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Abstract

Automated, FPGA-Based Hardware Emulation of Dynamic Frequency Scaling

by

David Thomas Biancolin

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Krste Asanović, Co-chair

Adjunct Assistant Professor Jonathan Richard Bachrach, Co-chair

The simultaneous growth of new applications and death of transistor scaling trends is driving
an explosion in custom silicon projects spanning all domains of computing. However, the
enormous non-recurring engineering (NRE) cost of designing a modern system-on-a-chip
(SoC) remains a major barrier to the wider adoption of custom silicon. Of concern to this
dissertation is the lack of a good full-system simulation technology, a key driver of pre-
silicon verification and validation costs. While field-programmable gate arrays (FPGAs) can
be fast and relatively inexpensive hosts for simulation, mapping SoC clocking structures onto
an FPGA such that they are represented accurately and deterministically is challenging. For
this reason and others, many SoC designers turn to expensive hardware emulation platforms
and their proprietary compilers. To radically reduce the cost of doing fast and accurate
full-system simulation, the ADEPT Lab designed FireSim: an open-source, FPGA-based
hardware emulation framework hosted in the public cloud.

In this dissertation, we begin by introducing FireSim’s compiler infrastructure, called Golden
Gate, which is capable of performing general multi-cycle resource optimizations in order to
fit large SoCs on a single FPGA. Here we extend Golden Gate to present non-invasive,
optimization-compatible schemes for simulating SoC clocking structures. First, we describe
a simple approach for simulating systems with multiple fixed-frequency clocks. We then
generalize this to support a general class of clock and reset structures, which can be composed
to simulate dynamic frequency scaling, using an approach based on prior work in conservative
parallel discrete-event simulation. The resulting work differs from prior academic FPGA-
based projects in that it supports a much larger space of input designs, is easier to deploy to
other FPGAs, and, like any good simulator, is deterministic—all while supporting simulation
rates fast enough to productively boot operating systems and run real applications.
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Chapter 1

Introduction

Today, the semiconductor industry finds itself in the midst of a storm emerging from two
colliding fronts1. The first of these, the hot front, is an exponential growth in the diversity and
volume of computing applications. While AI, specifically machine learning, has captured the
zeitgeist, advances in semiconductor process technologies have made it possible to embed
computing in nearly all aspects of human life. This manifests at the extremes as deeply
embedded systems, often running in highly energy-constrained environments, and cloud-
hosted services, running in multi-megawatt-scale datacenters, all interconnected via an ever
more capable internet. All of this—from the smallest embedded microcontrollers to the
largest datacentered-oriented servers, and the networking hardware that connects them—
runs on transistor technologies whose fundamental physics have not changed since the mid-
twentieth century.

Indeed, the “cold” front of this storm is the inevitable slowing of transistor scaling trends
that have long been the hallmark of the semiconductor industry. First, we lost Dennard scal-
ing [31]: a regime in which a shrink in transistor channel length and voltage would produce
a proportional reduction in the delay of a circuit built from them. Dennard scaling drove an
era of exponential increase in computing performance wherein one could simply re-implement
an existing design in the latest process technology to realize large speedups. Dennard scaling
ended in the mid-aughts when it became difficult to further scale transistor voltages without
losing the ability to shut them off [76], forcing power density to increase. This put a thermal
limit on how fast one could clock a chip and led microprocessor manufacturers to abandon
development of higher-frequency, deeply pipelined machines.

In the years since, advances in computing performance have ridden on the back of the
industry’s better-known scaling trend, Moore’s Law [74]. Even if transistors were not getting
faster, they were still shrinking. These extra transistors could be translated into larger caches
and prediction structures, physically wider vector and SIMD instruction pipelines, and most
notably, more processor cores. In this time, we also saw the rise of the general-purpose
GPU (GPGPU), whose more parallel architecture scales naturally to use more transistors

1I borrow this metaphor from my advisor, Krste Asanović.
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than a conventional microprocessor. GPGPUs have been a fundamental driver in the suc-
cess of many modern machine-learning techniques [61]. Unfortunately, GPGPUs are far
from truly general-purpose; the bulk of the world’s applications still run on conventional
microprocessors where improvements offered by more cores and other microarchitectural
enhancements are bearing less fruit.

With no radically better general-purpose computer architecture (based in silicon or oth-
erwise) waiting in the wings, there is broad agreement that the only means to deliver con-
tinued advances in computing performance and energy efficiency is with specialization. In
academia, many researchers are building accelerators for specific application domains, like
graph computing [46] and machine learning [25]. In industry, there is a growing number of
companies designing their own silicon where previously they would have purchased offerings
from existing players. Notable examples include Tesla [13], Amazon [9], Google [52], and
more recently, Apple2 with their M1 SoC [6].

What this “specialization” should look like is the defining question of this era of computer
architecture research. However, the more narrow concern of this dissertation is how a particu-
lar microarchitecture should be implemented in silicon. While application-specific integrated
circuits (ASICs), offer the best potential for realizing these improvements, the non-recurring
engineering (NRE) cost of a new design is enormous and growing (Figure 1.1). As a result,
reconfigurable logic devices like field-programmable gate arrays (FPGAs) have long filled
low-volume niches where the NRE of custom silicon (i.e., an ASIC) cannot be effectively
amortized. The need for lower cost, energy-efficient hardware has also driven a resurgance
in structured ASICs [35]: these are FPGA-like devices whose field-programability has been
removed. Structured ASICs attempt to close the performance and energy-efficiency gap be-
tween FPGAs and ASICs while saving up to 90 % of the NRE of an equivalent ASIC [106].
Nonetheless, we believe the performance and energy-efficiency costs [105] of using these inter-
mediate technologies is large enough to justify a redoubled effort to make standard-cell-based
ASIC design more economical.

The large NRE of developing an ASIC is in part historical. Years of advantageous scaling
trends have bred a business model in which, at least in advanced technologies, relatively few
unique designs are taped out in enormous volumes. Simultaneously, advances in general-
purpose computers dissuaded investment in smaller-volume custom-silicon projects: why,
after all, would one design an ASIC, when one could wait two years for the next Intel CPU?
As a result, tools and methodologies have been designed and optimized around large NREs
and large volumes to amortize them. Moreover, the established players in the electronic
design automation (EDA) industry, responsible for developing the tools used to design ASICs,
have little short-term incentive to alter this business model, because the sheer complexity
of modern EDA tools makes it difficult to license to smaller players at lower costs. For the
benefits of custom silicon to be attainable for the non-Apples and Googles of the world this
will need to change.

2Apple has long been designing its own SoCs for its mobile phones, but used Intel SoCs in their laptops
and desktops.
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Figure 1.1: Early design non-recurring engineering (NRE) cost at various feature dimensions.
Source: IBS.

Part of the problem is that there appears to be no silver bullet for reducing ASIC NRE,
as there are many disparate sources that often span multiple domains of chip design (Fig-
ure 1.1). Instead, we will need many diverse tooling improvements united under a reimagined
methodology for building custom silicon. At Berkeley, we have articulated one such vision
inspired by agile software-engineering practices [68] and have built tools to support it. These
tools include Chisel [12], a more productive hardware-design language (HDL) based in Scala,
and FIRRTL [50], a flexible intermediate representation for hardware that makes it easier to
build compilers. Perhaps the largest contribution to this vision has been the RISC-V instruc-
tion set architecture (ISA) [102]. Being open and free-to-use, RISC-V enables chip designers
to build customized microprocessors while extending an open-source software toolchain. This
avoids the costs and legal encumbrances of using a proprietary ISA, or the massive engineer-
ing burden of developing and supporting a fully custom ISA. RISC-V adoption has been
meteoric in recent years, both in academia outside of Berkeley [82, 30, 87], and in industry,
where a growing body of companies, notably SiFive, Western Digital, and Nvidia have been
developing new RISC-V implementations.

One unaddressed deficiency in chip design that drives verification, validation and software
development costs, is the lack of a good full-system simulation technology. Ideally, such a
technology would be:

• Fast. As fast as a silicon prototype, so as to enable running full system stacks and
complete applications.
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• Detailed. It would simulate SoC’s timing characteristics exactly.

• Productive. It would be easy to debug and fast to recompile. It would feel much like
a software-based simulator.

• Inexpensive. It would be cheap to deploy so that it could be made widely accessible
to hardware and software design teams and support running large parallel experiments.

In practice, existing simulation technologies are forced to prioritize two of these objectives.
Software simulators, despite being easy to use and relatively inexpensive, are much too slow
to run full-system simulations when providing a cycle-accurate model of the chip. For speed,
chip designers are forced to turn to hardware acceleration, in the form of FPGA prototyping
and hardware emulation. Of the two, FPGA prototypes tend to be faster and less expensive,
and so see extensive use in software development and regression testing later in the design
cycle. Conversely, hardware emulation is slower and considerably more expensive, but offers
a software-simulator-like debugging experience that makes it a critical tool for pre-silicon
verification. We will expand more on these differences in Chapter 2.

The central question of the simulation work underway at Berkeley asks if it is possible
to build a simulation platform that can marry the speed of FPGA prototyping, and the pro-
ductivity of hardware emulation, while being radically cheaper to deploy. Such a technology
would put hardware emulation in the hands of smaller research groups, and make it more
widely available in companies where scarce emulation resources must be carefully scheduled.
Additionally, if it is fast enough, it could subsume the role of a conventional FPGA proto-
type, reducing the engineering burden of having parallel emulation and FPGA prototyping
infrastructures. If this technology is going to be inexpensive, two things are clear. First,
it must use commercial off-the-shelf (COTS) FPGA platforms, and not custom devices or
system integration as is true of all commercial emulators. Second, this technology’s software
ecosystem, including tools and IP libraries, will need to be open-source with the hope that
they can be developed and maintained by a community of users instead of a private team of
engineers.

