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Abstract

Lower bounds on the complexity of quantum proofs

by

Chinmay Nirkhe

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh Vazirani, Chair

The quantum PCP conjecture is one of the central open questions in quantum complexity theory.
It asserts that calculating even a rough approximation to the ground energy of a local Hamiltonian
is intractable even for quantum devices. The widely believed separation between the complexity
classes NP and QMA necessitates that polynomial length classical proofs do not exist for calculating
the ground energy. This further implies that low-energy states of local Hamiltonians cannot be
described by constant-depth quantum circuits. The No low-energy trivial states (NLTS) conjecture
by Freedman and Hastings posited the existence of such Hamiltonians.

This thesis describes a line of research culminating in a proof of the NLTS conjecture, first presented
by Anshu, Breuckmann, and Nirkhe. The construction is based on quantum error correction and
the thesis elaborates on how error correction, local Hamiltonians, and low-depth quantum circuits
are related.
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Chapter 1

Introduction

Dr. Hoenikker used to say that any scientist who couldn’t explain to an eight-year-old
what he was doing was a charlatan.

Kurt Vonnegut, Cat’s Cradle0

1.1 The mathematics of proofs
The subject of mathematics begins and ends with proofs. A proof is an argument convincing
a verifier beyond a reasonable doubt of the validity of a statement. Starting from Euclid of
Alexandria’s Elements to the present day, unwavering proofs, arguments written line by line starting
from a core set of axioms, have been the standard of rigor for all of mathematics. In the roughly
two millennia since the Elements, our understanding of the complexity of proofs has broadened
immensely; in particular, we have begun to understand the idea of proofs through the lens of
computation.

The notion of the Turing machine gave birth to the mathematical study of computation, but it
wasn’t until Robert Floyd, who coined the term non-determinism in 1967 [9], that the computational
complexity of proofs was studied. The breakthrough results of Cook and Levin [10, 11] defined
the computational class NP, the set of languages for which a proof can be verified efficiently,
and provided a complete problem of SAT, the problem of deciding the satisfiability of a boolean
formula. This led to the question of the complexity of finding a proof versus deciding if a proof was
correct1 — i.e P ?

= NP. The past half-century has even further broadened our understanding of the
computational complexity of proofs. A convenient perspective is that an efficient proof is any string
of bits that a verifier2 can check in time poly(𝑛). Proofs could be randomized in that the verifier can

0I guarantee you that this thesis will not live up to the herculean standards of Mr. Vonnegut.
1The nomenclature is far more variable than simply "proof and statement". Equivalent terms for proofs included

solution, answer, witness or certificate while statements were sometimes referred to as questions or problems. The
theory of computation gave rise to the term language to describe a set of questions that should be answered with yes.

2We think of a verifier as a computational device such as a boolean circuit or Turing machine.
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afford to mistakenly reject valid proofs or mistakenly accept invalid proofs, provided this happens
with a sufficiently low probability (say < 1/3). This defines the non-deterministic computational
class MA (Merlin-Arthur) which is not believed to increase the computational power [12]. Far
more variations on proofs exist and they form a beautiful theory which is the core of computational
complexity theory.

1.1.1 Quantum proofs
The particular variant of proofs focused on in this thesis is a quantum generalization of NP and
MA. In this model, a quantum proof is an entangled state consisting of poly(𝑛) qubits. To check
the proof, the verifier must be a quantum device and to enforce efficiency, it must run in polynomial
time — i.e. a BQP device. The computational class of all such proof systems is called Quantum
Merlin-Arthur (QMA). The quantum analog to the Cook-Levin theorem was proven by Alexei
Kitaev in 1999 [13–15]; he showed that calculating the ground energy (i.e. minimum eigenvalue)
of a local Hamiltonian instance was QMA-complete. Furthermore, he showed that the ground state
of a local Hamiltonian was a checkable proof that the ground energy of the local Hamiltonian was
small (below a fixed threshold). This proved that local Hamiltonian ground states are a general
notion of a proof for all of QMA.

Since it is widely believed that NP ≠ QMA, then quantum proofs cannot be replaced by classical
proofs. In particular, ground states of local Hamiltonians cannot be classically described in any
efficiently checkable manner. This makes understanding the problems for which we can and the
problems for which we provably cannot classically describe ground (and low-energy) states such a
fascinating question. This is the main question studied in this thesis.

1.1.2 Probabilistically checkable proofs
Parallel to the progress being made in expanding our understanding of computation from classical
to quantum, a sweeping insight into the nature of classical proofs was being made3. Starting from
the Cook-Levin theorem that constraint satisfaction problems (CSPs) are NP-complete [10,11], the
study of non-deterministic computation crescendoed with the probabilistically checkable proofs
(PCP) theorem [17–19], arguably the crown-jewel of theoretical computer science.

The PCP theorem, which originated from a line of research on the complexity of interactive
proofs, is commonly interpreted as a proof of hardness-of-approximation for CSPs. The hardness-
of-approximation (also known as the gap-amplification) version of the PCP theorem [19] states that
is NP-complete to distinguish whether a CSP of 𝑚 clauses is satisfiable or if no more than 𝑚/2
clauses can be simultaneously satisfied. In contrast, the Cook-Levin proof only implies the hardness
of distinguishing whether a CSP is satisfiable or unsatisfiable (violating one clause). In other words,
the PCP theorem proves that it is NP-complete to even estimate the satisfiability of a CSPs to a
precision of 𝑚/4 (versus 1 due to Cook-Levin). This shows that, for some optimization problems,
any efficient algorithm will yield solutions that are off by a constant multiplicative error (such as

3We recommend [16] for a history of the PCP theorem.
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10%) from ideal. The PCP theorem also has a proof-checking consequence: every NP problem can
be reduced to a CSP problem such that one only needs to read 𝑂 (log(1/𝜖)) bits of the witness to
be confident with probability 1 − 𝜖 that the witness is legitimate. This second interpretation is the
origin of the term, probabilistically checkable proofs. The PCP theorem completely revised our
notion of proofs from a systematic sequence of local steps, each requiring meticulous verification
to a robust object where a few randomly selected global checks could simultaneously verify all the
local constraints.

1.2 Quantum probabilistically checkable proofs
With the understanding that calculating the ground energy of local Hamiltonians is QMA-complete,
a reasonable conjecture was set forth of whether a quantum analog of the PCP theorem holds [20,21]
for approximating the ground energy of local Hamiltonians. While variations on the statement of the
quantum PCP conjecture exist, the most commonly expressed one is the hardness-of-approximation
(also known as, gap-amplification) version:

Conjecture 1.1 (Quantum PCP [20,21]) It is QMA-complete to decide whether a local Hamil-
tonian on 𝑛 qubits and 𝑚 = Θ(𝑛) terms has ground energy (minimum eigenvalue) ≤ 𝑚/10 (yes
instance) or ≥ 𝑚/5 (no instance) even when promised that one of the cases holds.

The constants of 1/10 and 1/5 can be replaced with any pair of small separated constants4; but for
the rest of the introduction, we will assume this setup. A family of local Hamiltonians for which it
is QMA-complete to decide the ground energy to such an approximation is called a quantum PCP
local Hamiltonian (family). Despite many efforts by the community, it is unclear if we are any
closer today to resolving the quantum PCP conjecture than we were when it was posited over two
decades ago. Due to the wide-spreading influence of the PCP theorem on almost all branches of
theoretical computer science, the quantum PCP conjecture remains the biggest open question in
quantum complexity theory.

Since quantum PCPs subsume classical PCPs [17–19] which are highly engineered mathemat-
ical objects building on the theory of locally testable codes and expanders, quantum PCPs will
also be highly engineered objects. In particular, the quantum PCP conjecture necessitates a form
of robust and "exotic" entanglement5 in the ground and low-energy space of quantum PCP local

4This is due to parallel repetition and adding trivial terms. All this changes is the locality of the Hamiltonian and
the number of terms by constant factors.

5The crucial role of entanglement in the theory of quantum many-body systems is widely known with some
seminal examples including topological phases of matter [22] and quantum computation with physically realistic
systems [23, 24]. But entanglement also brings new challenges as the classical simulation of realistic many-body
systems faces serious computational overheads. Estimating the ground energy of such systems is one of the major
problems in condensed matter physics [25], quantum chemistry [26], and quantum annealing [27, 28]. One of the key
methods to address this problem is to construct ansatz quantum states that achieve as low energy as possible and are
also suitable for numerical simulations. A leading ansatz, used in Variational Quantum Eigensolvers [26, 29, 30] or
Quantum Adiabatic Optimization Algorithm [31], is precisely the class of quantum states that can be generated by
low-depth quantum circuits.
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Hamiltonians. While ground states of generic local Hamiltonian problems serve as proofs of a
small ground energy, in the case of quantum PCP local Hamiltonians, the space of witnesses is more
diverse and, in particular, includes all low-energy states. Since it is widely believed that quantum
proofs cannot be classically described, then all quantum proofs, including all low-energy states,
must be highly entangled. This is a major reason why the quantum PCP conjecture seems much
harder than the classical PCP theorem. We are not sure if Hamiltonians can be constructed with
the necessary exotic entanglement in the low-energy space, let alone if they can capture quantum
non-deterministic computation.

To elaborate, consider a proof |𝜉⟩ attempting to convince a verifier that the ground energy of a
local Hamiltonian is ≤ 𝑚/10 when the verifier is promised that the ground energy is either ≤ 𝑚/10
or ≥ 𝑚/5. If the proof |𝜉⟩ corresponds to a state of energy < 𝑚/5, then it is convincing to any
verifier as they can measure the energy of |𝜉⟩, know then that the ground energy is < 𝑚/5, and
therefore ≤ 𝑚/10 due to the promise. Therefore, the set of proofs for the local Hamiltonian problem
includes the low-energy space as well as the ground space; in this context, the low-energy space is
the subspace spanned by all states of energy < 𝑚/5.

In particular, the constant-temperature thermal (Gibbs) states of the local Hamiltonian must be
exotic. The thermal state at temperature 𝛽 is the mixed state given by 𝑒−𝛽𝐻 which at temperature
𝛽 = 0 is the uniform distribution over the ground space and for small constant 𝛽, the state is low-
energy. It is widely suspected that due to a decay of correlations, as 𝛽 increases, the entanglement of
the thermal states of the Hamiltonian will decrease. If the entanglement was to decrease sufficiently
fast so that the thermal state for small 𝛽 was always approximated by a product (i.e. classical) state,
then this would put the complexity of estimating the energy of the quantum PCP local Hamiltonian
in NP. This is because the classical description of the product state would suffice as a classical
proof that the thermal state was low-energy and therefore decide the local Hamiltonian problem
using only a classical proof and classical computation. (This is explained in greater detail in
Section 3.3). Since the problem is assumed to be QMA-complete, if the quantum PCP conjecture
is true, it follows that all thermal states of quantum PCP Hamiltonians are far from product states.
This flies in face of the intuition of most condensed matter physicists who believe that for constant
𝛽, the thermal state simplifies as the universe is warmer and presumably less entangled.

We can generalize this requirement in two ways: any low-energy state which is the output of
a constant depth quantum circuit can serve as a classical proof for the quantum PCP Hamiltonian
problem. Such states are called trivial or low-depth and they naturally generalize the notion of
product states. Furthermore, the circuits describing trivial states of low-energy also serve as
classical proofs for quantum PCP Hamiltonians because of an efficient classical algorithm for
computing the energy of any trivial state with respect to a local Hamiltonian (see Section 3.3).
Therefore, assuming NP ≠ QMA, the quantum PCP conjecture implies that all low-energy states
of quantum PCP Hamiltonians are far from all trivial states. This is considerably stronger than
the weaker requirement that the thermal states are non-trivial as the set of low-energy states may
contain some adversarial examples6.

6We use the term adversarial here to emphasize the difference between these low-depth states and thermal states.
The construction of thermal states is a natural phenomenon; attaching the universe to a heat bath and slowly adding
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1.3 No low-energy trivial states
It is reasonable to be suspicious whether there are any constructions of local Hamiltonians whose
low-energy subspaces exhibit such robust entanglement7. In 2014, Michael Freedman and Matthew
Hastings gave this suspicion a name: the No low-energy trivial states (NLTS) conjecture [32].

Theorem 1.2 (NLTS (Simplified)) There exists a family of Hamiltonians such that every low-
energy state cannot be generated by a constant depth circuit.

See Theorem 3.10 or Theorem 4.1 for formal statements.

The statement was conjectured in [32] and first proven in [1]. Any family of Hamiltonian which
satisfies Theorem 1.2 is called an NLTS Hamiltonian (family). Proving that a Hamiltonian is NLTS
is equivalent to proving a circuit depth lower bound for all low-energy states.

This remainder of this thesis is, in some sense, the extended story of how such circuit depth
lower bounds for a family of Hamiltonians were rigorously proven (Theorem 4.1). We elaborate
on the intuitions behind the lower bounds, how to mathematically turn these intuitions into fact,
and the perspective on the quantum PCP conjecture in a post-NLTS world. The first family of local
Hamiltonians discovered to have the NLTS property was discovered by Anurag Anshu, Nikolas
Breuckmann, and Chinmay Nirkhe [1]. The proof showed that a family of local Hamiltonians
corresponding to quantum error correcting codes of good rate and good distance satisfied the
NLTS property.

The proof that there exist local Hamiltonians satisfying the NLTS property is a positive sign for
the quantum PCP conjecture. If the NLTS statement had been answered in the negative, it would
have proven that every local Hamiltonian’s ground energy could be approximated to accuracy
constant 𝜖 > 0 by an NP algorithm. This would effectively8 disprove the quantum PCP conjecture.

Before the proof of the NLTS theorem, there was a sequence of results reaffirming the physicists’
intuition that there must be trivial low-energy states [33–35]. In particular, Brandão and Harrow [34]
provided a construction of product states that were low-energy states of Hamiltonians whose
interaction graphs were too expanding; the proof is a consequence of monogamy of entanglement
and studying correlation strength with quantum De Finetti theorems. When combined with a
folklore proof that the interaction graph of NLTS Hamiltonians must be somewhat expanding, the
result of [34] was ominous because it insisted that NLTS Hamiltonians, if they existed at all, sat in
a goldilocks regime in terms of interaction graph expansion.

energy results in a thermal state. However, the adversarial state may be far from the thermal states. An example of an
adversarial state is the rotation of the ground state by a small angle.

7For intuition, one can think of the minimum depth of a circuit generating a state is a proxy for the entanglement
of the state. This is not exactly true as the minimum depth of a circuit generating a classical probability distribution
can also be large. What circuit depth does capture is non-trivial correlations between many qubits.

8We say effectively because it would only prove that the quantum PCP conjecture is false in a world where
NP ≠ QMA. However, if NP = QMA, then a quantum PCP conjecture is trivial since the classical PCP conjecture
would suffice.



CHAPTER 1. INTRODUCTION 6

On the optimistic side of the NLTS coin was persistent progress on the construction of quantum
error correcting codes. In Chapters 2 and 3, we explain, in-depth, the connection between error
correction and circuit depth lower bounds which is the foundation for the proofs in this thesis.
A systemic progress in the construction of quantum low-density parity check codes [36–43] is
largely to thank for the NLTS theorem. These highly engineered mathematical objects are the true
engine; if anything, our previous works [1–3] are simply proofs that the properties of quantum
error correction are sufficient for NLTS Hamiltonians. Through [1–3] along with [44, 45], we
developed a deeper understanding of how to make robust folklore circuit depth lower bounds for
error correction. This "robustification" of lower bounds, along with surprising insights into the
influence of the rate, paved the path to the NLTS theorem.

1.4 Outline
In Chapters 2 and 3 we develop the intuition and prerequisites for proving the NLTS property. In
particular, Section 3.3 formalizes the definition of the quantum PCP conjecture and its relationship
to the NLTS theorem and standard quantum complexity classes. Chapter 4 is the proof the NLTS
theorem [1]. Chapter 5 describes the implications of the NLTS theorem on the quantum PCP
conjecture. Appendix A describes a sequence of intermediate results on lower bounds for the
description complexity of quantum states that were proved during my graduate work but do not
directly influence the construction of NLTS Hamiltonians. Specifically, Appendix A.1 describes
non-trivial circuit depth lower bounds on the low-energy space of all codes [2] (regardless of
whether they have good rate, good distance, or even are CSS or stabilizer).

1.5 Notation
We assume the reader is familiar with basic Dirac notation and elementary quantum computation
notation; for a review, we suggest [46]. For a review on basic complexity theory, we suggest [47].
The set of integers {1, 2, . . . 𝑛} is abbreviated as [𝑛]. Given a composite system of 𝑛 qubits, we will
often omit the register symbol from the states (being clear from context). For a set 𝐴 ⊆ [𝑛], −𝐴
will denote the set complement [𝑛] \ 𝐴 and tr𝐴 will denote the partial trace operation on qubits in 𝐴
and tr−𝐴

def
= tr[𝑚]\𝐴. Therefore, tr−{𝑖} (·) gives the reduced marginal on the 𝑖th qubit. The uniformly

distributed quantum state on a Hilbert spaceH will be represented by 𝜈H
def
= IH/|H |.

Quantum states A quantum state is a positive semi-definite matrix with unit trace, acting on a
finite-dimensional complex vector space (a Hilbert space) H . In this thesis, we will only concern
ourselves with Hilbert spaces coming from a collection of qubits, i.e. H = (C2)⊗𝑛. A pure quantum
state is a quantum state with rank 1 (i.e. it can be expressed as |𝜓⟩⟨𝜓 | for some unit vector |𝜓⟩).
In which case we will refer to the state as |𝜓⟩ when interested in the unit vector representation and
𝜓 when interested in the positive semi-definite matrix representation. Given two Hilbert spaces
H𝐴,H𝐵, their tensor product is denoted byH𝐴 ⊗H𝐵. For a quantum state 𝜌𝐴𝐵 acting onH𝐴 ⊗H𝐵,
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the reduced state on H𝐴 is denoted by 𝜌𝐴
def
= tr𝐵 (𝜌𝐴𝐵), where tr𝐵 is the partial trace operation on

the Hilbert spaceH𝐵. The partial trace operation is a type of quantum channel. More generally, a
quantum channel E maps quantum states acting on some Hilbert spaceH𝐴 to another Hilbert space
H𝐵.

Every quantum state 𝜌 acting on a 𝐷-dimensional Hilbert space has a collection of eigenvalues
{𝜆𝑖}𝐷𝑖=1, where

∑
𝑖 𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0. The von Neumann entropy of 𝜌, denoted S(𝜌), is defined as∑

𝑖 𝜆𝑖 log 1
𝜆𝑖

. The notation log signifies a base 2 logarithm while ln signifies the natural logarithm.
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Chapter 2

Quantum error correction

When you stir your rice pudding, Septimus, the spoonful of jam spreads itself round
making red trails like the picture of a meteor in my astronomical atlas. But if you stir
backwards, the jam will not come together again. Indeed, the pudding does not notice
and continues to turn pink just as before. Do you think this is odd?

Tom Stoppard, Arcadia

2.1 The features of error correction
Just as one cannot stir backwards the red trails of jam out of the rice pudding, one cannot undo
the thermalization or decoherence of a generic quantum state due to the environment. This is the
fundamental issue with quantum information; its inherent fragility and therefore its tendency to
decohere, thermalize, corrupt and eventually lose all information of its starting state.

When classical information succumbs to noise, a natural cure is to use repetition. Attempt to
talk across a noisy room, and you will find yourself shouting the same message over and over again
until your point is clear. The trouble is that quantum information cannot be cloned and therefore
no simple repetition-like procedure exists for thwarting the fragility of quantum information.

Enter the notion of quantum error correction, first introduced by Shor [48]. Shor’s seminal idea
was to consider a 1-qubit subspace amongst 9-qubits. The preliminary goal was simple — a la
classical error correction, where the only error is bit-flips, the most rudimentary of quantum error
correcting codes must be able to correct bit-flips and phase-flips. A phase-flip is the bit-flip but in
the Hadamard basis. Shor’s 9-qubit code [48] was capable of correcting only a single bit-flip or a
single phase-flip on any qubit. But by linearity, since the Pauli matrices 𝑋 , 𝑍 and 𝑋𝑍 = 𝑖𝑌 span
the space of 1-qubit operators, the 9-qubit code can correct any 1-qubit error.

The notion of protected encoding can be generalized from 1 to 𝑘 qubits within a generalized 𝑛
qubit space [49]. If the space is protected against any 𝑑 qubit Pauli error, then we call the code a
[[𝑛, 𝑘, 𝑑]] quantum error correcting code. There are many ideas baked into this simple definition
that are worth recognizing. But for the NLTS theorem; we are going to only highlight three.
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Depolarizing noise channel First, Shor’s intention for correcting single-qubit errors was due to
an assumption that a reasonable noise model for quantum information is the depolarizing noise
channel: For an 𝑛 qubit state 𝜌, on each qubit independently apply the following processM: with
probability 𝜖 , apply a noisy channel N , and with probability 1 − 𝜖 apply the identity channel I.
The resulting state is

M(𝜌) = ((1 − 𝜖)I + 𝜖N)⊗𝑛 (𝜌) (2.1a)

=
∑︁
𝑆⊆[𝑛]
(1 − 𝜖)𝑛−|𝑆 |𝜖 |𝑆 |N 𝑆 (𝜌) (2.1b)

≈
∑︁

𝑆:|𝑆 |≤2𝜖𝑛
(1 − 𝜖)𝑛−|𝑆 |𝜖 |𝑆 |N 𝑆 (𝜌). (2.1c)

When 𝜖 = 𝑂 (𝑑/𝑛), the number of qubits corrupted by the depolarizing channel is, with high
probability, ≤ 𝑑. In Shor’s case, 𝑛 = 9 and 𝑑 = 1, so under a constant error threshold, the 9-qubit
code was correcting errors. The depolarizing channel is very similar to thermalization, so any
construction of NLTS Hamiltonians must, at a minimum, argue that ground states after passing
through a 𝜖-depolarizing channel remain non-trivial. But an NLTS Hamiltonian construction must
have no low-energy trivial states including any adversarial constructions. A priori, it isn’t obvious
that error correction provides this level of robustness. This is because an adversarial construction
of a low-energy state could involve a global manipulation of a ground state. The intention of error
correction was only meant to handle errors that were localized to < 𝑑 qubits; what we find, and
a fundamental insight into why error correcting codes generate NLTS Hamiltonians is that error
correction, for high-rate or high-distance codes, allows for some control over global manipulations
of ground states.

Erasure errors While often stated that a [[𝑛, 𝑘, 𝑑]] error correcting code can correct any error
supported on ≤ 𝑑 qubits, a useful characterization of error correction is that if ≤ 𝑑 qubits are traced
out — i.e. removed from the system — then the information can still be recovered from the other
𝑛−𝑑 qubits. This is because the completely depolarizing channel (also known as the Pauli one-time
pad)’s action on a state can be expressed as

E𝑆 (𝜌) = 𝜌−𝑆 ⊗ 𝜈𝑆 (2.2)

where for subset 𝑆 ⊂ [𝑛], the channel E𝑆 acts on the qubits of 𝑆 and is defined as

E𝑆 (·) =
1

4|𝑆 |
∑︁

𝑎,𝑏∈{0,1}𝑆

(
𝑋𝑎𝑍𝑏

)
(·)

(
𝑍𝑏𝑋𝑎

)
. (2.3)

For any subset 𝑆 such that |𝑆 | ≤ 𝑑, we can interpret the action of E𝑆 as a linear combination of
correctable Pauli errors. Therefore, it is correctable by linearity. However, the action of E𝑆 is
equivalent to tracing out the qubits in 𝑆 and replacing them with the maximally mixed state. This
is equivalent to an erasure error.
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The ability for quantum error correction to correct erasure errors along with the no-cloning
theorem gives us a fundamental property of the quantum error correcting codes that differentiates
it from classical error correction. To see this consider a code-word 𝜌 and an erasure error applied
on qubits denoted by 𝑆 for |𝑆 | ≤ 𝑑. Since the erasure error is correctable, there exists a recovery
channel R𝑆 such that R𝑆 (𝜌−𝑆) = 𝜌. But what happens to the system 𝜌𝑆 that was traced out? Since
all the information of 𝜌 can be recovered from 𝜌−𝑆, it follows from the no-cloning theorem that
no information about 𝜌 was contained in 𝜌𝑆. To see this, notice that 𝑆(𝜌−𝑆) = 𝑆(𝜌) since we can
convert between the two states using the channels R𝑆 and tr𝑆. Therefore, the mutual information
between registers 𝑆 and −𝑆 is 𝑆(𝜌−𝑆), or equivalently these states are uncorrelated. Thus, 𝜌−𝑆 is
uncorrelated from 𝜌. As this holds for every code-state 𝜌, the following fact is easy to prove.

Fact 2.1 (Local Indistinguishability) Let C be a [[𝑛, 𝑘, 𝑑]] error correcting code and 𝑆 a subset
of the qubits such that |𝑆 | < 𝑑. Then the reduced density matrix 𝜌𝑆 of any code-state 𝜌 on the set 𝑆
is an invariant of the code. Equivalently, for all code-states 𝜌, 𝜍, it holds that 𝜌𝑆 = 𝜍𝑆.

