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Abstract

Learning Transferable Representations across Domains

by

Xiangyu Yue

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Deep neural networks have achieved great success in learning representations on a given
dataset. However, in many cases, the learned representations are dataset-dependent and
cannot be transferred to datasets with di↵erent distributions, even for the same task. How to
deal with domain shift is crucial to improve the generalization capability of models. Domain
adaptation o↵ers a potential solution, allowing us to transfer networks from a source domain
with abundant labels onto target domains with only limited or no labels.

In this dissertation, I will present the many ways that we can learn transferable representa-
tions under di↵erent scenarios, including 1) when the source domain has only limited labels,
even only one label per class, 2) when there are multiple labeled source domains, 3) when
there are multiple unseen unlabeled target domains. These approaches are general across
di↵erent data modalities (e.g. vision and language) and can be easily combined to solve
other similar domain transfer settings (e.g. adapting from multiple sources with limited la-
bels), enabling models to generalize beyond the source domains. Many of the works transfer
knowledge from simulation data to real-world data in order to alleviate the need for expen-
sive manual annotations. Finally, I present our pioneering work on building a LiDAR point
cloud simulator, which has further enabled a large amount of domain adaptation work on
LiDAR point cloud segmentation adaptation.
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Chapter 1

Introduction

1.1 Chapter Overview

This chapter introduces the motivation and summarizes the key contributions of the disser-
tation. The organization of the content in this dissertation is also presented.

1.2 Motivation

In recent years, deep neural networks have achieved huge success across wide range of artificial
intelligence problems, including computer vision, natural language process, and robotics. At
the heart of these progress is the paradigm of supervised learning, under which a labeled
dataset is collected and models are trained to predict the labels give the corresponding
input. Deep neural networks usually contains a large amount of parameters in order to solve
complex real-world problems; and in order for the models not to become overfitting, the
labeled datasets are usually in quite large scale.

However, in many real-world applications, collecting large-scale labeled data is always
available, as labeling can be expensive, time-consuming, and di�cult. For example, in
fine-grained recognition only the labels provided by experts are reliable; for semantic seg-
mentation, labeling each image of the Cityscapes dataset takes about 1.5 hours; point-wise
3D LiDAR point clouds are very di�cult to label. One essential way to alleviate the need for
labeled data is transferring knowledge from one dataset to another. However, due to domain
shift or dataset bias, directly applying a model trained on one dataset to another dataset
collected from a di↵erent source often leads to significant performance drop. Domain shift
does exist. For example, images taken under di↵erent weather and time of day; hand-writing
from di↵erent people; simulation images and real-world images, etc.

Domain adaptation seeks to tackle the learning problem in which the test data do not
come from the same distribution as the training data. The training distribution is referred
to as the source domain, while the test distribution is referred to as the target domain. It
is often assumed that the source domain contains a large amount of labels, while the target
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Figure 1.1: Large-scale labeled datasets are not always available, as annotation can be expen-
sive, time-consuming and di�cult. (1) For fine-grained recognition, only labels provided by
experts are reliable [9]; (2) For semantic segmentation, labeling each image of the cityscapes
dataset takes around 90 minutes [41]; (3) Point-wise 3D LiDAR point clouds are very di�cult
to label [242].

has no labels or very limited labels. A large e↵ort from the research community has been
placed on the problem of Unsupervised Domain Adaptation (UDA), where there is a fully
labeled source domain and an unlabeled target domain; and the goal is to train a model with
the labeled source and unlabeled target and achieve high performance on the target domain.
However, the problem setting is too simple and not practical enough:

• Fully labeled source. Although this is reasonable in some cases, e.g. simulation data as
source where labeling is almost free; in many applications e.g. medical imaging, even
a fully labeled source is hard to get.

• Single target domain. This requires that the target domain be known and available
during training. Yet, in the real-world, we often want to train a model and expect it
could generalize well to various unseen domains.

• Single source domain. This can underutilize the resources available, since we might
have access to multiple source domains. For instance, we have two simulation environ-
ments from di↵erent companies.

Under diverse scenarios in the real world, the desired domain adaptation setting can be quite
di↵erent from and more complicated than unsupervised domain adaptation.

1.3 Research Contributions

This dissertation presents a series of studies on learning transferable representations under
various scenarios. Specifically, we propose the following methods: a framework that per-
forms adaptation to an unlabeled target domain from a source with limited labels [266],
a method that learns image semantic segmentation models that generalize well to various
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unseen domains [264], a method that adapts semantic segmentation models from multiple
source domains to a target domain [280], a method that adapts models for textural sentiment
analysis from multiple sources to a target domain [276], a framework that adapts to an un-
labeled target domain from multiple sources with limited labels [265], a LiDAR point cloud
simulation environment that enables further research on LiDAR point cloud segmentation
adaptation [263].

The contributions of the thesis are as follows:
Chapter 2 considers the task of few-shot unsupervised domain adaptation, adapting to

a target domain from a source domain with only few annotations. To cope with this prob-
lem, previous work performed instance-wise cross-domain self-supervised learning, followed
by an additional fine-tuning stage. However, the instance-wise self-supervised learning only
learns and aligns low-level discriminative features, and the cross-domain matching is not ro-
bust. We instead propose an end-to-end Prototypical Cross-domain Self-Supervised Learn-
ing framework (PCS) for few-shot unsupervised domain adaptation. PCS not only performs
cross-domain low-level feature alignment, but it also encodes and aligns semantic structures
in the shared embedding space across domains. Our framework captures category-wise se-
mantic structures of the data by in-domain prototypical contrastive learning; and performs
feature alignment through cross-domain prototypical self-supervision.

Chapter 3 focus on the task of segmentation domain generalization, learning a segmen-
tation model that generalizes well to various unseen domains. The segmentation network
is trained without any data of target domains and tested on the unseen target domains.
We propose a new approach of domain randomization and pyramid consistency to learn
a model with high generalizability. First, we propose to randomize the synthetic images
with the styles of real images in terms of visual appearances using auxiliary datasets, in
order to e↵ectively learn domain-invariant representations. Second, we further enforce pyra-
mid consistency across di↵erent “stylized” images and within an image, in order to learn
domaininvariant and scale-invariant features, respectively.

Chapter 4 targets the task of multi-source adaptation for semantic segmentation, adapt-
ing a segmentation model to a given target domain from multiple source domains. Existing
methods mainly focus on a single-source setting, which cannot easily handle a more prac-
tical scenario of multiple sources with di↵erent distributions. In this chapter, we propose
to investigate multi-source domain adaptation for semantic segmentation. Specifically, we
design a novel framework, termed Multi-source Adversarial Domain Aggregation Network
(MADAN), which can be trained in an end-to-end manner. First, we generate an adapted
domain for each source with dynamic semantic consistency while aligning at the pixel-level
cycle-consistently towards the target. Second, we propose sub-domain aggregation discrimi-
nator and cross-domain cycle discriminator to make di↵erent adapted domains more closely
aggregated. Finally, feature-level alignment is performed between the aggregated domain
and target domain while training the segmentation network.

Chapter 5 further investigates multi-source adaptation for textual sentiment analysis, be-
yond computer vision tasks. Existing multi-source domain adaptation (MDA) methods either
fail to extract some discriminative features in the target domain that are related to sentiment,
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neglect the correlations of di↵erent sources and the distribution di↵erence among di↵erent
sub-domains even in the same source, or cannot reflect the varying optimal weighting during
di↵erent training stages. In this chapter, we propose a novel instance-level MDA framework,
named curriculum cycle-consistent generative adversarial network (C-CycleGAN), to address
the above issues. Specifically, C-CycleGAN consists of three components: (1) pre-trained
text encoder which encodes textual input from di↵erent domains into a continuous represen-
tation space, (2) intermediate domain generator with curriculum instance-level adaptation
which bridges the gap across source and target domains, and (3) task classifier trained on
the intermediate domain for final sentiment classification. C-CycleGAN transfers source
samples at instance-level to an intermediate domain that is closer to the target domain with
sentiment semantics preserved and without losing discriminative features. Further, our dy-
namic instance-level weighting mechanisms can assign the optimal weights to di↵erent source
samples in each training stage.

Chapter 6 considers both the few-shot and multi-source settings; investigating Multi-
source Few-shot Domain Adaptation (MFDA), a new domain adaptation scenario with lim-
ited multi-source labels and unlabeled target data. As we show, existing methods often
fail to learn discriminative features for both source and target domains in the MFDA set-
ting. Therefore, we propose a novel framework, termed Multi-Source Few-shot Adaptation
Network (MSFAN), which can be trained end-to-end in a non-adversarial manner. MSFAN
operates by first using a type of prototypical, multi-domain, self-supervised learning to learn
features that are not only domain-invariant but also class-discriminative. Second, MSFAN
uses a small, labeled support set to enforce feature consistency and domain invariance across
domains. Finally, prototypes from multiple sources are leveraged to learn better classifiers.

Chapter 7 considers the synthetic labeled data generalization for LiDAR segmentation
adaptation. We present a framework to rapidly create point clouds with accurate pointlevel
labels from a computer game. To our best knowledge, this is the first work on LiDAR
point cloud simulation framework for autonomous driving. The framework supports data
collection from both auto-driving scenes and user-configured scenes. Point clouds from auto-
driving scenes can be used as training data for deep learning algorithms, while point clouds
from user-configured scenes can be used to systematically test the vulnerability of a neural
network, and use the falsifying examples to make the neural network more robust through
retraining. In addition, the scene images can be captured simultaneously for sensor fusion
tasks, with a method proposed for automatic registration between the point clouds and scene
images. This enables a line of research work on point cloud segmentation adaptation.

Finally, Chapter 8 summarizes the whole dissertation and discusses future directions.
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Chapter 2

Adapting with Few Source Labels

2.1 Chapter Overview

This chapter targets the problem of Few-shot Unsupervised Domain adaptation, where there
are only limited labels on source domain data. We propose a framework targeting this
problem with prototypical cross-domain self-supervised learning and adaptive prototype-
classifier learning.

2.2 Introduction

Deep Learning has achieved remarkable performance in various computer vision tasks, such
as image classification [95, 107] and semantic segmentation [145, 274, 27]. Despite high
accuracy, deep neural networks trained on specific datasets often fail to generalize to new
domains owing to the domain shift problem [218, 54, 222]. Unsupervised domain adaptation
(UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target
domain. Although it is challenging with no label information in the target domain, many
UDA methods [222, 101, 148, 70] could achieve high accuracy on the target domain using the
abundant explicit supervision in source domain, together with the unlabeled target samples
for domain alignment.

In some real-world applications, however, providing large-scale annotations even in the
source domain is often challenging due to the high cost and di�culty of annotation. Taking
medical imaging for instance, each image of the Diabetic Retinopathy dataset [90] is anno-
tated by a panel of 7 or 8 U.S. board-certified ophthalmologists, with a total group of 54
doctors. Thus practically it is too stringent to assume the availability of source data with
abundant labels.

In this chapter, to cope with the labeling costs of the source domain, we instead consider
a few-shot unsupervised domain adaptation (FUDA) setting, where only an extremely small
fraction of source samples are labeled, while all the rest source and target samples remain
unlabeled. Most state-of-the-art UDA methods align source and target features by mini-
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Figure 2.1: We address the task of few-shot unsupervised domain adaptation. Top: Existing
domain-classifier based methods align source and target distributions but fail to extract dis-
criminative features due to lack of labeled data. Bottom: Our method estimates prototypes
for in-domain and cross-domain self-supervised learning to extract domain-aligned discrimi-
native features.

mizing some form of distribution distances [148, 146, 206, 70], and learn the discriminative
representation by minimizing the supervision loss on fully-labeled source domain data. In
FUDA, however, since we have a very limited number of labeled source samples, it is much
harder to learn discriminative features in the source domain, not to mention in the target
domain.

Several recent papers [96, 30, 89, 164, 246] on self-supervised learning (SSL) present
promising representation learning results on images from a single domain and [120] further
extended to perform SSL across two domains for better domain adaptation performance.
Despite the improved performance, the instance-based method in [120] has some fundamental
weaknesses. First, the semantic structure of the data is not encoded by the learned structure.
This is because the in-domain self-supervision in [120] treats two instances as negative pairs
as long as they are from di↵erent samples, regardless of the semantic similarity. Consequently,
many instances sharing the same semantic are undesirably pushed apart in the feature space.
Second, the cross-domain instance-to-instance matching in [120] is very sensitive to abnormal
samples. Imagine a case where the embeddings of source and target samples are far apart
(i.e. the domain gap is large) and one abnormal source sample is mapped closer to all
target samples than any other source sample. Then the method in [120] would match all
target samples to the same source sample (cf. Figure 2.3). For a given sample, the matched
sample in the other domain may change drastically during the training procedure, making
the optimization harder to converge. Third, the two-stage pipeline (i.e. SSL followed by
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domain adaptation) is complicated and experiments show that the optimal DA methods for
di↵erent datasets are di↵erent. As a result, the training is rather cumbersome and it is
unclear how to choose the optimal DA method in the second stage for di↵erent datasets.

In this chapter, we propose Prototypical Cross-domain Self-supervised learning, a novel
single-stage framework for FUDA that unifies representation learning and domain alignment
with few-shot labeled source samples. PCS contains three major components to learn both
discriminative and domain-invariant features. First, PCS performs in-domain prototypical
self-supervision to implicitly encode the semantic structure of data into the embedding space.
This is motivated by [135], but we further leverage the known semantic information of the
task and learn better semantic structure in each domain. Second, PCS performs cross-domain
instance-to-prototype matching to transfer knowledge from source to the target in a more
robust manner. Instead of instance-to-instance matching, matching a sample to a prototype
(i.e. representative embedding for a group of instances that are semantically similar) is
more robust to abnormal instances in the other domain and makes the optimization converge
faster and more smoothly. Third, PCS unifies prototype learning with cosine classifier and
update cosine classifier adaptively with source and target prototypes. transfers from source
prototypes to target prototypes for better performance on the target domain. In order to
further mitigate the e↵ect of cross-domain mismatching, we perform entropy maximization
to obtain a more diversified output. We show that together with entropy minimization,
this is equivalent to maximizing the mutual information (MI) between input image and the
network prediction.

To summarize, our contributions are three-fold:

• We propose a novel Prototypical Cross-domain Self-supervised learning framework
(PCS) for few-shot unsupervised Domain Adaptation.

• We propose to leverage prototypes to perform better semantic structure learning, dis-
criminative feature learning, and cross-domain alignment in a unified, unsupervised
and adaptive manner.

• While it is hard to choose the optimal domain adaptation method in the complex
two-stage framework [120], PCS can be easily trained in an end-to-end matter, and
outperforms all state-of-the-art methods by a large margin across multiple benchmark
datasets.

2.3 Related Work

Domain Adaptation. Unsupervised Domain Adaptation (UDA) [85] addresses the prob-
lem of transferring knowledge from a fully-labeled source domain to an unlabeled target
domain. Most UDA methods have focused on feature distribution alignment. Discrepancy-
based methods explicitly compute the Maximum Mean Discrepancy (MMD) [88] between
the source and the target to align the two domains [148, 223, 149]. Long et al. [147] proposed
to align the joint distributions using the Joint MMD criterion. Sun et al. [206] and Zhuo
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Figure 2.2: An overview of the PCS framework. In-domain and cross-domain self-supervision
are performed between normalized feature vectors f and prototypes µ computed by clustering
vectors v in memory banks. Features with confident predictions (p) are used to adaptively
update classifier vectors w. MI maximization and classification loss are further used to
extract discriminative features.

et al. [290] further proposed to align second-order statistics of source and target features.
With the development of Generative Adversarial Networks [84], additional papers proposed
to perform domain alignment in the feature space with adversarial learning [69, 222, 101,
251, 146, 198]. Recently, image translation methods, e.g. [286, 140] have been adopted to
further improve domain adaptation by performing pixel-level alignment [101, 17, 185, 160,
264, 190, 200]. Instead of explicit feature alignment, Saito et al. [189] proposed minimax
entropy for adaptation. While these methods have full supervision on the source domain,
similar to [120], we focus on a new adaptation setting with few source labels.
Self-supervised Learning. Self-supervised learning (SSL) is a subset of unsupervised
learning methods where supervision is automatically generated from the data [115, 51, 268,
163, 79, 232]. One of the most common strategies for SSL is handcrafting auxiliary pretext
tasks predicting future, missing or contextual information. In particular, image coloriza-
tion [268, 129], patch location prediction [51, 52], image jigsaw puzzle [163], image inpaint-
ing [171] and geometric transformations [79, 57] have been shown to be helpful. Currently,
contrastive learning [5, 96, 164, 215, 156] has achieved state-of-the-art performance on rep-
resentation learning [89, 30, 35, 31]. Most contrastive methods are instance-wise, aiming
to learn an embedding space where samples from the same instance are pulled closer and
samples from di↵erent instances are pushed apart [246, 30]. Recently, contrastive learning
based on prototypes has shown promising results in representation learning [135, 4, 22, 72].
Self-supervised Learning for Domain Adaptation. Self-supervision-based methods
incorporate SSL losses into the original task network [78, 77]. Reconstruction was first
utilized as self-supervised task in some early works [78, 77], in which source and target share
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the same encoder to extract domain-invariant features. To capture both domain-specific
and shared properties, Bousmalis et al. [17] explicitly extracts image representations into
two spaces, one private for each domain and one shared across domains. In [21], solving
jigsaw puzzle [163] was leveraged as a self-supervision task to solve domain adaptation and
generalization. Sun et al. [211] further proposed to perform adaptation by jointly learning
multiple self-supervision tasks. The feature encoder is shared by both source and target
images, and the extracted features are then fed into di↵erent self-supervision task heads.
Recently, based on instance discrimination [246], Kim et al. [120] proposed a cross-domain
SSL approach for adaptation with few source labels. SSL has also been incorporated for
adaptation in other fields, including point cloud recognition [1], medical imaging [109], action
segmentation [28], robotics [111], facial tracking [258], etc.

2.4 Approach

In few-shot unsupervised domain adaptation, we are given a very limited number of labeled
source images Ds =

�
(xs

i
, y

s

i
)
 Ns

i=1
, as well as unlabeled source images Dsu =

�
(xsu

i
)
 Nsu

i=1
. In

the target domain, we are only given unlabeled target images Dtu =
n�

xtu

i

�oNtu

i=1
. The goal

is to train a model on Ds,Dsu, and Dtu; and evaluate on Dtu.
The base model consists of a feature encoder F , a `2 normalization layer, which outputs

a normalized feature vector f 2 Rd and a cosine similarity-based classifier C.

In-domain Prototypical Contrastive Learning

We learn a shared feature encoder F that extracts discriminative features in both domains.
Instance Discrimination [246] is employed in [120] to learn discriminative features. As an
instance-wise contrastive learning method, it results in an embedding space where all in-
stances are well separated. Despite promising results, instance discrimination has a funda-
mental weakness: the semantic structure of the data is not encoded by the learned repre-
sentations. This is because two instances are treated as negative pairs as long as they are
from di↵erent samples, regardless of their semantics. For a single domain, ProtoNCE [135]
is proposed to learn semantic structure of the data by performing iterative clustering and
representation learning. The goal is to drive features within the same cluster to become
more aggregated and features in di↵erent clusters further apart.

However, naively applying ProtoNCE to Ds[Dsu[Dtu in our domain adaptation setting
would cause potential problems. Primarily due to the domain shift, images of di↵erent classes
from di↵erent domains can be incorrectly aggregated into the same cluster, and images of
the same class from di↵erent domains can be mapped into clusters that are far apart. To
mitigate these problems, we propose to perform prototypical contrastive learning separately
in Ds[Dsu and in Dtu. This aims to prevent the incorrect clustering of images across domains
and indiscriminative feature learning.
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Specifically, two memory banks V s and V t are maintained for source and target respec-
tively:

V s = [vs

1, · · · ,v
s

(Ns+Nsu)], V t = [vt

1, · · · ,v
t

Ntu
], (2.1)

where vi is the stored feature vector of xi, initialized with fi and updated with a momentum
m after each batch:

vi  mvi + (1�m)fi. (2.2)

In order for in-domain prototypical contrastive learning, k-means clustering is performed
on V s and V t to get source clusters Cs = {C

(s)
1 , C

(s)
2 , . . . , C

(s)
k

} and similarly Ct with
normalized source prototypes {µ

s

j
}
k

j=1 and normalized target prototypes {µ
t

j
}
k

j=1. Specifically,

µ
s

j
=

us
j

kus
jk
, where us

j
= 1

|C(s)
j |

P
vs
i2C

(s)
j

vs

i
. We explain only on the source domain for succinct

notation, all operations are performed on target similarly.
During training, with the feature encoder F , we compute a feature vector f s

i
= F (xs

i
). To

perform in-domain prototypical contrastive learning, we compute the similarity distribution
vector between f s

i
and {µ

s

j
}
k

j=1 as P s

i
= [P s

i,1, P
s

i,2, . . . , P
s

i,k
], with

P
s

i,j
=

exp(µs

j
· f s

i
/�)

P
k

r=1 exp(µ
s
r
· f s

i
/�)

, (2.3)

where � is a temperature value determining the level of concentration. Then the in-domain
prototypical contrastive loss can be written as:

LPC =
Ns+NsuX

i=1

LCE(P
s

i
, cs(i)) +

NtuX

i=1

LCE(P
t

i
, ct(i)) (2.4)

where cs(·) and ct(·) return the cluster index of the instance.
Due to the randomness in clustering, we perform k-means on the samples M times with

di↵erent number of clusters {km}
M

m=1. Moreover, in the FUDA setting, since the number of
classes nc is known, we set km = nc for mostm. The overall loss for in-domain self-supervision
is:

LInSelf =
1

M

MX

m=1

L
(m)
PC (2.5)

Cross-domain Instance-Prototype SSL

In order to explicitly enforce learning domain-aligned and more discriminative features in
both source and target domains, we perform cross-domain instance-prototype self-supervised
learning.

Many previous works focus on domain alignment via discrepancy minimization or ad-
versarial learning. However, these methods provide inferior performance or have unstable
training. Moreover, most of them focus on distribution matching, without considering se-
mantic similarity matching across domains. Instance-instance matching [120] is proposed to
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Problem with
Instance-Instance Matching

Instance-Prototype Matching
(Ours)

Figure 2.3: Comparison of cross-domain instance-instance (I-I) matching [120] (left) and our
cross-domain instance-prototype (I-P) matching (right). Left: I-I incorrectly matches all
orange samples to the same blue sample. Right: I-P robustly matches samples to the correct
prototypes.

match an instance i to another instance j in the other domain with the most similar repre-
sentation. However, due to the domain gap, instances can be easily mapped to instances of
di↵erent classes in the other domain. In some cases, if an outlier in one domain is extremely
close to the other domain, it will be matched to all the instances in the other domain, as
illustrated in Figure 2.3.

Instead, our method discovers positive matching as well as negative matchings between
instance and cluster prototypes in di↵erent domains. To find a matching for an instance i,
we perform entropy minimization on the similarity distribution vector between its represen-
tation, e.g. f s

i
and the centroids of the other domain, e.g. {µ

t

j
}
k

j=1.
Specifically, given feature vector f s

i
in the source domain, and centroids {µ

t

j
}
k

j=1 in the
target domain, we first compute the similarity distribution vector P s)t

i
= [P s)t

i,1 , . . . , P
s)t
i,k

], in
which

P
s)t
i,j

=
exp(µt

j
· f s

i
/⌧)

P
k

r=1 exp(µ
t
r
· f s

i
/⌧)

. (2.6)

Then we minimize the entropy of P s)t
i

, which is:

H(P s)t
i

) = �
kX

j=1

P
s)t
i,j

logP s)t
i,j

. (2.7)

Similarly, we can compute H(P t)s
i

), and the final loss for cross-domain instance-prototype
SSL is:

LCrossSelf =
Ns+NsuX

i=1

H(P s)t
i

) +
NtuX

i=1

H(P t)s
i

) (2.8)

Adaptive Prototypical Classifier Learning

The goal of this section is to learn a better domain-aligned, discriminative feature encoder
F and more importantly, a cosine classifier C that could achieve high accuracy on the target
domain.
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The cosine classifier C consists of weight vectorsW = [w1,w2, . . . ,wnc ], where nc denotes
the total number of classes, and a temperature T . The output of C, 1

T
WTf is fed into

a softmax layer � to obtain the final probabilistic output p(x) = �( 1
T
WTf). With the

availability of the labeled set Ds, it is straightforward to train F and C with a standard
cross-entropy loss for classification:

Lcls = E(x,y)2DsLCE(p(x), y) (2.9)

However, since Ds is quite small under FUDA setting, only training with Lcls is hard to get
a C with high performance on the target.

Adaptive Prototype-Classifier Update (APCU) Note that for C to classify samples
correctly, the direction of a weight vector wi needs to be representative of features of the
corresponding class i. This indicates that the meaning of wi coincide with the ideal cluster
prototype of class i. We propose to use an estimate of the ideal cluster prototypes to update
W. Yet the computed {µ

s

j
} and {µ

t

j
} cannot be naively used for this purpose, not only

because the correspondence between {wi} and {µj} is unknown, but also the k-means result
may contain very impure clusters, leading to non-representative prototypes.

We use the few-shot labeled data as well as samples with high-confident predictions to
estimate the prototype for each class. Formally, we define D

(i)
s = {x|(x, y) 2 Ds, y = i} and

denote by D
(i)
su and D

(i)
tu the set of samples with high-confident label i in source and target,

respectively. With p(x) = [p(x)1, . . . ,p(x)nc
], D

(i)
su = {x|x 2 Dsu,p(x)i > t}, where t is a

confidence threshold; and similarly for D
(i)
tu . Then the estimate of wi from source and target

domain can be computed as:

ŵs

i
=

1

|D
(i)
s+

|

X

x2D(i)

s+

V s(x); ŵt

i
=

1

|D
(i)
tu |

X

x2D(i)
tu

V t(x) (2.10)

where D
(i)
s+

= D
(i)
s [D

(i)
su and V (x) returns the representation in memory bank corresponding

to x.
With only few labeled samples in source, it is hard to learn a representative prototype

shared across domains. Instead of directly employing a global prototype for a class i, we
further propose to update wi in an domain adaptive manner, with ŵs

i
during early training

stage and with ŵt

i
at later stage. This is because that ŵs

i
is more robust in early training

stage due to the few labeled source samples, while ŵt

i
would be more representative later for

target domain to get better adaptation performance. Specifically, we use |D
(i)
tu | to determine

whether ŵt

i
is robust to use:

wi =

(
unit(ŵs

i
) if |D

(i)
tu | < tw

unit(ŵt

i
) otherwise

(2.11)

where unit(·) normalizes the input vector and tw is a threshold hyper-parameter.
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Table 2.1: Adaptation accuracy (%) comparison on 1-shot and 3-shots per class on the O�ce
dataset.

Method
O�ce: Target Acc. on 1-shot / 3-shots

A!D A!W D!A D!W W!A W!D Avg

SO 27.5 / 49.2 28.7 / 46.3 40.9 / 55.3 65.2 / 85.5 41.1 / 53.8 62.0 / 86.1 44.2 / 62.7
MME [189] 21.5 / 51.0 12.2 / 54.6 23.1 / 60.2 60.9 / 89.7 14.0 / 52.3 62.4 / 91.4 32.3 / 66.5
CDAN [146] 11.2 / 43.7 6.2 / 50.1 9.1 / 65.1 54.8 / 91.6 10.4 / 57.0 41.6 / 89.8 22.2 / 66.2
SPL [237] 12.0 / 77.1 7.7 / 80.3 7.3 / 74.2 7.2 / 93.5 7.2 / 64.4 10.2 / 91.6 8.6 / 80.1
CAN [118] 25.3 / 48.6 26.4 / 45.3 23.9 / 41.2 69.4 / 78.2 21.2 / 39.3 67.3 / 82.3 38.9 / 55.8
MDDIA [114] 45.0 / 62.9 54.5 / 65.4 55.6 / 67.9 84.4 / 93.3 53.4 / 70.3 79.5 / 93.2 62.1 / 75.5
CDS [120] 33.3 / 57.0 35.2 / 58.6 52.0 / 67.6 59.0 / 86.0 46.5 / 65.7 57.4 / 81.3 47.2 / 69.3

DANN + ENT [70] 32.5 / 57.6 37.2 / 54.1 36.9 / 54.1 70.1 / 87.4 43.0 / 51.4 58.8 / 89.4 46.4 / 65.7
MME + ENT 37.6 / 69.5 42.5 / 68.3 48.6 / 66.7 73.5 / 89.8 47.2 / 63.2 62.4 / 95.4 52.0 / 74.1
CDAN + ENT 31.5 / 68.3 26.4 / 71.8 39.1 / 57.3 70.4 / 88.2 37.5 / 61.5 61.9 / 93.8 44.5 / 73.5
CDS + ENT 40.4 / 61.2 44.7 / 66.7 66.4 / 73.1 71.6 / 90.6 58.6 / 71.8 69.3 / 86.1 58.5 / 74.9
CDS + MME + ENT 39.4 / 61.6 43.6 / 66.3 66.0 / 74.5 75.7 / 92.1 53.1 / 73.0 70.9 / 90.6 58.5 / 76.3
CDS + CDAN + ENT 52.6 / 65.1 55.2 / 68.8 65.7 / 71.2 76.6 / 88.1 59.7 / 71.0 73.3 / 87.3 63.9 / 75.3
CDS / MME + ENT† 55.4 / 75.7 57.2 / 77.2 62.8 / 69.7 84.9 / 92.1 62.6 / 69.9 77.7 / 95.4 65.3 / 80.0
CDS / CDAN + ENT† 53.8 / 78.1 65.6 / 79.8 59.5 / 70.7 83.0 / 93.2 57.4 / 64.5 77.1 / 97.4 66.1 / 80.6

PCS (Ours) 60.2 / 78.2 69.8 / 82.9 76.1 / 76.4 90.6 / 94.1 71.2 / 76.3 91.8 / 96.0 76.6 / 84.0
Improvement +4.8 / +0.1 +4.2 / +3.1 +9.7 / +1.9 +5.7 / +0.9 +8.6 / +3.3 +14.1 / -1.4 +10.5 / +3.4

† Two-stage training results reported in [120].

Mutual Information Maximization In order for the above unified prototype-classifier
learning paradigm to work well, the network is desired to have enough confident predictions,
e.g. |D

(i)
| > tw, for all classes to get robust ŵs

i
and ŵt

i
for i = 1, . . . , nc. First, to promote the

network to have diversified outputs over the dataset, we maximize the entropy of expected
network prediction H(Ex2D[p(y|x; ✓)]), where ✓ denotes learnable parameters in both F and
C, and D = Ds [ Dsu [ Dtu. Second, in order to get high-confident prediction for each
sample, we leverage entropy minimization on the network output which has shown e�cacy
in label-scarce scenarios [87, 11]. These two desired behaviors turn out to be equivalent to
maximizing the mutual information between input and output:

I(y;x) = H(p0)� Ex[H(p(y|x; ✓))], (2.12)

where the prior distribution p0 is given by Ex[p(y|x; ✓)], and the detailed derivation is pre-
sented in the supplementary material. We can get the objective as:

LMIM = �I(y;x) (2.13)

PCS Learning for FUDA

The PCS learning framework performs in-domain prototypical contrastive learning, cross-
domain instance-prototype self-supervised learning, and unified adaptive prototype-classifier
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Table 2.2: Performance contribution of each part in PCS framework on O�ce.

Method
O�ce: Target Acc. on 1-shot / 3-shots

A!D A!W D!A D!W W!A W!D Avg

Lcls 27.5 / 49.2 28.7 / 46.3 40.9 / 55.3 65.2 / 85.5 41.1 / 53.8 62.0 / 86.1 44.2 / 62.7
+LInSelf 39.0 / 55.6 38.6 / 55.1 47.2 / 68.5 71.7 / 89.4 50.9 / 68.4 65.1 / 90.6 52.1 / 71.3
+LCrossSelf 47.2 / 71.1 52.7 / 70.6 59.0 / 75.5 76.4 / 90.3 58.5 / 74.1 66.9 / 91.8 60.1 / 78.9
+LMIM 52.8 / 73.5 57.5 / 71.2 67.2 / 76.3 78.9 / 91.4 64.2 / 74.3 68.7 / 92.2 64.9 / 79.8
+APCU (PCS) 60.2 / 78.2 69.8 / 82.9 76.1 / 76.4 90.6 / 94.1 71.2 / 76.3 91.8 / 96.0 76.6 / 84.0
PCS w/o MIM 59.0 / 75.9 58.6 / 76.5 76.2 / 76.4 87.8 / 93.2 68.7 / 74.7 89.8 / 95.0 73.5 / 82.0

learning. Together with APCU in Eq. 2.11, the overall learning objective is:

LPCS = Lcls + �in · LInSelf

+ �cross · LCrossSelf + �mim · LMIM
(2.14)

2.5 Experiments

Experimental Setting

Datasets. We evaluate our approach on four public datasets and choose labeled images
in source domain based on previous work [120]. O�ce [187] is a real-world dataset for
domain adaptation tasks. It contains 3 domains (Amazon, DSLR, Webcam) with 31 classes.
Experiments are conducted with 1-shot and 3-shots source labels per class in this dataset.
O�ce-Home [228] is a more di�cult dataset than O�ce, which consists of 4 domains (Art,
Clipart, Product, Real) in 65 classes. Following [120], we look into the settings with 3%
and 6% labeled source images per class, which means each class has 2 to 4 labeled images
on average. VisDA-2017 [173] is a challenging simulation-to-real dataset containing over
280K images across 12 classes. We validate our model on settings with 0.1% and 1% labeled
source images per class as suggested in [120]. DomainNet [172] is a large-scale domain
adaptation benchmark. Since some domains and classes are noisy, we follow [189] and use a
subset containing four domains (Clipart, Real, Painting, Sketch) with 126 classes. We show
results on settings with 1-shot and 3-shots source labels on this dataset.

Implementation Details. We use ResNet-101 [95] (for DomainNet) and ResNet-50 (for
other datasets) pre-trained on ImageNet [184] as our backbones. To enable a fair comparison
with [120], we replaced the last FC layer with a 512-D randomly initialized linear layer. L2-
normalizing are performed on the output features. We use k-means GPU implementation
in faiss [116] for e�cient clustering. We use SGD with momentum of 0.9, a learning rate of
0.01, a batch size of 64. More implementation details can be found in the supplementary
material.
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Table 2.3: Adaptation accuracy (%) comparison on 3% and 6% labeled samples per class on
the O�ce-Home dataset.

