.5e7] ∗Hz), phase margin ([60.0]∗◦), and power (as a measure of bias current,
[0.1, 10] ∗mA), with the load capacitance fixed to 10pF . The total action space size is 1014

possible values, making random generation of parameters to meet the target design specifi-
cation infeasible. The agent is allowed a horizon length of 30 simulation steps to converge.
The mean reward over total environment steps is shown in Figure 2.8.

Note that this circuit topology is trained without the sequential sizing methodology, and
though the agent takes 104 steps to reach the stopping condition, the amount of time to
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Figure 2.9: Distribution of obtained or learned, reached, and unreached target design spec-
ifications. Bottom left shows the 3D plot with three of the four design metrics. The rest
of the plots show differing metric combinations to visually demonstrate which design points
are not met.

complete is expedited due to Ray’s distributed compute capabilities [52]. Thus the wall
clock time is just 1.3 hours on a 8-core CPU machine.

The trained agent is deployed on 1000 randomly generated target design specifications
it has never seen before, in the range specified during training. The results of which target
specifications are unmet and met are shown in a 3D plot (Figure 2.9, phase margin is ex-
cluded because it only has a lower-bound requirement). The distribution of points in Figure
2.9 show that the unreached design points fall along a vertical region where bias current
is very low. It can then be hypothesized that these points are indeed unreachable given
the power requirement. Looking at the converged design specifications for these unreached
points, the agent attempts to meet the gain and bandwidth requirement while minimiz-
ing for power, similar to how a circuit designer approaches this problem. Table 2.2 shows
several agent-obtained design compared to that of an expert, and shows that it achieves
comparable performances. Table 2.2 includes the efficiency as well, calculated by ftCL/ibias.
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Authors in [56] derive that for a two-stage amplifier, the estimated efficiency figure of merit
(FOM) should be in the hundreds of MHzpF/mA, which means that the agent-obtained
performances are feasible and valid in the context of circuits as they fall within this range.

The comparison table is shown in Table 2.3. Note that the comparison also includes
a random RL agent taking steps in the environment to illustrate design-space complexity.
The results demonstrate that AutoCkt reached 963 of the 1000 target design specifications,
generalizing by a factor of 20× compared to the specifications seen during training. Of those
points it does reach, the average number of simulation steps it takes is just 27, which is near
40× faster than a traditional genetic algorithm.

2.7 Low-dropout voltage regulator

Voltage regulators are crucial for SoCs, as the supply voltage powering other areas of the chip
must be stable, and ideally noiseless, for proper functionality. Low dropout (LDO) voltage
regulators, in particular, are used for their high power efficiency and stability to changes in
load. We discuss the general sizing procedure for a traditional LDO topology, and test the
sizing framework on the LDO in 14nm technology.

2.7.1 Manual design procedure

A topology similar to Figure 2.10 is selected. The manual design procedure, outlined by [57],
involves sizing the error amplifier, the current-controlled source (mpass), and the correspond-
ing current mirrors for gain, phase margin, line and load regulation, noise and power-supply
rejection ratio requirements.

Specifically, the loop gain, ALG can be calculated by breaking the feedback loop, assuming
a small-signal resistance RL to the load:

ALG = A1gm1[RL||(Rf1 +Rf2)]
Rf2

Rf2 +Rf2

(2.14)

where A1 is the gain of the amplifier in Figure 2.10. Vout/Vin is then calculated to analyze
how A1 affects power-supply rejection ratio (PSRR):

Vout
Vin

=
gm1[RL||(Rf1 +Rf2)]

1 + A1gm1[Rf2||(Rf1 +Rf2)]
F2

Rf1+Rf2

≈ (1 +Rf1/Rf2)
1

A1

(2.15)

Load regulation measures the change in output voltage over the change in output load
current, which is essentially the output impedance, Rout, of the circuit:

Rout ≈ (1 +
Rf1

Rf2

)
1

gm1A1

(2.16)
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Table 2.3: RSC and number of specifications reached versus tested: two-stage op amp.

Metric Op Amp RSC TIA RSC # Specs Reached / # Tested
Genetic Algorithm 1063 376 N/A
Random RL Agent N/A N/A 38/1000

This Work 27 15 963/1000

Both Equations 2.15 and 2.16 suggest that the operational-amplifier loop gain should be
maximized for the best PSRR and load regulation, respectively. To model output noise for
the circuit, the following equation is used:

V 2
n,out = (1 +

Rf1

Rf2

)2(V 2
nA +

VnM
A2

1

) (2.17)

where the noise of mpass is V 2
nM , and the noise of the amplifier is V 2

nA. Once again,
increasing A1 leads to a better noise figure. Having higher amplifier gain however leads to
increases in power and sizes of the devices. In this study, we include the power target to
successfully constrain and model this behavior.

The frequency response of the system can be modeled by replacing the gain A1 with
A0/(1 + s/ω0), where w0 is the pole frequency:

Vout
Vin
≈ (1 +Rf1/Rf2)

1

gm1A0

(1 +
s

ω0

) (2.18)

These equations, as with the previous two-stage amplifier circuit, are used as initial
starting points in an iterative sizing procedure.

2.7.2 LDO target metrics and action space

Unity-gain bandwidth (UGBW ), phase margin (pm), noise, output-voltage stability with
load variation (Vout), and power-supply rejection ratio (PSRR) are typically used in the
specification for an LDO. For the initial experiment, we select UGBW , pm, noise, and Vout
as hard constraints, and use the remaining metrics for performance analyses. It is emphasized
that incorporating these or any other additional constraints into the framework is relatively
simple.

The action space includes the number of fingers [2, 12, 1], multiplier [1, 10, 1], number of
fins [2, 12, 1] and length (14nm, 100nm, 200nm) for every transistor, resistance [2, 3, 0.1]∗kΩ,
and capacitance [2, 15, 1] ∗ fF values.

For this circuit, we employ the sequential simulation methodology introduced in Section
2.4.4. In addition, information from several intermediary values and constraints that are not
explicitly part of a performance specification are given to the agent as part of the state.
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Figure 2.10: LDO schematic.

2.7.3 Training and deployment results

Figure 2.11 shows the mean reward for each training iteration reaching the stopping condi-
tion. we include both the baseline RL agent, as well as the proposed work that incorporates
sequential testbench simulations and intermediary values, both of which run the same 100
targets. The baseline test takes 3.2× more samples to train and does not yet reach the
stopping condition.

Figure 2.11: Mean episode reward for LDO.
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Table 2.4: Training and deployment number of specifications reached versus tested: LDO.

Metric # Reached / # Tested: Training # Reached / # Tested: Deployment
Our algorithm 75/100 220/300

The number of target specifications the agent meets during training and deployment
(with 300 unique targets) are tabulated in Table 2.4. Both percent accuracy values are
somewhat low, but very similar, meaning that the agent does not overfit to the training
targets. The low accuracy is explained in Section 2.7.4, where we posit that the unreached
target specifications are not possible for this topology due to technology and parameter
constraints.

2.7.4 Practicability and interpretability analyses

In this section, we analyze the results to understand:

• why the agent does not meet certain target specifications,
• the distribution of circuit performances the agent can achieve for this topology,
• the validity of the agent’s designs from a circuits perspective,
• how the agent’s design compares to an expert-designed LDO, and
• how the algorithm compares to prior state-of-the-art LDO sizing tools.

We aim to demonstrate the practicability, accuracy, and interpretability of outputs produced
using this RL framework. Establishing these characteristics is crucial in determining the
practicality of an analog sizing tool.

Reached and unreached target specifications

We analyze which target specifications the agent reaches and which are unreachable. Figure
2.12 shows 2D scatterplots of unity-gain bandwidth, noise, and output voltage, color-coded
based on whether they are met during deployment. Phase margin is not depicted here, as
the agent is trained on a single lower-bound constraint of > 60◦. The results show a distinct
distribution of unreached target specifications. In particular, aiming for an output voltage
below 0.66V nearly always causes failure. This follows intuition, as the output voltage is
determined by the operating point of the output node of the circuit. This fixed value is
at 0.74V , constrained by the technology node and topology, as well as the driving current
source. There is a distinct failure pattern for low noise targets as well.

Overall, we find that noise and output voltage are critical in determining success or failure
of the agent, and the agent generally meets the unity-gain bandwidth and phase-margin
requirements. We posit that the targets the agent is not able to meet define a performance
boundary for this topology, constrained by technology node and input parameter ranges.
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Figure 2.12: Met and unmet target specifications for LDO.

Table 2.5: Obtained performances by agent for LDO.

Metric Mean Standard Deviation
Noise 185µVrms 11.4µVrms

Unity-gain bandwidth 74.1MHz 9.7MHz
Output voltage 0.757V 1.1mV
Phase margin 67.0◦ 4.2◦

Unique obtained performances

We compare target specifications with obtained performances to determine whether the agent
is learning to optimize the design space, or is converging to one known good design and relying
on reaching that point during deployment. Table 2.5 summarizes the mean and standard
deviation of the metrics obtained by the agent. This shows that the agent does in fact obtain
a range of performances in the design space for unity-gain bandwidth, phase margin, and
noise. The output voltage varies as expected, due to the fixed nature of the operating point.
In total the agent reaches 215 unique performances. It can then be confirmed that the agent
is indeed optimizing the design space based on the target specification given to it.

We also look at the difference between the distribution of reached performances by the
agent versus the target specification given to it, summarized in Figure 2.13. Visually, the
distributions are very different, and the obtained performances appear closely clustered in one
corner of the design space. This plot shows the importance of target selection in the agent’s
sizing process, as the randomly generated targets often do not reflect the true feasibility of
possible performances once topology and parameter constraints are considered. Despite this
however, the agent is still able to successfully converge to meet target specifications.
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Figure 2.13: Obtained performances by agent versus target specifications.

Figure 2.14: Obtained parameters by agent for reached performances.
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Figure 2.14 shows how the circuit parameters vary across the different designs produced
by the agent. This is important as we want to ensure that the agent is going through a
full optimization process in exploring the parameter space, as opposed to finding one set of
parameters that satisfy many different targets. The histogram shows the mean, minimum
and maximum, along with standard deviation for of the parameters tuned by the agent
(represented as indices of an array). The orange lines show the maximum possible value
for each parameter. From these results, it is ascertained that the agent explores a wide
range of parameter values, and utilizes most of the range of each of the parameters to obtain
performances.

Validity of Obtained Performances

We now analyze the validity of the agent’s designs from a circuit’s perspective, which dictates
whether the tool can be practicable and accurate. There are several ways that designers
check that results are valid in the context of circuits. One method is to examine transistor
operating points to ensure that devices operate in the correct regime. For this topology,
we measure the voltage headroom of the error amplifier devices, which should be greater
than 0V . Figure 2.15 shows maximum, mean, and minimum headroom values for an expert-
designed LDO with corner simulations, and that the agent’s corresponding headroom values
fall within this feasible range.

Figure 2.15: Agent-obtained headroom values for several devices.

Note that the agent converges to slightly lower mean headroom values compared to the
expert design is not of concern, primarily because it shows tt corner simulations only whereas
the comparison is made to an expert’s singular design while running nominal as well as ff ,
ss, sf ,and ss corners. We later compare the agent’s tt performance with an expert design
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in the same corner for a fairer comparison. Note that a headroom constraint for these
transistors can be given to the agent during training if necessary.

Comparison to Expert-Designed LDO Topology

Table 2.6: Agent versus expert: LDO.

Metric Expert Design Agent % Diff.
UGBW 69MHz 73.8MHz 6.45%
Noise 188µVrms 188µVrms 0%
Vout 0.756V 0.757V 0.1%

Power 871µA 860µA −1.27%
Phase Margin 69.7◦ 72.9◦ 4.54%

Load current range 1µA− 1mA 1µA− 1mA 0%

We now directly compare the agent’s obtained performance against an expert’s design
when given the same target specification. The targets are taken from a practical, real-world
application, and the expert design was manufactured in silicon. Table 2.6 shows the percent
difference between each metric. In this case, both are running the tt corner. We find that
the agent not only reaches comparable performances, but higher unity-gain bandwidth and
phase margin, for lower power compared to the expert.

Figure 2.16: Comparing agent versus expert parameter values.
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Figure 2.17: Headroom values for expert and agent designs.

We also assess what parameters are used by the agent for this design, and compare
against the expert designer. Values for MOS number of fingers, fins, and multiplier between
the agent the expert have a Pearson’s correlation coefficient of 0.996. Figure 2.16 shows a
histogram of the differences in parameters between the designs. 60% of the data falls within
just one to two values of each other, and only 5% of the devices have a difference greater
than six. The total root-mean-squared error between both designs is 9.4. Even though the
obtained performance of the agent is different from that of the expert, sanity checking that
the parameters are close to each other ensures some amount of validity in the design that
the agent produces.

Lastly, we compare the voltage headroom for the error amplifier devices, shown in Figure
2.17. The agent’s design reaches positive headroom values that are comparable or higher
than the expert’s design. Instances of lower headroom for the agent (e.g. device M3) can
be improved, if need be, by either incorporating process-corner variation in the simulation
environment or introducing a voltage headroom constraint to the agent. For this analysis,
headroom is only used to confirm that all devices are in a valid mode of operation.

Comparison to prior work

We compare the results of the algorithm with three automated LDO-sizing tools, two of which
utilize mathematical constraint models, and one that uses reinforcement learning. The results
are summarized in Table 2.7. Compared to prior work, we show an automated approach to
sizing an LDO, that takes very few required simulations. In addition, we demonstrate that
this algorithm reaches many design specifications on a new technology node.
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Table 2.7: LDO comparison table.

Characteristic [58] [59] [25] This Work
Algorithm Geometric program Linear program Graphs+RL RL
Automated No No Yes Yes
Technology 0.18µm CMOS 0.18µm CMOS 180nm TSMC 14nm FF

# tunable params 23 24 29 24
# tested specs 1 1 1 300

2.8 Two-stage operational transimpedance amplifier

with negative gm load

We now test the algorithm on an expert-designed two-stage operational amplifier with neg-
ative gm load in 16nm TSMC technology. The manual design procedure is outlined in-depth
in Section 3.2, and includes AC, transient and noise metrics.

2.8.1 Schematic results

Figure 2.18: Schematic and action space for two-stage op amp with negative gm load.

This circuit topology in Figure 2.18 contains negative gm and diode-connected loads in
the first stage, thereby having positive feedback and making the circuit more challenging
to design. The action space ranges are summarized in the schematic; in total the order
of complexity is 1011 parameter combinations. The range for each target metric is chosen
around an actual target design specification determined by an expert: gain ([1, 40] ∗ V/V ),
unity-gain bandwidth ([1.0e6, 2.5e7] ∗ Hz), and phase margin ([60, 75]∗◦). Initial results
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Figure 2.19: Mean episode reward over environment step for negative gm operational ampli-
fier.

only include AC testbench metrics; we demonstrate the results for a more complete target
specification in the next chapter.

The mean episode reward per number of steps is depicted in Figure 2.19, and shows that
the agent successfully reaches the stopping condition by obtaining many target specifications.
Figure 2.20 shows the deployment results for 500 randomly generated target specifications
after training the agent. Note that there are no unreached specifications. The comparison
table presented in Table 2.8 shows very similar results compared to prior circuit topologies,
with 40.6× faster convergence to a target specification compared to a traditional genetic
algorithm, taking on average just 10 simulations to converge to a solution.

Table 2.8: RSC and target specifications reached versus tested: two-stage operational am-
plifier with negative gm load.

Metric Op Amp RSC # Specs Reached / # Specs Tested
Genetic Algorithm 406 N/A
Random RL Agent N/A 4/500

This Work 10 500/500
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Figure 2.20: Distribution of reached target design specifications for the operational amplifier
with negative gm load. Note that this example does not contain any unreached objectives.