We also give a derivation of this fact from the Knill-Laflamme conditions [49] in the following
section.

Let us quickly note that this is not a property of classical error correction; in fact, classical error
correction is built on repetition. Key examples are the repetition code and the Hadamard code. In
Chapter 5, we discuss the difficulties this induces in using quantum codes in a proof of the quantum
PCP conjecture.

A Hamiltonian defining the codespace The 9-qubit code by Shor belongs to the class of
Calderbank-Shor-Steane (CSS) codes [50, 51] which is a subclass of all stabilizer codes. A con-
venient property of all stabilizer codes is that the codespace can be easily specified as the unique
+1 eigenspace of a set of commuting Pauli matrices (Definition 2.2), which in turn also provides a
way of testing membership in the codespace1. The operators are called stabilizers; a more precise
definition is given in the following section. For every set of stabilizers, 𝐶1, . . . , 𝐶𝑚, there exists a
convenient local Hamiltonian H whose ground space is the +1 eigenspace of each stabilizer:

H =

𝑚∑︁
𝑖=1

ℎ𝑖
def
=

𝑚∑︁
𝑖=1

I − 𝐶𝑖
2

. (2.4)

Since each stabilizer is a Pauli matrix, its eigenvalues are±1 and therefore each ℎ𝑖 is a projector onto
the +1 eigenspace of 𝐶𝑖. Since the projectors commute, the eigenvalues of H are easy to calculate
as 0, 1, 2, . . . , 𝑚. The ground space of the Hamiltonian is equivalent to the code-space. The family
of NLTS Hamiltonians we consider in Theorem 4.1 will be the Hamiltonians H corresponding to
a family of CSS codes.

1For example, the 1-qubit subspace among 7-qubits defined by the Steane code is stabilized by 𝐼 𝐼 𝐼𝑍𝑍𝑍𝑍 ,𝐼𝑍𝑍𝐼 𝐼𝑍𝑍 ,
𝑍𝐼𝑍𝐼𝑍 𝐼𝑍 , 𝐼 𝐼 𝐼𝑋𝑋𝑋𝑋 ,𝐼𝑋𝑋𝐼𝑋𝑋 ,𝑋𝐼𝑋𝐼𝑋𝐼𝑋 where we use a short-form of ignoring ⊗ symbols. To test membership,
one can measure each of these stabilizers. The logical operators of the code become 𝑋 = 𝑋⊗7 and 𝑍 = 𝑍⊗7.



CHAPTER 2. QUANTUM ERROR CORRECTION 11

2.2 Definitions
Quantum error correcting code We will refer to a code C as a [[𝑛, 𝑘, 𝑑]] code where 𝑛 is
the number of physical qubits (i.e. the states are elements of (C2)⊗𝑛), 𝑘 is the dimension of the
code-space, and 𝑑 is the distance of the code. In the context of a system with more than 𝑛 qubits,
the qubits corresponding to the physical code will be referred to as the code register — i.e. for state
𝜌, the reduced density matrix of 𝜌 on the code register is referred to as 𝜌code. We say that a state
𝜌 (on 𝑛′ ≥ 𝑛 qubits) is a code-state if 𝜌code is a mixed state supported on the vectors of C. We can
define distance precisely using the Knill-Laflamme conditions [49].

Let {|𝑥⟩} ⊆ C be an orthonormal basis for C parameterized by 𝑥 ∈ {0, 1}𝑘 . The Knill-Laflamme
conditions state that the code can correct an error 𝐸 iff

⟨𝑥 | 𝐸 |𝑦⟩ =
{

0 𝑥 ≠ 𝑦

𝜂𝐸 𝑥 = 𝑦
(2.5)

where 𝜂𝐸 is a constant dependent on 𝐸 . This is equivalent to

ΠC𝐸ΠC = 𝜂𝐸ΠC (2.6)

where ΠC is the projector onto the code-space. We say that the code C has distance 𝑑 if it can
correct all Pauli-errors of weight < 𝑑. By linearity, it is equivalent to correcting all errors of
weight < 𝑑. Furthermore, given a set 𝑆 of fewer than 𝑑 qubits, the reduced density matrix 𝜌𝑆 of
any code-state 𝜌 on the set 𝑆 is an invariant of the code (Fact 2.1). It can be derived as a direct
consequence of the Knill-Laflamme conditions.

Proof of Fact 2.1: Let 𝐸 be any operator whose support is entirely contained in 𝑆. Then for any
code-state 𝜌,

tr(𝐸𝜌) = tr(𝐸ΠC𝜌ΠC) (2.7a)
= tr(ΠC𝐸ΠC𝜌) (2.7b)
= tr(𝜂𝐸ΠC𝜌) (2.7c)
= 𝜂𝐸 (2.7d)

where eq. (2.7a) is the Knill-Laflamme condition (eq. (2.6)), eq. (2.7b) is due to cyclicality of trace,
eq. (2.7c) is an application of eq. (2.6), and eq. (2.7d) is because 𝜌 has trace 1. Since this equality
holds for any operator 𝐸 and 𝜂𝐸 is a constant independent of 𝜌 such that 𝜂𝐸 = tr(𝐸𝜌) = tr(𝐸𝜌𝑆),
then 𝜌𝑆 is an invariant of the code-state 𝜌. □

Given a code C and a state 𝜎 on 𝑛 qubits, we define the trace-distance between 𝜎 and C as
inf𝜌∈C ∥𝜌 − 𝜎∥1. If the code-space C can be defined as the ground space of a commuting set of
projectors (see Definition 3.6) we will call it a commuting code. A special subcase is stabilizer
codes when it can be expressed as the simultaneous eigenspace of a subgroup of Pauli operators.
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2.2.1 Stabilizer codes
Definition 2.2 (Pauli group) The Pauli group on 𝑛 qubits, denoted by P𝑛 is the group generated
by the 𝑛-fold tensor product of the Pauli matrices

I2 =

(
1 0
0 1

)
, 𝑋 =

(
0 1
1 0

)
, 𝑌 =

(
0 −𝑖
𝑖 0

)
, and 𝑍 =

(
1 0
0 −1

)
. (2.8)

Definition 2.3 (Stabilizer Code) Let {𝐶𝑖}𝑖∈[𝑚] be a collection of commuting Pauli operators from
P𝑛 and S be the group generated by {𝐶𝑖} with multiplication. The stabilizer error correcting code
C is defined as the simultaneous +1 eigenspace of each element of S:

C =
{
|𝜓⟩ ∈ (C2)⊗𝑛 : 𝐶𝑖 |𝜓⟩ = |𝜓⟩ ∀𝑖 ∈ [𝑚]

}
. (2.9)

More generally, for every 𝑠 ∈ {0, 1}𝑚, define the space 𝐷𝑠 as

𝐷𝑠 =
{
|𝜓⟩ ∈ (C2)⊗𝑛 : 𝐶𝑖 |𝜓⟩ = (−1)𝑠𝑖 |𝜓⟩ ∀𝑖 ∈ [𝑚]

}
. (2.10)

In this language, C = 𝐷0𝑚 . The logical operators L are the collection of Pauli operators that
commute with every element of S but are not generated by S:

L = {𝑃 ∈ P𝑛 : 𝑃𝐶𝑖 = 𝐶𝑖𝑃 ∀𝑖 ∈ [𝑚]} \ S. (2.11)

We say that the code is ℓ-local if every 𝐶𝑖 is trivial on all but ℓ components of the tensor product
and that each qubit of the code is non-trivial in at most ℓ of the checks {𝐶𝑖}.

Given a stabilizer code defined by {𝐶𝑖}𝑖∈[𝑚] , the associated local Hamiltonian is defined by

H =
∑︁
𝑖∈[𝑚]

ℎ𝑖
def
=

∑︁
𝑖∈[𝑚]

I − 𝐶𝑖
2

. (2.12)

This Hamiltonian is therefore commuting and it is a ℓ-local low-density parity check Hamiltonian
where ℓ is the locality of the code. Furthermore, the eigenspaces of 𝐻 are precisely the spaces
{𝐷𝑠} with corresponding eigenvalues of |𝑠 |, the Hamming weight of 𝑠. If the rate of the stabilizer
code is 𝑘 , we can identify a subset of 2𝑘 logical operators denoted as

𝑋1, 𝑍1, . . . , 𝑋𝑘 , 𝑍𝑘 (2.13)

such that all operators square to identity and pairwise commute except 𝑋𝑖 and 𝑍𝑖 which anti-commute
for all 𝑖 ∈ [𝑘].

Fact 2.4 Let 𝜌 be a state such that 𝜌code ∈ 𝐷𝑠 for a string 𝑠. For a logical pauli 𝑃 ∈ L, define
𝜌′ = 𝑃𝜌𝑃. It holds that for any region 𝑇 ⊂ [𝑛′] of size less than 𝑑, 𝜌𝑇 = 𝜌′

𝑇
. In general, let 𝜌, 𝜌′

be states such that 𝜌ancilla = 𝜌
′
ancilla and 𝜌code, 𝜌

′
code ∈ 𝐷𝑠 for a string 𝑠. It holds that for any region

𝑇 ⊂ [𝑛′] of size less than 𝑑, 𝜌𝑇 = 𝜌′
𝑇
.
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Proof:

tr(𝑃𝜌) = tr (𝑃 ((−1)𝑠𝑖𝐶𝑖𝜌)) = (−1)𝑠𝑖+1 tr(𝐶𝑖𝑃𝜌) = (−1)𝑠𝑖+1 tr(𝜌𝐶𝑖𝑃) = − tr(𝑃𝜌). (2.14)

where we used the cyclicality of trace twice. □

2.2.2 CSS codes [50, 51]
To formalize this property, recall a CSS code with parameters [[𝑛, 𝑘, 𝑑]]. The code is constructed
by taking two classical codes 𝐶x and 𝐶z such that 𝐶z ⊃ 𝐶⊥x . The code 𝐶z is the kernel of a row- and
column-sparse matrix 𝐻z ∈ F𝑚z×𝑛

2 ; the same for𝐶x and 𝐻x ∈ F𝑚x×𝑛
2 . The rank of 𝐻z will be denoted

as 𝑟z and likewise 𝑟x is the rank of 𝐻x. Therefore, 𝑛 = 𝑘 + 𝑟x + 𝑟z. If the code is constant-rate
and linear-distance, then 𝑘, 𝑑, 𝑟x, 𝑟z = Ω(𝑛). For the codes considered in this work, we also have
𝑚z, 𝑚x = Ω(𝑛).

Definition 2.5 (Code distance metric) In addition to the standard Hadamard metric on the boolean
hypercube, it will be helpful to define the following two "code distance metrics": |·|𝐶⊥x and |·|𝐶⊥z
where for any subset 𝑆 ⊂ {0, 1}𝑛, let the distance measure |·|𝑆 as |𝑦 |𝑆 = min𝑠∈𝑆 |𝑦 + 𝑠 | where |·|
denoted Hamming weight.

The 𝑋- and 𝑍- distances of a code can be expressed as

𝑑x
def
= min

{
|𝑦 |𝐶⊥z : 𝑦 ∈ 𝐶x = ker𝐻x |

}
(2.15a)

𝑑z
def
= min

{
|𝑦 |𝐶⊥x : 𝑦 ∈ 𝐶z = ker𝐻z |

}
(2.15b)

𝑑 = min{𝑑x, 𝑑z}. (2.15c)

2.2.3 Quantum LDPC and locally testable codes
Definition 2.6 (QLDPC) Consider a code C on 𝑛 qubits which is the simultaneous +1 eigenspace
of a collection of projectors Π1, . . . ,Π𝑚 on 𝑛 qubits. It is a low-density parity check (LDPC)
code if each Π𝑖 acts non-trivially on at most ℓ physical qubits and each physical qubit is acted on
non-trivially by at most ℓ projectors for ℓ = 𝑂 (1).

The construction of quantum LDPC codes has been a problem of great interest; in particular,
the construction of good quantum LDPC codes which are codes with linear-rate and linear-distance
scaling parameters [36–43].

The other object of interest is quantum locally testable codes. Although we do not use quantum
locally testable codes in the proof of the NLTS theorem, it is worth noting their definition as [52]
previously showed that locally testable codes of linear-distance would prove the NLTS theorem.
We discuss their implications on the quantum PCP conjecture in Chapter 5.
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Definition 2.7 For any state |𝜓⟩ and subspace C, define the error-distance between |𝜓⟩ and C as
the minimum weight error 𝐸 such that 𝐸 |𝜓⟩ ∈ C. The weight of 𝐸 is the number of physical qubits
that the operator 𝐸 acts non-trivially on.

Definition 2.8 (Testable codes [53]) A code C is 𝛼-testable if for any state |𝜓⟩, if 𝐷 = the error-
distance between |𝜓⟩ and C, then

𝑚∑︁
𝑖=1
⟨𝜓 |Π𝑖 |𝜓⟩ ≥ 𝛼 ·

𝐷𝑚

𝑛
. (2.16)

Any LDPC 𝛼-testable code with 𝛼 = Ω(1) is a locally testable code.

Currently, no constructions for constant 𝛼 are known to exist.

2.3 Tanner codes
For a regular graph 𝐺 = (𝑉, 𝐸) with degree 𝑑 and |𝑉 | = 𝑛 vertices and a classical linear code
𝐶 ⊂ {0, 1}𝑑 , we can construct a classical LDPC error correcting code on 𝑚 = |𝐸 | bits. Given a
family of 𝑑-regular graphs for scaling 𝑛, this gives a construction of classical codes. The code will
be referred to as 𝑇 = 𝑇 (𝐶,𝐺).

The physical bits of 𝑇 correspond to the edges of the graph and for each vertex 𝑣 ∈ 𝑉 , the
corresponding local check term verifies that the bits on the edges adjacent to 𝑣 are a member of 𝐶
(the order of edges adjacent to 𝑣 is implicitly defined). Therefore, there are 𝑛 local check terms and
𝑚 = Θ(𝑛) physical bits.

Figure 2.1: A cartoon of the low-energy space of a Tanner code. The black dots are codewords; the
low-energy space of a Tanner code is a collection of clusters with the distance between clusters scaling as
Ω(𝑑). The upper bound on the diameter of each cluster is 𝑂 (𝛿𝑛). Most clusters do not have a codeword
within them; this is the difference between a generic Tanner code and a locally testable code.
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Define Δ0 as the distance of 𝐶, and 𝜆 is the spectral expansion of 𝐺 — i.e. 𝜆 = max{|𝜆2, 𝜆𝑛 |}
where 𝜆1 ≥ . . . ≥ 𝜆𝑛 are the eigenvalues of the adjacency matrix of 𝐺. It is well known
(see [45, Lemma 4]) that the distance of 𝑇 is lower bounded by Δ2

0
2𝑑 · 𝑚 and the rate is 𝑚 − 𝑛.

When the expansion of the graph 𝐺 is good, we notice the following property.

Property 2.9 If 𝑦 ∈ {0, 1}𝑚 is a word satisfying most checks, |𝐻𝑦 | ≤ 𝛿𝑛 for small 𝛿 where 𝐻 is the
linear check matrix of 𝑇 , then there exist constants 𝑐1, 𝑐2 such that

either |𝑦 | ≤ 𝑐1𝛿𝑛 or |𝑦 | ≥ 𝑐2𝑛. (2.17)

We call this property the "clustering of approximate code-words" since the low-energy subspace of
the code forms clusters that are all far from each other (see Figure 2.1). Property 2.9 was used to
prove the combinatorial NLTS theorem [45, Theorem 4.3]. The quantum version of this property,
Property 4.2, is the additional ingredient needed to prove the NLTS theorem.

While this property holds for Tanner codes, the following lemma shows that more general
classical codes with small-set expanding interactions graphs satisfy Property 2.9.

Definition 2.10 Let 𝐺 be a 𝑑-left-regular bipartite graph between vertex sets 𝐿 and 𝑅. A subset
𝐴 ⊂ 𝐿 is said to be 𝛾-expanding if |Γ(𝐴) | ≥ (1− 𝛾)𝑑 |𝐴| where Γ(𝐴) ⊂ 𝑅 is the set of neighbors of
𝐴. We say that 𝐺 is (𝛾, 𝛼)-small set expanding if every set 𝐴 of size ≤ 𝛼 |𝐿 | is 𝛾-expanding. (See
Figure 2.2).

Lemma 2.11 For a classical error correcting code with check matrix 𝐻 ∈ F𝑚×𝑛2 , draw the
interaction graph 𝐺 between the set of vertices, 𝑉 = [𝑛], and the set of checks, 𝐶 = [𝑚], with an

Figure 2.2: A cartoon of small-set expansion (Definition 2.10).
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edge 𝑣 ∼ 𝑐 if 𝑣 participates in the check 𝑐. If 𝐺 is (𝛾, 𝛼)-small set expanding for 𝛾 < 1
2 , then the

code satisfies Property 2.9.

Proof: Consider any 𝑦 ∈ {0, 1}𝑛. If |𝑦 | < 𝛼𝑛, then 𝑦 is the indicator vector for a small subset
𝐴 ⊂ 𝑉 , and |Γ(𝐴) | ≥ (1 − 𝛾)𝑑 |𝐴|. Let Γ+(𝐴) be the subset of Γ(𝐴) with a unique neighbor in 𝐴.
Since the number of edges between 𝐴 and Γ(𝐴) is 𝑑 |𝐴|, then

𝑑 |𝐴| ≥
��Γ+(𝐴)�� + 2 ·

(
|Γ(𝐴) | −

��Γ+(𝐴)��) (2.18a)
= −

��Γ+(𝐴)�� + 2(1 − 𝛾)𝑑 |𝐴| (2.18b)

Therefore, |Γ+(𝐴) | ≥ (1 − 2𝛾)𝑑 |𝐴|. Since every check in Γ(𝐴) is adjacent to a unique vertex in
𝐴, Γ+(𝐴) is a subset of the checks that will be violated by 𝑦. Set 𝑐2

def
= 𝛼 and 𝑐1

def
= 𝑚
(1−2𝛾)𝑑𝑛 . If

|𝑦 | < 𝛼𝑛, then

𝛿𝑚 ≥ |𝐻𝑦 | ≥
��Γ+(𝐴)�� ≥ (1 − 2𝛾)𝑑 |𝐴| = (1 − 2𝛾)𝑑 |𝑦 |. (2.19)

This shows that, in fact, |𝑦 | < 𝑐1𝛿𝑛. □

2.3.1 Quantum Tanner codes
Quantum Tanner codes, defined by Leverrier and Zémor [43] are one generalization of Tanner
codes to the quantum setting. In [43], Leverrier and Zémor showed that the construction generates
linear-rate and linear-distance quantum codes. We show in Section 4.2 that quantum Tanner codes
also cluster approximate code-words (Property 4.2). This is necessary to show these codes are
NLTS.

Definition of quantum Tanner codes For a group 𝐺, consider a right Cayley graph Cay𝑟 (𝐺, 𝐴)
and a left Cayley graph Cayℓ (𝐺, 𝐵) for two generating sets 𝐴, 𝐵 ⊂ 𝐺, which are assumed to be
symmetric, i.e. 𝐴 = 𝐴−1 and 𝐵 = 𝐵−1 and of the same cardinality Δ = |𝐴| = |𝐵 |. Further, we define
the double-covers of Cay𝑟 (𝐺, 𝐴) and Cayℓ (𝐺, 𝐵) that we will denote Cay𝑟2(𝐺, 𝐴) and Cayℓ2(𝐺, 𝐵).2
The vertex sets of Cay𝑟2(𝐺, 𝐴) and Cayℓ2(𝐺, 𝐵) are {±} × 𝐺 and 𝐺 × {±}, respectively. The edges
of Cay𝑟2(𝐺, 𝐴) are labeled by 𝐴 × 𝐺 and are of the form (𝑔, +) ∼ (𝑎𝑔,−). Similarly, the edges of
Cayℓ2(𝐺, 𝐵) are labeled by 𝐺 × 𝐵 and are of the form (+, 𝑔) ∼ (−, 𝑔𝑏).

Quantum Tanner codes are defined on the balanced product of the two Cayley graphs 𝑋′ =
Cay𝑟2(𝐺, 𝐴)×𝐺Cayℓ2(𝐺, 𝐵), see [40, Section IV-B]. It is given by the Cartesian product Cay𝑟2(𝐺, 𝐴)×
Cayℓ2(𝐺, 𝐵) with the (canonical) anti-diagonal action of𝐺 factored out. To understand the set of ver-
tices𝑉 ′ of 𝑋′, we first note that the vertices of the Cartesian product are labeled by {±}×𝐺×𝐺×{±}.
The group𝐺 acts via right-multiplication on the left copy of𝐺 and via inverse left-multiplication on
the right copy of𝐺. Factoring out this action identifies the vertices (±, 𝑎, 𝑏,±) with (±, 𝑎𝑔, 𝑔−1𝑏,±)

2The reason for defining the double-covers is convenience; the covering allows us to label each edge directly by
specifying a vertex (group element) and a generator, which is not immediately possible in the original Cayley graphs.
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for all 𝑔 ∈ 𝐺. This means that two vertices (±, 𝑎, 𝑏,±) and (±, 𝑐, 𝑑,±) are identified if and only
if 𝑎𝑏 = 𝑐𝑑 and the outer signs agree. By passing from these equivalence classes to 𝑎𝑏 ∈ 𝐺, we
obtain a unique labeling of the vertices 𝑉 ′ of 𝑋′ by {±} × 𝐺 × {±}. Thus, 𝑉 ′ can be partitioned
into the even-parity vertices 𝑉 ′0, which are all vertices of the form (+, 𝑔, +) and (−, 𝑔,−), and the
odd-parity vertices 𝑉 ′1, which are all vertices of the form (+, 𝑔,−) and (−, 𝑔, +). The complex 𝑋′
is called the "quadripartite version" in [43].

Note that besides the natural action of𝐺, there is an addition action of Z2 = ⟨𝜎⟩ on Cay𝑟2(𝐺, 𝐴)
and Cayℓ2(𝐺, 𝐵), which operates on the labels {±} via 𝜎(+) = − and 𝜎(−) = +. Hence, there
is an operation of the group 𝐺 × Z2. We can thus analogously define the alternative balanced
product complex 𝑋 = Cay𝑟2(𝐺, 𝐴) ×(𝐺×Z2) Cayℓ2(𝐺, 𝐵). The complex 𝑋 is called the "bipartite
version" in [43]. Here, we will consider the complex 𝑋 instead of 𝑋′. Using the same arguments
as previously for 𝑋′, we see that the vertices 𝑉 of 𝑋 can be labeled by 𝐺 × {±} which fall into the
sets 𝑉0, which are all vertices of the form (𝑔, +), and 𝑉1, which are all vertices of the form (𝑔,−).

(𝑎𝑔𝑏, +)(𝑔𝑏,−)

(𝑔, +) (𝑎𝑔,−)

Figure 2.3: A face of the balanced product complex 𝑋 = Cay𝑟2 (𝐺, 𝐴) ×(𝐺×Z2 ) Cayℓ2 (𝐺, 𝐵). Each face
is incident to two vertices in 𝑉0 (red) and two vertices in 𝑉1 (blue). This fact is used in [43] to define
two graphs G□0 and G□1 whose edges connect the vertices in 𝑉0 (red dashed line) and 𝑉1 (blue dashed line),
respectively. Importantly, the edge-sets of G□0 and G□1 are both in one-to-one correspondence with the faces
of 𝑋 (and thus with each other).

The quantum Tanner code is now defined as follows. From the balanced product complex 𝑋
we define two graphs G□0 and G□1 . The vertices of G□0 are the vertices in 𝑉0. Note that there
are exactly two vertices belonging to 𝑉0 per face in 𝑋 , see Figure 2.3. Hence, we connect two
vertices by an edge in G□0 if and only if they belong to the same face, or equivalently, all edges
in G□0 are of the form (𝑔, +) ∼ (𝑎𝑔𝑏, +). Similarly, we can define the graph G□1 using the fact
that there are exactly two vertices in 𝑉1 per face. Note that both G□0 and G□1 are regular graphs of
degree Δ2, as edges surrounding a vertex are labeled by 𝐴 × 𝐵. Further, G□0 and G□1 are expanders:
Let 𝜆(G) = max{|𝜆2(G)|, |𝜆𝑛 (G)|}, where 𝜆2(G), 𝜆𝑛 (G) are the second largest and the smallest
eigenvalues of the adjacency matrix of the graph G.
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Lemma 2.12 ( [43, Lemma 4]) If Cay𝑟 (𝐺, 𝐴) and Cayℓ (𝐺, 𝐵) are Ramanujan graphs, then

𝜆(G□0 ), 𝜆(G
□
1 ) ≤ 4Δ. (2.20)

Taking two suitable local codes 𝐶𝐴, 𝐶𝐵 ⊂ FΔ2 , we define 𝐶0 = 𝐶𝐴 ⊗ 𝐶𝐵 and 𝐶1 = 𝐶⊥
𝐴
⊗ 𝐶⊥

𝐵
.

