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Abstract

Towards Adaptive, Continual Embodied Agents

by

Kelvin Xu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

In recent years, artificial learning systems have demonstrated tremendous advances on a
number of challenging domains such as computer vision, natural language processing and
speech recognition. A striking characteristic of these recent advances has been the seemingly
simple formula of combining flexible deep function approximators with large datasets collected
for specific problems. These systems struggle however to leverage their learned capabilities
when generalizing to new inputs for acquiring new capabilities, often requiring re-training
from scratch on a similarly large dataset from scratch. This is in stark contrast to humans,
who have a remarkable ability to build upon their prior experiences and learn new concepts
from only a few examples. In the first part of this thesis, we will study the question of how
to construct systems that mimic this ability to adapt rapidly to new tasks. One of the core
principles that will underlie this part of the thesis will be to leverage structure in a large
number of prior experiences/tasks to enable fast adaptation and uncertainty. We will start
first by studying the setting of reward specification, a common challenge in reinforcement
learning, and next study how a probabilistic framing of the meta-learning setting can enable
reasoning under uncertainty.

In the second part of this thesis, given the established potential that a prior datasets of tasks
can play in accelerating learning, we will ask the natural question of how to enable agents to
collect data completely autonomously. This would remove the need of a human to “curate”
the dataset of tasks for the artificial agent and enable fully scalable never ending embodied
learning. The central theme of the approach we take will be to consider the online real world
nature of “tasks” that an agent must solve, and through it revisit the basic assumptions of
episodic RL. Finally, we will conclude with a demonstration of these ideas in the domain
of real world dexterous manipulation and provide some hints for future work in this more
“autonomous” reinforcement learning setting.

1



A C K N O W L E D G M E N T S

Throughout my PhD, I have been very fortunate to cross paths with a special group of
people. This journey would not have been possible for their support and encouragement.

First and foremost, thank you Sergey Levine for being a great mentor and role model.
It has been a privilege to be a part of your group. Your intellect, dedication to science and
ability to navigate through thick and thin have served as an inspiration for me through
my time here. Thank you to my committee members Pieter Abbeel, Alyosha Efros and
Alison Gopnik for your support and guidance through this process. Thank you Yoshua
Bengio, Aaron Courville, Kyunghyun Cho, Jamie Kiros and Aaron Judah for words of
encouragement at the beginning of my PhD journey.

Throughout this thesis work, I have been fortunate to collaborate with an amazing
set of fellow students, faculty and researchers in the field. I would like to thank Ellis
Ratner, Justin Yu, Thomas Devlin, Tony Zhao, Nikhil Sardana, Archit Sharma, Karol
Hausman, Vikash Kumar and Anca Dragan for all the enjoyable collaborations. I would
like to give a special thanks to the undergraduate students I have worked with for their
hard work and enthusiasm: Siddharth Verma, Aaron Rovinsky, Zheyuan Hu, and Ria
Doshi. If there is anything I can be confident was a good thing that I did during my PhD,
it was serving as a mentor during our work together. Thank you Marc Bellemare, for
hosting me during a very fun internship at Google and for giving me a crash course in
RL and random graph theory. Finally, a special shout out to Chelsea Finn and Abhishek
Gupta who, in addition to being amazing collaborators, have been mentors and sources
of encouragement at different points during this process. All I can say is that I am happy
that you two are part of the next generation of mentors in academia.

I have also been lucky to interact with all the researchers in RAIL, but I would par-
ticularly like to thank some of the students I shared the majority of this journey with:
Justin Fu, Avi Singh, Vitchyr Pong, Michael Chang, JD Co-Reyes, Ashvin Nair, Mar-
vin Zhang, Young Geng, Aviral Kumar, Michael Janner, Dhruv Shah, Nick Rhinehart,
Natasha Jaques, Rowan McAllister, Ilya Kostrikov and many more. Thank you Coline
Devine, Kate Rakelly, Alex Lee and Greg Kahn for also being amazing sources of counsel
in my final years of grad school. Finally, I’d like to add a note of appreciation to Homer
Walke, Dibya Ghosh, Katie Kang, Colin Li and Laura Smith for being a fun group that I
could look forward to having lunch with when we returned to being in person.

i



I would like to also thank the broader BAIR/Berkeley community for providing a
very stimulating environment, but mostly for the friends I’ve made along the way. In
particular, I’d like to thank Clara Fannjiang, Parsa Mahmoudieh, Allan Jabri, Nilesh
Tripuraneni, Ilija Radosavovic, Ashish Kumar, Toru Lin, Akosua Busia, Thanard Kuru-
tach, Suzie Petryk, Armin Askari, Evonne Ng, Sasha Sax, Utku Evci, Brian Cheung, Erin
Grant, Andrew Waterman, Chloe Hsu, Melih Elibol, Vickie Ye, Gabriel Enrique Colón,
Wendy Shang, Isabella Huang and many more for all the fun nights out, baby yoda
memes, BWW hangs, surprise gifts, bourbon tasting, missed flights in Europe and sup-
port at the difficult times in this journey. Lastly, special shout out to Jasmine Collins,
without whom this journey would not have been possible, and definitely not as fun.
You’re a pal.

Thank you to my other friends here, there and everywhere for their support, encour-
agement, and reminders to enjoy the ride. In particular, I’d like to thank Megan Baker,
Amanda Chou, Jay Louie, Sam Edwards, Mika Weissbuch, Jeevan Gyawali, Mia Borzello,
Stephan Kaufhold, Orhan Firat, Junyoung Chung, Alexander Fengler, Wendy Shang,
Katherine Lee, Barret Zoph and Liam Fedus. Finally, a special shout out to the Toronto
fam for all the support during ups and downs. To David Biancolin, Fiona Macleod,
Richard Gao, Zimu Zhu, Kevin Lam, Judith Ma, Matt Nejati, Denise Punzal, Mohamad
Kayed, and many more, a million thanks.

I feel very lucky to have done the work contained in this thesis in a number of beautiful
places. I feel grateful to have imprinted in me memories of climbing around California,
channel orange surf sessions at Scripps, hikes in firetrails, the Taco Bell in Pacifica, Berke-
ley Bowl, Ironworks, Lake Merritt, and finally the styling neighborhood of Prenzlauer
Berg. Having places I loved to escape to was immeasurably valuable during this process,
especially the pandemic years.

Last, but not least, I would like to thank my parents (Wei Xu and Huijing Chen) for
supporting me and giving me a life of opportunities. Thank you to my sister, Hailen Xu,
for always being a good sport. Finally, thank you to my partner Vicky Zhao for having
patience, offering encouragement when I needed it, and helping me enjoy the journey.

ii



C O N T E N T S

1 introduction 2
2 learning a prior over intent via meta-inverse reinforcement

learning 5
2.1 Related Work 6
2.2 Preliminaries and Overview 8

2.2.1 Learning Rewards via Maximum Entropy Inverse Reinforcement
Learning 8

2.2.2 Meta-Learning 9
2.3 Learning to Learn Rewards 10

2.3.1 Meta Reward and Intention Learning (MandRIL) 11
2.3.2 Connection to Learning a Prior over Intent 13

2.4 Experiments 14
2.5 Conclusion 20

3 probablistic model agnostic meta-learning 23
3.1 Related Work 24
3.2 Preliminaries 25
3.3 Method 26

3.3.1 Gradient-Based Meta-Learning with Variational Inference 27
3.3.2 Probabilistic Model-Agnostic Meta-Learning Approach with Hy-

brid Inference 29
3.3.3 Adding Additional Dependencies 31

3.4 Experiments 32
3.5 Discussion and Future Work 37

4 lifelong learning of reset-free skills 38
4.1 Related Work 40
4.2 Preliminaries 42
4.3 Learning Skills via the Reset Game 43

4.3.1 The Reset Game 43
4.3.2 Mining Diverse Skills from Diverse Resets 45
4.3.3 Algorithm Summary: Optimizing the Reset Game 47

4.4 Experiments 47
4.5 Discussion, Limitations and Future Work 51

iii



5 multi-task reset-free learning for dexterous manipulation 52
5.1 Related Work 54
5.2 Preliminaries 55
5.3 Learning Dexterous Manipulation Behaviors Reset-Free via Multi-Task RL 56

5.3.1 Algorithm Description 57
5.3.2 Practical Instantiation 58

5.4 Task and System Setup 59
5.4.1 Simulation Domains 60
5.4.2 Hardware Tasks 61

5.5 Experimental Evaluation 63
5.5.1 Baselines and Prior Methods 65
5.5.2 Reset-Free Learning Comparisons in Simulation 65
5.5.3 Learning Real-World Dexterous Manipulation Skills 66

5.6 Discussion 68
6 learning multi-task reset-free behavior from images 70

6.1 Related Work 71
6.2 Robotic Platform and Problem Overview 73
6.3 Problem Formalism and User Assumptions 74
6.4 The AVAIL System: Autonomy via User-Provided Milestones 76

6.4.1 Visual Multi-Task Policy and Reward Learning from User Mile-
stones 77

6.4.2 Multi-Task Learning without Oracles 77
6.4.3 Algorithm Summary and Implementation Details 78

6.5 Experimental Evaluation 78
6.6 Discussion, Limitations, and Future Work 82

7 benchmarking algorithms for autonomous reinforcement learn-
ing 83
7.1 Related Work 85
7.2 Preliminaries 86
7.3 Autonomous Reinforcement Learning 86

7.3.1 General Setup 87
7.3.2 How Specific ARL Problems Fit Into Our Framework 89
7.3.3 Discussion of the ARL Formalism 90

7.4 EARL: Environments for Autonomous Reinforcement Learning 91
7.4.1 Benchmark Design Factors 91
7.4.2 Environment Descriptions 91

iv



7.5 Benchmarking and Analysis 93
7.5.1 Going from Standard RL to Autonomous RL 94
7.5.2 Evaluation: Setup, Metrics, Baselines, and Results 95
7.5.3 Analyzing Autonomous RL Algorithms 97

7.6 Conclusion 98
8 conclusion & future directions 99
a appendix : learning a prior over intent via meta-inverse rein-

forcement learning 128
a.1 SpriteWorld Experimental Details 128

a.1.1 Algoritmic Details 128
a.1.2 Environment Details 129

a.2 SUNCG Experimental Details 131
a.2.1 Algorithmic Details 131
a.2.2 Environment Details 132

a.3 SpriteWorld Meta-Test Training Performance 133
a.4 SUNCG DAgger Performance 133
a.5 Detailed Meta-Objective Derivation 135

b appendix : probabilistic model agnostic meta-learning 138
b.1 Ambiguous CelebA Details 138
b.2 Experimental Details 139
b.3 MiniImagenet Comparison 139

c appendix : learning skills from resets 141
c.1 Environment Details 141

c.1.1 Ant Task 141
c.1.2 Ant-Waypoints Task 142
c.1.3 Ant-MediumMaze Task 142
c.1.4 ManipulateFreeObject Task 142

c.2 Additional Experiments 143
c.2.1 Understanding the effects of resets and state representation choice

on Ant-Waypoints 143
c.2.2 Effect of varying the number of skills on downstream performance 143

c.3 Algorithm Details 143
c.3.1 DClaw Environment Parameters 144
c.3.2 Ant Environment Parameters 146
c.3.3 Hierarchical Controller Parameters 146
c.3.4 DADS 148

v



d appendix : multi-task reset-free learning for dexterous manip-
ulation 149
d.1 Environment Details 149

d.1.1 Ant Task 149
d.1.2 Ant-Waypoints Task 150
d.1.3 Ant-MediumMaze Task 150
d.1.4 ManipulateFreeObject Task 150

d.2 Additional Experiments 151
d.2.1 Understanding the effects of resets and state representation choice

on Ant-Waypoints 151
d.2.2 Effect of varying the number of skills on downstream performance 151

d.3 Algorithm Details 151
d.3.1 DClaw Environment Parameters 152
d.3.2 Ant Environment Parameters 154
d.3.3 Hierarchical Controller Parameters 154
d.3.4 DADS 156

e appendix : learning multi-task reset-free behavior from images 157
e.1 Real World Environment Descriptions 157

e.1.1 Object, Arena Dimensions, and Safety Considerations 157
e.1.2 Hose Connector Insertion Task & Evaluation Criteria 158
e.1.3 Rope Hooking Task & Evaluation Criteria 159

e.2 Simulated Environment Descriptions 161
e.2.1 Valve3 Task 161

e.3 Algorithm Details 163
e.3.1 AVAIL 163
e.3.2 Reinforcement Learning from Images 163
e.3.3 Hyperparameters 165

e.4 Additional Real World Comparisons 167
e.4.1 Real World Comparisons to the Forward-Backward Controller (Ey-

senbach et al., 2017) 167
e.4.2 Comparison with Learned Task Graph 171
e.4.3 Example Simulated Milestones 172

f appendix : benchmarking algorithms for autonomous reinforce-
ment learning 173

f.0.1 Goal-conditioned ARL 173
f.0.2 Reversibility and Non-Ergodic MDPS 173

vi



f.0.3 Relating Prior Works to ARL 174
f.0.4 Environment Descriptions and Reward Functions 175
f.0.5 Algorithms 177
f.0.6 Evaluation Curves 178

vii



1
I N T R O D U C T I O N

Arguably, one of the central appeals aspects of learning based approaches to embodied
systems are that they provide a naturalistic account of how complex behavior could
emerge autonomously from interaction, quite similar to how humans and animals can
acquire skill through experience. Rather than rely on a human to provide all of an agent’s
knowledge a priori, the agent could itself acquire useful behavior from trial and error.
In addition, learning based approaches in principle provide a powerful mechanism for
agents to be adaptive in the face of change, an inevitable consideration for any system
in an open world environment. Consider for example a home robot. We would ideally
like the robot to autonomously learn the particularities of the home without human
programming by learning good strategies through interaction, and adapt when the home
changes. In addition, given changes in the home, we would like our systems to reuse
knowledge it has gained before, rather than relearn everything completely from scratch.

This futuristic vision of autonomous, adaptive learning systems are in stark con-
trast however to the controlled experimental settings typical in the robot learning lit-
erature (Levine et al., 2016a; Chebotar et al., 2017; Yahya et al., 2017; Ghadirzadeh et
al., 2017b; Zeng et al., 2020). It also contrasts strongly with the dominant paradigm
in the problem of supervised learning which is to have a human collect and label a
large amount of data to supervise the training of a randomly initialized deep neural
network (Krizhevsky et al., 2012; Hinton et al., 2012; Sutskever et al., 2014). From a natu-
ralistic intelligence perspective, this is unsatisfying, as humans are able to learn in very
open ended environments and can reuse knowledge when learning new behaviors. It is
also a challenge from a practical perspective, as modern ML systems have particularly
excelled in settings where large labeled dataset can be collected and deployed in the
closed environments. These assumptions do not hold universally however, and often the
main bottleneck to applying ML in such settings can be the human effort needed for data
collection or environment engineering. Thus, in order for real world learning systems to
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realize their fullest potential in terms of practicality and scalability, it is critical to design
tractable learning algorithms that limit such assumptions.

This thesis takes steps toward building systems that are better equipped to deal with
the adaptive, continual nature of the real world. In the first part of this thesis, we will
investigate how we can allow agents to leverage prior tasks to both accelerate learning
and handle uncertainty when only given limited supervision. We do so by leveraging the
meta-learning framework (Schmidhuber, 1987b; Learning a synaptic learning rule; Thrun
and Pratt, 1998), which can be viewed as learning a learning algorithm via components
such as weight initialization or optimizer (Finn et al., 2017a; Ravi and Larochelle, 2017).
We argue that meta-learning is a natural fit for problems faced by embodied agents and
present an application in reward specification via inverse reinforcement learning. We
also present work extending these methods in the face of uncertainty by framing our
approach as a probabilistic inference problem. We show how by leveraging prior tasks,
we can both learn efficiently from limited supervision using structure in related tasks.
We additionally show how the uncertainty measures we derive can be used in principled
decision making schemes.

Having established the potential of leveraging previous experience for rapid adapta-
tion, in the second part of this thesis we turn to the practical challenge of how agents can
collect data autonomously in a lifelong manner. This ability, combined with the ability
to reuse prior capabilities, promises to allow for lifelong agents to continually improve
and acquire increasingly complex behavior. In addressing these challenges, we examine
the setting of never ending data collection as an extension of the standard episodic RL
framework. We study formalisms, algorithms and finally real world applications in this
setting. We present in this part of the thesis real world robotic experiments of a dexter-
ous four fingered robot, which learns to successfully manipulate complex objects, learn
multiple behaviors, and autonomously recover from failure.

The main contributions of this thesis are organized as follows:
• In Chapter 2, we present an application of meta-learning in the setting of reward

specification via inverse reinforcement learning. We build on prior meta-learning
approaches and additionally describe an interpretation of our approach as learning
a probabilistic ‘prior’ over intent.

• Next, in Chapter 3, we extend this link to probabilistic inference to allow for a more
principled approach to handling uncertainty. We demonstrate the efficacy of this
approach in the standard few-shot classification setting, in addition to the active
learning setting.

• Having established the potential of leveraging structure in previously experienced
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“tasks”, in chapter 4, we next shift to the question of how embodied agents can
autonomously collect their own set of tasks autonomously. We do so by studying a
modification of the standard episodic RL setting and by using ideas from unsuper-
vised skill learning.

• In Chapter 5 and 6, we present the culmination of these ideas in the challenging
setting of real world dexterous manipulation. We show how through hundreds
of hours of continuous interaction, we can learn multiple complex behaviors and
leverage them for continual data collection. In bridging these ideas to the real
world, we additionally address challenges in reward inference, state estimation,
and task inference in a unified data driven manner.

• In Chapter 7, we present the present state of algorithms in the setting of “Au-
tonomous Reinforcement Learning” by presenting both a benchmark and a com-
prehensive evaluation. We describe qualitative shortcomings in current approaches,
and suggest future directions for research in this setting.

• Finally, in Chapter 8, we conclude with future directions for tackling challenges in
learning on embodied systems.

These chapters cover work from the papers listed below. Where a “*” is indicated, the
set of authors contributed equally. Where I was the sole first author of the paper, it indi-
cates that I was principally responsible for leading the research and writing of the work.
Where multiple authors contributed as first authors, it indicates that the experimental
and written contributions were equally shared and the work was co-led. In the work cov-
ered in Chapter 5, the work was primarily led by my co-authors of Gupta et al., 2021a,
where I contributed to the simulation results. In the event of any uncertainty related to
work attribution, all credit should go to my co-authors without whom this thesis would
not have been possible.

1. K. Xu, Z. Hu, A. Rovinsky, R. Doshi, A. Gupta, V. Kumar, S. Levine, Autonomous Multitask
Visual Dexterous Manipulation, In submission (2022)

2. A. Sharma*, K. Xu*, A. Gupta, K. Hausman, S. Levine, C. Finn, Autonomous Reinforcement
Learning: Formalism and Benchmarking, ICLR (2022)

3. A. Gupta*, J. Yu*, T. Zhao*, V. Kumar*, A. Rovinsky, K. Xu, T. Devlin, S. Levine, Reset-
Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation
Behaviors without Human Intervention, ICRA (2021)

4. K. Xu*, S. Verma*, C. Finn, S. Levine, Learning Skillful Resets: Acquisition of Behaviors via
Reset-Free Games, NeurIPS (2020)

5. K. Xu, E. Ratner, A. Dragan, S. Levine, C. Finn, Learning a Prior over Intent via Meta-
Inverse Reinforcement Learning, ICML (2019)

6. C. Finn*, K. Xu*, S. Levine, Probabilistic Model-Agnostic Meta-Learning, NeurIPS (2018)
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2
L E A R N I N G A P R I O R O V E R I N T E N T V I A M E TA - I N V E R S E
R E I N F O R C E M E N T L E A R N I N G

Reinforcement learning (RL) algorithms have the potential to automate a wide range
of decision-making and control tasks across a variety of different domains, as demon-
strated by successful recent applications ranging from robotic control (Kober and Peters,
2012; Levine et al., 2016a) to game playing (Mnih et al., 2015; Silver et al., 2016). A key
assumption of the RL problem statement is the availability of a reward function that
accurately describes the desired task. For many real world tasks, reward functions can
be challenging to manually specify, while being crucial for good performance (Amodei
et al., 2016). Most real world tasks are multifaceted and require reasoning over multiple
factors in a task (e.g. a robot cleaning in a house with children), while simultaneously
providing appropriate reward shaping to make the task feasible with tractable explo-
ration (Ng et al., 1999). These challenges are compounded by the inherent difficulty of
specifying rewards for tasks with high-dimensional observation spaces such as images.

Inverse reinforcement learning (IRL) is an approach that aims to address this problem
by instead inferring the reward function from demonstrations of the task (Ng and Rus-
sell, 2000). This has the appealing benefit of taking a data-driven approach to reward
specification in place of hand engineering. In practice however, rewards functions are
rarely learned as it can be prohibitively expensive to provide demonstrations that cover
the variability common in real world tasks (e.g., collecting demonstrations of opening
every type of door knob). In addition, while learning a complex function from high di-
mensional observations might make an expressive function approximator seem like a
reasonable modelling assumption, in the “few-shot” domain it is notoriously difficult to
unambiguously recover a good reward function with expressive function approximators.
Many prior approaches have thus relied on low-dimensional linear models with hand-
crafted features that effectively encode a strong prior on the relevant features of a task.
This requires engineering a set of features by hand that work well for a specific problem.
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In this work, we propose an approach that instead explicitly learns expressive features
that are robust even when learning with limited demonstrations.

Our approach relies on the key observation that related tasks share a common struc-
ture that we can leverage when learning new tasks. To illustrate, considering a robot nav-
igating through a home. While the exact reward function we provide to the robot may
differ depending on the task, there is a structure amid the space of useful behaviours,
such as navigating to a series of landmarks, and there are certain behaviors we always
want to encourage or discourage, such as avoiding obstacles or staying a reasonable
distance from humans. This notion agrees with our understanding of why humans can
easily infer the intents and goals (i.e., reward functions) of even abstract agents from just
one or a few demonstrations Baker et al., 2007, as humans have access to strong priors
about how other humans accomplish similar tasks accrued over many years. Similarly,
our objective is to discover the common structure among different tasks, and encode that
structure in a way that can be used to infer reward functions from a few demonstrations.

More specifically, in this work we assume access to a set of tasks, along with demon-
strations of the desired behaviors for those tasks, which we refer to as the meta-training
set. From these tasks, we then learn a reward function parameterization that enables
effective few-shot learning when used to initialize IRL in a novel task. Our method is
summarized in Fig. 1. Our key contribution is an algorithm that enables efficient learning
of new reward functions by using meta-training to build a rich “prior” for goal inference.
Using our proposed approach, we show that we can learn deep neural network reward
functions from raw pixel observations on two distinct domains with substantially better
data efficiency than existing methods and standard baselines.

2.1 related work

Inverse reinforcement learning (IRL) (Ng and Russell, 2000) is the problem of inferring
an expert’s reward function directly from demonstrations. Prior methods for performing
IRL range from margin based approaches (Abbeel and Ng, 2004; Ratliff et al., 2006a) to
probabilistic approaches (Ramachandran and Amir, 2007; Ziebart et al., 2008b). Although
it is possible to extend our approach to any other IRL method, in this work we base on
work on the maximum entropy (MaxEnt) framework (Ziebart et al., 2008b). In addition to
allowing for sub-optimality in the expert demonstrations, MaxEnt-IRL can be re-framed
as a maximum likelihood estimation problem. (Sec. 6.3).

In part to combat the under-specified nature of IRL, prior work has often used low-
dimensional linear parameterizations with handcrafted features (Abbeel and Ng, 2004;
Ziebart et al., 2008b). In order to learn from high dimensional input, Wulfmeier et al.
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Figure 1: A diagram of our meta-inverse RL approach. Our approach attempts to remedy over-fitting in
few-shot IRL by learning a “prior” that constraints the set of possible reward functions to lie within a few
steps of gradient descent. Standard IRL attempts to recover the reward function directly from the available
demonstrations. The shortcoming of this approach is that there is little reason to expect generalization as
it is analogous to training a density model with only a few examples.

(2015a) proposed applying fully convolutional networks (Shelhamer et al., 2017) to the
MaxEnt IRL framework (Ziebart et al., 2008b) for several navigation tasks (Wulfmeier
et al., 2016a; Wulfmeier et al., 2016b). Other methods that have incorporated neural
network rewards include guided cost learning (GCL) (Finn et al., 2017b), which uses
importance sampling and regularization for scalability to high-dimensional spaces, and
adversarial IRL (Fu et al., 2018a). Several other methods have also proposed imitation
learning approaches based on adversarial frameworks that resemble IRL, but do not aim
to directly recover a reward function (Ho and Ermon, 2016; Li et al., 2017a; Hausman
et al., 2017; Kuefler and Kochenderfer, 2018). In this work, instead of improving the
ability to learn reward functions on a single task, we focus on the problem of effectively
learning to use prior demonstration data from other IRL tasks, allowing us to learn new
tasks from a limited number demonstrations even with expressive non-linear reward
functions.

Prior work has explored the problem of multi-task IRL, where the demonstrated be-
havior is assumed to have originated from multiple experts achieving different goals.
Some of these approaches include those that aim to incorporate a shared prior over re-
ward functions through extending the Bayesian IRL (Ramachandran and Amir, 2007)
framework to the multi-task setting (Dimitrakakis and Rothkopf, 2012; Choi and Kim,
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2012). Other approaches have clustered demonstrations while simultaneously inferring
reward functions for each cluster (Babeş-Vroman et al., 2011) or introduced regulariza-
tion between rewards to a common “shared reward” (Li and Burdick, 2017). Our work is
similar in that we also seek to encode prior information common to the tasks. However,
a critical difference is that our method specifically aims to distill the meta-training tasks
into a prior that can then be used to learn rewards for new tasks efficiently. The goal
therefore is not to acquire good reward functions that explain the meta-training tasks,
but rather to use them to learn efficiently on new tasks.

Our approach builds on work on the broader problem of meta-learning (Schmidhuber,
1987b; Learning a synaptic learning rule; Naik and Mammone, 1992; Thrun and Pratt, 2012)
and generative modelling (Rezende et al., 2016; Reed et al., 2018; Mordatch, 2018). Prior
work has proposed a variety of solutions for learning to learn including memory based
methods (Duan et al., 2016; Santoro et al., 2016; Wang et al., 2016; Mishra et al., 2017),
methods that learn an optimizer and/or initialization (Andrychowicz et al., 2016; Ravi
and Larochelle, 2016; Finn et al., 2017b; Li and Malik, 2017), and methods that compare
new datapoints in a learned metric space (Koch, 2015; Wang and Hebert, 2016; Vinyals
et al., 2016; Shyam et al., 2017; Snell et al., 2017). Our work is motivated by the goal of
broadening the applicability of IRL, but in principle it is possible to adapt many of these
meta-learning approaches for our problem statement. We build upon Finn et al. (2017b),
which has also been previously applied to the related problems of imitation learning
and human motion prediction Wang et al., 2016; Finn et al., 2017d; Alet et al., 2018. We
leave it to future work to do a comprehensive investigation of different meta-learning
approaches which could broaden the applicability of IRL.

2.2 preliminaries and overview

In this section, we introduce our notation and describe the IRL and meta-learning prob-
lems.

2.2.1 Learning Rewards via Maximum Entropy Inverse Reinforcement Learning

The standard Markov decision process (MDP) is defined by the tuple (S,A,ps,R,γ)
where S and A denote the set of possible states and actions respectively, R : S×A → R is
the reward function, γ ∈ [0, 1] is the discount factor and ps : S× S×A → [0, 1] denotes
the transition distribution over the next state st+1, given the current state st and current
action at. Typically, the goal of “forward” RL is to maximize the expected discounted
return R(τ) =

∑T
t=1 γ

t−1r(st, at).
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In IRL, we instead assume that the reward function is unknown but that we instead
have access to a set of expert demonstrations D = {τ1, . . . , τK}, where τk = {s1, a1, . . . , sT , aT }.

The goal of IRL is to recover the unknown reward function R from the set of demon-
strations. We build on the maximum entropy (MaxEnt) IRL framework by Ziebart et al.
(2008b), which models trajectories as being distributed proportional to their exponenti-
ated return

p(τ) =
1

Z
exp (R(τ)) , (1)

where Z is the partition function, Z =
∫
τ exp(R(τ))dτ. This distribution can be shown to

be induced by the optimal policy in entropy regularized forward RL problem:

π∗ = arg max
π

Eτ∼π [R(τ)− logπ(τ)] . (2)

This formulation allows us to pose the reward learning problem as a maximum likeli-
hood estimation (MLE) problem in an energy-based model Rφ by defining the following
loss:

min
φ

Eτ∼D [LIRL(τ)] :=min
φ

Eτ∼D

[
− logpφ(τ)

]
. (3)

Learning in general energy-based models of this form is common in many applications
such as structured prediction. However, in contrast to applications where learning can
be supervised by millions of labels (e.g. semantic segmentation), the learning problem in
Eq. 3 must typically be performed with a relatively small number of example demonstra-
tions. In this work, we seek to address this issue in IRL by providing a way to integrate
information from prior tasks to constrain the optimization in Eq. 3 in the regime of
limited demonstrations.

2.2.2 Meta-Learning

The goal of meta-learning algorithms is to optimize for the ability to learn efficiently on
new tasks. Rather than attempting to generalize to new datapoints, meta-learning can be
understood as attempting to generalize to new tasks. It is assumed in the meta-learning
setting that there are two disjoint sets of tasks that we refer to as the meta-training set
{Ti ; i = 1..N} and meta-test set {Tj ; j = 1..M}, which are both drawn from a distribution
p(T). During meta-training time, the meta-learner attempts to learn the structure of the
tasks in the meta-training set, such that when it is presented with a test task, it can
leverage this structure to learn efficiently from a limited number of examples.

To illustrate this distinction, consider the case of few-shot learning setting. Let fθ
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denote the learner, and let a task be defined by learning from K training examples Xtr
T =

{x1 . . . , xK}, Ytr
T = {y1 . . . , yK}, and evaluating on K ′ test examples Xtest

T = {x1 . . . , xK ′},
Ytest
T = {y1 . . . , yK ′}. One approach to meta-learning is to directly parameterize the meta-

learner with an expressive model such as a recurrent or recursive neural network (Duan
et al., 2016; Mishra et al., 2017) conditioned on the task training data and the inputs for
the test task: fθ(Y|Xtest

T ,Xtr
T , Ytr

T ). Such a model is optimized using log-likelihood across all
tasks. In this approach to meta-learning, since neural networks are known to be universal
function approximators (Siegelmann and Sontag, 1995), any desired structure between
tasks can be implicitly encoded.

Rather than learn a single black-box function, another approach to meta-learning is to
learn components of the learning procedure such as the initialization (Finn et al., 2017b)
or the optimization algorithm (Ravi and Larochelle, 2016; Andrychowicz et al., 2016). In
this work we extend the approach of model agnostic meta-learning (MAML) introduced
by Finn et al. (2017b), which learns an initialization that is adapted by gradient descent.
Concretely, in the supervised learning case, given a loss function L(θ,XT, YT) (e.g. cross-
entropy), MAML performs the following optimization

min
θ

∑

T

L(φT,Xtest
T , Ytest

T )

=min
θ

∑

T

L
(
θ−α∇θL(θ,Xtr

T , Ytr
T ),X

test
T , Ytest

T

)
, (4)

where the optimization is over an initial set of parameters θ and the loss on the held out
tasks Xtest

T becomes the signal for learning the initial parameters for gradient descent
(with step size α) on Xtr

T . This optimization is analogous to adding a constraint in a
multi-task setting, which we show in later sections is analogous in our setting to learning
a prior over reward functions.

2.3 learning to learn rewards

Our goal in meta-IRL is to learn how to learn reward functions across many tasks such
that the model can infer the reward function for a new task using only one or a few
expert demonstrations. Intuitively, we can view this problem as aiming to learn a prior
over the rewards of expert demonstrators, such that when given just one or a few demon-
strations of a new task, we can combine the learned prior with the new data to effectively
determine the expert’s intent. Such a prior is helpful in inverse reinforcement learning
settings, since the space of reward functions with are relevant to particular task is much
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smaller than the space of all possible rewards definable on the raw observations.
During meta-training, we have a set of tasks {Ti ; i = 1..N}. Each task Ti has a set of

demonstrations DT = {τ1, . . . , τK} from an expert policy which we partition into disjoint
Dtr

T and Dtest
T sets. The demonstrations for each meta-training task are assumed to be pro-

duced by the expert according to the maximum entropy model in Section 2.2.1. During
meta-training, these tasks will be used to encodes common structure so that our model
can quickly acquire rewards for new tasks from just a few demonstrations.