2.8.2 Layout simulation results

To demonstrate AutoCkt’s functionality once layout parasitics are considered, the algorithm
is tested with a BAG designed two-stage amplifier with negative gm load. The target spec-
ifications are randomly chosen within the same range as the schematic-trained agent with
the exception of phase margin, where we only enforce a minimum requirement of 60◦. In
these tests, we find that training on a range of phase margins, as opposed to a single lower
bound of 60◦, resulted in a better generalization. This is likely due to the agent benefiting
from more exploration of the design space.

In general, compared to schematic counterpart, the transferred agent takes about 2.3×
longer to converge to a design that meets the target specification (shown in Table 2.9) due
to the addition of layout parasitics. Figure 2.21 shows a histogram of 50 design points
that calculate the average percent difference across each design specification between PEX
and schematic simulation. We posit that the agent learns the intuitive tradeoffs between
parameters and design specifications as well as the best actions to take to move towards a
goal, and that these relationships hold when considering layout parasitics despite potentially
large amounts of difference between the schematic and PEX simulations.

Table 2.9 shows that running a vanilla genetic algorithm is too sample inefficient. Au-
toCkt is also compared to the combined machine learning and genetic algorithm [16] and
show that the sample efficiency of AutoCkt is 9.56× greater than the prior state-of-the-art.
Running on a single core CPU, the algorithm takes just 1.7 hours to complete. The algo-
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rithm is run on 40 randomly generated target design specifications, and AutoCkt is able to
to obtain 40 LVS-passed designs in under three days, with no parallelization.

Table 2.9: RSC and target specifications reached versus tested: two-stage operational am-
plifier with negative gm load with layout parasitics.

Metric RSC # Specs Reached / # Specs Tested
Genetic Algorithm N/A N/A

Genetic Algorithm +ML [16] 220 N/A
AutoCkt Schematic Only 10 500/500

AutoCkt PEX 23 40/40

Figure 2.21: Top left, top right, and bottom left figures show a sample trajectory for the
transferred agent attempting to reach one target design specification. Bottom right shows a
histogram plotting difference between schematic and layout simulation.
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2.9 Analysis and conclusion

In this chapter, we introduce the reinforcement-learning framework, AutoCkt, and success-
fully test it on a transimpedance amplifier, two-stage amplifier, low dropout voltage regu-
lator, and two-stage operational amplifier with negative gm load (the results of which are
summarized in Table 2.10). Compared to prior optimization approaches, AutoCkt is on
average 40× more sample-efficient than a genetic algorithm. In addition, the algorithm
reaches state-of-the-art run-time sample efficiency, requiring just 9-20 simulation steps to
find a design that meets a given target specification. We conduct accuracy, practicability,
and generalizability analyses on the agent’s designs to verify that the results are valid from
a circuits perspective as this is crucial for a machine learning tool to be adopted by circuit
designers for real applications. Comparing the agent’s LDO design with an expert-designed
LDO circuit, the proposed RL algorithm obtains 6.45% higher unity-gain bandwidth and
4.54% higher phase margin for -1.27% lower power.

By leveraging transfer learning, AutoCkt considers layout parasitics, and is 9.6× more
sample-efficient than the state-of-the-art. We show that using only a 1-core CPU, the algo-
rithm is able to design 40 LVS-passing designs for two-stage OTA with negative gm load in
under 3 days.
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Chapter 3

Reinforcement Learning for
Parasitic-Sensitive Circuit Topologies

In order for an automated sizing tool to be practical, it must: 1) return valid results for
a large range of target specifications, 2) provide reasoning for any failures in meeting a
specification, 3) consider both layout parasitics and corner variations for complete end-to-
end design, and 4) be automated, allowing most of the design effort to fall on the tool.
This chapter expands the results in Chapter 2 by further assessing the generalizability of
AutoCkt to two parasitic-sensitive circuit topologies: a two-stage transimpedance amplifier
with negative gm load and two-stage folded cascode with biasing. We demonstrate that:

• a new combined distribution deployment algorithm improves RSC significantly,
• decisions the RL agent makes are explainable and analyzable in the context of circuits,
• the framework successfully reaches unique, valid, and practical performances, doing so

in state-of-the-art run-time, at most 38× more efficient than prior work, and
• it averages just 4 parasitic simulation steps to achieve a target specification post-layout

for the folded-cascode, and 1 simulation for the two-stage transimpedance amplifier.

3.1 Modified deployment algorithm

In Chapter 2, we presented a deployment-generalization algorithm that takes an agent trained
with schematic simulations, and deploys in an environment that solely considers parasitic
simulations using BAG (re-summarized in Algorithm 3). We now reformulate the deploy-
ment algorithm to require less layout simulations, as well as be more robust to significant
performance degradation in certain circuit topologies. This new generalization algorithm is
summarized in Figure 3.1.

Instead of directly placing the trained agent in an environment that consists solely of
running parasitic simulations (Chapter 2 [19]), schematic and parasitic distributions are
combined by taking steps from both environments. This not only leads to faster run-time,
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Algorithm 3: Deployment Algorithm with Only Layout Parasitic Simulations from
Chapter 2

1 o∗ ← RM

2 env ← parasitic simulator
3 while True do
4 o, p ← step(o, o∗, p, env)
5 layout reward = calc reward (o, o∗)
6 if layout reward ≥ 0.0 then
7 return p, o, (reached ← True)
8 step count + = H
9 if step count > H then

10 return p, o, (reached ← False)

11 end

Figure 3.1: Parasitic deployment algorithm that shows how schematic and layout simulation
distributions are combined to obtain a target specification.
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as it avoids needless and costly parasitic simulations, it is also more robust to noise. This
robustness is crucial, as the circuit topologies we select are highly sensitive to parasitics.

Upon receiving a target specification, the trained agent starts by running schematic
simulations until it reaches o∗. Instead of receiving a positive reward for that step for
obtaining a valid solution in schematic, the same parameters the agent used to meet this
target are simulated in an environment that considers layout parasitics. If the agent does
not meet the target once parasitics are considered, the layout performance is given back to
the agent, which then uses this information to adjust in schematic until it reaches another
set of viable parameters which are used to run PEX. This process continues until the agent
meets the target when parasitics are considered, or has reached the maximum allocated steps
H, shown in Algorithm 4. This combination of schematic and layout simulation deployment
allows the agent to traverse a distribution it knows, in order to better understand and
generalize to a distribution it has not seen before, allowing it to be more successful in
reaching a target.

Algorithm 4: Deployment Algorithm Considering Layout Parasitics

1 o∗ ← RM

2 env1 ← schematic simulator
3 env2 ← parasitic simulator
4 while True do
5 o, p ← step(o, o∗, p, env1)
6 schematic reward = calc reward (o, o∗)
7 if schematic reward ≥ 0.0 then
8 o, p ← step(o, o∗, p, env2)
9 parasitic reward = calc reward (o,o∗)

10 if parasitic reward ≥ 0.0 then
11 return p, o, (reached ← True)

12 if step count > H then
13 return p, o, (reached ← False)

14 end

3.2 Two-stage transimpedance amplifier with

negative gm load

In Chapter 2, we demonstrated AutoCkt’s successful functionality on a two-stage tran-
simpedance amplifier with negative gm load with just an AC testbench [19]. We now extend
the results on this circuit in TSMC 16nm technology to incorporate more target metrics,
as well as reflect the modified training and deployment algorithm presented in Section 3.1.
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Before doing so however, we discuss the manual equations and methodology used by experts
to create this design.

3.2.1 Design equations and expert methodology

Figure 3.2: Two-stage transimpedance amplifier schematic.

The topology from Figure 3.2 is a standard miller compensated two-stage operational
amplifier, with the first stage containing a negative gm load. The pMOS input stage has a
positive feedback load, that creates a large differential small-signal resistance. The gain, Av,
is therefore:

Av = gminRout1gmd2Rout2 (3.1)

where

Rout1 =
1

(gds,in + gds,d + gds,gm + gmd − gmgm)
(3.2)

and

Rout2 = 1/(gds,d2 + gds,tail2) (3.3)

With miller compensation, the unity-gain bandwidth (UGBW ) is determined by the
transconductance of the input stage and the miller capacitor:

UGBW = gmin/Cc (3.4)

The dominant pole, fp1, can be estimated as:
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fp1 =
gmin

(gminRout1gmd2Rout2Cc)
=

1

Rout1gmd2Rout2Cc

(3.5)

The input transistor transconductance gmin and Cc are decided based on device charac-
terization and bandwidth specifications.

The slew rate, SR, specification for an amplifier with miller-compensation is limited by
the speed of the first stage charge miller capacitor Cc,p and Cc,n:

SR =
Itail
Cc

(3.6)

This sets the lower bound of the current flow through the input pair, such that the size
of these transistors can be determined. To achieve better settling and a large enough phase
margin, the second pole, fp2, can be adjusted and is determined by:

fp2 =
1

(gmd2 ∗ Cload)
≈ (1− 2) ∗ UGBW (3.7)

The second pole is located between 1− 2× the unity-gain bandwidth to ensure it is close
to critical damping and will have a 45− 60◦ phase margin.

Output swing (Vsw) is determined by the second stage:

Vsw = V DD − Vov,tail1 − Vov,d2 (3.8)

Noise of the two-stage amplifier is mainly contributed by the first stage. The total noise
current from the first stage is then:

in2
tot = [4kT (gammap ∗ gmin + gamman ∗ (gmd + gmgm)] ∗BW (3.9)

where BW is the bandwidth. The input-referred noise is therefore:

vn2
in = in2

tot/g
2
min (3.10)

Expert design

An expert-designed iterative script was created in BAG for an AC-only testbench. The
design process involves using the gm/ID approach, created by sweeping a database of MOS
parameters for varying current and terminal voltages and starts by checking whether the
unity-gain bandwidth meets the given metric target. If not, the design parameters are set
to some nominal minimum size transistor, which is used to simulate and get the resulting
performance. If the design does not meet the unity-gain bandwidth target, the selected design
specifications, along with their nominal current and voltage values are used to generate a
new design. In the next iteration, the minimum size is increased for certain transistors, and
the simulation steps continue until either the maximum number of steps is reached, or the
design achieves the unity-gain bandwidth target. It is important to note that this design
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script does not consider other parameters (phase margin, etc.) and relies exclusively on
iteration. Though the script successfully reaches some target specifications, it only does so
within a narrow range of unity-gain bandwidths and must be verified by a designer to ensure
that the designs are stable.

3.2.2 RL setup

Figure 3.2 shows the circuit topology and discrete tunable MOS, resistor, and capacitor
parameters with their ranges [min, max, increment]. A load capacitance of 0.22pF is selected
for training, which was taken from an expert design. The target metrics are:

– open-loop gain, Avo

– phase margin, pm
– unity-gain frequency, ft
– settling time, tset
– dissipated power, P
– input-referred noise, Vnoise
– differential output voltage swing, Vpp

The target specifications are selected from the range in Table 3.1, based on sampling
regions around an expert-designed performance.

3.2.3 Training results

The minimum, mean, and maximum reward per trajectory for each iteration of training
(represented as number of simulations or steps) is used to assess whether the algorithm
trained successfully with schematic simulations. Figure 3.3 shows that the mean reward
reaches zero after training has completed, meaning that the agent, on average, has learned
to reach many training target specifications.

Table 3.1: Performance range sampled during training for full operational transimpedance
amplifier.

Metric Minimum Maximum
Gain (dB) 35 75

Unity-gain frequency (GHz) 0.01 1.0
Phase margin (◦) 60 75
Settling time (ns) 10 75

Input-referred noise (µVrms) 1100 1900
Differential voltage swing (V ) 0.5 0.7

Dissipated power Minimize Minimize
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Figure 3.3: Mean episode reward over number of simulations for full two-stage tran-
simpedance amplifier.

Table 3.2: Obtained schematic performances of trained agent for full operational tran-
simpedance amplifier.

Metric Minimum Mean Maximum
Gain (dB) 42.0 48.3 75.5

Unity-gain frequency (GHz) 0.05 0.08 0.26
Phase margin (◦) 60.2 64.2 76.7
Settling time (ns) 6.9 34 49.8

Input-referred noise (µVrms) 971.6 1938.3 3198.1
Differential voltage swing (V ) 0.48 0.63 0.67

Dissipated power (µA) 12 32 55
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Table 3.3: Layout performance obtained by agent compared to expert for one design.

Metric Expert Agent
Gain (dB) 75 76.6

Unity-gain frequency (GHz) 0.16 0.17
Phase margin (◦) 69 65
Settling time (ns) 10 9.7

Input-referred noise (µVrms) 1400 1358
Differential voltage swing (V ) 0.57 0.59

Dissipated power (µ A) 0.54 0.52

Table 3.4: Rounded average required simulation count (RSC) for transimpedance two-stage
amplifier in schematic and layout for 60 performances.

Seed Schematic RSC Layout RSC
Min Mean Max

1 2 20 45 1
2 1 34 40 1
3 1 28 40 1

We test how well the algorithm understands the design space by giving the trained agent
new and previously unseen target specifications. Table 3.2 shows the agent obtained 393
unique points with a wide range of schematic performances in each metric. In addition, the
agent on average reaches these performances in 20 simulation steps.

The trained agent is deployed with layout and schematic simulations using the algorithm
from Section 3.1. We compare the results to an expert design in Table 3.3 and show that
the algorithm is able to out-perform the expert on every metric except phase margin, where
there is a 5% degradation. In addition, this performance is obtained using 1 layout and 17
schematic simulations. This required simulation count (RSC) is summarized in Table 3.4
for the 60 unique tested layout performances the agent obtained, along with the results of
varying random seed during training.

Compared to the prior deployment algorithm [19] which required 23 layout simulations
to converge, this proposed approach uses 22.3× fewer run-time simulations. We note that
this topology has significant degradation in schematic versus layout simulation results, with
up to 28% difference between the metrics. The difference between schematic and PEX
simulations for each metric, however, is mostly linear, meaning that the algorithm (and a
potential layout parasitics model) could predict this degradation. In the next section, we
introduce a more parasitic-sensitive topology to demonstrate the algorithm’s robustness in
cases where schematic and layout simulation results are significantly nonlinear and more
difficult to model.
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3.3 Folded-cascode amplifier

Analog-to-Digital converters (ADCs) are an important part of ASIC design, as they are
responsible for translating real-world analog signals such as temperature or distance to a
digital representation that can then be used for further processing [60]. An ADC is respon-
sible for two processes that establish performance limits: quantization of the input signal
which determines the resolution and error of the converter, and sampling the continuous
input at certain uniform time intervals.

Several ADC architectures have been proposed to optimize quantization and sampling.
Flash architectures, for example, are fast, needing just one ADC clock cycle to convert a
signal, but require many comparator blocks to do so. Pipeline ADC designs achieve a higher
resolution and dynamic range while handling wideband inputs, but with higher latency and
potentially lower accuracy. Sigma-delta converters have even more latency, but yield the
highest precision for low-bandwidth applications. While SAR ADCs have no pipeline delay,
their accuracy depends heavily on comparator noise and Digital-to-Analog (DAC) linearity.
With these different architectures, the design effort needed to complete an ADC system
design is high, requiring an analog designer to not only understand the many tradeoffs, but
also design and size each sub-block to meet a target specification known at the system level.

Figure 3.4: Pipeline ADC block diagram with amplifier circuit in gray.

We select a complete fully differential two-stage folded-cascode amplifier with biasing
circuitry to evaluate AutoCkt’s performance on a more complex, parasitic-sensitive topology,
adapting the folded-cascode from [61] to enable functionality in TSMC 16nm technology.
The target specifications are selected to match practical requirements in a pipeline analog-
to-digital converter (ADC), whose block diagram is shown in Figure 3.4.

