
Towards Trustworthy Machine Learning

Adam Gleave

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-260

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-260.html

December 5, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Towards Trustworthy Machine Learning

by

Adam Gleave

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Stuart Russell, Chair
Associate Professor Sergey Levine
Associate Professor Anca Dragan
Assistant Professor Chelsea Finn

Fall 2022



Towards Trustworthy Machine Learning

Copyright 2022
by

Adam Gleave



1

Abstract

Towards Trustworthy Machine Learning

by

Adam Gleave

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

Real-world applications of machine learning often have complex objectives and safety-critical
constraints. Contemporary machine learning systems excel at achieving high average-case
performance at tasks with simple procedurally specified objectives, but they struggle at many
more demanding real-world tasks. In this thesis, we work towards developing trustworthy
machine learning systems that understand human values and reliably optimize them.

Machine learning’s key insight was that it is often easier to learn an algorithm than to write
it down directly—yet many machine learning systems still have a hard-coded, procedurally
specified objective. The field of reward learning applies this insight to instead learn the
objective itself. As there is a many-to-one mapping between reward functions and objectives,
we start by introducing the notion of equivalence classes consisting of reward functions that
specify the same objective.

In the first part of the dissertation, we apply this notion of equivalence classes to three
distinct settings. First, we study reward function identifiability: what set of reward functions
is compatible with the data? We start by categorizing the equivalence classes of reward
functions that induce the same data. By comparing these to the aforementioned optimal
policy equivalence class, we can determine whether a given data source provides sufficient
information to recover the optimal policy.

Second, we address the fundamental question of how similar or dissimilar two reward function
equivalence classes are. We introduce a distance metric over these equivalence classes, the
Equivalent-Policy Invariant Comparison (EPIC), and show rewards with low EPIC distance
induce policies with similar returns even under different transition dynamics. Finally, we
introduce an interpretability method for reward function equivalence classes. The method
selects the easiest to understand representative from the equivalence class, and then visualizes
the representative function.

In the second part of the dissertation, we study the adversarial robustness of models. We



2

start by introducing a physically realistic threat model consisting of an adversarial policy
acting in a multi-agent environment so as to create natural observations that are adversarial
to the defender. We train the adversary using deep RL against a frozen state-of-the-art
defender that was trained via self-play to be robust to opponents. We find this attack reliably
wins against state-of-the-art simulated robotics RL agents, and superhuman Go programs.

Finally, we investigate ways to improve agent robustness. We find adversarial training is
ineffective, however population-based training offers hope as a partial defense: it does not
prevent the attack, but it does increase the computational burden of the attacker. Using
explicit planning also helps, as we find that defenders with large amounts of search are harder
to exploit.



i

For humanity, that we may overcome our challenges and achieve a flourishing future.



ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 A decomposition of trustworthy machine learning . . . . . . . . . . . . . . . 1
1.2 Agent objectives: trying to do the right thing . . . . . . . . . . . . . . . . . 2
1.3 Agent robustness: achieving high levels of reliability . . . . . . . . . . . . . . 4
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7
2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Optimal-policy-preserving reward transformations . . . . . . . . . . . . . . . 8

I Inferring agent objectives 11

3 Upper bounds on reward learning 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Reward function transformations . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Invariances of reward-related objects . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Implications for reward learning . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Distance metrics on reward functions 25
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Comparing reward functions with EPIC . . . . . . . . . . . . . . . . . . . . 27
4.3 Baseline approaches for comparing reward functions . . . . . . . . . . . . . . 30
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



iii

5 Distance metrics predict regret 36
5.1 A regret bound for EPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Understanding learned reward functions 40
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 The reward preprocessing framework . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II Agent robustness 51

7 The adversarial policies threat model 52
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Adversarial policies in continuous control 55
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Finding adversarial policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3 Understanding adversarial policies . . . . . . . . . . . . . . . . . . . . . . . . 60
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9 Adversarial policies in superhuman Go AI systems 66
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.4 Attack Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10 Defending against adversarial policies 79
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.2 PBRL defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.4 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



iv

11 Conclusion 92
11.1 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.2 Closing thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 95

A Deferred content from Chapter 3 111
A.1 Properties of fundamental reward transformations . . . . . . . . . . . . . . . 111
A.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.3 Other spaces of reward functions . . . . . . . . . . . . . . . . . . . . . . . . 126

B Deferred content from Chapter 4 129
B.1 Approximation procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
B.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
B.4 Regret bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
B.5 Lipschitz reward functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.6 Limiting behavior of regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C Deferred content from Chapter 6 170

D Deferred content from Chapter 8 186
D.1 Training: hyperparameters and computational infrastructure . . . . . . . . . 186
D.2 Activation analysis: t-SNE and GMM . . . . . . . . . . . . . . . . . . . . . . 187
D.3 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

E Deferred content from Chapter 9 194
E.1 Rules of Go Used For Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 194
E.2 Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
E.3 Hyperparameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
E.4 Strength of Go AI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
E.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

F Deferred content from Chapter 10 210
F.1 Adding a communication channel to Simple Push . . . . . . . . . . . . . . . 210



v

List of Figures

3.1 Ambiguity hierarchy of reward learning data sources. . . . . . . . . . . . . . . . 21
3.2 Ambiguity hierarchy of reward transformations. . . . . . . . . . . . . . . . . . . 22

4.1 Heatmaps of gridworld reward functions and their EPIC distances. . . . . . . . 30
4.2 Approximate distances between hand-designed reward functions in PointMass. . 33

6.1 Sparse gridworld rewards before and after preprocessing. . . . . . . . . . . . . . 47
6.2 Dense gridworld rewards before and after preprocessing. . . . . . . . . . . . . . 48
6.3 Rewards in MountainCar before and after preprocessing. . . . . . . . . . . . . . 49

7.1 Adversarial policies threat model: the adversary acts in an environment shared
with the defender. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.1 Illustrative snapshots of a defender against normal and adversarial opponents in a
humanoid virtual environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Illustrations of the zero-sum simulated robotics games used for evaluation. . . . 57
8.3 Win rates while training adversary against the median defender. . . . . . . . . . 59
8.4 Percentage of games won by adversarial and normal opponents. . . . . . . . . . 60
8.5 Likelihood analysis and t-SNE visualization of the activations of defender’s policy

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.6 The masked defender has the observation of the opponent replaced by a static

value, blinding it to the opponent’s moves. . . . . . . . . . . . . . . . . . . . . . 62
8.7 The defender and adversary have a non-transitive relationship . . . . . . . . . . 63

9.1 Board states produced by adversarial policies playing against KataGo. . . . . . 68
9.3 Training curves for KataGo adversarial policy. . . . . . . . . . . . . . . . . . . . 74
9.4 Win rate of adversarial policy against defender with search . . . . . . . . . . . . 75
9.5 Win rates of baseline adversaries against KataGo . . . . . . . . . . . . . . . . . 77

10.1 Illustration of self-play training compared to our defense. . . . . . . . . . . . . . 80
10.2 Illustrations of the Laser Tag and Simple Push environments. . . . . . . . . . . 83
10.3 Training curve of adversaries in Laser Tag against the self-play baseline. . . . . 85
10.4 Training curve of adversaries in Simple Push against the self-play baseline. . . . 86
10.5 Training curves of adversaries in Laser Tag against PBRL defenders. . . . . . . 87



vi

10.6 Adversary return against defenders in Simple Push. . . . . . . . . . . . . . . . . 88
10.7 Adversary return over time in Simple Push. . . . . . . . . . . . . . . . . . . . . 89

B.1 Heatmaps of reward functions Rps, a, s1q for a 3 ˆ 3 deterministic gridworld. . . 136
B.2 Distances between hand-designed reward functions in a gridworld. . . . . . . . . 137
B.3 Approximate distances between hand-designed reward functions in PointMass. . 138
B.4 Approximate distances between hand-designed reward functions in HalfCheetah. 139
B.5 Approximate distances between hand-designed reward functions in Hopper. . . . 140
B.6 Distance from ground-truth in PointMaze over time during reward training,

grouped by reward learning algorithm. . . . . . . . . . . . . . . . . . . . . . . . 145
B.7 Distance from ground-truth in PointMaze over time during reward training,

grouped by distance metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.1 Goal reward preprocessed with L1 sparsity and smoothness costs. . . . . . . . . 171
C.2 Goal reward preprocessed with logarithmic sparsity and smoothness costs. . . . 172
C.3 Path reward preprocessed with L1 sparsity and smoothness costs. . . . . . . . . 173
C.4 Path reward preprocessed with logarithmic sparsity and smoothness costs. . . . 174
C.5 Reward models trained on synthetic data from the Goal reward using preference

comparison, and L1 preprocessed versions of these. . . . . . . . . . . . . . . . . 175
C.6 Reward models trained on synthetic data from the Goal reward using preference

comparison, and logarithmic preprocessed versions of these. . . . . . . . . . . . 176
C.7 Reward models trained on synthetic data from the Path reward using preference

comparison, and L1 preprocessed versions of these. . . . . . . . . . . . . . . . . 177
C.8 Reward models trained on synthetic data from the Path reward using preference

comparison, and logarithmic preprocessed versions of these. . . . . . . . . . . . 178
C.9 Reward models learned using AIRL from expert demonstrations for the Goal

reward, and L1 preprocessed versions of these. . . . . . . . . . . . . . . . . . . . 179
C.10 Reward models learned using AIRL from expert demonstrations for the Goal

reward, and logarithmic preprocessed versions of these . . . . . . . . . . . . . . 180
C.11 Reward models learned using AIRL from expert demonstrations for the Path

reward, and L1 preprocessed versions of these . . . . . . . . . . . . . . . . . . . 181
C.12 Reward models learned using AIRL from expert demonstrations for the Path

reward, and logarithmic preprocessed versions of these . . . . . . . . . . . . . . 182
C.13 Logarithmic preprocessed rewards derived from ground-truth in the MountainCar

environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
C.14 L1 preprocessed rewards derived from ground-truth in the MountainCar environment.184
C.15 L1 preprocessed rewards learned from preference comparisons in the MountainCar

environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

D.1 Win rates while training adversary in four environments. . . . . . . . . . . . . . 188
D.2 Percentage of episodes won by the opponent, the defender or tied. . . . . . . . . 190
D.3 t-SNE activations of the defender when playing against different opponents. . . 192



vii

D.4 t-SNE activations of the defender when playing against different opponents, one
subfigure per opponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

E.1 Elo ranking of networks by visit count. . . . . . . . . . . . . . . . . . . . . . . . 203
E.2 Human player mimics adversarial policy . . . . . . . . . . . . . . . . . . . . . . 206
E.3 Games between human amateur and strongest adversary . . . . . . . . . . . . . 207
E.4 Training curves for two adversarial policies . . . . . . . . . . . . . . . . . . . . . 208
E.5 Baseline win margins against KataGo . . . . . . . . . . . . . . . . . . . . . . . . 208
E.6 Hand-crafted adversarial Go board state . . . . . . . . . . . . . . . . . . . . . . 209

F.1 Average return of adversary in Simple Push without communication. . . . . . . . 210



viii

List of Tables

4.1 Summary of the desiderata satisfied by each reward function distance. . . . . . . 26
4.2 Reward distances from the ground truth. . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Reward distances from the ground truth and policy returns. . . . . . . . . . . . 38

B.1 Summary of hyperparameters and distributions used in experiments. . . . . . . 131
B.2 Hyperparameters for proximal policy optimization (PPO) . . . . . . . . . . . . . 133
B.3 Hyperparameters for adversarial inverse reinforcement learning (AIRL) . . . . . 133
B.4 Hyperparameters for preference comparison . . . . . . . . . . . . . . . . . . . . 134
B.5 Hyperparameters for regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.6 Time and resources taken by different metrics to perform 25 distance comparisons

on PointMass, and the confidence interval widths obtained. . . . . . . . . . . . 138
B.7 Approximate distances of reward functions from the ground-truth. . . . . . . . . 141
B.8 Approximate distances of reward functions from the ground-truth under patholog-

ical coverage distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D.1 Hyperparameters for Proximal Policy Optimization. . . . . . . . . . . . . . . . . 186

E.1 Key hyperparameter settings for our adversarial training runs. . . . . . . . . . . 199
E.2 Rankings of humans and KataGo bots on KGS. . . . . . . . . . . . . . . . . . . 201
E.3 Relative Elo ratings for AlphaZero . . . . . . . . . . . . . . . . . . . . . . . . . 203



ix

Acknowledgments

My journey into research started in distributed systems, with the encouragement and advice
of Malte Schwarzkopf and Ionel Gog then at the University of Cambridge. Although my
thesis has turned out to be on an entirely unrelated topic, I continue to cherish the research
skills I gained from working with both of them, especially advice on clear technical writing. I
was fortunate to then work with Christian Steinruecken and Zoubin Ghahramani during my
master’s degree on probabilistic models for text. I am grateful for them introducing me to
machine learning research and teaching me to be experimentally rigorous.

Despite thoroughly enjoying these research experiences, I almost ended up not pursuing
research at all. Indeed, I spent a year as a quantitative trader prior to starting my PhD. I
am indebted to Beth Barnes for overcoming my inertia and convincing me to take AI safety
research seriously as a career option.

I was fortunate to be advised by Stuart Russell during my PhD. Looking back, I am
particularly grateful to have been given an exceptional amount of freedom. I spent most of
my first year reading widely and discussing different research agendas with my peers. At the
time, I could not shake the feeling I was wasting my time, as I saw many of my peers with
concrete research projects well on the way to publication. However, I am now glad I spent
my time reflecting in this way, as it set me up for success later on in the PhD. So, thank
you for encouraging me to be ambitious and do good research, regardless of what conference
reviewers may think of it!

I am also grateful for the advice of Sergey Levine in my work on adversarial policies, by
far my best-known work. He has always been able to spot the heart of the technical problem,
and I am frankly always astounded by how much material we can cover in just a half hour
meeting! Thank you also for your advice on framing and communicating research findings.

I have also learned an incredible amount from the people I have worked with at Berkeley
and elsewhere. Thanks in particular to Rohin Shah, Daniel Filan, and Dylan Hadfield-Menell
for helping me develop my views on AI safety. I am also grateful for Lawrence Chan, Paul
Christiano, Sam Toyer, Cassidy Laidlaw, Rachel Freedman, Scott Emmons, Alex Turner,
Daniel Kokotajlo, Micah Carroll, Richard Ngo, and Ajeya Cotra for enlightening conversations
on this topic. Of course I am also grateful to my many collaborators, including Tony Wang,
Michael Dennis, Nora Belrose, Tom Tseng, Antonin Raffin, Ashley Hill, Juan Rocamonde,
Maximilian Ernestus, Sören Mindermann, Cody Wild, and Steven Wang.

I am also fortunate to have had the opportunity to mentor a number of exceptional
people. Although nominally I was meant to be teaching them, I have no doubt learned a
tremendous amount as both a researcher and an advisor from working with them all. So
thanks to Leo Richter, Pavel Czempin, Erik Jenner, Joar Skalse, Matthew Farrugia-Roberts,
Lauro Langosco, Oliver Richardson, Eric Michaud, Sergia Volodin, Pedro Freire, Neel Kant,
Aaron Tucker, Yawen Duan, and Lev McKinney for working with me!

Outside of Berkeley, I was lucky to be advised by Jan Leike and Geoffrey Irving during
successive internships at DeepMind. Thanks in particular to Jan for encouraging me to
continue to pursue reward function evaluation even after a series of disappointing results. I



x

am glad we persisted, as the final EPIC metric was both theoretically pleasing and practically
relevant. Working with Geoffrey was my introduction to the fascinating area of language
model alignment research. I am particularly grateful for his efforts to make me and others on
the team feel welcome even in the midst of a remote start in a pandemic.

Throughout my PhD I have benefited from support from a variety of staff members.
Thanks to staff from CHAI, BAIR, EECS, and ERSO for a variety of operational support, in
particular Martin Fukui, Angie Abbatecola, Jean Nguyen, and Judy Tam. I have also been
fortunate to have spent time working from the Lightcone and Constellation co-working spaces—
my thanks to their respective teams for providing a productive workplace environment and
enabling many stimulating conversations with other researchers. I am also grateful to Euan
McLean and Wes Cowley for editing this manuscript, and to Alyse Spiehler for developing
several illustrations.

My PhD would have been much harder without the support and encouragement of many
friends. It would be difficult to list them all, but I would like to specifically thank Maja
Cernja, Vaidehi Agarwalla, Michael Hsu, Rick Korzekwa, Andy Jones, Daniel Ziegler, George
Howes, Ethan Perez, Linchuan Zhang, Oliver Habryka, and Erin Grant. Last but by no
means least, thank you to my family for your support throughout graduate school.

This dissertation includes results developed in collaboration with my aforementioned
advisors and Tony Wang, Nora Belrose, Tom Tseng, Yawen Duan, Viktor Pogrebniak, Joseph
Miller, Pavel Czempin, Erik Jenner, Joar Skalse, Matthew Farrugia-Roberts, Michael Dennis,
Cody Wild, and Neel Kant. Portions of this text have been adapted from Skalse et al. [155],
Gleave et al. [55, 54], Jenner and Gleave [73], Wang et al. [171], and Czempin and Gleave
[37].



1

Chapter 1

Introduction

1.1 A decomposition of trustworthy machine learning
The field of machine learning (ML) has made remarkable progress towards building automated
systems that achieve high average performance on procedurally specified objectives. In
reinforcement learning, we have seen superhuman performance in a variety of board games [151,
152, 161, 175] and real-time strategy games [21, 169]. Meanwhile, many image classifiers
have reached or surpassed human performance [126, 136, 148, 125], and language models
outperform humans on next-token prediction [150].

An outside observer might expect these advances to allow machine learning systems to
automate a wide variety of tasks previously performed by humans. However, real-world tasks
have so far proved much more difficult than benchmark tasks that prima facie appear more
complex. Even a task as simple as peg insertion from pixels has a non-trivial reward function
that must usually be learned [166, IV.A]. Tasks involving human interaction can have far
more complex reward functions that users may not even be able to introspect on. We believe
this disconnect demonstrates the need for progress on trustworthy machine learning.

We propose two necessary conditions for trustworthy machine learning in the context
of sequential decision-making agents. First, the agent objective should be aligned with the
human principal, otherwise optimizing it will clearly result in undesired consequences. Second,
the agent should be robust, reliably pursuing this objective across a wide range of scenarios.

Correctly specifying the agent objective can be challenging. Procedurally specified
objectives usually miss important frame conditions [61]. Instead of procedurally specifying
the objective, a designer may build a system that infers the objective from human data [74].
Learned rewards often provide a higher-fidelity representation of the designer’s objective
than procedural objectives. For example, Stiennon et al. [156] find that optimizing a learned
reward model produces summaries that human evaluators prefer over those produced by a
model optimizing the widely used ROUGE metric.

However, there remains a large gap between machine learning systems ability to learn
our objectives, versus optimizing objectives for tasks that can be easily specified. While



CHAPTER 1. INTRODUCTION 2

superhuman performance was achieved several years ago in the strategically complex video
game StarCraft [169], there is still no extant AI system that can perform strategically simpler
but hard-to-specify tasks in Minecraft such as “build a beautiful waterfall and take a scenic
picture of it” [147].

Critically, it is not enough for the optimization objective to be highly correlated with the
designer’s intent. Optimization processes are excellent at finding edge cases in objectives,
often finding the cases where this correlation breaks down, an instance of Goodhart’s law [59,
101]. Indeed, prior work has shown that both procedurally specified [118] and learned reward
functions [104] are vulnerable to such “reward hacking”. Consequently, it is necessary to hold
learned objectives to a higher standard than we typically do for machine learning models. It
is important learned reward objectives accurately represent human preferences, not a shallow
facsimile of them, such as a model built on top of spurious correlates.

Even if the objective is correctly specified and robust, it is common for the policy produced
by the optimization process to be lacking in robustness. That is, the policy may not be
able to achieve its objective across a wide range of situations. An illustrative example is
autonomous driving. The RALPH autonomous vehicle completed a 3000-mile trip across the
United States with 96% autonomous steering in 1995 [128]. Nearly three decades later, firms
have only just begun limited deployments of commercial autonomous vehicles [81]. Obtaining
good performance in the average case was achievable on a shoestring budget several decades
ago, but reliably handling the long-tail of real-world scenarios is only just achievable now
after billions of dollars of investment.

Perhaps surprisingly, we find that in many cases there is no framework to even rigorously
evaluate whether a given machine learning system is trustworthy. Our key contribution is to
formalize the notion of trustworthiness in several important settings, providing theoretical and
empirical understanding of the limits and potential of different system designs. Concretely,
for agent objectives we establish an upper bound of performance for idealized reward learning
algorithms, develop a distance metric over reward functions which bounds the regret of
resulting optimal policies, and a novel approach for explainable reward models. For agent
robustness, we introduce a novel and physically realistic threat model, demonstrate that
state-of-the-art and even superhuman systems are vulnerable to our attack, and propose
several defenses.

1.2 Agent objectives: trying to do the right thing
A key insight behind machine learning is that it is often simpler to specify an objective for
a task than an algorithm to procedurally solve the task. Designing systems to optimize
objectives such as reward functions or loss functions has allowed systems to “learn” how to
perform complex tasks such as image classification and game playing. These learned systems
often outperform more classical artificial intelligence approaches that rely on hard-coded
algorithms or features. Unfortunately, the reward functions for most real-world tasks are
difficult or impossible to specify procedurally. This suggests that we may benefit from taking



CHAPTER 1. INTRODUCTION 3

learning a step further: replacing the hard-coded objective with one that is learned from
human feedback.

There exist a variety of methods to learn reward functions. Inverse reinforcement learning
(IRL) [138, 112, 131, 183, 47, 49, 11] is a common approach that works by inferring a
reward function from demonstrations. An alternative approach is to learn from preference
comparisons between two trajectories [4, 173, 33, 141, 68, 184]. T-REX [27] is a hybrid
approach, learning from a ranked set of demonstrations. More directly, Cabi et al. [29] learn
from “sketches” of cumulative reward over an episode.

Reward learning has achieved some notable successes. For example, it has achieved
state-of-the-art performance in developing language models that follow instructions and
are helpful assistants [116, 12]. However, the learned reward is often fragile. For example,
Stiennon et al. [156, Table 29] find that optimizing the learned reward leads to gibberish
summaries of articles that achieves a high learned reward but do not solve the task at hand.
They work around this by applying a Kullback–Leibler (KL) penalty to keep the learned
policy close to a base imitation-learned model, an approach that is followed in later work [116,
12]. In other words, better performance is obtained when only weakly optimizing the learned
reward—actually maximizing it leads to worse performance.

This suggests a serious deficiency in current reward learning approaches. A natural
question to ask is to what degree we are limited by current algorithms, versus the human data
collected. In Chapter 3, we examine the degree to which reward functions can be identified
from a given data source, developing a hierarchy of informativeness of different data sources.
These results provide an upper bound on reward learning performance.

Notably we find there is significant unidentifiability for many data sources. That is,
no matter how much data are collected or how sophisticated the algorithm, there remains
irreducible ambiguity when learning from widely used sources such as demonstrations. In
some cases this ambiguity may even impact the optimal policy, causing a reward learning
agent to take worse actions than if it had received data with less ambiguity.

It is natural to judge reward learning algorithms based on how close they are to attaining
this infinite-data upper bound on a given amount of data. However, prior work in reward
learning has largely not evaluated the learned reward directly. Instead, it has evaluated the
learned reward functions by first training a policy by applying RL on the learned reward.
This policy is then evaluated, whether by measuring the ground-truth reward attained or by
direct human inspection.

Unfortunately, this policy evaluation method cannot distinguish between the learned
reward function failing to reflect user preferences, and the RL algorithm failing to correctly
optimize the learned reward. Moreover, the policy evaluation method can only tell us about
behavior in the evaluation environment, but the reward may incentivize very different behavior
in even a slightly different deployment environment.

In Chapter 4, we introduce an alternative approach that can directly evaluate the learned
reward function. Our Equivalent-Policy Invariant Comparison (EPIC) distance quantifies
the difference between two reward functions directly, without a policy optimization step.
Importantly, EPIC is invariant to positive affine transformations and potential shaping [111]



CHAPTER 1. INTRODUCTION 4

of reward functions, which are both guaranteed to never change which policy is optimal.
Furthermore, we find in Chapter 5 that EPIC distance bounds the regret of optimal policies
even under different transition dynamics. We furthermore confirm this result holds empirically
even when the assumptions in the theorem are violated.

EPIC is of immediate applicability for benchmarking reward learning algorithms, as it
can be used to compare the learned reward function to a “ground-truth” reward function
provided in the benchmark. However, in practical settings of reward learning there is no
ground-truth reward! In this setting, EPIC can be used to cluster together similar learned
reward functions that were perhaps learned by different algorithms or from different data
sources, allowing us to analyze just a single representative of each cluster. But an additional
technique is required to perform this analysis.

In Chapter 6, we introduce methods for interpreting learned reward functions. We leverage
the same key insight from EPIC: we do not care about the reward function per se, but rather
the equivalence class of rewards that always induce the same optimal policy. Consequently,
we wish to choose a representative of this equivalence class that is easiest to understand.
We introduce a method to automatically search for interpretable representatives, and we
demonstrate this approach with several commonly used visualization techniques.

1.3 Agent robustness: achieving high levels of reliability
Machine learning excels in settings where data is independent and identically distributed
(iid), and where achieving high average-case performance is sufficient. However, the resulting
models are often fragile. Adversarial examples show that carefully chosen perturbations that
are barely perceptible to a human can trigger errors in otherwise highly capable models [158].
Even when the iid assumption holds, safety-critical applications often require very high levels
of reliability which contemporary methods often struggle to reach on complex, real-world
datasets [64].

This suggests a need to focus not just on training agents to have good average-case
performance, but also on them being robust in the face of rare and possibly adversarially
chosen inputs. Prior work has shown that, similar to image classifiers, policies trained by
reinforcement learning in video game environments are vulnerable to image perturbations [67].
However, an attacker cannot usually directly modify another agent’s observations. This might
lead one to wonder: is it possible to attack an RL agent simply by choosing an adversarial
policy acting in a multi-agent environment so as to create natural observations that are
adversarial?

In Chapter 7, we formalize this threat model and demonstrate the existence of adver-
sarial policies in zero-sum games between simulated humanoid robots with proprioceptive
observations. We train the adversary using deep RL against a fixed state-of-the-art “defender”
policy that was trained via self-play to be robust to opponents. The adversarial policies
reliably win against the defenders but generate seemingly random and uncoordinated behavior.
We find that these policies induce substantially different activations in the defender policy



CHAPTER 1. INTRODUCTION 5

network than when the defender plays against a normal opponent. Videos are available at
https://adversarialpolicies.github.io/.

Although the simulated robotics agents that we attacked were state-of-the-art, due to
the challenging nature of robotics they were still well below human performance. This raises
the question: are adversarial policies a vulnerability of self-play policies in general, or simply
an artifact of sub-human policies? In Chapter 9, we perform a similar attack against the
state-of-the-art Go-playing AI system, KataGo. Our attack achieves a >99% win rate against
KataGo without Monte Carlo tree search (MCTS) and a >80% win rate when KataGo uses
enough search to be near-superhuman.

In Chapter 10, we investigate ways to improve agent robustness. We find that training a
defender against a specific adversary protects against that adversary, but repeating the attack
method finds a new adversarial policy that can exploit the hardened defender. However, we
find that population-based training of the defender can increase the amount of training time
the attack requires to find an exploit. Additionally, we find that increasing the search depth
and defenses using domain-specific knowledge of the environment can improve robustness.

1.4 Overview
The remainder of the dissertation is organized as follows:

• Chapter 2 introduces background material used throughout the work, including on
sequential decision-making such as Markov Decision Processes and the Bellman backup.
We also define an equivalence class over reward functions consisting of reward functions
guaranteed to have the same optimal policy.

• In Chapter 3, we start our study of learning agent objectives by studying the information
content of different data sources used for reward learning. This gives fundamental upper
bounds on the performance of any algorithm learning from that data source, no matter
how many samples it sees. More generally, the framework introduced allows us to study
what kinds of ambiguity certain uses of reward functions, such as policy optimization
or policy comparison, are sensitive to.

• Chapter 4 introduces the EPIC distance over reward functions, which is invariant on the
equivalence class defined in Chapter 2. The EPIC distance allows us to directly compare
reward functions, rather than the policies they induce. Reward learning algorithms
can be benchmarked by comparing their learned reward to a ground-truth reward. In
real-world applications where a ground-truth reward is absent, EPIC can be used to
cluster similar reward functions together.

• Chapter 5 shows that the EPIC distance between two rewards bounds the difference
in return between their respective optimal policies. This result holds under arbitrary
transition dynamics with only minor assumptions. Moreover, we find empirically
that the EPIC distance of a reward from the ground-truth predicts the ground-truth

https://adversarialpolicies.github.io/


CHAPTER 1. INTRODUCTION 6

performance of policies optimized using that reward, even when the assumptions made
in the theorem are relaxed.

• Chapter 6 introduces a method to explain learned reward functions. In particular,
it chooses the easiest-to-interpret representative of the equivalence class over reward
functions, and then visualizes it using existing methods.

• In Chapter 7, we focus on the other half of trustworthy machine learning: agent
robustness. We introduce a novel and physically realistic threat model, adversarial
policies, where an attacker acts in an environment shared with the defender. The game
is assumed to be zero-sum, and the defender agent was trained to win this game, so
should in principle already be robust to attack.

• Chapter 8 applies this threat model to games between simulated humanoid robots.
We find adversarial policies against state-of-the-art agents. Our attack is simple: we
freeze the defender’s network, then train the adversary on the resulting single-agent RL
problem. This simple black-box attack nonetheless finds highly successful adversarial
policies with a fraction of the compute used to train the defender. Moreover, it wins
not by playing the intended game, but by performing seemingly random motion that
confuses the defender.

• Chapter 9 describes an exploit of professional-level Go-playing AI system, KataGo,
demonstrating that advances in average-case capabilities are not sufficient to provide
adversarial or worst-case guarantees. Similar to Chapter 8, we find that the resulting
adversarial policies win in surprising ways by fooling the defender.

• Chapter 10 investigates population-based RL as a defense against adversarial policies.
We find that it improves robustness, as measured by the amount of training time needed
by an adversary to exploit the defender. However, it does so at a significant increase in
computational cost, making it most useful when the defender has more computational
resources than the attacker.

• In Chapter 11, we summarize our findings and describe avenues for future work.



7

Chapter 2

Preliminaries

2.1 Markov Decision Processes
We formalize the sequential decision-making problem as a Markov Decision Process [MDP;
157, §3].

Definition 2.1.1. A Markov Decision Process (MDP) M “ pS,A, γ, µ0, τ, Rq consists of a
set of states S and a set of actions A, a discount factor γ P r0, 1s, an initial state distribution
µ0psq, a transition distribution τps1 | s, aq specifying the probability of transitioning to s1

from s after taking action a, and a reward function Rps, a, s1q specifying the reward upon
taking action a in state s and transitioning to state s1.

In this dissertation, unless otherwise stated we assume a discounted (γ ă 1) infinite-
horizon MDP. Our results can usually be generalized to undiscounted (γ “ 1) MDPs subject
to regularity conditions needed for convergence.

In the case of reward learning, we do not have access to the ground-truth reward R,
but typically do still have access to an environment with which we can interact. This
environment can be modeled as an MDP without a reward function, often called an MDP\R,
M´ “ pS,A, γ, µ0, τq. Typically, only the state space S, action space A, and discount factor
γ are known exactly, with the initial state distribution µ0 and transition dynamics τ only
observable from interacting with the environment M´.

We distinguish states in the support of µ0 as initial states and states s with τps|s, aq “ 1
and Rps, a, sq “ 0 for all a as terminal states.

We represent the transition from state s to state s1 using action a as the tuple x “ ps, a, s1q.
A trajectory is an infinite sequence of concatenated transitions ξ “ ps0, a0, s1, a1, s2, . . .q,
and a trajectory fragment of length n is a finite sequence of n concatenated transitions
ζ “ ps0, a0, s1, . . . , an´1, snq.

We define the return function G over trajectory (fragments) as the cumulative discounted



CHAPTER 2. PRELIMINARIES 8

reward

Gpζq “

n´1
ÿ

t“0

γtRpst, at, st`1q

for a trajectory fragment ζ of length n, and for trajectories as

Gpξq “

8
ÿ

t“0

γtRpst, at, st`1q.

A stochastic policy πpa | sq assigns probabilities to taking each action a P A in state
s P S. Together with an MDP’s transition distribution τ , a policy π induces a distribution of
trajectories starting from each state. We denote such a trajectory starting from s with the
random variable Ξs, and its remaining components with random variables A0, S1, A1, S2, and
so on.

Given an MDP and a policy π, the value function encodes the expected return from a
state, Vπpsq “ EΞs„π,τ rGpΞsqs, and the Q-function of π encodes the expected return given
an initial action, Qπps, aq “ EΞs„π,τ

“

GpΞsq
ˇ

ˇ A0 “ a
‰

. Qπ and Vπ each (uniquely) satisfy a
Bellman equation:

Qπps, aq “ ES1„τps,aq rRps, a, S 1
q ` γVπpS 1

qs , Vπpsq “ EA„πpsq rQπps, Aqs (2.1)

for all s P S and a P A. Their difference, Aπps, aq “ Qπps, aq ´ Vπpsq, is the advantage
function.

We further define a policy evaluation function, J , encoding the expected return from
following a particular policy in an MDP, J pπq “ ES0„µ0 rVπpS0qs. J induces an order over
policies. A policy maximizing J is an optimal policy, denoted π‹. Similarly, Q‹, V‹, and A‹

denote the Q-, value, and advantage functions of an optimal policy respectively. Since J
may have multiple maxima, we often discuss the set of optimal policies. However, Q‹, V‹,
and A‹ are each unique.

2.2 Optimal-policy-preserving reward transformations
There are two main classes of reward transformations that never change the optimal policy:
potential shaping and positive affine transformations. We introduce both of them below.
Finally, we combine them into an equivalence class.

Potential shaping is a reward transformation that moves reward earlier or later in a
trajectory [111]. It does not change the overall return G (up to a constant), so it leaves the
optimal policy π‹ unchanged.

Definition 2.2.1. Let γ P r0, 1s be the discount factor, and Φ : S Ñ R a real-valued function.
Then Rps, a, s1q “ γΦps1q ´ Φpsq is a potential-shaping reward, with potential Φ [111].



CHAPTER 2. PRELIMINARIES 9

The expected return of potential shaping γΦps1q´Φpsq on a trajectory segment ps0, ¨ ¨ ¨ , sT q

is γTΦpsT q ´ Φps0q. The first term γTΦpsT q Ñ 0 as T Ñ 8, while the second term Φps0q

only depends on the initial state. Thus, potential shaping does not change the set of optimal
policies. Moreover, any additive transformation that is not potential shaping will, for some
reward R and transition distribution τ , produce a set of optimal policies that is disjoint from
the original [111].

The set of optimal policies is invariant to constant shifts c P R in the reward; however,
this can already be obtained by shifting Φ by c

γ´1
.∗ Scaling a reward function by a positive

factor λ ą 0 scales the expected return of all trajectories by λ, also leaving the set of optimal
policies unchanged.

Below, we describe an equivalence class whose members are guaranteed to have the same
optimal policy set in any MDP\R M´ with fixed S, A, and γ (allowing the unknown τ and µ0

to take arbitrary values). This combines potential shaping and positive affine transformations.

Definition 2.2.2 (Reward Equivalence). We define two bounded reward functions RA and
RB to be equivalent, RA ” RB, for a fixed pS,A, γq if and only if there exists a constant
λ ą 0 and a bounded potential function Φ : S Ñ R such that for all s, s1 P S and a P A:

RBps, a, s1
q “ λRAps, a, s1

q ` γΦps1
q ´ Φpsq. (2.2)

Proposition 2.2.3. The binary relation ” is an equivalence relation. Let RA, RB, RC :
S ˆ A ˆ S Ñ R be bounded reward functions. Then ” is reflexive, RA ” RA; symmetric,
RA ” RB implies RB ” RA; and transitive, pRA ” RBq ^ pRB ” RCq implies RA ” RC.

Proof. RA ” RA since choosing λ “ 1 ą 0 and Φpsq “ 0, a bounded potential function, we
have RAps, a, s1q “ λRAps, a, s1q ` γΦps1q ´ Φpsq for all s, s1 P S and a P A.

Suppose RA ” RB. Then there exists some λ ą 0 and a bounded potential function
Φ : S Ñ R such that RBps, a, s1q “ λRAps, a, s1q ` γΦps1q ´ Φpsq for all s, s1 P S and a P A.
Rearranging:

RAps, a, s1
q “

1

λ
RBps, a, s1

q ` γ

ˆ

´1

λ
Φps1

q

˙

´

ˆ

´1

λ
Φpsq

˙

. (2.3)

Since 1
λ

ą 0 and Φ1psq “ ´1
λ
Φpsq is a bounded potential function, it follows that RB ” RA.

Finally, suppose RA ” RB and RB ” RC . Then there exists some λ1, λ2 ą 0 and bounded
potential functions Φ1,Φ2 : S Ñ R such that for all s, s1 P S and a P A:

RBps, a, s1
q “ λ1RAps, a, s1

q ` γΦ1ps1
q ´ Φ1psq, (2.4)

RCps, a, s1
q “ λ2RBps, a, s1

q ` γΦ2ps
1
q ´ Φ2psq. (2.5)

∗Note constant shifts in the reward of an undiscounted MDP would cause the value function to diverge.
Fortunately, the shaping γΦps1q ´ Φpsq is unchanged by constant shifts to Φ when γ “ 1.



CHAPTER 2. PRELIMINARIES 10

Substituting the expression for RB into the expression for RC :

RCps, a, s1
q “ λ2 pλ1RAps, a, s1

q ` γΦ1ps1
q ´ Φ1psqq ` γΦ2ps1

q ´ Φ2psq (2.6)
“ λ1λ2RAps, a, s1

q ` γ pλ2Φ1ps1
q ` Φ2ps

1
qq ´ pλ2Φ1psq ` Φ2psqq (2.7)

“ λRAps, a, s1
q ` γΦps1

q ´ Φpsq, (2.8)

where λ “ λ1λ2 ą 0 and Φpsq “ λ2Φ1psq ` Φ2psq is bounded. Thus RA ” RC .

If RA ” RB for some fixed pS,A, γq, then for any MDP\R M´ “ pS,A, γ, µ0, τq we have
π‹ ppM´, RAqq “ π‹ ppM´, RBqq, where pM´, Rq denotes the MDP specified by M´ with
reward function R. In other words, RA and RB induce the same optimal policies for all initial
state distributions µ0 and transition dynamics τ .



11

Part I

Inferring agent objectives



12

Chapter 3

Upper bounds on reward learning

Reward learning algorithms infer reward functions from data. However, multiple reward
functions often fit the data equally well, even in the infinite-data limit. Prior work often
imposes assumptions on data sources so that reward functions can be uniquely recoverable.
By contrast, we formally characterize the partial identifiability of reward functions inferred
from popular data sources, including demonstrations and trajectory preferences, under
multiple common sets of assumptions. We analyze the impact of this partial identifiability
on downstream tasks such as policy optimization, including under changes in environment
dynamics. We unify our results in a framework for comparing data sources and downstream
tasks by their invariances, with implications for the design and selection of data sources for
reward learning.

3.1 Introduction
Multiple reward functions are often consistent with a given data source, even in the infinite-
data limit. For most data sources, this fundamental ambiguity has been acknowledged,
but its extent has not been characterized. We contribute a formal characterization of the
ambiguity of several popular data sources, including expert demonstrations (Section 3.3.1)
and trajectory preferences (Section 3.3.2). By studying infinite-data limits, we provide an
upper bound on the information recoverable from finite data sets using any algorithm. These
bounds are useful for evaluating algorithms relative to their limits and choosing between
different data sources.

Often, uniquely identifying a reward function is unnecessary. For example, learnt reward
functions are often used for policy optimization via reinforcement learning (RL).∗ Perhaps
the reward function underpinning some data is ambiguous, but all plausible reward functions
already imply the same optimal policy. We suggest that the ambiguity of a data source should
be evaluated relative to the intended downstream application. We contribute a characterization

∗Applications also arise in other fields where reward functions are used to understand and predict the
behavior of humans, animals, and other systems [see, e.g., 143, 40, 140, 66, 124, 34].



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 13

of this ambiguity tolerance for various applications, including policy optimization under
arbitrary dynamics (Section 3.3.3).

Ambiguity and ambiguity tolerance are formally related. Both concern invariances
— of data sources or downstream outcomes — to reward function transformations. This
perspective provides a unifying framework in which to discuss ambiguity and ambiguity
tolerance. In Section 3.4, we explore a partial order on reward transformation invariances
and its implications for selecting and evaluating data sources, addressing an open problem in
reward learning [88, §3.1].

3.1.1 Related work

Inverse reinforcement learning [IRL; 138] infers a reward function from expert demonstrations
by inverting a model of the expert’s planning algorithm [9, 146]. Existing work partially
characterizes the inherent ambiguity of behavior for certain planning algorithms [112, 30]
and classes of tasks [44, 80]. Using a more expressive space of reward functions that reveals
novel ambiguity, we extend these results to more planning algorithms and arbitrary stochastic
infinite-horizon tasks.

Another popular and effective data source is preferences over behavioral trajectories [3,
33]. Unlike for IRL, the ambiguity arising from these data sources has not been formally
characterized. We contribute a formal characterization of the ambiguity for central models of
evaluative feedback, including trajectory preferences.

Prior work has explored learning from expert behavior and preferences [68, 117, 22, 82],
or other multimodal data sources [164, 74]. One motivation is that different data sources may
provide complementary reward information [82], decreasing ambiguity. Similarly, Amin, Jiang,
and Singh [6] and Cao, Cohen, and Szpruch [30] show reduced ambiguity from combining
behavioral data across multiple tasks. Our partial order provides a general framework for
understanding these results.

Computing an optimal behavioral policy is a primary application of learnt reward func-
tions [1, 174]. Ng, Harada, and Russell [111] proved that potential-shaping transformations
always preserve the set of optimal policies and so are always tolerable for this application.
We extend this result, characterizing the full set of transformations that preserve a task’s
optimal policies, and considering additional policy optimization techniques such as maximum
entropy RL.

Ambiguity corresponds to the partial identifiability [90] of the reward function modelled
as a latent parameter. The prevailing response to this ambiguity in reward learning has been
to impose additional constraints or assumptions until the data identifies the reward function
uniquely (or, at least, sufficiently for policy optimization). Following Manski [102, 103] and
Tamer [160], we instead describe ambiguity given various constraints and assumptions. This
gives practitioners results appropriate for their real data (and the ambiguity tolerance of
their actual application).



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 14

3.1.2 Preliminaries

We use the Markov Decision Process (MDP) formalism introduced in Section 2.1. We classify
a transition ps, a, s1q as possible in an MDP if s1 is in the support of τps, aq, otherwise it is
impossible. A trajectory or fragment is possible if all of its transitions are possible and is
impossible otherwise. A trajectory or fragment is initial if its first state is initial. A state or
transition is reachable if it is part of some possible and initial trajectory.

We primarily consider return functions with various restricted domains, such as only
possible or initial trajectories or fragments. Additionally, we focus on deterministic rewards on
S ˆ A ˆ S. In Appendix A.3, we discuss how our invariance results change given alternative
spaces of rewards (such as stochastic rewards, or with domain S or S ˆ A).

In addition to the optimal policies introduced in Section 2.1, we consider policies resulting
from alternative objectives. Given an inverse temperature parameter β ą 0, we define the
Boltzmann-rational policy [131], denoted π‹

β, with a softmax distribution over the optimal
advantage function:

π‹
βpa | sq “ exp

`

βA‹ps, aq
˘

{
`
ř

a1PA exp
`

βA‹ps, a1q
˘˘

. (3.1)

The Maximal Causal Entropy (MCE) policy [181, 60] is given by

πH
β pa | sq “ pexp

`

βQH
β ps, aq

˘

{
`
ř

a1PA exp
`

βQH
β ps, a1q

˘˘

, (3.2)

where QH
β is the soft Q-function, a regularized variant of the Q-function. Haarnoja et al. [60,

Theorem 2 and Appendix A.2] show that QH
β is the unique function satisfying

QH
β ps, aq “ E

”

Rps, a, S 1q ` γ 1
β
log

ř

a1PA exp βQH
β pS 1, a1q

ı

. (3.3)

The MCE policy is the result of maximizing a policy evaluation function with an entropy
regularization term with weight α “ β´1 [60]. The Boltzmann-rational policy can also be
connected to a kind of (per-timestep) entropy regularization [60].

3.2 Reward function transformations
In this section, we discuss how invariance to reward function transformations relates to
infinite-data ambiguity in reward learning and ambiguity tolerance in applications.

Definition 3.2.1 (Transformations and invariances). A transformation is a map between
reward functions. The invariances of an object X derived from reward R via function f
are all transformations t that preserve f : X “ fpRq “ fptpRqq for all R. We say that X
determines R up to its invariances.

A set of transformations carves out a partition of the space of reward functions by grouping
those reward functions reachable from one another using the transformations. The partition



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 15

carved out by the invariances of an object is the equivalence kernel of the object’s derivation
function, grouping the reward functions from which identical objects are derived into partition
blocks.

Given a reward learning data source, consider the object that encodes the information
available from the data source in the infinite-data limit [90, §3.1]. The invariances of this object
represent the infinite-data ambiguity of the data source—it is impossible to recover the reward
function beyond the corresponding partition block, as that block implies indistinguishable
data.

Similarly, consider a downstream application of learnt reward functions involving the
computation of an object. The object’s invariances capture the ambiguity tolerance of this
computation, as by definition all reward functions in each partition block lead to identical
outcomes.

We now introduce several fundamental sets of reward function transformations, forming a
basis for the invariances we study in Section 3.3. We build on potential shaping, introduced
by Ng, Harada, and Russell [111] and widely known to preserve optimal policies in all MDPs.
We further distinguish special potential-shaping transformations with constant potential over
an MDP’s initial states.

Definition 3.2.2 (Potential Shaping). A potential function is a function Φ : S Ñ R, where
Φpsq “ 0 if s is a terminal state. If Φpsq “ k for all initial states, then we say that Φ is
k-initial. Let R and R1 be reward functions. Given a discount γ, we say R1 is produced
by (k-initial) potential shaping of R if R1ps, a, s1q “ Rps, a, s1q ` γ ¨ Φps1q ´ Φpsq for some
(k-initial) potential function Φ.

See Appendix A.1 for key properties of potential shaping. We now introduce novel
transformations.

Definition 3.2.3 (S 1-Redistribution). Let R and R1 be reward functions. Given tran-
sition dynamics τ , R1 is produced by S 1-redistribution of R if ES1„τps,aq rRps, a, S 1qs “

ES1„τps,aq rR1ps, a, S 1qs.

S 1-redistribution allows changing R arbitrarily for impossible transitions. Moreover, if two
states s1

1, s1
2 are in the support of τps, aq then S 1-redistribution lets us increase Rps, a, s1

1q and
decrease Rps, a, s1

2q by a proportionate amount. Note that S 1-redistribution depends crucially
on the reward function’s dependence on the successor state. This set of transformations
collapses to the identity for simpler spaces of reward functions, as we explore in Appendix A.3.

Definition 3.2.4 (Monotonic Transformations). Let R and R1 be reward functions. We say
R1 is produced by a zero-preserving monotonic transformation (ZPMT) of R if for all pairs
of transitions x, x1 P S ˆ A ˆ S, Rpxq ď Rpx1q if and only if R1pxq ď R1px1q, and Rpxq “ 0
if and only if R1pxq “ 0. Moreover, we say R1 is produced by positive linear scaling of R if
R1 “ c ¨ R for a positive constant c.



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 16

The next general definition is used to describe transformations that leave a particular
set of actions optimal in each state. The class is parameterized by a set-valued function
O that specifies the optimal actions (Ψ acts as a value function). In use, we constrain O
to argmaxa A‹ps, aq in some or all states s (see, e.g., Theorems 3.3.4 and 3.3.6). Thus an
implicit dependence on R arises (through A‹). If O were unconstrained, the set would contain
all possible transformations.

Definition 3.2.5 (Optimality-Preserving Transformation). Let R and R1 be reward functions.
Given a function O : S Ñ PpAqztHu, transition dynamics τ , and discount rate γ, we say
R1 is produced from R by an optimality-preserving transformation (OPT) with O if there
is a function Ψ : S Ñ R such that ES1„τps,aq rR1ps, a, S 1q ` γΨpS 1qs ď Ψpsq for all s, a, with
equality if and only if a P Opsq.

Finally, we consider transformations allowing the reward to vary freely for a given set of
transitions.

Definition 3.2.6 (Masking). Let R and R1 be reward functions. Given a transition set
X Ď S ˆ A ˆ S, we say R1 is produced by a mask of X from R if Rpxq “ R1pxq for all x R X .

3.3 Invariances of reward-related objects
Here, we catalogue the invariances of various central objects derived from reward functions
(Definition 3.2.1), including expert trajectory distributions, the trajectory ranking induced
by the return function, and the set of optimal policies. Some of these objects represent the
information available in the infinite-data limit of a data source. Others represent the outcome
of a downstream application.

If an object X can be derived from another object Y without further reference to the
reward function, then X inherits Y ’s invariances. For example, the optimal Q-function’s
invariances are inherited by various expert policies. Accordingly, we organize this section
by incrementally deriving objects from the reward function, cataloguing the invariances
introduced in each step. This mirrors the structure of Figure 3.1. We defer proofs to
Appendix A.2.

3.3.1 Invariances of expert behavior

Inverse reinforcement learning (IRL) algorithms infer a task’s reward function from the
behavior of task experts. Formally, this behavior is represented as an expert’s policy or a
sample of trajectories. To characterize policy invariances, we begin with Q-functions—which
are instrumental to deriving many policies. Q-functions are invariant to S 1-redistribution
since they are defined as an expectation over the successor state S 1. We show that this is the
only invariance for Q-functions, and that the soft Q-function has the same invariances.



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 17

Theorem 3.3.1. Given an MDP and a policy π, the Q-function for π, Qπ, determines R up
to S 1-redistribution. The optimal Q-function Q‹ has the same invariances.

Theorem 3.3.2. Given an MDP and an inverse temperature parameter β, the soft Q-function
QH

β determines R up to S 1-redistribution.

This invariance is inherited by any object that can be derived from a (soft) Q-function.
However, note that S 1-redistribution vanishes in simpler spaces of reward functions, as we
explore in Appendix A.3.

We now turn to policies derived using various planning algorithms. These policies are
instrumental in constructing the trajectories studied in IRL. For example, Ramachandran
and Amir [131] assume that expert behavior is drawn from a Boltzmann-rational policy, and
Ziebart, Bagnell, and Dey [182] assume a Maximum Causal Entropy policy. As these policies
can be derived from Q‹ and QH

β respectively, they inherit invariance to S 1-redistribution. We
show they are also invariant to potential shaping, but not to any other transformations. We
note that the result for the MCE policy generalizes a similar result from Cao, Cohen, and
Szpruch [30, Theorem 1] to MDPs with rewards dependent on successor states.

Theorem 3.3.3. Given an MDP and an inverse temperature parameter β, the Boltzmann-
rational policy π‹

β, or the MCE policy πH
β , determines R up to S 1-redistribution and potential

shaping.

By contrast, Ng and Russell [112] and Abbeel and Ng [1] assume that experts follow an
optimal policy. The set of optimal policies is known to be invariant to potential shaping [111]
and positive linear scaling. It also inherits S 1-redistribution invariance from Q‹. We show
that under certain assumptions, these and any additional invariances of an optimal policy
are captured in a class of optimality-preserving transformations (Definition 3.2.5) based on
each state’s set of optimal actions.

When there are multiple optimal policies, ambiguity depends on how the given policy
is selected. We do not assume full knowledge of the selection method, only the following:
(1) We observe a maximally supportive policy, that is, one giving all optimal actions positive
probability. (2) The exact probabilities in each state depend only on the set of optimal
actions. We comment on how the invariance might be affected by other assumptions in
Remark A.2.10.

Theorem 3.3.4. Given an MDP, a maximally supportive optimal policy determines R up to
optimality-preserving transformations with Opsq “ argmaxa A‹ps, aq.

In the infinite-data limit, trajectories sampled from a policy reveal the distribution of
trajectories induced by the policy, and therefore the policy itself for all states reachable via
its supported actions. Boltzmann-rational policies and MCE policies support all actions,
so the trajectory distribution determines the policy for all reachable states. It follows that
trajectory sampling introduces an invariance solely to changes in the reward of unreachable
transitions.



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 18

Theorem 3.3.5. Given an MDP M and an inverse temperature parameter β, the distribution
of trajectories ∆‹

β induced by the Boltzmann-rational policy π‹
β, or ∆H

β induced by the MCE
policy πH

β , determines R up to S 1-redistribution, potential shaping, and a mask of unreachable
transitions.

Similarly, trajectories sampled from an optimal policy reveal the policy in those states
that its actions reach, and introduce invariance to transformations of reward in other states.

Theorem 3.3.6. Given an MDP, consider the distribution of trajectories, ∆‹, induced by a
maximally supportive optimal policy. Let S be the set of states in supported trajectories. Let
O be the set of functions O defined on S such that Opsq “ argmaxa A‹ps, aq for all s P S.
∆‹ determines R up to optimality-preserving transformations for any O P O.

A mask of unreachable transitions is included as a special case. Note that a mask of the
complement of S is not included. However, as O is unconstrained outside S, the reward is
effectively unconstrained in those states, except that the reward of transitions out of S may
have to “compensate” for the value of their successor states to prevent new actions that lead
out of S from becoming optimal.

3.3.2 Invariances of trajectory evaluation

The return function captures the reward accumulated over a trajectory and is instrumental
in deriving data, such as reward labels and trajectory-preference comparisons, for evaluative
feedback. Here, we consider the invariances of the return function for various restricted
domains.

Theorem 3.3.7. Given an MDP, the return function restricted to possible trajectory frag-
ments, Gζ, determines R up to a mask of impossible transitions.

Theorem 3.3.8. Given an MDP, the return function restricted to possible and initial
trajectories, Gξ, determines R up to zero-initial potential shaping and a mask of unreachable
transitions.

Gζ has few invariances because its domain includes all possible individual transitions.
Further invariances would hold given domain restrictions such as minimum or maximum
fragment lengths.

Pairwise comparisons between trajectories have been studied as a data source for reward
learning [3, 33]. It is common to model the comparisons as based on the return of trajectories
but with accompanying decision noise following a Boltzmann distribution. Under this
assumption, in the limit of infinite noisy comparisons for each pair of trajectories, the data
source reveals the Boltzmann distributions governing each possible comparison. Boltzmann
noise encodes the precise difference in return between trajectories, so little invariance is
introduced.



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 19

Formally, given an MDP and an inverse temperature parameter β ą 0, let ĺ
ζ
β be a

stochastic relation on possible trajectory fragments, such that for each pair of possible
trajectory fragments ζ1, ζ2,

Ppζ1 ĺ
ζ
β ζ2q “ exppβGpζ2qq{ pexppβGpζ1qq ` exppβGpζ2qqq ,

and let ĺ
ξ
β be the analogous relation on possible and initial trajectories.

Theorem 3.3.9. Given an MDP and an inverse temperature β, the distribution of comparisons
of possible trajectory fragments, ĺ

ζ
β, determines R up to a mask of impossible transitions.

Theorem 3.3.10. Given an MDP and an inverse temperature β, the distribution of compar-
isons of possible and initial trajectories, ĺ

ξ
β, determines R up to k-initial potential shaping

and a mask of unreachable transitions.

Boltzmann comparisons of fragments have few invariances due to the broad range of
comparisons permitted, including those between individual transitions and empty trajectories.
Additional invariances will arise from additional restrictions, such as permitting comparisons
only between fragments of a fixed length. Moreover, it is worth reiterating that these
invariances rely heavily on the precise structure of the decision noise revealing cardinal
information in the infinite-data limit.