Finally, we define Tanner codes𝐶z = 𝐶 (G□0 , 𝐶
⊥
0 ) and𝐶x = 𝐶 (G□1 , 𝐶

⊥
1 ) [54,55]. It can be shown [43]

that 𝐶z ⊃ 𝐶⊥x , so that we obtain a well-defined CSS code.
For these codes to have linear-rate and linear-distance, the graphs and local codes need to fulfill

certain conditions: The Cayley graphs are required to be Ramanujan expanders [56, 57]. Further,
the local codes are required to be robust and resistant to puncturing. More precisely, we call
𝐶⊥1 = (𝐶⊥

𝐴
⊗𝐶⊥

𝐵
)⊥ = 𝐶𝐴 ⊗F𝐵2 +F

𝐴
2 ⊗𝐶𝐵 𝑤-robust if any codeword |𝑥 | of Hamming weight bounded

as |𝑥 | ≤ 𝑤 has its support included in |𝑥 |/𝑑𝐴 columns and |𝑥 |/𝑑𝐵 rows, where 𝑑𝐴 and 𝑑𝐵 are the
minimum distances of 𝐶𝐴 and 𝐶𝐵, respectively. Further, 𝐶⊥1 has 𝑤-robustness with resistance to
puncturing 𝑝 if for any 𝐴′ ⊂ 𝐴, 𝐵′ ⊂ 𝐵 with |𝐴′|, |𝐵′| ≥ Δ − 𝑤′ with 𝑤′ ≤ 𝑝 the code 𝐶⊥1 remains
𝑤-robust when punctured outside of 𝐴′ × 𝐵′.
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Chapter 3

Trivial states, Hamiltonians, and
indistinguishability

"There is still one of which you never speak."
Marco Polo bowed his head.
"Venice," the Khan said.
Marco smiled. "What else do you believe I have been talking to you about?"
The emperor did not turn a hair. "And yet I have never heard you mention that name."
And Polo said: "Every time I describe a city I am saying something about Venice."

Italo Calvino, Invisible Cities

3.1 Quantum circuits
Quantum circuits are a model for quantum computation generalizing classical boolean (reversible)
circuits. A quantum circuit is a unitary𝑈 parametrized by a depth 𝑡 such that𝑈 = 𝑈𝑡 . . . 𝑈1 where
each 𝑈 𝑗 is a unitary acting on (C2)⊗𝑛 and 𝑈 𝑗 =

⊗
𝑖𝑈 𝑗𝑖, a tensor product of disjoint two-qubit

unitaries 𝑈 𝑗𝑖. This describes a quantum circuit with gates of fan-in and fan-out 2 and all-to-all
connectivity; the choice of fan-in and fan-out of 2 is equivalent to any other constant since we will
be caring about asymptotic behavior. We often care about the output of circuits run from the initial
state |0𝑛′⟩.

Definition 3.1 (Circuit Complexity) Let 𝜌 be a mixed quantum state of 𝑛 qubits. Then the circuit
complexity1 of 𝜌, depth(𝜌), is defined as the minimum depth over all 𝑛′-qubit quantum circuits 𝑈

1We note that while our definition for circuit complexity of 𝜌 is given as the minimum depth of any circuit exactly
generating a state 𝜌, we could have equivalently defined the circuit complexity of 𝜌 as the minimum depth of any
circuit generating a state 𝜌′ within a small ball 𝐵𝛿 (𝜌) of 𝜌 for some 𝛿 > 0. This would not have changed our results
except for constant factors. This is because our results will be concerned with lower bounding the circuit complexity
of all states of energy ≤ 𝜖 . If 𝜌 is a state of energy ≤ 𝜖 , then every state 𝜌′ ∈ 𝐵𝛿 (𝜌) has energy ≤ 𝜖 + 𝛿. Therefore, by
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such that𝑈 |0⊗𝑛′⟩ ∈ (C2)⊗𝑛′ is a purification of 𝜌. Equivalently,

depth(𝜌) def
= min

{
depth(𝑈) : tr[𝑛′]\[𝑛]

(
𝑈 |0⊗𝑛′⟩⟨0⊗𝑛′ |𝑈†

)
= 𝜌

}
. (3.1)

A family of states {𝜌𝑛} for growing 𝑛 is called trivial if there exists a constant 𝑐 such that depth(𝜌𝑛) ≤
𝑐 for all 𝑛.

Lightcones For an operator 𝐴 (think of 𝐴 as a projector onto a single qubit) and a circuit 𝑈, let
the lightcone of 𝐴, with respect to 𝑈, be the set of qubits on which 𝑈𝐴𝑈† acts non-trivially. For
a qubit 𝑖, let the lightcone of qubit 𝑖 be the union of lightcones over all operators 𝐴 supported on
qubit 𝑖.

Fact 3.2 For a circuit𝑈 of depth 𝑡, the size of the lightcone of qubit 𝑖 is ≤ 2𝑡 .

Figure 3.1: Every gate outside the green regions cancel with their conjugate across the picture. Only the
gates in the green regions (the lightcone) do not trivially cancel with another gate. The pink region denotes
the set of qubits in the lightcone. Notice that𝑈𝐴𝑈† equals the product of the unitaries in the pink region. If
we denote𝑈𝑅 as the unitaries𝑈 restricted to only the qubits of the region 𝑅, then𝑈𝐴𝑈† = 𝑈𝐿𝐴

𝐴𝑈
†
𝐿𝐴

where
𝐿𝐴 is the lightcone of 𝐴.

Proof: One can show, intuitively, that 𝑈𝑖 . . . 𝑈1𝐴𝑈
†
1 . . . 𝑈𝑖 acts non-trivially on at most 2𝑖 qubits

since each𝑈𝑖 is the tensor product of 2 qubit unitaries. □

If the circuit was geometrically constrained to a lattice of a fixed constant dimension 𝐷, then
the simple upper bound would be 𝑂 ((𝑡𝐷)𝐷). All our proofs can easily be translated into lower
bounds for geometric circuits on a lattice using this substitution.
redefining 𝜖 ← 𝜖 − 𝛿, we can switch to the alternate definition of circuit complexity. We use the listed definition in our
proofs as it vastly simplifies legibility. However for variations of the NLTS theorem, such as the combinatorial NLTS
theorem [45], we need to consider a robust definition since the same argument no longer holds.
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Fact 3.3 Consider a quantum state 𝜓 acting on (C2)⊗𝑚. For any 𝑖 ∈ [𝑛′], let 𝐿𝑖 denote the support
of the lightcone of 𝑖 with respect to𝑈. It holds that

tr−{𝑖} (𝑈𝜓𝑈†) = tr−{𝑖}
(
𝑈 (𝜓𝐿𝑖 ⊗ 𝜈−𝐿𝑖 )𝑈†

)
. (3.2)

In other words, the reduced density matrix on qubit 𝑖 only depends on the reduced density matrix
on the lightcone, 𝜓𝐿𝑖

Proof: where the uniformly distributed quantum state on a Hilbert space H is represented by
𝜈H

def
= IH/|H |. For any operator 𝑂 supported on qubit 𝑖, consider

tr{𝑖} (𝑂 tr−{𝑖} (𝑈𝜓𝑈†)) = tr
(
𝑈†𝑂𝑈𝜓

)
= tr

(
𝑈†𝑂𝑈𝜓𝐿𝑖 ⊗ 𝜈−𝐿𝑖

)
(3.3a)

= tr{𝑖} (𝑂 tr−{𝑖} (𝑈 (𝜓𝐿𝑖 ⊗ 𝜈−𝐿𝑖 )𝑈†)). (3.3b)

The second equality uses𝑈†𝑂𝑈 = 𝑈
†
𝐿𝑖
𝑂𝑈𝐿𝑖 where𝑈𝐿𝑖 is the circuit restricted to the region 𝐿𝑖 (see

Figure 3.1 for proof). This proves the fact. □

Fact 3.4 Consider a quantum state |𝜙⟩ = 𝑈 |0⊗𝑚⟩. Let 𝑅 ⊂ [𝑛′] and define |𝜙′⟩ = 𝑈𝑅 |0⊗𝑛
′⟩. We

have tr−𝑅 (𝜙) = tr−𝑅 (𝜙′).

Proof: The proof is very similar to that of Fact 3.3. For any operator 𝑂 supported on 𝑅, consider

tr(𝑂 tr−𝑅 (𝜙)) = tr
(
𝑈†𝑂𝑈 |0𝑛′⟩⟨0𝑛′ |

)
= tr

(
𝑈
†
𝑅
𝑂𝑈𝑅 |0𝑛

′⟩⟨0𝑛′ |
)
= tr(𝑂 tr−𝑅 (𝜙′)). (3.4)

This completes the proof. □

3.2 Local Hamiltonians

3.2.1 Constraint satisfaction problems
The fundamental object in the study of classical non-deterministic computation, NP, is the 𝑘-local
constraint satisfaction problem (CSP). A 𝑘-variable clause over an alphabet Σ (in most cases |Σ | = 2
— i.e. boolean alphabet) is a function 𝐶 : Σ𝑘 → [0, 1] assigning a score to any assignment to
𝑘-variables over Σ.

Definition 3.5 (Constraint Satisfication Problem) A 𝑘-CSP 𝐶 is a formula on 𝑛 variables over
Σ, composed of 𝑚 𝑘-variable clauses 𝐶𝑖 on subsets of the 𝑛 variables. The value of the 𝑘-CSP 𝐶
for any assignment 𝑥 ∈ Σ𝑛 is

𝐶 (𝑥) def
=

𝑚∑︁
𝑖=1

𝐶𝑖 (𝑥) (3.5)
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where 𝐶𝑖 (𝑥) equals 𝐶𝑖 (𝑥 |𝑆𝑖 ) where 𝑆𝑖 is the subset of 𝑘-variables that clause 𝐶𝑖 acts on. A CSP is
satisfiable if ∃𝑥 ∈ Σ𝑚 s.t. 𝐶 (𝑥) = 0.

The Cook-Levin theorem [10, 11] is equivalent to a proof that deciding whether or not a CSP
instance is satisfiable is NP-complete and the PCP theorem [17–19] is equivalent to a proof that
deciding whether a CSP is satisfiable or min𝑥∈{0,1}𝑛 𝐶 (𝑥) ≥ 𝑚/2 is NP-complete.

3.2.2 A quantum analog: local Hamiltonians
CSPs capture the local-to-global phenomenon of classical non-deterministic computation. Perhaps
surprisingly, there is an analog for quantum objects; a quantum local-to-global phenomenon that
captures the complexity of quantum non-deterministic computation. Even more surprising, the
objects generated have been central to the study of condensed matter physics. Condensed matter
physics concerns itself with the properties of 𝑛 interacting particles whose interactions are governed
by quantum mechanics. Calculating the minimum energy of a condensed matter system — i.e.
the ground energy — is a central problem in that field. The operator which describes the energy
is called a Hamiltonian and in physical systems of interest, the operator is the sum of many
smaller Hamiltonian terms each governing the interaction of a few particles. A classical CSP
on 𝑛 variables corresponds to a local Hamiltonian H =

∑𝑚
𝑖=1 ℎ𝑖 acting on 𝑛 qubits2. The analog

of a solution to the CSP is an 𝑛 qubit quantum state solution to the local Hamiltonian, and
the number of violated constraints corresponds to the energy (eigenvalue) of that quantum state.
The NP-hardness of deciding if a CSP 𝐶 is satisfiable (∃𝑥 s.t. 𝐶 (𝑥) = 0) or is unsatisfiable
(∀𝑥, 𝐶 (𝑥) ≥ 1/𝑚) corresponds to the QMA-hardness of deciding whether a local Hamiltonian H
has minimum eigenvalue at most 𝑎 or at least 𝑏 for given 𝑎, 𝑏 such that 𝑏 − 𝑎 = 1/poly(𝑛).

Definition 3.6 (Local Hamiltonian Problem) A 𝑘-local Hamiltonian H is an operator acting on
𝑛 qudits (of constant dimension 𝑑) composed on 𝑚 𝑘-local Hamiltonian terms ℎ𝑖. Each term ℎ𝑖
is a linear operator L((C𝑑)⊗𝑘 ) such that ℎ†

𝑖
= ℎ𝑖 (Hermitian) with ∥ℎ𝑖∥ ≤ 1. Each local term ℎ𝑖

is accompanied with a subset 𝑆𝑖 ⊂ [𝑛] of |𝑆𝑖 | = 𝑘 denoting the terms that ℎ𝑖 acts on. The local
Hamiltonian H equals

H =

𝑚∑︁
𝑖=1

ℎ𝑖 ⊗ I[𝑛]\𝑆𝑖 (3.6)

which we write as H =
∑
𝑖 ℎ𝑖 for brevity. The minimum energy, also known as the ground energy,

of the Hamiltonian H is the minimum eigenvalue of the Hermitian matrix H:

𝜆min(H)
def
= min
|𝜓⟩∈(C𝑑)⊗𝑘

⟨𝜓 |H|𝜓⟩ = min
𝜌

tr(H𝜌) (3.7a)

= min
|𝜓⟩∈(C𝑑)⊗𝑘

𝑚∑︁
𝑖=1
⟨𝜓 |ℎ𝑖 |𝜓⟩ = min

𝜌

𝑚∑︁
𝑖=1

tr(ℎ𝑖𝜌). (3.7b)

2For normalization, we assume that the terms of a local Hamiltonian have spectral norm at most 1.
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A Hamiltonian is said to be frustration-free if 𝜆min(H) = 0. The gap between the smallest and
second-smallest eigenvalues of H is called the spectral gap of the Hamiltonian.

The energy of a local Hamiltonian term or more generally interpreting ⟨ℎ|𝜓 |ℎ⟩, can be inter-
preted physically. If we write ℎ in a basis in which it is diagonal ℎ =

∑
𝑗 𝜆 𝑗 | 𝑗⟩⟨ 𝑗 |, then ⟨𝜓 |ℎ |𝜓⟩ =∑

𝑗 𝜆 𝑗 |⟨ 𝑗 |𝜓⟩|2. Note this implicitly defines a probability distribution 𝑝 with 𝑝( 𝑗) = |⟨ 𝑗 |𝜓⟩|2.
Therefore ⟨𝜓 |ℎ |𝜓⟩ = E 𝑗∼𝑝 𝜆 𝑗 , or equivalently this is an expectation over the eigenvalues of ℎ over
the probability distribution naturally induced by |𝜓⟩.

We call the eigenvalues of H the energy levels of the system. The energy of a state |𝜓⟩ with
respect to H is ⟨𝜓 |H|𝜓⟩. A state is called a ground state if ⟨𝜓 |H|𝜓⟩ = 𝜆min(H); analogously we
define mixed ground states. The ground space is the linear span of all ground states and all mixed
states supported on the space. Low-energy states3 are all states of energy near the ground energy;
in this thesis, it will refer to all states of energy ≤ 𝜖𝑚).

Computing the ground energy is a central problem in condensed matter physics. It was shown
to be QMA-complete.

Definition 3.7 (QMA) A quantum circuit𝑈 acting on 𝑛 qubits and consisting of 𝑇 gates is a QMA-
verifier circuit iff there exists 𝑤 ≤ 𝑛 qubits that are designated the witness register and the rest
of the qubits form the ancilla register, and it satisfies the promise that either there exists a state
|𝜉⟩ ∈ (C2)⊗𝑤 such that

Pr (𝑈 accepts |𝜉⟩ ⊗ |0𝑛−𝑤⟩) ≥ 2/3 (3.8)

or for all states |𝜉⟩,

Pr (𝑈 accepts |𝜉⟩ ⊗ |0𝑛−𝑤⟩) ≤ 1/3. (3.9)

By accept, we mean the event that measuring the first qubit of the state 𝑈 |𝜉⟩ ⊗ |0𝑛−𝑤⟩ in the
standard basis yields the |1⟩ state. The constants 2/3 and 1/3 are arbitrary; they only need to be
separated by a universal constant. The two cases are denoted yes and no instances, respectively.
Deciding if a quantum circuit𝑈 is a yes or no instance is the canonical QMA-complete problem.

Theorem 3.8 (QMA-completeness [13–15]) There exists a quantum polynomial-time reduction
from any QMA-verifier circuit𝑈 of 𝑛 qubits and 𝑇 gates to a local Hamiltonian H acting on 𝑛 + 𝑇
qubits such that H has minimum energy ≤ 𝑎 iff𝑈 is a yes instance and H has minimum energy ≥ 𝑏
iff 𝑈 is a no instance. The difference 𝑏 − 𝑎 ≤ 1/poly(𝑛, 𝑇) and is called the promise gap of the
local Hamiltonian problem.

Often, the QMA-completeness of the local Hamiltonian problem is expressed in terms of being
hard to estimate the ground energy of a 𝑛-qubit local Hamiltonian problem to precision 1/poly(𝑛).
While correct, it can mislead one into thinking that progress towards the quantum PCP conjecture

3Some papers express the Hamiltonian H as the expectation over terms instead of the sum. In which case it is the
set of states of energy ≤ 𝜖 .
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can be made by improving the polynomial poly(𝑛) in precision. However, as stated, the precision can
be improved to any polynomial by simply considering parallel copies of the original Hamiltonian
problem. The original proof of Kitaev had a precision of 1/𝑂 (𝑇3) and this was improved to
1/𝑂 (𝑇2) in [58, 59]. Any improvement past 1/𝑂 (𝑇2) would be novel. Therefore, it is better4 to
define the precision in terms of the parameters of the original problem being reduced from and not
the intermediate as to not cause this confusion.

3.3 Statements of the quantum PCP conjecture and NLTS
theorem

Conjecture 3.9 (Quantum PCP (formal statement) [20, 21]) For some universal constants, ℓ, 𝑐,
there exists a quantum polynomial-time reduction from any QMA-verifier circuit𝑈 of 𝑛 qubits and
𝑇 gates to a ℓ-local Hamiltonian H acting on 𝑛1 = poly(𝑛, 𝑇) qubits and 𝑚1 = Θ(𝑛) terms such
that H has minimum energy ≤ 𝑎 iff 𝑈 is a yes instance and H has minimum energy ≥ 𝑏 iff 𝑈 is a
no instance where the difference 𝑏 − 𝑎 ≥ 𝑐𝑚1.

It is not too difficult to see that under quantum polynomial time reductions, this version of the
quantum PCP conjecture is equivalent to a proof-checking version in which only a constant number
of qubits of the proof are measured [21].

Theorem 3.10 (NLTS (formal statement) [32]) There exists a fixed constant 𝜖 > 0 and an explicit
family of ℓ-local Hamiltonians H for an infinite set of integer values 𝑛, where H acts on 𝑛 particles,
consists of 𝑚 = Θ(𝑛) local terms, such that for any family of states 𝜓 satisfying

tr(H𝜓) ≤ 𝜖𝑚 + 𝜆min(H), (3.10)

the minimum depth of any quantum circuit generating 𝜓, depth(𝜓), grows faster than any constant5.

The following lemma proves that the NLTS theorem was a necessary consequence of the quantum
PCP conjecture.

Lemma 3.11 If the NLTS theorem was false and the quantum PCP conjecture is true, then NP =

QMA.
4However, a feature of defining the quantum PCP conjecture in terms of a constant-fraction promise gap is that it

automatically avoids this misconception.
5This definition is the one originally expressed by Freedman and Hastings in [32]. However, a consequence of the

quantum PCP conjecture and NP ≠ QMA would be a circuit complexity lower bound of 𝜔(log log 𝑛). For this reason,
we will be more interested in circuit lower bounds of 𝜔(log log 𝑛). Furthermore, if QCMA ≠ QMA, then the necessary
consequence of the quantum PCP conjecture is a circuit lower bound of 𝜔(poly(𝑛)). Our techniques make no obvious
progress towards this strengthened conjecture as we study stabilizer codes whose circuit complexity is𝑂 (log 𝑛). Some
progress towards super-polynomial NLETS was made by Nirkhe, Vazirani, and Yuen [3].
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Proof: If the NLTS theorem was false, then for every Hamiltonian H (of 𝑛 qubits and 𝑚 terms)
and every 𝜖 > 0, there exists a circuit 𝑈 of depth 𝑂𝜖 (1) such that |𝜓⟩ = 𝑈 |0𝑛′⟩ such that
tr(𝐻𝜓) ≤ 𝜖𝑚 + 𝜆min(H). Since the quantum PCP conjecture is true, there exists a family of
Hamiltonians H and some values of 𝑎 and 𝑏 with promise gap ≥ 𝑐𝑚, such that it is QMA-hard to
decide if the energy is ≤ 𝑎 or ≥ 𝑏.

Assume H is yes instance and for

𝜖 <
𝑏 − 𝜆min(H)

𝑚
(3.11)

consider the witness which is the classical description of the circuit 𝑈. Then tr(H𝜓) < 𝑏, a
convincing proof that 𝜆min(H) ≤ 𝑎 (due to the promise). Given a classical description of 𝑈, it is
easy to verify that tr(𝐻𝜓) < 𝑏, since

tr(H𝜓) =
𝑚∑︁
𝑖=1
⟨0𝑛′ |𝑈†ℎ𝑖𝑈 |0𝑛

′⟩ (3.12)

and 𝑈†ℎ𝑖𝑈 acts non-trivially on at most ℓ · 2𝑂 𝜖 (1) = 𝑂𝜖 (1) qubits due to Fact 3.2. Therefore, we
can calculate classically ⟨0𝑛′ |𝑈†ℎ𝑖𝑈 |0𝑛

′⟩ by multiplying out the gates in the lightcone of ℎ𝑖 and
calculating the upper-left corner entry.

If H is a no instance, then 𝜆min(H) ≥ 𝑏 and the minimum eigenvalue when restricted to low-
depth states is at least 𝜆min(H) so a false proof will not be accepted. Therefore, the problem is in
NP. However, since the problem was QMA-hard, then NP = QMA. □

3.4 Trivial states and local Hamiltonians
There is a fundamental connection between trivial states and local Hamiltonians that is incredibly
useful in proving circuit depth lower bounds. In particular, it is useful for tying the theory of
low-depth circuits to the theory of approximate ground state projectors [60].

To begin, we consider the 0-depth state, |0𝑛′⟩. We notice that it is the ground state of the 1-local
Hamiltonian:

H0
def
=

𝑛′∑︁
𝑖=1
|1⟩⟨1|𝑖 (3.13)

where |1⟩⟨1|𝑖 is the projector onto 1 of the 𝑖-th qubit. The Hamiltonian H0 has some simple properties
worth recognizing: it is frustration-free, has a unique ground state of |0𝑛′⟩, is commuting and has a
spectral gap of 1. The eigenvectors are all the basis vectors |𝑥⟩ for 𝑥 ∈ {0, 1}𝑛′ and their respective
eigenvalues are |𝑥 |.

For any circuit𝑈 on 𝑛′ qubits of depth 𝑡, we can consider the Hamiltonian

H𝑈
def
= 𝑈H0𝑈

† =
𝑛′∑︁
𝑖=1
𝑈 |1⟩⟨1|𝑖𝑈†. (3.14)
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Since𝑈 is a unitary, the analysis of H0 directly translates to H𝑈 : it is frustration-free, has a unique
ground state of 𝑈 |0𝑛′⟩, is commuting, and has a spectral gap of 1. The eigenvectors are all the
vectors 𝑈 |𝑥⟩ for 𝑥 ∈ {0, 1}𝑛′ and their respective eigenvalues are |𝑥 |. Furthermore, by Fact 3.2,
the Hamiltonian H𝑈 is 2𝑡-local. This underlines the fundamental relationship between trivial states
and local Hamiltonians.

Fact 3.12 Every trivial state |𝜓⟩ ∈ (C2)⊗𝑛′ is the unique ground state of a 𝑂 (1)-local frustration-
free commuting Hamiltonian with spectral gap 1.

Approximate ground state projectors At this time it is helpful to recall the notion of approximate
ground state projectors (AGSPs) which can help us improve the relationship between trivial-states
and local Hamiltonians.

Definition 3.13 (Approximate ground state projector) For a frustration-free Hamiltonian H with
a unique ground state |Ω⟩. An operator 𝐾 is an 𝛿-approximate ground state projector (AGSPs) if

∥|Ω⟩⟨Ω| − 𝐾 ∥ ≤ 𝛿. (3.15)

We can see that (I − H𝑈/𝑛′) is a (1 − 1/𝑛′)-AGSP for H𝑈 since 1 is the spectral gap of the
Hamiltonian H𝑈 . It follows that polynomials (I−H𝑈/𝑛′) 𝑓 are better AGSPs at the cost of locality:
They are roughly (1 − 𝑓 /𝑛′)-AGSPs but are 𝑓 · 2𝑡-local. We could ask if there is a better trade-off
between the locality of the AGSP and 𝛿. Finding an optimal polynomial of H𝑈 which maximizes
the trade-off of the AGSP was studied and answered by [61, Theorem 3.1] (similar results exist
in [62, 63]):

Lemma 3.14 (Optimal polynomial approximation to the AND function [61]) There exists a poly-
nomial 𝑃 of degree 𝑓 ∈ (

√
𝑛′, 𝑛′) such that

𝑃(0) = 1, |𝑃(𝑖) | ≤ exp
(
− 𝑓 2

100𝑛′

)
for 𝑖 = 1, 2, . . . , 𝑛′. (3.16)

A construction of 𝑃 can be built using Chebyshev polynomials; see [61, Theorem 3.1] for
construction. By construction, 𝑃(H𝑈) will be a exp

(
− 𝑓 2

100𝑛′

)
-AGSP with a locality of 𝑓 · 2𝑡 .