Method
O�ce-Home: Target Acc. (%)

Ar !Cl Ar !Pr Ar !Rw Cl !Ar Cl !Pr Cl !Rw Pr !Ar Pr !Cl Pr !Rw Rw !Ar Rw !Cl Rw !Pr Avg

3% labeled source

SO 24.4 38.3 43.1 26.4 34.7 33.7 27.5 26.5 42.6 41.2 29.0 52.3 35.0
MME [189] 4.5 15.4 25.0 28.7 34.1 37.0 25.6 25.4 44.9 39.3 29.0 52.0 30.1
CDAN [146] 5.0 8.4 11.8 20.6 26.1 27.5 26.6 27.0 40.3 38.7 25.5 44.9 25.2
MDDIA [114] 21.7 37.3 42.8 29.4 43.9 44.2 37.7 29.5 51.0 47.1 29.2 56.4 39.1
CAN [118] 17.1 30.5 33.2 22.5 34.5 36.0 18.5 19.4 41.3 28.7 18.6 43.2 28.6
CDS [120] 33.5 41.1 41.9 45.9 46.0 49.3 44.7 37.8 51.0 51.6 35.7 53.8 44.4

DANN + ENT [70] 19.5 30.2 38.1 18.1 21.8 24.2 31.6 23.5 48.1 40.7 28.1 50.2 31.2
MME + ENT 31.2 35.2 40.2 37.3 39.5 37.4 48.7 42.9 60.9 59.3 46.4 58.6 44.8
CDAN + ENT 20.6 31.4 41.2 20.6 24.9 30.6 33.5 26.5 56.7 46.9 29.5 48.4 34.2
CDS + ENT 39.2 46.1 47.8 49.9 50.7 54.1 48.0 43.5 59.3 58.6 44.3 59.3 50.1
CDS + MME + ENT 39.4 48.0 52.1 50.0 52.3 56.4 47.8 44.2 60.6 61.1 45.3 62.1 51.6
CDS + CDAN + ENT 43.8 55.5 60.2 51.5 56.4 59.6 51.3 46.4 64.5 62.2 52.4 70.2 56.2
CDS / MME + ENT† 41.7 49.4 57.8 51.8 52.3 55.9 54.3 46.2 69.0 65.6 52.2 68.2 55.4
CDS / CDAN + ENT† 37.7 49.2 56.5 49.8 51.9 55.9 50.0 42.3 68.1 63.1 48.7 67.5 53.4
PCS (Ours) 42.1 61.5 63.9 52.3 61.5 61.4 58.0 47.6 73.9 66.0 52.5 75.6 59.7
Improvement -1.7 +6.0 +6.1 +3.7 +5.1 +1.8 +3.7 +1.2 +4.9 +0.4 +0.1 +5.4 +3.5

6% labeled source

SO 28.7 45.7 51.2 31.9 39.8 44.1 37.6 30.8 54.6 49.9 36.0 61.8 42.7
MME [189] 27.6 43.2 49.5 41.1 46.6 49.5 43.7 30.5 61.3 54.9 37.3 66.8 46.0
CDAN [146] 26.2 33.7 44.5 34.8 42.9 44.7 42.9 36.0 59.3 54.9 40.1 63.6 43.6
MDDIA [114] 25.1 44.5 51.9 35.6 46.7 50.3 48.3 37.1 64.5 58.2 36.9 68.4 50.3
CAN [118] 20.4 34.7 44.7 29.0 40.4 38.6 33.3 21.1 53.4 36.8 19.1 58.0 35.8
CDS [120] 38.8 51.7 54.8 53.2 53.3 57.0 53.4 44.2 65.2 63.7 45.3 68.6 54.1

DANN + ENT [70] 22.4 32.9 43.5 23.2 30.9 33.3 33.2 26.9 54.6 46.8 32.7 55.1 36.3
MME + ENT 37.2 42.4 50.9 46.1 46.6 49.1 53.5 45.6 67.2 63.4 48.1 71.2 51.8
CDAN + ENT 23.1 35.5 49.2 26.1 39.2 43.8 44.7 33.8 61.7 55.1 34.7 67.9 42.9
CDS + ENT 42.9 55.5 59.5 55.2 55.1 59.1 54.3 46.9 68.1 65.7 50.6 71.5 57.0
CDS + MME + ENT 41.7 58.1 61.7 55.7 56.2 61.3 54.6 47.3 68.6 66.4 50.3 72.1 57.8
CDS + CDAN + ENT 45.4 60.4 65.5 54.9 59.2 63.8 55.4 49.0 71.6 66.6 54.1 75.4 60.1
CDS / MME + ENT† 44.1 51.6 63.3 53.9 55.2 62.0 56.5 46.6 70.9 67.7 54.7 74.7 58.4
CDS / CDAN + ENT† 39.0 51.3 63.1 51.0 55.0 63.6 57.8 45.9 72.8 65.8 50.4 73.5 57.4
PCS (Ours) 46.1 65.7 69.2 57.1 64.7 66.2 61.4 47.9 75.2 67.0 53.9 76.6 62.6
Improvement +0.7 +5.3 +3.7 +2.2 +5.5 +2.4 +3.6 -1.1 +2.4 -0.7 -0.8 +1.2 +2.5

† Two-stage training results reported in [120].

Results on FUDA

Baselines. SO is a model only trained using the labeled source images. CDAN [146]
and MDDIA [114] are both state-of-the-art methods in UDA with a domain classifier to
perform domain alignment. MME [189] minimizes the conditional entropy of unlabeled
target data with respect to the feature extractor and maximizes it with respect to the
classifier. CAN [118] uses clustering information to contrast discrepancy of source and
target domain. CDS [120] is a instance-based cross-domain self-supervised pre-training,
which can be used for other domain adaptation methods and form two-stage methods, such
as CDS / CDAN and CDS / MME. We re-implement CDS into an end-to-end version
by adding losses in two stage together and tuning the weight for di↵erent losses. We also
investigate the one-stage version of the methods above (CDS + CDAN, CDS + MME).
Following [120], entropy minimization (ENT) on source is added to previous DA methods
to obtain better baseline performance.

We compare the proposed PCS with state-of-the-art methods on FUDA (adaptation with
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Table 2.4: Adaptation accuracy (%) comparison on 0.1% and 1% labeled samples per class
on the VisDA-2017 dataset.

Method
VisDA: Target Acc. (%)

0.1% Labeled 1% Labeled

SO 47.9 51.4
MME [189] 55.6 69.4
CDAN [146] 58.0 61.5
MDDIA [114] 68.9 71.3
CAN [118] 51.3 57.2
CDS [120] 34.2 67.5

DANN + ENT [70] 44.5 50.2
MME + ENT 54.0 66.1
CDAN + ENT 57.7 58.1
CDS + ENT 49.8 75.3
CDS + ENT + MME 60.0 78.3
CDS / MME + ENT† 62.5 69.4
CDS / CDAN + ENT† 69.0 69.1

PCS (Ours) 78.0 79.0
Improvement +9.0 +0.7

† Two-stage training results reported in [120].

PCS (Ours)CDSImageNet Pre-trained PCS (Ours)CDSImageNet Pre-trained

Figure 2.4: t-SNE visualization of ours and baselines on O�ce (left) and O�ce-Home (right).
Top row: Coloring represents the class of each sample. Features with PCS are more discrim-
inative than the ones with other methods. Bottom row: Cyan represents source features
and Red represents target features. Feature from PCS are better-aligned between domains
compared to other methods.

few source labels). Extensive experiments are conducted on O�ce, O�ce-Home, VisDA-2017
and DomainNet, with the results presented in Table 2.1, 2.3, 2.4, and 2.5, respectively. We
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Table 2.5: Adaptation accuracy (%) comparison on 1-shot and 3-shots per class on the
DomainNet dataset.

Method
DomainNet: Target Acc. (%)

R)C R)P R)S P)C P)R C)S S)P Avg

1-shot labeled source

SO 18.4 30.6 16.7 16.2 28.9 12.7 10.5 19.1
MME [189] 13.8 29.2 9.7 16.0 26.0 13.4 14.4 17.5
CDAN [146] 16.0 25.7 12.9 12.6 19.5 7.2 8.0 14.6
MDDIA [114] 18.0 30.6 15.9 15.4 27.4 9.3 10.2 18.1
CAN [118] 18.3 22.1 16.7 13.2 23.9 11.1 12.1 16.8

CDS [120] 16.7 24.4 11.1 14.1 15.9 13.4 19.0 16.4
CDS + ENT 21.7 30.1 18.2 17.4 20.5 18.6 22.7 21.5
CDS + MME + ENT 21.2 28.8 15.5 15.8 17.6 19.0 20.7 19.8

PCS (Ours) 39.0 51.7 39.8 26.4 38.8 23.7 23.6 34.7
Improvement +17.3 +21.1 +21.6 +9.0 +9.9 +4.7 +0.9 +13.2

3-shots labeled source

SO 30.2 44.2 25.7 24.6 49.8 24.2 23.2 31.7
MME [189] 22.8 46.5 14.5 25.1 50.0 20.1 24.9 29.1
CDAN [146] 30.0 40.1 21.7 21.4 40.8 17.1 19.7 27.3
MDDIA [114] 41.4 50.7 37.4 31.4 52.9 23.1 24.1 37.3
CAN [118] 28.1 33.5 25 24.7 46.9 23.3 20.1 28.8

CDS [120] 35.0 43.8 36.7 34.1 36.8 31.1 34.5 36.0
CDS + ENT 44.5 52.2 40.9 40.0 47.2 33.0 40.1 42.5
CDS + MME + ENT 43.8 54.9 41.1 38.9 45.9 32.8 38.7 42.3

PCS (Ours) 45.2 59.1 41.9 41.0 66.6 31.9 37.4 46.1
Improvement +0.7 +6.9 +0.8 +1.0 +13.7 -0.9 -2.7 +3.6

can see that PCS outperforms the best state-of-the-arts in all the benchmarks, with large
improvements: 10.5% and 3.4% on O�ce, 4.3% and 4.2% on O�ce-Home, 9.0% and 0.7%
on VisDA, 13.2% and 3.6% on DomainNet. If we look at the result of each domain pair
in each dataset (e.g. D ! A in O�ce), PCS outperforms previous best in 47 out of 52
settings. Finally, as the number of labeled samples decreases, PCS shows larger performance
improvements against the previous best methods, which demonstrates PCS is extremely
beneficial in label-scarce adaptation scenarios.

Ablation Study and Analysis

Next, we investigate the e↵ectiveness of each component in PCS on O�ce. Table 2.2 shows
that adding each component contributes to the final results without any performance degra-
dation. Comparing the last row in Table 2.2 and Table 2.1, we can see even without MIM,
PCS still outperforms all previous methods.

We plot the learned features with t-SNE [153] on the DSLR-to-Amazon setting in O�ce,



CHAPTER 2. ADAPTING WITH FEW SOURCE LABELS 18

Figure 2.5: Sample e�ciency comparison from DSLR to Amazon in O�ce dataset.

and Real-to-Clipart in O�ce-Home respectively in left and right of Figure 2.4. In the top row,
the color represents the class of each sample; while in the bottom row, cyan represents source
samples and red represents target samples. Compared to ImageNet pre-training and CDS, it
qualitatively shows that PCS well clusters samples with the same class in the feature space;
thus, PCS favors more discriminative features. Also, the features from PCS are more closely
aggregated than ImageNet pre-training and CDS, which demonstrates that PCS learns a
better semantic structure of the datasets.

Sample E�ciency

We compare our method with other state-of-the-art methods on O�ce dataset (DSLR as
source and Amazon as target) with a varying number of source labels. From Figure 2.5, we
can see that PCS outperforms all SOTA methods in all settings with di↵erent number of
labeled samples. Moreover, our method is very label-e�cient: a) For 1-shot image per class
(31 labeled source images in total), PCS can achieve 76.1% accuracy. b) For the fully-labeled
setting (498 labeled source images in total), PCS can achieve 77.4% accuracy. c) With 94%
less labeled source images, the performance degradation of our method is only 1.3%. In
short, with less labeled source data, PCS outperforms other works by a larger margin.

2.6 Conclusion

In this chapter, we investigated Few-shot Unsupervised Domain Adaptation where only few
labeled samples are available in the source domain, and no labeled samples in the target do-
main. We proposed a novel Prototypical Cross-domain Self-supervised learning (PCS) frame-
work that performs both in-domain and cross-domain prototypical self-supervised learning,
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as well as adaptive prototpe-classifier learning. We perform extensive experiments on mul-
tiple benchmark datasets, which demonstrates the superiority of PCS over previous best
methods. PCS sets a new state of the art for Few-shot Unsupervised Domain Adaptation.
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Chapter 3

Generalization to Unseen Domains

3.1 Chapter Overview

This chapter targets the problem of domain generalization for semantic segmentation, where
the test domains are not accessible during training. We propose a framework for this problem
involving domain randomization with auxiliary domains and pyramid consistency at two
levels: across styles and within an image.

3.2 Introduction

Simulation has spurred growing interests for training deep neural nets (DNNs) for computer
vision tasks [249, 56, 125, 263]. This is partially due to the community’s recent exploration
to embodied vision [216, 289, 18], in which the perception has to be embodied and purposive
for an agent to actively perceive and/or navigate through a physical environment [44, 56].
Moreover, training data generated by simulation is often low-cost and diverse, especially
benefiting the tasks that otherwise need heavy human annotations (e.g. semantic segmenta-
tion [102, 269, 101]). Finally, in the case of autonomous driving, simulation can complement
the insu�cient coverage of real data by synthesizing rare events and scenes, such as con-
struction sites, lane merges, and accidents. In summary, the promise of simulation is that
one may conveniently acquire a large amount of labeled and diverse imagery from simu-
lated environments. This scale is vital for training state-of-the-art deep convolutional neural
networks (CNNs) with millions of parameters.

However, when we learn a semantic segmentation neural network from a synthetic dataset,
its visual di↵erence from real-world scenes often discounts its performance on real images.
To mitigate the domain mismatch between simulation and the real world, existing work
often resorts to domain adaptation [102, 100, 269], which aims to tailor the model for a
particular target domain by jointly learning from the source synthetic data and the (often
unlabeled) data of the target real domain. This setting is, unfortunately, very stringent.
Take autonomous driving for instance. It is almost impossible for a car manufacturer to
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Figure 3.1: Domain randomization and pyramid consistency enforce the learned semantic
segmentation network invariant to the change of domains. As a result, the semantic segmen-
tation network can generalize to various domains, including those of real scenes.

know in advance under which domain (which city, what weather, day or night) the vehicle
would be used.

In this chapter, we instead propose to harness the potential of simulation from a domain
generalization manner [7, 133, 78, 216], without the need of accessing any target domain
data in training and yet aiming to generalize well to multiple real-world target domains.
We focus on the semantic segmentation of self-driving scenes, but the proposed method is
readily applicable to similar tasks and scenarios. Our main idea is to randomize the labeled
synthetic images to the styles of real images. We further enforce the semantic segmentation
network to generate consistent predictions, in a pyramid form, over these domains. Our
conjecture is that if the network is exposed to a su�cient number of domains in the training
stage, it should interpolate well to new real-world target domains. In contrast, the domain
adaptation work [102, 269, 100] can be seen as extrapolating from a single source domain to
a single target domain.

Our approach comprises two key steps: domain randomization and consistency-enforced
training, as illustrated in Figure 3.1. Unlike [220, 186], we do not require any control
of the simulators for randomizing the source domain imagery. Instead, we leverage the
recently advanced image-to-image translation [286] to transfer a source domain image to
multiple styles, each dubbed an auxiliary domain. This has at least three advantages over
manipulating the simulator. First, it enables us to select auxiliary domains from the real
world. After all, our goal is to achieve good performance on real data. Second, we have a
more concrete anticipation about the look of the randomized images as we view the auxiliary
domains. Finally, the randomized images are naturally grouped according to the auxiliary
domains. The last point facilitates us to devise e↵ective techniques in the second step to
train the networks in a domain-invariant way.
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In the second step of our approach, we train a deep CNN for semantic segmentation with
a pyramid consistency loss. If the network fits well to not only the synthetic source domain
but also the auxiliary domains — synthetic images with the styles of real images, it may
become invariant to domain changes to a certain degree and thus generalize well to real-world
target domain(s). To ensure consistent performance across di↵erent training domains, we
explicitly regularize the network’s internal activations so that they do not deviate from each
other too much for the stylized versions of the same source domain image. We find that it is
vital to apply the regularization over average-pooled pyramids rather than the raw feature
maps, probably because the pooled pyramid gives the network certain flexibility.

To the best of our knowledge, this is the first work to explore domain randomization
for the semantic segmentation problem. Experiments show that the proposed approach
gives rise to robust domain-invariant CNNs trained using synthetic images. It significantly
outperforms the straightforward source-only baseline and the newly designed network [166],
where the latter reduces the network’s dependency on the training set by a hybrid of batch
and instance normalizations. Our results are on par or even better than state-of-the-art
domain adaptation results which are obtained by accessing the target data in training.

3.3 Related Work

We now discuss some related work on semantic segmentation, domain adaptation, domain
generalization, domain randomization, and data augmentation.

Domain Adaptation for Semantic Segmentation. Until [102, 269] first studied
the domain shift problem in semantic segmentation, most works in domain adaptation had
focused on the task of image classification. After that, the problem subsequently became one
of the tracks in the Visual Domain Adaptation Challenge (VisDA) 2017 [173] and started
receiving increasing attention. Since then, adversarial training has been utilized in most
of the following works [100, 36, 191, 271] for feature alignment. Most of these works were
inspired by the unsupervised adversarial domain adaptation approach in [69] which shares
similar idea with generative adversarial networks. One of their most important objectives is
to learn domain-invariant representations by trying to deceive the domain classifier. Zhang
et al. [269] perform segmentation adaptation by aligning label distributions both globally
and across superpixels in an image. Recently, an unsupervised domain adaptation method
has been proposed for semantic segmentation via class-balanced self-training [291]. Please
refer to [270, Section 5] for a brief survey of other related works.

Domain Generalization In contrast to Domain Adaptation, where the network is tested
on a known target domain, and the images in the target domain, although without labels,
are accessible during the training process, Domain Generalization is tested on unseen do-
mains [159, 68]. Current domain generalization researches mostly focus on the image classi-
fication problem. Image data is hard to manually divide into discrete domains, [81] devised
a nonparametric formulation and optimization procedure to discover domains among both
training and test data. [134] imposed Maximum Mean Discrepancy measure to align the
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Figure 3.2: The domain randomization process. Top: an original synthetic image from the
source domain; Mid: auxiliary image sets composed of ImageNet classes: (a) great white
shark, (b) ambulance, (c) barometer, (d) tennis ball, (e) can opener, (f) snorkel, (g) tennis
ball; Bottom: stylized images with same image content as the synthetic image and meanwhile
corresponding styles of the ImageNet classes.

distributions among di↵erent domains and train the network with adversarial feature learn-
ing. [132] assigned a separate network duplication to each training domain during training
and used the shared parameter for inference. [133] improved generalization performance by
using a meta-learning approach on the split training sets.

Domain Randomization. Domain randomization (DR) is a complementary class of
techniques for domain adaptation. Tobin et al. [216] introduced the concept of Domain
Randomization. Their approach randomly varies the texture and color of the foreground
object, the background image, the number of lights in the scene, the pose of the lights,
the camera position, etc. The goal is to close the reality gap by generating synthetic data
with su�cient variation that the network views real-world data as just another variation.
Randomization in the visual domain has been used to directly transfer vision-based policies
from simulation to the real world without requiring real images during training [186, 216].
DR has also been utilized to do object detection and 6D pose estimation [220, 174, 212].
All the above DR methods require modifying objects inside the simulation environment.
We instead propose a di↵erent DR method which is orthogonal to all the aforementioned
methods.

Data Augmentation. Data augmentation is the process of supplementing a dataset
with similar data created from the information in that dataset, which is ubiquitous in deep
learning. When dealing with images, it often includes the application of rotation, translation,
blurring, and other modifications [40, 230, 192] to existing images that allow a network to
better generalize [202]. In [131], a network is proposed to automatically generate augmented
data by merging two or more samples from the same class. A Bayesian approach is proposed
in [219] to generate data based on the distribution learned from the training set. In [48],
simple transformations are used in the learned feature space to augment data. Counterex-
amples are considered to help data augmentation in [59]. Recently, AutoAugment has been
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proposed to learn augmentation policies from data [43]. The type of domain randomization
we proposed in this chapter can also be considered as a type of data augmentation.

3.4 Approach

The main idea of our approach is twofold, illustrated in Figure 3.1. The first part is Domain
Randomization with Stylization: mapping the synthetic imagery to multiple auxiliary
real domains (cf. Figure 3.2) in the training stage, such that, at the test stage, the target
domain is not a surprise for the CNN model but merely another real domain. The second
part is Consistency-enforced Training: enforcing pyramid consistency across domains
and within an image to learn representations with better generalization ability.

Domain Randomization with Stylization

Keeping in mind that the target domain consists of real images, we randomly draw K real-
life categories from ImageNet [45] for stylizing the synthetic images. Each category is called
an auxiliary domain. We then use the image-to-image translation work [286] to map the
synthetic images to each of the auxiliary domains. As a result, the training set is augmented
to K + 1 times the original size.

Figure 3.2 illustrates this procedure and some qualitative results. We can see that each
auxiliary domain stylizes the synthetic images by di↵erent real-world elements. Meanwhile,
the semantic content of the original image is retained at most parts of the images. Some
edge-preserving methods [137] on style transfer may give rise to better results, and are left
for future work.

A straightforward method is to train a CNN segmentation model using the augmented
training set. Denote by D

k
, k = 0, 1, · · · , K, the training domains, where D

0 stands for the
original source domain of synthetic images and D

k
, k > 0 the auxiliary domains. A synthetic

image I0
n
2 D

0 has K stylized copies Ik
n
2 D

k in the auxiliary domains, and yet they all share
the same semantic segmentation map Yn as the labels. The objective function for training a
segmentation network f(·; ✓) is:

min
✓

L :=
1

Z

X

n

KX

k=0

L

⇣
Yn, f(I

k

n
; ✓)

⌘
, (3.1)

where ✓ denotes the weights of the network, L(·, ·) is the mean of pixel-wise cross-entropy
losses, and Z = (K + 1)

��D0
�� is a normalization constant.

Our experiments (cf. Section 3.5) show that the network trained using this augmented
training set D

0
[ D

1
· · · [ D

K generalizes better to the unseen target domain than using
the single source domain D

0. Two factors may attribute to this result: 1) the training set
is augmented in size and 2) the training set is augmented in style, especially in the styles
closer to the real images. Despite being e↵ective, this baseline method fails to track the
multi-domain structure of the training set. We improve on it by the following.
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Figure 3.3: Pyramid Consistency across Domains. After feeding the images from di↵erent
domains with the same content into the neural network, we impose the pyramid consistency
loss on the activation maps at each of the last few layers (shown in blue, green and red).

Consistency-enforced Training

We aim to learn an image representation through the segmentation network that is domain-
invariant for the semantic segmentation task. However, simply training the network with
images from di↵erent domains (i.e., Eq. (3.1), the baseline method) has some problems:
a) images from di↵erent domains may drive the network toward distinct representations,
making the training process not converge well; b) even if the network fits well to the training
domains, it could capture the idiosyncrasies of each individual and yet fail at interpolating
between them or to the new target domain.

In order to tackle these caveats, we regularize the network by a consistency loss. The in-
tuition is that if the network can generalize well, it should extract similar high-level semantic
features and perform similar predictions for the images with the same content regardless of
the styles. The consistency loss is simply imposed as the following:

R :=
X

n,k

X

l2P

�l L1

⇣
gl(In; ✓), gl(I

k

n
; ✓)

⌘
, (3.2)
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where l indexes an operator gl(·; ✓) (e.g., average pooling) which maps a hidden layer’s
activations to a vector of smaller dimension, gl(In; ✓) denotes the target after each operation
gl (cf. Sections 3.4 and 3.4 for details), and L1 is the `1 distance. We argue that, by doing
so, the network can be better guided to find a generic and domain-invariant representation
for the semantic segmentation task.

The design of the operators gl(·; ✓), l 2 P is key to the overall performance. The obvious
identity mapping — so the `1 distance is directly calculated over the hidden activations —
does not work well in the experiments. One of the reasons is that it strictly requires the
network to give about the same representations across di↵erent training domains, while some
domains may be harder than the others to fit.

Pyramid consistency across domains

We find that the spatial pyramid pooling [97, 274, 130] serves as very e↵ective operators
gl(·; ✓), l 2 P in our context probably because it accommodates subtle di↵erences of the net-
work representations and meanwhile enables Eq. (3.2) to enforce the consistency at multiple
scales. Pyramid pooling has been used in supervised visual understanding before, mostly as
a part of the backbone networks. In this work, instead, we use the pooled features to define
regularization losses for training the network. The pyramid consistency we consider is over
the images of di↵erent styles but with the same semantic content.

Figure 3.3 illustrates our pyramid consistency scheme across the training domains. Con-
sider a set of images In = {I

k

n
| k = 0, 1, . . . , K} of K + 1 di↵erent styles with the same

annotation Yn and denote by M
l,k

n
2 RCl⇥Hl⇥Wl the feature map of input Ik

n
at layer l. Then,

a spatial pyramid pooling operation is done on M
l,k

n
. The spatial pyramid pooling operation

is designed to fuse features under four di↵erent pyramid levels. First of all, a global average
pooling is of the coarsest level that generates a single bin output. Each other pyramid levels
separates the feature map into sub-regions evenly and performs average pooling inside each
sub-region. In our design, we use 1⇥ 1, 2⇥ 2, 4⇥ 4 and 8⇥ 8 as the pyramid pooling scales,
namely the spatial size of the outputs of the pyramid pooling. After the pooling, we squeeze

and concatenate the output tensors into a tensor P
l,k

n
2 RCl⇥(1+22+42+82), which is much

lower-dimensional than the original feature map M
l,k

n
. For a pair of images Ik

n
, I

k
0

n
2 In, the

network is expected to have similar understanding and thus similar high-level features in
a deep layer l. Note that simply constraining M

l,k

n
and M

l,k
0

n
to be the same is too strong

and could easily lead to degraded performance. To save computation, we avoided pair-wise
terms and instead use the mean of P

l,k

n
(k = 0, 1, ..., K) as the target value for the loss.

Back to equation (3.2), we have gl(Ikn; ✓) = P
l,k

n
, the target is the mean across domains

gl(In; ✓) =
1

K+1

P
k
P

l,k

n
, and the set P = {l} is the layers down deep of the network.

Pyramid consistency within an image

The pyramid consistency loss across the training domains can guide the network to learn
style-invariant features so that it can generalize well to the unseen target domains with di↵er-
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ent appearances. However, in many cases, style is not the only di↵erence between domains.
The view angles and parameters of cameras also lead to systematic domain mismatches in
terms of the layout and scale of scenes. Take the focal length parameter for instance. With
di↵erent focal lengths, the same objects may be of di↵erent scales as the fields of view vary.

In order to alleviate the issues above, we propose to further apply the pyramid consistency
between random crops and full images. The idea is to artificially randomize the scale of the
images and, therefore, guide the network to be robust to the domain gap incurred by the
scene layouts and scales. Formally, following the notations in Section 3.4, each image I

k

n

of size (H,W ) is first randomly cropped at the same height-width ratio, with the top-left
corner at (hk

n
, w

k

n
) and with the height hk

n
. Then the crop is scaled back to the full image

size, denoted as Ck

n
, and finally fed to the network. Denote by M

l,k

n
and MC

l,k

n
2 RCl⇥Hl⇥Wl

the feature maps of the image I
k

n
and crop C

k

n
at layer l, respectively. Denote by M

l,k

n the
part of M l,k

n
corresponding to the crop. When there is no significant padding through the

layers, then M
l,k

n is of shape Cl ⇥ (⇢ · Hl)⇥ (⇢ · Wl), where ⇢ = hk
n
/h.

We perform the spatial pyramid pooling on the cropped feature map M
l,k

n and the feature

map MC
l,k

n
of the crop. The results are the same-size maps, P l,k

n , PC
l,k

n
2 RCl⇥(1+22+42+82).

Back to Eq. (3.2), we have gl(Ikn; ✓) = PC
l,k

n
and the target vector is gl(In; ✓) = P

l,k

n .

3.5 Experiments and Results

In this section, we describe the experimental setup and present results on the semantic
segmentation generalization by learning from synthetic data. Experimental analysis and
comparison with other methods are also provided.

Experimental Settings

It should be emphasized that our experiment setting is di↵erent from domain adaptation.
Since domain adaptation aims to achieve good performance on a particular target domain,
it requires unlabeled target domain data during training and also (sometimes) uses some
labeled target domain images for validation. In contrast, our model is trained without any
target domain data and is tested on unseen domains.

Datasets. In our experiments, we use GTA [180] and SYNTHIA [182] as the source do-
mains and a small subset of ImageNet [45] as well as datasets used in CycleGAN [286] as
the auxiliary domains for “stylizing” the source domain images. We consider three tar-
get domains of real-world images, whose o�cial validation sets are used as our test sets:
Cityscapes [41], Berkeley Deep Drive Segmentation (BDDS) [261], and Mapillary [161].

GTA is a vehicle-egocentric image dataset collected in a computer game with pixel-wise
semantic labels. It contains 24,966 images with the resolution 1914 ⇥ 1052. There are 19
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Figure 3.4: Accuracy of FCN8s-VGG16 with varying numbers of auxiliary domains. Two
domain sets A and B are used. Models are trained on GTA and tested on Cityscapes, BDDS,
and Mapillary.

classes which are compatible with other semantic segmentation datasets of outdoor scenes
e.g. Cityscapes.

SYNTHIA is a large synthetic dataset with pixel-level semantic annotations. A subset,
SYNTHIA-RAND-CITYSCAPES, is used in our experiments which contains 9,400 images
with annotations compatible with Cityscapes.

Cityscapes contains vehicle-centric urban street images taken from some European cities.
There are 5,000 images with pixel-wise annotations. The images have the resolution of
2048⇥ 1024 and are labeled into 19 classes.

BDDS contains thousands of real-world dashcam video frames with accurate pixel-wise
annotations. It has a compatible label space with Cityscapes and the image resolution is
1280 ⇥ 720. The training, validation, and test sets contain 7,000, 1,000 and 2,000 images,
respectively.

Mapillary contains street-level images collected from all around the world. The anno-
tations contain 66 object classes, but only the 19 classes that overlap with Cityscapes and
GTA are used in our experiments. It has a training set with 18,000 images and a validation
set with 2,000 images.

Validation. To select a model for a particular real-world dataset DR (e.g. Cityscapes),
we randomly pick up 500 images from the training set of another real-world dataset D

R
0

(e.g. BDDS) as the validation set. This cross-validation is to imitate the following real-
life scenarios. When we train a neural network from a randomized source domain without
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knowing to which target domain it will be applied, we can probably collect a validation set
which is as representative as possible of the potential target domains. Still take the car
manufacturers for instance. A manufacturer may collect images of Los Angeles and NYC for
the model selection while the cars will also be used in San Francisco and many other cities.

Evaluation. We evaluate the performance of a model on a test set using the standard
PASCAL VOC intersection-over-union, i.e. IoU. The mean IoU (mIoU) is the mean of all
IoU values over all categories. To measure the generalizability of a model M , we propose a
new metric,

Gperf (M) = EB2P mIoU(M,B) ⇡
1

L

X

l

mIoU(M,Bl)

where B is an unseen domain drawn from a distribution of all possible real-world domains
P , and L is the number of unseen test domains, which is 3 in our experiment setting.

Implementation Details In our experiments, we choose to use FCN [145] as our se-
mantic segmentation network. To make it easier to compare with most of other methods,
we use VGG-16 [203], ResNet-50, and ResNet-101 [95] as FCN backbones. The weights of
the feature extraction layers in the networks are initialized from models trained on Ima-
geNet [45]. We add the pyramid consistency loss across domains on the last 5 layers, with
� = 0.2, 0.4, 0.6, 0.8, 1, respectively. The pyramid consistency within an image is only added
on the last layer. The network is implemented in PyTorch and trained with Adam opti-
mizer [122] using a batch size of 32 for the baseline models and 8 for our models. Our
machines are equipped with 8 NVIDIA Tesla P40 GPUs and 8 NVIDIA Tesla P100 GPUs.

Evaluation of Domain Randomization

In total, we use two sets of 15 auxiliary domains: A) 10 from ImageNet [45] and 5 from
CycleGAN [286], and B) 15 from ImageNet with each domain corresponding to one semantic
class in Cityscapes. Please see supplementary materials for additional auxiliary domains,
including color augmentation as an auxiliary domain.

To evaluate our domain randomization method, we conduct experiments generalizing
from GTA to Cityscapes, BDDS, and Mapillary with FCN8s-VGG16. We augment the
training set with images from di↵erent numbers of auxiliary domains in both setting A and
B, and show the result in Figure 3.4. As we can see from the plot, the accuracy increases
with the number of auxiliary domains. The accuracy eventually saturates with the number
of auxiliary domains. This is probably because 1) the 15 auxiliary domains are somehow
su�cient to cover the appearance domain gap, and 2) as the number of images of the same
content goes up, it is harder for the network to converge for the sake of the data scale and
data variation.
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Table 3.1: Performance contribution of each design.

Method DR PCD PCI
mIoU

Cityscapes BDDS Mapillary

FCN 30.04 24.59 26.63
+DR 3 34.64 30.14 31.64
+PCD 3 3 35.47 31.21 32.06
+PCI 3 3 35.12 30.87 32.12
All 3 3 3 36.11 31.56 32.25
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Figure 3.5: Qualitative semantic segmentation results of the generalization from GTA to
Cityscapes, BDDS, and Mapillary.
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Table 3.2: Domain generalization performance from (G)TA and (S)YNTHIA to (C)ityscapes,
(B)DDS, and (M)apillary.

VGG-16 ResNet-50 ResNet-101

NonAdapt Ours NonAdapt Ours NonAdapt Ours
G! C 30.04 36.11 32.45 37.42 33.56 42.53
G! B 24.59 31.56 26.73 32.14 27.76 38.72
G! M 26.63 32.25 25.66 34.12 28.33 38.05
Gperf 27.09 33.31 28.28 34.56 29.88 39.77

S ! C 26.80 35.52 28.36 35.65 29.67 37.58
S ! B 24.38 29.45 25.16 31.53 25.64 34.34
S ! M 24.39 32.27 27.24 32.74 28.73 34.12
Gperf 25.34 32.41 26.92 33.31 28.01 35.35

Table 3.3: Comparison with other domain generalization methods.

Methods Base Net mIoU mIoU"

NonAdapt 22.17
IBN-Net [166]

ResNet-50
29.64

7.47

NonAdapt 32.45
Ours

ResNet-50
37.42

4.97

Ablation Study

Next, we study how each design in our approach influences the overall performance. The
experiments are still adapting from GTA to the 3 tests with FCN8s-VGG16. Table 3.1 details
the mIoU improvement on Cityscapes, BDDS and Mapillary by considering one more factor
each time: Domain Randomization (DR), Pyramid Consistency across Domains (PCD) and
within an Image (PCI). DR is a generic way to alleviate domain shift. In our case, it
helps boost the performance from 30.04 to 34.64, from 24.59 to 30.14 and from 26.63 to
31.64, respectively for Cityscapes, BDDS and Mapillary. PCD and PCI further enhance the
performance gains. By integrating all methods, our full approach finally reaches 36.11, 31.56
and 32.25 on Cityscapes, BDDS and Mapillary, respectively. Figure 3.5 showcases some
examples of the semantic segmentation results on the 3 test sets.
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Table 3.4: Adaptation from GTA to Cityscapes with FCN-8s.

Network Method
Train
w/
Tgt

Val
on
Tgt

mIoU mIoU"

VGG-19

NonAdapt
3 3

22.3
6.6

Curriculum [269] 28.9
NonAdapt

3 3
NA

NA
CGAN [103] 44.5

VGG-16

NonAdapt
3 3

21.1
6.0

FCN wld [102] 27.1
NonAdapt

3 3
17.9

17.5
CYCADA [100] 35.4
NonAdapt

3 3
29.6

7.5
LSD [191] 37.1
NonAdapt

3 3
21.9

14.0
ROAD [36] 35.9
NonAdapt

3 3
24.9

3.9
MCD [188] 28.8
NonAdapt

3 3
NA

NA
I2I [160] 31.8
NonAdapt

3 3
24.3

11.8
CBST-SP [291] 36.1
NonAdapt

3 3
27.8

8.4
DCAN [247] 36.2
NonAdapt

3 3
30.0

8.1
PTP [287] 38.1
NonAdapt

3 3
NA

NA
AdaptSegNet [221] 35.0
NonAdapt

3 3
NA

NA
BDL [138] 41.3
Non Adapt

3 3
17.9

18.7
CLAN [152] 36.6
NonAdapt

3 3
18.8

13.8
DAM [108] 32.6
NonAdapt

7 3
30.0

8.6
Ours 38.6
NonAdapt

7 7
29.8

6.3
Ours 36.1

Generalization from GTA and SYNTHIA

Then, we conduct extensive experiments to evaluate the generalization ability of our proposed
methods. Specifically, we tested 2 source domains, GTA and SYNTHIA; 3 models with
di↵erent backbone networks, VGG-16, ResNet-50 and ResNet-101; 3 test sets, Cityscapes,
BDDS and Mapillary; and 2 sets of auxiliary domains (cf. Section 3.5). The experiments
with ResNet-50 are conducted with auxiliary domain set B, while the rest of the experiments
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Table 3.5: Adaptation from SYNTHIA to Cityscapes with FCN-8s.