This is no small undertaking, but it is one made easier by recent technology trends.
Firstly, modern FPGAs are enormous, and continue to be among the greatest beneficiaries
of Moore’s law since they can naturally scale to use larger transistor budgets. Advances in
multi-die integration technologies have made it easier to reliably manufacture even larger
FPGAs. This makes it possible to simulate considerably larger systems on a single FPGA.
Secondly, FPGAs are now available in public cloud and provided by major vendors like Ama-
zon Web Services [2]. This means a team can avoid the expense of building and maintaining
their own local FPGA cluster, and can use newer FPGAs as they become available. Cloud
services also provide an elastic supply of FPGAs, allowing users to scale out experiments
as needed, instead of needing to provision a local cluster for the worst case. While the
hourly rates of using cloud-based FPGAs are currently non-trivial, we expect these to fall
in the future as the costs of these services are amortized. Finally, it would be difficult to
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build out a hardware emulation infrastructure without the aforementioned advances in open-
source tooling. A compiler lies at the heart of all hardware emulation systems: FIRRTL and
its Scala-based compiler infrastructure provide flexible abstractions for translating a design
into an FPGA-hosted emulator. FPGA-hosted emulation infrastucture requires customized
hardware, and more productive hardware-design languages, like Chisel, make it considerably
easier for a small team to build it. Finally, for an open-source infrastructure to see use,
it requires open-source input designs to both encourage adoption and inform development.
Here, we can leverage a growing body of RISC-V based processors, such as Rocket [8] and
BOOM [22], to feed into our system.

While it initially began as a project to study warehouse-scale computers, the FireSim [53]
project has been our attempt at building out this new technology. FireSim has been the
basis for a number of emulation-related research papers at Berkeley: we have studied detailed
DRAM timing models [16], and non-invasive, full-system profiling techniques [54]. FireSim-
adjacent projects using the same underlying compiler, MIDAS [56], have explored novel
techniques for rapid debugging [57], and energy estimation [59, 58]. Over time, features
from these projects have gradually been integrated in mainline FireSim, where they are
employed by a growing user base.

Unfortunately, limitations with MIDAS limited its scope to simple designs. First, these
designs were small: they could be directly implemented on a single Xilinx VU9P FPGA, a
mid-range device from the Ultrascale+ family with approximately 1.18 million lookup ta-
bles (LUTs). To provide more context, prototyping-optimized FPGAs from the same family
can have as many as 8.17 million LUTs (VU19), and large modern SoCs must be partitioned
over them [4]. Second, these systems possessed only a single clock domain. Conversely, mod-
ern SoCs have dozens of clocks whose frequencies may change during execution. Without
the ability to simulate even a small number of fixed-frequency clocks it was difficult to get
truly accurate performance estimates with FireSim. Addressing these two challenges drove
the design of a new optimizing compiler called Golden Gate [70].

To simulate larger systems, Golden Gate uses multi-cycle resource optimizations to re-
place FPGA-hostile blocks. Golden Gate automates many techniques deployed in prior
academic work in FPGA-accelerated microarchitecture simulation to radically improve the
capacity of single FPGA. These optimizations are the focus of Albert Magyar’s disserta-
tion [71]. Addressing the second challenge of simulating systems with more realistic clock
organizations is the subject of this dissertation. The contributions of this work are threefold:

1. We describe Golden Gate, an optimizing compiler infratructure to deploy module-based
multi-cycle resource optimizations (Chapter 4). This contribution is shared with Albert
Magyar, and is also described in his dissertation [71].

2. A simple, FPGA-portable extension to Golden Gate to support systems with fixed fre-
quency clocks that is compatible with multi-cycle resource optimizations (Chapter 5).

3. A general, distributed approach for simulating clocking structures, based off of prior
work [23] in software parallel discrete-event simulation (Chapters 6 - 8). As above,



CHAPTER 1. INTRODUCTION 6

our implementation co-exists with all multi-cycle resource optimizations. This is the
primary contribution of this dissertation.

All of the software described in this dissertation is open source. We make frequent
reference to specific versions of the FireSim codebase to provide more context in each chapter.
Code references will use monospace typeface where applicable. We hope this will help
document features of FireSim as more users adopt it. At time of writing, Golden Gate and
support for fixed-frequency clocks (Chapter 5) have been integrated into mainline FireSim
and are under active use. The features described in Chapters 6 - 8 are tagged pdes, and will
be merged in the future.

1.1 Previous Publication, Collaboration, and Funding

Portions of this work were published at the 2019 International Conference on Computer-
Aided Design as Golden Gate: Bridging The Resource-Efficiency Gap Between ASICs and
FPGA Prototypes, though in this dissertation we focus on the design of the compiler. The
specific resource optimization employed in that publication is described at length in Albert
Magyar’s dissertation [71]. Early results from our initial support for emulation of multiple
fixed-frequency phase-aligned clocks, were published as Accessible, Resource-Efficient FPGA-
Accelerated Emulation Using FireSim in a July 2021 IEEE MICRO special issue on FPGAs
in Computing.

Donggyu Kim drove the bulk of MIDAS development based on his work on Strober [58].
In the “1.0” version of MIDAS presented in his dissertation [55], I contributed the design
of the endpoint system. The final version of that compiler used by FireSim is described in
Section 3.5.

The work uses features developed by other FireSim contributors. Notable contributors
include Alon Amid, who developed much of the debug infrastructure, Howard Mao, who has
contributed to nearly all subsystems in FireSim, and Sagar Karandikar, who ported MIDAS
to use AWS and designed the cloud manager.

Finally, Golden Gate was the product of a tight collaboration between myself and Albert
Magyar. Much of the complexity in our dissertations is tied to the FIRRTL-based software
infrastructure required to analyze target SoCs and transform them into latency-insensitive
networks. This common infrastructure is described at length in Chapter 4, and is the basis
for the remainder of the dissertation.

The information, data, or work presented herein was funded in part by the Advanced
Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award
Number DE-AR0000849, and NSF CCRI Award 2016662. Research was partially funded by
ADEPT Lab industrial sponsors and affiliates Intel, Apple, Futurewei, Google, and Seagate,
and supported by gifts provided by Amazon Web Services and Xilinx. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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Chapter 2

Full-System Simulation of SoCs

Full-system simulation is used ubiquitously in SoC design and verification. In this chapter,
we commence with an exploration of the roles served by full-system simulation in the SoC
design process, and discuss commonly used full-system simulation technologies with emphasis
on hardware-accelerated forms like FPGA prototyping and hardware emulation. From there
we pivot to study how computer architecture researchers employ full-system simulation for
higher-level architectural and microarchitectural studies, and how academics have sought to
use FPGAs to accelerate these simulations. We conclude by reviewing work done by the
Berkeley Architecture Research (UCB-BAR) group over the past decade that attempts to
build more cost-effective hardware emulators by applying techniques from academic FPGA-
accelerated microarchitecture simulators as compiler transformations on SoC RTL.

To avoid confusion when speaking of computers simulating computers, we make a dis-
tinction between the target, the system being simulated, and the host, the system executing
the simulation. The host is often not a single machine but a collection of interconnected
machines, which may include CPUs, GPUs, and FPGAs.

2.1 A Tour of Full-System Simulation for SoC Design

Simulation is central to performing three fundamental tasks of SoC design.

1. Prototyping: “What thing should we build?” Prototyping serves as a means to
rapidly evaluate different design points with an imperfect model of a proposed design.

2. Verification: “Did we build the thing right?” Verification serves to check, or prove,
that a particular implementation correctly executes.

3. Validation: “Did we build the right thing?” Validation serves to show that the im-
plementation fulfills the objectives set out for the system.

Both prototyping and verification can be applied at all levels of the design hierarchy. For
example, given a specification of the system into which an accelerator is to be integrated,
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one could prototype different design points and verify an implementation of that accelerator.
Validation, however, seeks to answer a system-level question that spans the entire computing
stack. The surest way to validate a system is not in simulation, but at-speed with a physical
prototype or the final product itself. However, waiting for a silicon prototype pushes valida-
tion late into the design cycle making it challenging or impossible to pivot the design of the
system based on validation results. To perform pre-silicon validation, a fast and accurate
full-system simulator is required. Here, SoC designers are confronted with a cost-fidelity-
performance trade-off, and are forced to use multiple different simulation technologies at
different points in this space.

2.1.1 CPU-Hosted Simulation for Prototyping

Architecture-level simulators such as QEMU [84], which model the system at the instruction-
set-architecture (ISA) level and include a limited set of standard device models for I/O, are
fast and inexpensive as they run on conventional CPUs. When augmented with simple
timing models, they are ideal for doing initial system prototyping, as these models can be
quickly modified and recompiled. However, as these timing models become more complex,
they become more challenging to validate, and crucially, the throughput of these simulators
rapidly declines.

Continuing in the direction of increasing fidelity, microarchitecture-level simulators, such
as Gem5 [17] and MARSSx86 [78], are CPU-hosted simulators that provide configurable,
“cycle-accurate” timing models of a complete system, including CPU pipelines, caches, and
off-chip memory systems. These simulators can run target workloads at hundreds of kilo-
instructions-per-second (KIPS), but are often much slower in practice when employing more
detailed or custom models. This makes it practically impossible to run complete workloads,
such as multi-threaded Java applications or SPECint2006 [47] with its reference inputs. Here,
a common remedy is to employ statistical sampling techniques [107] to fast-forward to the
region of interest on an architecture-level simulator, before executing O(100M) instructions
at the desired fidelity.

While this approach has well-acknowledged shortcomings [45], it can be an appropriate
vehicle for doing initial system prototyping. For radical proposals that involve aggressive
microarchitectural changes or traverse multiple layers of the computing stack, this approach
is often inadequate. This includes workloads that are multithreaded, or are long-running and
irregular (such as managed-language workloads), for which it is difficult to collect meaningful
samples without perturbing the system under evaluation [48].

2.1.2 CPU-Hosted Simulation for Verification

Since the aforementioned simulation techniques use abstract models of the target system
instead of directly simulating its implementation, they are unproductive for system verifi-
cation and validation once implementation begins. Here designers instead use CPU-hosted
simulators that faithfully represent the implementation at a particular abstraction level.
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For simulating digital components of the SoC, a register-transfer level (RTL) simulator,
like Synopsys VCS or Verilator [97], is the tool of choice. Broadly speaking, RTL simulators
do a cycle-by-cycle simulation of all target-state elements and the combinational functions
that update them. Generally in these simulations the values on wires transition instanta-
neously and no delay through registers and combinational circuits is modeled. Supposing the
underlying digital abstraction holds, RTL simulation is ideal for doing dynamic verification
of a digital circuit. Small blocks compile in seconds, while complete SoCs can be compiled
in ones to tens of minutes. RTL simulators are relatively easy to debug as they provide
complete visibility over the state of the design over the entire duration of a simulation. The
cost ($) of an RTL simulator comes mainly from software licensing fees, as simulators run on
standard servers or desktop CPUs, though in many cases an open-source RTL simulator like
Verilator can be used instead. Ultimately, the largest challenge in using CPU-hosted RTL
simulators is that they have poor simulation throughput for large designs. Complete SoCs
execute at hundreds to less than one Hz—much too slow to verify anything but short-running
inputs (e.g., checking early system boot), or for full-system validation.