Therefore, states of depth𝑂 (log 𝑛) are the ground states of very good AGSPs of locality 𝑜(𝑛). This
comes in handy in proving circuit depth lower bounds.

3.5 Local indistinguishability and circuit depth lower bounds
Previously, we noted (Fact 2.1) that for every [[𝑛, 𝑘, 𝑑]] quantum error correcting codes, any code
state 𝜌 and any subset 𝑆 ⊂ [𝑛], |𝑆 | ≤ 𝑑, that 𝜌𝑆 was an invariant over the code space. This is an
example of a more general property called local indistinguishability6 which can be used to prove
circuit depth lower bounds.

6It is called global entanglement in [21].
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𝑥
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100𝑛′ 1 𝑛′. . .

Figure 3.2: A cartoon of an optimal polynomial approximation to the AND function.

Definition 3.15 (Local indistinguishability) Two states 𝜌 and 𝜑 on 𝑛 qubits are said to be 𝑑-
locally indistinguishable if for every subset 𝑆 ⊂ [𝑛], |𝑆 | ≤ 𝑑, the density matrices 𝜌𝑆 and 𝜑𝑆 are
equal.

Aside from error correcting codes, the best example of locally indistinguishable states are the | +⟩
and | −⟩ states:

| ±⟩
def
=
|0𝑛⟩ ± |1𝑛⟩
√

2
. (3.17)

These states are some of the simplest examples of global multipartite entanglement. The ± phase of
the state can only be recognized by viewing all 𝑛 qubits. View fewer than 𝑛 qubits and the reduced
density matrix of either state is(

±
)
𝑆⊊[𝑛]

=
|0⟩⟨0| |𝑆 | + |1⟩⟨1| |𝑆 |

2
(3.18)

Consider a circuit constructing | +⟩; the complexity of generating the state comes from the long-
range correlations between all 𝑛 qubits. A common misconception is that it comes from the states
| +⟩ and | −⟩ being far apart; that is not the case since a 𝑍-gate applied to any qubit converts one
to the other. Nevertheless, having both states allows for a simple circuit depth lower bound proof.

Lemma 3.16 (Simple local indistinguishability lower bounds) If any two different 𝑛-qubit pure
states |𝜌⟩ and |𝜑⟩ are 𝑑-locally indistinguishable, then neither state can be generated by a circuit
of depth Ω(log 𝑑).

Proof: Assume there exists a circuit𝑈 of depth 𝑡 acting on 𝑛 qubits such that |𝜌⟩ = 𝑈 |0𝑛⟩. Assume
2𝑡 < 𝑑. Consider the Hamiltonian H𝑈 from earlier; its unique ground state will be |𝜌⟩ and it is
2𝑡-local. Let ℎ𝑖 = 𝑈 |1⟩⟨1|𝑖𝑈† be the local terms of H𝑈 ; therefore ℎ𝑖 acts non-trivially only on
lightcone 𝐿𝑖. Then,

⟨𝜑 |H𝑈 |𝜑⟩ =
𝑛∑︁
𝑖=1
⟨𝜑 |ℎ𝑖 |𝜑⟩

(★)
=

𝑛∑︁
𝑖=1

tr
(
ℎ𝑖𝜑𝐿𝑖

) (†)
=

𝑛∑︁
𝑖=1

tr
(
ℎ𝑖𝜌𝐿𝑖

) (★)
= ⟨𝜌 |H𝑈 |𝜌⟩ = 0 (3.19)
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where both equality equations (★) follow from the fact that the energy of the term ℎ𝑖 only depends
on the reduced density matrix state on the lightcone 𝐿𝑖 and the equality equation (†) follows because
the size of the lightcones 𝐿𝑖 are at most 2𝑡 < 𝑑 and therefore 𝜑𝐿𝑖 = 𝜌𝐿𝑖 by local indistinguishability.
Therefore, |𝜑⟩ is a ground state of H𝑈 implies that it equals |𝜌⟩, a contradiction. So, 2𝑡 ≥ 𝑑,
proving the lower bound. □
Eq. 3.19 is useful enough that it’s worth stating as its own fact.

Fact 3.17 If |𝜌⟩ and |𝜙⟩ are 𝑑-locally indistinguishable and H is a 𝑑-local Hamiltonian, then
⟨𝜌 |H|𝜌⟩ = ⟨𝜙 |H|𝜙⟩. In other words, H cannot distinguish 𝜌 and 𝜙.

Robust lower bounds The previous lemma easily applies to the state | ±⟩ for proving circuit
depth lower bounds of Ω(log 𝑛) since they are (𝑛− 1)-locally indistinguishable. It also easily gives
a Ω(log 𝑑) lower bound for every pure code state of a [[𝑛, 𝑘, 𝑑]] code where 𝑘 ≥ 1. This is by
noticing that two orthogonal code states are 𝑑-locally-indistinguishable (Fact 2.1). But it has flaws
that need addressing. First, it is only bounding pure states on 𝑛 qubits whereas we will, in general,
be interested in lower bounding mixed states on 𝑛 qubits. Second, the bounds prove depth lower
bounds for circuits exactly generating the state |𝜌⟩. This is not a robust definition7, in general, we
will be interested in proving lower bounds for all states within a small 𝛿-radius of the state 𝜌. This
is a prerequisite for NLTS. Here we present a collection of robust lower bounding techniques which
will be necessary for proving the NLTS theorem [1].

3.6 Lower bounds for well-spread distributions
The lower bound for | +⟩ immediately implies a Ω(log 𝑛) lower bound for the probability distri-
bution with half its mass on 0𝑛 and the other half on 1𝑛. To make the lower bound robust, we would
like to show that every distribution 𝐷 on {0, 1}𝑛 with 𝐷 (0𝑛), 𝐷 (1𝑛) ≥ 𝜇 for some constant 𝜇 has
a non-trivial quantum circuit lower bound. We can even further generalize to sets 𝑆1 and 𝑆2 with
𝐷 (𝑆1), 𝐷 (𝑆2) ≥ 𝜇 and a large Hamming distance between 𝑆1 and 𝑆2. We call such distributions
"well-spread" and show a generalized lower bound for them by modifying our previous lower bound
argument and using 𝑃(H𝑈) instead of H𝑈 where 𝑃(·) is the polynomial from Lemma 3.14. Versions
of the following lower bound versions for well-spread distributions can be found in [45, Theorem
4.6], [52, Corollary 43], [2, Lemma 13].

Lemma 3.18 (Fact 4 of [1]) Let 𝐷 be a probability distribution on {0, 1}𝑛 generated by measur-
ing the output of a quantum circuit in the standard basis. If two sets 𝑆1, 𝑆2 ⊂ {0, 1}𝑛 satisfy
𝐷 (𝑆1), 𝐷 (𝑆2) ≥ 𝜇, then the depth of the circuit is at least

1
3

log

(
dist(𝑆1, 𝑆2)2

400𝑛 · ln 1
𝜇

)
. (3.20)

7Robust lower bounds for the classical variant of this question, the uniform distribution over a classical code, are
answered in full by Lovett and Viola [64].
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The only ingredient not previously discussed in this proof is the simple observation that for an ℓ-local
operator term ℎ and basis vectors |𝑥⟩ , |𝑦⟩ for 𝑥, 𝑦 ∈ {0, 1}𝑛 with Hamming distance |𝑥 ⊕ 𝑦 | > ℓ,
⟨𝑥 | ℎ |𝑦⟩ = 0. Therefore, for sets 𝑆1 and 𝑆2 any local operator H of locality < dist(𝑆1, 𝑆2),

Π𝑆1HΠ𝑆2 = 0 (3.21)

where Π𝑆1 ,Π𝑆2 are the projections on the strings in sets 𝑆1, 𝑆2, respectively.

Proof of Proof of Lemma 3.18: Let 𝜌 be a mixed state such that measurement in the standard
basis results in the distribution 𝐷 and assume let |𝜌⟩ be the output of a depth 𝑡 circuit 𝑈 such
that |𝜌⟩ is a purification of 𝜌 — i.e. tr[𝑛′]\[𝑛] ( |𝜌⟩⟨𝜌 |) = 𝜌. We first recognize that, without loss
of generality, 𝑛′ ≤ 2𝑡 · 𝑛. This is a lightcone argument (Fact 3.2) as any qubits outside

⋃
𝑖∈[𝑛] 𝐿𝑖,

the union of the lightcones of the first 𝑛 qubits, do not influence the state on the first 𝑛 qubits.
Therefore, they can be removed without changing the state on the first 𝑛 qubits.

Now, consider the AGSP 𝑃(H𝑈) previously constructed (Lemma 3.14) using 𝑃 of degree 𝑓 :

∥ |𝜌⟩⟨𝜌 | − 𝑃(H𝑈)∥ ≤ exp
(
− 𝑓 2

100 · 𝑛′

)
≤ exp

(
− 𝑓 2

100 · 2𝑡𝑛

)
(3.22)

Furthermore, 𝑃(H𝑈) is a 𝑓 · 2𝑡 local operator. Setting 𝑢 def
= dist(𝑆1, 𝑆2) and choosing 𝑓

def
= 𝑢

2𝑡+1 , we
obtain

∥ |𝜌⟩⟨𝜌 | − 𝑃(H𝑈)∥ =≤ exp
(
− 𝑢2

400 · 23𝑡𝑛

)
. (3.23)

From eq. (3.21), we have Π𝑆1𝑃(H𝑈)Π𝑆2 = 0 which implies

∥Π𝑆1 |𝜌⟩⟨𝜌 | Π𝑆2 ∥ = ∥Π𝑆1 |𝜌⟩⟨𝜌 | Π𝑆2 − Π𝑆1𝑃(H𝑈)Π𝑆2 ∥ (3.24a)
≤ ∥ |𝜌⟩⟨𝜌 | − 𝑃(H𝑈)∥ (3.24b)

≤ exp
(
− 𝑢2

400 · 23𝑡 · 𝑛

)
. (3.24c)

However,

∥Π𝑆1 |𝜌⟩⟨𝜌 | Π𝑆2 ∥ =
√︁
⟨𝜌 | Π𝑆1 |𝜌⟩ · ⟨𝜌 | Π𝑆2 |𝜌⟩ =

√︁
𝑝(𝑆1)𝑝(𝑆2) ≥ 𝜇. (3.25)

Thus, 23𝑡 ≥ 𝑢2

400·ln 1
𝜇
·𝑛 , which rearranges into the fact statement. □

Applications of Lemma 3.18 Note that Lemma 3.18 is a generalization of the lower bounds of
| ⟩ states and, in particular, allows for mixed states. A downside of the lemma is that it only
provides a non-trivial lower bound when dist(𝑆1, 𝑆2) ≥ 𝜔(

√
𝑛). In some cases, this is fine, since

we can consider a restriction of the distribution to fewer bits to reduce 𝑛 while still preserving the
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distance. However, in some situations, this may not be optimal. This is why, in some sense, this is
a robustness of the local indistinguishability lower bounds for certain states but it is different than
the aforementioned local indistinguishability arguments.

For example, it is unclear how to robustly use Lemma 3.18 to lower bound the circuit depth of
code states of all quantum codes; it is, however, easy enough to see how to use Lemma 3.18 to lower
bound the circuit depth of the code states of CSS codes (and any state within small ℓ1-distance of
the code space) for 𝑑 ≥ 𝜔(

√
𝑛). In [52], Eldar and Harrow notice that given a [[𝑛, 𝑘, 𝑑]] stabilizer

code, we can find two logical operators 𝑋 and 𝑍 such that these operators are anti-commuting Pauli
matrices (see Definition 2.3). Moreover, we can find Pauli matrices such that 𝑋 is a 𝑋-type Pauli
and 𝑍 is a 𝑍-type Pauli. Because two anti-commuting operators that square to 1 form a qubit8, they
satisfy an uncertainty principle:

Fact 3.19 For any state 𝜌 and an operator 𝐴, let

Var 𝐴 = tr
(
𝐴2𝜌

)
− tr(𝐴𝜌)2. (3.26)

For any anti-commuting operators 𝐴, 𝐵 that square to 1, Var 𝐴+Var 𝐵 ≥ 1 and Var 𝐴,Var 𝐵 ≥ 0.

When applied to 𝑋 and 𝑍 we get that at least one Var 𝑋 or Var 𝑍 is ≥ 1
2 . Without loss of generality,

assume it to be 𝑍 . Then,

1
2
≤ Var 𝑍 = 1 − tr

(
𝑍𝜌

)2
=⇒ 1

√
2
≥ tr

(
𝑍𝜌

)
. (3.27)

Therefore, a 𝑍-measurement of 𝜌 would yield either option with a probability ≥ 1
2 −

1√
2
. Since

𝑍 is a 𝑍-type measurement, 𝑍 = 𝑍𝑏 for 𝑏 ∈ {0, 1}𝑛. It is a sub-measurement of measuring all
qubits in the 𝑍-basis (standard basis). Recall from the description of CSS codes, for a code state
measured all qubits in the 𝑍-basis, the resulting distribution will be supported on ker𝐻z. We can
divide ker𝐻z into two components:

𝑆1
def
= ker𝐻z ∩ {𝑦 : 𝑦⊤𝑏 = 0}, 𝑆2

def
= ker𝐻z ∩ {𝑦 : 𝑦⊤𝑏 = 1}. (3.28)

𝑆1 corresponds to measuring |𝑍⟩ and getting the outcome +1 and 𝑆2 the outcome −1. Since 𝑍 is
a logical operator, the distance between 𝑆1 and 𝑆2 is at least 𝑑. This is because the |·|𝐶⊥x distance
between any two points in ker𝐻z is at least 𝑑 and |·|𝐶⊥x ≤ |·|. Therefore, we have a well-spread
distribution for 𝜇 = 1

2 −
1√
2

and dist(𝑆1, 𝑆2) ≥ 𝑑. This gives a non-trivial lower bound for any circuit
of super-quadratic distance; the bound can easily be seen to be robust to small ℓ1-perturbations (as
seen in [52, Proposition 44]).

8They define a two-dimensional subspace; see [65] for an introduction to this intuition.
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A local indistinguishablity perspective Although not necessary for the remainder of the thesis,
it may be illustrative to the reader to see a proof sketch of Lemma 3.18 through the lens of local
indistinguishability; this is inspired by [52]. Recall, we are interested in lower bounding the
circuit depth of any state |𝜌⟩ on 𝑛′ qubits such that measuring |𝜌⟩ in the standard basis yields the
distribution 𝐷. To apply Lemma 3.16, we would need to create a state |𝜑⟩ with the same reduced
density matrices. Instead, we create a state with approximately the same reduced density matrices.
Proof (Sketch) : Let 𝑢 = dist(𝑆1, 𝑆2) and let 𝐵𝑖 be the Hamming ball of radius 𝑖 · ℓ around 𝑆1 for
𝑖 = 1, . . . , 𝑢/ℓ (see Figure 3.3). Consider the sequence of states

|𝜑𝑖⟩ =
©­«

∑︁
𝑥∈{0,1}𝑛

(−1)𝑥∈𝐵𝑖 |𝑥⟩⟨𝑥 |ª®¬ |𝜌⟩ . (3.29)

In other words, |𝜑𝑖⟩ flips the sign of the basis strings inside the ball 𝐵𝑖. Notice that |⟨𝜌 |𝜑𝑖⟩|2 ≤

Figure 3.3: A cartoon of the local indistinguishability lower bound for well-spread distributions.

1 − 𝑂 (𝜇) since 𝑆1 ⊂ 𝐵𝑖. Consider now the AGSP 𝑃(H𝑈) previously constructed (Lemma 3.14)
where𝑈 is a depth 𝑡 circuit generating |𝜌⟩ and 𝑃 is of degree 𝑓 ∼

√
𝑛. Then, tr(𝑃(H𝑈)𝜑𝑖) ≥ Ω(𝜇)

by approximate orthogonality.
On the other hand, let ℓ ∼ 2𝑡

√
𝑛 be the locality of 𝑃(H𝑈). Then, it suffices to note that

| ⟨𝜌 |𝑃(H𝑈) |𝜌⟩ − ⟨𝜑𝑖 |𝑃(H𝑈) |𝜑𝑖⟩| ≤ 𝑂 (𝐷 (𝐵𝑖+1 \ 𝐵𝑖−1)). (3.30)

This is because ⟨𝑥 | 𝑃(H𝑈) |𝑦⟩ = 0 unless |𝑥 ⊕ 𝑦 | ≤ ℓ and the only locations at which the phases
differ for the states 𝜌 and 𝜑𝑖 are near the perimeter of ball 𝐵𝑖. This is precisely the difference
in balls 𝐵𝑖+1 and 𝐵𝑖−1, and by a Cauchy-Schwartz inequality, the difference is upper-bounded
by the probability mass in the region. By a counting argument, there must exist some 𝑖★ such
that 𝑂 (𝐷 (𝐵𝑖★+1 \ 𝐵𝑖★−1)) ≤ 𝑂 (ℓ/𝑢). Therefore, 𝜇 ≤ 𝑂 (ℓ/𝑢) = 𝑂 (2𝑡

√
𝑛/𝑢). Therefore |𝜌⟩ and

|𝜑𝑖★⟩ are approximately locally indistinguishable. Rewriting the equation, gives us a bound of
𝑡 ≥ Ω

(
log

(
𝑢𝜇√
𝑛

))
which is similar to that of Lemma 3.18. □
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3.7 More lower bounds from code definitions
The following section is not necessary for understanding the proof of the NLTS theorem; however,
it addresses generalizing circuit depth lower bounds to more quantum error correcting codes. This
includes codes that are not simultaneously linear-rate and linear-distance or codes that are not
necessarily CSS (or even stabilizer). In [2], we studied this problem in depth and extended some
of the folklore local indistinguishability arguments in interesting manners for these results. These
lower bounds were insufficient for proving NLTS as we were, at the time, unable to incorporate
the utility of simultaneously being linear-rate and linear-distance. However, we proved simple
arguments for codes that were either high-rate or high-distance codes. The results of the two
sections can be expressed succinctly by the following theorem.

Theorem 3.20 (Theorem 1 of [2]) Let C be a [[𝑛, 𝑘, 𝑑]] stabilizer code of constant locality ℓ =

𝑂 (1) and let H =
∑
𝑖 ℎ𝑖 be the corresponding Hamiltonian (see eq. (2.12)) for each code check 𝐶𝑖.

For any 𝜖 > 0 and any state 𝜓 on 𝑛-qubits with energy ≤ 𝜖𝑛, the circuit depth of 𝜓 is at least

depth(𝜓) ≥ Ω
©­­«min

log 𝑑, log
𝑘 + 𝑑

𝑛

√︃
𝜖 log 1

𝜖


ª®®¬ . (3.31)

The proof of Theorem 3.20 is provided in Appendix A.1.

3.7.1 High-distance codes
Furthermore, we can prove non-trivial lower bounds as to the fidelity of low-depth states and any
code state. We prove lower bounds in both the high-rate and high-distance regimes. The high-rate
lower bounds are presented in the appendix as Lemma A.3 and the high-distance lower bounds are
the following lemma.

Lemma 3.21 (Lemma 14 of [2]) Given |𝜓⟩ = 𝑈
��0⊗𝑛′〉 with 𝑈 of depth 𝑡 and let C be a code with

distance 𝑑. Let Π be the projector onto the codespace and 𝐹 =
√︁
⟨𝜓 | (Π ⊗ Iancilla) |𝜓⟩ be the fidelity

of |𝜓⟩ with the codespace. If 2𝑡 ≤ 𝑑
2 then

𝐹2 ≤ 2exp
(
− 𝑑2

400 · 22𝑡𝑛′

)
. (3.32)

Proof: From Lemma 3.14, there is a polynomial 𝑃 of degree 𝑑

2𝑡+1 such that

∥𝑃(H𝑈) − |𝜓⟩⟨𝜓 | ∥ ≤ exp
(
− 𝑑2

400 · 2𝑡𝑛′

)
(3.33)
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Note that each multinomial term in 𝑃(H𝑈) is supported on ≤ 2𝑡 · 𝑑2𝑡+1 ≤
𝑑
2 terms. Let |𝜙⟩ = Π |𝜓⟩ / 𝑓

be the code state having largest overlap with |𝜓⟩. Consider9 any vector |𝜙′⟩ with 𝜙′code ∈ C that is
orthogonal to |𝜙⟩ (and hence orthogonal to |𝜓⟩). Since 𝑃(H𝑈) is a ≤ 𝑑

2 -local Hamiltonian, then
Fact 3.17, ensures that 𝑃(H𝑈) cannot distinguish |𝜙⟩ and |𝜙′⟩. Therefore,

𝐹2 = |⟨𝜙 |𝜓⟩|2 (3.35a)
≤ ⟨𝜙|𝑃(H𝑈) |𝜙⟩ + ∥𝑃(H𝑈) − |𝜓⟩⟨𝜓 |∥ (3.35b)
≤ ⟨𝜙′|𝑃(H𝑈) |𝜙′⟩ + ∥𝑃(H𝑈) − |𝜓⟩⟨𝜓 | ∥ (3.35c)

≤
(
|⟨𝜙′|𝜓⟩|2 + ∥𝑃(H𝑈) − |𝜓⟩⟨𝜓 | ∥

)
+ ∥𝑃(H𝑈) − |𝜓⟩⟨𝜓 | ∥ (3.35d)

≤ 2∥𝑃(H𝑈) − |𝜓⟩⟨𝜓 | ∥ (3.35e)

where eq. (3.35b) and eq. (3.35d) follow from triangle inequalities, eq. (3.35c) is the indistinguisha-
bility by local Hamiltonians, and eq. (3.35e) is because ⟨𝜙′|𝜓⟩ = 0. With eq. (3.33), the proof is
complete.

□
We can extend this proof to prove circuit depth lower bounds for low-energy states of generic codes
due to their distance.

Lemma 3.22 Let C be a [[𝑛, 𝑘, 𝑑]] stabilizer code of locality ℓ defined by checks {𝐶𝑖}𝑖∈[𝑚] . Let
H be the corresponding Hamiltonian. Suppose there is a state |𝜙⟩ on 𝑛′ qubits with tr(H𝜓) ≤ 𝜖𝑚
and circuit complexity 𝑡 def

= depth(𝜙) < log(𝑑) − 1. Then,

𝑡 ≥ 1
3

log
(
− 𝑑2

1200
√
𝜖 · ℓ𝑛2

)
. (3.36)

A proof is provided in Appendix A.1.

3.7.2 High-rate codes
In [2], we observed, for the first time, that another parameter plays a key role in circuit lower bounds:
the rate of the code. Inspired by [66], we used novel entropic arguments to prove that states of low
circuit complexity are significantly far in ℓ1−distance from high rate code spaces. Formally, we
showed that all states of circuit complexity ≤ log 𝑑 are at a ℓ1-distance of ≥ Ω

(
𝑘2/𝑛2) from the

code space.
9One way to construct |𝜙′⟩ is to expand |𝜙⟩ = ∑

𝑥 |𝑥⟩ |𝜙𝑥⟩ (with {|𝑥⟩}𝑥 a basis for C and |𝜙𝑥⟩ unnormalized) and
then define |𝜙′⟩ ∝ ∑

𝑥 𝛼𝑥 |𝑥⟩ |𝜙𝑥⟩. The complex numbers {𝛼𝑥}𝑥 are chosen such that∑︁
𝑥

𝛼𝑥 ⟨𝜙𝑥 |𝜙𝑥⟩ = 0 =⇒ ⟨𝜙|𝜙′⟩ = 0. (3.34)
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Lemma 3.23 ( [2]) Let C be a [[𝑛, 𝑘, 𝑑]] code and 𝜓 a state on 𝑚 qubits. Let 𝜓code be the reduced
state on the 𝑛 code qubits. If the trace-distance between 𝜓code and C is 0 < 𝛿 < 1/2 and the code
is of rate at least 𝑘 > 2𝛿 log(1/𝛿)𝑚, then the circuit complexity depth(𝜓) > log 𝑑.

This observation alone does not suffice to address a central challenge of bounding circuit depth:
the space of low-energy states is much larger than the code space or even its small neighborhood.
A general strategy in earlier works [44, 52] was to build a low-depth decoding circuit to bring
each low-energy state closer to the code space. But this required assuming that the code was
locally testable; such codes are not known to exist in the desired parameter regime. We instead
appeal to the observation that every eigenspace of a stabilizer code Hamiltonian possesses the local
indistinguishability property (Fact 2.1). Instead of attempting to construct a decoding circuit, we
measure the syndrome using a constant-depth circuit (which uses the LDPC nature of the code
Hamiltonian). This allows us to decohere the low energy state into a mixture of orthogonal states
that live within each of the eigenspaces. A key realization is that measurement of the syndrome for
low-energy states is a gentle measurement in that it does not perturb the state locally. This is used to
show that a state of low energy satisfies an approximate version of local indistinguishability. This,
coupled with the argument for codes of high rate, completed a proof for high-rate codes.