We also consider noiseless comparisons of the return. The infinite-data limit then
corresponds to the order induced by the return function. Formally, define the noiseless
order of possible trajectory fragments as a relation, ĺζ

‹, on possible trajectory fragments:
ζ1 ĺζ

‹ ζ2 ô Gpζ1q ď Gpζ2q. Similarly, define the noiseless order of possible and initial
trajectories as the analogous relation, ĺξ

‹, for pairs of possible and initial trajectories. These
relations omit cardinal information about pairwise comparisons, so invariances to certain
monotonic transformations are introduced. The precise monotonic invariances depend on the
MDP (for example, see the proof in Appendix A.2.4).

Theorem 3.3.11. We have the following bounds on the invariances of the noiseless order of
possible trajectory fragments, ĺζ

‹. In all MDPs:
(1) ĺζ

‹ is invariant to positive linear scaling and a mask of impossible transitions; and

(2) ĺζ
‹ is not invariant to transformations other than zero-preserving monotonic transfor-

mations or masks of impossible transitions.
Moreover, there exist MDPs attaining each of these bounds.

We give a lower bound on the invariances of the noiseless order of possible and initial
trajectories, ĺξ

‹, inherited from ĺ
ξ
β and ĺζ

‹. Note that this lower bound does not rule out
additional invariances (unlike our other results). We comment further in Appendix A.2.4.

Theorem 3.3.12. Given an MDP, the noiseless order of possible and initial trajectories, ĺξ
‹,

is invariant to (at least) k-initial potential shaping, positive linear scaling, and a mask of
unreachable transitions.



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 20

We next give the transformations that preserve preferences over lotteries of trajectories. It
is possible to model such preferences as von Neumann–Morgenstern (VNM)-rational choices
between lotteries (distributions) over trajectory returns. Such lotteries are well known to be
invariant to positive affine transformations of return [110, appendix A]. We show that these
transformations correspond to k-initial potential shaping and positive linear scaling of the
reward function. Let ĺ

ξ
D be the relation on distributions over possible initial trajectories:

D1 ĺ
ξ
D D2 ô EΞ„D1 rGpΞqs ď EΞ„D2 rGpΞqs.

Theorem 3.3.13. Given an MDP, ĺ
ξ
D determines R up to k-initial potential shaping, positive

linear scaling, and a mask of unreachable transitions.

3.3.3 Invariances of policy optimization

The primary application of learnt reward functions is to compute optimal policies using
techniques such as RL. Policy optimization procedures typically compute a single optimal
policy. However, in terms of invariances, one may desire to preserve the whole set of optimal
policies so as not to tolerate any suboptimal policies becoming optimal through a reward
transformation.

The set of optimal policies inherits S 1-redistribution invariance from the optimal Q-
function and is also known to be invariant to potential shaping [111]. In fact, because a
maximally supportive optimal policy can be derived from the set of optimal policies and vice
versa, the set shares exactly the same invariances as a maximally supportive optimal policy
(Theorem 3.3.4).

Theorem 3.3.14. Given an MDP, the set of optimal policies determines R up to optimality-
preserving transformations with Opsq “ argmaxa A‹ps, aq.

Moreover, if one uses an algorithm not guaranteed to find a globally optimal policy,
one may desire to preserve the entire order induced on the space of policies by the policy
evaluation function, rather than just the set of maximizing policies. Future work could
investigate the invariances of the ordinal information in the policy evaluation function. Note
that since the set of optimal policies can be derived from this order, the order has at most
the invariances of the set of optimal policies.

3.4 Implications for reward learning
So far, we have catalogued the invariances of various objects to transformations of the reward
function. These invariances characterize the infinite-data ambiguity of several reward learning
data sources and the ambiguity tolerance of policy optimization. In this section, we discuss
the implications for practical evaluation of reward learning data sources.

We begin by defining a framework for comparing data sources and applications based on
their ambiguity. The characterization of ambiguity and tolerance as invariances to reward



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 21

pref. cmp. IRL

increasing
ambiguity
(tolerance)

R Gζ

Gξ

ĺ
ζ
β ĺ

ξ
β

ĺ
ξ
Dĺζ

‹ ĺξ
‹

Qπ, Q‹, Q
H
β

π‹
β, π

H
β

∆‹
β,∆

H
β

π‹ tπ‹u

∆‹

Figure 3.1: The infinite-data ambiguity of reward learning data sources and the ambiguity
tolerance of downstream applications of a learnt reward function are both invariances of
objects derived from reward functions (Definition 3.2.1). These invariances imbue the data
sources and applications with a partial order by ambiguity refinement (Definition 3.4.1). For
a fixed MDP, here we give the partial order. X Ñ Y means X ĺ Y , that is, X is no more
ambiguous than Y as a data source (or, as a downstream application, Y is tolerant to X’s
ambiguity). Note that the partial order is transitive—X is no more ambiguous than Y (Y
is tolerant to X’s ambiguity) if there is a path from X to Y . These objects are defined in
Sections 3.1.2 and 3.3.

transformations suggests a natural partial order on data sources and applications. Recall
that the invariances of an object correspond to a partition of the space of reward functions
(Section 3.2). We lift the refinement relation for partitions [2, §I.2.B] to data sources and
applications as follows.

Definition 3.4.1 (Ambiguity refinement). Consider two reward learning data sources (or
applications) X and Y , and let ΠX and ΠY be the partitions of the space of reward functions
corresponding to their invariances (Definition 3.2.1). If ΠX is a partition refinement of ΠY ,
we write X ĺ Y and say X is no more ambiguous than Y (or X is tolerable for application
Y ). If X ĺ Y but not Y ĺ X, then we write X ă Y and say X is (strictly) less ambiguous
than Y .

Given two data sources X and Y , X ĺ Y corresponds to X conflating no additional
reward functions compared to Y in the infinite-data limit. This is the sense in which we say
X is no more ambiguous than Y . Moreover, given a downstream application Z, X ĺ Z is
precisely the condition of Z tolerating the infinite-data ambiguity of data source X: X ĺ Z
if and only if the reward functions conflated by X in the infinite-data limit all lead to the
same outcome in Z.

More concretely, we can compare the ambiguity of specific data sources and applications.
Figure 3.1 depicts the partial order for a fixed MDP. For example, the ambiguity tolerance of
the set of optimal policies is a class of optimality-preserving transformations. Data sources



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 22

identity

impossible
mask

k-initial
Φ

shaping

pos. lin.
scaling

unreachable
mask

S 1-redistr.

Φ shaping

ZPMT

OPT

Figure 3.2: For a fixed MDP, here we give the partition refinement relation for each of the
basic families of reward transformations defined in Section 3.2. Each of our ambiguity results
involve compositions of these basic invariances. This order is therefore helpful for calculating
ambiguity refinements.

that are less ambiguous than this tolerance (higher in Figure 3.1) are sufficient for policy
optimization. Notably, this excludes noiseless comparisons between trajectory fragments in
some MDPs. Specifically, policy optimization does not, in general, tolerate zero-preserving
monotonic transformations (ZPMTs), while noiseless comparisons are invariant to ZPMTs in
some MDPs (Theorem 3.3.11). Policy optimization is also intolerant to data sources based
on possible and initial trajectories, which are invariant to a mask of unreachable transitions.
However, these sources are tolerable if the application only requires optimal behavior in
reachable states.

Moreover, we can compare data sources drawn from one MDP to applications in another
MDP, such as under a shift in transition dynamics or initial state distribution. This captures
the common sim-to-real setting where learning occurs in a simulated or otherwise restricted
environment that differs from the deployment environment. The simplest transformations to
consider are masks of impossible or unreachable transitions — these depend on transition
dynamics. In general, the ambiguity corresponding to a mask of X is less than for a mask of
X 1 Ą X . For example, if the new dynamics supports previously impossible transitions, then
sources with invariance to an impossible-transition mask from the original MDP may not be
tolerable for applications in the new MDP.

A similar result holds for S 1-redistribution, which involves an expectation over MDP
dynamics. Moreover, the effect of S 1-redistribution on optimal behavior under changed
dynamics can be dramatic. For example, if τ changes for each state-action pair, then Q‹

is completely undetermined, which means that S 1-redistribution could make any policy
whatsoever seem optimal under the new transition dynamics. This is a consequence of the
following general result: if we determine R modulo S 1-redistribution under τ , and then shift
to some other transition dynamics τ 1, then ES1„τ 1ps,aq rR1ps, a, S 1qs is completely undetermined
for all s, a where τps, aq ‰ τ 1ps, aq. Note that this result relies on the formulation of rewards
as depending on the successor state (see Appendix A.3).



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 23

Theorem 3.4.2. Consider an MDP pS,A, τ, µ0, R1, γq and alternative transition dynamics
τ 1. Given any function L : S ˆ A Ñ R, there exists a reward function R2, produced from R1

by S 1-redistribution under τ , such that ES1„τ 1ps,aq rR2ps, a, S 1qs “ Lps, aq for all s, a such that
τps, aq ‰ τ 1ps, aq.

Ambiguity refinement is a partial order, and some data sources are indeed incomparable.
In consolation, we observe that such incomparable ambiguity is complementary ambiguity, in
that by combining the associated data sources, we reduce overall ambiguity about the latent
reward.

Theorem 3.4.3. Given data sources X and Y , let pX, Y q denote the combined data source
formed from X and Y . If X and Y are incomparable, then pX, Y q ă X and pX, Y q ă Y .

This perspective highlights promising directions for the design of reward learning data
sources. In particular, it suggests developing reward learning algorithms for mixtures of data
sources with complementary ambiguity. Most popular data sources appear to have similar
kinds of ambiguity given a fixed MDP. However, ambiguity could be reduced by incorporating
data from multiple MDPs with different dynamics or discount rates. This is a new perspective
in which to frame some of the results of Amin, Jiang, and Singh [6] and Cao, Cohen, and
Szpruch [30].

3.5 Limitations and future work
Our results give an upper bound on the amount of information that can be extracted from
various data sources by studying the limit of infinite data. In practice, these limits may never
be attained on finite data sets. Future work should characterize how much information is
contained in data sets of varying sizes. This would determine the most efficient data source
for a fixed data-collection budget.

It is important to choose the right reward learning algorithm when designing an automated
system. Learning the wrong reward function can cause large negative impacts [8], especially
for systems of increased power [23, §12]. We stress that system designers must evaluate
reward learning approaches holistically, with our work on ambiguity contributing to one
dimension. In the following, we describe two complementary axes for evaluating reward
learning algorithms.

Our results apply under the assumptions made by popular reward learning algorithms
(see Section 3.3). However, these assumptions may not be sound for real data. In fact,
there are important differences between human data and data synthesized with standard
assumptions [115]. Moreover, there can be a trade-off between ambiguity and plausibility:
a data source may have low ambiguity because it makes unrealistic assumptions. At one
extreme, directly requesting a human’s reward function leaves no ambiguity, but is unsound,
this being the reason we set out to learn rewards.



CHAPTER 3. UPPER BOUNDS ON REWARD LEARNING 24

Furthermore, even given an ideal reward learning algorithm, what kinds of rewards should
we seek to learn—stated preferences, revealed preferences, instructions, or something else [50]?
Who should we seek to learn rewards from? Such normative questions may constrain our
choice of data sources. All stakeholders should be considered in the design of automated
systems. Perhaps only certain experts can provide demonstrations, but more stakeholders
can provide comparisons.

3.6 Conclusion
Substantial effort has been invested to develop reward learning algorithms for a variety of
data sources. A fundamental question is how effective these algorithms are, relative to an
optimal algorithm for that data source? Our contribution is to characterize the information
available from each data source, thereby establishing an upper bound on the performance of
any algorithm using that data source.

In particular, we prove invariances of various reward-related objects to transformations
such as potential shaping. Moreover, we show that these objects form a partial order under
ambiguity refinement. The resulting framework enables direct comparisons between data
sources. We find that some data sources contain strictly less information than others, such as
noiseless preference comparisons vs. return labels. By contrast, others are incomparable and
have complementary ambiguity, such as Q-values and trajectory returns.

While practitioners could simply collect data from the least ambiguous source, this might
be costly. We also characterize the ambiguity tolerance of downstream applications (such
as policy optimization) for which the reward function is used. This enables practitioners
to identify data sources that are precise only in the areas their application needs, limiting
unnecessary costs.



25

Chapter 4

Distance metrics on reward functions

Prior work has evaluated learned reward functions by evaluating policies optimized for
the learned reward. However, this method cannot distinguish between the learned reward
function failing to reflect user preferences and the policy optimization process failing to
optimize the learned reward. Moreover, this method can only tell us about behavior in
the evaluation environment, but the reward may incentivize very different behavior in even
a slightly different deployment environment. To address these problems, we introduce
the Equivalent-Policy Invariant Comparison (EPIC) distance to quantify the difference
between two reward functions directly, without a policy optimization step. We prove
EPIC is invariant on an equivalence class of reward functions that always induce the same
optimal policy. Furthermore, we find EPIC can be efficiently approximated and is more
robust than baselines to the choice of coverage distribution. Our source code is available at
https://github.com/HumanCompatibleAI/evaluating-rewards.

4.1 Introduction
Prior work has usually evaluated the learned reward function R̂ using the “rollout method”:
training a policy πR̂ to optimize R̂ and then examining rollouts from πR̂ . Unfortunately, using
RL to compute πR̂ is often computationally expensive. Furthermore, the method produces
false negatives when the reward R̂ matches user preferences but the RL algorithm fails to
optimize with respect to R̂.

The rollout method also produces false positives. Of the many reward functions that
induce the desired rollout in a given environment, only a small subset align with the user’s
preferences. For example, suppose the agent can reach states tA,B,Cu. If the user prefers
A ą B ą C, but the agent instead learns A ą C ą B, the agent will still go to the
correct state A. However, if the initial state distribution or transition dynamics change,
misaligned rewards may induce undesirable policies. For example, if A is no longer reachable
at deployment, the previously reliable agent would misbehave by going to the least-favored
state C.

https://github.com/HumanCompatibleAI/evaluating-rewards


CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 26

Table 4.1: Summary of the desiderata satisfied by each reward function distance studied
in this dissertation. Key — the distance is: a pseudometric (Definition 4.2.1); invariant
to potential shaping [111] and positive rescaling (Section 2.2); a computationally efficient
approximation achieving low error (Section 4.4.1); robust to the choice of coverage distribution
(Section 4.4.2); and predictive of the similarity of the trained policies (Section 5.2).

Distance Pseudometric Invariant Efficient Robust Predictive

EPIC ✓ ✓ ✓ ✓ ✓

NPEC ✗ ✓ ✗ ✗ ✓

ERC ✓ ✗ ✓ ✗ ✓

We propose instead to evaluate learned rewards via their distance from other reward
functions. Table 4.1 summarizes our desiderata for reward function distances.

For benchmarks, it is usually possible to directly compare a learned reward R̂ to the true
reward function R. Alternatively, benchmark creators can train a “proxy” reward function
from a large human data set. This proxy can then be used as a stand-in for the true reward
R when evaluating algorithms trained on a different or smaller data set.

Comparison with a ground-truth reward function is rarely possible outside of benchmarks.
However, even in this challenging case, comparisons can at least be used to cluster reward
models trained using different techniques or data. Larger clusters are more likely to be
correct, since multiple methods arrived at a similar result. Moreover, our regret bound
(Theorem 5.1.1) suggests we could use interpretability methods discussed in Chapter 6 on
one model and get some guarantees for models in the same cluster.

To the best of our knowledge, there is no prior work that focuses on evaluating reward
functions directly. The most closely related work is Ng, Harada, and Russell [111], identifying
reward transformations guaranteed to not change the optimal policy. However, a variety of
ad hoc methods have been developed to evaluate reward functions. The rollout method—
evaluating rollouts of a policy trained on the learned reward—is evident in the earliest work
on IRL [112]. Fu, Luo, and Levine [49] refined the rollout method by testing on a transfer
environment, inspiring our experiment in Section 5.2. Recent work has compared reward
functions by scatterplotting returns [68, 27], inspiring our Episode Return Correlation (ERC)
baseline (Section 4.3.1).

We introduce the Equivalent-Policy Invariant Comparison (EPIC) distance that meets
all the criteria in Table 4.1. We believe EPIC is the first method to quantitatively evaluate
reward functions without training a policy. EPIC (Section 4.2) canonicalizes the reward
functions’ potential-based shaping [111], then takes the correlation between the canonical
rewards over a coverage distribution D of transitions. We also introduce baselines Nearest
Point in Equivalence Class (NPEC) and ERC (Section 4.3) which partially satisfy the criteria.

EPIC works best when D has support on all realistic transitions. We achieve this in our
experiments by using uninformative priors, such as rollouts of a policy taking random actions.



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 27

Moreover, we find that EPIC is robust to the exact choice of distribution D, producing similar
results across a range of distributions, whereas ERC and especially NPEC are highly sensitive
to the choice of D (Section 4.4.2).

Moreover, low EPIC distance between a learned reward R̂ and the true reward R predicts
low regret. That is, the policies πR̂ and πR optimized for R̂ and R obtain similar returns
under R. Theorem 5.1.1 can be used to bound the regret even in unseen environments; by
contrast, the rollout method can only determine regret in the evaluation environment. We
also confirm this result empirically (Section 5.2).

4.2 Comparing reward functions with EPIC
In this section, we introduce the Equivalent-Policy Invariant Comparison (EPIC) pseudo-
metric. This novel distance canonicalizes the reward functions’ potential-based shaping,
then compares the canonical representatives using Pearson correlation, which is invariant to
scale. Together, this construction makes EPIC invariant on reward equivalence classes. See
Section B.3.1 for proofs.

First, we must define the notion of a distance.

Definition 4.2.1. Let X be a set and d : X ˆ X Ñ r0,8q a function. d is a premetric if
dpx, xq “ 0 for all x P X. d is a pseudometric if, furthermore, it is symmetric, dpx, yq “ dpy, xq

for all x, y P X, and satisfies the triangle inequality, dpx, zq ď dpx, yq`dpy, zq for all x, y, z P X.
d is a metric if, furthermore, for all x, y P X, dpx, yq “ 0 ùñ x “ y.

We wish for dpRA, RBq “ 0 whenever the rewards are equivalent (Definition 2.2.2),
RA ” RB, even if they are not identical, RA ‰ RB. This is forbidden in a metric but
permitted in a pseudometric, while retaining other guarantees such as symmetry and triangle
inequality that a metric provides. Accordingly, a pseudometric is usually the best choice for
a distance d over reward functions.

We define the canonically shaped reward CDS ,DA pRq as an expectation over some arbitrary
distributions DS and DA over states S and actions A respectively. These two distributions
can be combined to define a distribution over transitions by taking their outer product,
DS ˆ DA ˆ DS , which we refer to as the canonicalization distribution. This construction
means that CDS ,DA pRq does not depend on the MDP’s initial state distribution µ0 or transition
dynamics τ . In particular, we may evaluate R on transitions that are impossible in the
training environment, since these may become possible in a deployment environment with a
different µ0 or τ .

Definition 4.2.2 (Canonically Shaped Reward). Let R : S ˆ A ˆ S Ñ R be a reward
function. Given distributions DS P ∆pSq and DA P ∆pAq over states and actions, let S and
S 1 be random variables independently sampled from DS and let A be sampled from DA . We



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 28

define the canonically shaped R to be

CDS ,DA pRq ps, a, s1
q “ Rps, a, s1

q (4.1)
` E rγRps1, A, S 1

q ´ Rps, A, S 1
q ´ γRpS,A, S1

qs .

Informally, if R is shaped by potential Φ, then increasing Φpsq decreases Rps, a, s1q but
increases E r´Rps, A, S 1qs, canceling. Similarly, increasing Φps1q increases Rps, a, s1q but
decreases E rγRps1, A, S 1qs. Finally, ErγRpS,A, S1qs centers the reward, canceling constant
shift.

Proposition 4.2.3 (The Canonically Shaped Reward is Invariant to Shaping). Let R :
S ˆ A ˆ S Ñ R be a reward function and Φ : S Ñ R a potential function. Let γ P r0, 1s be a
discount rate, and DS P ∆pSq and DA P ∆pAq be distributions over states and actions. Let
R1 denote R shaped by Φ: R1ps, a, s1q “ Rps, a, s1q ` γΦps1q ´ Φpsq. Then the canonically
shaped R1 and R are equal: CDS ,DA pR1q “ CDS ,DA pRq.

Proof. See Section B.3.1.

Proposition 4.2.3 holds for arbitrary distributions DS and DA . However, in the following
proposition we show that the potential shaping applied by the canonicalization CDS ,DA pRq

is more influenced by perturbations to R of transitions ps, a, s1q with high joint probability.
This suggests choosing DS and DA to have broad support, making CDS ,DA pRq more robust
to perturbations of any given transition.

Proposition 4.2.4. Let S and A be finite, with |S| ě 2. Let DS P ∆pSq and DA P ∆pAq.
Let R, ν : S ˆ A ˆ S Ñ R be reward functions, with νps, a, s1q “ λIrps, a, s1q “ px, u, x1qs,
λ P R, x, x1 P S, and u P A. Let ΦDS ,DA pRqps, a, s1q “ CDS ,DA pRq ps, a, s1q ´ Rps, a, s1q.
Then,

›

›ΦDS ,DA pR ` νq ´ ΦDS ,DA pRq
›

›

8
“ λ p1 ` γDSpxqqDApuqDSpx1

q. (4.2)

We have canonicalized potential shaping; next, we compare the rewards in a scale-invariant
manner.

Definition 4.2.5. The Pearson distance between random variables X and Y is defined
by the expression DρpX,Y q “

a

1 ´ ρpX,Y q{
?
2, where ρpX,Y q is the Pearson correlation

between X and Y .

Lemma 4.2.6. The Pearson distance Dρ is a pseudometric. Moreover, let a, b P p0,8q,
c, d P R, and X,Y be random variables. Then it follows that 0 ď DρpaX ` c, bY ` dq “

DρpX,Y q ď 1.

We can now define EPIC in terms of the Pearson distance between canonically shaped
rewards.



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 29

Definition 4.2.7 (Equivalent-Policy Invariant Comparison (EPIC) pseudometric). Let D be
some coverage distribution over transitions s

a
Ñ s1. Let S,A, S1 be random variables jointly

sampled from D. Let DS and DA be some distributions over states S and A respectively.
The Equivalent-Policy Invariant Comparison (EPIC) distance between reward functions RA

and RB is

DEPICpRA, RBq “ Dρ

`

CDS ,DA pRAq pS,A, S1
q, CDS ,DA pRBq pS,A, S1

q
˘

. (4.3)

Theorem 4.2.8. The Equivalent-Policy Invariant Comparison distance is a pseudometric.

Since EPIC is a pseudometric, it satisfies the triangle inequality. To see why this is useful,
consider an environment with an expensive-to-evaluate ground-truth reward R. Directly
comparing many learned rewards R̂ to R might be prohibitively expensive. We can instead
pay a one-off cost: query R a finite number of times and infer a proxy reward RP with
DEPICpR,RP q ď ϵ. The triangle inequality allows us to evaluate R̂ via comparison to RP ,
since DEPICpR̂, Rq ď DEPICpR̂, RP q ` ϵ. This is particularly useful for benchmarks, which
can be expensive to build but should be cheap to use.

Theorem 4.2.9. Let RA, R1
A, RB, R

1
B : S ˆ A ˆ S Ñ R be reward functions such that

R1
A ” RA and R1

B ” RB. Then 0 ď DEPICpR1
A, R

1
Bq “ DEPICpRA, RBq ď 1.

The following is our main theoretical result, showing that the DEPICpRA, RBq distance
gives an upper bound on the difference in returns under either RA or RB between optimal
policies πRA

‹ and πRB
‹ . In other words, EPIC bounds the regret under RA of using πRB

‹ instead
of πRA

‹ . Moreover, by symmetry DEPICpRA, RBq also bounds the regret under RB of using
πRA

‹ instead of πRB
‹ .

To demonstrate EPIC’s properties, we compare the gridworld reward functions from
Figure 4.1, reporting the distances between all reward pairs in Figure B.2. Dense is
a rescaled and shaped version of Sparse, despite looking dissimilar at first glance, so
DEPIC pSparse, Denseq “ 0. By contrast, DEPIC pPath, Cliffq “ 0.27. In deterministic grid-
worlds, Path and Cliff have the same optimal policy, so the rollout method could wrongly
conclude they are equivalent. But in fact the rewards are fundamentally different: when
there is a significant risk of “slipping” in the wrong direction, the optimal policy for Cliff
walks along the top instead of the middle row, incurring a ´1 penalty to avoid the risk of
falling into the ´4 “cliff.”

For this example, we used state and action distributions DS and DA uniform over S and
A, and coverage distribution D uniform over state-action pairs ps, aq, with s1 deterministically
computed. It is important these distributions have adequate support. As an extreme example,
if DS and D have no support for a particular state, then the reward of that state has no
effect on the distance. We can compute EPIC exactly in a tabular setting, but in general, we
use a sample-based approximation (Section B.1.1).



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 30

0 1 2

0

1

2

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

Sparse Reward

0 1 2

-1

-1

-1

-1

-1

-1

3

-1

-1

-4

-4

-4

0

-4

-4

-4

-4

-4

-4

0

-4

2

2

2

2

2

2

2

2

2

2

2

2

Dense Reward

0 1 2

-1

0

0

-1

0

-1

4

0

-1

-1

0

-1

4

0

-1

-1

0

-1

0

4

0

-1

0

0

-1

0

-1

0

0

0

-1

0

-1

Path Reward

0 1 2

-4

0

0

-4

0

-1

4

0

-1

-4

0

-1

4

0

-1

-4

0

-4

0

4

0

-4

0

0

-4

0

-1

0

0

0

-1

0

-1

Cliff Reward

-4

-2

0

2

4

Figure 4.1: Heatmaps of four reward functions for a 3 ˆ 3 gridworld. Sparse and Dense
look different but are actually equivalent with DEPIC pSparse, Denseq “ 0. By contrast, the
optimal policies for Path and Cliff are the same if the gridworld is deterministic but different
if it is “slippery.” EPIC recognizes this difference with DEPIC pPath, Cliffq “ 0.27. Key:
Reward Rps, s1q for moving from s to s1 is given by the triangular wedge in cell s that
is adjacent to cell s1. Rps, sq is given by the central circle in cell s. Optimal action(s)
(deterministic, infinite horizon, discount γ “ 0.99) have bold labels. See Figure B.2 for the
distances between all reward pairs.

4.3 Baseline approaches for comparing reward functions
Given the lack of established methods, we develop two alternatives as baselines: Episode
Return Correlation (ERC) and Nearest Point in Equivalence Class (NPEC).

4.3.1 Episode Return Correlation (ERC)

The goal of an MDP is to maximize expected episode return, so it is natural to compare
reward functions by the returns they induce. If the return of a reward function RA is a
positive affine transformation of another reward RB, then RA and RB have the same set of
optimal policies. This suggests using Pearson distance, which is invariant to positive affine
transformations.

Definition 4.3.1 (Episode Return Correlation (ERC) pseudometric). Let D be some distri-
bution over trajectories. Let E be a random variable sampled from D. The Episode Return
Correlation distance between reward functions RA and RB is the Pearson distance between
their episode returns on D, DERCpRA, RBq “ DρpgpE;RAq, gpE;RBqq.

Prior work has produced scatter plots of the return of RA against RB over episodes [27,
Figure 3] and fixed-length segments [68, section D]. ERC is the Pearson distance of such
plots, so it is a natural baseline. We approximate ERC by the correlation of episode returns
on a finite collection of rollouts.

ERC is invariant to shaping when the initial state s0 and terminal state sT are fixed.
Let R be a reward function and Φ a potential function, and define the shaped reward



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 31

R1ps, a, s1q “ Rps, a, s1q ` γΦps1q ´Φpsq. The return under the shaped reward on a trajectory
τ “ ps0, a0, ¨ ¨ ¨ , sT q is gpτ ;R1q “ gpτ ;Rq ` γTΦpsT q ´ Φps0q. Since s0 and sT are fixed,
γTΦpsT q ´Φps0q is constant. It follows that ERC is invariant to shaping, as Pearson distance
is invariant to constant shifts. In fact, for infinite-horizon discounted MDPs, only s0 needs to
be fixed, since γTΦpsT q Ñ 0 as T Ñ 8.

However, if the initial state s0 is stochastic, then the ERC distance can take on arbitrary
values under shaping. Let RA and RB be two arbitrary reward functions. Suppose that
there are at least two distinct initial states, sX and sY , with non-zero measure in D. Choose
potential Φpsq “ 0 everywhere except ΦpsXq “ ΦpsY q “ c, and let R1

A and R1
B denote

RA and RB shaped by Φ. As c Ñ 8, the correlation ρ pgpE;R1
Aq, gpE;R1

Bqq Ñ 1. This is
because the relative difference tends to zero, even though gpE;R1

Aq and gpE;R1
Bq continue

to have the same absolute difference as c varies. Consequently, the ERC pseudometric
DERCpR1

A, R
1
Bq Ñ 0 as c Ñ 8. By an analogous argument, setting ΦpsXq “ c and ΦpsY q “ ´c

gives DERCpR1
A, R

1
Bq Ñ 1 as c Ñ 8.

4.3.2 Nearest Point in Equivalence Class (NPEC)

NPEC takes the minimum Lp distance between equivalence classes. See Section B.3.2 for
proofs.

Definition 4.3.2 (Lp distance). Let D be a coverage distribution over transitions s
a

Ñ s1

and let p ě 1 be a power. The Lp distance between reward functions RA and RB is the Lp

norm of their difference:

DLp,DpRA, RBq “
`

Es,a,s1„D
“

|RAps, a, s1
q ´ RBps, a, s1

q|p
‰˘1{p

. (4.4)

The Lp distance is affected by potential shaping and positive rescaling that do not change
the optimal policy. A natural solution is to take the distance from the nearest point in
the equivalence class: DU

NPECpRA, RBq “ infR1
A”RA

DLp,DpR1
A, RBq. Unfortunately, DU

NPEC is
sensitive to RB’s scale.

It is tempting to instead take the infimum over both arguments of DLp,D. However,
infR1

A”RA,R1
B”RB

DLp,DpR1
A, RBq “ 0 since all equivalence classes come arbitrarily close to the

origin in Lp space. Instead, we fix this by normalizing DU
NPEC.

Definition 4.3.3. NPEC is defined by

DNPECpRA, RBq “ DU
NPECpRA, RBq{DU

NPECpZero, RBq (4.5)

when DU
NPECpZero, RBq ‰ 0, and is otherwise given by DNPECpRA, RBq “ 0.

If DU
NPECpZero, RBq “ 0, then DU

NPECpRA, RBq “ 0 since RA can be scaled arbitrarily
close to Zero. Since all policies are optimal for R ” Zero, we choose DNPECpRA, RBq “ 0 in
this case.



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 32

Theorem 4.3.4. DNPEC is a premetric on the space of bounded reward functions. Moreover,
let RA, RA

1, RB, RB
1 : S ˆ A ˆ S Ñ R be bounded reward functions such that RA ” RA

1 and
RB ” RB

1. Then 0 ď DNPECpRA
1, RB

1q “ DNPECpRA, RBq ď 1.

Proof. Pseudometric follows from DLp,D a pseudometric; see Section B.3.2 for details. The
invariance to R1

A ” RA is immediate from the infimum being over R ” RA. The invariance
to R1

B ” RB is due to translational invariance of DLp,D, and

DU
NPECpRA, λRBq “ λDU

NPECpRA, RBq, for λ ą 0.

Upper bound of 1 is due to

DU
NPECpRA, RBq ď DU

NPECpZero, RBq,

while lower bound is immediate from DLp,D being non-negative. See section B.3.2 for
details.

Note that DNPEC may not be symmetric and so is not, in general, a pseudometric: see
proposition B.3.3. The infimum in DU

NPEC can be computed exactly in a tabular setting, but in
general we must approximate it using gradient descent. This gives an upper bound for DU

NPEC,
but the quotient of upper bounds DNPEC may be too low or too high. See Section B.1.2 for
details of the approximation.

4.4 Experiments
We evaluate EPIC and the baselines ERC and NPEC in a variety of continuous control
tasks. In Section 4.4.1, we compute the distance between hand-designed reward functions,
finding EPIC to be the most reliable. NPEC has substantial approximation error, and ERC
sometimes erroneously assigns high distance to equivalent rewards. Finally, in Section 4.4.2
we show that EPIC is robust to the exact choice of coverage distribution D, whereas ERC
and especially NPEC are highly sensitive to the choice of D.

4.4.1 Comparing hand-designed reward functions

We compare procedurally specified reward functions in four tasks, finding that EPIC is
more reliable than the baselines NPEC and ERC, and more computationally efficient than
NPEC. Figure 4.2 presents results in the proof-of-concept PointMass task. The results for
Gridworld, HalfCheetah, and Hopper, in Section B.2.4, are qualitatively similar.

In PointMass, the agent can accelerate :x left or right on a line. The reward functions
include ( ) or exclude ( ) a quadratic penalty :x2. The sparse reward (S) gives a reward of
1 in the region ˘0.05 from the origin. The dense reward (D) is a shaped version of the sparse
reward. The magnitude reward (M) is the negative distance of the agent from the origin.



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 33

S S D D M

RB

S

S

D

D

M

R
A

0.00 0.51 0.00 0.51 0.63
0.51 0.00 0.51 0.00 0.55
0.00 0.51 0.00 0.51 0.63
0.51 0.00 0.51 0.00 0.55
0.63 0.55 0.63 0.55 0.00

(a) EPIC

S S D D M

RB

0.00 0.88 0.22 0.86 0.96
0.92 0.00 0.94 0.04 0.74
0.58 0.95 0.00 0.81 0.97
0.88 0.04 0.84 0.00 0.58
0.93 0.79 0.80 0.62 0.00

(b) NPEC

S S D D M

RB

0.00 0.41 0.56 0.56 0.57
0.41 0.00 0.61 0.55 0.62
0.56 0.61 0.00 0.11 0.64
0.56 0.55 0.11 0.00 0.64
0.57 0.62 0.64 0.64 0.00

0.0

0.5

1.0

D̄
(R

A
,R

B
)

(c) ERC

Figure 4.2: Approximate distances between hand-designed reward functions in PointMass,
where the agent moves on a line trying to reach the origin. EPIC correctly assigns 0
distance between equivalent rewards such as pD , S q while DNPECpD , S q “ 0.58 and
DERCpD , S q “ 0.56. The coverage distribution D is sampled from rollouts of a policy
πuni taking actions uniformly at random. Key: The agent has position x P R, velocity
9x P R, and can accelerate :x P R, producing future position x1 P R. quadratic penalty on
control :x2, no control penalty. S is Sparsepxq “ 1r|x| ă 0.05s, D is shaped Densepx, x1q “

Sparsepxq ` |x1| ´ |x|, while M is Magnitudepxq “ ´|x|.

We find that EPIC correctly identifies the equivalent reward pairs (S -D and S -D )
with estimated distance ă 1 ˆ 10´3. By contrast, NPEC has substantial approximation error:
DNPECpD , S q “ 0.58. Similarly, DERCpD , S q “ 0.56 due to ERC’s erroneous handling
of stochastic initial states. Moreover, NPEC is computationally inefficient: Figure 4.2(b)
took 31 hours to compute. By contrast, the figures for EPIC and ERC were generated in less
than two hours, and a lower precision approximation of EPIC finishes in just 17 seconds (see
Section B.2.6).

4.4.2 Sensitivity of reward distance to coverage distribution

Reward distances should be robust to the choice of coverage distribution D. In Table 4.2
(center), we report distances from the ground-truth reward (GT) to reward functions (rows)
across coverage distributions D P tπuni, π

˚, Mixu (columns). We find EPIC is fairly robust to
the choice of D with a similar ratio between rows in each column D. By contrast, ERC and
especially NPEC are substantially more sensitive to the choice of D.

We evaluate in the PointMaze MuJoCo task from Fu, Luo, and Levine [49], where a point
mass agent must navigate around a wall to reach a goal. The coverage distributions D are
induced by rollouts from three different policies: πuni takes actions uniformly at random,
producing broad support over transitions; π˚ is an expert policy, yielding a distribution
concentrated around the goal; and Mix is a mixture of the two. In EPIC, DS and DA are
marginalized from D and so also vary with D.

We evaluate four reward learning algorithms: Regression onto reward labels [target



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 34

Table 4.2: Low reward distance from the ground-truth (GT) in PointMaze-Train predicts high
policy return even in unseen task PointMaze-Test. EPIC distance is robust to the choice of
coverage distribution D, with similar values across columns, while ERC and especially NPEC
are sensitive to D. The table shows approximate distances (1000ˆ scale) of reward functions
from GT. The coverage distribution D is computed from rollouts in PointMaze-Train of a
uniform random policy πuni, an expert π˚, and a Mixture of these policies. DS and DA are
computed by marginalizing D. Confidence Intervals: see Table B.7.

Reward 1000 ˆ DEPIC 1000 ˆ DNPEC 1000 ˆ DERC

Function πuni π˚ Mix πuni π˚ Mix πuni π˚ Mix
GT 0.06 0.05 0.04 0.04 3.17 0.01 0.00 0.00 0.00
Regress 35.8 33.7 26.1 1.42 38.9 0.35 9.99 90.7 2.43
Pref 68.7 100 56.8 8.51 1333 9.74 24.9 360 19.6
AIRL SO 572 520 404 817 2706 488 549 523 240
AIRL SA 776 930 894 1067 2040 1039 803 722 964
Mirage 17.0 0.05 397 0.68 6.30 597 35.3 <0.01 166

method from 33, section 3.3], Preference comparisons on trajectories [33], and adversarial
IRL with a state-only (AIRL SO) and state-action (AIRL SA) reward model [49]. All models are
trained using synthetic data from an oracle with access to the ground-truth; see Section B.2.2
for details.

We find EPIC is robust to varying D when comparing the learned reward models: the
distance varies by less than 2ˆ, and the ranking between the reward models is the same
across coverage distributions. By contrast, NPEC is highly sensitive to D: the ratio of AIRL
SO (817) to Pref (8.51) is 96 : 1 under πuni but only 2 : 1 (2706 : 1333) under π˚. ERC lies
somewhere in the middle: the ratio is 22 : 1 (549 : 24.9) under πuni and 3 : 2 (523 : 360) under
π˚.

We evaluate the effect of pathological choices of coverage distribution D in Table B.8.
For example, Ind independently samples states and next states, giving physically impossible
transitions, while Jail constrains rollouts to a tiny region excluding the goal. We find that
the ranking of EPIC changes in only one distribution, while the ranking of NPEC changes in
two cases and ERC changes in all cases.

However, we do find that EPIC is sensitive to D on Mirage, a reward function we explicitly
designed to break these methods. Mirage assigns a larger reward when close to a “mirage”
state than when at the true goal, but is identical to GT at all other points. The “mirage” state
is rarely visited by random exploration πuni as it is far away and on the opposite side of the
wall from the agent. The expert policy π˚ is even less likely to visit it, as it is not on or
close to the optimal path to the goal. As a result, the EPIC distance from Mirage to GT
(Table 4.2, bottom row) is small under πuni and π˚.

In general, any black-box method for assessing reward models — including the rollout



CHAPTER 4. DISTANCE METRICS ON REWARD FUNCTIONS 35

method — only has predictive power on transitions visited during testing. Fortunately, we
can achieve a broad support over states with Mix: it often navigates around the wall due
to π˚, but strays from the goal thanks to πuni. As a result, EPIC under Mix correctly infers
that Mirage is far from the ground-truth GT.

These empirical results support our theoretically inspired recommendation from Sec-
tion 4.2: “in general, it is best to choose D to have broad coverage over plausible transitions.”
Distributions such as π˚ are too narrow, assigning coverage only on a direct path from the
initial state to the goal. Very broad distributions such as Ind waste probability mass on
impossible transitions like teleporting. Distributions like Mix strike the right balance between
these extremes.

4.5 Conclusion
Our novel EPIC distance compares reward functions directly, without training a policy.
We have proved it is a pseudometric, is bounded, and is invariant to equivalent rewards.
Empirically, we find EPIC correctly infers zero distance between equivalent reward functions
that the NPEC and ERC baselines wrongly consider dissimilar.

Although EPIC can in principle be used to compare arbitrary reward models, we have
only evaluated on reward models trained on synthetic data in continuous control tasks. An
important direction for future work is to apply EPIC to models trained on real-world data
in a broader variety of domains, such as image-based tasks. Such models will have a higher
EPIC distance from the ground-truth than models trained on synthetic data. However, some
algorithms may be more robust to imperfect feedback than others, potentially changing our
ranking of algorithms implied from Table 4.2.

Standardized metrics are an important driver of progress in machine learning. Unfor-
tunately, traditional policy-based metrics do not provide any guarantees as to the fidelity
of the learned reward function. We believe the EPIC distance will be a highly informative
addition to the evaluation toolbox, and would encourage researchers to report EPIC distance
in addition to policy-based metrics. Our implementation of EPIC and our baselines, including
a tutorial and documentation, are available at https://github.com/HumanCompatibleAI/
evaluating-rewards.

https://github.com/HumanCompatibleAI/evaluating-rewards
https://github.com/HumanCompatibleAI/evaluating-rewards


36

Chapter 5

Distance metrics predict regret

In the previous chapter, we introduced the EPIC distance. In this chapter, we show that
the EPIC distance can be used to bound the regret of optimal policies even under different
transition dynamics. Moreover, we confirm empirically that it predicts policy training success,
even in situations which do not satisfy the assumptions made in our regret bound theorem.

5.1 A regret bound for EPIC
Theorem 5.1.1. Let M be a γ-discounted MDP\R with finite state and action spaces S and
A. Let RA, RB : S ˆ A ˆ S Ñ R be rewards, and π˚

A, π
˚
B be respective optimal policies. Let

Dπpt, st, at, st`1q denote the distribution over transitions SˆAˆS induced by policy π at time
t, Dps, a, s1q be the coverage distribution used to compute DEPIC, and DSpsq,DApaq be the
distributions defining the canonicalization in DEPIC. Assume the coverage distribution is set
equal to the canonicalization distribution: Dps, a, s1q “ DSpsqDApaqDSps1q @ s, s1 P S, a P A.
Suppose there exists K ą 0 such that KDpst, at, st`1q ě Dπpt, st, at, st`1q for all times t P N,
triples pst, at, st`1q P S ˆ A ˆ S, and policies π P tπ˚

A, π
˚
Bu. Then, the regret under RA from

executing π˚
B instead of π˚

A is at most

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď 16K∥RA∥2 p1 ´ γq
´1DEPICpRA, RBq,

where GRpπq is the return of policy π under reward R, and the L2 norm ||RA||2 is taken with
respect to the coverage distribution D.

We generalize the regret bound to continuous spaces in theorem B.5.4 via a Lipschitz
assumption and with Wasserstein distance replacing K. Importantly, the returns of π˚

A and
π˚
B converge as DEPICpRA, RBq Ñ 0 in both cases, no matter which reward function is used

for evaluation.
The theorem supplies a non-trivial bound when the coverage distribution D has adequate

support for transitions occurring in rollouts of π˚
A and π˚

B. The bound is tightest when
D is similar to Dπ˚

A
and Dπ˚

B
. However, computing π˚

A and π˚
B is often intractable. The



CHAPTER 5. DISTANCE METRICS PREDICT REGRET 37

MDP M may be unknown, such as when making predictions about an unseen deployment
environment. Even when M is known, RL is computationally expensive and may fail to
converge in non-trivial environments.

In finite cases, a uniform D satisfies the requirements with K ď |S|2|A|. In general, it is
best to choose D to have broad coverage over plausible transitions. Broad coverage ensures
adequate support for Dπ˚

A
and Dπ˚

B
. But excluding transitions that are unlikely or impossible

to occur leads to tighter regret bounds due to a smaller K (finite case) or Wasserstein distance
(continuous case).

The theorem requires the coverage and canonicalization distributions to be equal. However,
in practice it can be desirable to set the coverage distribution to something narrower. For
example, setting DS and DA to be uniform over S and A means the canonicalization
distribution DS ˆ DA ˆ DS places equal weight on all transitions, including many impossible
transitions (e.g., teleportation in gridworlds). Putting more weight on transitions that are
likely to happen and placing no support on transitions we know a priori to be impossible
seem likely to make the EPIC distance a better predictor of reward function similarity in
practice. Empirically, the EPIC distance remains highly correlated to regret even when the
coverage and canonicalization distributions do not match (demonstrated in Section 5.2).

While EPIC upper bounds policy regret, it does not lower bound it. In fact, no reward
distance can lower bound regret in arbitrary environments. For example, suppose the
deployment environment transitions to a randomly chosen state independent of the action
taken. In this case, all policies obtain the same expected return, so the policy regret is always
zero, regardless of the reward functions.

5.2 Experiments
We find that low distance from the ground-truth reward GT (Table 5.1, center) predicts high
GT return (Table 5.1, right) of policies optimized for that reward. Moreover, the distance is
predictive of return not just in PointMaze-Train where the reward functions were trained
and evaluated in, but also in the unseen variant PointMaze-Test. This is despite the two
variants differing in the position of the wall such that policies for PointMaze-Train run
directly into the wall in PointMaze-Test. Notably, the regret bound (Theorem 5.1.1) does
not apply to this setting because the canonicalization distribution does not match the coverage
distribution. However, it seems in practice that the EPIC distance remains highly predictive
of regret even when this assumption is violated.

Both Regress and Pref achieve very low distances at convergence, producing near-expert
policy performance. The AIRL SO and AIRL SA models have reward distances an order of
magnitude higher and have poor policy performance. Yet, intriguingly, the generator policies
for AIRL SO and AIRL SA — trained simultaneously with the reward — perform reasonably
in PointMaze-Train, achieving ´5.43 and ´5.05 respectively. This suggests the learned
rewards are reasonable on the subset of transitions taken by the generator policy yet fail to
transfer to the different transitions taken by a policy being trained from scratch.



CHAPTER 5. DISTANCE METRICS PREDICT REGRET 38

Table 5.1: Low reward distance from the ground-truth (GT) in PointMaze-Train predicts high
policy return even in unseen task PointMaze-Test. EPIC distance is robust to the choice of
coverage distribution D, with similar values across columns, while ERC and especially NPEC
are sensitive to D. Center: approximate distances (1000ˆ scale) of reward functions from
GT. The coverage distribution D is computed from rollouts in PointMaze-Train of a uniform
random policy πuni, an expert π˚, and a Mixture of these policies. DS and DA are computed
by marginalizing D. Right: mean GT return over 9 seeds of RL training on the reward in
PointMaze-{Train,Test}. Confidence Intervals: see Table B.7.

Reward 1000 ˆ DEPIC 1000 ˆ DNPEC 1000 ˆ DERC Return
Function πuni π˚ Mix πuni π˚ Mix πuni π˚ Mix Train Test
GT 0.06 0.05 0.04 0.04 3.17 0.01 0.00 0.00 0.00 ´5.19 ´6.59
Regress 35.8 33.7 26.1 1.42 38.9 0.35 9.99 90.7 2.43 ´5.47 ´6.30
Pref 68.7 100 56.8 8.51 1333 9.74 24.9 360 19.6 ´5.57 ´5.04
AIRL SO 572 520 404 817 2706 488 549 523 240 ´27.3 ´22.7
AIRL SA 776 930 894 1067 2040 1039 803 722 964 ´30.7 ´29.0

Mirage 17.0 0.05 397 0.68 6.30 597 35.3 <0.01 166 ´30.4 ´29.1

Figure B.6 shows reward distance and policy regret during reward model training. The
lines all closely track each other, showing that the distance to GT is highly correlated with
policy regret for intermediate reward checkpoints as well as at convergence. Regress and
Pref converge quickly to low distance and low regret, while AIRL SO and AIRL SA are slower
and more unstable.

5.3 Conclusion
We have shown that EPIC bounds the regret of optimal policies (Theorems 4.2.8, 4.2.9,
and 5.1.1). This bound assumes the coverage distribution is a product of state and action
marginals. However, we find empirically that even when this assumption is violated, the
EPIC distance of learned reward functions to the ground-truth reward still predicts the
return of policies optimized for the learned reward. Notably, this prediction holds even when
the distance is computed in PointMaze-Train and the regret is computed for the unseen
PointMaze-Test environments.

This is important since it is common for the initial state distribution or transition dynamics
to change between the training environment where the reward function was learned and
the test environment where the system is deployed [130, 8, 121]. For example, one might
learn a reward and policy in simulation and then fine-tune the policy in the real world with
the learned reward. Moreover, in life-long learning the policy is continually trained with
the learned reward. In this case, the reward must also be robust to unintentional changes



CHAPTER 5. DISTANCE METRICS PREDICT REGRET 39

that may occur over time in the deployment environment. Although we can only test with
intentional changes, we expect our method to also be predictive of robustness.



40

Chapter 6

Understanding learned reward functions

It is often possible to learn a reward function that would be difficult or impossible to manually
specify. However, learned rewards may fail to represent user preferences, so it is important to
be able to validate the learned reward function prior to deployment. One promising approach
is to apply interpretability tools to the reward function to spot potential deviations from
the user’s intention. Existing work has applied general-purpose interpretability tools to
understand learned reward functions. We propose exploiting the intrinsic structure of reward
functions by first preprocessing them into simpler but equivalent reward functions, which
are then visualized. We introduce a general framework for such reward preprocessing and
propose concrete preprocessing algorithms. Our empirical evaluation shows that preprocessed
rewards are often significantly easier to understand than the original reward.

6.1 Introduction
Manually specifying reward functions has many challenges, but it does at least have the
advantage that we can easily understand the reward function (if not the consequences of
optimizing it) by reading the implementation. By contrast, learned reward functions are
often black-box models. This makes it challenging to evaluate a learned reward function in
order to spot potential failure modes prior to deployment.

In Chapter 4, we introduced the EPIC distance to quantify the difference between two
functions. This works great when a ground-truth reward is available, as we can evaluate a
learned reward simply by computing its EPIC distance to the ground-truth. However, reward
learning is most useful precisely when we do not have access to a ground-truth reward. In
this setting, EPIC may still have some limited utility for comparing and perhaps clustering
several learned reward models, but it cannot tell us if any of these learned models are correct.

In Michaud, Gleave, and Russell [105] we instead suggest interpreting reward models to
verify they capture user preferences. We find that existing interpretability methods such
as saliency maps can help understand reward models. However, we also find significant
limitations in this approach, concluding that “reward interpretability may need significantly



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 41

different methods from policy interpretability.”
We believe that significant advances in reward interpretability can be made by taking

advantage of the special structure of reward functions. In particular, many different reward
functions are equivalent, in the sense that they induce the same optimal policies—no matter
the environment dynamics. Given a learned reward model, we can apply transformations that
do not change the optimal policy, but simplify the reward function. We can then visualize
this simplified reward instead of the original. We call this approach reward preprocessing, as
we “preprocess” the reward model prior to visualization.

Our framework for reward preprocessing involves two key components: 1) a class of reward
transformations that yield equivalent reward functions in some sense (e.g., by preserving the
optimal policy under arbitrary environment dynamics), and 2) an objective that measures how
interpretable a given reward function is. We then optimize over the class of transformations
using the given objective to find the most interpretable equivalent reward function. A key
property of this framework is that the learned reward model is treated as a black box. This
means that it may use an arbitrary function approximator and can be learned using any
reward learning algorithm and feedback modality.

In summary, our key contributions are: 1) a novel framework that exploits the intrinsic
structure of reward functions to increase their interpretability before visualization; 2) two
concrete applications of this framework, using different objectives for interpretability; and 3)
an empirical evaluation, finding that our methods often significantly improve interpretability.

6.1.1 Related work

Interpreting reward models has recently begun to receive some attention. Russell and Santos
[137] apply standard interpretability methods from supervised learning to reward functions.
Specifically, they use feature importance estimates from a simple fitted global model and
from LIME [134] to interpret the reward function.

Globally fitting a simpler model to a reward function has some similarities to our reward
preprocessing approach. However, a major difference is that the simple model will usually
not be equivalent to the original reward function. In contrast, we learn an equivalent
but still simplified reward model. This is possible because we exploit the structure that
reward functions naturally have, whereas Russell and Santos [137] only apply preexisting
interpretability methods.

Michaud, Gleave, and Russell [105] also apply existing interpretability methods to un-
derstand reward models. In contrast to Russell and Santos, they work directly with the
given reward, without fitting a simpler model. They suggest and combine three different
approaches, namely gradient saliency maps, occlusion maps, and handcrafted counterfactual
inputs. All of these methods can also be applied to supervised learning more broadly and do
not take advantage of the structure of reward functions.

Our reward preprocessing framework is complementary to these methods for interpreting
reward functions. We advocate first preprocessing a given reward to select a maximally



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 42

comprehensible equivalent reward function. The resulting reward function can then be
visualized or otherwise interpreted using a range of techniques.

While there is only a handful of work seeking to understand learned reward functions,
considerably more work has focused on interpreting policies [129]. One approach is to learn
a policy from a class of intrinsically simple functions rather than neural networks [167].
Alternatively, Juozapaitis et al. [76] present a method that explains policy actions by an
additive decomposition of Q-values. Another promising recent direction is using causal models
to explain policy behavior [99, 39].

Devidze et al. [41] approach interpretability of reward functions from a different angle:
rather than interpreting a complex learned reward function, they aim to design a reward
function that trades off between interpretability (operationalized as sparsity) and ease of
policy optimization.

6.2 The reward preprocessing framework
Our interpretability method operates on a reward function rps, a, s1q, where s is the current
state, a is the action taken in that state, and s1 is the next state. Our method only requires
the ability to evaluate r: there are no restrictions on how r is computed or how it was learned.
From r, we produce a simpler but equivalent reward function r1, which we then visualize.

Concrete instantiations of this framework must make two choices. First, they must specify
which reward functions are deemed equivalent via an equivalence relation „. Second, they
must provide some measure of “simplicity” or “interpretability,” represented by a cost function
J . We then seek to find a minimum cost reward function r1 that is equivalent to r:

r1 :“ argmin
r̂„r

Jpr̂q. (6.1)

In the following, we discuss how to choose the equivalence relation „ and cost function J .

6.2.1 Equivalence relation

We would like to treat two rewards as equivalent if they will produce the same behavior in
the intended downstream application. It is known that potential shaping [111] and rescaling
by a positive constant never change the ordering of policies (see Section 2.2). It is therefore
safe to treat such rewards as equivalent for most applications.

However, some applications permit a broader notion of equivalence. For example, if the
reward model will only ever be used for policy optimization in a specific task, then we can
include any transformations that preserve optimal policies in that task. A simple example
is S 1-redistribution: moving reward between different successor states, while preserving
ES1rps, a, S 1q “ ES1r1ps, a, S 1q. This will not change the optimal policy, so long as the
transition dynamics determining S 1 remain fixed. Skalse et al. [155] characterize a variety of
such equivalence classes under varying assumptions.



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 43

6.2.2 Choosing cost functions

The cost function J should represent the interpretability of a reward function. Of course, no
simple objective can capture the entire concept of interpretability since reward functions may
be interpretable for a variety of reasons. For example, sparse rewards are often interpretable,
as the user can pay attention only to the few transitions on which the agent receives a
non-zero reward. However, a dense reward could still be easy to understand if it has some
other simple structure: for example, taking on only two different values depending on which
region of the world the agent is in.

Instead of looking for a single cost function that completely characterizes interpretability,
we therefore suggest using multiple cost functions, each of which describes some condition that
is sufficient but not necessary for interpretability. We can then find an optimal equivalent
reward for each of the cost functions and present all of these rewards for the user to choose
between. Provided the cost functions are on a comparable scale, we can also rank the reward
functions, presenting the lowest-cost rewards first.

Another factor determining the appropriate cost functions is the method used for visual-
ization. For example, a reward function that has sparse output is ideal if we wish to show the
user the reward of particular transitions. However, we might prefer sparsity in the features
that the reward depends on if we are using higher-level visualization methods like saliency
maps.

6.3 Methodology
In this section, we describe a few simple concrete instances of our reward preprocessing
framework. Despite their simplicity, we find in Section 6.4 that they nonetheless can yield
significant improvements. However, these choices are likely far from optimal and so should be
viewed as establishing a lower bound on the benefit obtainable from reward preprocessing.