It’s important to note at this point that higher-fidelity software simulation of the design
is commonly used after the SoC is synthesized and implemented in a particular process
technology. These simulations generally include more detailed models of analog components
of the system (e.g, for PLLs), as well as combinational, wire, and parasitic delays that can
only be accurately determined once the SoC has passed through physical design. These
implementation-dependent delays can be back-annotated onto a gate-level netlist and then
simulated to detect race conditions and other bugs that static timing analysis tools may
not find. While back-annotated gate-level simulation is critical, notably for verifying an
SoC’s reset sequence, the additional fidelity only exacerbates the throughput limitation of
CPU-based simulation.

For effective full-system validation and dynamic verification, considerably faster simula-
tion throughput is required. While there are many techniques that can improve throughput
on CPUs, such as multithreading and relaxing or restricting the timing semantics of the
design language, the abundant fine-grained, often bit-level, parallelism of RTL simulation
cannot be exploited by multiprocessors sufficiently to overcome the enormous slow down over
a silicon prototype.

2.1.3 FPGA Prototyping

To build simulators that execute at rates closer to a silicon prototype, designers turned to
fine-grained parallel hardware. One of the earliest forms of hardware-accelerated full-system
evaluation emerged in the 1980s and used programmable logic devices, specifically FPGAs,
to directly implement the design. This is known as FPGA prototyping.

Modern FPGA prototypes directly implement the SoC on one or more FPGAs, often with
a custom board design that may include peripherals identical to those that would be deployed
in the final system. FPGA prototypes are fast: small prototypes that fit in a single FPGA
execute at tens to hundreds of MHz, while larger prototypes, which must be partitioned
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across multiple FPGAs, simulate at hundreds of kHz [88, 101]. Modern vendor-provided
FPGA prototyping platforms, such as Cadence’s Protium[19] platform, can run at 1-10 MHz
by carefully managing inter-FPGA interconnect, and cleverly partitioning the design. Often,
FPGA prototypes are inexpensive enough that they be can readily duplicated and distributed
across hardware and software engineering teams. Relative to software simulation, prototypes
have greater fixed costs (to buy, design, and/or license the prototyping platform), but more
critically, are difficult to use [4]:

1. Poor design visibility makes it difficult to debug failing systems. Users must instantiate
FPGA-specific debugging hardware which provides only a limited set of signals for a
small window of time, as these tools consume considerable FPGA resources. If the bug
is not found on the first iteration, the process must be repeated: the design must be
resynthesized with a new set of sampled signals.

2. Long compile times (1s - 10s hours) make it difficult to iterate about a design point
and lengthens the aforementioned debug cycle.

3. Large designs do not fit on a single FPGA and must be partitioned across multiple
FPGAs either manually or with specialized tools. This makes the prototype hardware
more expensive and decreases simulation throughput.

4. Many ASIC structures, such as multi-ported RAMs and clock generators, cannot be
synthesized into FPGA fabric so must be replaced with an FPGA equivalent.

5. FPGA-specific I/O models are required to build out a complete system and using
hardened IP on the FPGA may not be a good model of the target system. Performing
software co-simulation of IO often reduces simulation throughput.

6. Prototypes are not natively deterministic making it difficult to reproduce certain classes
of system failure, especially those that involve I/O.

7. Prototypes require a complete RTL implementation of the design.

These limitations make FPGA prototypes unproductive for full-system verification. How-
ever, in most cases FPGA prototypes are the fastest available full-system RTL model of the
target and so are used extensively for pre-silicon software development and regression testing.

2.1.4 Hardware Emulation

Hardware emulation aims to provide productive full-system verification by marrying the
speed of FPGA prototypes with the usability of software simulators. Hardware emulators
tend to be expensive to license and run—millions of dollars per unit per year—making them
a precious commodity that must be carefully shared across a company.

Each of the three major CAD vendors offer hardware emulation solutions. Mentor Ve-
loce [90] and Cadence Palladium [20] are the historical market leaders in hardware emulation
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with the two jockeying for position with each update to their emulation platforms. Synop-
sys ZeBu [93] rounds out the offerings. Differences in the implementations of these three
emulators put them at different points in the cost-usability-performance space. We describe
their three implementation strategies in the following sections.

ASICs - Logic Processor Arrays

Perhaps the earliest form of hardware emulation traces back to IBM Research’s Yorktown
Simulation Engine (YSE [32]) and its industrial-strength successor project the Engineering
Verification Engine (EVE [15]). These machines consisted of an array of small processors.
Processors were specialized either for simulating logic (logic processors) or memory (array
processors), and were interconnected with high-radix crossbars (256 x 256 in early machines).
A compiler [62] would partition, map, and schedule the target onto this array. Both EVE and
YSE could perform gate-level simulation in zero-delay or unit-delay (every gate propagation
incurs a constant delay) modes. Cyclist [11] is a recent academic work that further explores
this approach: it uses a homogeneous array of custom RISC-V cores attached in a 2-D mesh
network.

Cadence’s Palladium [20] emulators derive from EVE (which was for a time sold by
QuickTurn Design Systems under the name CoBALT [34], before they were acquired by
Cadence). Relative to competing emulation solutions, Palladiums have lower capacity per
unit, but have the fastest compile times. Palladiums have the highest power consumption
and, unlike the competing offerings, must be water-cooled.

Custom FPGAs

While EVE-like processor arrays can provide radically improved compilation speeds, since
the compilation problem is fundamentally simpler than running FPGA place and route,
one natural alternative is to modify conventional FPGAs for emulation. This might involve
adding dedicated hardware to improve debuggability (e.g., to make it possible to capture
full-visibility waveforms), adding I/O multiplexing hardware to ease the FPGA-partitioning
problem (e.g., a hardware implementation of Virtual Wires [10]), and modifying the pro-
grammable fabric to better match the resources and interconnect required by ASIC designs.
This is the approach taken by Mentor Graphics’s Veloce [90] emulation platforms. Veloce
emulators appear to have better capacity than Palladium, but slower compile times. Veloce
emulators use less power and are air-cooled.

Commercial-Off-The-Shelf FPGAs

To some degree, hardware emulation tends to have large total-cost-of-ownership (TCO)
because the leading emulators are both power-hungry and use custom silicon. To save some
of that cost, a third alternative that sees industrial use is to use large, commercial-off-the-
shelf (COTS) FPGAs but rely on custom tooling and system packaging to improve usability.
Synopsys’s ZeBu [93] platform does precisely this and leverages the largest available Xilinx
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FPGAs (at the time of its release these were Virtex Ultrascale VU440s [93]). At time of
writing, ZeBu provides the highest simulation throughput and the lowest power consumption
but has a reduced debug feature set relative to other emulators. In its use of COTS FPGAs,
Synopsys ZeBu is most similar to the work presented herein.

2.2 Hardware-Accelerated Microarchitecture

Simulation

To build more cost-effective hardware emulators, this work draws from technologies devel-
oped in academia to accelerate cycle-level microarchitecture simulation (this is described see
Section 2.1.1).

The first, most obvious way to accelerate these is to parallelize them over multiproces-
sors or networks of workstations. One early example of this is the Wisconsin Wind Tun-
nel (WWT) [86], which relied on a window-based, parallel discrete-event simulation engine
to manage synchronization across workstations. For CPU-hosted simulators like the WWT
and recent works like Graphite [73] to achieve good performance, they must reduce the syn-
chronization overhead between partitions of the design by either modeling the target more
abstractly, or by introducing additional target latency between partitions. While this may
be appropriate for building coarser models, it is ineffective for accelerating RTL simulations
and thus for building hardware emulators which require at least per-cycle synchronization.

So to build simulators that were both fast and cycle-accurate many academics turned
to FPGAs, which by the 1990s and early 2000s had proven themselves as effective vehicles
for ASIC prototyping and emulation. However, instead of directly implementing an ASIC
design, here FPGAs would be used as a host for microarchitectural models written in RTL.
While an early example of this approach is the Rapid Processor Emulator [14, 77], the bulk
of the research in this domain can be attributed to the RAMP project [103].

2.2.1 Research Accelerator For Multiple Processors (RAMP)

The RAMP project began in 2005 driven by the realization that advances in computing
performance would require exploiting other forms of parallelism beyond ILP, as the end of
Dennard scaling would necessarily make single-threaded performance improvements more
difficult to attain. The RAMP project’s goal was to develop a shared full-system simu-
lation infrastructure which would be better suited than traditional software simulators to
study future thread-parallel machines. Member universities included UT Austin; CMU; UC
Berkeley; University of Washington; Stanford; and MIT.

At the onset of the project three monolithic prototypes were built, each was designed to
model a different class of target. RAMP Red, later known as ATLAS (Stanford) [104] was
designed to study transactional-memory-based chip-multiprocessors, and supported up to
8 PowerPC cores. RAMP Blue (UC Berkeley) [60] was tailored for large-scale distributed-
memory message-passing machines and used Xilinx Microblaze softcores to prototype the
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target system. Partitioned over 21 Berkeley Emulation Engine 2 boards (BEE2) [24], RAMP-
Blue could simulate a system with as many as 1008 cores. Finally, RAMP White (UT
Austin) [5] modeled cache-coherent shared-memory processors. It supported both PowerPC
(when using a Xilinx host with a hardened PowerPC 405 core) and 32-bit SPARCV8 (soft
core) targets. Each of these prototypes used the same host platform (BEE2), and were
initially constructed using shared libraries and a common specification language called the
RAMP design language [39].

Other, mostly later, projects tied to RAMP abandoned the shared infrastructure and
explored different simulator design styles. ProtoFlex (CMU) [28] was an architecture-level
simulator that demonstrated 16-way host-multithreading of a single FPGA-hosted functional
model. ProtoFlex could switch between FPGA-hosted and CPU-hosted modes via a process
it called transplantation. FAST (UT Austin) [26] was a cycle-accurate x86 simulator which
leveraged a split, CPU-hosted functional model and FPGA-hosted timing model. RAMP-
Gold (UC Berkeley) [95] used FPGA-hosted timing and functional models with 64-way host-
multithreading to realize a larger target on a single FPGA. To model a datacenter-scale
target, DIABLO (UC Berkeley) [94] stitched together 24 instances of a modified version
RAMPGold to simulate 3072 interconnected servers. Finally, HASim (MIT) [79] also used
FPGA-hosted timing and functional models, but provided more detailed pipeline and mem-
ory hierarchy models. Later work studied partitioning HASim over multiple FPGAs [36]
and showed that by using two FPGAs HASim could host eight times as many cores, due to
improved resource sharing between virtual instances.