The folded-cascode consists of biasing and amplifier stages, with ideal common-mode
feedback, illustrated in Figures 3.5 and 3.6. In total, the circuit has 42 parameters, including
transistor sizes, load and compensation capacitors and resistors, and a bias current source.
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This circuit not only has a complex design space, but also shows significant behavioral
changes once layout parasitics are incorporated, making it an ideal candidate to test the
robustness of this reinforcement learning methodology.

Figure 3.5: Folded-cascode core topology: 22 parameters total.

3.3.1 Schematic training setup

To obtain a performance baseline in 16nm technology, the desired target specification ranges
are determined. To understand the practicality and feasibility of this chosen target specifi-
cation, first and second-order approximation are used with the following steps:

• Assuming a conservative nominal overdrive voltage Vov, defined as the threshold voltage
subtracted from the device gate-to-source voltage [29] as 100mV for this technology,
the nMOS output stage of the class A amplifier can swing between 100mV and 900mV .
Thus, the nominal swing is 800mV .

• To determine a desired settling time, the sampling rate for the ADC is selected first.
In a pipeline ADC design, the sampling rate is decided solely by the delay of a single
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Figure 3.6: Folded-cascode biasing topology: 20 parameters total.

stage. For larger input swings, settling time will be comprised of both nonlinear slewing
and recovery and linear settling of the amplifier. Assuming half of a clock cycle is used
to settle linearly, the sampling rate, fs, is 1/(2 ∗ tset) where tset is the settling time,
assuming an ideal clock with 50− 50 duty cycle. If a nominal 250MHz sampling rate
is targeted, the desired settling time would then be 2ns. Practically, however, some
part of the settling time is allocated to generate a non-overlapping clock. Therefore
the design should aim to be at least 15% below this value, 1.7ns.

• To determine a feasible bandwidth constraint, we analyze the transfer function of the
folded-cascode topology:

H(s) =
1

s2

wuw2
+ s

1/wu+1/w2
+ 1

With higher-order responses, it is important to consider damping, as this strongly
affects settling time. In particular, the fastest settling time occurs when the circuit
is critically damped, meaning that w2 = wu and the phase margin is 45◦. In prac-
tice however, phase-margin requirements must be at least 60◦ to prevent oscillatory
behavior. Assuming that rc is chosen such that the circuit is ideally compensated,
w2 = 1.8 ∗wu, a linear time invariant system H(s) in unit feedback can be formulated,
and the resulting step response can be measured over time. The error for this response
is calculated by 1− s where s is the output step response. ENOB settling error is then
calculated:
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err = 10 ∗ log(
1

2N
) (3.11)

for 8 and 10-bits which is −24.1dB and −30.1dB, respectively. Finding the intersection
between Equation 3.11 and the output error response results in settling time that can
then be converted to a targeted gain bandwidth. Nominally tolerance for error is
added in this time component by reducing it to one-half of its original value. Thus the
bandwidth for each application is 980MHz for 8-bit and 1.20GHz for 10-bit.

• To determine a gain constraint, technology limitations and constraints are determined
by a pipeline ADC. The maximum gm and ro is calculated for a 16nm process bounded
by 20 fingers and 25µA of drain current, for a fixed minimum channel length 16nm.
These values are used to approximate the highest theoretical gain:

AV = gm1(Rd7||Rd9) ∗ gm15(rd13||rd15) (3.12)

where

Rd7 = rd7[1 + gm7(rd1||rd5)] (3.13)

and

Rd9 = rd9(1 + gm9rd11) (3.14)

This results in the maximum gain being 120dB. This value is in practice much lower
due to parasitics. To obtain a more reasonable target, total error (errtot) is used:

errtot =
1

2N
(3.15)

The gain can be calculated for 8-bit and 10-bit ADC using this error with:

20 ∗ log(
1

2N
) (3.16)

The associated values are: 48dB and 60dB, respectively. In practice, the gain should
be higher than this minimum to account for margin.

• In a pipeline ADC, thermal noise is the sum of all of the input-referred noise values
from each pipeline stage. The noise contribution from later stages, however, diminishes
because it is attenuated by the gain stages that precede them. Because of this, the
noise budget is partitioned such that the first sample-and-hold stage contributes ap-
proximately half of the noise, the first stage has one fourth of the total input-referred
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noise, and all other stages must be designed within the rest of the noise budget. In an
N-bit ADC, total input-referred noise is equal to the quantization plus thermal noise:

Nthermal +Nquant =
LSB2

12

Assuming a 1Vpp differential input signal, the total input-referred noise for an 8-bit
ADC is 1.1mV 2

rms, and the amplifier maximum noise budget would then be 790µVrms.
In practice, realistic designs have some tolerance built in. For this design, a 5% tol-
erance is added, thus adjusting the noise budget to 750µVrms. For the corresponding
10-bit ADC, the input-referred noise is then 560µV 2

rms, making the noise budget for
the first stage 380µVrms. In general, however, these noise constraints are empirical,
as there is no direct connection between the noise budget in the ADC stage and the
amplifier noise simulation results. Without explicitly knowing this target value, plac-
ing a hard constraint on noise is inaccurate and not representative of the application.
Because of this, the constraint placed in the above analyses is loosely defined and 40%
variability is added to account for the fact that noise can be reduced by upscaling the
ADC capacitors or the entire amplifier to provide enough drive current.

• The noise limitation also places a constraint on the load capacitance (CL), and kT/C
dictates that the range of load capacitances must be in pico-Farads. This in turn
influences the AC behavior of the circuit, now making the output pole dominant. In
the results, we discuss two cases: one where the CL given to the agent ranges from
0.1 − 10pF , supporting established equation-based analyses, and the other where CL

varies from 8 − 30fF . The second case gives important insight into how this agent
functions in other non-traditional design cases.

The constraints are summarized in Table 3.5. Note that this analysis is conducted to show
that the target specifications are in the range of interest for a practical design application,
and is within the bounds of feasibility when hand-designing the circuit, for the purposes of
a baseline. This algorithm bears no requirement to having this information.

Table 3.5: Derived target specifications for folded-cascode in pipeline ADC application.

Metric 8-bit Target Specification 10-bit Target Specification
Gain > 54dB > 60dB

Unity-gain frequency > 980MHz > 1.20GHz
Phase margin > 60◦ > 60◦

Settling time 1.7ns 1.7ns
Input-referred noise 750µVrms ± 40% 380µVrms ± 40%

Differential voltage swing 0.8V 0.8V
Dissipated power Minimize Minimize
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Table 3.6: Parameter constraint selection.

Employed Constraint Parameters Design Space Size
None 42 5.5e43

Matching 32 2.1e33
Matching + Biasing 29 1.6e30

The tunable parameters for this circuit topology include length and number of fingers for
each MOS device, feedback resistance, feedback and load capacitances, multiplier, and the
input current source. Each parameter range is derived from the BAG layout generator used
to consider layout parasitics, and has 11 unique values to select from. We focus on uniform
channel length devices when parasitics are included, limited by the simplicity of the BAG
layout generator.

To understand the impact of constraining the parameter space, we take two extremes:
one where every parameter in the circuit is treated as a separate variable with unique tunable
ranges (in the folded-cascode case, this would amount to 42 variables), and the other where
design equations are incorporated such that only a finite number of variables exists for
the agent to tune. On one hand, the large parameter space allows the agent flexibility in
determining potential sizing solutions, but at the risk of not following certain rules that
circuit designers know must hold for valid behavior (i.e. matching). On the other hand,
incorporating design insight allows the algorithm to train faster, but also introduces bias,
potentially reducing the agent’s explorative power. In an automated analog circuit design
tool this tradeoff is extremely important, as the goal is to not only return a valid solution,
but also provide the tool flexibility in finding unique solutions.

Thus, in the experiments we provide three different parameter versions, one where the
agent receives no outside constraint assistance, one where the agent receives basic necessary
constraints, such as matching, and the last where the agent receives matching and easily
coded yet still limited constraints, such as certain biasing circuitry transistors having widths
and lengths multiples of one another. These three versions are summarized in Table 3.6. We
note that no test involves explicitly formulating design equations, as that prevents the tool
from being automated.

3.3.2 Design equations and expert methodology

Before discussing results, we first analyze the design equations experts use to manually size
the folded-cascode in the case where the load capacitance creates a dominant pole in the
system. This allows us to assess the RL agent’s efficacy by comparing and understanding
the similarities between both algorithms.

Based on a slew rate, SR, requirement, the bias current through the load capacitor when
a large differential input signal is applied, I, can be calculated for a certain CL:
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SR =
I

CL

(3.17)

The slew rate determines the lower bound of the current flow through the input pair,
meaning that their size can be decided. To decide the size of the other transistors in the first
stage, the current of the branches needs to be determined. The current flow through the
input pair should be larger than or equal to the current of the cascode branches to lower the
power consumption and maximize gain. Initially, in the sizing process, the currents can be
made equal. Transistors M5,6, M11,12 and M4 are sized to provide current for these branches.
The ratio between M11,12 and M4 should be the ratio of current between them.

The gain-bandwidth (GBW ) is:

GBW =
gm1

CL

(3.18)

where gm1 is the transconductance of M1. The gain, AV , is determined by multiplying
the gain from the first (AV 1) and second stages (AV 2) together:

AV 1 = gm1(Rd7||Rd9) (3.19)

where

Rd7 = rd7[1 + gm7(rd1||rd5)] (3.20)

and

Rd9 = rd9(1 + gm9rd11) (3.21)

The second stage gain is:

Av2 = gm15(rd13||rd15) (3.22)

AV = AV 1AV 2 (3.23)

The output impedance of the first stage is:

Rout1 = Rp||Rn (3.24)

where

Rp = ro9[1 + gm9rd11] (3.25)

and
Rn = ro9[1 + gm7(ro1||ro5)]. (3.26)

Transistors M5,6 and M11,12 are responsible for providing high output resistance, which
means that these devices must have a proper drain-to-source voltage to improve output
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impedance. All transistors in the cascode branch, M5−12, require some margin between
their drain-to-source voltage and the overdrive voltage in order to guarantee small-signal
impedance.

The voltage swing, Vsw is determined by the output stage:

Vsw = V DD = Vov,14 − Vov,16 (3.27)

To sizes of the output devices are dependent on both the output voltage swing, and
driving capability. These devices must provide sufficient current when the output voltage
reaches its required voltage swing. The ratio between M14 and M16 is adjusted to provide
enough gain, and to ensure the input common-mode voltage is reasonable for the output of
the first stage. Initially, these transistors are sized to be a unit output stage, and then scaled
up iteratively to meet the requirements of the capacitive load.

The biasing transistor sizes are determined by the currents required in the cascoded and
tail branches of the main amplifier. MB1,3, MB2,4 and MB19,20 mirror the reference current
ibias to different branches. Their are not critical but need to be large enough so that there is
enough headroom for the pMOS devices in the folded-cascode. MB19 and MB14 provide the
require dbiasing for M9,10, MB15 provides the biasing for M11,12. Both of their sizes should
be the desired current ratio. The ratio between MB16,17,18 and M13,14 needs to be the same
as the current ratio between the bias branch and the output stage. MB5−8 provide the bias
voltage to M5,6.

Expert methodology

Folded-cascode design methodologies generally encompass a combination of heuristics and
circuits intuition. For example, authors in [61] use a gmID approach, and begin by sizing
the transistors based on nominal current requirements in each branch of the folded-cascode,
which are then looked-up and iterated on until a specification is reached. For those target
metrics that are not explicitly derived in equation-analysis, like settling time, prior work
tends to approximate them later in the design process, in system-level simulations, or incor-
porate it into the sizing process only when AC metrics have been satisfied [62].

3.3.3 Schematic training and deployment results for
folded-cascode

In this section, we show the results of training and deploying the agent on the two-stage
folded-cascode, as well as additional analyses to understand the effect of varying targets,
constraints and performance. We consider two cases, 1) where the load capacitance is in
pico-Farads, following conventional sizing methodology, and 2) the load capacitance is in
femto-Farads, creating less practical, but more unique design cases. In addition, we compare
the results to prior work to show that this algorithm is up to 38× faster in converging to a
target during deployment.
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Higher load capacitance results

We will first discuss the results of training the folded-cascode with higher load capacitance in
order to compare against conventional sizing methodology. This is important as it validates
the designs produced by an agent. The means for doing this comparison, however are not
straightforward. Because traditional design methodology, especially for the folded-cascode,
relies heavily on iteration, the equations do not necessarily correspond to the exact sizes
that produce a feasible design that meet a target specification. What we can do, however,
is assess the similarities in performance and efficiency to determine validity.

To do so, the trained agent and the expert are given a target specification to meet,
which, in this case, designs for a lower-gain higher bandwidth application. The obtained
performances for these designs is shown in Table 3.7. We also calculate the efficiency of an
agent-produced and expert design using ftCL/ibias. The table shows that the agent achieves
a better efficiency metric, validating that the designs are comparable.

To understand the practicality of the agent-produced design, we analyze the noise, Vn,
caused by the dominant load capacitance using:

Vn = kT/CL (3.28)

where k is Boltzmann’s constant, T is the temperature in Kelvin, and CL is the load
capacitance. With an 1pF load capacitance, the Vn is therefore 64µV . Assuming that the
ADC requires a 4× higher noise budget, the LSB for the ADC is 256µV . This therefore
gives an input constraint in designing the ADC and establishes that the design produced by
the agent is feasible.

Table 3.7: Comparison of efficiency between agent-obtained and expert-designed perfor-
mances.

Expert design Agent design
UGBW (GHz) 10.0 10.5

Gain (dB) 66.1 49.4
Noise (µVrms) 352 352
Power (mA) 3.33 1.24

PM (◦) 85.2 66.3
Tset (ns) 1.7 0.89

Vswing (Vpp) 0.79 0.83
CL (pF ) 1 1

Efficiency (MHz ∗ pF/mA) 3000 8500

Varying target specifications during training

We now move to discussing results with the lower CL capacitance. The mean episode reward
per number of steps is depicted in Figure 3.7, and shows that the agent successfully reaches
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the stopping condition by obtaining many target specifications.

Figure 3.7: Mean reward per trajectory for 50, 100, and 250 training target specifications.

Figure 3.7 also shows the effect of varying the total number of training target specifica-
tions given to the agent to meet. It shows that the number of simulations required to train
is inversely correlated to the number of targets given to the agent, with more targets helping
the agent train faster. This, however, is not significantly different compared to the total
number of simulations, with all three experiments falling within 12000 simulation steps of
each other. These results are expected, as the agent is able to randomly select targets for
each trajectory at every training iteration. With a higher number of targets, the agent has
a larger variation with this selection, meaning that a particular sample of targets could help
the agent reach the stopping condition faster. We do note that there appears to be a larger
step-to-step variation due to this.

To understand intuitively what Figure 3.7 means in the context of the circuit sizing
problem, the number of target specifications met by the agent during training is calculated.
The results are summarized in Figure 3.8, which also shows the effect of varying the number
of training target specifications. The agent on average meets just over half of the targets
across the three different experiments. As we will show in the failure analyses in Section
3.3.4, this 55% success rate does not mean the agent fails at learning the relationship between
parameters and performance for this topology. Instead, we demonstrate the targets that have
been chosen are pushing performance boundaries for this parameter range and technology.
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Figure 3.8: Deploying trained agent on target specifications not seen before: folded-cascode.