Network Method
Train
w/
Tgt

Val
on
Tgt

mIoU mIoU"

VGG-19

Non Adapt
3 3

22.0
7.0

Curriculum [269] 29.0
Non Adapt

3 3
NA

NA
CGAN [103] 41.2

VGG-16

Non Adapt
3 3

17.4
2.8

FCN Wld [102] 20.2
Non Adapt

3 3
25.4

10.8
ROAD [36] 36.2
Non Adapt

3 3
26.8

9.3
LSD [191] 36.1
Non Adapt

3 3
22.6

12.8
CBST [291] 35.4
Non Adapt

3 3
27.8

8.4
DCAN [247] 35.4
Non Adapt

3 3
NA

NA
DAM [108] 30.7
Non Adapt

3 3
NA

9.3
PTP [287] 34.2
Non Adapt

3 3
24.9

NA
BDL [138] 39.0
Non Adapt

7 3
27.3

9.1
Ours 36.4
Non Adapt

7 7
26.8

8.7
Ours 35.5

are with set A. The validation set and test set in each experiment are from di↵erent domains,
e.g. using Cityscapes to select the model which will be evaluated on BDDS/Mapillary. The
Gperf value of each model is computed and the results are shown in Table 3.2. We can see
that the proposed techniques can greatly boost the generalizability by 5%⇠12% of di↵erent
models regardless of dataset combinations.

Then we compare our method with the only known existing state-of-the-art domain
generalization method for semantic segmentation IBN-Net [166] under the generalization
setting from GTA to Cityscapes. From the comparison shown in Table 3.3, we can see
that our domain generalization method has better final performance. IBN-Net improves
domain generalization by fine-tuning the ResNet building blocks. Our method would be
complementary with theirs.
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Adaptation from GTA and SYNTHIA

All experiments in the sections above are conducted in the domain generalization setting,
where the validation set and the test set are from di↵erent domains. Now we conduct
more experiments using the domain adaptation setting and compare our results with pre-
vious state-of-the-art works. Since most of the previous works conducted adaptation to
Cityscapes with VGG backbone networks, we present the adaptation mIoU comparison on
GTA ! Cityscapes and SYNTHIA ! Cityscapes in Table 3.4 and Table 3.5, leaving class-
wise comparison details in the supplementary material. We can see that our method could
outperform the state-of-the-art methods in both settings. Further, we should notice that the
domain generalization performance of our method (last row) outperforms the adaptation per-
formance of most other techniques. In addition, since our method is target domain-agnostic,
no data is needed from the target domain, resulting in more extensive applicability.

3.6 Conclusion

In this chapter, we present a domain generalization approach for generalizing semantic seg-
mentation networks from simulation to the real world without accessing any target domain
data. We propose to randomize the synthetic images with auxiliary datasets and enforce
pyramid consistency across domains and within an image. Finally, we experimentally val-
idate our method on a variety of experimental settings, and show superior performance
over state-of-the-art methods in both domain generalization and domain adaptation, which
clearly demonstrates the e↵ectiveness of our proposed method.
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Chapter 4

Multi-source Domain Adaptation for
Semantic Segmentation

4.1 Chapter Overview

This chapter targets the problem of multi-source domain adaptation for semantic segmenta-
tion, where there are multiple fully-labeled source domains available. We propose a genera-
tive adversarial domain aggregation network for this problem.

4.2 Introduction

Semantic segmentation assigns a semantic label (e.g. car, cyclist, pedestrian, road) to each
pixel in an image. This computer vision kernel plays a crucial role in many applications,
ranging from autonomous driving [73] and robotic control [104] to medical imaging [39] and
fashion recommendation [110]. With the advent of deep learning, especially convolutional
neural networks (CNNs), several end-to-end approaches have been proposed for semantic
segmentation [145, 143, 283, 139, 260, 6, 274, 27, 236, 94]. Although these methods have
achieved promising results, they su↵er from some limitations. On the one hand, training
these methods requires large-scale labeled data with pixel-level annotations, which is pro-
hibitively expensive and time-consuming to obtain. For example, it takes about 90 minutes
to label each image in the Cityscapes dataset [41]. On the other hand, they cannot well
generalize their learned knowledge to new domains, because of the presence of domain shift
or dataset bias [218, 243].

To sidestep the cost of data collection and annotation, unlimited amounts of synthetic
labeled data can be created from simulators like CARLA and GTA-V [180, 182, 263], thanks
to the progress in graphics and simulation infrastructure. To mitigate the gap between
di↵erent domains, domain adaptation (DA) or knowledge transfer techniques have been
proposed [170] with both theoretical analysis [10, 86, 150, 222] and algorithm design [165,
80, 112, 8, 78, 148, 101]. Besides the traditional task loss on the labeled source domain,
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deep unsupervised domain adaptation (UDA) methods are generally trained with another
loss to deal with domain shift, such as a discrepancy loss [148, 207, 206, 290], adversarial
loss [84, 17, 140, 286, 17, 278, 185, 190, 105, 101, 277], reconstruction loss [78, 77, 16], etc.
Current simulation-to-real DA methods for semantic segmentation [102, 269, 173, 36, 191,
271, 101, 64, 287, 247, 264] all focus on the single-source setting and do not consider a more
practical scenario where the labeled data are collected from multiple sources with di↵erent
distributions. Simply combining di↵erent sources into one source and directly employing
single-source DA may not perform well, since images from di↵erent source domains may
interfere with each other during the learning process [181].

Early e↵orts on multi-source DA (MDA) used shallow models [210, 63, 208, 61, 24, 62,
256, 193, 254, 209]. Recently, some multi-source deep UDA methods have been proposed
which only focus on image classification [253, 273, 172]. Directly extending these MDA
methods from classification to segmentation may not perform well due to the following rea-
sons. (1) Segmentation is a structured prediction task, the decision function of which is more
involved than classification because it has to resolve the predictions in an exponentially large
label space [269, 221]. (2) Current MDA methods mainly focus on feature-level alignment,
which only aligns high-level information. This may be enough for coarse-grained classifi-
cation tasks, but it is obviously insu�cient for fine-grained semantic segmentation, which
performs pixel-wise prediction. (3) These MDA methods only align each source and target
pair. Although di↵erent sources are matched towards the target, there may exist significant
mis-alignment across di↵erent sources.

To address the above challenges, in this chapter we propose a novel framework, termed
Multi-source Adversarial Domain Aggregation Network (MADAN), which consists of Dy-
namic Adversarial Image Generation, Adversarial Domain Aggregation, and Feature-aligned
Semantic Segmentation. First, for each source, we generate an adapted domain using a Gen-
erative Adversarial Network (GAN) [84] with cycle-consistency loss [286], which enforces
pixel-level alignment between source images and target images. To preserve the semantics
before and after image translation, we propose a novel semantic consistency loss by minimiz-
ing the KL divergence between the source predictions of a pretrained segmentation model
and the adapted predictions of a dynamic segmentation model. Second, instead of training
a classifier for each source domain [253, 172], we propose sub-domain aggregation discrimi-
nator to directly make di↵erent adapted domains indistinguishable, and cross-domain cycle
discriminator to discriminate between the images from each source and the images trans-
ferred from other sources. In this way, di↵erent adapted domains can be better aggregated
into a more unified domain. Finally, the segmentation model is trained based on the aggre-
gated domain, while enforcing feature-level alignment between the aggregated domain and
the target domain.

In summary, our contributions are three-fold. (1) We propose to perform domain adap-
tation for semantic segmentation from multiple sources. To the best of our knowledge,
this is the first work on multi-source structured domain adaptation. (2) We design a novel
framework termed MADAN to do MDA for semantic segmentation. Besides feature-level
alignment, pixel-level alignment is further considered by generating an adapted domain for
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each source cycle-consistently with a novel dynamic semantic consistency loss. Sub-domain
aggregation discriminator and cross-domain cycle discriminator are proposed to better align
di↵erent adapted domains. (3) We conduct extensive experiments from synthetic GTA [180]
and SYNTHIA [182] to real Cityscapes [41] and BDDS [261] datasets, and the results demon-
strate the e↵ectiveness of our proposed MADAN model.

4.3 Problem Setup

We consider the unsupervised MDA scenario, in which there are multiple labeled source
domains S1, S2, · · · , SM , where M is number of sources, and one unlabeled target domain T .
In the ith source domain Si, suppose Xi = {xj

i
}
Ni
j=1 and Yi = {yj

i
}
Ni
j=1 are the observed data

and corresponding labels drawn from the source distribution pi(x,y), where Ni is the number
of samples in Si. In the target domain T , let XT = {xj

T
}
NT
j=1 denote the target data drawn

from the target distribution pT (x,y) without label observation, where NT is the number of
target samples. Unless otherwise specified, we have two assumptions: (1) homogeneity, i.e.
xj

i
2 Rd

,xj

T
2 Rd, indicating that the data from di↵erent domains are observed in the same

image space but with di↵erent distributions; (2) closed set, i.e. yj

i
2 Y ,yj

T
2 Y , where Y

is the label set, which means that all the domains share the same space of classes. Based
on covariate shift and concept drift [170], we aim to learn an adaptation model that can
correctly predict the labels of a sample from the target domain trained on {(Xi, Yi)}Mi=1 and
{XT}.

4.4 Multi-source Adversarial Domain Aggregation
Network

In this section, we introduce the proposed Multi-source Adversarial Domain Aggregation
Network (MADAN) for semantic segmentation adaptation. The framework is illustrated
in Figure 4.1, which consists of three components: Dynamic Adversarial Image Generation
(DAIG), Adversarial Domain Aggregation (ADA), and Feature-aligned Semantic Segmen-
tation (FSS). DAIG aims to generate adapted images from source domains to the target
domain from the perspective of visual appearance while preserving the semantic information
with a dynamic segmentation model. In order to reduce the distances among the adapted
domains and thus generate a more aggregated unified domain, ADA is proposed, includ-
ing Cross-domain Cycle Discriminator (CCD) and Sub-domain Aggregation Discriminator
(SAD). Finally, FSS learns the domain-invariant representations at the feature-level in an
adversarial manner. Table 4.1 compares MADAN with several state-of-the-art DA methods.
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Figure 4.1: The framework of the proposed Multi-source Adversarial Domain Aggregation
Network (MADAN). The colored solid arrows represent generators, while the black solid
arrows indicate the segmentation network F . The dashed arrows correspond to di↵erent
losses.

Dynamic Adversarial Image Generation

The goal of DAIG is to make images from di↵erent source domains visually similar to the
target images, as if they are drawn from the same target domain distribution. To this end,
for each source domain Si, we introduce a generator GSi!T mapping to the target T in order
to generate adapted images that fool DT , which is a pixel-level adversarial discriminator. DT

is trained simultaneously with each GSi!T to classify real target images XT from adapted
images GSi!T (Xi). The corresponding GAN loss function is:

L
Si!T

GAN
(GSi!T , DT , Xi, XT ) = Exi⇠Xi logDT (GSi!T (xi)) + ExT⇠XT log[1�DT (xT )]. (4.1)

Since the mapping GSi!T is highly under-constrained [84], we employ an inverse mapping
GT!Si as well as a cycle-consistency loss [286] to enforce GT!Si(GSi!T (xi)) ⇡ x and vice
versa. Similarly, we introduce Di to classify Xi from GT!Si(XT ), with the following GAN
loss:

L
T!Si
GAN

(GT!Si , Di, XT , Xi) = Exi⇠Xi log[1�Di(xi)] + Ext⇠XT logDi(GT!Si(xt)). (4.2)

The cycle-consistency loss [286] ensures that the learned mappings GSi!T and GT!Si are
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Table 4.1: Comparison of the proposed MADAN model with several state-of-the-art domain
adaptation methods. The full names of each property from the second to the last columns
are pixel-level alignment, feature-level alignment, semantic consistency, cycle consistency,
multiple sources, domain aggregation, one task network, and fine-grained prediction, respec-
tively.

pixel feat sem cycle multi aggr one fine
ADDA [222] 7 3 – – 7 – 3 3

CycleGAN [286] 3 7 7 3 7 – 3 7
PiexlDA [17] 3 7 7 7 7 – 3 3
SBADA [185] 3 7 3 3 7 – 3 7

GTA-GAN [190] 3 3 7 7 7 – 3 7
DupGAN [105] 3 3 3 7 7 – 3 7
CyCADA [101] 3 3 3 3 7 – 3 3
DCTN [253] 7 3 – – 3 7 7 7
MDAN [273] 7 3 – – 3 7 3 7
MMN [172] 7 3 – – 3 7 7 7

MADAN (ours) 3 3 3 3 3 3 3 3

cycle-consistent, thereby preventing them from contradicting each other, is defined as:

L
Si$T

cyc
(GSi!T , GT!Si , Xi, XT ) =Exi⇠Xi k GT!Si(GSi!T (xi))� xi k1 +

ExT⇠XT k GSi!T (GT!Si(xt))� xt k1 .
(4.3)

The adapted images are expected to contain the same semantic information as origi-
nal source images, but the semantic consistency is only partially constrained by the cycle
consistency loss. The semantic consistency loss in CyCADA [101] was proposed to better
preserve semantic information. xi and GSi!T (xi) are both fed into a segmentation model
Fi pretrained on (Xi, Yi). However, since xi and GSi!T (xi) are from di↵erent domains, em-
ploying the same segmentation model, i.e. Fi, to obtain the segmentation results and then
computing the semantic consistency loss may be detrimental to image generation. Ideally,
the adapted images GSi!T (xi) should be fed into a network FT trained on the target domain,
which is infeasible since target domain labels are not available in UDA. Instead of employing
Fi on GSi!T (xi), we propose to dynamically update the network FA, which takes GSi!T (xi)
as input, so that its optimal input domain (the domain that the network performs best on)
gradually changes from that of Fi to FT . We employ the task segmentation model F trained
on the adapted domain as FA, i.e. FA = F , which has two advantages: (1) GSi!T (xi) be-
comes the optimal input domain of FA, and as F is trained to have better performance on
the target domain, the semantic loss after FA would promote GSi!T to generate images that
are closer to target domain at the pixel-level; (2) since FA and F can share the parameters,
no additional training or memory space is introduced, which is quite e�cient. The proposed
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dynamic semantic consistency (DSC) loss is:

L
Si
sem

(GSi!T , Xi, Fi, FA) = Exi⇠XiKL(FA(GSi!T (xi))||Fi(xi)), (4.4)

where KL(·||·) is the KL divergence between two distributions.

Adversarial Domain Aggregation

We can train di↵erent segmentation models for each adapted domain and combine di↵erent
predictions with specific weights for target images [253, 172], or we can simply combine all
adapted domains together and train one model [273]. In the first strategy, it is challenging
to determine how to select the weights for di↵erent adapted domains. Moreover, each target
image needs to be fed into all segmentation models at reference time, and this is rather
ine�cient. For the second strategy, since the alignment space is high-dimensional, although
the adapted domains are relatively aligned with the target, they may be significantly mis-
aligned with each other. In order to mitigate this issue, we propose adversarial domain
aggregation to make di↵erent adapted domains more closely aggregated with two kinds of
discriminators. One is the sub-domain aggregation discriminator (SAD), which is designed
to directly make the di↵erent adapted domains indistinguishable. For Si, a discriminator
D

i

A
is introduced with the following loss function:

L
Si
SAD

(GS1!T , . . . GSi!T , . . . , GSM!T ,D
i

A
) = Exi⇠Xi logD

i

A
(GSi!T (xi))+

1

M � 1

X
j 6=i

Exj⇠Xj log[1�D
i

A
(GSj!T (xj))].

(4.5)

The other is the cross-domain cycle discriminator (CCD). For each source domain Si, we
transfer the images from the adapted domains GSj!T (Xj), j = 1, · · · ,M, j 6= i back to Si

using GT!Si and employ the discriminator Di to classify Xi from GT!Si(GSj!T (Xj)), which
corresponds to the following loss function:

L
Si
CCD

(GT!S1 , . . . GT!Si�1 ,GT!Si+1 , . . . , GT!SM , GSi!T , Di) = Exi⇠Xi logDi(xi)+

1

M � 1

X
j 6=i

Exj⇠Xj log[1�Di(GT!Si((GSj!T (xj)))].
(4.6)

Please note that using a more sophisticated combination of di↵erent discriminators’ losses
to better aggregate the domains with larger distances might improve the performance. We
leave this as future work and would explore this direction by dynamic weighting of the loss
terms and incorporating some prior domain knowledge of the sources.

Feature-aligned Semantic Segmentation

After adversarial domain aggregation, the adapted images of di↵erent domains X
0
i
(i =

1, · · · ,M) are more closely aggregated and aligned. Meanwhile, the semantic consistency
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loss in dynamic adversarial image generation ensures that the semantic information, i.e. the
segmentation labels, is preserved before and after image translation. Suppose the images

of the unified aggregated domain are X
0 =

MS
i=1

X
0
i
and corresponding labels are Y =

MS
i=1

Yi.

We can then train a task segmentation model F based on X
0 and Y with the following

cross-entropy loss:

Ltask(F,X
0
, Y ) = �E(x0,y)⇠(X0

,Y )

XL

l=1

XH

h=1

XW

w=1
1[l=yh,w] log(�(Fl,h,w(x

0))), (4.7)

where L is the number of classes, H,W are the height and width of the adapted images, � is
the softmax function, 1 is an indicator function, and Fl,h,w(x0) is the value of F (x0) at index
(l, h, w).

Further, we impose a feature-level alignment between X
0 and XT , which can improve

the segmentation performance during inference of XT on the segmentation model F . We
introduce a discriminator DF to achieve this goal. The feature-level GAN loss is defined as:

Lfeat(Ff , DFf
, X

0
, XT ) = Ex0⇠X0 logDFf

(Ff (x
0)) + ExT⇠XT log[1�DFf

(Ff (xT ))], (4.8)

where Ff (·) is the output of the last convolution layer (i.e. a feature map) of the encoder in
F .

MADAN Learning

The proposed MADAN learning framework utilizes adaptation techniques including pixel-
level alignment, cycle-consistency, semantic consistency, domain aggregation, and feature-
level alignment. Combining all these components, the overall objective loss function of
MADAN is:

LMADAN(GS1!T · · ·GSM!T , GT!S1 · · ·GT!SM , D1 · · ·DM , D
1
A

· · ·D
M

A
, DFf

, F )

=
X

i

h
L

Si!T

GAN
(GSi!T , DT , Xi, XT ) + L

T!Si
GAN

(GT!Si , Di, XT , Xi)

+ L
Si$T

cyc
(GSi!T , GT!Si , Xi, XT ) + L

Si
sem

(GSi!T , Xi, Fi, F )

+ L
Si
SAD

(GS1!T , . . . GSi!T , . . . , GSM!T , D
i

A
)

+ L
Si
CCD

(GT!S1 , . . . GT!Si�1 , GT!Si+1 , . . . , GT!SM , GSi!T , Di)
i

+ Ltask(F,X
0
, Y ) + Lfeat(Ff , DFf

, X
0
, XT ).

(4.9)

The training process corresponds to solving for a target model F according to the optimiza-
tion:

F
⇤ = argmin

F

min
D

max
G

LMADAN(G,D, F ), (4.10)

where G and D represent all the generators and discriminators in Eq. (4.9), respectively.
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Table 4.2: Comparison with the state-of-the-art DA methods for semantic segmentation from
GTA and SYNTHIA to Cityscapes. The best class-wise IoU and mIoU trained on the source
domains are emphasized in bold (similar below).
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Source-only
GTA 54.1 19.6 47.4 3.3 5.2 3.3 0.5 3.0 69.2 43.0 31.3 0.1 59.3 8.3 0.2 0.0 21.7
SYNTHIA 3.9 14.5 45.0 0.7 0.0 14.6 0.7 2.6 68.2 68.4 31.5 4.6 31.5 7.4 0.3 1.4 18.5
GTA+SYNTHIA 44.0 19.0 60.1 11.1 13.7 10.1 5.0 4.7 74.7 65.3 40.8 2.3 43.0 15.9 1.3 1.4 25.8

GTA-only DA

FCN Wld [102] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 64.6 44.1 4.2 70.4 7.3 3.5 0.0 27.1
CDA [269] 74.8 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 66.5 38.0 9.3 55.2 18.9 16.8 14.6 28.9
ROAD [36] 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 68.9 48.5 14.1 78.0 23.8 8.3 0.0 39.0
AdaptSeg [221] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 71.3 46.8 6.5 80.1 26.9 10.6 0.3 38.3
CyCADA [101] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 60.7 50.5 9.0 76.9 28.2 4.5 0.0 38.7
DCAN [247] 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 69.5 52.6 11.1 79.6 21.2 17.0 6.7 39.8
FCN Wld [102] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2
CDA [269] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0
ROAD [36] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2
CyCADA [101] 66.2 29.6 65.3 0.5 0.2 15.1 4.5 6.9 67.1 68.2 42.8 14.1 51.2 12.6 2.4 20.7 29.2

SYNTHIA-only DA

DCAN [247] 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4
Source-combined DA CyCADA [101] 82.8 35.8 78.2 17.5 15.1 10.8 6.1 19.4 78.6 77.2 44.5 15.3 74.9 17.0 10.3 12.9 37.3

MDAN [273] 64.2 19.7 63.8 13.1 19.4 5.5 5.2 6.8 71.6 61.1 42.0 12.0 62.7 2.9 12.3 8.1 29.4
Multi-source DA

MADAN (Ours) 86.2 37.7 79.1 20.1 17.8 15.5 14.5 21.4 78.5 73.4 49.7 16.8 77.8 28.3 17.7 27.5 41.4
Oracle-Train on Tgt FCN [145] 96.4 74.5 87.1 35.3 37.8 36.4 46.9 60.1 89.0 89.8 65.6 35.9 76.9 64.1 40.5 65.1 62.6

Table 4.3: Comparison with the state-of-the-art DA methods for semantic segmentation from
GTA and SYNTHIA to BDDS. The best class-wise IoU and mIoU are emphasized in bold.
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Source-only
GTA 50.2 18.0 55.1 3.1 7.8 7.0 0.0 3.5 61.0 50.4 19.2 0.0 58.1 3.2 19.8 0.0 22.3
SYNTHIA 7.0 6.0 50.5 0.0 0.0 15.1 0.2 2.4 60.3 85.6 16.5 0.5 36.7 3.3 0.0 3.5 17.1
GTA+SYNTHIA 54.5 19.6 64.0 3.2 3.6 5.2 0.0 0.0 61.3 82.2 13.9 0.0 55.5 16.7 13.4 0.0 24.6

GTA-only DA CyCADA [101] 77.9 26.8 68.8 13.0 19.7 13.5 18.2 22.3 64.2 84.2 39.0 22.6 72.0 11.5 15.9 2.0 35.7
SYNTHIA-only DA CyCADA [101] 55 13.8 45.2 0.1 0.0 13.2 0.5 10.6 63.3 67.4 22.0 6.9 52.5 10.5 10.4 13.3 24.0
Source-combined DA CyCADA [101] 61.5 27.6 72.1 6.5 2.8 15.7 10.8 18.1 78.3 73.8 44.9 16.3 41.5 21.1 21.8 25.9 33.7

MDAN [273] 35.9 15.8 56.9 5.8 16.3 9.5 8.6 6.2 59.1 80.1 24.5 9.9 53.8 11.8 2.9 1.6 25.0
Multi-source DA

MADAN (Ours) 60.2 29.5 66.6 16.9 10.0 16.6 10.9 16.4 78.8 75.1 47.5 17.3 48.0 24.0 13.2 17.3 36.3
Oracle-Train on Tgt FCN [145] 91.7 54.7 79.5 25.9 42.0 23.6 30.9 34.6 81.2 91.6 49.6 23.5 85.4 64.2 28.4 41.1 53.0

4.5 Experiments

In this section, we first introduce the experimental settings and then compare the seg-
mentation results of the proposed MADAN and several state-of-the-art approaches both
quantitatively and qualitatively, followed by some ablation studies.

Experimental Settings

Datasets. In our adaptation experiments, we use synthetic GTA [180] and SYNTHIA [182]
datasets as the source domains and real Cityscapes [41] and BDDS [261] datasets as the
target domains.

Baselines. We compare MADAN with the following methods. (1) Source-only, i.e.



CHAPTER 4. MULTI-SOURCE DOMAIN ADAPTATION FOR SEMANTIC
SEGMENTATION 43

train on the source domains and test on the target domain directly. We can view this as
a lower bound of DA. (2) Single-source DA, perform multi-source DA via single-source
DA, including FCNs Wld [102], CDA [269], ROAD [36], AdaptSeg [221], CyCADA [101], and
DCAN [247]. (3) Multi-source DA, extend some single-source DA method to multi-source
settings, including MDAN [273]. For comparison, we also report the results of an oracle
setting, where the segmentation model is both trained and tested on the target domain.
For the source-only and single-source DA standards, we employ two strategies: (1) single-
source, i.e. performing adaptation on each single source; (2) source-combined, i.e. all source
domains are combined into a traditional single source. For MDAN, we extend the original
classification network for our segmentation task.

Evaluation Metric. Following [102, 269, 101, 264], we employ mean intersection-over-
union (mIoU) to evaluate the segmentation results. In the experiments, we take the 16
intersection classes of GTA and SYNTHIA, compatible with Cityscapes and BDDS, for all
mIoU evaluations.

Implementation Details. Although MADAN could be trained in an end-to-end man-
ner, due to constrained hardware resources, we train it in three stages. First, we train two
CycleGANs (9 residual blocks for generator and 4 convolution layers for discriminator) [286]
without semantic consistency loss, and then train an FCN F on the adapted images with
corresponding labels from the source domains. Second, after updating FA with F trained
above, we generate adapted images using CycleGAN with the proposed DSC loss in Eq. (4.4)
and aggregate di↵erent adapted domains using SAD and CCD. Finally, we train an FCN
on the newly adapted images in the aggregated domain with feature-level alignment. The
above stages are trained iteratively.

We choose to use FCN [145] as our semantic segmentation network, and, as the VGG
family of networks is commonly used in reporting DA results, we use VGG-16 [203] as the
FCN backbone. The weights of the feature extraction layers in the networks are initialized
from models trained on ImageNet [45]. The network is implemented in PyTorch and trained
with Adam optimizer [122] using a batch size of 8 with initial learning rate 1e-4. All the
images are resized to 600 ⇥ 1080, and are then cropped to 400 ⇥ 400 during the training
of the pixel-level adaptation for 20 epochs. SAD and CCD are frozen in the first 5 and 10
epochs, respectively.

Comparison with State-of-the-art

The performance comparisons between the proposed MADAN model and the other baselines,
including source-only, single-source DA, and multi-source DA, as measured by class-wise IoU
and mIoU are shown in Table 4.2 and Table 4.3. From the results, we have the following
observations:

(1) The source-only method that directly transfers the segmentation models trained on
the source domains to the target domain obtains the worst performance in most adaptation
settings. This is obvious, because the joint probability distributions of observed images
and labels are significantly di↵erent among the sources and the target, due to the presence
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(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.2: Qualitative semantic segmentation result from GTA and SYNTHIA to
Cityscapes. From left to right are: (a) original image, (b) ground truth annotation, (c) source
only from GTA, (d) CycleGANs on GTA and SYNTHIA, (e) +CCD+DSC, (f) +SAD+DSC,
(g) +CCD+SAD+DSC, and (h) +CCD+SAD+DSC+Feat (MADAN).

(a) (b) (c) (d) (e) (f) (g)

Figure 4.3: Visualization of image translation. From left to right are: (a) original
source image, (b) CycleGAN, (c) CycleGAN+DSC, (d) CycleGAN+CCD+DSC, (e) Cy-
cleGAN+SAD+DSC, (f) CycleGAN+CCD+SAD+DSC, and (g) target Cityscapes image.
The top two rows and bottom rows are GTA ! Cityscapes and SYNTHIA ! Cityscapes,
respectively.
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Table 4.4: Comparison between the proposed dynamic semantic consistency (DSC) loss in
MADAN and the original SC loss in [101] on Cityscapes. The better mIoU for each pair is
emphasized in bold.

Source Method
ro
ad

si
d
ew

al
k

b
u
il
d
in
g

w
al
l

fe
n
ce

p
ol
e

t-
li
gh

t

t-
si
gn

ve
ge
tt
io
n

sk
y

p
er
so
n

ri
d
er

ca
r

b
u
s

m
-b
ik
e

b
ic
yc
le

m
Io
U

CycleGAN+SC 85.6 30.7 74.7 14.4 13.0 17.6 13.7 5.8 74.6 69.9 38.2 3.5 72.3 5.0 3.6 0.0 32.7
CycleGAN+DSC 76.6 26.0 76.3 17.3 18.8 13.6 13.2 17.9 78.8 63.9 47.4 14.8 72.2 24.1 19.8 10.8 38.1
CyCADA w/ SC 85.2 37.2 76.5 21.8 15.0 23.8 21.5 22.9 80.5 60.7 50.5 9.0 76.9 28.2 9.8 0.0 38.7

GTA

CyCADA w/ DSC 84.1 27.3 78.3 21.6 18.0 13.8 14.1 16.7 78.1 66.9 47.8 15.4 78.7 23.4 22.3 14.4 40.0
CycleGAN+SC 64.0 29.4 61.7 0.3 0.1 15.3 3.4 5.0 63.4 68.4 39.4 11.5 46.6 10.4 2.0 16.4 27.3
CycleGAN + DSC 68.4 29.0 65.2 0.6 0.0 15.0 0.1 4.0 75.1 70.6 45.0 11.0 54.9 18.2 3.9 26.7 30.5
CyCADA w/ SC 66.2 29.6 65.3 0.5 0.2 15.1 4.5 6.9 67.1 68.2 42.8 14.1 51.2 12.6 2.4 20.7 29.2

SYNTHIA

CyCADA w/ DSC 69.8 27.2 68.5 5.8 0.0 11.6 0.0 2.8 75.7 58.3 44.3 10.5 68.1 22.1 11.8 32.7 31.8

Table 4.5: Comparison between the proposed dynamic semantic consistency (DSC) loss in
MADAN and the original SC loss in [101] on BDDS. The better mIoU for each pair is
emphasized in bold.
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CycleGAN+SC 62.1 20.9 59.2 6.0 23.5 12.8 9.2 22.4 65.9 78.4 34.7 11.4 64.4 14.2 10.9 1.9 31.1
CycleGAN+DSC 74.4 23.7 65.0 8.6 17.2 10.7 14.2 19.7 59.0 82.8 36.3 19.6 69.7 4.3 17.6 4.2 32.9
CyCADA w/ SC 68.8 23.7 67.0 7.5 16.2 9.4 11.3 22.2 60.5 82.1 36.1 20.6 63.2 15.2 16.6 3.4 32.0

GTA

CyCADA w/ DSC 70.5 32.4 68.2 10.5 17.3 18.4 16.6 21.8 65.6 82.2 38.1 16.1 73.3 20.8 12.6 3.7 35.5
CycleGAN+SC 50.6 13.6 50.5 0.2 0.0 7.9 0.0 0.0 63.8 58.3 21.6 7.8 50.2 1.8 2.2 19.9 21.8
CycleGAN + DSC 57.3 13.4 56.1 2.7 14.1 9.8 7.7 17.1 65.5 53.1 11.4 1.4 51.4 13.9 3.9 8.7 22.5
CyCADA w/ SC 49.5 11.1 46.6 0.7 0.0 10.0 0.4 7.0 61.0 74.6 17.5 7.2 50.9 5.8 13.1 4.3 23.4

SYNTHIA

CyCADA w/ DSC 55 13.8 45.2 0.1 0.0 13.2 0.5 10.6 63.3 67.4 22.0 6.9 52.5 10.5 10.4 13.3 24.0

of domain shift. Without domain adaptation, the direct transfer cannot well handle this
domain gap. Simply combining di↵erent source domains performs better than each single
source, which indicates the superiority of multiple sources over single source despite the
domain shift among di↵erent sources.

(2) Comparing source-only with single-source DA respectively on GTA and SYNTHIA,
it is clear that all adaptation methods perform better, which demonstrates the e↵ectiveness
of domain adaptation in semantic segmentation. Comparing the results of CyCADA in
single-source and source-combined settings, we can conclude that simply combining di↵erent
source domains and performing single-source DA may result in performance degradation.

(3) MADAN achieves the highest mIoU score among all adaptation methods, and bene-
fits from the joint consideration of pixel-level and feature-level alignments, cycle-consistency,
dynamic semantic-consistency, domain aggregation, and multiple sources. MADAN also sig-
nificantly outperforms source-combined DA, in which domain shift also exists among di↵erent
sources. By bridging this gap, multi-source DA can boost the adaptation performance. On
the one hand, compared to single-source DA [102, 269, 36, 221, 101, 247], MADAN utilizes
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more useful information from multiple sources. On the other hand, other multi-source DA
methods [253, 273, 172] only consider feature-level alignment, which may be enough for
course-grained tasks, e.g. image classification, but is obviously insu�cient for fine-grained
tasks, e.g. semantic segmentation, a pixel-wise prediction task. In addition, we consider
pixel-level alignment with a dynamic semantic consistency loss and further aggregate di↵er-
ent adapted domains.

(4) The oracle method that is trained on the target domain performs significantly better
than the others. However, to train this model, the ground truth segmentation labels from
the target domain are required, which are actually unavailable in UDA settings. We can
deem this performance as a upper bound of UDA. Obviously, a large performance gap still
exists between all adaptation algorithms and the oracle method, requiring further e↵orts on
DA.

Visualization. The qualitative semantic segmentation results are shown in Figure 4.2.
We can clearly see that after adaptation by the proposed method, the visual segmentation
results are improved notably. We also visualize the results of pixel-level alignment from
GTA and SYNTHIA to Cityscapes in Figure 4.3. We can see that with our final proposed
pixel-level alignment method (f), the styles of the images are close to Cityscapes while the
semantic information is well preserved.

Ablation Study

First, we compare the proposed dynamic semantic consistency (DSC) loss in MADAN with
the original semantic consistency (SC) loss in CyCADA [101]. As shown in Table 4.4 and
Table 4.5, we can see that for all simulation to real adaptations, DSC achieves better results.
After demonstrating its value, we employ the DSC loss in subsequent experiments.

Second, we incrementally investigate the e↵ectiveness of di↵erent components in MADAN
on both Cityscapes and BDDS. The results are shown in Table 4.6 and Table 4.7. We
can observe that: (1) both domain aggregation methods, i.e. SAD and CCD, can obtain
better performance by making di↵erent adapted domains more closely aggregated, while
SAD outperforms CCD; (2) adding the DSC loss could further improve the mIoU score,
again demonstrating the e↵ectiveness of DSC; (3) feature-level alignments also contribute
to the adaptation task; (4) the modules are orthogonal to each other to some extent, since
adding each one of them does not introduce performance degradation.