Theorem 3.24 (Theorem 20 of [2]) Let C be a [[𝑛, 𝑘, 𝑑]] stabilizer code of locality ℓ defined by
checks {𝐶𝑖}𝑖∈[𝑚] . Let H be the corresponding Hamiltonian. Suppose there is a state |𝜙⟩ on 𝑚
qubits with tr(𝐻𝜙) ≤ 𝜖𝑚 and circuit complexity 𝑡 def

= depth(𝜙) < log(𝑑) − 2ℓ3. Then, for a constant
𝑐ℓ depending only on ℓ and not the size of the code,

22𝑡 >
𝑘

𝑐ℓ𝑛 · 𝜖 log 1
𝜖

. (3.37)

A proof of Lemma 3.23 and a proof of Theorem 3.24 are given in Appendix A.1.

3.7.3 Spatially local Hamiltonians
A key property of an NLTS Hamiltonian is that it cannot live on a Euclidean lattice of dimension
𝐷 for a fixed constant 𝐷 [21]. This is because of a "cutting" argument: Let H be a local
Hamiltonian in 𝐷 dimensions and Ψ a ground state of H. For a fixed constant 𝜖 , partition the
lattice into 𝐷 dimensional rectangular chunks so that the side length of each rectangular chunk
is 𝑂 ((𝐷𝜖)−1/𝐷). Let 𝜌𝑖 be the reduced state of Ψ on a chunk 𝑖, and 𝜌 =

⊗
𝑖 𝜌𝑖 be a state

over all the qubits. It’s not hard to check that 𝜌 violates at most a 𝜖-fraction of the terms of
H (only the boundary terms of the rectangular division) and yet has circuit complexity at most
exp(((𝐷𝜖)−1/𝐷)𝐷) = 𝑂 (exp(1/𝐷𝜖)) = 𝑂 (1); so it is not NLTS.

This circuit complexity upper bound can be further improved for the specific case of stabilizer
Hamiltonians on a lattice, due to the result of Aaronson and Gottesman [67]. Since the circuit
complexity of each chunk is at most logarithmic in its size𝑂 (1/𝜖1/𝐷), the aforementioned quantum
state 𝜌 can be prepared by a circuit of depth 𝑂 (min(log 𝑛, log(1/𝜖))). Note that this holds for any
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Figure 3.4: The punctured toric code is a quantum surface code on a
√
𝑛 ×
√
𝑛 torus with punctures of size

𝑑 × 𝑑 and distance between punctures of 𝑑. These codes saturate the rate-distance tradeoff bounds in two
dimensions [66] with distance = 𝑂 (𝑑) and rate = Ω(𝑛/𝑑2).

0 < 𝜖 < 1, not just a constant. Theorem 3.20 shows that the 2D punctured toric code (Figure 3.4)
Hamiltonians on 𝑛 qubits with distance 𝑑 (which is a free parameter) requires a circuit of depth
Ω(log 𝑑) for an approximation to ground energy better than 𝑂 (𝑛/𝑑3). Therefore, our lower bound
in the case of nearly linear rate and polynomial distance codes (such as the punctured toric code)
matches the upper bound – up to constant factors – closing the question on the circuit complexity
of the approximate ground states of these codes.
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Chapter 4

The NLTS Theorem

Each week I plot your equations dot for dot, 𝑥’s against 𝑦’s in all manner of algebraical
relation, and every week they draw themselves as commonplace geometry, as if the
world of forms were nothing but arcs and angles. God’s truth, Septimus, if there is an
equation for a curve like a bell, there must be an equation for one like a bluebell, and
if a bluebell, why not a rose? Do we believe nature is written in numbers?

Tom Stoppard, Arcadia0

In this chapter, we give an argument that likely nature is not written in numbers (even approxi-
mately) and that describing ground-states (solutions) or low-energy states (approximate solutions)
of local Hamiltonians likely requires quantum mechanics to describe.

Theorem 4.1 (No low-energy trivial states [1]) There exists a fixed constant 𝜖 > 0 and an explicit
family of 𝑂 (1)-local frustration-free commuting Hamiltonians {H(𝑛)}∞

𝑛=1 where H(𝑛) =
∑𝑚
𝑖=1 ℎ

(𝑛)
𝑖

acts on 𝑛 particles and consists of 𝑚 = Θ(𝑛) local terms such that for any family of states {𝜓𝑛}
satisfying tr

(
H(𝑛)𝜓

)
< 𝜖𝑛, the circuit complexity of the state 𝜓𝑛 is at least Ω(log 𝑛).

The local Hamiltonians for which we can show such robust circuit depth lower bounds cor-
respond to linear-rate and linear-distance quantum LDPC CSS error correcting codes with an
additional property related to the clustering of approximate codewords of the underlying classical
codes. We show that the property holds for the quantum Tanner code construction of Leverrier and
Zémor [43] (Section 4.2). We suspect that the property is true for other constructions of linear-rate
and linear-distance QLDPC codes [40, 42, 68], however we do not prove this outright. While we
show that the property is sufficient for NLTS, it is an interesting open question if the property is
inherently satisfied by all linear-rate and linear-distance constructions.

0Tom Stoppard’s quote is about chaos theory which was a subject he was quite fascinated by as a writer. His
plays often reflect his curiosity about mathematical notions such as the butterfly effect and I wonder if he has had any
introduction to quantum mechanics and what literary conclusions he has drawn from this subject.
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For any subset 𝑆 ⊂ {0, 1}𝑛, recall the distance measure |·|𝑆 as |𝑦 |𝑆 = min𝑠∈𝑆 |𝑦 + 𝑠 | where |·| denoted
Hamming weight. For a [[𝑛, 𝑘, 𝑑]] CSS code defined by classical codes (𝐶x, 𝐶z), we define 𝐺𝛿

z as
the set of vectors which violate at most a 𝛿-fraction of checks from𝐶z, i.e. 𝐺𝛿

z = {𝑦 : |𝐻z𝑦 | ≤ 𝛿𝑚z}.
We similarly define 𝐺𝛿

x.

Property 4.2 (Clustering of approximate codewords) We say that a [[𝑛, 𝑘, 𝑑]] CSS code defined
by classical codes (𝐶x, 𝐶z) clusters approximate codewords if there exist constants 𝑐1, 𝑐2, 𝛿0 such
that for sufficiently small 0 ≤ 𝛿 < 𝛿0 and every vector 𝑦 ∈ {0, 1}𝑛,

1. If 𝑦 ∈ 𝐺𝛿
z, then either |𝑦 |𝐶⊥x ≤ 𝑐1𝛿𝑛 or else |𝑦 |𝐶⊥x ≥ 𝑐2𝑛.

2. If 𝑦 ∈ 𝐺𝛿
x, then either |𝑦 |𝐶⊥z ≤ 𝑐1𝛿𝑛 or else |𝑦 |𝐶⊥z ≥ 𝑐2𝑛.

This property can be viewed as a quantum — or, in the language of [68, 69], boundary and
co-boundary — clustering of approximate codewords. Recall the discussion that the classical
clustering of approximate codewords for classical codes occurs for codes with small-set expanding
interaction graphs. In particular, this includes classical Tanner codes.

Local Hamiltonian definition The aforementioned quantum codes lead to a natural commuting
frustration-free local Hamiltonian (as defined in eq. (2.12)): For every row 𝑤z of 𝐻z – i.e. a
stabilizer term 𝑍𝑤z of the code, we associate a Hamiltonian term 1

2 (I − 𝑍
𝑤z). We define Hz as the

sum of all such terms for 𝐻z. Hx is defined analogously and the full Hamiltonian is H = Hx +Hz.
The number of local terms is 𝑚x + 𝑚z = Θ(𝑛) and H has zero ground energy.

4.1 A short proof
The proof, that the local Hamiltonian corresponding to a linear-rate and linear-distance CSS code
satisfying Property 4.2 is NLTS, is divided into a few steps. We first show that the classical
distributions generated by measuring any low-energy state in the standard or Hadamard bases are
approximately supported on a particular structured subset of vectors. Then, we show that the
subsets cluster into a collection of disjoint components which are far in Hamming distance from
each other. Finally, we show that the distribution in one of the two bases cannot be too concentrated
on any particular cluster. This shows that the distribution is well-spread (like Lemma 3.18) which
can be used to prove a circuit depth lower bound.

The supports of the underlying classical distributions Consider a state 𝜓 on 𝑛 qubits such that
tr(H𝜓) ≤ 𝜖𝑛. Let 𝐷x and 𝐷z be the distributions generated by measuring the 𝜓 in the (Hadamard)
𝑋− and (standard) 𝑍− bases, respectively. We find that 𝐷z is largely supported on𝐺𝑂 (𝜖)

z . Formally,
this is because, by construction,

𝜖𝑛 ≥ tr(H𝜓) ≥ tr(Hz𝜓) = E
𝑦∼𝐷z
|𝐻z𝑦 |. (4.1)
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Here, the last equality holds since for a Pauli operator 𝑍𝑎, ⟨𝑦 | I−𝑍𝑎

2 |𝑦⟩ =
1−(−1)𝑎.𝑦

2 = 𝑎.𝑦. Let
𝑞

def
= 𝐷z(𝐺𝜖1

z ) be the probability mass assigned by 𝐷z to 𝐺𝜖1
z . Then,

E
𝑦∼𝐷z
|𝐻z𝑦 | ≥ 0 · 𝑞 + (1 − 𝑞) · 𝜖1𝑚z = (1 − 𝑞)𝜖1𝑚z. (4.2)

Therefore, 𝐷z(𝐺𝜖1
z ) ≥ 1 − 𝜖𝑛/(𝜖1𝑚z). A similar argument shows that 𝐷x(𝐺𝜖1

x ) ≥ 1 − 𝜖𝑛/(𝜖1𝑚x).
With the choice 𝜖1 = 200𝑛

min{𝑚x,𝑚z} · 𝜖 , we find

𝐷z(𝐺𝜖1
z ), 𝐷x(𝐺𝜖1

x ) ≥
199
200

(4.3)

for both the bases.

The supports are well clustered Given that𝐷z is well supported on𝐺𝜖1
z , it is helpful to understand

the structure of 𝐺𝜖1
z . For 𝑥, 𝑦 ∈ 𝐺𝜖1

z , notice that 𝑥 ⊕ 𝑦 ∈ 𝐺2𝜖1
z since 𝑥 ⊕ 𝑦 satisfies every check that

both 𝑥 and 𝑦 satisfy. By Property 4.2 (and assuming 2𝜖1 ≤ 𝛿0), then either

|𝑥 ⊕ 𝑦 |𝐶⊥x ≤ 2𝑐1𝜖1𝑛 or else |𝑥 ⊕ 𝑦 |𝐶⊥x ≥ 𝑐2𝑛. (4.4)

Define a relation ‘∼’ such that for 𝑥, 𝑦 ∈ 𝐺𝜖1
z , 𝑥 ∼ 𝑦 iff |𝑥 ⊕ 𝑦 |𝐶⊥x ≤ 2𝑐1𝜖1𝑛. To prove that the

relation is transitive and therefore an equivalence relation, notice that if 𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧, then

|𝑥 ⊕ 𝑧 |𝐶⊥x ≤ |𝑥 ⊕ 𝑦 |𝐶⊥x + |𝑦 ⊕ 𝑧 |𝐶⊥x ≤ 4𝑐1𝜖1𝑛. (4.5)

However, 𝑥 ⊕ 𝑧 ∈ 𝐺2𝜖1
z and for sufficiently small 𝜖1 such that 4𝑐1𝜖1 < 𝑐2, Property 4.2 implies that

|𝑥 ⊕ 𝑧 |𝐶⊥x ≤ 2𝑐1𝜖1𝑛. Thus, 𝑥 ∼ 𝑧 and hence ∼ forms an equivalence relation. We can now divide
the set 𝐺𝜖1

z into clusters 𝐵1
z, 𝐵

2
z, . . . , according to the equivalence relation ∼. Furthermore, the

distance between any two clusters is ≥ 𝑐2𝑛, since for 𝑥 in one cluster and 𝑥′ in another cluster, we
have |𝑥 ⊕ 𝑥′| ≥ |𝑥 ⊕ 𝑥′|𝐶⊥x ≥ 𝑐2𝑛. Therefore, the picture for both bases looks like Figure 2.1 with
norm |·|𝐶⊥x as the clusters contain most of the support. Lastly, the same argument holds for 𝐺𝜖1

x .

The distributions are not concentrated on any one cluster To apply known circuit depth lower
bounding techniques to 𝐷z, it suffices to show that 𝐷z is not concentrated on any one cluster 𝐵𝑖z.
However, it is not immediate how to show this property for 𝐷z. Instead, what we can show is that
is impossible for both 𝐷z to be concentrated on any one cluster 𝐵𝑖z and 𝐷x to be concentrated on
any one cluster 𝐵 𝑗x.

Lemma 4.3 For 𝜖1 such that 2𝑐1𝜖1 ≤
(
𝑘−1
4𝑛

)2
, either ∀ 𝑖, 𝐷z(𝐵𝑖z) < 99/100 or else ∀ 𝑗 , 𝐷x(𝐵 𝑗x) <

99/100.

Proof: Assume there exists some 𝑖 such that 𝐷z(𝐵𝑖z) ≥ 99/100. We will employ the following fact
that captures the well-known uncertainty of measurements in the standard and Hadamard bases;
the proof of the fact is given immediately after this proof.
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Fact 4.4 Given a state 𝜓 and corresponding measurement distributions 𝐷x and 𝐷z, for all subsets
𝑆, 𝑇 ⊂ {0, 1}𝑛, 𝐷x(𝑇) ≤ 2

√︁
1 − 𝐷z(𝑆) +

√︁
|𝑆 | · |𝑇 |/2𝑛.

For any 𝑗 , we employ this fact with 𝑆 = 𝐵𝑖z and 𝑇 = 𝐵
𝑗
x. To bound |𝐵𝑖z |, fix any string 𝑧 ∈ 𝐵𝑖z. Any

other string 𝑧′ ∈ 𝐵𝑖z has the property that its Hamming distance from 𝑧 ⊕ 𝑤 (for some 𝑤 ∈ 𝐶⊥x ) is
at most 2𝑐1𝜖1𝑛. Since

��𝐶⊥x �� = 2dim𝐶⊥x = 2𝑛−dim𝐶x = 2𝑟x , the size of the cluster 𝐵𝑖z is at most

2𝑟x ·
(

𝑛

2𝑐1𝜖1𝑛

)
≤ 2𝑟x · 22

√
2𝑐1𝜖1𝑛. (4.6)

A similar bound can be calculated of
���𝐵 𝑗x ��� ≤ 2𝑟z · 22

√
2𝑐1𝜖1𝑛. Then applying Fact 4.4 with the bound

on 𝜖1 as stated in the Lemma,

∀ 𝑗 , 𝐷x

(
𝐵
𝑗
x

)
≤ 1

5
+

√︁
2𝑟x+𝑟z−𝑛 · 24

√
2𝑐1𝜖1𝑛 =

1
5
+ 2

−𝑘
2 +2
√

2𝑐1𝜖1𝑛 <
99

100
. (4.7)

□

A lower bound using the well-spread nature of the distribution Assume, without loss of
generality, from Lemma 4.3 that 𝐷z is not too concentrated on any cluster 𝐵𝑖z. Recall that
𝐷z(

⋃
𝑖 𝐵

𝑖
z) ≥ 199/200. Therefore, there exist disjoint sets 𝑀 and 𝑀′ such that

𝐷z

(⋃
𝑖∈𝑀

𝐵𝑖z

)
≥ 1

400
and 𝐷z

(⋃
𝑖∈𝑀 ′

𝐵𝑖z

)
≥ 1

400
. (4.8)

This is because we can build the set 𝑀 greedily by adding terms until the mass exceeds 1/400.
Upon adding the final term to overcome the threshold, the total mass is at most 397/400 since no
term is larger than 99/100. Therefore, the remainder of terms not included in 𝑀 must have a mass
of at least 199/200 − 397/400 = 1/400.

Furthermore, recall that since the distance between any two clusters is at least 𝑐2𝑛, the same
distance lower bound holds for the union of clusters over 𝑀 and 𝑀′ as well. This proves that the
distribution 𝐷z is well-spread which implies a circuit depth lower bound due to Lemma 3.18: An
immediate application of this lemma gives a circuit depth lower bound of Ω(log 𝑛) for 𝐷z since
dist(𝑆1, 𝑆2) ≥ 𝑐2𝑛 and 𝜇 = 1

400 . Since the circuit depth of 𝐷z is at most one more than the circuit
depth of 𝜓, the lower bound is proven.

Theorem 4.5 (Formal statement of the NLTS theorem) Consider a [[𝑛, 𝑘, 𝑑]] CSS code satisfy-
ing Property 4.2 with parameters 𝛿0, 𝑐1, 𝑐2 as stated. Let H be the corresponding local Hamiltonian.
Then for

𝜖 <
1

400𝑐1

(
min{𝑚x, 𝑚z}

𝑛

)
·min

{(
𝑘 − 1

4𝑛

)2
, 𝛿0,

𝑐2
2

}
, (4.9)
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and every state 𝜓 such that tr(H𝜓) ≤ 𝜖𝑛, the circuit depth of 𝜓 is at least Ω(log 𝑛). For linear-rate
and linear-distance codes satisfying1 Property 4.2, the bound on 𝜖 is a constant.

Proof of Fact 4.4: Consider a purification of the state 𝜓 as |𝜓⟩ on a potentially larger Hilbert
space. Write |𝜓⟩ as

∑
𝑧∈{0,1}𝑛 |𝜓𝑧⟩ ⊗ |𝑧⟩ where the second register is the original 𝑛 qubit code space.

Define 𝐶 def
=

∑
𝑧∈𝑆 ∥ |𝜓𝑧⟩ ∥2 and

|𝜓′⟩ = 1
√
𝐶

∑︁
𝑧∈𝑆
|𝜓𝑧⟩ ⊗ |𝑧⟩

def
=

∑︁
𝑧∈𝑆

��𝜓′𝑧〉 ⊗ |𝑧⟩ . (4.10)

Since𝐶 = 𝐷z(𝑆)
def
= 1−𝜂, by the gentle measurement lemma [70] we have 1

2 ∥ |𝜓⟩⟨𝜓 | − |𝜓
′⟩⟨𝜓′| ∥1 ≤

2√𝜂. Measuring |𝜓′⟩ in the computational basis, we obtain a string 𝑧 ∈ 𝑆 with probability ∥
��𝜓′𝑧〉 ∥2.

Measuring |𝜓′⟩ in the Hadamard basis, we obtain a string 𝑥 with probability

𝑝(𝑥) def
=

1
2𝑛






∑︁
𝑧

(−1)𝑥.𝑧
��𝜓′𝑧〉




2

=
1
2𝑛

(∑︁
𝑧,𝑤

(−1)𝑥.(𝑧⊕𝑤)
〈
𝜓′𝑤

��𝜓′𝑧〉) . (4.11)

Then we can compute the collision probability of 𝑝(𝑥):

∑︁
𝑥

𝑝(𝑥)2 =
1

22𝑛

∑︁
𝑥

(∑︁
𝑧,𝑤

(−1)𝑥.(𝑧⊕𝑤)
〈
𝜓′𝑤

��𝜓′𝑧〉)2

(4.12a)

=
1

22𝑛

(∑︁
𝑥

∑︁
𝑠,𝑡,𝑧,𝑤

(−1)𝑥.(𝑧⊕𝑤⊕𝑠⊕𝑡)
〈
𝜓′𝑠

��𝜓′𝑡〉 〈
𝜓′𝑤

��𝜓′𝑧〉) (4.12b)

=
1
2𝑛

( ∑︁
𝑠,𝑡,𝑧,𝑤:𝑧⊕𝑤⊕𝑠⊕𝑡=0

〈
𝜓′𝑠

��𝜓′𝑡〉 〈
𝜓′𝑤

��𝜓′𝑧〉) (4.12c)

=
1
2𝑛

(∑︁
𝑠,𝑡,𝑤

〈
𝜓′𝑠

��𝜓′𝑡〉 〈
𝜓′𝑤

��𝜓′𝑠⊕𝑡⊕𝑤〉) (4.12d)

≤ 1
2𝑛

(∑︁
𝑠,𝑡



��𝜓′𝑠〉

 

��𝜓′𝑡〉

 · (∑︁
𝑤



��𝜓′𝑤〉

 

��𝜓′𝑠⊕𝑡⊕𝑤〉

)) (4.12e)

≤ 1
2𝑛

©­«
∑︁
𝑠,𝑡



��𝜓′𝑠〉

 

��𝜓′𝑡〉

 · ©­«
√︄∑︁

𝑤

∥|𝜓′𝑤⟩∥2
√︄∑︁

𝑤



��𝜓′𝑠⊕𝑡⊕𝑤〉

2ª®¬ª®¬ (4.12f)

=
1
2𝑛

(∑︁
𝑠,𝑡



��𝜓′𝑠〉

 

��𝜓′𝑡〉

) =
1
2𝑛

(∑︁
𝑠∈𝑆



��𝜓′𝑠〉

)2

(4.12g)

1While the distance parameter 𝑑 does not appear in the bound on 𝜖 , Property 4.2 for 𝛿 = 0 implies constant distance.
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≤ 1
2𝑛
· |𝑆 | ·

(∑︁
𝑠



��𝜓′𝑠〉

2
)
=
|𝑆 |
2𝑛
. (4.12h)

The previous line follows by an application of the Cauchy-Schwarz inequality. Apply it again to
calculate that∑︁

𝑥∈𝑇
𝑝(𝑥) ≤

√︄
|𝑇 |

∑︁
𝑥

𝑝(𝑥)2 ≤
√︂
|𝑆 | · |𝑇 |

2𝑛
. (4.13)

Since 1
2 ∥ |𝜓⟩⟨𝜓 | − |𝜓

′⟩⟨𝜓′| ∥1 ≤ 2√𝜂, we conclude that 𝐷x(𝑇) ≤ 2√𝜂 +
√︃
|𝑆 |·|𝑇 |

2𝑛 . □

4.2 Proof that Property 4.2 holds for quantum Tanner codes
It remains to show that there exist codes that satisfy the conditions of Theorem 4.1. The codes of
Leverrier and Zémor [43] (defined in Section 2.3.1) satisfy.

We start with the following claim which is stated along the same lines as [43, Theorem 1],
and proved next. [43, Theorem 1] effectively proves Claim 4.6 for 𝛿 = 0, which is the statement
for distance. We use the expansion of the graphs to improve this to the small 𝛿 regime. We have
changed some constants from the version in [43], for consistency purposes.

Claim 4.6 Fix 𝜆 ∈ (0, 1
2 ), 𝛾 ∈ (

1
2 + 𝜆, 1) and 𝜅 > 0. Suppose 𝐶𝐴, 𝐶𝐵 have distance at least 𝜅Δ

and 𝐶⊥0 , 𝐶
⊥
1 are Δ 3

2−𝜆-robust with Δ𝛾 resistance to puncturing. Then there exist constants 𝑐1, 𝑐2, 𝛿0
such that the following holds when 𝛿 ≤ 𝛿0.

1. For any 𝑥 ∈ 𝐺𝛿
x with 𝑐1𝛿𝑚x ≤ |𝑥 | ≤ 𝑐2𝑛, there is a 𝑦 ∈ 𝐶⊥z satisfying |𝑥 ⊕ 𝑦 | < |𝑥 |.

2. For any 𝑧 ∈ 𝐺𝛿
z with 𝑐1𝛿𝑚z ≤ |𝑧 | ≤ 𝑐2𝑛, there is a 𝑤 ∈ 𝐶⊥x satisfying |𝑧 ⊕ 𝑤 | < |𝑧 |.

Note that 𝛿0 is chosen simply to ensure that 𝑐1𝛿0𝑚x ≤ 𝑐2𝑛 and 𝑐1𝛿0𝑚z ≤ 𝑐2𝑛.

We will now establish Property 4.2 using this claim. For 𝑥 ∈ 𝐺𝛿
x, if 𝑐1𝛿𝑚x ≤ |𝑥 |𝐶⊥z ≤ 𝑐2𝑛, then there

is a 𝑦′ ∈ 𝐶⊥z such that 𝑐1𝛿𝑚x ≤ |𝑥 ⊕ 𝑦′| ≤ 𝑐2𝑛. Note that 𝑥 ⊕ 𝑦′ ∈ 𝐺𝛿
x, since 𝐻x𝑦

′ = 0. Thus, we can
invoke Claim 4.6 (many times) to conclude that there is a 𝑦 ∈ 𝐶⊥z such that |𝑥 ⊕ 𝑦 ⊕ 𝑦′| < 𝑐1𝛿𝑚x.
But |𝑥 |𝐶⊥z ≤ |𝑥 ⊕ 𝑦 ⊕ 𝑦

′| < 𝑐1𝛿𝑚x, leading to a contradiction. Thus, either |𝑥 |𝐶⊥z ≥ 𝑐2𝑛 or
|𝑥 |𝐶⊥z ≤ 𝑐1𝛿𝑚x = 𝑐1𝛿

𝑚x
𝑛
· 𝑛. We can argue similarly for 𝐺𝛿

z. Thus, Property 4.2 is satisfied with
modified constant 𝛿0 → 𝛿0 · min{𝑚x,𝑚z}

𝑛
.