After meta-training, our method is presented with a new task. During this meta-test
phase, the algorithm must infer the parameters of the reward function rφ(st, at) for the
new task from a few demonstrations. As is standard in meta-learning, we assume that the
test task is from the same distribution of tasks seen during meta-training, a distribution
that we denote as p(T).

2.3.1 Meta Reward and Intention Learning (MandRIL)

In order to meta-learn a reward function that can act as a prior for new tasks and new
environments, we first formalize the notion of a good reward by defining a loss LT(θ)
on the reward function rθ for a particular task T. We use the MaxEnt IRL loss LIRL
discussed in Section 6.3, which, for a given DT, leads to the following gradient (Ziebart
et al., 2008b):

∇θLT(θ) =
∂rθ
∂θ

[
Eτ[µτ]− µDT

]
. (5)

where µτ are the state-action visitations under the optimal maximum entropy policy
under rθ, and µD are the mean state visitations under the demonstrated trajectories.

If our end goal were to achieve a single reward function that works as well as possible
across all tasks in {Ti ; i = 1..N}, then we could simply follow the mean gradient across
all tasks. However, our objective is different: instead of optimizing performance on the
meta-training tasks, we aim to learn a reward function that can be quickly and efficiently
adapted to new tasks at meta-test time. In doing so, we aim to encode prior information
over the task distribution in this learned reward prior.

We propose to implement such a learning algorithm by finding the parameters θ, such
that starting from θ and taking a small number of gradient steps on a few demonstra-
tions from given task leads to a reward function for which a set of test demonstrations
have high likelihood, with respect to the MaxEnt IRL model. In particular, we would like
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to find a θ such that the parameters

φT = θ−α∇θL
tr
T (θ) (6)

lead to a reward function rφT
for task T, such that the IRL loss (corresponding to negative

log-likelihood) for a disjoint set of test demonstrations, given by LT,test
IRL , is minimized. The

corresponding optimization problem for θ can therefore be written as follows:

min
θ

N∑

i=1

L test
Ti

(φTi) =
N∑

i=1

L test
Ti

(
θ−α∇θL

tr
Ti
(θ)

)
. (7)

Our method acquires this prior θ over rewards in the task distribution p(T) by optimiz-
ing this loss. This amounts to an extension of the MAML algorithm in Section 2.2.2 to the
inverse reinforcement learning setting. This extension is quite challenging, because com-
puting the MaxEnt IRL gradient requires repeatedly solving for the current maximum
entropy policy and visitation frequencies, and the MAML objective requires computing
derivatives through this gradient step. Next, we describe in detail how this is done. An
overview of our method is also outlined in Alg. 1.
Meta-training. The computation of the meta-gradient for the objective in Eq. 7 can be
conceptually separated into two parts. First, we perform the update in Eq. 6 by com-
puting the expected state visitations µ, which is the expected number of times an agent
will visit each state. We denote this overall procedure as State-Visitations-Policy, and
follow Ziebart et al. (2008b) by first computing the maximum entropy optimal policy
in Eq. 2 under the current rθ, and then approximating µ using dynamic programming.
Next, we compute the state visitation distribution of the expert using a procedure which
we denote as State-Visitations-Traj. This can be done either empirically, by averaging
the state visitation of the experts demonstrations, or by using State-Visitations-Policy
if the true reward is available at meta-training time. This allows us to recover the IRL
gradient according to Eq. 5, which we can then apply to compute φT according to Eq. 6.

Second, we need to differentiate through this update to compute the gradient of the
meta-loss in Eq. 7. Note that the meta-loss itself is the IRL loss evaluated with a different
set of test demonstrations. We follow the same procedure as above to evaluate the gra-
dient of LT,test

IRL with respect to the post-update parameters φT, and then apply the chain
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rule to compute the meta-gradient:

∇θL
test
T (θ) =

∂

∂θ
(θ−α∇θL

tr
T (θ))

∂rφT

∂φT

∂L test
T

∂rφT

=

(

I −α
∂2L tr

T (θ)

∂θ2
−α

∂ rθ
∂θ

D
∂ rθ
∂θ

'
)

∂rφT

∂φT

∂L test
T

∂rφT

(8)

where on the second line we differentiate through the MaxEnt-IRL update, and we
define the |S||A|-dimensional diagonal matrix D as

D := diag

({
∂

∂ rθ,i
(Eτ[µτ])i

}|S||A|

i=1

)

.

A detailed derivation of this expression is provided in the supplementary Appendix A.5.
Meta-testing. Once we have acquired the meta-trained parameters θ that encode a prior
over p(T), we can leverage this prior to enable fast, few-shot IRL of novel tasks in {Tj ; j =
1..M}. For each task, we first compute the state visitations from the available set of
demonstrations for that task. Next, we use these state visitations to compute the gradient,
which is the same as the inner loss gradient computation of the meta-training loop in
Alg. 1. We apply this gradient to adapt the parameters θ to the new task. Even if the
model was trained with only one inner gradient steps, we found in practice that it was
beneficial to take substantially more gradient steps during meta-testing; performance
continued to improve with up to 20 steps.

2.3.2 Connection to Learning a Prior over Intent

The objective in Eq. 6 optimizes for parameters that enable the reward function to gen-
eralize efficiently on a wide range of tasks. Intuitively, constraining the space of reward
functions to lie within a few steps of gradient descent can be interpreted as expressing
a “locality” prior over reward function parameters. This intuition can be made more
concrete by the following analysis.

By viewing IRL as maximum likelihood estimation in a particular graphical model
(Fig. 2), we can take the perspective of Grant et al. (2018a) who showed that for a
linear model, fast adaptation via a few steps of gradient descent in MAML is performing
MAP inference over φ, under a Gaussian prior with the mean θ and a covariance that
depends on the step size, number of steps and hessian of the loss. This is based on the
connection between early stopping and regularization previously discussed in Santos
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Figure 2: Our approach can be understood as approximately learning a distribution over the demonstra-
tions τ, in the factor graph p(τ) = 1

Z

∏T
t=1Φr(φT , st, at)Φdyn(st+1, st, at) (above) where we learn a prior

over φT , which during meta-test is used for MAP inference over new expert demonstrations.

(1996a), which we refer the readers to for a more detailed discussion. The interpretation
of MAML as imposing a Gaussian prior on the parameters is exact in the case of a
likelihood that is quadratic in the parameters (such as the log-likelihood of a Gaussian
in terms of its mean). For any non-quadratic likelihood, this is an approximation in a
local neighborhood around θ (i.e. up to convex quadratic approximation). In the case
of complex parameterizations, such as deep function approximators, this is a coarse
approximation and unlikely to be the mode of a posterior. However, we can still frame
the effect of early stopping and initialization as serving as a prior in a similar way as
prior work (Sjöberg and Ljung, 1995; Duvenaud et al., 2016; Grant et al., 2018a). More
importantly, this interpretation hints at future extensions to our approach that could
benefit from employing more fully Bayesian approaches to reward and goal inference.

2.4 experiments

Our evaluation seeks to answer two questions. First, we aim to test our core hypothesis
that using prior task experience enables reward learning for new tasks with just a few
demonstrations. Second, we compare our method with alternative approaches that make
use of multi-task experience.

We test our core hypothesis by comparing learning performance on a new tasks start-
ing from the initialization produced by MandRIL with learning a separate model for
every task starting either from a random initialization or from an initialization obtained
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by supervised pre-training. We refer to these approaches as learning “from scratch”
and “average gradient” pretraining respectively. Our supervised pre-training baseline
follows the average gradient during meta-training tasks and finetunes at meta-test time
(as discussed in Section 2.3). Unlike our method, supervised pre-training does not opti-
mize for a model that performs well under fine tuning, but does use the same prior data
to pre-train. We additionally compare to pre-training on a single task as well as all the
meta-training tasks.

To our knowledge, there is no prior work that addresses the specific meta-inverse
reinforcement learning problem introduced in this paper. Thus, to provide a point of
comparison and calibrate the difficulty of the tasks, we adapt two alternative black-box
meta-learning methods to the IRL setting. The comparisons to both of the black-box
methods described below evaluate the importance of incorporating the IRL gradient
into the meta-learning process, rather than learning the adaptation process entirely from
scratch.

demo conditional model : Our method implicitly conditions on the demonstra-
tions through the gradient update. In principle, a conditional deep model with sufficient
capacity could implicitly implement a similar learning rule. Thus, we consider a con-
ditional model (often referred to as a “contextual model” (Finn et al., 2017d)), which
receives the demonstration as an additional input.

recurrent meta-learner : We additionally compare to an RNN-based meta-learner (San-
toro et al., 2016; Duan et al., 2017). Specifically, we implement a conditional model by
feeding both images and sequences of states visited by the demonstrations to an LSTM.

We consider two environments: (1) an image-based navigation task with an aerial
viewpoint, (2) a first-person navigation task in a simulated home environment with ob-
ject interaction. We describe here the environments and evaluation protocol and provide
detailed experimental settings and hyperparameters for both domains in Appendices A.1
and A.2.

(1) spriteworld navigation domain. Since most prior IRL work (and multi-
task IRL work) studied settings where linear reward function approximators suffice (i.e.,
low-dimensional state spaces and hand-designed features), we design an experiment that
is significantly more challenging—that requires learning rewards on raw pixels. We con-
sider a navigation problem where we must learn a convolutional neural network that di-
rectly maps image pixels to rewards. We introduce a family of tasks called “SpriteWorld.”
Some example tasks are shown in Fig. 3. Tasks involve navigating to goal objects while
exhibiting preference over terrain types (e.g., the agent prefers to traverse dirt tiles over

15



Figure 3: An example task on the SpriteWorld domain. When learning a task, the agent has access
to the image (left) and demonstrations (red arrows). To evaluate learning (right), the agent is
tested for its ability to recover the reward for the task when the objects have been rearranged.
The reward structure we wish to capture can be illustrated by considering the initial state in blue.
An policy acting optimally under a correctly inferred reward should interpret the other objects
as obstacles, and prefer a path on dirt.

traversing grass tiles). At meta-test time, we provide one or a few demonstrations in a sin-
gle training environment and evaluate the reward learned using these demonstrations in
a new, test environment that contains the same objects as the training environment, but
arranged differently. Evaluating in a new test environment is critical to measure that, af-
ter adapting to the training environment from a few demonstrations, the reward learned
the correct visual cues, rather than simply memorizing the demonstration trajectory.

We generate unique tasks in this domain as follows. First, we randomly choose a set of
three sprites from one hundred sprites from the original game (creating a total of 161,700
unique tasks). We randomly place these three sprites within a randomly generated ter-
rain tiling; we designate one of the sprites to be the goal landmark of the navigation task.
The other two objects are treated as obstacles for which the agent incurs a large negative
reward for not avoiding. In each task, we optimize our model on a training world and
generalization in a test world, as described below.

(2) suncg navigation domain : In addition to the SpriteWorld domain, we eval-
uate our approach on a first person image-based navigation task in an indoor house
environment where the agent must interact with objects. We use an environment built
on top of the SUNCG dataset (Song et al., 2017) which has previously been used in
the context of IRL Fu et al., 2019 with language instructions. We follow a similar task
setup as Fu et al. (2019), although we omit the language instructions. In this domain, we
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Figure 4: An example task in the SUNCG environment (top). The agent must complete either a
“NAV” task (blue line) where the goal is to navigate from the start to the cup or a “PICK” task
(blue + green line) where the agent must also bring the cup to the bed. The agent’s observation
is a panoramic first-person viewpoint (see bottom left for RGB). Following the convention in
prior work Fu et al., 2019, we provide to the reward function the corresponding semantic images
(bottom right). These images are 32× 24 containing 61 channels corresponding to each object
class.

consider tasks that can be categorized into two types.

navigation (nav): In this task, the agent must navigate to a location in the house
that corresponds either to a target object or location. For example, in the blue line of
Fig. 4, the agent must navigate to the “cup” object.

pick-and-place (pick): In this more difficult task, the agent moves an object be-
tween two locations. For example, in Fig 4, the agent must navigate to the “cup”, perform
a pick action and then navigate to the “bedroom”.

evaluation protocol : We evaluate on held-out tasks that were unseen during
meta-training. In the SpriteWorld domain, we consider two settings: (1) tasks involving
new combinations and placements of sprites, with sprites that were present during meta-
training, and (2) tasks with combinations of unseen sprites which we refer to as “out of
domain objects.” For each task, we generate one environment (a set of sprite positions)
along with demonstrations for adapting the reward, and generate a second environment
(with new sprite positions) for evaluating the adapted reward.
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Figure 5: An example adaptation in an UNSEEN-HOUSE (best viewed in color). The agent starts in
one room (blue square) and is required to pick up the vase (green square) and take it to the living
room (red square). The value function (blue is high, red is low) under the learned reward (bottom)
exhibits no “PICK” task structure pre-adaptation (bottom left-column). Post-adaptation (bottom
right-column), the reward function successfully leads the agent to the vase (bottom figure, top-
right plot) and after the pick action (bottom figure, bottom-right plot) is performed, navigates
the agent to the goal location.

In the SUNCG domain, we similarly evaluate on both novel combinations of objects
and locations. We follow the evaluation protocol of Fu et al. (2019) and evaluate on
“TEST” tasks which consist of tasks within the same houses as training, but with novel
combinations of objects and locations. In addition, we evaluate on environments which
consists of new houses not in the training set. We refer to these as “UNSEEN-HOUSES.”
This evaluation adds complexity by testing the models ability to successfully infer re-
wards in an entirely new scene. In total, the dataset consists of 1413 tasks (716 PICK, 697
NAV). The meta-train set is composed of 1004 tasks, the “TEST” set contains 236 tasks,
and the “UNSEEN-HOUSES” set contains 173 tasks.

evaluation metrics . We measure performance using the expected value differ-
ence, which measures the sub-optimality of a policy learned under the learned reward;
this is a performance metric used in prior IRL work (Levine et al., 2011; Wulfmeier et al.,
2015a). The metric is computed by taking the difference between the value of the opti-
mal policy under the learned reward and the value of the optimal policy under the true
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Table 1: Success rate (%) on heldout tasks with 5 demonstrations. ManDRIL achieves consistently
better performance on all task/environment types. Results are averaged over 3 random seeds.

Method Test Unseen Houses
Pick NAV Total Pick Nav Total

Behavioral Cloning 0.4 8.2 4.3 3.7 12.0 9.4
MaxEnt IRL (avg gradient) 37.3 83.7 60.8 38.3 89.7 73.3
MaxEnt IRL (from scratch) 42.4 87.9 65.4 48.1 89.9 76.5
MandRIL(ours) 52.3 90.7 77.3 56.3 91.0 82.6

MandRIL (Pre-adaptation) 6.0 35.3 20.7 4.3 34.6 25.3

reward. On the SUNCG domain, we follow Fu et al. (2019) and report the success rate of
the optimal policy under the learned reward function.

results . The results for SpriteWorld are shown in Fig. 6, which illustrate test per-
formance with in-distribution and out-of-distribution sprites. Our approach, MandRIL,
achieves consistently better performance in both settings. Most significantly, our ap-
proach performs well even with single-digit numbers of demonstrations. By comparison,
alternative meta-learning methods generally overfit considerably, attaining good train-
ing performance (see Appendix. A.3 for curves) but poor test performance. Learning the
reward function from scratch is in fact the most competitive baseline – as the number of
demonstrations increases, simply training the reward function from scratch on the new
task is the only method that matches the performance of MandRIL when provided 20
or more demonstrations. With only a few demonstrations however, MandRIL has sub-
stantially lower value difference. It is worth noting the performance of MandRIL on the
out of distribution test setting (Fig. 6, bottom): although the evaluation is on new sprites,
MandRIL is still able to adapt via gradient descent and exceed the performance all other
methods.

In both domains, we perform a comparison to representations finetuned from a su-
pervised pre-training phase in Fig. 6 and Table 9. We compare against an approach that
follows the mean gradient across the tasks at meta-training time and is fine-tuned at
meta-test time which we find consistently leads to negative transfer. We conclude that
fine tuning reward functions learned in this manner is not an effective way of using prior
task information. In contrast, we find that our approach, which explicitly optimizes for
initial weights for fine-tuning, robustly improves performance on all task types and test
settings. By visualizing the value under the learned reward function (see Fig. 5), we see
that even with a small number of gradient steps, the reward function can be effectively
adapted to an unseen home layout.

19



Note that the SUNCG task is substantially more challenging, requiring the reward
function to interpret first-person images. Indeed, the pretrained MaxEntIRL algorithm
that does not use meta-learning exhibits negative transfer, as illustrated by the lower
performance of this method on all tasks as compared to the learning “from scratch”
version, which learns each task entirely from random initialization. Training from scratch
is a strong baseline here, because the method still sees every single first-person image in
the house – 2257.7 images on average. This provides sufficient variety to learn effective
visual features in many cases. Nonetheless, our method (last row in Table 1) produces
a substantial improvement, especially on the much harder “PICK” task, demonstrating
that meta-learning can produce positive transfer even when pre-training does not.

2.5 conclusion

In this work, we present an approach that enables few-shot learning of reward func-
tions. We achieve this through a novel formulation of IRL that learns to encode common
structure across tasks. Using our meta-IRL approach, we show that we can leverage data
from previous tasks to effectively learn reward functions from raw pixel observations for
new tasks, from only a handful of demonstrations. Our work paves the way for future
work that considers unknown dynamics, or work that employs more fully probabilistic
approaches to reward and goal inference.
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Algorithm 1 Meta Reward and Intention Learning (MandRIL)

1: Input: Set of meta-training tasks {T}meta-train

2: Input: hyperparameters α,β
3: function MaxEntIRL-Grad(rθ, T, D) ! Single task update
4: # Compute state visitations of demos
5: µD = State-Visitations-Traj(T, D)
6: # Compute Max-Ent state visitations
7: Eτ[µτ] = State-Visitations-Policy(rθ, T)
8: # MaxEntIRL gradient (Ziebart et al., 2008b)
9: ∂L

∂rθ
= Eτ[µτ]− µD

10: Return ∂L
∂rθ

11:
12: Randomly initialize θ
13: while not done do
14: Sample batch of tasks Ti ∼ {T}meta-train

15: for all Ti do
16: Sample demos Dtr = {τ1, . . . , τK} ∼ Ti
17: # Inner loss computation

18:
∂L tr

Ti
(θ)

∂rθ
= MaxEntIRL-Grad(rθ, Ti, Dtr)

19: Compute ∇θL
tr
Ti
(θ) from

∂L tr
Ti

(θ)

∂rθ
20: Compute φTi = θ−α∇θL

tr
Ti
(θ)

21: Sample demos Dtest = {τ ′
1, . . . , τ ′

K ′} ∼ Ti
22: # Outer loss computation

23:
∂L test

Ti
∂rθ

= MaxEntIRL-Grad(rφTi
, Ti, Dtest))

24: # Compute meta-gradient

25: Compute ∇θL
test
Ti

from
∂L test

Ti
∂rθ

via chain rule

26: Compute update to θ ← θ−β
∑

i∇θL
test
Ti
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Figure 6: Meta-test performance on the SpriteWorld domain (lower is better): held-out tasks per-
formance (top) and held-out tasks with novel sprites (bottom). The recurrent meta-learner has
a value difference > 60 in both test settings. In both test settings, MandRIL achieves compara-
ble performance to the training environment, while the other methods overfit until they receive
at least 10 demonstrations (see Appendix A.3 for training environment performance). We find
that pre-training on the full set of tasks leads to negative transfer, while pre-training on a single
task is comparable to random initialization. ManDRIL outperforms both alternative initialization
approaches, which shows that optimizing for initial weights for fine-tuning robustly improves
performance. Shaded regions show 95% confidence intervals.
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3
P R O B A B L I S T I C M O D E L A G N O S T I C M E TA - L E A R N I N G

In the last chapter, we showed how it was possible to acquire solutions to complex tasks
from only a few examples by leveraging past experience to learn a “prior” over intent.
The process of learning this prior entailed discovering the shared structure across differ-
ent tasks from the same family, such as commonly occurring visual features or semantic
cues. Algorithms that yield efficient learning, often referred to as learning-to-learn or
meta-learning (Braun et al., 2010), of new tasks are a promising way to reuse related
tasks. However, when the end goal of few-shot meta-learning is to learn solutions to
new tasks from small amounts of data, a critical issue that must be dealt with is task
ambiguity: even with the best possible prior, there might simply not be enough informa-
tion in the examples for a new task to resolve that task with high certainty. It is therefore
quite desireable to develop few-shot meta-learning methods that can propose multiple
potential solutions to an ambiguous few-shot learning problem. Such a method could be
used to evaluate uncertainty (by measuring agreement between the samples), perform
active learning, or elicit direct human supervision about which sample is preferable. For
example, in safety-critical applications, such as few-shot medical image classification,
uncertainty is crucial for determining if the learned classifier should be trusted. When
learning from such small amounts of data, uncertainty estimation can also help predict
if additional data would be beneficial for learning and improving the estimate of the
rewards. Finally, while we do not experiment with this in this paper, we expect that
modeling this ambiguity will be helpful for reinforcement learning problems, where it
can be used to aid in exploration.

While recognizing and accounting for ambiguity is an important aspect of the few-
shot learning problem, it is challenging to model when scaling to high-dimensional data,
large function approximators, and multimodal task structure. Representing distributions
over functions is relatively straightforward when using simple function approximators,
such as linear functions, and has been done extensively in early few-shot learning ap-
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proaches using Bayesian models (Tenenbaum, 1999; Fei-Fei et al., 2003). But this problem
becomes substantially more challenging when reasoning over high-dimensional function
approximators such as deep neural networks, since explicitly representing expressive
distributions over thousands or millions of parameters if often intractable. As a result,
recent more scalable approaches to few-shot learning have focused on acquiring deter-
ministic learning algorithms that disregard ambiguity over the underlying function. Can
we develop an approach that has the benefits of both classes of few-shot learning meth-
ods – scalability and uncertainty awareness? To do so, we build upon tools in amortized
variational inference for developing a probabilistic meta-learning approach.

In particular, our method builds on model-agnostic meta-learning (MAML) Finn et
al., 2017a, a few shot meta-learning algorithm that uses gradient descent to adapt the
model at meta-test time to a new few-shot task, and trains the model parameters at meta-
training time to enable rapid adaptation, essentially optimizing for a neural network
initialization that is well-suited for few shot learning. MAML can be shown to retain the
generality of black-box meta-learners such as RNNs Finn and Levine, 2017, while being
applicable to standard neural network architectures. Our approach extends MAML to
model a distribution over prior model parameters, which leads to an appealing simple
stochastic adaptation procedure that simply injects noise into gradient descent at meta-
test time. The meta-training procedure then optimizes for this simple inference process
to produce samples from an approximate model posterior.

The primary contribution of this paper is a reframing of MAML as a graphical model
inference problem, where variational inference can provide us with a principled and
natural mechanism for modeling uncertainty. Our approach enables sampling multiple
potential solutions to a few-shot learning problem at meta-test time, and our experi-
ments show that this ability can be used to sample multiple possible regressors for an
ambiguous regression problem, as well as multiple possible classifiers for ambiguous
few-shot attribute classification tasks. We further show how this capability to represent
uncertainty can be used to inform data acquisition in a few-shot active learning problem.

3.1 related work

Hierarchical Bayesian models are a long-standing approach for few-shot learning that
naturally allow for the ability to reason about uncertainty over functions (Tenenbaum,
1999; Fei-Fei et al., 2003; Lawrence and Platt, 2004; Yu et al., 2005; Gao et al., 2008; Daumé
III, 2009; Wan et al., 2012). While these approaches have been demonstrated on simple
few-shot image classification datasets Lake et al., 2015, they have yet to scale to the
more complex problems, such as the experiments in this paper. A number of works have
approached the problem of few-shot learning from a meta-learning perspective Schmid-
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huber, 1987b; Hochreiter et al., 2001, including black-box Santoro et al., 2016; Duan et al.,
2016; Wang et al., 2016 and optimization-based approaches Ravi and Larochelle, 2017;
Finn et al., 2017a. While these approaches scale to large-scale image datasets Vinyals
et al., 2016 and visual reinforcement learning problems Mishra et al., 2018, they typically
lack the ability to reason about uncertainty.

Our work is most related to methods that combine deep networks and probabilistic
methods for few-shot learning Edwards and Storkey, 2017; Grant et al., 2018b; Lacoste et
al., 2017. One approach that considers hierarchical Bayesian models for few-shot learn-
ing is the neural statistician Edwards and Storkey, 2017, which uses an explicit task
variable to model task distributions. Our method is fully model agnostic, and directly
samples model weights for each task for any network architecture. Our experiments
show that our approach improves on MAML Finn et al., 2017a, which outperforms the
model by Edwards and Storkey (2017). Other work that considers model uncertainty in
the few-shot learning setting is the LLAMA method (Grant et al., 2018b), which also
builds on the MAML algorithm. LLAMA makes use of a local Laplace approximation
for modeling the task parameters (post-update parameters), which introduces the need
to approximate a high dimensional covariance matrix. We instead propose a method
that approximately infers the pre-update parameters, which we make tractable through
a choice of approximate posterior parameterized by gradient operations.

Bayesian neural networks MacKay, 1992; Hinton and Van Camp, 1993; Neal, 1995; Barber
and Bishop, 1998 have been studied extensively as a way to incorporate uncertainty into
deep networks. Although exact inference in Bayesian neural networks is impractical, ap-
proximations based on backpropagation and sampling Graves, 2011; Rezende et al., 2014;
Hoffman et al., 2013; Blundell et al., 2015 have been effective in incorporating uncertainty
into the weights of generic networks. Our approach differs from these methods in that
we explicitly train a hierarchical Bayesian model over weights, where a posterior task-
specific parameter distribution is inferred at meta-test time conditioned on a learned
weight prior and a (few-shot) training set, while conventional Bayesian neural networks
directly learn only the posterior weight distribution for a single task. Our method draws
on amortized variational inference methods Kingma and Welling, 2013; Johnson et al.,
2016; Shu et al., 2018 to make this possible, but the key modification is that the model
and inference networks share the same parameters. The resulting method corresponds
structurally to a Bayesian version of model-agnostic meta-learning Finn et al., 2017a.

3.2 preliminaries

In the meta-learning problem setting that we consider, the goal is to learn models that can
learn new tasks from small amounts of data. To do so, meta-learning algorithms require
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a set of meta-training and meta-testing tasks drawn from some distribution p(T). The
key assumption of learning-to-learn is that the tasks in this distribution share common
structure that can be exploited for faster learning of new tasks. Thus, the goal of the
meta-learning process is to discover that structure. In this section, we will introduce
notation and overview the model-agnostic meta-learning (MAML) algorithm Finn et al.,
2017a.

Meta-learning algorithms proceed by sampling data from a given task, and splitting
the sampled data into a set of a few datapoints, Dtr used for training the model and a
set of datapoints for measuring whether or not training was effective, Dtest. This second
dataset is used to measure few-shot generalization drive meta-training of the learning
procedure. The MAML algorithm trains for few-shot generalization by optimizing for a
set of initial parameters θ such that one or a few steps of gradient descent on Dtr achieves
good performance on Dtest. Specifically, MAML performs the following optimization:

min
θ

∑

Ti∼p(T)

L(θ−α∇θL(θ,Dtr
Ti
),Dtest

Ti
) = min

θ

∑

Ti∼p(T)

L(φi,Dtest
Ti

)

where φi is used to denote the parameters updated by gradient descent and where
the loss corresponds to negative log likelihood of the data. In particular, in the case of
supervised classification with inputs {xj}, their corresponding labels {yj}, and a classifier
fθ, we will denote the negative log likelihood of the data under the classifier as L(θ,D) =
−
∑

(xj,yj)∈D logp(yj|xj, θ). This corresponds to the cross entropy loss function.

3.3 method

Our goal is to build a meta-learning method that can handle the uncertainty and ambi-
guity that occurs when learning from small amounts of data, while scaling to highly-
expressive function approximators such as neural networks. To do so, we set up a
graphical model for the few-shot learning problem. In particular, we want a hierarchical
Bayesian model that includes random variables for the prior distribution over function
parameters, θ, the distribution over parameters for a particular task, φi, and the task
training and test datapoints. This graphical model is illustrated in Figure 7 (left), where
tasks are indexed over i and datapoints are indexed over j. We will use the shorthand
xtr
i , ytr

i , xtest
i , ytest

i to denote the sets of datapoints {xtr
i,j| ∀ j}, {ytr

i,j| ∀ j}, {xtest
i,j | ∀ j}, {ytest

i,j | ∀ j}

and Dtr
i ,Dtest

i to denote {xtr
i , ytr

i } and {xtest
i , ytest

i }.

26



Figure 7: Graphical models corresponding to our approach. The original graphical model (left)
is transformed into the center model after performing inference over φi. We find it beneficial to
introduce additional dependencies of the prior on the training data to compensate for using the
MAP estimate to approximate p(φi), as shown on the right.

3.3.1 Gradient-Based Meta-Learning with Variational Inference

In the graphical model in Figure 7, the predictions for each task are determined by the
task-specific model parameters φi. At meta-test time, these parameters are influenced
by the prior p(φi|θ), as well as by the observed training data xtr, ytr. The test inputs
xtest are also observed, but the test outputs ytest, which need to be predicted, are not
observed. Note that φi is thus independent of xtest, but not of xtr, ytr. Therefore, posterior
inference over φi must take into account both the evidence (training set) and the prior
imposed by p(θ) and p(φi|θ). Conventional MAML can be interpreted as approximating
maximum a posteriori inference under a simplified model where p(θ) is a delta function,
and inference is performed by running gradient descent on logp(ytr|xtr,φi) for a fixed
number of iterations starting from φ0

i = E[θ] Grant et al., 2018b. The corresponding
distribution p(φi|θ) is approximately Gaussian, with a mean that depends on the step
size and number of gradient steps. When p(θ) is not deterministic, we must make a
further approximation to account for the random variable θ.

One way we can do this is by using structured variational inference. In structured vari-
ational inference, we approximate the distribution over the hidden variables θ and φi for
each task with some approximate distribution qi(θ,φi). There are two reasonable choices
we can make for qi(θ,φi). First, we can approximate it as a product of independent
marginals, according to qi(θ,φi) = qi(θ)qi(φi). However, this approximation does not
permit uncertainty to propagate effectively from θ to φi. A more expressive approxima-
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tion is the structured variational approximation qi(θ,φi) = qi(θ)qi(φi|θ). We can further
avoid storing a separate variational distribution qi(φi|θ) and qi(θ) for each task Ti by em-
ploying an amortized variational inference technique Kingma and Welling, 2013; Johnson
et al., 2016; Shu et al., 2018, where we instead set qi(φi|θ) = qψ(φi|θ, xtr

i , ytr
i , xtest

i , ytest
i ),

where qψ is defined by some function approximator with parameters ψ that takes
xtr
i , ytr

i as input, and the same qψ is used for all tasks. Similarly, we can define qi(θ)
as qψ(θ|xtr

i , ytr
i , xtest

i , ytest
i ). We can now write down the variational lower bound on the

log-likelihood as

logp(ytest
i |xtest

i , xtr
i , ytr

i ) ! E
θ,φi∼qψ

[
logp(ytr

i |x
tr
i ,φi)+logp(ytest

i |xtest
i ,φi)+logp(φi|θ)+logp(θ)

]
+

H(qψ(φi|θ, xtr
i , ytr

i , xtest
i , ytest

i )) +H(qψ(θ|xtr
i , ytr

i , xtest
i , ytest

i )).

The likelihood terms on the first line can be evaluated efficiently: given a sample θ,φi ∼

q(θ,φi|xtr
i , ytr

i , xtest
i , ytest

i ), the training and test likelihoods simply correspond to the loss
of the network with parameters φi. The prior p(θ) can be chosen to be Gaussian, with
a learned mean and (diagonal) covariance to provide for flexibility to choose the prior
parameters. This corresponds to a Bayesian version of the MAML algorithm. We will de-
fine these parameters as µθ and σ2

θ. Lastly, p(φi|θ) must be chosen. This choice is more
delicate. One way to ensure a tractable likelihood is to use a Gaussian with mean θ. This
choice is reasonable, because it encourages φi to stay close to the prior parameters φi, but
we will see in the next section how a more expressive implicit conditional can be obtained
using gradient descent, resulting in a procedure that more closely resembles the original
MAML algorithm while still modeling the uncertainty. Lastly, we must choose a form for
the inference networks qψ(φi|θ, xtr

i , ytr
i , xtest

i , ytest
i ) and qψ(θ|xtr

i , ytr
i , xtest

i , ytest
i ). They must

be chosen so that their entropies on the second line of the above equation are tractable.
Furthermore, note that both of these distributions model very high-dimensional random
variables: a deep neural network can have hundreds of thousands or millions of param-
eters. So while we can use an arbitrary function approximator, we would like to find a
scalable solution.