6.3.1 Potential-shaping equivalence relation

We define two rewards to be equivalent, r „ r1, if they are equal up to potential shaping [111].
Specifically, r „ r1 if there exists some real-valued state-only function Φ called a potential for
which r1ps, a, s1q “ rps, a, s1q ` γΦps1q ´ Φpsq , where γ P r0, 1q. Potential shaping changes the
returns of an episode by only the potential Φps0q of the initial state (in the finite horizon
case, the potential of terminal states is restricted to be zero). Since the policy does not affect
the initial state, the ordering over policies is invariant under potential shaping. This holds for
arbitrary transition dynamics and initial state distributions. Therefore, rewards related to
each other by potential shaping can be considered equivalent even under transfer to different
environment dynamics.

A notable advantage of potential shaping for our purposes is that it is very easy to
optimize over the resulting equivalence class. We simply parameterize the potential as a



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 44

neural network Φθpsq with parameters θ. Then, the optimization problem from Equation (6.1)
becomes

argmin
θ

Jpr1
θq , where r1

θps, a, s
1
q “ rps, a, s1

q ` γΦθps
1
q ´ Φθpsq. (6.2)

We optimize Equation (6.2) using (stochastic) gradient descent. This requires a differen-
tiable cost function J but does not require the reward function r to be differentiable.

Rewards differing by a positive scale factor also produce the same policy ordering. However,
since our visualization techniques can handle rewards at a range of scales, we choose to
preserve the scale during preprocessing. Accordingly, we do not include rescaled rewards as
equivalent.

6.3.2 Cost functions

We evaluate two types of cost functions: a sparsity-inducing one based on the L1 norm
and a smoothness-inducing measure of absolute deviation. In tabular (gridworld) settings,
we evaluate these cost functions on a uniform distribution D over all possible transitions.
In continuous control environments, we evaluate on transitions sampled from the same
distribution D used for visualization.

Sparse rewards are easy to understand as the user only needs to attend to rewards with
non-zero transitions. However, the L0 norm is non-differentiable. Moreover, even if the
ground-truth reward is sparse, learned reward functions are usually not exactly equivalent to
a sparse reward due to the presence of noise. We therefore use two different relaxed notions
of sparsity: the L1 norm |r| and the slightly transformed version logp1 ` |r|q. In particular,
we minimize

Jsparseprq :“ Eps,a,s1q„D f
`

rps, a, s1
q
˘

, (6.3)

where D is the distribution over transitions and fpxq is either |x| or logp1 ` |x|q.
An alternative is to minimize the fluctuations between rewards of transitions adjacent

in time. This creates a smoothly varying reward signal. The user can then understand the
reward by looking at the trend over time. This frees the user from having to attend to the
reward at every single transition, similar to sparsity. Again, we use an L1 and a logarithmic
version of such a smoothness cost:

Jsmoothprq :“ Epst,at,st`1,at`1,st`2q„D f
`

rpst, at, st`1q ´ rpst`1, at`1, st`2q
˘

. (6.4)

6.4 Results
We evaluate our methods in two environments: a gridworld, with varying rewards, and the
classic mountain car continuous control task [24]. We test our method with a mixture of
hand-designed and learned rewards. The hand-designed rewards consist of a simple ground-
truth reward, with shaping and/or noise added to challenge the preprocessing method. The
learned rewards are trained via either adversarial inverse reinforcement learning [49, AIRL],



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 45

or deep reinforcement learning from human preferences [33, DRLHP]. Both methods are
trained on synthetic data, consisting of rollouts from an expert policy (AIRL) or preference
comparisons induced by the ground-truth reward (DRLHP).

In gridworld experiments, we use a tabular potential and reward model. That is, we
learn a separate value Φpsq and rps, a, s1q for each state and transition. In mountain car,
we use small MLPs for the reward model and potentials, except for some cases where a
linear potential is sufficient to find a simple equivalent reward. Our code is available at
https://github.com/HumanCompatibleAI/reward-preprocessing.

6.4.1 Simplifying shaped rewards

We start by testing our method in a gridworld setting [186]. While unrealistic, gridworlds
have the considerable benefit of allowing the entire reward function to be easily visualized.
This therefore allows a more thorough evaluation of our method than in other tasks.

In Figures 6.1 and 6.2, we visualize gridworld rewards before (leftmost column) and after
(middle and right column) our preprocessing methods. In the Goal environment in Figure 6.1,
the reward is simply 1 on a single goal square in the top right corner and 0 everywhere
else. This is readily understood and our preprocessing largely retains this reward unchanged.
However, when we add shaping with the Manhattan distance from the goal (second row), the
reward becomes much harder to understand. Our preprocessing, however, is able to simplify
this shaped reward to something close to the original sparse objective. Similar results hold
for the negative Manhattan distance from the goal (third row) and the particularly confusing
random shaping (last row).

In the Path environment in Figure 6.2, the original reward (top left) prefers a specific path
for reaching the goal state. Once again, the shaped versions obscure this, but preprocessing
reliably recovers a simple and interpretable reward.

In these plots, we use the L1 version of the sparsity cost and the logarithmic version of
the smoothness cost. These work slightly better than the other versions, but the difference is
very small. The results for all versions can be found in Figures C.1 to C.4 in the appendix.

6.4.2 Understanding learned rewards

In the previous experiment, all the reward functions were exactly equivalent to the simple
original reward. By contrast, learned reward models may be noisy or contain systematic errors,
and may not be equivalent to any simple reward. To evaluate how our method performs
in this more realistic setting, we trained reward models from demonstrations (AIRL) and
preference comparisons (DRLHP) on synthetic data in both of the previous Goal and Path
environments. The results of applying our preprocessing method are shown in Figures C.5
to C.12 in the appendix.

For the reward model learned using preference comparisons (DRLHP), even the prepro-
cessed models look very noisy. The goal state does tend to be somewhat more visible in
the preprocessed than the unprocessed rewards, but neither are easy to understand. The

https://github.com/HumanCompatibleAI/reward-preprocessing


CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 46

reward model learned by AIRL differs even more from the ground-truth reward, and potential
shaping is unable to bridge that gap.

It might be possible to remove more of the noise by using a larger equivalence class than
potential shaping. However, expanding the equivalence class might mean the preprocessed
reward would no longer induce the same optimal policy as the unmodified reward in some
environment dynamics. Indeed, the fact that potential shaping is not sufficient to remove the
noise suggests that what DRLHP and AIRL have learned is not just a complex but validly
shaped version of the ground-truth reward.

6.4.3 Mountain car

Since the mountain car environment has an infinite number of possible transitions, we cannot
plot the rewards of all possible transitions as we did in the gridworld tasks. Instead, we
visualize reward functions by plotting the reward signal over time during expert trajectories.
Figure 6.3 visualizes two learned reward models (left) and the reward signal after preprocessing
with a log sparse (middle) and log smooth (right) cost function.

The model in the top row was trained using DRLHP on synthetically generated preferences.
Specifically, we sampled Boltzmann-rational preferences between trajectory fragments based
on the ground-truth reward. In the second row, we first learned an optimal state value
function for the mountain car environment and then used this to shape the ground-truth
reward before generating preferences. This simulates human feedback, which may be shaped
compared to a sparse ground-truth since humans already reward incremental progress [33].

As in the gridworld setting, both the learned and preprocessed rewards are noisy. However,
the preprocessed reward functions are still significantly simpler than the learned models,
especially in the shaped case. The sparsity cost function performs better here than the
smoothness cost. Figure 6.3 uses the logarithmic version of both but the L1 version in
Figure C.15 yields almost exactly the same results.

Notably, the residual noise after preprocessing in Figure 6.3 is likely not removable by
potential shaping. In particular, we find in Figures C.13 and C.14 that preprocessing on
shaped versions of the ground-truth reward recover simple, noise-free rewards. The residual
noise is therefore likely an accurate depiction of errors in the learned reward.

6.5 Limitations and future work
One limitation of our approach is that while potential shaping does not change the optimal
policy, it can make the policy optimization problem easier or harder. Consequently, the policy
learned by an RL algorithm might well differ between the unmodified learned reward and
the theoretically “equivalent” reward used for visualization. This issue is most significant in
environments where policy optimization can be challenging. Reasoning about how shaping
affects RL algorithm performance is challenging, so this is only a significant factor when the
tool is being used by trained practitioners.



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 47

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / Log smooth

Dense shaping / Unmodified Dense shaping / L1 sparse Dense shaping / Log smooth

Negative shaping / Unmodified Negative shaping / L1 sparse Negative shaping / Log smooth

Random shaping / Unmodified Random shaping / L1 sparse Random shaping / Log smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 6.1: Preprocessing can recover a sparse reward from complex shaping. The original
sparse Goal reward is shown in the top left, with three shaped versions below. These rewards
are shown after preprocessing with the sparsity (middle) and smoothness (right) cost functions.
The preprocessed rewards are easy to understand, and are similar across a range of shaping.
Each heatmap shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The
circle in the center of each square represents the reward for staying in that state. The four
triangles in each square represent the reward of transitions leaving that square in each of the
four directions.



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 48

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / Log smooth

Dense shaping / Unmodified Dense shaping / L1 sparse Dense shaping / Log smooth

Negative shaping / Unmodified Negative shaping / L1 sparse Negative shaping / Log smooth

Random shaping / Unmodified Random shaping / L1 sparse Random shaping / Log smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 6.2: Preprocessing recovers a simpler dense reward from three complex shaped rewards.
The original Path reward (top-left) incentivizes following a diagonal path to the goal state.
The shaped versions below obscure this pattern, but preprocessing recovers something similar
to the original reward. This is notable as the original reward is not sparse, so has a relatively
high cost under the L1 norm, but is still lower cost than the highly complex shaped rewards.
Each heatmap shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The
circle in the center of each square represents the reward for staying in that state. The four
triangles in each square represent the reward of transitions leaving that square in each of the
four directions.



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 49

0.1

0.0

0.1

0.2

0.3

Re
wa

rd

Unshaped / Unmodified Unshaped / Log sparse Unshaped / Log smooth

0 200 400 600 800 1000
Time step

0.1

0.0

0.1

0.2

0.3

Re
wa

rd

Value shaped / Unmodified

0 200 400 600 800 1000
Time step

Value shaped / Log sparse

0 200 400 600 800 1000
Time step

Value shaped / Log smooth

Figure 6.3: Preprocessing can simplify complex learned reward models for mountain car. The
left column shows reward models learned using synthetic preference comparisons based on
the ground-truth reward (top), and the ground-truth shaped with an optimal value function
(bottom). Preprocessing for sparsity (middle) and smoothness (right) produces simpler and
less noisy reward curves, especially in the shaped setting. Each plot shows the reward during
a rollout over five episodes (separated by the gray vertical lines).

The above limitation is a way in which potential shaping can be too big an equivalence
class. However, there is also a sense in which it is too small. In practice, we do not usually care
about a reward function transferring to all possible transition dynamics. If it is known the
transition dynamics satisfy certain invariants, then we may be able to use a larger equivalence
class while still guaranteeing optimal policy preservation.

In addition to modifying the equivalence class, there are also numerous alternative cost
functions that could be employed. In particular, the cost functions we suggest are targeted at
the visualizations we use in this paper. Other visualizations might benefit from different cost
functions. However, it seems likely that the basic concepts of sparsity and smoothness will
be useful in many settings. For example, visualizations using gradient saliency maps might
benefit from maximizing the sparsity of the gradients rather than of the rewards themselves.



CHAPTER 6. UNDERSTANDING LEARNED REWARD FUNCTIONS 50

6.6 Conclusion
We have introduced a novel framework to preprocess reward functions prior to visualization.
Our empirical results demonstrate this methodology can recover simple reward functions from
shaped versions of ground-truth rewards. Moreover, our method can substantially simplify
even noisy learned reward models. However, some low-quality learned reward models are still
difficult to understand even with our method, suggesting that reward learning algorithms
often converge to models significantly different from the user’s intended preferences.



51

Part II

Agent robustness



52

Chapter 7

The adversarial policies threat model

Deep reinforcement learning (RL) policies are known to be vulnerable to adversarial per-
turbations to their observations, similar to adversarial examples for classifiers. However, an
attacker is not usually able to directly modify another agent’s observations. This might lead
one to wonder: is it possible to attack an RL agent simply by choosing an adversarial policy
acting in a multi-agent environment so as to create natural observations that are adversarial?
In this chapter, we formalize this threat model and review related work. In Chapter 8, we
will demonstrate this attack against state-of-the-art policies controlling simulated humanoid
robots. Next, in Chapter 9 we demonstrate a similar attack against professional-level Go-
playing AI systems. Finally, in Chapter 10 we introduce and evaluate defenses against this
attack.

7.1 Introduction
Most study of adversarial examples has focused on small ℓp-norm perturbations to images,
which Szegedy et al. [158] found cause misclassifications in a variety of models, even though
the changes are visually imperceptible to a human. Most prior work studying adversarial
examples in RL has also assumed an ℓp-norm threat model. In particular, Huang et al. [67],
Kos and Song [83], and Lin et al. [93] showed that deep RL policies are vulnerable to small
perturbations in image observations.

RL has been applied in settings as varied as autonomous driving [42], negotiation [91],
and automated trading [113]. In domains such as these, an attacker cannot usually directly
modify the defender policy’s input. For example, in autonomous driving, pedestrians and
other drivers can take actions in the world that affect the camera image, but only in a
physically realistic fashion. They cannot add noise to arbitrary pixels, or make a building
disappear. Similarly, in financial trading, an attacker can send orders to an exchange which
will appear in the defender’s market data feed, but the attacker cannot modify observations
of a third party’s orders.

We therefore introduce a physically realistic threat model where the adversary can take



CHAPTER 7. THE ADVERSARIAL POLICIES THREAT MODEL 53

actions in a shared environment with the defender but cannot directly perturb the defender’s
observations. Our work was in part inspired by prior criticisms of the ℓp model. For example,
Gilmer et al. [52] argue that attackers are not limited to small perturbations and can instead
construct new images or search for naturally misclassified images. Similarly, Uesato et al. [165]
argue that the ℓp model is merely a convenient local approximation for the true worst-case
risk. We follow Goodfellow et al. [57] in viewing adversarial examples as any input “that an
attacker has intentionally designed to cause the model to make a mistake.”

A similar threat model was used in Behzadan and Munir [19], who pit autonomous vehicles
against an adversarial car. However, in collaborative games like driving, even the optimal
policy may be exploitable; we therefore focus on zero-sum games. Lanctot et al. [86] showed
that agents may be tightly coupled to the agents they were trained with, causing seemingly
strong polices to fail against new opponents. However, the agents we attack beat a range of
opponents, so they are not coupled.

This work follows a rich tradition of worst-case analysis in RL. In robust MDPs, the
transition function is chosen adversarially from an uncertainty set [10, 159]. Doyle et al. [43]
solve the converse problem: finding the set of transition functions for which a policy is optimal.
Methods also exist to verify controllers or find a counterexample to a specification. Bastani,
Pu, and Solar-Lezama [16] verify decision trees distilled from RL policies, while Ghosh et al.
[51] test black-box closed-loop simulations. Ravanbakhsh and Sankaranarayanan [132] can
even synthesize controllers robust to adversarial disturbances. Unfortunately, these techniques
are only practical in simple environments with low-dimensional adversarial disturbances. By
contrast, while our method lacks formal guarantees, it can test policies in complex multi-agent
tasks, and it naturally scales with improvements in RL algorithms.

7.2 Framework
We model the defender as playing against an opponent in a two-player Markov game [149].
Our threat model, illustrated in Figure 7.1, assumes the attacker can control the opponent,
in which case we call the opponent an adversary. We denote the adversary and defender by
subscript α and ν respectively. The game M “ pS, pAα,Aνq, T, pRα, Rνqq consists of state set
S, action sets Aα and Aν , and a joint state transition function T : S ˆ Aα ˆ Aν Ñ ∆ pSq

where ∆ pSq is a probability distribution on S. The reward function Ri : SˆAαˆAν ˆS Ñ R
for player i P tα, νu depends on the current state, next state, and both players’ actions. Each
player wishes to maximize their (discounted) sum of rewards.

The adversary is allowed unlimited black-box access to actions sampled from πv, but is
not given any white-box information such as weights or activations. We further assume the
defender agent follows a fixed stochastic policy πv, corresponding to the common case of a
pre-trained model deployed with static weights. Note that in safety-critical systems, where
attacks like these would be most concerning, it is standard practice to validate a model and
then freeze it, so as to ensure that the deployed model does not develop any new issues due



CHAPTER 7. THE ADVERSARIAL POLICIES THREAT MODEL 54

Figure 7.1: Left: Prior work models the adversary as being able to perturb arbitrary sensory
inputs of the defender, but only by a small amount. Right: The adversarial policies threat
model treats the adversary as an agent acting in an environment shared with the defender.
It has no special powers, and only takes the same (or similar) set of actions as the defender.

to retraining. Therefore, a fixed defender is a realistic reflection of what we might see with
RL-trained policies in real-world settings, such as with autonomous vehicles.

Since the defender policy πν is held fixed, the two-player Markov game M reduces to a
single-player MDP Mα “ pS,Aα, Tα, R

1
αq that the attacker must solve. The state and action

space of the adversary are the same as in M, while the transition and reward functions have
the defender policy πν embedded:

Tα ps, aαq “ T ps, aα, aνq and R1
αps, aα, s

1
q “ Rαps, aα, aν , s

1
q,

where the defender’s action is sampled from the stochastic policy aν „ πνp¨ | sq. The attacker’s
goal is to find an adversarial policy πα maximizing the sum of discounted rewards:

8
ÿ

t“0

γtRαpsptq, aptq
α , spt`1q

q, where spt`1q
„ Tαpsptq, aptq

α q and aα „ παp¨ | sptq
q. (7.1)

Note the MDP’s dynamics Tα will be unknown even if the Markov game’s dynamics T are
known, since the defender policy πν is a black box. Consequently, the attacker must solve an
RL problem.

We measure two primary success metrics: the win rate of the adversarial policy against
the defender and the adversary’s training time. Crucially, tracking training time rules out the
degenerate “attack” of simply training our adversary for longer than the defender. In principle,
it is possible that a more sample-efficient training regime could produce a stronger agent than
the defender in a fraction of the training time. While this might be an important advance in
multi-agent RL, we would hesitate to classify it as an attack. Rather, we are looking for the
adversarial policy to demonstrate non-transitivity, as this suggests the adversary is winning
by exploiting a specific weakness in the opponent.



55

Chapter 8

Adversarial policies in continuous control

In this chapter, we demonstrate the existence of adversarial policies in zero-sum games
between simulated humanoid robots. These policies target state-of-the-art defenders trained
via self-play to be robust to opponents. The adversarial policies reliably win against the
defenders but generate seemingly random and uncoordinated behavior. We find that these
policies are more successful in high-dimensional environments, and they induce substantially
different activations in the defender policy network than when the defender plays against a
normal opponent. Videos are available at https://adversarialpolicies.github.io/.

8.1 Introduction
As a proof of concept, we show the existence of adversarial policies in zero-sum simulated
robotics games with proprioceptive observations [14]. The state-of-the-art defender policies
were trained via self-play to be robust to opponents. We train each adversarial policy using
model-free RL against a fixed black-box defender. We find that the adversarial policies
reliably beat their defender, despite training for less than 3% of the timesteps initially used
to train the defender policies.

Critically, we find that the adversaries win by creating natural observations that are
adversarial, not by becoming generally strong opponents. Qualitatively, the adversaries fall
to the ground in contorted positions, as illustrated in Figure 8.1, rather than learning to
run, kick, or block like normal opponents. This strategy does not work when the defender is
“masked” and cannot see the adversary’s position, suggesting that the adversary succeeds by
manipulating a defender’s observations through its actions.

Having observed these results, we wanted to understand the sensitivity of the attack to
the dimensionality of the defender’s observations. We find that defender policies in higher-
dimensional Humanoid environments are substantially more vulnerable to adversarial policies
than in lower-dimensional Ant environments. To gain insight into why adversarial policies
succeed, we analyze the activations of the defender’s policy network using a Gaussian Mixture
Model (GMM) and t-SNE [97]. We find that adversarial policies induce significantly different

https://adversarialpolicies.github.io/


CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 56
N

or
m

al
A

d
ve

rs
ar

ia
l

Figure 8.1: Illustrative snapshots of a defender (in blue) against normal and adversarial
opponents (in red). The defender wins if it crosses the finish line; otherwise, the opponent
wins. Despite never standing up, the adversarial opponent wins 86% of episodes, far above
the normal opponent’s 47% win rate.

activations than normal opponents, and that the adversarial activations are typically more
widely dispersed between timesteps than normal activations.

We consider a defense based around fine-tuning the defender against the adversary. This
is inspired by adversarial training, a common defense to adversarial examples that achieves
state-of-the-art robustness in image classification [180]. Prior work has also applied adversarial
training to improve the robustness of deep RL policies, where the adversary exerts a force
vector on the defender or varies dynamics parameters such as friction [127, 100, 120]. We find
that training the defender against an adversary protects against that particular adversary,
but that repeating the attack method finds a new adversary that the fine-tuned defender is
vulnerable to. However, this new adversary differs qualitatively by physically interfering with
the defender. This suggests repeated fine-tuning might provide protection against a range of
adversaries.

This chapter makes two key contributions. First, we demonstrate the existence of
adversarial policies in this threat model for several simulated robotics games. Our adversarial
policies reliably beat the defender, despite training with less than 3% as many timesteps
and generating seemingly random behavior. Second, we conduct a detailed analysis of why
the adversarial policies work. We show they create natural observations that are adversarial
to the defender and push the activations of the defender’s policy network off-distribution.
Additionally, we find that policies are easier to attack in high-dimensional environments.

As deep RL is increasingly deployed in environments with potential adversaries, we believe
it is important that practitioners are aware of this previously unrecognized threat model.
Moreover, even in benign settings, we believe adversarial policies can be a useful tool for
uncovering unexpected policy failure modes. Finally, we are excited by the potential of



CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 57

(a) Kick and Defend (b) You Shall Not Pass (c) Sumo Humans (d) Sumo Ants

Figure 8.2: Illustrations of the zero-sum simulated robotics games from Bansal et al. [14] we
use for evaluation. Environments are further described in Section 8.2.1.

adversarial training using adversarial policies, which could improve robustness relative to
conventional self-play by training against adversaries that exploit weaknesses undiscovered
by the distribution of similar opponents present during self-play.

8.2 Finding adversarial policies
We demonstrate the existence of adversarial policies in zero-sum simulated robotics games.
First, we describe how the defender policies were trained and the environments they operate
in. Subsequently, we provide details of our attack method in these environments and
describe several baselines. Finally, we present a quantitative and qualitative evaluation of
the adversarial policies and baseline opponents.

8.2.1 Environments and defender policies

We attack defender policies for the zero-sum simulated robotics games created by Bansal
et al. [14], illustrated in Figure 8.2. The defenders were trained in pairs via self-play against
random old versions of their opponent for between 680 and 1360 million timesteps. We use
the pre-trained policy weights released in the “agent zoo” of Bansal et al. [15]. In symmetric
environments, the zoo agents are labeled ZooN where N is a random seed. In asymmetric
environments, they are labeled ZooVN and ZooON representing the Victim and Opponent
agents.

All environments are two-player games in the MuJoCo robotics simulator. Both agents
observe the position, velocity, and contact forces of joints in their body, and the position of
their opponent’s joints. The episodes end when a win condition is triggered or after a time
limit, in which case the agents draw. We evaluate in all environments from Bansal et al. [14]
except for Run to Goal, which we omit as the setup is identical to You Shall Not Pass except
for the win condition. We describe the environments below and specify the number of trained
zoo policies and their type (MLP or LSTM):



CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 58

Kick and Defend (3, LSTM). A soccer penalty shootout between two Humanoid robots.
The positions of the kicker, goalie, and ball are randomly initialized. The kicker wins if the
ball goes between the goalposts; otherwise, the goalie wins, provided it remains within 3
units of the goal.

You Shall Not Pass (1, MLP). Two Humanoid agents are initialized facing each other.
The runner wins if it reaches the finish line; the blocker wins if it does not.

Sumo Humans (3, LSTM). Two Humanoid agents compete on a round arena. The
players’ positions are randomly initialized. A player wins by remaining standing after their
opponent has fallen.∗

Sumo Ants (4, LSTM). The same task as Sumo Humans, but with “Ant” quadrupedal
robot bodies. We use this task in Section 8.3.3 to investigate the importance of dimensionality
to this attack method.

8.2.2 Methods evaluated

Following the RL formulation in Section 7.2, we train an adversarial policy to maximize
Equation 7.1 using proximal policy optimization (PPO) [144]. We give a sparse reward at
the end of the episode, positive when the adversary wins the game and negative when it
loses or ties. Bansal et al. [14] trained the defender policies using a similar reward, with an
additional dense component at the start of training. We train for 20 million timesteps using
the PPO implementation from Stable Baselines [65]. The hyperparameters were selected
through a combination of manual tuning and a random search of 100 samples; see Section D.1
in the appendix for details. We compare our methods to three baselines: a policy Rand taking
random actions, a lifeless policy Zero that exerts zero control, and all pre-trained policies
Zoo* from Bansal et al. [14].

8.2.3 Results

Quantitative Evaluation We find that the adversarial policies reliably win against most
defender policies and outperform the pre-trained Zoo baseline for a majority of environments
and defenders. We report the win rate over time against the median defender in each
environment in Figure 8.3, with full results in Figure D.1 in the appendix. Win rates against
all defenders are summarized in Figure 8.4.

Qualitative Evaluation The adversarial policies beat the defender not by performing
the intended task (e.g., blocking a goal), but rather by exploiting weaknesses in the defender’s
policy. This effect is best seen by watching the videos at https://adversarialpolicies.
github.io/. In Kick and Defend and You Shall Not Pass, the adversarial policy never stands
up. The adversary instead wins by positioning their body to induce adversarial observations
that cause the defender’s policy to take poor actions. A robust defender could easily win, a
result we demonstrate in Section 8.3.1.

∗Bansal et al. [14] consider the episode to end in a tie if a player falls before it is touched by an opponent.
Our win condition allows for attacks that indirectly modify observations without physical contact.

https://adversarialpolicies.github.io/
https://adversarialpolicies.github.io/


CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 59

0.0 0.5 1.0 1.5 2.0
Timestep 1e7

0

50

100

W
in

 r
at

e 
(%

)

Kick and Defend 2

0.0 0.5 1.0 1.5 2.0
Timestep 1e7

You Shall Not Pass 1

0.0 0.5 1.0 1.5 2.0
Timestep 1e7

Sumo Humans 2

Adversary (Adv) Normal (Zoo) Random (Rand) Zero

Figure 8.3: Win rates while training adversary Adv against the median defender in each
environment (based on the difference between the win rate for Adv and Zoo). The adversary
outperforms the Zoo baseline against the median defender in Kick and Defend and You Shall
Not Pass, and is competitive on Sumo Humans. For full results, see Figure 8.4 below or
Figure D.1 in the supplementary material.

Key: The solid line shows the median win rate for Adv across 5 random seeds,
with the shaded region representing the minimum and maximum. The win rate is smoothed
with a rolling average over 100 000 timesteps. Baselines are shown as horizontal dashed
lines. Agents Rand and Zero take random and zero actions respectively. The Zoo baseline is
whichever ZooM (Sumo) or ZooOM (other environments) agent achieves the highest win rate.
The defender is ZooN (Sumo) or ZooVN (other environments), where N is given in the title
above each figure.

This flavor of attack is impossible in Sumo Humans, since the adversarial policy immedi-
ately loses if it falls over. Faced with this control constraint, the adversarial policy learns
a more high-level strategy: it kneels in the center in a stable position. Surprisingly, this is
very effective against defender 1, which in 88% of cases falls over attempting to tackle the
adversary. However, it proves less effective against defenders 2 and 3, achieving only a 62%
and 45% win rate, below Zoo baselines. We further explore the importance of the number of
dimensions the adversary can safely manipulate in Section 8.3.3.

Distribution Shift One might wonder if the adversarial policies win because they are
outside the training distribution of the defender. To test this, we evaluate defenders against
two simple off-distribution baselines: a random policy Rand (green) and a lifeless policy Zero
(red). These baselines win as often as 30% to 50% in Kick and Defend, but less than 1%
of the time in Sumo and You Shall Not Pass. This is well below the performance of our
adversarial policies. We conclude that most defender policies are robust to off-distribution



CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 60

ZooV1
ZooV2
ZooV3

79 53 50
54 93 63
31 31 84

32 90 42
9 80 63
50 66 64

30 30
50 46
26 29

A
dv

1

A
dv

2

A
dv

3
ZooMV1
ZooMV2
ZooMV3

15 17 18
27 28 27
26 24 23

Z
oo

O
1

Z
oo

O
2

Z
oo

O
3

58 79 31
36 73 42
47 50 61

R
an

d

Z
er

o

12 13
25 21
21 19

V
ic

tim

(a) Kick and Defend.

ZooV1 87 81 76 48 3 1

ZooSV1 9 99 84 84 12 18

ZooDV1 11 91 88 57 8 6

A
dv

1

ZooMV1 1

A
dv

S1

83

A
dv

D
1

70

Z
oo

O
1

78

R
an

d

Z
er

o

1 1
0

20

40

60

80

100

(b) You Shall Not Pass.

Zoo1

Zoo2

Zoo3

87 9 37

10 63 14

17 18 44

15 80 80

34 54 71

10 31 57

0 0

0 0

0 1

A
dv

1

A
dv

2

A
dv

3

ZooM1

ZooM2

ZooM3

87 24 58

32 39 39

62 68 75

Z
oo

1

Z
oo

2

Z
oo

3

93 91 92

46 84 69

66 82 90

R
an

d

Z
er

o

0 1

0 0

1 1

Opponent

V
ic

tim

(c) Sumo Humans.

Zoo1
Zoo2
Zoo3
Zoo4

11 8 7 9
11 11 9 8
5 6 6 8
10 9 8 8

40 36 38 47
48 40 40 42
40 34 42 44
39 35 40 42

6 7
5 4
4 3
4 3

A
dv

1
A

dv
2

A
dv

3
A

dv
4

ZooM1
ZooM2
ZooM3
ZooM4

6 5 5 5
4 4 3 4
4 3 3 5
4 4 4 4

Z
oo

1
Z

oo
2

Z
oo

3
Z

oo
4

62 51 58 61
61 51 54 56
56 52 56 61
62 56 59 65

R
an

d
Z

er
o

2 4
3 3
4 4
3 2

0

20

40

60

80

100

Opponent

(d) Sumo Ants.

Figure 8.4: Percentage of games won by the opponent (out of 1000) against defender (or
“victim”). The maximal cell in each row is in red. Key: Agents ZooYN are pre-trained
policies from Bansal et al. [14], where Y P t‘V ’,‘O’,‘’u denotes the agent plays as (V)ictim,
(O)pponent, or either side, and N is a random seed. Opponents AdvN are the best adversarial
policy of 5 seeds trained against the corresponding Zoo[V]N. Agents Rand and Zero are
baseline agents taking random and zero actions respectively. Hardened defenders ZooXYN,
where X P t‘S’,‘D’,‘M ’u, are derived from ZooYN by fine-tuning against a (S)ingle opponent
AdvN, or (D)ual opponents AdvN and Zoo[O]N, or by (M)asking the observations.

observations that are not adversarially optimized.

8.3 Understanding adversarial policies
In the previous section, we demonstrated that adversarial policies exist for defenders in a range
of competitive simulated robotics environments. In this section, we focus on understanding
why these policies exist. Specifically, we establish that adversarial policies manipulate the
defender through their body position, that defenders are more vulnerable to adversarial
policies in high-dimensional environments, and that activations of the defender’s policy
network differ substantially when playing an adversarial opponent.



CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 61

Kick and
Defend

You Shall
Not Pass

Sumo
Humans

Environment

-200

-100

0

M
ea

n 
L

og
 P

ro
ba

bi
lit

y

Zoo*1T
Zoo*1V

Zoo*2
Zoo*3

Rand
Adv

(a) Gaussian Mixture Model (GMM): likelihood
the activations of a defender’s policy network
are “normal”. We collect activations for 20, 000
timesteps of defender Zoo[V]1 playing against
each opponent. We fit a 20-component GMM
to activations induced by Zoo[O]1. Error bars
are a 95% confidence interval.

Adv ZooO2 Rand

(b) t-SNE activations of Kick and Defend de-
fender ZooV2 playing against different oppo-
nents. Model fitted with a perplexity of 250 to
activations from 5000 timesteps against each
opponent. See Figures D.3 and D.4 in the ap-
pendix for visualizations of other environments
and defenders.

Figure 8.5: Analysis of activations of the defender’s policy network. Both figures show the
adversary Adv induces off-distribution activations. Key: legends specify the opponent the
defender played against. Adv is the best adversary trained against the defender, and Rand is
a policy taking random actions. Zoo*N corresponds to ZooN (Sumo) or ZooON (otherwise).
Zoo*1T and Zoo*1V are the train and validation datasets, drawn from Zoo1 (Sumo) or ZooO1
(otherwise).

8.3.1 Masked policies

We have previously shown that adversarial policies are able to reliably win against defenders.
In this section, we demonstrate that they win by taking actions to induce natural observations
that are adversarial to the defender, not by physically interfering with the defender. To test
this, we introduce a “masked” defender (labeled ZooMN or ZooMVN), illustrated in Figure 8.6.
The masked defender is the same as the normal defender ZooN or ZooVN, except the observation
of the adversary’s position is set to a static value corresponding to a typical initial position.
We use the same adversarial policy against the normal and masked defender.

One would expect it to be beneficial to be able to see your opponent. Indeed, the masked
defenders do worse than a normal defender when playing normal opponents. For example,
Figure 8.4b shows that in You Shall Not Pass the normal opponent ZooO1 wins 78% of
the time against the masked defender ZooMV1 but only 47% of the time against the normal
defender ZooV1. However, the relationship is reversed when playing an adversary. The normal



CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 62

Figure 8.6: The masked defender has the observation of the opponent replaced by a static
value, blinding it to the opponent’s moves.

defender ZooV1 loses 86% of the time to adversary Adv1, whereas the masked defender ZooMV1
wins 99% of the time. This pattern is particularly clear in You Shall Not Pass, but the trend
is similar in other environments.

This result is surprising as it implies highly non-transitive relationships may exist between
policies even in games that seem to be transitive, as illustrated in Figure 8.7. A game is said
to be transitive if policies can be ranked such that higher-ranked policies beat lower-ranked
policies. Prima facie, the games in this paper seem transitive: professional human soccer
players and sumo wrestlers can reliably beat amateurs. Despite this, there is a non-transitive
relationship between adversarial policies, defenders, and masked defenders. Consequently, we
urge caution when using methods such as self-play that assume transitivity, and we would
recommend more general methods where practical [13, 27].

Our findings also suggest a trade-off in the size of the observation space. In benign
environments, allowing more observation of the environment increases performance. However,
this also makes the agent more vulnerable to adversaries. This is in contrast to an idealized
Bayesian agent, where the value of information is always non-negative [56]. In the following
section, we investigate further the connection between vulnerability to attack and the size of
the observation space.

8.3.2 Adversarial training

The ease with which policies can be attacked highlights the need for effective defenses. A
natural defense is to fine-tune the defender zoo policy against an adversary, which we term
single training. We also investigate dual training, randomly picking either an adversary or a
zoo policy at the start of each episode. The training procedure is otherwise the same as for
adversaries, as described in Section 8.2.2.

We report on the win rates in You Shall Not Pass in Figure 8.4b. We find that both the
single-trained ZooSV1 and dual-trained ZooDV1 fine-tuned defenders are robust to adversary
Adv1, with the adversary win rate dropping from 87% to around 10%. However, ZooSV1
catastrophically forgets how to play against the normal opponent ZooO1. The dual fine-tuned



CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 63

Figure 8.7: The defender and adversary have a non-transitive relationship, showing there is
no consistent ordering of the policies’ strengths, violating a key assumption of self-play.

defender ZooDV1 fares better, with opponent ZooO1 winning only 57% of the time. However,
this is still an increase from ZooO1’s 48% win rate against the original defender ZooV1. This
suggests ZooV1 may use features that are helpful against a normal opponent but which are
easily manipulable [70].

Although the fine-tuned defenders are robust to the original adversarial policy Adv1, they
are still vulnerable to our attack method. New adversaries AdvS1 and AdvD1 trained against
ZooSV1 and ZooDV1 win at equal or greater rates than before and transfer successfully to the
original defender. However, the new adversaries AdvS1 and AdvD1 are qualitatively different,
tripping the defender up by lying prone on the ground, whereas Adv1 causes ZooV1 to fall
without ever touching it.

8.3.3 Dimensionality

A variety of work has concluded that classifiers are more vulnerable to adversarial examples
on high-dimensional inputs [53, 79, 145]. We hypothesize a similar result for RL policies:
the greater the dimensionality of the component P of the observation space under control
of the adversary, the more vulnerable the defender is to attack. We test this hypothesis in
the Sumo environment, varying whether the agents are Ants or Humanoids. The results in
Figures 8.4c and 8.4d support the hypothesis. The adversary has a much lower win rate in
the low-dimensional Sumo Ants (dimP “ 15) environment than in the higher-dimensional
Sumo Humans (dimP “ 24) environment, where P is the position of the adversary’s joints.



CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 64

8.3.4 Defender activations

In Section 8.3.1, we showed that adversarial policies win by creating natural observations
that are adversarial to the defender. In this section, we seek to better understand why these
observations are adversarial. We record activations from each defender’s policy network
playing a range of opponents and analyze these using a Gaussian Mixture Model (GMM)
and a t-SNE visualization. See Section D.2 in the appendix for details of training and
hyperparameters.

We fit a GMM on activations of Zoo*1T collected playing against a normal opponent,
Zoo1 or ZooV1, holding out Zoo*1V for validation. Figure 8.5a shows that the adversarial
policy Adv induces activations with the lowest log-likelihood, with random baseline Rand only
slightly more probable. Normal opponents Zoo*2 and Zoo*3 induce activations with almost
as high likelihood as the validation set Zoo*1V, except in Sumo Humans where they are as
unlikely as Rand.

We plot a t-SNE visualization of the activations of Kick and Defend defender ZooV2 in
Figure 8.5b. As expected from the density model results, there is a clear separation between
Adv, Rand, and the normal opponent ZooO2. Intriguingly, Adv induces activations more widely
dispersed than the random policy Rand, which in turn are more widely dispersed than ZooO2.
We report on the full set of defender policies in Figures D.3 and D.4 in the appendix.

8.4 Discussion
Contributions. We make three key contributions in this chapter. First, we have proposed
a novel threat model of natural adversarial observations produced by an adversarial policy
taking actions in a shared environment. Second, we demonstrate that adversarial policies
exist in a range of zero-sum simulated robotics games against state-of-the-art defenders
trained via self-play to be robust to adversaries. Third, we verify that the adversarial policies
win by confusing the defender, not by learning a generally strong policy. Specifically, we find
the adversary induces highly off-distribution activations in the defender, and that defender
performance increases when it is blind to the adversary’s position.

Self-play. While it may at first appear unsurprising that a policy trained as an adversary
against another RL policy would be able to exploit it, we believe that this observation is
highly significant. The policies we have attacked were explicitly trained via self-play to be
robust. Although it is known that self-play with deep RL may not converge or may converge
only to a local rather than global Nash equilibrium, self-play has been used with great success
in a number of works focused on playing adversarial games directly against humans [152,
114]. Our work shows that even apparently strong self-play policies can harbor serious but
hard-to-find failure modes, demonstrating that these theoretical limitations are practically
relevant and highlighting the need for careful testing.

Our attack provides some amount of testing by constructively lower-bounding the ex-
ploitability of a defender policy—its performance against its worst-case opponent—by training



CHAPTER 8. ADVERSARIAL POLICIES IN CONTINUOUS CONTROL 65

an adversary. Since the defender’s win rate declines against our adversarial policy, we can
confirm that the defender and its self-play opponent were not in a global Nash equilibrium.
Notably, we expect our attack to succeed even for policies in a local Nash equilibrium, as
the adversary is trained starting from a random point that is likely outside the defender’s
attractive basin.

Defense. We implemented a simple defense: fine-tuning the defender against the
adversary. We find that our attack can be successfully reapplied to beat this defense,
suggesting adversarial policies are difficult to eliminate. However, the defense does appear
to protect against attacks that rely on confusing the defender: the new adversarial policy is
forced to instead trip the defender up. We therefore believe that scaling up this defense is a
promising direction for future work. In particular, we envisage a variant of population-based
training where new agents are continually added to the pool to promote diversity, and agents
train against a fixed opponent for a prolonged period of time to avoid local equilibria.

Conclusion. Overall, we are excited about the implications the adversarial policy model
has for the robustness, security, and understanding of deep RL policies. Our results show the
existence of a previously unrecognized problem in deep RL, and we hope this work encourages
other researchers to investigate this area further. Videos and other supplementary material are
available online at https://adversarialpolicies.github.io/ and our source code is avail-
able on GitHub at https://github.com/HumanCompatibleAI/adversarial-policies.

https://adversarialpolicies.github.io/
https://github.com/HumanCompatibleAI/adversarial-policies


66

Chapter 9

Adversarial policies in superhuman Go AI
systems

We attack the state-of-the-art Go-playing AI system, KataGo, by training an adversarial
policy that plays against a KataGo defender with frozen network. Our attack achieves a >99%
win-rate against KataGo without Monte-Carlo tree search, and a >50% win-rate when KataGo
uses enough search to be near-superhuman. To the best of our knowledge, this is the first
successful end-to-end attack against a Go AI playing at the level of a top human professional.
Notably, the adversary does not win by learning to play Go better than KataGo—in fact,
the adversary is easily beaten by human amateurs. Instead, the adversary wins by tricking
KataGo into ending the game prematurely at a point that is favorable to the adversary. Our
results demonstrate that even professional-level AI systems may harbor surprising failure
modes. Example games are available at https://goattack.alignmentfund.org/.

9.1 Introduction
Reinforcement learning from self-play has achieved superhuman performance in a range of
games including Go [151], chess and shogi [152], and Dota [21]. Moreover, idealized versions of
self-play provably converge to Nash equilibria [26, 63]. Although realistic versions of self-play
may not always converge, the strong empirical performance of self-play seems to suggest this
is rarely an issue in practice.

Nonetheless, prior work has found that seemingly highly capable continuous control
policies trained via self-play can be exploited by adversarial policies [55, 178]. This suggests
that self-play may not be as robust as previously thought. However, although the defender
agents are state-of-the-art for continuous control, they are still well below human performance.
This raises the question: are adversarial policies a vulnerability of self-play policies in general,
or simply an artifact of insufficiently capable policies?

To answer this, we study a domain where self-play has achieved very strong performance:
Go. Specifically, we attack KataGo [175], the strongest publicly available Go-playing AI

https://goattack.alignmentfund.org/


CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 67

system. We train an adversarial policy end-to-end against a fixed defender policy network.
Using only 0.3% of the compute used to train KataGo, we obtain an adversarial policy that
wins >99% of the time against KataGo with no search, and >50% against KataGo with
enough search to be near-superhuman.

Critically, our adversary does not win by learning a generally capable Go policy. Instead,
the adversary has learned a simple strategy that stakes out a small corner territory, then
places some easily capturable stones in KataGo’s larger complementary territory. This
strategy, illustrated and explained in Figure 9.1, loses against even amateur Go players (see
Section E.5.2), so the defender is in this instance less robust than human amateurs, despite
having professional-level capabilities. This is a striking example of non-transitivity, illustrated
in Figure 9.2.

Our adversary has no special powers: it can only place stones, or pass, like a regular
player. We do, however, give the adversary access to a fixed KataGo defender. In particular,
we train the adversary using an AlphaZero-style training process [152], similar to that of
KataGo. The key difference is that we collect games with the adversary playing the separate
(fixed) defender network. Additionally, we use the defender network to select defender moves
during the adversary’s tree search.

KataGo is the strongest publicly available Go AI system at the time of writing. With
search, KataGo is strongly superhuman, winning [175, section 5.1] against ELF OpenGo [161]
and Leela Zero [119] that are themselves superhuman. In Section E.4, we estimate that
KataGo without search plays at the level of a top 100 European player, and KataGo with a
small amount of search is at the level of the best Go players on earth.

This chapter makes three contributions. First, we propose a novel attack method,
hybridizing the attack of Gleave et al. [55] and AlphaZero-style training [152]. Second, we
demonstrate the existence of adversarial policies against the state-of-the-art Go AI system,
KataGo. Finally, we find the adversary pursues a simple strategy that fools the defender
into predicting victory, causing it to pass prematurely. Our open-source implementation is
available at GitHub.

9.2 Related Work
Our work is inspired by the presence of adversarial examples in a wide variety of models [158].
Notably, many image classifiers reach or surpass human performance [126, 136, 148, 125].
Yet even these state-of-the-art image classifiers are vulnerable to adversarial examples [31,
133]. This raises the question: could highly capable deep RL policies be similarly vulnerable?

One might hope that the adversarial nature of self-play training would naturally lead
to robustness. This strategy works for image classifiers, where adversarial training is an
effective if computationally expensive defense [98, 133]. This view is further bolstered by the
fact that idealized versions of self-play provably converge to a Nash equilibrium, which is
unexploitable [26, 63]. However, our work finds that in practice even state-of-the-art and
professional-level deep RL policies are still vulnerable to exploitation.

https://github.com/HumanCompatibleAI/go_attack/


CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 68

(a) Adversary plays as black: explore the game. (b) Adversary plays as white: explore the game.

Figure 9.1: The adversarial policy beats the KataGo defender by playing a counterintuitive
strategy: staking out a minority territory in the corner, allowing KataGo to stake the
complement, and placing weak stones in KataGo’s stake. KataGo predicts a high win
probability for itself and, in a way, it’s right—it would be simple to capture most of the
adversary’s stones in KataGo’s stake, achieving a decisive victory. However, KataGo plays a
pass move before it has finished securing its territory, allowing the adversary to pass in turn
and end the game. This results in a win for the adversary under the Tromp-Taylor ruleset
for computer Go [163] that KataGo was trained and configured to use (see Appendix E.1).
Specifically, the adversary gets points for its corner territory (devoid of defender stones)
whereas the defender does not receive points for its territory because of the presence of the
adversary’s stones. These games are randomly selected from an attack against Latest, the
strongest policy network, playing without search.

It is known that self-play may not converge in non-transitive games [13]. However,
Czarnecki et al. [36] has argued that real-world games like Go grow increasingly transitive as
skill increases. This would imply that while self-play may struggle with non-transitivity early
on during training, comparisons involving highly capable policies such as KataGo should be
mostly transitive. By contrast, we find a striking non-transitivity: our adversary exploits
KataGo agents that beat human professionals, yet even an amateur Go player can beat our
adversary (Appendix E.5.2).

Most prior work attacking deep RL has focused on perturbing observations [67, 69].
Concurrent work by Lan et al. [85] shows that KataGo with ď 50 visits can be induced to
play poorly after adding two adversarially chosen moves to the history. Critically, these
moves are “meaningless” in the sense of not significantly changing the win rate estimated by

https://goattack.alignmentfund.org//?row=0#no_search
https://goattack.alignmentfund.org//?row=2#no_search


CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 69

Figure 9.2: A human amateur beats our adversarial policy (Appendix E.5.2) that beats
KataGo. This non-transitivity shows the adversary is not a generally capable policy and is
just exploiting KataGo.

KataGo with 800 visits. These results show that KataGo’s network can seriously misevaluate
certain states.

However, the threat model of Lan et al. unrealistically assumes the adversary can force
the opponent to play a specific move. An attacker with this power has easier ways to win: it
could simply make the opponent resign, or play a maximally bad move. We instead follow
the threat model introduced by Gleave et al. [55] of an adversarial agent acting in a shared
environment.

Prior work on such adversarial policies has focused on attacking subhuman policies in
simulated robotics environments [55, 178]. In these environments, the adversary can often
win just by causing small changes in the defender’s actions. By contrast, our work focuses on
exploiting professional-level Go policies that have a discrete action space. Despite the more
challenging setting, we find these policies are not only vulnerable to attack, but also fail in
surprising ways that are quite different from human-like mistakes.

Adversarial policies give a lower bound on the exploitability of an agent: how much
expected utility a best-response policy achieves above the minimax value of the game. Exactly
computing a policy’s exploitability is feasible in some low-dimensional games [75], but not in
larger games such as Go, which has approximately 10172 possible states [5, section 6.3.12].
Prior work has lower bounded the exploitability in some poker variants using search [95], but
the method relies on domain-specific heuristics that are not applicable to Go.

In concurrent work Timbers et al. [162] developed the approximate best response (ABR)
method to estimating exploitability. Whereas we exploit the open-source KataGo agent, they
exploit a proprietary replica of AlphaZero from Schmid et al. [142]. They obtain a 90% win



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 70

rate against no-search AlphaZero and 65% with 800 visits [162, Figure 3]. In section E.4.3,
we estimate that their AlphaZero defender with 800 visits plays at least at the level of a
top-200 professional, and may be superhuman. That we were both able to exploit unrelated
codebases confirms the vulnerability is in AlphaZero-style training as a whole, not merely an
implementation bug.

Our attack methodology is similar to Timbers et al.: we both use an AlphaZero-style
training procedure that is adapted to use the opponent’s policy during search. However,
unlike Timbers et al. we attempt to model the defender’s search process inside our adversary
via A-MCTS-R and A-MCTS-VM (see Section 9.4). Additionally, our curriculum uses
checkpoints as well as search. Finally, we provide a detailed empirical investigation into how
the attack works, including examples of games played by the adversary, the degree to which
the adversary transfers, and an investigation of possible defenses.

9.3 Background

9.3.1 Threat Model

Following Gleave et al. [55], we consider the setting of a two-player zero-sum Markov game [149].
Our threat model assumes the attacker plays as one of the agents, which we will call the
adversary, and seeks to win against some defender agent. Critically, the attacker does not
have any special powers—it can only take the same actions available to a regular player.

The key capability we grant to the attacker is gray-box access to the defender agent. That
is, the attacker can evaluate the defender’s neural network on arbitrary inputs. However,
the attacker does not have direct access to the network weights. We furthermore assume
the defender agent follows a fixed policy, corresponding to the common case of a pre-trained
model deployed with static weights. Gray-box access to a fixed defender naturally arises
whenever the attacker can run a copy of the defender agent, such as a commercially available
or open-source Go AI system.

This is a challenging setting even with gray-box access. Although finding an exact Nash
equilibrium in a game as complex as Go is intractable, a priori it seems plausible that a
professional-level Go system might have reached a near-Nash or ϵ-equilibrium. In this case,
the defender could only be exploited by an ϵ margin. Moreover, even if there exists a policy
that can exploit the defender, it might be computationally expensive to find given that
self-play training did not discover the vulnerability.

Consequently, our two primary success metrics are the win rate of the adversarial policy
against the defender and the adversary’s training time. We also track the mean score difference
between the adversary and defender, but this is not explicitly optimized for by the attack.
Crucially, tracking training time rules out the degenerate “attack” of simply training the
attacker for longer than the defender.

In principle, it is possible that a more sample-efficient training regime could produce
a stronger agent than KataGo in a fraction of the training time. While this might be an



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 71

important advance in computer Go, we would hesitate to classify it as an attack. Rather, we
are looking for the adversarial policy to demonstrate non-transitivity, as this suggests the
adversary is winning by exploiting a specific weakness in the opponent. That is, as depicted
in Figure 9.2, the adversary beats the defender, the defender beats some baseline opponent,
and that baseline opponent can in turn beat the adversary.

9.3.2 KataGo

We chose to attack KataGo as it is the strongest publicly available Go AI system. KataGo
won against ELF OpenGo [161] and Leela Zero [119] after training for only 513 V100 GPU
days [175, section 5.1]. ELF OpenGo is itself superhuman, having won all 20 games played
against four top-30 professional players. The latest networks of KataGo are even stronger than
the original, having been trained for over 10,000 V100-equivalent GPU days. Indeed, even
the policy network with no search is competitive with top professionals (see Section E.4.1).

KataGo learns via self-play, using an AlphaZero-style training procedure [152]. The agent
contains a neural network with a policy head, outputting a probability distribution over the
next move, and a value head, estimating the win rate from the current state. It then conducts
Monte-Carlo Tree Search (MCTS) using these heads to select self-play moves, described in
Appendix E.2.1. KataGo trains the policy head to predict the outcome of this tree search, a
policy improvement operator, and trains the value head to predict whether the agent wins
the self-play game.

In contrast to AlphaZero, KataGo also has a number of additional heads predicting
auxiliary targets such as the opponent’s move on the following turn and which player “owns”
a square on the board. These heads’ output are not used for actual game play—they serve
only to speed up training via the addition of auxiliary losses. KataGo additionally introduces
architectural improvements such as global pooling, and improvements to the training process
such as playout cap randomization.

These modifications to KataGo improve its sample and compute efficiency by several
orders of magnitude relative to prior work such as ELF OpenGo. For this reason, we choose
to build our attack on top of KataGo, although in principle the same attack could be
implemented on top of any AlphaZero-style training pipeline. We describe our extensions to
KataGo in the following section.

9.4 Attack Methodology
Prior works, such as KataGo and AlphaZero, train on self-play games where the agent plays
many games against itself. We instead train on games between our adversary and a fixed
defender agent, and only train the adversary on data from the turns where it is the adversary’s
move, since we wish to train the adversary to exploit the defender, not mimic it. We dub
this procedure defender-play.



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 72

In regular self-play, the agent models its opponent’s moves by sampling from its own policy
network. This makes sense in self-play, as the policy is playing itself. But in defender-play, it
would be a mistake to model the defender as playing from the adversary’s policy network.
We introduce three distinct families of Adversarial MCTS (A-MCTS) to address this problem.
See Appendix E.3 for the hyperparameter settings we used in experiments.

Adversarial MCTS: Sample (A-MCTS-S). In A-MCTS-S (Appendix E.2.2), we
modify the adversary’s search procedure to sample from the defender’s policy network
at defender-nodes in the Monte Carlo tree when it is the defender’s move, and from the
adversary’s network at adversary-nodes where it is the adversary’s turn. We also disable
some optimizations added in KataGo, such as adding noise to the policy network at the root.
Finally, we introduce a variant A-MCTS-S++ that averages the defender policy network’s
predictions over board symmetries, to match the default behavior of KataGo.

Adversarial MCTS: Recursive (A-MCTS-R). A-MCTS-S systematically underes-
timates the strength of defenders that use search since it models the defender as sampling
directly from the policy head. To resolve this, A-MCTS-R runs MCTS for the defender
at each defender node in the A-MCTS-R tree. Unfortunately, this change increases the
computational complexity of both adversary training and inference by a factor equal to the
defender search budget. We include A-MCTS-R primarily as an upper bound to establish
how much benefit can be gained by resolving this misspecification.

Adversarial MCTS: Defender Model (A-MCTS-VM). In A-MCTS-VM, we fine-
tune a copy of the defender network to predict the moves played by the defender in games
played against the adversarial policy. This is similar to how the defender network itself was
trained, but may be a better predictor as it is trained on-distribution. The adversary follows
the same search procedure as in A-MCTS-S but samples from this predictive model instead of
the defender. This therefore has the same inference complexity as A-MCTS-S, with slightly
greater training complexity due to the need to train an additional network. However, it does
require white-box access to the defender.

Initialization. We randomly initialize the adversary’s network. Note that we cannot
initialize the adversary’s weights to those of the defender as our threat model does not
allow white-box access. Additionally, a random initialization encourages exploration to find
weaknesses in the defender, rather than simply producing a stronger Go player. However, a
randomly initialized network will almost always lose against a highly capable network, leading
to a challenging initial learning problem. We use KataGo’s auxiliary targets to partially
alleviate this problem: the adversary’s network can learn something useful about the game
even from lost matches.

Curriculum. To help overcome the challenging random initialization, we introduce a
curriculum that trains against successively stronger versions of the defender. We switch to a
more challenging defender agent once the adversary’s win rate exceeds 50%. In particular, as
KataGo releases the entire training history, we start with an early checkpoint and then move
to later defender checkpoints.