Discussions

Computation cost. Since the proposed framework deals with a harder problem, i.e. multi-
source domain adaptation, more modules are used to align di↵erent sources, which results
in a larger model. In our experiments, MADAN is trained on 4 NVIDIA Tesla P40 GPUs
for 40 hours using two source domains which is about twice the training time as on a single
source. However, MADAN does not introduce any additional computation during inference,
which is the biggest concern in real industrial applications, e.g. autonomous driving.
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Table 4.6: Ablation study on di↵erent components in MADAN on Cityscapes. Baseline de-
notes using piexl-level alignment with cycle-consistency, +SAD denotes using the sub-domain
aggregation discriminator, +CCD denotes using the cross-domain cycle discriminator, +DSC
denotes using the dynamic semantic consistency loss, and +Feat denotes using feature-level
alignment.
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Baseline 74.9 27.6 67.5 9.1 10.0 12.8 1.4 13.6 63.0 47.1 41.7 13.5 60.8 22.4 6.0 8.1 30.0
+SAD 79.7 33.2 75.9 11.8 3.6 15.9 8.6 15.0 74.7 78.9 44.2 17.1 68.2 24.9 16.7 14.0 36.4
+CCD 82.1 36.3 69.8 9.5 4.9 11.8 12.5 15.3 61.3 54.1 49.7 10.0 70.7 9.7 19.7 12.4 33.1
+SAD+CCD 82.7 35.3 76.5 15.4 19.4 14.1 7.2 13.9 75.3 74.2 50.9 19.0 66.5 26.6 16.3 6.7 37.5
+SAD+DSC 83.1 36.6 78.0 23.3 12.6 11.8 3.5 11.3 75.5 74.8 42.2 17.9 72.2 27.2 13.8 10.0 37.1
+CCD+DSC 86.8 36.9 78.6 16.2 8.1 17.7 8.9 13.7 75.0 74.8 42.2 18.2 74.6 22.5 22.9 12.7 38.1
+SAD+CCD+DSC 84.2 35.1 78.7 17.1 18.7 15.4 15.7 24.1 77.9 72.0 49.2 17.1 75.2 24.1 18.9 19.2 40.2
+SAD+CCD+DSC+Feat 86.2 37.7 79.1 20.1 17.8 15.5 14.5 21.4 78.5 73.4 49.7 16.8 77.8 28.3 17.7 27.5 41.4

Table 4.7: Ablation study on di↵erent components in MADAN on BDDS.
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Baseline 31.3 17.4 55.4 2.6 12.9 12.4 6.5 18.0 63.2 79.9 21.2 5.6 44.1 14.2 6.1 11.7 24.6
+SAD 58.9 18.7 61.8 6.4 10.7 17.1 20.3 17.0 67.3 83.7 21.1 6.7 66.6 22.7 4.5 14.9 31.2
+CCD 52.7 13.6 63.0 6.6 11.2 17.8 21.5 18.9 67.4 84.0 9.2 2.2 63.0 21.6 2.0 14.0 29.3
+SAD+CCD 61.6 20.2 61.7 7.2 12.1 18.5 19.8 16.7 64.2 83.2 25.9 7.3 66.8 22.2 5.3 14.9 31.8
+SAD+DSC 60.2 29.5 66.6 16.9 10.0 16.6 10.9 16.4 78.8 75.1 47.5 17.3 48.0 24.0 13.2 17.3 34.3
+CCD+DSC 61.5 27.6 72.1 6.5 12.8 15.7 10.8 18.1 78.3 73.8 44.9 16.3 41.5 21.1 21.8 15.9 33.7
+SAD+CCD+DSC 64.6 38.0 75.8 17.8 13.0 9.8 5.9 4.6 74.8 76.9 41.8 24.0 69.0 20.4 23.7 11.3 35.3
+SAD+CCD+DSC+Feat 69.1 36.3 77.9 21.5 17.4 13.8 4.1 16.2 76.5 76.2 42.2 16.4 56.3 22.4 24.5 13.5 36.3

On the poorly performing classes. There are two main reasons for the poor
performance on certain classes (e.g. fence and pole): 1) lack of images containing these
classes and 2) structural di↵erences of objects between simulation images and real images
(e.g. the trees in simulation images are much taller than those in real images). Generating
more images for di↵erent classes and improving the diversity of objects in the simulation
environment are two promising directions for us to explore in future work that may help
with these problems.

4.6 Conclusion

In this chapter, we studied multi-source domain adaptation for semantic segmentation from
synthetic data to real data. A novel framework, termed Multi-source Adversarial Domain
Aggregation Network (MADAN), is designed with three components. For each source do-
main, we generated adapted images with a novel dynamic semantic consistency loss. Further
we proposed a sub-domain aggregation discriminator and cross-domain cycle discriminator to
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better aggregate di↵erent adapted domains. Together with other techniques such as pixel-
and feature-level alignments as well as cycle-consistency, MADAN achieves 15.6%, 1.6%,
4.1%, and 12.0% mIoU improvements compared with best source-only, best single-source
DA, source-combined DA, and other multi-source DA, respectively on Cityscapes from GTA
and SYNTHIA, and 11.7%, 0.6%, 2.6%, 11.3% on BDDS. For further studies, we plan to
investigate multi-modal DA, such as using both image and LiDAR data, to better boost
the adaptation performance. Improving the computational e�ciency of MADAN, with tech-
niques such as neural architecture search, is another direction worth investigating.
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Chapter 5

Multi-source Domain Adaptation for
Textual Sentiment Analysis

5.1 Chapter Overview

This chapter targets the problem of multi-source domain adaptation for textual sentiment
analysis, where there are multiple fully-labeled source domains available. We propose a
curriculum cycle-consistent generative adversarial network for this problem.

5.2 Introduction

The wide popularity of social networks and mobile devices enables human beings to reflect
and share their opinions of the products and services they purchase online using text, images,
and videos [282, 46, 82, 151, 83]. For example, when we plan to buy something, it is of high
probability that we take a look at the comments on what others feel about this product.
If the negative comments dominate the feedback, we might change our minds to a di↵erent
brand. Sentiment analysis of user-generated large-scale multimedia data can not only help
the customers to select what they want, but also prompt enterprises to improve the quality
of their products and services [282, 37]. Among di↵erent multimedia modalities, text, the
one focused on in this chapter, is the most direct and popular one [46].

Recent studies [272, 124, 75, 141, 255, 239, 238, 37, 12] have shown that deep neural
networks (DNNs) achieve the state-of-the-art performance on textual sentiment analysis.
However, training a DNN to maximize its capacity usually requires large-scale labeled data,
which is expensive and time-consuming to obtain. One alternate solution is to train a DNN
on a labeled source domain and transfer the DNN to the target domain. However, due to
the presence of “domain shift” [218], i.e. the distribution di↵erences between the source
and target domains, direct transfer may result in significant performance degredation [224,
101, 264, 257]. Domain adaptation (DA) [170, 210, 127, 281, 275] that aims to minimize
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Accuracy on target

Single-best DANN 69.2

Source-combined DANN 67.0

C-CycleGAN 73.8

(b)  Before adaptation (c) After adaptation

Target:

Sources:

Camera
Restaurant

Laptop

Movie1

Movie2

(a) Quantitative comparison

Figure 5.1: An example of domain shift in the multi-source scenario on the Reviews-5
dataset [262], where Camera (red points) is set as the target domain and the rest as source
domains. (a) Naively combining multiple sources into one source and directly perform-
ing single-source domain adaptation (DANN [70]) does not guarantee better performance
compared to just using the best individual source domain (69.2 vs. 67.0). The proposed C-
CycleGAN framework achieves significant performance improvements over the source-trained
model baselines (73.8 vs. 69.2). (b) and (c) visualize the representation space before and
after adaptation. We can see clear domain shift across the sources and the target. After our
domain adaptation, the source samples that are closer to the target domain (smaller points)
are better aligned to the target domain (larger points indicate smaller sample weights).

the impact of domain shift provides an alternate solution by learning a model on the source
domain with high transferability to the target domain.

Current DA methods for textual sentiment analysis mainly focus on the single-source
unsupervised setting [142, 248], i.e. in which there is only one labeled source domain and
one unlabeled target domain. While these unsupervised domain adaptation (UDA) methods
perform well when the domain gap between the source and target domains is relatively small,
they may fail when the domain gap is large or when there are multiple labeled source do-
mains [91, 281], which is a more practical scenario. For example, if we have a target Kitchen
domain, which may include reviews on cookbooks, bowls, and electric kettles, and three
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source domains, books, cookware, and electronics, it is di�cult to perfectly align each source
and the target. Naive combination of di↵erent sources into one source and direct application
of single-source UDA algorithms may lead to suboptimal results, because domain shift also
exists across di↵erent sources, as shown in Figure 5.1. Su�ciently exploiting complementary
information from di↵erent sources can allow for learning a better representation for the tar-
get domain, which calls for e↵ective multi-source domain adaptation (MDA) techniques [210,
281].

Recently, some deep MDA approaches have been proposed for textual sentiment clas-
sification, most of which are based on adversarial learning, containing a pair of feature
extractors and domain classifier (e.g. MDAN [273], MoE [91]). These methods mainly focus
on extracting domain-invariant features of di↵erent domains, aligning each source and the
target separately, or assigning weights to the source samples statically. Although they can
obtain domain-invariant features among di↵erent domains, there are still some limitations.
First, some discriminative features in the target domain that are related to sentiment might
be missing. Since the shared feature extractor mainly aims to extract domain-invariant fea-
tures by projecting both source samples and target samples to a lower-dimensional space, it
may not include all sentiment-related features in the target domain. Second, some existing
MDA methods separately align each source and the target and then combine the prediction
results with known domain labels, which neglects the correlations of di↵erent source domains
and di↵erent sub-domains even in each source. These methods would naturally fail when
the domain labels of labeled source samples are not available. Finally, existing sampling-
based methods mainly focus on selecting source samples that are closer to the target by
training source selection models to calculate the weight of each sample (e.g. MDDA [279],
CMSS [257]), which cannot reflect the varying optimal weighting during di↵erent training
stages.

In this chapter, we propose a novel instance-level multi-source domain adaptation frame-
work, named curriculum cycle-consistent generative adversarial network (C-CycleGAN), to
address the above issues for textual sentiment classification. First, in order to encode all
text instances in both source and target domains into a latent continuous representation
space with minimal information loss, we introduce text reconstruction to better preserve
information. Second, for the encoded source representations, we generate an intermediate
domain to align the mixed source and target domains using a generative adversarial net-
work (GAN) with cycle-consistency. To explore the importance of di↵erent source samples
in a batch, we assign weights to them at instance-level with novel dynamic model-based
and model-free weighting mechanisms. Finally, based on the adapted representations and
corresponding source sentiment labels, we train a transferable task classifier. The sentiment
loss of the classifier is also backpropagated to the source-to-target generator to preserve the
sentiment information before and after generation. Extensive experiments are conducted
on three benchmark datasets: Reviews-5 [262], Amazon benchmark [29], and Multilingual
Amazon Reviews Corpus [34]. The results show that the proposed C-CycleGAN significantly
outperforms the state-of-the-art DA methods for textual sentiment classification.

In summary, the contributions of this chapter are threefold:
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(1) We propose a novel MDA method, named curriculum cycle-consistent generative
adversarial network (C-CycleGAN), to minimize the domain shift between multiple source
domains and the target domain. To the best of knowledge, we are the first to generate
an intermediate representation domain with cycle-consistency and sentiment consistency for
textual sentiment adaptation.

(2) We design novel instance-level model-based and model-free weighting mechanisms,
which can update the sample weights dynamically. In this way, our framework does not
require domain labels of samples, which allows it to exploit complementary information of
all labeled source samples from di↵erent domains.

(3) We conduct extensive experiments on three benchmark datasets. As compared to the
best baseline, the propsoed C-CycleGAN achieves 1.6%, 1.2%, and 13.4% improvements in
average classification accuracy on Reviews-5, Amazon benchmark, and Multilingual Amazon
Reviews Corpus, respectively.

5.3 Related Work

Textual Sentiment Analysis. Textual sentiment analysis, or opinion mining, aims to as-
sess people’s opinions, emotions, and attitudes from text towards entities such as products,
services, or organizations [267]. The wide popularity of social networks such as product re-
views, forum discussions, and WeChat, contributes to the rapid development of this task [267,
37]. Traditional sentiment analysis methods mainly focused on designing hand-crafted fea-
tures [167, 157], which are fed into standard classifiers, such as SVM. Recent e↵orts on
sentiment analysis are mainly based on DNNs [267, 239], which have shown great success
in many natural language processing tasks. Some typical deep models that have been ap-
plied to sentiment analysis include Recursive Auto Encoder [205, 55, 175], Recursive Neural
Tensor Network [204], Recurrent Neural Network (RNN) [214], Long short-term memory
(LSTM) [98], Tree-LSTMs [213], RNN Encoder–Decoder [38], and BERT [47]. The above
supervised learning methods usually require a large volume of labeled data for training [142,
37]. However, high-quality sentiment labels are often labor- and time-consuming to obtain.
In this chapter, we employ a Bi-LSTM [98] as encoder and a multi-layer perceptron as
classifier for the sentiment classification adaptation task.

Single-source UDA. Recent single-source UDA (SUDA) methods mainly employ deep
learning architectures with two conjoined streams [290, 278]. One is trained on the labeled
source data with a traditional task loss, such as cross-entropy loss for classification. The
other aims to align the source and target domains to deal with the domain shift problem
with di↵erent alignment losses, such as discrepancy loss, adversarial loss, self-supervision
loss, etc. Discrepancy-based methods employ some distance measurements to explicitly min-
imize the discrepancy between the source and target domains on specific activation layers,
such as maximum mean discrepancies [148, 235, 248], correlation alignment [207, 206, 290],
and contrastive domain discrepancy [118]. Adversarial discriminative models usually employ
a domain discriminator to adversarially align the extracted features between the source and
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target domains by making them indistinguishable [70, 222, 26, 198, 221, 108, 128, 245].
Besides the domain discriminator, adversarial generative models also include a generative
component to generate fake source or target data typically based on GAN [84] and its vari-
ants, such as CoGAN [140], SimGAN [200], and CycleGAN [286, 277, 101]. Self-supervision
based methods incorporate auxiliary self-supervised learning tasks into the original task net-
work to bring the source and target domains closer. The commonly used self-supervision
tasks include reconstruction [78, 77, 33], image rotation prediction [211, 252], jigsaw predic-
tion [21], and masking [229]. Although these methods achieve promising results for SUDA
tasks, they su↵er from significant performance decay when directly applied to MDA task.

Multi-source Domain Adaptation. Based on some theoretical analysis [10, 99], multi-
source domain adaptation (MDA) aims to better deal with the scenario where training data
are collected from multiple sources [210, 280]. The early shallow MDA methods mainly
include two categories [210]: feature representation approaches [208, 61, 24, 62] and combi-
nation of pre-learned classifiers [254, 209]. Some special MDA cases are considered in recent
shallow methods, such as incomplete MDA [50] and target shift [176].

Recently, some representative deep learning based MDA methods are proposed, such as
multisource domain adversarial network (MDAN) [273], deep cocktail network (DCTN) [253],
Mixture of Experts (MoE) [91], moment matching network (MMN) [172], multi-source ad-
versarial domain aggregation network (MADAN) [280], multi-source distilling domain adap-
tation (MDDA) [279], and curriculum manager for source selection (CMSS) [257]. MDAN,
DCTN, MoE, MMN, MADAN, and MDDA all require domain labels of source samples.
MDDA and CMSS select source samples that are closer to the target domain with a static
weighting mechanism, while the others do not consider the importance of di↵erent source
samples. The MDA methods for textual sentiment classification, e.g. MDAN and MoE, only
focus on extracting domain-invariant features, which may lose discriminative features of the
target domain that are related to sentiment. Di↵erent from these methods, for the source
samples, we generate an intermediate domain that is closer to the target domain with cycle-
consistency and sentiment consistency. Further, we propose novel dynamic instance-level
weighting mechanisms to assign weights to the source samples without the requirement of
domain labels.

5.4 Proposed Approach

In this section, we formally define the MDA problem, give an overview of the proposed
Curriculum CycleGAN (C-CycleGAN) framework, present each component of C-CycleGAN
in detail, and finally introduce the joint learning process.

Problem Definition

We consider the multi-source unsupervised domain adaptation setup for textual sentiment
classification, under the covariate shift assumption [170]. Assuming access to k source do-
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Figure 5.2: Illustration of the proposed C-CycleGAN framework. A text encoder is first
pre-trained with a reconstruction loss to encode all text instances from the source and target
domains into a latent continuous representation space (gray). Then the model is jointly
trained using the cycle-consistency loss (pink), the curriculum GAN loss (blue), and the
sentiment classification loss (yellow). We depict here the model-free curriculum (green) for
sample weighting.

mains with labeled training data, denoted by {Si}
k

i=1, where each domain Si contains a set
of examples drawn from a joint distribution p

(Si)(x, y) on the input space X and the output
space Y , we seek to learn a sentiment classifier f : X ! Y that is transferable to a target
domain T , where only unlabeled data is available.

Overview

Our model bridges the domain gap by generating an intermediate domain using Cycle-
GAN [286] trained with a learned curriculum (C-CycleGAN). As shown in Figure 5.2, the
proposed framework has three primary components:

Pre-trained Text Encoder: Encode texts from source and target domains into a semantic-
preserving latent continuous representation space Z. This module is pre-trained using a
seq2seq-based text autoencoder in an unsupervised fashion.

Intermediate Domain Generator: Generate an intermediate domain to align the multiple
sources and the target. At the core of this component is a curriculum cycle-consistent
generative adversarial network, which employs a domain adversarial loss for distributional
alignment, and use cycle-consistency to prevent mode collapse. To deal with the varied
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relevance of the mixed-source instances to the target domain at a specific training stage, we
learn a curriculum to dynamically assign weights to source samples based on their proximity
to the target domain distribution.

Task Classifier: Train the sentiment classifier based on the adapted representations in
the intermediate domain and corresponding sentiment labels in the source domains.

Pre-trained Text Encoder

We use seq2seq-based text reconstruction to pre-train our text encoder, in order to obtain a
semantic-preserving latent representation space. Let x denote a sequence of tokens w1, ..., wL,
where L is the sequence length. The reconstruction process can be summarized as the
following encoding-decoding paradigm:

z = Enc(x;✓); x̃ = Dec(z, x; ) (5.1)

where z is the text representation. We use a bidirectional LSTM (Bi-LSTM) [98] as the
encoder, and obtain the representation z of an input sequence by concatenating the last
states of forward LSTM and backward LSTM. A unidirectional LSTM then reconstructs x
autoregressively conditioned on z. At each time step of generation, we randomly sample
from the ground-truth token and the generated token as input for the next token prediction.
The overall reconstruction loss over both source and target domain data can thus be written
as:

Lrec = Ex⇠XS[XT

h
�

1

L

LX

t=1

logP (x̃t|x<t, x̃<t, z)
i

(5.2)

After pre-training, the encoder will be fixed and the encoded representations will be directly
used for the generation of the latent intermediate domain (Section 5.4).

Alternatively, we can directly use publicly available text encoders like BERT [47], which
are designed to be general-purpose and pre-trained in a self-supervised fashion on a mixture
of data sources. In this study, we experiment with BERT, and take the hidden state of the
“[CLS]” token as the text representation.1

Intermediate Domain Generator

GAN with Cycle-consistency. This module generates an intermediate representation do-
main from the pre-trained representation space Z to bridge the gap across source and target,
as shown in Figure 5.3. For that purpose, we introduce a source-to-target generator Gs!t,
and train it to generate target representations that aim to fool an adversarial discriminator
Dt. This gives the following GAN loss:

L
s!t

gan = Ez⇠ZS log[Dt

�
Gs!t(z)

�
] + Ez⇠ZT log[1�Dt(z)] (5.3)

1Note that the “[CLS]” representation is typically used as a text representation at the fine-tuning stage
with supervision from end tasks, whereas we adopt it here as an unsupervised text representation.
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Figure 5.3: Intermediate domain generation with a CycleGAN.

In order to avoid mode collapse in the generated intermediate domain and encourage the
internal structural information of the original example to be preserved, we follow [102] and
optimize a cycle-consistency loss which is obtained by recontructing the representation of
the original example from the intermediate domain representation. To implement this loss,
we introduce a reverse generator from target to source Gt!s, which can be trained using a
reverse GAN loss L

t!s

adv (this requires an additional discriminator at source side Ds). Then,
the cycle-consistency loss can be written as:

Lcyc = Ez⇠ZS k Gt!s

�
Gs!t(z)

�
� z k1

+ Ez⇠ZT k Gs!t

�
Gt!s(z)

�
� z k1

(5.4)

The above loss function treats all source examples in a training batch equally, while
ignoring their varied relevance/importance to the target domain distribution due to the
multi-source nature. To cope with this challenge, we explore two instance-level weight as-
signment mechanisms which operate on each batch: the model-based curriculum and the
model-free curriculum.

Model-based Curriculum. We follow [257] and use an extra source selection network
for calculating the weight distribution over examples in a batch. This network takes the gen-
erated representation (Gs!t(z)) as input, and outputs a weight distribution with a Softmax
layer. Denoting B as a batch of encoded examples sampled from the Z: {z1, z2, ..., z|B|}, the
sample weights can be computed as:

w = softmax
⇣
ht

�
Gs!t(B)

�⌘
(5.5)

where ht is the source selection network at target side. We then obtain the curriculum GAN
loss (Lcgan) as:

L
s!t

cgan = EB⇠ZS

1

|B|

X

z2B

wz log[Dt

�
Gs!t(B)

�
]

+ Ez⇠ZT log[1�Dt(z)]

(5.6)
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In the ideal case, if the input batch of the source selection network is extremely close
to the target distribution, we would expect a uniform weighting. Therefore, we introduce
additional inductive bias for training ht by minimizing the KL-divergence between the output
distribution and a uniform distribution (U) when the input batch is sampled from the real
target space:

L
t

uni
= Ez⇠ZTKL[ht(z) k U ] (5.7)

The formulation of L
t!s

cgan
and L

s

uni
can be adapted in a similar way, using a separate

source selection network hs.
Model-free Curriculum. Instead of relying on an extra source selection network, we

can also compute sample weights directly from outputs of the domain discriminators (Dt),
which indeed reflects the proximity of each example to the target domain. This gives us the
following model-free weight assignment mechanism:

w = softmax
⇣
log

⇥
Dt

�
Gs!t(B)

�⇤⌘
(5.8)

In this way, examples with a higher probability of being classified as target will be more
emphasized in the GAN loss.

Task Classifier

Assuming the source-to-target generation (Gs!t) does not change the sentiment label, we
can train a transferable sentiment classifier over the generated intermediate domain: ft :
Gs!t(Z)! Y using labels from the source domains:

Ltask = �E(z,y)⇠(ZS ,YS)

h
� logP

⇣
y|ft

�
Gs!t(z)

�⌘i
(5.9)

After training, the classifier ft can be directly used in the target domain. To promote
sentiment consistency between the generated intermediate representations and their original
examples, we further backpropagate the task loss to the source-to-target generator.

Joint Learning

Our final objective is a weighted combination of di↵erent losses in the C-CycleGAN frame-
work.2 For the model-based curriculum:

Lc-cyclegan = L
s!t

cgan + L
t!s

cgan + Lcyc + L
t

uni + L
s

uni + Ltask (5.10)

For the model-free curriculum:

Lc-cyclegan = L
s!t

cgan + L
t!s

cgan + Lcyc + Ltask (5.11)

This objective can be optimized by solving the following min-max game:

f
⇤
t
= argmin

ft

min
Gs!t
Gt!s
ht,hs

max
Ds,Dt

Lc-cyclegan (5.12)

2We omit the weights of each loss term for notation ease.
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Table 5.1: Comparison with the state-of-the-art DA methods on Reviews-5 dataset. All
numbers are percentages. The best class-wise and average classification accuracies trained
on the source domains are emphasized in bold (similar below).

Standards Models Camera Laptop Restaurant Movie1 Movie2 Avg

Source-only
Single-best 68.8 62.5 64.0 76.9 75.8 69.6

Source-combined 69.6 71.5 68.5 77.0 76.7 72.7

Single-best DA
DANN [70] 69.2 72.6 68.5 78.3 80.7 73.9
ADDA [222] 69.4 73.2 69.6 79.1 81.5 74.6
DAAN [259] 69.4 73.8 71.6 79.5 82.8 75.4

Source-combined DA
DANN [70] 67.0 73.3 68.2 77.4 80.8 73.3
ADDA [222] 69.6 74.1 69.5 80.5 82.6 75.3
DAAN [259] 69.4 74.6 72.4 80.2 83.2 76.0

Multi-source DA

Autoencoder+MDAN [273] 65.0 59.0 64.5 60.8 52.1 60.3
MDAN (TextCNN) [273] 68.0 72.0 71.0 77.4 78.7 73.4

CMSS [257] 71.8 75.4 73.3 81.2 85.6 77.5
C-CycleGAN (Ours) 73.8 76.0 76.0 82.0 87.5 79.1

Oracle TextCNN 76.8 77.5 77.5 84.4 90.6 81.4

Table 5.2: Comparison with the state-of-the-art DA methods on Reviews-5 dataset using
BERT embedding.

Standards Models Camera Laptop Restaurant Movie1 Movie2 Avg

Source-only
Single-best 72.3 74.5 75.4 79.4 83.1 76.9

Source-combined 73.6 74.8 76.8 80.1 85.7 78.2

Multi-source DA C-CycleGAN (Ours) 76.9 78.4 79.7 83.1 88.3 81.3

Oracle BERT 78.3 79.5 81.2 85.1 90.8 83.0

5.5 Experiments

In this section, we introduce the experimental settings and present results as well as analysis.
Our source code will be released.

Experimental Settings

Datasets.

We evaluate our approach using two combined datasets of cross-domain sentiment analysis:
Reviews-5 [262] and Amazon benchmark [29]. Each dataset contains multiple domains. For
each dataset, we create multiple MDA settings by taking each domain as target, and the
rest as sources. In addition, we further consider a cross-lingual transfer setting using the
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Multilingual Amazon Reviews Corpus [34], to validate the generalizability of our approach
to a broader family of transfer learning.

The Reviews-5 dataset [262] includes five domains of customer reviews. Movie1 [168]
and Movie2 [204] are movie reviews; Camera [106] contains reviews of digital products such
as MP3 players and cameras; Laptop and Restaurant are laptop and restaurant reviews
respectively taken from SemEval 2015 Task 12 [262]. The training set sizes are 3,270, 1,707,
1,372, 9,162, and 8,113 for Movie1, Movie2, Camera, Laptop and Restaurant, respectively.
The test size is 200 for all domains.

The Amazon benchmark dataset [29] contains four domains of product reviews on
Amazon: Books, DVD, Kitchen, and Electronics, with training set sizes of 6,465, 5,586,
7,681, and 7,945 respectively. The test size is 200 for all domains. This dataset has been
preprocessed by the authors into TF-IDF representations, using the 5,000 most frequent
unigram and bigram features. Therefore, word order information is unavailable.

The Multilingual Amazon Reviews Corpus [34] is a collection of Amazon reviews
from four languages: German, English, French, and Japanese. For each language, there are
three domains including Books, DVD, and Music. The training set size and test set size for
each domain of each language are 52,000 and 2,000.

Evaluation Metrics.

Following [273, 91], we use classification accuracy as metric to evaluate the sentiment clas-
sification results. Larger values represent better performances.

Baselines.

We consider the following baselines:

1. Source-only, directly training on the source domains and testing on the target do-
main, which includes two settings: single-best, the best test accuracy on target among
all source domains; source-combined, the target accuracy of the model trained on the
combined source domain.

2. Single-source domain adaptation methods, including DANN [70], ADDA [222],
and DAAN [259], trained with both single-best and source-combined settings.

3. Multi-source domain adaptation models, including state-of-the-art approaches
MDAN [273], MoE [91], and CMSS [257].

We also report the results of an oracle setting, where the model is both trained and tested
on the target domain.
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Table 5.3: Comparison with the state-of-the-art DA methods on Amazon Benchmark dataset.

Standards Models Books DVD Kitchen Electronics Avg

Source-only
Single-best 75.4 81.3 86.5 86.5 82.4

Source-combined 76.5 81.6 86.7 85.3 82.5

Single-best DA
DANN [70] 76.5 77.2 83.6 84.3 80.4
ADDA [222] 74.4 78.2 82.6 82.1 79.3
DAAN [259] 77.2 76.8 83.5 86.5 81.0

Source-combined DA
DANN [70] 77.9 78.9 84.9 86.4 82.0
ADDA [222] 76.6 77.1 82.5 82.5 79.7
DAAN [259] 78.4 77.6 85.4 87.2 82.2

Multi-source DA

MDAN [273] 78.0 85 85.3 86.3 82.5
MoE [91] 78.9 81.3 87.4 87.9 83.9

CMSS [257] 78.1 80.2 87.2 87.2 83.2
C-CycleGAN (Ours) 80.3 82.2 88.9 89.1 85.1

Oracle TextCNN 76.7 81.3 87.1 85.2 82.6

Implementation Details.

For the pre-training of text encoder, we use a 2-layer Bidirectional LSTM as encoder and a
1-layer LSTM as decoder. The initial learning rate is 0.00001 with a decay rate of 0.5 every
200 steps. The dimension of word embeddings and hidden states are both set to 256. For
experiments with BERT, we use the 12-layer “bert-base-uncased” version due to memory
constraints. The weights for Lcgan, Lcyc, Luni, and Ltask are 0.1, 1, 1 and 1, respectively.
During decoding, we choose as input between the true previous token and the generated
token with a probability of 0.5 of selecting either one. For the Amazon benchmark dataset,
we use the original TF-IDF feature vectors as the representation, without further encoding or
pre-training. We leverage a 4-layer multi-layer perceptron (MLP) to implement the generator
and discriminator of CycleGAN, as well as the sentiment classifier. The initial learning rate
is 0.0001 with a decay rate of 0.5 every 100 steps. We use Adam [121] as the optimizer with
beta1 of 0.5, beta2 of 0.999, batch size of 64, and weight decay of 0.0001. In the multilingual
transfer experiments, we obtain cross-lingual word embeddings by projecting the pre-trained
monolingual word embeddings [14] of the 4 languages into English (pivot language) using an
unsupervised method [3].

Results on Reviews-5 Dataset

We first evaluate our approach on the dataset of plain textual input: Reviews-5. We perform
experiments with each domain as the target and the rest as sources. Table 5.1 shows the
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Table 5.4: Comparison with the state-of-the-art DA methods on Multilingual Amazon Re-
views Corpus dataset.

Standards Models
German English

Books DVD Music Avg Books DVD Music Avg

Source-only
Single-best 63.6 64.7 64.9 64.4 65.3 62.5 63.3 63.7

Source-combined 61.5 64.6 63.6 63.2 63.7 65.0 60.1 63.0

Multi-source DA C-CycleGAN (Ours) 78.3 78.4 79.1 78.6 78.0 77.8 79.0 78.3

Oracle TextCNN 83.2 89.0 88.2 86.8 85.2 85.5 81.1 83.9

Standards Models
French Japanese

Books DVD Music Avg Books DVD Music Avg

Source-only
Single-best 65.3 64.3 64.2 64.6 63.5 63.5 64.8 64.0

Source-combined 63.6 63.0 63.4 63.3 63.7 62.7 64.0 63.4

Multi-source DA C-CycleGAN (Ours) 78.6 77.6 76.9 77.7 75.2 74.9 76.8 76.2

Oracle TextCNN 88.3 77.6 84.1 83.3 60.4 61.8 69.4 69.4

Table 5.5: Ablation study on di↵erent components of the proposed C-CycleGAN framework
on the Reviews-5 dataset.

Models Camera Laptop Restaurant Movie1 Movie2 Avg

CycleGAN [286] 68.7 75.4 71.6 82.5 86.7 77.0
MDAN [273] + CycleGAN [286] 70.8 75.2 71.2 79.9 86.2 76.7

CycleGAN [286]+CMSS [257] 71.5 75.4 70.8 81.1 86.1 77.0
C-CycleGAN (model-based) 72.8 75.7 73.5 81.7 87.3 78.2
C-CycleGAN (model-free) 73.8 76.0 76.0 82.0 87.5 79.1

performance of di↵erent DA methods and Table 5.2 shows the extended results using BERT
embedding [47]. We have the following observations3:

(1) Without considering domain shift, both source-only settings, i.e. single-best and
source-combined, obtain poor accuracy: 69.6% and 72.7%, around 10% worse than the
oracle (81.4%). This motivates the research on domain adaptation.

(2) When directly applying to the MDA task, the single-source DA methods outperform
the source-only setting. Since customers’ reviews vary a lot across domains, features related
to sentiment also vary a lot. Therefore these DA methods that can make the domain gap
smaller achieve better results than source-only setting.

(3) Comparing the performances of source-combined and single-best DA settings, we
can find that sometimes naively performing single-source domain adaptation approaches on

3The first 5 points are based on Table 5.1, and the last point is based on Table 5.2.
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a combined dataset of di↵erent sources could produce worse result (i.e. 73.3% of DANN)
than on a single source domain (i.e. 73.9% of DANN). This naturally motivates research on
multi-source domain adaptation.

(4) Most of the state-of-the-art multi-source domain adaptation methods perform better
than single-source domain adaptation methods by considering domain-invariant features and
fusing information across all domains. However, MDAN [273], which has been demonstrated
to be e↵ective on Amazon benchmark dataset, performs worse (60.3% and 73.4%) than
single-best DA settings (e.g. 74.6% and 75.4%). This indicates that some of the previous
multi-source domain adaptation methods may be only e↵ective on a certain kind of data
representation (e.g. bag-of-words or TF-IDF).

(5) C-CycleGAN performs the best (79.1%) among all adaptation settings. Compared
to the best results inside the Source-only, Single-best DA, Source-dombined DA and other
Multi-source DA methods, C-CycleGAN achieves 6.4%, 3.7%, 3.1% and 1.6% performance
boost, respectively. These results demonstrate that the proposed C-CycleGAN model can
achieve significant better performance compared to state-of-the-art methods. The perfor-
mance improvements benefit from the advantages of C-CycleGAN. First, an intermediate
representation domain is generated with cycle-consistency and sentiment consistency which
is closer to the target domain and preserves the annotation information of the source sam-
ples. Second, the proposed weighting mechanisms can dynamically assign weights to di↵erent
source samples, which takes into account the source samples’ similarity to the target and
enhances the adaptation performance. Finally, the text reconstruction in the pre-trained
text encoder minimizes the information loss during the feature encoding process.

(6) BERT embedding performs much better than Bi-LSTM for all the methods, which
demonstrates the superiority of BERT in learning pre-trained embeddings. The proposed
C-CycleGAN achieves 3.1% performance gains as compared to the best source-only setting.

Results on Amazon Benchmark Dataset

Table 5.3 shows the results on the Amazon benchmark dataset, which takes TF-IDF as text
representations. We can observe that:

(1) Comparing the performance of source-only (82.5%) and Oracle (82.6%), we can see
that the domain gap between sources and target is less than 1%, much smaller than the
domain gap of Reviews-5 (¿10%). This indicates that the data representation type of the
datasets is closely associated with how large the domain gap is.

(2) Several multi-source adaptation methods (e.g. MoE [91]) perform even better than
Oracle. This is because that the domain gap is relatively small and multi-source adaptation
leverages more information from multiple domains than Oracle, which only has access to the
samples from the target. This further indicates the importance of diverse data from di↵erent
source domains.

(3) The proposed C-CycleGAN has the best performance (85.1%) among all approaches
with 1.2% and 2.5% better classification accuracy than MoE and Oracle respectively. Com-
pared to other methods (e.g. MDAN) whose performance fluctuates significantly across
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Table 5.6: Ablation study on the influence of cycle-consistency in C-CycleGAN on the
Reviews-5 dataset.