One convenient solution is to allow qψ to reuse the learned mean of the prior µθ. We
observe that adapting the parameters with gradient descent is a good way to update
them to a given training set xtr

i , ytr
i and test set xtest

i , ytest
i , a design decision similar to one

made by Fortunato et al. (2017). We propose an inference network of the form

qψ(θ|xtr
i , ytr

i , xtest
i , ytest

i ) = N(µθ + γq∇µθ logp(ytr
i |x

tr
i ,µθ) + γq∇µθ logp(ytest

i |xtest
i ,µθ); vq),
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where vq is a learned (diagonal) covariance, and the mean has an additional parameter
beyond µθ, which is a “learning rate” vector γq that is pointwise multiplied with the gra-
dient. While this choice may at first seem arbitrary, there is a simple intuition: the infer-
ence network should produce a sample of θ that is close to the posterior p(θ|xtr

i , ytr
i , xtest

i , ytest
i ).

A reasonable way to arrive at a value of θ close to this posterior is to adapt it to both the
training set and test set.1 Note that this is only done during meta-training. It remains to
choose qψ(φi|θ, xtr

i , ytr
i , xtest

i , ytest
i ), which can also be formulated as a conditional Gaus-

sian with mean given by applying gradient descent.
Although this variational distribution is substantially more compact in terms of pa-

rameters than a separate neural network, it only provides estimates of the posterior
during meta-training. At meta-test time, we must obtain the posterior p(φi|xtr

i , ytr
i , xtest

i ),
without access to ytest

i . We can train a separate set of inference networks to perform this
operation, potentially also using gradient descent within the inference network. How-
ever, these networks do not receive any gradient information during meta-training, and
may not work well in practice. In the next section we propose an even simpler and more
practical approach that uses only a single inference network during meta-training, and
none during meta-testing.

3.3.2 Probabilistic Model-Agnostic Meta-Learning Approach with Hybrid Inference

To formulate a simpler variational meta-learning procedure, we recall the probabilistic
interpretation of MAML: as discussed by Grant et al. (2018b), MAML can be interpreted
as approximate inference for the posterior p(ytest

i |xtr
i , ytr

i , xtest
i ) according to

p(ytest
i |xtr

i , ytr
i , xtest

i ) =

∫
p(ytest

i |xtest
i ,φi)p(φi|xtr

i , ytr
i , θ)dφi ≈ p(ytest

i |xtest
i ,φ"

i ), (9)

where we use the maximum a posteriori (MAP) value φ"
i . It can be shown that, for like-

lihoods that are Gaussian in φi, gradient descent for a fixed number of iterations using
xtr
i , ytr

i corresponds exactly to maximum a posteriori inference under a Gaussian prior
p(φi|θ) Santos, 1996b. In the case of non-Gaussian likelihoods, the equivalence is only
locally approximate, and the exact form of the prior p(φi|θ) is intractable. However, in
practice this implicit prior can actually be preferable to an explicit (and simple) Gaussian
prior, since it incorporates the rich nonlinear structure of the neural network parameter
manifold, and produces good performance in practice Finn et al., 2017a; Grant et al.,
2018b. We can interpret this MAP approximation as inferring an approximate posterior

1 In practice, we can use multiple gradient steps for the mean, but we omit this for notational simplicity.
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Algorithm 2 Meta-training, differences from MAML
in red
Require: p(T): distribution over tasks

1: initialize Θ := {µθ,σ2
θ, vq,γp,γq}

2: while not done do
3: Sample batch of tasks Ti ∼ p(T)
4: for all Ti do
5: Dtr,Dtest = Ti

6: Evaluate ∇µθL(µθ,Dtest)
7: Sample θ ∼ q = N(µθ − γq∇µθL(µθ,Dtest), vq)
8: Evaluate ∇θL(θ,Dtr)
9: Compute adapted parameters with gradient descent:

φi = θ−α∇θL(θ,Dtr)

10: Let p(θ|Dtr) = N(µθ − γp∇µθL(µθ,Dtr),σ2
θ))

11: Compute ∇Θ

(∑
Ti

L(φi,Dtest)

+DKL(q(θ|Dtest) || p(θ|Dtr))
)

12: Update Θ using Adam

Algorithm 3 Meta-testing
Require: training data Dtr

T for new
task T

Require: learned Θ
1: Sample θ from the prior p(θ|Dtr)
2: Evaluate ∇θL(θ,Dtr)
3: Compute adapted parameters

with gradient descent:
φi = θ−α∇θL(θ,Dtr)

on φi of the form p(φi|xtr
i , ytr

i , θ) ≈ δ(φi = φ"
i ), where φ"

i is obtained via gradient de-
scent on the training set xtr

i , ytr
i starting from θ. Incorporating this approximate inference

procedure transforms the graphical model in Figure 7 (a) into the one in Figure 7 (b),
where there is now a factor over p(φi|xtr

i , ytr
i , θ). While this is a crude approximation to

the likelihood, it provides us with an empirically effective and simple tool that greatly
simplifies the variational inference procedure described in the previous section, in the
case where we aim to model a distribution over the global parameters p(θ). After using
gradient descent to estimate p(φi | xtr

i , ytr
i , θ), the graphical model is transformed into

the model shown in the center of Figure 7. Note that, in this new graphical model, the
global parameters θ are independent of xtr and ytr and are independent of xtest when
ytest is not observed. Thus, we can now write down a variational lower bound for the
logarithm of the approximate likelihood, which is given by

logp(ytest
i |xtest

i , xtr
i , ytr

i ) ! Eθ∼qψ

[
logp(ytest

i |xtest
i ,φ"

i ) + logp(θ)
]
+H(qψ(θ|xtest

i , ytest
i )).

In this bound, we essentially perform approximate inference via MAP on φi to obtain
p(φi|xtr

i , ytr
i , θ), and use the variational distribution for θ only. Note that qψ(θ|xtest

i , ytest
i ) is

not conditioned on the training set xtr
i , ytr

i since θ is independent of it in the transformed
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graphical model. Analogously to the previous section, the inference network is given by

qψ(θ|xtest
i , ytest

i ) = N(µθ + γq∇ logp(ytest
i |xtest

i ,µθ); vq).

To evaluate the variational lower bound during training, we can use the following pro-
cedure: first, we evaluate the mean by starting from µθ and taking one (or more) gra-
dient steps on logp(ytest

i |xtest
i , θcurrent), where θcurrent starts at µθ. We then add noise

with variance vq, which is made differentiable via the reparameterization trick Kingma
and Welling, 2013. We then take additional gradient steps on the training likelihood
logp(ytr

i |x
tr
i , θcurrent). This accounts for the MAP inference procedure on φi. Training of

µθ, σ2
θ, and vq is performed by backpropagating gradients through this entire procedure

with respect to the variational lower bound, which includes a term for the likelihood
logp(ytest

i |xtest
i , xtr, ytr,φ"

i ) and the KL-divergence between the sample θ ∼ qψ and the
prior p(θ). This meta-training procedure is detailed in Algorithm 2.

At meta-test time, the inference procedure is much simpler. The test labels are not
available, so we simply sample θ ∼ p(θ) and perform MAP inference on φi using the
training set, which corresponds to gradient steps on logp(ytr

i |x
tr
i , θcurrent), where θcurrent

starts at the sampled θ. This meta-testing procedure is detailed in Algorithm 3.

3.3.3 Adding Additional Dependencies

In the transformed graphical model, the training data xtr
i , ytr

i and the prior θ are con-
ditionally independent. However, since we have only a crude approximation to p(φi |

xtr
i , ytr

i , θ), this independence often doesn’t actually hold. We can allow the model to
compensate for this approximation by additionally conditioning the learned prior p(θ)
on the training data. In this case, the learned “prior” has the form p(θi|xtr

i , ytr
i ), where θi

is now task-specific, but with global parameters µθ and σ2
θ. We thus obtain the modified

graphical model in Figure 7 (c). Similarly to the inference network qψ, we parameterize
the learned prior as follows:

p(θi|xtr
i , ytr

i ) = N(µθ + γp∇ logp(ytr
i |x

tr
i ,µθ);σ2

θ).

With this new form for distribution over θ, the variational training objective uses the
likelihood term logp(θi|xtr

i , ytr
i ) in place of logp(θ), but otherwise is left unchanged. At

test time, we sample from θ ∼ p(θ|xtr
i , ytr

i ) by first taking gradient steps on logp(ytr
i |x

tr
i , θcurrent),

where θcurrent is initialized at µθ, and then adding noise with variance σ2
θ. Then, we pro-

ceed as before, performing MAP inference on φi by taking additional gradient steps
on logp(ytr

i |x
tr
i , θcurrent) initialized at the sample θ. In our experiments, we find that this
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more expressive distribution often leads to better performance.

3.4 experiments

The goal of our experimental evaluation is to answer the following questions: (1) can our
approach enable sampling from the distribution over potential functions underlying the
training data?, (2) does our approach improve upon the MAML algorithm when there
is ambiguity over the class of functions?, and (3) can our approach scale to deep con-
volutional networks? We study two illustrative toy examples and a realistic ambiguous
few-shot image classification problem. For the both experimental domains, we compare
MAML to our probabilistic approach. We will refer to our version of MAML as a PLATI-
PUS (Probabilistic LATent model for Incorporating Priors and Uncertainty in few-Shot
learning), due to its unusual combination of two approximate inference methods: amor-
tized inference and MAP. Both PLATIPUS and MAML use the same neural network
architecture and the same number of inner gradient steps. We additionally provide a
comparison on the MiniImagenet benchmark and specify the hyperparameters in the
supplementary Appendix B.

illustrative 5-shot regression. In this 1D regression problem, different tasks
correspond to different underlying functions. Half of the functions are sinusoids, and
half are lines, such that the task distribution is clearly multimodal. The sinusoids have
amplitude and phase uniformly sampled from the range [0.1, 5] and [0,π], and the lines
have the slope and intercept sampled in the range [−3, 3]. The input domain is uniform
on [−5, 5], and Gaussian noise with a standard deviation of 0.3 is added to the labels.
We trained both MAML and PLATIPUS for 5-shot regression. In Figure 8, we show the
qualitative performance of both methods, where the ground truth underlying function
is shown in gray and the datapoints in Dtr are shown as purple triangles. We show the
function fφi

learned by MAML in black. For PLATIPUS, we sample 10 sets of parameters
from p(φi|θ) and plot the resulting functions in different colors. In the top row, we
can see that PLATIPUS allows the model to effectively reason over the set of functions
underlying the provided datapoints, with increased variance in parts of the function
where there is more uncertainty. Further, we see that PLATIPUS is able to capture the
multimodal structure, as the curves are all linear or sinusoidal.

A particularly useful application of uncertainty estimates in few-shot learning is es-
timating when more data would be helpful. In particular, seeing a large variance in a
particular part of the input space suggests that more data would be helpful for learning
the function in that part of the input space. On the bottom of Figure 8, we show the
results for a single task at meta-test time with increasing numbers of training datapoints.
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Figure 8: Samples from PLATIPUS trained for 5-shot regression, shown as colored dotted lines.
The tasks consist of regressing to sinusoid and linear functions, shown in gray. MAML, shown in
black, is a deterministic procedure and hence learns a single function, rather than reasoning about
the distribution over potential functions. As seen on the bottom row, even though PLATIPUS is
trained for 5-shot regression, it can effectively reason over its uncertainty when provided variable
numbers of datapoints at test time (left vs. right).

Even though the model was only trained on training set sizes of 5 datapoints, we observe
that PLATIPUS is able to effectively reduce its uncertainty as more and more datapoints
are available. This suggests that the uncertainty provided by PLATIPUS can be used for
approximately gauging when more data would be helpful for learning a new task.

Figure 10: Active learning performance on
regression after up to 5 selected datapoints.
PLATIPUS can use it’s uncertainty estimation
to quickly decrease the error, while selecting
datapoints randomly and using MAML leads
to slower learning.

active learning with regression. To
further evaluate the benefit of modeling ambi-
guity, we now consider an active learning ex-
periment. In particular, the model can choose
the datapoints that it wants labels for, with
the goal of reaching good performance with
a minimal number of additional datapoints.
We performed this evaluation in the simple re-
gression setting described previously. Models
were given five initial datapoints within a con-
strained region of the input space. Then, each
model selects up to 5 additional datapoints to
be labeled. PLATIPUS chose each datapoint se-
quentially, choosing the point with maximal
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Figure 9: Qualitative examples from active learning experiment where the 5 provided datapoints
are from a small region of the input space (shown as purple triangles), and the model actively
asks for labels for new datapoints (shown as blue circles) by choosing datapoints with the largest
variance across samples. The model is able to effectively choose points that leads to accurate
predictions with only a few extra datapoints.

variance across the sampled regressors; MAML
selected datapoints randomly, as it has no mech-
anism to model ambiguity. As seen in Figure 10, PLATIPUS is able to reduce its regres-
sion error to a much greater extent when given one to three additional queries, compared
to MAML. We show qualitative results in Figure 9.

illustrative 1-shot 2d classification. Next, we study a simple binary classi-
fication task, where there is a particularly large amount of ambiguity surrounding the
underlying function: learning to learn from a single positive example. Here, the tasks
consist of classifying datapoints in 2D within the range [0, 5] with a circular decision
boundary, where points inside the decision boundary are positive and points outside
are negative. Different tasks correspond to different locations and radii of the decision
boundary, sampled at uniformly at random from the ranges [1.0, 4.0] and [0.1, 2.0] re-
spectively. Following Grant et al. (2017), we train both MAML and PLATIPUS with Dtr

consisting of a single positive example and Dtest consisting of both positive and negative
examples. We plot the results using the same scheme as before, except that we plot the
decision boundary (rather than the regression function) and visualize the single positive
datapoint with a green plus. As seen in Figure 11, we see that PLATIPUS captures a
broad distribution over possible decision boundaries, all of which are roughly circular.
MAML provides a single decision boundary of average size.
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Figure 11: Samples from PLATIPUS for 1-shot classification, shown as colored dotted lines. The
2D classification tasks all involve circular decision boundaries of varying size and center, shown
in gray. MAML, shown in black, is a deterministic procedure and hence learns a single function,
rather than reasoning about the distribution over potential functions.

ambiguous image classification. The ambiguity illustrated in the previous set-
tings is common in real world tasks where images can share multiple attributes. We
study an ambiguous extension to the celebA attribute classification task. Our meta-
training dataset is formed by sampling two attributes at random to form a positive class
and taking the same number of random examples without either attribute to from the
negative classes. To evaluate the ability to capture multiple decision boundaries while
simultaneously obtaining good performance, we evaluate our method as follows: We
sample from a test set of three attributes and a corresponding set of images with those
attributes. Since the tasks involve classifying images that have two attributes, this task
is ambiguous, and there are three possible combinations of two attributes that explain
the training set. We sample models from our prior as described in Section 6.4 and assign
each of the sampled models to one of the three possible tasks based on its log-likelihood.
If each of the three possible tasks is assigned a nonzero number of samples, this means
that the model effectively covers all three possible modes that explain the ambiguous
training set. We can measure coverage and accuracy from this protocol. The coverage
score indicates the average number of tasks (between 1 and 3) that receive at least one
sample for each ambiguous training set, and the accuracy score is the average number of
correct classifications on these tasks (according to the sampled models assigned to them).
A highly random method will achieve good coverage but poor accuracy, while a deter-
ministic method will have a coverage of 1. We additionally compute the log-likelihood
across the ambiguous tasks which compares each method’s ability to model all of the
“modes”. As is standard in amortized variational inference (e.g., with VAEs), we put a
multiplier β in front of the KL-divergence against the prior Higgins et al., 2017 in Algo-
rithm 2. We find that larger values result in more diverse samples, at a modest cost in
performance, and therefore report two different values of β to illustrate this tradeoff.

Our results are summarized in Table 2 and Fig. 12. Our method attains better log-
likelihood, and a comparable accuracy compared to standard MAML. More importantly,
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Figure 12: Sampled classifiers for apromaml/n ambiguous meta-test task. In the meta-test train-
ing set (a), PLATIPUS observes five positives that share three attributes, and five negatives. A
classifier that uses any two attributes can correctly classify the training set. On the right (b), we
show the three possible two-attribute tasks that the training set can correspond to, and illustrate
the labels (positive indicated by purple border) predicted by the best sampled classifier for that
task. We see that different samples can effectively capture the three possible explanations, with
some samples paying attention to hats (2nd and 3rd column) and others not (1st column).

deterministic MAML only ever captures one mode for each ambiguous task, where the
maximum is three. Our method on average captures closer to two modes on average. The
qualitative analysis in Figure 12 illustrates an example ambiguous training set, example
images for the three possible two-attribute pairs that can correspond to this training set,
and the classifications made by different sampled classifiers trained on the ambiguous
training set. Note that the different samples each pay attention to different attributes,
indicating that PLATIPUS is effective at capturing the different modes of the task.
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Ambiguous celebA (5-shot)
Accuracy Coverage (max=3) Average NLL

MAML 89.00 ± 1.78% 1.00 ± 0.0 0.73 ± 0.06
MAML + noise 84.3± 1.60 % 1.89 ± 0.04 0.68± 0.05
PLATIPUS (ours) (KL weight = 0.05) 88.34 ± 1.06 % 1.59 ± 0.03 0.67± 0.05
PLATIPUS (ours) (KL weight = 0.15) 87.8 ± 1.03 % 1.94 ± 0.04 0.56 ± 0.04

Table 2: Our method covers almost twice as many modes compared to MAML, with comparable
accuracy. MAML + noise is a method that adds noise to the gradient, but does not perform
variational inference. This improves coverage, but results in lower accuracy average log likelihood.
We bold results above the highest confidence interval lowerbound.

3.5 discussion and future work

We introduced an algorithm for few-shot meta-learning that enables simple and effective
sampling of models for new tasks at meta-test time. Our algorithm, PLATIPUS, adapts
to new tasks by running gradient descent with injected noise. During meta-training, the
model parameters are optimized with respect to a variational lower bound on the like-
lihood for the meta-training tasks, so as to enable this simple adaptation procedure to
produce approximate samples from the model posterior when conditioned on a few-
shot training set. This approach has a number of benefits. The adaptation procedure is
exceedingly simple, and the method can be applied to any standard model architecture.
The algorithm introduces a modest number of additional parameters: besides the initial
model weights, we must learn a variance on each parameter for the inference network
and prior, and the number of parameters scales only linearly with the number of model
weights. Our experimental results show that our method can be used to effectively sam-
ple diverse solutions to both regression and classification tasks at meta-test time, includ-
ing with task families that have multi-modal task distributions. We additionally showed
how our approach can be applied in settings where uncertainty can directly guide data
acquisition, leading to better few-shot active learning.

Although our approach is simple and broadly applicable, it has potential limitations
that could be addressed in future work. First, the current form of the method provides a
relatively impoverished estimator of posterior variance, which might be less effective at
gauging uncertainty in settings where different tasks have different degrees of ambiguity.
In such settings, making the variance estimator dependent on the few-shot training set
might produce better results, and investigating how to do this in a parameter efficient
manner would be an interesting direction for future work. Another exciting direction for
future research would be to study how our approach could be applied in RL settings for
acquiring structured, uncertainty-guided exploration strategies in meta-RL problems.
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4
L I F E L O N G L E A R N I N G O F R E S E T- F R E E S K I L L S

In the Chapters 2 and 3, we demonstrated the potential of reusing related tasks to accel-
erate learning and developed algorithsm for handling uncertainty. This direction brings
us closes to the goal of having adaptive, generalist agents that learn, but there still impor-
tant practical challenges remain when tasked with real world learning. For reinforcement
learning (RL) methods to be successfully deployed in the real world, they must solve a
number of distinct challenges. First, agents that learn in real world settings, such as
robotics, must contend with non-episodic learning processes: when the agent attempts
the task and fails, it must start from that resulting failure state for the next attempt.
Otherwise, it would require a manually-provided “reset,” which is easy in simulated
environments, but takes considerable human effort in the real world, thereby reducing
autonomy – the very thing that makes RL appealing. Second, complex and temporally
extended behaviors can be exceedingly hard to learn with naïve exploration (Kearns and
Singh, 2002; Kakade et al., 2003). Agents that are equipped with a repertoire of skills
or primitives (e.g., options (Sutton et al., 1999)) could master such temporally extended
tasks much more efficiently.

These two problems may on the surface seem unrelated. However, the non-episodic
learning problem may be addressed by learning additional skills for resetting the system.
Could these same skills also provide a natural way to accelerate learning of downstream
tasks? This is the question we study in this paper. Our goal is to understand how diverse
“reset skills” can simultaneously enable non-episodic reset-free learning and, in the pro-
cess, acquire useful primitives for accelerating downstream reinforcement learning.

Prior works have explored automated skill learning using intrinsic, unsupervised re-
ward objectives (Gregor et al., 2016; Eysenbach et al., 2017; Sharma et al., 2019), acquiring
behaviors that can then be used to solve downstream tasks with user-specified objectives
efficiently, often by employing hierarchical methods (Dayan and Hinton, 1993; Sutton
et al., 1999; Dietterich, 2000). These skill discovery methods assume the ability to re-
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set to initial states during this “pre-training” phase, and even then face a challenging
optimization problem: without any additional manual guidance, the space of potential
behaviors is so large that practically useful skill repertoires can only be discovered in
relatively simple and low dimensional domains. Therefore, we need a compromise – a
more “focused” method that is likely to produce skills that are relevant for downstream
problems, without requiring these skills to be defined manually.

Figure 13: An outline of our approach. A reset
policy πreset

φ provides a state s0 to a forward pol-
icy πθ to learn a task using a learned skill. Upon
completion, the final states, sT−1 is reset with an-
other selected skill. In real world settings, where
all learning is continuous and sample efficiency
is critical, we present a method that leverages
the insight that the non-episodic learning prob-
lem can be addressed by learning a set of skills
of resetting the system. We additionally show
that these skills can be used to accelerate down-
stream learning.

In this paper, we study how these issues
can be addressed together with remov-
ing manual resets. While the problems
of skill discovery and reset-free learning
may at first appear unrelated, we observe
that reset-free learning of a given task can
be enhanced by access to varied and di-
verse “reset skills,” which force the task
policy to succeed from a variety of start-
ing states. At the same time, the skills can
be forced to acquire more complex behav-
iors, through an objective that encourages
them to discover states that are challeng-
ing for the task policy. This means that the
same mechanism that can address the “re-
set” problem can also serve as a skill dis-
covery method. Performing a single given
task can be viewed as a “funneling” pro-
cess: transitioning from a wide distribu-
tion over initial conditions to a narrower
distribution over states where a given task
has been completed successfully. Reversing this process therefore can provide coverage
over a broader range of states, while still keeping this exploration process grounded to
situations from which the initial task is solvable.

The main contribution of this paper is a “reset game” that implements this idea as a
general-sum game between two players: a task policy player that attempts to perform a
given task, and a reset policy player, corresponding to a repertoire of distinct skills, that
attempts to perturb the state to make the task harder for the task policy while simulta-
neously producing a diverse set of skills (see Figure 13). The result of this process is a
setting where the challenge of learning without resets is instead viewed as an opportu-
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nity to learn a diverse set of behavioral primitives, which can then be used to accelerate
downstream reinforcement learning, both removing the need for human-provided resets
and acquiring skills that can be used for downstream tasks. We show that by grounding
the skill learning problem in this way, we can design a method that (1) enables an agent
to learn a task without requiring oracle resets, which is a non-trivial requirement in real-
world applications, and (2) learns a broader set of skills compared to prior unsupervised
approaches, which substantially improves effectiveness on down-stream long-horizon
tasks. We demonstrate the efficacy of our approach both on previously studied robotics-
themed reset-free RL problems, and tasks that reflect domains studied in prior unsuper-
vised skill learning work, demonstrating both improved reset-free learning performance
and improved performance on downstream tasks with hierarchical controllers.

4.1 related work

Learning without access to resets has been studied in prior work with a focus on automa-
tion, safety, and learning compound controllers (Han et al., 2015; Eysenbach et al., 2017;
Chatzilygeroudis et al., 2018). Eysenbach et al. (2017) propose to learn a reset controller
for safe learning, but assume access to ground truth rewards and an oracle function that
can detect resets. Closely related to our work, Zhu et al. (2020a) learn a perturbation
controller to handle the reset-free setting, but importantly does not learn a set of skills.
In contrast, we propose to learn a broad set of skills for performing resets, which are
“anchored” to a specific forward RL task by requiring that the reset skills produce states
that are diverse and challenging. We show that this anchoring leads to skills more suited
for downstream learning, while improving reset-free performance.

Autonomous acquisition of skills is related to the learning with intrinsic motivation,
which considers the unsupervised setting where an agent must learn without extrin-
sic reward (Schmidhuber, 1991; Chentanez et al., 2005; Klyubin et al., 2005; Barto, 2013;
Baranes and Oudeyer, 2013). In the direction of curiosity-driven exploration, recent work
has used state novelty to reward an agent Bellemare et al., 2016; Tang et al., 2017; Pathak
et al., 2017. Similarly, other work has instead used the empowerment maximization prin-
ciple Salge et al., 2014 to define mutual information based objectives from which to learn
behavioral primitives Mohamed and Rezende, 2015; Gregor et al., 2016; Florensa et al.,
2017; Eysenbach et al., 2018; Sharma et al., 2019. Our method incorporates unsupervised
skill discovery into reset-free learning, building on mutual information methods for skill
discovery. In contrast to these prior methods, our approach uses a forward task to implic-
itly “anchor” the skills. We show experimentally that this allows us to learn varied skills
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in the reset-free setting, and also produces better skills for downstream task learning.
The goal of acquiring primitives for the purpose of enabling efficient learning on down-

stream tasks is also a central goal of hierarchical reinforcement learning (HRL), which
has been a long-standing area of research (Dayan and Hinton, 1993; Wiering and Schmid-
huber, 1997; Parr and Russell, 1998; Sutton et al., 1999; Dietterich, 2000). Recent work has
investigated deep hierarchical agents (Bacon et al., 2017; Vezhnevets et al., 2017; Florensa
et al., 2017; Nachum et al., 2018), building on methods that explicitly design a hierar-
chy over actions (Parr and Russell, 1998; Dietterich, 2000), or utilize options (Sutton et
al., 1999; Precup, 2001). Our work is also motivated by acquiring temporal abstraction
through experience, although we seek to do so under a problem setting that is reset-free.
Our work can be seen as complementary to prior approaches in HRL, as the skills we ac-
quire can be used by an HRL agent to accelerate downstream learning. We demonstrate
this empirically in Section 7.5.

Central to our method is formulating the problem of acquiring diverse skills as an ad-
versarial two player game. Adversarial games have been proposed in RL with the goal of
improving exploration (Sukhbaatar et al., 2017a; Lee et al., 2019b), learning goal condi-
tioned policies (Racaniere et al., 2019) and generating an automated curriculum (Tesauro,
1995; Silver et al., 2018; Baker et al., 2019). Our work resembles the reset variant of asym-
metric self-play (Sukhbaatar et al., 2017a), though our approach differs in two ways. First,
while the reset variant of asymmetric self-play defines “Bob’s” learning objective using
its ability to reset “Alice’s” trajectories, the problem setting is not in fact reset-free as
Alice is reset at every episode. Second, our method does not involve setting new goals
or use time to completion as a proxy reward, but rather makes use of a task reward
to measure which reset states are challenging. Unlike prior methods that formulate an
adversarial game around goal reaching (Sukhbaatar et al., 2017a; Racaniere et al., 2019;
Florensa et al., 2019), our method does not involve setting or reaching goals, but rather
uses a single task to focus the forward policy, providing opportunities for the reset skills
to learn varied adversarial perturbations. Unlike methods that adversarially vary the en-
vironment (Brant and Stanley, 2017; Wang et al., 2019), our method does not require any
additional privileged capability to change the environment parameters. Instead, the reset
skills use the same action space as the forward policy to discover states from which the
original task is difficult. Finally, unlike all of the previously listed methods, our approach
enables learning in a reset-free setting – a setting where, as we show experimentally in
Section 7.5, prior methods struggle to learn effectively.
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4.2 preliminaries

Our eventual goal is to devise a reset-free, non-episodic learning framework. We first
describe standard episodic RL. An RL problem is defined on a Markov decision process
(MDP), represented by the tuple: M = (S,A,ps, r,γ,p0), where S is a set of continuous
states and A is a set of continuous actions, ps : S×A×S → R is the transition probability
density, r : S×A → R is the reward function, γ is the discount factor and p0 is the initial
state distribution. The γ-discounted return R(τ) of a trajectory τ = (s0, a0, . . . sT−1, aT−1) is∑T−1

t=0 γtr(st, at). In episodic, finite horizon tasks of length T , the goal is to learn a policy
πθ : A× S → R that maximizes the objective J(πθ) = Eπθ,p0,ps [R(τ)]. Here, θ denotes
the parameters of the policy πθ, which are learned by iteratively sampling episodes,
where at the end of each episode, a new initial state is s0 is sampled from the initial
state distribution p0. While such resets can be easily obtained in simulated tasks (e.g.,
Atari (Mnih et al., 2013)), this is significantly more challenging in real-world physical
tasks, as it requires human intervention in the form of manual resets or the availability
of a hard coded reset (Levine et al., 2016a; Vecerik et al., 2017; Rajeswaran et al., 2017b;
Yahya et al., 2017; Haarnoja et al., 2018a).

Our method will simultaneously remove the need for manual resets and, at the same
time, learn a varied set of skills by resetting the environment in different ways. To
learn this set of skills, we build on previously proposed episodic skill learning meth-
ods, which we review here. Following prior work (Eysenbach et al., 2018; Sharma et
al., 2019), skills can be represented by conditioning the policy on a latent skill index z,
which is sampled from p(z) and kept fixed over a temporally extended period. Every
distinct value of z should correspond to a distinct behavior. One objective for achieving
this proposed in prior work (Gregor et al., 2016; Eysenbach et al., 2018; Sharma et al.,
2019; Pong et al., 2019) is the mutual information (MI) between skills and the states they
visit: I(s; z) = H(s) −H(s|z). Maximizing I(s; z) entails maximizing the state entropy
(high state coverage) while minimizing conditional state entropy (high predictability for
each z). This is typically combined with minimizing the MI between actions (a) and the
state/context (s, z), so that skills are distinguished by the states they visit rather than the
actions they take. The resulting objective (Eysenbach et al., 2018) is:

I(s; z)− I(a; s, z) = Eπ

[
log

p(z|s)
p(z)

− log
π(a|s, z)
π(a)

]

! Eπ [logqω(z|s)− logp(z)− logπ(a|s, z)] = G(θ,ω),

where we replace p(z|s) with an approximate learned discriminator qω(z|s) with param-
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eters ω to obtain a variational lower bound. We can maximize G(θ,ω) with RL using the
pseudo-reward:

rskill(π,qω) = logqω(z|s)− logp(z)− logπ(a|s, z). (10)

The skill learning algorithm alternates between learning the skills with this pseudo-
reward and optimizing for a discriminator that is able to discriminate between the skills.

4.3 learning skills via the reset game

To learn without resets, our approach aims to learn both a forward policy πθ(a|s) and a set
of reset skills, which we denote πreset

φ (a|s, z). We first describe the optimization objectives
for each of the policies. Then, we describe how we can balance these two objectives using
a game theoretic formulation. Finally, we instantiate this method and present a practical
algorithm, where a single goal-oriented forward policy is reset by multiple different reset
skills. While learning multiple skills and learning without resets may at first seem like
largely unrelated problems, we make the observation that a sufficiently diverse set of
skills can serve to alleviate the need for a manual reset, because different policies (i.e.,
πθ(a|s) and πreset

φ (a|s, z)) can reset each other into different states. By forcing πθ(a|s) to
succeed from the final states of a range of different reset skills, πθ(a|s) becomes proficient
at performing the task from many states. By forcing the reset skills to all perturb πθ(a|s)
in different ways, the reset skills themselves are forced to differentiate and learn various
behaviors, making them suitable for downstream learning of more complex tasks. In this
way, the problems of learning without resets and learning diverse skills are a natural fit
to be addressed jointly.

Our goal is to devise a method such that our policies have the following properties:
(1) executing the reset policy allows the forward policy to learn to solve the task with
standard episodic RL (i.e., without an oracle reset to the initial state distribution), (2)
through repeated resetting, the reset policy is able to discover skills that may be useful
for downstream tasks.

4.3.1 The Reset Game

We first describe the reset game that represents the core of our method, and then in
Section 4.3.2 extend this to incorporate multiple skills by conditioning πreset

φ on z. Our
proposed reset game enables reset-free learning via a competitive interaction between
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Figure 14: An outline of our approach. Our method first begins by (1) sampling a skill from
a prior distribution that is used to condition the reset policy. Next, the reset agent acts in the
environment in order to bring the agent to the initial state for the forward policy (2). The states
of the reset policy are passed to additionally to a learned discriminator which tries to determine
which skill was used to generate the final state (3). Next, the forward policy tries to solve the task
(4) and all agents attempt to learn by maximizing their respective objective (5).