Varying number of constraints

Figure 3.9 shows the results of varying the number of constraints applied to the agent during
training. This plot shows that as the number of parameters increases, the longer it takes the
agent to train. In all cases, the agent is able to successfully maintain an upwards increase in
mean reward and reach the stopping condition. The no constraints model, however, requires
considerably more simulation steps to converge. This is likely due to difficulty in obtaining
feasible design regions when the parameter count is very high. In our studies, we have
found that randomly selecting parameters in the space has an 85% chance of not passing DC
simulation constraints, which could explain the initial flat slope for this experiment.

Deployment with schematic-only simulator

The trained agent is deployed on 300 new target specifications it has never seen before,
in the same range as the randomly sampled targets during training in schematic only, and
summarize the results in Figure 3.8. The percentage of reached versus unreached targets is
similar to the results of training, with approximately 50% of them being successful. This in
turn means that the agent does not overfit on the targets given to it during training.
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Figure 3.9: Mean reward per trajectory for varying number of constraints: folded-cascode.

In addition, the trained agent requires on average just 12.5 simulation steps to converge
to a set of parameters that meets a given target specification. We compare this RSC with
prior state-of-the-art, which include genetic algorithms and their variants, in Table 3.8. To
generate the best possible comparison, the hyperparameters for each of these approaches
is optimally selected based on the fastest convergence on a test target specification. These
hyperparameters are then fixed across the rest of the target specifications. We note that
for the genetic algorithm boosted with neural network [16], we do not tune the neural net-
work’s hyperparameters, as these parameters are not modified in this reinforcement learning
framework. Table 3.8 also includes the RSC to train the RL agent, which is considerably
higher than prior work. This training cost is amortized, however, in two ways: 1) reusing the
trained agent on other target specifications for the same circuit topology leads to a run-time
convergence that is at least 38× faster than prior work, and 2) deploying the trained agent
on layout simulations reduces post-layout run-time convergence, as we will show in Section
3.3.5.
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Table 3.8: Comparison of prior analog sizing methods with required simulation count (RSC)
to converge and number of specifications reached versus tested.

Prior Work RSC # Specs Reached / # Specs Tested
GA + NN [16] 494 4/50

GA [63] 51973 1/1∗

AutoCkt (training) 71001 N/A
AutoCkt (deploy) 13 191/300

*Only one target specification tested on vanilla genetic algorithm because of RSC

3.3.4 Reachability analyses in schematic trained agent for
folded-cascode

This section analyzes performances that AutoCkt obtains in order to posit that a) the
framework reaches variable, valid, performances and parameters in the design space and b)
failure in reaching a target specification points to unreachability of these targets as opposed
to failure of the algorithm.

Variability and validity of reached performances and parameters

Two aspects are important in assessing whether the agent understands the design space
and tradeoffs for this folded-cascode topology: 1) how many unique parameters and 2)
how many unique performances the agent obtains in order to meet the deployment target
specifications. In other words, we would like to ensure that the agent does not converge to
one set of parameters with the highest performance to satisfy all of the targets given to it.

The minimum, maximum (at most 11), and mean array index values for each tunable
parameter in the folded-cascode are shown at each end of the gray line in Figure 3.10, as
well as the black circle, respectively, for cases where the agent successfully reaches a target
specification. The variability in parameter values clearly shows that the agent understands
and reaches performances with diverse exploration over the range of parameters.

The minimum, mean and maximum obtained performances are summarized in Table 3.9,
showing that the agent reaches a diverse range of performances.

To analyze the validity of the agent’s designs from a circuit’s perspective, we examine
transistor operating points to ensure that devices operate in the correct regime. For this
topology, the overdrive voltage values for each of the obtained performances are calculated
and averaged. The results are summarized in Figure 3.11 and show that the framework finds
reasonable and valid operating regions for each amplifier transistor.

Analysis on unreached target specifications

The distribution of unreached target specifications is analyzed according to the performances
the agent converges to. In such cases, we look at the number of target metrics met, and
summarize the results in Table 3.10. This table shows that 89.7% of the unreached targets
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Figure 3.10: Parameter variation for reached performances: folded-cascode.

Table 3.9: Reached performance ranges by agent (100o∗).

Metric Minimum Mean Maximum
UGBW (GHz) 2.67 7.84 14.8

Gain (dB) 56.7 63.2 65.7
Noise (µVrms) 303.4 380.4 531.1
Power (µA) 370.1 613.0 803.1

PM (◦) 59.6 73.4 93.7
Tset (ns) 1.2 3.6 10.5

Vswing (V ) 0.62 0.86 0.97
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Figure 3.11: Overdrive voltage (Vov) analysis for obtained performances: folded-cascode.

Table 3.10: Reached performance metric distribution for unreached targets.

Number of Metrics Met Percent of Total Performances
3 0.85%
4 9.4%
5 43.6%
6 46.1%
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consist of greater than five metrics being met, out of a total of seven. This means that
the agent optimizes and obtains performances that are close to the target. Figure 3.12
further shows the unmet target specifications, categorized by what percent of metrics are
not met. From this plot, it is clear that settling time, phase margin and gain constraints are a
significant portion of the unmet distribution (power is ignored as it is not a hard constraint).
The percentage error between the obtained metric performance and its associated target is
also shown in the figure. We note large errors in unity-gain frequency, settling time, and
voltage swing, but posit that this is due to the selected targets pushing the performance
boundary for this circuit topology, as we will analytically show in the next sub-section.

Figure 3.12: Metric failure percentage and percent difference to target for those failed metrics,
where f t is unity-gain frequency, A vo is gain, t set is settling time, pm is phase margin, P
is power, V pp is voltage swing, and V ns is noise.

Distribution of unreached target specifications

We analyze the distribution of unreached targets, and group each metric based on whether
they are within 15% of the maximal (for metrics being maximized) or minimal range (for
metrics being minimized) initially used to generate the targets during training, with the
exception of phase margin which only has a 5% range to account for the smaller variation.
The results are summarized in Figure 3.13. This histogram shows that 98.6% of distribution
of target specifications the agent does not meet stems from at least one metric nearing its
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upper (maximized metrics) or lower bound (minimized metrics). In addition, Figure 3.13
also plots the unmet target metrics over the total number of targets classified within each
bound, which increases with more metrics being in the toughest bound. Because these target
metrics are randomly sampled from a fixed range, the probability of sampling six or seven
metrics within the toughest bound is very low, explaining why fewer targets exist in these
categories.

Figure 3.13: Distribution of unreached targets binned by number of metrics that are within
their toughest bound.

Figure 3.14 plots a heatmap of each of the metric tradeoffs that contribute to the his-
togram from Figure 3.13. The highest number of tradeoffs occurs between output voltage
swing and the other metrics, including power and phase margin. From a circuits perspective,
this is intuitive as voltage swing determines the bounds of other metrics. In addition, gain
and power, gain and swing, and noise and power are featured as well. It is apparent that
these common circuit tradeoffs are being considered by the agent during the training process.

In summary, regions where the agent does not meet target specifications are posited to
be unreachable due to a significant percentage of these targets having metrics that fall in
the toughest bound, with metric-to-metric tradeoffs further proving that these tradeoffs are
common when designing circuits.
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Figure 3.14: Heatmap of number of occurrences of different metric tradeoffs in unreached
target specifications, where f t is unity-gain frequency, A vo is gain, t set is settling time,
pm is phase margin, P is power, V pp is voltage swing, and V ns is noise.

3.3.5 Generalization to layout parasitics

Prior analog sizing tools either lack the ability to consider post-layout extracted (PEX)
simulations due to RSC inefficiency and lack of automated generation of layout, or consider
them via approximated parasitic models [41, 42, 43], which can prove inaccurate in cases
where there is significant unpredictability and performance degradation between schematic
and layout simulations across a wide sizing range. In order to make the design of analog
sizing practical, sizing frameworks must consider layout and demonstrate its functionality
on true circuit parasitics. In this section, we discuss how BAG is utilized to generate layouts
for the folded-cascode, analyze why a combination of schematic and PEX simulations is
the most successful in reaching a target specification, and show how the trained RL agent
performs with layout parasitics.

Two-stage folded-cascode BAG generator

The two-stage folded-cascode, designed by Zhaokai Liu, is created by two sub-generators:
the core amplifier and the biasing circuitry block. These generators are made to encom-
pass a wide range of transistor sizes. The amplifier core assumes the transistors for each
differential side are symmetrical and matched, and are grouped into two parts for ease of
layout generation: the first consists of the tail current, input pair, and the p-type cascode
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transistors and the second contains the n-type and output stage transistors. This grouping
allows consistent generation of LVS-passed layouts. Dummy transistors are added in empty
regions to guarantee good matching.

The bias circuit generator from Figure 3.6 has three sub-blocks: the p-type cascode, n-
type cascode, and tail-current biasing. These sub-blocks are connected vertically allowing for
easier modification of sizes. In addition, they can be adjusted without needing a complicated
routing algorithm. Both amplifier core and bias circuit have supply routing at two sides.
Connections between these blocks use a higher metal layer.

Once the BAG generator creates the schematic, layout and testbench, post-layout simu-
lation is run on the circuit. This process takes on average 60× more time than a schematic
simulation, ranging from 10 minutes if the sizes of transistors are small to almost 40 if they
are large. This means that simply taking prior work and running with layout simulations is
not feasible for more complex topologies.

Combined Schematic and Layout Deployment Methodology

In order to understand why a combination of schematic and layout simulations is the most
successful in reaching a given target specification, we first analyze the distributional difference
between these datasets. Figure 3.15 shows schematic and PEX simulation results for the same
set of parameters. These plots show that layout parasitics affect each metric differently,
with some metrics, including phase margin, settling time, and gain having distinct non-
linear patterns. In particular, only 10% of the points meet the phase-margin requirement of
60◦ in layout. Gain also contains a sharp dropoff, attributed to self-loading, that degrades
performance significantly compared to its corresponding schematic design. These features
affirm that layout effects are significant for this topology, and by using a simple linear or
neural network model to predict parasitics allows for optimization in a very limited range,
restricting the applicability to lower-performance, non-parasitic dominant circuits. Principal
component analysis is conducted in Figure 3.15 to show that these datasets form separate,
almost non-overlapping clusters in the design space, with parasitic results having less spread
and a different centroid location. This reinforces that simply taking parameters for a given
performance that satisfy a target specification in schematic and translating it to parasitics
does not yield reliable results. Additionally, the sensitivity of every tunable parameter to
each target metric is shown in Figure 3.16, by calculating the change in performance when a
single parameter is modified. We find that the multiplier, nMOS load transistors, and certain
bias transistors cause significant changes to the metric performances, further illustrating that
self-loading is a significant factor in performance degradation in layout.

Two trajectories are plotted in Figure 3.17, showing where the deployed agent only runs
layout simulations [19], as well as the proposed schematic and layout simulation approach.
The results show that the layout simulation approach does not converge to a specification
that meets the target, shown as the green horizontal line (scaled to 0.0), despite improving
the reward over the course of the trajectory. This approach (in yellow), allows the agent
to traverse the schematic simulation space, routinely checking layout-parasitic simulation
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Figure 3.16: Sensitivity heatmap that shows the absolute percent change in layout metric
performance when a selected circuit parameters are individually modified in the design:
folded-cascode.

results and modifying the parameters in a design space that it better understands. If we had
simply taken the first schematic simulation parameters that met the target and used this to
run PEX, depicted as the theoretical schematic simulation in Figure 3.17, the target speci-
fication would not have been reached. This combination of schematic and layout simulation
deployment allows the agent to traverse a design space it knows and understands, in order
to generalize to a distribution that it has not seen before, allowing it to be more successful
in reaching a target [64].
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Figure 3.17: Trajectory results when agent is run with a combination of schematic and layout
simulations, versus only layout simulations.

AutoCkt with layout parasitics

Table 3.11: Reached performance ranges with layout parasitics.

Metric Minimum Mean Maximum
UGBW 2.66 GHz 3.50 GHz 7.6 GHz

Gain 55.5dB 59.14dB 61.6dB
Noise 463.6 µV 543.9 µV 618.28 µV
Power 470.3µA 548.8µ A 643.4 mA
PM 60.1◦ 67.6◦ 80.3◦

Tset 0.88ns 1.6 ns 3.4 ns
Swing 0.76 V 0.87 V 0.98 V

We test the combined schematic and layout deployment methodology by giving the agent
a range of target design specifications to reach. Table 3.11 shows the minimum, maximum,
and mean obtained layout performances on 60 trajectories. We find that the framework
successfully reaches a range of valid PEX performances, meaning that it successfully sizes
parameters even when the change in distribution from layout parasitics is significant.
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Table 3.12: Prior work and AutoCkt layout performances for 8-bit and 10-bit pipeline ADC
specifications with load capacitance varying from 8− 30fF .

Metric 8-bit AutoCkt [16] [63] 10-bit AutoCkt [16] [63]
UGBW (GHz) > 0.98 3.0 4.46 5.8 > 1.2 4.18 4.9 5.8

Gain (dB) > 54 59.0 44.0 57.6 > 60 61.6 53.5 61.9
Noise (µVrms) < 750 585.7 421.1 414.7 < 380 519 390.0 423.3
Power (µA) min 492 501 450 min 589 556 581

PM (◦) > 60 71.1 23.9 13.1 > 60 70.4 28.7 22.2
Tset (ns) 1.7 1.44 7.23 15.7 1.7 1.37 7.1 10.4
Swing (V ) 0.80 0.88 0.98 0.62 0.8 0.89 0.80 0.83

Figure 3.18: BAG-generated LVS-passed layout for the core and biasing folded-cascode cir-
cuit for an obtained performance.

Table 3.13: Required Simulation Count (RSC) for AutoCkt with varying seeds (average
min/mean/max) and two prior works

Experiment Schematic RSC RSC PEX Obt. Layout Target?
AutoCkt, Seed 1 4 / 30 / 40 4 Yes
AutoCkt, Seed 2 3 / 27 / 40 4 Yes
AutoCkt, Seed 3 3 / 25 / 40 4 Yes

[19] - 23 Yes
[16] (schematic) 10012 - No
[63] (schematic) 58844 - No

Pipeline ADC Target Specifications

We select the two target specifications for the 8-bit and 10-bit pipeline ADC (Table 3.5) and
input them to the trained agent during deployment. The results show that the framework
obtains LVS-passed designs that meet all target metrics for the 8-bit ADC, and all metrics
for the 10-bit ADC when noise variability is taken into account. The obtained performances
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are summarized in Table 3.12, and the BAG-generated folded-cascode amplifier and biasing
layout is shown in Figure 3.18. Table 3.12 also shows the layout performances obtained by
two prior works run with schematic simulations, whose converged designs are then taken and
simulated with layout in BAG. Despite both works obtaining designs that meet the target
in schematic, they fail to meet or obtain valid performances once parasitics are considered,
with phase margin, gain and/or settling time degrading significantly. We note that the most
efficient schematic RSC solution from [33] would take almost 13.9 days to converge using
layout parasitic simulations with the same RSC.

We note that the RL algorithm handles the distribution difference between schematic and
layout by requiring additional simulations in schematic to meet the target, on average taking
30 schematic simulation steps and 4 parasitic steps across the 60 tested target specifications,
shown in Table 3.13. This approach reliably reaches target specifications in layout, with
state-of-the-art PEX simulation RSC, beating [19] by almost 6× in a more complex circuit
topology. We note that prior work would have required too many RSCs to deploy with
layout simulations, as their RSCs in schematic are too high.

PEX Corner Simulation Results

To determine if AutoCkt reaches design points that are robust enough once process corners
are considered, corner analyses is run for each of the 60 performances the agent obtained.
To understand the validity of these results, which are shown in Table 3.14, we calculate two
metrics: 1) once corner simulation is completed, how many of the 60 design points still have
valid results, meaning the metrics are within the same region as the nominal corner, and 2)
do the designs that satisfy the 8-bit and 10-bit pipeline ADC requirement still meet these
targets once corners are considered.