Models Camera Laptop Restaurant Movie1 Movie2 Avg

C-CycleGAN w/o cycle-consistency 72.2 73.1 72.0 80.3 85.1 76.5
C-CycleGAN w cycle-consistency 73.8 76.0 76.0 82.0 87.5 79.1

datasets (Reviews-5 and Amazon Benchmark datasets), the proposed C-CycleGAN can pro-
vide consistent superior performance across datasets.

Multilingual Transfer Experiments

We also perform experiments on the Multilingual Amazon Reviews Corpus. For each cat-
egory domain (Books, DVD, Music) of each language, we perform adaptation to it with
datesets of the same category domain from other languages as sources. Table 5.4 shows the
performance of di↵erent adaptation methods. We can observe that:

(1) The proposed C-CycleGAN achieves the best performance of all DA methods across
all languages and on all category domains.

(2) In most cases, Oracle gives the best performance; however, in several settings, C-
CycleGAN can achieve similar or even better results than the oracle (e.g. 77.6% and 77.6%
for DVD in French; 76.8% and 69.4% for Music in Japanese). This further demonstrate
that our framework has a wide range of applicability, not only across di↵erent types of data
representation, but also across di↵erent languages.

Ablation Study

We conduct a series of ablation studies on the Reviews-5 dataset to demonstrate the improve-
ments of C-CycleGAN over existing state-of-the-art approaches. The results are described
in Table 5.5, where all CycleGANs are performed in a source-combined manner.

First, we investigate whether it is necessary to align the representations before applying
CycleGAN. “MDAN + CycleGAN” in Table 5.5 represents first aligning the encoded rep-
resentations using MDAN and then applying CycleGAN. Comparing the first two rows in
Table 5.5, we can see applying MDAN before CycleGAN achieves worse performance, which
indicates that it is unnecessary to perform additional alignment before CycleGAN. This is
probably because extracting the domain-invariant features between the source and target
domains might lose some discriminative features in the target domain that are related to
sentiment.

Second, we investigate the e↵ectiveness of the proposed model-based and model-free
weighting methods. From the last three rows, we can see that compared to CMSS [257],
the proposed model-based and model-free weighting schemes improve accuracy by 1.2% and
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Figure 5.4: Visualization of feature spaces in di↵erent training stages of C-CycleGAN on the
Reviews-5 dataset. Target samples are in red, while source samples are in other colors. Point
size denotes the similarity of each source sample to the target domain obtained from output
of the domain discriminator. For better visualization, smaller points represent samples closer
to the target domain.

2.1% respectively. Because CMSS takes the original source samples as input to compute the
weights, it cannot reflect the dynamic changing of source samples’ weights. The proposed
model-based weighting mechanism is based on the generated intermediate domain, which
itself dynamically changes. The model-based method requires an additional network to
compute the similarity to the target domain, which not only increase the computation cost,
but also takes longer to learn the discriminative patterns between sources and target, before
which CycleGAN may learn the wrong patterns.

Finally, we evaluate the influence of cycle-consistency in the proposed C-CycleGAN
model. As in [286], we find that standard adversarial procedures without cycle-consistency
often lead to the mode collapse problem, where all input representations are mapped to the
same output representation and the optimization fails to make progress. The comparison be-
tween with and without cycle-consistency in C-CycleGAN on the Reviews-5 dataset is shown
in Table 5.6. The result comparison (79.1 vs. 76.5) clearly demonstrates the e↵ectiveness
and necessity of cycle-consistency.
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(a) Before adaptation

(b) After adaptation

Laptop(source)→Camera(target)
z Positive Camera
Ì Negative Camera
z Positive Laptop
Ì Negative Laptop

Laptop(source)→Camera(target)
z Positive Camera
Ì Negative Camera
z Positive Laptop
Ì Negative Laptop

Restaurant(source)→Camera(target)
z Positive Camera
Ì Negative Camera
z Positive Restaurant
Ì Negative Restaurant

Restaurant(source)→Camera(target)
z Positive Camera
Ì Negative Camera
z Positive Restaurant
Ì Negative Restaurant

Restaurant(source)→Movie1(target)
z Positive Movie1
Ì Negative Movie1
z Positive Restaurant
Ì Negative Restaurant

Restaurant(source)→Movie1(target)
z Positive Movie1
Ì Negative Movie1
z Positive Restaurant
Ì Negative Restaurant

Movie2(source)→Laptop(target)
z Positive Laptop
Ì Negative Laptop
z Positive Movie2
Ì Negative Movie2

Movie2(source)→Laptop(target)
z Positive Laptop
Ì Negative Laptop
z Positive Movie2
Ì Negative Movie2

Figure 5.5: t-SNE visualization of the features before and after adaptation on the Reviews-5
dataset. Red represents source features and Blue represents target features.

Visualization

In this section, we visualize the features of source and target samples during di↵erent training
stages of C-CycleGAN.

By using PCA to reduce the dimensionality of samples, we project samples from five
domains in Reviews-5 [262] onto a 2-dimensional plane in di↵erent stages of training. The
visualization results are shown in Figure 5.4. We can conclude that during the training
process, all source domains get closer to the target domain. At the same time, we can see
that the samples far from the target domain can be well di↵erentiated by the discriminator,
and are assigned with smaller weights (larger points).

Figure 5.4 (a) and (f) visualize the representation space before and after adaptation
correspondingly. We can see that the samples in Movie1 and Movie2 are the closest since
they are all about reviews in movies. Movie1 is also closer with Camera and Laptop after
adaptation, which is desirable because these domains involve common reviews on image
quality or upgrade of electronics. For example, the Camera domain may have reviews like
“Picture is clear and easy to carry. Love SONY.”; while in Movie1: “Transitions smoothly
and the image quality is clean”, and in Laptop: “The 4K display is so sharp, the slim book is
so light in a bag”. We can hardly distinguish which domains these reviews belong to without
prior information.

We further plot the learned features with t-SNE [153] on four adaptation settings, with
the results shown in Figure 5.5. The top row represents the feature embeddings before
adaptation, while the bottom row represents the feature embeddings after adaptation by
C-CycleGAN. Red represents source features and Blue represents target features. As we
can see, before adaptation, the source samples can be obviously classified but such classifier
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cannot work well on the target samples; with the proposed C-CycleGAN, source and target
features of the same class become more aggregated after adaptation. These observations
further demonstrate the e↵ectiveness of C-CycleGAN.

5.6 Conclusion

In this chapter, we proposed a novel multi-source domain adaptation framework, named cur-
riculum cycle-consistent generative adversarial network (C-CycleGAN), for textual sentiment
classification. C-CycleGAN contains three main component: pre-trained text encoder for en-
coding text instances into a latent continuous representation space with minimal information
loss; intermediate domain generator with curriculum instance-level adaptation considering
the importance of di↵erent source samples; and task classifier to perform the final senti-
ment classification. The generated intermediate domain bridges the domain gap between
the source and target domains, while preserving the sentiment semantics. The proposed dy-
namic model-based and model-free weighting mechanisms can assign higher weights to the
source samples that are closer to the target domain. Further, C-CycleGAN does not require
prior domain labels of source samples, which makes it more practical in real-world scenar-
ios. Extensive experiments on multiple benchmark datasets demonstrate that C-CycleGAN
significantly outperforms existing state-of-the-art DA methods. In future studies, we plan
to construct a large-scale textual dataset with more fine-grained sentiment categories and
extend our framework to corresponding MDA tasks. We will explore multi-modal domain
adaptation by jointly modeling multiple modalities, such as image and text.



67

Chapter 6

Multi-source Few-shot Domain
Adaptation

6.1 Chapter Overview

This chapter targets a new problem of multi-source few-shot domain adaptation, where there
are multiple source domains but each with only limited labels. We propose a framework
extending the method in Chapter 2 for this new problem.

6.2 Introduction

Deep neural networks have achieved remarkable performance for a variety of computer vision
tasks [95, 145, 177, 123]. Despite high accuracy, these models have consistently fallen short in
generalizing to new domains due to the presence of domain shift [218, 222, 54]. Unsupervised
Domain Adaptation (UDA) is a challenging, yet frustratingly practical, setting which aims
to transfer predictive models from a single fully-labeled source domain to an unlabeled target
domain. UDA methods typically operate by using a task loss on the labeled source samples,
as well as additional losses to account for domain shift, such as a discrepancy loss [148, 207,
206, 17, 290], adversarial loss [222, 84, 140, 101, 185, 190], and reconstruction loss [78, 77,
16].

Rather than using only a single labeled source domain, Multi-source Domain Adapta-
tion (MDA) [155, 62, 253] generalizes this setting by transferring the task knowledge from
multiple fully labeled source domains to an unlabeled target domain. Each source domain
is correlated to the target in di↵erent ways and adaptation involves not only incorporating
the combined prior knowledge from multiple sources, but simultaneously preventing the pos-
sibility of negative transfer [2]. Many MDA methods [281, 253, 172, 194, 227] outperform
UDA methods and achieve high accuracy on the target domain by leveraging the abundant
explicit supervision in the source domains, together with the unlabeled target samples for
domain alignment.
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In many real-world applications, however, getting large-scale annotations even in the
source domain is often challenging due to the di�culty and high cost of annotation. For
example, during the COVID-19 pandemic [226, 20], Harmon et al. [93] explored transferring
a medical predictive model trained with data from di↵erent countries to a target country.
However, during the early stages of the pandemic, there were few domain experts that could
provide such annotations and even obtaining fully labeled source data was impractical. As
another example, each retinal image in the Diabetic Retinopathy dataset [90] is annotated
by a panel of 7+ U.S. board-certified ophthalmologists, with a total group of 54 doctors used
for annotation [90, 266]. Thus it is practically too stringent to assume the availability of
abundant labels across domains.

In this chapter, we explore a new Multi-source Few-shot Domain Adaptation (MFDA)
setting that mitigates the need for large-scale labeled source datasets. In MFDA, only a
small number of samples in each source domain are annotated while the rest source and
target samples remain unlabeled. Many MDA methods seek to learn domain-invariant fea-
tures by performing some form of distribution alignment [253, 172, 281, 273, 194], and learn
discriminative features by performing supervised task loss on all source domains. In MFDA,
however, with a limited number of labels in each source, it is much harder to learn discrim-
inative features for both source and target. Some recent works [120, 266] perform few-shot
adaptation with a single source, and in this work, we build upon these contributions and
investigate the multiple source scenario.

In the newly proposed MFDA setting, we show that many existing domain adaptation
methods do not learn discriminative features for both source and target domains. There-
fore, we propose a Multi-Source Few-shot Adaptation Network (MSFAN), which consists
of three major components: (i) multi-domain, self-supervised learning (SSL) with feature
prototypes, (ii) cross-domain consistency learning that leverages a support-set of labeled
and pseudo-labeled samples, and (iii) multi-domain prototypical classifier learning. In the
first component, multi-domain prototypical SSL is performed within each domain and each
source-target domain pair. The in-domain prototypical SSL aims to learn a well-clustered
representation in each domain, while the cross-domain SSL aligns each source domain with
the target domain. For the second component, MSFAN builds a support set consisting of
the few labeled samples and high-confident unlabeled samples. Based on the support sets,
a cross-domain prediction consistency is then enforced to further promote domain-invariant
feature learning. Finally, we leverage both the prototypes and the labeled samples from
all source domains in order to learn a good classifier for each domain. Mutual information
constraints are further enforced on both source and target across all classifiers to learn better
domain-invariant and class-discriminative features.

In summary, our contributions are three-fold. (1) We propose a new domain adaptation
task MFDA, adapting to a fully unlabeled target domain from multiple sources with few
labels, which is a both practical and challenging generalization of conventional multi-source
domain adaptation. (2) To address this challenge, we propose a novel Multi-Source Few-shot
Adaptation Network (MSFAN), which learns discriminative and domain-invariant features
from multiple domains with only few labels. (3) We conduct extensive MFDA experiments
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and demonstrate that the proposed method outperforms state-of-the-art MDA methods by
large margins across multiple benchmark datasets, with 20.2%, 9.4%, and 16.2% improve-
ment on O�ce, O�ce-Home, and DomainNet, respectively.

6.3 Multi-Source Few-shot Domain Adaptation

We consider the Multi-source Few-shot Domain Adaptation (MFDA) problem, in which there
is one unlabeled target domain and M partially labeled source domains. In the i-th source
domain, there is small labeled set Si = {(xj
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, y
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i
)}Ni

j=1, and a large unlabeled set S
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}
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both drawn from the source distribution pi(x, y) with partial label observation. Ni and
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. In the target domain, let T = {xj
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}
NT
j=1 denote the target data drawn from the

target distribution pT (x, y) without label observation, where NT is the number of target
samples. We aim to learn an adaptation model that can correctly predict labels of target
samples by training on {Si}

M
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Figure 6.1 provides an overview of the Multi-Source Few-show Domain Adaptaion (MS-

FAN) framework proposed in this chapter. It consists of a base model and three major com-
ponents: Multi-domain Prototypical Self-supervised Learning, Cross-domain Consistency via
Support Sets, and Multi-domain Prototypical Classifier Learning. Similar to many previous
works [253, 172, 233, 227], the base model of the MSFAN framework consists of a shared
feature extractor F and M classifiers {Ci}

M

i=1, one for each source domain. However, instead
of a standard linear classifier, each Ci is a cosine similarity-based classifier [32, 189]. In
addition, there is an `2 normalization layer between F and Ci, which output a feature vector
f 2 Rd.

Multi-domain Prototypical Self-supervised Learning

Learning discriminative target features with limited labels per source domain and no labels
in the target is a di�cult task as the only categorical grounding comes from the few labeled
source examples. To address this task, we propose to learn the latent feature-space clustering
of each source and target domain, and align clusters with the same category across di↵erent
domains in a self-supervised manner. Specifically, we use a ProtoNCE [136] loss to learn the
semantic feature of a single domain as it has been shown to semantically align data across a
single source and target domain [266]. We further extend it into the multi-source adaptation
scenario to learn better discriminative and domain-invariant features across all domains.

In-domain Prototypical Contrastive Learning. To learn a well-clustered semantic
structure in the feature space, it is problematic to apply ProtoNCE on a mixed dataset with
di↵erent distributions, because images of di↵erent categories from di↵erent domains may be
incorrectly aggregated into the same cluster. As a result, due to the domain shift between
sources and target, we cannot directly apply ProtoNCE to

S
M

i=1(Si[S
u

i
)[T as in [136], and
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Source 1

  Source

Target

<latexit sha1_base64="ctajA+Ew79AFF9gq5hDForI4aIg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzOmM8A==</latexit>

f

<latexit sha1_base64="/9/jGZ0vlRZWqdyEx+VyF790KTY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GOxF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G9ZnffuLaiFg94iThfkSHSoSCUbTSQ73v9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndV9e4vK7XbPI4inMApnIMH11CDO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gC8241x</latexit>

C1
labeled

unlabeled

<latexit sha1_base64="nltu1aRFihlrggQPUHfzNVBBUQg=">AAACAXicbVBNS8NAEN34WetX1IvgJVgETyURUY9FLx48VLAf0ISw2W7apZtN2J2IJcSLf8WLB0W8+i+8+W/ctDlo64OBx3szzMwLEs4U2Pa3sbC4tLyyWlmrrm9sbm2bO7ttFaeS0BaJeSy7AVaUM0FbwIDTbiIpjgJOO8HoqvA791QqFos7GCfUi/BAsJARDFryzX03wjAkmGc3uZ+5QB8gI1zluW/W7Lo9gTVPnJLUUImmb365/ZikERVAOFaq59gJeBmWwAinedVNFU0wGeEB7WkqcESVl00+yK0jrfStMJa6BFgT9fdEhiOlxlGgO4t71axXiP95vRTCCy9jIkmBCjJdFKbcgtgq4rD6TFICfKwJJpLpWy0yxBIT0KFVdQjO7MvzpH1Sd87qzu1prXFZxlFBB+gQHSMHnaMGukZN1EIEPaJn9IrejCfjxXg3PqatC0Y5s4f+wPj8AdrHl80=</latexit>

Lcls

labeled <latexit sha1_base64="nltu1aRFihlrggQPUHfzNVBBUQg=">AAACAXicbVBNS8NAEN34WetX1IvgJVgETyURUY9FLx48VLAf0ISw2W7apZtN2J2IJcSLf8WLB0W8+i+8+W/ctDlo64OBx3szzMwLEs4U2Pa3sbC4tLyyWlmrrm9sbm2bO7ttFaeS0BaJeSy7AVaUM0FbwIDTbiIpjgJOO8HoqvA791QqFos7GCfUi/BAsJARDFryzX03wjAkmGc3uZ+5QB8gI1zluW/W7Lo9gTVPnJLUUImmb365/ZikERVAOFaq59gJeBmWwAinedVNFU0wGeEB7WkqcESVl00+yK0jrfStMJa6BFgT9fdEhiOlxlGgO4t71axXiP95vRTCCy9jIkmBCjJdFKbcgtgq4rD6TFICfKwJJpLpWy0yxBIT0KFVdQjO7MvzpH1Sd87qzu1prXFZxlFBB+gQHSMHnaMGukZN1EIEPaJn9IrejCfjxXg3PqatC0Y5s4f+wPj8AdrHl80=</latexit>
Lcls

In-domain
Clustering

labeled

support set (unlabeled)
unlabeled

class prototype
different class

<latexit sha1_base64="ctajA+Ew79AFF9gq5hDForI4aIg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzOmM8A==</latexit>

f

<latexit sha1_base64="YnQJZD2R/8Bh6KZgngt6VZLMeT4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68VjBtIU2ls120i7dbMLuRiihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw2dZIphj5LRKLaIdUouETfcCOwnSqkcSiwFY5up37rCZXmiXww4xSDmA4kjzijxkr+uMcfvV6l6tbcGcgy8QpShQKNXuWr209YFqM0TFCtO56bmiCnynAmcFLuZhpTykZ0gB1LJY1RB/ns2Ak5tUqfRImyJQ2Zqb8nchprPY5D2xlTM9SL3lT8z+tkJroOci7TzKBk80VRJohJyPRz0ucKmRFjSyhT3N5K2JAqyozNp2xD8BZfXibN85p3WfPuL6r1myKOEhzDCZyBB1dQhztogA8MODzDK7w50nlx3p2PeeuKU8wcwR84nz+Ji46C</latexit>

y1
i

<latexit sha1_base64="IIMqYJEH2052jRNt7Z+K8W53Zoo=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqkxE1GXRjcsK9gHttGTSTBuayQxJplKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnW/ncLa+sbmVnG7tLO7t39QPjxq6ihRlDVoJCLV9olmgkvWMNwI1o4VI6EvWMsf32V+a8KU5pF8NNOYeSEZSh5wSoyVet2QmJEfpJNZH/dwv1xxq+4caJXgnFQgR71f/uoOIpqETBoqiNYd7MbGS4kynAo2K3UTzWJCx2TIOpZKEjLtpfPUM3RmlQEKImWfNGiu/t5ISaj1NPTtZJZSL3uZ+J/XSUxw46Vcxolhki4OBYlAJkJZBWjAFaNGTC0hVHGbFdERUYQaW1TJloCXv7xKmhdVfFXFD5eV2m1eRxFO4BTOAcM11OAe6tAACgqe4RXenCfnxXl3PhajBSffOYY/cD5/AFYBkmc=</latexit>

v1
1

<latexit sha1_base64="lbLb0D7K+j2w/QsUC+BAoC9N3Bs=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclUkRdVl047KCfUA7LZk004ZmMkOSqZSh/+HGhSJu/Rd3/o2ZdhbaeiBwOOde7snxY8G1cd1vZ219Y3Nru7BT3N3bPzgsHR03dZQoyho0EpFq+0QzwSVrGG4Ea8eKkdAXrOWP7zK/NWFK80g+mmnMvJAMJQ84JcZKvW5IzMgP0smsj3vVfqnsVtw50CrBOSlDjnq/9NUdRDQJmTRUEK072I2NlxJlOBVsVuwmmsWEjsmQdSyVJGTaS+epZ+jcKgMURMo+adBc/b2RklDraejbySylXvYy8T+vk5jgxku5jBPDJF0cChKBTISyCtCAK0aNmFpCqOI2K6Ijogg1tqiiLQEvf3mVNKsVfFXBD5fl2m1eRwFO4QwuAMM11OAe6tAACgqe4RXenCfnxXl3Phaja06+cwJ/4Hz+AFeFkmg=</latexit>

v2
1

Cross-domain Consistency via Support Sets

<latexit sha1_base64="755WaWzBmGl6okkVqJ0I9C922lw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqkxE1GXRjcsK9gHttGTSTBuayQxJplKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnW/ncLa+sbmVnG7tLO7t39QPjxq6ihRlDVoJCLV9olmgkvWMNwI1o4VI6EvWMsf32V+a8KU5pF8NNOYeSEZSh5wSoyVet2QmJEfpJNZn/dwv1xxq+4caJXgnFQgR71f/uoOIpqETBoqiNYd7MbGS4kynAo2K3UTzWJCx2TIOpZKEjLtpfPUM3RmlQEKImWfNGiu/t5ISaj1NPTtZJZSL3uZ+J/XSUxw46Vcxolhki4OBYlAJkJZBWjAFaNGTC0hVHGbFdERUYQaW1TJloCXv7xKmhdVfFXFD5eV2m1eRxFO4BTOAcM11OAe6tAACgqe4RXenCfnxXl3PhajBSffOYY/cD5/AKtRkp8=</latexit>

v1
i

<latexit sha1_base64="4V9/U+Xj5f0SvTB660VVHgry0t4=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZki6rLoxmUF+4B2WjJppg3NJEOSqZSh/+HGhSJu/Rd3/o2ZdhbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR03tUwUoQ0iuVTtAGvKmaANwwyn7VhRHAWctoLxXea3JlRpJsWjmcbUj/BQsJARbKzU60bYjIIwncz6rFftl8puxZ0DrRIvJ2XIUe+XvroDSZKICkM41rrjubHxU6wMI5zOit1E0xiTMR7SjqUCR1T76Tz1DJ1bZYBCqewTBs3V3xspjrSeRoGdzFLqZS8T//M6iQlv/JSJODFUkMWhMOHISJRVgAZMUWL41BJMFLNZERlhhYmxRRVtCd7yl1dJs1rxrirew2W5dpvXUYBTOIML8OAaanAPdWgAAQXP8ApvzpPz4rw7H4vRNSffOYE/cD5/AKzVkqA=</latexit>

v2
i

<latexit sha1_base64="8rk1KsBYjWKjcuQG6Sx2/tNEH8A=">AAAB9XicbVDLSgMxFL3xWeur6tJNsAiuyoyKuiy6cVnBPqCdlkyaaUMzmSHJVMrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4seDaOM43WlldW9/YLGwVt3d29/ZLB4cNHSWKsjqNRKRaPtFMcMnqhhvBWrFiJPQFa/qju8xvjpnSPJKPZhIzLyQDyQNOibFStxMSM/SDdDzt8e5Fr1R2Ks4MeJm4OSlDjlqv9NXpRzQJmTRUEK3brhMbLyXKcCrYtNhJNIsJHZEBa1sqSci0l85ST/GpVfo4iJR90uCZ+nsjJaHWk9C3k1lKvehl4n9eOzHBjZdyGSeGSTo/FCQCmwhnFeA+V4waMbGEUMVtVkyHRBFqbFFFW4K7+OVl0jivuFcV9+GyXL3N6yjAMZzAGbhwDVW4hxrUgYKCZ3iFN/SEXtA7+piPrqB85wj+AH3+AK5ZkqE=</latexit>

v3
i

<latexit sha1_base64="Sj7esh4MstjN7bWA77JL8tgLdGk=">AAAB7HicbZC7TsMwFIZPyq20XFqYEItFhMRUJR2AsYKFsUikrdSGynGd1qrjRLaDFEV9BhYGEGLlgdiYeAReAfcyQMsvWfr0/+fI55wg4Uxpx/m0CmvrG5tbxe1SeWd3b79SPWipOJWEeiTmsewEWFHOBPU005x2EklxFHDaDsbX07z9QKVisbjTWUL9CA8FCxnB2lhe1mf39X7FdmrOTGgV3AXYDfvoqyq/y81+5aM3iEkaUaEJx0p1XSfRfo6lZoTTSamXKppgMsZD2jUocESVn8+GnaBT4wxQGEvzhEYz93dHjiOlsigwlRHWI7WcTc3/sm6qw0s/ZyJJNRVk/lGYcqRjNN0cDZikRPPMACaSmVkRGWGJiTb3KZkjuMsrr0KrXnPPa+6tazeuYK4iHMMJnIELF9CAG2iCBwQYPMIzvFjCerJerbd5acFa9BzCH1nvP1ykkVg=</latexit>

y2
i

<latexit sha1_base64="8JrK1G6QjTot/VQmAthZlspLaeY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8cKpi20sWy2m3bpZjfsboQQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MOFMG9f9dkorq2vrG+XNytb2zu5edf+gpWWqCPWJ5FJ1QqwpZ4L6hhlOO4miOA45bYfj26nffqJKMykeTJbQIMZDwSJGsLGSn/XZ43m/WnPr7gxomXgFqUGBZr/61RtIksZUGMKx1l3PTUyQY2UY4XRS6aWaJpiM8ZB2LRU4pjrIZ8dO0IlVBiiSypYwaKb+nshxrHUWh7YzxmakF72p+J/XTU10HeRMJKmhgswXRSlHRqLp52jAFCWGZ5Zgopi9FZERVpgYm0/FhuAtvrxMWmd177Lu3V/UGjdFHGU4gmM4BQ+uoAF30AQfCDB4hld4c4Tz4rw7H/PWklPMHMIfOJ8/jJOOhA==</latexit>

y3
i

<latexit sha1_base64="IE2RkJhM+ODKT55wIHxbiXNfVgI=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclYmKuiy6cVnBPqCdlkyaaUMzmSHJVMrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+T4seDauO63s7K6tr6xWdgqbu/s7u2XDg4bOkoUZXUaiUi1fKKZ4JLVDTeCtWLFSOgL1vRHd5nfHDOleSQfzSRmXkgGkgecEmOlbickZugH6Xjaw92LXqnsVtwZ0DLBOSlDjlqv9NXpRzQJmTRUEK3b2I2NlxJlOBVsWuwkmsWEjsiAtS2VJGTaS2epp+jUKn0URMo+adBM/b2RklDrSejbySylXvQy8T+vnZjgxku5jBPDJJ0fChKBTISyClCfK0aNmFhCqOI2K6JDogg1tqiiLQEvfnmZNM4r+KqCHy7L1du8jgIcwwmcAYZrqMI91KAOFBQ8wyu8OU/Oi/PufMxHV5x85wj+wPn8AVkJkmk=</latexit>

v3
1

<latexit sha1_base64="qnaL8O+8cPCU8jtJc09u+7u2hkI=">AAACAXicbVDLSsNAFJ3UV62vqBvBTbAIrkoioi6L3bhwUal9QBPCZDpph04ezNyIJcSNv+LGhSJu/Qt3/o2TNgttPXDhcM693HuPF3MmwTS/tdLS8srqWnm9srG5tb2j7+51ZJQIQtsk4pHoeVhSzkLaBgac9mJBceBx2vXGjdzv3lMhWRTewSSmToCHIfMZwaAkVz+wAwwjgnl6k7mpDfQB0larkWWuXjVr5hTGIrEKUkUFmq7+ZQ8ikgQ0BMKxlH3LjMFJsQBGOM0qdiJpjMkYD2lf0RAHVDrp9IPMOFbKwPAjoSoEY6r+nkhxIOUk8FRnfq+c93LxP6+fgH/ppCyME6AhmS3yE25AZORxGAMmKAE+UQQTwdStBhlhgQmo0CoqBGv+5UXSOa1Z5zXr9qxavyriKKNDdIROkIUuUB1doyZqI4Ie0TN6RW/ak/aivWsfs9aSVszsoz/QPn8AUviXdA==</latexit>

LSSC

<latexit sha1_base64="UMSuR8NfI2AmIlHPPogJZKF0FYg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU8mKVI9FLx4rmLbQxrLZbtqlm03Y3Qgh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Nq777ZTW1jc2t8rblZ3dvf2D6uFRW8eposyjsYhVNyCaCS6ZZ7gRrJsoRqJAsE4wuZ35nSemNI/lg8kS5kdkJHnIKTFW8rIBfsSDas2tu3OgVYILUoMCrUH1qz+MaRoxaaggWvewmxg/J8pwKti00k81SwidkBHrWSpJxLSfz4+dojOrDFEYK1vSoLn6eyInkdZZFNjOiJixXvZm4n9eLzXhtZ9zmaSGSbpYFKYCmRjNPkdDrhg1IrOEUMXtrYiOiSLU2HwqNgS8/PIqaV/UcaOO7y9rzZsijjKcwCmcA4YraMIdtMADChye4RXeHOm8OO/Ox6K15BQzx/AHzucPNDuOSg==</latexit>

y1
1

<latexit sha1_base64="jZcmUyWdNKFBCID472+V2rKe+gc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU8kWUY9FLx4rmLbQxrLZbtqlm03Y3Qgh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Nq777ZTW1jc2t8rblZ3dvf2D6uFRW8eposyjsYhVNyCaCS6ZZ7gRrJsoRqJAsE4wuZ35nSemNI/lg8kS5kdkJHnIKTFW8rIBfmwMqjW37s6BVgkuSA0KtAbVr/4wpmnEpKGCaN3DbmL8nCjDqWDTSj/VLCF0QkasZ6kkEdN+Pj92is6sMkRhrGxJg+bq74mcRFpnUWA7I2LGetmbif95vdSE137OZZIaJuliUZgKZGI0+xwNuWLUiMwSQhW3tyI6JopQY/Op2BDw8surpN2o48s6vr+oNW+KOMpwAqdwDhiuoAl30AIPKHB4hld4c6Tz4rw7H4vWklPMHMMfOJ8/Nb+OSw==</latexit>

y2
1

<latexit sha1_base64="ZQ+WTWD3i20pTgARq5Z3uIrltGk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8cKpi20sWy2m3bpZjfsboQQ+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MOFMG9f9dkorq2vrG+XNytb2zu5edf+gpWWqCPWJ5FJ1QqwpZ4L6hhlOO4miOA45bYfj26nffqJKMykeTJbQIMZDwSJGsLGSn/W9x/N+tebW3RnQMvEKUoMCzX71qzeQJI2pMIRjrbuem5ggx8owwumk0ks1TTAZ4yHtWipwTHWQz46doBOrDFAklS1h0Ez9PZHjWOssDm1njM1IL3pT8T+vm5roOsiZSFJDBZkvilKOjETTz9GAKUoMzyzBRDF7KyIjrDAxNp+KDcFbfHmZtM7q3mXdu7+oNW6KOMpwBMdwCh5cQQPuoAk+EGDwDK/w5gjnxXl3PuatJaeYOYQ/cD5/ADdDjkw=</latexit>

y3
1

<latexit sha1_base64="jwC4LrnZNy1I1Fy6MYfLbluNvmA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9P3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwYKjaE=</latexit>s1

Prototypical Self-Supervised Learning

<latexit sha1_base64="ctajA+Ew79AFF9gq5hDForI4aIg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzOmM8A==</latexit>

f

<latexit sha1_base64="Ob/8HNiJnpbtp4Vk2FW1XW90g2w=">AAACAXicbVDLSsNAFJ3UV62vqCCCm2ARXJXEhbosdaPgokX7gCaEyXTaDp08mLkRS4gbf8WNi4q4desXuHPjtzhpu9DWAxcO59zLvfd4EWcSTPNLyy0sLi2v5FcLa+sbm1v69k5DhrEgtE5CHoqWhyXlLKB1YMBpKxIU+x6nTW9wkfnNOyokC4NbGEbU8XEvYF1GMCjJ1fdtH0OfYJ5cp25iA72H5Kp6k6auXjRL5hjGPLGmpFjeq32zUeWj6uqfdicksU8DIBxL2bbMCJwEC2CE07Rgx5JGmAxwj7YVDbBPpZOMP0iNI6V0jG4oVAVgjNXfEwn2pRz6nurM7pWzXib+57Vj6J47CQuiGGhAJou6MTcgNLI4jA4TlAAfKoKJYOpWg/SxwARUaAUVgjX78jxpnJSs05JVs4rlCpogjw7QITpGFjpDZXSJqqiOCHpAT2iEXrRH7Vl71d4mrTltOrOL/kB7/wE2a5sV</latexit>

LIPS

<latexit sha1_base64="K7npxPvQc1opTWw/h+Tx5LorhQU=">AAACAXicbVC7SgNBFJ2Nrxhfq4IINotBsAq7FmoZksbCIkHzgOyyzE4myZDZBzN3xbCsjb9iYxERW1u/wM7Gb3E2SaGJBy4czrmXe+/xIs4kmOaXlltaXlldy68XNja3tnf03b2mDGNBaIOEPBRtD0vKWUAbwIDTdiQo9j1OW96wmvmtOyokC4NbGEXU8XE/YD1GMCjJ1Q9tH8OAYJ5cp25iA72HpFq7SVNXL5olcwJjkVgzUiwf1L/ZuPJRc/VPuxuS2KcBEI6l7FhmBE6CBTDCaVqwY0kjTIa4TzuKBtin0kkmH6TGiVK6Ri8UqgIwJurviQT7Uo58T3Vm98p5LxP/8zox9C6dhAVRDDQg00W9mBsQGlkcRpcJSoCPFMFEMHWrQQZYYAIqtIIKwZp/eZE0z0rWecmqW8VyBU2RR0foGJ0iC12gMrpCNdRABD2gJzRGL9qj9qy9am/T1pw2m9lHf6C9/wAtO5sP</latexit>

LCPS
Entropy

 Minimization

Cross-Entropy

<latexit sha1_base64="y5m7MtdyLfXqFkMl4SO2Kxj2YdU=">AAAB8nicbZC7SgNBFIZn4y3GW9TSZjAIFjHsWKhl0MYygrnAJobZyWwyZC7LzKwQljyGjaAiFjZWPoqdL2DrKzi5FJr4w8DH/5/DnHPCmDNjff/TyywsLi2vZFdza+sbm1v57Z2aUYkmtEoUV7oRYkM5k7RqmeW0EWuKRchpPexfjPL6LdWGKXltBzFtCdyVLGIEW2cFTZHcmHbKimjYzhf8kj8WnAc0hUK5+PX6/fB+VGnnP5odRRJBpSUcGxMgP7atFGvLCKfDXDMxNMakj7s0cCixoKaVjkcewgPndGCktHvSwrH7uyPFwpiBCF2lwLZnZrOR+V8WJDY6a6VMxomlkkw+ihIOrYKj/WGHaUosHzjARDM3KyQ9rDGx7ko5dwQ0u/I81I5L6KSErlChfA4myoI9sA8OAQKnoAwuQQVUAQEK3IFH8ORZ79579l4mpRlv2rML/sh7+wHzyZV7</latexit>

µs
i,1

<latexit sha1_base64="A/ON/K1PuvgtC3pa9a8fHhNGiOc=">AAAB8nicbZC7SgNBFIZnvcZ4i1raDAbBIobdFGoZtLGMYC6wiWF2MpsMmZ1ZZs4KYclj2AgqYmFj5aPY+QK2voKTS6GJPwx8/P85zDkniAU34LqfzsLi0vLKamYtu76xubWd29mtGZVoyqpUCaUbATFMcMmqwEGwRqwZiQLB6kH/YpTXb5k2XMlrGMSsFZGu5CGnBKzlN6PkxrRTXigN27m8W3THwvPgTSFfLny9fj+8H1fauY9mR9EkYhKoIMb4nhtDKyUaOBVsmG0mhsWE9kmX+RYliZhppeORh/jQOh0cKm2fBDx2f3ekJDJmEAW2MiLQM7PZyPwv8xMIz1opl3ECTNLJR2EiMCg82h93uGYUxMACoZrbWTHtEU0o2Ctl7RG82ZXnoVYqeidF78rLl8/RRBm0jw7QEfLQKSqjS1RBVUSRQnfoET054Nw7z87LpHTBmfbsoT9y3n4A9U6VfA==</latexit>