Baselines. We also test hard-coded baseline adversarial policies. These baselines were
inspired by the behavior of our trained adversaries. The Edge plays random legal moves in



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 73

the outermost ℓ8-box available on the board. The Spiral attack is similar to the Edge attack,
except that it plays moves in a deterministic counterclockwise order, forming a spiral pattern.
Finally, we also implement Mirror Go, a classic novice strategy which plays the opponent’s
last move reflected about the y “ x diagonal. If the opponent plays on y “ x, Mirror Go
plays that move reflected along the y “ ´x diagonal. If the mirrored vertex is taken, Mirror
Go plays the closest legal move by ℓ1 distance.

9.5 Evaluation
We evaluate our attack method against KataGo [175]. In Section 9.5.1, we find our A-
MCTS-S algorithm achieves a greater than 99% win rate against Latest playing without
search. Notably Latest is very strong even without search: we find in Section E.4.1 that it is
comparable to a top 100 European player. Our attack manages to transfer to the low-search
regime as well, our best result in Section 9.5.2 being a 54% win rate against Latest with 64
playouts. In Section E.4.2, we estimate that Latest with 64 playouts is comparable to the
best human Go players. However, our adversary performs poorly against Latest with 128 or
more playouts.

Additionally, we find in Section 9.5.3 that the adversarial policy is specialized to the
defender it is attacking, and has limited transfer to other defenders. Finally, in Section 9.5.4
we study how the attack works, including investigating the value prediction of the defender
and evaluating a hard-coded defense.

9.5.1 Attacking the Defender Policy Network

We train an adversarial policy using A-MCTS-S and a curriculum, as described in Section 9.4.
We start from a checkpoint Initial around a quarter of the way through training, until
reaching the Latest checkpoint corresponding to the strongest KataGo network (see Ap-
pendix E.3.1 for details). In Figure 9.3, we evaluate our adversarial policy against the policy
networks of both Initial and Latest. We find our adversary attains a large (>90%) win
rate against both defenders throughout much of training. However, over time the adversary
overfits to Latest, with the win rate against Initial falling to around 20%.

We evaluate our best adversarial policy checkpoint against Latest, achieving a greater
than 99% win rate. Notably, this high win rate is achieved despite our adversarial policy
being trained for only 3.4 ˆ 107 time steps – just 0.3% as many time steps as the defender
it is exploiting. Critically, this adversarial policy does not win by playing a stronger game
of Go than the defender. Instead, it follows a bizarre strategy illustrated in Figure 9.1 that
loses even against human amateurs (see Section E.5.2).



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 74

1 2 3 4 5 6

Adversary training steps ˆ107

0

20

40

60

80

100

A
dv

er
sa

ry
w

in
ra

te
%

Initial Latest

Figure 9.3: The win rate (y-axis) of the adversarial policy over time (x-axis) against the
Initial and Latestdefender policy networks playing without search. The strongest adversary
checkpoint (marked ♦) wins 999/1000 games against Latest. The adversary overfits to Latest,
winning less often against Initial over time. the shaded interval is a 95% Clopper-Pearson
interval over n “ 50 games per checkpoint. The adversarial policy is trained with a curriculum,
starting from Initial and ending at Latest. Vertical dashed lines denote switches to a later
defender training policy.

9.5.2 Transferring to a Defender With Search

We evaluate the ability of the adversarial policy trained in the previous section to exploit
Latest playing with search. Although this adversarial policy achieves a win rate greater than
99% against Latest without search, in Figure 9.4a we find the win rate of A-MCTS-S drops
to 80% at 32defender visits. However, A-MCTS-S models the defender as having no search
at both training and inference time. We also test A-MCTS-R, which correctly models the
defender at inference by performing an MCTS search at each defender node in the adversary’s
tree. We find that A-MCTS-R performs somewhat better, obtaining a greater than 99% win
rate against Latest with 32 visits, but performance drops below 10% at 128 visits.

Of course, A-MCTS-R is more computationally expensive than A-MCTS-S. An alternative
way to spend our inference-time compute budget is to perform A-MCTS-S with a greater
adversary visit count. In Figure 9.4b we show that we obtain up to a 54% win rate against
Latest with 64 visits when the adversary has 4,096 visits. This is very similar to the
performance of A-MCTS-R with 200 visits, which has a 49% win rate against the same
defender. Interestingly, the inference cost of these attacks is also similar, with 4,096 neural
network forward passes (NNFPs) per move for A-MCTS-S (one per visit) versus 6,500 NNFPs



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 75

100 101 102

Victim visits

0

25

50

75

100

A
dv

.
w

in
%

vs
.
La

te
st

A-MCTS-R
A-MCTS-S++

(a) Win rate by number of defender visits (x-axis)
for A-MCTS-S and A-MCTS-R. The adversary
is run with 200 visits. The adversary is unable
to exploit Latest when it plays with more than
100 visits.

100 101 102 103 104

Adversary visits

0

25

50

75

100

A
dv

.
w

in
%

vs
.
La

te
st A-MCTS-S

A-MCTS-S++
A-MCTS-R

(b) Win rate by number of adversary visits with
A-MCTS-S, playing against Latest with 64 vis-
its. We see that higher adversary visits lead to
moderately higher win rates.

Figure 9.4: We evaluate the ability of the adversarial policy from Section 9.5.1 trained against
Latest without search to transfer to Latest with search.

/ move for A-MCTS-R.∗
Note these experiments only attempt to transfer our adversarial policy. It would also be

possible to repeat the attack from scratch against a defender with search, producing a new
adversarial policy. We leave this for future work as we cannot currently run this attack due
to computational constraints.

9.5.3 Transferring to Other Checkpoints

From Figure E.4 in the appendix, we see that an adversary trained against Latest does
better against Latest than Initial, despite Latest being a stronger agent. The converse
also holds: an agent trained against Initial does better against Initial than Latest. This
pattern holds for most visit counts where the adversary wins consistently, although in the
case of the adversary for Latest the gap is fairly narrow (99% vs. 80% win rate) at low visit
counts. These results suggest that different checkpoints have unique vulnerabilities.

9.5.4 Understanding the Attack

We observed in Figure 9.1 that the adversary appears to win by tricking the defender into
passing prematurely at a time favorable to the adversary. In this section, we seek to answer
three key questions. First, why does the adversary pass even when it leads to a guaranteed

∗A-MCTS-R with 200 visits performs 100 ¨ 64 ` 100 “ 6500 NNFPs / move.



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 76

loss? Second, is passing causally responsible for the defender losing, or would it lose anyway
for a different reason? Third, is the adversary performing a simple strategy, or does it contain
some hidden complexity?

Evaluating the Latestdefender without search against the adversary from section 9.5.1
over n “ 250 games, we find that Latest passes (and loses) in 247 games and does not
pass (and wins) in the remaining 3 games. In all cases, Latest’s value head estimates a
win probability of greater than 99.5% after the final move it makes, although its true win
percentage is only 1.2%. Latest predicts it will win by µ “ 134.5 points (σ “ 27.9) after its
final move, and passing would be reasonable if it were so far ahead. But in fact it is just one
move away from losing by an average of 86.26 points.

We conjecture the defender’s prediction is so mistaken as the games induced by playing
against the adversarial policy are very different from those seen during the defender’s self-play
training. Certainly, there is no fundamental inability for neural networks to predict the
outcome correctly. The adversary’s value head achieves a mean-squared error of only 3.18
(compared to 49,742 for the defender) on the adversary’s penultimate move. The adversary
predicts it will win 98.6% of the time—extremely close to the true 98.8% win rate in this
sample.

To verify whether this pathological passing behavior is the reason the adversarial policy
wins, we design a hard-coded defense for the defender: only passing when it cannot change
the outcome of the game. Concretely, we only allow the defender to pass when its only legal
moves are in its own pass-alive territory, a concept described in the official KataGo rules and
which extends the traditional Go notion of a pass-alive group [177] (see Appendix E.2.3 for a
full description of the algorithm).

We apply this defense to the Latest policy network. Whereas the adversarial policy in
Section 9.5.1 won greater than 99% of games against vanilla Latest, we find that it loses all
1600 evaluation games against Latest with this defense. This confirms the adversarial policy
wins via passing.

Unfortunately, this “defense” has two undesirable properties. First, it causes KataGo to
continue to play even when a game is clearly won or lost, which is frustrating for human
opponents. In fact, the average game length when playing with pass-hardening against an
adversarial policy increases from 95 to 421 moves—over a factor of four! This is also almost
twice that of the 211 moves typical for Go games between professional players [25].

Second, the defense relies on hard-coded knowledge about Go, using a search algorithm to
compute the pass-alive territories. Ideally, we would be able to apply AI techniques to systems
where humans do not have such domain expertise: indeed, this was the key contribution of
AlphaZero [152] over AlphaGo [151]. Moreover, there may be games where AI systems are
vulnerable but where there is no simple algorithm to address the vulnerabilities.

Finally, we seek to determine if the adversarial policy is winning by pursuing a simple
high-level strategy, or via a more subtle exploit such as forming an adversarial example by
the pattern of stones it plays. We start by evaluating the hard-coded baseline adversarial
policies described in Section 9.4. In Figure 9.5, we see that all of our baseline attacks perform
substantially worse than our trained adversarial policy (Figure 9.4a). Moreover, all our



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 77

2 4 8 16 32
Victim visits

10

20

30

40

50

60

70

80
A

dv
er

sa
ry

w
in

%
Edge attack
Mirror attack
Spiral attack

Figure 9.5: Win rates of different baseline adversaries (see Section 9.4) versus Latest at
varying visit counts (x-axis) with adversary playing as white. 95% CIs are shown. See
Figure E.5 in the appendix for average win margin of baselines.

baseline attacks only win by komi, and so never win as black. By contrast, our adversarial
policy in Section 9.5.1 wins playing as either color, and often by a large margin (in excess of
50 points).

We also attempted to manually mimic the adversary’s game play with limited success.†
Although the basics of our adversarial policy seem readily mimicable, matching its performance
is challenging, suggesting it may be performing a more subtle exploit.

9.6 Limitations and Future Work
This chapter has demonstrated that even agents at the level of top human professionals can
be vulnerable to adversarial policies. However, our results do not establish how common
such vulnerabilities are: it is possible Go-playing AI systems are unusually vulnerable. A
promising direction for future work is to evaluate our attack against strong AI systems in
other games.

Finally, we found it much harder to exploit agents that use search, with our attacks
achieving a lower win rate and requiring more computational resources. An interesting
direction for future work is to see if there exist more effective and compute-efficient methods

†We were only able to perform a manual exploit when the friendlyPassOk flag in KataGo was set to
true. This flag makes KataGo more willing to pass. However, this flag is set to false in all of our training and
evaluation runs. See Appendix E.5.1 for details.



CHAPTER 9. ADVERSARIAL POLICIES IN SUPERHUMAN GO AI SYSTEMS 78

for attacking agents that use search. If such methods do not exist, then search may be a
viable defense against adversaries.

9.7 Conclusion
We have developed the first adversarial policy exploiting an AI agent that performs at the
level of a top human professional. Notably, the adversarial policy does not win by playing a
strong game of Go—in fact, the adversarial policy can be easily beaten by a human amateur.
Instead, the adversary wins by exploiting a particular blind spot in the defender agent. This
result suggests that even highly capable agents can harbor serious vulnerabilities.

The original KataGo paper [175] was published in 2019, and KataGo has since been used
by many Go enthusiasts and professional players as a playing partner and analysis engine.
However, despite the large amount of attention placed on KataGo, the vulnerability in this
paper was to our knowledge unknown. This suggests that learning-based attacks like the one
developed in this chapter may be an important tool for uncovering hard-to-spot vulnerabilities
in AI systems.

Our results underscore that improvements in capabilities do not always translate into
adequate robustness. These failures in Go AI systems are entertaining, but a similar failure in
safety-critical systems such as automated financial trading or autonomous vehicles could have
dire consequences. We believe that the ML research community should invest considerable
effort into improving robust training and adversarial defense techniques in order to produce
models with the high levels of reliability needed for safety-critical systems.



79

Chapter 10

Defending against adversarial policies

We saw in the previous two chapters that state-of-the-art AI systems can fail catastrophically
in the face of adversarial policies. Section 9.5.4 introduced the pass-alive defense that
is effective in Go, but requires a domain-specific hard-coded algorithm. In this chapter,
we instead seek a general defense methodology that does not require any domain-specific
knowledge.

We found in Section 8.3.2 that adversarial training can protect against the specific
adversary the defender was trained with, but does not generalize to other adversaries.
We conjecture that this limitation can be overcome by population-based reinforcement
learning to expose the defender to a diverse set of opponents. We evaluate this method’s
robustness against new adversaries in two low-dimensional environments. Our defense
increases robustness against adversaries, as measured by the number of attacker training
timesteps to exploit the defender. Furthermore, we show that robustness is correlated with
the size of the opponent population.

10.1 Introduction
We propose using population-based reinforcement learning [PBRL; 71], illustrated in Fig-
ure 10.1, to train an agent against a diverse population of opponents. Whereas self-play trains
an agent to be robust against itself, PBRL with a sufficient number of opponents will force
an agent to be robust against a wide range of strategies, potentially giving a similar benefit
to adversarial training [58] for classification models. PBRL is a variation of population-based
training [PBT; 72], which jointly optimizes a population of models and their hyperparameters
for improved convergence, adapted for RL.

We evaluate PBRL as a defense in two simple two-player zero-sum games. We find that
the self-play baseline can on average be exploited by an adversary using less than 60% as
many timesteps as self-play. The PBRL-trained policy is more robust: more timesteps are
needed until an initial adversarial policy can be found.

We make three key contributions. First, we introduce PBRL as an end-to-end robust



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 80

Self Play

Population Based Training

{1 sub iteration

1 Training Iteration

Agents Being Trained

Population of 
Opponents

Agent (a) controlled
by Protagonist Policy

Agent (b)

Policies Controlling Agents

Symmetric

Asymmetric

Figure 10.1: Illustration of self-play training (top) compared to our defense (bottom),
described in Section 10.2. During training, the protagonist policy plays against a population
of opponents.



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 81

training method for deep RL. Second, we evaluate PBRL empirically, finding that it decreases
the exploitability of the defender. Third, we investigate how attributes of the environment
(such as dimensionality) and algorithm (such as population size) influence robustness.

10.1.1 Related work

Our work is inspired by prior work in multi-agent RL using populations of agents. Notably,
policy-space response oracles [86] learn an approximate best response to a mixture of policies.
Furthermore, AlphaStar’s Nash league [169] uses a large population of agents playing against
each other, with diverse objectives. Our key contribution relative to prior work is a detailed
empirical study of the exploitability of population-based trained agents relative to self-play.
To avoid confounders, we keep training as close as possible to our self-play baseline, using a
relatively simple form of population-based training compared to much of the prior work.

There are also a variety of multi-agent RL approaches that do not use populations but
may produce policies that are less exploitable than self-play. One successful technique is
counterfactual regret minimization [185, CFR] that can beat professional human poker
players [28], although this method has difficulty scaling to high-dimensional state spaces. The
more recent regularization method [122] can natively scale to games such as Stratego with a
game tree 10175 times larger than Go [123]. We chose to focus on self-play as our baseline
since it is widely used and, despite some theoretical deficiencies, has produced state-of-the-art
results in many environments.

The most closely related work to this chapter is Adversarially Robust Control [ARC; 84].
They consider the semi-competitive setting of autonomous driving and find that imitation-
learned policies are vulnerable to adversarial vehicles trained to cause collisions — even when
the adversary is limited to only cause preventable collisions. To improve robustness, they
fine-tune the imitation policies against an ensemble of adversaries that train concurrently with
the main policy. Since autonomous driving is semi-competitive, an optimal policy against
adversaries might fare poorly against regular agents, so Kuutti, Fallah, and Bowden add an
auxiliary loss to keep the fine-tuned policy similar to the imitation policy. In contrast, we
focus on the more challenging zero-sum setting which self-play was designed to work with.

Vinitsky et al. [168] reformulate single-agent RL robustness as a zero-sum two-agent
problem, where the adversary applies perturbations to the environment dynamics to minimize
the performance of the “control” agent. Their method is similar to ours: they train the control
agent against a population of adversaries and find this helps avoid overfitting to particular
adversaries, increases robustness on a held-out set of test tasks, and is more reliable than the
domain randomization baseline. By contrast, we focus on environments that are naturally
two-player games, where the adversary has a similar (possibly identical) action space to the
defender. Moreover, whereas Vinitsky et al. measure robustness of the control agent on
randomly generated test tasks, we evaluate against an adversary that trains directly against
a frozen version of our hardened defender.

Intriguingly, Vinitsky et al. encounter diminishing returns at fairly low adversarial popu-
lation sizes, whereas we see benefits at much higher population sizes. One reason for this



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 82

difference may be that the two-player games we evaluate in have more strategic complexity
than the artificial game with an adversary controlling limited perturbations of transition
dynamics. Additionally, we train all policies (including adversaries) with a balanced number of
timesteps (see Section 10.3.3), eliminating the problem that adversaries in larger populations
have less opportunity to train.

10.2 PBRL defense
We would like to find a Nash equilibrium pπν , παq for the defender and adversary (see
Section 7.2), which for zero-sum games corresponds to the minimax solutions of the expected
return:

argmin
πν

max
πα

E

«

8
ÿ

t“0

γtRαpSptq, Aptq
α , Aptq

ν , Spt`1q
q

ˇ

ˇ πα, πν

ff

with random variables sampled from Sp0q „ µ (initial state), Aptq
i „ πip¨ | Sptqq (stochastic

policy), and Spt`1q „ T pSptq, A
ptq
α , A

ptq
ν q (transition dynamics).

However, self-play may not find the Nash equilibrium. In particular, we conjecture that
the approximate best response behind self-play often leads to self-play getting stuck in a local
Nash equilibrium: it converges but is not globally optimal. This explains why the self-play
policies are often highly capable against their self-play opponent but may fail catastrophically
against adversarial policies. Notably, adversarially training against some πα trained against
πν might just cause πν to move to a new local Nash equilibrium that is robust to πα but not
to an unseen adversary π1

α.
We therefore propose using population-based reinforcement learning [PBRL; 71], as

illustrated in Figure 10.1. We train a protagonist agent to be robust by pitting it against a
population of n opponents πoi . By jointly optimizing against multiple opponents, we increase
the coverage of the space of opponent policies. Since an adversary π1

α optimizes in a similar
way as the opponents, it is likely to be close to one of the opponent policies πoi . Moreover,
given sufficient diversity in opponents it may be easier for the protagonist to learn a policy
close to a global Nash equilibrium than to learn n strategies that overfit to each opponent.

Each of the n opponents has identical architecture and training objective, differing only
in the seed used to randomly initialize their network. We alternate between training the
opponents against a fixed protagonist, and a protagonist against all fixed opponents. All
agents (opponent and protagonist) are trained for the same total number of timesteps,
decoupling training time from the number of opponents and making hyperparameters easier
to tune.

The total number of training timesteps for all policies is n ` 1 times the number of
timesteps the protagonist is trained for. When logging timesteps for PBRL training, we
report the number of timesteps the protagonist agent trains, since this is the relevant metric
for protagonist training. Note that this means the compute necessary for training PBRL is



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 83

(a) Laser Tag

Aggressor

Target

Defender

Decoy

(b) Simple Push

Figure 10.2: Illustrations of the (a) Laser Tag and (b) Simple Push environments. Laser Tag
is a symmetric gridworld game, where agents get points by “tagging” the other agent with a
light beam. Simple Push is an asymmetric continuous control game, consisting of aggressor
and protector agents. The protector knows which landmark is the target rather than the
decoy. The protector wishes to be close to the target while keeping the aggressor away from
it.

n ` 1 times higher than self-play at the same number of training steps (although PBRL is
more parallelizable).

We train all policies — self-play, PBRL, and adversarial—using proximal policy optimiza-
tion [PPO; 144]. PPO is widely used and has achieved good results with self-play in complex
environments [14]. Furthermore, PPO was used in Chapter 8 to train adversarial policies
in similar continuous control environments. We use the PPO implementation in RLlib [92],
from the ray library [109], due to its support for multi-agent environments and parallelizing
RL training.

10.3 Experiments
We evaluate the PBRL defense in two low-dimensional environments, described in Sec-
tion 10.3.1. In Section 10.3.2, we confirm that baseline self-play policies are vulnerable to
attack. To the best of our knowledge, these are the lowest-dimensional environments in which
an adversarial policy has been found. Finally, in Section 10.3.3 we find that PBRL improves
robustness against adversarial policies and explore the relationship with population size.

Unless otherwise noted, in all experiments we train 5 seeds of defender policies. We attack
each defender using 3 seeds of adversaries for a total of 15 adversaries. Unless omitted for
legibility, 95% confidence intervals are shown as shaded regions for training curves and bars
in bar plots.



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 84

10.3.1 Environments

We evaluate in two low-dimensional, two-player zero-sum games illustrated in Figure 10.2:
Laser Tag and Simple Push. We choose relatively simple environments compared to Chapters 8
and 9 as even self-play in those environments would be at the limits of our computational
resources, and the PBRL defense further inflates the computational requirements.

Laser Tag is a symmetric game with incomplete information [86]. The players see 17
spaces in front, 10 to the sides, and 2 spaces behind their agent. The two agents move on a
grid world and get points for tagging each other with a light beam. Obstacles block movement
and beams. We make the environment zero-sum by also subtracting a point from the tagged
player.

Simple Push is a continuous environment introduced by Mordatch and Abbeel [106] and
released with Lowe et al. [96]. The environment is asymmetric, with one agent the aggressor
and the other the protector.∗

The environment contains two randomly placed landmarks. Only the protector knows
which of these is the true target; the other landmark acts as a “decoy” for the aggressor.
The aggressor receives positive reward based on the protector’s distance to the true target.
Subtracted from this is a relative penalty, based on its own distance. Unlike vanilla Simple
Push, where the protector’s rewards are solely based on its own distance, we make the
environment zero-sum by giving the protector the negative of the aggressor’s reward.

As Simple Push is very low dimensional (a two-dimensional continuous control task), we
develop a variant with a “cheap talk” communication channel (see Section F.1 in the appendix)
that increases the dimensionality but does not otherwise change the dynamics. This channel
extends the action and observation spaces allowing agents to send one-hot coded tokens to
each other. See Section F.1 of the appendix for details on the communication channel.

10.3.2 Self-play baseline

Before evaluating our PBRL defense, we first consider the exploitability of the self-play
baseline using the attack from Chapter 8. We find self-play policies to be vulnerable in Simple
Push with a communication channel. In Laser Tag, adversarial policies can be found, however
variance is high and some self-play defenders are hard to attack.

Initial experiments, whose training curves can be found in Figure F.1 of the appendix,
showed that the attack fails in vanilla Simple Push. Consequently, we performed subsequent
experiments in Simple Push with a one-hot coded communication channel of 50 tokens. These
results add nuance to the finding from Chapter 8 that adversarial policies are easier to find
in higher-dimensional environments. The environments in this chapter are significantly lower-
dimensional than those considered in Chapter 8, suggesting the minimum dimensionality for
attack is fairy small. However, the fact that policies are only vulnerable in Simple Push given

∗Note, that the notion of aggressor and protector in this environment is orthogonal to adversary and
defender in the sense of adversarial policies.



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 85

0 1 2 3 4 5
Timestep 1e7

2000

1000

0

1000

2000
R

et
ur

n

Adversary
Zero

Figure 10.3: Training curve of adversaries in Laser Tag against the self-play baseline. An
adversarial policy can on average be found after fewer than 15 million timesteps of training.
However the variance between seeds is high, and adversary performance deteriorates against
some defenders over time.

a communication channel, and the high variance in the defender robustness in Laser Tag,
supports the previous claim that dimensionality is an important mediator for exploitability.

Laser Tag. We train self-play policies in the symmetric Laser Tag environment for 25 million
timesteps. This should be adequate to produce a strong policy, as the paper introducing
the environment [86] trained self-play for only 3 million timesteps. Figure 10.3 shows the
average return of the adversaries trained against these defenders. We train adversaries for 50
million timesteps, twice as many as the defenders, in order to reason about the adversaries’
behavior given more compute. Since the game is symmetric, an agent with a return above
zero outperforms its opponent.

Successful adversarial policies can be found within, on average, fewer than 15 million
timesteps. The loose confidence interval suggests high variability between different seeds: some
of the trained defenders are robust while others are not. On average, attacker performance
deteriorates after 20 million timesteps, which suggests an instability in adversary training.

Simple Push. Since Simple Push has an asymmetric observation space, we train self-play
using a separate policy for each player. We train the agents for 25 million timesteps, which



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 86

0 1 2 3 4 5
Timestep 1e7

4

2

0

2

4

R
et

ur
n

Adversary
Self-play

(a) Defender return.

0 1 2 3 4 5
Timestep 1e7

8

6

4

2

0

2

R
et

ur
n

Adversary
Self-play

(b) Aggressor return.

Figure 10.4: Training curve of adversaries in Simple Push against the self-play baseline, where
the adversary controls the aggressor (left) or defender (right). The environment includes a
50-token communication channel. The black dotted line marks the return achieved by the
self-play training baseline controlling the respective agent at the end of training. The attack
substantially outperforms the self-play baseline when the adversary controls the protector
(right), but only barely outperforms the baseline when the adversary controls the aggressor
(left).

we expect to be more than sufficient given the 625,000 timesteps used in prior work [96].
While prior work used the multi-agent deep deterministic policy gradient (MADDPG), not
PPO, in exploratory experiments we find PPO to perform comparably to MADDPG.

Again we train adversaries for 50 million timesteps, twice as many as the defenders, in
order to reason about the adversaries’ behavior given more compute. Figure 10.4a shows the
when the adversary controls the protector, the adversary achieves almost twice the return
on average (in red) as the self-play baseline (in black) at 25 million timesteps, which is the
point where adversary and defender trained for the same number of timesteps. By contrast,
Figure 10.4b shows that when controlling the aggressor, the adversary needs around 20 million
timesteps just to match the defender. Return after training the adversary for twice as many
timesteps as the defender is only slightly higher than the baseline.

These results suggest that protector policies in Simple Push are more robust to adversarial
policies than aggressor policies are. We conjecture this asymmetry is due to the protector
having more information than the aggressor: it knows the target landmark. Consequently,
the aggressor needs to observe the opponent to learn the true target landmark. The protector
could exploit this and perform movements that fool a defender aggressor. Due to the stronger
nature of the attack controlling the protector, we focus our defense in the upcoming section
on adversaries that control the protector aggent.



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 87

0 1 2 3 4 5
Timestep    1e7

1000

500

0

500

0 1 2 3 4 5
Timestep 1e7

0 1 2 3 4 5
Timestep 1e7

0 1 2 3 4 5
Timestep 1e7

Figure 10.5: Training curves of adversaries in Laser Tag against defenders trained with PBRL
against (from left to right) 20, 40, 60, and 80 opponents. We measure exploitability by how
few timesteps the adversary needs to train until outperforming the defender (i.e., achieving
larger than 0 return). We find that exploitability decreases with increasing PBRL population
size. Notably, self-play is exploitable within 15 million timesteps whereas PBRL-80 (right) is
only exploitable after 40 million timesteps. We observe significant instability in the training
of the adversary, with performance against the self-play baseline beginning to decline after 15
million timesteps, with similar instability present after 30 million timesteps against PBRL-20.

10.3.3 PBRL defense

In this section, we evaluate the effectiveness of our PBRL defense by trying to exploit PBRL-
trained policies. We train our adversaries for up to 50 million timesteps against the same
fixed 25-million-timestep defender to evaluate how many timesteps are needed to attack more
robust defenders. We find some improvement in robustness relative to the self-play baseline
in both environments. In Laser Tag, larger populations increase the number of timesteps
needed to find the first adversarial policy — at the cost of requiring more computational
resources. In Simple Push, we find that PBRL significantly outperforms the self-play baseline,
with as few as n “ 2 opponents being sufficient.

Laser Tag. To explore the impact of population size, we train policies with n “ 20, 40, 60,
and 80 opponents in Laser Tag. Figure 10.5 shows the average return of adversaries attacking
these hardened protagonists. We find that using PBRL increases robustness: finding an
adversary that achieves higher than 0 reward takes more timesteps on average. While fairly
noisy, generally the number of timesteps needed to outperform the defender — when return
exceeds the zero line — grows with increasing population size. An adversary attacking a
protagonist trained against a population of size 80 needs to train for almost double the
timesteps as the self-play defender. However, there are diminishing returns to population
size, with the relative difference in timesteps growing smaller.

Although the adversarial policy was trained for up to double the number of timesteps as



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 88

the protagonist agent, note that PBRL used 80 times as much compute for every timestep
of the protagonist, since it had to train the opponents for the same number of timesteps.
Additionally, we find that adversaries that continue to train eventually do outperform PBRL
defenders on average, whereas average performance against self-play defenders decreases over
time. The 95% confidence intervals in Figure 10.5 show that the variance of adversaries
attacking self-play increases over time, which suggests adversary training to be less stable
when attacking self-play as opposed to attacking PBRL. Self-play seems to converge to
policies of widely varying robustness, whereas in PBRL the variance of the adversary’s return
is lower.

A possible explanation for why the defender’s are vulnerable to advesrarial attack is
that the fairly small neural networks used in RL may be unable to represent more robust
policies. However, our results show improvements in protagonist performance as population
size increases, even while holding the model architecture fixed. This suggests that a lack of
model capacity is not the main cause of adversarial policies success.

Simple Push. We focus on making the aggressor agent more robust in Simple Push, as
Section 10.3.2 showed that the defender self-play policy is already relatively robust to attack.
Consequently, the protagonist controls the aggressor and adversaries control the protector
agent. We use PBRL to train against n “ 2, 4, 8, and 16 opponents. Since the environment
is not balanced, as a baseline we compare the adversary’s performance to those of the average
return achieved by the PBRL opponents at the end of training against the same defender
policy.

Self-play PBRL-2 PBRL-4 PBRL-8 PBRL-16
Victim

0

1

2

3

R
et

ur
n

Figure 10.6: Adversary return (y-axis) against defenders (x-axis) in Simple Push. PBRL-
trained defenders (green) are significantly more robust to adversarial attack than the self-play
baseline (red) and attain similar return to the baseline that plays against a non-adversarial
agent (black dotted line).



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 89

Figure 10.6 shows the returns at 25 million timesteps. Since baselines in different setups
could converge to different returns, we calculate separate baseline thresholds for each of the 4
settings (in addition to the self-play baseline from Figure 10.4), marked by the dashed black
line. The PBRL-trained agent is significantly more robust than the self-play policy, in red. In
fact, the PBRL protagonist achieves similar return under a zero-shot attack as the self-play
policy does against its self-play opponent (the dashed threshold). Notably, the values all
PBRL policies converge to differ by less than 3%.

0 1 2 3 4 5
Timestep 1e7

5.0

2.5

0.0

2.5

5.0

R
et

ur
n

Adv. vs PBRL
PBRL vs PBRL

Figure 10.7: Adversary return (y-axis) over time in Simple Push, averaged over 60 PBRL-
trained defender agents (number of opponents n P t2, 4, 8, 16u). The tight confidence interval
shows that defenders are all similarly robust in Simple Push. The adversarial return only
crosses the zero line around 25 million timesteps, indicating adversaries need at least as many
timesteps as the defender in order to outperform it.

Figure 10.7 shows the training curve when training adversaries for up to 50 million
timesteps. Since there is no discernible difference in the 4 PBRL settings, we average over
these for a total of 60 adversarial policies. The attack eventually outperforms the PBRL
protagonist defender, but is only slightly stronger even after training for twice as long.

Although PBRL is significantly more robust than self-play (effectively PBRL with n “ 1
opponent), perhaps surprisingly there is little benefit from using more than n “ 2 opponents.
In particular, there is no clear decrease in robustness when using n as low as 2, which is the
lowest PBRL setting that does not degenerate to self-play. This is in contrast to Laser Tag,
which saw large differences in robustness depending on population size.

This difference is likely due to Simple Push having only a handful of high-level strategies
that can be pursued. By contrast, the Laser Tag environment allows for more variation in



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 90

the details of possible strategies, making it harder to achieve full robustness. Additionally, it
is possible that the intervention of slightly increasing dimensionality by adding a “cheap talk”
channel can be circumvented with minimally higher diversity during training.

10.4 Limitations and future work
We have shown that our hardened PBRL defender agents are significantly more robust, often
only being exploitable when the adversary is trained for more timesteps than the protagonist
defender. However, PBRL is computationally very demanding, since it also requires training
n opponents for as many timesteps as the protagonist. Accordingly, adversaries can still
exploit defenders given the same compute and training timestep budget.

However, in many cases defenders have access to more compute and training timesteps.
First, defenders may be able to limit the number of timesteps an attacker can use to train
against the defender, such as if access to the policy is behind a rate-limited API. Second,
if a small number of opponents suffices (such as n “ 2 in Simple Push) then the defender
only needs to have slightly more compute than the attacker. Finally, defenders often have
significant computational resources: although PBRL is unlikely to prevent an attack from a
sophisticated adversary like a nation state, it may be enough to defeat many low-resource
attacks. Nonetheless, reducing this computational overhead is an important direction for
future work. For example, can we obtain similar performance with fewer opponents if we
train them to be maximally diverse from one another?

In addition, if additional compute resources are available, our approach allows a defender
to make use of them. Once an agent has converged, using additional compute to continue
training in self-play is usually of no use. However, convergence is not sufficient for robustness
— as illustrated by the existence of adversarial policies. Our approach enables a purposeful
use for additional computing power.

A key open question is how the number of opponents n required for robustness scales with
the complexity of the environment. PBRL will scale poorly if the required population size is
proportional to the size of the state space: in more complex environments each opponent will
take longer to train and more opponents will be required. But a priori it seems likely that n
may depend more on the number of high-level strategies in the environment. This is only
loosely related to the dimensionality of the state space. For example, some simple matrix
games have high strategic complexity, while some high-dimensional video games have only a
handful of sensible strategies.

Our evaluation uses the same adversarial policy attack introduced in Chapter 8, which
we established was strong enough to exploit unhardened defenders in these environments.
However, it is possible that alternative attacks would be able to exploit even our hardened
defender. We hope to see iterative development of stronger attacks and defenses, similar to
the trend in adversarial examples more broadly.



CHAPTER 10. DEFENDING AGAINST ADVERSARIAL POLICIES 91

10.5 Conclusion
We introduced the defense by PBRL as a method to reduce exploitability of RL policies.
Our results show an increase in zero-shot robustness against new adversaries compared to
self-play training. However, some self-play defenders are naturally robust, and PBRL comes
with an increased computational cost. We find that the size of the population necessary
depends on the environment used, and larger populations can increase overall robustness.
This work suggests that increasing diversity during training can lead to improved robustness
and contributes toward the goal of making agents less exploitable. Source code is available at
https://github.com/HumanCompatibleAI/reducing-exploitability.

https://github.com/HumanCompatibleAI/reducing-exploitability


92

Chapter 11

Conclusion

Machine learning has the potential to be enormously beneficial to humanity, whether by
automating mundane tasks or by performing certain tasks better than a human could.
However, existing techniques are insufficient to ensure machine learning systems reliably
perform open-ended tasks, especially in safety-critical domains. Until this is resolved, machine
learning systems can only be safely deployed in limited domains where task specification is
simple and occasional failure is tolerable. Overcoming these hurdles and building trustworthy
machine learning is therefore a key challenge for the machine learning research community.

In this dissertation, we have decomposed trustworthy machine learning into two parts.
First, the agent must learn an objective that is aligned with the goals of the human principal.
This is often challenging, especially in complex, value-laden, open-ended tasks. Second, the
agent must reliably and robustly optimize that objective. Although we cannot expect the
agent to perform well in arbitrary situations, performance should degrade gracefully as we go
off-distribution, and we must avoid unpredictable catastrophic failures.

We have introduced several complementary methods for understanding and testing learned
rewards. In Chapter 3, we characterized the fundamental limits of different reward learning
data sources. Next, in Chapter 4 we introduced the EPIC distance between reward functions
and showed in Chapter 5 that this distance bounds the difference in returns of optimal policies.
Finally, in Chapter 6 we developed an interpretability method to explain learned reward
functions, taking into account the special structure of reward functions. Together, these
methods provide a toolkit to evaluate learned reward functions both for practitioners seeking
to learn rewards and for researchers seeking to benchmark new reward learning algorithms.

Specifying the objective correctly is an important component of trustworthy machine
learning, but it is not sufficient. The agent must also reliably pursue the objective across the
wide range of settings that may be experienced during deployment in real-world scenarios. We
studied reliability through the lens of adversarial robustness, introducing in Chapter 7 a novel
physically realistic threat model for adversaries in sequential decision-making. In Chapters 8
and 9, we found that state-of-the-art and even human-level AI systems are vulnerable to this
attack, failing in surprising ways. This shows that even seemingly highly capable systems
may contain hidden failure modes, emphasizing the importance of testing using approaches



CHAPTER 11. CONCLUSION 93

such as these. Finally, in Chapter 10 we showed that training can be made more robust using
population-based RL.

11.1 Limitations and future work
Infinite-data assumption Our analysis of reward learning data sources in Chapter 3
considers their informativeness in the infinite-sample limit. Although this provides a useful
upper bound, for practical applications we care about their informativeness given a finite
number of samples. We expect that some data sources, such as demonstrations, will be
highly informative early on but have sharply diminishing returns, whereas other data sources,
such as preference comparisons, may provide less information per sample but reach their
asymptote at a higher level. We hope to explore this systematically, either theoretically or
empirically, in future work.

Equivalence classes The EPIC distance introduced in Chapter 4 uses a conservative
equivalence class for reward functions, consisting of just potential shaping and positive
affine transformations, that is guaranteed to never change optimal policies in any MDP.
However, in practice we often have additional information about the structure of an MDP;
for example, we know that energy is conserved in a physical system, even if we may not know
the details of all relevant physical parameters such as the exact friction at a joint. The set of
optimal-policy-preserving transformations under such assumptions is broader, and we could
get more informative distances if we include those in the equivalence class.

Wulfe et al. [179] provide an initial step in this direction by adapting EPIC to use the
transition dynamics. Unfortunately, however, this modification loses some of EPIC’s desirable
properties, such as the canonicalization remaining within the equivalence class. Moreover,
their method requires knowing the transition dynamics exactly, whereas in general we might
only know some invariants. An important direction for future work would be to incorporate
such invariances while still preserving the theoretical desiderata of EPIC.

Generality of adversarial policies We have found adversarial policies in state-of-the-art
continuous control policies (Chapter 8) and in professional-level Go-playing AI systems
(Chapter 9). Although this provides significant evidence that adversarial policies are a fairly
common phenomenon in self-play policies, we still do not know whether they are ubiquitous or
merely commonly occurring. We plan to attempt to attack other highly capable AI systems,
such as Leela Chess [94] and Polygames for Hex [32]. If these other systems are similarly
exploitable, this would provide strong evidence that self-play in general fails to produce
robust policies.

Understanding adversarial policies Our study of adversarial policies and their effect on
the defender indicates that they win by fooling the defender, likely in part by inducing highly
off-distribution inputs and, therefore, activations in the defender’s network. We conjecture



CHAPTER 11. CONCLUSION 94

that defenders are vulnerable to adversarial policies because self-play may converge to local
equilibria. This is supported by our finding in Chapter 10 that population-based RL makes
defenders harder to exploit. However, we currently lack a rigorous understanding of how and
why adversarial policies emerge. Further study here is warranted as it may provide general
insights about the limitations of self-play, deep learning, and related algorithms, and suggest
avenues for improvement.

Computationally efficient defenses The population-based RL defense in Chapter 10 is
promising, but the computational overhead introduced makes it challenging to deploy for
complex games, where even self-play can be extremely computationally demanding. We plan to
investigate ways to reduce the computational overhead, such as by using a smaller population
of opponents that is explicitly optimized for diversity. When the computational overhead is
reduced, we intend to evaluate the defense in more strategically complex environments such
as Go.

11.2 Closing thoughts
The importance of machine learning systems being trustworthy is widely acknowledged.
However, the results in this dissertation show that it can be far from obvious whether or not a
system can be trusted. We have seen that many learned reward functions can be very fragile,
despite having high predictive accuracy on the training data. Moreover, even highly capable
AI systems that have been widely studied and that beat top professionals can fall prey to
exploits that would not fool even a human amateur. These results demonstrate that AI
systems that reach human performance may still have alien goals and internal representations
that can produce surprising and often undesirable behavior.

We hope that the methodologies developed in this dissertation help researchers and
practitioners build trustworthy ML systems and validate if their systems are trustworthy
prior to deployment. Although there remains significant scope for improvement, we believe
these techniques are already a valuable part of the toolkit and could grow to become staples
of training and evaluation. However, it would be a mistake to rely on these or indeed any
set of technical tools: we would argue the ubiquity of difficult-to-detect and potentially
catastrophic failure modes also requires a shift in culture. In particular, the machine learning
community could borrow many of the mental tools and organizational structures already
found to be effective in the computer security and safety engineering communities, which
have long tackled similar problems [89].



95

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship Learning via Inverse Reinforcement
Learning”. In: Proceedings of the Twenty-First International Conference on Machine
Learning. 2004, pp. 1–8.

[2] Martin Aigner. Combinatorial Theory. Reprint of the 1979. Classics in Mathematics.
Springer Berlin Heidelberg, 1996.

[3] Riad Akrour, Marc Schoenauer, and Michèle Sebag. “APRIL: Active Preference
Learning-Based Reinforcement Learning”. In: Machine Learning and Knowledge Dis-
covery in Databases: ECML PKDD 2012, Proceedings, Part II. Vol. 7524. Lecture
Notes in Computer Science. Bristol, UK: Springer, 2012, pp. 116–131.

[4] Riad Akrour, Marc Schoenauer, and Michele Sebag. “Preference-Based Policy Learning”.
In: Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2011.
Vol. 6911. Lecture Notes in Computer Science. Berlin: Springer, 2011.

[5] Louis Victor Allis. “Searching for Solutions in Games and Artificial Intelligence”.
PhD thesis. Maastricht University, 1994.

[6] Kareem Amin, Nan Jiang, and Satinder P. Singh. “Repeated Inverse Reinforcement
Learning”. In: Proceedings of the 31st Conference on Neural Information Processing
Systems. Vol. 30. 2017, pp. 1813–1822.

[7] Dario Amodei, Paul Christiano, and Alex Ray. Learning from Human Preferences.
June 2017. url: https://openai.com/blog/deep-reinforcement-learning-from-
human-preferences/.

[8] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and
Dan Mané. Concrete Problems in AI Safety. 2016. arXiv: 1606.06565 [cs.AI].

[9] Stuart Armstrong and Sören Mindermann. “Occam’s Razor is Insufficient to Infer the
Preferences of Irrational Agents”. In: Proceedings of the 32nd Conference on Neural
Information Processing Systems. Vol. 31. 2018, pp. 5603–5614.

[10] J. Andrew Bagnell, Andrew Y. Ng, and Jeff G. Schneider. Solving Uncertain Markov
Decision Processes. Tech. rep. CMU-RI-TR-01-25. Aug. 2001.

https://openai.com/blog/deep-reinforcement-learning-from-human-preferences/
https://openai.com/blog/deep-reinforcement-learning-from-human-preferences/
https://arxiv.org/abs/1606.06565


BIBLIOGRAPHY 96

[11] Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet
Kohli, and Edward Grefenstette. “Learning to Understand Goal Specifications by Mod-
elling Reward”. In: Proceedings of the Seventh International Conference on Learning
Representations (ICLR). 2019.

[12] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav
Kadavath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec,
Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark,
Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan. Training a Helpful and
Harmless Assistant with Reinforcement Learning from Human Feedback. 2022. arXiv:
2204.05862.

[13] David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat,
Max Jaderberg, and Thore Graepel. “Open-ended learning in symmetric zero-sum
games”. In: Proceedings of the Thirty-sixth International Conference on Machine
Learning (ICML). 2019, pp. 434–443.

[14] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
“Emergent Complexity via Multi-Agent Competition”. In: Proceedings of the 6th
International Conference on Learning Representations (ICLR). 2018.

[15] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
Source code and model weights for Emergent Complexity via Multi-Agent Competition.
2018. url: https://github.com/openai/multiagent-competition.

[16] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. “Verifiable Reinforcement
Learning via Policy Extraction”. In: Advances in Neural Information Processing
Systems (NeurIPS) 31. 2018, pp. 2494–2504.

[17] Petr Baudiš and Jean-loup Gailly. PACHI Readme. 2020. url: https://github.
com/pasky/pachi/blob/a7c60ec10e1a071a8ac7fc51f7ccd62f006fff21/README.
md (visited on 11/08/2022).

[18] Petr Baudiš and Jean-loup Gailly. “PACHI: State of the Art Open Source Go Program”.
In: Advances in Computer Games: 13th International Conference, ACG 2011. Vol. 7168.
Lecture Notes in Computer Science. 2012, pp. 24–38.

[19] Vahid Behzadan and Arslan Munir. “Adversarial Reinforcement Learning Framework
for Benchmarking Collision Avoidance Mechanisms in Autonomous Vehicles”. In: IEEE
Intelligent Transportation Systems Magazine 13.2 (2021).

[20] David B. Benson. “Life in the Game of Go”. In: Information Sciences 10.1 (1976),
pp. 17–29.

https://arxiv.org/abs/2204.05862
https://github.com/openai/multiagent-competition
https://github.com/pasky/pachi/blob/a7c60ec10e1a071a8ac7fc51f7ccd62f006fff21/README.md
https://github.com/pasky/pachi/blob/a7c60ec10e1a071a8ac7fc51f7ccd62f006fff21/README.md
https://github.com/pasky/pachi/blob/a7c60ec10e1a071a8ac7fc51f7ccd62f006fff21/README.md


BIBLIOGRAPHY 97

[21] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P.
d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider,
Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with
Large Scale Deep Reinforcement Learning. 2019. arXiv: 1912.06680 [cs.LG].

[22] Erdem Bıyık, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk,
and Dorsa Sadigh. “Learning Reward Functions From Diverse Sources of Human Feed-
back: Optimally Integrating Demonstrations and Preferences”. In: The International
Journal of Robotics Research 41.1 (2022), pp. 45–67.

[23] Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford: Oxford University
Press, 2014.

[24] Justin Boyan and Andrew W Moore. “Generalization in Reinforcement Learning: Safely
Approximating the Value Function”. In: Advances in Neural Information Processing
Systems (NIPS). 1994, pp. 369–376.

[25] Andries E. Brouwer. Length of a Go Game. 2014. url: https://homepages.cwi.nl/
~aeb/go/misc/gostat.html (visited on 09/27/2022).

[26] George W Brown. “Iterative Solution of Games by Fictitious Play”. In: Activity Analysis
of Production and Allocation: Proceedings of a Conference. 1951, p. 376.

[27] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. “Deep Counterfactual
Regret Minimization”. In: Proceedings of the 36th International Conference on Machine
Learning (ICML). 2019, pp. 793–802.

[28] Noam Brown and Tuomas Sandholm. “Superhuman Ai for Heads-Up No-Limit Poker:
Libratus Beats Top Professionals”. In: Science 359.6374 (2018), pp. 418–424.

[29] Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova,
Scott Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, Oleg
Sushkov, David Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, and Ziyu
Wang. Scaling Data-Driven Robotics with Reward Sketching and Batch Reinforcement
Learning. 2019. arXiv: 1909.12200 [cs.RO].

[30] Haoyang Cao, Samuel N. Cohen, and Lukasz Szpruch. “Identifiability in Inverse
Reinforcement Learning”. In: Proceedings of the 35th Conference on Neural Information
Processing Systems. Vol. 34. 2021, pp. 12362–12373.

[31] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On Evalu-
ating Adversarial Robustness. arXiv:1902.06705v2 [cs.LG]. 2019. arXiv: 1902.06705.

[32] Tristan Cazenave, Yen-Chi Chen, Guan-Wei Chen, Shi-Yu Chen, Xian-Dong Chiu,
Julien Dehos, Maria Elsa, Qucheng Gong, Hengyuan Hu, Vasil Khalidov, et al.
“Polygames: Improved Zero Learning”. In: ICGA Journal 42.4 (2020), pp. 244–256.

https://arxiv.org/abs/1912.06680
https://homepages.cwi.nl/~aeb/go/misc/gostat.html
https://homepages.cwi.nl/~aeb/go/misc/gostat.html
https://arxiv.org/abs/1909.12200
https://arxiv.org/abs/1902.06705


BIBLIOGRAPHY 98

[33] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. “Deep Reinforcement Learning from Human Preferences”. In: Advances in
Neural Information Processing Systems (NIPS). 2017, pp. 4299–4307.

[34] Anne G E Collins and Amitai Shenhav. “Advances in Modeling Learning and Decision-
Making in Neuroscience”. In: Neuropsychopharmacology 47 (2022), pp. 104–118.

[35] Rémi Coulom. Go Ratings. 2022. url: https://archive.ph/H0VDl (visited on
09/28/2022).

[36] Wojciech M. Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan
Omidshafiei, David Balduzzi, and Max Jaderberg. “Real World Games Look Like
Spinning Tops”. In: Advances in Neural Information Processing Systems (NeurIPS).
2020.

[37] Pavel Czempin and Adam Gleave. “Reducing Exploitability with Population Based
Training”. In: ICML Workshop on New Frontiers in Adversarial Machine Learning.
2022.

[38] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. “Distributional
Reinforcement Learning with Quantile Regression”. In: Proceedings of the 32nd AAAI
Conference on Artificial Intelligence. Vol. 32(1). 2018, pp. 2892–2901.

[39] Grégoire Déletang, Jordi Grau-Moya, Miljan Martic, Tim Genewein, Tom McGrath,
Vladimir Mikulik, Markus Kunesch, Shane Legg, and Pedro A. Ortega. Causal Analysis
of Agent Behavior for AI Safety. 2021. arXiv: 2103.03938 [cs.AI].

[40] Daniel C Dennett. The Intentional Stance. Cambridge, MA: MIT Press, 1987.

[41] Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla.
“Explicable Reward Design for Reinforcement Learning Agents”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2021.

[42] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. “CARLA: An Open Urban Driving Simulator”. In: Proceedings of the 1st
Annual Conference on Robot Learning (CoRL). 2017, pp. 1–16.

[43] John Doyle, James A. Primbs, Benjamin Shapiro, and Vesna Nevistić. “Nonlinear
Games: Examples and Counterexamples”. In: Proceedings of 35th IEEE Conference on
Decision and Control. Vol. 4. 1996, pp. 3915–3920.

[44] Krishnamurthy Dvijotham and Emanuel Todorov. “Inverse Optimal Control with
Linearly-Solvable MDPs”. In: Proceedings of the 27th International Conference on
Machine Learning (ICML). 2010, pp. 335–342.

[45] EGD. European Go Database. 2022. url: https://www.europeangodatabase.eu/
EGD/ (visited on 09/28/2022).

[46] European Go Federation. European Pros. 2022. url: https://www.eurogofed.org/
pros/ (visited on 11/08/2022).

https://archive.ph/H0VDl
https://arxiv.org/abs/2103.03938
https://www.europeangodatabase.eu/EGD/
https://www.europeangodatabase.eu/EGD/
https://www.eurogofed.org/pros/
https://www.eurogofed.org/pros/


BIBLIOGRAPHY 99

[47] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided Cost Learning: Deep Inverse
Optimal Control Via Policy Optimization”. In: Proceedings of the 33rd International
Conference on Machine Learning (ICML). 2016, pp. 49–58.

[48] Peter C Fishburn. Utility Theory for Decision Making. New York: John Wiley & Sons,
Inc., 1970.

[49] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with Adverserial
Inverse Reinforcement Learning”. In: Proceedings of the 6th International Conference
on Learning Representations (ICLR). 2018.

[50] Iason Gabriel. “Artificial Intelligence, Values, and Alignment”. In: Minds and Machines
30.3 (2020), pp. 411–437.

[51] Shromona Ghosh, Felix Berkenkamp, Gireeja Ranade, Shaz Qadeer, and Ashish Kapoor.
“Verifying Controllers Against Adversarial Examples with Bayesian Optimization”. In:
Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA). 2018, pp. 7306–7313.

[52] Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, and George E. Dahl.
Motivating the Rules of the Game for Adversarial Example Research. 2018. arXiv:
1807.06732v2 [cs.LG].

[53] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu,
Martin Wattenberg, and Ian Goodfellow. Adversarial Spheres. 2018. arXiv: 1801.02774
[cs.CV].

[54] Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. “Quantifying
Differences in Reward Functions”. In: Proceedings of the International Conference on
Learning Representations (ICLR). 2021.

[55] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart
Russell. “Adversarial Policies: Attacking Deep Reinforcement Learning”. In: Proceedings
of the International Conference on Learning Representations (ICLR). 2020.

[56] I.J. Good. “On the Principle of Total Evidence”. In: The British Journal for the
Philosophy of Science 17.4 (1967), pp. 319–321.

[57] Ian Goodfellow, Nicolas Papernot, Sandy Huang, Yan Duan, Pieter Abbeel, and Jack
Clark. Attacking Machine Learning with Adversarial Examples. 2017. url: https:
//openai.com/blog/adversarial-example-research/.

[58] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples”. In: Proceedings of the International Conference on Learning
Representations (ICLR). 2015.

[59] C. A. E. Goodhart. “Problems of Monetary Management: The UK Experience”. In:
Monetary Theory and Practice. Springer, 1984, pp. 91–121.

https://arxiv.org/abs/1807.06732v2
https://arxiv.org/abs/1801.02774
https://arxiv.org/abs/1801.02774
https://openai.com/blog/adversarial-example-research/
https://openai.com/blog/adversarial-example-research/


BIBLIOGRAPHY 100

[60] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. “Reinforcement
Learning with Deep Energy-Based Policies”. In: Proceedings of the 34th International
Conference on Machine Learning (ICML). 2017, pp. 1352–1361.

[61] Dylan Hadfield-Menell and Gillian K. Hadfield. “Incomplete Contracting and AI
Alignment”. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society (AIES). 2019, pp. 417–422.

[62] Fu Haoda and David J. Wu. summarize_sgfs.py. 2022. url: https : / / github .
com/lightvector/KataGo/blob/c957055e020fe438024ddffd7c5b51b349e86dcc/
python/summarize_sgfs.py (visited on 09/28/2022).

[63] Johannes Heinrich, Marc Lanctot, and David Silver. “Fictitious Self-Play in Extensive-
Form Games”. In: Proceedings of the 32nd International Conference on Machine
Learning (ICML). 2015, pp. 805–813.

[64] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song.
“Natural Adversarial Examples”. In: CVPR. June 2021.

[65] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable
Baselines. https://github.com/hill-a/stable-baselines. 2018.

[66] Andrew Howes, Richard L Lewis, and Satinder Singh. “Utility Maximization and
Bounds on Human Information Processing”. In: Topics in Cognitive Science 6.2 (2014),
pp. 198–203.

[67] Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel.
Adversarial Attacks on Neural Network Policies. 2017. arXiv: 1702.02284 [cs.LG].

[68] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei.
“Reward Learning from Human Preferences and Demonstrations in Atari”. In: Pro-
ceedings of the 32nd Conference on Neural Information Processing Systems. Vol. 31.
2018, pp. 8022–8034.

[69] Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Janjua, Ala Al-
Fuqaha, Dinh Thai Hoang, and Dusit Niyato. “Challenges and Countermeasures for
Adversarial Attacks on Deep Reinforcement Learning”. In: IEEE TAI 3.2 (2022),
pp. 90–109.

[70] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. Adversarial Examples Are Not Bugs, They Are Features. 2019.
arXiv: 1905.02175v4 [stat.ML].

https://github.com/lightvector/KataGo/blob/c957055e020fe438024ddffd7c5b51b349e86dcc/python/summarize_sgfs.py
https://github.com/lightvector/KataGo/blob/c957055e020fe438024ddffd7c5b51b349e86dcc/python/summarize_sgfs.py
https://github.com/lightvector/KataGo/blob/c957055e020fe438024ddffd7c5b51b349e86dcc/python/summarize_sgfs.py
https://github.com/hill-a/stable-baselines
https://arxiv.org/abs/1702.02284
https://arxiv.org/abs/1905.02175v4


BIBLIOGRAPHY 101

[71] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos,
Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo,
David Silver, Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel. “Human-level
Performance in 3d Multiplayer Games with Population-Based Reinforcement Learning”.
In: Science 364.6443 (May 31, 2019), pp. 859–865.