Around the same period, other groups not associated with the RAMP project explored
using FPGAs for microarchitecture simulation. One notable example is DART [100], an
FPGA-based Network-on-Chip (NoC) simulator that used multithreading, like many RAMP
simulators, but leveraged NoC-specific model abstractions to permit a wide range of runtime-
reconfigurable model parameters.

2.2.2 FAME Taxonomy

One output of the RAMP project was the FPGA Architecture Model Execution (FAME) [96]
taxonomy of FPGA-accelerated simulation work, which distills many of the contributions of
the works above into three dimensions: host decoupling (FAME-1), abstract RTL (FAME-2),
and multithreading (FAME-4). Like the RAID classification, each of these dimensions can
be composed, in this case to produce FAME-0 through FAME-7 simulators. For example,
simulators employing multithreading tend to be host decoupled—under this taxonomy, these
would be referred to as FAME-5 simulators. Similarly, RAMPGold [95] and HASim [79] are
FAME-7 simulators: they deploy all three techniques.

2.2.3 FAME-1: Host Decoupling

In host-decoupled FPGA simulators, a target cycle of simulation executes over multiple
FPGA-host cycles. In contrast, a conventional FPGA prototype executes a single target-
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cycle on every FPGA-host cycle; multiple clocks can be prototyped using multiple host
clocks with the same relative frequency relationship as exists in the target. With host
decoupling, ASIC structures that map inefficiently to FPGA fabric may be replaced with
optimized-for-FPGA structures that take more host cycles to execute, but save FPGA re-
sources and improve host-cycle time. One classic optimization replaces multi-ported register
files and CAMs with a dual-ported BRAMs accessed over multiple cycles. Additionally, host-
decoupling permits the simulator to tolerate variable latencies in the host without sacrificing
simulator performance or changing the target-time behavior of the simulation. Nearly all
academic FPGA-accelerated simulators employ host decoupling. Unlike FPGA prototypes,
commercial FPGA-based emulators are necessarily host decoupled to make them execute
deterministically and to support a wealth of additional features that may require halting
parts of the emulation. We expand on mechanisms for implementing host decoupling in
Chapter 3.

2.2.4 FAME-2: Abstract RTL

In an abstract-RTL FPGA-accelerated simulator, components of the simulator do not model
the implementation RTL exactly. Abstraction permits simplifying components of the target,
trading simulation fidelity for FPGA-resource savings. Additionally, abstract models can be
made reconfigurable in ways the implementation RTL cannot (e.g., a latency-pipe model can
expose its latency as a runtime-programmable register). In practice, the FAME-2 dimension
of the taxonomy represents a spectrum. Most academic FPGA-accelerated simulators are
either partially or completely abstract-RTL simulators. That said, even commercial hardware
emulators are to some extent abstract as generally some ASIC features, like clock generators
and other analog blocks, may need to be replaced with an equivalent model provided by the
emulation platform.

2.2.5 FAME-4: Multithreading

In a multithreaded FPGA-accelerated simulator, like HASim or RAMPGold, multiple vir-
tual instances of a block or module within the target are simulated using a single physical
datapath on the FPGA. The target state is duplicated once per virtual instance, and a
scheduler selects which virtual instance should be simulated in a given host cycle. ASIC
logic tends to be expensive when mapped to FPGA fabric; in FPGA prototypes, designs
tend to be logic (LUT) constrained, which leaves much of the FPGA’s embedded BRAM
unused. Multithreading improves the mapping efficiency of the target, by reusing the ex-
pensive logic over multiple copies of target state which can be mapped into abundant FPGA
BRAMs and registers. To the best of our knowledge, commercial hardware emulators and
FPGA prototypes do not use multithreading schemes for sub-components of the target.
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2.2.6 RAMP Retrospective

Ultimately, RAMP-style FPGA-accelerated simulation failed to take off in the computer
architecture community. There are a number of technical explanations for this, including the
lack of a good open ISA: only SPARC was available at the time and this in part motivated the
design of RISC-V. From a simulator-implementation perspective, many challenges RAMP
faced derive from aforementioned difficulties with using FPGAs to prototype ASICs (see
Section 2.1.3). Three more simulation-specific challenges include:

• Large Relative Barrier to Entry. Open-source software simulators can run on ma-
chines researchers already possess, whereas FPGA-based simulators require expensive
hardware. For instance, the early RAMP prototypes all used the BEE2 board. While
using smaller, more inexpensive boards would reduce initial capital costs, it would
do so at the expense of reduced simulation capacity. Simulators using smaller hosts,
like RAMPGold, required extensive resource-optimizations to support research-worthy
target designs.

• Reproducibility of Results. Since RAMP simulators were tied to particular FPGA
host platforms, other researchers would need to purchase the same host to reproduce
published results. Even if researchers had access to their own FPGAs, they generally
could not run a simulator designed for a different host on their own FPGAs without
modification to simulator.

• Modeling Complexity. Designers of RAMP simulators have said that designing
models was more difficult than writing RTL for the matching implementation. Consider
a processor pipeline: to model detailed “cycle-accurate” behavior of that pipeline the
model designer must write RTL that contains much of the same complexity inherent to
the actual pipeline’s design in order to properly capture the all hazards that may affect
the processor’s performance. Furthermore, designers must add still more complexity
to support modeling a space of different processor designs, either at compile time by
generating different model RTL, or at runtime, by adding logic to permit reconfiguring
the simulator. Finally, designers must also apply multi-cycle resource optimizations
to support simulating machines of reasonable scale, which adds still more complexity.
Taken together, this complexity makes the model more difficult to debug than an
already difficult-to-debug FPGA prototype, and to add insult to injury, these models,
like their software counterparts, must still be validated against a real implementation.

2.3 Recent Work at Berkeley

At the end of the RAMP project it was clear that writing performance models for FPGAs
was not going to be tractable without major breakthroughs in improving FPGA usability.
Since evaluating an RTL implementation with an EDA flow is still required to meaningfully
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assess a design’s quality-of-result (QoR), notably its critical path delay, effort spent writ-
ing FPGA performance models would be better spent writing the implementation. If the
RTL design process could be made more productive, computer architecture researchers may
be more willing to conduct microarchitecture studies using realizable RTL designs instead
of software simulators. In this model, once an RTL implementation is ready it could be
transformed into a RAMP-like simulator using a FAME compiler. This circumvents the
aforementioned model complexity challenge, as these simulators would essentially be area-
optimized hardware emulators of the design: they would exactly represent the input design’s
behavior and so would not need to be validated against silicon.

This was one vision that drove research done at UCB-BAR over the past decade. To
address the RTL design productivity challenge, we developed Chisel [12]. Chisel, an RTL
design language hosted in Scala, allows designers to specify rich hardware generators by
leaning on the host language to provide powerful metaprogramming features not available
in SystemVerilog or VHDL. Instead of performing parameter sweeps in a software model,
with a generator the user explores the design space by elaborating and evaluating different
instances of the design produced by different generator configurations. The Rocket Chip SoC
generator [8], now maintained by SiFive, is one example of this: it generates complete RISC-
V SoCs including core pipelines, private caches, uncores, and common periphery devices.
Rocket Chip lets the user stitch together near-arbitrary networks of disparate devices using
its Diplomacy library [29], developed by SiFive, which leverages Scala’s type system to
provide intelligent, area-optimized system integration. The Berkeley Out-of-Order Machine
(BOOM) [22] and Hwacha vector-fetch processor [66] generators provide additional core IP
that can be integrated into a Rocket Chip SoC.

To support writing reusable compiler transformations on generated instances, in Chisel3,
Chisel2’s internal representation (IR) of an RTL circuit and its lowering transforms were
replaced with FIRRTL (Flexible Intermediate Representation For RTL) [50] and its Scala-
based compiler. During elaboration, Chisel3 emits a high-level form of FIRRTL. The
FIRRTL compiler then lowers the instance to Verilog while scheduling user-provided passes.
These passes can be used to tailor an instance to a particular backend: for instance, when
preparing a design for an ASIC implementation FIRRTL memories can be replaced by black
boxes corresponding to technology-specific SRAMs. Alternatively, if the same design is des-
tined to become an FPGA prototype, these memories could be implemented using double-
pumped FPGA BRAMs to save FPGA resources.

2.3.1 Strober and MIDAS

The first FAME-compiler-like work done at UCB-BAR can be found in the Strober [58]
energy modeling project. While gate-level simulation-driven power estimation using com-
mercial tools like Synopsys PrimeTime PX provides accurate pre-silicon results, gate-level
simulation runs much too slowly to conduct system-level microarchitectural studies using
complete workloads. Instead, Strober generates an accurate average power estimate by sam-
pling the execution of the workload running on a fast, FPGA-based simulator and then
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replaying those samples for short durations in gate-level simulation. By selecting an appro-
priate number of samples, average power dissipation for the SoC can be estimated within a
desired error bound.

To realize this, Strober needed to automatically generate an FPGA-based simulator from
ASIC RTL with the ability to capture complete RTL state snapshots and IO traces. While
these features were available in commercial emulation tools, no reusable open-source flow
existed at the time. Since Strober predated FIRRTL, it modified the Chisel2 backend to:

1. Host-decouple input RTL to support halting the simulator to capture state snapshots.
This is called a FAME-1 transformation.

2. Inject a shadow scan-chain to read out target state.

3. Elaborate a simulation wrapper around the transformed target. This wrapper included
IO channels that can buffer a limited IO trace, a latency-pipe timing model for the
target’s DRAM memory system, as well as a simulation control bus.

Strober simulators are co-hosted by an FPGA and a CPU – a driver process writes to
memory-mapped registers accessible on the simulation control bus to advance the simulator
and to initiate state snapshot capture.

Initially independent of Strober, MIDAS began as class project to build an FPGA-based
performance simulation framework. It had its own FAME-1 transform and a nascent library
of more detailed memory-system models (this would later become FASED [16]). Seeing
an opportunity to reuse work, we merged these two projects. MIDAS, as presented at
CARRV2018 [56], retained all of Strober’s features but used Chisel3 and FIRRTL. Crucially,
MIDAS vastly improved simulation performance and made it easier to support co-simulation
of other I/O models.