πθ(a|s) and πreset
φ (a|s), specified as follows:

max
πθ

Jforward(πθ,πreset
φ ), max

πreset
φ

Jreset(πθ,πreset
φ ), (11)

where Jforward and Jreset are the expected returns, which we define below. Both Jforward

and Jreset depend on both πθ and πreset
φ , since the starting state for each policy is obtained

by running the other policy (i.e., Jforward(πθ,πreset
φ ) = Eπθ,πreset

φ ,ps
[R(τ)], and vice-versa).

Jforward is the task objective, which forces the task policy πθ(a|s) to learn to perform the
given task. Jreset is an objective that causes the reset policy πreset

φ (a|s) to discover states
from which it is difficult for the task policy to succeed at the task, while at the same time
promoting diverse and varied resets. We provide specific definitions for these objectives
in Section 4.3.2, though a number of different options are possible. Crucially, this is
not a zero-sum game. However, due to the fact that the reset policy and task policy
must alternate, the reset game has a pre-specified turn order. This form of sequential
game is known as a Stackelberg game (Von Stackelberg, 1934), and is closely connected
to the field of bi-level optimization (Colson et al., 2007). Unlike general games, these
games are known to be solvable (using game theoretic measures) by gradient based
learning algorithms (Fiez et al., 2019), even when the game is not zero-sum. Formally,
a Stackelberg game is defined as an optimization problem where the “leader” must
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optimize the following optimization problem:

max
x1∈X1

{ f1(x1, x2) | x2 ∈ arg max
y∈x2

f2(x1,y) }.

The follower optimizes the function arg maxx2∈X2
f2(x1, x2). Taking the reset policy as the

leader in our setting results in the following optimization problem:

max
πreset
φ

{ Jreset(π∗
θ,πreset

φ ) | π∗
θ ∈ arg max

πθ

Jforward(πθ,πreset
φ ) }. (12)

Based on this connection, we can devise a gradient-based algorithm to solve the reset
game in Equation 11, so long as the reset policy and task policy learn at different rates
(e.g., with the task policy learning faster). We present such an algorithm in Section 4.3.3,
but first we describe how the reset policy can discover diverse skills during the reset.

4.3.2 Mining Diverse Skills from Diverse Resets

Recall that our goal is to allow the forward policy to learn to optimize its task reward r, as
if a reset mechanism were present, and for our reset mechanism to provide challenging
and diverse resets. Towards our first goal, we propose to optimize the forward RL policy
from the initial state distribution implied by executing πreset

φ for Treset time steps. Towards
our second goal, we propose to use the skill learning reward rskill defined in Equation 10
to simultaneously acquire a repertoire of reset skills that are forced to diversify. The
underlying mutual information objective encourages high coverage of initial states, but
to ensure that these states are challenging for πθ, we add the negative return of πθ to
the objective for each reset skill. Putting these terms in the game defined in Equation 12
results in the following optimization problem:

max
φ

Est ′,at ′∼πreset
φ

[
Treset−1∑

t=0

γtrskill(at ′, st ′)− λ Eπθ∗

[
T−1∑

t=0

γtr(at, st)

]]

︸ ︷︷ ︸
Jreset(πθ,πreset

φ )

(13)

such that θ∗ = arg max
θ

Eπθ

[
T−1∑

t=0

γtr(at, st)

]

︸ ︷︷ ︸
Jforward(πθ,πreset

φ )

. (14)
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Algorithm 4 Learning Skillful Resets (LSR)
1: Input: Environment
2: Initialize: policy πθ, reset policy πreset

φ , discriminator qω(st|at), prior p(z)
3: for N iterations do
4: Sample skill z ∼ p(z)
5: # Set environment
6: for t ← 0 . . . Treset−1 do
7: Sample at ∼ πreset

φ (at|st, z)
8: Step env st+1 ∼ ps(st+1|st, at), compute reward for reset controller rresett =

qω(st|at)
9: # Solve task

10: for t ← 0 . . . T − 1 do
11: Sample at ∼ πθ(at|st)
12: Step env st+1 ∼ ps(st+1|st, at), obtain environment reward rt

13: Update reset policy’s final reward rresetT = −
∑T

t=0 γ
trt(at, st)

14: Update πreset
φ , πθ to maximize respective return using SAC

15: Update discriminator qω using Adam.

The hyperparameter λ controls the relative importance of the two terms of Jreset(πθ,πreset
φ ).

Intuitively, setting λ = 0 reduces the objective of the reset controller to prior skill learning
methods (Eysenbach et al., 2018), while λ > 0 requires the reset controller to reach more
challenging terminal states. As the task policy and reset skills improve, they provide a
curriculum for one another, with the task policy pushing the skills to reach more distant
states, and the skills pushing the policy to be effective from a larger range of initializa-
tions. As we demonstrate in our experiments, this results in more complex and varied
skills, as well as faster reset-free learning for πθ. To reflect the synthesis of resets and
skill learning, we refer to our specific instantiation of the reset game as Learning Skills
from Resets (LSR).

Running this reset game produces an effective forward policy πθ(a|s), as well as a set of
skills defined by πreset

φ (a|s, z). The latter can be used to solve more complex downstream
tasks in a hierarchical RL framework, using a higher-level policy πhi(z|s) to command
the skill z that should be executed at each (higher-level) time step. We demonstrate this
capability in our experiments.
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4.3.3 Algorithm Summary: Optimizing the Reset Game

We could optimize the task policy and reset skills as per Equation 13 via a bi-level
optimization, where the parameters of πreset

φ are held fixed while πθ is optimized to
convergence. However, in an RL setting, this would require an excessive number of sam-
ples. A substantially more efficient method alternates gradient steps on both objectives,
with different learning rates. Since the reset game corresponds to a Stackelberg game,
gradients-based learning algorithms with respect to these objectives exist that have finite
time high probability bounds for local convergence in the case of non zero-sum objec-
tives (Fiez et al., 2019). Optimizing such a problem can be done approximately by using
a two-timescale algorithm, where the leader is optimized at a smaller learning rate (Fiez
et al., 2019). This intuitively results in a reset controller that changes “slower” relative
to the forward policy. In our implementation, we approximately optimize πθ(a|s) and
πreset
φ (a|s, z) using soft actor-critic (SAC) (Haarnoja et al., 2018c).
We outline the pseudo-code of our approach in Algorithm 4. At each iteration, we

sample a reset skill z ∼ p(z), execute that skill by following πreset
φ (at|st, z) to reset to a

challenging initial state, then execute πθ(a|s) to attempt the task. The experience collected
during these trials is then used to update the corresponding policies.

4.4 experiments

In this section we aim to experimentally answer the following questions: (1) How does
our approach compare to prior methods in the reset free domain? (2) How do resets and
state representation choice effect the skills we learn? (3) How do the skills learned by our
approach compare to prior work? Specifically, can we learn better hierarchical controllers
using the primitives learned by our approach (LSR)? We first describe our experimental
setup, evaluation metrics, and the prior methods to which we will compare. We leave
detailed discussion of hyperparameters and environment parameters to the Appendix
C.

Experimental setup. To study reset-free learning, we use the three-fingered hand repo-
sitioning task proposed by Zhu et al. (2020a), where the hand must position an object in
the center of a bin, starting from any position. This is the most challenging domain con-
sidered by Zhu et al. (2020a) for reset-free learning. We refer to this environment as the
DClaw-ManipulateFreeObject environment. We follow the evaluation protocol of Zhu
et al. (2020a), using an evaluation metric that measures the final position and orientation
of the object compared to the goal position evaluated from a set of initial positions that
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Figure 15: Diagram of the hierarchical locomotion tasks considered in this work. The agent must
first acquire locomotion skills in a reset game (left), where the task policy must learn to walk to
the origin of the workspace. The skills are subsequently used as the action space for a hierarchical
policy, which must learn complex hierarchical navigation tasks (second and third image). The far-
right image shows the paths taken by a hierarchical policy using our learned reset skills.

is consistent across all methods. To evaluate our second experimental hypothesis, we
evaluate skills acquired with reset-free learning for an ant locomotion task on two hier-
archical navigation problems, shown in Figure 15. In these experiments, the agent must
first learn a set of skills (without resets) to control an Ant quadrupedal robot to walk to
the center of the workspace (far left), and subsequently transfer those skills to a waypoint
navigation task and a maze traversal environment, which we refer to as Ant-Waypoint
and Ant-MediumMaze (center, right plot respectively). For all methods, we report a return,
which we normalize using the return of an agent that successfully solves the task and a
random agent.

Comparisons and baselines. We compare our approach to prior methods, which
are trained either with or without resets. In the DClaw environments, we compare to
two prior methods that learn reset controllers: leave no trace (LNT) Eysenbach et al.,
2017, and the R3L perturbation controller (R3L) Zhu et al., 2020a. In order to fairly
compare all prior methods, we use the same underlying RL algorithm, soft actor-critic
(SAC) (Haarnoja et al., 2018c), across all methods, and use the same exploration bonus
used in R3L Zhu et al., 2020a, random network distillation Burda et al., 2018, which is
added to the reward for all methods.

We also compare to prior skill learning methods on the Ant task: Diversity is All
You Need (DIAYN) (Eysenbach et al., 2018) and Dynamics-Aware Discovery of Skills
(DADS) (Sharma et al., 2019). DADS and DIAYN are unsupervised skill learning proce-
dures that aim to learn a diverse set of skills in an environment. For this domain, prior
work has differed in the choice of state representation, either using the full state Ey-
senbach et al., 2018, which is a generally more challenging setting, or a reduced (x,y)
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Figure 16: Reset-free learning comparison (lower is better). The error bars show 95% bootstrap
confidence intervals for average performance. We average each method over 4 seeds. Our method
(blue) outperforms prior methods (orange, green). Compared to R3L Zhu et al., 2020a (orange),
our approach converges ∼28.6% faster. Our ablations show that the most important aspect of
our approach is having multiple resetters. This indicates that reset state convergence is crucial to
good performance, in contrast to prior methods Eysenbach et al., 2017 that learn a explicit reset
policy.

coordinate state representation. For our experiments, in order to understand the effect
of resets and state representation choice, we experiment with both the full-state repre-
sentation and reduced (x,y) coordinate state space, in addition to running all methods
with resets or reset-free. In the case of DADS Sharma et al., 2019, which uses continuous
skills, we discretize the skill space to allow us to use the same hierarchical learner.

Figure 18: Performance on the Ant-Waypoints envi-
ronment compared to DADS and DIAYN. DADS and
DIAYN makes small progress on this simpler domain
(orange), but our method (blue) is still able to success-
fully navigate between the waypoints more quickly.

Reset-free learning results. The
results in Figure 16 show that
our approach substantially improves
reset-free performance. In contrast
to prior approaches (orange and
green), our method converges ap-
proximately 200 iterations faster on
the most challenging task (DClaw-
ManipulateFreeObject), which is a
28.6% improvement. We hypothesize
that is due to the improved state cov-
erage of our approach, as an explicit
reset policy (green curve) (Eysenbach
et al., 2017) performs much worse.
This is supported by our ablations, which show that having “Multiple-Resetters” (red),
where we remove the diversity bonus, accounts for much of the method’s improvements.
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Figure 17: A visualization of the learned skills (top) and performance on a hierarchical down-
stream locomotion task (bottom) under different state representation choices and reset availabil-
ity. We visualize the (x,y) trajectories of learned skills. In comparison to prior methods, LSR is
able to learn skills that are able to robustly move the ant much further from the origin compared
to prior approaches which either need the (x,y)-prior or resets. This allows us to substantially
improve performance in a downstream hierarchical locomotion task (bottom, top-left), where a
meta-controller using only the skills is able to navigate a maze much more effectively. .
Using a single adversary (purple-curve), where we run our approach with a single
skill, performs comparably to R3L, and substantially worse than our method. Note that
prior techniques that have formulated adversarial games, such as asymmetric self play
(ASP) (Sukhbaatar et al., 2017a), generally use a single adversary.1

Choice of state representation and the effect of resets. In the Ant domain, we find that
our approach allows us to robustly learn skills across reset settings and state representa-
tion choice. We visualize the (x,y) trajectories of the learned reset skills qualitatively in

1 While ASP shares many properties with our method, such as the use of a game formulation, it was
infeasible to compare on these tasks due to differences in assumptions: ASP does not consider reset-free
learning, does not aim to optimize a given task, and requires goal-reaching policy formulations for both
players. However, we can view the “Single Adversary” baseline as the closest to ASP in our experiments.
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Figure 46 (top), along with skills learned by prior methods with and without resets (Ey-
senbach et al., 2018; Sharma et al., 2019). Both prior methods (DIAYN and DADS) learn
short directional walking skills with resets (top, right two columns), similar to those re-
ported in prior work (Eysenbach et al., 2018; Sharma et al., 2019), but generally fail to
learn meaningful skills in the reset-free setting. Performance is generally improved by
using the (x,y) prior as the state representation, but this is not robust in the reset-free
setting for prior methods. In contrast, the skills learned by our method are capable of
moving the ant much further than prior methods that learn in either the reset-free or
reset-based setting, with both the full-state and (x,y) representation, as illustrated in the
figure.

Skill learning and hierarchical control results. Finally, we compare our approach to
prior methods by evaluating the quantitative performance on downstream hierarchical
tasks. we see that the skills produced by our approach improves performance in the
simpler Ant-WayPoints navigation domain Fig. 18, and these improvements are much
more pronounced in the more challenging Ant-MediumMaze task, where our approach
leads to substantially more effective downstream learning, as shown in Fig. 46 (right),
compared to prior methods. We normalize each curve in Fig. 46 by the return of the best
performing policy. A visualization of the path taken through the maze by our hierarchical
policy in the reset-free, full state representation setting is shown in Fig. 15 (far right). We
provide a similar analysis on the Ant-Waypoints task in Appendix. D.2.

4.5 discussion, limitations and future work

We proposed a method that simultaneously addresses two challenges faced by real-world
RL systems: learning continually without manually provided resets, and acquiring di-
verse skills for solving long-horizon downstream tasks. While these two problems may
at first appear unrelated, we show that learning diverse skills actually enables more ef-
fective reset-free learning, while learning the skills in an adversarial manner with a task
policy actually makes the skills themselves more effective, and therefore better suited
for downstream long-horizon problems. Our work assumed environments that are re-
versible, which is a strong assumption assumption in the real world. We also assumed
a defined forward task, whereas a fully autonomous real world agent would need to
have the ability to verify its own task success. A particularly exciting direction for future
work would be to extend the reset game to learn a zero or few-shot success classifier,
or design a system that explore conservatively and request limited human intervention
when encountering a non-communicating state.
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5
M U LT I - TA S K R E S E T- F R E E L E A R N I N G F O R D E X T E R O U S
M A N I P U L AT I O N

In Chapter 4, we discussed how learning multiple skills can be helpful for confronting
the challenge of non-episodic learning in the real world. In this chapter, we focus specif-
ically on real world learning of dexterous manipulation skills, which presents a particu-
larly clear lens on the reset-free learning problem and the utility of learning skill learning.
For instance, a dexterous hand performing in-hand manipulation, as shown in Figure 19
(right), must delicately balance the forces on the object to keep it in position. Early on in
training, the policy will frequently drop the object, necessitating a particularly complex
reset procedure. Prior work has addressed this manually by having a human involved in
the training process Ploeger et al., 2020; Kumar et al., 2016b; Ghadirzadeh et al., 2017a,
instrumenting a reset in the environment Zhu et al., 2019; Chebotar et al., 2016, or even
by programming a separate robot to place the object back in the hand Nagabandi et al.,
2020. Though some prior techniques have sought to learn some form of a “reset” con-
troller Eysenbach et al., 2017; Ahn et al., 2020; Agrawal et al., 2016; Zhu et al., 2020b;
Sukhbaatar et al., 2017b; Richter and Roy, 2017, none of these are able to successfully
scale to solve a complex dexterous manipulation problem without hand-designed reset
systems due to the challenge of learning robust reset behaviors.

However, general-purpose robots deployed in real-world settings will likely be tasked
with performing many different behaviors. While multi-task learning algorithms in these
settings have typically been studied in the context of improving sample efficiency and
generalization Teh et al., 2017; Rusu et al., 2016a; Parisotto et al., 2016; Yu et al., 2020a;
Sener and Koltun, 2018; Yu et al., 2019, in this work we make the observation that multi-
task algorithms naturally lend themselves to the reset-free learning problem. We hypoth-
esize that the reset-free RL problem can be addressed by reformulating it as a multi-task
problem, and appropriately sequencing the tasks commanded and learned during online
reinforcement learning. As outlined in Figure 24, solving a collection of tasks simultane-
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Figure 19: Reset-free learning of dexterous manipulation behaviors by leveraging multi-task learn-
ing. When multiple tasks are learned together, different tasks can serve to reset each other, al-
lowing for uninterrupted continuous learning of all of the tasks. This allows for the learning
of dexterous manipulation tasks like in-hand manipulation and pipe insertion with a 4-fingered
robotic hand, without any human intervention, with over 60 hours of uninterrupted training

ously presents the possibility of using some tasks as a reset for others, thereby removing
the need of explicit per task resets. For instance, if we consider the problem of learning
a variety of dexterous hand manipulation behaviors, such as in-hand reorientation, then
learning and executing behaviors such as recenter and pickup can naturally reset the
other tasks in the event of failure (as we describe in Section 6.4 and Figure 24). We show
that by learning multiple different tasks simultaneously and appropriately sequencing
behavior across different tasks, we can learn all of the tasks without episodic resets re-
quired at all. This allows us to effectively learn a “network” of reset behaviors, each of
which is easier than learning a complete reset controller, but together can execute and
learn more complex behavior.

The main contribution of this work is to propose a learning system that can learn dex-
terous manipulation behaviors without the need for episodic resets. We do so by lever-
aging the paradigm of multi-task reinforcement learning to make the reset free problem
less challenging. The system accepts a diverse set of tasks that are to be learned, and
then trains reset-free, leveraging progress in some tasks to provide resets for other tasks.
To validate this algorithm for reset-free robotic learning, we perform both simulated and
hardware experiments on a dexterous manipulation system with a four fingered anthro-
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pomorphic robotic hand. To our knowledge, these results demonstrate the first instance
of a combined hand-arm system learning dexterous in-hand manipulation with deep RL
entirely in the real world with minimal human intervention during training, simultane-
ously acquiring both the in-hand manipulation skill and the skills needed to retry the
task. We also show the ability of this system to learn other dexterous manipulation be-
haviors like pipe insertion via uninterrupted real world training, as well as several tasks
in simulation.

5.1 related work

RL algorithms have been applied to a variety of robotics problems in simulation James
et al., 2019; Rajeswaran et al., 2017a; Heess et al., 2017; OpenAI et al., 2018, and have also
seen application to real-world problems, such as locomotion Ha et al., 2020; Peng et al.,
2020; Calandra et al., 2016, grasping Kalashnikov et al., 2018; Levine et al., 2016b; Baier-
Löwenstein and Zhang, 2007; Wu et al., 2019, manipulation of articulated objects Nemec
et al., 2017; Urakami et al., 2019; Chebotar et al., 2016; Gu et al., 2016; Nair et al., 2018, and
even dexterous manipulation Hoof et al., 2015a; Kumar et al., 2016b. Several prior works
Okamura et al., 2000 have shown how to acquire dexterous manipulation behaviors with
optimization Furukawa et al., 2006; Bai and Liu, 2014; Mordatch et al., 2012; Kumar et al.,
2014a; Yamane et al., 2004, reinforcement learning in simulation Rajeswaran et al., 2017a;
Mandikal and Grauman, 2020a; Jain et al., 2019, and even in the real world OpenAI,
2018; Ploeger et al., 2020; Hoof et al., 2015b; Nagabandi et al., 2020; Ahn et al., 2020; Zhu
et al., 2019; Kumar et al., 2016b; Gupta et al., 2016a; Choi et al., 2018; Kumar et al., 2016a.
These techniques have leaned on highly instrumented setups to provide episodic resets
and rewards. For instance, prior work uses a scripted second arm Nagabandi et al., 2020
or separate servo motors Zhu et al., 2019 to perform resets. Contrary to these, our work
focuses on removing the need for explicit environment resets, by leveraging multi-task
learning.

Our work is certainly not the first to consider the problem of reset-free RL Mont-
gomery et al., 2016. Eysenbach et al., 2017 proposes a scheme that interleaves attempts at
the task with episodes from an explicitly learned reset controller, trained to reach the ini-
tial state. Building on this work, Zhu et al., 2020b shows how to learn simple dexterous
manipulation tasks without instrumentation using a perturbation controller exploring
for novelty instead of a reset controller. Han et al., 2015; Smith et al., 2019 demonstrate
learning of multi-stage tasks by progressively sequencing a chain of forward and back-
ward controllers. Perhaps the most closely related work to ours algorithmically is the
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framework proposed in Ha et al., 2020, where the agent learns locomotion by lever-
aging multi-task behavior. However, this work studies tasks with cyclic dependencies
specifically tailored towards the locomotion domain. Our work shows that having a va-
riety of tasks and learning them all together via multi-task RL can allow solutions to
challenging reset free problems in dexterous manipulation domains.

Our work builds on the framework of multi-task learning Teh et al., 2017; Rusu et al.,
2016a; Parisotto et al., 2016; Yu et al., 2020a; Sener and Koltun, 2018; Yu et al., 2019; Ruder,
2017; Yang et al., 2020 which have been leveraged to learn a collection of behaviors,
improve on generalization as well as sample efficiency, and have even applied to real
world robotics problems Riedmiller et al., 2018; Wulfmeier et al., 2019; Deisenroth et
al., 2014. In this work, we take a different view on multi-task RL as a means to solve
reset-free learning problems.

5.2 preliminaries

We build on the framework of Markov decision processes for reinforcement learning. We
refer the reader to Sutton and Barto, 2018a for a more detailed overview. RL algorithms
consider the problem of learning a policy π(a|s) such that the expected sum of rewards
R(st,at) obtained under such a policy is maximized when starting from an initial state
distribution µ0 and dynamics P(st+1|st,at). This objective is given by:

J(π) = E s0∼µ0
at∼π(at|st)

st+1∼P(st+1|st,at)

[
T∑

t=0

γtR(st,at)

]

(15)

While many algorithms exist to optimize this objective, in this work we build on the
framework of actor-critic algorithms Konda and Tsitsiklis, 1999. Although we build on
actor critic framework, we emphasize that our framework can be effectively used with
many standard reinforcement learning algorithms with minimal modifications.

As we note in the following section, we address the reset-free RL problem via multi-
task RL. Multi-task RL attempts to learn multiple tasks simultaneously. Under this set-
ting, each of K tasks involves a separate reward function Ri, different initial state distri-
bution µi

0 and potentially different optimal policy πi. Given a distribution over the tasks
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p(i), the multi-task problem can then be described as

J(π0, . . . ,πK−1) = Ei∼p(i)E s0∼µ
i
0

at∼πi(st|at)
st+1∼P(st,at)

[
∑

t

γtRi(st,at)

]

(16)

In the following section, we will discuss how viewing reset-free learning through the
lens of multi-task learning can naturally address the challenges in reset-free RL.

Figure 20: Depiction of some steps of reset-free training for the in-hand manipulation task family
on hardware. Reset-free training uses the task graph to choose which policy to execute and
train at every step. For executions that are not successful (e.g., the pickup in step 1), other tasks
(recenter in step 2) serve to provide a reset so that pickup can be attempted again. Once pickup
is successful, the next task (flip up) can be attempted. If the flip-up policy is successful, then the
in-hand reorientation task can be attempted and if this drops the object then the re-centering task
is activated to continue training.

5.3 learning dexterous manipulation behaviors reset-free via multi-
task rl

One of the main advantages of dexterous robots is their ability to perform a wide range
of different tasks. Indeed, we might imagine that a real-world dexterous robotic system de-
ployed in a realistic environment, such as a home or office, would likely need to perform
a repertoire of different behaviors, rather than just a single skill. While this may at first
seem like it would only make the problem of learning without resets more difficult, the
key observation we make in this work is that the multi-task setting can actually facilitate
reset-free learning without manually provided instrumentation. When a large number of
diverse tasks are being learned simultaneously, some tasks can naturally serve as resets
for other tasks during learning. Learning each of the tasks individually without resets is
made easier by appropriately learning and sequencing together other tasks in the right
order. By doing so, we can replace the simple forward, reset behavior dichotomy with
a more natural “network” of multiple tasks that can perform complex reset behaviors
between each other.
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Let us ground this intuition in a concrete example. Given a dexterous table-top manip-
ulation task, shown in Fig 24 and Fig 20 , our reset-free RL procedure might look like
this: let us say the robot starts with the object in the palm and is trying to learn how
to manipulate it in-hand so that it is oriented in a particular direction (in-hand reorient).
While doing so, it may end up dropping the object. When learning with resets, a person
would need to pick up the object and place it back in the hand to continue training.
However, since we would like the robot to learn without such manual interventions, the
robot itself needs to retrieve the object and resume practicing. To do so, the robot must
first re-center and the object so that it is suitable for grasping, and then actually lift and
the flip up so it’s in the palm to resume practicing. In case any of the intermediate tasks
(say lifting the object) fails, the recenter task can be deployed to attempt picking up
again, practicing these tasks themselves in the process. Appropriately sequencing the ex-
ecution and learning of different tasks, allows for the autonomous practicing of in-hand
manipulation behavior, without requiring any human or instrumented resets.

5.3.1 Algorithm Description

In this work, we directly leverage this insight to build a dexterous robotic system that
learns in the absence of resets. We assume that we are provided with K different tasks
that need to be learned together. These tasks each represent some distinct capability of
the agent. As described above, in the dexterous manipulation domain the tasks might
involve re-centering, picking up the object, and reorienting an object in-hand. Each of
these K different tasks is provided with its own reward function Ri(st,at), and at test-
time is evaluated against its distinct initial state distribution µi

0.
Our proposed learning system, which we call Multi-Task learning for Reset-Free RL

(MTRF), attempts to jointly learn K different policies πi, one for each of the defined
tasks, by leveraging off-policy RL and continuous data collection in the environment.
The system is initialized by randomly sampling a task and state s0 sampled from the
task’s initial state distribution. The robot collects a continuous stream of data without any
subsequent resets in the environment by sequencing the K policies according to a meta-
controller (referred to as a “task-graph”) G(s) : S → {0, 1, . . . ,K− 1}. Given the current
state of the environment and the learning process, the task-graph makes a decision once
every T time steps on which of the tasks should be executed and trained for the next T
time steps. This task-graph decides what order the tasks should be learned and which
of the policies should be used for data collection. The learning proceeds by iteratively
collecting data with a policy πi chosen by the task-graph for T time steps, after which the

57



collected data is saved to a task-specific replay buffer Bi and the task-graph is queried
again for which task to execute next, and the whole process repeats.

We assume that, for each task, successful outcomes for tasks that lead into that task
according to the task graph (i.e., all incoming edges) will result in valid initial states for
that task. This assumption is reasonable: intuitively, it states that an edge from task A
to task B implies that successful outcomes of task A are valid initial states for task B.
This means that, if task B is triggered after task A, it will learn to succeed from these
valid initial states under µB

0 . While this does not always guarantee that the downstream
controller for task B will see all of the initial states from µB

0 , since the upstream controller
is not explicitly optimizing for coverage, in practice we find that this still performs very
well. However, we expect that it would also be straightforward to introduce coverage into
this method by utilizing state marginal matching methods Lee et al., 2019a. We leave this
for future work.

The individual policies can continue to be trained by leveraging the data collected in
their individual replay buffers Bi via off-policy RL. As individual tasks become more
and more successful, they can start to serve as effective resets for other tasks, forming
a natural curriculum. The proposed framework is general and capable of learning a
diverse collection of tasks reset-free when provided with a task graph that leverages the
diversity of tasks. This leaves open the question of how to actually define the task-graph
G to effectively sequence tasks. In this work, we assume that a task-graph defining the
various tasks and the associated transitions is provided to the agent by the algorithm
designer. In practice, providing such a graph is simple for a human user, although it
could in principle be learned from experiential data. We leave this extension for future
work.

Interestingly, many other reset-free learning methods Eysenbach et al., 2017; Han et al.,
2015; Smith et al., 2019 can be seen as special cases of the framework we have described
above. In our experiments we incorporate one of the tasks as a “perturbation” task. While
prior work considered doing this with a single forward controller Zhu et al., 2020b, we
show that this type of perturbation can generally be applied by simply viewing it as
another task. We incorporate this perturbation task in our instantiation of the algorithm,
but we do not show it in the task graph figures for simplicity.

5.3.2 Practical Instantiation

To instantiate the algorithmic idea described above as a deep reinforcement learning
framework that is capable of solving dexterous manipulation tasks without resets, we
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can build on the framework of actor-critic algorithms. We learn separate policies πi for
each of the K provided tasks, with separate critics Qi and replay buffers Bi for each
of the tasks. Each of the policies πi is a deep neural network Gaussian policy with
parameters θi, which is trained using a standard actor-critic algorithm, such as soft actor-
critic Haarnoja et al., 2018c, using data sampled from its own replay buffer Bi. The task
graph G is represented as a user-provided state machine, as shown in Fig 24, and is
queried every T steps to determine which task policy πi to execute and update next.
Training proceeds by starting execution from a particular state s0 in the environment,
querying the task-graph G to determine which policy i = G(s0) to execute, and then
collecting T time-steps of data using the policy πi, transitioning the environment to a
new state sT (Fig 24). The task-graph is then queried again and the process is repeated
until all the tasks are learned.

Algorithm 5 MTRF
1: Given: K tasks with rewards Ri(st,at), along with a task graph mapping states to a

task index G(s) : S → {0, 1, . . . ,K− 1}
2: Let î represent the task index associated with the forward task that is being learned.
3: Initialize πi, Qi, Bi ∀i ∈ {0, 1, . . . ,K− 1}
4: Initialize the environment in task î with initial state sî ∼ µî(sî)
5: for iteration n = 1, 2, ... do
6: Obtain current task i to execute by querying task graph at the current environ-

ment state i = G(scurr)
7: for iteration j = 1, 2, ..., T do
8: Execute πi in environment, receiving task-specific rewards Ri storing data in

the buffer Bi

9: Train the current task’s policy and value functions πi, Qi by sampling a
batch from the replay buffer containing this task’s experience Bi, according to SAC
Haarnoja et al., 2018c.

5.4 task and system setup

To study MTRF in the context of challenging robotic tasks, such as dexterous manipu-
lation, we designed an anthropomorphic manipulation platform in both simulation and
hardware. Our system (Fig 23) consists of a 22-DoF anthropomorphic hand-arm system.
We use a self-designed and manufactured four-fingered, 16 DoF robot hand called the
D’Hand, mounted on a 6 DoF Sawyer robotic arm to allow it to operate in an extended
workspace in a table-top setting. We built this hardware to be particularly amenable to
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our problem setting due it’s robustness and ease of long term operation. The D’Hand can
operate for upwards of 100 hours in contact rich tasks without any breakages, whereas
previous hand based systems are much more fragile. Given the modular nature of the
hand, even if a particular joint malfunctions, it is quick to repair and continue training. In
our experimental evaluation, we use two different sets of dexterous manipulation tasks
in simulation and two different sets of tasks in the real world. Details can be found in
Appendix A.

5.4.1 Simulation Domains

Figure 21: Tasks and transitions for lightbulb insertion in simulation. The goal is to recenter a
lightbulb, lift it, flip it over, and then insert it into a lamp.

Lightbulb insertion tasks. The first family of tasks involves inserting a lightbulb into a
lamp in simulation with the dexterous hand-arm system. The tasks consist of centering
the object on the table, pickup, in-hand reorientation, and insertion into the lamp. The
multi-task transition task graph is shown in Fig 21. These tasks all involve coordinated
finger and arm motion and require precise movement to insert the lightbulb.
Basketball tasks. The second family of tasks involves dunking a basketball into a hoop.
This consists of repositioning the ball, picking it up, positioning the hand over the basket,
and dunking the ball. This task has a natural cyclic nature, and allows tasks to reset each
other as shown in Fig 22, while requiring fine-grained behavior to manipulate the ball
midair.
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Figure 22: Tasks and transitions for basketball domain in simulation. The goal here is to reposition
a basketball object, pick it up and then dunk it in a hoop.