We find that 96.7% of the obtained performances are valid, with just two of the 60 perfor-
mances resulting in invalid corner simulation results, where transistors are not in saturation.
This shows that despite not considering corner variation in its sizing, the agent does very
well in reaching design points that are stable.

We also show the corner simulation results for the previous 8-bit and 10-bit ADC designs
in Tables 3.15 and 3.16. For both designs, the target specifications are satisfied for every
metric, with the exception of noise in the 10-bit ADC design. We again posit that the noise
metric is an estimated value. We run Monte Carlo simulations on these designs as well, but
find that the results varied considerably.

To incorporate process corner/Monte Carlo PVT simulations, we propose using accurate
estimation tools such as [45, 65, 66] to predict these variations during training with schematic
simulations, giving the agent the mean and standard deviation of each metric performance
as part of the state, or use a similar deployment generalization methodology to run process
corner/Monte Carlo simulations only when the agent has obtained a valid schematic and
layout performance design. If the results of these simulations do not meet a predefined
acceptable variation, the worst performance is given back to the agent to once again go
through the schematic and layout sizing procedure.
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Table 3.15: 8-bit corner simulation results.

Metric Target FF FS SF SS
UGBW (GHz) > 0.98 3.15 2.93 3.13 2.95

Gain (dB) > 54 57.2 57.3 60.1 56.5
Noise (µVrms) < 750± 40% 579 589 585 591
Power (µA) minimize 538 471 522 459

PM (◦) > 60 74.0 70.0 73.2 68.9
Tset (ns) < 1.7 1.44 1.56 1.41 1.61
Swing (V ) > 0.8 0.86 0.79 0.93 0.79

Table 3.16: 10-bit corner simulation results.

Metric Target FF FS SF SS
UGBW (GHz) > 1.2 4.27 4.10 4.25 4.01

Gain (dB) > 60 59.1 60.0 61.6 64.7
Noise (µVrms) < 380± 40% 637 567 600 551
Power (µA) Minimize 514 518 520 525

PM (◦) > 60 73 68.7 72.5 68.6
Tset (ns) < 1.7 1.38 0.67 1.36 1.65
Swing (V ) > 0.8 0.79 0.77 0.94 0.91

Comparison to Prior Analog Sizing Work

We compare AutoCkt to prior analog sizing works in Table 3.17. In this comparison, we
take the best-performing, most-complex circuit topologies tested by each prior work, and
include their circuit complexity measured by the number of parameters in the circuit and
number of metrics tested, whether parasitics are considered, whether a parasitics model
is used, process corners are considered, and the RSC. We show that this work tests on a
complex circuit while considering true layout parasitic simulations, and has one of the lowest
deployment RSC values.

We also compare one of the performances reached by AutoCkt to prior work that have
designed folded-cascodes, shown in Table 3.18. Not only does the agent reach comparable
gain and at higher bandwidth, it does so with less power.

3.4 Open-source code and framework

The AutoCkt framework, code, and schematic results presented in [19] can be found on
GitHub at https://github.com/ksettaluri6/AutoCkt. Due to licensing constraints, the code
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Table 3.18: Comparison table for folded-cascode topologies.

Parameter [1] [2] [3] [4] [5] Work
Process 65nm 0.18µm 0.18µm 0.5µm 0.18µm 16FF
VDD 0.5V 5V 1.8V +− 1V NA 1.0V

Cap. load NA 10pF 2pF 70pF 5.6pF 14fF
tset (rise/fall) 892/820ns NA NA 96ns/74ns 20.7ns 1.23ns

Avo 64.2dB 89dB 48dB 81.7dB 52.6dB 60.3dB
pm 61o 60o NA 60o 83.6o 68.2o

ft 2.1MHz 17MHz 40MHz 4.75MHz 70.7MHz 4.15GHz

Vns(nV/
√
Hz) NA 9.5@10kHz 99.35µ 35@1MHz 53.2µ 549µ

Vpp 705mV rail-to-rail 1.42V NA NA 0.86V
Topology* FC+CS FC+AB FC+AB FC FC FC+AB

Power 150µW 790µA 800µA 80µW 800µA 498µA
*AB = Class AB

only interfaces with an open-source circuit simulator, NGSpice.

3.4.1 Setup

The setup requires Anaconda. In order to obtain the required packages, run the command
below from the top level directory of the repo to install the Anaconda environment, and
activate the environment:

• conda env create -f environment.yml

• source activate autockt

You might need to install some packages further using pip if necessary. To ensure the
right versions, look at the environment.yml file. NGspice 2.7 needs to be installed separately,
via https://sourceforge.net/projects/ngspice/files/ng-spice-rework/ol/27/. Page 607 of the
PDF manual on the website has instructions on how to install. Note that you might need
to remove some of the flags to get it to install correctly for your machine.

3.4.2 Code flow

The code setup is shown in Figure 3.19.
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Figure 3.19: Flow-chart for AutoCkt framework on Github.

The top level directory contains two sub-directories:

• AutoCkt: contains all of the reinforcement code

– val autobag ray.py: top level RL script, used to set hyperparameters and run
training

– envs directory: contains all OpenAI Gym environments. These function as the
agent in the RL loop and contain information about parameter space, valid action
steps and reward.

• eval engines: Contains all of the code pertaining to simulators

– ngspice: this directory runs all NGSpice related scripts.

– specs test: a directory containing a unique yaml file for each circuit with infor-
mation about design specifications, parameter ranges, and how to normalize.

– script test: directory with files that test functionality of interface scripts

3.4.3 Training

Make sure that you are in the Anaconda environment. Before running training, the circuit
netlist must be modified in order to point to the right library files in your directory. To do
this, run the following command:

• python eval engines/ngspice/ngspice inputs/correct inputs.py

To generate the design specifications that the agent trains on, run:
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• python autockt/gen specs.py –num specs ##

The result is a pickle file dumped to the gen specs folder. To train the agent, open
ipython from the top level directory and then:

• run autockt/val autobag ray.py

The training checkpoints will be saved in your home directory under ray results. Tensor-
board can be used to load reward and loss plots using the command:

• tensorboard –logdir path/to/checkpoint

To replicate the results from the paper, num specs 350 was used (only 50 were selected
for each CPU worker). Ray parallelizes according to number of CPUs available, that affects
training time.

3.5 AutoCkt analyses and conclusion

After training and deploying AutoCkt on a two-stage amplifier, two-stage amplifier with
negative gm load, and the two-stage folded-cascode, we have found several crucial factors in
considering this machine-learning sizing approach. In particular:

• The choice of target specifications is important in determining how well the agent
generalizes during deployment. It appears that the agent performs better in regions
where it has already explored and trained, versus areas that are vastly outside the
range of the given target design specifications. This is not surprising, as the agent is
given rewards for its performance on the data it explicitly trains off of.

• The random selection of target specifications within a range is not reflective of any
actual circuit topology constraints, making accuracy metrics after, as seen in this paper,
inaccurate to solely consider. To obtain better accuracy values in the future, there
should be a better method of generating design specifications that more intuitively
follow the specific circuit topology the RL algorithm is trained on.

• The choice of reward function is robust across topology differences, even when the
metrics themselves are vastly different.

• Despite not being trained on corner simulation results, the agent still obtains feasible
design points when these simulations are run. The robustness of this methodology can
be improved by incorporating corner simulations during the training process.

In this chapter we expand the results on the reinforcement-learning tool that sizes analog
circuits, AutoCkt [19], to show that this framework is scalable, accurate, and practicable. We
test the framework on a two-stage transimpedance amplifier and two-stage folded-cascode
with biasing, and demonstrate that this tool achieves state-of-the-art run-time RSC, at least
38× more efficient than prior work. We show that the algorithm is robust, generalizes to
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an environment that considers layout parasitics, and can handle the large amount of error
present between post-layout and schematic-only simulations. With the combined schematic
and layout-parasitic simulation approach, achieved by using the Berkeley Analog Generator,
We find that this approach requires, on average, 4 layout simulations to converge to a
performance that meets a target specification. In addition, the obtained LVS-passed folded-
cascode performances meet target 8-bit and 10-bit pipeline ADC designs that are valid when
process corners are considered. We also conduct extensive analysis on where this framework
fails, and why this machine-learning approach can be practically incorporated to an existing
analog-sizing flow.
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Chapter 4

Reinforcement Learning for Nonlinear
Circuit Topologies

In this chapter, we explore two circuit topologies in a pipeline ADC application that require
more design effort compared to other conventionally well-defined circuits: a ring amplifier
(RAMP) and a comparator. We demonstrate that the reinforcement-learning framework
achieves target specifications in schematic simulations for the comparator and both schematic
and layout simulations for the RAMP, and show that the automatically generated designs
achieve comparable, and even better performances when compared against a manually sized
design from an expert. In addition, we show the agent’s pareto curves and more analysis on
the efficacy of the algorithm to function on these more complex circuits. Specifically,

• We show that the established sizing procedures for both circuits are heuristic and
manual, increasing the number of iterations and end-to-end design time,

• the trained RL agent converges to many different target specifications with, on average,
just five schematic simulations for the comparator,

• the trained agent converges to many target specifications with, on average, two layout
simulations for the ring amplifier topology, and

• compared to an expert, the agent achieves 12% and 18% better designs for the com-
parator and ring amplifier, respectively.

4.1 Introduction

Comparators are crucial to ADC design, as they dictate the speed and precision of the ADC,
and are responsible for sensing the difference between differential inputs and outputting a
logical signal corresponding to the polarity of the input difference [67]. Though many differ-
ent topologies exist, strong-arm comparators in particular provide several unique benefits: 1)
they do not draw static power, 2) have rail-to-rail output swing, 3) require one clock-phase,
and 4) sources of input offset are primarily due to the input pair transistors. The design of
this type of comparator is defined in several manual procedures [68, 69], and is selected for
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testing on this automated sizing methodology primarily to assess the efficacy of the tool in
matching the methodology developed by an expert analog designer.

Ring amplifiers [70] are scalable, modular amplifiers that use a cascade of dynamically sta-
bilized inverters to perform accurate amplification, and are specifically applicable in modern
high-linearity, high-bandwidth pipeline ADC designs because they can provide rail-to-rail
swing, charge large capacitive loads, and scale with process technologies. Whereas prior
topologies used in the residue amplification step often face power-efficiency issues, RAMPs,
when paired with a first-order gain calibration step, can provide a power-effective solution
for high linearity and speed in nanoscale CMOS [71]. Designing RAMPs, however, is not as
straightforward as other well-defined amplifier topologies, particularly because multiple test-
bench simulations must be considered in parallel to successfully size the topology to meet
a target specification. In particular, the sizing methodology involves considering slewing,
settling and stabilizing modes of operation, covered in more detail in Section 4.3.

This chapter is organized as follows:

• Section 4.2 discusses the strong-arm comparator, sizing approach, and schematic results
on the circuit topology.

• Section 4.3 introduces the RAMP topology, presents the traditional methodology to
size the amplifier, and demonstrates AutoCkt’s results on the circuit in both schematic
and post-extracted layout simulations.

• Section 4.4 concludes with additional analyses and direction for future work.

4.2 Strong-arm comparator

Figure 4.1 shows the selected strong-arm comparator topology [67]. The circuit itself contains
few circuit parameters to modify, with with only 11 total transistors.

4.2.1 Comparator basics

The comparator functions by first precharging the four internal nodes in the circuit to the
power supply, V DD. The CK signal then goes high, causing the internal nodes that connect
to the drains of M1 and M2 to drop in voltage proportional to the difference between the
inputs Vin1 and Vin2. Once the M1 and M2 drain voltages drop to V DD−Vth3,4, M3 and M4

are activated, causing their drain voltages to drop also until M5 and M6 are activated. The
output voltage terminals then either receive V DD and ground, or vice versa, completing the
comparator operation [68].

4.2.2 Manual comparator design

The design of this comparator begins by heuristically determining sizes of the signal path
transistors (M1, M2, M3, M4, M5, M6) to meet a given voltage offset. Nominally the
threshold voltage mismatch, ∆Vth1,2, is:
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Figure 4.1: Strong-arm comparator schematic.

∆Vth1,2 =
AV th√
WL1,2

(4.1)

where AV th is a constant dictated by the technology node. ∆Vth1,2 is then determined by
choosing an initial width and length for M1 and M2.

Next, the M7 tail transistor is sized to draw enough current, and operates in the deep
triode regime. Transistors M3 and M5 are sized heuristically, as the offset contributed by
them is not significant, thus the authors in [67] state that this threshold mismatch can be
nominally divided by a factor between 3 − 5×. A similar philosophy is used to select the
widths for M5 and M6; these transistors affect the comparator’s speed, however, which then
requires further iteration to assess this effect once the design has been simulated. Finally,
the reset switches S1, S2, S3, and S4 are sized based on their requirement to pull their drain
voltages to V DD under a certain, pre-constrained time.

Once the design is initially sized, the strong-arm comparator is simulated, upon which
further analysis is conducted to meet the offset and speed requirements. We note that
several prior works have discussed this sizing procedure [69], [72], but all purportedly rely
on heuristics, iteration, and intuition in order to successfully design this circuit.

4.2.3 Comparator RL setup

We move to discuss the tunable parameters and target specifications that interface the strong-
arm comparator to the reinforcement-learning algorithm.
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Parameters

The circuit is tested in Intel 22nm technology, with parameters that correspond to the width
of the MOS devices in Figure 4.1. Matching is incorporated as a constraint, meaning that
the total tunable parameters given to the agent are the four pairs of devices (M1 and M2,
M3 and M4, M5 and M6), the tail transistor, M7, and a single switch parameter that sizes
S1 to S4 equally. Each action space parameter range varies starting from 2wwb to 40wwb in
increments of 2, where w is the base number of fingers, and wb is the base width increment,
which for this technology, is 45nm.

Target specifications

The target metrics are noise (Vnoise), delay (td), input capacitance (Cin), and dissipated power
(P ). 100 target specifications are given to the agent, sampled around an expert-designed
schematic performance, and summarized in Table 4.1.

Table 4.1: Performance range sampled during training for strong-arm comparator.

Metric Minimum Maximum
td (ps) 1 100

Vnoise (µVrms) 100 600
Cin (fF ) 1 10
P (µA) 20 200

4.2.4 Results on training and deploying with schematic
simulations

The results of training the RL algorithm with the strong-arm comparator are discussed in
this section. Figure 4.2 shows that the mean trajectory reward increases to the stopping
condition of zero, meaning that the agent successfully reaches many target specifications.

We then deploy the agent on schematic simulations only, and the summary of minimum,
mean, and maximum obtained performances for each target metric is shown in Table 4.2
for 54 designs. The range in metrics not only suggests that the agent understands different
regions of the design space, but is also able to understand the intricacies in strong-arm
comparator design, requiring just over 10000 simulation steps to train, but only, on average,
5 steps to deploy.

To understand how these schematic performances compare to those of an expert, Table 4.3
shows an expert-designed and agent-obtained performance for the same target specification.
This table shows that the agent can not only achieve a comparable performance, but also
reaches better regions of operation compared to the expert. This, of course, is only an initial
study with schematic-only simulations. There is additional research that must be completed
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Figure 4.2: Mean episode reward for strong-arm comparator.

in order to fully understand the feasibility and practicality of this RL tool for the strong-arm
comparator, which includes running with layout parasitics and process corner simulations.

For this circuit, there was also some difficulty in training the tool to take more than
one iteration of training to converge - as the parameters and target specification space were
limited. To fix this, the range of parameters was increased, in addition to reducing several
RL hyperparameters, including training batch size and horizon length. We posit that this
issue can be fixed by increasing target metrics, perhaps by incorporating voltage offset.