MIDAS would become the basis for a number of research projects at UCB-BAR. To
improve simulator debuggability, DESSERT [57] leveraged MIDAS’s state snapshotting fea-
tures to perform ganged simulation. Here one instance of a simulator runs ahead of a second
lagging instance, to detect a simulation error. A detectable error could be either a fired
hardware assertion, which had been synthesized from the source FIRRTL, or a commit-log
mismatch between the target processor and an online golden model. On detection of an
error, the leading instance instructs the lagging instance to capture a state snapshot of the
target before the error occurs. Using the replay feature, a full visibility waveform of the
failing target design could then be generated. While commercial emulators provide rich
sets of state-snapshotting features, DESSERT’s differs in that uses two simulators to let the
simulation advance at full-throughput to the point of failure. Simmani [59] revisited power
estimation but, instead of using complete state snapshots, injected a statistically selected
set of performance counters into design which can be used to provide a dynamic estimate of
power dissipation. Finally, MIDAS’s DRAM timing models were published as FASED [16].
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2.3.2 FireSim

As Strober was being developed, UCB-BAR continued to study new architectures for dat-
acenters, notably as part of the FireBox [7] project. FireBox was an early example of a
disaggregated datacenter and relied on high-bandwidth photonic networking made possible
with relatively inexpensive silicon-integrated photonics, a focus of earlier work done by the
lab. To simulate FireBox, we built FireSim [53]. Building on DIABLO, FireSim intercon-
nected MIDAS-generated simulators with a distributed, CPU-hosted network model to build
a cycle-accurate, warehouse-scale computer simulation. To overcome the usability challenges
of DIABLO, FireSim relies extensively on automation. Instead of using a custom host plat-
form, FireSim uses the public cloud, specifically Amazon Web Service’s Elastic Computer
Cluster (EC2). When the user wishes to run a simulation, FireSim’s manager program re-
quests as many FPGAs nodes (to host MIDAS-generated simulators) and compute nodes
(to host switch models) as required. The manager’s ability to dynamically spin-up and tear-
down simulators deployed to EC2 makes it easy to coordinate simulations of near-arbitrary
size. Armed with this flexibility, in our ISCA2018 publication [53] we were able to reproduce
behaviors observable in real datacenters at a variety of different simulation scales.

Since the 2018 ISCA publication, FireSim has evolved to become a general-purpose
hardware emulation environment for Rocket Chip-based SoCs. By optionally removing the
network simulation, the manager can instead batch out parallel workloads to multiple in-
dependent simulator instances, making it productive for doing performance evaluations of
SoC-scale systems. In addition to the manager, FireSim provides:

1. A FAME compiler to generate an emulator from FIRRTL. Initially this was MIDAS,
but as of version 1.6.0 it has been replaced with Golden Gate [70].

2. Device libraries for modeling periphery devices commonly integrated into Rocket Chip
SoCs. This includes a block device, UART, and a tether model in addition to a NIC
model used to perform networked simulation.

3. FireMarshal [81], a utility to automate building Linux distributions for running on
RISC-V based platforms.

4. An example Rocket Chip-derived generator, FireChip, which can instantiate many of
the most commonly used RTL libraries in the Rocket-Chip ecosystem. FireChip serves
as a useful starting point for a new user wishing to build their own generator.

FireSim has been used both in academia and industry, primarily for doing performance
evaluations of new microarchitectural features implemented as extensions to Rocket Chip. At
Berkeley, FireSim was the basis for FirePerf [54], which introduced improved instruction trac-
ing, and non-invasive performance counter integration to perform rapid hardware-software
co-design of the NIC and the Linux networking stack. FirePerf features have since been in-
tegrated into mainline FireSim. Academically, FireSim has been used for microarchitectural
performance evaluations, and commercially, it has seen use at Intensivate, Esperanto, and
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SiFive. FireSim is also being used as a RISC-V platform in DARPA’s FETT [1] bug bounty
program [42].

As a final note, in 2020 UCB-BAR released Chipyard [3], which unifies many of the
aforementioned SoC design tools and IP, including many open-source libraries developed
by SiFive, under a single environment. In Chipyard, FireSim is a library for doing hard-
ware emulation; many standalone utilities that were previously hosted in FireSim but aren’t
strictly related to hardware emulation support, such as FireMarshal, have been hoisted up
into Chipyard.

2.4 Motivations for Golden Gate (MIDAS II)

As adoption of FireSim started to increase, it was clear to us that limitations with its FAME
compiler, MIDAS, prevented it from seeing more widespread use. Firstly, MIDAS’s existing
FAME-1 transform supported systems with only a single, fixed-frequency clock domain,
and barred use of asynchronous resets. This precludes simulating most realistic systems
and made it challenging to validate FireSim against existing RISC-V silicon. Secondly,
capacity challenges with EC2 FPGAs made it difficult to simulate larger systems, notably
the test-chips UCB-BAR was designing concurrently. Without the ability to do multi-FPGA
partitioning, and without any automated application of RAMP-style optimizations, FireSim
was limited to supporting only relatively small SoCs. Taken together, these restrictions
kneecapped FireSim to being a limited, albeit open-source, hardware emulation environment
for primitive Rocket Chip-based SoC designs.

To address these two concerns, we set about designing a new FAME compiler called
Golden Gate [70]. Before we describe its initial implementation, in the next chapter we
review different target formalisms and implementation strategies for building FPGA-hosted,
discrete-event simulators.
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Chapter 3

On The Design of FPGA-Based
Discrete-Event Simulators

For the purpose of this dissertation, it is insightful to classify FPGA-based RTL simulators
along two dimensions: timekeeping strategy and control granularity. For simplicity, here we
consider only single-FPGA hosts, but we note that this discussion can trivially extended to
multi-FPGA hosts. This chapter was influenced by discussion in Pellauer and Vijayaraghavan
et al. in A-Port Networks: Preserving the Timed Behavior of Synchronous Systems for
Modeling on FPGAs [80].

Timekeeping strategy refers to how the simulator tracks simulated time (target time). Ex-
plicit timekeeping (ET) simulators having dedicated state to track time (in seconds) whereas
simulators with implicit timekeeping (IT) instead rely on target-cycle count as a proxy. Im-
plicit timekeeping represents an implementation optimization as additional FPGA resources
required to track and manage timestamps are unneeded. For this optimization to apply
broadly across the simulator, in general, target clocks must have fixed frequency and phase,
and all simulation events must be synchronous to these clocks.

Control granularity refers to how time is permitted to advance across the simulator.
At one extreme there exist simulators with centralized control (CC). These track time in
a single location or are globally statically scheduled (i.e., the entire simulator advances in
lock-step from timestep to timestep). Conversely, there are simulators with distributed con-
trol (DC). These simulators are parallel systems that can be represented as a directed graph
of logical processes (LP). Logical processes, the nodes of the graph, communicate by sending
messages over the graph’s edges. Each LP locally tracks simulation time and can advance
independently: they are themselves smaller discrete-event simulators. DC simulators can
be coarse-grained, with LPs simulating core-scale components, or fine-grained, where LPs
model blocks on the scale of CAMs, RAMs, or combinational circuits, like multiplexers.

Taking the product of these two dimensions produces four classes of hardware-accelerated
RTL simulator:

1. Implicit Timekeeping, Centralized Control (ITCC): FabScalar FPGA mod-
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els [33].

2. Implicit Timekeeping, Distributed Control (ITDC): RAMP simulators [95, 79],
MIDAS-generated simulators [53].

3. Explicit Timekeeping, Centralized Control (ETCC): Yorktown Simulation En-
gine [62], modern commercial emulators1.

4. Explicit Timekeeping, Distributed Control (ETDC): multi-chip commercial em-
ulators2, and this work.

For all intents and purposes, FPGA-based DC simulators are FPGA-hosted, parallel
discrete-event simulators. Parallel, discrete-event simulation (PDES) has been a vibrant
area of research since the 1980s, but PDES researchers have focused nearly exclusively on
non-FPGA hosts (including multiprocessors, GPUs, supercomputers, and networks thereof).
In the next sections we briefly introduce relevant PDES work, and explain how prior work
in that field translates to hosting DC RTL simulators on FPGAs. First, we explore how to
define simulation performance, and then study some CC simulator designs to help motivate
the use of DC simulators despite their increased complexity.

3.1 An Iron Law For FPGA-Based Simulator

Performance

If SoC designers turn to hardware emulation for speed, it is critical to understand how
simulator design affects simulation throughput. For IT simulators with a single target-clock
domain, Pellauer et al. [80] present a simple performance equation which, like the iron-
law of processor performance that inspired it, breaks down the performance of a complete
simulation into a product of terms:

fsim =
cyclest
cyclesh

ffpga (3.1)

Where,

fsim = throughput of the simulator (target-cycles per second, Hz)

ffpga = the clock frequency of the host FPGA (Hz)

cyclesh = the total number of host cycles over which the simulation executed

cyclest = the total number of target cycles simulated

1As their implementations are proprietary, we can not say so definitively.
2As above.
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The right term of this equation, host frequency (ffpga), is set by the critical path delay
of the simulator. Depending on the simulator’s design and the target it simulates, this
may correspond to a critical path in the target design or a path that drives scheduling
logic in the simulator itself [80] (i.e., some part of the circuit deciding whether to advance
forward in simulation time). The left term, a ratio of host to target cycles, is a measure
of the microarchitectural efficiency of the simulator. In an FPGA prototype, this term is
effectively one: every host clock cycle simulates a target clock cycle. In a host-decoupled
simulator, in practice, it is always less than one. We note that while it is possible to simulate
multiple target cycles per host cycle by unrolling successive cycles of execution, there is no
incentive to do so globally across a simulator, as it would double resource utilization, and
likely double the critical path delay of the simulator. In DC simulators of target machines
with multiple clock domains, it may make sense to do this for relatively small LPs in the
fastest clock domains, if the simulator is rate-limited on those LPs. Given this, Pellauer et
al. tend to the more-intuitive reciprocal of this term and dubbing it the FPGA-cycles-to-
Model-cycles Ratio (FMR). We give it in Equation 3.1. Unless it can be deduced statically,
FMR is only usefully defined over a non-trivial interval of simulation.