5.4.2 Hardware Tasks

Figure 23: Real-world hand-arm manipulation platform. The system comprises a 16 DoF hand
mounted on a 6 DoF Sawyer arm. The goal of the task is to perform in-hand reorientation, as
illustrated in Fig 28 or pipe insertion as shown in Fig 29

We also evaluate MTRF on the real-world hand-arm robotic system, training a set of
tasks in the real world, without any simulation or special instrumentation. We consid-
ered 2 different task families - in hand manipulation of a 3 pronged valve object, as well
as pipe insertion of a cylindrical pipe into a hose attachment mounted on the wall. We
describe each of these setups in detail below:

In-Hand Manipulation: For the first task on hardware, we use a variant of the in-hand
reorienting task, where the goal is to pick up an object and reorient it in the palm into a
desired configuration, as shown in Fig 24. This task not only requires mastering the con-
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tacts required for a successful pickup, but also fine-grained finger movements to reorient
the object in the palm, while at the same time balancing it so as to avoid dropping. The
task graph corresponding to this domain is shown in Fig 24. A frequent challenge in this
domain stems from dropping the object during the in-hand reorientation, which ordinar-
ily would require some sort of reset mechanism (as seen in prior work Nagabandi et al.,
2020). However, MTRF enables the robot to utilize such “failures” as an opportunity to
practice the tabletop re-centering, pickup, and flip-up tasks, which serve to “reset” the
object into a pose where the reorientation can be attempted again.1 The configuration
of the 22-DoF hand-arm system mirrors that in simulation. The object is tracked using
a motion capture system. Our policy directly controls each joint of the hand and the
position of the end-effector. The system is set up to allow for extended uninterrupted
operation, allowing for over 60 hours of training without any human intervention. We
show how our proposed technique allows the robot to learn this task in the following
section.

Figure 24: Tasks and transitions for the in-hand manipulation domain on hardware. The goal
here is to rotate a 3 pronged valve object to a particular orientation in the palm of the hand,
picking it up if it falls down to continue practicing.

Pipe insertion: For the second task on hardware, we set up a pipe insertion task, where
the goal is to pick up a cylindrical pipe object and insert it into a hose attachment on
the wall, as shown in Fig 25. This task not only requires mastering the contacts required

1 For the pickup task, the position of the arm’s end-effector is scripted and only D’Hand controls are learned
to reduce training time.
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for a successful pickup, but also accurate and fine-grained arm motion to insert the pipe
into the attachment in the wall. The task graph corresponding to this domain is shown
in Fig 25. In this domain, the agent learns to pickup the object and then insert it into
the attachment in the wall. If the object is dropped, it is then re-centered and picked up
again to allow for another attempt at insertion. 2 As in the previous domain, our policy
directly controls each joint of the hand and the position of the end-effector. The system
is set up to allow for extended uninterrupted operation, allowing for over 30 hours of
training without any human intervention.

Figure 25: Tasks and transitions for pipe insertion domain on hardware. The goal here is to
reposition a cylindrical pipe object, pick it up and then insert it into a hose attachment on the
wall.

5.5 experimental evaluation

We focus our experiment on the following questions:
1. Are existing off-policy RL algorithms effective when deployed under reset-free set-

tings to solve dexterous manipulation problems?
2. Does simultaneously learning a collection of tasks under the proposed multi-task

formulation with MTRF alleviate the need for resets when solving dexterous ma-
nipulation tasks?

2 For the pickup task, the position of the arm’s end-effector is scripted and only D’Hand controls are learned
to reduce training time. For the insertion task, the fingers are frozen since it is largely involving accurate
motion of the arm.
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Figure 26: Comparison of MTRF with baseline methods in simulation when run without resets.
In comparison to the prior reset-free RL methods, MTRF is able to learn the tasks more quickly
and with higher average success rates, even in cases where none of the prior methods can master
the full task set. MTRF is able to solve all of the tasks without requiring any explicit resets.

3. Does learning multiple tasks simultaneously allow for reset-free learning of more
complex tasks than previous reset free algorithms?

4. Does MTRF enable real-world reinforcement learning without resets or human
interventions?

Figure 27: Visualization of task frequency in the basketball task Family. While initially recentering
and pickup are common, as these get better they are able to provide resets for other tasks.
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5.5.1 Baselines and Prior Methods

We compare MTRF (Section 6.4) to three prior baseline algorithms. Our first compari-
son is to a state-of-the-art off-policy RL algorithm, soft actor-critic Haarnoja et al., 2018c
(labeled as SAC). The actor is executed continuously and reset-free in the environment,
and the experienced data is stored in a replay pool. This algorithm is representative of
efficient off-policy RL algorithms. We next compare to a version of a reset controller Ey-
senbach et al., 2017 (labeled as Reset Controller), which trains a forward controller to
perform the task and a reset controller to reset the state back to the initial state. Lastly,
we compare with the perturbation controller technique Zhu et al., 2020b introduced in
prior work, which alternates between learning and executing a forward task-directed
policy and a perturbation controller trained purely with novelty bonuses Burda et al.,
2019 (labeled as Perturbation Controller). For all the experiments we used the same RL
algorithm, soft actor-critic Haarnoja et al., 2018c, with default hyperparameters. To eval-
uate a task, we roll out its final policy starting from states randomly sampled from the
distribution induced by all the tasks that can transition to the task under evaluation, and
report performance in terms of their success in solving the task.

Figure 28: Film strip illustrating partial training trajectory of hardware system for in-hand ma-
nipulation of the valve object. This shows various behaviors encountered during the training -
picking up the object, flipping it over in the hand and then in-hand manipulation to get it to a
particular orientation. As seen here, MTRF is able to successfully learn how to perform in-hand
manipulation without any human intervention.

5.5.2 Reset-Free Learning Comparisons in Simulation

We present results for reset-free learning, using our algorithm and prior methods, in
Fig 26, corresponding to each of the tasks in simulation in Section 5.4. We see that MTRF
is able to successfully learn all of the tasks jointly, as evidenced by Fig 26. We measure
evaluation performance after training by loading saved policies and running the policy
corresponding to the “forward” task for each of the task families (i.e. lightbulb insertion
and basketball dunking). This indicates that we can solve all the tasks, and as a result
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Figure 29: Film strip illustrating partial training trajectory of hardware system for pipe insertion.
This shows various behaviors encountered during the training - repositioning the object, picking
it up, and then inserting it into the wall attachment. As seen here, MTRF is able to successfully
learn how to do pipe insertion without any human intervention.

can learn reset free more effectively than prior algorithms.
In comparison, we see that the prior algorithms for off-policy RL – the reset con-

troller Eysenbach et al., 2017 and perturbation controller Zhu et al., 2020b – are not able
to learn the more complex of the tasks as effectively as our method. While these methods
are able to make some amount of progress on tasks that are constructed to be very easy
such as the pincer task family shown in Appendix B, we see that they struggle to scale
well to the more challenging tasks (Fig 26). Only MTRF is able to learn these tasks, while
the other methods never actually reach the later tasks in the task graph.

To understand how the tasks are being sequenced during the learning process, we
show task transitions experienced during training for the basketball task in Fig 27. We
observe that early in training the transitions are mostly between the recenter and per-
turbation tasks. As MTRF improves, the transitions add in pickup and then basketball
dunking, cycling between re-centering, pickup and basketball placement in the hoop.

5.5.3 Learning Real-World Dexterous Manipulation Skills

Next, we evaluate the performance of MTRF on the real-world robotic system described
in Section 5.4, studying the dexterous manipulation tasks described in Section 5.4.2.

in-hand manipulation Let us start by considering the in-hand manipulation tasks
shown in Fig 24. This task is challenging because it requires delicate handling of finger-
object contacts during training, the object is easy to drop during the flip-up and in-hand
manipulation, and the reorientation requires a coordinated finger gait to rotate the object.
In fact, most prior work that aims to learn similar in-hand manipulation behaviors either
utilizes simulation or employs a hand-designed reset procedure, potentially involving
human interventions Nagabandi et al., 2020; Zhu et al., 2019; Kumar et al., 2016b. To
the best of our knowledge, our work is the first to show a real-world robotic system

66



learning such a task entirely in the real world and without any manually provided or
hand-designed reset mechanism. We visualize a sequential execution of the tasks (after
training) in Fig 28. Over the course of training, the robot must first learn to recenter
the object on the table, then learn to pick it up (which requires learning an appropriate
grasp and delicate control of the fingers to maintain grip), then learn to flip up the object
so that it rests in the palm, and finally learn to perform the orientation. Dropping the
object at any point in this process requires going back to the beginning of the sequence,
and initially most of the training time is spent on re-centering, which provides resets for
the pickup. The entire training process takes about 60 hours of real time, learning all of
the tasks simultaneously. Although this time requirement is considerable, it is entirely
autonomous, making this approach scalable even without any simulation or manual in-
strumentation. The user only needs to position the objects for training, and switch on
the robot.

For a quantitative evaluation, we plot the success rate of sub-tasks including re-centering,
lifting, flipping over, and in-hand reorientation. For lifting and flipping over, success is
defined as lifting the object to a particular height above the table, and for reorient success
is defined by the difference between the current object orientation and the target orien-
tation of the object. As shown in Fig 30, MTRF is able to autonomously learn all tasks in
the task graph in 60 hours, and achieves an 70% success rate for the in-hand reorient task.
This experiment illustrates how MTRF can enable a complex real-world robotic system
to learn an in-hand manipulation behavior while at the same time autonomously retry-
ing the task during a lengthy unattended training run, without any simulation, special
instrumentation, or manual interventions. This experiment suggests that, when MTRF is
provided with an appropriate set of tasks, learning of complex manipulation skills can
be carried out entirely autonomously in the real world, even for highly complex robotic
manipulators such as multi-fingered hands.

pipe insertion We also considered the second task variant which involves manipu-
lating a cylindrical pipe to insert it into a hose attachment on the wall as shown in Fig 25.
This task is challenging because it requires accurate grasping and repositioning of the
object during training in order to accurately insert it into the hose attachment, requiring
coordination of both the arm and the hand. Training this task without resets requires a
combination of repositioning, lifting, insertion and removal to continually keep training
and improving. We visualize a sequential execution of the tasks (after training) in Fig 29.
Over the course of training, the robot must first learn to recenter the object on the table,
then learn to pick it up (which requires learning an appropriate grasp), then learn to
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actually move the arm accurately to insert the pipe to the attachment, and finally learn
to remove it to continue training and practicing. Initially most of the training time is
spent on re-centering, which provides resets for the pickup, which then provides resets
for the insertion and removal. The entire training process takes about 25 hours of real
time, learning all of the tasks simultaneously.

Figure 30: Success rate of various tasks on dexterous manipulation task families on hardware.
Left: In-hand manipulation We can see that all of the tasks are able to successfully learn with
more than 70% success rate. Right: Pipe insertion We can see that the final pipe insertion task is
able to successfully learn with more than 60% success rate.

5.6 discussion

In this work, we introduced a technique for learning dexterous manipulation behaviors
reset-free, without the need for any human intervention during training. This was done
by leveraging the multi-task RL setting for reset-free learning. When learning multiple
tasks simultaneously, different tasks serve to reset each other and assist in uninterrupted
learning. This algorithm allows a dexterous manipulation system to learn manipulation
behaviors uninterrupted, and also learn behavior that allows it to continue practicing.
Our experiments show that this approach can enable a real-world hand-arm robotic
system to learn an in-hand reorientation task, including pickup and repositioning, in
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about 60 hours of training, as well as a pipe insertion task in around 25 hours of training
without human intervention or special instrumentation.
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6
L E A R N I N G M U LT I - TA S K R E S E T- F R E E B E H AV I O R F R O M I M A G E S

As seen in Chapter 5, running RL on real-world robotic platforms raises a number of
issues that lie outside the standard RL formulation, including but not limited to the
need for episodic resets. Other challenges include the problem of state estimation in
open world environments, and difficulties with rewards specification. In order to allow
for learning-based dexterous manipulation systems to reach their fullest potential in
terms of practicality and scalability, it is critical to limit the assumptions on manual
engineering while still providing enough supervision for reinforcement learning to be
tractable.

In this chapter, we ask: how we can enable reinforcement learning under assump-
tions that might plausibly hold outside of laboratory settings? And furthermore, how
we can do so in such a way that tasks can be defined without manually programming
well-shaped reward functions? Outside of laboratory settings, RL-enabled robots must
deal not only with sample complexity, but also with the inability to reset the environ-
ment, and the need to deduce both object state and rewards from images obtained from
on-board cameras. While many of these challenges can be tackled by leveraging hu-
man supervision, such as demonstrations, explicit interventions, or manually engineered
shaped rewards, a practical real-world reinforcement learning system requires striking
the right balance between obtaining human supervision that makes the autonomous RL
problem tractable and not placing an untenable burden of supervision on the user. For
instance, while shaped reward functions make the RL problem far more tractable, they
impose a significant engineering burden.

Guided by this principle that costly human guidance should serve to minimally illus-
trate how to enable intervention-free learning, we propose a system that continuously col-
lects experience guided by user-provided intermediate “milestone” examples that both
provide guidance in how to perform the task, and specify how it can be practiced with
autonomous retrying. To illustrate, consider a robotic hand whose goal is to grasp a hose
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connector and plug it into a socket (Fig 35). Training this task requires repeatedly plug-
ging in and unplugging the hose connector, and the task definition should additionally
provide enough information about the steps involved in performing the task so that the
robot can learn it efficiently. In this case, the user might specify a milestone where the
hand is holding the connector by positioning the hand over the object, another milestone
where the plug is lined up with the socket, and a final one where it is fully inserted.
Note, however, that the user does not need to teleoperate the robot to do the task – the
individual steps can simply be “posed” by the user to define the milestones, and the
system can then learn how to actually perform them. In this sense, the milestones are
closer to step-by-step instructions, rather than full demonstrations.

The principle contribution of this paper is a system for real-world, high-dimensional,
dexterous manipulation that avoids the need for teleoperation, manually engineered
reset mechanisms, or environment information beyond the robot’s own onboard sensors
and vision. We show that, by instead leveraging user supervision in the form of visual
milestones, which can be generated by a user taking a snapshot of the robot and object
in a desired setting, our system can automate the procedure of both reset-free practicing
and reward specification. We demonstrate our approach on a group of real world tasks,
where, through over 80 hours of combined (but fully autonomous) robot interaction, we
show that it is possible to learn a collection of contact rich tasks, paving the way for
increasingly open-ended, real world, dexterous manipulation systems.

6.1 related work

The design and control of anthropomorphic robot hands has been studied extensively
in the robotics literature, varying in the complexity of the robot morphology and the
degree of environment instrumentation (Xu et al., 2013; Deimel and Brock, 2016; Gupta
et al., 2016b). Prior work has studied control of complex hands using trajectory optimiza-
tion (Mordatch et al., 2012; Kumar et al., 2014b), policy search (Kober and Peters, 2008;
Posa et al., 2014; Rajeswaran et al., 2017b), simulation to real-world transfer OpenAI et
al., 2018; Lowrey et al., 2018; Allshire et al., 2021, and reinforcement learning (Van Hoof
et al., 2015; Zhu et al., 2019). In contrast to our work, the majority of this prior work
has assumed access to compact state representations or accurate simulators and object
models. Closer to the system we describe in this paper is prior work on learning visuomo-
tor policies for dexterous manipulation (Jain et al., 2019; Mandikal and Grauman, 2020b;
Akinola et al., 2020), which shares our motivation for reducing the assumptions required
for real world learning. However, with the exception of several works we discuss below,
prior systems on RL for dexterous manipulation typically require assumptions on user-
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provided resets, manually designed rewards, or ground truth object state observations.
These assumptions hinder the application of RL in more realistic settings.

An important consideration in our system is the ability to specify an task without
manual reward engineering via intermediate milestone examples. Task specification has
been studied extensively, but, however, using a variety of assumptions and approaches.
These range from having humans provide demonstrations for enabling imitation learn-
ing Argall et al., 2009; Ross et al., 2013; Reddy et al., 2019, using inverse RL Ziebart et al.,
2008a; Wulfmeier et al., 2015b; Ratliff et al., 2006b, active settings where users can pro-
vide corrections Losey and O’Malley, 2018; Cui and Niekum, 2018; Co-Reyes et al., 2018,
or ranking-based preferences Myers et al., 2022; Brown et al., 2020. Motivated by the goal
of broader applicability, we do not assume access to expert demonstrations (e.g. via tele-
operation or kinesthetic teaching), which can themselves can be difficult to provide for
high-dimensional systems Akgun et al., 2012; Villani et al., 2018. For instance, providing
kinesthetic demonstrations for a full hand-arm robotic system requires very challenging
coordination and several simultaneous demonstrators. Instead, we utilize sparse images
of intermediate outcomes that can be obtained simply by posing the robot and objects
in a particular state, which is generally much easier to provide than kinesthetic demon-
strations. For reward inference using these intermediate outcome states, we build on the
VICE framework Fu et al., 2018b, although our system could use any reward inference
algorithm based upon success examples Zolna et al., 2020. However, our focus is not on
devising a new algorithm for learning rewards, but on leveraging existing components,
such as VICE, to build a complete, reset-free, robotic system that can enable scalable RL
with a dexterous manipulator in the real world. Therefore, although the building blocks
of our system are based on prior work, their combination and the capabilities they enable
(learning image-based dexterous manipulation in the real world) are novel.

We build on prior work that has studied the setting of “reset-free” reinforcement learn-
ing (see Sharma et al. (2021b) for a review). Prior work has studied this setting from a
number of complementary perspectives, such as safety (Eysenbach et al., 2017), skill dis-
covery Xu et al., 2020, unattended learning (Han et al., 2015) and via curriculum (Sharma
et al., 2021a). Like these prior works, our system is also aimed at enabling “reset-free”
learning. The majority of this prior work, however, relies on compact state representa-
tions, which require manual engineering to construct in the real world (using systems
like motion capture or object trackers). In contrast, our system overall has substantially
less restrictive assumptions (raw vision-based observations, learning via intermediate
outcome states, multi-task learning).
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Table 3: A comparison between the as-
sumptions of AVAIL and prior reset-
free methods.

Method No Dense
Reward

Multi
Task Vision High

DoFs

R3L × ×

MTRF × ×

Ours

The most closely related reset-free robotic RL
systems that have been previously proposed are
R3L (Zhu et al., 2020b) and MTRF (Gupta et al.,
2021b). Our assumptions regarding minimal in-
strumentation and vision-based reset-free learning
most resemble those of Zhu et al. (2020b) (R3L).
However, our work tackles a considerably more
challenging setting: while Zhu et al. (2020b) stud-
ied a 3-finger claw mounted on a fixed base, we
show that our method can control a 4-fingered hand on a 7 DoF arm. This is done by
leveraging a multi-task RL formulation that builds on ideas from MTRF (Gupta et al.,
2021b) instead of the novelty-based resets in R3L (Burda et al., 2019), which scale poorly
in higher dimensional settings. In contrast to MTRF, however, which requires known low-
dimensional state and hand-designed shaped rewards, our system learns vision-based
rewards from examples, and does not require motion capture or user-provided state es-
timation systems. Thus, our system can be seen as combining the strengths of R3L (Zhu
et al., 2020b) and MTRF (Gupta et al., 2021b), and addressing the major limitations of
both systems.

6.2 robotic platform and problem overview

Figure 31: The robot consists of a 16 DoF hand
mounted on a 7 DoF Sawyer arm (left). The
workspace (right) is equipped with two RGB web
cameras providing an overhead and side view.

To contextualize our problem setting, we first
present an overview of our robot platform,
describing the hardware and task setup, as
well as the observation and action space.
Then, we provide an overview of our prob-
lem setting, focusing on the practical goals
of our system. We provide details related to
our robotic platform in the supplementary
material under Appendix E, along with de-
tails of a simulated analogue that we employ
for analysis and ablation experiments.

We study our approach in the challenging
domain of reset-free dexterous manipulation, where we make use of a custom, anthropo-
morphic manipulation platform. Our system consists of a custom-built, 4 finger, 16-DoF
robot hand, mounted on a 7-DoF Sawyer robotic arm. The arm and hand assembly is
positioned over a tabletop surface (Fig. 31, left image). Our policy, which we operate
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at 8Hz, directly controls each joint position in addition to the Cartesian position and
orientation of the arm, resulting in a 22 dimensional action space and 29 dimensional
state space. The system is designed to operate for upwards of 100 hours in contact-rich
environments without breakage. In addition to the robot’s own joint encoders, two RGB
image observations are provided to the robot via two low-cost web cameras (Fig. 31,
right image, red boxes) positioned in third-person positions and resized to 84× 84.

Our tasks consist of manipulation behaviors such as reaching, grasping, reorienting
and inserting. We consider two different collections of tasks for interacting with several
different objects: inserting a hose into a connector on the side of the arena, and hooking
a rope onto a fixture. For each of these tasks, the only supervision interface we assume is
to allow the user to place the robot and object in a desired position and capture a set of
image “snapshos”. We describe how we use this supervision to drive reward inference
and task selection in the sections below.

6.3 problem formalism and user assumptions

In this section, we formalize our reset-free problem setting and supervision assumptions.
Consider first the Markov decision process (MDP) defined by the tuple (S,A,pdyn, ρ,γ,R),
where S denotes the state space, A denotes the action spaces, pdyn : S × A × S +→
R!0 denotes the environment dynamics, R : S × A +→ R denotes the reward func-
tion, ρ : S +→ R!0 denotes the initial state distribution and γ ∈ [0, 1) denotes the dis-
count factor. The typical objective of episodic RL is to optimize the discounted return
J(π) = Eτ∼π[

∑T
t=0 γ

tR(st,at) ] with respect to the policy π, where τ = {(si,ai)}
T−1
i=0 is

obtained by sampling s0 ∼ ρ(·), at ∼ π(· | st) and st+1 ∼ p(· | st,at).
Standard episodic RL assumes the ability to sample from and set the environment to

s0 ∼ ρ between trials. While trivial to satisfy in simulated settings, this need to effec-
tively teleport the environment state to s0 between attempts has substantial practical
cost in the real world. As typical RL algorithms require episodic resets in order to learn
effectively Sharma et al., 2021a, this often requires expensive human engineering via a
separately constructed reset mechanism Zhu et al., 2019; Nagabandi et al., 2020. This
need for manual engineering can in principle be avoided by learning a separate policy
whose goal is to “reset” the environment Eysenbach et al., 2017; Han et al., 2015. How-
ever, in many realistic settings, performing a “reset” can be as challenging as the original
task, and can entail a range of different behaviors. For example, a robot that uses a coffee
machine might spill the coffee, requiring it to clean up the spill. It might also drop the
cup, requiring it to reach for it. Not only are each of these tasks themselves difficult to
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solve with a single policy, they are also sufficiently distinct from each other that we might
want entirely different strategies. In addition, independent of the need to be sequenced
in a reset-free setting, these tasks are themselves challenging to learn which necessitates
the provision of more fine-grained guidance via user supervision.

To be able to address these challenges in reset-free task sequencing and providing
fine-grained supervision, we propose a more nuanced strategy, where a user provides
the robot with a set of sub-problems to practice. We propose to provide the robot with
human supervision using example “milestones” summarized in the following graph
structure:

Definition 1 (Milestones graph). We assume the user provides a set of outcome images that
can be summarized by a graph G = (V,E) of cardinality |K| indexed by z, where each vertex
v ∈ V is characterized by a collection of outcome images szg (which indicate a semantically
meaningful subtask to be solved). Each set of outcome images characterizes a separate “sub-
task". In addition, upon successfully accomplishing a sub-task, a directed edge (v, v ′) ∈ E is
provided which indicates which sub-task is to be practiced next.

Consistent with the goal of having the agent continuously practice (i.e., not get stuck),
we assume there are no sink nodes in the provided graph1. Then, instead of optimizing a
single-task objective J(π), we instead optimize all of the subtasks in the milestone graph
simultaneously, resulting in a multi-task RL problem. Concretely, we now learn a set of
K policies πz indexed by a categorical variable z (one for each milestone), optimizing a
set of MDPs, M ≡ (S,A,pdyn(st+1|at, st), {Rz}

K−1
z=0 ,ptask(z|s)) , where we have introduced

a per milestone reward Rz and task predictor ptask, using which we can construct the
following objective

JMT({πi}
K−1
i=0 ) =

∞∑

i=0



 E
si0=si−1

T
τ∼πzi

[
T∑

t=0

γtRz(s
i
t,a

i
t)

]


 (17)

zi+1 ∼ ptask(zi+1|s
i
T ). (18)

Formulating the problem in this manner makes conspicuous the need to define and sam-
ple from ptask(zi+1|s

i
T ) and Rz(st,at). To tractably learn these two functions, we leverage

the user provided milestone supervision, which we denote as Dk = {s1, s2, ..sN}, and a

1 This is a strong assumption, and conceivably could be lifted by providing handling of safety-critical states
to avoid irreversible sinks, (Garcıa and Fernández, 2015; Srinivasan et al., 2020). For simplicity we leave
addressing safety issues for future work.
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Figure 32: An overview of our approach. Our relies on the human to provide a set of visual milestone
(bottom left, K = 4 here) and transitions. We use this to formulate a multi-task learning problem where
we leverage this supervision to learn all the components necessary for intervention-free learning. Prior
to training, we learn a task selection model (blue module), which is used to choose amongst a set of K
policies for data collection (Sec. 6.4.2). This data is used to learn a success classifier (top right, Sec. 6.4.1),
which is used to automatically assign rewards. We show that our system is capable of learning reset-free,
complex manipulation behaviors on a real world anthropomorphic hand without instrumentation beyond
the robot’s own joint encoders and vision.

set of categorical labels yk for each set of success examples indicating which task should
transition to the next. These could, for example, be a set of images showing the robot
repositioning and re-grasping the object, and a label indicating the next step is pickup.
In the following sections, we show how to specify the rewards Rz and learn the task tran-
sition function ptask(zi+1|s

i
T ) and per-task policies πz without any human intervention in

the training process, simply using milestone image supervision provided upfront.

6.4 the avail system : autonomy via user-provided milestones

To address the problem described in Section 6.3, we present AVAIL (Autonomy ViA
mILestones) – our system for learning autonomously with minimal intervention and
minimal external environment instrumentation. AVAIL solves a reset-free autonomous
RL problem by reframing the RL training process as a multi-task, reset-free problem
that can learn directly from raw visual inputs, with minimal external instrumentation
or intervention. By leveraging the user-provided milestones defined in Sec 6.3, at a high
level our system functions by (1) deriving reward functions via learned success classifiers,
(2) optimizing these rewards in a sample efficient manner using a multi-task vision-based
RL system, and (3) determining which of these tasks to perform given the current robot
observations.
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6.4.1 Visual Multi-Task Policy and Reward Learning from User Milestones

A critical enabler of autonomous learning is the ability for a robot to assign rewards to
its own experience. This importantly relieves the burden of manual reward engineering,
but comes with the trade-off of removing the ability of the human to provide task in-
formation (e.g., via reward shaping), which can be critical for tractable learning of long
horizon tasks. To resolve this difficult challenge in our setting, which effectively requires
compound behavior over long horizons to attempt and reset the task, we leverage the
sparse milestone supervision to learn a set of success classifiers {poz(·|s)}K−1

z=0 . Importantly,
the provision of a number of significant milestones takes the burden off a single learned
classifier to provide accurate reward shaping for long horizon tasks. By breaking down a
long horizon behavior into a number of component milestones, our system is able to deal
with relatively poor reward shaping from the learned classifier for learning individual
policies.

For each individual classifier poz(·|s), we make use of the VICE algorithm Fu et al.,
2018b. Concretely, we learn a binary classifier poz(·|s) over the set of user-provided ex-
amples {D1,D2, . . . ,DK} as the positive class, and the agent’s own experience sampled
on-policy as the negative class. Once trained, the classifier probability poz(o|s), or a mono-
tonic transformation of it (e.g., logpoz(·|s)), can be used as Rz from Section 6.3. Combined
with our manner of breaking down the problem into concrete milestones, an added
advantage of classifier-based rewards is the property that, in practice, they can often
provide some additional degree of shaping near the success Fu et al., 2018b; Li et al.,
2021.

Finally, in order to learn in uninstrumented settings, a core component of our system
is a sample efficient, multi-task RL component that allows us to learn the robot’s joint
encoders and raw image observations. We build on recent advances in data augmen-
tation Kostrikov et al., 2020 and implicit ensembling Hiraoka et al., 2021 via dropout
to allow for robust, sample efficient learning. In particular, given the set of reward
functions discussed above, we learn a set of corresponding K policies πz using the re-
cently proposed DRoQ approach (Hiraoka et al., 2021) which combines dropout and
data-augmentation for vision based RL.

6.4.2 Multi-Task Learning without Oracles

After attempting a particular task, the agent must decide which task to attempt next,
which depends on the current situation (e.g., if it drops the hose connector, it should try
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to grasp it again, but if it is still holding it, it can attempt the insertion). In order to infer
which task the agent should execute, we allow the user to provide next milestone labels
(labels of what discrete milestone zk should be attempted at a particular state sk) to
train a parameterized task dynamics model by performing supervised learning over the
milestones and labels provided at the beginning of training. That is, given a dataset of
D = {(zk, sk)Nk=0}, we can recover pφtask = arg maxφ Ezk,sk∼D

[
logpφtask(zk|sk)

]
. These labels

represent which task to perform upon success (e.g., the success examples for hooking the
rope could be labeled with the ‘unhook’ task). During autonomous training, the agent
samples a task from this learned model, which is then used to execute the corresponding
policy πz in the environment. Rather than re-sample this task indicator at every step, we
sample it every T steps and keep it fixed during data collection. This scheme explicitly
separates the task inference, and task learning allows each “sub-problem” to be treated
effectively as a separate MDP.

6.4.3 Algorithm Summary and Implementation Details

To summarize, given the milestone graph provided by the users, our system, AVAIL
(Autonomy ViA mILestones), proceeds as follows. First, AVAIL performs supervised
learning of the next task transitions provided by the user as described in Sec. 6.4.2 to
learn pφtask(z|s). Next, during our training, our approach chooses the most probable task
z using an observed state, which is then used to collect experience using the correspond-
ing policy πz. We train a set of separate policies πz for each of the K sets of example
images, with separate critics Qz and replay buffers Bz. We parameterize each policy πz

as a deep neural network, and train each policy using the soft actor-critic algorithm
(SAC) Haarnoja et al., 2018c using rewards Rz inferred via VICE Fu et al., 2018b. Finally,
rather than resampling the task every step, we do so every T = 100 steps. We summarize
our full approach in Alg. E.3.1 and provide more extensive details and hyperparameters
in Appendix E.3.

6.5 experimental evaluation

Our experiments first aim to evaluate whether AVAIL can autonomously learn complex
manipulation skills in the real world with visually indicated milestones, and then to
compare AVAIL with other reset-free learning methods in simulation.
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Figure 33: Filmstrip of final learned insertion behavior. Using the user-provided milestones, our robot
learns a set of skills (e.g., grasp, insert), which together specify a long horizon task as well as the stages
needed to practice autonomously. In our experiment, the robot learns to successfully plug-in a hose con-
nector over 36 hours of continuous learning without instrumentation, purely from image observations and
joint encoders.

Figure 36: Success rates of each method av-
eraged over 5 seeds for the full task on the
DHandValvePickup-v0 domain. Novelty based resets
(purple) fail to make progress in this high DoF con-
trol problem. Compared to methods with fewer de-
gree of supervision, K = 0, 1, 2 milestones (blue, or-
ange, red), our results illustrate the benefits of mile-
stone supervision.

Real-world tasks and evaluation: Since
the principle aim of AVAIL is to acquire
real world skills, we evaluate our ap-
proach on two manipulation tasks in set-
tings without any environment instrumen-
tation, handcrafted reward functions, or
engineered reset mechanisms. The first
task involves grasping, hooking, and un-
hooking a rope onto a handle, and the sec-
ond involves grasping, repositioning, and
connecting a cylindrical hose connector
to a plug in the workspace. We periodi-
cally save the policies at regular intervals
and evaluate their performance after train-
ing to not interrupt reset-free training. For
both task sets, the evaluation metric for
each milestone is a binary indicator of suc-
cess based on the distance of the hand and object to the desired goal position. We provide
more extensive details in the supplementary material under Appendix E.1.2 and E.1.3.

We plot the performance of the evaluation runs as a function of the time at which
the policy was recorded in Fig. 52, providing learning curves for real-world training. Ob-
serve that AVAIL automatically provides a degree of scaffolding by successfully learning
skills early on in training (blue and orange) that correspond to being able to regrasp and
reorient the object. This allows the robot to continuously retry inserting and hooking
task. By the end of training, we find that the robot is able to successfully perform both
tasks. We note that for these two tasks, no additional instrumentation is required beyond
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(a) (b)

Figure 34: Success rates of different milestones on our real world dexterous manipulation system. Our
method is able to insert the pick with over 80% success rate at the end of training (right, red curve) and
nearly perfectly hook and unhook the rope (left, red/green curve). Overall, success on other milestones
improves earlier in training (blue, orange curves), equipping the robot with skills to autonomously retry
the task.