The quality of results achieved when the RL agent trained and converged to a positive
reward in one training iteration was low, as expected, due to the initial random sampling of
designs and trajectories during training. We emphasize that this RL methodology is only
successful in understanding the relationship between parameters and target specification
when there is a clear path to improving reward during multiple iterations of training.

4.3 Ring amplifier

In this section, we discuss RAMP basics, the equations and analysis used in manual RAMP
design, the interface between the selected RAMP topology and the RL framework, and the
results associated with both schematic and layout parasitic simulations.
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Table 4.2: Performance range obtained by agent during training.

Metric Minimum Mean Maximum
td (ps) 46 65 95

Vnoise (µVrms) 20 35 76
Cin (fF ) 2.6 6.5 112
P (µA) 134 195 291

Table 4.3: Comparison for expert-designed and agent-obtained performances for the same
target specification.

Metric Expert Agent Percent Difference
td (ps) 88 82 −6.8

Vnoise (µVrms) 270 233 −13.7
Cin (fF ) 2.57 3.33 29.6
P (µA) 20 20 0

4.3.1 RAMP basics

The RAMP topology we have selected, shown in Figure 4.3, consists of three dynamically
stabilized inverters that provide multi-stage amplification, with an anti-parallel CMOS con-
figuration in the second stage [70]. RAMP operation can be divided into three distinct parts:
1) the amplifier initially charges the capacitive load, CL, in an unstable, high slew-rate mode,
2) the RAMP then dynamically adjusts the biasing so that a dominant pole appears at the
output, increasing the phase margin, and 3) finally locks to a stable region with positive
phase margin [71]. The key feature in obtaining stability is the induced dead-zone (DZ)
voltage controlled by VB,H and VB;L that drives the output devices MP3 and MN3 with dif-
ferent versions of the input signal, determining both the static and dynamic properties of
the amplifier.

Static analysis

We first analyze the amplifier’s gain, and discuss how VDZ impacts this metric. Specifically,
total open loop gain is obtained by calculating the gain at the first stage and multiplying it
with the combined gain in the second and third stages, as outlined by [71]. The stage one
gain, As1 is:

As1 = (gm,N1 + gm,N2) ∗ (ro,N1||roN2)

where gm,X and ro,X are the gm and ro for transistor X. The gain, As2,3, for stages two
and three is:
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Figure 4.3: Ring amplifier topology proposed in [71]

An = (gm,P2 + gm,N2)(gm,P3(gm,NB ∗ ro,PB||ro,NB + 1) + gm,N3(gm,PB ∗ ro,PB||ro,NB + 1))

+ gm,P3gm,P2
ro,PB||ro,NB

ro,N2

+ gm,N3gm,N2
ro,B
ro,P2

(4.2)

Ad1 = ro,P2(gm,PBro,B + 1) + ro,PB||ro,NB + ro,P2(gm,PBro,B) (4.3)

Ad2 = ro,P2 ∗ ro,N2 ∗ ro,P3||ro,N3 (4.4)

As2,3 =
An

Ad1/Ad2

(4.5)

Making the total gain, Atot, equal to:

Atot = As1 ∗ As2,3 (4.6)

This gain expression is relatively unintuitive due to the complexity, despite the topology
being simple, leading to more difficulty in the design process. In addition, the relationship
between the deadzone voltage, VDZ , which is an important part of the sizing the RAMP,
to this gain expression is obtained by conducting sweeps that lead to several heuristics.
Specifically, [71] finds that VDZ and Atot are inversely related, with VDZ having no significant
impact on static linearity.

Dynamic analysis

Static analysis captures only the steady-state behavior of the circuit, and both DC and
dynamic testbenches are needed to ensure reaching and locking to the steady-state region.
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We calculate the gain-bandwidth fGBW , once the output node is the dominant pole dp, with
frequency fdp:

fdp =
1

2π ∗ ro,P3||roN3 ∗ CL

(4.7)

The gain-bandwidth, fGBW is then:

fGBW ≈
1

2π
AS1AS2

gm,P3 + gm,N3

CL

(4.8)

where AS1AS2 can be split into their partial gains AS1,S2,P and AS1,S2,N :

AP (N) = −ro,P2(N2)[gm,P2(N2)ro,PB||ro,NB+

(gm,P2 + gm,N2)ro,N2(P2)] (4.9)

AP (N),den = ro,P2(gm,BP ro,PB||ro,NB + 1) + ro,PB||ro,NB

+ ro,N2(gm,NBro,PB||ro,NB + 1) (4.10)

AS1,S2,P (N) = AS1 ∗
AP (N)

AP (N),den

(4.11)

This expression is complex, with [71] and [73] mentioning that the deadzone voltage
impacts it significantly as well, by lowering fGBW but improving phase margin upon increases
to VDZ .

Manual RAMP design

Several works outline how to size a RAMP, though the procedure is relatively heuristic in
nature. For example, the proposal outlined by [70] discusses placing the ring amplifier in the
target application, with realistic timing and feedback conditions, and doing the following: 1)
initialize ring amplifier with extra bandwidth, 2) size the output stage for worst-case slew-
ing/settling, 3) reduce the sizes of the front stages for power efficiency, and 4) iterate steps
2-3 if necessary. [70] emphasizes, however, that the design procedure is heavily dependent
on the application and optimization priorities.

Other methods like [74] however, suggest 1) sizing the unit inverter first by choosing
nominal values for the NMOS (which should be small for the first two stages), and selecting
PMOS sizes that are two times the width of the NMOS, assuming some resistance and
offset voltage, 2) running a unit-inverter optimizer for all inverter stages, 3) sizing the top-
level, 4) assessing validity at the top-level, and then based on this feedback iterate from 1)
accordingly.

These prior methods appear to be heuristic in nature, and require iterative loops in order
to successfully size the topology. In this formulation, we use the reinforcement-learning
framework to size the RAMP by considering AC and transient testbenches.
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4.3.2 RAMP Autockt setup

We discuss the parameters and specifications that interface the RAMP to Autockt.

Parameters

The tunable parameters for this topology include width of the MOS devices, the two bias
voltages VB,H and VBL

, and load capacitance. Each parameter range is derived from the
BAG layout generator used to consider layout parasitics, and has 11 unique values to select
from. We note that load capacitance is a tunable parameter to allow the agent to size the
RAMP for different load conditions, and is fixed during deployment. We focus on uniform
channel-length devices when parasitics are included, limited by the simplicity of the BAG
layout generator.

Target specifications

We select the following target metrics, suggested by [70]:

– open-loop gain, Avo

– phase margin, pm
– unity-gain frequency, ft
– settling time, tset
– dissipated power, P

The settling time measurement is obtained by connecting the ring amplifier in unity
feedback, indicating the stability of the amplifier, as well as constrain the design to the
RAMP only. The target specifications generated during training are selected from the range
in Table 4.4, based on roughly sampling regions around an expert-designed performance.

Table 4.4: Performance range sampled during training for ring amplifier.

Metric Minimum Maximum
Avo (dB) 25 70
ft (GHz) 0.1 1.4
pm (◦) 60 75
tset (ns) 0.1 100
P (µA) 500 1100
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Figure 4.4: Mean reward per trajectory for the ring amplifier.

Table 4.5: Required simulation count (RSC) to converge and number of specifications reached
versus tested: ring amplifier.

Metric RSC # Specs Reached / # Specs Tested
AutoCkt (training) 25620 80/100
AutoCkt (deploy) 12 260/325

4.3.3 Results on training and deploying with schematic
simulations

The mean reward per trajectory for each iteration of training (represented as number of sim-
ulations or steps) is used to assess whether the algorithm trained successfully with schematic
simulations. Figure 4.4 shows that this reward reaches zero after training has completed,
meaning that the agent, on average, has learned to reach many target specifications.

To understand the distribution of schematic simulations the agent is able to reach, the
trained agent is deployed with schematic simulations only. Table 4.5 shows the number of
targets the agent reaches in training and deployment, and demonstrates that the algorithm
performs equally well in both cases. In addition, during deployment, the agent requires, on
average, just 12 simulations to converge. Table 4.6 summarizes the range in agent-obtained
performances, and shows not only that the agent reaches valid AC and transient results, but
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does so with a variety of performances.

Table 4.6: Obtained schematic simulation performance ranges by agent.

Metric Minimum Mean Maximum
Avo (dB) 3.01 22.2 56.7
ft (GHz) 4.2 11.4 15.7
pm (◦) 60.3 82.1 140.7
tset (ns) 0.07 0.09 0.45
P (µA) 865 1200 1350

Figure 4.5: Output current versus input voltage schematic simulation plot for the ring am-
plifier for different designs.

In addition to the selected target metrics, we assess several RAMP-specific characteristics.
Figure 4.5 plots the output current versus input voltage for the amplifier, and shows that
the agent obtains differing design points while maintaining a flat deadzone area. This is
important, as the deadzone width is positively correlated to stability. Figure 4.6 plots the
transient results of the ring amplifier in unity-gain feedback, and shows that the obtained
designs are stable. Lastly, Figure 4.7 shows the output voltage over input voltage, the VB,H



CHAPTER 4. REINFORCEMENT LEARNING FOR NONLINEAR CIRCUIT
TOPOLOGIES 88

and VBL voltages versus input voltage, and the gain over output voltage, which verify the
deadzone voltage width and linearity.

Figure 4.6: Schematic simulation results for reset and output voltage versus time for the
ring amplifier for different designs.

4.3.4 Results on deploying with layout simulations

In this section, we discuss the results of the reinforcement-learning agent when layout par-
asitics are considered. To do this, we use a RAMP generator created in BAG that auto-
matically creates the schematic, layout and testbenches for this topology. The end-to-end
simulation time using BAG is nearly 4× more than simulating using just schematic simu-
lations. As we will later show, this prevents prior RSC-inefficient work from running in an
environment that solely does BAG simulations.

Before deploying the agent, we would like to assess the differences between schematic and
post-extracted layout (PEX) simulations. To do so, we select design points and simulate in
both schematic and PEX for the same set of circuit parameters, and plot the differences
in each target metric, shown in Figure 4.8. We see that the degradation in performance is
significant for all target metrics, with gain having a distinct nonlinear relationship, making
it difficult for prior layout parasitic estimation models to correctly predict this effect.
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Figure 4.7: Obtained schematic performance plots of output versus input voltage (top),
deadzone versus input voltage (middle), and gain versus output voltage (bottom) for the
ring amplifier for different designs.

Impact of layout parasitics to performance

We deploy the schematic trained agent with in an environment that considers layout par-
asitics. The obtained performances are summarized in Table 4.7, for 40 different designs,
and show that the agent obtains a wide range of performances. The corresponding RAMP-
specific characteristics are plotted in Figures 4.9, 4.10 and 4.11, and show that the designs are
stable, with wide deadzone voltages and high linearity. We note degradation in performance
between schematic to layout simulations, as expected, but find that the agent’s designs are
still valid and reach target specifications.

We compare the agent’s performance against an expert when given the same target
specification. The results are summarized in Table 4.8, and show that the algorithm can
obtain a performance that is better than an expert in every metric. This is important, as
it allows the designer to potentially discover new and previously unexplored regions in the
design space using this algorithm.
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Figure 4.8: Scatterplot showing the difference between schematic and PEX simulations for
each target metric for the ring amplifier.

To further assess this, we plot all of the metric performances the agent obtained, along
with the expert design, in a series of two-dimensional metric-to-metric plots in Figure 4.12.
This plot shows that the agent achieves designs that are sampled around the expert, shown
in orange, with better and worse 2-D metric performances. In addition, the frontier curves
in Figure 4.12 depict the theoretical performance boundaries that can be achieved by the
agent. This information, in the future, can be used by designers to not only understand the
limitations of the RL agent in design space, but also potentially understand the real and
feasible boundaries for this circuit.

To better analyze the quality of performances the agent obtained, we compare an agent-
obtained design to that of an expert for one target specification. The results are shown in
Table 4.9, where we find that the agent creates, with the same technology and testbench
setup, a design that reaches better metric performances than that of an expert in just 2
simulations.

These initial results are promising, as they demonstrate that this framework could po-
tentially obtain new and better regions of operation in the design space, especially in circuit
topologies whose sizing procedures are not well-defined. We emphasize that, however, that
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there are several steps to further the practicality of this algorithm for the RAMP: 1) a full
closed-loop analysis should be conducted in order to establish the stability of the circuit
with real system-level parasitic elements, and 2) process-corner variation must be considered
during the sizing process to ensure that the agent-selected designs are feasible under real
manufacturing constraints.

Table 4.7: Obtained layout simulation performance ranges by agent.

Metric Minimum Mean Maximum
Avo (dB) 5.48 34.2 55.9
ft (GHz) 6.9 11.4 15.3
pm (◦) 60.7 76.4 102.3
tset (ns) 0.08 0.53 0.89
P (µA) 567 849 1284

Figure 4.9: Output current versus input voltage layout simulation plot for the ring amplifier
for different designs.
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Figure 4.10: Ring amplifier layout simulation results for reset and output voltage versus time
for different designs.

Table 4.8: Expert versus agent-obtained design for same target specification.

Metric Expert Design Agent Design Difference
Avo (dB) 27.83 39.36 41% higher
ft (GHz) 11.12 12.67 13.9% higher
pm (◦) 78.8 79.3 0.6% higher
tset (ns) 0.26 0.17 35% lower
P (µA) 894 881 1.4% lower
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Figure 4.11: Obtained layout performance plots of output versus input voltage (top), dead-
zone versus input voltage (middle), and gain versus output voltage (bottom) for the ring
amplifier for different designs.

Table 4.9: Comparison of agent-obtained ring amplifier performance to an expert for the
same target specification.

Metric Expert Agent Percent difference
Avo (dB) 27.8 39.4 41%
ft (GHz) 11.12 12.67 13.9%
pm (◦) 78.8 79.3 0.6%
tset (ns) 0.26 0.17 35%
P (µA) 894 881 1.4%

4.4 Conclusion

In this chapter, we tested the reinforcement-learning framework on two nonlinear circuit
topologies: a strong-arm comparator and ring amplifier. We showed that the algorithm
achieved many target specifications in a feasible range, taking on average just five simulations
to converge to a schematic-simulated design that meets a target specification for the strong-
arm comparator. In addition, expert-sized and agent-obtained designs are compared to
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understand both the practicality, feasibility, and value in this RL agent - and show that the
agent achieves an average of 12% better performance than the expert.

We demonstrate similar results in a ring amplifier topology, where the results are validated
in both schematic and layout simulations - to show that the agent obtains target specifications
in two layout steps, while achieving a design that is 18% better than the expert. Methods are
discussed to further improve and validate this framework, primarily by involving closed-loop
simulations as well as process-corner variation. This is left as future work for this project.
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Chapter 5

Analog Sub-Circuit Clustering with
Graph Convolutional Neural
Networks

We now apply machine learning in analog mixed-signal circuit design, particularly by clus-
tering analog sub-circuits with graph convolutional neural networks (GCNN). We show that
this approach entirely automates the clustering process while averaging 90% accuracy across
six different analog circuits, ranging in size and complexity, taking just under one second to
complete.

5.1 Analog synthesis and sub-circuit extraction

background

In order to assess the efficacy of an automated analog synthesis tool that encapsulates design
knowledge, it is important to consider several metrics specifically applicable to analog design
automation:

• scalability dictates whether an algorithm successfully achieves its objective on a variety
of different analog circuits, which is crucial for the practicality of any tool,

• accuracy measures how valid and correct the results of the algorithm are,
• degree of automation measures the level of involvement of the circuit designer. In an

ideal scenario, this involvement is near zero,
• computational time calculates how long the algorithm takes to converge to a solution.