Proof of Claim 4.6: We prove the first part of the claim. The second part follows along the same
lines. Following [43], we define G□1,𝑥 as the sub-graph of G□1 that is induced by 𝑥 ∈ 𝐺𝛿

x (in other
words, we only consider those edges of G□1 for which the corresponding squares have a ‘1’ assigned
by 𝑥). Let 𝑆 ⊂ 𝑉1 be the set of vertices in G□1,𝑥 . Most vertices 𝑣 in 𝑆 have their local view according
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to 𝐶⊥1 . But, 𝑥 is an approximate codeword from 𝐺𝛿
x. So there are no restrictions on the local views

of at most 𝛿𝑚x vertices in 𝑆. We now modify the definition of ‘exceptional vertices’ from [43]. Let
𝑆𝑒 ⊂ 𝑆 be the set of vertices 𝑣 which satisfy one of the two conditions:

• The degree is at least Δ 3
2−𝜆 in G□1,𝑥 .

• The local view of 𝑥 at 𝑣 violates a check in 𝐶⊥1 .

Since |𝑆 | ≥ 2|𝑥 |
Δ2 , we choose 𝑐1

def
= Δ3−2𝜆

256 to conclude that |𝑆 | ≥ Δ1−2𝜆

128 𝛿𝑚x. Now, we establish the
following bound on |𝑆𝑒 |, which modifies [43, Claim 9].

|𝑆𝑒 | ≤
256|𝑆 |
Δ1−2𝜆 + 2𝛿𝑚x ≤

512|𝑆 |
Δ1−2𝜆 . (4.14)

To establish this bound, we proceed the same as [43]. Note that all the vertices in 𝑆 that are not
‘violated’ by 𝑥 have degree at least 𝜅Δ (distance of the local code𝐶⊥1 ). Thus, setting 𝑐2

def
= 𝜅Δ

1
2 −𝜆

16 ·
|𝑉1 |
𝑛

and noting that |𝑆 | ≥ 2𝛿𝑚x for large constant Δ, we obtain

|𝑆 |
2
≤ (|𝑆 | − 𝛿𝑚x) ≤

2|𝑥 |
𝜅Δ

=⇒ |𝑆 | ≤ 4|𝑥 |
𝜅Δ
≤ |𝑉1 |

4Δ 1
2+𝜆

. (4.15)

If |𝑆𝑒 | ≤ 2𝛿𝑚x, eq. (4.14) is verified. Otherwise, by using the expander mixing lemma and
Lemma 2.12, we have

Δ
3
2−𝜆

2
|𝑆𝑒 | ≤ Δ

3
2−𝜆 ( |𝑆𝑒 | − 𝛿𝑚x) ≤ 𝐸 (𝑆𝑒, 𝑆), (4.16a)

𝐸 (𝑆𝑒, 𝑆) ≤
Δ2 |𝑆𝑒 | |𝑆 |
|𝑉1 |

+ 4Δ
√︁
|𝑆𝑒 | |𝑆 | ≤

Δ
3
2−𝜆

4
|𝑆𝑒 | + 4Δ

√︁
|𝑆𝑒 | |𝑆 |, (4.16b)

which implies |𝑆𝑒 | ≤ 256|𝑆 |
Δ1−2𝜆 .

Having established eq. (4.14), which modifies a similar expression in [43] by a constant factor
of 8, we proceed further in a very similar manner. We define the normal vertices (𝑆 \ 𝑆𝑒), heavy
edges, and the set 𝑇 in the same manner. The upper bound on |𝑇 | in [43, Claim 11] remains
unchanged. To arrive at [43, Claim 12], the definition of 𝛼 is slightly modified according to
eq. (4.14). We need a vertex in 𝑇 that is not adjacent to a large number of vertices in 𝑆𝑒. For
this, [43] upper bound |𝐸 (𝑆𝑒, 𝑇) | using the expander mixing lemma. The modified constants lead
to a new upper bound

|𝐸 (𝑆𝑒, 𝑇) | ≤
256
Δ

1
2−𝜆
|𝑇 | + 128Δ𝜆

√︁
|𝑆 | |𝑇 | def

= 𝛽Δ
1
2+𝜆 |𝑇 |, 𝛽 = 256 + 512

Δ
. (4.17)

The rest of the argument from [43, Theorem 1] remains unchanged with the modified constants
𝛼, 𝛽.

□
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Chapter 5

The path to the quantum PCP conjecture

The certitude that some shelf in some hexagon held precious books and that these
precious books were inaccessible, seemed almost intolerable.

Jorge Luis Borges, The Library of Babel

5.1 Lower bounds for one classical ansatz
We must first answer, did resolving the NLTS conjecture make any tangible progress towards
answering the quantum PCP conjecture? The best answer to that question — we believe — is that
it did considerable damage to refuting the quantum PCP conjecture. Low-depth or trivial circuits
were a potential classical ansatz by which solutions to local Hamiltonians could be approximately
described. At the very least, we have proven that low-depth circuits are not a generic enough ansatz
with which we can classically approximate all local Hamiltonians. But perhaps, there exists another
ansatz that can describe the low-energy states of all local Hamiltonians.

To be more specific, a classical ansatz is a classical string 𝑤, such as the description of a
low-depth circuit, with which a classical verifier can verify the statement 𝜆min(H) < 𝑏. In the case
of 𝑤 being the description of the low-depth circuit with low-energy, the verifier is given by Lemma
3.11. A different classical ansatz worth noting is the description of Clifford circuits (equivalently,
stabilizer states). For any local Hamiltonian H =

∑
ℎ𝑖 and a Clifford circuit 𝐶, the energy

⟨0𝑛′ |𝐶†H𝐶 |0𝑛′⟩ =
∑︁
𝑖 𝑗

⟨0𝑛′ |𝐶†𝑃𝑖 𝑗𝐶 |0𝑛
′⟩ (5.1)

where ℎ𝑖 =
∑
𝑗 𝑃𝑖 𝑗 is a decomposition of each local Hamiltonian term into a linear combination of

Paulis. Calculating, ⟨0𝑛′ |𝐶†𝑃𝑖 𝑗𝐶 |0𝑛
′⟩ is easy due to the Gottesman-Knill theorem [71]. Therefore,

if every local Hamiltonian, had a low-energy state describable by a Clifford circuit then this would
also disprove the quantum PCP conjecture (a la Lemma 3.11).

Since our proof of the NLTS theorem (Theorem 4.1) holds for stabilizer codes, then the ground
space is a stabilizer subspace and has a Clifford circuit classical ansatz. This is one indication that
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Theorem 4.1 is far from a proof of the quantum PCP conjecture; what it does say is that the two
classical ansatzes, low-depth quantum circuits and Clifford circuits, are apples and oranges — i.e.
incomparable — even in an approximate sense.

And, therefore, it is unclear if the circuit depth lower bounding techniques developed in this
thesis directly apply to a potential quantum PCP construction. Furthermore, we suspect that
stronger arguments than lightcone-based correlation arguments will be necessary for a quantum
PCP construction.

5.2 The role of codes in quantum PCPs
It is tempting to say that the recent progress in constructions of good quantum LDPC codes [36–43]
is simultaneously progress towards the quantum PCP conjecture. Such an argument could be made
based on Theorem 4.1 or the fact that classical LTCs play an integral role in both the algebraic
and combinatorial constructions of the PCP theorem. However, we believe that the relationship
between quantum codes and a potential quantum PCP construction is not so clear.

For one, the construction of some optimal quantum code (be it LTC or some other property) is
not known to be sufficient for quantum PCPs; instead, we suspect that a myriad of new mathematical
insights will be required to construct quantum PCPs. But perhaps, the most damning reason to
suspect that quantum codes may not be directly useful for quantum PCPs is the very boon that gives
us Theorem 4.1, local indistinguishability.

At the highest level of generality, one could summarize the classical PCP theorem as an elegant
locally testable code wrapped around the satisfying assignment for the formula [10, 11]. The very
first PCP constructions were exponentially-long and came from exactly this inspiration; a simple
construction involves encoding the solution to the NP-complete problem of "system of quadratic
equations over F2" in a Hadamard code.

A reasonable first attempt to construct an exponentially-long quantum PCP would be to produce
the same construction but with the two analogs: quantum locally testable codes and ground states
of local Hamiltonians. Consider converting our original local Hamiltonian H instance into a new
Hamiltonian H′ such that the ground space of H′ consists only of Enc( |𝜓⟩) where |𝜓⟩ is a ground
state of H. A possible attempt would be to have H′ = H′code+H′test where H′code would verify that the
state was a code state of the quantum locally testable code and H′test would check that the encoded
state corresponded to a ground state of H. Let 𝑑 be the distance of the locally testable code and ℓ is
the locality of H′test. Then, due to local indistinguishability (Fact 3.17), if 𝑑 < ℓ in order then H′test
cannot distinguish code states. Since ℓ = 𝑂 (1), then 𝑑 = 𝑂 (1) making the use of the code moot.

Therefore, we don’t achieve an immediate construction of exponentially long quantum PCPs
even if we were able to construct a family of quantum locally testable codes (even with low-rate
analogous to the Hadamard code). The only known construction of exponential length quantum
PCPs is due to the inclusion QMA ⊆ P#P and classical exponential length PCPs for P#P.

A more fundamental issue with the use of error correction in a construction of quantum PCPs
is that the classical PCP constructions rely on the repetition of information in classical error
correction. Concretely, in Dinur’s construction [19], during the "graph powering" step, information
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is duplicated and consistency checks are added (which are later simplified during the "alphabet
reduction" step). We do not know of any techniques for overcoming this fundamental barrier.

5.3 Future problems worth pondering
A better ansatz for classical proofs

As we stated earlier, for every choice of classical ansatz, we could form an NLTS-like conjecture for
lower bounds on the complexity of that ansatz. This would lead to, for example, a "Clifford-NLTS"
conjecture, a "contractible Tensor Network-NLTS" conjecture, and so on. The true challenge would
be to construct a family of local Hamiltonians for which each of the ansatzes was simultaneously
futile. This would be a necessary consequence of the quantum PCP conjecture. Although not
sufficient, the hope is that it would provide a more clear picture of what a quantum PCP Hamiltonian
might look like.

Gharabian and Le Gall [72] recently introduced a variation of the NLTS theorem, coined the
No-low energy samplable states (NLSS) conjecture, to broaden the class of quantum ansatzes.

Conjecture 5.1 (NLSS Conjecture [72]) There exists a fixed constant 𝜖 > 0 and an explicit
family of 𝑂 (1)-local frustration-free commuting Hamiltonians {H(𝑛)}∞

𝑛=1 where H(𝑛) =
∑𝑚
𝑖=1 ℎ

(𝑛)
𝑖

acts on 𝑛 particles and consists of 𝑚 = Θ(𝑛) local terms such that every state |𝑣⟩ with a succinct
representation allowing perfect-sampling access,

⟨𝑣 |H|𝑣⟩ ≥ 𝜆min(H) + 𝜖𝑚. (5.2)

In [72], a state |𝑣⟩ with a succinct representation allowing perfect-sampling access is any state for
which there is an efficient classical algorithm for 𝑄(𝑥) = ⟨𝑥 |𝑣⟩ and an efficient sampler for the
distribution 𝑃(𝑥) = |⟨𝑥 |𝑣⟩|2. In a similar vein to Lemma 3.11, [72] shows that the NLSS conjecture
is a necessary consequence of the quantum PCP conjecture assuming MA ≠ QMA. Since, it is
unlikely that low-depth quantum circuits exhibit perfect-sampling access [73], the NLTS and NLSS
conjecture appear somewhat orthogonal, a first indication that the NLSS conjecture is an interesting
next step.

The NLSS conjecture is a strengthening of an alluded-to "Clifford-NLTS" conjecture. This is
because of a characterization of the output of any Clifford circuit 𝐶 as

𝐶 |0𝑛⟩ ∝
∑︁
𝐴𝑥=𝑏

𝑖𝑞(𝑥) |𝑥⟩ (5.3)

where 𝐴𝑥 = 𝑏 is an affine subspace of {0, 1}𝑛 and 𝑞 : {0, 1}𝑛 → F4 is a quadratic function [74].
Since it is easy to sample uniformly from 𝐴𝑥 = 𝑏, these states have perfect-sampling access.
This generalizes1 to another class of well-studied states, phase states |𝜓 𝑓 ⟩ (see Appendix A.3) for

1We call this a generalization due to the results of [4] which show that the restriction to a subspace of {0, 1}𝑛 can
be dropped through randomized reductions.
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polynomial-time computable functions 𝑓 : {0, 1}𝑛 → {0, 1}:��𝜓 𝑓 〉 = 1
√

2𝑛
∑︁

𝑥∈{0,1}𝑛
(−1) 𝑓 (𝑥) |𝑥⟩ . (5.4)

Since phase states for polynomial-time computable functions have perfect-sampling access, the
NLSS conjecture that these states are also not low-energy. We hope that studying the NLSS
conjecture or even just phase states might shed a more algebraic light on the quantum PCP
conjecture and require a different set of tools than those used in Theorem 4.1. In particular, it is
worth noting that ground states of local Hamiltonians are effectively characterized by phase states
for functions 𝑓 ∈ PP (see Theorem A.11 in Appendix A.3); therefore the NLSS conjecture is asking
for a P lower bound on characterizing the low-energy states. Perhaps our better understanding of
the classical complexity theory pantheon will aid in proving the NLSS conjecture.

A quantum proof for a classical problem There are two natural definitions for non-deterministic
quantum computation, QCMA or QMA, where QCMA requires that the proof be classical whereas
the QMA proof can be quantum. One concrete way to interpret QCMA = QMA is that every local
Hamiltonian problem has a ground state which can be described as the output of a polynomial-
depth quantum circuit (a much more powerful class than the low-depth circuits considered for
NLTS); conversely, QCMA ≠ QMA is equivalent to the existence of a family of QMA-hard local
Hamiltonian problems with no ground states describable by polynomial-depth circuits.

If the quantum PCP conjecture is true and QCMA ≠ QMA, then there exists a family of
QMA-hard local Hamiltonian problems with no low-energy states describable by polynomial-depth
circuits. Our techniques for proving the NLTS theorem do not extend to this regime as they are
based on lightcones. There are some natural complete problems for QCMA [75], most of which
are QMA problems restricted to proofs describable by polynomial-depth circuits.

We ask then, what is the best construction of a probabilistically checkable proof for QCMA?
Is there a polynomial-sized proof that can be efficiently checked by reading a constant number of
terms? In other words, is there a reduction from QCMA to a promised-gap local Hamiltonian —
i.e. Conjecture 3.9 but with QCMA-hardness? Note that the reduction must convert the problem
into a local Hamiltonian problem and not a CSP as we suspect NP ≠ QCMA.

Our rationale behind considering QCMA over QMA is that an initial classical witness might
sidestep many of the aforementioned issues about no-cloning and indistinguishability. Furthermore,
promise-gapped local Hamiltonians may be ∈ QCMA; we have no strong evidence to suggest
otherwise. Therefore, this is a more modest starting problem than the full quantum PCP conjecture.

The relationship to multi-prover entangled proofs A natural generalization of proofs is multi-
prover interactive proofs (also known as games) [76]. In this model, multiple provers are trying
to convince a verifier of the validity of a statement; the verifier asks them questions and they
respond in turn in with answers. When the provers are not allowed to communicate nor share any
entanglement (only classical correlations), and the questions and answers are restricted to poly(𝑛)
bit length, this class is called MIP and is equal to NEXP due to [76]. Equivalently, let the value of
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a game be the maximal probability with which the verifier accepts where the maximum is taken
over all strategies for the provers. Then, the problem of deciding, for a game with poly(𝑛) bit
questions and answers, if the value of a game is either 1 or at most 1/2 is NEXP-complete. The
PCP theorem can be rephrased in the language of games as it is NP-complete to decide if the value
of a multi-prover game is either 1 or at most 1/2 when the question length is 𝑂 (log 𝑛) bits and
answer length is 𝑂 (1) bits — i.e. there exists a reduction from every 𝑛-bit NP problem to such a
game.

The quantum generalization of multi-prover interactive proofs asks about deciding the entangled
value of a game where the entangled value is the maximum over entangled strategies. Quantum
games are, at their core, about the complexity of bipartite entanglement and bipartite quantum
correlations since it has been shown that every game can be reduced to an equivalent game with two
provers. This is in contrast to studying QMA which is about many-body entanglement. Furthermore,
a priori, there is no bound on the entanglement necessary for an ideal strategy. In [77], a landmark
result showed that when questions and answers are of poly(𝑛) bit length, the equivalent class for
entangled games, MIP★, equals RE, the class of recursively enumerable languages. Since, MIP★
is considerably more powerful than its classical counterpart, the status of a "games version" of the
quantum PCP conjecture is unclear; it could sit anywhere between NP and RE.

Conjecture 5.2 (Quantum games PCP conjecture [78]) There is an efficient quantum polyno-
mial time reduction from every QMA problem of size 𝑛 to the problem of deciding the entangled
value of a multi-prover game with question length of 𝑂 (log 𝑛) bits and answer length of 𝑂 (1) bits.

Note the previous conjecture only asks about the hardness of deciding the entangled value of the
game. Progress towards the quantum games PCP conjecture was made by Natarajan and Vidick [78]
but the validity of those arguments requires verification due to issues in the quantum sound low-
degree test (see [79] for details on the issue and subsequent rectification). Therefore, we believe that
the quantum games PCP conjecture is still open. Furthermore, the relationship between the quantum
games PCP conjecture and the standard quantum "Hamiltonian" PCP conjecture (Conjecture 3.9) is
unclear; [78] hints that a quantum "Hamiltonian" PCP conjecture for Hamiltonians of the 𝑋𝑋/𝑍𝑍
type may imply the quantum games PCP conjecture. That implication is due to the low-degree
test [79] and classical PCP techniques.
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Appendix A

Additional lower bounds on description
complexity

Whether or not you find your own way, you’re bound to find some way. If you happen
to find my way, please return it, as it was lost years ago. I imagine by now it’s quite
rusty.

Norton Juster, The Phantom Tollbooth

The circuit depth lower bounds used in proving the NLTS theorem are an example of what we
call description complexity lower bounds. Description complexity is the minimal length of a useful
classical description of an object. To illustrate, what we mean by useful, consider the following
two examples: (1) the description of a classical circuit 𝑈 such that its output is purported to be
the ground state of some local Hamiltonian H, and (2) the statement "the minimum eigenvector
of H". Both may describe the same object but the first is useful for a BQP or stronger device
(as the BQP device can verify that it is the ground state) while the second is only useful for a
QCMA or stronger device. Therefore, there is a subtlety here between description complexity and
Kolmogorov complexity as implicitly there is a verification (computational problem) associated
with the description.

The NLTS theorem is one example of description complexity lower bounds (when restricted to
descriptions that are circuit descriptions). Appendix A.1 provides additional circuit depth lower
bounds from quantum error correction. In Appendix A.2, we discuss superpolynomial lower bounds
on the complexity of ground states in the classical oracle model. In Appendix A.3, we discuss the
minimum description complexity of QMA-search problems through the lens of search-to-decision
reductions and state synthesis.

A.1 Intermediate results leading to the NLTS theorem
This section is based on [2] by Anshu and Nirkhe.
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A.1.1 Omitted proofs from earlier sections
Proof of Lemma 3.22: Since tr(H𝜙) ≤ 𝜖𝑚, Markov’s inequality ensures that tr(𝐷≤2𝜖𝑚𝜙) ≥ 1

2 ,
where 𝐷≤2𝜖𝑚 is the subspace (and projector onto) of energy ≤ 2𝜖𝑚. Since

𝐷≤2𝜖𝑚 =
∑︁

𝑠∈{0,1}𝑚:|𝑠 |≤2𝜖𝑚
𝐷𝑠 (A.1)

and the number of 𝑠 satisfying |𝑠 | ≤ 2𝜖𝑚 is1(
𝑚

2𝜖𝑚

)
≤ 22

√
2𝜖𝑚, (A.2)

there exists a 𝑠★ ∈ {0, 1}𝑚 such that

tr(𝐷𝑠★𝜙) ≥ 2−2
√

2𝜖𝑚−1. (A.3)

Now, Fact 2.4 ensures that 𝐷𝑠★ is also an error correcting code of distance 𝑑. Apply Lemma 3.21
(assuming 2𝑡 ≤ 𝑑

2 ) and using 𝑛′ ≤ 2𝑡𝑛 (using Fact 3.4) and 𝑚 ≤ 𝑛ℓ, we conclude

2−2
√

2𝜖𝑛ℓ−1 ≤ 2exp
(
− 𝑑2

400 · 23𝑡𝑛

)
. (A.4)

Solving for 𝑡 and simplifying constants gives us the desired statement. □

Proof of Lemma 3.23: Let 𝜓 be a state on 𝑛′ qubits such that 𝜓 = 𝑈 |0⊗𝑛′⟩ where𝑈 is a circuit of
depth 𝑡. Suppose 2𝑡 < 𝑑. Further assume that 𝜓 is 𝛿-close to the code C in trace distance, meaning
that there exists a state 𝜌code ∈ C such that ∥𝜓code − 𝜌code∥1 ≤ 𝛿. Thus, Uhlmann’s theorem [80]
ensures that there is a purification |𝜌⟩ on 𝑛′ qubits such that ∥|𝜓⟩⟨𝜓 | − |𝜌⟩⟨𝜌 |∥1 ≤ 𝛿.

Let Enc be any encoding CPTP map from (C2)⊗𝑘 → (C2)⊗𝑛 mapping 𝑘 qubits to the 𝑘 qubit
code space. Define E as the maximally decohering channel as follows

E(·) def
=

1
4𝑘

∑︁
𝑎,𝑏∈{0,1}𝑘

(
𝑋𝑎𝑍𝑏

)
(·)

(
𝑋𝑎𝑍𝑏

)†
. (A.5)

Then let Θ be the encoding of 𝜌 defined as

Θ
def
= Enc ◦ E ◦ Enc−1(𝜌). (A.6)

This state is well-defined and has entropy 𝑆(Θ) ≥ 𝑘 since 𝑆(E(𝜌)) ≥ 𝑘 .

Fact A.1 (Extended local indistinguishability property) For any region 𝑅1 ∪ 𝑅2 where 𝑅1 is
contained in the code qubits and 𝑅2 in the ancilla qubits with |𝑅1 | < 𝑑, 𝜌𝑅1∪𝑅2 = Θ𝑅1∪𝑅2 .

1A tighter bound can improve the 𝜖 dependence to 𝜖 log(1/𝜖) [2].
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We prove this fact after the lemma. Let 𝑅 ⊂ [𝑛′] be any region of the qubits of size < 𝑑. Using
this fact,

∥𝜓𝑅 − Θ𝑅∥1 ≤ 𝛿. (A.7)

Applying Fact 3.3 here, we have

tr−{𝑖} (𝑈†Θ𝑈) = tr−{𝑖} (𝑈†(Θ𝐿𝑖 ⊗ 𝜈−𝐿𝑖 )𝑈). (A.8)

Since the size of 𝐿𝑖 is < 𝑑, we can combine eq. (A.7) and eq. (A.8) to achieve

tr−{𝑖} (𝑈†(𝜓𝐿𝑖 ⊗ 𝜈−𝐿𝑖 )𝑈) − tr−{𝑖} (𝑈†(Θ𝐿𝑖 ⊗ 𝜈−𝐿𝑖 )𝑈)




1 ≤ 𝛿. (A.9)

However,𝑈†𝜓𝑈 = |0⊗𝑛′⟩⟨0⊗𝑛′ | and so

|0⟩⟨0| − tr−{𝑖} (𝑈†(Θ𝐿𝑖 ⊗ 𝜈−𝐿𝑖 )𝑈)




1 ≤ 𝛿. (A.10)

Using standard entropy bounds, we can bound the entropy of the 𝑖th qubit of the rotated state Θ:

𝑆

(
tr−{𝑖} (𝑈†Θ𝑈)

)
= 𝑆

(
tr−{𝑖} (𝑈†(Θ𝐿𝑖 ⊗ 𝜈−𝐿𝑖 )𝑈)

)
≤ 𝐻2(𝛿) ≤ 2𝛿 log(1/𝛿). (A.11)

Notice that 𝑆(𝑈†Θ𝑈) = 𝑆(Θ) = 𝑘 . We can, therefore, bound 𝑘 by

𝑘 ≤ 𝑆(Θ) ≤
∑︁
𝑖∈[𝑛′]

𝑆

(
tr−{𝑖} (𝑈†Θ𝑈)

)
≤ 2𝛿 log(1/𝛿)𝑛′. (A.12)

This leads to a contradiction since we assumed 𝑘 > 2𝛿 log(1/𝛿)𝑛′. □

Proof of Fact A.1: Let 𝑅1 be a subset of the code qubits and 𝑅2 be a subset of the ancilla qubits
such that |𝑅1 | < 𝑑. We can express any code state |𝜓⟩ over the 𝑛′ qubits as

|𝜓⟩ =
∑︁

𝑥∈{0,1}𝑘
|𝑥⟩ |𝜓𝑥⟩ (A.13)

where {|𝑥⟩} is a basis for the code and |𝜓𝑥⟩ are un-normalized. Let 𝑈 be any logical operator (i.e.
one that preserves the code space). Then,

tr−(𝑅1∪𝑅2)
(
𝑈𝜓𝑈†

)
=

∑︁
𝑥,𝑦∈{0,1}𝑘

tr−𝑅1 (𝑈 |𝑥⟩⟨𝑦 |𝑈†) ⊗ tr−𝑅2 (
��𝜓𝑥〉〈𝜓𝑦��) (A.14)

In the summation, if 𝑥 = 𝑦, then the first component is 𝜙𝑅1 for some fixed state 𝜙𝑅1 by local
indistinguishability. Furthermore, if 𝑥 ≠ 𝑦, then the first component is 0 by orthogonality of 𝑈 |𝑥⟩
and𝑈 |𝑦⟩ despite the erasure of |𝑅1 | < 𝑑 qubits. Therefore,

tr−(𝑅1∪𝑅2)
(
𝑈𝜓𝑈†

)
= 𝜙𝑅1 ⊗

∑︁
𝑥∈{0,1}𝑘

tr−𝑅2 (𝜓𝑥). (A.15)

which is an invariant of 𝑈, which means tr−(𝑅1∪𝑅2) (𝜌) = tr−(𝑅1∪𝑅2) (𝑈𝜌𝑈†) . Since (a) Θ is a
mixture over applications of logical Paulis to 𝜌 and (b) a logical operator applied to a code state is
another code state and therefore is locally indistinguishable, then it follows that 𝜌𝑅1∪𝑅2 = Θ𝑅1∪𝑅2 . □
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A.1.2 Lower bounds for high-rate codes
The following is a simple corollary of Lemma 3.23.