Figure 35: Filmstrip of the final learned rope hooking behavior. Using the user-provided milestones, our
robot learns a set of skills that allows it to autonomously practice hooking and unhooking the rope (right
two images) and recover from failure (e.g., after dropping the rope) by regrasping and reorienting the
hook (left two images). After over 30 hours of unattended learning, our system successfully hooks the
rope with over 95% success.

changing the object and fixture. Upon specifying the visual milestones, the robot is ca-
pable of completely unattended learning for approximately 80 hours of combined robot
time.

Comparisons. In order to compare AVAIL more extensively to prior reset-free meth-
ods, we build on the D’Hand simulation domain developed in prior work Gupta et al.,
2021b (see Appendix E.2.1). We first compare to a standard state-of-the-art RL algorithm,
soft actor-critic Haarnoja et al., 2018c (which we denote as SAC), which we run reset-free
in the environment using a reward learned by pooling example images of the final task.
Note that prior works in robotics have used this type of approach, which corresponds to
a combination of SAC with VICE, to address real-world robotics tasks (Singh et al., 2019),

80



but this approach does not by itself address the reset-free challenges. Next, we compare
to a version of the reset controller, which can be seen as providing two milestones: one
to pick up the object, and one to place it back on the table. Finally, we compare to the
perturbation controller Zhu et al., 2020b, where we provide the “forward” policy with
a set of pickup goals and follow Zhu et al. (2020b) by interleaving training the forward
policy with a “perturbation controller” trained with an intrinsic reward based on ran-
dom network distillation bonus Burda et al., 2019. Details for all of the methods are in
included in the supplementary materials under Appendix E.3.

Evaluation protocol. In order to evaluate the final performance of each method, we
sample a random initial position of the object in the workspace and run the learned
policy. We evaluate task success using a sparse indicator function that evaluates whether
the object’s center of mass is within a 0.1m radius of the target position above the ta-
ble. We emphasize that these rollouts are not used for training, and are only used to
measure performance. For all methods, we report the final success rate of each policy
in picking up the valve. For additional details related to our environment setup and
evaluation metrics, we refer the reader to the supplementary material in Appendix E.2.

Figure 37: A comparison of success rate on
the simulated DHandValvePickup-v0 domain com-
pared to an oracle task graph. We find that our
framework is robust to “errors” in the task graph
compared to a hand crafted oracle. Both a learned
task graph and ablation perform similarly given
enough training.

Comparative analysis. The results of our
comparative evaluation are presented in
Fig. 54. Prior methods generally do not make
successful progress on this task, due to the
combination of reset-free training and the
lack of a shaped reward. Without any han-
dling of the reset-free setting, both variants
of SAC fail to progress. While R3L in princi-
ple can handle the reset-free setting by per-
turbing the state between trials, the large,
high-dimensional task simply provides too
many ways for the purely novelty-seeking
controller to modify the environment with a
meaningful reset. The forward backward con-
troller (red), which can be seen as an instanti-
ation of our approach with two milestones, is
the only prior method that succeeds in making progress. This suggests that the improved
performance can be achieved through granular milestones, which is also suggested by
the further degradation of performance when using a sparse (light blue), where the user
provides no milestones.
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Task graph. Finally, to understand the effect of our learned task graph. We run an
experiment in simulation where we can construct an “oracle” task graph similar to Gupta
et al. (2021b), using ground truth state information about the object’s position in the
scene. We also compare with a naïve strategy for scheduling where each task of the
three milestones are practiced in consecutive order. The comparative success rate can
be seen in Fig. 37. Interestingly, we find that while learning with the ground truth task
graph results in faster learning, both the learned and naïve task graph are able to achieve
comparable performance, with the learned approach slightly outperforming the naïve
approach. This suggests that our framework is robust to “errors” in the task graph,
although learning can be made more optimal through improved scheduling of tasks.

6.6 discussion, limitations , and future work
We proposed a method for multi-task learning without resets directly from high dimen-
sional image observations. Our method, AVAIL, constructs a task graph from a modest
number of user-provided milestone examples. This task graph illustrates how to practice
and reset the task, and provides guidance to the learning process in lieu of more standard
manual reward shaping. Our method does not require manual state estimation, manual
resets, or reward engineering, and while the milestone examples require human effort
to provide, we expect in many cases that this effort is significantly lower than providing
full demonstrations. Much like a teacher or coach might instruct a student not just by
telling them the goal of a task but how they should go about practicing it, the milestone
examples serve to provide guidance to the agent for how it should go about learning the
desired behavior. Our experiments show that this approach effectively produces a setup
where the agent first practices the easier tasks, and then builds up the more complex
tasks on top of them, all the while learning autonomously without resetting.

Limitations: While our method provides a more scalable alternative to assuming full
demonstrations or hand-designed rewards, it does have several limitations. We assume
that both our task graph and reward functions can be specified with images, but this
is not always practical in partially observed settings. Potential future work could con-
sider other natural modalities for specifying milestones, such as language. Our method
also learns separate policies for each milestone, and sharing representations across tasks
could likely accelerate learning. Finally, the particular choice of milestones in practice
require some user expertise in determining stages that are appropriate for the robot to
learn. An exciting direction for future work could be to enable the robot to autonomously
determine if a particular stage is too hard and ask for additional guidance or assistance.
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7
B E N C H M A R K I N G A L G O R I T H M S F O R A U T O N O M O U S
R E I N F O R C E M E N T L E A R N I N G

As we have seen, autonomous learning, especially for data hungry approaches such as
reinforcement learning, is an important enabler of broader applicability. Rarely how-
ever, is it an explicit consideration, despite its clear desirability. Consider an example
of a robot learning to clean and organize a home. We would ideally like the robot to
be able to autonomously explore the house, understand cleaning implements, identify
good strategies on its own throughout this process, and adapt when the home changes.
This vision of robotic learning in real world, continual, non-episodic manner is in stark
contrast to typical experimentation in reinforcement learning in the literature (Levine
et al., 2016a; Chebotar et al., 2017; Yahya et al., 2017; Ghadirzadeh et al., 2017b; Zeng
et al., 2020), where agents must be consistently reset to a set of initial conditions through
human effort or engineering so that they may try again. In this final chapter, we propose
to bridge the gap between the practical challenges of providing oracle resets and the
normal assumptions of standard episodic RL. In particular, we provide a formalism and
set of benchmark tasks that explicitly consider the challenges faced by agents situated
in non-episodic environments, rather than treating them as being abstracted away by an
oracle reset.

Our specific aim is to place a greater focus on developing algorithms under assump-
tions that more closely resemble autonomous real world robotic deployment. While the
episodic setting naturally captures the notion of completing a “task”, it hides the costs
of assuming oracle resets, which when removed can cause algorithms developed in the
episodic setting to perform poorly (Sec. 7.5.1). Moreover, while prior work has exam-
ined settings such as RL without resets (Eysenbach et al., 2017; Xu et al., 2020; Zhu et
al., 2020a; Gupta et al., 2021b), ecological RL (Co-Reyes et al., 2020), or RL amidst non-
stationarity (Xie et al., 2020) in isolated scenarios, these settings are not well-represented
in existing benchmarks. As a result, there is not a consistent formal framework for eval-
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uating autonomy in reinforcement learning and there is limited work in this direction
compared to the vast literature on reinforcement learning. By establishing this frame-
work and benchmark, we aim to solidify the importance of algorithms that operate with
greater autonomy in RL.

Before we can formulate a set of benchmarks for this type of autonomous reinforce-
ment learning, we first formally define the problem we are solving. As we will discuss in
Section 7.3, we can formulate two distinct problem settings where autonomous learning
presents a major challenge. The first is a setting where the agent first trains in a non-
episodic environment, and is then “deployed” into an episodic test environment. In this
setting, which is most commonly studied in prior works on “reset-free” learning (Han
et al., 2015; Zhu et al., 2020a; Sharma et al., 2021a), the goal is to learn the best possible
episodic policy after a period of non-episodic training. For instance, in the case of a home
cleaning robot, this would correspond to evaluating its ability to clean a messy home.
The second setting is a continued learning setting: like the first setting, the goal is to
learn in a non-episodic environment, but there is no distinct “deployment” phase, and
instead the agent must minimize regret over the duration of the training process. In the
previous setting of the home cleaning robot, this would evaluate the persistent clean-
liness of the home. We discuss in our autonomous RL problem definition how these
settings present a number of unique challenges, such as challenging exploration.

The main contributions of our work consist of a benchmark for autonomous RL (ARL),
as well as formal definitions of two distinct ARL settings. Our benchmarks combine
components from previously proposed environments (Coumans and Bai, 2016; Gupta
et al., 2019; Yu et al., 2020b; Gupta et al., 2021b; Sharma et al., 2021a), but reformulate
the learning tasks to reflect ARL constraints, such as the absence of explicitly available
resets. Our formalization of ARL relates it to the standard RL problem statement, pro-
vides a concrete and general definition, and provides a number of instantiations that
describe how common ingredients of ARL, such as irreversible states, interventions, and
other components, fit into the general framework. We additionally evaluate a range of
previously proposed algorithms on our benchmark, focusing on methods that explicitly
tackle reset-free learning and other related scenarios. We find that both standard RL
methods and methods designed for reset-free learning struggle to solve the problems
in the benchmark and often get stuck in parts of the state space, underscoring the need
for algorithms that can learn with greater autonomy and suggesting a path towards the
development of such methods.
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7.1 related work

Prior work has proposed a number of benchmarks for reinforcement learning, which
are often either explicitly episodic (Todorov et al., 2012; Beattie et al., 2016; Chevalier-
Boisvert et al., 2018), or consist of games that are implicitly episodic after the player dies
or completes the game (Bellemare et al., 2013; Silver et al., 2016). In addition, RL bench-
marks have been proposed in the episodic setting for studying a number of orthogonal
questions, such multi-task learning (Bellemare et al., 2013; Yu et al., 2020b), sequential
task learning (Wołczyk et al., 2021), generalization (Cobbe et al., 2020), and multi-agent
learning (Samvelyan et al., 2019; Wang et al., 2020). These benchmarks differ from our
own in that we propose to study the challenge of autonomy. Among recent benchmarks,
the closest to our own is Jelly Bean World (Platanios et al., 2020), which consists of a
set of procedural generated gridworld tasks. While this benchmark also considers the
non-episodic setting, our work is inspired by the challenge of autonomous learning in
robotics, and hence considers an array of manipulation and locomotion tasks. In addi-
tion, our work aims to establish a conceptual framework for evaluating prior algorithms
in light of the requirement for persistent autonomy.

Enabling embodied agents to learn continually with minimal interventions is a mo-
tivation shared by several subtopics of reinforcement learning research. The setting we
study in our work shares conceptual similarities with prior work in continual and life-
long learning (Schmidhuber, 1987a; Thrun and Mitchell, 1995; Parisi et al., 2019; Hadsell
et al., 2020). In context of reinforcement learning, this work has studied the problem
of episodic learning in sequential MDPs (Khetarpal et al., 2020; Rusu et al., 2016b; Kirk-
patrick et al., 2017; Fernando et al., 2017; Schwarz et al., 2018; Mendez et al., 2020), where
the main objective is forward/backward transfer or learning in non-stationary dynam-
ics (Chandak et al., 2020; Xie et al., 2020; Lu et al., 2020). In contrast, the emphasis of
our work is learning in non-episodic settings while literature in continual RL assumes
an episodic setting. As we will discuss, learning autonomously without access to oracle
resets is a hard problem even when the task-distribution and dynamics are stationary. In
a similar vein, unsupervised RL (Gregor et al., 2016; Pong et al., 2019; Eysenbach et al.,
2018; Sharma et al., 2019; Campos et al., 2020) also enables skill acquisition in the ab-
sence of rewards, reducing human intervention required for designing reward functions.
These works are complimentary to our proposal and form interesting future work.

Reset-free RL has been studied by previous works with a focus on safety (Eysenbach
et al., 2017), automated and unattended learning in the real world (Han et al., 2015;
Zhu et al., 2020a; Gupta et al., 2021b), skill discovery (Xu et al., 2020; Lu et al., 2020),
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and providing a curriculum (Sharma et al., 2021a). Strategies to learn reset-free behavior
include directly learning a backward reset controller (Eysenbach et al., 2017), learning a
set of auxillary tasks that can serve as an approximate reset (Ha et al., 2020; Gupta et al.,
2021b), or using a novelty seeking reset controller (Zhu et al., 2020a). Complementary
to this literature, we aim to develop a set of benchmarks and a framework that allows
for this class of algorithms to be studied in a unified way. Instead of proposing new
algorithms, our work is focused on developing a set of unified tasks that emphasize and
allow us to study algorithms through the lens of autonomy.

7.2 preliminaries

Consider a Markov Decision Process (MDP) M ≡ (S,A,p, r, ρ,γ) (Sutton and Barto,
2018b). Here, S denotes the state space, A denotes the action space, p : S×A× S +→ R!0

denotes the transition dynamics, r : S×A +→ R denotes the reward function, ρ : S +→ R!0

denotes the initial state distribution and γ ∈ [0, 1) denotes the discount factor. The ob-
jective in reinforcement learning is to maximize J(π) = E[

∑∞
t=0 γ

tr(st,at)] with respect
to the policy π, where s0 ∼ ρ(·), at ∼ π(· | st) and st+1 ∼ p(· | st,at). Importantly, the RL
framework assumes the ability to sample s0 ∼ ρ arbitrarily. Typical implementations of
reinforcement learning algorithms carry out thousands or millions of these trials, implic-
itly requiring the environment to provide a mechanism to be “reset” to a state s0 ∼ ρ for
every trial.

7.3 autonomous reinforcement learning

In this section, we develop a framework for autonomous reinforcement learning (ARL)
that formalizes reinforcement learning in settings without extrinsic interventions. We
first define a non-episodic training environment where the agent can autonomously
interact with its environment in Section 7.3.1, building on the formalism of standard
reinforcement learning. We introduce two distinct evaluation settings as visualized in
Figure 38: Section 7.3.1.1 discusses the deployment setting where the agent will be de-
ployed in a test environment after training, and the goal is to maximize this “deployed”
performance. Section 7.3.1.2 discusses the continuing setting, where the agent has no sep-
arate deployment phase and aims to maximize the reward accumulated over its lifetime.
In its most general form, the latter corresponds closely to standard RL, while the former
can be interpreted as a kind of transfer learning. As we will discuss in Section 7.3.2, this
general framework can be instantiated such that, for different choices of the underlying
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Figure 38: Two evaluation schemes in autonomous RL. First, the deployment setting (top row, (1)),
where we are interested in obtaining a policy during a training phase, π, that performs well when
deployed from a s0 ∼ ρ. Second, the continuing setting (bottom row, (2)), where a floor cleaning
robot is tasked with keeping a floor clean and is only evaluated on its cumulative performance
(Eq. 20) over the agent’s lifetime.

MDP, we can model different realistic autonomous RL scenarios such as settings where
a robot must learn to reset itself between trials or settings with non-reversible dynam-
ics. Finally, Section 7.3.3 considers algorithm design for autonomous RL, discussing the
challenges in autonomous operation while also contrasting the evaluation protocols.

7.3.1 General Setup

Our goal is to formalize a problem setting for autonomous reinforcement learning that
encapsulates realistic autonomous learning scenarios. We define the setup in terms of a
training MDP MT ≡ (S,A,p, r, ρ), where the environment initializes to s0 ∼ ρ, and then
the agent interacts with the environment autonomously from then on. Note, this lack
of episodic resets in our setup departs not only from the standard RL setting, but from
other continual reinforcement learning settings e.g. Wołczyk et al., 2021, where resets
are provided between tasks. Symbols retain their meaning from Section 7.2. In this set-
ting, a learning algorithm A can be defined as a function A : {si,ai, si+1, ri}t−1

i=0 +→ (at,πt),
which maps the transitions collected in the environment until the time t (e.g., a replay
buffer), to a (potentially exploratory) action at ∈ A applied in the environment and
its best guess at the optimal policy πt : S×A +→ R!0 used for evaluation at time t. We
note that the assumption of a reward function implicitly requires human engineering,
but in principle could be relaxed by methods that learn reward functions from data. In
addition, we note that at does not need to come from πt, which is already implicit in
most reinforcement learning algorithms: Q-learning (Sutton and Barto, 2018b) methods
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such as DQN (Mnih et al., 2015), DDPG (Lillicrap et al., 2015) use an ε-greedy policy as
an exploration policy on top of the greedy policy for evaluation. However, our setting
necessitates more concerted exploration, and the exploratory action may come from an
entirely different policy. Note that the initial state distribution is sampled (s0 ∼ ρ) exactly
once to begin training, and then the algorithm A is run until t → ∞, generating the se-
quence s0,a0, s1,a1, . . . in the MDP MT . This is the primary difference compared to the
episodic setting described in Section 7.2, which can sample the initial state distribution
repeatedly.

7.3.1.1 ARL Deployment Setting

Consider the problem where a robot has to learn how to close a door. Traditional rein-
forcement learning algorithms require several trials, repeatedly requiring interventions
to open the door between trials. The desire is that the robot autonomously interacts with
the door, learning to open it if it is required to practice closing the door. The output
policy of the training procedure is evaluated in its deployment setting, in this case on
its ability to close the door. Formally, the evaluation objective JD for a policy π in the
deployment setting can be written as:

JD(π) = Es0∼ρ,aj∼π(·|sj),sj+1∼p(·|sj,aj)
[ ∞∑

j=0

γjr(sj,aj)
]
. (19)

Definition 2 (Deployed Policy Evaluation). For an algorithm A : {si,ai, si+1}
t−1
i=0 +→ (at,πt),

deployed policy evaluation D(A) is given by D(A) =
∑∞

t=0 (JD(π
∗)− JD(πt)), where

JD(π) is defined in Eq 19 and π∗ ∈ arg maxπ JD(π).

The evaluation objective JD(π) is identical to the one defined in Section 7.2 on MDP
M (deployment environment). The policy evaluation is “hypothetical”, the environment
rollouts used for evaluating policies are not used in training. Even though the evalua-
tion trajectories are rolled out from the initial state, there are no interventions in training.
Concretely, the algorithmic goal in this setting can be stated as minA D(A). In essence,
the policy outputs πt from the autonomous algorithm A should match the oracle deploy-
ment performance, i.e. JD(π∗), as quickly as possible. Note that JD(π∗) is a constant that
can be ignored when comparing two algorithms, i.e. we only need to know JD(πt) for a
given algorithm in practice.
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7.3.1.2 ARL Continuing Setting

For some applications, the agent’s experience cannot be separated into training and de-
ployment phases. Agents may have to learn and improve in the environment that they
are “deployed” into, and thus these algorithms need to be evaluated on their perfor-
mance during the agent’s lifetime. For example, a robot tasked with keeping the home
clean learns and improves on the job as it adapts to the home in which it is deployed. To
this end, consider the following definition:

Definition 3 (Continuing Policy Evaluation). For an algorithm A : {si,ai, st+1}
t−1
i=0 +→ (at,πt),

continuing policy evaluation C(A) can be defined as:

C(A) = lim
h→∞

1

h
Es0∼ρ,at∼A({si,ai,si+1}

t−1
i=0),st+1∼p(·|st,at)

[ h∑

t=0

r(st,at)
]

(20)

Here, at is the action taken by the algorithm A based on the transitions collected in the
environment until time t, measuring the performance under reward r. The optimization
objective can be stated as maxA C(A). Note that πt is not used in computing C(A). In
practice, this amounts to measuring the reward collected by the agent in the MDP MT

during its lifetime1.

7.3.2 How Specific ARL Problems Fit Into Our Framework

The framework can easily be adapted to model possible autonomous reinforcement
learning scenarios that may be encountered:

Intermittent interventions. By default, the agent collects experience in the environ-
ment with fully autonomous interaction in the MDP MT . However, we can model the oc-
casional intervention with transition dynamics defined as p̃(· | s,a) = (1− ε)p(· | s,a) + ερ(·),
where the next state is sampled with 1−ε probability from the environment dynamics or
with ε probability from the initial state distribution via intervention for some ε ∈ [0, 1].
A low ε represents very occasional interventions through the training in MDP MT . In
fact, the framework described in Section 7.2, which is predominantly assumed by rein-
forcement learning algorithms, can be understood to have a large ε. To contextualize ε,

1 We can also consider the more commonly used setting of expected discounted sum of rewards as the
objective. To ensure that future rewards are relevant, the discount factors would need to be much larger
than values typically used.
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the agent should expect to get an intervention after 1/ε steps in the environment. Cur-
rent episodic settings typically provide an environment reset every 100 to 1000 steps,
corresponding to ε ∈ (1e-3, 1e-2) and an autonomous operation time of typically a few
seconds to few minutes depending on the environment. While full autonomy would be
desirable (that is, ε = 0), intervening every few hours to few days may be reasonable
to arrange, which corresponds to environment resets every 100,000 to 1,000,000 steps
or ε ∈ (1e-6, 1e-5). We evaluate the dependence of algorithms designed for episodic
reinforcement learning on the reset frequency in Section 7.5.1.

Irreversible states. An important consideration for developing autonomous algorithms
is the “reversibility” of the underlying MDP M. Informally, if the agent can reverse any
transition in the environment, the agent is guaranteed to not get stuck in the environ-
ment. As an example, a static robot arm can be setup such that there always exists an
action sequence to open or close the door. However, the robot arm can push the object
out of its reach such that no action sequence can retrieve it. Formally, we require MDPs
to be ergodic for them to be considered reversible (Moldovan and Abbeel, 2012). In the
case of non-ergodic MDPs, we adapt the ARL framework to enable the agent to request
extrinsic interventions, which we discuss in Appendix F.

7.3.3 Discussion of the ARL Formalism

The ARL framework provides two evaluation protocols for autonomous RL algorithms.
Algorithms can typically optimize only one of the two evaluation metrics. Which evalua-
tion protocol should the designer optimize for? In a sense, the need for two evaluation pro-
tocols arises from task specific constraints, which themselves can be sometimes relaxed
depending on the specific trade-off between the cost of real world training and the cost of
intervention. The continuing policy evaluation represents the oracle metric one should
strive to optimize when continually operational agents are deployed into dynamic en-
vironments. The need for deployment policy evaluation arises from two implicit practical
constraints: (a) requirement of a large number of trials to solve desired tasks and (b) ab-
sence of interventions to enable those trials. If either of these can be easily relaxed, then
one could consider optimizing for continuing policy evaluation. For example, if the agent
can learn in a few trials because it was meta-trained for quick adaptation (Finn et al.,
2017c), providing a few interventions for those trials may be reasonable. Similarly, if the
interventions are easy to obtain during deployment without incurring significant human
cost, perhaps through scripted behaviors or enabled by the deployment setting (for ex-
ample, sorting trash in a facility), the agent can repeatedly try the task and learn while
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deployed. However, if these constraints cannot be relaxed at deployment, one should
consider optimizing for the deployment policy evaluation since this incentivizes the agents
to learn targeted behaviors by setting up its own practice problems.

7.4 earl : environments for autonomous reinforcement learning

In this section, we introduce the set of environments in our proposed benchmark, Environments
for Autonomous Reinforcement Learning (EARL). We first discuss the factors in our de-
sign criteria and provide a description of how each environment fits into our overall
benchmark philosophy, before presenting the results and analysis. For detailed descrip-
tions of each environment, see Appendix F.

7.4.1 Benchmark Design Factors

Representative Autonomous Settings. We include a broad array of tasks that reflect the
types of autonomous learning scenarios agents may encounter in the real world. This
includes different problems in manipulation and locomotion, and tasks with multiple
object interactions for which it would be challenging to instrument resets. We also en-
sure that both the continuing and deployment evaluation protocols of ARL are realistic
representative evaluations.

Directed Exploration. In the autonomous setting, the necessity to practice a task again,
potentially from different initial states, gives rise to the need for agents to learn rich
reset behaviors. For example, in the instance of a robot learning to interact with multiple
objects in a kitchen, the robot must also learn to implicitly or explicitly compose different
reset behaviors.

Rewards and Demonstrations. One final design aspect for our benchmark is the
choice of reward functions. Dense rewards are a natural choice in certain domains (e.g.,
locomotion), but designing and providing dense rewards in real world manipulation
domains can be exceptionally challenging. Sparse rewards are easier to specify in such
scenarios, but this often makes exploration impractical. As a result, prior work has often
leveraged demonstrations (e.g., (Gupta et al., 2019)), especially in real world experimen-
tation. To reflect practical usage of RL in real world manipulation settings, we include a
small number of demonstrations for the sparse-reward manipulation tasks.

7.4.2 Environment Descriptions
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Tabletop-Organization (TO). The Tabletop-Organization task
is a diagnostic object manipulation environment proposed
by Sharma et al. (2021a). The agent consists of a gripper mod-
eled as a pointmass, which can grasp objects that are close to
it. The agent’s goal is to bring a mug to four different locations
designated by a goal coaster. The agent’s reward function is a
sparse indicator function when the mug is placed at the goal
location. Limited demonstrations are provided to the agent.

sawyer-door (sd). The Sawyer-Door task, from the Meta-
World benchmark (Yu et al., 2020b) consists of a Sawyer robot
arm who’s goal is to close the door whenever it is in an open
position. The task reward is a sparse indicator function based
on the angle of the door. Repeatedly practicing this task im-
plicitly requires the agent to learn to open the door. Limited
demonstrations for opening and closing the door are provided.

sawyer-peg (sp). The Sawyer-Peg task (Yu et al., 2020b) con-
sists of a Sawyer robot required to insert a peg into a designed goal
location. The task reward is a sparse indicator function for when
the peg is in the goal location. In the deployment setting, the agent
must learn to insert the peg starting on the table. Limited demon-
strations for inserting and removing the peg are provided.

franka-kitchen (fk). The Franka-Kitchen (Gupta et al.,
2019) is a domain where a 9-DoF robot, situated in a kitchen en-
vironment, is required to solve tasks consisting of compound
object interactions. The environment consists of a microwave,
a hinged cabinet, a burner, and a slide cabinet. One example
task is to open the microwave, door and burner. This domain
presents a number of distinct challenges for ARL. First, the
compound nature of each task results in a challenging long
horizon problem, which introduces exploration and credit as-
signment challenges. Second, while generalization is important in solving the environ-
ment, combining reset behaviors are equally important given the compositional nature
of the task.
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dhand-lightbulb (dl). The DHand-Lightbulb environ-
ment consists of a 22-DoF 4 fingered hand, mounted on a 6
DoF Sawyer robot. The environment is based on one originally
proposed by Gupta et al., 2021b. The task in this domain is for
the robot to grasp pickup a lightbulb to a specific location. The
high-dimensional action space makes the task extremely chal-
lenging. In the deployment setting, the bulb can be initialized
anywhere on the table, testing the agent on a wide initial state
distribution.

minitaur-pen (mp). Finally, the Minitaur-Pen task consists
of an 8-DoF Minitaur robot (Coumans and Bai, 2016) confined to
a pen environment. The goal of the agent is to navigate to a set of
goal locations in the pen. The task is designed to mimic the setup
of leaving a robot to learn to navigate within an enclosed setting
in an autonomous fashion. This task is different from the other

tasks given it is a locomotion task, as opposed to the other tasks being manipulation
tasks.

7.5 benchmarking and analysis

The aim of this section is to understand the challenges in autonomous reinforcement
learning and to evaluate the performance and shortcomings of current autonomous RL
algorithms. In Section 7.5.1, we first evaluate standard episodic RL algorithms in ARL
settings as they are required to operate with increased autonomy, underscoring the need
for a greater focus on autonomy in RL algorithms. We then evaluate prior autonomous
learning algorithms on EARL in Section 7.5.2. While these algorithms do improve upon
episodic RL methods, they fail to make progress on more challenging tasks compared
to methods provided with oracle resets leaving a large gap for improvement. Lastly, in
Section 7.5.3, we investigate the learning of existing algorithms, providing a hypothesis
for their inadequate performance. We also find that when autonomous RL does suc-
ceed, it tends to find more robust policies, suggesting an intriguing connection between
autonomy and robustness.
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Figure 39: Performance of standard RL at with varying levels of autonomy, ranging from resets
provided every 1000 to 200000 steps. Performance degrades substantially as environment resets
become infrequent.

7.5.1 Going from Standard RL to Autonomous RL

In this section, we evaluate standard RL methods to understand how their performance
changes when they are applied naïvely to ARL problems. To create a continuum, we
will vary the level of “autonomy” (i.e., frequency of resets), corresponding to ε as
defined in Section 7.3.2. For these experiments only, we use the simple cheetah and
fish environments from the DeepMind Control Suite (Tassa et al., 2018). We use soft
actor-critic (SAC) (Haarnoja et al., 2018b) as a representative standard RL algorithm.
We consider different training environments with increasing number of steps between
resets, ranging from 1000 to 200, 000 steps. Figure 39 shows the performance of the
learned policy as the training progresses, where the return is measured by running
the policy for 1000 steps. The cheetah environment is an infinite-horizon running en-
vironment, so changing the training horizon should not affect the performance theo-
retically. However, we find that the performance degrades drastically as the training
horizon is increased, as shown in Fig 39 (left). We attribute this problem to a combina-
tion of function approximation and temporal difference learning. Increasing the episode
length destabilizes the learning as the effective bootstrapping length increases: the Q-
value function Qπ(s0,a0) bootstraps on the value of Qπ(s1,a1), which bootstraps on
Qπ(s2,a2) and so on till Qπ(s100,000,a100,000). To break this chain, we consider a biased
TD update: Qπ(st,at) ← r(st,at) + γQπ(st+1,at+1) if t is not a multiple of 1000, else
Qπ(st,at) ← r(st,at). This is inspired by practical implementations of SAC (Haarnoja et
al., 2018d), where the Q-value function regresses to r(s,a) for terminal transitions to sta-
bilize the training. This effectively fixes the problem for cheetah, as shown in Figure 39
(middle). However, this solution does not translate in general, as can be seen observed
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in the fish environment, where the performance continues to degrade with increasing
training horizon, shown in Fig 39 (right). The primary difference between cheetah and
fish is that the latter is a goal-reaching domain. The cheetah can continue improving
its gait on the infinite plane without resets, whereas the fish needs to undo the task to
practice goal reaching again, creating a non-trivial exploration problem.

7.5.2 Evaluation: Setup, Metrics, Baselines, and Results

Training Setup. Every algorithm A receives a set of initial states s0 ∼ ρ, and a set of
goals from the goal-distribution g ∼ p(g). Demonstrations, if available, are also provided
to A. We consider the intermittent interventions scenario described in Section 7.3.2 for
the benchmark. In practice, we reset the agent after a fixed number of steps HT . The
value of HT is fixed for every environment, ranging between 100, 000 - 400, 000 steps.
Every algorithm A is run for a fixed number of steps Hmax after which the training is
terminated. Environment-specific details are in Appendix F.0.4.

Evaluation Metrics. For deployed policy evaluation, we compute D(A) = −
∑Hmax

t=0 JD(πt),
ignoring JD(π

∗) as it is a constant for all algorithms. Policy evaluation JD(πt) is carried
out every 10000 training steps, where JD(πt) =

∑HE
t=0 r(st,at) is the average return accu-

mulated over an episode of HE steps by running the policy πt 10 times, starting from
s0 ∼ ρ for every trial. These roll-outs are only used for evaluation, and are not provided
to the algorithm. In practice, we plot JD(πt) versus time t, such that minimizing D(A)
can be understood as maximizing the area under the learning curve, which we find more
interpretable. Given a finite training budget Hmax, the policy πt may be quite subopti-
mal compared to π∗. Thus, we also report the performance of the final policy, that is
JD(πHmax) in Table 4. For continuing policy evaluation C(A), we compute the average
reward as r(h) =

∑h
t=0 r(st,at)/h. We plot r(h) versus h, while we report r(Hmax) in Ta-

ble 5. The evaluation curves corresponding to continuing and deployed policy evaluation
are in Appendix ??.

Baselines. We evaluate forward-backward RL (FBRL) (Han et al., 2015; Eysenbach et
al., 2017), a perturbation controller (R3L) (Zhu et al., 2020a), value-accelerated persis-
tent RL (VaPRL) (Sharma et al., 2021a), a comparison to simply running the base RL
algorithm with the biased TD update discussed in Section 7.5.1 (naïve RL), and finally
an oracle (oracle RL) where resets are provided are provided every HE steps (HT is
typically three orders of magnitude larger than HE). We benchmark VaPRL only when
demonstrations are available, in accordance to the proposed algorithm in Sharma et al.,
2021a. We average the performance of all algorithms across 5 random seeds. More details
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Method TO SD SP FK DL MP

naïve RL 0.32 (0.17) 0.00 (0.00) 0.00 (0.00) -2705.21 (167.10) -239.30 (8.85) -1041.10 (44.58)
FBRL 0.94 (0.04) 1.00 (0.00) 0.00 (0.00) -2733.15 (324.10) -242.38 (8.84) -986.34 (67.95)
R3L 0.96 (0.04) 0.54 (0.18) 0.00 (0.00) -2639.28 (233.28) 728.54 (122.86) -186.30 (34.79)

VaPRL 0.98 (0.02) 0.94 (0.05) 0.02 (0.02) - - -
oracle RL 0.80 (0.11) 1.00 (0.00) 1.00 (0.00) 1203.88 (203.86) 2028.75 (35.95) -41.50 (3.40)

Table 4: Average return of the final deployed policy. Performance is averaged over 5 random
seeds. The mean and and the standard error are reported, with the best performing entry in
bold. For sparse reward domains (TO, SD, SP), 1.0 indicates the maximum performance and 0.0
indicates minimum performance.