µs
i,2

<latexit sha1_base64="IvOL62PKo+ztP8hOEoWURv6PnrQ=">AAAB8nicbZDNSgMxFIUztWqtWqtuBDfBIriQMuNCXRbduKxgf2A6lkyaaUMzyZDcEcrQR3Alblwo4tancefbmP4stPVA4OOce8m9N0wEN+C6305uJb+6tl7YKG5ubZd2yrt7TaNSTVmDKqF0OySGCS5ZAzgI1k40I3EoWCscXk/y1gPThit5B6OEBTHpSx5xSsBafidO700346fDcbdccavuVHgZvDlUatXHUjN/8FTvlr86PUXTmEmgghjje24CQUY0cCrYuNhJDUsIHZI+8y1KEjMTZNORx/jYOj0cKW2fBDx1f3dkJDZmFIe2MiYwMIvZxPwv81OILoOMyyQFJunsoygVGBSe7I97XDMKYmSBUM3trJgOiCYU7JWK9gje4srL0DyreudV79ar1K7QTAV0iI7QCfLQBaqhG1RHDUSRQs/oFb054Lw4787HrDTnzHv20R85nz8nk5Nf</latexit>

µs
i,k

<latexit sha1_base64="M13lQ6vLCyCIehWi8kIKRoou39g=">AAAB8HicbZDLSgMxFIbP1Futt2qXbkKL4MYycaGCm6IblxXsRdqxZNK0DU0yQ5IRytCncONCEbc+jAt3Poh709aFtv4Q+Pj/c8g5J4wFN9b3P73M0vLK6lp2PbexubW9k9/dq5so0ZTVaCQi3QyJYYIrVrPcCtaMNSMyFKwRDi8neeOeacMjdWNHMQsk6Sve45RYZ922ZXJnOyked/Ilv+xPhRYB/0CpUjw/Uu+Fr2on/9HuRjSRTFkqiDEt7Mc2SIm2nAo2zrUTw2JCh6TPWg4VkcwE6XTgMTpwThf1Iu2esmjq/u5IiTRmJENXKYkdmPlsYv6XtRLbOwtSruLEMkVnH/USgWyEJtujLteMWjFyQKjmblZEB0QTat2Ncu4IeH7lRagfl/FJGV/jUuUCZsrCPhThEDCcQgWuoAo1oCDhAZ7g2dPeo/fivc5KM95PTwH+yHv7BvM4k30=</latexit>

µt
1

<latexit sha1_base64="IWz7wC7Rm7nkaEPeIJlOA7vu+Xo=">AAAB8HicbZC7SgNBFIZn4y3GWzSlzZAg2Bh2U6hgE7SxjGAukqxhdjKbDJmZXWbOCmHJU9hYKGLrw1jY+SD2Ti6FJv4w8PH/5zDnnCAW3IDrfjmZldW19Y3sZm5re2d3L79/0DBRoimr00hEuhUQwwRXrA4cBGvFmhEZCNYMhleTvPnAtOGRuoVRzHxJ+oqHnBKw1l1HJvfQTSvjbr7klt2p8DJ4cyhVixcn6qPwXevmPzu9iCaSKaCCGNP23Bj8lGjgVLBxrpMYFhM6JH3WtqiIZMZPpwOP8ZF1ejiMtH0K8NT93ZESacxIBrZSEhiYxWxi/pe1EwjP/ZSrOAGm6OyjMBEYIjzZHve4ZhTEyAKhmttZMR0QTSjYG+XsEbzFlZehUSl7p2XvxitVL9FMWXSIiugYeegMVdE1qqE6okiiR/SMXhztPDmvztusNOPMewroj5z3H/S9k34=</latexit>

µt
2

<latexit sha1_base64="jtnN5QAfdX2sx86NbbjIjlpwtm0=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EquCozLtRlVRCXFexF2rFk0kwbmmSGJCOUoU/hxoVF3PoUPoM738C1T2B6WWjrD4GP/z+HnHOCmDNtXPfTySwsLi2vZFdza+sbm1v57Z2qjhJFaIVEPFL1AGvKmaQVwwyn9VhRLAJOa0HvcpTXHqjSLJK3ph9TX+COZCEj2FjrrimSe9NKe4NWvuAW3bHQPHhTKJQO3q++vofn5Vb+o9mOSCKoNIRjrRueGxs/xcowwukg10w0jTHp4Q5tWJRYUO2n44EH6NA6bRRGyj5p0Nj93ZFioXVfBLZSYNPVs9nI/C9rJCY881Mm48RQSSYfhQlHJkKj7VGbKUoM71vARDE7KyJdrDAx9kY5ewRvduV5qB4XvZOid+MVShcwURb2YB+OwINTKME1lKECBAQ8wjMMHeU8OS/O66Q040x7duGPnLcfwGWUyw==</latexit>

µt
k

<latexit sha1_base64="13QisdF5bdMw+E7ooFd/X2GvnUM=">AAAB7HicbZDLSgMxFIbP1FttvbS6EjfBQXBVJi7UZdGNywpOK7RjyaSZNjSTGZKMUIY+gxsXirj1gdy58hF8BdPLQlt/CHz8/znknBOmgmvjeZ9OYWV1bX2juFkqb23v7Faqe02dZIoynyYiUXch0UxwyXzDjWB3qWIkDgVrhcOrSd56YErzRN6aUcqCmPQljzglxlp+4153ebfiejVvKrQMeA5u3T34qqrvcqNb+ej0EprFTBoqiNZt7KUmyIkynAo2LnUyzVJCh6TP2hYliZkO8umwY3RsnR6KEmWfNGjq/u7ISaz1KA5tZUzMQC9mE/O/rJ2Z6CLIuUwzwySdfRRlApkETTZHPa4YNWJkgVDF7ayIDogi1Nj7lOwR8OLKy9A8reGzGr7Bbv0SZirCIRzBCWA4hzpcQwN8oMDhEZ7hxZHOk/PqvM1KC868Zx/+yHn/AYBykXA=</latexit>

P s
i

<latexit sha1_base64="Mu5X997mPCH+Dpz+wHrCaEHceOA=">AAAB+3icbVC7TsNAEDyHVzAvE0qaExESVWRTAA0igoYySOQhJSE6X87JKWefdbcGIsu/QpMChGj5BnoaxN9weRSQMNJKo5ld7e74seAaXPfbyi0tr6yu5dftjc2t7R1nt1DTMlGUVakUUjV8opngEasCB8EasWIk9AWr+4OrsV+/Z0pzGd3CMGbtkPQiHnBKwEgdp1C5S3lL8V4fiFLyAUPWcYpuyZ0ALxJvRooXH/Z5PPqyKx3ns9WVNAlZBFQQrZueG0M7JQo4FSyzW4lmMaED0mNNQyMSMt1OJ7dn+NAoXRxIZSoCPFF/T6Qk1HoY+qYzJNDX895Y/M9rJhCctVMexQmwiE4XBYnAIPE4CNzlilEQQ0MIVdzcimmfKELBxGWbELz5lxdJ7bjknZS8G69YvkRT5NE+OkBHyEOnqIyuUQVVEUWP6Ak9oxcrs0bWq/U2bc1Zs5k99AfW+w/Fupfr</latexit>

P i�t

Support 
Set

<latexit sha1_base64="8OVrkBvh6sxWxcKfjZQYHgmH/N0=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclYyIuiy6cVnBPqCNZTKdtEMnkzAzsZSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udt1va2V1bX1js7RV3t7Z3du3KwctFSWS0CaJeCQ7PlaUM0GbmmlOO7GkOPQ5bfvjm9xvP1KpWCTu9TSmXoiHggWMYG2kvl3phViP/CCdZH30kKKs3Lerbs2dwVkmqCBVKNDo21+9QUSSkApNOFaqi9xYeymWmhFOs3IvUTTGZIyHtGuowCFVXjqLnjknRhk4QSTNE9qZqb83UhwqNQ19M5kHVYteLv7ndRMdXHkpE3GiqSDzQ0HCHR05eQ/OgElKNJ8agolkJqtDRlhiok1beQlo8cvLpHVWQxc1dHderV8XdZTgCI7hFBBcQh1uoQFNIDCBZ3iFN+vJerHerY/56IpV7BzCH1ifP9d0k7k=</latexit>

w1
1

<latexit sha1_base64="ZYVHjLhdCp4b6QrgNRykXdELigE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUmKqMuiG5cV7APaGCbTSTt0MgkzE0uJ+RQ3LhRx65e4829M2iy09cDA4Zx7uWeOF3GmtGV9G6W19Y3NrfJ2ZWd3b//ArB52VBhLQtsk5KHseVhRzgRta6Y57UWS4sDjtOtNbnK/+0ilYqG417OIOgEeCeYzgnUmuWZ1EGA99vxkmrr2Q9JIK65Zs+rWHGiV2AWpQYGWa34NhiGJAyo04Vipvm1F2kmw1IxwmlYGsaIRJhM8ov2MChxQ5STz6Ck6zZQh8kOZPaHRXP29keBAqVngZZN5ULXs5eJ/Xj/W/pWTMBHFmgqyOOTHHOkQ5T2gIZOUaD7LCCaSZVkRGWOJic7aykuwl7+8SjqNun1Rt+/Oa83roo4yHMMJnIENl9CEW2hBGwhM4Rle4c14Ml6Md+NjMVoyip0j+APj8wfY+pO6</latexit>

w2
1

<latexit sha1_base64="kKvjeSoqlHFHjyRDh6R7Ugs+7jY=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBIvgqiQi6rLoxmUF+4A2hsl00g6dTMLMRAkh/oobF4q49UPc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G5WV1bX1jepmbWt7Z3fP3D/oyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+fXhd+74EISSN+p9KYuCEacxpQjJSWPLM+DJGa+EH2mHvOfcY9nNc8s2E37RmsZeKUpAEl2p75NRxFOAkJV5ghKQeOHSs3Q0JRzEheGyaSxAhP0ZgMNOUoJNLNZuFz61grIyuIhH5cWTP190aGQinT0NeTRVS56BXif94gUcGlm1EeJ4pwPD8UJMxSkVU0YY2oIFixVBOEBdVZLTxBAmGl+ypKcBa/vEy6p03nvOncnjVaV2UdVTiEIzgBBy6gBTfQhg5gSOEZXuHNeDJejHfjYz5aMcqdOvyB8fkDstuUzA==</latexit>

wnc
1

<latexit sha1_base64="wkt1QrWEaKutvxyA6bbHBfbqXto=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBIvgqiQi6rLoxmUF+4A2hsl00g6dTMLMRAkh/oobF4q49UPc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G5WV1bX1jepmbWt7Z3fP3D/oyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+fXhd+74EISSN+p9KYuCEacxpQjJSWPLM+DJGa+EH2mHv0PuMezmue2bCb9gzWMnFK0oASbc/8Go4inISEK8yQlAPHjpWbIaEoZiSvDRNJYoSnaEwGmnIUEulms/C5dayVkRVEQj+urJn6eyNDoZRp6OvJIqpc9ArxP2+QqODSzSiPE0U4nh8KEmapyCqasEZUEKxYqgnCguqsFp4ggbDSfRUlOItfXibd06Zz3nRuzxqtq7KOKhzCEZyAAxfQghtoQwcwpPAMr/BmPBkvxrvxMR+tGOVOHf7A+PwBCVKVBA==</latexit>

wnc
i

<latexit sha1_base64="8OVrkBvh6sxWxcKfjZQYHgmH/N0=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclYyIuiy6cVnBPqCNZTKdtEMnkzAzsZSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY86Udt1va2V1bX1js7RV3t7Z3du3KwctFSWS0CaJeCQ7PlaUM0GbmmlOO7GkOPQ5bfvjm9xvP1KpWCTu9TSmXoiHggWMYG2kvl3phViP/CCdZH30kKKs3Lerbs2dwVkmqCBVKNDo21+9QUSSkApNOFaqi9xYeymWmhFOs3IvUTTGZIyHtGuowCFVXjqLnjknRhk4QSTNE9qZqb83UhwqNQ19M5kHVYteLv7ndRMdXHkpE3GiqSDzQ0HCHR05eQ/OgElKNJ8agolkJqtDRlhiok1beQlo8cvLpHVWQxc1dHderV8XdZTgCI7hFBBcQh1uoQFNIDCBZ3iFN+vJerHerY/56IpV7BzCH1ifP9d0k7k=</latexit>

w1
1

<latexit sha1_base64="ZYVHjLhdCp4b6QrgNRykXdELigE=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUmKqMuiG5cV7APaGCbTSTt0MgkzE0uJ+RQ3LhRx65e4829M2iy09cDA4Zx7uWeOF3GmtGV9G6W19Y3NrfJ2ZWd3b//ArB52VBhLQtsk5KHseVhRzgRta6Y57UWS4sDjtOtNbnK/+0ilYqG417OIOgEeCeYzgnUmuWZ1EGA99vxkmrr2Q9JIK65Zs+rWHGiV2AWpQYGWa34NhiGJAyo04Vipvm1F2kmw1IxwmlYGsaIRJhM8ov2MChxQ5STz6Ck6zZQh8kOZPaHRXP29keBAqVngZZN5ULXs5eJ/Xj/W/pWTMBHFmgqyOOTHHOkQ5T2gIZOUaD7LCCaSZVkRGWOJic7aykuwl7+8SjqNun1Rt+/Oa83roo4yHMMJnIENl9CEW2hBGwhM4Rle4c14Ml6Md+NjMVoyip0j+APj8wfY+pO6</latexit>

w2
1

<latexit sha1_base64="kKvjeSoqlHFHjyRDh6R7Ugs+7jY=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBIvgqiQi6rLoxmUF+4A2hsl00g6dTMLMRAkh/oobF4q49UPc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G5WV1bX1jepmbWt7Z3fP3D/oyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+fXhd+74EISSN+p9KYuCEacxpQjJSWPLM+DJGa+EH2mHvOfcY9nNc8s2E37RmsZeKUpAEl2p75NRxFOAkJV5ghKQeOHSs3Q0JRzEheGyaSxAhP0ZgMNOUoJNLNZuFz61grIyuIhH5cWTP190aGQinT0NeTRVS56BXif94gUcGlm1EeJ4pwPD8UJMxSkVU0YY2oIFixVBOEBdVZLTxBAmGl+ypKcBa/vEy6p03nvOncnjVaV2UdVTiEIzgBBy6gBTfQhg5gSOEZXuHNeDJejHfjYz5aMcqdOvyB8fkDstuUzA==</latexit>

wnc
1

<latexit sha1_base64="nlCkhhzrBd/ehf0k6yyeTO6J0sc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU4P1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo1Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A0XWM8w==</latexit>

i

<latexit sha1_base64="8zMZx9Um/uTgvNnqjb2GSGqsuxY=">AAACAHicbVBNS8NAEN3Ur1q/oh48eAkWwVNJRNRj0YuCQgX7AU0Im+22XbrZhN2JWEIu/hUvHhTx6s/w5r9x0+agrQ8GHu/NMDMviDlTYNvfRmlhcWl5pbxaWVvf2Nwyt3daKkokoU0S8Uh2AqwoZ4I2gQGnnVhSHAactoPRZe63H6hULBL3MI6pF+KBYH1GMGjJN/fcEMOQYJ7eZH7qAn2E9PY6y3yzatfsCax54hSkigo0fPPL7UUkCakAwrFSXceOwUuxBEY4zSpuomiMyQgPaFdTgUOqvHTyQGYdaqVn9SOpS4A1UX9PpDhUahwGujM/V816ufif102gf+6lTMQJUEGmi/oJtyCy8jSsHpOUAB9rgolk+laLDLHEBHRmFR2CM/vyPGkd15zTmnN3Uq1fFHGU0T46QEfIQWeojq5QAzURQRl6Rq/ozXgyXox342PaWjKKmV30B8bnD6aslxc=</latexit>

LMI

unlabeled

<latexit sha1_base64="8zMZx9Um/uTgvNnqjb2GSGqsuxY=">AAACAHicbVBNS8NAEN3Ur1q/oh48eAkWwVNJRNRj0YuCQgX7AU0Im+22XbrZhN2JWEIu/hUvHhTx6s/w5r9x0+agrQ8GHu/NMDMviDlTYNvfRmlhcWl5pbxaWVvf2Nwyt3daKkokoU0S8Uh2AqwoZ4I2gQGnnVhSHAactoPRZe63H6hULBL3MI6pF+KBYH1GMGjJN/fcEMOQYJ7eZH7qAn2E9PY6y3yzatfsCax54hSkigo0fPPL7UUkCakAwrFSXceOwUuxBEY4zSpuomiMyQgPaFdTgUOqvHTyQGYdaqVn9SOpS4A1UX9PpDhUahwGujM/V816ufif102gf+6lTMQJUEGmi/oJtyCy8jSsHpOUAB9rgolk+laLDLHEBHRmFR2CM/vyPGkd15zTmnN3Uq1fFHGU0T46QEfIQWeojq5QAzURQRl6Rq/ozXgyXox342PaWjKKmV30B8bnD6aslxc=</latexit>

LMI

<latexit sha1_base64="sT1m/WhZqRzLrgc6SvgXy7Ym7CM=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahgpRdEfVY9OKxgv3AdinZbLYNzSZLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBQln2rjut1NYWV1b3yhulra2d3b3yvsHLS1TRWiTSC5VJ8CaciZo0zDDaSdRFMcBp+1gdDv1209UaSbFgxkn1I/xQLCIEWys9BhWo7MeCaU57Zcrbs2dAS0TLycVyNHol796oSRpTIUhHGvd9dzE+BlWhhFOJ6VeqmmCyQgPaNdSgWOq/Wx28QSdWCVEkVS2hEEz9fdEhmOtx3FgO2NshnrRm4r/ed3URNd+xkSSGirIfFGUcmQkmr6PQqYoMXxsCSaK2VsRGWKFibEhlWwI3uLLy6R1XvMua979RaV+k8dRhCM4hip4cAV1uIMGNIGAgGd4hTdHOy/Ou/Mxby04+cwh/IHz+QOOF5Ax</latexit>

d(f, ·)

<latexit sha1_base64="sT1m/WhZqRzLrgc6SvgXy7Ym7CM=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahgpRdEfVY9OKxgv3AdinZbLYNzSZLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBQln2rjut1NYWV1b3yhulra2d3b3yvsHLS1TRWiTSC5VJ8CaciZo0zDDaSdRFMcBp+1gdDv1209UaSbFgxkn1I/xQLCIEWys9BhWo7MeCaU57Zcrbs2dAS0TLycVyNHol796oSRpTIUhHGvd9dzE+BlWhhFOJ6VeqmmCyQgPaNdSgWOq/Wx28QSdWCVEkVS2hEEz9fdEhmOtx3FgO2NshnrRm4r/ed3URNd+xkSSGirIfFGUcmQkmr6PQqYoMXxsCSaK2VsRGWKFibEhlWwI3uLLy6R1XvMua979RaV+k8dRhCM4hip4cAV1uIMGNIGAgGd4hTdHOy/Ou/Mxby04+cwh/IHz+QOOF5Ax</latexit>

d(f, ·)

<latexit sha1_base64="huGjp/7X5D20y8rcIf/3porI4o0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeiwK4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WDGSfoR3QgecgZNVaq3/VKZbfizkCWiZeTMuSo9Upf3X7M0gilYYJq3fHcxPgZVYYzgZNiN9WYUDaiA+xYKmmE2s9mh07IqVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeG1n3GZpAYlmy8KU0FMTKZfkz5XyIwYW0KZ4vZWwoZUUWZsNkUbgrf48jJpnle8y4pXvyhXb/I4CnAMJ3AGHlxBFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MHnGmM0A==</latexit>

F
<latexit sha1_base64="N1R4BfvOZ0ioVK7DbNCT9um/l6w=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqkxE1GXRjcsK9gHttGTSTBuayQxJxlKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnW/ncLa+sbmVnG7tLO7t39QPjxq6ihRlDVoJCLV9olmgkvWMNwI1o4VI6EvWMsf32V+64kpzSP5aKYx80IylDzglBgr9bohMSM/SCezPu/hfrniVt050CrBOalAjnq//NUdRDQJmTRUEK072I2NlxJlOBVsVuommsWEjsmQdSyVJGTaS+epZ+jMKgMURMo+adBc/b2RklDraejbySylXvYy8T+vk5jgxku5jBPDJF0cChKBTISyCtCAK0aNmFpCqOI2K6Ijogg1tqiSLQEvf3mVNC+q+KqKHy4rtdu8jiKcwCmcA4ZrqME91KEBFBQ8wyu8ORPnxXl3PhajBSffOYY/cD5/AKzakqA=</latexit>

w1
i

<latexit sha1_base64="veDfBx25JN8RSJb1dm4OE30b0ck=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZki6rLoxmUF+4B2WjJppg3NJEOSsZSh/+HGhSJu/Rd3/o2ZdhbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR03tUwUoQ0iuVTtAGvKmaANwwyn7VhRHAWctoLxXea3nqjSTIpHM42pH+GhYCEj2Fip142wGQVhOpn1Wa/aL5XdijsHWiVeTsqQo94vfXUHkiQRFYZwrHXHc2Pjp1gZRjidFbuJpjEmYzykHUsFjqj203nqGTq3ygCFUtknDJqrvzdSHGk9jQI7maXUy14m/ud1EhPe+CkTcWKoIItDYcKRkSirAA2YosTwqSWYKGazIjLCChNjiyraErzlL6+SZrXiXVW8h8ty7TavowCncAYX4ME11OAe6tAAAgqe4RXenInz4rw7H4vRNSffOYE/cD5/AK5ekqE=</latexit>

w2
i

<latexit sha1_base64="VyH19GGpTIKdqthkUqdrlDOQLp0=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUlE1GXRjcsK9gFtDZPppB06mYSZiVpCfsWNC0Xc+iPu/BsnbRbaemDgcM693DPHjzlT2nG+rdLK6tr6RnmzsrW9s7tn71fbKkokoS0S8Uh2fawoZ4K2NNOcdmNJcehz2vEn17nfeaBSsUjc6WlMByEeCRYwgrWRPLvaD7Ee+0H6mHnsPhUeyTy75tSdGdAycQtSgwJNz/7qDyOShFRowrFSPdeJ9SDFUjPCaVbpJ4rGmEzwiPYMFTikapDOsmfo2ChDFETSPKHRTP29keJQqWnom8k8qVr0cvE/r5fo4HKQMhEnmgoyPxQkHOkI5UWgIZOUaD41BBPJTFZExlhiok1dFVOCu/jlZdI+rbvndff2rNa4KuoowyEcwQm4cAENuIEmtIDAEzzDK7xZmfVivVsf89GSVewcwB9Ynz/Na5Tw</latexit>

wnc
i

<latexit sha1_base64="veDfBx25JN8RSJb1dm4OE30b0ck=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZki6rLoxmUF+4B2WjJppg3NJEOSsZSh/+HGhSJu/Rd3/o2ZdhbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR03tUwUoQ0iuVTtAGvKmaANwwyn7VhRHAWctoLxXea3nqjSTIpHM42pH+GhYCEj2Fip142wGQVhOpn1Wa/aL5XdijsHWiVeTsqQo94vfXUHkiQRFYZwrHXHc2Pjp1gZRjidFbuJpjEmYzykHUsFjqj203nqGTq3ygCFUtknDJqrvzdSHGk9jQI7maXUy14m/ud1EhPe+CkTcWKoIItDYcKRkSirAA2YosTwqSWYKGazIjLCChNjiyraErzlL6+SZrXiXVW8h8ty7TavowCncAYX4ME11OAe6tAAAgqe4RXenInz4rw7H4vRNSffOYE/cD5/AK5ekqE=</latexit>

w2
i

<latexit sha1_base64="N1R4BfvOZ0ioVK7DbNCT9um/l6w=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqkxE1GXRjcsK9gHttGTSTBuayQxJxlKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uSfHjwXXxnW/ncLa+sbmVnG7tLO7t39QPjxq6ihRlDVoJCLV9olmgkvWMNwI1o4VI6EvWMsf32V+64kpzSP5aKYx80IylDzglBgr9bohMSM/SCezPu/hfrniVt050CrBOalAjnq//NUdRDQJmTRUEK072I2NlxJlOBVsVuommsWEjsmQdSyVJGTaS+epZ+jMKgMURMo+adBc/b2RklDraejbySylXvYy8T+vk5jgxku5jBPDJF0cChKBTISyCtCAK0aNmFpCqOI2K6Ijogg1tqiSLQEvf3mVNC+q+KqKHy4rtdu8jiKcwCmcA4ZrqME91KEBFBQ8wyu8ORPnxXl3PhajBSffOYY/cD5/AKzakqA=</latexit>

w1
i

<latexit sha1_base64="1j9CoW/9rqb+bP/qgXomQHH5dAs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9MX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH1rqjdk=</latexit>si

Figure 6.1: An overview of the proposed MSFAN framework, which consistes of Multi-domain
Prototypical Self-supervised Learning (bottom-right), Cross-domain Consistency via Support
Sets (bottom-left), and Prototypical Classifier Learning (top).

due to the domain shift among di↵erent sources, we cannot apply ProtoNCE to the sourceS
M

i=1(Si[S
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i
) and target T separately as [266]. Instead, we perform prototypical contrastive

learning in each source Si [ S
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) and target T .
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where vj is the feature vector of xj which is initialized with fj and updated with a momentum
⌘:

vj  ⌘vj + (1� ⌘)fj. (6.2)

After a set number of iterations, k-means clustering is performed separately on each V s
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. Similarly, we compute the target prototypes {µ

t

c
}
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c=1.

To simplify the explanation, we present a set of operations for source i and note that the
same operations are applied to all sources and the target. During the training process, with
the feature extractor F and `2 normalization layer, we compute a normalized feature vector
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where m is a margin value inspired by AMS [231]; C
s
i,c
(x) is an indicator function returning

1 only when x 2 C
s

i,c
; and � is a temperature value determining the concentration level of

clusters. The in-domain prototypical contrastive loss is then:
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where cs
i
(·) and c

t(·) take as input an instance index in a domain and return the cluster index
in Cs

i
and Ct respectively.

Considering the non-deterministic nature of k-means algorithm, we perform clustering
R times with di↵erent number of clusters {kr}

R

r=1. In MFDA, with prior knowledge of the
underling semantic structure (i.e. the number of classes nc is known), we set kr = nc for
most r. Finally, the overall in-domain prototypical self-supervision loss is:

LIPS =
1

R

RX

r=1

L
(r)
PC (6.5)

Cross-multi-domain Prototypical Self-supervised Learning. With the in-domain
prototypical learning, the shared network backbone is able to extract discriminative features.
To further ensure learning domain-aligned features between the M source domains, and the
target domain, we perform cross-multi-domain Prototypical Self-supervised Learning.

Recently, self-supervised learning methods [120, 266] have been proposed to perform do-
main alignment between two domains. One trivial extension is combining all source domains
first, and then perform domain alignment between

S
M

i=1 Si [ S
u

i
and T . However, due to

the potential domain shift among di↵erent sources, aligning the combined source and target
would not yield a unified feature distribution. Another trivial extension is aligning each pair
of the M+1 domains. However, aligning each domain with multiple di↵erent domains results
in a brittle optimization problem. Moreover, the number of loss terms increases quadratically
with the number of source domains.

In order to address these problems, we propose to perform prototypical domain alignment
between each source (Si[S

u

i
) and target (T ) pair. For each instance in one source domain, we

perform entropy minimization on the distribution similarity vector between its representation
and all prototypes in the target domain.

Specifically, given a feature vector f s
i,j

in source domain i, and the prototypes {µ
t

c
}
k

c=1 in
the target domain, we first compute the similarity distribution vector P i)t

j
= [P i)t

j,1 , . . . , P
i)t
j,k

],
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in which ⌧ is a temperature value. To promote confident cross-domain instance-prototype
matching, we minimize the entropy of P
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logP i)t
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. Note that
di↵erent from [266], we do not compute and minimize H(P t)i

j
) on the other direction, since

aligning one sample with prototypes in di↵erent domains would lead to unstable optimization.
The final cross-multi-domain prototypical self-supervised loss is then:
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H(P i)t
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), (6.7)

and the final objective for the multi-domain prototypical self-supervised learning is then:

LMPS = LIPS + LCPS. (6.8)

Cross-domain Consistency via Support Sets

To further promote domain-invariant and class-discriminative features, we propose to enforce
a cross-domain similarity consistency using a support set of labeled and pseudo-labeled data.

Support Set. We build a support set S(i) for each source domain i. The support samples
in the set contains the labeled samples in Si, and unlabeled samples in S

u

i
with consistent

high-confident predictions across all classifiers. Formally, S(i) is compuated as:

S
(i) = Si [ {(x, y)|x 2 S

u

i
; 8i0,maxpi0(x) > t, argmaxpi0(x) = y}, (6.9)

where pi(x) is the softmax vector from Ci on x, y = argmaxpi(x), and t is a confidence
threshold.

Let VS(i) denote the support representations computed from S
(i), then for a scalar-valued

distance function d(·, ·), the similarity vector between an input vector fj and S
(i) can be

computed as:
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where yk is the one-hot ground truth label vector associated with the k-th representation in
vS(i) . In this chapter, we choose d(a, b) to be exp( a·b

kakkbk ), where  is a temperature value.

Given an image xj 2
S

M

i=1(Si [ S
u

i
)[ T , we want to enforce consistency on its similarity

vectors across di↵erent source domains by minimizing the cross entropy. Finally, with the
similarity vector to another domain i

0, si0,j, as the soft pseudo-label, the loss can be computed
as:

LSSC =
X

xj2D

X

1i 6=i0M

LCE(si,j, si0,j) (6.11)
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Multi-domain Prototypical Classifier Learning

MSFAN incorporates a multi-domain prototypical classifier to learn better domain-aligned,
class-discriminative features. It accomplishes this through a simple cosine classifier for
each source domain {Ci}

M

i=1. Each cosine classifier Ci consists of weight vectors Wi =
[w1

i
,w2

i
, . . . ,wnc

i
], where nc is the number of classes, and a temperature T . The output of Ci,

1
T
Wi

|f , is fed into softmax layer � to obtain the final probabilistic output pi(x) = �( 1
T
Wi

|f).
Most previous MDA works train the classifier of domain i with only the labeled data in do-
main i. However, with only few labeled samples per source in MFDA, Ci is prone to overfit
to Si. Thus we train each Ci with labeled data from all source domains using a standard
cross-entropy loss:

L
(i)
cls = E(x,y)2

S
SiLCE(pi(x), y) (6.12)

One drawback of training each Ci using the same set of all labeled data is that the predictive
behavior of each Ci will likely be quite similar, which greatly impairs the ensembling e↵ect
of multiple classifiers during test time. To build a classifier set {Ci} with more diverse
predictive behavior, we desire to make each Ci have slightly higher accuracy on domain i

than on other domains.
Looking closer at a cosine classifier C with weight matrix W, in order for it to have

high performance, the k-th weight vector wk needs to be a representative vector of the
corresponding class k. To promote a more diverse set of {Ci}, we directly update Wi

with prototypes computed from the corresponding support set S
(i), computed in Sec. 6.3.

Specifically, we estimate prototype of class k in domain i as:

ŵk
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where S
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= {x|y = k, 8(x, y) 2 S
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}, V s
i (x) returns the representation of x stored in the

memory bank, and wk

i
is then updated with ŵk

i

kŵk
i k

frequently.

Classifier-wise Mutual Information To learn better domain-invariant and discrimina-
tive features, we maximize the mutual information between the input and output of each
classifier with unlabeled images across all domains. For classifier Ci, the mutual information
can be written as

Ii(y;x) = H(p̄i)� Ex[H(p(y|x; ✓i))], (6.14)

where p(y|x; ✓i) denotes the output of Ci on x and p̄i is a prior distribution Ex[p(y|x; ✓i)].
We can get the mutual information maximization objective as:

LMI = �
MX

i=1

Ii(y;x), x 2
[

i

S
u

i
[ T (6.15)
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MSFAN Learning

The MSFAN learning framework performs multi-domain prototypical self-supervised learn-
ing, support-set-based cross-domain similarity consistency, and multi-domain prototypical
classifier learning. Together with the classifier update with Eq. 6.13, the overall training
objective is:

LMSFAN = Lcls + �mps · LMPS + �ssc · LSSC + �mi · LMI (6.16)

Global Max-Similarity-based Inference For target data during test time, we propose
a new inference method based on the max-similarity across all classifiers. With normalized
weights from all classifiers W = {wc

i
|1  i  M, 1  c  nc}, given a test example feature

ft, the most similar weight vector is identified as wi⇤,c⇤ = argmaxw2W f|
i

· w, and c
⇤ is the

final prediction.

6.4 Experiments

Experimental Setting

Datasets. We evaluate our method (MSFAN) in multi-source few-shot setting on three
standard domain adaptation benchmarks, O�ce [187], O�ce-Home [228], and Domain-
Net [172]. The labeled data in each domain are chosen following [120, 266], and each domain
is in turn regarded as the target domain, while the others in the same dataset are considered
as source domains. O�ce [187] is a real-world dataset for domain adaptation tasks. It
contains 3 domains (Amazon, DSLR, Webcam) with 31 classes. Experiments are conducted
with 1-shot and 3-shots source labels per class in this dataset. O�ce-Home [228] is a more
di�cult dataset than O�ce, which consists of 4 domains (Art, Clipart, Product, Real) in 65
classes. Following [120, 266], we look into the settings with 3% and 6% labeled source images
per class, which means each class has 2 to 4 labeled images on average. DomainNet [172]
is a large-scale domain adaptation benchmark. Since some domains and classes are noisy, we
follow [189, 266] and use a subset containing four domains (Clipart, Painting, Real, Sketch)
with 126 classes. We show results on settings with 1-shot and 3-shots source labels on this
dataset.

Implementation Details. We use ResNet-101 [95] (for DomainNet) and ResNet-50 (for
other datasets) pre-trained on ImageNet [184] as backbones for all baselines and MSFAN. To
enable a fair comparison with [120] and [266], we replaced the last fully connected layer with
a 512-dimension randomly initialized linear layer. We use k-means GPU implementation in
faiss [116] for e�cient clustering. We use SGD with a momentum of 0.9, a learning rate of
0.01, a batch size of 64. More implementation details can be found in the supplementary
material.
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Table 6.1: Adaptation accuracy (%) with 1 and 3 labeled samples per class on O�ce dataset.