Corollary A.2 Let C be a [[𝑛, 𝑘, 𝑑]] code and |𝜓⟩ a pure-state and the trace-distance between |𝜓⟩
and C is 0 < 𝛿 < 1/2 such that 𝑘 > 2𝛿 log(1/𝛿)𝑛. Then, the circuit complexity cc( |𝜓⟩) satisfies

cc( |𝜓⟩) ≥ log
(
min

{
𝑑,

𝑘

2𝛿 log(1/𝛿)𝑛

})
. (A.16)

Proof: By Lemma 3.23, either 2cc( |𝜓⟩) ≥ 𝑑 or 𝑘 ≤ 2𝛿 log(1/𝛿)2cc( |𝜓⟩)𝑛 since 𝑚 ≤ 2cc(|𝜓⟩)𝑛.
Rearranging this is equivalent to the corollary. □

Corollary A.2 shows that if we are given a [[𝑛, 𝑘, 𝑑]] code with linear rate 𝑘 = Ω(𝑛), then a
state generated by a depth 𝑡 ≤ 𝛾 log 𝑑 circuit must beΩ

(
2−2𝑡 ) = Ω

(
𝑑−2𝛾 ) far from the code space in

trace distance. An even stronger separation holds if the code is the zero-eigenspace (ground-space)
of a commuting local Hamiltonian.

Consider a [[𝑛, 𝑘, 𝑑]] QLDPC code C which is the common zero-eigenspace of commuting
checks {Π 𝑗 }𝑚𝑗=1 of locality ℓ each (this includes, but is not restricted to, the stabilizer code defined
earlier). Consider a state |𝜓⟩ = 𝑈 |0⊗𝑛′⟩ obtained by applying a depth 𝑡 circuit 𝑈 on 𝑛′ qubits.
Suppose there is a state 𝜌0 ∈ C having good fidelity with the code space, that is, 𝐹 def

= 𝐹 (𝜓code, 𝜌0).
Fact 3.4 ensures that we can choose 𝑛′ ≤ 2𝑡𝑛. We prove the following lemma.

Lemma A.3 For the state |𝜓⟩ as defined above, it holds that

22𝑡 ≥ min
©­­«𝑑,

1
64
√
ℓ log2 𝑑ℓ

· 𝑘
√
𝑑

𝑛 ·
√︃

log 1
𝐹

ª®®¬ . (A.17)

The proof of this lemma appears in [2, Appendix B]. It uses the tool of approximate ground-space
projectors (AGSP) and the principle that low min-entropy for gapped ground states implies low
entanglement entropy [60, 81–83]. The lemma shows that if the code has linear rate 𝑘 = Ω(𝑛),
then any state generated by a depth 𝑡 ≤ 𝛾 log 𝑑 circuit must be 1 − exp

(
−Ω̃

(
𝑑1−4𝛾 ) ) far from the

code space in trace distance. Here, the Ω̃ notation hides some polylog factors. This bears some
resemblance with the results of [64, 84], which show that the distributions sampled from depth 𝑡
(and size 𝑒𝑛1/𝑡 ) classical AC0 circuits are 1 − 𝑒−𝑛1/𝑡 far from the uniform distribution over a good
classical code (linear rate and linear distance). A comparison with Lemma A.3 is largely unclear,
due to the differences between classical and quantum codes, as well as AC0 circuits and quantum
circuits.

We now prove Theorem 3.24 by showing how the entropy-based bounds from the previous
results can be improved from handling states physically near the code space to all low-energy
states, once we assume that the code is a stabilizer code. The key property we exploit is that the
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local indistinguishability property of the code space C also holds for each eigenspace 𝐷𝑠 in the
case of stabilizer codes. We make this precise in the following facts; all facts are proven after the
proof of the theorems.

The following fact argues that logical operators not only preserve the code space C but rather
any eigenspace 𝐷𝑠.

Fact A.4 Fix a stabilizer codeC on 𝑛 qubits with generator set {𝐶𝑖}𝑖∈[𝑚] . For any string 𝑠 ∈ {0, 1}𝑛,
a state 𝜌 such that 𝜌code ∈ 𝐷𝑠, and a logical operator 𝑃 ∈ L, we have (𝑃𝜌𝑃)code ∈ 𝐷𝑠.

Each pair of Pauli operators either commute or anti-commute. The following fact imposes
constraints on non-logical and non-stabilizer Pauli operators.

Fact A.5 Let 𝑃 be a Pauli operator such that for some 𝑖 ∈ [𝑚], 𝑃𝐶𝑖 = −𝐶𝑖𝑃. For any 𝑠 ∈ {0, 1}𝑚
and any quantum state 𝜌 such that 𝜌code ∈ 𝐷𝑠, we have tr(𝑃𝜌) = 0.

The third crucial fact we use is Fact 2.4, the local indistinguishability of every eigenspace 𝐷𝑠.
Since logical operators act like single-qubit Pauli operators within the code space, they can

be used for randomization. Define the following quantum "completely depolarizing in the logical
basis" channel that acts on code qubits, analogous to the channel defined in eq. (A.6):

E(·) def
=

1
4𝑘

∑︁
𝑎,𝑏∈{0,1}𝑘

(
𝑋
𝑎
𝑍
𝑏
)
(·)

(
𝑍
𝑏
𝑋
𝑎
)

(A.18)

where 𝑋𝑎 =
∏
𝑖 𝑋𝑖

𝑎𝑖 is a product of logical 𝑋 operators defined by 𝑎 and likewise 𝑍𝑏 is a product
of logical 𝑍 operators defined by 𝑏. We will utilize the following two properties of this channel,
analogous to Fact A.1.

Fact A.6 It holds that

1. For any quantum state 𝜌, the entropy 𝑆(E(𝜌)) ≥ 𝑘 .

2. For any quantum state 𝜌 such that 𝜌code ∈ 𝐷𝑠 for some 𝑠, E(𝜌)code ∈ 𝐷𝑠. Furthermore, for
any set 𝑇 ⊂ [𝑛′] of size less than 𝑑, 𝜌𝑇 = E(𝜌)𝑇 .

The next fact describes how all stabilizer terms of the code can be measured simultaneously
using a short-depth circuit if the code has small locality. Let 𝑚 be the number of checks for an
ℓ-local code; recall that then 𝑛/ℓ ≤ 𝑚 ≤ ℓ𝑛.

Fact A.7 Let C be a stabilizer code of locality ℓ on 𝑛 qubits with 𝑚 checks {𝐶𝑖}𝑖∈[𝑚] . Then, there
is a circuit 𝑉 of depth ≤ 2ℓ3 which coherently measures the value of each stabilizer term into 𝑚
ancilla.



APPENDIX A. ADDITIONAL LOWER BOUNDS ON DESCRIPTION COMPLEXITY 61

Lastly, consider a state |𝜙⟩ = 𝑈 |0⊗𝑛′⟩ where 𝑈 is a circuit of depth 𝑡. From Fact 3.4, we can
assume 𝑛′ ≤ 𝑛2𝑡 without loss of generality. We are now ready to state and prove the following
theorem for codes of large rate.
Proof of Theorem 3.24: All stated intermediate claims are proven in the next sub-section. By
assumption, |𝜙⟩ = 𝑈 |0⊗𝑛′⟩ for a circuit of depth 𝑡 < log(𝑑) − 2ℓ3. Define the energy of each local
Hamiltonian term ℎ𝑖 as

𝜖𝑖
def
= tr(ℎ𝑖𝜙) =

1
2
− 1

2
tr(𝐶𝑖𝜙). (A.19)

Add 𝑚 ≤ ℓ𝑛 new syndrome-measurement ancilla (SMA) qubits each with initial state |0⟩ and
coherently measure the entire syndrome using the depth 2ℓ3 circuit𝑉 from Fact A.7. Then the state

|𝜓⟩ = 𝑉
(
|𝜙⟩ ⊗

��0⊗𝑚〉)
= 𝑉𝑈 |0⊗(𝑛′+𝑚)⟩ def

= 𝑊 |0⊗(𝑛′+𝑚)⟩ (A.20)

with𝑊 = 𝑉𝑈 a circuit of minimum circuit depth def
= depth(𝑊) ≤ 𝑡 + 2ℓ3. Define the state obtained

by incoherently measuring all the SMA qubits of |𝜓⟩ as

Ψ =
∑︁

𝑠∈{0,1}𝑚
𝐷𝑠 |𝜙⟩⟨𝜙 | 𝐷𝑠 ⊗ |𝑠⟩⟨𝑠 | (A.21)

where we abuse notation slightly and use 𝐷𝑠 both as the eigenspace and the projector onto it. Since
we assume that C is a stabilizer code, the Hamiltonian terms ℎ𝑖 all mutually commute, and therefore
so do the measurements of the SMA qubits. Therefore, the order of measurement used is irrelevant.

Define the state Θ = E(Ψ) obtained by applying the logical completely depolarizing channel E
from eq. (A.18). Then, we have

Θ =
∑︁
𝑠

tr(𝐷𝑠𝜙𝐷𝑠)𝜇𝑠 ⊗ |𝑠⟩⟨𝑠 | for 𝜇𝑠
def
= E

(
𝐷𝑠𝜙𝐷𝑠

tr(𝐷𝑠𝜙𝐷𝑠)

)
. (A.22)

Claim A.8 Fix any region 𝑅 ⊂ [𝑛′ + 𝑚]. Let 𝑆𝑅 be the set of all indices 𝑖 ∈ [𝑚] such that the 𝑖th
SMA qubit belongs to 𝑅. It holds that

𝐹 (𝜓𝑅,Ψ𝑅) ≥ 1 −
∑︁
𝑖∈𝑆𝑅

𝜖𝑖 . (A.23)

Further, if |𝑅 | < 𝑑, then Ψ𝑅 = Θ𝑅.

For every 𝑗 ∈ [𝑛′ + 𝑚], let 𝐿 𝑗 be the support of the lightcone of 𝑗 with respect to the unitary 𝑊†.
Note that |𝐿 𝑗 | ≤ 2depth(𝑊) < 𝑑. Since𝑊† |𝜓⟩ is |0⟩⊗(𝑛′+𝑚) , we have that for any qubit 𝑗 ∈ [𝑛′ +𝑚],

tr−{ 𝑗}
(
𝑊†𝜓𝑊

)
= |0⟩⟨0| . (A.24)
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However, Fact 3.3 allows us to equate

tr−{ 𝑗}
(
𝑊†𝜓𝑊

)
= tr−{ 𝑗}

(
𝑊†(𝜓𝐿 𝑗

⊗ 𝜈−𝐿 𝑗
)𝑊

)
, (A.25a)

tr−{ 𝑗}
(
𝑊†Θ𝑊

)
= tr−{ 𝑗}

(
𝑊†(Θ𝐿 𝑗

⊗ 𝜈−𝐿 𝑗
)𝑊

)
. (A.25b)

Using eq. (A.23), we find that for all 𝑗 ∈ [𝑛′ + 𝑚],

𝐹

(
tr−{ 𝑗}

(
𝑊†𝜓𝑊

)
, tr−{ 𝑗}

(
𝑊†Θ𝑊

))
(A.26a)

= 𝐹

(
tr−{ 𝑗}

(
𝑊†(𝜓𝐿 𝑗

⊗ 𝜈−𝐿 𝑗
)𝑊

)
, tr−{ 𝑗}

(
𝑊†(Θ𝐿 𝑗

⊗ 𝜈−𝐿 𝑗
)𝑊

))
(A.26b)

≥ 𝐹
(
𝜓𝐿 𝑗

,Θ𝐿 𝑗

)
(A.26c)

≥ 1 −
∑︁
𝑖∈𝑆𝐿 𝑗

𝜖𝑖 . (A.26d)

We now infer from eq. (A.24) and eq. (A.26d) that2

𝑆

(
tr−{ 𝑗}

(
𝑊†Θ𝑊

))
≤ 2 ©­«

∑︁
𝑖∈𝑆𝐿 𝑗

𝜖𝑖
ª®¬ log

1

min
(∑

𝑖∈𝑆𝐿 𝑗
𝜖𝑖,

1
4

) . (A.27)

Using the concavity of the function 𝑥 ↦→ 𝑥 log 1
min(𝑥, 14 )

in the interval 𝑥 ∈ (0, 2depth(𝑊)), we can
average over all 𝑗 ∈ [𝑛′ + 𝑚] to conclude

E
𝑗∈[𝑛′+𝑚]

𝑆

(
tr−{ 𝑗}

(
𝑊†Θ𝑊

))
(A.28a)

≤ 2 E
𝑗∈[𝑛′+𝑚]

©­­«
©­«
∑︁
𝑖∈𝑆𝐿 𝑗

𝜖𝑖
ª®¬ log

1

min
(∑

𝑖∈𝑆𝐿 𝑗
𝜖𝑖,

1
4

) ª®®¬ (A.28b)

≤ 2 · ©­« E
𝑗∈[𝑛′+𝑚]

∑︁
𝑖∈𝑆𝐿 𝑗

𝜖𝑖
ª®¬ log

1

min
(
E 𝑗∈[𝑛′+𝑚]

∑
𝑖∈𝑆𝐿 𝑗

𝜖𝑖,
1
4

) . (A.28c)

The next claim helps upper and lower bound this expression.

Claim A.9 It holds that
𝜖𝑚

𝑛′ + 𝑚 ≤ E
𝑗∈[𝑛′+𝑚]

∑︁
𝑖∈𝑆𝐿 𝑗

𝜖𝑖 ≤ 22 depth(𝑊) 𝜖𝑚

𝑛′ + 𝑚 . (A.29)

2Given a binary distribution (𝑝, 1 − 𝑝), we can upper bound its entropy as follows. If 𝑝 ≥ 1
4 , then an upper bound

is 1. Else the upper bound is 2𝑝 log 1
𝑝

. The combined upper bound is 2𝑝 log 1
min(𝑝, 1

4 )
.
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We now upper bound the entropy of Θ. For this, let us assume 2depth(𝑊) ≤ 1
𝜖
, else the proof is

immediate.

𝑆(Θ) = 𝑆(𝑊†Θ𝑊) ≤
∑︁

𝑗∈[𝑛′+𝑚]
𝑆

(
tr−{ 𝑗}

(
𝑊†Θ𝑊

))
(A.30a)

≤ 21+2 depth(𝑊)𝜖𝑚 log
1

min
(
𝜖𝑚
𝑛′+𝑚 ,

1
4

) (A.30b)

≤ 21+2 depth(𝑊)𝜖ℓ𝑛 log
2depth(𝑊)

𝜖
(A.30c)

≤
(
22+2 depth(𝑊)ℓ𝑛

)
· 𝜖 log

1
𝜖
. (A.30d)

The inequality in eq. (A.30a) comes from the subadditivity of entropy; the inequality in eq. (A.30b)
uses eq. (A.28b) and then substitutes the upper and lower bounds given in Claim A.9; the inequality
in eq. (A.30c) uses 𝑛

ℓ
≤ 𝑚 ≤ ℓ𝑛 and 𝜖𝑚

𝑛′+𝑚 ≥
𝜖

ℓ2𝑡+1 ≥
𝜖

2depth(𝑊 ) ; the inequality in eq. (A.30d) uses
2depth(𝑊) ≤ 1

𝜖
. Furthermore, Θ is the output of E acting on Ψ. By Fact A.6 (Item 2), 𝑆(Θ) ≥ 𝑘 .

Combining the lower and upper bounds on the entropy of Θ, the proof concludes. □

A.2 A classical oracle separation between QMA and QCMA
This section is based on [5] by Natarajan and Nirkhe.

There are two natural quantum analogs of the computational complexity class NP. The first
is the class QMA previously described and the second is the class QCMA in which the quantum
polynomial-time decision algorithm is given access instead to a poly(𝑛) bit classical state. While
it is easy to prove that QCMA ⊆ QMA as the quantum witness state can be immediately measured
to yield a classical witness string, the question of whether QCMA ?

= QMA, first posed by Aharonov
and Naveh [20], remains unanswered. If QCMA = QMA, then every local Hamiltonian would have
an efficient classical witness of its ground energy; morally, this can be thought of as an efficient
classical description of its ground state. The relevance of local Hamiltonians to condensed matter
physics makes this question a central open question in quantum complexity theory [85].

Because P ⊆ QCMA ⊆ QMA ⊆ PSPACE, any unconditional separation of the two complexity
classes would imply P ≠ PSPACE and seems unlikely without remarkably ingenious new tools. A
more reasonable goal is an oracle separation between the two complexity classes. The first oracle
separation, by Aaronson and Kuperberg [86], showed that there exists a black-box unitary problem
for which quantum witnesses suffice and yet no polynomial sized classical witness and algorithm
can solve the problem with even negligible success probability. A second black-box separation was
discovered a decade later by Fefferman and Kimmel [87]. The Fefferman and Kimmel oracle is
a completely positive trace perseving (CPTP) map called an "in-place" permutation oracle. Both
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oracles [86, 87] are inherently quantum3. Whereas, the "gold-standard" of oracle separations —
namely black-box function separations (also known as classical oracle separations) — only require
access to a classical function that can be queried in superposition4.

A.2.1 Graph oracles
The major result of [5] is that there exists a distribution over black-box function problems separating
QMA and QCMA. Each black-box function corresponds to the adjacency list of a 𝑁 def

= 2𝑛 vertex
constant-degree colored graphs5 𝐺 = (𝑉, 𝐸). Roughly speaking, a graph is a YES instance if
the second eigenvalue of its normalized adjacency matrix is 1 (equivalently, if it has at least two
connected components) and a graph is a NO instance if it second eigenvalue is at most 1 − 𝛼 for
some fixed constant 𝛼 (equivalently, the graph has one connected component and is expanding).
We call this problem the expander distinguishing problem.

Distribution oracles A distribution over functions (equivalently, a distribution over graphs) is a
YES instance if it is entirely supported on YES graphs and a distribution over functions is a NO
instance if it is entirely supported on NO graphs.

In [5], we construct YES and NO distributions over graphs and an efficient algorithm with
access to a quantum witness (an 𝑛-qubit state) can distinguish YES instances from NO instances.
Furthermore, we prove that every query-efficient algorithm with access to even a super-polynomial
length classical witness cannot distinguish YES instances from NO instances.

Our work is not the first to consider oracles that sample from distributions over functions. The
in-place oracle separation of [87] between QMA and QCMA used oracles that sampled random
permutations. For a somewhat different problem, of separating bounded-depth quantum-classical
circuits, [89] introduced a related notion called a "stochastic oracle"—the main difference between
this and our model is that a stochastic oracle resamples an instance every time it is queried.

Comparison with previous oracle separations between QMA and QCMA Figure A.1 summa-
rizes our work in relation to previous oracle separations. In terms of results, we take a further step
towards the standard oracle model—all that remains is to remove the randomness from our oracle.
In terms of techniques, we combine the use of counting arguments and the adversary method from
previous works with a BQP lower bound for a similar graph problem, due to [90]. This lower bound
was shown using the polynomial method. We view the judicious combination of these lower bound
techniques—as simple as it may seem—as one of the conceptual contributions of this paper.

3It might be reasonable to wonder if the unitary oracles can be converted into classical oracles by providing oracle
access to the exponentially long classical descriptions of the respective matrices. This is not known to be true because
it is unclear how to use access to the classical description to solve the QMA problem.

4One reason this model is natural is that if we were given a circuit of size 𝐶 to implement this classical function,
then we would automatically get a quantum circuit of size 𝐶 to implement the oracle, simply by running the classical
circuit coherently. This is not true for the "in-place" permutation oracle model, assuming that one-way functions exist.

5A similar problem was previously conjectured to be an oracle separation for these complexity classes by Lutomirski
[88].
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Reference Separating black box object Proof techniques used
[86] 𝑛-qubit unitaries Adversary method
[87] 𝑛-qubit CPTP maps Combinatorial argument,

Adversary method

Our work [5] Distributions over 𝑛-bit boolean functions
Combinatorial argument,

Adversary method,
Polynomial method

Conjectured 𝑛-bit boolean function ?

Figure A.1: List of known oracle separations

Intuition for hardness The expander distinguishing problem is a natural candidate for a sep-
aration between QMA and QCMA because it is an "oracular" version of the sparse Hamiltonian
problem, which is complete for QMA [91, Problem H-4]. To see this, we recall some facts from
spectral graph theory. The top eigenvalue of the normalized adjacency matrix 𝐴 for regular graphs
is always 1 and the uniform superposition over vertices is always an associated eigenvector. If the
graph is an expander (the NO case of our problem), the second eigenvalue is bounded away from
1, but if the graph is disconnected (the YES case of our problem), then the second eigenvalue is
exactly 1. Thus, our oracle problem is exactly the problem of estimating the minimum eigenvalue
of I − 𝐴 (a sparse matrix for a constant-degree graph), on the subspace orthogonal to the uniform
superposition state. Viewing I − 𝐴 as a sparse Hamiltonian, we obtain the connection between our
problem and the sparse Hamiltonian problem.

One reason to show oracle separations between two classes is to provide a barrier against
attempts to collapse the classes in the "real" world. We interpret our results as confirming the
intuition that any QCMA protocol for the sparse Hamiltonian must use more than just black-box
access to entries of the Hamiltonian: it must use some nontrivial properties of the ground states of
these Hamiltonians. In this sense, it emulates the original quantum adversary lower bound of [92]
which showed that any BQP-algorithm for solving NP-complete problems must rely on some
inherent structure of the NP-complete problem as BQP-algorithms cannot solve unconstrained
search efficiently.

A.2.2 Overview of proof techniques
Quantum witnesses and containment in oracular QMA A quantum witness for any YES
instance graph is any eigenvector |𝜉⟩ of eigenvalue 1 that is orthogonal to the uniform superposition
over vertices. The verification procedure is simple: project the witness into the subspace orthogonal
to the uniform superposition over vertices, and then perform one step of a random walk along the
graph, by querying the oracle for the adjacency matrix in superposition. Verify that the state after
the walk step equals |𝜉⟩. This is equivalent to a 1-bit phase estimation of the eigenvalue. If a graph
is a NO instance, then there does not exist any vector orthogonal to the uniform superposition (the
unique eigenvector of value 1) that would pass the previous test.

Whenever, the graph has a connected component of 𝑆 ⊊ 𝑉 , then an eigenvector orthogonal to
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the uniform superposition of eigenvalue 1 exists. When |𝑆 | ≪ 𝑁 , this eigenvector is very close to
|𝑆⟩, the uniform superposition over basis vectors 𝑥 ∈ 𝑆. Notice that this state only depends on the
connected component 𝑆 and not the specific edges of the graph. Furthermore, the state |𝑆′⟩ for any
subset 𝑆′ that approximates 𝑆 forms a witness that is accepted with high probability.

Lower bound on classical witnesses The difficulty in this problem lies in proving a lower bound
on the ability for classical witnesses to distinguish YES and NO instances. To prove a lower bound,
we argue that any quantum algorithm with access to a polynomial length classical witness must
make an exponential number of (quantum) queries to the adjacency list of the graph in order to
distinguish YES and NO instances. This, in turn, lower bounds the time complexity of any QCMA
algorithm distinguishing YES and NO instances but is actually slightly stronger since we don’t
consider the computational complexity of the algorithm between queries.

Proving lower bounds when classical witnesses are involved is difficult because the witness could
be based on any property of the graph. For example, the classical witness could describe cycles,
triangles, etc. contained in the graph — while it isn’t obvious why such a witness would be helpful,
proving that any such witness is insufficient is a significant challenge. One way to circumvent
this difficulty is to first show a lower bound assuming some structure about the witness6, and then
"remove the training wheels" by showing that the assumption holds for any good classical witness.

Lower bound against "subset witnesses" One structure we can assume is that the witness only
depends on the set of vertices contained in the connected component 𝑆. This is certainly the case
for the quantum witness state. Our result shows that any polynomial-length witness only depending
on the vertices in 𝑆 requires an exponential query complexity to distinguish YES and NO instance
graphs.