In this work, we present a framework to bridge the gap between schematic and layout
generation by encapsulating the design intuition needed to create layout through the iden-
tification of critical analog sub-circuit structures. Prior work in this space can be split into
three different categories: library-based, knowledge-based, and learning-based approaches.
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Library-based methods involve the manual creation of many sub-circuit structures in
the form of templates. Though they are accurate, these approaches lack robustness and
automation, as the templates are often circuit-specific [75][76]. Knowledge-based methods
codify rules to create constraints when generating clusters, and present the same pitfalls [77].
Learning-based approaches use supervision to learn sub-circuit structures; because data must
be labelled, they require significant manual effort from an expert designer [78]. In addition,
most make use of graph or hierarchical structures to represent a circuit topology, and often
ignore additional features of the netlist that could aid in more accurate structure recognition.

We present a novel approach to the analog sub-circuit clustering problem by leveraging
the ability of learning algorithms to recognize important features, while also generating the
appropriate data needed to train this setup via an unsupervised clustering algorithm. We
demonstrate that this methodology yields accurate results that work very well across different
types of analog circuits with varying complexity, all while being entirely automated.

5.2 GCNN framework

Figure 5.1 shows the proposed framework, whose only input is a circuit netlist. The semi-
supervised approach uses a graph convolutional neural network (GCNN) to cluster the de-
vices in the topology based on feature data and a graph structure that represents net and
device connections. The data used to train the GCNN is generated automatically, via the
creation of partial labels and a graph netlist. These partial labels represent an initial guess
about which cluster each device belongs to. In this section, we present the feature-extraction,
cluster-count and label-extraction methods and as well as details of the graph implementa-
tion with the GCNN.

Figure 5.1: Total system overview of the analog clustering algorithm.
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5.2.1 Feature extraction

The feature-extraction block automatically extracts the length, x and y coordinate of each
device in the schematic, device orientation, device type and device weight, which is a measure
of multiplicity and width, using Skill commands [79]. These features are one-hot encoded
into a matrix fM , and are given to the cluster count, label extraction and graph labelling
blocks.

5.2.2 Cluster count and label extraction

Cluster counting and label extraction are used to automatically generate partial labels, which
are then inputted to the graph labelling block. These labels are an initial guess as to which
devices belong to a given cluster.

In particular, cluster counting consists of a linear model that takes as input total number
of instances, number of N-type and P-type instances and number of nets to predict the
number of total clusters, nc, present in the circuit topology. This is then passed to the label
extraction block, which uses a traditional k-means algorithm that takes both the feature
matrix fM and nc as input, and returns the clustering results for each device in the netlist.
This k-means algorithm on its own does not accurately cluster the devices, however, as it
does not consider the net and device connections. In this framework, we use k-means to
extract only one device label per cluster chosen from the converged centroid locations, where
the device closest in distance to each centroid is used as the designated label.

5.2.3 Graph creation

A circuit netlist is programmatically converted to a graph, with each node representing a
device and each edge representing the corresponding net connections. Traditional nMOS
and pMOS devices have three edges representing the source, gate and drain connections.
Bulk terminal connections are not included as they are connected similarly. Resistors and
capacitors are two terminal devices represented by two edges and one node. In our studies,
supply and grounds are included as a separate node.

5.2.4 Graph labelling

The graph labelling block consists of a GCNN that classifies all of the devices in a circuit
netlist, from the initial partial labels provided by label extraction, fM and the graph netlist.
In particular, we use a feature-based sub-graph clustering algorithm for semi-supervised
node classification [80, 81]. The training procedure starts with the graph splitting into k
non-overlapping subgraphs, which are then used to estimate the parameters of the GCNN
model based on the provided partial labels and feature information. The weights of the
network are updated with stochastic gradient descent. In our studies, we fix the GCNN
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Figure 5.2: GCNN architecture showing two 50 neuron hidden layers, one ReLu non-linearity,
and one pooling layer.

Table 5.1: Comparison table showing maximum number of devices in a tested topology,
accuracy of algorithm, and automation.

Algorithm Max. # Devices # of Circuits Accurate? Automated?
Library-based [76] 22 2 Y No

Knowledge-based [77] 37 5 Y No
ML-based [78] 34 34 N No

This work 35 6 Y Yes

network architecture, shown in Figure 5.2 to be two layers, each with 50 neurons, and train
the network until loss converges to within a preset ε.

To determine the clustering accuracy, we compare the algorithm results to manually
labelled circuit devices created apriori by an analog designer. The percent accuracy is deter-
mined on a device-by-device basis, wherein a device correctly belonging to the right cluster
is accurate. These labels are used to compare the accuracy of the GCNN classifier during
training, but are not required elsewhere in the algorithm.

5.3 Experimental setup and results

Table 5.2: Maximum accuracy of algorithm for multiple circuits.

Circuit Number of Devices Number of Clusters Accuracy
pll buffer 4 2 100%

folded cascode 35 9 91.3%
analog bias enable 5 2 100%
current reference 19 3 94.7%

opamp 15 5 93.8%
comparator 17 4 100%
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Figure 5.3: Folded cascode with biasing circuit, with hand-labelled clusters.

Figure 5.4: Output of GCNN algorithm visualized, the black boxes show incorrectly labelled
devices, and the similarly-colored circles correspond to the same cluster.
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We now test the framework on analog circuits designed with 16 nm technology models.
Figure 5.3 shows a 35-transistor folded-cascode circuit topology with biasing, along with
the expert-defined manual cluster assignments. For this topology, the clusters are assigned
based on the functionality of each sub-circuit, particularly focusing on the identification of
differential loads, biasing, input pairs, and current mirrors. Figure 5.4 shows the resulting
node classification output of the GCNN, where the folded cascode obtains 91.3% accuracy.
Note that the accuracy metric is calculated by comparing the correct cluster identifications
with those obtained by the algorithm, device by device.

Table 5.1 shows how this algorithm compares with prior work. We test the algorithm on
circuits with similar orders of complexity, and demonstrate that the framework is as robust
as prior library and knowledge-based algorithms. Note that despite [78] tested on 34 circuits,
their paper reports many inaccuracies in cluster assignments due to redundant, overlapping,
or generic templates.

5.4 Analysis and conclusion

We now assess the algorithm in the context of important design automation metrics, which
are crucial in determining the practicality and efficacy of this analog synthesis tool. We
consider each separately below, and posit that this GCNN clustering methodology is an
initial step to clustering analog circuits:

• This algorithm is robust, as we tested on six different circuits of varying complexity,
size, and technology (see Table 5.2), with the GCNN architecture remaining the same
for each topology.

• Higher than 90% accuracy is obtained for all tested circuits, which is important as this
determines validity of the framework.

• The framework is automated, as the designer is not involved in any part of the clustering
process process, other than providing an initial schematic topology. This, to the best
of our knowledge, is one of the first tools to fully automate the analog sub-structure
recognition task.

• Computationally, the algorithm takes a maximum of 1.13 seconds to complete for the
most complex circuit, making it scalable.

In summary, the algorithm is the first to fully automate the analog sub-structure recog-
nition task. We demonstrate that this framework is accurate and robust to multiple circuit
topologies. Machine learning can be applied to non-traditional tasks, even ones that gener-
ally require human intervention and classification.

In the next chapter, we move to development and validation of a yield defect detection
tool, to demonstrate that these same underlying benefits for machine learning are applicable
in a different avenue of ASIC design.
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Chapter 6

Yield Defect Detection using
Convolutional Neural Networks

In this chapter, we demonstrate how machine learning can be applied to post-silicon verifi-
cation, particularly with improving yield ramp-up time. We show that this approach:

• automates end-to-end layout defect pattern detection and extraction
• accurately finds layout defects once real diagnostic data is considered, and
• is orders of magnitude faster than manual approaches.

6.1 Defect-prone layout pattern detection

Yield is a critical factor in silicon technology scaling that determines cost per transistor [82,
83]. The time it takes to achieve a stable yield in new process technology nodes is increasing,
however, primarily because of finer pitches and prominent design-process complexity. It
is crucial, therefore, to improve this yield ramp-up rate so that profitability and quality
objectives are met within a critical time window.

Typically, the introduction of a new technology involves improving the yield by detecting
and fixing systematic defects, or non-random model-to-hardware defects, that occur due to
process variations and aggressive design styles. Uncovering and mitigating these systematic
defects [84] is not trivial given the complexity of present fault isolation (FI) and failure
analysis (FA) techniques. Locating and analyzing defects involves various manual, expensive
and time-consuming efforts, primarily to isolate, visualize, and determine the exact location
and type of a defect that results in a functional failure. This often involves the expensive
process of manually cutting and examining a die to assess physical failures.

Many works have addressed this problem by mining volume diagnosis data for identi-
fication of systematic defects, primarily by extracting patterns that best explain observed
failures in large Integrated Circuit (IC) test datasets. These methods are useful because
they do not need physical analysis, and instead only utilize available software test data.
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Despite a variety of different test options for yield analysis, scan tests on a packaged
part, and their associated diagnosis results are often used because they provide the necessary
ability and observability to detect important defects that result in logical failures. Other
tests include checking resistance and inspecting processing steps with images [85], but it is
often difficult to determine if such observed abnormalities can result in a functional failure.

There are a number of prior works that automatically identify layout-dependent sys-
tematic defects from scan diagnosis tests with extra physical information such as design
layouts [86, 87, 88, 89, 90]. Authors in [86] propose connecting layout-aware diagnosis
to a Bayesian network model to learn the distribution of root-cause fault types with an
expectation-maximization algorithm. Despite successfully testing their methodology on dif-
ferent yield detractors, this algorithm requires extensive feature extraction, which could be
computationally expensive. Blanton, et.al. propose yield learning through non-test struc-
tures, and uses a combination of layout and diagnosis information, as well as image clus-
tering to extract defective patterns [87]. This method, however, requires large amounts of
pre-processing. In addition image clustering is not robust to noise variation in data. Keim,
et.al. use scan diagnosis along with either process simulation, lithographic simulation, or
design-for-manufacturing (DFM) rule application as failure rates to determine yield limiters.
Their approach uses an iterative statistical procedure to extract the failure rate, but assumes
an underlying diversity between yield limiting features [88]. Authors in [89] attempts to iden-
tify layout-dependent systematic defects by applying k-means clustering on layout snapshots
in the form of images of suspects in volume diagnosis. K-means however, is susceptible to
noise in data and relies on using an entire layout database to create clusters. Several works
appeared as well to incorporate variability in the design of these circuits as well, through
built-in tolerance [90]. These works are promising, but rely on correctly characterizing these
variability in new technology nodes.

Despite the existence of these and other manual methods for extracting systematic defects
[91, 92, 93, 94, 95, 96], identifying layout-sensitive systematic defects from scan diagnosis
tests still remains quite challenging, primarily because of noise and complexity of layout
patterns. In general, multiple heterogeneous defect modes are mixed with random defects
in the diagnosis report, despite the diagnosis quality being high. Moreover, the number
of layout patterns to explore scales exponentially with process technology, due to more
layout layers. It therefore becomes extremely important to develop an algorithm to extract
systematic defects that also scales with increasing complexity in process technology, as well
as have the capability to handle larger amounts of noise.

6.1.1 Contribution

We propose a method to identify defect-prone layout patterns that manifest themselves as
systematic defects from scan diagnosis and standard cell layouts by using a Convolutional
Neural Network (CNN) to learn the layout features of these defects. CNNs are not only
computationally efficient, but can also learn complex features while being more robust to
noise, differentiating this method from other prior work that rely on image clustering tech-
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niques. In addition, because scan diagnosis and cell layouts are readily available, minimal
pre-processing is required for their use to the CNN, while other works rely on extensive
feature extraction from a large design layout database [87, 88, 89]. The following sections
are organized as follows:

• Section 6.2 discusses how we train a CNN to extract layout features.
• Section 6.3 presents the how we extract particular layout defects using saliency detec-

tion, pattern extraction and ranking.
• Section 6.4 presents results of the methodology on both synthetic and real diagnostic

data.
• Section 6.5 analyzes and discusses the approach in the context of yield learning, and

the application of machine learning to circuit design.

6.2 Layout feature learning with convolutional neural

networks

Deep convolutional neural networks are a well-known method in solving challenging computer
vision tasks [97] such as object classification [98], localization [99], and object detection [100].
Specifically, a CNN’s ability to generate an internal representation of a two or even three
dimensional image allows it to extract visual features in an image, while being robust to
noise variation in input data [97]. In this approach, we use CNNs to learn defect-prone
layout features from noisy test data and complex cell layouts.

CNNs are trained in a supervised manner, requiring two pieces of data: 1) input images,
and 2) the associated labels for these images. During training, the input images are passed
through the CNN and the output is compared to the ground truth label, which is then back-
propagated through each neuron in the network in the form of a gradient. Once training is
complete, the weights of the trained CNN are frozen, and only forward passes are continued
on new images.

We train the CNN on selected cell layouts, with their associated failure rate as labels. To
determine the labels, we utilize scan diagnosis data, which analyzes scan test failures on a
defective die and produces a list of suspects that potentially contain a real defect [91]. The
diagnostic data is parsed as labels by calculating the failure rate of each cell by dividing the
number of suspect cells per standard cell with the total number of instances of that cell in
the design. If there are any patterns in the cell layouts that cause systematic defects, there
will be elevations of failure rates for these specific cells.

The CNN will learn defect-prone layout patterns from cell layouts and scan diagnosis
assuming the failure rate observed from the diagnosis data corresponds to the possibility of
a standard cell containing a systematic defect.

There are several key points to validate this assumption:
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Figure 6.1: CNN architecture to learn defect-prone layout feature.

• Scan errors tend to be dominated by systematic defects, as evidenced by the the ratio
of systematic defects to random defects significantly increasing in recent technology
nodes, especially after the introduction of finFET.

• Front-end systematic defects, as opposed to back-end defects such as bridges and opens
on routing metal layers, are predominant in the yield ramp-up process. Thus, the focus
of these work is to improve the detection of front-end defects.

• Most systematic defects are layout-sensitive. It is known that the number of defects is
highly correlated with specific local layout configurations.

Thus, the failure rate observed from the diagnosis data directly corresponds to the pos-
sibility of a standard cell containing a systematic defect, which assumes most of systematic
defects are layout-sensitive.

The input images given to the CNN are standard cell layouts downsampled to 227x227
pixels. These layouts are obtained from an existing standard cell library, wherein one or
more layers in the metal stackup, which are known to have a defective pattern, are used as
the input. During downsampling, both the aspect ratio and scale are preserved to allow the
CNN to learn size-sensitive layout defect patterns.

A CNN architecture with one convolutional layer, three fully connected layers, one pooling
layer, and two rectified linear units is used (see Figure 6.1). The architecture is adapted from
LeNet [97], a CNN that identifies digits. Further architecture modifications are made to
optimize for network size by removing layers and reducing the kernel size of the convolutional
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filter to better suit the application to layout. In addition, we note that this network is
relatively shallow and posit that this is due to solely identifying top-level layout patterns,
requiring no need for additional feature detection found in deeper neural networks. The
base learning rate is 0.00007 and RMSprop [101] is used as the gradient-based optimization
method, for efficiency in determining the step size for the gradient.

The sigmoid cross-entropy loss function from Caffe [102] is used to estimate the failure
rate labels by calculating the log loss from the difference between a true, labeled failure rate
probability and the estimated failure probability from the output of the network.

Training is completed over 260 iterations, with a batch size of 20. These hyper-parameters
are iterated to achieve the lowest loss and accuracy.