FMR =
cyclesh
cyclest

(3.2)

As an example, consider a five-read, three-write register-file modeled by an LP that uses
a dual-ported BRAM. If the LP statically schedules all eight accesses, it will have an FMR
of four. Conversely, a more clever design that dynamically schedules accesses only for ports
that are used could have lower FMR (and could approach unity). Continuing with this
example, one could gang together multiple BRAMs or LUTRAMs to build a more highly
ported RAM structure capable of more port accesses per cycle [65, 64]. While this could
reduce the FMR of the statically scheduled implementation from four to as low as one, it
comes at the expense of FPGA resources and, potentially, a longer simulator critical path
which may undermine the FMR improvement.

To apply Equation 3.1 to DC simulators with a single target clock domain, we can modify
it to use the FMR of the LP that has executed the fewest number of target cycles. However,
when LPs may advance only a bounded number of cycles ahead of slower LPs in the system,
for a sufficiently long simulation Equation 3.1 above returns approximately the same result
for all LPs.

3.2 Centrally Controlled (CC) Simulators

When first building a simulator, it is natural to want to coordinate time globally across the
FPGA. It is simpler to implement, there are fewer potential sources of causality errors, and
it easier to capture snapshots of the simulated system at particular points in time. In a
system where different components of the target may take differing, or dynamically varying,
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number of host cycles to execute, there are two common approaches. The first is what we
call static-barrier synchronization. Note, Pellauer et al. [80]. instead use the term unit-delay
simulation, but this differs from how the term is used in other simulation contexts, where
it applies how delays in the target are modeled (see the YSE [32] for an example). Here
the simulator is granted a fixed N host-cycle budget to compute each target cycle, where
N is equal the largest possible latency a sub-block may take to execute (i.e., in isolation its
worst-case FMR is N). While simple to implement, this will result in wasted host cycles
as in many target cycles the full N cycle allocation may be unneeded. We also note that
while it is relatively easy to provide tight bounds for models of many on-chip blocks, like
multi-ported RAMs, it is more difficult to do so for I/O devices, which may require large N
in the worst case, but far less on average.

Instead of selecting N statically, a natural optimization one could make is to allow sub-
blocks to signal when they have finished computing. Here, a centralized controller aggregates
done-signals from all blocks in the system and steps the simulator only once all have been
asserted (a wide AND-reduction). This is called dynamic-barrier synchronization. While
this removes wasted host idle-cycles (FMR can fall below N), it introduces new control
signals that often set the critical path delay of the simulator: these signals must be routed
to a central location on the FPGA, propagated through a potentially wide AND-reduction
network, and then fanned out again across the FPGA. This problem is exacerbated in modern
FPGAs, like the VU9P devices used in Amazon’s EC2 F1 instances, which are composed of
multiple dies3, as these control signals must use relatively scarcer and higher-delay inter-die
interconnect. Additionally, the scarcity of inter-die interconnect puts increased pressure on
the router, and for high utilizations often results in unrouted nets and other related DRC
errors. To improve simulator frequency, it is natural, perhaps even necessary, to pipeline
these signals at the expense of a fixed increase to FMR: unless simulation of target cycle
can be overlapped, FMR will increase by one for each additional pipeline stage. To make
things worse, while FPGAs have scaled in capacity, their logic delays, and thus achievable
ffpga, have seen little improvement. Since an increase in capacity begets more sub-blocks,
the larger AND-reduction network is not offset by logic-delay improvements which further
lengthens the critical path of the simulator.

It is possible to hybridize these two approaches as demonstrated by Dwiel et. al. [33],
where they introduce a notion of minimum FMR (MFMR). In their work they took Fab-
Scalar [27] out-of-order microprocessors and synthesized them onto FPGAs: their elaboration
flow emits multi-cycle models for CAMs and RAMs whose microarchitecture guarantees they
will complete within the user-specified MFMR. The centralized controller need only be aware
of longer-latency events that may exceed this MFMR (specifically instruction and data cache
misses, and complex arithmetic operations [33]) reducing the size of the AND-reduction net-
work.

3In Xilinx parlance, each logic die is referred to as a super-logic region (SLR).
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3.3 Distributed Control (DC) Simulators

These trends in FPGA scaling make it necessary to decentralize timekeeping to build fast
simulators. Having more LPs, each of which manage fewer control signals that are routed
locally, improves fmax while easing the routing and DRC challenges of centralizing control.
The caveat is that distributing control can substantially increase simulator design complexity.
Since LPs can decouple in target time, causality errors can arise if LPs act on messages out
of temporal order. Conversely, if LPs are too conservative in waiting for messages to arrive
the resulting simulator may be prone to deadlock. Finally, a simulator that is correct (it is
deadlock free and correctly models the target) can still suffer poor simulation performance if
transmission latency between LPs cannot be overlapped with LP execution. Designing high-
performance algorithms that satisfy these constraints for CPU hosts has been the central
focus of the PDES community since its inception [37].

3.3.1 A Primer on Parallel Discrete-Event Simulation

In PDES, a physical system can be divided into a set of interacting physical processes (PPs).
A PDES of this system represents each of these physical processes with logical processes (LPs)
that communicate via timestamped messages passed over FIFO communication channels. In
effect, any one LP is itself a discrete-event simulator that must process events in timestamp
order (the local causality constraint). These events can be triggered internally or by mes-
sages received from other LPs. The fundamental difficulty in PDES is that an LP may not
know that it has not yet received an older message and so cannot safely begin processing
another event without potentially violating the local causality constraint. A synchronization
algorithm is responsible for allowing LPs to make forward progress despite this. There are
two broad classes of synchronization algorithm in PDES: conservative and optimistic.

In conservative synchronization algorithms, LPs wait to process events until they are
certain they will not violate the local causality constraint. This conservatism is ripe for
deadlock: it simply takes a cycle of LPs with one waiting on the next. Conservative PDES
overcomes deadlock by requiring that LPs have non-zero lookahead(tL). That is to say, output
messages must only depend on input messages that were received in the past. Armed with
this, it becomes possible to detect and resolve deadlock, or avoid it altogether. The Chandy-
Misra-Bryant (CMB) [18, 23] algorithm avoids deadlock by introducing null messages which
indicate the absence of a real message up to the timestamp included in the null message.
If an LP with non-zero lookahead is blocked on an input whose latest message has the
timestamp ti, the LP must eventually issue a null message at time ti + tL to each of its
receivers. This may be sufficient to unblock the receiving LP, resolving the deadlock risk.
Failing that, the receiving LP is compelled to send null messages still further in the future
and the process repeats. So long as there exists no cycle of LPs with zero lookahead, the
CMB algorithm is guaranteed to avoid deadlock: for a complete proof we refer the interested
reader to Chandy and Misra [23]. Simulation performance decreases as lookahead approaches
zero, as the number of null messages required to avoid deadlock increases [37]. In general,
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lookahead is derived from underlying properties of the physical process; if sufficient lookahead
cannot be captured in the underlying system, conservative PDES algorithms may offer little
performance benefit over sequential simulators.

Optimistic synchronization algorithms, first realized by Time Warp [51], permit LPs
to speculatively execute events that may violate the local causality constraint. Here, LPs
have mechanisms to rollback from mispeculation and to inform downstream LPs of earlier
messages that were erroneously sent. In Time Warp, LPs correct for mispeculated messages
by sending anti-messages, which as the physics analogy would suggest, annihilate pair-
messages that were erroneously sent in the past. In order to prevent unbounded growth of
rollback state and to guarantee forward progress, optimistic simulators have a mechanism to
determine global virtual time (GVT): the earliest timestamp within the set of all unprocessed
events. GVT defines a time across the entire simulator at which the state of all LPs are
known non-speculatively [51], rollback state before this timestamp can be reclaimed. While
the most basic conservative algorithms can be implemented more simply than optimistic
simulators, for many types of physical processes, namely those for which sufficiently long
lookaheads cannot be found (either deduced statically or discovered at runtime), optimistic
simulators out-perform pessimistic ones. While debate between proponents of conservative
and optimistic PDES raged through the 1990s and 2000s, both optimistic and conservative
PDES algorithms see contemporary use [38].

3.3.2 Considerations for FPGA-Hosted PDES

FPGAs differ from the multiprocessors and networked hosts studied in the PDES literature
in a number of ways:

1. FPGAs support bespoke, low-latency interconnect between LPs. Inter-LP
interconnect can be tailored for the specific simulation, producing communication chan-
nels with very short latencies (a few FPGA cycles). Interconnect is relatively abundant
and can support hundreds or thousands of direct links between LPs implemented on
the same FPGA.

2. FPGAs trivially support FIFO communication channels. Unlike in some con-
ventional PDES hosts, channels between FPGA-hosted LPs are easily made FIFO.
LPs do not need to reorder messages, and can assume messages from the same sender
arrive in monotonically increasing time-order.

3. FPGA compute resources are relatively inflexible. FPGAs are considerably
more difficult to program since LPs and other simulation resources must be written
in RTL. Existing FPGAs lack native floating-point support which is critical in many
PDES application domains. In many cases, it is not clear that FPGA implementation
of an LP would be faster than a CPU-hosted one.



CHAPTER 3. ON THE DESIGN OF FPGA-BASED DISCRETE-EVENT
SIMULATORS 26

The complexity and domain-specific knowledge required to wield FPGAs without any
guarantee of improved performance is an enormous deterrent to studying FPGAs as hosts
for general-purpose PDES. That said, at least one general-purpose, FPGA-hosted PDES has
been built: PDES-A [85]. PDES-A implements an optimistic synchronization algorithm over
a regular grid of processing elements (PEs). While it would be possible to implement an
RTL simulator using PDES-A, the effective simulation capacity and throughput of such a
system would be considerably lower than FPGA-based emulators and prototypes. Where
FPGAs hold more promise is in domain-specific PDES that can exploit the features of its
interconnect without succumbing to the additional complexity of programming FPGAs.

3.3.3 ASIC Emulation As Domain-Specific PDES

As an application domain, ASIC emulation has a number of properties that make FPGAs
well-suited hosts. The first, most obvious reason, is that the programmability challenge is
greatly ameliorated by the fact that ASICs are already specified in RTL, and that RTL can
be efficiently mapped into an LP on an FPGA. In the case of an RTL block with a single
clock, a simple LP implementation clock-gates the block it models and adds state machines
to control when to enqueue and dequeue messages, and fire the clock. When an LP clock
fires, what would take thousands or millions of instructions in a CPU-hosted simulator is
computed concurrently in a single host cycle.