The starting point for this statement is the exponential query lower bound in the absence of a
witness (i.e. for BQP) for the expander distinguishing problem proven by Ambainis, Childs and
Liu [90], using the polynomial method. In [90], the authors define two distributions over constant-
degree regular colored graphs: the first is a distribution 𝑃1 over random graphs with overwhelming
probability of having a second normalized eigenvalue at most 1 − 𝜖0. The second is a distribution
𝑃ℓ over random graphs with overwhelming probability of having ℓ connected components. Since,
almost all graphs in 𝑃1 are NO graphs and all graphs in 𝑃ℓ are YES graphs, any algorithm
distinguishing YES and NO instances must be able to distinguish the two distributions. We first
show that a comparable query lower bound still holds even when the algorithm is given a witness
consisting of polynomially many random points 𝐹 from any one connected component.

Next, we show that if there were a QCMA algorithm where the optimal witness depends only on
the set of vertices 𝑆 in one of the connected components, by a counting argument, there must exist
a combinatorial sunflower of subsets 𝑆 that correspond to the same witness string. A sunflower,

6Assuming structure about a witness is a common technique in theoretical computer science and in particular
lower bounds for classical witnesses of quantum statements. For example, lower bounds against natural proofs [93].
Another example is the NLTS statement [1] which is about lower bounds for classical witnesses for the ground energy
of a quantum Hamiltonian of a particular form: constant-depth quantum circuits.
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in this context, is a set of subsets such that each subset contains a core 𝐹 ⊂ 𝑉 and every vertex of
𝑉 \ 𝐹 occurs in a small fraction of subsets. This implies that there exists a BQP algorithm which
distinguishes YES instances corresponding to the sunflower from all NO instances. Next, we show
using an adversary bound [94], a quantum query algorithm cannot distinguish the distribution of
YES instances corresponding to the sunflower from the uniform distribution of YES instances such
that the core 𝐹 is contained in a connected component (the ideal sunflower).

This indistinguishability, along with the previous polynomial method based lower bound, proves
that QCMA algorithm — whose witness only depends on the vertices in the connected component
— for the expander distinguishing problem must make an exponential number of queries to the
graph.

Removing the restriction over witnesses Our proof, thus far, has required the restriction that
the witness only depends on the vertices in the connected component. In some sense, this argues
that there is an oracle separation between QMA and QCMA if the prover is restricted to being
"near-sighted": it cannot see the intricacies of the edge-structure of the graph, but can notice the
separate connected components of the graph. If the near-sighted prover was capable of sending
quantum states as witnesses, then she can still aid a verifier in deciding the expander distinguishing
problem, whereas if she could only send classical witnesses, then she cannot aid a verifier.

It now remains to remove the restriction that the witness can only depend on the vertices in the
connected component. We do this by introducing randomness into the oracle, precisely designed to
"blind" the prover to the local structure of the graph. In the standard oracle setting, the verifier and
prover both get access to an oracle 𝑥 ∈ {0, 1}𝑁 , and the prover provides either a quantum witness,
|𝜉 (𝑥)⟩ ∈ (C2)⊗poly(𝑛) or a classical witness, 𝜉 (𝑥) ∈ {0, 1}poly(𝑛) . The verifier then runs an efficient
quantum algorithm 𝑉𝑥 which takes as input |𝜉 (𝑥)⟩ (or 𝜉 (𝑥), respectively) and consists of quantum
oracle gates applying the unitary transform defined as the linear extension of

|𝑖⟩ ↦→ (−1)𝑥𝑖 |𝑖⟩ for 𝑖 ∈ [𝑁] . (A.31)

We now extend modify this setup slightly. Instead of a single oracle 𝑥, we consider a distribution
B over oracles. The prover constructs a quantum witness |𝜉 (B)⟩ (or a classical witness 𝜉 (B),
respectively) based on the distribution B. The verifier then samples a classical oracle 𝑥 ← B from
the distribution, and then runs the verification procedure 𝑉𝑥 which takes as input |𝜉 (B)⟩ (or 𝜉 (B),
respectively) and applies quantum oracle gates corresponding to 𝑥. The success probability of the
verifier is taken over the distribution B and the randomness in the verification procedure.

From our previous observations, graphs with the same connected component 𝑆 have the same
ideal witness state. So, if the distribution B is supported on all graphs with the same connected
component 𝑆, then the witness state corresponding to 𝑆 will suffice. Furthermore, in the case of the
classical witness system, the witness can only depend on 𝑆 and the previously stated lower bound
applies. This motivates the oracle problem of distinguishing distributions, marked either YES or
NO, over 2𝑛 bit strings (or equivalently 𝑛-bit functions).
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Prover Verifier
B

|𝜉⟩ = |𝜉 (B)⟩
(or 𝜉 = 𝜉 (B))

|𝜉⟩ (or 𝜉)

𝑥 ← B

𝑉𝑥 ( |𝜉⟩)
(or 𝑉𝑥 (𝜉))

Figure A.2: Cartoon of interaction between Prover and Verifier for a distribution over classical
boolean functions.

A.2.3 Statement of the result
Theorem A.10 (Classical oracle separation [5]) For every sufficiently large integer 𝑛 that is a
multiple of 200, there exist distributions over 100-regular 100-colored graphs on 𝑁 = 2𝑛 vertices
labeled either YES or NO such that

• Each YES distribution is entirely supported on YES instances of the expander-distinguishing
problem and, likewise, each NO distribution is entirely supported on NO instance of the
expander-distinguishing problem.

• There exists a poly(𝑛) time quantum algorithm 𝑉𝑞 taking a witness state |𝜉⟩ as input and
making 𝑂 (1) queries to the quantum oracle such that

1. For every YES distribution B, there exists a quantum witness |𝜉⟩ ∈ (C2)⊗𝑛 such that

E
𝑥←B

Pr [𝑉𝑥𝑞 ( |𝜉⟩) accepts] ≥ 1 −𝑂 (𝑁−3). (A.32)

2. For every NO distribution B, for all quantum witnesses |𝜉⟩ ∈ (C2)⊗𝑛,

E
𝑥←B

Pr [𝑉𝑥𝑞 ( |𝜉⟩) accepts] ≤ 0.01. (A.33)

• Any quantum algorithm𝑉𝑐 accepting a classical witness of length 𝑞(𝑛) satisfying the following
two criteria either requires 𝑞(𝑛) to be exponential or must make an exponential number of
queries to the oracle.

1. For every YES distribution B, there exists a classical witness 𝜉 = 𝜉 (B) ∈ {0, 1}𝑞(𝑛)

E
𝑥←B

Pr [𝑉𝑥𝑐 (𝜉) accepts] ≥ 0.99. (A.34)
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2. For every NO distribution B, for all classical witnesses 𝜉 ∈ {0, 1}𝑞(𝑛) ,

E
𝑥←B

Pr [𝑉𝑥𝑐 (𝜉) accepts] ≤ 0.01. (A.35)

Although our main theorem is formulated as a query lower bound, it can be converted to a
separation between the relativized classes of QMA and QCMA via a standard diagonalization
argument. Similarly, it was pointed out to us [95] that it proves a separation between the relativized
classes of BQP/qpoly and BQP/poly, following the technique of [86].

A.2.4 Implications and future directions
There are several future questions raised by [5] that we find interesting:

Oracle and communication separations The most natural question is of course whether the
randomness in the oracle can be removed, to obtain a separation in the standard model. We
conjecture that our problem yields such a separation, but a new technique seems necessary to prove
it.

Another natural question is to show a communication complexity separation between QMA and
QCMA. This has been shown for one-way communication by Klauck and Podder [96] but their
problem does not yield a separation for two-way communication. Could our query separation be
lifted to the communication world by use of the appropriate gadget?

The class QMA(2) is another relative of QMA which is perhaps even more enigmatic than
QCMA. In QMA(2), the witness state is promised to be an unentangled between the first and
second half of the qubits. We do not even know of a quantum (unitary) oracle separation between
QMA(2) and QMA, nor do we have a natural candidate problem. Could we at least formulate such
a candidate by considering "oracular" versions of QMA(2)-complete problems, in analogy to what
we do in [5] for QCMA.

Implications for Quantum PCPs In a recent panel [97] on the quantum PCP conjecture and
the NLTS theorem [1], an interesting question was posed of whether MA or QCMA (lower or
upper) bounds can be placed on the complexity of the promise-gapped local Hamiltonian problem.
Because the oracle presented in this result corresponds to a sparse Hamiltonian with a problem of
deciding if the second eigenvalue of the Hamiltonian is 1 or < 1−𝛼/𝑑 = 1−Ω(1), one might wonder
if this provides oracular evidence that quantum PCPs are at least QCMA-hard. Unfortunately, to
the best of our knowledge, this is not a reasonable conclusion. While we give evidence that the
promise-gapped sparse Hamiltonian problem is likely QCMA-hard, the reduction from the sparse
Hamiltonian problem to the local Hamiltonian problem does not imply that the promise-gapped
local Hamiltonian problem is likely QCMA-hard. The only algorithm known for checking a witness
for the sparse Hamiltonian problem is applying Hamiltonian simulation on the witness; this is not
a local algorithm.
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Connections to stoquastic Hamiltonians Since the oracles studied in [5] correspond to the
adjacency lists of graphs, they can be viewed as sparse access to a Hamiltonian H which is the
Laplacian of a graph (recall that if the adjacency matrix is 𝐴, then the Laplacian is I − 𝐴/𝑑). Such
Hamiltonians have a special structure not present in general Hamiltonians: they are stoquastic,
meaning that the off-diagonal entries are nonpositive. The local Hamiltonian (LH) problem for
stoquastic Hamiltonians is significantly easier than the general LH problem, and in some cases is
even contained in MA as shown by Bravyi and Terhal [98]. It is worth noticing why this is not in
tension with our result—in particular, why this does not imply that our oracle problem is contained
in oracular MA.

• Crucially, the MA-containment for stoquastic LH holds only for the ground state: this is
because of the Perron-Frobenius theorem, which implies that ground states of such Hamil-
tonians have nonnegative coefficients. However, in our case, we want the first excited state:
the state of minimum energy for H restricted to the subspace orthogonal to the uniform
superposition. It was shown by [99] that all excited state energies are QMA-hard to calculate
for a stoquastic Hamiltonian.

• The MA containment also uses the locality of the Hamiltonian, which in turn imposes a strong
structure on the adjacency matrix of the graph. The random graphs we consider will not
have this structure. (While it was shown by [100] showed an AM algorithm for calculating
the ground energy stoquastic and sparse Hamiltonians, again this does not apply to higher
excited states.)

• At an intuitive level, in graph language, the LH problem for stoquastic Hamiltonians is to
find a component of the graph where the average value of some potential function (given by
the diagonal entries of H) is minimized. An MA verifier can solve this by executing a random
walk, given the right starting point by Merlin. In contrast, our problem is to determine
whether the graph as a whole is connected—a global property that an MA verifier cannot
determine.

A.3 Quantum search-to-decision and state synthesis
This section is based on [4] by Irani, Natarajan, Nirkhe, Rao, and Yuen.

It is a useful fact in classical computer science that search problems are often efficiently reducible
to decision problems. For example, the canonical way of constructing a satisfying assignment of
a given 3SAT formula 𝜑 (if there exists one) using an oracle for the decision version of 3SAT is
to adaptively query the oracle for the satisfiability of 𝜑 conditioned on some partial assignment to
the variables of the formula. Based on the oracle answers, the partial assignment can be extended
bit-by-bit to a full assignment. Each oracle query reveals an additional bit of the assignment. This
strategy generally works for any problem in NP. Likewise, the optimal value of an optimization
problem can be calculated to exponential accuracy using binary search. The main consequence of
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this is that complexity theory often focuses on decision problems (without losing generality) and
less on the complexity of search problems.

Quantum information and computation have shifted our perspective on these traditional notions
of classical complexity theory. We now consider quantum search problems, where the goal is to
output a quantum state (as opposed to a classical bit string) satisfying some condition. In the
quantum setting, it is no longer apparent that search-to-decision reductions still hold, and thus
it is unclear whether the complexity of quantum search problems can be directly related to the
complexity of corresponding quantum decision problems.

Is there an efficient search-to-decision reduction for the Local Hamiltonians problem, or more
generally for the class QMA? In other words, given quantum query access to an oracle deciding
the Local Hamiltonians problem, can a polynomial-time quantum algorithm (i.e. BQP machine)
efficiently prepare a low-energy state |𝜓⟩ of a given local Hamiltonian?

The classical strategy of incrementally building a partial assignment does not appear to work
in the QMA setting. First, there does not appear to be a natural way of "conditioning" a quantum
state on a partial assignment. Second, quantum states are exponentially complex: the description
size (complexity) of a general quantum state on 𝑛 qubits is exponential in 𝑛, and this is suspected
to remain true even when considering ground states of local Hamiltonians7. This complexity of
quantum states poses a significant challenge to finding a search-to-decision reduction for QMA; it
is not clear how yes/no answers to QMA decision problems (even when obtained in superposition)
can be used to construct exponentially-complex QMA witnesses.

On the other hand, there is a natural quantum analog of the bit-by-bit search-to-decision
algorithm for NP that works for constructing general quantum states. This is due to a general
algorithm for state synthesis described by Aaronson in [101] (for which we give an overview of
in Appendix A.3.1): there exists a polynomial-time quantum algorithm 𝐴 such that every 𝑛-qubit
state |𝜓⟩ can be encoded into a classical oracle 𝑓 where, by making 𝑂 (𝑛) superposition queries
to the oracle 𝑓 , the algorithm 𝐴 will output a state that is exponentially close to |𝜓⟩. One can
observe that for states |𝜓⟩ that QMA witnesses (such as ground states of local Hamiltonians), the
oracle 𝑓 corresponds to a PP function (which is at least as powerful as a QMA oracle). This yields
a search-to-decision reduction for QMA, albeit with a decision oracle of higher complexity.

We explore the complexity of search-to-decision procedures in the quantum setting, where the
goal is a quantum state synthesis algorithm that outputs a target quantum state (e.g. a ground state of
a local Hamiltonian) by making quantum queries to a classical decision oracle. We investigate how
the complexity of the state synthesis algorithm and the complexity of the decision oracle depend
on the type of states we want to generate. We consider both the generalized state synthesis problem
for arbitrary states in the Hilbert space (C2)⊗𝑛 as well as the specific task of generating solutions
to QMA problems.

We construct state synthesis and search-to-decision procedures for the quantum setting using
only one or two superposition queries as opposed to𝑂 (𝑛) superposition queries; for QMA witnesses,
the synthesis procedure requires only one query to a PP oracle. Simultaneously, we prove results

7Due to the QMA ≠ QCMA conjecture [86]. Formally, there is no known poly-sized description of a witness
(proof) for every local Hamiltonian problem.
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suggesting the impossibility of any search-to-decision reduction for QMA. More precisely, there
exists a quantum oracle O relative to which all efficient query algorithms fail to be a good search-
to-decision reduction for QMAO , the relativization of QMA. This stands in contrast to classes
such as NP, MA, and QCMA, which all have efficient search to decision reductions, relative to any
oracle. As a consequence, proving the impossibility of QMA search-to-decision without an oracle
is at least as hard as separating QCMA and QMA which is at least as hard as separating P and PP.
We believe that the juxtaposition of our results lends further weight to the view that the complexity
of tasks where the outputs (and inputs) are quantum states cannot be directly explained by the
traditional study of decision problems (which has been the main focus of quantum complexity
theory to date). In particular, we believe our results suggest that the relationship between search
and decision problems is much more mysterious in the quantum setting. As suggested by Aaronson
in [101] and others in some recent works [102, 103], the complexity of quantum states (and more
generally, quantum state transformations) deserves to be studied more deeply as a subject in its own
right.

A.3.1 Starting point
Before describing our results in more detail, we first explain the starting point for our investigations,
which is a simple state synthesis algorithm described by Aaronson [101] in his lecture notes. He
shows that there exists a poly(𝑛)-time quantum algorithm 𝐴 which makes 𝑂 (𝑛) quantum queries
to a classical oracle such that for every 𝑛-qubit state |𝜓⟩ = ∑

𝑥 𝛼𝑥 |𝑥⟩, there exists a classical oracle
𝑓 for which the algorithm 𝐴O 𝑓 will output a state that is exp(−𝑛)-close to |𝜓⟩. In [101], Aaronson
raises the question as to whether his protocol can be improved to a sublinear number of queries.
That 1 query is sufficient to achieve a polynomially small error in synthesizing arbitrary states
and 2-queries are sufficient for an exponentially small error. Both the 1-query and the 2-query
algorithms given here require exponential time and polynomial space.

To understand Aaronson’s state synthesis algorithm, we first observe that we can write any
quantum state in the form

|𝜓⟩ =
∑︁

𝑥∈{0,1}𝑛
𝑒𝑖𝜃𝑥

√︁
Pr [𝑋 = 𝑥] |𝑥⟩ (A.36)

where Pr [𝑋 = 𝑥] is the probability distribution of some 𝑛-bit random variable 𝑋 and {𝜃𝑥}{0,1}𝑛 are
a set of phases. The synthesis algorithm performs 2𝑛 queries to synthesize the "QSample state".∑︁

𝑥∈{0,1}𝑛

√︁
Pr [𝑋 = 𝑥] |𝑥⟩ (A.37)

and then performs two additional queries at the end to apply the phases 𝑒𝑖𝜃𝑥 to each basis state |𝑥⟩.
The 2𝑛-query procedure to build the QSample state works in 𝑛 stages. Inductively assume that

after the 𝑘th stage, for 𝑘 < 𝑛, the intermediate state of the algorithm is the 𝑘-qubit state∑︁
𝑦∈{0,1}𝑘

√︁
Pr [𝑋≤𝑘 = 𝑦] |𝑦⟩ (A.38)
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where Pr [𝑋≤𝑘 = 𝑦] denotes the marginal probability of the first 𝑘 bits of 𝑋 are equal to 𝑦.
Controlled on the prefix |𝑦⟩ the algorithm queries the oracle 𝑓 to obtain a (classical description of)
the conditional probabilities Pr [𝑋𝑘+1 = 0 | 𝑋≤𝑘 = 𝑦] and Pr [𝑋𝑘+1 = 1 | 𝑋≤𝑘 = 𝑦], and prepares a
(𝑘 + 1)st qubit in the state√︁

Pr [𝑋𝑘+1 = 0 | 𝑋≤𝑘 = 𝑦] |0⟩ +
√︁

Pr [𝑋𝑘+1 = 1 | 𝑋≤𝑘 = 𝑦] |1⟩ . (A.39)

The algorithm performs another query to 𝑓 to uncompute the descriptions of the conditional
probabilities. The resulting 𝑘 + 1 qubit state is then equal to∑︁

𝑦∈{0,1}𝑘+1

√︁
Pr [𝑋≤𝑘 = 𝑦≤𝑘 ] ·

√︁
Pr [𝑋𝑘+1 = 𝑦𝑘+1 | 𝑋≤𝑘 = 𝑦≤𝑘 ] |𝑦⟩ (A.40)

=
∑︁

𝑦∈{0,1}𝑘+1

√︁
Pr [𝑋≤𝑘+1 = 𝑦] |𝑦⟩ (A.41)

which maintains the desired invariant. After the 𝑛th stage, a similar process applies the phases
{𝜃𝑥} to generate the output state. The approximations come in when the conditional probabilities
and phases are specified with poly(𝑛) bits of precision, which result in the final state being at most
exp(−𝑛) far from the ideal target state |𝜓⟩. With this𝑂 (𝑛)-query state synthesis algorithm in mind,
we now proceed to describe our results.

A.3.2 Results
A one-query search-to-decision algorithm for QMA with a PP oracle. In the case of generating
physically relevant states, i.e. solutions to QMA problems, such as the low-energy states of local
Hamiltonians, there exists a one-query search-to-decision algorithm using a PP oracle. While one
would hope to find a search-to-decision reduction in which the oracle complexity is only QMA, PP
is the smallest complexity class containing QMA for which we can construct an oracular algorithm
for search problems. Furthermore, given our no-go result for QMA search-to-decision (see below),
this may be the optimal search-to-decision algorithm.

Theorem A.11 (QMA-search to PP-decision reduction [4]) There exists a probabilistic polyno-
mial time quantum algorithm making a single query to a PP phase oracle such that, given as input
a QMA problem, either aborts or outputs a witness |𝜙⟩. The algorithm will succeed in outputting
a witness (i.e. not abort) with all but inverse exponential (in the system size) probability.

To start sketching the proof, it is fruitful to notice that a single oracle query |𝑥⟩
O 𝑓↦→ (−1) 𝑓 (𝑥) |𝑥⟩

for 𝑥 ∈ {0, 1}𝑛 potentially contains 2𝑛 bits of information and a quantum state requires 2𝑛 complex
numbers to describe. Furthermore, the collection of 22𝑛 states

|𝑝 𝑓 ⟩
def
= O 𝑓𝐻⊗𝑛 |0𝑛⟩ =

∑︁
𝑥∈{0,1}𝑛

(−1) 𝑓 (𝑥) |𝑥⟩ (A.42)
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defined for any function 𝑓 : {0, 1}𝑛 → {0, 1} are a diverse set of states in the Hilbert space. These
states, referred to as phase states henceforth, despite not forming an 𝜖-net for (C2)⊗𝑛, turn out
to provide a good approximation for (C2)⊗𝑛 when considering the Haar-random distribution8. It
follows that if we wanted to synthesize the witness to a QMA-complete problem, such as a low-
energy state |𝜏⟩ for a local Hamiltonian problem, it suffices to build phase state |𝑝 𝑓 ⟩ with constant
overlap with the low-energy subspace. Finding a state with constant overlap with the target state
is sufficient because QMA is efficiently verifiable, and given a state with constant overlap with
the low-energy subspace, it is possible to distill a low-energy state with constant probability (by
performing an energy measurement). However, it is not necessarily the case that a low-energy state
of the QMA problem will have a good approximation by a phase state. To solve this issue, we prove
that for any state |𝜏⟩, with high probability 𝐶 |𝜏⟩ will have a good approximation by a phase state
where 𝐶 is a random Clifford unitary. Therefore, we can instead attempt to synthesize 𝐶 |𝜏⟩ which
is the result of Theorem A.11. In particular, if we can synthesize a phase state |𝑝⟩ that has constant
overlap with 𝐶 |𝜏⟩, then 𝐶† |𝑝⟩ will have constant overlap with the target |𝜏⟩.

Furthermore, using a slight modification of the same algorithm, we can perform a somewhat
weaker one-query search-to-decision reduction for QMAexp, the class of non - deterministic quantum
computations with only an inverse exponential gap between completeness and soundness. QMAexp
is known to equal PSPACE [104, 105], and our algorithm prepares a witness state with constant
overlap with a low-energy state with one query to a PSPACE oracle (note that here, we cannot
efficiently amplify the overlap with an energy measurement due to the inverse-exponential energy
gap). As a further observation, we also show that quantum query access to a classical oracle
gives one-query search-to-decision reductions when the witness is classical: in particular, for
QCMA and NP. The one-query algorithm preparing the witness first reduces QCMA to unique
QCMA (UQCMA) using the Valiant-Vazirani reduction [106] and then uses the Bernstein-Vazirani
algorithm to extract the unique polynomial length witness with a single query.

A no-go result for search-to-decision for QMA. The previous result shows that search-to-
decision reductions for QMA are possible with a PP decision oracle. However, the optimal
search-to-decision reduction for QMA is with a QMA decision oracle (rather than a stronger PP
oracle). We provide evidence that this is unlikely to exist: we prove that there is a quantum oracle
relative to which QMA search-to-decision is impossible. This stands in contrast to classes such as
NP, MA, and QCMA, which all have efficient search to decision reductions, relative to any oracle.

More precisely, there exists a quantum oracle O relative to which all efficient query algorithms
fail to be a good search-to-decision reduction for QMAO , the relativization of QMA. The oracle O
is a reflection I − 2 |𝜓⟩⟨𝜓 | about a Haar-random state |𝜓⟩; we rely on the concentration of measure
phenomenon of the Haar measure to prove this oracle no-go result.

8Recall, the Haar-measure is the unique left- and right- invariant distribution over unitary matrices over (C2)⊗𝑛
and the Haar-random distribution is the distribution over quantum states 𝑈 |0𝑛⟩ where 𝑈 is sampled according to the
Haar-measure.
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Theorem A.12 (Oracle impossibility for QMA search-to-decision [4]) There exists a quantum
oracle O relative to which all poly(𝑛)-time query algorithms fail to be a good search-to-decision
reduction for QMAO .

The proof of this theorem uses an oracle identical to that of Aaronson and Kuperberg [86]
used to separate QMA and QCMA. We conjecture that this is a noncoincidence and that any QMA
and QCMA separating oracle yields a QMA search-to-decision impossibility result. Similar to the
reasons for why the gold-standard of oracle separation between QMA and QCMA is a 𝑛-bit boolean
function, the ideal oracle for proving QMA search-to-decision impossibility is also a 𝑛-bit boolean
function. Does the oracle presented in Section A.2 also yield a search-to-decision impossibility?

Open questions. What is the power of a QMA decision oracle? In particular, what states can be
synthesized with queries to a QMA oracle in superposition? Is there a weaker oracle class than PP
that can achieve search-to-decision for QMA witnesses?
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