[72] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. Population Based Training of Neural
Networks. 2017. arXiv: 1711.09846 [cs.LG].

[73] Erik Jenner and Adam Gleave. Preprocessing Reward Functions for Interpretability.
2022. arXiv: 2203.13553 [cs.LG].

[74] Hong Jun Jeon, Smitha Milli, and Anca Dragan. “Reward-Rational (Implicit) Choice:
A Unifying Formalism for Reward Learning”. In: Proceedings of the 34th Conference
on Neural Information Processing Systems. Vol. 33. 2020, pp. 4415–4426.

[75] Michael Johanson, Kevin Waugh, Michael H. Bowling, and Martin Zinkevich. “Accel-
erating Best Response Calculation in Large Extensive Games”. In: Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence. 2011.

[76] Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez.
“Explainable Reinforcement Learning via Reward Decomposition”. In: IJCAI Workshop
on Explainable Artificial Intelligence (XAI). 2019, pp. 47–53.

[77] KGS. gnugo2 Rank Graph. 2022. url: https://www.gokgs.com/graphPage.jsp?
user=gnugo2 (visited on 11/08/2022).

[78] KGS. Top 100 KGS Players. 2022. url: https://archive.ph/BbAHB (visited on
09/26/2022).

[79] Marc Khoury and Dylan Hadfield-Menell. On the Geometry of Adversarial Examples.
2018. arXiv: 1811.00525 [cs.LG].

[80] Kuno Kim, Shivam Garg, Kirankumar Shiragur, and Stefano Ermon. “Reward Identi-
fication in Inverse Reinforcement Learning”. In: Proceedings of the 38th International
Conference on Machine Learning. 2021, pp. 5496–5505.

[81] Lora Kolodny. Cruise Gets Green Light for Commercial Robotaxi Service in San
Francisco. url: https://www.cnbc.com/2022/06/02/cruise-gets-green-light-
for-commercial-robotaxis-in-san-francisco.html.

[82] Pallavi Koppol, Henny Admoni, and Reid Simmons. “Iterative Interactive Reward
Learning”. In: Participatory Approaches to Machine Learning, International Conference
on Machine Learning (ICML) Workshop. 2020.

[83] Jernej Kos and Dawn Song. Delving Into Adversarial Attacks on Deep Policies. 2017.
arXiv: 1705.06452 [stat.ML].

https://arxiv.org/abs/1711.09846
https://arxiv.org/abs/2203.13553
https://www.gokgs.com/graphPage.jsp?user=gnugo2
https://www.gokgs.com/graphPage.jsp?user=gnugo2
https://archive.ph/BbAHB
https://arxiv.org/abs/1811.00525
https://www.cnbc.com/2022/06/02/cruise-gets-green-light-for-commercial-robotaxis-in-san-francisco.html
https://www.cnbc.com/2022/06/02/cruise-gets-green-light-for-commercial-robotaxis-in-san-francisco.html
https://arxiv.org/abs/1705.06452


BIBLIOGRAPHY 102

[84] Sampo Kuutti, Saber Fallah, and Richard Bowden. “ARC: Adversarially Robust Con-
trol Policies for Autonomous Vehicles”. In: Proceedings of the 2021 IEEE International
Intelligent Transportation Systems Conference (ITSC). 2021, pp. 522–529.

[85] Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I-Chen Wu, and Cho-Jui
Hsieh. “Are AlphaZero-like Agents Robust to Adversarial Perturbations?” In: Advances
in Neural Information Processing Systems. 2022.

[86] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls,
Julien Perolat, David Silver, and Thore Graepel. “A Unified Game-Theoretic Approach
to Multiagent Reinforcement Learning”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2017, pp. 4190–4203.

[87] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems. Philadel-
phia: SIAM, 1995.

[88] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg.
Scalable Agent Alignment via Reward Modeling: A Research Direction. 2018. arXiv:
1811.07871 [cs.LG].

[89] Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to Safety.
Cambridge, MA: MIT Press, Jan. 2012.

[90] Arthur Lewbel. “The Identification Zoo: Meanings of Identification in Econometrics”.
In: Journal of Economic Literature 57.4 (2019), pp. 835–903.

[91] Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra. “Deal or
No Deal? End-to-End Learning of Negotiation Dialogues”. In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. 2017.

[92] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg,
Joseph Gonzalez, Michael Jordan, and Ion Stoica. “RLlib: Abstractions for Distributed
Reinforcement Learning”. In: Proceedings of the 35th International Conference on
Machine Learning (ICML). 2018, pp. 3053–3062.

[93] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and
Min Sun. “Tactics of Adversarial Attack on Deep Reinforcement Learning Agents”. In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
2017, pp. 3756–3762.

[94] Gary Linscott, Alexander Lyashuk, François Pays, and other open-source contributors.
Leela Chess Zero. 2022. (Visited on 10/16/2022).

[95] Viliam Lisý and Michael Bowling. “Equilibrium Approximation Quality of Current
No-Limit Poker Bots”. In: AAAI-17 Workshop on Computer Poker and Imperfect
Information Game. 2017. arXiv: 1612.07547 [cs.GT].

[96] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. “Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive Environments”. In: Advances
in Neural Information Processing Systems (NIPS). 2017, pp. 6379–6390.

https://arxiv.org/abs/1811.07871
https://arxiv.org/abs/1612.07547


BIBLIOGRAPHY 103

[97] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In:
Journal of Machine Learning Research 9 (2008), pp. 2579–2605.

[98] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. “Towards Deep Learning Models Resistant to Adversarial Attacks”. In:
Proceedings of the 6th International Conference on Learning Representations (ICLR).
2018.

[99] Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. “Explainable Rein-
forcement Learning Through a Causal Lens”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 34. 3. 2020.

[100] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. “Adversar-
ially Robust Policy Learning: Active Construction of Physically-Plausible Perturba-
tions”. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2017, pp. 3932–3939.

[101] David Manheim and Scott Garrabrant. Categorizing Variants of Goodhart’s Law.
arXiv: 1803.04585v4 [cs.LG]. 2018. arXiv: 1803.04585 [cs.AI].

[102] Charles F Manski. Identification Problems in the Social Sciences. Cambridge, MA:
Harvard University Press, 1995.

[103] Charles F Manski. Partial Identification of Probability Distributions. New York:
Springer, 2003.

[104] Lev McKinney, Yawen Duan, David Krueger, and Adam Gleave. “On The Fragility of
Learned Reward Functions”. In: Deep Reinforcement Learning Workshop at NeurIPS.
2022.

[105] Eric J. Michaud, Adam Gleave, and Stuart Russell. Understanding Learned Reward
Functions. NeurIPS Deep RL Workshop. 2020. arXiv: 2012.05862 [cs.LG].

[106] Igor Mordatch and Pieter Abbeel. “Emergence of Grounded Compositional Language
in Multi-Agent Populations”. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence. Vol. 32. 1. 2018.

[107] Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and
Toshiyuki Tanaka. “Nonparametric Return Distribution Approximation for Reinforce-
ment Learning”. In: Proceedings of the 27th International Conference on Machine
Learning (ICML). 2010, pp. 799–806.

[108] Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and
Toshiyuki Tanaka. “Parametric Return Density Estimation for Reinforcement Learning”.
In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence
(UAI). 2010, pp. 368–375.

https://arxiv.org/abs/1803.04585
https://arxiv.org/abs/2012.05862


BIBLIOGRAPHY 104

[109] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion
Stoica. “Ray: A Distributed Framework for Emerging AI Applications”. In: Proceedings
of the 13th USENIX Symposium on Operating Systems Design and Implementation.
2018, pp. 561–577.

[110] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
second revised. Princeton, NJ: Princeton University Press, 1947.

[111] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping”. In: Proceedings of the
Sixteenth International Conference on Machine Learning (ICML). 1999, pp. 278–287.

[112] Andrew Y Ng and Stuart Russell. “Algorithms for Inverse Reinforcement Learning”.
In: Proceedings of the Seventeenth International Conference on Machine Learning.
2000, pp. 663–670.

[113] Laura Noonan. “JPMorgan Develops Robot to Execute Trades”. In: Financial Times
(July 2017).

[114] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/. 2018.

[115] Manu Orsini, Anton Raichuk, Léonard Hussenot, Damien Vincent, Robert Dadashi, Ser-
tan Girgin, Matthieu Geist, Olivier Bachem, Olivier Pietquin, and Marcin Andrychow-
icz. “What Matters for Adversarial Imitation Learning?” In: Proceedings of the 35th
Conference on Neural Information Processing Systems (NeurIPS). Vol. 34. 2021,
pp. 14656–14668.

[116] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman,
Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter
Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training Language Models to
Follow Instructions with Human Feedback. 2022. arXiv: 2203.02155 [cs.CL].

[117] Malayandi Palan, Gleb Shevchuk, Nicholas Charles Landolfi, and Dorsa Sadigh. “Learn-
ing Reward Functions by Integrating Human Demonstrations and Preferences”. In:
Proceedings of Robotics: Science and Systems. 2019.

[118] Alexander Pan, Kush Bhatia, and Jacob Steinhardt. “The Effects of Reward Mis-
specification: Mapping and Mitigating Misaligned Models”. In: Proceedings of the
International Conference on Learning Representations (ICLR). 2022.

[119] John Pascutto. Leela Zero. 2019. url: https://zero.sjeng.org/ (visited on
06/16/2022).

[120] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowd-
hary. “Robust Deep Reinforcement Learning with Adversarial Attacks”. In: Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). 2018, pp. 2040–2042.

https://blog.openai.com/openai-five/
https://arxiv.org/abs/2203.02155
https://zero.sjeng.org/


BIBLIOGRAPHY 105

[121] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. “Sim-to-
Real Transfer of Robotic Control with Dynamics Randomization”. In: Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018,
pp. 3803–3810.

[122] Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark
Rowland, Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De Vylder,
Georgios Piliouras, Marc Lanctot, and Karl Tuyls. “From Poincaré Recurrence to
Convergence in Imperfect Information Games: Finding Equilibrium via Regularization”.
In: Proceedings of the 38th International Conference on Machine Learning (ICML).
Vol. 139. 2021, pp. 8525–8535.

[123] Julien Perolat, Bart de Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent
de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas Anthony, Stephen
McAleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas Gruslys, Aleksandra
Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers, Toby Pohlen, Tom Eccles,
Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot, Shayegan Omidshafiei,
Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Remi Munos, David Silver,
Satinder Singh, Demis Hassabis, and Karl Tuyls. Mastering the Game of Stratego
with Model-Free Multiagent Reinforcement Learning. arXiv: 2206.15378v1 [cs.AI]. 2022.
arXiv: 2206.15378 [cs.AI].

[124] Joshua C Peterson, David D Bourgin, Mayank Agrawal, Daniel Reichman, and Thomas
L Griffiths. “Using Large-Scale Experiments and Machine Learning to Discover Theories
of Human Decision-Making”. In: Science 372.6547 (2021), pp. 1209–1214.

[125] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V. Le. “Meta Pseudo Labels”. In:
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2021.

[126] Tien Ho-Phuoc. CIFAR10 to Compare Visual Recognition Performance between Deep
Neural Networks and Humans. 2018. arXiv: 1811.07270 [cs.CV].

[127] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. “Robust Adver-
sarial Reinforcement Learning”. In: Proceedings of the 34th International Conference
on Machine Learning (ICML). 2017, pp. 2817–2826.

[128] Dean Pomerleau. “RALPH: Rapidly Adapting Lateral Position Handler”. In: Proceed-
ings of the Intelligent Vehicles Symposium. 1995, pp. 506–511.

[129] Erika Puiutta and Eric M. S. P. Veith. “Explainable Reinforcement Learning: A
Survey”. In: Machine Learning and Knowledge Extraction. 2020.

[130] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence, eds. Dataset Shift in Machine Learning. Cambridge, MA: MIT Press, 2008.

[131] Deepak Ramachandran and Eyal Amir. “Bayesian Inverse Reinforcement Learning”.
In: Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI). 2007, pp. 2586–2591.

https://arxiv.org/abs/2206.15378
https://arxiv.org/abs/1811.07270


BIBLIOGRAPHY 106

[132] Hadi Ravanbakhsh and Sriram Sankaranarayanan. “Robust Controller Synthesis of
Switched Systems Using Counterexample Guided Framework”. In: Proceedings of the
2016 International Conference on Embedded Software (EMSOFT). 2016, 8:1–8:10.

[133] Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. “Adversarial Attacks and Defenses
in Deep Learning”. In: Engineering 6.3 (2020), pp. 346–360.

[134] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust
You?": Explaining the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016,
pp. 1135–1144.

[135] Rob. NeuralZ06 Bot Configuration Settings. 2022. url: https://discord.com/chan
nels/417022162348802048/583775968804732928/983781367747837962 (visited on
06/16/2022).

[136] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander
C. Berg, and Li Fei-Fei. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision 115.3 (Dec. 2015), pp. 211–252.

[137] Jacob Russell and Eugene Santos. “Explaining Reward Functions in Markov Deci-
sion Processes”. In: Proceedings of the Thirty-Second International Florida Artificial
Intelligence Research Society Conference. 2019, pp. 56–61.

[138] Stuart Russell. “Learning Agents for Uncertain Environments (Extended Abstract)”.
In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory
(COLT). 1998, pp. 101–103.

[139] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd.
Upper Saddle River, NJ: Prentice Hall, 2009.

[140] John Rust. “Structural Estimation of Markov Decision Processes”. In: Handbook of
Econometrics. Ed. by Robert F. Engle and Daniel L. McFadden. Vol. 4. Amsterdam:
Elsevier, 1994. Chap. 51, pp. 3081–3143.

[141] Dorsa Sadigh, Anca D. Dragan, Shankar Sastry, and Sanjit A. Seshia. “Active
Preference-Based Learning of Reward Functions”. In: Robotics: Science and Systems
XIII. 2017.

[142] Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin
Waugh, Nolan Bard, Finbarr Timbers, Marc Lanctot, Zach Holland, Elnaz Davoodi,
Alden Christianson, and Michael Bowling. Player of Games. arXiv: 2112.03178v1
[cs.LG]. 2021. arXiv: 2112.03178 [cs.AI].

[143] Paul J. H. Schoemaker. “The Expected Utility Model: Its Variants, Purposes, Evidence
and Limitations”. In: Journal of Economic Literature 20.2 (1982), pp. 529–563.

[144] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.06347 [cs.LG].

https://discord.com/channels/417022162348802048/583775968804732928/983781367747837962
https://discord.com/channels/417022162348802048/583775968804732928/983781367747837962
https://arxiv.org/abs/2112.03178
https://arxiv.org/abs/1707.06347


BIBLIOGRAPHY 107

[145] Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein.
“Are Adversarial Examples Inevitable?” In: Proceedings of the International Conference
on Learning Representations (ICLR). 2019.

[146] Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. “On the Feasibility of
Learning, Rather than Assuming, Human Biases for Reward Inference”. In: Proceedings
of the 36th International Conference on Machine Learning (ICML). PMLR, June 2019,
pp. 5670–5679.

[147] Rohin Shah, Steven H. Wang, Cody Wild, Stephanie Milani, Anssi Kanervisto, Vinicius
G. Goecks, Nicholas Waytowich, David Watkins-Valls, Bharat Prakash, Edmund Mills,
Divyansh Garg, Alexander Fries, Alexandra Souly, Jun Shern Chan, Daniel del Castillo,
and Tom Lieberum. “Retrospective on the 2021 MineRL BASALT Competition on
Learning from Human Feedback”. In: Proceedings of the NeurIPS 2021 Competitions
and Demonstrations Track. 2022, pp. 259–272.

[148] Vaishaal Shankar, Rebecca Roelofs, Horia Mania, Alex Fang, Benjamin Recht, and
Ludwig Schmidt. “Evaluating Machine Accuracy on ImageNet”. In: Proceedings of the
37th International Conference on Machine Learning (ICML). 2020, pp. 8634–8644.

[149] Lloyd S. Shapley. “Stochastic Games”. In: PNAS 39.10 (1953), pp. 1095–1100.

[150] Buck Shlegeris, Fabien Rogers, and Lawrence Chan. Language Models Seem to Be
Much Better Than Humans at Next-Token Prediction. Aug. 2022. url: https://www.
alignmentforum.org/posts/htrZrxduciZ5QaCjw/language-models-seem-to-be-
much-better-than-humans-at-next.

[151] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. “Mastering the Game of Go with Deep Neural Networks and
Tree Search”. In: Nature 529.7587 (2016), pp. 484–489.

[152] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. “A General Reinforcement
Learning Algorithm That Masters Chess, Shogi, and Go through Self-Play”. In: Science
362.6419 (2018), pp. 1140–1144.

[153] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel,
and Demis Hassabis. “Mastering the Game of Go Without Human Knowledge”. In:
Nature 550.7676 (2017), pp. 354–359.

[154] Satinder P. Singh and Richard C. Yee. “An Upper Bound on the Loss from Approximate
Optimal-Value Functions”. In: Machine Learning 16.3 (1994), pp. 227–233.

https://www.alignmentforum.org/posts/htrZrxduciZ5QaCjw/language-models-seem-to-be-much-better-than-humans-at-next
https://www.alignmentforum.org/posts/htrZrxduciZ5QaCjw/language-models-seem-to-be-much-better-than-humans-at-next
https://www.alignmentforum.org/posts/htrZrxduciZ5QaCjw/language-models-seem-to-be-much-better-than-humans-at-next


BIBLIOGRAPHY 108

[155] Joar Skalse, Matthew Farrugia-Roberts, Stuart Russell, Alessandro Abate, and Adam
Gleave. Invariance in Policy Optimisation and Partial Identifiability in Reward Learn-
ing. 2022. arXiv: 2203.07475 [cs.LG].

[156] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F Christiano. “Learning to Summarize
from Human Feedback”. In: Proceedings of the 34th Conference on Neural Information
Processing Systems. Vol. 33. 2020, pp. 3008–3021.

[157] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
2nd. MIT Press, 2018.

[158] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. “Intriguing Properties of Neural Networks”. In:
Proceedings of the International Conference on Learning Representations (ICLR).
2014.

[159] Aviv Tamar, Shie Mannor, and Huan Xu. “Scaling Up Robust MDPs Using Function
Approximation”. In: Proceedings of the 31st International Conference on Machine
Learning (ICML). 2014, pp. 181–189.

[160] Elie Tamer. “Partial Identification in Econometrics”. In: Annual Review of Economics
2 (2010), pp. 167–195.

[161] Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James
Pinkerton, and Larry Zitnick. “ELF OpenGo: an analysis and open reimplementation of
AlphaZero”. In: Proceedings of the 36th International Conference on Machine Learning
(ICML). 2019, pp. 6244–6253.

[162] Finbarr Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid, Neil
Burch, Julian Schrittwieser, Thomas Hubert, and Michael Bowling. Approximate
exploitability: Learning a best response in large games. 2022. arXiv: 2004.09677v4
[cs.LG].

[163] John Tromp. The Game of Go. 2014. url: https://tromp.github.io/go.html
(visited on 06/16/2022).

[164] Hsiao-Yu Tung, Adam W Harley, Liang-Kang Huang, and Katerina Fragkiadaki.
“Reward Learning from Narrated Demonstrations”. In: Proceedings: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 7004–
7013.

[165] Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aaron van den Oord.
“Adversarial Risk and the Dangers of Evaluating Against Weak Attacks”. In: Pro-
ceedings of the 35th International Conference on Machine Learning (ICML). 2018,
pp. 5025–5034.

https://arxiv.org/abs/2203.07475
https://arxiv.org/abs/2004.09677v4
https://arxiv.org/abs/2004.09677v4
https://tromp.github.io/go.html


BIBLIOGRAPHY 109

[166] Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothörl, Todd Hester, and Jon
Scholz. “A Practical Approach to Insertion with Variable Socket Position Using Deep
Reinforcement Learning”. In: Proceedings of the 2019 International Conference on
Robotics and Automation (ICRA). 2019.

[167] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat
Chaudhuri. “Programmatically Interpretable Reinforcement Learning”. In: Proceedings
of the 35th International Conference on Machine Learning. 2018, pp. 5045–5054.

[168] Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and
Alexandre Bayen. Robust Reinforcement Learning Using Adversarial Populations. 2020.
arXiv: 2008.01825.

[169] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,
Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets,
Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James
Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman
Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul,
Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
“Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning”. In:
Nature 575.7782 (2019), pp. 350–354.

[170] Steven Wang, Adam Gleave, and Sam Toyer. Imitation: Implementations of Inverse
Reinforcement Learning and Imitation Learning Algorithms. 2020. url: https://
github.com/humancompatibleai/imitation.

[171] Tony Tong Wang, Adam Gleave, Nora Belrose, Tom Tseng, Joseph Miller, Michael Den-
nis, Yawen Duan, Viktor Pogrebniak, Sergey Levine, and Stuart Russell. Adversarial
Policies Beat Professional-Level Go AIs. arXiv: 2211.00241 [cs.LG].

[172] Eric Wiewiora, Garrison W Cottrell, and Charles Elkan. “Principled Methods for Ad-
vising Reinforcement Learning Agents”. In: Proceedings of the Twentieth International
Conference on Machine Learning (ICML). 2003, pp. 792–799.

[173] Aaron Wilson, Alan Fern, and Prasad Tadepalli. “A Bayesian Approach for Policy
Learning from Trajectory Preference Queries”. In: Advances in Neural Information
Processing Systems (NIPS). 2012.

[174] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. “A
Survey of Preference-Based Reinforcement Learning Methods”. In: Journal of Machine
Learning Research 18.136 (2017), pp. 1–46.

[175] David J. Wu. Accelerating Self-Play Learning in Go. 2019. arXiv: 1902.10565 [cs.LG].

[176] David J. Wu. KataGo - Networks for kata1. 2022. url: https://katagotraining.
org/networks/ (visited on 09/26/2022).

https://arxiv.org/abs/2008.01825
https://github.com/humancompatibleai/imitation
https://github.com/humancompatibleai/imitation
https://arxiv.org/abs/2211.00241
https://arxiv.org/abs/1902.10565
https://katagotraining.org/networks/
https://katagotraining.org/networks/


BIBLIOGRAPHY 110

[177] David J. Wu. KataGo’s Supported Go Rules (Version 2). 2021. url: https://
lightvector.github.io/KataGo/rules.html (visited on 09/27/2022).

[178] Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing. “Adversarial Policy Training against
Deep Reinforcement Learning”. In: USENIX Security. 2021.

[179] Blake Wulfe, Logan Michael Ellis, Jean Mercat, Rowan Thomas McAllister, and Adrien
Gaidon. “Dynamics-Aware Comparison of Learned Reward Functions”. In: Proceedings
of the Tenth International Conference on Learning Representations. 2022.

[180] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He.
“Feature Denoising for Improving Adversarial Robustness”. In: Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[181] Brian D Ziebart. “Modeling Purposeful Adaptive Behavior with the Principle of
Maximum Causal Entropy”. PhD thesis. Carnegie Mellon University, 2010.

[182] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. “Modeling Interaction via
the Principle of Maximum Causal Entropy”. In: Proceedings of the 27th International
Conference on Machine Learning (ICML). 2010, pp. 1255–1262.

[183] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. “Maximum
Entropy Inverse Reinforcement Learning”. In: 23rd AAAI Conference on Artificial
Intelligence. Vol. 8. 2008, pp. 1433–1438.

[184] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario
Amodei, Paul Christiano, and Geoffrey Irving. Fine-Tuning Language Models from
Human Preferences. 2019. arXiv: 1909.08593 [cs.CL].

[185] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. “Regret
Minimization in Games with Incomplete Information”. In: NeurIPS. Vol. 20. 2007.

[186] Xingdong Zuo. Mazelab: a Customizable Framework to Create Maze and Gridworld
Environments. 2018. url: https://github.com/zuoxingdong/mazelab.

https://lightvector.github.io/KataGo/rules.html
https://lightvector.github.io/KataGo/rules.html
https://arxiv.org/abs/1909.08593
https://github.com/zuoxingdong/mazelab


111

Appendix A

Deferred content from Chapter 3

A.1 Properties of fundamental reward transformations
We begin with some supporting results concerning the basic reward transformations used in
Section 3.3 to characterise the invariances of various objects derived from the reward function.

The following result captures how potential shaping affects various reward-related func-
tions.

Lemma A.1.1. Consider M and M 1, two MDPs differing only in their reward functions,
respectively R and R1. Denote the return function, Q-function, value function, policy evalua-
tion function, and advantage function of M 1 by G1, Q1

π, V 1
π, J 1, and A1

π. If R1 is produced by
potential shaping of R with a potential function Φ, then:
(1) for a trajectory fragment ζ “ ps0, a0, s1, . . . , snq, G1pζq “ Gpζq ` γnΦpsnq ´ Φps0q;

(2) for a trajectory ξ “ ps0, a0, . . .q, G1pξq “ Gpξq ´ Φps0q;

(3) for a state s P S and action a P A, Q1
πps, aq “ Qπps, aq ´ Φpsq;

(4) for a state s P S, V 1
πpsq “ Vπpsq ´ Φpsq;

(5) for a policy π, J 1pπq “ J pπq ´ ES0„µ0 rΦpS0qs; and

(6) for a state s P S, and action a P A, A1
πps, aq “ Aπps, aq.

Proof. (1) is given by a straightforward telescopic argument. For (2), take the limit as the
length of a prefix goes to infinity, whereupon γnΦpsnq goes to zero (γ ă 1 by definition, and
Φpsnq is bounded since its domain is finite). (3) and (4) were proved for optimal policies by
Ng, Harada, and Russell [111], and they also observed that the extension to arbitrary policies
is straightforward (it follows immediately from (2), for example). (5) is immediate from (4).
(6) follows from (3) and (4) as the shifts of ´Φpsq to both the Q- and value functions cancel
eachother.

In the next result we show that potential shaping induces a similar state-dependent shift
in the soft Q-function as well.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 112

Lemma A.1.2. Consider M1 and M2, two MDPs differing only in their reward functions,
respectively R1 and R2. Denote the soft Q-function of M1 by QH

β,1, and of M2 by QH
β,2. If R2

is produced by potential shaping of R1 with a potential function Φ, then for all states s P S
and actions a P A, QH

β,2ps, aq “ QH
β,1ps, aq ´ Φpsq.

Proof. We will appeal to to uniqueness of the soft Q-function. By definition, R2ps, a, s1q “

R1ps, a, s
1q ` γ ¨ Φps1q ´ Φpsq. Combining with Equation (3.3), we have for all s P S and

a P A:

QH
β,1ps, aq “ ES1„τps,aq

«

R1ps, a, S
1
q ` γ

1

β
log

ÿ

a1PA
exp βQH

β,1pS 1, a1
q

ff

“ ES1„τps,aq

«

R2ps, a, S
1
q ´ γ ¨ ΦpS 1

q ` Φpsq ` γ
1

β
log

ÿ

a1PA
exp βQH

β,1pS
1, a1

q

ff

This implies that:

QH
β,1ps, aq ´ Φpsq “ ES1„τps,aq

«

R2ps, a, S
1
q ` γ

1

β
log

ÿ

a1PA
exp β

`

QH
β,1pS 1, a1

q ´ ΦpS 1
q
˘

ff

.

We see that QH
β,1ps, aq ´ Φpsq satisfies Equation (3.3) for QH

β,2ps, aq, for all s P S and a P A.
Since the soft Q-function is the unique solution to this equation, we conclude QH

β,2ps, aq “

QH
β,1ps, aq ´ Φpsq.

We next show that k-initial potential shaping and linear scaling of R correspond to affine
transformations of G.

Lemma A.1.3. Let pS,A, τ, µ0, R, γq be an MDP, R1 a reward function, and k P R a
constant. Then we have that G1pξq “ Gpξq ´ k for all possible and initial trajectories ξ, if
and only if R1 is produced from R by k-initial potential shaping and a mask of unreachable
transitions.

Proof. The converse follows from Lemma A.1.1 and that, by definition, varying the reward
for unreachable transitions does not affect the return of any possible, initial trajectories.

For the forward direction, we show that the constant difference between G1 and G on
possible initial trajectories implies a constant difference between the returns of possible
trajectories from any given reachable state, and that this state-dependent difference defines a
k-initial potential function that transforms R into R1.

Consider an arbitrary reachable state s P S. Let ξs be some possible trajectory starting in
s, and define ∆ξs “ Gpξsq ´ G1pξsq, the difference in return ascribed to this trajectory by G
and G1. We show that ∆ξs is independent of ξs given s. To extend ξs into an initial trajectory,
let ζs be some possible, initial, trajectory fragment ending in s (at least one exists, since s is



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 113

reachable; let its length be n). Let ζs ` ξs denote the concatenation of ζs and ξs. Then,

∆ξs “ Gpξsq ´ G1
pξsq

“
Gpζs ` ξsq ´ Gpζsq

γn
´

G1pζs ` ξsq ´ G1pζsq

γn
(:)

“
k ´ Gpζsq ` G1pζsq

γn
. (;)

To reach (:), note that by definition of return, Gpζs ` ξsq “ Gpζsq ` γnGpξsq (and likewise for
G1), and recall that we have defined γ ą 0. To reach (;), note that since ζs ` ξs is an initial
trajectory, we have by assumption Gpζs ` ξsq ´ G1pζs ` ξsq “ k. Note (;) shows that ∆ξs is
independent of ξs except for a possible dependence on ξs’s starting state s (arising through
ζs).

Thus, we may associate a unique P psq “ ∆ξs with each reachable s. Then P psq is a
k-initial potential function on reachable states. In particular, P psq “ ∆ξs “ k if s is initial as
then we may choose ζs to be empty with Gpζsq “ G1pζsq “ 0 and n “ 0. Furthermore, from
the definition of terminal states we must have that P psq “ ∆ξs “ 0 for terminal s.

Moreover, for reachable transitions, R1 is given by k-initial potential shaping of R with
Φpsq “ P psq. Consider a reachable transition ps, a, s1q. Let ξ and ξ1 be possible trajectories
such that ξ “ ps, a, s1q ` ξ1. Then,

Rps, a, s1
q ` γP ps1

q ´ P psq “ Rps, a, s1
q ` γpGpξ1

q ´ G1
pξ1

qq ´ pGpξq ´ G1
pξqq

“ G1
pξq ´ γG1

pξ1
q ` pRps, a, s1

q ` γGpξ1
qq ´ Gpξq

“ G1
pξq ´ γG1

pξ1
q ` Gpξq ´ Gpξq

“ G1
pξq ´ γG1

pξ1
q

“ R1
ps, a, s1

q .

Any variation in reward for unreachable transitions can be accounted for by a mask.

Lemma A.1.4. Let pS,A, τ, µ0, R, γq be an MDP, R1 a reward function, and c P R a constant.
Then G1pξq “ c ¨Gpξq for all possible initial trajectories ξ, if and only if R1 is produced from R
by zero-initial potential shaping, linear scaling by a factor of c, and a mask of all unreachable
transitions.

Proof. It is sufficient to show that the first condition is equivalent to R1 being produced from
c ¨ R by zero-initial potential shaping and a mask of all unreachable transitions (in particular,
any sequence of the above three transformations from R can be converted into a sequence
where the linear scaling happens first).

Denote by Gc the return function of the scaled reward function c ¨R. It is straightforward
to show that c ¨ Gpξq “ Gcpξq for all ξ. Then our first condition, G1pξq “ c ¨ Gpξq for all
possible initial trajectories, is equivalent to having G1pξq “ Gcpξq for these trajectories.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 114

By Lemma A.1.3 (with k “ 0) this is equivalent to R1 being produced from c ¨ R by
zero-initial potential shaping and a mask of all unreachable transitions. This completes the
proof.

A.2 Proofs
We provide proofs for the theoretical results presented in the main paper along with several
general supporting lemmas from which these results follow.

We distribute proofs of the results from Section 3.3.1 across three subsections. Ap-
pendix A.2.1 proves results for the invariances of (soft) Q-functions (Theorems 3.3.1 and 3.3.2).
Appendix A.2.2 proves results concerning alternative policies and their trajectory distributions
(Theorems 3.3.3 and 3.3.5). Appendix A.2.3 proves the results relating to optimal policies
and their trajectory distributions (Theorems 3.3.4 and 3.3.6).

The remaining subsections (Appendices A.2.4 to A.2.6) prove the results from Sec-
tions 3.3.2, 3.3.3 and 3.4 respectively.

A.2.1 Proofs for Section 3.3.1 Results Concerning Q-functions

Theorem 3.3.1. Given an MDP and a policy π, the Q-function for π, Qπ, determines R up
to S 1-redistribution. The optimal Q-function Q‹ has the same invariances.

Proof. Qπ is the only function which satisfies the Bellman equation (2.1) for all s P S, a P A:

Qπps, aq “ ES1„τps,aq,A1„πpS1q rRps, a, S 1
q ` γ ¨ QπpS 1, A1

qs .

This equation can be rewritten as

ES1„τps,aq rRps, a, S 1
qs “ Qπps, aq ´ γ ¨ ES1„τps,aq,A1„πpS1q rQπpS 1, A1

qs .

Since Qπ is the only function which satisfies this equation for all s P S, a P A, we have
that the values of the left-hand side for each s P S, a P A together determine Qπ, and vice
versa. Since the left-hand side values are preserved by S 1-redistribution of R, and no other
transformations (cf. Definition 3.2.3), we have that Qπ is preserved by S 1-redistribution of R,
and no other transformations.

Q‹ “ Qπ‹
where π‹ is any optimal policy derived from Q‹, so the invariances of the

optimal Q-function follow as a special case.

Theorem 3.3.2. Given an MDP and an inverse temperature parameter β, the soft Q-function
QH

β determines R up to S 1-redistribution.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 115

Proof. The proof is essentially the same as that for Theorem 3.3.1. QH
β is the only function

that satisfies Equation (3.3) for all s P S, a P A:

QH
β ps, aq “ ES1„τps,aq

«

Rps, a, S 1
q ` γ

1

β
log

ÿ

a1PA
exp βQH

β pS 1, a1
q

ff

.

This can be rewritten as

ES1„τps,aq rRps, a, S 1
qs “ QH

β ps, aq ´ γ ¨ ES1„τps,aq

«

1

β
log

ÿ

a1PA
exp βQH

β pS 1, a1
q

ff

.

Since QH
β is the only function which satisfies this equation for all s P S, a P A, we have

that the values of the left-hand side for each s P S, a P A together determine QH
β , and vice

versa. Since the left-hand side values are preserved by S 1-redistribution of R, and no other
transformations (cf. Definition 3.2.3), we have that QH

β is preserved by S 1-redistribution of R,
and no other transformations.

A.2.2 Proofs for Section 3.3.1 Results Concerning Alternative
Policies

We split the proof of Theorem 3.3.3 into two proofs, Theorem A.2.3 and Theorem A.2.4,
below.

In order to derive the invariances of the Boltzmann-rational policy, we analyse a more
general softmax-based policy we call a Boltzmann policy, of which the Boltzmann-rational
policy is a special case. Given a base policy π0, and an inverse temperature parameter β ą 0,
we define the Boltzmann policy with respect to π0, denoted ππ0

β , using the softmax function:

ππ0
β pa | sq “

exp
`

βAπ0ps, aq
˘

ř

a1PA exp
`

βAπ0ps, a1q
˘ . (A.1)

The Boltzmann-rational policy, π‹
β, is the Boltzmann policy with respect to optimal

policies (cf. 3.1).
We begin with Lemma A.2.1, characterising the invariance of the advantage functions from

which Boltzmann policies are derived. This in turn supports Lemma A.2.2, characterising
the invariances of arbitrary Boltzmann policies.

Lemma A.2.1. Given an MDP and a policy π, the advantage function for π, Aπ, determines
R up to S 1-redistribution and potential shaping. The optimal advantage A‹ has the same
invariances.

Proof. Aπ can be derived from Qπ, given π (by Equation (2.1), Aπps, aq “ Qπps, aq ´

EA„πpsq rQπps, Aqs). Thus Aπ is invariant to S 1-redistribution following Theorem 3.3.1. More-
over, by Lemma A.1.1, potential shaping causes no change in Aπ. That is, Aπ is also invariant
to potential shaping.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 116

Conversely, let R and R1 be such that Aπ “ A1
π. Define Φ : S Ñ R such that Φpsq “

EA„πpsq rQπps, Aq ´ Q1
πps, Aqs. This Φ satisfies the requirements of a potential function (all

Q-values from terminal states are zero). Potential shaping R with Φ yields a new reward
function, denoted RpΦq, with Q-function denoted Q

pΦq
π . Then observe, for each s P S, a P A:

QpΦq
π “ Qπps, aq ´ Φpsq (by Lemma A.1.1)

“ pQπps, aq ´ EA„πpsq rQπps, Aqsq ` EA„πpsq rQ1
πps, Aqs

“ Aπps, aq ` EA„πpsq rQ1
πps, Aqs

“ A1
πps, aq ` EA„πpsq rQ1

πps, Aqs (Aπ “ A1
π by assumption)

“ pQ1
πps, aq ´ EA„πpsq rQ1

πps, Aqsq ` EA„πpsq rQ1
πps, Aqs

“ Q1
πps, aq .

That is, RpΦq and R1 share a Q-function. Thus, by Theorem 3.3.1, R1 is given by S 1-
redistribution from RpΦq.

The optimal advantage function’s invariances arise as a special case, since A‹ “ Aπ‹
,

where π‹ is any optimal policy derived from A‹.

Lemma A.2.2. Given an MDP, an inverse temperature parameter β, and a base policy π0,
the Boltzmann policy ππ0

β determines R up to S 1-redistribution and potential shaping.

Proof. By Equation (A.1), ππ0
β can be derived from Aπ0 . Thus ππ0

β is invariant to S 1-
redistribution and potential shaping by Lemma A.2.1.

Conversely, we show that Aπ0 can be derived from ππ0
β in turn. Therefore ππ0

β can have
no more invariances than Aπ0 , amounting to S 1-redistribution and potential shaping by
Lemma A.2.1.

For each s P S, a P A, observe:

ππ0
β pa | sq “

exp
`

βAπ0ps, aq
˘

ř

a1PA exp
`

βAπ0ps, a1q
˘

Ñ Aπ0ps, aq “
1

β
log ππ0

β pa | sq `
1

β
log

ÿ

a1PA
exp

`

βAπ0ps, a1
q
˘

. (:)

We have not yet solved for Aπ0 , since it still occurs on both sides of (:). However, we can
eliminate the RHS occurrence by appealing to the following identity (that the advantage has
zero mean in each state s P S):

EA„π0psq rAπ0ps, Aqs “ EA„π0psq

“

Qπ0ps, Aq ´ EA1„π0psq rQπ0ps, A1
qs

‰

“ EA„π0psq rQπ0ps, Aqs ´ EA„π0psq rQπ0ps, Aqs

“ 0 .



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 117

Taking the expectation of both side of (:) therefore yields:

EA„π0psq rAπ0ps, Aqs “ EA„π0psq

„

1

β
log ππ0

β pA | sq

ȷ

` EA„π0psq

«

1

β
log

ÿ

a1PA
exp

`

βAπ0ps, a1
q
˘

ff

Ñ 0 “ EA„π0psq

„

1

β
log ππ0

β pA | sq

ȷ

`
1

β
log

ÿ

a1PA
exp

`

βAπ0ps, a1
q
˘

Ñ
1

β
log

ÿ

a1PA
exp

`

βAπ0ps, a1
q
˘

“ ´EA„π0psq

„

1

β
log ππ0

β pA | sq

ȷ

. (;)

Combining (;) with (:) gives us an expression for Aπ0 in terms only of ππ0
β , as required:

Aπ0ps, aq “
1

β
log ππ0

β pa | sq ´ EA„π0psq

„

1

β
log ππ0

β pA | sq

ȷ

.

Our main result concerning Boltzmann-rational policies follows immediately.

Theorem A.2.3. Given an MDP and an inverse temperature parameter β, the Boltzmann-
rational policy π‹

β, determines R up to S 1-redistribution and potential shaping.

Proof. The Boltzmann-rational policy π‹
β determines its own base policy π‹. This is because

the maximum probability actions in π‹
β are precisely those actions with maximal optimal

advantage A‹ (argmaxaPA A‹psq “ argmaxaPA π‹
βps, aq). We can break ties arbitrarily, as any

optimal base policy will lead to the same Boltzmann-rational policy. So, given π‹
β, we are

effectively also given a base policy, and the invariances of π‹
β therefore follow as a special case

of Lemma A.2.2.

We turn to prove the corresponding result about MCE policies, which follows a similar line
of reasoning relative to the soft Q-function. We use an elementary property of the softmax
function, which we state and derive as Lemma A.2.5 for the convenience of the unfamiliar
reader.

Theorem A.2.4. Given an MDP and an inverse temperature β, the MCE policy πH
β deter-

mines R up to S 1-redistribution and potential shaping.

Proof. πH
β is given by applying the softmax function to QH

β . Recall (or see Lemma A.2.5,
below) that the softmax function is invariant to a constant shift, and no other transformations.
This means that πH

β is invariant to exactly those transformations that induce constant shifts
in QH

β for each state.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 118

S 1-redistribution induces no shift in QH
β by Theorem 3.3.2. By Lemma A.1.2, potential

shaping induces a state-dependent constant shift. Thus, πH
β is invariant to S 1-redistribution

and potential shaping.
Conversely, we show that any state-dependent constant shift in QH

β can be described by
these two kinds of transformations. Therefore, they are the only invariances. Let B : S Ñ R,
and suppose R1 and R2 are two reward functions such that the corresponding soft Q-functions
satisfy QH

β,1ps, aq “ QH
β,2ps, aq ` Bpsq. Then,

ES1„τps,aq rR1ps, a, S
1
qs “ QH

β,1ps, aq ´ ES1„τps,aq

«

γ
1

β
log

ÿ

a1PA

exp βQH
β,1pS

1, a1
q

ff

“ QH
β,2ps, aq ` Bpsq ´ ES1„τps,aq

«

γ
1

β
log

ÿ

a1PA

exp β
`

QH
β,2pS

1, a1
q ` BpS 1

q
˘

ff

“ QH
β,2ps, aq ` Bpsq ´ ES1„τps,aq

«

γ
1

β
log

˜

ÿ

a1PA

exp βQH
β,2pS

1, a1
q

¸

` γBpS 1
q

ff

“ ES1„τps,aq rR2ps, a, S
1
q ` Bpsq ´ γBpS 1

qs .

Now set Φpsq “ ´Bpsq, and we can see that the difference between R and R1 is described by
potential shaping and S 1-redistribution.

Lemma A.2.5. Consider two functions f : X Ñ R and g : X Ñ R defined on a finite set X .
Then the softmax distributions over f and f ` g agree, that is, for all x P X ,

exppfpxq ` gpxqq
ř

x1PX exppfpx1q ` gpx1qq
“

exppfpxqq
ř

x1PX exppfpx1qq
, (A.2)

if and only if g is a constant function over X .

Proof. This is an elementary property of the softmax function. The forward direction can be
seen by manipulating Equation (A.2) as follows:

exppfpxq ` gpxqq

exppfpxqq
“

ř

x1PX exppfpx1q ` gpx1qq
ř

x1PX exppfpx1qq

Ñ gpxq “ log

ˆř

x1PX exppfpx1q ` gpx1qq
ř

x1PX exppfpx1qq

˙

which is constant in x.
The converse can be seen as follows. Assume gpxq “ G, a constant. Then,

exppfpxq ` gpxqq
ř

x1PX exppfpx1q ` gpx1qq
“

exppfpxqq ¨ exppGq

p
ř

x1PX exppfpx1qqq ¨ exppGq
“

exppfpxqq
ř

x1PX exppfpx1qq
.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 119

We continue with results about the trajectories derived from these alternative policies.
We once again prove Theorem 3.3.5 in two parts (Theorems A.2.7 and A.2.8). For Boltzmann-
rational trajectories, we once again provide a more general lemma concerning arbitrary
Boltzmann policies (A.1).

Lemma A.2.6. Given an MDP M , an inverse temperature β, and a base policy π0, the
distribution of trajectories, ∆π0

β , induced by the Boltzmann policy ππ0
β acting in MDP M

determines R up to S 1-redistribution, potential shaping, and a mask of unreachable transitions.

Proof. That the distribution is invariant to S 1-redistribution and potential shaping follows
from Lemma A.2.2. The distribution is also invariant to changes in the reward for transitions
out of unreachable states, since these rewards cannot affect the policy for reachable states.
As a result, the distribution is additionally invariant to a mask of unreachable transitions.

The trajectory distribution can be factored into the separate distributions ππ0
β psq P ∆pAq

for each reachable state s by conditioning on a supported prefix trajectory fragment that
leads to s and marginalising over subsequent states and actions. Via a similar argument to
the proof of Lemma A.2.2, the distribution determines the reward function for transitions
(out of these reachable states) up to potential shaping and S 1-redistribution (as they affect
reachable states).

Theorem A.2.7. Given an MDP M and an inverse temperature parameter β, the distribution
of trajectories, ∆‹

β, induced by the Boltzmann-rational policy π‹
β acting in MDP M , determines

R up to S 1-redistribution, potential shaping, and a mask of unreachable transitions.

Proof. As in Theorem 3.3.3, the invariances for the Boltzmann-rational policy’s trajectories
arises as a special case.

We turn to prove the corresponding result about MCE policies, which follows a similar
line of reasoning as for the Boltzmann trajectories, but relative to the MCE policy instead.

Theorem A.2.8. Given an MDP M and an inverse temperature parameter β, the distribution
of trajectories, ∆H

β , induced by the MCE policy πH
β acting in MDP M determines R up to

S 1-redistribution, potential shaping, and a mask of unreachable transitions.

Proof. Directly analogous to the proof of Lemma A.2.6, (relative to Theorem A.2.4).

A.2.3 Proofs for Section 3.3.1 Results Concerning Optimal Policies

Our results concerning the invariance of optimal policies and their trajectories follow from
the following general result connecting optimality preserving transformations to the set of
optimal actions in some subset of states.

The key idea of the proof is to establish a link between the value-bounding function Ψ
(Definition 3.2.5) and the optimal value function for R1 via the Bellman optimality equation.
We note that the definition of optimality preserving transformations is designed specifically
to elicit this link.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 120

Lemma A.2.9. Given an MDP M , suppose we have the set of optimal actions for each state
in a subset of states S Ď S. Let O be the set of (set-valued) functions O : S Ñ PpAqztHu

such that Opsq “ argmaxaPA A‹ps, aq for all s P S (but where O is unconstrained outside S).
Then, these optimal action sets determine R up to optimality-preserving transformations with
O P O.

Proof. Suppose R1 is obtained from M ’s reward R via an optimality-preserving transformation
with some O P O. Let Ψ be the corresponding value-bounding function, that is, a function
Ψ : S Ñ R satisfying, for all s P S and a P A,

ES1„τps,aq rR1
ps, a, S 1

q ` γ ¨ ΨpS 1
qs ď Ψpsq , (A.3)

with equality if and only if a P Opsq. Since Opsq is nonempty (by definition), we have for all
s P S

Ψpsq “ max
aPA

`

ES1„τps,aq rR1
ps, a, S 1

q ` γ ¨ ΨpS 1
qs

˘

.

This recursive condition on Ψ is the Bellman optimality equation for the unique optimal
value function, V 1

‹ , of the MDP with transformed reward R1. Therefore, Ψpsq “ V 1
‹psq for all

s P S, and we can rewrite Equation (A.3) as

ES1„τps,aq rR1
ps, a, S 1

q ` γ ¨ V 1
‹pS 1

qs ď V 1
‹psq , (A.4)

with equality only for a P Opsq.
Now, consider a state s P S. By assumption, for this s, Opsq “ argmaxaPA A‹ps, aq.

Then for this state, the actions that attain the optimal value bound in Equation (A.4) are
these same optimal actions. Therefore, R1 induces the same sets of optimal actions from
states in S.

Conversely, consider a second MDP M 1, differing from M only in its reward function, R1.
Assume the set of optimal actions in states in S agrees with the optimal actions in M for
those states. Let V 1

‹ and A1
‹ denote the optimal value and advantage functions for M 1. The

Bellman optimality equation for M 1 ensures that, for s P S,

V 1
‹psq “ max

aPA

`

ES1„τps,aq rR1
ps, a, S 1

q ` γ ¨ V 1
‹pS 1

qs
˘

(A.5)

with the maximum attained precisely by the actions a P argmaxaPApA1
‹ps, aqq. Setting

Opsq “ argmaxaPApA1
‹ps, aqq, Equation (A.5) can be rewritten as

ES1„τps,aq rR1
ps, a, S 1

q ` γ ¨ V‹pS 1
qs ď V‹psq (A.6)

for all s P S and a P A, with equality if and only if a P Opsq.
Now, for s P S, we have argmaxaPApA1

‹ps, aqq “ argmaxaPApA‹ps, aqq, because M and M 1

have matching sets of optimal actions for these states (by assumption). Then, Equation (A.6)
shows that R1 is produced from R by an optimality-preserving transformation with Opsq “

argmaxaPApA1
‹ps, aqq (and Ψpsq “ V 1

‹psq).



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 121

We are now in a position to prove Theorems 3.3.4 and 3.3.6:

Theorem 3.3.4. Given an MDP, a maximally supportive optimal policy determines R up to
optimality-preserving transformations with Opsq “ argmaxa A‹ps, aq.

Proof. By assumption, our optimal policies are maximally supportive. Therefore, their
support determine the set of optimal actions from all states. Also by assumption, our
maximally supportive optimal policies are determined by the set of optimal actions in each
state. Therefore, a maximally supportive optimal policy has the same reward information as
the set of optimal policies in each state. Its invariances follow as a special case of Lemma A.2.9,
with S “ S.

Theorem 3.3.6. Given an MDP, consider the distribution of trajectories, ∆‹, induced by a
maximally supportive optimal policy. Let S be the set of states in supported trajectories. Let
O be the set of functions O defined on S such that Opsq “ argmaxa A‹ps, aq for all s P S.
∆‹ determines R up to optimality-preserving transformations for any O P O.

Proof. The distribution of trajectories can be factored into separate distributions π‹psq P ∆pAq

for each state s P S (in a manner similar to Lemma A.2.6, as proved above). As above, these
individual distributions determine and are determined by the set of optimal actions within
each of those states. The invariance result therefore follows from Lemma A.2.9.

Remark A.2.10. As mentioned in Section 3.3, when there are multiple optimal policies,
invariances depend on how the given policy is chosen. The proofs above reveal that our
assumptions are crucial in connecting maximally supportive optimal policies to optimal action
sets. We comment on the motivation for these assumptions and, following our theme of
cataloguing partial identifiability, we sketch how the result would change without them.

Assumption (1), that the given policy is maximally supportive, allows us to rule out unsup-
ported actions as suboptimal. Additional reward transformations could become permissible
otherwise. As a well-known example, the zero reward function is consistent with any policy if
unsupported actions could also be optimal [112]. This more general case is difficult to analyse
within our framework, because it is not well-described by transformations or an equivalence
relation. The assumption may be demanding, but the consequences of misspecification are
mild in the case of policy optimisation – at least the learnt reward function won’t allow any
suboptimal actions to become optimal.

Assumption (2), that a given policy is computed only from the set of optimal actions
in each state, appears to be common. The purpose of this technical assumption is to rule
out pathological schemes for encoding additional reward information through the selection
of the policy. Through such schemes one could in principle encode the full reward function,
for example into the infinite decimal representation of the probability of taking one action
over another in some state. Such a selection scheme, even if it was not known to the learner,
would remove invariances, as transformations that change the reward function but not the
set of optimal states would change the given policy.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 122

A.2.4 Proofs for Section 3.3.2 Results

Theorem 3.3.7. Given an MDP, the return function restricted to possible trajectory frag-
ments, Gζ, determines R up to a mask of impossible transitions.

Proof. The result is immediate, since the restricted domain still includes all possible transitions
(as length one trajectory fragments with return equal to the reward of the transition), and no
fragments with impossible transitions.

Theorem 3.3.8. Given an MDP, the return function restricted to possible and initial
trajectories, Gξ, determines R up to zero-initial potential shaping and a mask of unreachable
transitions.

Proof. The result follows from Lemma A.1.3 with k “ 0.

Theorem 3.3.9. Given an MDP and an inverse temperature β, the distribution of comparisons
of possible trajectory fragments, ĺ

ζ
β, determines R up to a mask of impossible transitions.

Proof. Since ĺ
ζ
β can be derived from Gζ , it is invariant to a mask of impossible transitions

by Theorem 3.3.7. Conversely, ĺ
ζ
β determines R for all possible transitions. This is because

Rps, a, s1q is encoded in the Boltzmann distribution of comparisons between the length zero
trajectory fragment ζ0 “ psq and the length one trajectory fragment ζ1 “ ps, a, s1q, and can
be recovered as follows:

Ppζ0 ĺ
ζ
β ζ1q “

exppβGpζ1qq

exppβGpζ0qq ` exppβGpζ1qq

“
exppβRps, a, s1qq

exppβ ¨ 0q ` exppβRps, a, s1qq

Ñ Rps, a, s1
q “

1

β
¨ log

˜

Ppζ0 ĺ
ζ
β ζ1q

1 ´ Ppζ0 ĺ
ζ
β ζ1q

¸

.

Therefore ĺ
ζ
β is invariant to precisely a mask of impossible transitions.

Theorem 3.3.10. Given an MDP and an inverse temperature β, the distribution of compar-
isons of possible and initial trajectories, ĺ

ξ
β, determines R up to k-initial potential shaping

and a mask of unreachable transitions.

Proof. Note that as ĺ
ξ
β can be derived from Gξ, by Theorem 3.3.8, ĺ

ξ
β is invariant to zero-

initial potential shaping and a mask of unreachable transitions. It is additionally invariant to
k-initial potential shaping for arbitrary constants k P R, and no other transformations: Gξ

can be recovered from ĺ
ξ
β up to a constant (we can compare all possible initial trajectories to

an arbitrary reference trajectory and recover their relative return using a similar manipulation
as above, but we can’t determine the return of the reference trajectory). From there, the
precise invariance follows from Lemma A.1.3.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 123

Theorem 3.3.11. We have the following bounds on the invariances of the noiseless order of
possible trajectory fragments, ĺζ

‹. In all MDPs:
(1) ĺζ

‹ is invariant to positive linear scaling and a mask of impossible transitions; and
(2) ĺζ

‹ is not invariant to transformations other than zero-preserving monotonic transfor-
mations or masks of impossible transitions.

Moreover, there exist MDPs attaining each of these bounds.

Proof. For (1), positive linear scaling of reward by a constant c leads to the same scaling of
the return of each trajectory fragment, and this always preserves the relation ĺζ

‹, since for
any c ą 0, c ¨ Gpζ1q ď c ¨ Gpζ2q ô Gpζ1q ď Gpζ2q for all pairs of trajectory fragments ζ1, ζ2.
Moreover, ĺζ

‹ inherits invariance to a mask of impossible transitions from Gζ (Theorem 3.3.7).
For (2), let R1 be produced from R via some transformation that is neither a mask of

impossible transitions nor a zero-preserving monotonic transformation. It must be that
either R1 fails to preserve the ordinal comparison of two possible transitions, or that it fails
to preserve the set of zero-reward possible transitions, compared to R. In the first case,
consider two possible transitions whose rewards are not preserved, x1 and x2. Without loss
of generality, suppose Rpx1q ď Rpx2q but R1px1q ą R1px2q. This corresponds to a change in
ĺζ

‹’s comparison of the length one trajectories formed from x1 and x2, namely x1 ĺζ
‹ x2 from

true to false. Similarly, in the second case, the comparisons between the transition whose
reward became or ceased to be zero and a length one trajectory (with return 0) will have
changed. Therefore, ĺζ

‹ is not invariant to such transformations.
The bound (1) is attained by the following MDP invariant precisely to positive linear

scaling and a mask of impossible transitions. Let S “ tsu, A “ ta1, a2u, Rps, a1, sq “ 1,
and Rps, a2, sq “ 1 ` γ. Since Rps, a2, sq “ Rps, a1, sq ` γRps, a1, sq, the corresponding order
relation will contain both ps, a2, sq ĺζ

‹ ps, a1, s, a1, sq and ps, a1, s, a1, sq ĺζ
‹ ps, a2, sq. This

property requires that Rps, a1, sq “ p1 ` γq ¨ Rps, a2, sq, which is preserved only by linear
scaling of R. (Non-positive linear scaling is already ruled out by (2)).