O�ce

1-shot 3-shot

Method D,W!A A,W!D A,D!W Avg D,W!A A,W!D A,D!W Avg

Source Only
Single-best 41.1 62.0 65.2 56.1 55.3 86.1 85.5 75.6
Combined 53.4 66.5 69.2 63.0 63.5 86.9 86.0 78.8

Single-best
DA

CDAN [146] 39.7 66.8 66.5 57.7 65.1 89.8 91.6 82.2
MME [189] 23.1 62.4 60.9 48.8 60.2 91.4 89.7 80.4
MDDIA [114] 55.6 79.5 84.4 73.2 70.3 93.2 93.3 85.6
CDS [120] 52.0 57.4 59.0 56.1 67.6 81.3 86.0 78.3
PCS [266] 76.1 91.8 90.6 86.2 76.4 96.0 94.1 88.8

Source-combined
DA

CDAN [146] 52.3 72.7 73.3 66.1 67.8 85.7 88.5 80.7
MME [189] 34.6 64.9 74.1 57.9 61.5 91.2 91.4 81.4
MDDIA [114] 63.4 91.4 87.2 80.7 74.7 96.6 94.9 88.7
CDS [120] 67.1 73.9 88.2 76.4 72.2 88.2 90.9 83.8
PCS [266] 72.8 89.0 92.1 84.6 76.5 96.0 94.8 89.1

Multi-source
DA

SImpAl [227] 58.5 72.5 71.7 67.6 65.0 85.3 86.7 79.0
MFSAN [288] 48.9 64.7 66.0 59.9 64.7 82.7 87.9 78.4
PMDA [285] 56.3 66.5 71.4 64.7 68.4 86.5 91.8 82.2
MSFAN (Ours) 76.3 94.4 92.6 87.8 77.7 95.4 95.8 89.6

Results on MFDA

Baselines. We compare MSFAN with the following methods. (1) Source-only, i.e. train
on the labeled data in source domains and test on the target domain directly. (2) Single-
source DA, perform multi-source DA via single-source DA, including CDAN [146], MD-
DIA [114], MME [189]; as well as CDS [120] and PCS [266] which are the strongest single-
source baselines specifically designed for single-source few-shot DA (FUDA). (3) Multi-
source DA, assume multiple fully-labeled sources and are designed for MDA, including
MFSAN [288], SImpAl [227] and ProtoMDA [285]. SImpAl [227] and ProtoMDA [285] are
the most recent state-of-the-art works, and ProtoMDA also leverages prototypes for MDA.
We re-run all baseline methods in the new MFDA setting (multi-source domain adaptation
with few labels in each source), and compare with the proposed MSFAN.

Extensive experiments are performed on O�ce, O�ce-Home, and DomainNet, with the
results shown in Table 6.1, 6.2, 6.3, respectively. From the results, we have the following
observations: (1) For single-best, source-only outperforms some UDA methods under various
scenarios, e.g. 56.1% vs. 48.8% in O�ce under 1-shot per class. A similar observation is
obtained on source-combined, e.g. 40.1% vs. 31.3% in O�ce-Home under 1-shot per class.
(2) Under MFDA, naively combining multiple sources and perform single-source DA can
lead to worse performance than using a single domain, e.g. 42.3% vs. 44.6% with 1-shot
per class on DomainNet for PCS, which is specifically designed for single-source few-shot
DA. (3) Under MFDA, conventional MDA methods perform even worse than single-source
DA methods, e.g. 65.6% vs. 68.7% with 6% labels per class on O�ce-Home. (4) MSFAN
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Table 6.2: Adaptation accuracy (%) with 3% and 6% labeled samples per class on O�ce-
Home dataset.

O�ce-Home

3% 6%

Method
Ar,Pr,Rw
!Cl

Cl,Pr,Rw
!Ar

Cl,Ar,Rw
!Pr

Cl,Ar,Pr
!Rw

Avg
Ar,Pr,Rw
!Cl

Cl,Pr,Rw
!Ar

Cl,Ar,Rw
!Pr

Cl,Ar,Pr
!Rw

Avg

Source Only
Single-best 29.0 41.2 52.3 43.1 41.4 36.0 49.9 61.8 54.6 50.6
Combined 42.2 55.3 63.6 64.1 56.3 45.3 60.4 70.5 70.9 61.8

Single-best
DA

CDAN [146] 27.0 38.7 44.9 40.3 37.7 40.1 54.9 63.6 59.3 54.5
MME [189] 29.0 39.3 52.0 44.9 41.3 37.3 54.9 66.8 61.3 55.1
MDDIA [114] 29.5 47.1 56.4 51.0 46.0 37.1 58.2 68.4 64.5 57.1
CDS [120] 37.8 51.6 53.8 51.0 48.6 45.3 63.7 68.6 65.2 60.7
PCS [266] 52.5 66.0 75.6 73.9 67.0 54.7 67.0 76.6 75.2 68.4

Source-combined
DA

CDAN [146] 42.6 52.3 64.5 63.2 55.7 51.1 67.0 74.2 73.3 66.4
MME [189] 42.5 55.4 67.4 64.5 57.5 46.0 67.1 75.5 75.7 66.1
MDDIA [114] 55.3 66.9 72.3 75.3 67.5 57.3 67.2 79.0 74.4 69.5
CDS [120] 54.9 66.2 71.6 73.4 66.5 54.9 67.5 76.1 77.5 69.0
PCS [266] 49.4 67.0 75.0 76.3 66.9 50.4 67.0 77.8 79.4 68.7

Multi-source
DA

SImpAl [227] 46.8 56.7 65.1 66.6 58.8 49.3 62.1 71.7 73.0 64.1
MFSAN [288] 39.9 46.6 58.9 55.6 50.3 44.5 53.7 65.4 64.2 57.0
PMDA [285] 50.8 56.8 64.2 66.8 59.7 54.4 65.8 70.4 71.8 65.6
MSFAN (Ours) 55.6 68.4 75.6 76.6 69.1 56.3 68.7 79.3 79.1 70.9

outperforms all baselines under all experimental settings. Especially, compared to state-of-
the-art MDA methods, we can see that MSFAN outperforms them across all benchmarks
with large improvements: 20.2% and 7.4% on O�ce, 9.4% and 5.3% on O�ce-Home, 16.2%
and 9.0% on DomainNet.

Ablation Study and Analysis

We now investigate the e↵ectiveness of each component in MSFAN on O�ce-Home. Table 6.4
shows that adding each component contributes to the final MFDA performance without
any accuracy degradation. To qualitatively show the e↵ectiveness of domain alignment with
MSFAN, we plot the learned features with t-SNE [153] on the Ar,Cl,Pr!Rl setting in O�ce-
Home. In the top row, color represents the domain of each sample; while in the bottom
row, color represents the class of each sample. Compared to ImageNet pre-training and
Source-combined, it qualitatively shows that MSFAN clusters samples with the same class
in the feature space; thus, MSFAN favors more discriminative features. Also, the features
from MSFAN are more closely aggregated than ImageNet pre-training and Source-combined,
which demonstrates that MSFAN learns a better semantic structure of the datasets.

6.5 Related Work and Discussion

Single-source UDA Single-source UDA [85] aims to transfer knowledge from a fully-
labeled source domain to an unlabeled target domain. Most UDA methods focus on feature
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Table 6.3: Adaptation accuracy (%) comparison with 1 and 3 labeled samples per class on
DomainNet.

DomainNet

1-shot 3-shot

Method
P,R,S
!C

C,R,S
!P

C,P,S
!R

C,P,R
!S

Avg
P,R,S
!C

C,R,S
!P

C,P,S
!R

C,P,R
!S

Avg

Source Only
Single Best 18.4 30.6 28.9 16.7 23.7 30.2 44.2 49.8 24.2 34.4
Combined 30.8 49.4 43.3 36.9 40.1 45.3 57.4 64.7 42.6 50.0

Single-best
DA

CDAN [146] 16.0 25.7 19.5 12.9 18.5 30.0 40.1 40.8 17.1 29.3
MME [189] 16.0 29.2 26.0 13.4 21.2 25.1 46.5 50.0 20.1 32.6
MDDIA [114] 18.0 30.6 27.4 15.9 23.0 41.4 50.7 52.9 23.1 38.2
CDS [120] 16.7 24.4 15.9 13.4 17.6 35.0 43.8 36.8 31.1 32.9
PCS [266] 39.0 51.7 38.8 39.8 42.3 45.2 59.1 66.6 41.9 51.0

Source-combined
DA

CDAN [146] 25.7 33.0 40.0 26.4 31.3 47.8 54.1 65.6 49.1 49.6
MME [189] 20.0 45.3 52.5 13.0 32.7 44.2 62.7 73.9 51.8 53.1
MDDIA [114] 44.0 46.4 49.6 37.1 44.3 56.3 59.3 70.3 51.3 56.3
CDS [120] 42.2 53.3 55.4 38.5 47.4 50.2 61.5 71.8 47.3 55.6
PCS [266] 36.2 53.0 56.4 32.8 44.6 45.6 61.2 74.3 41.3 53.4

Multi-source
DA

SImpAl [227] 48.0 40.3 45.7 35.3 42.3 51.5 47.4 68.8 45.3 51.1
MFSAN [288] 41.6 33.5 38.8 29.6 35.9 43.5 42.3 63.2 41.1 45.2
PMDA [285] 49.3 42.2 45.0 34.8 42.8 52.2 52.5 71.3 47.6 53.3
MSFAN (Ours) 57.3 68.7 64.8 45.2 59.0 57.8 65.5 75.8 53.6 62.3

Table 6.4: Performance contribution of each part in MSFAN framework on O�ce-Home.

O�ce-Home 3%
Ar,Pr,Rw
!Cl

Cl,Pr,Rw
!Ar

Cl,Ar,Rw
!Pr

Cl,Ar,Pr
!Rw

Avg

Source-combined 42.2 55.3 63.6 64.1 56.3
+ Multi-classifier 44.9 55.5 65.1 68.2 58.4
+ LMPS 52.1 66.6 66.5 75.1 65.1
+ LMI 55.2 68.4 75.0 76.4 68.8
+ LSSC (MSFAN) 55.6 68.4 75.6 76.6 69.1
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Imagenet Pre-trained Source-combined PCS MSFAN (Ours)

Figure 6.2: Visualization of baselines and our method via t-SNE on O�ceHome
(Ar,Pr,Rw!Cl). Top row: Blue, Orange, Green and Red represents domain Art, Real,
Product and Clipart, respectively. Bottom row: Coloring represents the class of each sam-
ple. Features from MSFAN are better-aligned across domains compared to other methods.

distribution alignment. Discrepancy-based methods utilize di↵erent metric learning schemas
to diminish the domain shift between source and target. Inspired by the two-sample test [88],
Maximum Mean Discrepancy (MMD) is leveraged to perform domain alignment in various
methods [148, 223, 149, 76, 234, 147]. Sun et al. [206] and Zhuo et al. [290] further proposed
to align second-order statistics of source and target features. After Generative Adversarial
Network [84] was proposed, more works [69, 222, 101, 251, 146, 198] leverage a domain
discriminator to encourage domain confusion by an adversarial objective. Recently, image
translation methods [286, 140] have been adopted to further improve domain adaptation by
performing domain alignment at pixel-level [101, 17, 185, 160, 264, 190, 200]. Instead of
explicit feature alignment, Saito et al. [189] perform entropy optimization for adaptation.
Though these methods achieves high performance, few of them consider the practical scenario
of adapting from multiple sources.

Multi-source Domain Adaptation (MDA). MDA [210, 280] assumes the availability
of multiple fully-labeled sources and aims to transfer knowledge to an unlabeled target do-
main. Various theoretical analyses [10, 42, 154, 99] have been proposed to support existing
MDA algorithms. Early MDA methods usually either learn a shared feature space for all
domains [63, 208, 61, 62], or combine pre-learned source classifier predictions to get final
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predictions with an ensembling method. With the development of deep nerual networks,
more deep-learning-based MDA methods are proposed, such as DCTN [253], M3SDA [172],
MDAN [273], MFSAN [288], MDDA [281]. All these MDA methods aim to minimize this
domain shift using auxiliary distribution alignment objectives. SImpAl [227] is proposed
to perform implicit domain alignment with pseudo-labeling without additional training ob-
jectives for adaptation. Recently, ProtoMDA [285] is proposed to use prototypes for MDA
and achieves state-of-the-art performance. While these methods have full supervision on the
source domains, we focus on a new adaptation setting with only few labels in each source
domain.

Self-supervised Learning (SSL) for Domain Adaptation. SSL is a subset of unsu-
pervised learning where supervision is automatically generated from the data [115, 51, 268,
163, 79, 232]. One of the most common strategies for SSL is handcrafting auxiliary pretext
tasks predicting future, missing or contextual information [268, 129, 51, 52, 163, 171, 79,
57]. Reconstruction was first utilized as a self-supervised task in some early works [78, 77],
in which source and target share the same encoder to extract domain-invariant features.
In [21], solving jigsaw puzzle [163] was leveraged as a self-supervision task to solve domain
adaptation and generalization. Sun et al. [211] further proposed to perform adaptation by
jointly learning multiple self-supervision tasks. Recently, contrastive learning has achieved
state-of-the-art performance on representation learning [96, 89, 30, 35, 31, 178, 250, 135, 4,
22]. Based on instance discrimination [246] and prototypical contrastive learning, Kim et
al. [120] and Yue et al. [266] proposed cross-domain SSL approaches for adaptation with few
source labels. SSL has also been incorporated for adaptation in other fields, including point
cloud recognition [1], medical imaging [109], action segmentation [28], robotics [111], facial
tracking [258], etc.

6.6 Conclusion

Traditional Multi-source Domain Adaptation assumes multiple fully-labeled source domains.
In this chapter, we investigate Multi-source Few-shot Domain Adaptation, a new domain
adaptation task that is more practical and challenging, where each source domain only
has a very small fraction of labeled samples. We proposed a novel framework, termed
Multi-Source Few-shot Adaptation Network (MSFAN), that performs multi-domain proto-
typical self-supervised learning, support-set-based cross-domain similarity consistency, and
multi-domain prototypical classifier learning. We perform extensive experiments on multiple
benchmark datasets, which demonstrates the superiority of MSFAN over previous state-of-
the-art methods.
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Chapter 7

A LiDAR Point Cloud Generator:
Generating Free Labels

7.1 Chapter Overview

In this chapter, we present a LiDAR simulation environment in autonomous driving. The
LiDAR simulator can be used to generate synthetic LiDAR point clouds, enabling a line of
research in LiDAR point cloud segmentation adaptation. In addition, the simulator can be
used to test robustness of neural networks.

7.2 Introduction

Autonomous driving is an important area in robotics and requires accurate and reliable
perception of the environment [183, 25, 244]. As 3D data has some superiority in information
representation over 2D data [71, 113], 3D LiDAR (Light Detection And Ranging) sensors are
playing an increasingly important role of all the environment sensors for autonomous driving.
On the one hand, 3D LiDAR sensors can provide direct distance measurements that allow
detection of all kinds of obstacles, and their resolution and field of view exceed radar [162,
284] and ultrasonic sensors [23, 158]. On the other hand, LiDAR sensors are robust under
a variety of conditions: day or night, with or without glare and shadows [242]. While
LiDAR point clouds contain accurate depth measurement of the environment, navigation of
autonomous vehicles also relies on correct understanding of the semantics of the environment.
Most of the LiDAR-based perception tasks, such as semantic segmentation [49, 53, 242] and
drivable area detection [144, 65], require significant amount of point-level labels for training
and/or validation. Such annotation, however, is usually very expensive.

To facilitate the manual annotation process, much work has been done on interactive
annotation. Annotation methods have been proposed for labeling 3D point clouds of both
indoor scenes [201] and outdoor driving scenes [74]. These methods utilize little computer
assistance during the annotation process and thus need a significant amount of human e↵ort.
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(b)(a) (c)

Figure 7.1: Sample data extracted from an in-game scene. (a): Image of the scene; (b):
Extracted point cloud from the same scene; (c): Point cloud of car mapped to image after
registration (Blue dots) matches car in image.

In [126, 225], approaches have been proposed to enhance the human-machine interaction to
improve annotation e�ciency. In [241, 197], annotation suggestions for indoor RGBD scenes
are proposed by the system that are interactively corrected or refined by the user. In order
to provide faster interactive labeling rates, Boyko et al. [19] proposed a group annotation
approach for labeling objects in 3D LiDAR scans. Active learning has also been introduced
in the annotation process to train a classifier with fewer interactions [119, 217], yet it requires
users to interact with examples one-by-one. Other frameworks further take into account the
risk of mislabeling and cost of annotation. In [240], Welinder et al. proposed a model of
the labeling process and dynamically chooses which images will be labeled next in order to
achieve a desired level of confidence.

Recently, video games have been used for creating large-scale ground truth data for train-
ing purposes. In [180], a video game is used to generate ground truth semantic segmentation
for the synthesized in-game images. However, human e↵ort is still required in the annotation
process. In [117], the same game engine is used to generate ground truth 2D bounding boxes
of objects in the images. Richter et al. [179] further extended the work of [180] so that various
ground truth information (e.g. semantic segmentation, semantic instance segmentation, and
optical flow) can be extracted from the game engine. In addition, many driving simulation
environments [13, 92, 56] have been built in order to obtain various kinds of labeled data
for autonomous driving purposes. Many of these work [117, 180, 179, 56] show the e↵ective-
ness of synthetic data in image-based learning tasks by showing improved performance after
training with additional synthetic data. However, little work has been done on extracting
annotated 3D LiDAR point clouds from simulators, not to mention showing the e�cacy of
the synthetic point clouds during the training process of neural networks. Note that even if
we could provide large amounts of training data, it is still almost impossible for any algo-
rithms to achieve 100% accuracy. For cyber-physical systems (CPS) used for safety-critical
purposes, such as autonomous driving, verifying correctness is extremely important, but also
very challenging [196, 199, 195, 66, 67]. Dreossi et al. [58, 60] have proposed a framework
to systematically analyze Convolutional Neural Networks (CNNs) used in objection detec-
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tion in autonomous driving systems. However, the framework only takes into account cars
from direct front/back view and thus has a very limited modification space. In addition,
each background image needs to be manually annotated, making it expensive to generate a
dataset with large diversity. To the best of our knowledge, no similar work has been done
on LiDAR point clouds. In this chapter, we propose an extraction-annotation-CNN testing
framework based on a popular video game. The main contributions of this chapter are as
follows:

• The first published LiDAR point cloud simulation framework for autonomous driving
(to our knowledge).

• The framework can automatically extract point-cloud data with ground truth labels
together with the corresponding image frame of the in-game scene, as shown in Figure
7.1.

• The framework can do automatic registration between collected point clouds and im-
ages which can then be used together for sensor fusion tasks, e.g. inferring depth
information from RGB images.

• Users can construct specified scenarios in the framework interactively and the collected
data (point clouds and images) can then be used to systematically test, analyze and
improve LiDAR-based and/or image-based learning algorithms for autonomous driving.

We conduct experiments on a Convolutional Neural Network (CNN)-based model for 3D
LiDAR point cloud segmentation using the data collected from the proposed framework.
The experiments show 1) significantly improved performance on KITTI dataset [74] after
retraining with additional synthetic LiDAR point clouds, and 2) e�cacy of using the data
collected from user-configured scenes in the framework to test, analyze and improve the
performance of the neural network. The performance improvements come from the fact that
the data collected in the rich virtual world contains a lot of information that the neural
network failed to learn from the limited amount of original training samples.

7.3 Technical Approach

In-Game Simulation Setup and Method for Data Collection

We choose to utilize the rich virtual world in Grand Theft Auto V (GTA-V), a popular
video game, to obtain simulated point clouds as well as captured in-game images with high
fidelity1. Our framework is based on DeepGTAV2, which uses Script Hook V3 as a plugin.

1The publisher of GTA-V allows non-commercial use of footage of gameplay [180]
2https://github.com/aitorzip/DeepGTAV
3http://www.dev-c.com/gtav/scripthookv/
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Figure 7.2: Sample configurable parameters of the virtual LiDAR. (a) shows front view of
the virtual LiDAR: black dotted line is the horizontal line, ↵ is the vertical field of view
(FOV), ✓ is the vertical resolution, � is the pitch angle; (b) shows top view of the virtual
LiDAR, � is the horizontal FOV, and � is the horizontal resolution.

In order to simulate realistic driving scenes, an ego car is used in the game with a virtual
LiDAR scanner mounted atop, and it is set to drive autonomously in the virtual world with
the AI interface provided in Script Hook V. While the car drives on a street, the system
collects LiDAR point clouds and captures the game screen, simultaneously. We place the
virtual LiDAR scanner and the game camera at the same position in the virtual 3D space.
This set-up o↵ers two advantages: 1) a sanity check can be easily done on the collected data,
since point clouds and corresponding images must be consistent; 2) registration between the
game camera and the virtual LiDAR scanner can be done automatically, and then collected
point clouds and scene images can be combined together as training dataset for neural net-
works for sensor fusion tasks. Details of the proposed registration method will be described
in Section 7.3.

Ray casting is used to simulate each laser ray emitted by the virtual LiDAR scanner.
The ray casting API takes as input the 3D coordinates of the starting and ending point of
the ray, and returns the 3D coordinates of the first point the ray hits. This point is used,
with another series of API function calls, to calculate, among other data, the distance of the
point, the category and instance ID of the object hit by the ray, thus allowing automatic
annotation on the collected data.

In our framework, users can provide configurations of the LiDAR scanner including ver-
tical field of view (FOV), vertical resolution, horizontal FOV, horizontal resolution, pitch
angle, maximum range of laser rays, and scanning frequency. Some of the configurable
parameters are shown in Figure 7.2.

Automatic Registration Method

The goal of the registration process is to find the corresponding pixel in the image for each
LiDAR point. In our framework, the registration process can be done automatically by the
system based on the parameters of the camera and LiDAR scanner. In addition, the centers
of the camera and LiDAR scanner are set to the same position in the virtual world, making
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the registration projection similar to the camera perspective projection model, as shown in
Figure 7.3.

The problem is formulated as follows: for a certain laser ray with azimuth angle � and
zenith angle ✓, calculate the index (i, j) of the corresponding pixel on image. Fc, Fo, P ,
P

0 and Pfar are 3D coordinates of a) center of camera/LiDAR scanner, b) center of camera
near clipping plane. c) point first hit by the virtual laser ray (in red), d) pixel on image
corresponding to P , and e) a point far away in the laser direction (required as an input
argument to the ray casting API), respectively. m and n are the width and height of the
near clipping plane. � is 1/2 vertical FOV of camera while  is 1/2 vertical FOV of the
LiDAR scanner. Note that LiDAR scanner FOV is usually smaller than camera FOV, since
there is usually no object in the top part of the image, and thus emitting laser to open space
is not necessary. After a series of 3D geometry calculation, we can get:

i =
Rm

m
· (f · tan � ·

m

n
�

f

cos ✓
· tan�),

j =
Rn

n
· (f · tan � + f · tan ✓),

(7.1)

where f =

����
���!
FcFo

����, and (Rm, Rn) is the pixel resolution of the image/near clipping plane.

Further, as an input argument to the ray casting API, the 3D coordinates of Pfar are
also required. Using similar 3D geometry calculations, we obtain:

P
0 = Fc + f ·

�!
xc �

f

cos ✓
· tan� ·

�!
yc � f · tan ✓ ·

�!
zc ,

Pfar = Fc + k · (P 0
� Fc),

(7.2)

where k is a large coe�cient, and �!xc ,
�!
yc ,
�!
zc are unit vectors of the camera axis in the world

coordinate system.
An example of the registration result is shown in Figure 7.1. After simulation, both image

and point cloud of the specified in-game scene are collected by the framework (Figure 7.1
(a, b)). Then with the proposed registration method, we map all the points with category
”Car” to the corresponding image. As shown in Figure 7.1 (c), the mapped car point cloud
(blue dots) matches the car in the image fairly accurately.

Configurable In-game Scene

Besides the auto-driving mode for large-scale data collection, our framework o↵ers a con-
figurable mode, where the user can configure desired in-game scenes and collect data from
them. One advantage of configurable scenes is generating training data of driving scenes
that are dangerous or rare in real world. Another advantage is that we can systematically
sample the modification space (e.g. number of cars, position and orientation of a car) of an
in-game scene. The data can then be used to test a neural network, expose its vulnerabilities
and improve its performance through retraining. Our framework o↵ers a large modification
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Figure 7.3: Projection for Registration. Fo is the center of the near clipping plane of the
camera; Fc is the center of the camera and of the LiDAR scanner; the red line is the laser
ray and P is the point hit by the ray; the calibrated on-image point has pixel index (i, j) and
3D coordinates P 0; � is 1/2 the camera vertical FOV and  is 1/2 the LiDAR vertical FOV;
� and ✓ are the azimath and zenith angles of the laser ray.

space of the in-game scene. As shown in Figure 7.4, the user can specify and change 8
dimensions of in-game scene: car model, car location, car orientation, number of cars, scene
background, color of car, weather, and time of day. The first 5 dimensions a↵ect both LiDAR
point cloud and scene image, while the last three dimensions a↵ect only the scene image.
An example of sampling is shown in Figure 7.5, where the scenes are only sampled from the
spatial dimensions (X, Y) with only one car in each scene. X and Y are the location o↵set
of the car relative to the camera/LiDAR location in the left-right and forward-backward
directions. Figure7.5 (b) shows collected point cloud of the samples shown in Figure7.5 (a).
The red points represent car points while the blue points represent the scene background.
The collected point clouds match the scenes well thus allowing the use of the data to test
neural networks systematically.

7.4 Experiments and Results

We performed experiments to show the e�cacy of our data synthesis framework: 1) Data
collected by the framework can be used in the training phase and help improve the validation
accuracy; 2) Collected data can be used to systematically test a neural network and improve
its performance via retraining.

Evaluation Metrics

Our experiments are performed on the task of LiDAR point cloud segmentation; specifically,
given a point cloud detected by a LiDAR sensor, we wish to perform point-wise classification,
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Car Model Car Location Car Orientation

Number of Cars Reference Scene Background

Car Color Weather Time of Day

Figure 7.4: Modification dimensions of the framework with image in center showing the
reference scene.

as shown in Figure 7.6. This task is an essential step for autonomous vehicles to perceive
and understand the environment, and navigate accordingly.

To evaluate the accuracy of the point cloud segmentation algorithm, we compute
Intersection-over-Union (IoU), Precision and Recall as:

IoUc =
|Pc \ Gc|

|Pc [ Gc|
, P rc =

|Pc \ Gc|

|Pc|
, Recallc =

|Pc \ Gc|

|Gc|
.

Here, Pc denotes the set of points that our model predicted to be of class-c, Gc denotes
the ground-truth set of points belonging to class-c, and | · | denotes the cardinality of a set.
Precision and Recall measures accuracy with regard to false positives and false negatives,
respectively; while IoU takes both into account. For this, IoU is used as the primary
accuracy metric in our experiments.
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Figure 7.5: Scenes with one car sampled from spatial dimensions and corresponding point
cloud. (a) shows the scene image while changing the location of the car on X (left-right) and Y
(forward-backward) directions; (b) shows point clouds (red for car and blue for background)
of scenes in (a).

Ground truth segmentation Predicted segmentation
Ground	truth	segmentation Predicted	segmentation

Figure 7.6: LiDAR point cloud segmentation

Experimental Setup

Our analysis is based on SqueezeSeg [242], a convolutional neural network based model for
point cloud segmentation. To collect the real-word dataset, we used LiDAR point cloud data
from the KITTI dataset and converted its 3D bounding box labels to point-wise labels. Since
KITTI dataset only provides reliable 3D bounding boxes for front-view LiDAR point clouds,
we limit the horizontal field of view (FOV) to the forward-facing 90�. This way, we obtained
10,848 LiDAR scans with manual labels. We used 8,057 scans for training and 2,791 scans
for validation. Each point in a KITTI LiDAR scan has 3 cartesian coordinates (x, y, z) and
an intensity value, which measures the amplitude of the laser signal returned. Although the
intensity measurement as an extra input feature is beneficial to improve the segmentation
accuracy, simulating the intensity measurement is very di�cult and not supported in our
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Table 7.1: Segmentation Performance Comparison on the Car Category. Only data used in
the first row has Intensity channel. All numbers are in percentage.

Precision Recall IoU

KITTI w/ Intensity 66.7 95.4 64.6
KITTI w/o Intensity 58.9 95.0 57.1

GTA-V only 30.4 86.6 29.0
KITTI w/o Intensity

+ GTA-V
69.6 92.8 66.0

current framework. Therefore we excluded intensity as an input feature to the neural network
for GTA-V synthetic LiDAR data. We use NVIDIA TITAN X GPUs for the experiments
during both the training and validation phases.

Experimental Results

Synthetic Data for Training: For the first set of experiments, we used our data synthesis
framework to generate 8,585 LiDAR point cloud scans in autonomous-driving scenes. The
generated data contain (x, y, z) measurements but do not contain intensity. The horizontal
FOV of the collected point clouds are set to be 90� to match the setting of KITTI point
clouds described in Section 7.4.

To quantify the e↵ect of training the model with synthetic data, we first trained two
models on the KITTI training set with intensity included and excluded, and validated on
the KITTI validation set. The performance is shown in the first 2 rows of Table 7.1 as the
baseline. The model with intensity achieved better result. Then we trained another model
with only GTA-V synthetic data. As shown in the third row of Table 7.1, the performance
drops a lot. This is mostly because the distributions of the synthetic dataset and KITTI
dataset are quite di↵erent. Therefore, through training purely on synthetic dataset, it is hard
for the neural network to learn all the required details for the KITTI dataset, which might
be missing or insu�cient in the synthetic training dataset. Finally, we combined the KITTI
data and GTA-V data together as the training set and train another model. As shown in the
last row of Table 7.1, the performance gets improved significantly, almost 9% better than
the accuracy achieved only using real-world data. Despite the loss of the intensity channel,
the GTA+KITTI dataset gives better accuracy (66.0%) than if intensity is included (64.6%).
This demonstrates the e�cacy of the synthetic data extracted in our framework.

Neural Network Testing and Robustness Enhancement: For the second set of ex-
periments, we first used our framework to systematically test SqueezeSeg. As an illustrative
experiment, we only performed sampling in the car location X-Y dimensions as in Figure
7.5, rather than the whole modification space. 555 scenes were sampled to test SqueezeSeg,
with the IoU results shown in Figure 7.7. The blue and green dots show the car locations
resulting in low IoU. Most of the ”blind spot” are locations far from the LiDAR scanner, but
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Figure 7.7: IoU scatter with the change of car location

Figure 7.8: mIoU map of the validation set before retraining

there are also closer locations that result in low IoU scores. Close locations with low IoUs
are dangerous in autonomous driving, since they can mislead the decision-making system of
the autonomous vehicles and result in immediate accident.

Further experiments are then done to show the e�cacy of using generated synthetic data
to possibly improve performance and robustness of the network in the modification space.
We synthesized totally 2,250 LiDAR point cloud scans in 15 di↵erent scene backgrounds. In
each scene background, only one car is placed with the same orientation as the camera view.
We obtained 150 point cloud scans in each scene background by changing the position of
the car (X, Y ) in the sampled space: S = {(x, y) | x 2 {�5, · · · , 4}, y 2 {5, · · · , 19}}, where
X, Y are respectively the left-right and forward-backward o↵set relative to the position of
the camera. For each scene background, the position and orientation of the camera were
fixed.

We split the collected point cloud scans based on the scene background. 1200 point cloud
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Figure 7.9: mIoU map of the validation set after selection with mIoU less than 0.65 set to 0.
All the point clouds in the retraining set R corresponding to the blue positions in the new
mIoU map will be added to the original training set.

scans in the first 8 backgrounds are used as validation set V , and the rest 1050 scans from
the other 7 backgrounds, which we call retraining set R, are used for retraining purpose.
First, we train a neural network with purely KITTI data and do evaluation on the synthetic
1200 scans in the validation set V . We define mean IoU (mIoU) for each point in the 15⇥10
X-Y modification space as averaging IoUs over all the scene backgrounds in V :

mIoU(i, j) =
1

n

nX

k=1

IoU(i, j, k),

where n is the number of scene backgrounds (n = 8 in this experiment), (i, j) is in {(i, j) |

i 2 [�5, 4], j 2 [5, 19], i, j 2 Z} and IoU(i, j, k) refers to the IoU of the point cloud scan
sampled at (i, j) in the X-Y modification with the kth scene background.

The mIoU map of the validation set is computed, as shown in Figure 7.8. We can see
that the pre-trained network performs poorly on positions that are far away, at the boundary
of the FOV. But more surprisingly, we also observed that on some positions that are fairly
close to the ego-vehicle, e.g. (-3, 5), the mIoU scores are also very low. Detection errors at
such near distance can be very dangerous.

Based on the mIoU map, we choose positions with an mIoU smaller than a threshod to
form a retraining set, as shown in Figure 7.9. Then all the point clouds in the retraining
set R with a selected position are added to the original training set. After the retraining
process, we re-evaluate the validation set V , with the new mIoU map shown in Figure 7.10.
As the figure shows, at almost all the close-to-center positions originally with low mIoU,
the neural network performs much better than before the retraining. In order to visualize
the performance improvements better, we plot the mIoU improvement after the retraining
process for each position. The mIoU improvements are sorted and plotted in Figure 7.11.
We see that after retraining, performance on point clouds at most of the positions gets much
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Figure 7.10: mIoU map of the validation set after retraining

Figure 7.11: mIoU improvements in ascending order for all 150 positions

better, with slightly degraded performance at only a small fraction of positions. Meanwhile,
the performance on KITTI dataset remained almost the same with IoU changing from 60.8%
to 60.6%. These experiments show the e�cacy of using synthetic data from user-configured
scenes of the proposed framework to test, analyze and improve the performance of neural
networks through retraining.

7.5 Conclusions and Future Work

In this chapter, we proposed a framework that synthesizes annotated LiDAR point clouds
from a virtual world in a game, with a method to automatically calibrate the point cloud
and scene image. Our framework can be used to: 1) obtain a large amount of annotated
point cloud data, which can then be used to help neural network training; 2) systematically
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test, analyze and improve performance of neural networks for tasks such as point cloud seg-
mentation. Experiments show that for a point cloud segmentation task, synthesized data
help improve the validation accuracy (IoU) by 9% on a real-world benchmark. Furthermore,
the systematical sampling and testing framework can help us to identify potential weak-
ness/blind spots of our neural network model and fix them. Our future works will focus on
two directions: 1) Experiments show that the intensity channel in LiDAR point clouds is
crucial for LiDAR-based perception tasks, but current framework does not support intensity
synthesis. We plan to explore techniques to simulate realistic LiDAR intensity. 2) The e↵ec-
tiveness of using synthetic data to train perception algorithms is usually limited by domain
shift. We plan to explore domain adaptation methods to diminish the gap between virtual
world and real world.
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Chapter 8

Conclusion

The presence of domain shift and the need for less annotations of datasets drive the research
in transferring knowledge across domains. This dissertation presented a series of methods
towards learning transferable representations under various scenarios. In Chapter 2, we
introduced a framework to learn models for a target domain with only few labels in the source
domain. In Chapter 3, we proposed to learn a segmentation model that could generalize well
to multiple unseen domains. In Chapter 4, We learned segmentation models for a target
domain from multiple source domains. In Chapter 5, we proposed a method for textual
sentiment adaptation from multiple labeled sources. In Chapter 6, we further proposed a
framework extending the proposed method in Chapter 2 for adaptation from multiple sources
with few labels. In Chapter 7, we presented a LiDAR point cloud simulation environment to
generate synthetic point clouds with annotations, which further promotes further research
on LiDAR point cloud segmentation adaptation.

In our work, we demonstrated that there is no single adaptation/generalization method
that works best for all scenarios. For instance, naively combining multiple source domains
and directly applying single source domain adaptation can lead to worse performance than
using a single source domain [280]; directly applying a model, adapted targeting one target
domain, to another target domain can lead to degraded performance. In Chapters 2-5, We
proposed di↵erent methods for learning transferable representation across di↵erent settings,
di↵erent tasks, and di↵erent data modalities. In Chapter 6 which targets a combined setting
(multi-source few-shot adaptation) of Chapter 2 (few-shot adaptation) and Chapter 4 (multi-
source adaptation), we demonstrated that the previous proposed methods are extensible and
can be easily combined to solve other similar domain transfer settings.