Method TO SD SP FK DL MP

naïve RL 0.012 (0.004) 0.373 (0.073) < 0.001 -4.944 (0.440) -0.734 (0.024) -18.193 (2.375)
FBRL 0.005 (0.001) 0.329 (0.080) 0.003 (0.003) -8.754 (0.405) -0.747 (0.014) -22.087 (1.285)
R3L 0.001 (0.000) 0.369 (0.016) < 0.001 -6.577 (0.309) 0.091 (0.026) -1.093 (0.020)

VaPRL 0.009 (0.000) 0.574 (0.085) < 0.001 - - -

Table 5: Average reward accumulated over the training lifetime in accordance to continuing policy
evaluation. Performance is averaged over 5 random seeds. The mean and the standard error
(brackets) are reported, with the best performing entry in bold.

pertaining to these algorithms can be found in Appendix F.0.3, F.0.5.
Overall, we see in Table 4 that based on the deployed performance of the final policy,

autonomous RL algorithms substantially underperform oracle RL and fail to make any
progress on sawyer-peg and franka-kitchen. Notable exceptions are the performances
of VaPRL on tabletop-organization and R3L on minitaur-pen, outperforming oracle
RL. Amongst the autonomous RL algorithms, VaPRL does best when the demonstra-
tions are given and R3L does well on domains when no demonstrations are provided.
Nonetheless, this leaves substantial room for improvement for future works evaluating
on this benchmark. More detailed learning curves are shown in Section ??. In the contin-
uing setting, we find that naïve RL performs well on certain domains (best on 2 out of
6 domains). This is unsurprising, as naïve RL is incentivized to occupy the final “goal”
position, and continue to accumulate over the course of its lifetime, whereas other algo-
rithms are explicitly incentivized to explore. Perhaps surprisingly, we find that VaPRL
on sawyer-door and R3L on dhand-lightbulb and minitaur does better than naïve RL,
suggesting that optimizing for deployed performance can also improve the continuing
performance. Overall, we find that performance in the continuing setting does not neces-
sarily translate to improved performance in the deployed policy evaluation, emphasizing
the differences between these two evaluation schemes.
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7.5.3 Analyzing Autonomous RL Algorithms

tabletop-organization sawyer-peg minitaur-pen

Figure 40: Comparing the distribution of states visited with resets (blue) and without resets
(brown). Heatmaps visualize the difference between state visitations for oracle RL and FBRL,
thresholded to highlight states with large differences. Resets enable the agent to stay around the
initial state distribution and the goal distribution, whereas the agents operating autonomously
skew farther away, posing an exploration challenge.

Figure 41: Evaluating policies starting
from a uniform initial state distribu-
tion. Policies learned via autonomous
RL (FBRL and VaPRL) are more robust
to initial state distribution than poli-
cies learned in oracle RL.

A hypothesis to account for the relative under-
performance of autonomous RL algorithms com-
pared to oracle RL is that environment resets con-
strain the state distribution visited by the agent
close to the initial and the goal states. When op-
erating autonomously for long periods of time, the
agent can skew far away from the goal states, cre-
ating a hard exploration challenge. To test this hy-
pothesis, we compare the state distribution when
using oracle RL (in blue) versus FBRL (in brown)
in Figure 40. We visualize the (x,y) positions vis-
ited by the gripper for tabletop-organization, the
(x,y) positions of the peg for sawyer-peg and the x,y positions of the minitaur for
minitaur-pen. As seen in the figure, autonomous operation skews the gripper towards
the corners in tabletop-organization, the peg is stuck around the goal box and mini-
taur can completely go away from the goal distribution. However, when autonomous
algorithms are able to solve the task, the learned policies can be more robust as they
are faced with a tougher exploration challenge during training. We visualize this in
Figure 41, where we test the final policies learned by oracle RL, FBRL and VaPRL on
tabletop-organization starting from a uniform state distribution instead of the default
ones. We observe that the policies learned by VaPRL and FBRL depreciate by 2% and
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14.3% respectively, which is much smaller than the 37.4% depreciation of the policy
learned by oracle RL, suggesting that autonomous RL can lead to more robust policies.

7.6 conclusion

We proposed a formalism and benchmark for autonomous reinforcement learning, in-
cluding an evaluation of prior state-of-the algorithms with explicit emphasis on auton-
omy. We present two distinct evaluation settings, which represent different practical use
cases for autonomous learning. The main conclusion from our experiments is that ex-
isting algorithms generally do not perform well in scenarios that demand autonomy
during learning. We also find that exploration challenges, while present in the episodic
setting, are greatly exacerbated in the autonomous setting.

While our work focuses on predominantly autonomous settings, there may be task-
specific trade-offs between learning speed and the cost of human interventions, and it
may indeed be beneficial to provide some human supervision to curtail total training
time. How to best provide this supervision (rewards and goal setting, demonstrations,
resets etc) while minimizing human cost provides a number of interesting directions for
future work. However, we believe that there is a lot of room to improve the autonomous
learning algorithms and our work attempts to highlight the importance and challenge
of doing so.
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8
C O N C L U S I O N & F U T U R E D I R E C T I O N S

In this thesis, we have considered two important challenges in building artificial em-
bodied agents. We began by first considering the problem of learning efficiently under
limited supervision via meta-learning, in the problem of reward specification via inverse
reinforcement learning (Chapter 2). We showed that by leveraging algorithms designed
for fast adaptation, we could make use of shared structure between tasks in order to
rapidly infer reward functions. Next, in Chapter 3, we turned to the problem of dealing
with uncertainty that is inevitable when learning from sparse supervision. We showed
that by developing a probabilistic formulation of gradient based meta-learning, we could
generate hypotheses in new classification settings, which could be leveraged to give more
calibrated uncertainty measures.

In order to enable the techniques used in the first part of this thesis, we crucially
assumed access to a dataset of related “tasks”. In the applications we considered, we
assume that a human had curated such a dataset. In the second part of this thesis, we
considered the natural question of how an agent would go about continually solving
new tasks in a never ending lifelong way. In Chapters 4, we started by examining how
to extend the reinforcement learning setting to allow the agent to continually learn skills
in an intervention-free manner. Next, we showed in Chapter 5 and 6 how some of these
ideas could be transferred to the real world in the challenging problem setting of dex-
terous manipulation, where the demonstrated on a real robot the acquisition of multiple
complex behaviors from continual interaction. Finally, in Chapter 7, we proposed a for-
malism to study the problem setting of reset-free RL, which we call “Autonomous RL”,
and provide a benchmark and analysis for future work and research.

A central thread of this thesis work has been to minimize the amount of human effort
needed to enable embodied learning systems. While this thesis has attempted to bring
us closer to the vision of embodied systems learning in the wild, towards the goal of
autonomous embodied systems there remains many challenges. Below we discuss some
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potential directions and open questions.
Automating Task Construction: While the work in Chapters 4, 5, 6 took a step in

the direction of allowing tasks to be solved in a more natural online manner, one of the
key sources of human supervision is the necessary construction of a set of “tasks”. In
Chapter 6, we looked at how some of these tasks could be specified efficiently by humans,
one more scalable avenue would be to leverage a large knowledge base of “steps” that
could be used to break down a task automatically for an agent. The key design question
here would be to design “what” knowledge base would be appropriate. For example,
some recent work has explored querying large language models pretrained on large text
datasets (Huang et al., 2022) for planning. Combined with the appropriate mechanism
to ground the “steps”, this in principle could dramatically improve an agent’s ability to
plan a set of subgoals to solve a problem in a reset-free manner.

Where does prior experience fit into the picture of lifelong learning? We have shown
in this work the potential to acquire reset-free behavior from autonomous data collection.
In this work however, we have done so starting each of the agents from scratch. In many
real world robotics problems however, we often have access to large datasets of prior
experience that can be used to guide exploration or bootstrap learning. The field of
leveraging offline data for control (sometimes called offline RL (Levine et al., 2020)) has
shown tremendous progress in recent years. One simple question with an abundance of
design decisions would be to investigate how best to reuse such experience, and if the
datasets needed for autonomous RL are different given the particular challenges (e.g., in
exploration) of the setting.

How do we ensure safety in an embodied learning system? Finally, one very impor-
tant question we did not consider in this work is the question of safety. Along the critical
path to having agents autonomously explore the world will undoubtedly involve ensur-
ing that they do not harm themselves or others. How best to answer this question would
likely need to be somewhat problem specific, as certain domains are much more safety
critical than others (e.g., surgical settings, autonomous driving), but could potentially
include ingredients such as prior data as a means to communicate “dangerous states”.
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A
A P P E N D I X : L E A R N I N G A P R I O R O V E R I N T E N T V I A
M E TA - I N V E R S E R E I N F O R C E M E N T L E A R N I N G

a.1 spriteworld experimental details

We first describe the experimental details here specific to the SpriteWorld domain exper-
iments.

a.1.1 Algoritmic Details

The input to our reward function for all experiments in this domain is a 80× 80 RGB im-
age, with an output space of 400 in the underlying MDP state space. We parameterize the
reward function for all methods starting from the same base learner whose architecture
we summarize in Table 6.

Our LSTM (Hochreiter and Schmidhuber, 1997) implementation is based on the vari-
ant used in Zaremba et al. (2014). The input to the LSTM at each time step is the location
of the agent, embedded as the (x,y)-coordinates. This is used to predict an spatial map
fed as input to the base CNN. We also experimented with conditioning the initial hid-
den state on image features from a separate CNN, but found that this did not improve
performance.

In our demo conditional model, we preserve the spatial information of the demon-
strations by feeding in the state visitation map as a image-grid, upsampled with bi-
linear interpolation, as an additional channel to the image. In our setup, both the demo-
conditional models share the same convolutional architecture, but differ only in how
they encode condition on the demonstrations.

For all our methods, we optimized our model with Adam (Kingma and Ba, 2014).
We tuned over the learning rate α, the inner learning rate β and 12 weight decay on
the initial parameters. We initialize our models with the Glorot initialization Glorot and
Bengio, 2010. In our LSTM learner, we tuned over embedding sizes and dimensionality.
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A negative result we found was that bias transformation (Finn et al., 2017d) did not help
in our experimental setting.
Table 6: Hyperparameter summary on Spriteworld environment. Curly brackets indicate the pa-
rameter was chosen from that set.

Hyperparameters Value

Architecture Conv(256− 8× 8− 2)
Conv(128− 4× 4− 2)
Conv(64− 3× 3− 1)
Conv(64− 3× 3− 1)
Conv(1− 1× 1− 1)

Learning rate α {0.0001, 0.00001}
Inner learning rate β {0.001, 0.0005}
Weight decay 12 {0, 0.0001}
Inner gradient steps {1, 3}
Max meta-test gradient steps {20}

LSTM hidden dimension {128, 256}
LSTM embedding sizes {64, 128}

Batch size 16
Total meta-training environments 1000
Total meta-val/test environments 32
Maximum horizon (T) 15

a.1.2 Environment Details

The underlying MDP structure of SpriteWorld is a grid, where the states are each of the
grid cells, and the actions enable the agent to move to any one of its 8-connected neigh-
bors. The task visuals are inspired by Starcraft (e.g. Synnaeve et al., 2016), although we
do not use the game engine. The sprites in our environment are extracted directly from
the StarCraft files. We used in total 100 random units for meta-training. Evaluation on
new objects was performed with 5 randomly selected sprites. For computational effi-
ciency, we create a meta-training set of 1000 tasks and cache the optimal policy and state
visitations under the true cost. Our evaluation is over 32 tasks. Our set of sprites was di-
vided into two categories: buildings and characters. Each characters had multiple poses
(taken from different frames of animation, such as walking/running/flying), whereas
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buildings only had a single pose. During meta-training the units were randomly placed,
but to avoid the possibility that the agent would not need to actively avoid obstacles, the
units were placed away from the boundary of the image in both the meta-validation and
meta-test set.

The terrain in each environment was randomly generated using a set of tiles, each
belonging to a specific category (e.g. grass, dirt, water). For each tile, we also specified a
set of possible tiles for each of the 4-neighbors. Using these constraints on the neighbors,
we generated random environment terrains using a graph traversal algorithm, where
successor tiles were sampled randomly from this set of possible tiles. This process re-
sulted in randomly generated, seamless environments. The expert demonstrations were
generated using a cost (negative reward) of 8 for the obstacles, 2 for any grass tile, and
1 for any dirt tile. The names of the units used in our experiments are as follows (names
are from the original game files):

The list of buildings used is: academy, assim, barrack, beacon, cerebrat, chemlab,
chrysal, cocoon, comsat, control, depot, drydock, egg, extract, factory, fcolony, forge, gate-
way, genelab, geyser, hatchery, hive, infest, lair, larva, mutapit, nest, nexus, nukesilo, ny-
dustpit, overlord, physics, probe, pylon, prism, pillbox, queen, rcluster, refinery, research,
robotic, sbattery, scolony, spire, starbase, stargate, starport, temple, warm, weaponpl,
wessel.

The list of characters used is: acritter, arbiter, archives, archon, avenger, battlecr, brood,
bugguy, carrier, civilian, defiler, dragoon, drone, dropship, firebat, gencore, ghost, guardian,
hydra, intercep, jcritter, lurker, marine, missile, mutacham, mutalid, sapper, scout, scv,
shuttle, snakey, spider, stank, tank, templar, trilob, ucereb, uikerr, ultra, vulture, witness,
zealot, zergling.
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a.2 suncg experimental details

a.2.1 Algorithmic Details

Table 7: Hyperparamters on the SUNCG environment. Curly brackets indicate that the the pa-
rameter was chosen from that set.

Hyperparameters Value

Architecture Conv(16− 5× 5− 1)
Conv(32− 3× 3− 1)
MLP(32)
MLP(1)

Max number of training steps 15000000
Number of seed 3

Learning rate α {0.1, 0.01, 0.001, 0.0001}
Inner learning rate β {0.15, 0.1, 0.01, 0.0001}
Inner gradient steps {3, 5}
Max meta-test gradient steps {10}
Momentum {0.9, 0.95, 0.99}

Our per task MaxEnt IRL baseline is learned by using the same base architecture. To
provide a fair comparison, we do not use an inner learning rule in the inner loop of
ManDRIL such as Adam Kingma and Ba, 2014 and use regular SGD. For our baseline
however, we include a momentum term over which we tune. We tune over the number of
training steps, learning rate and momentum parameters. We use SGD with momentum.
For ManDRIL, we tune over the inner learning rate β and learning rate α and number
of gradient steps. At meta-test time, we experimented with taking up to 10 gradient
steps. For pretraining IRL, we first train for 150,000 steps, freeze the weights, and fine
tune them for every separate task. For training from scratch, we use the Glorot uniform
initialization in the the convolutional layers Glorot and Bengio, 2010.
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a.2.2 Environment Details

Table 8: Summary of SUNCG environment setup.

Hyperparameters Value

Discount (γ) 0.99
Maximum horizon (T) 40
Initial random steps 30
Number of demonstrations 5

Training environments 1004
Test environments 236
Test-house environments 173
(PICK/NAV) split: 716/697

The MDP in each environment is discretized into a grid where the state is defined by the
grid coordinates plus the agent’s orientation (N,S,E,W). The agent receives an observa-
tion which is a first-person panoramic view. The panoramic view consists of four 32× 24
semantic image observations containing 61 channels.

The only departure for the task setup of Fu et al. (2019) that we make is to randomize
the agent’s start location by executing a random walk at the beginning of each episode.
In Fu et al. (2019), the agent’s start location was previously deterministic which allows a
trivial solution of memorizing the provided demonstrations.
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a.3 spriteworld meta-test training performance

Figure 42: Meta-test “training” performance with varying numbers of demonstrations (lower is
better). This is the performance on the environment for which demonstrations are provided for
adaptation. As the number of demonstrations increase, all methods are able to perform well in
terms of training performance as they can simply overfit to the training environment without
acquiring the right visual cues that allow them to generalize. However, we find comes at the cost
comes of considerable overfitting as we discuss in Section. 7.5.

a.4 suncg dagger performance

Table 9: DAgger success rate (%) on heldout tasks with 5 demonstrations. ManDRIL values are
repeat for viewing convenience. Results are averaged over 3 random seeds.

Method Test Unseen Houses
Pick NAV Total Pick Nav Total

DAgger 1.0 12.8 7.5 7.4 15.5 11.8
MandRIL(ours) 52.3 90.7 77.3 56.3 91.0 82.6

Here we show the performance of DAgger (Ross et al., 2011), in the setting where
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the number of samples that is equal to the number of demonstrations. Overall, while
DAgger slightly improves performance over behavioral cloning, the performance still
lags significantly behind ManDRIL and other IRL methods.
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a.5 detailed meta-objective derivation

We define the quality of reward function rθ parameterized by θ ∈ Rk on task T with the
MaxEnt IRL loss, LT

IRL(θ), described in Section 2.3. The corresponding gradient is

∇θLIRL(θ) =
∂ rθ
∂θ

(Eτ[µτ]− µDT
), (21)

where ∂ rθ/∂θ is the k× |S||A|-dimensional Jacobian matrix of the reward function rθ
with respect to the parameters θ. Here, µτ ∈ R|S||A| is the vector of state-action visi-
tations under the trajectory τ (i.e. the vector whose elements are 1 if the correspond-
ing state-action pair has been visited by the trajectory τ, and 0 otherwise), and µDT

=
1

|DT |

∑
τ∈DT

µτ is the mean state visitations over all demonstrated trajectories in DT. Let
φT ∈ Rk be the updated parameters after a single gradient step. Then

φT = θ−α∇θL
tr
T (θ). (22)

Let L test
T be the MaxEnt IRL loss, where the expectation over trajectories is computed

with respect to a test set that is disjoint from the set of demonstrations used to compute
L test
T (θ) in Eq. 22. We seek to minimize

∑

T∈Ttest

L test
T (φT) (23)

over the parameters θ. To do so, we first compute the gradient of Eq. 23, which we derive
here. Applying the chain rule

∇θL
test
T =

∂φT

∂θ

∂ rφT

∂φT

∂L test
T

∂ rφT

=
∂

∂θ

(
θ−α∇θL

tr
T (θ)

) ∂ rφT

∂φT

∂L test
T

∂ rφT

=

(
I −α

∂

∂θ

(
∂ rθ
∂θ

(Eτ[µτ]− µDT
)

))
∂ rφT

∂φT

∂L test
T

∂ rφT

(24)

where in the last equation we substitute in the gradient of the MaxEnt IRL loss in Eq. 21
for ∇θL

tr
T (θ). In Eq. 24, we use the following notation:

• ∂φT/∂θ denotes the k× k-dimensional vector of partial derivatives ∂φT,i/∂θj,
• ∂ rφT

/∂φT denotes the k× |S||A|-dimensional matrix of partial derivatives ∂ rφT,i/∂φT,j,
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• and, ∂L test
T /∂ rφT

denotes the k-dimensional gradient vector of L test
T with respect

to rφT
.

We will now focus on the term inside of the parentheses in Eq. 24, which is a k× k-
dimensional matrix of partial derivatives.

∂

∂θ

(
∂ rθ
∂θ

(Eτ[µτ]− µDT
)

)

=

|S||A|∑

i=1

[
∂2 rθ
∂θ2

(Eτ[µτ]− µDT
)i +

∂

∂θ
(Eτ[µτ])i

(
∂ rθ,i
∂θ

)'
]

=

|S||A|∑

i=1

[
∂2 rθ
∂θ2

(Eτ[µτ]− µDT
)i+

(
∂ rθ,i
∂θ

)(
∂

∂ rθ,i
(Eτ[µτ])i

)(
∂ rθ,i
∂θ

)'
]

where between the first and second lines, we apply the chain rule to expand the second
term. In this expression, we make use of the following notation:

• ∂2 rθ/∂θ
2 denotes the k× |S||A|-dimensional matrix of second-order partial deriva-

tives of the form ∂2 rθ,i/∂θ
2
j ,

• (Eτ[µτ]− µDT
)i denotes the ith element of the |S||A|-dimensional vector (Eτ[µτ]−

µDT
)i,

• ∂ rθ,i/∂θ denotes the k-dimensional matrix of partial derivatives of the form ∂ rθ,i/∂θj

for j = 1, 2, . . . ,k,
• and, ∂

∂ rθ,i
(Eτ[µτ])i is the partial derivative of the ith element of the |S||A|-dimensional

vector Eτ[µτ] with respect to the ith element of the |S||A|-dimensional vector rθ of
reward (i.e. the reward function).

When substituted back into Eq. 24, the resulting gradient is equivalent to that in Eq. 8
in Section 2.3. In particular, defining the |S||A|-dimensional diagonal matrix D as

D := diag

({
∂

∂ rθ,i
(Eτ[µτ])i

}|S||A|

i=1

)
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then the final term can be simplified to

|S||A|∑

i=1

(
∂ rθ,i
∂θ

)(
∂

∂ rθ,i
(Eτ[µτ])i

)(
∂ rθ,i
∂θ

)'

=

(
∂ rθ
∂θ

)
D

(
∂ rθ
∂θ

)'
.

In order to compute this gradient, however, we must take the gradient of the expecta-
tion Eτ[µτ] with respect to the reward function rθ. This can be done by expanding the
expectation as follows

∂

∂ rθ
Eτ[µτ] =

∂

∂ rθ

∑

τ

(
exp(µ'

τ rθ)∑
τ ′ exp(µ'

τ ′rθ)

)

µτ

=
∑

τ

((
exp(µ'

τ rθ)∑
τ ′ exp(µ'

τ ′rθ)

)

(µτµ
'
τ )−

exp(µ'
τ rθ)

(
∑

τ ′ exp(µ'
τ ′rθ))

2

∑

τ ′

(µτ ′µ
'
τ ) exp(µ'

τ ′rθ)

)

=
∑

τ

P(τ | rθ)(µτµ
'
τ )−

∑

τ

P(τ|rθ)
∑

τ ′

P(τ ′ | rθ)(µτ ′µ
'
τ )

= Eτ

[

(µτµ
'
τ )−

∑

τ ′

P(τ ′ | rθ)(µτ ′µ
'
τ )

]

= Eτ[µτµ
'
τ ]− Eτ ′,τ[µτ ′µ

'
τ ]

= Eτ[µτµ
'
τ ]− Eτ[µτ](Eτ[µτ])

'

= Cov[µτ].
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B
A P P E N D I X : P R O B A B I L I S T I C M O D E L A G N O S T I C
M E TA - L E A R N I N G

b.1 ambiguous celeba details

We construct our ambiguous few-shot variant of CelebA using the canonical splits to
form the meta-train/val/test set. This gives us a split of 162770/19867/19962 images
respectively. We additionally randomly partition the 40 available attributes and into a
split of 25/5/10, which we use to construct the tasks below.

During training, each task is constructed by randomly sampling 2 attributes as Boolean
variables and constructing tasks where one class shares the setting of these attributes
and the other is the converse. For example, a valid constructed tasks is classifying not
Smiling, Pale Skin versus Smiling, not Pale Skin. During testing, we sample 3 at-
tributes from the test set to form the training task, and sample the 3 corresponding
2-uples to form the test task. After removing combinations that have insufficient exam-
ples to form a single tasks, this scheme produces 583/19/53 tasks for meta-train/val/test
respectively. Each sampled image is pre-processed by first obtaining an approximately
168× 168 center crop of each image following by downsampling to 84× 84. This crop is
captures regions of the image necessary to classify the non-facial attributes (e.g. Wearing
Necklace).

Meta-training attributes:
Oval Face, Attractive, Mustache, Male, Pointy Nose, Bushy Eyebrows, Blond Hair, Rosy

Cheeks, Receding Hairline, Eyeglasses, Goatee, Brown Hair, Narrow Eyes, Chubby, Big Lips,

Wavy Hair, Bags Under Eyes, Arched Eyebrows, Wearing Earrings, High Cheekbones, Black

Hair, Bangs, Wearing Lipstick, Sideburns, Bald

Meta-validation attributes:
Wearing Necklace, Smiling, Pale Skin, Wearing Necktie, Big Nose

Meta-testing attributes:
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Straight Hair, 5 o’Clock Shadow, Wearing Hat, Gray Hair, Heavy Makeup, Young, Blurry,

Double Chin, Mouth Slightly Open, No Beard.

b.2 experimental details

In the illustrative experiments, we use a fully connected network with 3 ReLU layers of
size 100. Following Finn et al. (2017d), we additionally use a bias transformation variable,
concatenated to the input, with size 20. Both methods use 5 inner gradient steps on Dtr

with step size α = 0.001 for regression and α = 0.01 for classification. The inference
network and prior for PLATIPUS both use one gradient step. For PLATIPUS, we weight
the KL term in the objective by 1.5 for 1D regression and 0.01 for 2D classification.

For CelebA, we adapt the base convolutional architecture described in Finn et al.
(2017a) which we refer the readers to for more detail. Our approximate posterior and
prior have dimensionality matching the underlying model. We tune our approach over
the inner learning rate α, a weight on the DKL, the scale of the initialization of σ2

θ, vq ∈
{0.5, 0.1, 0.15}, γp,γq ∈ {0.05, 0.1}, and a weight on the KL objective ∈ {0.05, 0.1, 0.15}
which we anneal towards during training. All models are trained for a maximum of
60,000 iterations.

At meta-test time, we evaluate our approach by taking 15 samples from the prior
before determining the assignments. The assignments are made based on the likelihood
of the testing examples. We average our results over 100 test tasks. In order to compute
the marginal log-likelihood, we average over 100 samples from the prior.

b.3 miniimagenet comparison

We provide an additional comparison on the MiniImagenet dataset. Since this bench-
mark does not contain a large amount of ambiguity, we do not aim to show state-of-
the-art performance. Instead, our goal with this experiment is to compare our approach
on to MAML and prior methods that build upon MAML on this standard benchmark.
Since our goal is to compare algorithms, rather than achieving maximal performance, we
decouple the effect of the meta-learning algorithm and the architecture used by using
the standard 4-block convolutional architecture used by Vinyals et al. (2016); Ravi and
Larochelle (2017); Finn et al. (2017a) and others. We note that better performance can
likely be achieved by tuning the architecture. The results, in Table 10 indicate that our
method slightly outperforms MAML and achieves comparable performance to a number
of other prior methods.
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MiniImagenet 5-way, 1-shot Accuracy
MAML Finn and Levine, 2017 48.70± 1.84%
LLAMA Grant et al., 2018b 49.40± 1.83%
Reptile Nichol and Schulman, 2018 49.97± 0.32%
PLATIPUS (ours) 50.13± 1.86%
Meta-SGD Li et al., 2017b 50.71± 1.87%

matching nets Vinyals et al., 2016 43.56± 0.84%
meta-learner LSTM Ravi and Larochelle, 2017 43.44± 0.77%
SNAIL Mishra et al., 2018* 45.10± 0.00%
prototypical networks Snell et al., 2017 46.61± 0.78%
mAP-DLM Snell et al., 2017 49.82± 0.78%
GNN Garcia and Bruna, 2017 50.33± 0.36%
Relation Net Sung et al., 2017 50.44± 0.82%

Table 10: Comparison between our approach and prior MAML-based methods (top), and other
prior few-shot learning techniques on the 5-way, 1-shot MiniImagenet benchmark. Our approach
gives a small boost over MAML, and is comparable to other approaches. We bold the approaches
that are above the highest confidence interval lower-bound. *Accuracy using comparable network
architecture.
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C
A P P E N D I X : L E A R N I N G S K I L L S F R O M R E S E T S

We first describe the details of environments used in the paper, and next list the hyper-
parameters used to train all the agents. All environments use the MuJoCo 2.0 simulator.

c.1 environment details

c.1.1 Ant Task

The Ant environment is equivalent to the standard gym Ant-v3 environment except
that the gear ratio is reduced from (−120, 120) to (−30, 30). The use of this lower gear
ratio is consistent with prior work Eysenbach et al., 2018. The observation space is the
environment qpos and qvel. The rewards are a weighted combination of three terms: (1)
a negative reward of the distance from the center, (2) a positive reward for reaching a
threshold from the center and (3). The equation used is for (1) and (2) is given below:

r(d) = e−d2/2 + num goals completed

where d is the 1 − 2 norm of the distance from the origin. A negative reward (−300)
is also given to the agent for flipping over. If the reset policy terminates the episode
in this manner then the forward policy is not executed. If however, the forward policy
terminates the episode, the forward policy receives the flip cost and the reset policy
includes the negation of this cost in its reward as described in Sec. 4.3.2. Each agent is
given a time horizon of Treset = T = 200. In this ant task, the game was run for 7000
episodes.
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c.1.2 Ant-Waypoints Task

The aim of this task is to navigate between a set of pre-defined waypoints. The waypoints
defined are [(0, 5), (5, 5), (5, 0)]. The reward structure is the same as the constructed ant
environment described in section E.2.1, conditioned on the current waypoint.

The lower level controller was constructed from the reset and forward skills learned
from the adversarial game. The (x,y) position of the state were re-normalized so that
the ant appeared to be at the origin. The higher level controller was trained using an
implementation of Double DQN Van Hasselt et al., 2016 using the 2-D coordinates of the
Ant as the state.

c.1.3 Ant-MediumMaze Task

We use the base environment from D4RL using a single goal1 Fu et al., 2020. The reward
is the 1− 2 distance to the target position. The target position is the top right corner and
the bottom position is the bottom left corner. Each episode is of a length 30 where each
step represents a single skill.

c.1.4 ManipulateFreeObject Task

The object is a 6 DoF three pronged object that is 15cm in diameter placed in a workspace
that is 30 cm × 30 cm box. We follow the goal configuration of Zhu et al. (2019), using
(x,y, θ) = (0, 0,−π

2 ), and use the same 15 initial configurations used for evaluation. Ex-
periments were performed using a state representation that comprised of the object (x,y)
position, and sin and cos encoding of its orientation, the claw’s pose, and the last action
taken.

1 https://github.com/rail-berkeley/d4rl
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c.2 additional experiments

c.2.1 Understanding the effects of resets and state representation choice on Ant-Waypoints

Here, we provide an analysis of the effects of resets and state representation choice on
downstream task performance on the Ant-Waypoints task. We vary the condition under
which the policy is learned (i.e., reset or reset-free) and the state representation (full state
versus (x,y)-prior). In general, we find that only with the availability of the (x,y)-prior
and resets are prior methods able to make significant progress (Fig. 45). The different
relative performance of the same skills on different downstream tasks (Waypoints vs
Maze) also suggests that learning a single action representation may not always be ideal.
This suggests future work that combines downstream adaptation, or potentially mixing
in primitive actions to allow for more granular control.

Figure 43: A evaluation of the skills learned when varying the state representation ((x,y)-prior
or full state) and initial state distribution (reset-free or with resets) on the Ant-Waypoints task.
We normalize the return of plot in terms of the best performing algorithm. Similar to the
Ant-MediumMaze task, we find that prior methods can only make progress on the task when
resets or additional information in the form of the (x,y)-prior is available.

c.2.2 Effect of varying the number of skills on downstream performance

c.3 algorithm details

The adversarial game comprises of a reset policy and a forward policy as described in
the paper. The forward policy receives rewards as given by the environment at every
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Figure 44: A plot showing the effect of varying the number of skills on the Ant-Waypoints tasks.
We find that increasing the number of skills improves performance (16, yellow curve), the value
used in our experiments (10, purple curve) is far from the best, and many other values attain
similar performance. The number of skills used in our experiments were chosen to be roughly
around the order of previous work Eysenbach et al., 2018.

step. The reset policy receives rewards from DIAYN at every step and a game reward at
the last step. This game reward is the sum of the rewards received by the forward policy
when played from the final state of the reset policy trajectory. Each agent is given a fixed
number of steps at each turn. Environment termination was handled for individually for
both agents as follows. If the reset policy terminates, the forward policy does not take
any steps in the environment and is not given any reward. If forward policy terminates,
the reset policy is given rewards based on the forward policy as normal.