6.3 Layout pattern extraction and ranking

Once the CNN has been trained to a sufficient accuracy and loss, the saliency of the image
is extracted, from which possible defect-prone layout patterns are highlighted. The salient
images then pass through an algorithm that consolidates all patterns through the use of
windowing and correlation.

6.3.1 Saliency extraction from learned CNN

Defect-prone layout patterns in a cell layout can be highlighted by using the trained CNN.
[103] introduces a saliency-detection method wherein a trained CNN can be queried with the
spatial support of a particular class in a given image. Intuitively, this implies that pixel-wise
highlighting can be obtained with a given input image, its associated ground truth label,
and the CNN-guessed output label.

Specifically, the non-linear layers of the CNN can be approximated by doing a first-order
Taylor expansion [103]:

Sc(I) ≈ wT I + b (6.1)

where

w = δSc/δI|Io (6.2)

and Sc(I) is the class score, Io is a specific image, w are the network weights, and b is
the bias. The sensitivity of pixels in an image is calculated while freezing the weights in
the trained CNN. This process involves just one back propagation for a given input image,
from which the gradient is calculated. The pixels with the largest amount of gradient change
affect the ground truth label the most.

Although the method in [103] was only applied to CNNs trained for classification, this
work extends this saliency method to a regressive CNN with probability outputs, where the
failure rate labels range from 0.0 to 1.0. The formulation predicts the failure rate of a given
cell by using a normalized sigmoid later for density regression as opposed to the softmax
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Figure 6.2: Extracting defect patterns (shown in black) with windowing pattern extraction.

Figure 6.3: System level overview of defect-prone layout pattern-detection algorithm.

layer traditionally used for classification. The output is then fixed to the empirical failure
rate of the cell and gradients are back-propagated. Mathematically, this can be thought of as
changing the range of the class score Sc(I) from a finite distribution to an infinite distribution,
and calculating the gradient at this specific failure probability bias point given a cell layout.
As Section 6.4 will show, saliency extraction can be successfully used in regression networks
as well.

For each scan diagnosis report, the saliency image of every standard cell listed predicted as
a failure is obtained. These images are then used as input to a pattern-extraction algorithm,
presented in the next section.

6.3.2 Common defect pattern extraction from saliency map

The goal is to extract windows surrounding areas highlighted the most by saliency detection,
and consolidate and match the resulting layout patterns. In the experiments, we demonstrate
functionality on the via layer. The top-K highlighted regions within saliency are extracted
by summing all of the pixel gradient values within a specific polygon appearing in the cell,
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where K is a parameter swept by the user. Given the tests on simulated and real diagnosis
data, we found the optimal K value to be six.

For each top highlighted polygon, windows are drawn with window length w and stride
s. These parameters can be varied or swept, but are currently fixed for this framework.
The layout patterns within these windows are extracted for each top-K highlighted rectangle
within a standard cell, and are consolidated by the following steps, detailed in Figure 6.2:

• Scores are assigned to each via, based on how many times it appears in w/s number
of windows. Most systematic defects have polygon patterns that occur within close
proximity to each other, which justifies taking this pre-processing step to reduce the
number of cross-correlation computations that need to be done. In Figure 6.2, the vias
highlighted in black correspond to the most salient polygons, and the scores assigned
to them would be higher than the scores for the other polygons that do not appear as
frequently in the windows.

• Layout patterns are then created by taking the top 3, 4 and 5 polygons for each
standard cell top-K result. These patterns feature slices of the most often occurring
layout patterns within each class of vias.

• Similarity scores are calculated across layout patterns with the same polygon count
from which the top defect-prone layout patterns are extracted. Specifically, this score
is obtained by using:

sim score =
IA. ∗ IB

max(area(IA), area(IB))

where A and B are two gray-scale images whose pixel values are either 0 or 1 for
lack of, or present polygon, and where the area function is a tally of how much the
layout is taken up by polygons. Orientation is also considered in this function, wherein
rotational transformations are made to the input layout pattern. If the similarity score
is higher than a pre-set threshold parameter, the two layout patterns are considered
the same. This threshold parameter is set to account for possible variations in similar
layout patterns having different distances between polygons.

• Cross-correlation is used across the extracted layout patterns with differing polygon
counts, and are merged together if patterns are similar, using the same similarity
metric. The resulting patterns are then used to obtain the ranking of the defect-prone
patterns.

In addition to identifying defects with one layout layer as input, this method can be
applied to multi-layer inputs to the CNN as well. The most salient layer is first obtained
by summing all gradient values for each layer input, and then finding the maximum of the
tabulated values. The step-by-step process presented above is then applied to this layer only.
In addition, this methodology, with minimal modification, can also be used to identify multi-
layer defects. Specifically, by changing the cross-correlation steps from two-dimensions to
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Table 6.1: Accuracy, loss and divergence for the trained CNN.

Accuracy Loss Kullback-Liebler Divergence
98.2% 0.213 0.2− 0.64

n-dimensions, defects present on multiple layers may be extracted by identifying the region
in the cell with the combined most salient values.

The entire framework is shown in Figure 6.3. We note that the pattern extraction step,
compared to prior work, only operates on likely defective layout cells, saving computational
resources by not having to operate on the entire dataset.

6.4 Experimental results with synthetic and real

diagnostic data

In this section we present this framework’s performance on synthetically generated and real
diagnostic data from a recent technology node.

6.4.1 Synthetic diagnostic data results

The input to the CNN is generated by injecting a synthetic defect in the form of a layout
pattern into a subset of cells from a standard cell library. The failure rate associated with
the defective cells varies with a normal distribution of 80% and a standard deviation of 15%.
This variation is introduced to more realistically simulate lot-to-lot variation and noise from
false suspects in scan diagnosis data. The CNN is given an even split of defective standard
cells and non-defective standard cells.

Because of the introduction of random variation to the failure rate label, it is not correct
to judge the CNN’s accuracy on it’s ability to correctly predict a ground-truth failure rate.
For the purposes of validation, we create an accuracy metric used solely on the simulated
dataset. In particular, if the CNN assigns a probability of greater than 0.5 to any defective
cell or a probability of less than 0.5 to a non-defective cell, it is deemed correct. This
assumption is reasonable given that the assigned failure probability of a defective cell has
a mean greater than almost two standard deviations from 50% in this example. Using this
metric, the calculated accuracy of the trained regression CNN was 98.2% (shown in Table
6.1).

The converged loss after training is 0.213. This loss value can be analyzed in context
by deriving the minimum achievable entropy loss H(p) where p is the ground-truth failure
probability:

H(p, q) = H(p) +DKL(p||q)

where where q is the estimated failure probability and DKL is is the Kullback-Leibler
divergence of q from p. The cross entropy is at its minimum value H(p) when p and q are
equal. The final loss, then, is in the range of H(80± 15%), i.e. 0.2 to 0.64. This shows that
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Figure 6.4: Cell layout (left) and its saliency image (right), with synthetic defect circled.

Figure 6.5: Results of applying windowing technique to saliency results.

the converged CNN loss value is just 6% above the lower bound, meaning that the CNN
has optimized for estimating failure probability of cells. As the loss and accuracy values
suggest, the CNN is able to differentiate between defect and non-defect prone standard cells
accurately.

The results of implementing saliency detection on the trained convolutional neural net-
work from Figure 6.4 shows the layout defect pattern highlighted clearly, with the four-via
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Table 6.2: Test results on simulated diagnosis for different parameters.

# Defects # Unique Defects # Layers Defect Top-K Result Layer Identified?
1 1 1 Top-1 N/A
1 1 3 Top-1 Yes

1 2 3
Top-2 in 4-via patt,
Top-5 in 5-via patt

Yes

2 2 3
Top-1,

Top-3 in 4-via patt
Yes

defect having a larger concentration of dark, salient pixels. The pattern-detection algorithm
is run on this trained regression CNN, and the output of the windowing results is plotted in
Figure 6.5. The results show that the defect pattern appears in the created windows almost
seven times more than the other windowing patterns, demonstrating that saliency extraction
is able to detect a possible simulated synthetic defect pattern, which the framework can then
successfully extract.

Three different parameter variation experiments are conducted on the synthetic dataset,
summarized in Table 6.2. First, the number of defects maximally present in each standard
cell unit is varied. The failure rate associated with the subset of cells with these injected
defects is varied to reflect real diagnosis data. In particular, for each inserted defect, the mean
failure rate is increased by 10%, and the standard deviation is decreased by 5%. Second, the
number of unique defects is varied, to again reflect real diagnostic results that could have
multiple layout failures. The failure rates associated with this experiment are also selected
as before. Lastly, we vary the number of metal layers given to the agent, to show that this
methodology can handle a realistic silicon stack. The injected defect pattern still occurs on
one layer, with the pattern extraction algorithm changing such that the most salient layer is
identified first, from which the extraction algorithm is carried out. In the future, we aim to
test this methodology on multiple layer defects.

The results show that in all cases where defective patterns are injected into one layer, the
method successfully identifies a) the defective layer and b) the correct failure pattern in the
top-5 returned results. This not only demonstrates this framework’s capability in identifying
defects on synthetically generated diagnostic results, but also shows its robustness to noise.
We note that despite the existence of random variability in failure rate, the defect extraction
method is still successful.

6.4.2 Real diagnostic data results

We now test the effectiveness of the defective-layout pattern-detection methodology on prod-
uct test diagnosis obtained from a recent technology node’s yield ramp from Intel. The test
data are three different diagnosis datasets from three unique lots, and indicate systematic
defects that are highly correlated to a known defective-layout pattern.

The results from running the method on these diagnosis reports, summarized in Table 6.3
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Table 6.3: Test results on real diagnosis data.

Test Lot Layer Identified? # Defect Top-K Result
1 Yes Top-1
2 Yes Top-3
3 Yes Top-4

show that it is able to identify not only defective layers but also the defect patterns within
the top-5 extracted patterns from the windowing algorithm. We note a slight reduction
in pattern extraction accuracy compared to the synthetic diagnostic test results, that we
attribute to the presence of more noise in the real diagnosis reports, as well as multiple
different defective patterns being present in the data.

The results show that despite the low failure rate of the standard cells and noise from false
suspects in real diagnostic data, the regression CNN with saliency and pattern extraction
is able to correctly identify the layout pattern causing a systematic defect. We compare
these results to prior state-of-the-art in Table 6.4 and show that this work not only is less
susceptible to noise, but requires less data and processing than prior work. In addition, we
note that the results are demonstrated on both synthetic and unmodified real diagnostic
reports, which is important for practicality.

6.5 Analysis and conclusion

In this chapter, we demonstrate that a defect-prone layout pattern can be automatically
identified from scan diagnosis and standard library cell layouts using a CNN. This method
first trains a CNN to learn yield-limiting layout features and then extracts and ranks the
common layout patterns from the learned results. We show it successfully detects a defect-
prone layout layer from all the simulated and real diagnosis data, and finds the problematic
layout pattern from the layer within the top-5 defect-prone returned pattern list. In addition,
compared to prior work, this algorithm is less susceptible to noise, and requires little data
and pre-processing steps.

Practically, this algorithm reduces the layout search space significantly, narrowing it from
hundreds of thousands to a manageable number of guessed defect-prone patterns. A yield
engineer would now only have to analyze these small number of patterns to rule out possible
false positives, and in the worst case would have to conduct physical failure analysis on all
of the guessed defect-prone patterns returned by the algorithm. In addition, this framework
can be used to also validate other methodologies, primarily as an initial pre-processing tool.

This work demonstrates that machine learning can be applied, understood and suc-
cessfully validated in verification of post-silicon, particularly regarding yield ramp-up time.
Importantly, it also reveals where machine-learning techniques are likely to be useful, pri-
marily:

• in cases where large amounts of data must be processed in a computationally efficient
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manner,
• noise variation in data is considerable, preventing traditional methods from reliably

finding a solution, and
• where underlying patterns, initially not known to a designer or are manually expensive

to obtain, must be extracted and identified.
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Chapter 7

Conclusion

In this thesis, three avenues where machine learning can be applied to accelerate ASIC
development are presented under the context of the six main requirements for automation
in this domain.

7.1 Thesis contributions

In Chapter 2, an analog sizing framework that uses reinforcement learning to determine
circuit parameters to meet a given target specification is introduced and tested on a tran-
simpedance amplifier, vanilla two-stage amplifier, transimpedance amplifier with negative
gm load, and a low dropout voltage regulator. Further analysis is conducted to assess the
practicality and efficacy of the tool, showing that this methodology can accurately size these
topologies in state-of-the-art run-time efficiency, while also being valid from a circuits per-
spective by additional comparisons to expert-sized designs.

Chapter 3 expands generalizability, interpretability, and practicability by testing on two
parasitic-sensitive circuit topologies, a two-stage amplifier with negative gm load, and a two-
stage folded-cascode with biasing. A new combined distribution deployment algorithm is
used to improve run-time efficiency significantly, while additional analyses is used to ensure
that the decisions the reinforcement learning agent makes are explainable and analyzable in
the context of circuits.

Chapter 4 tests the RL framework on two nonlinear circuits: a strong-arm comparator
and ring amplifier. These topologies require more design effort compared to other conven-
tionally well-defined circuits; despite this, the RL agent remains successful in achieving target
specifications, and obtains better performances when compared against a manually sized de-
sign from an expert, in both schematic and layout. Additional analyses is also conducted to
show the pareto optimal boundary for the agent, providing potential for future applications
to give feedback to the designer on a circuit’s design space.

Finally, Chapters 5 and 6 present two projects where machine learning can be applied in
other avenues of ASIC development. Specifically, Chapter 5 introduces a end-to-end, fully
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automated framework to extract clusters in analog sub-circuits using graph convolutional
neural networks, obtaining high accuracy and run-time efficiency on six different circuits
ranging in size and complexity. Chapter 6 presents a defect-prone layout pattern detection
algorithm using convolutional neural networks and saliency extraction to identify defects in
standard cell library layouts, and shows that this algorithm can consolidate the layout search
space significantly by identifying defect patterns in an otherwise manual procedure.

7.2 Future directions

There are many ideas that can further the results and analyses presented in this thesis.
Specifically, the presented analog sizing framework in Chapter 2 does not take process

corner/Monte Carlo process voltage and temperature simulations into account during the
training process, which is the last step in making the design manufacturing-ready. This
can potentially be incorporated by using the information from these simulation results in
the same way as the layout simulation deployment methodology, presented in Chapter 3,
and run process corner/Monte Carlo simulations only when the agent has obtained a valid
schematic and layout performance design. If the results of these simulations do not meet a
predefined acceptable variation, the worst performance is given back to the agent to once
again go through the schematic and layout sizing procedure.

This thesis presents sizing results on seven unique circuit topologies of varying complexity,
but it would be worth exploring how this algorithm could expand to consider system level
design methodology, where a designer must map a high level system specification to specific
targets in each analog sub-block. This problem is difficult, as this involves understanding
the relationships and interactions between complex block-level analog circuits. Hierarchical
reinforcement learning [104] is presented as a method to decompose a problem into a set of
subtasks, so that each of the subtasks can be represented as reinforcement learning problems,
and could be used in answering this system-level design issue.

In order to make a proposed automated solution practical in the context of the ASIC
domain, the three projects presented in this thesis should be tested on more circuits and
datasets to ensure generalizability to the variety of different information that can be given to
these methods. This is especially true for the yield defect detection and analog sub-clustering
algorithms from Chapters 5 and 6.

Finally, the algorithms presented in this thesis could be used in other avenues of ASIC
development as well. For example, machine learning is already showing promise in digital
place-and-route [105], but could also be used in power estimation, logic synthesis, and mod-
elling simulators. If the analysis and chosen algorithms for these problems answer the six
requirements, they have the ability of accelerating the ASIC development process signifi-
cantly.
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