The bound (2) is attained by the following MDP invariant to arbitrary zero-preserving
monotonic transformations. Let S “ ts1, s2u, A “ tau, with possible transitions ps1, a, s2q and
ps2, a, s2q, and Rps1, a, s2q ą Rps2, a, s2q “ 0. Any zero-preserving monotonic transformation
of R preserves the ordering of all possible trajectory fragments, namely that all nonempty
trajectories starting in s1 have positive return and all other possible trajectories have zero
return.

Theorem 3.3.12. Given an MDP, the noiseless order of possible and initial trajectories, ĺξ
‹,

is invariant to (at least) k-initial potential shaping, positive linear scaling, and a mask of
unreachable transitions.

Proof. The pairwise Boltzmann distributions of ĺ
ξ
β can be used to derive the noiseless

comparisons of ĺξ
‹, since the relative return of each pair of trajectories is encoded in each

Ppξ1 ĺ
ζ
β ξ2q:

ξ1 ĺξ
‹ ξ2 ô

`

Gpξ1q ď Gpξ2q
˘

ô
`

exppβGpξ1qq ď exppβGpξ2qq
˘

ô

´

1
2

ď Ppξ1 ĺ
ζ
β ξ2q

¯

.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 124

Therefore, ĺξ
‹ is invariant to k-initial potential shaping and a mask of unreachable transitions

by Theorem 3.3.10.
That ĺξ

‹ is also invariant to positive linear scaling follows from a similar argument as for
the first bound in Theorem 3.3.11, proved above.

Remark A.2.11. Theorem 3.3.12 is a lower bound on the full set of invariances of the noiseless
order of possible and initial trajectories. We note the following:

• It is not a tight bound: At least in some MDPs, the order is invariant to additional
transformations.

• A slightly tigher lower bound can be achieved by establishing that ĺξ
‹ can be derived

from ĺζ
‹: Consider, for a given trajectory ξ, the sequence of ‘prefix’ trajectory fragments

ξp0q, ξp1q, ξp2q, . . ., with each ξpnq comprising the first n transitions of ξ. By definition
Gpξq “ limnÑ8 Gpξpnqq, and so for each pair of trajectories ξ1, ξ2, we have ξ1 ĺξ

‹ ξ2 if
and only if ξpnq

1 ĺζ
‹ ξ

pnq

2 for infinitely many n. While this is not a practical method to
compute the trajectory order ĺξ

‹ from the fragment order ĺζ
‹, it counts as a derivation

in that it is sufficient to show that if a transformation does not change the fragment
order ĺζ

‹, it cannot change the trajectory order ĺξ
‹ either. Therefore, in particular, ĺξ

‹

inherits invariance to ZPMTs in some MDPs from ĺζ
‹. This tightens the bound, at

least in some MDPs.

• The previous point does not imply that the trajectory order ĺξ
‹ inherits the fragment

order ĺζ
‹’s non-invariances. A case in point is that ĺξ

‹ is invariant to k-initial potential
shaping and a mask of unreachable transitions, where ĺζ

‹ is not (Theorem 3.3.11).
It is not yet clear if there are MDPs where ĺξ

‹ is invariant to no ZPMTs other than
positive linear scaling, or even to not all ZPMTs, and there may be invariances of ĺξ

‹

that require new transformation classes to describe. However, Theorem 3.3.12 and this
remark give us enough information to confidently position ĺξ

‹ in our partial order of
reward-derived objects (see Figure 3.1).

Theorem 3.3.13. Given an MDP, ĺ
ξ
D determines R up to k-initial potential shaping, positive

linear scaling, and a mask of unreachable transitions.

Proof. It is clear that preferences between lotteries over a choice set are preserved by positive
affine transformations of the value (and no other transformations). In particular, the converse
is a consequence of the well-known VNM utility theorem [110]. The proof by Neumann and
Morgenstern [110] covers a finite number of outcomes, and the result also holds for an infinite
number of outcomes [see, e.g., 48].

Thus, our result is immediate from Lemmas A.1.3 and A.1.4, which together state that
these positive affine transformations of the return function correspond exactly to k-initial
potential shaping, positive linear scaling, and a mask of unreachable transitions.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 125

A.2.5 Proofs for Section 3.3.3 Results

Theorem 3.3.14. Given an MDP, the set of optimal policies determines R up to optimality-
preserving transformations with Opsq “ argmaxa A‹ps, aq.

Proof. The set of all optimal policies determines a maximally supportive policy, for example
by constructing a policy that supports all actions supported by any policy in the set. Likewise,
a maximally supportive policy determines the set of optimal policies, namely as the set of
all policies whose support is a subset of the maximally supportive policy. Therefore, these
objects share precisely the same invariances.

A.2.6 Proofs for Section 3.4 Results

Theorem 3.4.2. Consider an MDP pS,A, τ, µ0, R1, γq and alternative transition dynamics
τ 1. Given any function L : S ˆ A Ñ R, there exists a reward function R2, produced from R1

by S 1-redistribution under τ , such that ES1„τ 1ps,aq rR2ps, a, S 1qs “ Lps, aq for all s, a such that
τps, aq ‰ τ 1ps, aq.

Proof. Per Definition 3.2.3, that R2 is produced from R1 by S 1-redistribution under τ requires
that, for all s P S and a P A,

ES1„τps,aq rR1ps, a, S
1
qs “ ES1„τps,aq rR2ps, a, S 1

qs . (A.7)

Let s P S and a P A be any state and action such that τ 1ps, aq ‰ τps, aq. Let τ⃗s,a and τ⃗ 1
s,a be

τps, aq and τ 1ps, aq expressed as vectors, and let R⃗1s,a be the vector where R⃗1

piq

s,a “ R1ps, a, siq.
The question is then if there is an analogous vector R⃗2s,a such that:

τ⃗s,a ¨ R⃗2s,a “ τ⃗s,a ¨ R⃗1s,a ,

τ⃗ 1
s,a ¨ R⃗2s,a “ Lps, aq.

(A.8)

Since τ⃗s,a and τ⃗ 1
s,a differ and are valid probability distributions, they are linearly independent.

Therefore, the system of equations (A.8) always has a solution for R⃗2s,a. Form the required
R2 as R1 modified to have the values of R⃗2s,a in these states where the transition function is
disturbed.

Theorem 3.4.3. Given data sources X and Y , let pX, Y q denote the combined data source
formed from X and Y . If X and Y are incomparable, then pX, Y q ă X and pX, Y q ă Y .

Proof. Transformations that preserve pX, Y q necessarily preserve X, therefore
pX, Y q ĺ X. But since X and Y are incomparable, there is some transformation that
preserves X and not Y . This transformation does not preserve pX, Y q. Therefore, pX, Y q ă X.
Similarly, pX, Y q ă Y .

We note that the above result is also an elementary consequence of the lattice structure of
the partial order of partition refinement [2, §I.2.B], since the combined data source corresponds
to the meet of the original data sources.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 126

A.3 Other spaces of reward functions
Hitherto, we have assumed reward functions are members of S ˆ A ˆ S Ñ R. That is, they
are deterministic functions of transitions depending on the state, action, and the successor
state. In this appendix, we discuss several alternative spaces of reward functions and their
implications for the invariance properties of various objects derived from the reward function.

A.3.1 Restricted-domain Reward Functions

It is common in both reinforcement learning and reward learning to consider less expressive
spaces of reward functions. In particular, the domain of the reward function is often restricted
to S or S ˆ A. When modelling a task, the choice of reward function domain is usually a
formality: An MDP taking full advantage of the domain S ˆ A ˆ S has an “equivalent” MDP
with a restricted domain and some added auxiliary states [139, §17]. Conversely, reward
functions with restricted domains can be viewed as a special case of functions from S ˆ A ˆ S
where the functions are constant in the final argument(s). Restricting the domain can be an
appealing simplification when modelling a task, hence the popularity of these formulations.

When modelling a data source, this equivalence may not apply: We may not have access
to data regarding auxiliary states, so assuming a restricted domain effectively assumes the
latent reward is indeed constant with respect to the successor state (and possibly the action)
of each transition. This assumption may or may not be warranted.

If a restricted domain of S or S ˆ A is preferred, then our invariance results can be
adapted in a straightforward manner. In general, since we are effectively considering a
subspace of candidate reward functions for transformations, ambiguity can only decrease. In
particular, these restrictions have two main consequences.

Firstly, the reward function transformation of S 1-redistribution vanishes to the identity
transformation, since it allows variation only in the successor state argument of the reward
function, which is now impossible. This reduces the effective ambiguity of the Q-function and
all derivative objects. Notably, the Q-function uniquely identifies the reward function, and
Boltzmann policies have the same invariances as Boltzmann comparisons between trajectories.
Restricting the domain to S means the (state) value function for an arbitrary known policy
also uniquely identifies the reward function but doesn’t otherwise alter the invariances we
have explored.

Secondly, for most MDPs, the available potential-shaping transformations are restricted,
but not eliminated. The function added in a potential-shaping transformation (γ ¨Φps1q´Φpsq)
nominally depends on the successor state of the transition. Some transformed reward functions
may rely on this dependence, falling outside of the restricted domain. However, some non-zero
transformations will usually remain. For example, in a discounted MDP without terminal
states, a non-zero constant potential function Φpsq “ k does not effectively depend on s,
and the reward transformation of adding γ ¨ Φps1q ´ Φpsq “ pγ ´ 1q ¨ k to a reward function
does not introduce a dependence on s1. In general, the set of remaining potential-shaping
transformations will depend on the network structure of the MDP. At the extreme, in a



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 127

deterministic MDP with state-action rewards, all potential-shaping transformations are
permitted, since a dependence on s1 can be satisfied by a.

A.3.2 Stochastic Reward Functions

Certain tasks are naturally modelled as providing rewards drawn stochastically from some
distribution upon each transition. An even more expressive space of reward functions than
we consider is the space of transition-conditional reward distributions.∗ Identifying the reward
function in this case is more challenging in general because the latent parameter contains a
full distribution of information for each input, rather than a single point. In the spirit of this
paper, we sketch a characterisation of this additional ambiguity.

A deterministic reward function can be viewed as the conditional expectation of a reward
distribution function. Taking the expectation of the reward distribution for each transition
introduces invariance, since the expectation operation is not injective (except in certain
restricted cases such as for parametric families of distributions that can be parametrised by
their mean). The invariance introduced is akin to S 1-redistribution, but with an expectation
over the support of the reward distribution rather than the successor state of each transition.

In the extension of the RL formalism to account for stochastic rewards, this expectation
is effectively the first step in the derivation of each of the objects we have studied. Therefore,
all of these objects inherit this new invariance.

As a consequence, all data sources are effectively more ambiguous with respect to this new
latent parameter. For example, if optimal comparisons between trajectories are understood
to be performed based on the pairwise comparison of the expected return of each individual
trajectory, then these comparisons are also invariant to transformations of the reward
distributions that preserve their means.

Fortunately, much of reinforcement learning also focuses on expected return and reward in
application. Accordingly, most downstream tasks are tolerant to any ambiguity in the exact
distribution of stochastic rewards, beyond identifying the mean. Since this is the same kind
of ambiguity that is introduced by considering the latent parameter of reward learning as a
conditional distribution rather than a deterministic function, our results are still informative
for these situations.

A.3.3 Further Spaces and Future Work

For certain applications, including risk-sensitive RL where non-mean objectives are pur-
sued [107, 108, 38], the distribution of stochastic rewards can be consequential. Moreover,
the introduction of stochastic rewards suggests considering data sources based on samples
rather than expectations, such as a data source of trajectory comparisons based on sampled
trajectory returns. Characterising the invariances of these objectives to transformations of
the reward distribution, and thereby their ambiguity tolerance, is left to future work.

∗Of course, it’s also possible to consider reward to be distributed conditionally on only the state or
state-action components of a transition and not the full transition.



APPENDIX A. DEFERRED CONTENT FROM CHAPTER 3 128

In future extensions of this work to handle continuous MDPs, there will be an opportunity
to study the effect of restricting to various parametrised spaces of reward functions. For
example, it is common in reinforcement learning and reward learning to study MDPs with
reward functions that are linear in a feature vector associated with each transition. This kind
of restriction may reduce the available reward transformations compared to those available
to a non-parametric reward function in a similar manner to restricting the domain of a finite
reward function as discussed above.

The relaxation of the Markovian assumption also introduces a broader space of reward
functions and with it new dimensions for transformations and invariance. As one example
related to potential shaping, the non-Markovian additive transformations studied by Wiewiora,
Cottrell, and Elkan [172] will amount to new invariances of the optimal policy and other
related objects.



129

Appendix B

Deferred content from Chapter 4

B.1 Approximation procedures

B.1.1 Sample-based approximation for EPIC distance

We approximate EPIC distance (definition 4.2.7) by estimating Pearson distance on a set
of samples, canonicalizing the reward on-demand. Specifically, we sample a batch BV of
NV samples from the coverage distribution D, and a batch BM of NM samples from the
joint state and action distributions DS ˆ DA . For each ps, a, s1q P BV , we approximate the
canonically shaped rewards (definition 4.2.2) by taking the mean over BM :

CDS ,DA pRq ps, a, s1
q “ Rps, a, s1

q ` E rγRps1, A, S 1
q ´ Rps, A, S 1

q ´ γRpS,A, S 1
qs (B.1)

« Rps, a, s1
q `

γ

NM

ÿ

px,uqPBM

Rps1, u, xq (B.2)

´
1

NM

ÿ

px,uqPBM

Rps, u, xq ´ c. (B.3)

We drop the constant c from the approximation since it does not affect the Pearson
distance; it can also be estimated in OpN2

Mq time by
c “

γ
N2

M

ř

px,¨qPBM

ř

px1,uqPBM
Rpx, u, x1q. Finally, we compute the Pearson distance between the

approximate canonically shaped rewards on the batch of samples BV , yielding an OpNVNMq

time algorithm.

B.1.2 Optimization-based approximation for NPEC distance

DNPECpRA, RBq (section 4.3.2) is defined as the infimum of Lp distance over an infinite set
of equivalent reward functions R ” RA. We approximate this using gradient descent on the
reward model

Rν,c,wps, a, s1
q “ exppνqRAps, a, s1

q ` c ` γΦwps1
q ´ Φwpsq, (B.4)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 130

where ν, c P R are scalar weights and w is a vector of weights parameterizing a deep neural
network Φw. The constant c P R is unnecessary if Φw has a bias term, but its inclusion
simplifies the optimization problem.

We optimize ν, c, w to minimize the mean of the cost

Jpν, c, wqps, a, s1
q “ }Rν,c,wps, a, s1

q, RBps, a, s1
q}

p (B.5)

on samples ps, a, s1q from a coverage distribution D. Note

EpS,A,S1q„D rJpν, c, wqpS,A, S 1
qs

1{p
“ DLp,DpRν,c,w, RBq (B.6)

upper bounds the true NPEC distance since Rν,c,w ” RA.
We found empirically that ν and c need to be initialized close to their optimal values

for gradient descent to reliably converge. To resolve this problem, we initialize the affine
parameters to ν Ð log λ and c found by:

argmin
λě0,cPR

E
s,a,s1„D

pλRAps, a, s1
q ` c ´ RBps, a, s1

qq
2
. (B.7)

We use the active set method of Lawson and Hanson [87] to solve this constrained least-squares
problem. These initial affine parameters minimize the Lp distance

DLp,DpRν,c,0ps, a, s
1
q, RBps, a, s1

qq

when p “ 2 with the potential fixed at Φ0psq “ 0.

B.1.3 Confidence Intervals

We report confidence intervals to help measure the degree of error introduced by the approxi-
mations. Since approximate distances may not be normally distributed, we use bootstrapping
to produce a distribution-free confidence interval. For EPIC, NPEC and Episode Return
(sometimes reported as regret rather than return), we compute independent approximate
distances or returns over different seeds, and then compute a bootstrapped confidence interval
for each seed. We use 30 seeds for EPIC, but only 9 seeds for computing Episode Return and
3 seeds for NPEC due to their greater computational requirements. In ERC, computing the
distance is very fast, so we instead apply bootstrapping to the collected episodes, computing
the ERC distance for each bootstrapped episode sample.

B.2 Experiments

B.2.1 Hyperparameters for Approximate Distances

Table B.1 summarizes the hyperparameters and distributions used to compute the distances
between reward functions. Most parameters are the same across all environments. We



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 131

Table B.1: Summary of hyperparameters and distributions used in experiments. The uniform
random coverage distribution Dunif samples states and actions uniformly at random, and
samples the next state from the transition dynamics. Random policy πuni takes uniform
random actions. The synthetic expert policy π˚ was trained with PPO on the ground-truth
reward. Mixture samples actions from either πuni or π˚, switching between them at each
time step with probability 0.05. Warmstart Size is the size of the dataset used to compute
initialization parameters described in section B.1.2. See Table B.2 for the policy training
hyperparameters.

Parameter Value In experiment

Coverage Distribution D
Random transitions Dunif GridWorld

Rollouts from πuni
PointMass, HalfCheetah

Hopper
πuni, π˚ and Mixture PointMaze

Bootstrap Samples 10 000 All
Discount γ 0.99 All

EPIC
State Distribution DS Marginalized from D All
Action Distribution DA Marginalized from D All
Seeds 30 All
Samples NV 32 768 All
Mean Samples NM 32 768 All

NPEC
Seeds 3 All
Total Time Steps 1 ˆ 106 All
Optimizer Adam All
Learning Rate 1 ˆ 10´2 All
Batch Size 4096 All
Warmstart Size 16 386 All
Loss ℓ ℓpx, yq “ px ´ yq2 All

ERC
Episodes 131 072 All

Episode Return
Seeds 9 All



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 132

use a coverage distribution of uniform random transitions Dunif in the simple GridWorld
environment with known deterministic dynamics. In other environments, the coverage
distribution is sampled from rollouts of a policy. We use a random policy πuni for PointMass,
HalfCheetah and Hopper in the hand-designed reward experiments (section 4.4.1). In
PointMaze, we compare three coverage distributions (section 4.4.2) induced by rollouts of
πuni, an expert policy π˚ and a Mixture of the two policies, sampling actions from either
πuni or π˚ and switching between them with probability 0.05 per time step.

B.2.2 Training Learned Reward Models

For the experiments on learned reward functions (sections 5.2 and 4.4.2), we trained
reward models using adversarial inverse reinforcement learning (AIRL) [49]), preference
comparison [33] and by regression onto the ground-truth reward [target method from
33, section 3.3]. For AIRL, we use an existing open-source implementation [170]. We
developed new implementations for preference comparison and regression, available at
https://github.com/HumanCompatibleAI/evaluating-rewards. We also use the RL al-
gorithm proximal policy optimization (PPO) [144]) on the ground-truth reward to train
expert policies to provide demonstrations for AIRL. We use 9 seeds, taking rollouts from the
seed with the highest ground-truth return.

Our hyperparameters for PPO in Table B.2 were based on the defaults in Stable Base-
lines [65]. We only modified the batch size and learning rate, and disabled value function
clipping to match the original PPO implementation.

Our AIRL hyperparameters in Table B.3 likewise match the defaults, except for increasing
the total number of timesteps to 106. Due to the high variance of AIRL, we trained 5 seeds,
selecting the one with the highest ground-truth return. While this does introduce a positive
bias for our AIRL results, in spite of this AIRL performed worse in our tests than other
algorithms. Moreover, the goal in this paper is to evaluate distance metrics, not reward
learning algorithms.

For preference comparison we performed a sweep over batch size, trajectory length and
learning rate to decide on the hyperparameters in Table B.4. Total time steps was selected
once diminishing returns were observed in loss curves. The exact value of the regularization
weight was found to be unimportant, largely controlling the scale of the output at convergence.

Finally, for regression we performed a sweep over batch size, learning rate and total time
steps to decide on the hyperparameters in Table B.5. We found batch size and learning rate
to be relatively unimportant with many combinations performing well, but regression was
found to converge slowly but steadily requiring a relatively large 10 ˆ 106 time steps for good
performance in our environments.

All algorithms are trained on synthetic data generated from the ground-truth reward
function. AIRL is provided with a large demonstration dataset of 100 000 time steps from an
expert policy trained on the ground-truth reward (see Table B.3). In preference comparison
and regression, each batch is sampled afresh from the coverage distribution specified in
Table B.1 and labeled according to the ground-truth reward.

https://github.com/HumanCompatibleAI/evaluating-rewards


APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 133

Table B.2: Hyperparameters for proximal policy optimization (PPO) [144]. We used the
implementation and default hyperparameters from Hill et al. [65]. PPO was used to train
expert policies on ground-truth reward and to optimize learned reward functions for evaluation.

Parameter Value In environment

Total Time Steps 1 ˆ 106 All
Seeds 9 All
Batch Size 4096 All
Discount γ 0.99 All
Entropy Coefficient 0.01 All
Learning Rate 3 ˆ 10´4 All
Value Function Coefficient 0.5 All
Gradient Clipping Threshold 0.5 All
Ratio Clipping Thrsehold 0.2 All
Lambda (GAE) 0.95 All
Minibatches 4 All
Optimization Epochs 4 All
Parallel Environments 8 All

Table B.3: Hyperparameters for adversarial inverse reinforcement learning (AIRL) used in
Wang, Gleave, and Toyer [170].

Parameter Value

RL Algorithm PPO [144]
Total Time Steps 1 000 000
Discount γ 0.99
Demonstration Time Steps 100 000
Generator Batch Size 2048
Discriminator Batch Size 50
Entropy Weight 1.0
Reward Function Architecture MLP, two 32-unit hidden layers
Potential Function Architecture MLP, two 32-unit hidden layers



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 134

Table B.4: Hyperparameters for preference comparison used in our implementation of
Christiano et al. [33].

Parameter Value Range Tested

Total Time Steps 5 ˆ 106 r1, 1 ˆ 107s
Batch Size 10 000 r500, 250 000s

Trajectory Length 5 r1, 100s

Learning Rate 10´2 r10´4, 10´1s

Discount γ 0.99
Reward Function Architecture MLP, 2 32-unit hidden layers
Output L2 Regularization Weight 10´4

Table B.5: Hyperparameters for regression used in our implementation of Christiano et al.
[33, target method from section 3.3].

Parameter Value Range Tested

Total Time Steps 10 ˆ 106 r1, 20 ˆ 106s

Batch Size 4096 r256, 16 384s

Learning Rate 2 ˆ 10´2 r10´3, 10´1s

Discount γ 0.99
Reward Function Architecture MLP, two 32-unit hidden layers

B.2.3 Computing infrastructure

Experiments were conducted on a workstation (Intel i9-7920X CPU with 64 GB of RAM),
and a small number of r5.24xlarge AWS VM instances, with 48 CPU cores on an Intel
Skylake processor and 768 GB of RAM. It takes less than three weeks of compute on a single
r5.24xlarge instance to run all the experiments described in this paper.

B.2.4 Comparing hand-designed reward functions

We compute distances between hand-designed reward functions in four environments: GridWorld,
PointMass, HalfCheetah and Hopper. The reward functions for GridWorld are described
in Figure B.1, and the distances are reported in Figure B.2. We report the approximate
distances and confidence intervals between reward functions in the other environments in
Figures B.3, B.4 and B.5.

We find the (approximate) EPIC distance closely matches our intuitions for similarity
between the reward functions. NPEC often produces similar results to EPIC, but unfortu-
nately is dogged by optimization error. This is particularly notable in higher-dimensional
environments like HalfCheetah and Hopper, where the NPEC distance often exceeds the



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 135

theoretical upper bound of 1.0 and the confidence interval width is frequently larger than 0.2.
By contrast, ERC distance generally has a tight confidence interval, but systematically

fails in the presence of shaping. For example, it confidently assigns large distances between
equivalent reward pairs in PointMass such as S -D . However, ERC produces reasonable
results in HalfCheetah and Hopper where rewards are all similarly shaped. In fact, ERC
picks up on a detail in Hopper that EPIC misses: whereas EPIC assigns a distance of around
0.71 between all rewards of different types (running vs backflipping), ERC assigns lower
distances when the rewards are in the same direction (forward or backward). Given this,
ERC may be attractive in some circumstances, especially given the ease of implementation.
However, we would caution against using it in isolation due to the likelihood of misleading
results in the presence of shaping.

B.2.5 Comparing learned reward functions

Previously, we reported the mean approximate distance from a ground-truth reward of four
learned reward models in PointMaze (Table 4.2). Since these distances are approximate,
we report 95% lower and upper bounds computed via bootstrapping in Table B.7. We also
include the relative difference of the upper and lower bounds from the mean, finding the
relative difference to be fairly consistent across reward models for a given algorithm and
coverage distribution pair. The relative difference is less than 1% for all EPIC and ERC
distances. However, NPEC confidence intervals can be as wide as 50%: this is due to the
method’s high variance, and the small number of seeds we were able to run because of the
method’s computational expense.

B.2.6 Runtime of Distance Metrics

We report the empirical runtime for EPIC and baselines in Table B.6, performing 25 pairwise
comparisons across 5 reward functions in PointMass. These comparisons were run on an
unloaded machine running Ubuntu 20.04 (kernel 5.4.0-52) with an Intel i9-7920X CPU and
64 GB of RAM. We report sequential runtimes: runtimes for all methods could be decreased
further by parallelizing across seeds. The algorithms were configured to use 8 parallel
environments for sampling. Inference and training took place on CPU. All methods used
the same TensorFlow configuration, parallelizing operations across threads both within and
between operations. We found GPUs offered no performance benefit in this setting, and in
some cases even increased runtime. This is due to the fixed cost of CPU-GPU communication,
and the relatively small size of the observations.

We find that in just 17 seconds EPIC can provide results with a 95% confidence interval
ă 0.023, an order of magnitude tighter than NPEC running for over 8 hours. Training policies
for all learned rewards in this environment using PPO is comparatively slow, taking over 4
hours even with only 3 seeds. While ERC is relatively fast, it takes a large number of samples
to achieve tight confidence intervals. Moreover, since PointMass has stochastic initial states,
ERC can take on arbitrary values under shaping, as discussed in sections 4.3.1 and 5.2.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 136

0

1

2

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

Sparse Reward

-1

-1

-1

-1

-1

-1

3

-1

-1

-4

-4

-4

0

-4

-4

-4

-4

-4

-4

0

-4

2

2

2

2

2

2

2

2

2

2

2

2

Dense Reward

0

1

2

0

0

0

0

0

0

-1

0

0

0

0

0

-1

0

0

0

0

0

0

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

Penalty Reward

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

Center Reward

0 1 2

0

1

2

-1

0

0

-1

0

-1

4

0

-1

-1

0

-1

4

0

-1

-1

0

-1

0

4

0

-1

0

0

-1

0

-1

0

0

0

-1

0

-1

Path Reward

0 1 2

-4

0

0

-4

0

-1

4

0

-1

-4

0

-1

4

0

-1

-4

0

-4

0

4

0

-4

0

0

-4

0

-1

0

0

0

-1

0

-1

Cliff Reward

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

Figure B.1: Heatmaps of reward functions Rps, a, s1q for a 3 ˆ 3 deterministic gridworld.
Rps, stay, sq is given by the central circle in cell s. Rps, a, s1q is given by the triangular wedge
in cell s adjacent to cell s1 in direction a. Optimal action(s) (for infinite horizon, discount
γ “ 0.99) have bold labels against a hatched background. See Figure B.2 for the distance
between all reward pairs.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 137

Sp
ar
se

De
ns
e

Ce
nt
er

Pe
na
lt
y

Pa
th

Cl
if
f

RB

Sp
ar
se

De
ns
e

Ce
nt
er

Pe
na
lt
y

Pa
th

Cl
if
f

R
A

0.0000 0.0000 0.7500 1.0000 0.1602 0.3676

0.0000 0.0000 0.7500 1.0000 0.1602 0.3676

0.7500 0.7500 0.0000 0.6614 0.7071 0.6692

1.0000 1.0000 0.6614 0.0000 0.9871 0.9300

0.1602 0.1602 0.7071 0.9871 0.0000 0.2672

0.3676 0.3676 0.6692 0.9300 0.2672 0.0000

0.0

0.2

0.4

0.6

0.8

1.0

D
(R

A
,R

B
)

Sp
ar
se

De
ns
e

Ce
nt
er

Pe
na
lt
y

Pa
th

Cl
if
f

RB

Sp
ar
se

De
ns
e

Ce
nt
er

Pe
na
lt
y

Pa
th

Cl
if
f

R
A

0.0000 0.0000 1.0016 1.0009 0.3068 0.7038

0.0000 0.0000 1.0016 1.0000 0.3068 0.7038

1.0011 1.0133 0.0000 0.9853 1.0016 1.0004

1.0009 1.0213 0.9824 0.0000 1.0010 1.0010

0.3069 0.3069 1.0023 1.0000 0.0000 0.5476

0.7031 0.7031 1.0025 1.0000 0.5468 0.0000

0.0

0.2

0.4

0.6

0.8

1.0

D
(R

A
,R

B
)

Figure B.2: Distances (EPIC, top; NPEC, bottom) between hand-designed reward functions
for the 3ˆ 3 deterministic Gridworld environment. EPIC and NPEC produce similar results,
but EPIC more clearly discriminates between rewards whereas NPEC distance tends to
saturate. For example, the NPEC distance from Penalty to other rewards lies in the very
narrow r0.98, 1.0s range, whereas EPIC uses the wider r0.66, 1.0s range. See Figure B.1 for
definitions of each reward. Distances are computed using tabular algorithms. We do not
report confidence intervals since these algorithms are deterministic and exact up to floating
point error.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 138

Distance Wall-Clock Environment Reward # of 95% CI Width
Metric Time Time Steps Queries Seeds Max Mean

EPIC Quick 17 s 8192 1.67 ˆ 107 3 0.023 04 0.008 60
EPIC 6738 s 65 536 1.07 ˆ 109 30 0.005 58 0.002 34
NPEC 29 769 s 7.50 ˆ 107 7.50 ˆ 107 3 0.315 91 0.066 20
ERC 1376 s 6.55 ˆ 106 6.55 ˆ 106 — 0.015 81 0.005 33
RL (PPO) 14 745 s 7.50 ˆ 107 7.50 ˆ 107 3 — —

Table B.6: Time and resources taken by different metrics to perform 25 distance comparisons
on PointMass, and the confidence interval widths obtained (smaller is better). Methods
EPIC, NPEC and ERC correspond to Figures 4.2(a), (b) and (c) respectively. EPIC Quick is
an abbreviated version with fewer samples. RL (PPO) is estimated from the time taken using
PPO to train a single policy (16m:23s) until convergence (106 time steps). EPIC samples
NM ` NV time steps from the environment and performs NMNV reward queries. In EPIC
Quick, NM “ NV “ 4096; in EPIC, NM “ NV “ 302768. Other methods query the reward
once per environment time step.

S S D D M

RB

S

S

D

D

M

R
A

0.00 0.51 0.00 0.51 0.63
0.51 0.00 0.51 0.00 0.55
0.00 0.51 0.00 0.51 0.63
0.51 0.00 0.51 0.00 0.55
0.63 0.55 0.63 0.55 0.00

(a) EPIC Median

S S D D M

RB

0.00 0.88 0.22 0.86 0.96
0.92 0.00 0.94 0.04 0.74
0.58 0.95 0.00 0.81 0.97
0.88 0.04 0.84 0.00 0.58
0.93 0.79 0.80 0.62 0.00

(b) NPEC Median

S S D D M

RB

0.00 0.41 0.56 0.56 0.57
0.41 0.00 0.61 0.55 0.62
0.56 0.61 0.00 0.11 0.64
0.56 0.55 0.11 0.00 0.64
0.57 0.62 0.64 0.64 0.00

0.0

0.5

1.0

D̄
(R

A
,R

B
)

(c) ERC Median

S S D D M

RB

S

S

D

D

M

R
A

6e-5 2e-3 9e-5 2e-3 9e-4
2e-3 6e-5 2e-3 5e-5 2e-3
9e-5 2e-3 7e-5 2e-3 9e-4
2e-3 5e-5 2e-3 5e-5 2e-3
9e-4 2e-3 9e-4 2e-3 5e-5

(d) EPIC CI Width

S S D D M

RB

2e-5 9e-3 3e-2 2e-2 2e-1
9e-2 9e-7 2e-1 4e-3 1e-1
1e-1 1e-2 1e-5 6e-3 1e-1
6e-2 2e-3 9e-2 2e-6 6e-2
1e-1 1e-1 3e-1 1e-2 4e-7

(e) NPEC CI Width

S S D D M

RB

7e-9 1e-2 4e-3 4e-3 3e-3
1e-2 7e-9 6e-3 5e-3 4e-3
4e-3 6e-3 1e-8 1e-3 4e-3
4e-3 5e-3 1e-3 1e-8 4e-3
3e-3 4e-3 4e-3 4e-3 7e-9

0.0

0.5

1.0
D

W
(R

A
,R

B
)

(f) ERC CI Width

Figure B.3: Approximate distances between hand-designed reward functions in PointMass.
The coverage distribution D is sampled from rollouts of a policy πuni taking actions uniformly
at random. Key: The agent has position x P R, velocity 9x P R, and can accelerate :x P R,
producing future position x1 P R. quadratic penalty on control :x2, no control penalty.
S is Sparsepxq “ 1r|x| ă 0.05s, D is shaped Densepx, x1q “ Sparsepxq ` |x1| ´ |x|, while M is
Magnitudepxq “ ´|x|. Confidence Interval (CI): 95% CI computed by bootstraping over
10 000 samples.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 139

RB

R
A

0.00 0.17 1.00 0.98

0.17 0.00 0.98 0.94

1.00 0.98 0.00 0.17

0.98 0.94 0.17 0.00

(a) EPIC Median

RB

0.01 0.03 1.17 1.11

0.03 0.01 1.13 1.19

1.15 1.09 0.01 0.03

1.08 1.08 0.03 0.01

(b) NPEC Median

RB

0.00 0.02 1.00 1.00

0.02 0.00 1.00 1.00

1.00 1.00 0.00 0.02

1.00 1.00 0.02 0.00
0.00

0.25

0.50

0.75

1.00

D̄
(R

A
,R

B
)

(c) ERC Median

RB

R
A

5e-5 6e-4 1e-8 1e-4

6e-4 5e-5 1e-4 4e-4

1e-8 1e-4 5e-5 7e-4

1e-4 4e-4 7e-4 6e-5

(d) EPIC CI Width

RB

1e-2 1e-2 1e-1 3e-1

2e-2 1e-2 1e-2 1e-1

2e-1 2e-1 1e-2 1e-2

3e-1 8e-2 9e-3 1e-2

(e) NPEC CI Width

RB

1e-8 2e-4 1e-16 3e-6

2e-4 1e-8 3e-6 1e-5

1e-16 3e-6 1e-8 2e-4

3e-6 1e-5 2e-4 1e-8
0.00

0.25

0.50

0.75

1.00

D
W
(R

A
,R

B
)

(f) ERC CI Width

Figure B.4: Approximate distances between hand-designed reward functions in HalfCheetah.
The coverage distribution D is sampled from rollouts of a policy πuni taking actions uniformly
at random. Key: is a reward proportional to the change in center of mass and moving
forward is rewarded when to the right, and moving backward is rewarded when to the
left. quadratic control penalty, no control penalty. Confidence Interval (CI): 95%
CI computed by bootstraping over 10 000 samples.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 140

RB

R
A

0.00 0.00 0.99 0.99 0.71 0.71 0.71 0.71
0.00 0.00 0.99 0.99 0.71 0.71 0.71 0.71
0.99 0.99 0.00 0.00 0.71 0.71 0.71 0.71
0.99 0.99 0.00 0.00 0.71 0.71 0.71 0.71
0.71 0.71 0.71 0.71 0.00 0.00 1.00 1.00
0.71 0.71 0.71 0.71 0.00 0.00 1.00 1.00
0.71 0.71 0.71 0.71 1.00 1.00 0.00 0.00
0.71 0.71 0.71 0.71 1.00 1.00 0.00 0.00

(a) EPIC Median

RB

0.00 0.00 1.06 1.01 1.20 1.24 0.95 1.00
0.00 0.00 0.92 1.40 1.24 1.15 0.97 1.02
1.25 1.46 0.00 0.00 1.02 0.99 0.95 1.08
0.94 1.13 0.00 0.00 1.03 1.00 0.95 0.99
1.73 1.42 1.02 1.18 0.00 0.00 1.03 0.98
1.29 1.27 1.12 1.17 0.00 0.00 0.97 0.92
1.41 1.14 1.36 1.52 1.07 1.03 0.00 0.00
1.18 1.65 1.16 1.69 1.09 1.01 0.00 0.00

(b) NPEC Median

RB

0.00 0.00 0.97 0.97 0.37 0.37 0.93 0.93
0.00 0.00 0.97 0.97 0.37 0.37 0.93 0.93
0.97 0.97 0.00 0.00 0.88 0.88 0.47 0.47
0.97 0.97 0.00 0.00 0.88 0.88 0.47 0.47
0.37 0.37 0.88 0.88 0.00 0.00 1.00 1.00
0.37 0.37 0.88 0.88 0.00 0.00 1.00 1.00
0.93 0.93 0.47 0.47 1.00 1.00 0.00 0.00
0.93 0.93 0.47 0.47 1.00 1.00 0.00 0.00

0.0

0.2

0.4

0.6

0.8

1.0

D̄
(R

A
,R

B
)

(c) ERC Median

RB

R
A

6e-5 8e-5 2e-4 3e-4 1e-3 1e-3 1e-3 1e-3
8e-5 5e-5 2e-4 2e-4 1e-3 1e-3 1e-3 1e-3
3e-4 2e-4 6e-5 8e-5 1e-3 1e-3 1e-3 1e-3
2e-4 3e-4 8e-5 6e-5 1e-3 1e-3 1e-3 1e-3
1e-3 1e-3 1e-3 1e-3 5e-5 2e-5 1e-8 4e-8
1e-3 1e-3 1e-3 1e-3 1e-5 6e-5 4e-8 1e-7
1e-3 1e-3 1e-3 1e-3 1e-8 4e-8 5e-5 1e-5
1e-3 1e-3 1e-3 1e-3 4e-8 1e-7 1e-5 6e-5

(d) EPIC CI Width

RB

3e-3 3e-3 8e-1 4e-1 3e-1 5e-2 8e-2 1e-1
3e-3 3e-3 9e-1 2e0 3e-1 3e-1 8e-2 2e-1
4e-1 1e0 4e-3 4e-3 2e-1 2e-1 1e-1 3e-1
4e-1 6e-1 2e-3 4e-3 2e-1 2e-1 6e-2 1e-1
7e-1 1e-1 3e-1 3e-1 2e-4 1e-5 2e-1 3e-1
4e-1 6e-1 7e-1 4e-1 3e-4 2e-4 9e-2 2e-1
4e-2 4e-1 6e-1 2e-1 3e-1 2e-1 2e-4 3e-4
1e0 2e0 7e-1 7e-1 4e-1 1e-1 1e-4 2e-4

(e) NPEC CI Width

RB

7e-9 5e-7 7e-4 7e-4 4e-3 4e-3 2e-3 2e-3
5e-7 7e-9 7e-4 7e-4 4e-3 4e-3 2e-3 2e-3
7e-4 7e-4 1e-8 6e-7 2e-3 2e-3 4e-3 4e-3
7e-4 7e-4 6e-7 1e-8 2e-3 2e-3 4e-3 4e-3
4e-3 4e-3 2e-3 2e-3 1e-8 2e-61e-164e-10
4e-3 4e-3 2e-3 2e-3 2e-6 1e-84e-102e-9
2e-3 2e-3 4e-3 4e-31e-164e-101e-8 2e-6
2e-3 2e-3 4e-3 4e-34e-102e-9 2e-6 1e-8

0.0

0.2

0.4

0.6

0.8

1.0

D
W
(R

A
,R

B
)

(f) ERC CI Width

Figure B.5: Approximate distances between hand-designed reward functions in Hopper. The
coverage distribution D is sampled from rollouts of a policy πuni taking actions uniformly
at random. Key: is a reward proportional to the change in center of mass and is the
backflip reward defined in Amodei, Christiano, and Ray [7, footnote]. Moving forward is
rewarded when or is to the right, and moving backward is rewarded when or is to
the left. quadratic control penalty, no control penalty. Confidence Interval (CI):
95% CI computed by bootstraping over 10 000 samples.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 141

Table B.7: Approximate distances of reward functions from the ground-truth (GT). We report
the 95% bootstrapped lower and upper bounds, the mean, and a 95% bound on the relative
error from the mean. Distances (1000ˆ scale) use coverage distribution D from rollouts in
the PointMaze-Train environment of: a uniform random policy πuni, an expert π˚ and a
Mixture of these policies. DS and DA are computed by marginalizing D.

(a) 95% lower bound DLOW of approximate distance.

Reward 1000 ˆ DLOW
EPIC 1000 ˆ DLOW

NPEC 1000 ˆ DLOW
ERC Episode Return

Function πuni π
˚ Mix πuni π

˚ Mix πuni π
˚ Mix Train Test

GT 0.03 0.02 <0.01 0.02 1.43 <0.01 0.00 0.00 0.00 ´4.46 ´5.82
Regress 35.5 33.6 26.0 1.22 38.8 0.33 9.94 90.2 2.42 ´4.7 ´5.63
Pref 68.3 100 56.6 7.02 1239 9.25 24.7 358 19.5 ´5.26 ´4.88
AIRL SO 570 519 402 734 1645 424 547 521 238 ´27.3 ´22.7
AIRL SA 774 930 894 956 723 952 802 720 963 ´29.9 ´28

Mirage 3.49 0.02 381 0.17 4.03 481 25.8 <0.01 162 ´28.4 ´26.2

(b) Mean approximate distance D. Results are the same as Table 4.2.

Reward 1000 ˆDEPIC 1000 ˆDNPEC 1000 ˆDERC Episode Return

Function πuni π
˚ Mix πuni π˚ Mix πuni π

˚ Mix Train Test

GT 0.06 0.05 0.04 0.04 3.17 0.01 0.00 0.00 0.00 ´5.19 ´6.59
Regress 35.8 33.7 26.1 1.42 38.9 0.35 9.99 90.7 2.43 ´5.47 ´6.3
Pref 68.7 100 56.8 8.51 1333 9.74 24.9 360 19.6 ´5.57 ´5.04
AIRL SO 572 520 404 817 2706 488 549 523 240 ´27.3 ´22.7
AIRL SA 776 930 894 1067 2040 1039 803 722 964 ´30.7 ´29

Mirage 17.0 0.05 397 0.68 6.30 597 35.3 <0.01 166 ´30.4 ´29.1



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 142

(c) 95% upper bound DUP of approximate distance.

Reward 1000 ˆ DUP
EPIC 1000 ˆ DUP

NPEC 1000 ˆ DUP
ERC Episode Return

Function πuni π
˚ Mix πuni π˚ Mix πuni π˚ Mix Train Test

GT 0.09 0.07 0.07 0.06 6.14 0.01 <0.01 <0.01 <0.01 ´6.04 ´7.14
Regress 36.1 33.7 26.2 1.53 39.1 0.37 10.0 91.2 2.44 ´6.26 ´6.83
Pref 69.1 101 57.1 10.0 1432 10.1 25.2 361 19.7 ´5.9 ´5.22
AIRL SO 574 520 407 982 3984 532 551 526 242 ´27.3 ´22.8
AIRL SA 779 930 895 1241 4378 1124 805 724 964 ´31.7 ´29.8

Mirage 35.2 0.09 414 1.66 10.8 821 45.4 <0.01 171 ´32 ´31.4

(d) Relative 95% confidence interval DREL “

ˇ

ˇ

ˇ
max

´

Upper
Mean ´ 1, 1 ´ Lower

Mean

¯ˇ

ˇ

ˇ
in percent. The population

mean is contained within ˘DREL% of the sample mean in Table B.7b with 95% probability.

Reward DREL
EPIC% DREL

NPEC% DREL
ERC% Episode Return

Function πuni π
˚ Mix πuni π

˚ Mix πuni π
˚ Mix Train Test

GT 50.0 62.5 80.0 61.8 94.0 29.7 inf inf inf 0.16 0.12
Regress 0.81 0.14 0.40 14.2 0.42 7.48 0.53 0.55 0.57 0.14 0.11
Pref 0.61 0.14 0.44 17.5 7.49 5.02 0.90 0.48 0.48 0.06 0.04
AIRL SO 0.38 0.08 0.67 20.2 47.2 13.2 0.34 0.40 0.69 <0.01 <0.01
AIRL SA 0.35 0.02 0.08 16.3 115 8.42 0.23 0.26 0.04 0.03 0.04

Mirage 108 65.5 4.17 142 70.9 37.5 28.5 0.55 2.66 0.07 0.10



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 143

Table B.8: Approximate distances of reward functions from the ground-truth (GT) under
pathological coverage distributions. We report the 95% bootstrapped lower and upper bounds,
the mean, and a 95% bound on the relative error from the mean. Distances (1000ˆ scale)
use four different coverage distributions D. σ independently samples states, actions and next
states from the marginal distributions of rollouts from the uniform random policy πuni in
the PointMaze-Train environment. Ind independently samples the components of states
and next states from N p0, 1q, and actions from U r´1, 1s. Jail consists of rollouts of πuni

restricted to a small 0.09 ˆ 0.09 “jail” square that excludes the goal state 0.5 distance away.
πbad are rollouts in PointMaze-Train of a policy that goes to the corner opposite the goal
state. σ and Ind are not supported by ERC since they do not produce complete episodes.

(a) 95% lower bound DLOW of approximate distance.

Reward 1000 ˆ DLOW
EPIC 1000ˆDLOW

NPEC 1000 ˆ DLOW
ERC

Function σ Ind Jail πbad σ Ind Jail πbad Jail πbad

Regress 127 398 705 205 87.6 590 2433 898 809 456
Pref 146 433 462 349 97.4 632 661 221 372 332
AIRL SO 570 541 712 710 697 821 957 621 751 543
AIRL SA 768 628 558 669 720 960 940 2355 428 753

Mirage 9.22 0.03 <0.01 0.02 0.41 0.05 11.2 31.3 <0.01 0.02

(b) Mean approximate distance D. Results are the same as Table 4.2.

Reward 1000 ˆDEPIC 1000 ˆDNPEC 1000ˆDERC

Function σ Ind Jail πbad σ Ind Jail πbad Jail πbad

Regress 128 398 705 206 97.2 591 2549 921 810 458
Pref 147 433 463 349 117 633 683 237 374 333
AIRL SO 573 541 713 710 826 823 988 852 753 545
AIRL SA 771 628 558 669 859 962 964 2694 430 754

Mirage 42.4 0.06 0.03 0.05 1.41 0.25 18.3 39 <0.01 0.02



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 144

(c) 95% upper bound DUP of approximate distance.

Reward 1000 ˆ DUP
EPIC 1000 ˆ DUP

NPEC 1000ˆDUP
ERC

Function σ Ind Jail πbad σ Ind Jail πbad Jail πbad

Regress 129 398 706 206 106 593 2654 948 812 460
Pref 148 433 464 349 132 635 705 265 376 335
AIRL SO 576 541 713 710 939 825 1047 1021 755 547
AIRL SA 774 628 559 669 1015 963 981 3012 432 756

Mirage 85.9 0.09 0.05 0.09 3.25 0.46 28.6 45.3 <0.01 0.02

(d) Relative 95% confidence interval DREL “

ˇ

ˇ

ˇ
max

´

Upper
Mean ´ 1, 1 ´ Lower

Mean

¯ˇ

ˇ

ˇ
in percent. The population

mean is contained within ˘DREL% of the sample mean in Table B.8b with 95% probability.

Reward DREL
EPIC% DREL

NPEC% DREL
ERC%

Function σ Ind Jail πbad σ Ind Jail πbad Jail πbad

Regress 0.79 0.01 0.08 0.06 9.81 0.24 4.54 2.89 0.18 0.42
Pref 0.76 <0.01 0.16 0.07 16.9 0.35 3.35 11.7 0.47 0.48
AIRL SO 0.48 <0.01 0.07 0.02 15.6 0.28 6.01 27.1 0.23 0.38
AIRL SA 0.38 <0.01 0.13 0.03 18.2 0.22 2.47 12.6 0.45 0.23

Mirage 103 50 80 83.3 131 85.4 56.4 19.7 0.54 0.55



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 145

0 20 40 60 80 100

Regress Training Progress (%)

0.0

0.5

1.0

D
is

ta
nc

e

0

10

20

30

R
eg

re
t

EPIC NPEC ERC RL Train RL Test

(a) Comparisons of Regress using all distance algorithms.

0 20 40 60 80 100

Pref Training Progress (%)

0.0

0.5

1.0

D
is

ta
nc

e

0

10

20

30

R
eg

re
t

EPIC NPEC ERC RL Train RL Test

(b) Comparisons of Pref using all distance algorithms.

0 20 40 60 80 100

AIRL SO Training Progress (%)

0.0

0.5

1.0

D
is

ta
nc

e

10

20

30

R
eg

re
t

EPIC NPEC ERC RL Train RL Test

(c) Comparisons of AIRL SO using all distance algorithms.

0 20 40 60 80 100

AIRL SA Training Progress (%)

0.0

0.5

1.0

D
is

ta
nc

e

20

30

R
eg

re
t

EPIC NPEC ERC RL Train RL Test

(d) Comparisons of AIRL SA using all distance algorithms.

Figure B.6: Distance of reward checkpoints from the ground-truth in PointMaze and policy
regret for reward checkpoints during reward model training. Each point evaluates a reward
function checkpoint from a single seed. EPIC, NPEC and ERC distance use the Mixture
distribution. Regret is computed by running RL on the checkpoint. The shaded region
represents the bootstrapped 95% confidence interval for the distance or regret at that
checkpoint, calculated following Section B.1.3.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 146

0 20 40 60 80 100

Reward Model Training Progress (%)

0.0

0.5

1.0

D
is

ta
nc

e

AIRL SA AIRL SO Pref Regress

(a) Comparisons using EPIC on all reward models.

0 20 40 60 80 100

Reward Model Training Progress (%)

0.0

0.5

1.0

D
is

ta
nc

e

AIRL SA AIRL SO Pref Regress

(b) Comparisons using NPEC on all reward models.

0 20 40 60 80 100

Reward Model Training Progress (%)

0.0

0.5

1.0

D
is

ta
nc

e

AIRL SA AIRL SO Pref Regress

(c) Comparisons using ERC on all reward models.

0 20 40 60 80 100

Reward Model Training Progress (%)

0

20

R
eg

re
t

AIRL SA AIRL SO
RL Train

Pref
RL Test

Regress

(d) Comparisons using Episode Return on all reward models.

Figure B.7: Distance of reward checkpoints from the ground-truth in PointMaze and policy
regret for reward checkpoints during reward model training. Each point evaluates a reward
function checkpoint from a single seed. EPIC, NPEC and ERC distance use the Mixture
distribution. Regret is computed by running RL on the checkpoint. The shaded region
represents the bootstrapped 95% confidence interval for the distance or regret at that
checkpoint, calculated following Section B.1.3.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 147

B.3 Proofs

B.3.1 Equivalent-Policy Invariant Comparison (EPIC)
pseudometric

Proposition 4.2.3 (The Canonically Shaped Reward is Invariant to Shaping). Let R :
S ˆ A ˆ S Ñ R be a reward function and Φ : S Ñ R a potential function. Let γ P r0, 1s be a
discount rate, and DS P ∆pSq and DA P ∆pAq be distributions over states and actions. Let
R1 denote R shaped by Φ: R1ps, a, s1q “ Rps, a, s1q ` γΦps1q ´ Φpsq. Then the canonically
shaped R1 and R are equal: CDS ,DA pR1q “ CDS ,DA pRq.

Proof. Let s, a, s1 P SˆAˆS. Then by substituting in the definition of R1 and using linearity
of expectations:

CDS ,DA pR1
q ps, a, s1

q fi R1
ps, a, s1

q ` E rγR1
ps1, A, S 1

q ´ R1
ps, A, S 1

q ´ γR1
pS,A, S 1

qs (B.8)
“ pRps, a, s1

q ` γΦps1
q ´ Φpsqq (B.9)

` E
“

γRps1, A, S 1
q ` γ2ΦpS 1

q ´ γΦps1
q
‰

´ E rRps, A, S 1
q ` γΦpS 1

q ´ Φpsqs

´ E
“

γRpS,A, S 1
q ` γ2ΦpS 1

q ´ γΦpSq
‰

“ Rps, a, s1
q ` E rγRps1, A, S 1

q ´ Rps, A, S 1
q ´ γRpS,A, S 1

qs (B.10)
` pγΦps1

q ´ Φpsqq ´ E rγΦps1
q ´ Φpsqs

` E
“

γ2ΦpS 1
q ´ γΦpS 1

q
‰

´ E
“

γ2ΦpS 1
q ´ γΦpSq

‰

“ Rps, a, s1
q ` E rγRps1, A, S 1

q ´ Rps, A, S 1
q ´ γRpS,A, S 1

qs (B.11)
fi CDS ,DA pRq ps, a, s1

q, (B.12)

where the penultimate step uses ErΦpS 1qs “ ErΦpSqs since S and S 1 are identically distributed.

Proposition 4.2.4. Let S and A be finite, with |S| ě 2. Let DS P ∆pSq and DA P ∆pAq.
Let R, ν : S ˆ A ˆ S Ñ R be reward functions, with νps, a, s1q “ λIrps, a, s1q “ px, u, x1qs,
λ P R, x, x1 P S, and u P A. Let ΦDS ,DA pRqps, a, s1q “ CDS ,DA pRq ps, a, s1q ´ Rps, a, s1q.
Then,

›

›ΦDS ,DA pR ` νq ´ ΦDS ,DA pRq
›

›

8
“ λ p1 ` γDSpxqqDApuqDSpx1

q. (4.2)

Proof. Observe that:

ΦDS ,DA pRqps, a, s1
q “ E rγRps1, A, S 1

q ´ Rps, A, S 1
q ´ γRpS,A, S 1

qs , (B.13)

where S and S 1 are random variables independently sampled from DS , and A independently
sampled from DA .

Then:
ΦDS ,DA pR ` νq ´ ΦDS ,DA pRq “ ΦDS ,DA pνq. (B.14)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 148

Now:

LHS fi
›

›ΦDS ,DA pR ` νq ´ ΦDS ,DA pRq
›

›

8
(B.15)

“ max
s,s1PS

|E rγνps1, A, S 1
q ´ νps, A, S 1

q ´ γνpS,A, S 1
qs| (B.16)

“ max
s,s1PS

|λ pγIrx “ s1
sDApuqDSpx1

q (B.17)

´ Irx “ ssDApuqDSpx1
q ´ γDSpxqDApuqDSpx1

qq| (B.18)
“ max

s,s1PS
|λDApuqDSpx1

q pγIrx “ s1
s ´ Irx “ ss ´ γDSpxqq| (B.19)

“ λ p1 ` γDSpxqqDApuqDSpx1
q, (B.20)

where the final step follows by substituting s “ x and s1 ‰ x (using |S| ě 2).

Lemma 4.2.6. The Pearson distance Dρ is a pseudometric. Moreover, let a, b P p0,8q,
c, d P R, and X,Y be random variables. Then it follows that 0 ď DρpaX ` c, bY ` dq “

DρpX,Y q ď 1.