Second, since an ASIC can be decomposed into LPs, each with a relatively small, stat-
ically defined number of neighbors, emulation can efficiently leverage FPGA interconnect.
High-bandwidth interconnect between LPs removes any need to compress, or otherwise opti-
mize, transmission between them, reducing simulator complexity. Hundreds, even thousands,
of cycle-by-cycle traces of messages can be trivially moved between LPs on the same FPGA,
a feat that is all but impossible to achieve on a conventional CPU host. LPs can be di-
rectly connected to one another with hardware queues, which in the general case, have a
single host cycle of “transmission” delay. In some cases, flow-through queues or wire con-
nections may be used to allow combinational transmission of messages. Conversely, while
high-bandwidth transmission between LPs can be achieved on a CPU, synchronization (i.e.,
message transmission time) takes many cycles, which becomes problematic when modeling
tightly coupled LPs. The ability to implement low-latency, fine-grained synchronization is
perhaps the largest advantage FPGAs offer over conventional CPUs for this application.

Given that FPGAs appear to be good hosts of PDES for ASIC emulation, the question
becomes how does one translate an ASIC into a graph of LPs, such that the resulting graph
is deadlock free and preserves the behavior of the source RTL while still mapping efficiently
onto the FPGA. The natural place to start is with synchronous systems of a single clock
domainw, as these are simpler to simulate, yet still useful for doing performance studies on
a large class of target machines. These systems can be implicitly timekept—messages are
only ever sent at cycle-boundaries—and so synchronization problem associated with general
PDES can be greatly simplified. Nonetheless, achieving good performance and deadlock
freedom remains a challenge. To solve this, ITDC simulators constrain the behavior of LPs
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so as to prevent deadlock by construction, by both by exploiting properties of the underlying
physical system, and restricting how the target may be legally divided into LPs. We refer
to the set of rules that define the behavior of these LP graphs as a target formalism.

3.3.4 Target Formalisms for ITDC Simulators

Target formalisms for ITDC simulators are defined by a tradeoff between simulation perfor-
mance and modeling flexibility. More flexible formalisms lift restrictions on LP definition
and permit tighter coupling between LPs whereas coarser-grained formalisms tend to have
better simulation performance. We explore three formalisms: the RAMP model (exposed
as part of RDL [39]), APortNetworks [80], and LI-BDNs [99]. For the remainder of this
dissertation, we will refer to untimestamped messages as tokens, the term used more fre-
quently in RAMP-related works, to distinguish them. Having a fixed time-interval between
tokens removes the need for conventional conservative PDES deadlock avoidance (i.e, null
messages) or detection schemes, instead deadlock avoidance in these formalisms is achieved
by-construction by constraining how combinational paths may be modeled between LPs and
the conditions under which LP implementations must enqueue and dequeue tokens.

Practically speaking, these formalisms can be employed in two ways. First, they can be
used to build ad-hoc simulators, where a designer manually writes LP implementations that
they stitch together to model a target design that has not yet be built (this includes RAMP-
Gold [95], HASim [79], and other RAMP simulators). Here there is no reference system
against which the simulator can be validated. Second, they can be used to build hardware
emulators, where the LP graph is generated by a compiler that is processing realizable SoC
RTL. This RTL in effect a reference system, and so not only can LP implementations be
shown to adhere to the rules of the target formalism, but their simulated behavior can be
verified.

3.3.5 Channel-Bootstrapped Formalisms

The RAMP model [39] and APort Networks [80] are examples of what we call channel-
bootstrapped formalisms as they rely on the use of special point-to-point LPs called chan-
nels (in RAMP parlance) to seed the initial tokens of the simulation. Channels are LPs
because they model stateful interconnect: it is this statefulness that allows them to send
output tokens at time zero before receiving any input tokens. In essence, this is a cycle-level
form of lookahead that is sufficient to provide deadlock avoidance.

With that said, RAMP and APortNetworks differ primarily in the granularity of their
supported non-channel LPs, or units (again, in RAMP parlance). The original RAMP
formalism defined units at latency-insensitive boundaries in the target. This would make
blocks on the scale of cores or DRAM controllers reasonable candidates for definition as
an LP. Channels themselves model latency-insensitive interconnect and generically can be
defined by four parameters as shown in Figure 3.1a.
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Figure 3.1: Two types of channels used in a channel-bootstrapped formalism.

In practice, it is rare to find boundaries in the target where all interfaces are latency
insensitive, as often some subset of signals, like reset and interrupts, are driven combina-
tionally or through a set of register stages. APort Networks [80] was designed to support
finer-grained LPs that are coupled in this fashion. In their paper, Pellauer et al. use a
processor pipeline as a motivating example and divide different pipeline stages into separate
LPs. Later versions of the RAMP architecture introduced the same sort of channel, which
we call a pipe channel, shown in Figure 3.1b. Pipe channels are defined by a single parameter
l, corresponding to their latency. Assuming the underlying registers the channel models are
not reset explicitly using a target signal, but are instead initialized at time zero to some
statically known value, pipe channels provide l initial tokens before they must wait for an
input token.

Neither formalism appears to give any treatment to modeling a target-driven reset in
channels, as they both rely on time-zero initialization to effectively “reset” target state. We
note that if these underlying state elements are synchronously reset, the channels with l >= 1
may provide no more than one initial token, as future tokens may causally depend on a reset
token. Furthermore, neither of these formalisms was designed to support asynchronous reset
as all events are synchronous to an implicit clock. Asynchronous reset mandates that that
even the first token emitted by a pipe-channel with l > 0 would depend causally on reset at
time zero. A pipe-type channel with l = 0 is a degenerate LP that models a wire between
the producer and consumer LP, coupling them combinationally. Wire-type channels model
no target state and merely relays tokens from producer to consumer.

In both formalisms, a unit simulates a single target cycle of execution by dequeuing an
input token from each of its input ports, and enqueuing a new output token into each of its
output ports. The simplest unit implementation, and the one prescribed by APort Networks,
waits for all input tokens to arrive and all of its output ports to be ready to accept tokens
before it may fire. Then the unit computes its state updates and simultaneously enqueues
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a single output token into each output port, and dequeues a token from each input port.
Figure 3.2 demonstrates the execution of a two target cycles in a channel-bootstrapped
formalism.

If the simulation designer uses exclusively non-wire-type channels, both formalisms are
free of deadlock as there exists no unit whose output at cycle t depends on the output of
another unit also at cycle t. From a conservative PDES perspective, every cycle of LPs has
a non-zero lookahead, and given that all LPs send tokens at every timestamp (obviating
the need for null messages) deadlock is avoided by construction. In these simulators, all
units can execute cycle t concurrently which, assuming no other sources of delay, permits
the simulator to run at unity FMR. As is the case with latency-insensitive boundaries, it is
not always possible to define LPs at registered boundaries. The use of wire-type channels
(i.e. combinational coupling between LPs with TL = 0) introduces two principal challenges:
at best it increases simulator FMR, and at worst it may introduce time-zero simulation
deadlock. To illustrate each of these effects, in Figure 3.3 we consider a latency-insensitive
interface between two units implemented three different ways: with a queue-type channel,
with one pipe and one wire-type channel, and with two wire-type channels.

In the absence of deadlock, wire-type channels tend to increase FMR as in general a
combinational path that spans N , units will take N cycles to execute. Note that other
channels connecting these units tends to prevent pipelining multiple cycles of target execution
(i.e., this latency cannot be overlapped with the simulation of younger target cycles).

Deadlock is the more pressing challenge. Wire-type channels remove the aforementioned
property that all cycles of LPs have non-zero lookahead. Here there are two situations that
may emerge. If the target itself has a combinational loop, the behavior of the physical system
is itself undefined, and simulation deadlock is unavoidable. We note it is possible to have
“false” combinational loops but many tools reject these patterns, and so it is not unreasonable
to ban them in these simulators as well. That said, as a matter of practice, hardware
designers know to avoid combinational loops. The second challenge arises from poor LP
implementation, such as the implementation prescribed by APort Networks, that attempts
to enqueue and dequeue multiple tokens simultaneously. Mandating this implementation has
the effect of introducing a dependency between all output tokens on all input tokens, even
though there they may be no combinational path between them in the underlying target.
Given its definition of a unit, APort Networks do not give the correct set of constraints to
avoid deadlock as a graph that contains a cycle of wire-type channels—that do not represent
a combinational loop in the target—deadlocks at time zero.

3.3.6 Latency-Insensitive Bounded-Dataflow Networks (LI-BDN)

Unlike channel bootstrapped formalisms, LI-BDNs avoid deadlock by imposing different
constraints on the implementation of LPs based on the underlying hardware they model,
and remove the need for specialized channels to bootstrap simulation. Since connections
between LPs always represent wire-type connectivity, LI-BDNs impose no constraints on
how a synchronous target is divided into LPs. LI-BDNs were originally developed as a more
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flexible abstraction for building latency-sensitive designs that preserve the RTL timing of a
synchronous circuit, extending the work of Carloni et al. in the Theory of Latency Insensitive
Design [21], however the authors identify that this problem is analogous to constructing an
ITDC simulator from synchronous ASIC RTL. From a PDES perspective, we will see that
LI-BDNs avoid deadlock by ensuring that units (LPs) themselves always exploit single-cycle
lookahead in their reference physical processes when it is available.

In the terms of Vijayaraghavan et al.[99], what we have loosely referred to as a syn-
chronous block of RTL thus far is defined as a synchronous sequential machine (SSM).
Vijayaraghavan et al.[99] formally define an SSM:

An SSM is a network of combinational operators or gates such as AND, OR, NOT,
and state elements such as registers, provided the network does not contain any
cycles which has only combinational elements.

Missing from this definition is any treatment of multiple clock domains, different types
of state elements, asynchronous set or reset. Inherent to the name “synchronous”, this
formalism forbids their existence – in an SSM all state updates occur simultaneously. While
this limits the applicability of their approach, much of a modern SoC, such as the islands of a
GALS-based design, locally meet this definition. With its simple state-update semantics, any
SSM can be easily converted into a patient SSM : the equivalent circuit whose state update
can be controlled with the assertion of a global enable signal. One way this conversion can
be achieved, proposed by the authors, is by disabling register updates and masking off RAM
write-enables when this control signal is unset. Alternatively, we note that the SSM may be
clock-gated.