In the following sections, curly brackets indicate that a parameter was searched over.

c.3.1 DClaw Environment Parameters

The experiments conducted on the DClaw-ManipulateFreeObject domain was conducted
using the following parameters. The grid search parameters for DIAYN were identical
to those used in our method except where λ = 0.
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Hyperparameters Value

Actor-critic architecture FC(256, 256)
RND architecture FC(256, 256, 512)
Classifier architecture FC(256, 256)

Optimizer Adam
Learning rate {3e-3, 3e-4}
Classifier steps per iteration 5

γ 0.99

λ {0.1, 0.5}
rskill scale 0.1
target update 0.005

Batch size 256
Classifier batch size 128

We follow Zhu et al., 2020a and provide 200 goal images for all experiments which
are used to learn a VICE Fu et al., 2018b based reward function. We similarly omit the
− logπ(s|a). We also follow Burda et al. (2018) and normalize the prediction errors. In
our implementation of LSR, we found used a dimensionality of z of 2, implemented as
a separate network as opposed to one network. The reset controller Eysenbach et al.,
2017 and R3L baseline Zhu et al., 2020a follow the hyperparameters above. The reset
controller’s results were averaged over the 3 positions suggested by Zhu et al. (2020a).
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c.3.2 Ant Environment Parameters

The experiments conducted on the Ant domain were conducted using the following
parameters. The grid search parameters for DIAYN were identical to those used in our
method except where λ = 0.

Hyperparameters Value

Actor-critic architecture FC(256, 256)
Classifier architecture FC(256, 256)

Optimizer Adam
Learning rate {1e-3, 2e-4}
Training steps per agent {200, 200}

γ 0.99
Episode Length 1000

λ 0.5
Number of skills 10
rskill scale [0.01, 10], chose 2
target update 0.005

Batch size 256
Classifier batch size 256

c.3.3 Hierarchical Controller Parameters

The hierarchical controller is a Double-DQN Van Hasselt et al., 2016 network that takes
as input the st and outputs a Q-function over the skills Q(st, z).
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Hyperparameters Value

Architecture FC(128)

Exploration fraction 0.3
Final epsilon j 0.0

Learning rate α 0.0001
Reward Scale {0.1, 0.3}

Batch size 256

Maximum horizon (T) 30
Total epochs 500

Replay Buffer size {1000, 10,000}

Critic update frequency {5, 10}
Critic updates per epoch {100, 200}

An episode step corresponds to a 150 length rollout by the lower level controller in the
environment.
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c.3.4 DADS

To allow for fair comparison, we run DADS without an (x,y) prior. We additionally
discretize the continuous skill space into a space of 10 discrete skills to allow for us to
use the same meta-controller architecture. We used the open source implementation of
DADS Sharma et al., 2019 2 with the following parameters:

Skill parameters

Number of skills 10
Skill type Discrete

Dynamics parameters

train steps 8
learning rate 3e-4
batch size 256

Path length 200

Agent parameters

Architecture FC(512)
Learning rate 3e-4
Entropy 0.1
Train steps 64
Batch size 256
γ 0.99

2 https://github.com/google-research/dads
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D
A P P E N D I X : M U LT I - TA S K R E S E T- F R E E L E A R N I N G F O R
D E X T E R O U S M A N I P U L AT I O N

We first describe the details of environments used in the paper, and next list the hyper-
parameters used to train all the agents. All environments use the MuJoCo 2.0 simulator.

d.1 environment details

d.1.1 Ant Task

The Ant environment is equivalent to the standard gym Ant-v3 environment except
that the gear ratio is reduced from (−120, 120) to (−30, 30). The use of this lower gear
ratio is consistent with prior work Eysenbach et al., 2018. The observation space is the
environment qpos and qvel. The rewards are a weighted combination of three terms: (1)
a negative reward of the distance from the center, (2) a positive reward for reaching a
threshold from the center and (3). The equation used is for (1) and (2) is given below:

r(d) = e−d2/2 + num goals completed

where d is the 1 − 2 norm of the distance from the origin. A negative reward (−300)
is also given to the agent for flipping over. If the reset policy terminates the episode
in this manner then the forward policy is not executed. If however, the forward policy
terminates the episode, the forward policy receives the flip cost and the reset policy
includes the negation of this cost in its reward as described in Sec. 4.3.2. Each agent is
given a time horizon of Treset = T = 200. In this ant task, the game was run for 7000
episodes.
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d.1.2 Ant-Waypoints Task

The aim of this task is to navigate between a set of pre-defined waypoints. The waypoints
defined are [(0, 5), (5, 5), (5, 0)]. The reward structure is the same as the constructed ant
environment described in section E.2.1, conditioned on the current waypoint.

The lower level controller was constructed from the reset and forward skills learned
from the adversarial game. The (x,y) position of the state were re-normalized so that
the ant appeared to be at the origin. The higher level controller was trained using an
implementation of Double DQN Van Hasselt et al., 2016 using the 2-D coordinates of the
Ant as the state.

d.1.3 Ant-MediumMaze Task

We use the base environment from D4RL using a single goal1 Fu et al., 2020. The reward
is the 1− 2 distance to the target position. The target position is the top right corner and
the bottom position is the bottom left corner. Each episode is of a length 30 where each
step represents a single skill.

d.1.4 ManipulateFreeObject Task

The object is a 6 DoF three pronged object that is 15cm in diameter placed in a workspace
that is 30 cm × 30 cm box. We follow the goal configuration of Zhu et al. (2019), using
(x,y, θ) = (0, 0,−π

2 ), and use the same 15 initial configurations used for evaluation. Ex-
periments were performed using a state representation that comprised of the object (x,y)
position, and sin and cos encoding of its orientation, the claw’s pose, and the last action
taken.

1 https://github.com/rail-berkeley/d4rl
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d.2 additional experiments

d.2.1 Understanding the effects of resets and state representation choice on Ant-Waypoints

Here, we provide an analysis of the effects of resets and state representation choice on
downstream task performance on the Ant-Waypoints task. We vary the condition under
which the policy is learned (i.e., reset or reset-free) and the state representation (full state
versus (x,y)-prior). In general, we find that only with the availability of the (x,y)-prior
and resets are prior methods able to make significant progress (Fig. 45). The different
relative performance of the same skills on different downstream tasks (Waypoints vs
Maze) also suggests that learning a single action representation may not always be ideal.
This suggests future work that combines downstream adaptation, or potentially mixing
in primitive actions to allow for more granular control.

Figure 45: A evaluation of the skills learned when varying the state representation ((x,y)-prior
or full state) and initial state distribution (reset-free or with resets) on the Ant-Waypoints task.
We normalize the return of plot in terms of the best performing algorithm. Similar to the
Ant-MediumMaze task, we find that prior methods can only make progress on the task when
resets or additional information in the form of the (x,y)-prior is available.

d.2.2 Effect of varying the number of skills on downstream performance

d.3 algorithm details

The adversarial game comprises of a reset policy and a forward policy as described in
the paper. The forward policy receives rewards as given by the environment at every
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Figure 46: A plot showing the effect of varying the number of skills on the Ant-Waypoints tasks.
We find that increasing the number of skills improves performance (16, yellow curve), the value
used in our experiments (10, purple curve) is far from the best, and many other values attain
similar performance. The number of skills used in our experiments were chosen to be roughly
around the order of previous work Eysenbach et al., 2018.

step. The reset policy receives rewards from DIAYN at every step and a game reward at
the last step. This game reward is the sum of the rewards received by the forward policy
when played from the final state of the reset policy trajectory. Each agent is given a fixed
number of steps at each turn. Environment termination was handled for individually for
both agents as follows. If the reset policy terminates, the forward policy does not take
any steps in the environment and is not given any reward. If forward policy terminates,
the reset policy is given rewards based on the forward policy as normal.

In the following sections, curly brackets indicate that a parameter was searched over.

d.3.1 DClaw Environment Parameters

The experiments conducted on the DClaw-ManipulateFreeObject domain was conducted
using the following parameters. The grid search parameters for DIAYN were identical
to those used in our method except where λ = 0.
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Hyperparameters Value

Actor-critic architecture FC(256, 256)
RND architecture FC(256, 256, 512)
Classifier architecture FC(256, 256)

Optimizer Adam
Learning rate {3e-3, 3e-4}
Classifier steps per iteration 5

γ 0.99

λ {0.1, 0.5}
rskill scale 0.1
target update 0.005

Batch size 256
Classifier batch size 128

We follow Zhu et al., 2020a and provide 200 goal images for all experiments which
are used to learn a VICE Fu et al., 2018b based reward function. We similarly omit the
− logπ(s|a). We also follow Burda et al. (2018) and normalize the prediction errors. In
our implementation of LSR, we found used a dimensionality of z of 2, implemented as
a separate network as opposed to one network. The reset controller Eysenbach et al.,
2017 and R3L baseline Zhu et al., 2020a follow the hyperparameters above. The reset
controller’s results were averaged over the 3 positions suggested by Zhu et al. (2020a).
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d.3.2 Ant Environment Parameters

The experiments conducted on the Ant domain were conducted using the following
parameters. The grid search parameters for DIAYN were identical to those used in our
method except where λ = 0.

Hyperparameters Value

Actor-critic architecture FC(256, 256)
Classifier architecture FC(256, 256)

Optimizer Adam
Learning rate {1e-3, 2e-4}
Training steps per agent {200, 200}

γ 0.99
Episode Length 1000

λ 0.5
Number of skills 10
rskill scale [0.01, 10], chose 2
target update 0.005

Batch size 256
Classifier batch size 256

d.3.3 Hierarchical Controller Parameters

The hierarchical controller is a Double-DQN Van Hasselt et al., 2016 network that takes
as input the st and outputs a Q-function over the skills Q(st, z).
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Hyperparameters Value

Architecture FC(128)

Exploration fraction 0.3
Final epsilon j 0.0

Learning rate α 0.0001
Reward Scale {0.1, 0.3}

Batch size 256

Maximum horizon (T) 30
Total epochs 500

Replay Buffer size {1000, 10,000}

Critic update frequency {5, 10}
Critic updates per epoch {100, 200}

An episode step corresponds to a 150 length rollout by the lower level controller in the
environment.
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d.3.4 DADS

To allow for fair comparison, we run DADS without an (x,y) prior. We additionally
discretize the continuous skill space into a space of 10 discrete skills to allow for us to
use the same meta-controller architecture. We used the open source implementation of
DADS Sharma et al., 2019 2 with the following parameters:

Skill parameters

Number of skills 10
Skill type Discrete

Dynamics parameters

train steps 8
learning rate 3e-4
batch size 256

Path length 200

Agent parameters

Architecture FC(512)
Learning rate 3e-4
Entropy 0.1
Train steps 64
Batch size 256
γ 0.99

2 https://github.com/google-research/dads
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E
A P P E N D I X : L E A R N I N G M U LT I - TA S K R E S E T- F R E E B E H AV I O R
F R O M I M A G E S

e.1 real world environment descriptions

In the following sections, we describe the details of our real world tasks. We provide de-
tails related to experimental setup and describe our success criteria. Finally, we describe
the supervision we provide the agent.

e.1.1 Object, Arena Dimensions, and Safety Considerations

The objects used in our manipulation task are a 3-D printed pipe and hook that were
custom designed. Their dimensions are shown in the technical drawing in Fig. 47. All
the objects are manipulated in an arena of overall size 33" × 33" consisting of a base of
20" × 20" and 8" × 8" panels. Importantly, the fixtures we use, which can be seen in the
example milestone images below, are made of a flexible foam. This is in order to ensure
that the robot does not place excessive forces on either the object, hand, or fixture. We
leave addressing these safety considerations to future work.
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Figure 47: Technical drawing of objects (Left: hose connector, Right: hook) used for real-world experi-
ments, with dimensions in inches.

e.1.2 Hose Connector Insertion Task & Evaluation Criteria

The goal of this task is to have the hand reach, grasp, reorient, and insert a hose connector
into an insertion point. The hose connector is attached to a fixed point at the top of the
20in × 20in arena by a rope that is 31cm long.

For this environment, we collected 300 milestone images (84× 84× 6) for each subtask.
When training the VICE classifiers, we apply data augmentation using a random crop
on the provided milestone images in addition to a randomly sampled N(0, 0.02) noise
vector on the state.

Figure 48: Sample milestone images for Reach, Grasp, Flipup, Insert (each column respectively))

158



In the following table, we summarize the success criteria that we use in our experi-
ments.

Task Success Criteria

Reach
{
|xpalm − xhose| < 0.05 AND |ypalm − yhose| < 0.01

}

Grasp
{
is_held_during_flipup

}

FlipUp
{
|θhose − θgoal| " 5◦

}

Insert
{
|xhose − xpeg| < 0.05 AND |yhose − ypeg| < 0.03

}

In this environment, the evaluation criteria for successful finger grasps is intuitively
defined as whether or not the grasp is firm enough for performing subsequent tasks, i.e.
the hose connector does not fall from the hand. θhose is the Euler angle measurement of
the hose connector, where the optimal insertion angle is θgoal = 90◦. xhose, xpeg, yhose,
ypeg are the center of mass xy-coordinate of the hose connector and the insertion peg,
measured in meters.

e.1.3 Rope Hooking Task & Evaluation Criteria

The goal of this task is to have the hand grasp, reorient, hook, and unhook a carabiner
hook onto a latch. The hook is attached to a fixed point at the top of the arena by a rope
that is 31cm long.

For this environment, we also collect 300 milestone images (84× 84× 6) for each sub-
task. Similar to the insertion task, when training the VICE classifiers, a random crop is
used as data augmentation for the milestone images and a random N(0, 0.02) noise is
added to the milestone states.

Task Success Criteria

Grasp
{
is_held_during_flipup

}

FlipUp
{
|θhook − θgoal| " 5◦

}

Hook
{
(xhook − xlatch) > 0.01

}

Remove
{
(xhook − xlatch) < 0.05

}
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Similar to the hose insertion task, in this environment, the evaluation criteria for suc-
cessful finger grasps is intuitively defined as whether the grasp is firm enough for per-
forming subsequent tasks, i.e. the hook object does not fall from the hand. θhook is the
Euler angle measurement of the hook object along the side of its flat handle, where the
ready-to-hook angle is θgoal = 90◦. xhook and xlatch is the center of mass x-coordinate of
the hook object and the latching bar, measured in meters.
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Figure 49: Sample milestone images for Grasp, Flipup, Hook, Unhook task, (each column respectively)

e.2 simulated environment descriptions

We first describe the details of simulated environments used in the paper, and next list
the hyperparameters used to train all the agents. The environment we use is based on
the MuJoCo 2.0 simulator.

e.2.1 Valve3 Task

The DHandValve3 environment contains a green, three-pronged valve placed on top of a
square arena with dimensions 0.55m x 0.55m. The valve contains a circular center, and
each of its prongs has an equal length of 0.1m. There are three phases in this task: reach,
reposition, and pickup.The reach phase’s success criteria is when the hand is within
0.1m from the valve. In the reposition phase, the success criteria for the hand is to reach
for the valve, grasp the valve with its fingers, and drag the valve to within 0.1m of the
arena center. Finally, success of the pickup phase is measured if the object is picked up
and brought within 0.1 m of the target location which is 0.2m above the table. In order
to prevent the object from falling off the table, the object is constrained to a 0.15m radius
by a string from the center of the table.

The observation space of the environment is two camera views of the robot, resized
to 84 × 84 × 3. In addition, the proprioceptive state of the arm is provided, which is
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comprised of a 16-dim hand joint position, 7-dim Sawyer arm state, and 6-dim vector
representing the end-effector position and euler angle. The time horizon we use in each
phase of the environment is T = 100. We provide 300 goal images per phase, which is
comparable to the number used in prior work Fu et al., 2018b.

Below, we provide the oracle task graph for the valve environment, which we use to
evaluate the relative performance of our learned task graph model.

Algorithm 6 Valve3 Task Graph (Oracle Baseline)

Require: Object position




x

y

z



, previous task φ

1: Let

[
xcenter

ycenter

]

be the center coordinates of the arena (relative to the Sawyer base).

2: Let

[
xhand

yhand

]

be the location coordinates of the hand (relative to the arena).

3: is_centered = ||

[
x

y

]

−

[
xcenter

ycenter

]

|| < 0.1

4: is_hand_over_object = ||

[
x

y

]

−

[
x_hand
y_hand

]

|| < 0.15

5: if NOT is_centered and is_hand_over_object then
6: Reposition
7: else if NOT is_centered and NOT is_hand_over_object then
8: Reach
9: else if is_centered then

10: Pickup
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e.3 algorithm details

In this section, we describe details related to our RL learning algorithms and also provide
hyperparameters for each method.

e.3.1 AVAIL

Algorithm 7 AVAIL (Autonomy ViA mILestones)

1: Given: K tasks with examples states D := {Dz,yz}
K−1
z=0 , start state s0.

2: Train task graph ptaskdyn(z|s) using D
3: Initialize πz, poz(o|s), Qz, Bz for z ∈ {0, 1, . . . ,K− 1}
4: for iteration n = 1, 2, ... do
5: Select current task z by querying learned task graph at the current state: z =

argmaxzp(z|s)
6: for iteration j = 1, 2, ..., T do
7: Execute πz in environment, storing data in the buffer Bz

8: Update the current task’s policy and value functions πz, Qz using samples
from Bz, assigning reward based on poz(o|s) using SAC Haarnoja et al., 2018c.

9: Update the classifier parameters, using Dz and samples from Bz , using the
VICE Fu et al., 2018b.

e.3.2 Reinforcement Learning from Images

For completeness, here we describe our procedure of performing image based RL, which,
as noted in prior work, presents significant optimization challenges Laskin et al., 2020;
Kostrikov et al., 2020. In order to make learning more practical, we make use of a
combination of data augmentation techniques during training, which has been previ-
ously shown to improve image based reinforcement learning Kostrikov et al., 2020, and
dropout regularization (Hiraoka et al., 2021). For all approaches we evaluate on in this
work we make use of random shifts perturbations, which pad the image observation
with boundary pixels before taking a random crop. We denote saug ∼ f(s) as an randomly
augmented image from a distribution f. We compute Q-Learning by computing the Q
value for a state (si) over M independent augmentation. For each q function, Qθ(s,a),
we follow Hiraoka et al. (2021) and apply dropout followed by layer normalization in

163



the fully connected layers of the critic.

E si∼B
a∼π(·|s)

[Qθ(s,a)] ≈ 1

M

M∑

m=1

Qθ(f(si),am)

where am ∼ π(·|f(si)),

and computing a target value over L augmentations

yi = ri + γ
1

L

L∑

l=1

Qθ(f(s
′
i,ν

′
i,l),a

′
i,l) (25)

where a ′
i,l ∼ π(·|f(s ′i,ν ′

i,l)). (26)

This leads to a final learning rule

θ ← θ− λθ∇θ
1

N

N∑

i=1

(Qθ(f(si,νi),ai)− yi)
2. (27)
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e.3.3 Hyperparameters

Here we describe the individual prior methods we compare to in detail for the purpose of
reproducibility. For shared parameters, we summarize them below and provide baseline
specific parameters separately.

For the simulated experiments, we train a classifier with an identical architecture to
our success classifiers. During training we sample a new task a horizon of T = 100,
as we found that in simulation the simpler naïve task graph performs comparably to
the learned task graph, in real world training we employ the naïve task graph as it is
arguably simpler. We provide additional experiments in the following section using the
learned task which demonstrates that the learned task graph actually outperforms the
naïve task graph on the more challenging real world domains.

Shared RL Hyperparameters Value

Base Encoder Conv(3, 3, 32, 2)
3 × Conv(3, 3, 32, 1)

Actor Architecture FC(256, 256)
FC(256, 22)

Critic Architecture FC(256, 256)
FC(256, 1)

Optimizer Adam
Learning rate {3e-4}

Discount γ 0.99

Target Update Frequency 1
Actor Update Frequency 1

Batch size 256
Classifier batch size 256
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Shared Classifier Hyperparameters Value

Optimizer Adam
Learning rate {3e-4}
Classifier steps per iteration 1
Mixup Augmentation α 10
Label Smoothing α 0.1

Classifier Architecture Conv(3, 3, 32, 2)
3 × Conv(3, 3, 32, 1)
3 × FC(512) → ReLU() → Dropout(0.5)
FC(1)
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e.4 additional real world comparisons

We additionally provide real world comparisons that mirror the more extensive compar-
isons done in simulation. When compared to prior methods, we find that our simulated
results are corroborated by our real world experiments. We find that our approach out-
performs the forward backward algorithm on our hose insertion and hook tasks. In
evaluating the efficacy of our learned task, we find, however, that on the more challeng-
ing real world tasks, our method substantially performs a naíve task graph. We provide
additional details here.

e.4.1 Real World Comparisons to the Forward-Backward Controller (Eysenbach et al., 2017)

In real world setting, we experiment and evaluate both our method and the Forward
Backward (Eysenbach et al. 2018) method. For the Forward Backward method, we re-
move the training of the reach task by scripting it, making the learning problem easier.
Additionally, we script the reach subtask, combine grasp and flipup into one forward
task with horizon T = 100 (50 for each task) and 600 milestone images, and train inser-
tion as the backward task. Even when making the learning problem easier for the For-
ward Backward method setting by scripting the reach subtask, our method outperforms
the Forward Backward method. The discrepancies in the performance of the algorithms
demonstrate the improvements in learning capacity as the granularity of the division of
tasks increases.
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For the Forward Backward method, we combine grasp, flipup, and hook into one
forward task with horizon T = 200 (50 for grasp and flipup, 100 for hook) and 900
milestone images, and train unhook as the backward task. Once again, since our method
outperforms the Forward Backward method, the results highlight the improvements in
learning capacity as the granularity of the division of tasks increases.
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Figure 50: Success rate of each subtask on our real world insertion task. The reach task curve with
Forward Backward method is omitted as mentioned above. The Forward Backward method is unable
to learn the flipup and insertion task while our method with the naïve task graph achieves substantial
learning progress across all tasks.
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Figure 51: Success rate of each task on our real world hooking task. The Forward Backward method is
unable to learn the flipup, hook, and unhooking subtasks while our method with the naïve task graph
achieves substantial learning progress across all tasks.

170



e.4.2 Comparison with Learned Task Graph

Here we show the success rate of our approach using a learned task graph on our real
world insertion task. Different then our simulated domain, we find that on our more
challenging real world tasks, we obtain significantly faster convergence (approximately
150,000 steps vs. 200,000 steps) in terms of final insertion performance using our learned
task graph.

Figure 52: Success rate of each task on our real world insertion task. We find that using a learned task
graph results in faster convergence on our real world robotic task, where the robot begins to consistently
perform the task around 25% faster than the naïve task graph.
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e.4.3 Example Simulated Milestones

Figure 53: The experimental domain DHandValve-v0 we study in this work. We consider a task
where the simulated robot hand is required to pick up a three-pronged object. Our observations
consist of images from two viewpoints (shown above), in addition to the robot’s proprioceptive
state. We assume no access to a ground truth reward function, nor to episodic resets. The labels
in the bottom left corners were overlayed for visualization purposes.
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F
A P P E N D I X : B E N C H M A R K I N G A L G O R I T H M S F O R A U T O N O M O U S
R E I N F O R C E M E N T L E A R N I N G

f.0.1 Goal-conditioned ARL

This framework can be readily extended to goal-conditioned reinforcement learning
(“Learning to achieve goals”; Schaul et al., 2015), which is also an area of study cov-
ered in some prior works on reset-free reinforcement learning (Sharma et al., 2021a).
Assuming a goal space G and task-distribution pg : G +→ R!0, assume that the algorithm
A : {si,ai, si+1}

t−1
i=0 +→ (at,πt), where at ∈ A and πt : S×A× G +→ R!0. Equation 19 can

be redefined as follows:

JD(π) = Eg∼pg,s0∼ρ,at∼π(·|st,g),st+1∼p(·|st,at)
[ ∞∑

t=0

γtr(st,at,g)
]

(28)

Additionally, we will assume that the algorithm has access to a set of samples gi ∼ p(g)
from the goal distribution. The definitions for deployed policy evaluation and continuing
policy evaluation remains the same.

f.0.2 Reversibility and Non-Ergodic MDPS

We expand on the discussion of reversibility in 7.3.2. We also discuss how we can deal
with non-ergodic MDPs by augmenting the action space in MDP MT with calls for ex-
trinsic interventions.

Definition 4 (Ergodic MDPs). A MDP is considered ergodic if for all states sa, sb ∈
S, ∃π such that π(sb) > 0, where π(s) = (1− γ)

∑∞
t=0 γ

tp(st = s | s0 = sa,π) denotes dis-
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counted state distribution induced by the policy π starting from the state s0 = sa (Moldovan
and Abbeel, 2012). A policy that assigns a non-zero probability to all actions on its support A
ensures that all states in S are visited in the limit for ergodic MDPs, satisfying the condition
above.
We adapt the ARL framework to develop learning algorithms for non-ergodic MDPs.

In particular, we introduce a mechanism below for the agent to call for an intervention
in the MDP MT . Our goal here is to show that our described ARL framework is general
enough to include cases where a human is asked for help in irreversible states. Consider
an augmented state space S+ = S∪ R!0 and an augmented action space A+ = A∪Ah,
where Ah denotes the action of asking for help via human intervention. A state s+ ∈ S+

can be written as a state s ∈ S, and h ∈ R!0 which denotes the remaining budget for
interventions into the training. The budget h is initialized to hmax when the training
begins. The intervention can be requested by the agent itself using an action a ∈ Ah

or it can enforced by the environment (for example, if the agent reaches certain de-
tectable irreversible states in the environment and requests a human to bring it back
into the reversible set of states). For an action a ∈ Ah, the environment transitions from
(s,h) → (s ′,h− c(s,a)), where the next state s ′ depends on the nature of the requested
intervention a and c(s,a) : S×Ah +→ R!0 denotes the cost of intervention. A similar
transition occurs when the environment enforces the human intervention. When the cost
exceeds the remaining budget, that is h− c(s,a) " 0, the environment transitions into an
absorbing state s∅, and the training is terminated. We retain the definitions introduced in
Sec 7.3.1.1 and 7.3.1.2 for evaluation protocols.1 In this way, we see that we can actually
encompass the setting of non-ergodic MDPs as well, with some reparameterization of
the MDP.

f.0.3 Relating Prior Works to ARL

In this section, we connect the settings in prior works to our proposed autonomous
reinforcement learning formalism. First, consider the typical reinforcement learning ap-
proach: Algorithm A assigns the rewards to transitions using r(s,a), learns a policy π
and outputs πt = π and at ∼ π (possibly adding noise to the action). The algorithm
exclusively optimizes the reward function r throughout training.

Reconsider the door closing example: the agent needs to practice closing the door
repeatedly, which requires opening the door repeatedly. However, if we optimize π to

1 The action space Ah is not available in M, only in MT . This discrepancy should be considered when
parameterizing π.
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maximize r over its lifetime, it will never be incentivized to open the door to practice
closing it again. In theory, assuming an ergodic MDP and that the exploratory actions
have support over all actions, the agent will open the door given enough time, and the
agent will practice closing it again. However, in practice, this can be quite an inefficient
strategy to rely on and thus, prior reset-free reinforcement learning algorithms consider
other strategies for exploration. To understand current work, we introduce the notion of
a surrogate reward function r̃t : S×A +→ R. At every time step t, A outputs at ∼ πe

and πt for evaluation, where πe optimizes r̃t over the transitions seen till time t− 1 2.
Prior works on reset-free reinforcement learning can be encapsulated within this frame-
work as different choices for surrogate reward function r̃t. Some pertinent examples:
Assuming rρ is some reward function designed that shifts the agent’s state distribution
towards initial state distribution ρ, alternating r̃t = r and r̃t = rρ for a fixed number
of environment steps recovers the forward-backward reinforcement learning algorithms
proposed by Han et al. (2015); Eysenbach et al. (2017). Similarly, R3L (Zhu et al., 2020a)
can be understood as alternating between a perturbation controller optimizing a state
novelty reward and the forward controller optimizing the task reward r. Recent work
on using multi-task learning for reset-free reinforcement learning (Gupta et al., 2021b)
can be understood as choosing r̃t(st,at) =

∑K
k=1 rk(st,at)I[st ∈ Sk] such that S1, . . . SK

is a partition of the state space S and only reward function rk is active in the subset Sk.
Assuming the goal-conditioned autonomous reinforcement learning framework, the re-
cently proposed algorithm VaPRL (Sharma et al., 2021a) can be understood as creating a
curriculum of goals gt such that at every step, the action at ∼ π(· | st,gt). The curriculum
simplifies the task for the agent, bootstrapping on the success of easier tasks to efficiently
improve JD(π).

f.0.4 Environment Descriptions and Reward Functions

Tabletop-Organization. The Tabletop-Organization task is a diagnostics object manipu-
lation task proposed by Sharma et al., 2021a. The observation space is a 12 dimensional
vector consisting of the object position, gripper position, gripper state, and the current
goal. The action space is 3-D action that consists of a 2-D position delta and an auto-
mated gripper that can attach to the mug if the gripper is close enough to the object.
The reward function is a sparse indicator function, r(s,g) = (‖s− g‖2 " 0.2). The agent
is provided with 12 forward and 12 backward demonstrations, 3 for each of the 4 goal

2 This can also be captured in a multi-task reinforcement learning framework, where πe,πt are the same
policy with different task variables as input.
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positions.
Sawyer-Door. The Sawyer Door environment consists of a Sawyer robot with a 12

dimension observation space consisting of 3-D end effector position, 3-D door position,
gripper state and desired goal. The action space is a 4-D action space that consisting
of a 3-D end effector control and normalized gripper torque. Let sd be dimensions of
the observation corresponding to the door state, and g be the corresponding goal. The
reward function is a sparse indicator function r(s,g) = (‖sd − g‖2 " 0.08). The agent is
provided with a 5 forward and 5 backward demos.

Sawyer-Peg. The Sawyer-Peg environment shares observation and action space as the
Sawyer-Door environment. Let sp be the state of the peg and g be the corresponding
goal. The reward function is a sparse indicator function r(s,g) = (‖s− g‖2 " 0.05). The
agent is provided with 10 forward and 10 backward demonstrations for this task.

Franka-Kitchen. The Franka-Kitchen environment consists of a 9-DoF Franka robot
with an array of objects (microwave, two distinct burner, door) represented by a 14 di-
mensional vector. The reward function is composed of a dense reward that is a sum
of the euclidean distance between the goal position of the arm and the current state
plus shaped reward per object as described in Gupta et al., 2019. No demonstrations are
provided for this task.

DHand-LightBulb. The DHand is a 4 fingered robot (16-DoF) mounted on a 6-DoF
Sawyer Arm. The observation space of the DHand consists of a 30 dimensional obser-
vation and corresponding goal state. The observation is composed of a 16 dimensional
hand position, 7 dimensional arm position, 3 dimension object position, 3 dimensional
euler angle and a 6 dimensional vector representing the dimensional wise distance to be-
tween objects in the environment. The action space is a position delta over the combined
22 DoF of the robot. No demonstrations are provided for these tasks.

Minitaur-Pen. The Minitaur pen’s observation space is the joint positions of its 8 links,
their corresponding velocity, current torque, quaternion of its base position, and goal
location in the pen. The action space is a 8 dimensional PD target. Let sb be the 2-D
position of the agent, and g be the corresponding goal. Let st be the current torques
on the agent, and sv be their velocities The reward for the agent is a dense reward
r(s,a) = −2.0 · ‖sb − g‖+ 0.02 · ‖sv · st‖. No demonstrations are provided for these tasks.
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f.0.5 Algorithms

We use soft actor-critic (Haarnoja et al., 2018d) as the base algorithm for our experi-
ments in this paper. When available, the demonstrations are added to the replay buffer
at the beginning of training. Further details on the parameters of the environments and
algorithms are reported in Tables 11. The implementations will be open-sourced and
implementation details can be found there.

Hyperparameter Value

Actor-critic architecture fully connected(256, 256)
Nonlinearity ReLU
RND architecture fully connected(256, 256, 512)
RND Gamma 0.99

Optimizer Adam
Learning rate 3e-4

γ 0.99

Target update τ 0.005
Target update period 1

Batch size 256
Classifier batch size 128

Initial collect steps 103

Collect steps per iteration 1

Reward scale 1
Min log std -20
Max log std 2

Table 11: Shared algorithm parameters.
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Environment Training Horizon (HT ) Evaluation Horizon (HE) Replay Buffer Capacity

Tabletop-Organization 200,000 200 20,000,000
Sawyer-Door 200,000 300 20,000,000
Sawyer-Peg 100,000 200 20,000,000
Franka-Kitchen 100,000 400 10,000,000
DHand-Lightbulb 400,000 400 10,000,000
Minitaur-Pen 100,000 1000 10,000,000

Table 12: Environment specific parameters, including the training horizon (i.e. how frequently an
intervention is provided), the evaluation horizon, and the replay buffer capacity.

f.0.6 Evaluation Curves

In this section, we plot deployed policy evaluation and continuing policy evaluation
curves for different algorithms and different environments:
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Figure 54: Deployed Policy Evaluation and Continuing Policy Evaluation per environment. Re-
sults and averaged over 5 seeds. Shaded regions denote 95% confidence bounds.
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