Proof. For a non-constant random variable V , define a standardized (zero mean and unit
variance) version:

ZpV q “
V ´ ErV s

b

E
“

pV ´ ErV sq
2
‰

. (B.21)

The Pearson correlation coefficient on random variables A and B is equal to the expected
product of these standardized random variables:

ρpA,Bq “ E rZpAqZpBqs . (B.22)

Let W , X, Y be random variables.
Identity. Have ρpX,Xq “ 1, so DρpX,Xq “ 0.
Symmetry. Have ρpX, Y q “ ρpY,Xq by commutativity of multiplication, so DρpX, Y q “

DρpY,Xq.
Triangle Inequality. For any random variables A,B:

E
“

pZpAq ´ ZpBqq
2
‰

“ E
“

ZpAq
2

´ 2ZpAqZpBq ` ZpBq
2
‰

(B.23)
“ E

“

ZpAq
2
‰

` E
“

ZpBq
2
‰

´ 2E rZpAqZpBqs (B.24)
“ 2 ´ 2E rZpAqZpBqs (B.25)
“ 2 p1 ´ ρpA,Bqq (B.26)
“ 4DρpA,Bq

2. (B.27)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 149

So:

4DρpW,Y q
2

“ E
“

pZpW q ´ ZpY qq
2
‰

(B.28)

“ E
“

pZpW q ´ ZpXq ` ZpXq ´ ZpY qq
2
‰

(B.29)

“ E
“

pZpW q ´ ZpXqq
2
‰

` E
“

pZpXq ´ ZpY qq
2
‰

(B.30)
` 2E rpZpW q ´ ZpXqq pZpXq ´ ZpY qqs

“ 4DρpW,Xq
2

` 4DρpX, Y q
2

` 8E rpZpW q ´ ZpXqq pZpXq ´ ZpY qqs . (B.31)

Since ⟨A,B⟩ “ ErABs is an inner product over R, it follows by the Cauchy-Schwarz inequality
that ErABs ď

a

ErA2sErB2s. So:

DρpW,Y q
2

ď DρpW,Xq
2

` DρpX, Y q
2

` 2DρpW,XqDρpX, Y q (B.32)

“ pDρpW,Xq ` DρpX, Y qq
2 . (B.33)

Taking the square root of both sides:

DρpW,Y q ď DρpW,Xq ` DρpX, Y q, (B.34)

as required.
Positive Affine Invariant and Bounded DρpaX ` c, bY `dq “ DρpX, Y q is immediate

from ρpX, Y q invariant to positive affine transformations. Have ´1 ď ρpX, Y q ď 1, so
0 ď 1 ´ ρpX, Y q ď 2 thus 0 ď DρpX, Y q ď 1.

Theorem 4.2.8. The Equivalent-Policy Invariant Comparison distance is a pseudometric.

Proof. The result follows from Dρ being a pseudometric. Let RA, RB and RC be reward
functions mapping from transitions S ˆ A ˆ S to real numbers R.

Identity. Have:

DEPICpRA, RAq “ Dρ

`

CDS ,DA pRAq pS,A, S 1
q, CDS ,DA pRAq pS,A, S 1

q
˘

“ 0, (B.35)

since DρpX,Xq “ 0.
Symmetry. Have:

DEPICpRA, RBq “ Dρ

`

CDS ,DA pRAq pS,A, S 1
q, CDS ,DA pRBq pS,A, S 1

q
˘

(B.36)
“ Dρ

`

CDS ,DA pRBq pS,A, S 1
q, CDS ,DA pRAq pS,A, S 1

q
˘

(B.37)
“ DEPICpRB, RAq, (B.38)

since DρpX, Y q “ DρpY,Xq.
Triangle Inequality. Have:

DEPICpRA, RCq “ Dρ

`

CDS ,DA pRAq pS,A, S 1
q, CDS ,DA pRCq pS,A, S 1

q
˘

(B.39)
ď Dρ

`

CDS ,DA pRAq pS,A, S 1
q, CDS ,DA pRBq pS,A, S 1

q
˘

(B.40)
` Dρ

`

CDS ,DA pRBq pS,A, S 1
q, CDS ,DA pRCq pS,A, S 1

q
˘

(B.41)
“ DEPICpRA, RBq ` DEPICpRB, RCq, (B.42)

since DρpX,Zq ď DρpX, Y q ` DρpY, Zq.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 150

Theorem 4.2.9. Let RA, R1
A, RB, R

1
B : S ˆ A ˆ S Ñ R be reward functions such that

R1
A ” RA and R1

B ” RB. Then 0 ď DEPICpR1
A, R

1
Bq “ DEPICpRA, RBq ď 1.

Proof. Since DEPIC is defined in terms of Dρ, the bounds 0 ď DEPICpR1
A, R

1
Bq and DEPICpRA, RBq ď

1 are immediate from the bounds in lemma 4.2.6.
Since R1

A ” RA and R1
B ” RB, we can write for X P tA,Bu:

Rλ
Xps, a, s1

q “ λXRXps, a, s1
q, (B.43)

R1
Xps, a, s1

q “ Rλ
Xps, a, s1

q ` γΦXps1
q ´ ΦXpsq, (B.44)

for some scaling factor λX ą 0 and potential function ΦX : S Ñ R.
By proposition 4.2.3:

CDS ,DA pR1
Xq “ CDS ,DA

`

Rλ
X

˘

. (B.45)

Moreover, since CDS ,DA pRq is defined as an expectation over R and expectations are linear:

CDS ,DA

`

Rλ
X

˘

“ λXCDS ,DA pRXq . (B.46)

Unrolling the definition of DEPIC and applying this result gives:

DEPICpR1
A, R

1
Bq “ Dρ

`

CDS ,DA pR1
Aq pS,A, S 1

q, CDS ,DA pR1
Bq pS,A, S 1

q
˘

(B.47)
“ Dρ

`

λACDS ,DA pRAq pS,A, S 1
q, λBCDS ,DA pRBq pS,A, S 1

q
˘

eqs. B.45 and B.46
“ Dρ

`

CDS ,DA pRAq pS,A, S 1
q, CDS ,DA pRBq pS,A, S 1

q
˘

lemma 4.2.6
“ DEPICpRA, RBq.

B.3.2 Nearest Point in Equivalence Class (NPEC) premetric

Proposition B.3.1. (1) DLp,D is a metric in Lp space, where functions f and g are identified
if they agree almost everywhere on D. (2) DLp,D is a pseudometric if functions are identified
only if they agree at all points.

Proof. (1) DLp,D is a metric in the Lp space since Lp is a norm in the Lp space, and
dpx, yq “ ∥x ´ y∥ is always a metric. (2) As f “ g at all points implies f “ g almost
everywhere, certainly DLp,DpR,Rq “ 0. Symmetry and triangle inequality do not depend on
identity so still hold.

Proposition B.3.2 (Properties of DU
NPEC). Let RA, RB, RC : S ˆ A ˆ S Ñ R be bounded

reward functions, and λ ě 0. Then DU
NPEC:

• Is invariant under ” in source:
DU

NPECpRA, RCq “ DU
NPECpRB, RCq if RA ” RB.

• Invariant under scale-preserving ” in target:
DU

NPECpRA, RBq “ DU
NPECpRA, RCq if RB ´ RC ” Zero.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 151

• Scalable in target:
DU

NPECpRA, λRBq “ λDU
NPECpRA, RBq.

• Bounded:
DU

NPECpRA, RBq ď DU
NPECpZero, RBq.

Proof. We will show each case in turn.
Invariance under ” in source
If RA ” RB, then:

DU
NPECpRA, RCq fi inf

R”RA

DLp,DpR,RCq (B.48)

“ inf
R”RB

DLp,DpR,RCq (B.49)

fi DU
NPECpRB, RCq, (B.50)

(B.51)

since R ” RA if and only if R ” RB as ” is an equivalence relation.
Invariance under scale-preserving ” in target
If RB ´RC ” Zero, then we can write RBps, a, s1q ´RCps, a, s1q “ γΦps1q ´Φpsq for some

potential function Φ : S Ñ R. Define fpRqps, a, s1q “ Rps, a, s1q ´ γΦps1q ` Φpsq. Then for
any reward function R : S ˆ A ˆ S Ñ R:

DLp,DpR,RBq fi

ˆ

E
s,a,s1„D

“

|Rps, a, s1
q ´ RBps, a, s1

q|p
‰

˙1{p

“

ˆ

E
s,a,s1„D

“

|Rps, a, s1
q ´ pRCps, a, s1

q ` γΦps1
q ´ Φpsqq|p

‰

˙1{p

“

ˆ

E
s,a,s1„D

“

|pRps, a, s1
q ´ γΦps1

q ` Φpsqq ´ RCps, a, s1
q|p

‰

˙1{p

“

ˆ

E
s,a,s1„D

“

|fpRqps, a, s1
q ´ RCps, a, s1

q|p
‰

˙1{p

fi DLp,DpfpRq, RCq, (B.52)

Crucially, note fpRq is a bijection on the equivalence class rRs. Now, substituting this into
the expression for the NPEC premetric:

DU
NPECpRA, RBq fi inf

R”RA

DLp,DpR,RBq

“ inf
R”RA

DLp,DpfpRq, RCq eq. B.52

“ inf
fpRq”RA

DLp,DpfpRq, RCq f bijection on rRs

“ inf
R”RA

DLp,DpR,RCq f bijection on rRs

fi DU
NPECpRA, RCq. (B.53)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 152

Scalable in target
First, note that DLp,D is absolutely scalable in both arguments:

DLp,DpλRA, λRBq fi

ˆ

E
s,a,s1„D

“

|λRAps, a, s1
q ´ λRBps, a, s1

q|p
‰

˙1{p

“

ˆ

E
s,a,s1„D

“

|λ|p |RAps, a, s1
q ´ RBps, a, s1

q|p
‰

˙1{p

|¨| absolutely scalable

“

ˆ

|λ|p E
s,a,s1„D

“

|RAps, a, s1
q ´ RBps, a, s1

q|p
‰

˙1{p

E linear

“ |λ|
ˆ

E
s,a,s1„D

“

|RAps, a, s1
q ´ RBps, a, s1

q|p
‰

˙1{p

fi |λ|DLp,DpRA, RBq. (B.54)

Now, for λ ą 0, applying this to DU
NPEC:

DU
NPECpRA, λRBq fi inf

R”RA

DLp,DpR, λRBq (B.55)

“ inf
R”RA

DLp,DpλR, λRBq R ” λR (B.56)

“ inf
R”RA

λDLp,DpR,RBq eq. B.54 (B.57)

“ λ inf
R”RA

DLp,DpR,RBq (B.58)

fi λDU
NPECpRA, RBq. (B.59)

In the case λ “ 0, then:

DU
NPECpRA, Zeroq fi inf

R”RA

DLp,DpR, Zeroq (B.60)

“ inf
R”RA

DLp,D

ˆ

1

2
R, Zero

˙

R ”
1

2
R (B.61)

“ inf
R”RA

1

2
DLp,DpR, Zeroq (B.62)

“
1

2
inf

R”RA

DLp,DpR, Zeroq (B.63)

“
1

2
DU

NPECpRA, Zeroq. (B.64)

Rearranging, we have:
DU

NPECpRA, Zeroq “ 0. (B.65)

Bounded



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 153

Let d fi DNPECpZero, RBq. Then for any ϵ ą 0, there exists some potential function
Φ : S Ñ R such that the Lp distance of the potential shaping Rps, a, s1q fi γΦpsq ´ Φpsq

from RB satisfies:
DLp,DpR,RBq ď d ` ϵ. (B.66)

Let λ P r0, 1s. Define:

R1
λps, a, s1

q fi λRAps, a, s1
q ` Rps, a, s1

q. (B.67)

Now:

DLp,DpR1
λ, Rq fi

ˆ

E
s,a,s1„D

“

|R1
λps, a, s1

q ´ Rps, a, s1
q|p

‰

˙1{p

(B.68)

“

ˆ

E
s,a,s1„D

“

|λRAps, a, s1
q|p

‰

˙1{p

(B.69)

“

ˆ

|λ|p E
s,a,s1„D

“

|RAps, a, s1
q|p

‰

˙1{p

(B.70)

“ |λ|
ˆ

E
s,a,s1„D

“

|RAps, a, s1
q|p

‰

˙1{p

(B.71)

“ |λ|DLp,DpRA, Zeroq. (B.72)

Since RA is bounded, DLp,DpRA, Zeroq must be finite, so:

lim
λÑ0`

DLp,DpR1
λ, Rq “ 0. (B.73)

It follows that for any ϵ ą 0 there exists some λ ą 0 such that:

DLp,DpR1
λ, Rq ď ϵ. (B.74)

Note that RA ” R1
λ for all λ ą 0. So:

DNPECpRA, RBq ď DLp,DpR1
λ, RBq (B.75)

ď DLp,DpR1
λ, Rq ` DLp,DpR,RBq prop. B.3.1 (B.76)

ď ϵ ` pd ` ϵq eq. B.66 and eq. B.74 (B.77)
“ d ` 2ϵ. (B.78)

Since ϵ ą 0 can be made arbitrarily small, it follows:

DNPECpRA, RBq ď d fi DNPECpZero, RBq, (B.79)

completing the proof.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 154

Theorem 4.3.4. DNPEC is a premetric on the space of bounded reward functions. Moreover,
let RA, RA

1, RB, RB
1 : S ˆ A ˆ S Ñ R be bounded reward functions such that RA ” RA

1 and
RB ” RB

1. Then 0 ď DNPECpRA
1, RB

1q “ DNPECpRA, RBq ď 1.

Proof. We will first prove DNPEC is a premetric, and then prove it is invariant and bounded.
Premetric
First, we will show that DNPEC is a premetric.
Respects identity: DNPECpRA, RAq “ 0
If DU

NPECpZero, RAq “ 0 then DNPECpRA, RAq “ 0 as required. Suppose from now on that
DU

NPECpRA, RAq ‰ 0. It follows from prop B.3.1 that DLp,DpRA, RAq “ 0. Since X ” X, 0 is
an upper bound for DU

NPECpRA, RAq. By prop B.3.1 DLp,D is non-negative, so this is also a
lower bound for DU

NPECpRA, RAq. So DU
NPECpRA, RAq “ 0 and:

DNPECpRA, RAq “
DU

NPECpRA, RAq

DU
NPECpZero, RAq

“
0

DU
NPECpZero, RAq

“ 0. (B.80)

Well-defined: DNPECpRA, RBq ě 0
By prop B.3.1, it follows that DLp,DpR,RBq ě 0 for all reward functions R : S ˆ A ˆ S.

Thus 0 is a lower bound for tDLp,DpR,RBq | R : SˆAˆSu, and thus certainly a lower bound
for tDLp,DpR, Y q | R ” Xu for any reward function X. Since the infimum is the greatest
lower bound, it follows that for any reward function X:

DU
NPECpX,RBq fi inf

R”X
DLp,DpR,RBq ě 0. (B.81)

In the case that DU
NPECpZero, RBq “ 0, then DNPECpRA, RBq “ 0 which is non-negative.

From now on, suppose that DU
NPECpZero, RBq ‰ 0. The quotient of a non-negative value with

a positive value is non-negative, so:

DNPECpRA, RBq “
DU

NPECpRA, RBq

DU
NPECpZero, RBq

ě 0. (B.82)

Invariant and Bounded
Since R1

B ” RB, we have R1
B ´λRB ” Zero for some λ ą 0. By proposition B.3.2, DU

NPEC

is invariant under scale-preserving ” in target and scalable in target. That is, for any reward
R:

DU
NPECpR,R1

Bq “ DU
NPECpR, λRBq “ λDU

NPECpR,RBq. (B.83)

In particular, DU
NPECpZero, RB

1q “ λDU
NPECpZero, RBq. As λ ą 0, it follows that

DU
NPECpZero, RB

1q “ 0 ðñ DU
NPECpZero, RBq “ 0.

Suppose DU
NPECpZero, RBq “ 0. Then DNPECpR,RBq “ 0 “ DNPECpR,RB

1q for any
reward R, so the result trivially holds. From now on, suppose DU

NPECpZero, RBq ‰ 0.
By proposition B.3.2, DU

NPEC is invariant to ” in source. That is, DU
NPECpRA, RBq

“ DU
NPECpR1

A, RBq, so:

DNPECpR1
A, RBq “

DU
NPECpR1

A, RBq

DU
NPECpZero, RBq

“
DU

NPECpRA, RBq

DU
NPECpZero, RBq

“ DNPECpRA, RBq. (B.84)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 155

By eq. (B.83):

DNPECpRA, R
1
Bq “

λDU
NPECpRA, RBq

λDU
NPECpZero, RBq

“
DU

NPECpRA, RBq

DU
NPECpZero, RBq

“ DNPECpRA, RBq. (B.85)

Since DNPEC is a premetric it is non-negative. By the boundedness property of proposi-
tion B.3.2, DU

NPECpR,RBq ď DU
NPECpZero, RBq, so:

DNPECpRA, RBq “
DU

NPECpRA, RBq

DU
NPECpZero, RBq

ď 1, (B.86)

which completes the proof.

Note when DLp,D is a metric, then DNPECpX, Y q “ 0 if and only if X “ Y .

Proposition B.3.3. DNPEC is not symmetric in the undiscounted case.

Proof. We will provide a counterexample showing that DNPEC is not symmetric.
Choose the state space S to be binary t0, 1u and the actions A to be the singleton t0u.

Choose the coverage distribution D to be uniform on s
0

Ñ s for s P S. Take γ “ 1, i.e.
undiscounted. Note that as the successor state is always the same as the start state, potential
shaping has no effect on DLp,D, so WLOG we will assume potential shaping is always zero.

Now, take RApsq “ 2s and RBpsq “ 1. Take p “ 1 for the Lp distance. Observe that
DLp,DpZero, RAq “ 1

2
p|0| ` |2|q “ 1 and DLp,DpZero, RBq “ 1

2
p|1| ` |1|q “ 1. Since potential

shaping has no effect, DU
NPECpZero, Rq “ DLp,DpZero, Rq and so DNPECpZero, RAq “ 1 and

DNPECpZero, RBq “ 1.
Now:

DU
NPECpRA, RBq “ inf

λą0
DLp,DpλRA, RBq (B.87)

“ inf
λą0

1

2
p|1| ` |2λ ´ 1|q (B.88)

“
1

2
, (B.89)

with the infimum attained at λ “ 1
2
. But:

DU
NPECpRB, RAq “ inf

λą0
DLp,DpλRB, RAq (B.90)

“ inf
λą0

1

2
fpλq (B.91)

“
1

2
inf
λą0

fpλq, (B.92)

where:
fpλq “ |λ| ` |2 ´ λ|, λ ą 0. (B.93)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 156

Note that:

fpλq “

#

2 λ P p0, 2s,

2λ ´ 2 λ P p2,8q.
(B.94)

So fpλq ě 2 on all of its domain, thus:

DU
NPECpRB, RAq “ 1. (B.95)

Consequently:

DNPECpRA, RBq “
1

2
‰ 1 “ DNPECpRB, RAq, (B.96)

so DNPEC is not symmetric.

B.3.3 Full Normalization Variant of EPIC

Previously, we used the Pearson distance Dρ to compare the canonicalized rewards. Pearson
distance is naturally invariant to scaling. An alternative is to explicitly normalize the
canonicalized rewards, and then compare them using any metric over functions.

Definition B.3.4 (Normalized Reward). Let R : S ˆ A ˆ S Ñ R be a bounded reward
function. Let ∥¨∥ be a norm on the vector space of reward functions over the real field. Then
the normalized R is:

RN
ps, a, s1

q “
Rps, a, s1q

∥R∥
(B.97)

Note that pλRq
N

“ RN for any λ ą 0 as norms are absolutely homogeneous.
We say a reward is standardized if it has been canonicalized and then normalized.

Definition B.3.5 (Standardized Reward). Let R : S ˆ A ˆ S Ñ R be a bounded reward
function. Then the standardized R is:

RS
“

`

CDS ,DA pRq
˘N

. (B.98)

Now, we can define a pseudometric based on the direct distance between the standardized
rewards.

Definition B.3.6 (Direct Distance Standardized Reward). Let D be some coverage dis-
tribution over transitions s

a
Ñ s1. Let DS and DA be some distributions over states S

and A respectively. Let S,A, S 1 be random variables jointly sampled from D. The Direct
Distance Standardized Reward pseudometric between two reward functions RA and RB is the
Lp distance between their standardized versions over D:

DDDSRpRA, RBq “
1

2
DLp,D

`

RS
ApS,A, S 1

q, RS
BpS,A, S 1

q
˘

, (B.99)

where the normalization step, RN , uses the Lp norm.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 157

For brevity, we omit the proof that DDDSR is a pseudometric, but this follows from DLp,D
being a pseudometric in a similar fashion to theorem 4.2.8. Note it additionally is invariant
to equivalence classes, similarly to EPIC.

Theorem B.3.7. Let RA, RA
1, RB and RB

1 be reward functions mapping from transitions
S ˆ A ˆ S to real numbers R such that RA ” RA

1 and RB ” RB
1. Then:

0 ď DDDSRpR1
A, R

1
Bq “ DDDSRpRA, RBq ď 1. (B.100)

Proof. The invariance under the equivalence class follows from RS being invariant to potential
shaping and scale in R. The non-negativity follows from DLp,D being a pseudometric. The
upper bound follows from the rewards being normalized to norm 1 and the triangle inequality:

DDDSRpRA, RBq “
1

2
∥RS

A ´ RS
B∥ (B.101)

ď
1

2

`

∥RS
A∥ ` ∥RS

B∥
˘

(B.102)

“
1

2
p1 ` 1q (B.103)

“ 1.

Since both DDSR and EPIC are pseudometrics and invariant on equivalent rewards, it is
interesting to consider the connection between them. In fact, under the L2 norm, then DDSR
recovers EPIC. First, we will show that canonical shaping centers the reward functions.

Lemma B.3.8 (The Canonically Shaped Reward is Mean Zero). Let R be a reward function
mapping from transitions S ˆ A ˆ S to real numbers R. Then:

E
“

CDS ,DA pRq pS,A, S 1
q
‰

“ 0, (B.104)

where S, S 1 are random variables sampled from DS and A is sampled from DA.

Proof. Let X, U and X 1 be random variables that are independent of S, A and S 1 but
identically distributed.

LHS fi E
“

CDS ,DA pRq pS,A, S 1
q
‰

(B.105)
“ E rRpS,A, S 1

q ` γRpS 1, U,X 1
q ´ RpS, U,X 1

q ´ γRpX,U,X 1
qs (B.106)

“ E rRpS,A, S 1
qs ` γE rRpS 1, U,X 1

qs ´ E rRpS, U,X 1
qs ´ γE rRpX,U,X 1

qs (B.107)
“ E rRpS, U,X 1

qs ` γE rRpX,U,X 1
qs ´ E rRpS, U,X 1

qs ´ γE rRpX,U,X 1
qs (B.108)

“ 0, (B.109)

where the penultimate step follows since A is identically distributed to U , and S 1 is identically
distributed to X 1 and therefore to X.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 158

Theorem B.3.9. DDDSR with p “ 2 is equivalent to DEPIC when the canonicalization
distribution D is equal to the coverage distribution DS ˆ DA ˆ DS . Let RA and RB be reward
functions mapping from transitions S ˆ A ˆ S to real numbers R. Then:

DDDSRpRA, RBq “ DEPICpRA, RBq. (B.110)

Proof. Recall from the proof of lemma 4.2.6 that:

DρpU, V q “
1

2

b

E
“

pZpUq ´ ZpV qq
2
‰

(B.111)

“
1

2
∥ZpUq ´ ZpV q∥2 , (B.112)

where ∥¨∥2 is the L2 norm with respect to the coverage distribution D (treating the random
variables as functions on a measure space), Er¨s is an expectation over D, and ZpUq,ZpV q

are random variables centered (zero-mean) and rescaled (unit variance) with respect to
D. By lemma B.3.8, the canonically shaped reward functions are centered under the
canonicalization distribution DS ˆ DA ˆ DS . By our assumption that the canonicalization
and coverage distributions are equal, canonically shaped reward functions are also centered
on the coverage distribution. Normalization by the L2 norm also ensures they have unit
variance. Consequently:

DEPICpRA, RBq “ Dρ

`

CDS ,DA pRAq pS,A, S 1
q, CDS ,DA pRBq pS,A, S 1

q
˘

(B.113)

“
1

2

∥∥∥`

CDS ,DA pRAq pS,A, S 1
q
˘N

´
`

CDS ,DA pRBq pS,A, S 1
q
˘N

∥∥∥
2

(B.114)

“
1

2

∥∥RS
ApS,A, S 1

q ´ RS
BpS,A, S 1

q
∥∥
2

(B.115)

“
1

2
DLp,D

`

RS
ApS,A, S 1

q, RS
BpS,A, S 1

q
˘

(B.116)

“ DDDSRpRA, RBq, (B.117)

completing the proof.

B.4 Regret bound
In this section, we derive an upper bound on the regret in terms of the EPIC distance.
Specifically, given two reward functions RA and RB with optimal policies π˚

A and π˚
B, we

show that the regret (under reward RA) of using policy π˚
B instead of a policy π˚

A is bounded
by a function of DEPICpRA, RBq. First, in section B.4.1 we derive a bound for MDPs with
finite state and action spaces. In section B.5 we then present an alternative bound for MDPs
with arbitrary state and action spaces and Lipschitz reward functions. Finally, in section B.6
we show that in both cases the regret tends to 0 as DEPICpRA, RBq Ñ 0.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 159

B.4.1 Discrete MDPs

We start in lemma B.4.1 by showing that L2 distance upper bounds L1 distance. Next, in
lemma B.4.2 we show regret is bounded by the L1 distance between reward functions using
an argument similar to [154]. Then in lemma B.4.3 we relate regret bounds for standardized
rewards RS to the original reward R. Finally, in theorem 5.1.1 we use section B.3.3 to express
DEPIC in terms of the L2 distance on standardized rewards, deriving a bound on regret in
terms of the EPIC distance.

Lemma B.4.1. Let pΩ,F , P q be a probability space and f : Ω Ñ R a measurable function
whose absolute value raised to the n-th power for n P t1, 2u has a finite expectation. Then the
L1 norm of f is bounded above by the L2 norm:

∥f∥1 ď ∥f∥2. (B.118)

Proof. Let X be a random variable sampled from P , and consider the variance of fpXq:

E
“

p|fpXq| ´ E r|fpXq|sq
2
‰

“ E
“

|fpXq|
2

´ 2|fpXq|E r|fpXq|s ` E r|fpXq|s
2
‰

(B.119)

“ E
“

|fpXq|
2
‰

´ 2E r|fpXq|sE r|fpXq|s ` E r|fpXq|s
2 (B.120)

“ E
“

|fpXq|
2
‰

´ E r|fpXq|s
2 (B.121)

ě 0. (B.122)

Rearranging terms, we have

∥f∥22 “ E
“

|fpXq|
2
‰

ě E r|fpXq|s
2

“ ∥f∥21. (B.123)

Taking the square root of both sides gives:

∥f∥1 ď ∥f∥2, (B.124)

as required.

Lemma B.4.2. Let M be an MDP\R with finite state and action spaces S and A. Let
RA, RB : S ˆ A ˆ S Ñ R be rewards. Let π˚

A and π˚
B be policies optimal for rewards RA

and RB in M . Let Dπpt, st, at, st`1q denote the distribution over trajectories that policy π
induces in M at time step t. Let Dps, a, s1q be the (stationary) coverage distribution over
transitions SˆAˆS used to compute DEPIC. Suppose that there exists some K ą 0 such that
KDpst, at, s

1
t`1q ě Dπpt, st, at, s

1
t`1q for all time steps t P N, triples st, at, st`1 P SˆAˆS and

policies π P tπ˚
A, π

˚
Bu. Then the regret under RA from executing π˚

B optimal for RB instead of
π˚
A is at most:

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď
2K

1 ´ γ
DL1,DpRA, RBq. (B.125)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 160

Proof. Noting GRA
pπq is maximized when π “ π˚

A, it is immediate that

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq “ |GRA
pπ˚

Aq ´ GRA
pπ˚

Bq| (B.126)
“ |pGRA

pπ˚
Aq ´ GRB

pπ˚
Bqq ` pGRB

pπ˚
Bq ´ GRA

pπ˚
Bqq| (B.127)

ď |GRA
pπ˚

Aq ´ GRB
pπ˚

Bq| ` |GRB
pπ˚

Bq ´ GRA
pπ˚

Bq| . (B.128)

We will show that both these terms are bounded above by K
1´γ

DL1,DpRA, RBq, from which
the result follows.

First, we will show that for policy π P tπ˚
A, π

˚
Bu:

|GRA
pπq ´ GRB

pπq| ď
K

1 ´ γ
DL1,DpRA, RBq. (B.129)

Let T be the horizon of M . This may be infinite (T “ 8) when γ ă 1; note since S ˆ A ˆ S
is bounded, so are RA, RB so the discounted infinite returns GRA

pπq, GRB
pπq converge (as do

their differences). Writing τ “ ps0, a0, s1, a1, ¨ ¨ ¨ q, we have for any policy π:

∆ fi |GRA
pπq ´ GRB

pπq| (B.130)

“

∣∣∣∣∣Eτ„Dπ

«

T
ÿ

t“0

γt
pRApst, at, st`1q ´ RBpst, at, st`1qq

ff
∣∣∣∣∣ (B.131)

ď E
τ„Dπ

«

T
ÿ

t“0

γt |RApst, at, st`1q ´ RBpst, at, st`1q|

ff

(B.132)

“

T
ÿ

t“0

γt E
st,at,st`1„Dπ

r|RApst, at, st`1q ´ RBpst, at, st`1q|s (B.133)

“

T
ÿ

t“0

γt
ÿ

st,at,st`1PSˆAˆS
Dπpt, st, at, st`1q |RApst, at, st`1q ´ RBpst, at, st`1q| . (B.134)

Let π P tπ˚
A, π

˚
Bu. By assumption, Dπpt, st, at, s

1
t`1q ď KDpst, at, s

1
t`1q, so:

∆ ď K
T

ÿ

t“0

γt
ÿ

st,at,st`1PSˆAˆS
Dpst, at, st`1q |RApst, at, st`1q ´ RBpst, at, st`1q| (B.135)

“ K
T

ÿ

t“0

γtDL1,DpRA, RBq (B.136)

“
K

1 ´ γ
DL1,DpRA, RBq, (B.137)

as required.
In particular, substituting π “ π˚

B gives:

|GRB
pπ˚

Bq ´ GRA
pπ˚

Bq| “ |GRA
pπ˚

Bq ´ GRB
pπ˚

Bq| ď
K

1 ´ γ
DL1,DpRA, RBq. (B.138)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 161

Rearranging gives:

GRA
pπ˚

Bq ě GRB
pπ˚

Bq ´
K

1 ´ γ
DL1,DpRA, RBq. (B.139)

So certainly:

GRA
pπ˚

Aq “ max
π

GRA
pπq ě GRB

pπ˚
Bq ´

K

1 ´ γ
DL1,DpRA, RBq. (B.140)

By a symmetric argument, substituting π “ π˚
A gives:

GRB
pπ˚

Bq “ max
π

GRB
pπq ě GRA

pπ˚
Aq ´

K

1 ´ γ
DL1,DpRA, RBq. (B.141)

Eqs. B.140 and B.141 respectively give GRB
pπ˚

Bq´GRA
pπ˚

Aq ď K
1´γ

and GRA
pπ˚

Aq´GRB
pπ˚

Bq ď
K
1´γ

. Combining these gives:

|GRA
pπ˚

Aq ´ GRB
pπ˚

Bq| ď
K

1 ´ γ
DL1,DpRA, RBq. (B.142)

Substituting inequalities B.138 and B.142 into eq. B.128 yields the required result.

Note that if D “ Dunif , uniform over S ˆ A ˆ S, then K ď |S|2|A|.

Lemma B.4.3. Let M be an MDP\R with state and action spaces S and A. Let RA, RB :
S ˆ A ˆ S Ñ R be bounded rewards. Let π˚

A and π˚
B be policies optimal for rewards RA and

RB in M . Suppose the regret under the standardized reward RS
A from executing π˚

B instead of
π˚
A is upper bounded by some U P R:

GRS
A

pπ˚
Aq ´ GRS

A
pπ˚

Bq ď U. (B.143)

Additionally assume that the L2 norm || ¨ ||2 in the standardization of RS
A is taken with respect

to the canonicalization distribution DS ˆ DA ˆ DS . Then the regret under the original reward
RA is bounded by:

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď 4U∥RA∥2. (B.144)

Proof. Recall that

RS
“

CDS ,DA pRq

∥CDS ,DA pRq∥2
, (B.145)

where CDS ,DA pRq is simply R shaped with some (bounded) potential Φ. It follows that:

GRSpπq “
1

∥CDS ,DA pRq∥2
GCDS ,DA pRqpπq (B.146)

“
1

∥CDS ,DA pRq∥2
pGRpπq ´ Es0„µ0 rΦps0qsq , (B.147)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 162

where s0 depends only on the initial state distribution µ0. ∗ Since s0 does not depend on π,
the terms cancel when taking the difference in returns:

GRS
A

pπ˚
Aq ´ GRS

A
pπ˚

Bq “
1

∥CDS ,DA pRAq∥2
pGRA

pπ˚
Aq ´ GRA

pπ˚
Bqq . (B.148)

Combining this with eq B.143 gives

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď U∥CDS ,DA pRAq∥2. (B.149)

Finally, we will bound ∥CDS ,DA pRAq∥2 in terms of ∥RA∥2, completing the proof. Recall:

CDS ,DA pRq ps, a, s1
q “ Rps, a, s1

q ` E rγRps1, A, S 1
q ´ Rps, A, S 1

q ´ γRpS,A, S 1
qs , (B.150)

where S and S 1 are random variables independently sampled from DS and A sampled from
DA . By the triangle inequality on the L2 norm and linearity of expectations, we have:

∥CDS ,DA pRq∥2 ď ∥R∥2 ` γ∥f∥2 ` ∥g∥2 ` γ|c|, (B.151)

where fps, a, s1q “ E rRps1, A, S 1qs, gps, a, s1q “ E rRps, A, S 1qs and c “ E rRpS,A, S 1qs. Let-
ting X 1 be a random variable sampled from DS independently from S and S 1, have

∥f∥22 “ EX 1

”

E rRpX 1, A, S 1
qs

2
ı

(B.152)

ď EX 1

“

E
“

RpX 1, A, S 1
q
2
‰‰

(B.153)
“ E

“

RpX 1, A, S 1
q
2
‰

(B.154)
“ ∥R∥22. (B.155)

So ∥f∥2 ď ∥R∥2 and, by an analogous argument, ∥g∥2 ď ∥R∥2. Similarly

|c| “ |E rRpS,A, S 1
qs| (B.156)

ď E r|RpS,A, S 1
q|s (B.157)

“ ∥R∥1 (B.158)
ď ∥R∥2 lemma B.4.1. (B.159)

Combining these results, we have

∥CDS ,DA pRq∥2 ď 4∥R∥2. (B.160)

Substituting eq. B.160 into eq. B.149 yields:

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď 4U∥RA∥2, (B.161)

as required.
∗In the finite-horizon case, there is also a term γTΦpsT q, where sT is the fixed terminal state. Since sT

is fixed, it also cancels in eq. B.148. This term can be neglected in the discounted infinite-horizon case as
γTΦpsT q Ñ 0 as T Ñ 8 for any bounded Φ.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 163

Theorem 5.1.1. Let M be a γ-discounted MDP\R with finite state and action spaces S and
A. Let RA, RB : S ˆ A ˆ S Ñ R be rewards, and π˚

A, π
˚
B be respective optimal policies. Let

Dπpt, st, at, st`1q denote the distribution over transitions SˆAˆS induced by policy π at time
t, Dps, a, s1q be the coverage distribution used to compute DEPIC, and DSpsq,DApaq be the
distributions defining the canonicalization in DEPIC. Assume the coverage distribution is set
equal to the canonicalization distribution: Dps, a, s1q “ DSpsqDApaqDSps1q @ s, s1 P S, a P A.
Suppose there exists K ą 0 such that KDpst, at, st`1q ě Dπpt, st, at, st`1q for all times t P N,
triples pst, at, st`1q P S ˆ A ˆ S, and policies π P tπ˚

A, π
˚
Bu. Then, the regret under RA from

executing π˚
B instead of π˚

A is at most

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď 16K∥RA∥2 p1 ´ γq
´1DEPICpRA, RBq,

where GRpπq is the return of policy π under reward R, and the L2 norm ||RA||2 is taken with
respect to the coverage distribution D.

Proof. Recall from section B.3.3 that:

DEPICpRA, RBq “
1

2

∥∥RS
ApS,A, S 1

q ´ RS
BpS,A, S 1

q
∥∥
2
. (B.162)

Applying lemma B.4.1 we obtain:

DL1,DpRS
A, R

S
Bq “

∥∥RS
ApS,A, S 1

q ´ RS
BpS,A, S 1

q
∥∥
1

ď 2DEPICpRA, RBq. (B.163)

Note that π˚
A is optimal for RS

A and π˚
B is optimal for RS

B since the set of optimal policies
for RS is the same as for R. Applying lemma B.4.2 and eq. B.163 gives

GRS
A

pπ˚
Aq ´ GRS

A
pπ˚

Bq ď
2K

1 ´ γ
DL1,DpRS

A, R
S
Bq ď

4K

1 ´ γ
DEPICpRA, RBq. (B.164)

Since S ˆ A ˆ S is bounded, RA and RB must be bounded, so we can apply lemma B.4.3,
giving:

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď
16K∥RA∥2

1 ´ γ
DEPICpRA, RBq, (B.165)

where the L2 norm is taken with respect to the coverage distribution (since we assumed the
coverage and canonicalization distributions to be equal).

B.5 Lipschitz reward functions
In this section, we generalize the previous results to MDPs with continuous state and action
spaces. The challenge is that even though the spaces may be continuous, the distribution
Dπ‹

induced by an optimal policy π‹ may only have support on some measure zero set of
transitions B. However, the expectation over a continuous distribution D is unaffected by
the reward at any measure zero subset of points. Accordingly, the reward can be varied



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 164

arbitrarily on transitions B – causing arbitrarily small or large regret – while leaving the
EPIC distance fixed. To rule out this pathological case, we assume the rewards are Lipschitz
smooth. This guarantees that if the expected difference between rewards is small on a given
region, then all points in this region have bounded reward difference.

We start by defining a relaxation of the Wasserstein distance Wα in definition B.5.1.
In lemma B.5.2 we then bound the expected value under distribution µ in terms of the
expected value under alternative distribution ν plus Wαpµ, νq. Next, in lemma B.5.3 we
bound the regret in terms of the L1 distance between the rewards plus Wα; this is analogous
to lemma B.4.2 in the finite case. Finally, in theorem B.5.4 we use the previous results to
bound the regret in terms of the EPIC distance plus Wα.

Definition B.5.1. Let S be some set and let µ, ν be probability measures on S with finite
first moment. We define the relaxed Wasserstein distance between µ and ν by:

Wαpµ, νq fi inf
pPΓαpµ,νq

ż

}x ´ y} dppx, yq, (B.166)

where Γαpµ, νq is the set of probability measures on S ˆ S satisfying for all x, y P S:
ż

S

ppx, yqdy “ µpxq, (B.167)
ż

S

ppx, yqdx ď ανpyq. (B.168)

Note that W1 is equal to the (unrelaxed) Wasserstein distance (in the ℓ1 norm).

Lemma B.5.2. Let S be some set and let µ, ν be probability measures on S. Let f : S Ñ R
be an L-Lipschitz function on the ℓ1 norm }¨}1. Then, for any α ě 1:

EX„µ r|fpXq|s ď αEY „ν r|fpY q|s ` LWαpµ, νq. (B.169)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 165

Proof. Let p P Γαpµ, νq. Then:

EX„µ r|fpXq|s fi

ż

|fpxq|dµpxq definition of E

(B.170)

“

ż

|fpxq|dppx, yq µ is a marginal of p

(B.171)

ď

ż

|fpyq| ` L }x ´ y} dppx, yq f L-Lipschitz

(B.172)

“

ż

|fpyq|dppx, yq ` L

ż

}x ´ y} dppx, yq (B.173)

“

ż

|fpyq|

ż

ppx, yqdxdy ` L

ż

}x ´ y} dppx, yq (B.174)

ď

ż

|fpyq|ανpyqdy ` L

ż

}x ´ y} dppx, yq eq. B.168

(B.175)

“ αEY „ν r|fpY q|s ` L

ż

}x ´ y} dppx, yq definition of E.

(B.176)

Since this holds for all choices of p, we can take the infimum of both sides, giving:

EX„µ r|fpXq|s ď αEY „ν r|fpY q|s ` L inf
pPΓαpµ,νq

ż

}x ´ y} dppx, yq (B.177)

“ αEY „ν r|fpY q|s ` LWαpµ, νq.

Lemma B.5.3. Let M be an MDP\R with state and action spaces S and A. Let RA, RB :
S ˆ A ˆ S Ñ R be L-Lipschitz, bounded rewards on the ℓ1 norm }¨}1. Let π˚

A and π˚
B be

policies optimal for rewards RA and RB in M . Let Dπ,tpst, at, st`1q denote the distribution
over trajectories that policy π induces in M at time step t. Let Dps, a, s1q be the (stationary)
coverage distribution over transitions S ˆ A ˆ S used to compute DEPIC. Let α ě 1, and let
Bαptq “ maxπPtπ˚

A,π˚
Bu Wα pDπ,t,Dq. Then the regret under RA from executing π˚

B optimal for
RB instead of π˚

A is at most:

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď
2α

1 ´ γ
DL1,DpRA, RBq ` 4L

8
ÿ

t“0

γtBαptq. (B.178)

Proof. By the same argument as lemma B.4.2 up to eq. B.134, we have for any policy π:

|GRA
pπq ´ GRB

pπq| ď

8
ÿ

t“0

γtDL1,Dπ,t
pRA, RBq. (B.179)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 166

Let fps, a, s1q “ RAps, a, s1q ´ RBps, a, s1q, and note f is 2L-Lipschitz and bounded since
RA and RB are both L-Lipschitz and bounded. Now, by lemma B.5.2, letting µ “ Dπ,t and
ν “ D, we have:

DL1,Dπ,t
pRA, RBq ď αDL1,DpRA, RBq ` 2LWαpDπ,t,Dq. (B.180)

So, for π P tπ˚
A, π

˚
Bu, it follows that

|GRA
pπq ´ GRB

pπq| ď
α

1 ´ γ
DL1,DpRA, RBq ` 2L

8
ÿ

t“0

γtBαptq. (B.181)

By the same argument as for eq. B.138 to B.142 in lemma B.4.2, it follows that

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď
2α

1 ´ γ
DL1,DpRA, RBq ` 4L

8
ÿ

t“0

γtBαptq, (B.182)

completing the proof.

Theorem B.5.4. Let M be an MDP\R with state and action spaces S and A. Let RA, RB :
S ˆ A ˆ S Ñ R be bounded, L-Lipschitz rewards on the ℓ1 norm }¨}1. Let π˚

A and π˚
B be

policies optimal for rewards RA and RB in M . Let Dπpt, st, at, st`1q denote the distribution
over trajectories that policy π induces in M at time step t.

Let Dps, a, s1q be the (stationary) coverage distribution over transitions S ˆA ˆ S used to
compute DEPIC. Let DSpsq and DApaq be the distributions over S and A used to canonicalize
reward functions in the computation of DEPIC. Assume the coverage and canonicalization
distributions to be equal: Dps, a, s1q “ DSpsqDApaqDSps1q @ s, s1 P S, a P A.

Let α ě 1, and let Bαptq “ maxπPπ˚
A,π˚

B
Wα pDπ,t,Dq. Then the regret under RA from

executing π˚
B optimal for RB instead of π˚

A is at most:

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď 16 }RA}2

˜

α

1 ´ γ
DEPICpRA, RBq ` L

8
ÿ

t“0

γtBαptq

¸

. (B.183)

Proof. The proof for theorem 5.1.1 holds in the general setting up to eq. B.163. Applying
lemma B.5.3 to eq. B.163 gives

GRS
A

pπ˚
Aq ´ GRS

A
pπ˚

Bq ď
2α

1 ´ γ
DL1,DpRS

A, R
S
Bq ` 4L

8
ÿ

t“0

γtBαptq (B.184)

ď
4α

1 ´ γ
DEPICpRA, RBq ` 4L

8
ÿ

t“0

γtBαptq. (B.185)

Applying lemma B.4.3 yields

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď 16 }RA}2

˜

α

1 ´ γ
DEPICpRA, RBq ` L

8
ÿ

t“0

γtBαptq

¸

, (B.186)

as required.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 167

B.6 Limiting behavior of regret
Throughout this section we assume the coverage distribution to be set equal to the canonical-
ization distribution.

The regret bound for finite MDPs, Theorem 5.1.1, directly implies that, as EPIC distance
tends to 0, the regret also tends to 0. By contrast, our regret bound in theorem B.5.4 for
(possibly continuous) MDPs with Lipschitz reward functions includes the relaxed Wasserstein
distance Wα as an additive term. At first glance, it might therefore appear possible for the
regret to be positive even with a zero EPIC distance. However, in this section we will show
that in fact the regret tends to 0 as DEPICpRA, RBq Ñ 0 in the Lipschitz case as well as the
finite case.

We show in lemma B.6.1 that if the expectation of a non-negative function over a totally
bounded measurable metric space M tends to zero under one distribution with adequate
support, then it also tends to zero under all other distributions. For example, taking M to be
a hypercube in Euclidean space with the Lebesque measure satisfies these assumptions. We
conclude in theorem B.6.2 by showing the regret tends to 0 as the EPIC distance tends to 0.

Lemma B.6.1. Let M “ pS, dq be a totally bounded metric space, where dpx, yq “ }x ´ y}.
Let pS,A, µq be a measure space on S with the Borel σ-algebra A and measure µ. Let
p, q P ∆pSq be probability density functions on S. Let δ ą 0 such that ppsq ě δ for all
s P S. Let fn : S Ñ R be a sequence of L-Lipschitz functions on norm }¨}. Suppose
limnÑ8 EX„p r|fnpXq|s “ 0. Then limnÑ8 EY „q r|fnpY q|s “ 0.

Proof. Since M is totally bounded, for each r ą 0 there exists a finite collection of open balls
in S of radius r whose union contains M . Let Brpcq “ ts P S | }s ´ c} ă ru, the open ball of
radius r centered at c. Let Cprq denote some finite collection of Qprq open balls:

Cprq “ tBrpcr,nq | n P t1, ¨ ¨ ¨ , Qprquu , (B.187)

such that
Ť

BPCprq
B “ S.

It is possible for some balls Brpcnq to have measure zero, µpBrpcnqq “ 0, such as if S
contains an isolated point cn. Define P prq to be the subset of Cprq with positive measure:

P prq “ tB P Cprq | µpBq ą 0u , (B.188)

and let pr,1, ¨ ¨ ¨ , pr,Q1prq denote the centers of the balls in P . Since P prq is a finite collection,
it must have a minimum measure:

αprq “ min
BPP

µpBq. (B.189)

Moreover, by construction of P , αprq ą 0.
Let S 1prq be the union only over balls of positive measure:

S 1
prq “

ď

BPP prq

B. (B.190)



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 168

Now, let Dprq “ SzS 1prq, comprising the (finite number of) measure zero balls in Cprq. Since
measures are countably additive, it follows that Dprq is itself measure zero: µ pDprqq “ 0.
Consequently:

ż

S

gpsqdµ “

ż

S1prq

gpsqdµ, (B.191)

for any measurable function g : S Ñ R.
Since limnÑ8 EX„p r|fnpXq|s “ 0, for all r ą 0 there exists some Nr P N such that for all

n ě Nr:
EX„p r|fnpXq|s ă δLrαprq. (B.192)

By Lipschitz continuity, for any s, s1 P S:

|fnps1
q| ě |fnpsq| ´ L }s1

´ s} . (B.193)

In particular, since any point s P S 1prq is at most r distance from some ball center pr,i, then
|fnppr,iq| ě |fnpsq| ´ Lr. So if there exists s P S 1prq such that |fnpsq| ě 3Lr, then there must
exist a ball center pr,i with |fnppr,iq| ě 2Lr. Then for any point s1 P Brppr,iq:

|fnps1
q| ě |fnppr,iq| ´ Lr ě Lr. (B.194)

Now, we have:

EX„p r|fnpXq|s fi

ż

sPS

|fnpsq|ppsqdµpsq (B.195)

“

ż

sPS1prq

|fnpsq|ppsqdµpsq eq. B.191 (B.196)

ě

ż

sPBrppr,iq

|fnpsq|ppsqdµpsq non-negativity of |fnpsq| (B.197)

ě δ

ż

sPBrppr,iq

|fnpsq|dµpsq ppsq ě δ (B.198)

ě δ ¨ Lr

ż

sPBrppr,iq

1dµpsq eq. B.194 (B.199)

“ δLrµpBrppr,iqq integrating w.r.t. µ (B.200)
ě δLrαprq αprq minimum of µpBrppr,iqq. (B.201)

But this contradicts eq. B.192, and so can only hold if n ă Nr. It follows that for all n ě Nr

and s P S 1prq, we have |fnpsq| ă 3Lr, and so in particular:

EY „q r|fnpY q|s ă 3Lr. (B.202)

Let ϵ ą 0. Choose r “ ϵ
3L

. Then for all n ě Nr, EY „q r|fnpY q|s ă ϵ. It follows that:

lim
nÑ8

EY „q r|fnpY q|s “ 0, (B.203)

completing the proof.



APPENDIX B. DEFERRED CONTENT FROM CHAPTER 4 169

Theorem B.6.2. Let M be an MDP\R with state and action spaces S and A. Let RA, RB :
S ˆ A ˆ S Ñ R be bounded rewards on some norm }¨} on S ˆ A ˆ S. Let π˚

A and π˚
B be

policies optimal for rewards RA and RB in M . Let Dπpt, st, at, st`1q denote the distribution
over trajectories that policy π induces in M at time step t.

Let Dps, a, s1q be the (stationary) coverage distribution over transitions S ˆA ˆ S used to
compute DEPIC. Let DSpsq and DApaq be the distributions over S and A used to canonicalize
reward functions in the computation of DEPIC. Assume the coverage and canonicalization
distributions to be equal: Dps, a, s1q “ DSpsqDApaqDSps1q @ s, s1 P S, a P A.

Suppose that either:

1. Discrete: S and A are discrete. Moreover, suppose that there exists some K ą 0 such
that KDpst, at, s

1
t`1q ě Dπpt, st, at, s

1
t`1q for all time steps t P N, triples st, at, st`1 P

S ˆ A ˆ S and policies π P tπ˚
A, π

˚
Bu.

2. Lipschitz: pS ˆ A ˆ S, dq is a totally bounded measurable metric space where dpx, yq “

}x ´ y}. Moreover, RA and RB are L-Lipschitz on }¨}. Furthermore, suppose there
exists some δ ą 0 such that Dps, a, s1q ě δ for all s, a, s1 P S ˆ A ˆ S, and that
Dπpt, st, at, st`1q is a non-degenerate probability density function (i.e. no single point
has positive measure).

Then as DEPICpRA, RBq Ñ 0, GRA
pπ˚

Aq ´ GRA
pπ˚

Bq Ñ 0.

Proof. In case (1) Discrete, by theorem 5.1.1:

GRA
pπ˚

Aq ´ GRA
pπ˚

Bq ď
16K∥RA∥2

1 ´ γ
DEPICpRA, RBq. (B.204)

Moreover, by optimality of π˚
A we have 0 ď GRA

pπ˚
Aq ´ GRA

pπ˚
Bq. So by the squeeze theorem,

as DEPICpRA, RBq Ñ 0, GRA
pπ˚

Aq ´ GRA
pπ˚

Bq Ñ 0.
From now on, suppose we are in case (2) Lipschitz. By the same argument as lemma B.4.2

up to eq. B.134, we have for any policy π:∣∣∣GRS
A

pπq ´ GRS
B

pπq

∣∣∣ ď

8
ÿ

t“0

γtDL1,Dπ,t
pRS

A, R
S
Bq. (B.205)

Applying lemma B.4.3 we have:

|GRA
pπq ´ GRB

pπq| ď 4 }RA}2

8
ÿ

t“0

γtDL1,Dπ,t
pRS

A, R
S
Bq. (B.206)

By equation B.163, we know that DL1,DpRS
A, R

S
Bq Ñ 0 as DEPICpRA, RBq Ñ 0. By lemma B.6.1,

we know that DL1,Dπ,t
pRS

A, R
S
Bq Ñ 0 as DL1,DpRS

A, R
S
Bq Ñ 0. So we can conclude that as

DEPICpRA, RBq Ñ 0:
|GRA

pπq ´ GRB
pπq| Ñ 0, (B.207)

as required.



170

Appendix C

Deferred content from Chapter 6



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 171

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / L1 smooth

Dense shaping / Unmodified Dense shaping / L1 sparse Dense shaping / L1 smooth

Negative shaping / Unmodified Negative shaping / L1 sparse Negative shaping / L1 smooth

Random shaping / Unmodified Random shaping / L1 sparse Random shaping / L1 smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.1: Goal reward preprocessed with L1 versions of the sparsity and smoothness cost
functions. The results are very similar to those in Figure 6.1. Each heatmap shows the
rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in the center of each
square represents the reward for staying in that state. The four triangles in each square
represent the reward of transitions leaving that square in each of the four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 172

Unshaped / Unmodified Unshaped / Log sparse Unshaped / Log smooth

Dense shaping / Unmodified Dense shaping / Log sparse Dense shaping / Log smooth

Negative shaping / Unmodified Negative shaping / Log sparse Negative shaping / Log smooth

Random shaping / Unmodified Random shaping / Log sparse Random shaping / Log smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.2: Goal reward preprocessed with logarithmic versions of the sparsity and smoothness
cost functions. Again, the results are qualitatively similar to those in Figure 6.1. Each
heatmap shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in
the center of each square represents the reward for staying in that state. The four triangles
in each square represent the reward of transitions leaving that square in each of the four
directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 173

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / L1 smooth

Dense shaping / Unmodified Dense shaping / L1 sparse Dense shaping / L1 smooth

Negative shaping / Unmodified Negative shaping / L1 sparse Negative shaping / L1 smooth

Random shaping / Unmodified Random shaping / L1 sparse Random shaping / L1 smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.3: Path reward preprocessed with L1 versions of the sparsity and smoothness cost
functions. The results are very similar to those in Figure 6.2. Each heatmap shows the
rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in the center of each
square represents the reward for staying in that state. The four triangles in each square
represent the reward of transitions leaving that square in each of the four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 174

Unshaped / Unmodified Unshaped / Log sparse Unshaped / Log smooth

Dense shaping / Unmodified Dense shaping / Log sparse Dense shaping / Log smooth

Negative shaping / Unmodified Negative shaping / Log sparse Negative shaping / Log smooth

Random shaping / Unmodified Random shaping / Log sparse Random shaping / Log smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.4: Path reward preprocessed with logarithmic versions of the sparsity and smoothness
cost functions. Compared to the L1 sparse cost function in Figure C.3, the log sparse cost
recovers a slightly less symmetric but still significantly simplified reward. Each heatmap
shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in the center
of each square represents the reward for staying in that state. The four triangles in each
square represent the reward of transitions leaving that square in each of the four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 175

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / L1 smooth

Dense shaping / Unmodified Dense shaping / L1 sparse Dense shaping / L1 smooth

Negative shaping / Unmodified Negative shaping / L1 sparse Negative shaping / L1 smooth

Random shaping / Unmodified Random shaping / L1 sparse Random shaping / L1 smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.5: Reward models trained on synthetic data from the Goal reward using preference
comparison (leftmost column) and preprocessed versions of these (middle and right). The cost
functions used here are the L1 version of the sparsity and smoothness cost. Each heatmap
shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in the center
of each square represents the reward for staying in that state. The four triangles in each
square represent the reward of transitions leaving that square in each of the four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 176

Unshaped / Unmodified Unshaped / Log sparse Unshaped / Log smooth

Dense shaping / Unmodified Dense shaping / Log sparse Dense shaping / Log smooth

Negative shaping / Unmodified Negative shaping / Log sparse Negative shaping / Log smooth

Random shaping / Unmodified Random shaping / Log sparse Random shaping / Log smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.6: Reward models trained on synthetic data from the Goal reward using preference
comparison (leftmost column) and preprocessed versions of these (middle and right). The
cost functions used here are the logarithmic version of the sparsity and smoothness cost.
Each heatmap shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The
circle in the center of each square represents the reward for staying in that state. The four
triangles in each square represent the reward of transitions leaving that square in each of the
four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 177

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / L1 smooth

Dense shaping / Unmodified Dense shaping / L1 sparse Dense shaping / L1 smooth

Negative shaping / Unmodified Negative shaping / L1 sparse Negative shaping / L1 smooth

Random shaping / Unmodified Random shaping / L1 sparse Random shaping / L1 smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.7: Reward models trained on synthetic data from the Path reward using preference
comparison (leftmost column) and preprocessed versions of these (middle and right). The cost
functions used here are the L1 version of the sparsity and smoothness cost. Each heatmap
shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in the center
of each square represents the reward for staying in that state. The four triangles in each
square represent the reward of transitions leaving that square in each of the four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 178

Unshaped / Unmodified Unshaped / Log sparse Unshaped / Log smooth

Dense shaping / Unmodified Dense shaping / Log sparse Dense shaping / Log smooth

Negative shaping / Unmodified Negative shaping / Log sparse Negative shaping / Log smooth

Random shaping / Unmodified Random shaping / Log sparse Random shaping / Log smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.8: Reward models trained on synthetic data from the Path reward using preference
comparison (leftmost column) and preprocessed versions of these (middle and right). The
cost functions used here are the logarithmic version of the sparsity and smoothness cost.
Each heatmap shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The
circle in the center of each square represents the reward for staying in that state. The four
triangles in each square represent the reward of transitions leaving that square in each of the
four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 179

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / L1 smooth

Dense shaping / Unmodified Dense shaping / L1 sparse Dense shaping / L1 smooth

Negative shaping / Unmodified Negative shaping / L1 sparse Negative shaping / L1 smooth

Random shaping / Unmodified Random shaping / L1 sparse Random shaping / L1 smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.9: Reward models learned using AIRL from expert demonstrations for the Goal
reward (leftmost column) and preprocessed versions of these (middle and right). The cost
functions used here are the L1 versions of the sparsity and smoothness cost. Each heatmap
shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in the center
of each square represents the reward for staying in that state. The four triangles in each
square represent the reward of transitions leaving that square in each of the four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 180

Unshaped / Unmodified Unshaped / Log sparse Unshaped / Log smooth

Dense shaping / Unmodified Dense shaping / Log sparse Dense shaping / Log smooth

Negative shaping / Unmodified Negative shaping / Log sparse Negative shaping / Log smooth

Random shaping / Unmodified Random shaping / Log sparse Random shaping / Log smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.10: Reward models learned using AIRL from expert demonstrations for the Goal
reward (leftmost column) and preprocessed versions of these (middle and right). The cost
functions used here are the logarithmic versions of the sparsity and smoothness cost. Each
heatmap shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in
the center of each square represents the reward for staying in that state. The four triangles
in each square represent the reward of transitions leaving that square in each of the four
directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 181

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / L1 smooth

Dense shaping / Unmodified Dense shaping / L1 sparse Dense shaping / L1 smooth

Negative shaping / Unmodified Negative shaping / L1 sparse Negative shaping / L1 smooth

Random shaping / Unmodified Random shaping / L1 sparse Random shaping / L1 smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.11: Reward models learned using AIRL from expert demonstrations for the Path
reward (leftmost column) and preprocessed versions of these (middle and right). The cost
functions used here are the L1 versions of the sparsity and smoothness cost. Each heatmap
shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in the center
of each square represents the reward for staying in that state. The four triangles in each
square represent the reward of transitions leaving that square in each of the four directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 182

Unshaped / Unmodified Unshaped / Log sparse Unshaped / Log smooth

Dense shaping / Unmodified Dense shaping / Log sparse Dense shaping / Log smooth

Negative shaping / Unmodified Negative shaping / Log sparse Negative shaping / Log smooth

Random shaping / Unmodified Random shaping / Log sparse Random shaping / Log smooth

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure C.12: Reward models learned using AIRL from expert demonstrations for the Path
reward (leftmost column) and preprocessed versions of these (middle and right). The cost
functions used here are the logarithmic versions of the sparsity and smoothness cost. Each
heatmap shows the rewards for all possible transitions in a 10 ˆ 10 gridworld. The circle in
the center of each square represents the reward for staying in that state. The four triangles
in each square represent the reward of transitions leaving that square in each of the four
directions.