We believe there are many takeaways that can help researchers design adapta-
tion/generalization methods for other knowledge transfer settings in the future. In Chapter
2, we demonstrated that although transferring knowledge with few annotations is hard, some
techniques can significantly boost performance. Specifically, learning cross-domain aligned
clustered representations is essential, and the cluster centers can well approximate the co-
sine classifier weights. In Chapter 3, we showed that for segmentation generalization, domain
randomization can be used to learn domain-invariant representations. In addition, applying
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representation consistency across domains and scales can further boost the representation
learning. In Chapter 4, we showed that learning an aggregated representation space across
multiple sources is essential for e↵ective adaptation. In Chapter 5, we showed that curricu-
lum instance-level adaptation can be an promising direction for multi-source adaptation.
In Chapter 6, we demonstrated that our previous methods can be easily extended to more
complex problem settings. With the work in Chapter 7, we would like to note that building
simulation environments to get free-labeled synthetic data, together with e↵ective adapta-
tion/generalization approaches, is important to alleviate the need for manual annotations.

One interesting future direction on learning transferable representations, is to use the
knowledge in foundation models [15] to help the model transfer better to diverse unseen
domains. Recently, foundation models have shown surprising ability in learning knowledge
for various downstream tasks. Yet, it is still unclear how to e↵ectively leverage foundation
models to aid the knowledge transfer process of models to unseen domains. This is essen-
tial to learn models that can generalize to dynamically changing environments. There are
other more realistic problem settings that requires more attention. For example, in the real
world, 1) we might be able to provide some annotations in the target domain, which can
significantly boost the adaptation performance; 2) the annotations available in the source
domain might not be evenly distributed, and the long-tailed labeled distribution can be a
challenge to learn an unbiased classifier; 3) the target data may be streaming in with the dis-
tribution dynamically changing. Further research need to be conducted targeting these more
challenging scenarios, either extending previous methods or designing novel approaches.
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Appendix A

Supporting Materials for Chapter 2

A.1 Proof of Equation (2.12)

As mentioned in Chapter 2, in order for the prototype-classifier learning paradigm to work
well, the network is desired to have enough confident predictions for all classes to get robust
ŵs

i
and ŵt

i
. First, to promote the network to have diversified outputs, we propose to maximize

the entropy of expected network prediction H(Ex[p(y|x; ✓)]). Second, to get high-confident
prediction for each sample, we perform entropy minimization on the network output. So the
overall objective is:

maxH(Ex[p(y|x; ✓)])� Ex[H(p(y|x; ✓))]. (A.1)

Now we show that this objective equals maximizing the mutual information between input
and output, i.e. I(y;x):

H(Ex[p(y|x; ✓)])� Ex[H(p(y|x; ✓))] (A.2)
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Table A.1: Dataset statistics and labeled source used

Dataset Domain # total image # labeled images # classes

O�ce [187]
Amazon (A) 2817

1-shot and 3-shots
labeled source

31DSLR (D) 498
Webcam (W) 795

O�ce-Home [228]

Art (Ar) 2427
3% and 6%

labeled source
65

Clipart (Cl) 4365
Product (Pr) 4439
Real (Rw) 4357

VisDA [173]
Synthetic (Syn) 152K 0.1% and 1%

labeled source
12

Real (Rw) 55K

DomainNet [172]

Clipart (C) 18703
1-shot and 3-shots
labeled source

126
Painting (P) 31502
Real (R) 70358
Sketch (S) 24582

=Ex

Z
p(y|x) log
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dy
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ZZ
p(y,x) log
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p(y)p(x)
dy dx = I(y;x) (A.9)

In addition, we estimate H(Ex[p(y|x; ✓)]) with
P

x2D p(y|x; ✓) log p̂0, where p̂0 is a moving
average of p(y|x; ✓).

A.2 Additional Datasets Details

Overall statistics of the datasets and the number of labeled source examples used in our
experiments can be found in Table A.1. For O�ce [187], O�ce-Home [228] and VisDA [173],
we follow the same setting in [120], randomly sampling labeled images from the source
domain and ensure that each class has at least one labeled example. For DomainNet [172],
we use the same split files as [189] and further select 1-shot and 3-shots labeled samples in
the training set for each class.
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Table A.2: Accuracy of cross-domain weighted kNN with di↵erent SSL methods.

Method D!A Rw!Cl

ImageNet pre-train 62.5 40.6
ID [246] 70.3 51.9
CDS [120] 72.5 53.7
protoNCE [135] 72.3 49.3
LInSelf + LCrossSelf 75.5 55.3

A.3 Additional Implementation Details

We implemented our model in PyTorch [169]. We choose batch size of 64 for both source
and target in self-supervised learning and batch size of 32 for the classification loss. The
learning rate ratio between linear layer and convolution layer is set to 1 : 0.1. We use SGD
with weight decay rate 5e�4. For O�ce and O�ce-Home, we adaptively set temperature �
according to [135]. For VisDA and DomainNet, we fix � to be 0.1 for more stable training.
We set temperature ⌧ to be 0.1 in all experiments. We choose hyper-parameters �in and
�cross 2 {1, 0.5}, and the weight 2 {0.05, 0.01}. As for parametersm (momentum for memory
bank update) and M (number of k-means in LInSelf), we set m = 0.5 and M = 20.

We use spherical k-means for clustering and set half of the number of clusters in k-means
to be the number of the classes nc, and the rest to be 2nc. We compute the weight for cosine
classifier only using source images for the first 5 epochs and set tw to be around half of the
average number of images per class. New prototypes (i.e. centroids of clusters and weights of
cosine classifier) are computed per epoch for both self-supervised learning and classification.

A.4 Quantitative Feature Analysis

To quantitatively compare the quality of learned features with di↵erent approaches, we
perform classification with weighted k-nearest neighbor (kNN) classifier proposed by Wu et
al. [246] in a cross-domain manner. Specifically, given a test image xt, we first compute its
normalized feature f t = F (xt), and then compare it again embeddings of all source images
in the source memory bank V s using cosine similarity si = cos(f t,vs

i
). The top k nearest

neighbors in the source domain, Nk, would be used to make the final prediction with weighted
voting. Specifically, class c would get weight wc =

P
i2Nk

↵i · 1(ci = c), in which ↵i is the
contributing weight of neighbor vs

i
defined as ↵i = exp(si/⌧). We set ⌧ = 0.07 and k = 200

as in [246].
We perform the above cross-domain kNN classification on models trained with 1) only

cross-domain self-supervised learning methods, and 2) Few-shot Unsupervised Domain Adap-
tation methods, with the results shown in Table A.2 and Table A.3, respectively. From the
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Table A.3: Accuracy of cross-domain weighted kNN with di↵erent FUDA methods.

Method D!A (1-shot) Rw!Cl (3%)

CDS [120] 72.3 57.6
CDS + ENT 72.8 58.6
CDS + MME + ENT 60.8 59.2
PCS (Ours) 76.0 59.3

a Target accuracy with cosine classifier vs.
training epochs

b Target accuracy with Weighted kNN vs. train-
ing epochs

Figure A.1: Stability of Target Accuracy during training procedure.

results, we can see that both the proposed cross-domain prototypical self-supervised learning
method and the whole PCS framework outperforms previous approaches.

A.5 Stability Analysis of PCS

To show the performance stability of PCS, we conduct multiple runs with three di↵erent
random seeds. Table A.4 reports the averaged accuracy and standard deviation of the three
runs on the 1-shot and 3-shots settings of O�ce.

Figure A.1 shows adaptation accuracy vs. training epochs using cosine classifier (Fig-
ure A.1a) and weighted kNN classifier (Figure A.1b). From the plots, we have the following
observations. (1) The target accuracy of PCS increases more steadily and robustly compared
to other methods. In Figure A.1a, CDS starts decreasing at Epoch 3. In Figure A.1b, CDS
and CDS+ENT starts decreasing at Epoch 1; while CDS+ENT+MME decreases from the
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Table A.4: Averaged accuracy and standard deviation of PCS on three runs of 1-shot and
3-shots on O�ce dataset.

Labeled Source A!D A!W D!A D!W W!A W!D

1-shot 60.2±1.9 69.8±0.8 76.1±0.4 90.6±0.8 71.2±1.0 91.8±1.9
3-shots 78.2±1.8 82.9±1.1 76.4±0.5 94.1±0.1 76.3±0.7 96.0±0.7

Table A.5: Sum of pair-wise cosine-similarity between prototypes in O�ce and O�ce-Home.

Method D!A (1-shot) Rw!Pr (3%)

SO 0.44 -0.71
CDS [120] 0.43 -0.71
PCS w/o APCU -53.3 -22.8
PCS (Ours) -58.4 -26.5

beginning of training. In contrast, the performance of PCS increases smoothly until the end
of training. (2) PCS converges much faster than other methods. We can see in Figure A.1a
that PCS plateaus at around Epoch 3, while CDS+ENT and CDS+ENT+MME reaches the
best performance at Epoch 9 and 10.

A.6 Prototype Quality Comparison

To further compare how well source and target are aligned, we provide more t-SNE [153]
visualizations on O�ce (D!A) and O�ce-Home (Rw!Cl) in Figure A.2a and A.2b, com-
paring ImageNet Pre-training, CDS [120] and PCS. Specifically, we plot representations for
all samples (top in both Figures), as well as the prototypes (normalized average representa-
tion) for each class. In top rows of both figures, the color of a sample represents its class, and
samples from di↵erent domains are represented by di↵erent shapes (circles for source and
crosses for target, best view after zooming in). In bottom rows of both figures, the number
of a prototype represents its class index, and color represent the domain of the prototype
(Cyan for source, Red for target, and Black for prototype weight of the classifier). As we can
see from Figure A.2, for each class, the prototypes of source, target and the weight vector of
classifier get more aggregated with PCS than other methods, which demonstrates that PCS
could better align source and target representations for each category.

In a well-learned feature embedding space, prototypes of di↵erent classes should be far
di↵erent from each other. To quantitatively measure the similarity of the learned proto-
types, we compute the sum of cosine similarities between all pairs of prototypes. From the
results shown in Table A.5, we can see that the prototypes learned with PCS have the least
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Table A.6: Adaptation accuracy (%) comparison on fully-labeled setting on the O�ce-Home
dataset.

Method Ar!Cl Ar!Pr Ar!Rw Cl!Ar Cl!Pr Cl!Rw Pr!Ar Pr!Cl Pr!Rw Rw!Ar Rw!Cl Rw!Pr Avg

SO 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [70] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [146] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MMDIA [114] 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
MME [189] 54.2 72.8 78.3 57.9 70.2 71.8 58.5 52.9 77.9 72.7 58.1 81.8 67.3
CDS / MME [120] 56.9 73.3 76.5 62.8 73.1 71.1 63.0 57.9 79.4 72.5 62.5 83.0 69.3
PCS (Ours) 55.8 76.9 80.3 67.9 74.0 75.7 67.0 52.9 81.0 74.5 58.3 82.8 70.6

Table A.7: Adaptation accuracy (%) comparison on fully-labeled setting on the O�ce
dataset.

Method A!D A!W D!A D!W W!A W!D Avg

SO 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [70] 79.7 82 68.2 96.9 67.4 99.1 82.2
CDAN [146] 92.9 94.1 71 98.6 69.3 100 87.7
MMDIA [114] 92.1 90.3 75.3 98.7 74.9 99.8 88.8
MME [189] 88.8 87.3 69.2 98.7 65.6 100 84.9
CDS + MME [120] 86.9 88.3 75.9 98.6 73.3 100 87.1
PCS (Ours) 94.6 92.1 77.4 97.7 77.0 99.8 89.8

similarities, indicating that PCS learns an embedding space with better semantic structure.

A.7 Image Retrieval Results

We present cross-domain image retrieval results in Figure A.3. Given a query feature fq in
the target domain, we measure the pairwise cosine similarity between fq and all features in
the source domain. The source images with the most similar features as fq are returned as
the top retrieval results. We compare image retrieval results of PCS with CDS in Figure A.3.
As shown in Figure A.3, features from model trained with CDS are biased to some wrong
attributes, e.g. color, texture and other visual clues; and quantitatively similar features do
not correspond to semantically similar images in di↵erent domains. In contrast, we can see
that PCS could extract features that are more discriminative and semantically meaningful
across domains.
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Table A.8: Performance contribution of each part in PCS framework on O�ce-Home.

Method
O�ce-Home: Target Acc.

Ar !Cl Ar !Pr Ar !Rw Cl !Ar Cl !Pr Cl !Rw Pr !Ar Pr !Cl Pr !Rw Rw !Ar Rw !Cl Rw !Pr Avg

3% labeled source

Lcls 24.4 38.3 43.1 26.4 34.7 33.7 27.5 26.5 42.6 41.2 29.0 52.3 35.0
+LInSelf 34.6 48.3 54.7 49.2 53.1 57.1 48.2 40.6 62.9 57.9 44.9 68.8 51.7
+LCrossSelf 36.5 53.7 56.6 51.2 57.9 58.8 51.2 42.8 66.2 61.5 50.1 72.2 54.9
+LMIM 37.2 55.9 58.8 51.5 59.4 59.0 53.2 43.0 68.2 62.0 50.2 72.5 55.9
+APCU (PCS) 42.1 61.5 63.9 52.3 61.5 61.4 58.0 47.6 73.9 66.0 52.5 75.6 59.7

6% labeled source

Lcls 28.7 45.7 51.2 31.9 39.8 44.1 37.6 30.8 54.6 49.9 36.0 61.8 42.7
+LInSelf 40.8 57.6 65.5 54.5 62.4 62.7 54.6 43.1 73.6 64.2 44.7 75.9 58.3
+LCrossSelf 40.8 59.5 66.9 55.5 64.1 63.1 57.2 46.2 73.9 65.0 52.0 76.9 60.1
+LMIM 42.1 60.2 68.5 55.9 64.4 63.5 59.1 47.1 74.4 66.6 52.1 77.0 60.9
+APCU (PCS) 46.1 65.7 69.2 57.1 64.7 66.2 61.4 47.9 75.2 67.0 53.9 76.6 62.6

A.8 Performance Comparison with UDA Methods
using Full Source Labels

We have shown the superiority of PCS in label-scarce setting (FUDA), and we further con-
duct experiments with fully-labeled source domain (UDA). The performance comparison
with other UDA methods on O�ce and O�ce-Home are presented in Table A.7 and Ta-
ble A.6, respectively. We can see that PCS achieves the best results even with fully-labeled
source, which demonstrates that the proposed PCS could potentially be applied to a wider
range of domain adaptation settings.

A.9 More Ablation Study Results

In this section, we provide more ablation study results. Ablation experiments similar to
Table 2 in the main paper are performed on O�ce-Home, with results shown in Table A.8.
As we can see in the table, adding each component contributes to the final adaptation
accuracy without any performance degradation, which demonstrates the e↵ectiveness of all
components in our PCS framework.
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PCS (Ours)CDSImageNet Pre-trained

a O�ce (D!A with 1-shot labeled source per class)

PCS (Ours)CDSImageNet Pre-trained

b O�ce-Home (Rw!Cl with 3% labeled source per class)

Figure A.2: t-SNE visualization of ours and baselines on O�ce (a) and O�ce-Home (b).
Top row: Coloring represents the class of each sample, and shape represents domain (circle
for source and cross for target). Features with PCS are more discriminative than the ones
with other methods. Bottom row: each number represents a centroid for corresponding
class. Cyan represents centroids of source images based on ground truth and Red for
target. Black represents prototypes of the classifier. Centroids from PCS are better-aligned
between domains compared to other methods. (Zoom in for more details).
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Query (Target) Retrievals (Source)
(a) CDS (b) PCS (Ours)

Figure A.3: Image retrieval examples of the closest cross-domain neighbors using CDS (a)
and PCS (b) in O�ce-Home (Target: Real, Source: Art).
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Appendix B

Supporting Materials for Chapter 3

B.1 Detailed Comparison with Other Works.

In Section 3.5 of Chapter 6, we provide comparison of the overall performance (mean IoU)
of the models, specifically comparison with other domain generalization works from GTA
to Cityscapes, and with other domain adaptation works from GTA to Cityscapes as well as
from SYNTHIA to Cityscapes. Here, we provide more detailed comparison of the class-wise
accuracies in Table B.2, Table B.3, and Table B.4. From the detailed tables, we can see that
our method provides better performance in many classes and outperforms the state-of-the-
art methods in terms of mIoU under both domain generalization and domain adaptation,
which shows the e�cacy and superiority of our method.

B.2 Additional Experiments on auxiliary domains
and color augmentation.

Two more experiments are conducted with FCN8s-VGG16 in this section. First, we re-run
our approach with 15 real-world styles from the BDD dataset, including di↵erent weather
conditions, time of day (TOD), etc. Then, we replace the style transfer step with 15 color
augmentations 1, varying the hue, saturation, grayscale, contrast, etc. These changes pre-
serve the semantics of the objects.

Table B.1 shows the new results (last two rows) along with those reported in Chapter
3. “Random” stands for the styles randomly selected from ImageNet and Artworks, and
“Semantics” are the styles of the Cityscapes classes (e.g., Car, Road, etc.). The results are
close to each other except that the color augmentation is a little worse than the others. The
pyramid consistency is e↵ective for all the test cases.

1https://github.com/aleju/imgaug



APPENDIX B. SUPPORTING MATERIALS FOR CHAPTER 3 125

Table B.1: Adaptation from GTA with di↵erent style sets. We report results (mIoU%) both
without / with the pyramid consistency.

Style Set
Semantics

Safe?
Cityscapes Mapillary

Random 7 34.64 / 36.11 31.64 / 32.25
Semantics 7 34.84 / 35.62 31.29 / 32.18
Weather-TOD 7 34.51 / 35.89 31.24 / 32.18
Color Change 3 33.56 / 34.52 30.27 / 32.06

Table B.2: Class-wise Performance comparison on Domain Generalization from GTA to
Cityscapes with ResNet-50 base network.
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ResNet-50

NonAdapt [166]
7 7

– – – – – – – – – – – – – – – – – – – 22.17
IBN-Net [166] – – – – – – – – – – – – – – – – – – – 29.64
NonAdapt

7 7
84.5 12.3 75.4 19.2 9.1 18.7 19.2 7.5 81.6 30.9 73.8 42.7 8.9 76.4 17.2 27.8 1.8 8.6 1.2 32.45

Ours 90.1 21.6 79.4 25.6 18.2 22.6 26.4 16.5 82.9 34.3 77.1 46.1 13.5 78.3 24.4 29.1 3.6 13.4 7.8 37.42

B.3 More Discussion.

Table B.1 shows that the color augmentation performs a little worse than the style trans-
fers probably for two reasons. One is that it does not bring to the synthetic images any
appearances of the real images by design. The other is that it randomizes the images only
by color (almost uniformly) and no texture. Learning an optimal non-uniform color shift
policy is another future direction to explore.

Table B.1 shows that di↵erent style sets, including the real styles (i.e. weather) suggested
by R3, lead to similar results. Together with Figure 3.4 in Chapter 3, we find that “how
many domains” influences the results more than “what domains”.
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Table B.3: Class-wise Performance comparison from GTA to Cityscapes with VGG base
network. All the best accuracies with respect to VGG-16 base network are in bold.
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VGG19
NonAdapt [269]

3 3
18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3

Curriculum [269] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9
CGAN [103] 3 3 89.2 49.0 70.7 13.5 10.9 38.5 29.4 33.7 77.9 37.6 65.8 75.1 32.4 77.8 39.2 45.2 0.0 25.5 35.4 44.5

VGG16

NonAdapt [102]
3 3

31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.1
FCNs Wld [102] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
NonAdapt [191]

3 3
73.5 21.3 72.3 18.9 14.3 12.5 15.1 5.3 77.2 17.4 64.3 43.7 12.8 75.4 24.8 7.8 0.0 4.9 1.8 29.6

LSD [191] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1
NonAdapt [36]

3 3
29.8 16.0 56.6 9.2 17.3 13.5 13.6 9.8 74.9 6.7 54.3 41.9 2.9 45.0 3.3 13.1 1.3 6.8 0.0 21.9

ROAD [36] 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 29.3 68.9 48.5 14.1 78.0 19.1 23.8 9.4 8.3 0.0 35.9
NonAdapt [100]

3 3
26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9

CyCADA [100] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4
NonAdapt [188]

3 3
25.9 10.9 50.5 3.3 12.2 25.4 28.6 13 78.3 7.3 63.9 52.1 7.9 66.3 5.2 7.8 0.9 13.7 0.7 24.9

MCD [188] 86.4 8.5 76.1 18.6 9.7 14.9 7.8 0.6 82.8 32.7 71.4 25.2 1.1 76.3 16.1 17.1 1.4 0.2 0.0 28.8
I2I [160] 3 3 85.3 38.0 71.3 18.6 16 18.7 12 4.5 72 43.4 63.7 43.1 3.3 76.7 14.4 12.8 0.3 9.8 0.6 31.8
NonAdapt [291]

3 3
64.0 22.1 68.6 13.3 8.7 19.9 15.5 5.9 74.9 13.4 37.0 37.7 10.3 48.2 6.1 1.2 1.8 10.8 2.9 24.3

CBST-SP [291] 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1
NonAdapt [247]

3 3
72.5 25.1 71.2 6.6 13.4 12.3 11.0 4.7 76.1 16.4 67.7 43.1 8.0 70.4 11.3 4.8 0.0 13.9 0.4 27.8

DCAN [247] 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.3 17.0 6.7 36.2
NonAdapt [152]

3 3
26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9

CLAN [152] 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6
BDL [138] 3 3 89.2 40.9 81.2 29.1 19.2 14.2 29.0 19.6 83.7 35.9 80.7 54.7 23.3 82.7 25.8 28.0 2.3 25.7 19.9 41.3
NonAdapt [287]

3 3
– – – – – – – – – – – – – – – – – – – 30.0

PTP [287] – – – – – – – – – – – – – – – – – – – 38.1
AdaptSeg [221] 3 3 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
NonAdapt [108]

3 3
– – – – – – – – – – – – – – – – – – – 18.8

DAM [108] – – – – – – – – – – – – – – – – – – – 32.6
NonAdapt

7 3
68.4 24.7 68.9 18.1 15.2 18.1 16.7 9.6 78.4 18.3 65.7 43.6 12.3 69.1 18.7 16.1 0.4 5.3 3.2 30.0

Ours 86.6 38.4 79.8 26.4 18.1 34.7 21.3 16.3 81.2 28.7 76.5 50.1 16.6 80.7 28.3 21.4 2.3 14.3 10.9 38.6
NonAdapt

7 7
66.4 23.9 69.1 16.3 15.8 19.6 15.8 8.6 77.7 19.5 66.1 43.2 12.1 68.9 17.3 17.2 0.3 4.8 2.9 29.8

Ours 84.6 31.5 76.3 25.4 17.2 28.2 21.5 13.7 80.7 26.8 74.9 47.5 15.8 77.1 22.2 22.7 1.7 8.9 9.7 36.1

Table B.4: Class-wise Performance comparison from SYNTHIA to Cityscapes with VGG
base network. All the best accuracies with respect to VGG-16 base network are in bold.

Network Method
Train
w/
Tgt

Val
on
Tgt ro

ad

si
d
ew

al
k

b
u
il
d
in
g

w
al
l

fe
n
ce

p
ol
e

tr
a�

c
li
gh

t

tr
a�

c
si
gn

ve
ge
ta
ti
on

sk
y

p
er
so
n

ri
d
er

ca
r

b
u
s

m
ot
or
b
ik
e

b
ic
yc
le

m
Io
U

VGG19
NonAdapt [269]

3 3
5.6 11.2 59.6 0.8 0.5 21.5 8.0 5.3 72.4 75.6 35.1 9.0 23.6 4.5 0.5 18.0 22.0

Curriculum [269] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0
CGAN [103] 3 3 85.0 25.8 73.5 3.4 3.0 31.5 19.5 21.3 67.4 69.4 68.5 25.0 76.5 41.6 17.9 29.5 41.2

VGG16

NonAdapt [102]
3 3

6.4 17.7 29.7 1.2 0.0 15.1 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 17.4
FCNs Wld [102] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2
NonAdapt [191]

3 3
30.1 17.5 70.2 5.9 0.1 16.7 9.1 12.6 74.5 76.3 43.9 13.2 35.7 14.3 3.7 5.6 26.8

LSD [191] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1
NonAdapt [36]

3 3
4.7 11.6 62.3 10.7 0.0 22.8 4.3 15.3 68.0 70.8 49.7 6.4 60.5 11.8 2.6 4.3 25.4

ROAD [36] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2
NonAdapt [291]

3 3
17.2 19.7 47.3 1.1 0.0 19.1 3.0 9.1 71.8 78.3 37.6 4.7 42.2 9.0 0.1 0.9 22.6

CBST [291] 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4
NonAdapt [247]

3 3
10.8 11.4 66.6 1.6 0.1 16.9 5.5 14.1 74.2 76.2 46.0 11.5 45.4 15.1 6.0 13.4 25.9

DCAN [247] 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4
BDL [138] 3 3 72.0 30.3 74.5 0.1 0.3 24.6 10.2 25.2 80.5 80.0 54.7 23.2 72.7 24.0 7.5 44.9 39.0
DAM [108] 3 3 – – – – – – – – – – – – – – – – 30.7
NonAdapt [287]

3 3
– – – – – – – – – – – – – – – – 24.9

PTP [287] – – – – – – – – – – – – – – – – 34.2
NonAdapt

7 3
15.6 12.3 70.3 6.7 0.2 20.4 5.6 15.3 73.5 76.2 47.2 10.5 54.3 12.1 5.3 10.6 27.3

Ours 78.9 31.4 79.3 9.6 0.2 27.3 10.1 15.6 76.2 78.5 45.1 16.4 69.8 13.6 8.3 22.7 36.4
NonAdapt

7 7
14.7 11.8 68.5 7.3 0.1 19.6 4.6 14.4 71.8 73.2 48.5 9.1 56.1 11.7 4.9 11.7 26.8

Ours 77.5 30.7 78.6 5.6 0.2 26.7 10.6 16.1 75.2 76.5 44.1 15.8 69.9 14.7 8.6 17.6 35.5
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Appendix C

Supporting Materials for Chapter 4

C.1 Datasets

Cityscapes [41] contains vehicle-centric urban street images collected from a moving vehicle
in 50 cities from Germany and neighboring countries. There are 5,000 images with pixel-wise
annotations, including a training set with 2,975 images, a validation set with 500 images,
and a test set with 1,595 images. The images have resolution of 2048⇥ 1024 and are labeled
into 19 classes.

GTA [180] is a vehicle-egocentric image dataset collected in the high-fidelity rendered
computer game GTA-V with pixel-wise semantic labels. It contains 24,966 images (video
frames) with the resolution 1914⇥ 1052. There are 19 classes compatible with Cityscapes.

SYNTHIA [182] is a large synthetic dataset. To pair with Cityscapes, a subset, named
SYNTHIA-RANDCITYSCAPES, is designed with 9,400 images with resolution 960 ⇥ 720
which are automatically annotated with 16 object classes, one void class, and some unnamed
classes.

BDDS [261] contains thousands of real-world dashcam video frames with accurate pixel-
wise annotations. It has a compatible label space with Cityscapes and the image resolution
is 1280⇥ 720. There are 7,000, 1,000 and 2,000 images for training, validation, and testing,
respectively.

C.2 Evaluation Metrics

Following [102, 269, 101], we employ class-wise intersection-over-union (cwIoU) and mean
IoU (mIoU) to evaluate the segmentation results of each class and all classes. Let Pl and Gl

respectively denote the predicted and ground-truth pixels that belong to class l, and then

cwIoUl =
|Pl \ Gl|

|Pl [ Gl|
, mIoU =

1

L

XL

l=1
cwIoUl, where | · | denotes the cardinality of a set.

Larger cwIoU and mIoU values represent better performances.
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C.3 Implementation Details

Although the proposed MADAN could be trained in an end-to-end manner, due to the
constrain of hardware resources, i.e. GPU memory, we train it in three stages. First, we
train two CycleGANs [286] without semantic consistency losses for GTA $ CityScapes and
SYNTHIA$ Cityscapes, and then train an FCN F on the adapted images with correspond-
ing labels from the source domains. Second, after updating FA with F trained above, we
generate adapted images using CycleGAN with the proposed semantic consistency loss in
Eq. (4) and aggregate di↵erent adapted domains using Cross-domain Cycle Discriminator
and Sub-domain Aggregation Discriminator. Finally, we train an FCN on the newly adapted
images in the aggregated domain with feature-level alignment. The above stages are trained
iteratively. We leave the end-to-end training as future work by deploying model parallelism
or experimenting with larger GPU memory.

In our experiments, we choose to use FCN [145] as our semantic segmentation network.
To make it easier to compare with most of other methods, we use VGG-16 [203] as FCN
backbone. The weights of the feature extraction layers in the networks are initialized from
models trained on ImageNet [45]. The network is implemented in PyTorch and trained with
Adam optimizer [122] using a batch size of 8 with initial learning rate 1e-4. Our machines
are equipped with 4 NVIDIA Tesla P40 GPUs and 20 Intel(R) Xeon(R) CPU E5-2630
v4@2.20GHz.

All the images in SYNTHIA, GTA and Cityscapes are resized to 600 ⇥ 1080, and are
then cropped to 400 ⇥ 400 during the training of the pixel-level adaptation for 20 epochs.
Sub-domain aggregation discriminator and cross-domain cycle discriminator are frozen in
the first 5 and 10 epochs, respectively. Please note that there are 16 and 19 di↵erent classes
in SYNTHIA and GTA, respectively. In the experiments, we take the 16 intersection classes
for all mIoU evaluations.

C.4 More Visualization on Semantic Segmentation
Results

Here we visualize more segmentation results of single-source DA from GTA to Cityscapes in
Figure C.1 and the proposed multi-source adaptation method, i.e. MADAN, in Figure C.2.

C.5 More Visualization on Pixel-level Alignment

Here, we show more visual pixel-level alignment results on both GTA and SYNTHIA to
Cityscapes in Figure C.3.
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(a) (b) (c) (d) (e) (f)

Figure C.1: Qualitative semantic segmentation result from GTA to Cityscapes. From left
to right are: (a) original image, (b) ground truth annotation, (c) CycleGAN, (d) Cycle-
GAN+DSC, (e) CycleGAN+DSC+Feat.

(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b) (c) (d) (e) (f) (g) (h)

Figure C.2: Qualitative semantic segmentation result from GTA and SYNTHIA to
Cityscapes. From left to right are: (a) original image, (b) ground truth annotation, (c) source
only from GTA, (d) CycleGANs on GTA and SYNTHIA, (e) +CCD+DSC, (f) +SAD+DSC,
(g) +CCD+SAD+DSC, and (h) +CCD+SAD+DSC+Feat (MADAN).
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(a) (b) (c) (d) (e) (f) (g)

Figure C.3: Visualization of image translation. From left to right are: (a) original
source image, (b) CycleGAN, (c) CycleGAN+DSC, (d) CycleGAN+CCD+DSC, (e) Cy-
cleGAN+SAD+DSC, (f) CycleGAN+CCD+SAD+DSC, and (g) target Cityscapes image.
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Appendix D

Supporting Materials for Chapter 6

D.1 Additional Implementation Details

We implemented our model in PyTorch [169]. The training setting is adapted from [266]. For
O�ce and O�ce-Home, the temperature � is set adaptively according while for DomainNet,
� is fixed to 0.1 for more stable training. The margin m is always set to 0.1. We set
temperature ⌧ to be 0.1 in all experiments according to [266]. The weights for di↵erent loss
are �mps = 1,�ssc = 0.1,�mi = 0.1.

We use a batch size of 64 and train our model on two NVIDIA P100 GPUs. The setting
for clustering is same with [266] except that we found more frequent clustering yields better
results on DomainNet and generate new prototypes every 200 iterations.

D.2 Stability Analysis of MSFAN

To show the performance stability of MSFAN, we conduct multiple runs with three di↵erent
random seeds. Table D.1 reports the averaged accuracy and standard deviation on the 1-
shot and 3-shot labels per class settings of O�ce. From the variance, we can see that the
proposed MSFAN framework is experimentally stable.

Table D.1: Averaged accuracy (%) and standard deviation of three runs of 1-shot and 3-shots
settings on the O�ce dataset.

1-shot 3-shot

D,W!A A,W!D A,D!W D,W!A A,W!D A,D!W

76.3 ± 0.32 94.4 ± 1.17 92.6 ± 0.08 77.7 ± 0.6 95.4 ± 0.06 95.8 ± 0.10
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D.3 Multi-Source DA with Full Source Labels

We also apply MSFAN to the traditional MDA setting with full source labels. Table D.2
shows the performance comparison with state-of-the-art UDA and MDA methods on Of-
fice. We can see from the results that the proposed MSFAN framework still outperforms all
previous methods with fully labeled source domains. This shows the potential wider appli-
cation of MSFAN, not only in the label-scarce setting, but also in label-abundant setting.
We hope to test the potential usage of MSFAN to other DA settings, such as multi-source
semi-supervised DA, multi-source partial DA, multi-source open-set DA etc.

Table D.2: Adaptation accuracy (%) with full labels of source domains on O�ce dataset.

O�ce full-labeled

Method D,W!A A,W!D A,D!W Avg

Source Only
Single-best 62.5 99.3 96.7 86.2
Combined 66.3 98.8 97.7 87.6

Single-best
DA

CDAN [146] 71.0 100 98.6 89.9
MME [189] 69.2 100 98.7 89.3
MDDIA [114] 75.3 99.8 98.7 91.3
CDS [120] 75.9 100 98.6 91.5
PCS [266] 77.4 99.8 97.7 91.6

Source-combined
DA

CDAN [146] 73.0 99.4 98.8 90.4
MME [189] 69.2 98.7 99.2 89.0
MDDIA [114] 76.1 99.4 98.2 91.2
CDS [120] 73.9 98.8 98.4 90.4
PCS [266] 76.3 98.3 97.1 90.6

Multi-source
DA

SImpAl [227] 70.6 99.2 97.4 89.0
MFSAN [288] 72.7 99.5 98.5 90.2
PMDA [285] 75.2 99.7 98.3 91.1
MSFAN (Ours) 77.0 100 98.9 92.0

D.4 Ablation Study on Cross-multi-domain
Prototypical SSL Design (LCPS)

For LCPS in “Cross-multi-domain Prototypical Self-supervised Learning” of Section 6.3 in
Chapter 6, we propose to only minimize H(P i)t

j
), without considering H(P t)i

j
) or the simi-

larity vector entropy between source domains.
In Table D.3, we compare the final performances of di↵erent designs of LCPS to validate

the proposed LCPS. All experiments are conducted with Lcls + LIPS + LCPS, with the same
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Lcls and LIPS, and di↵erent LCPS for each row: i) “Every domain pair” refers to minimizing
the entropy of instance-prototype similarity vectors between every domain pair of the M +1
domains (M source domains and 1 target domain). ii) “Tgt$Src” refers to only minimizing
the entropy of similarity vectors between each source domain and the target domain including
both H(P i)t

j
) and H(P t)i

j
). iii) “Tgt!Src” means only considering the H(P t)i

j
) between

each source and the target. iv) “Src!Tgt” means only considering the H(P i)t
j

) between
each source domain and the target domain. From the results in Table D.3, we can see that
the proposed design (only minimizing H(P i)t

j
)) achieves the best results.

Table D.3: Performance of di↵erent designs of LCPS in Cross-multi-domain Prototypical SSL.

O�ce 1-shot D,W! A A,W! D A,D! W Avg

Every domain pair 74.7 89.7 92.1 85.5
Tgt$Src 75.4 89.7 91.7 85.6
Tgt!Src 72.0 85.3 91.1 82.8
Src!Tgt 75.6 89.7 91.8 85.7