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 183

6

4

2

0

2

4

6

8

Re
wa

rd
Unshaped / Unmodified Unshaped / Log sparse Unshaped / Log smooth

6

4

2

0

2

4

6

8

Re
wa

rd

Linear shaping / Unmodified Linear shaping / Log sparse Linear shaping / Log smooth

6

4

2

0

2

4

6

8

Re
wa

rd

Neg. linear shaping / Unmodified Neg. linear shaping / Log sparse Neg. linear shaping / Log smooth

0 200 400 600 800 1000
Time step

6

4

2

0

2

4

6

8

Re
wa

rd

Random shaping / Unmodified

0 200 400 600 800 1000
Time step

Random shaping / Log sparse

0 200 400 600 800 1000
Time step

Random shaping / Log smooth

Figure C.13: Preprocessing simplifies rewards in the continuous mountain car environment.
The top-left shows the ground-truth reward over time, with three shaped versions below.
The middle and right columns show these rewards after preprocessing using the logarithmic
sparsity and smoothness metrics. For the first two (linear) shapings, preprocessing recovers
the ground truth reward exactly (up to a constant shift). In the more complex case in the
last row, preprocessing still significantly simplifies the reward. See Figure C.14 for versions
with an L1 cost function. Each plot shows the reward during a rollout over five episodes
(separated by the gray vertical lines).



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 184

6

4

2

0

2

4

6

8

Re
wa

rd

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / L1 smooth

6

4

2

0

2

4

6

8

Re
wa

rd

Linear shaping / Unmodified Linear shaping / L1 sparse Linear shaping / L1 smooth

6

4

2

0

2

4

6

8

Re
wa

rd

Neg. linear shaping / Unmodified Neg. linear shaping / L1 sparse Neg. linear shaping / L1 smooth

0 200 400 600 800 1000
Time step

6

4

2

0

2

4

6

8

Re
wa

rd

Random shaping / Unmodified

0 200 400 600 800 1000
Time step

Random shaping / L1 sparse

0 200 400 600 800 1000
Time step

Random shaping / L1 smooth

Figure C.14: The top-left shows the ground-truth reward in mountain car over time, with three
shaped versions below. The middle and right column show these rewards after preprocessing
using the L1 sparsity and smoothness metrics. This works reasonably well for these simple
shaped rewards, although in the more complex last row these cost functions appear to perform
less well than the logarithmic version in Figure C.13. Each plot shows the reward during a
rollout over five episodes (separated by the gray vertical lines).



APPENDIX C. DEFERRED CONTENT FROM CHAPTER 6 185

0.1

0.0

0.1

0.2

0.3

Re
wa

rd

Unshaped / Unmodified Unshaped / L1 sparse Unshaped / L1 smooth

0 200 400 600 800 1000
Time step

0.1

0.0

0.1

0.2

0.3

Re
wa

rd

Value shaped / Unmodified

0 200 400 600 800 1000
Time step

Value shaped / L1 sparse

0 200 400 600 800 1000
Time step

Value shaped / L1 smooth

Figure C.15: Preprocessing can simplify complex learned reward models for mountain car.
The left column shows reward models learned using synthetic preference comparisons based on
the ground-truth reward (top), and the ground-truth shaped with an optimal value function
(bottom). Preprocessing for sparsity (middle) and smoothness (right) produces simpler and
less noisy reward curves, especially in the shaped setting. The results are extremely similar,
although perhaps slightly worse, than the logarithmic version used in Figure 6.3. Each plot
shows the reward during a rollout over five episodes (separated by the gray vertical lines).



186

Appendix D

Deferred content from Chapter 8

D.1 Training: hyperparameters and computational
infrastructure

Parameter Value Search Range Search Distribution

Total Timesteps 20 ˆ 106 r0, 40 ˆ 106s Manual
Batch size 16 384 r2048, 65 536s Log uniform
Number of environments 8 r1, 16s Manual
Mini-batches 4 r1, 128s Log uniform
Epochs per update 4 r1, 11s Uniform
Learning rate 3 ˆ 10´4 r1 ˆ 10´5, 1 ˆ 10´2s Log uniform
Discount 0.99 — —
Maximum Gradient Norm 0.5 — —
Clip Range 0.2 — —
Advantage Estimation Discount 0.95 — —
Entropy coefficient 0.0 — —
Value Function Loss Coefficient 0.5 — —

Table D.1: Hyperparameters for Proximal Policy Optimization.

Table D.1 specifies the hyperparameters used for training. The number of environments
was chosen for performance reasons after observing diminishing returns from using more
than 8 parallel environments. The total timesteps was chosen by inspection after observing
diminishing returns to additional training. The batch size, mini-batches, epochs per update,
entropy coefficient and learning rate were tuned via a random search with 100 samples on
two environments, Kick and Defend and Sumo Humans. All other hyperparameters are the
defaults in the PPO2 implementation in Stable Baselines [65].



APPENDIX D. DEFERRED CONTENT FROM CHAPTER 8 187

We repeated the hyperparameter sweep for fine-tuning defender policies for the defense
experiments, but obtained similar results. For simplicity, we therefore chose to use the same
hyperparameters throughout.

We used a mixture of in-house and cloud infrastructure to perform these experiments.
It takes around 8 hours to train an adversary for a single defender using 4 cores of an Intel
Xeon Platinum 8000 (Skylake) processor.

D.2 Activation analysis: t-SNE and GMM
We collect activations from all feed forward layers of the defender’s policy network. This gives
two 64-length vectors, which we concatenate into a single 128-dimension vector for analysis
with a Gaussian Mixture Model and a t-SNE representation.

D.2.1 t-SNE hyperparameter selection

We fit models with perplexity 5, 10, 20, 50, 75, 100, 250 and 1000. We chose 250 since
qualitatively it produced the clearest visualization of data with a moderate number of distinct
clusters.

D.2.2 Gaussian Mixture Model hyperparameter selection

We fit models with 5, 10, 20, 40 and 80 components with a full (unrestricted) and diagonal
covariance matrix. We used the Bayesian Information Criterion (BIC) and average log-
likelihood on a held-out validation set as criteria for selecting hyperparameters. We found 20
components with a full covariance matrix achieved the lowest BIC and highest validation
log-likelihood in the majority of environment-defender pairs, and was the runner-up in the
remainder.

D.3 Figures
Supplementary figures are provided on the subsequent pages.



APPENDIX D. DEFERRED CONTENT FROM CHAPTER 8 188

0

25

50

75

100
W

in
 r

at
e 

(%
)

Kick and Defend 1 Kick and Defend 2 Kick and Defend 3

0

25

50

75

100

W
in

 r
at

e 
(%

)

Sumo Humans 1 Sumo Humans 2 Sumo Humans 3

0

25

50

75

100

W
in

 r
at

e 
(%

)

Sumo Ants 1 Sumo Ants 2 Sumo Ants 3

0 1 2
Timestep 1e7

0

25

50

75

100

W
in

 r
at

e 
(%

)

Sumo Ants 4

0 1 2
Timestep 1e7

You Shall Not Pass 1

Adversary (Adv) Normal (Zoo) Random (Rand) Zero

Figure D.1: Win rates while training adversary Adv. The adversary exceeds baseline win
rates against most defenders in Kick and Defend and You Shall Not Pass, is competitive on
Sumo Humans, but performs poorly in the low-dimensional Sumo Ants environment. Key:
The solid line shows the median win rate for Adv across 5 random seeds, with the shaded
region representing the minimum and maximum. The win rate is smoothed with a rolling
average over 100 000 timesteps. Baselines are shown as horizontal dashed lines. Agents Rand
and Zero take random and zero actions respectively. The Zoo baseline is whichever ZooM
(Sumo) or ZooOM (other environments) agent achieves the highest win rate. The defender is
ZooN (Sumo) or ZooVN (other environments), where N is given in the title above each figure.



APPENDIX D. DEFERRED CONTENT FROM CHAPTER 8 189

ZooV1
ZooV2
ZooV3

79 53 50
54 93 63
31 31 84

32 90 42
9 80 63

50 66 64

30 30
50 46
26 29

A
dv

1
A

dv
2

A
dv

3

ZooMV1
ZooMV2
ZooMV3

15 17 18
27 28 27
26 24 23

Z
oo

O
1

Z
oo

O
2

Z
oo

O
3

58 79 31
36 73 42
47 50 61

R
an

d
Z

er
o

12 13
25 21
21 19

21 46 50
46 6 37
68 67 16

67 10 57
90 20 36
47 33 35

64 61
45 44
68 62

A
dv

1
A

dv
2

A
dv

3

84 83 82
73 72 73
74 75 77

Z
oo

O
1

Z
oo

O
2

Z
oo

O
3

40 19 69
63 24 58
51 48 36

R
an

d
Z

er
o

84 78
72 72
74 72

0 0 0
0 0 0
1 2 0

2 1 1
0 1 0
3 0 2

6 9
5 10
5 8

A
dv

1
A

dv
2

A
dv

3

0 0 0
0 0 0
0 1 0

Z
oo

O
1

Z
oo

O
2

Z
oo

O
3

2 2 0
1 4 0
2 1 3

R
an

d
Z

er
o

4 9
4 8
5 10

0
20
40
60
80
100

Opponent Win Victim Win Ties

(a) Kick and Defend

ZooV1 87 81 76 48 3 1
ZooSV1 9 99 84 84 12 18
ZooDV1 11 91 88 57 8 6

A
dv

1

ZooMV1 1

A
dv

S1

83

A
dv

D
1

70

Z
oo

O
1

78

R
an

d

Z
er

o

1 1

13 19 24 52 97 99
91 1 16 16 88 82
89 9 12 43 92 94

A
dv

1

99

A
dv

S1

17

A
dv

D
1

30

Z
oo

O
1

22

R
an

d

Z
er

o

99 99

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A
dv

1

0
A

dv
S1

0
A

dv
D

1
0

Z
oo

O
1

0

R
an

d

Z
er

o

0 0
0
20
40
60
80
100

Opponent Win Victim Win Ties

(b) You Shall Not Pass

Zoo1
Zoo2
Zoo3

87 9 37
10 63 14
17 18 44

15 80 80
34 54 71
10 31 57

0 0
0 0
0 1

A
dv

1
A

dv
2

A
dv

3

ZooM1
ZooM2
ZooM3

87 24 58
32 39 39
62 68 75

Z
oo

1
Z

oo
2

Z
oo

3

93 91 92
46 84 69
66 82 90

R
an

d
Z

er
o

0 1
0 0
1 1

12 91 63
76 19 64
81 79 23

85 19 18
62 35 16
88 61 34

100100
100100
100 99

A
dv

1
A

dv
2

A
dv

3

12 76 42
39 30 23
30 20 10

Z
oo

1
Z

oo
2

Z
oo

3

7 9 8
50 10 17
31 13 9

R
an

d
Z

er
o

100 99
100100
99 99

0 0 0
14 18 22
2 4 33

0 1 2
4 11 13
1 8 9

0 0
0 0
0 0

A
dv

1
A

dv
2

A
dv

3

0 0 0
29 32 38
9 12 15

Z
oo

1
Z

oo
2

Z
oo

3

0 0 0
4 6 14
3 6 2

R
an

d
Z

er
o

0 0
0 0
0 0

0
20
40
60
80
100

Opponent Win Victim Win Ties

(c) Sumo Humans



APPENDIX D. DEFERRED CONTENT FROM CHAPTER 8 190

Zoo1
Zoo2
Zoo3
Zoo4

11 8 7 9
11 11 9 8
5 6 6 8

10 9 8 8

40 36 38 47
48 40 40 42
40 34 42 44
39 35 40 42

6 7
5 4
4 3
4 3

A
dv

1
A

dv
2

A
dv

3
A

dv
4

ZooM1
ZooM2
ZooM3
ZooM4

6 5 5 5
4 4 3 4
4 3 3 5
4 4 4 4

Z
oo

1
Z

oo
2

Z
oo

3
Z

oo
4

62 51 58 61
61 51 54 56
56 52 56 61
62 56 59 65

R
an

d
Z

er
o

2 4
3 3
4 4
3 2

59 57 57 66
59 54 60 71
66 62 57 66
74 72 75 74

44 47 48 38
37 42 43 37
41 48 42 38
44 49 43 43

67 70
64 66
68 67
76 75

A
dv

1
A

dv
2

A
dv

3
A

dv
4

32 33 28 31
18 17 16 22
20 14 14 19
13 14 9 14

Z
oo

1
Z

oo
2

Z
oo

3
Z

oo
4

19 22 20 16
19 18 20 16
20 19 22 16
12 16 17 12

R
an

d
Z

er
o

48 35
32 15
36 17
24 10

30 34 36 25
30 35 31 21
29 32 37 25
16 19 18 18

16 17 13 16
15 18 17 20
19 17 16 18
16 16 16 14

27 24
31 30
28 30
20 22

A
dv

1
A

dv
2

A
dv

3
A

dv
4

62 62 66 64
79 79 81 74
76 82 83 76
83 82 86 82

Z
oo

1
Z

oo
2

Z
oo

3
Z

oo
4

19 28 22 23
20 31 26 29
25 29 22 23
26 28 25 24

R
an

d
Z

er
o

50 61
66 82
60 79
73 87

0

20

40

60

80

100
Opponent Win Victim Win Ties

(d) Sumo Ants

Figure D.2: Percentage of episodes (out of 1000) won by the opponent, the defender or tied.
The maximal opponent win rate in each row is in red. Defenders are on the y-axis and
opponents on the x-axis. Key: Agents ZooYN are pre-trained policies from Bansal et al. [14],
where Y P t‘V ’,‘O’,‘’u denotes the agent plays as (V)ictim, (O)pponent, or either side, and
N is a random seed. Opponents AdvN are the best adversarial policy of 5 seeds trained against
the corresponding Zoo[V]N. Agents Rand and Zero are baseline agents taking random and
zero actions respectively. Hardened defenders ZooXYN, where X P t‘S’,‘D’,‘M ’u, are derived
from ZooYN by fine-tuning against a (S)ingle opponent AdvN, or (D)ual opponents AdvN and
Zoo[O]N, or by (M)asking the observations.



APPENDIX D. DEFERRED CONTENT FROM CHAPTER 8 191

Adversary (Adv) Normal (Zoo) Random (Rand)

(a) Kick and Defend, defender 1 (b) Kick and Defend, defender 2 (c) Kick and Defend, defender 3

(d) Sumo Humans, defender 1 (e) Sumo Humans, defender 2 (f) Sumo Humans, defender 3

(g) Sumo Ants, defender 1 (h) Sumo Ants, defender 2 (i) Sumo Ants, defender 3



APPENDIX D. DEFERRED CONTENT FROM CHAPTER 8 192

(j) Sumo Ants, defender 4 (k) You Shall Not Pass, defender 1

Figure D.3: t-SNE activations of the defender when playing against different opponents.
There is a clear separation between the activations induced by Adv and those of the normal
opponent Zoo. Model fitted with a perplexity of 250 to activations from 5000 timesteps
against each opponent. The defender is ZooN (Sumo) or ZooVN (other environments), where
N is given in the figure caption. Opponent Adv is the best adversary trained against the
defender. Opponent Zoo corresponds to ZooN (Sumo) or ZooON (other environments). See
Figure D.4 for activations for a single opponent at a time.



APPENDIX D. DEFERRED CONTENT FROM CHAPTER 8 193

Adversary (Adv) Normal (Zoo) Random (Rand)

(a) Kick and Defend.

(b) You Shall Not Pass.

(c) Sumo Humans.

(d) Sumo Ants.

Figure D.4: t-SNE activations of defender Zoo1 (Sumo) or ZooV1 (other environments).
The results are the same as in Figure D.3 but decomposed into individual opponents for
clarity. Model fitted with a perplexity of 250 to activations from 5000 timesteps against each
opponent. Opponent Adv is the best adversary trained against the defender. Opponent Zoo
is Zoo1 (Sumo) or ZooO1 (other environments). See Figure D.3 for results for other defenders
(one plot per defender).



194

Appendix E

Deferred content from Chapter 9

E.1 Rules of Go Used For Evaluation
We evaluate all games with Tromp-Taylor rules [163], after clearing opposite-color stones
within pass-alive groups computed by Benson’s algorithm [20]. KataGo was configured to
play using these rules in all our matches against it. Indeed, these rules simply consist of
KataGo’s version of Tromp-Taylor rules with SelfPlayOpts enabled [177]. We use a fixed
Komi of 6.5.

We chose these modified Tromp-Taylor rules because they are simple, and KataGo was
trained on (variants) of these rules so should be strongest playing with them. Although the
exact rules used were randomized during KataGo’s training, modified Tromp-Taylor made up
a plurality of the training data. That is, modified Tromp-Taylor is at least as likely as any
other configuration seen during training, and is more common than some other options.∗

In particular, KataGo training randomized between area vs. territory scoring as well
as ko, suicide, taxation and button rules from the options described in Wu [177]. These
configuration settings are provided as input to the neural network [175, Table 4], so the
network should learn to play appropriately under a range of rule sets. Additionally, during
training Komi was sampled randomly from a normal distribution with mean 7 and standard
deviation 1 [175, Appendix D].

E.1.1 Difference From Typical Human Play

Although KataGo supports a variety of rules, all of them involve automatically scoring the
board at the end of the game. By contrast, when a match between humans end, the players
typically confer and agree which stones are dead, removing them from the board prior to

∗In private communication, the author of KataGo estimated that modified Tromp-Taylor made up a “a
few %” of the training data, “growing to more like 10% or as much as 20%” depending on differences such as
“self-capture and ko rules that shouldn’t matter for what you’re investigating, but aren’t fully the same rules
as Tromp-Taylor”.



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 195

scoring. If no agreement can be reached then the players either continue playing the game
until the situation is clarified, or a referee arbitrates the outcome of the game.

KataGo has a variety of optional features to help it play well under human scoring rules.
For example, KataGo includes an auxiliary prediction head for whether stones are dead or
alive. This enables it to propose which stones it believes are dead when playing on online Go
servers. Additionally, it include hard-coded features that can be enabled to make it play in a
more human-like way, such as friendlyPassOk to promote passing when heuristics suggest
the game is nearly over.

These features have led some to speculate that the defender passes prematurely in games
such as those in Figure 9.1 because it has learned or is configured to play in a more human-like
way. Prima facie, this view seems credible: a human player certainly might pass in a similar
situation to our defender, viewing the game as already won under human rules. Although
tempting, this explanation is not correct: the optional features described above were disabled
in our evaluation. Therefore KataGo loses under the rules it was both trained and configured
to use.

In fact, the majority of our evaluation used the match command to run KataGo vs.
KataGo agents which naturally does not support these human-like game play features. We
did use the gtp command, implementing the Go Text Protocol (GTP), for a minority of our
experiments, such as evaluating KataGo against other AI systems or human players. In those
experiments, we configured gtp to follow the same Tromp-Taylor rules described above, with
any human-like extensions disabled.

E.2 Search Algorithms

E.2.1 A Review of Monte-Carlo Tree Search (MCTS)

In this section, we review the basic Monte-Carlo Tree Search (MCTS) algorithm as used in
AlphaGo-style agents [151]. This formulation is heavily inspired by the description of MCTS
given in Wu [175].

MCTS is an algorithm for growing a game tree one node at a time. It starts from a tree
T0 with a single root node x0. It then goes through N playouts, where every playout adds a
leaf node to the tree. We will use Ti to denote the game tree after i playouts, and will use xi

to denote the node that was added to Ti´1 to get Ti. After MCTS finishes, we have a tree
TN with N ` 1 nodes. We then use simple statistics of TN to derive a sampling distribution
for the next move.

E.2.1.1 MCTS Playouts

MCTS playouts are governed by two learned functions:

a. A value function estimator V̂ : T ˆ X Ñ R, which returns a real number V̂T pxq given a
tree T and a node x in T . The value function estimator is meant to estimate how good



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 196

it is to be at x from the perspective of the player to move at the root of the tree.

b. A policy estimator π̂ : T ˆ X Ñ PpX q, which returns a probability distribution over
possible next states π̂T pxq given a tree T and a node x in T . The policy estimator
is meant to approximate the result of playing the optimal policy from x (from the
perspective of the player to move at x).

For both KataGo and AlphaGo, the value function estimator and policy estimator are defined
by two deep neural network heads with a shared backbone. The reason that V̂ and π̂ also
take a tree T as an argument is because the estimators factor in the sequence of moves leading
up to a node in the tree.

A playout is performed by taking a walk in the current game tree T . The walk goes down
the tree until it attempts to walk to a node x1 that either doesn’t exist in the tree or is a
terminal node.† At this point the playout ends and x1 is added as a new node to the tree (we
allow duplicate terminal nodes in the tree).

Walks start at the root of the tree. Let x be where we are currently in the walk. The
child c we walk to (which may not exist in the tree) is given by

walkMCTS
T pxq

“

$

’

&

’

%

argmax
c

V̄T pcq ` α ¨ π̂T pxqrcs ¨

?
ST pxq´1

1`ST pcq
if root player to move at x,

argmin
c

V̄T pcq ´ α ¨ π̂T pxqrcs ¨

?
ST pxq´1

1`ST pcq
if opponent player to move at x,

(E.1)

where the argmin and argmax are taken over all children reachable in a single legal move
from x. There are some new pieces of notation in Eq E.1. Here are what they mean:

1. V̄T : X Ñ R takes a node x and returns the average value of V̂T across all the nodes in
the subtree of T rooted at x (which includes x). In the special case that x is a terminal
node, V̄T pxq is the result of the finished game as given by the game-simulator. When x
does not exist in T , we instead use the more complicated formula‡

V̄T pxq “ V̄T pparT pxqq ´ β ¨

d

ÿ

x1 P childrenT pparT pxqq

π̂T pparT pxqqrx1s ,

where parT pxq is the parent of x in T and β is a constant that controls how much we
de-prioritize exploration after we have already done some exploration.

2. α ě 0 is a constant to trade off between exploration and exploitation.

3. ST : X Ñ Zě0 takes a node x and returns the size of the subtree of T rooted at x.
Duplicate terminal nodes are counted multiple times. If x is not in T , then ST pxq “ 0.

†A “terminal” node is one where the game is finished, whether by the turn limit being reached, one player
resigning, or by two players passing consecutively.

‡Which is used in KataGo and LeelaZero but not AlphaGo [175].



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 197

The first term in Eq E.1 can be thought of as the exploitation term, and the second term
can be thought of as the exploration term and is inspired by UCB algorithms.

E.2.1.2 MCTS Final Move Selection

The final move to be selected by MCTS is sampled from a distribution proportional to

STN
pcq1{τ , (E.2)

where c in this case is a child of the root node. The temperature parameter τ trades off
between exploration and exploitation.§

E.2.1.3 Efficiently Implementing MCTS

To efficiently implement the playout procedure one should keep running values of V̄T and ST

for every node in the tree. These values should be updated whenever a new node is added.
The standard formulation of MCTS bakes these updates into the algorithm specification.
Our formulation hides the procedure for computing V̄T and ST to simplify exposition.

E.2.2 Adversarial MCTS: Sample (A-MCTS-S)

In this section, we describe in detail how our Adversarial MCTS: Sample (A-MCTS-S)
attack is implemented. We build off of the framework for vanilla MCTS as described in
Appendix E.2.1.

A-MCTS-S, just like MCTS, starts from a tree T0 with a single root node and adds nodes
to the tree via a series of N playouts. We derive the next move distribution from the final
game tree TN by sampling from the distribution proportional to

SA-MCTS
TN

pcq1{τ , where c is a child of the root node of TN . (E.3)

Here, SA-MCTS
T is a modified version of ST that measures the size of a subtree while ignoring

non-terminal defender-nodes (at defender-nodes it is the defender’s turn to move, and at
self-nodes it is the adversary’s turn to move). Formally, SA-MCTS

T pxq is the sum of the weights
of nodes in the subtree of T rooted at x, with weight function

wA-MCTS
T pxq “

$

’

&

’

%

1 if x is self-node,
1 if x is terminal defender-node,
0 if x is non-terminal defender-node.

(E.4)

We grow the tree by A-MCTS playouts. At defender-nodes, we sample directly from the
defender’s policy πv:

walkA-MCTS
T pxq :“ sample from πv

T pxq. (E.5)
§See search.h::getChosenMoveLoc and searchresults.cpp::getChosenMoveLoc to see how KataGo

does this.

https://github.com/lightvector/KataGo/blob/21b4efef6bf8c9dd72bb79abd3703281b2878fd1/cpp/search/search.h#L265-L267
https://github.com/lightvector/KataGo/blob/d8d0cd76cf73df08af3d7061a639488ae9494419/cpp/search/searchresults.cpp#L420-L438


APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 198

This is a perfect model of the defender without search. However, it will tend to underestimate
the strength of the defender when the defender plays with search.

At self-nodes, we instead take the move with the best upper confidence bound just like in
regular MCTS:

walkA-MCTS
T pxq :“ argmax

c
V̄ A-MCTS
T pcq ` α ¨ π̂T pxqrcs ¨

a

SA-MCTS
T pxq ´ 1

1 ` SA-MCTS
T pcq

. (E.6)

Note this is similar to Eq E.1 from the previous section. The key difference is that we
use SA-MCTS

T pxq (a weighted version of ST pxq) and V̄ A-MCTS
T pcq (a weighted version of V̄T pcq).

Formally, V̄ A-MCTS
T pcq is the weighted average of the value function estimator V̂T pxq across all

nodes x in the subtree of T rooted at c, weighted by wA-MCTS
T pxq. If c does not exist in T or

is a terminal node, we fall back to the behavior of V̄T pcq.

E.2.3 Pass-Alive Defense

Our hard-coded defense modifies KataGo’s C++ code to directly remove passing moves
from consideration after MCTS, setting their probability to zero. Since the defender must
eventually pass in order for the game to end, we allow passing to be assigned nonzero
probability when there are no legal moves, or when the only legal moves are inside the
defender’s own pass-alive territory. We use a pre-existing function inside the KataGo
codebase, Board::calculateArea, to determine which moves are in pass-alive territory.

The term “pass-alive territory” is defined in the KataGo rules as follows [177]:

A {maximal-non-black, maximal-non-white} region R is pass-alive-territory for
{Black, White} if all {black, white} regions bordering it are pass-alive-groups,
and all or all but one point in R is adjacent to a {black, white} pass-alive-group,
respectively.

The notion “pass-alive group” is a standard concept in Go [177]:

A black or white region R is a pass-alive-group if there does not exist any sequence
of consecutive pseudolegal moves of the opposing color that results in emptying
R.

KataGo uses an algorithm introduced by Benson [20] to efficiently compute the pass-alive
status of each group. For more implementation details, we encourage the reader to consult
the official KataGo rules and the KataGo codebase on GitHub.

E.3 Hyperparameter Settings
We enumerate the key hyperparameters used in our training run in Table E.1. For brevity,
we omit hyperparameters that are the same as KataGo defaults and have only a minor effect
on performance.



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 199

Hyperparameter Value Different from KataGo?

Batch Size 256 Same
Learning Rate Scale of Hardcoded Schedule 1.0 Same
Minimum Rows Before Shuffling 250,000 Same
Data Reuse Factor 4 Similar
Adversary Visit Count 600 Similar
Adversary Network Architecture b6c96 Different
Gatekeeping Disabled Different
Auto-komi Disabled Different
Komi randomization Disabled Different
Handicap Games Disabled Different
Game Forking Disabled Different

Table E.1: Key hyperparameter settings for our adversarial training runs.

The key difference from standard KataGo training is that our adversarial policy uses a
b6c96 network architecture, consisting of 6 blocks and 96 channels. This is much smaller
than the defender, which uses a b20c256 or b40c256 architecture. We additionally disable a
variety of game rule randomizations that help make KataGo a useful AI teacher in a variety
of settings but are unimportant for our attack. We also disable gatekeeping, designed to
stabilize training performance, as our training has proved sufficiently stable without it.

We train at most 4 times on each data row before blocking for fresh data. This is
comparable to the original KataGo training run, although the ratio during that run varied
as the number of asynchronous selfplay workers fluctuated over time. We use an adversary
visit count of 600, which is comparable to KataGo, though the exact visit count has varied
between their training runs.

E.3.1 Configuration for Curriculum Against Defender Without
Search

In Section 9.5.1, we train using a curriculum over checkpoints, moving on to the next
checkpoint when the adversary’s win-rate exceeds 50%. We ran the curriculum over the
following checkpoints, all without search:

1. Checkpoint 127: b20c256x2-s5303129600-d1228401921 (Initial).

2. Checkpoint 200: b40c256-s5867950848-d1413392747.

3. Checkpoint 300: b40c256-s7455877888-d1808582493.

4. Checkpoint 400: b40c256-s9738904320-d2372933741.



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 200

5. Checkpoint 469: b40c256-s11101799168-d2715431527.

6. Checkpoint 505: b40c256-s11840935168-d2898845681 (Latest).

These checkpoints can all be obtained from [176].
We start with checkpoint 127 for computational efficiency: it is the strongest KataGo

network of its size, 20 blocks or b20. The subsequent checkpoints are all 40 block networks, and
are approximately equally spaced in terms of training time steps. We include checkpoint 469 in
between 400 and 505 for historical reasons: we ran some earlier experiments against checkpoint
469, so it is helpful to include checkpoint 469 in the curriculum to check performance is
comparable to prior experiments.

Checkpoint 505 is the latest confidently rated network. There are some more recent, larger
networks (b60 = 60 blocks) that may have an improvement of up to 150 Elo. However, they
have had too few rating games to be confidently evaluated.

E.4 Strength of Go AI systems
In this section, we estimate the strength of KataGo’s Latest network with and without
search nd the AlphaZero agent from [142] playing with 800 visits.

E.4.1 Strength of KataGo Without Search

First, we estimate the strength of KataGo’s Latest agent playing without search. We use
two independent methodologies and conclude that Latest without search is at the level of a
weak professional.

One way to gauge the performance of Latest without search is to see how it fares against
humans on online Go platforms. Per Table E.2, on the online Go platform KGS, a slightly
earlier (and weaker) checkpoint than Latest playing without search is roughly at the level of
a top-100 European player. However, some caution is needed in relying on KGS rankings:

1. Players on KGS compete under less focused conditions than in a tournament, so they
may underperform.

2. KGS is a less serious setting than official tournaments, which makes cheating (e.g.,
using an AI) more likely. Thus human ratings may be inflated.

3. Humans can play bots multiple times and adjust their strategies, while bots remain
static. In a sense, humans are able to run adversarial attacks on the bots, and are even
able to do so in a white-box manner since the source-code and network weights of a
bot like KataGo are public.

Another way to estimate the strength of Latest without search is to compare it to other
AIs with known strengths and extrapolate performance across different amounts of search.



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 201

KGS handle Is KataGo? KGS rank EGF rank EGD Profile

Fredda 22 25 Fredrik Blomback
cheater 25 6 Pavol Lisy
TeacherD 26 39 Dominik Boviz
NeuralZ03 ✓ 31
NeuralZ05 ✓ 32
NeuralZ06 ✓ 35
ben0 39 16 Benjamin Drean-Guenaizia
sai1732 40 78 Alexandr Muromcev
Tichu 49 64 Matias Pankoke
Lukan 53 10 Lukas Podpera
HappyLook 54 49 Igor Burnaevskij

Table E.2: Rankings of various humans and no-search KataGo bots on KGS [78]. Human
players were selected to be those who have European Go Database (EGD) profiles [45], from
which we obtained the European Go Federation (EGF) rankings in the table. The KataGo
bots are running with a checkpoint slightly weaker than Latest, specifically Checkpoint 469
or b40c256-s11101799168-d2715431527 [135]. Per [176], the checkpoint is roughly 10 Elo
weaker than Latest.

Our analysis critically assumes the transitivity of Elo at high levels of play. We walk through
our estimation procedure below:

1. Our anchor is ELF OpenGo at 80,000 visits per move, which won all 20 games played
against four top-30 professional players, including five games against the now world
number one [161]. We assume that ELF OpenGo at 80,000 visits is strongly superhuman,
meaning it has a 90%+ winrate over the strongest current human.¶ At the time of
writing, the top ranked player on Earth has an Elo of 3845 on goratings.org [35]. Under
our assumption, ELF OpenGo at 80,000 visits per move would have an Elo of 4245+
on goratings.org.

2. The strongest network in the original KataGo paper was shown to be slightly stronger
than ELF OpenGo [175, Table 1] when both bots were run at 1600 visits per move.
From Figure E.1, we see that the relative strengths of KataGo networks is maintained
across different amounts of search. We thus extrapolate that KataGo at 80,000 visits
would also have an Elo of 4245+ on goratings.org.

3. The strongest network in the original KataGo paper is comparable to the b15c192-
s1503689216-d402723070 checkpoint on katagotraining.org [176]. We dub this check-

¶This assumption is not entirely justified by statistics, as a 20:0 record only yields a 95% binomial lower
confidence bound of a 83.16% win rate against top-30 professional players in 2019. It does help however that
the players in question were rated #3, #5, #23, and #30 in the world at the time.

https://www.europeangodatabase.eu/EGD/Player_Card.php?&key=13937946
https://europeangodatabase.eu/EGD/Player_Card.php?&key=12686597
https://europeangodatabase.eu/EGD/Player_Card.php?&key=14225926
https://europeangodatabase.eu/EGD/Player_Card.php?&key=14513532
https://europeangodatabase.eu/EGD/Player_Card.php?&key=18486897
https://europeangodatabase.eu/EGD/Player_Card.php?&key=15933973
https://europeangodatabase.eu/EGD/Player_Card.php?&key=13201914
https://europeangodatabase.eu/EGD/Player_Card.php?&key=16049671


APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 202

point Original. In a series of benchmark games, we found that Latest without search
won 29/3200 games against Original with 1600 visits. This puts Original with 1600
visits ~800 Elo points ahead of Latest without search.

4. Finally, log-linearly extrapolating the performance of Original from 1600 to 80,000
visits using Figure E.1 yields an Elo difference of ~900 between the two visit counts.

5. Combining our work, we get that Latest without search is roughly 800 ` 900 = ~1700
Elo points weaker than ELF OpenGo with 80,000 visits. This would give Latest
without search an Elo rating of 4245 ´ 1700 = ~2500 on goratings.org, putting it at the
skill level of a weak professional.

As a final sanity check on these calculations, the raw AlphaGo Zero neural network was
reported to have an Elo rating of 3,055, comparable to AlphaGo Fan’s 3,144 Elo.‖ Since
AlphaGo Fan beat Fan Hui, a 2-dan professional player [153], this confirms that well-trained
neural networks can play at the level of human professionals. Although there has been no
direct comparison between KataGo and AlphaGo Zero, we would expect them to be not wildly
dissimilar. Indeed, if anything the latest versions of KataGo are likely stronger, benefiting
from both a large distributed training run (amounting to over 10,000 V100 GPU days of
training) and four years of algorithmic progress.

E.4.2 Strength of KataGo With Search

In the previous section, we established that Latest without search is at the level of a weak
professional with rating around ~2500 on goratings.org.

Assuming Elo transitivity, we can estimate the strength of Latest by utilizing Figure E.1.
In particular, our evaluation results tell us that Latest with 64 playouts/move is roughly
1063 Elo stronger than Latest with no search. This puts Latest with 64 playouts/move at
an Elo of ~3563 on goratings.org—within the top 20 in the world.

E.4.3 Strength of AlphaZero

Prior work from Timbers et al. [162] described in Section 9.2 exploited the AlphaZero replica
from Schmid et al. [142] playing with 800 visits. Unfortunately, this agent has never been
evaluated against KataGo or against any human player, making it difficult to directly compare
its strength to those of our defenders. Moreover, since it is a proprietary model, we cannot
perform this evaluation ourselves. Accordingly, in this section we seek to estimate the strength
of these AlphaZero agents using three anchors: GnuGo, Pachi and Lee Sedol. Our estimates
suggest AlphaZero with 800 visits ranges in strength from the top 200 of human players, to
being slightly superhuman.

‖The Elo scale used in Silver et al. [153] is not directly comparable to our Elo scale, although they should
be broadly similar as both are anchored to human players.



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 203

100 101 102 103

Visits

´2000

´1000

0

1000

2000

E
lo

Network
cp505 (Latest)
cp127 (Initial)
cp103 (Original)
cp99
cp79
cp63
cp37

Figure E.1: Elo ranking (y-axis) of networks (different colored lines) by visit count (x-axis).
The lines are approximately linear on a log x-scale, with the different networks producing
similarly shaped lines vertically shifted. This indicates that there is a consistent increase in Elo,
regardless of network strength, that is logarithmic in visit count. Elo ratings were computed
from self-play games among the networks using a Bayesian Elo estimation algorithm [62].

Agent Defender? Elo (rel GnuGo) Elo (rel defender)

AlphaZero(s=16k, t=800k) +3139 +1040
AG0 3-day(s=16k) +3069 +970
AlphaGo Lee(time=1s) +2308 +209
AlphaZero(s=800,t=800k) ✓ +2099 0
Pachi(s=100k) +869 -1230
Pachi(s=10k) +231 -1868
GnuGo(l=10) +0 -2099

Table E.3: Relative Elo ratings for AlphaZero, drawing on information from Schmid et al.
[142, Table 4], Silver et al. [152] and Silver et al. [153]. s stands for number of steps, time for
thinking time, and t for number of training steps.



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 204

We reproduce relevant Elo comparisons from prior work in Table E.3. In particular,
Table 4 of Schmid et al. [142] compares the defender used in Timbers et al. [162], Alp-
haZero(s=800,t=800k), to two open-source AI systems, GnuGo and Pachi. It also compares
it to a higher visit count version AlphaZero(s=16k, t=800k), from which we can compare
using Silver et al. [152] to AG0 3-day and from there using Silver et al. [153] to AlphaGo Lee
which played Lee Sedol.

Our first strength evaluation uses the open-source anchor point provided by Pachi(s=10k).
The authors of Pachi [18] report it achieves a 2-dan ranking on KGS [17] when playing
with 5000 playouts and using up to 15,000 when needed. We conservatively assume this
corresponds to a 2-dan EGF player (KGS rankings tend to be slightly inflated), giving an
EGF Elo of 2200. Assuming transitivity, the defender AlphaZero(s=800,t=800k) would then
have an EGF Elo of 4299. The top EGF professional Ilya Shiskin has an EGF Elo of 2830 [46]
at the time of writing, and 2979 on goratings.org [35]. Using Ilya as an anchor, this would give
AlphaZero(s=800,t=800k) a goratings.org Elo of 4299+2979-2830=4448. This is superhuman,
as the top player at the time of writing has an Elo of 3845.

However, some caution is needed here—the Elo gap between Pachi(s=10k) and Alp-
haZero(s=800,t=800k) is huge, making the exact value unreliable. The gap from Pachi(s=100k)
is smaller, however unfortunately to the best of our knowledge there is no public evaluation of
Pachi at this strength. However, the results in Baudiš and Gailly [17] strongly suggest it would
perform at no more than a 4-dan KGS level, or at most an EGF Elo of 2400.∗∗ Repeating
the analysis above then gives a goratings.org Elo of 2400+(2308-869)+(2979-2830)=3988 Elo.
This still suggests the defender is superhuman, but only barely.

However, if we instead take GnuGo level 10 as our anchor, we get a quite different result.
It is known to play between 10 and 11kyu KGS [77], or an EGF Elo of around 1050. This
gives an implied EGF Elo for AlphaZero(s=800,t=800k) of 3149, or a goratings.org Elo of
3298 Elo. This is still strong, in the top 200 world players, but is far from superhuman.

The large discrepancy between these results led us to seek a third anchor point: how
AlphaZero performed relative to previous AlphaGo models that played against humans.
A complication is that the version of AlphaZero that Timbers et al. use differs from that
originally reported in Silver et al. [152], however based on private communication with
Timbers et al. we are confident the performance is comparable:

These agents were trained identically to the original AlphaZero paper, and

∗∗In particular, Baudiš and Gailly [17] report that Pachi achieves a 3-dan to 4-dan ranking on KGS when
playing on a cluster of 64 machines with 22 threads, compared to 2-dan on a 6-core Intel i7. Figure 4 of
Baudiš and Gailly [18] confirms playouts are proportional to the number of machines and number of threads,
and we’d therefore expect the cluster to have 200x as many visits, or around a million visits. If 1 million visits
is at best 4-dan, then 100,000 visits should be weaker. However, there is a confounder: the 1 million visits
was distributed across 64 machines, and Figure 4 shows that distributed playouts do worse than playouts on
a single machine. Nonetheless, we would not expect this difference to make up for a 10x difference in visits.
Indeed, Baudiš and Gailly [18, Figure 4] shows that 1 million playouts spread across 4 machines (red circle)
is substantially better than 125,000 visits on a single machine (black circle), achieving an Elo of around 150
compared to -20.



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 205

were trained for the full 800k steps. We actually used the original code, and
did a lot of validation work with Julian Schrittweiser & Thomas Hubert (two of
the authors of the original AlphaZero paper, and authors of the ABR paper) to
verify that the reproduction was exact. We ran internal strength comparisons
that match the original training runs.

Table 1 of Silver et al. [152] shows that AlphaZero is slightly stronger than AG0 3-day
(AlphaGo Zero, after 3 days of training), winning 60 out of 100 games giving an Elo difference
of +70. This tournament evaluation was conducted with both agents having a thinking time
of 1 minute. Table S4 from Silver et al. [152] reports that 16k visits are performed per second,
so the tournament evaluation used a massive 960k visits–significantly more than reported on
in Table E.3. However, from Figure E.1 we would expect the relative Elo to be comparable
between the two systems at different visit counts, so we extrapolate AG0 3-day at 16k visits
as being an Elo of 3139 ´ 70 “ 3069 relative to AlphaZero(s=16k, t=800k).

Figure 3a from Silver et al. [153] report that AG0 3-day achieves an Elo of around 4500.
This compares to an Elo of 3,739 for AlphaGo Lee. To the best of our knowledge, the number
of visits achieved per second of AlphaGo Lee has not been reported. However, we know
that AG0 3-day and AlphaGo Lee were given the same amount of thinking time, so we can
infer that AlphaGo Lee has an Elo of ´761 relative to AG0 3-day. Consequently, AlphaGo
Lee(time=1s) thinking for 1 second has an Elo relative to GnuGo of 3069 ´ 761 “ 2308.

Finally, we know that AlphaGo Lee beat Lee Sedol in four out of five matches, giving
AlphaGo Lee a +240 Elo difference relative to Lee Sedol, or that Lee Sedol has an Elo of 2068
relative to Gnu Go level 10. This would imply that the defender is slightly stronger than Lee
Sedol. However, this result should be taken with some caution. First, it relies on transitivity
through many different versions of AlphaGo. Second, the match between AlphaGo Lee and
Lee Sedol was played under two hours of thinking time with 3 byoyomi periods of 60 seconds
per move Silver et al. [152, page 30]. We are extrapolating from this to some hypothetical
match between AlphaGo Lee and Lee Sedol with only 1 second of thinking time per player.
Although the Elo rating of Go AI systems seems to improve log-linearly with thinking time,
it is unlikely this result holds for humans.

E.5 Experimental Results

E.5.1 Mimicking the Adversarial Policy

Our adversarial policies appear to follow a very simple strategy. They play in the corners and
edges, staking out a small region of territory while allowing the defender to amass a larger
territory. However, the adversary ensures that it is ahead in raw points prior to the defender
securing its territory. If the defender then passes prematurely, the adversary wins.

However, it is possible that this seemingly simple policy hides a more nuanced exploit.
For example, perhaps the pattern of stones it plays form an adversarial example for the



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 206

Figure E.2: An author of this paper plays as white mimicking our adversarial policy in a game
against a KataGo-powered, 8-dan KGS rank bot NeuralZ06 which has friendlyPassOk
enabled. White wins by 18.5 points under Tromp-Taylor rules. See the full game.

defender’s network. To test this, one of the authors attempted to mimic the adversarial policy
after observing some of its games.

The author was unable replicate this attack when KataGo was configured in the same man-
ner as for the training and evaluation runs in this paper. However, when the friendlyPassOk
flag in KataGo was turned on, the author was able successfully replicate this attack against
the NeuralZ06 bot on KGS, as illustrated in Figure E.2. This bot uses checkpoint 469 (see
Appendix E.3.1) with no search. The author has limited experience in Go and is certainly
weaker than 20 kyu, so they did not win due to any skill in Go.

E.5.2 Humans vs. Adversarial Policy

The same author from Section E.5.1 (strength weaker than 20kyu) played two manual games
against the strongest adversary from Figure 9.3. In both games the author was able to achieve
an overwhelming victory. See Figure E.3 for details.

This evaluation is imperfect in one significant way: the adversary was not playing with an
accurate model of the author (rather it modeled the author as Latest with 1 visit). However,
given our understanding of how the adversary works and the fact that the author in question
knows not to prematurely pass, we predict that the adversary would probably not win even
if it had access to an accurate model of the author.

https://goattack.alignmentfund.org//human-evaluation#amateur_vs_victim


APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 207

(a) An author (B) defeats the strongest adversary
(W). Explore the game.

(b) An author (W) defeats the strongest adver-
sary (B). Explore the game.

Figure E.3: Two games between an author of this paper and the strongest adversary from
Figure 9.3. In both games, the author achieves an overwhelming victory. The adversary used
600 playouts / move and used Latest as the model of its human opponent. The adversary
used A-MCTS-S for one game and A-MCTS-S++ for the other.

E.5.3 Transferring to Other Checkpoints

In Figure E.4, we train adversaries against the Latest and Initial checkpoints respectively
and evaluate against both checkpoints. We find adversaries do substantially better against
the defender they were trained to target, although they do transfer to a limited extent.

E.5.4 Baseline Attacks

In Figure E.5, we plot the win margin of the KataGo defender Latest playing against
baselines.

E.5.5 Adversarial Board State

This paper focuses on training an agent that can exploit Go-playing AI systems. A related
problem is to find an adversarial board state which could be easily won by a human, but
which Go-playing AI systems will lose from. In many ways this is a simpler problem, as
an adversarial board state need not be a state that the defender agent would allow us to
reach in normal play. Nonetheless, adversarial board states can be a useful tool to probe the
blindspots that Go AI systems may have.

https://goattack.alignmentfund.org//human-evaluation?row=1#amateur_vs_adv
https://goattack.alignmentfund.org//human-evaluation?row=0#amateur_vs_adv


APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 208

100 101 102

Victim visits

0

25

50

75

100

A
dv

-L
at

es
t

w
in

% Latest
Initial

101 103

Victim visits

0

25

50

75

100

A
dv

-I
ni

ti
al

w
in

% Initial
Latest

Figure E.4: An adversary trained against Latest (left) or Initial (right), evaluated against
both Latest and Initial at various visit counts. The adversary always uses 600 visits /
move.

2 4 8 16 32
Victim visits

100

150

200

250

300

A
ve

ra
ge

K
at

aG
o

w
in

m
ar

gi
n

Edge attack
Mirror attack
Spiral attack

Figure E.5: The win margin of the Latest defender playing against baselines for varying
defender visit counts (x-axis). Note the margin is positive indicating the defender on average
gains more points than the baseline.



APPENDIX E. DEFERRED CONTENT FROM CHAPTER 9 209

Figure E.6: A hand-crafted adversarial example for KataGo and other Go-playing AI systems.
It is black’s turn to move. Black can guarantee a win by connecting its currently disconnected
columns together and then capturing the large white group on the right. However, KataGo
playing against itself from this position loses 48% of the time—and 18% of the time it wins
by a narrow margin of only 0.5 points!

In Figure E.6 we present a manually constructed adversarial board state. Although quite
unlike what would occur in a real game, it represents an interesting if trivial (for a human)
problem. The black player can always win by executing a simple strategy. If white plays
in between two of black’s disconnected groups, then black should immediately respond by
connecting those groups together. Otherwise, the black player can connect any two of its other
disconnected groups together. Whatever the white player does, this strategy ensures that
blacks’ groups will eventually all be connected together. At this point, black has surrounded
the large white group on the right and can capture it, gaining substantial territory and
winning.

Although this problem is simple for human players to solve, it proves quite challenging
for otherwise sophisticated Go AI systems such as KataGo. In fact, KataGo playing against
a copy of itself loses as black 48% of the time. Even its wins are far less decisive than they
should be—18% of the time it wins by only 0.5 points! We conjecture this is because black’s
winning strategy, although simple, must be executed flawlessly and over a long horizon. Black
will lose if at any point it fails to respond to white’s challenge, allowing white to fill in both
empty spaces between black’s groups. This problem is analogous to the classical cliff walking
reinforcement learning task [157, Example 6.6].



210

Appendix F

Deferred content from Chapter 10

F.1 Adding a communication channel to Simple Push

0 1 2 3 4 5
Timestep 1e7

8

6

4

2

0

2

R
et

ur
n

Adversary
Self-play

(a) Agressor.

0 1 2 3 4 5
Timestep 1e7

4

2

0

2

4

R
et

ur
n

Adversary
Self-play

(b) Defender.

Figure F.1: Average return of agent controlling (a) aggressor and (b) defender in Simple Push
without communication. The adversary, in red, fails to outperform the self-play baseline, in
black.

Our initial experiments in the Simple Push environment did not lead to adversarial policies
that were capable of outperforming their defenders (See Figures F.1a, F.1b).

Inspired by the cooperative environments explained in Lowe et al. [96], we add a commu-
nication channel: this channel allows each agent to observe a one-hot coded action taken by
the other agent. This communication channel has no other effect on environment dynamics,
and agents’ reward does not depend on the contents of the communication channel. The size
of the communication channel essentially represents the number of tokens either agent can
use to communicate with the other. Because this setting is competitive, there is no reason
for an agent to provide information in the communication channel which would be beneficial
to the opponent. Therefore, an optimal policy should simply ignore the “messages” sent by



APPENDIX F. DEFERRED CONTENT FROM CHAPTER 10 211

the opponent. However, this channel increases the dimensionality and offers an adversary the
possibility to learn messages that might “confuse” a (sub-optimal) defender.

In a small ablation on communication channels supporting 10, 25, 50 and 100 tokens,
we find that adversarial policies are successful with 50 or more tokens and unsuccessful
at less than 25. We also find that the number of timesteps until convergence, as well as
general instability during training increases with higher sizes. For further experiments we
use a communication channel of 50 tokens to allow for fast training while still providing an
environment in which adversarial policies are possible.


	Contents
	List of Figures
	List of Tables
	Introduction
	A decomposition of trustworthy machine learning
	Agent objectives: trying to do the right thing
	Agent robustness: achieving high levels of reliability
	Overview

	Preliminaries
	Markov Decision Processes
	Optimal-policy-preserving reward transformations

	Inferring agent objectives
	Upper bounds on reward learning
	Introduction
	Reward function transformations
	Invariances of reward-related objects
	Implications for reward learning
	Limitations and future work
	Conclusion

	Distance metrics on reward functions
	Introduction
	Comparing reward functions with EPIC
	Baseline approaches for comparing reward functions
	Experiments
	Conclusion

	Distance metrics predict regret
	A regret bound for EPIC
	Experiments
	Conclusion

	Understanding learned reward functions
	Introduction
	The reward preprocessing framework
	Methodology
	Results
	Limitations and future work
	Conclusion


	Agent robustness
	The adversarial policies threat model
	Introduction
	Framework

	Adversarial policies in continuous control
	Introduction
	Finding adversarial policies
	Understanding adversarial policies
	Discussion

	Adversarial policies in superhuman Go AI systems
	Introduction
	Related Work
	Background
	Attack Methodology
	Evaluation
	Limitations and Future Work
	Conclusion

	Defending against adversarial policies
	Introduction
	PBRL defense
	Experiments
	Limitations and future work
	Conclusion


	Conclusion
	Limitations and future work
	Closing thoughts

	Bibliography
	Deferred content from Chapter 3
	Properties of fundamental reward transformations
	Proofs
	Other spaces of reward functions

	Deferred content from Chapter 4
	Approximation procedures
	Experiments
	Proofs
	Regret bound
	Lipschitz reward functions
	Limiting behavior of regret

	Deferred content from Chapter 6
	Deferred content from Chapter 8
	Training: hyperparameters and computational infrastructure
	Activation analysis: t-SNE and GMM
	Figures

	Deferred content from Chapter 9
	Rules of Go Used For Evaluation
	Search Algorithms
	Hyperparameter Settings
	Strength of Go AI systems
	Experimental Results

	Deferred content from Chapter 10
	Adding a communication channel to Simple Push