With an SSM defined, we can now define an LI-BDN, and how they can be used to
implement any SSM in an latency-insensitive manner. An LI-BDN is a dataflow network
of latency-insensitive nodes whose edges represent FIFO communication channels with non-
zero, but finite capacity. The latency-insensitive nodes of the graph are referred to as Prim-
itive LI-BDNs (in PDES terms, these are LPs), which is to say, they are not themselves
subgraphs of more than one node. A LI-BDN is said to implement an SSM, if it partially
implements the SSM, and is deadlock free. In the terms of a hardware engineer, partial
implementation (PI) implies that the token trace of outputs from the ports of the LI-BDN
“matches” the per-cycle trace of outputs from the SSM. Vijayaraghavan et al.[99] formally
define PI:

A BDN R partially implements an SSM S iff

1. There is a bijective mapping between the inputs of S and [the input tokens of]
R, and a bijective mapping between the outputs of S and [the output tokens
of] R.
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2. The output histories of S and R match whenever the input histories match,
i.e.,

∀n > 0

I(k) for S and R matches (1 ≤ k ≤ n)

⇒ O(j) for S and R matches (1 ≤ j ≤ n)

All SSMs have many possible partial implementations, though some implementations
deadlock when composed into larger graphs. Consider the unit implementation prescribed
by APort Networks: it produces valid partial implementations of source RTL, however it
cannot implement a larger SSM when it is composed with other similar implementations
without the use of non-wire-type channels (which are in essence LPs that remove zero-cycle
loops between units). Conversely, LI-BDNs guarantee deadlock freedom by adhering to two
additional properties. The first is the no extraneous dependencies (NED), property which
defines when an LP is obligated to enqueue output tokens. Vijayaraghavan et al.[99] formally
define NED:

A primitive BDN has the NED property if all output FIFOs have been enqueued
at least n − 1 times, and for each output Oi, all the FIFOs for the inputs in
CombinationallyConnected(Oi) are enqueued n times, and all other input FIFOs
are enqueued at least n − 1 times, then Oi FIFO must eventually be enqueued n
times.

One intuitive explanation of NED is that it exploits the same observation that permits
a pipe-type channel to send output tokens before receiving any input tokens: any output
driven only by state in the LP (i.e., outputs not combinationally coupled to an input) can
enqueue an output token for cycle t before receiving any input tokens for cycle t. NED
broadens this to apply to logic cones fed not just by state elements but those that depend
only on a subset of the LP’s inputs.

The second property an LI-BDN must satisfy is the self-cleaning (SC) property. SC
defines when an LP is obligated to dequeue input tokens. Vijayaraghavan et al.[99] formally
define SC:

A primitive BDN has the SC property, if when all the outputs are enqueued n times,
all the input FIFOs must [eventually]4 be dequeued n times, assuming an infinite
source for each input.

While the nodes of an APort Network do not always satisfy NED, they do satisfy SC.
At its heart, SC provides an assurance that LPs drain their input FIFOs, allowing those
FIFOs to have a bounded size. We note that if an LP fails to satisfy SC, it will likely fail
to partially implement its SSM unless its outputs are completely independent of the inputs

4Clarified in [98].
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Figure 3.4: A wrapper-module-based conversion of a patient SSM into a primitive LI-BDN.
The logic in blue is generated per-output, whereas logic in black is instantiated once.

from which it is failing to dequeue. In this case having unbounded FIFOs would suffice to
prevent deadlock.

Of particular concern to this dissertation is a method through which an SSM can be
converted into a primitive LI-BDN. Vijayaraghavan et al. describe a means that uses a
wrapper module around a patient SSM. We show a modified version of this wrapper circuit,
for a single output, in Figure 3.4 and contrast it against an equivalent APort Network
wrapper in Figure 3.5. Note in the LI-BDN wrapper, outputs are permitted to fire before
all input channels hold valid tokens for the current cycle. We name the SSM-enable signal
CycleFinishing to reflect the fact that, unlike in the APort Network wrapper, a target
cycle can be executed over multiple host cycles as combinational paths resolve and new
input tokens arrive. OFired registers ensure exactly one output token is enqueued per target
cycle. CycleFinishing is fed by the OFired registers in addition to the same signals that
feed TargetFire in the APort Network wrapper and so will have greater logic delay. The
wrapper circuit suggested by Vijayaraghavan et al. [99] drives CycleFinishing with the
AND-reduction of all OFired registers – this reduces logic delay at expense of increasing
FMR by 1. Conversely, both wrapper circuits in Figure 3.4 and Figure 3.5 can run at unity
FMR. Both circuits are highly amenable to automatic generation with a FAME compiler.
In addition to the ability to translate an SSM into a patient SSM, the LI-BDN wrapper
requires only a mechanism to analyze combinational dependencies in the underlying SSM.
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3.4 The MIDAS Compiler & Generated Simulator

Microarchitecture

MIDAS, which we introduced in Section 2.3.1, was our first attempt at building a FAME
compiler. Here we describe in greater detail how it was implemented. Specifically, we direct
the reader to the version of MIDAS released as part of FireSim 1.5.0, which differs modestly
from earlier iterations described at CARRV2017 [56] and Donggyu Kim’s dissertation [55]
and is the last version of the compiler before the introduction of Golden Gate features.

MIDAS generates ITDC simulators directly from ASIC RTL. These simulators implement
a channel-bootstrapped formalism with all target graphs having a star topology. We show an
example graph for a Rocket-Chip-based system, the most commonly used target generator in
MIDAS, in Figure 3.6. The hub unit is transformed from ASIC RTL that has been elaborated
by a user-provided Chisel generator. This RTL does not represent a closed system: it exposes
I/O interfaces that must be tied to units that model those devices. These units, which
form satellite nodes in the graph, we call endpoint units. MIDAS-generated simulators are
designed to run on hybrid CPU-FPGA hosts with the expectation being that certain tightly
coupled endpoints, such a DRAM timing models, will be written in RTL and hosted on the
FPGA, while other higher latency, less performance-critical ones, such as UART and block
device models, can be written in software hosted on the CPU. We refer to the CPU-hosted
component of the simulator as the driver. To avoid deadlock and provide good simulation
FMR, MIDAS injects queue-type channels (configured to model a two-deep, fully decoupled
FIFO) on all decoupled interfaces, and one-cycle latency pipe-type channels on all others.
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Figure 3.6: The graph of a typical Rocket-Chip-derived system.

Assuming units do not stall internally, MIDAS-generated simulators can run at unity FMR.
We show an example simulator mapped to an EC2 F1 host in Figure 3.7.

3.4.1 Endpoint Units

Topological position aside, endpoint units differ from the hub in that they are not trans-
formed from ASIC RTL and instead are written by hand, and thus, are not exact models
of the desired target system. Endpoints consist of an endpoint module, which resides on
the FPGA and drives the channels bound to the hub unit, and an endpoint driver, which is
linked into the main simulation driver and hosted on a CPU. Even the purest “CPU-hosted”
units require an endpoint driver that implements transport for token streams moving on and
off the FPGA. The one exception to this rule occurs when FireSim stitches together larger
targets by adding software units to represent parts of the network. These are hosted purely
on a CPU on EC2 instances that may have no FPGA attached. Similarly, FPGA-hosted
models tend to have a driver that is responsible for configuring the endpoint module before
simulation commences and for periodically polling instrumentation registers.

Endpoints can leverage three types of resources:

1. CPU-mastered MMIO. Here, modules expose 32-bit registers that can be written
to and read from the driver. This is typically used to expose configuration parameters
that the driver initializes before simulation commences, and to expose instrumentation
that can be polled during simulation. Generally, MMIO cannot provide enough band-
width to support transporting token streams, but for low-bandwidth, loosely coupled
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Figure 3.7: An example simulator mapped to an Amazon EC2 F1 host (2x.large).

endpoints it can also be used to pass coarser-grained transactions. The FireSim block
device endpoint uses this technique.

2. CPU-mastered DMA. To support moving complete token streams, endpoints can
bind to CPU-mastered DMA. Here endpoint modules expose hardware FIFOs to which
the driver can make bulk (up to 4 KiB) reads and writes. If the endpoint is not closely
coupled to the hub, token transport can be overlapped with simulator execution: the
NIC endpoint relies on this to provide good FMR in networked simulations [53]. CPU-
mastered DMA is also used to drain token streams from instrumentation endpoints.
Since these endpoints do not drive tokens back to the hub, it is only necessary to provide
sufficient DMA read-bandwidth to achieve good FMR. Examples of endpoints that use
CPU-mastered DMA include the synthesized printf endpoint and the TracerV RISC-
V instruction trace collection endpoint.

3. FPGA DRAM. Some units require more local storage than FPGA fabric can provide,
but cannot afford the round trip latency of using CPU memory or disk. Instead, MIDAS
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provides a simple means to let endpoints drive the FPGA DRAM memory system.
MIDAS’s memory timing models, both those described in the CARRV publication [56]
and later by FASED [16], use FPGA DRAM as a backing store for a timing model
that is implemented in FPGA fabric.

Endpoint drivers interact with their associated module using four methods exposed by the
main simulation driver: simif t::read and simif t::write drive CPU-mastered MMIO;
simif t::pull and simif t::push are used to drive CPU-mastered DMA.

3.4.2 Simulation Driver

The simulation driver is written in C++ and instantiates an endpoint driver class for each
endpoint in the system. Once the FPGA has been flashed, the driver can be launched.
Simulation proceeds then proceeds in three phases:

1. Initialization. This provides a window for endpoint drivers to do DMA and MMIO
before the simulation commences. Here the driver optionally zeros-out or initializes
FPGA DRAM, before calling each endpoint driver’s init method, which sets up config-
uration registers on the FPGA that may control timing parameters or instrumentation
modes.

2. Execution. Here the driver invokes each endpoint’s tick method in a tight loop,
in round-robin order. Drivers issue MMIO and DMA requests attempting to make
forward progress without blocking.

3. Teardown. Simulation ends once any endpoint driver calls for termination. At this
point, the driver calls each endpoint’s finish method, which gives the endpoint a
final opportunity to do FPGA DMA and MMIO. This typically includes reading final
FPGA-hosted instrumentation values and committing simulation output to disk.

3.4.3 Time Control

Immediately after FPGA programming and reset, channels are ready to produce initial tokens
and thus units are free to begin executing. Generally, endpoints that require configuration
wait for an MMIO register to be set during the driver’s initialization phase before acting on
token streams. In the absence of user-provided endpoints, MIDAS prevents the hub model
from free-running by mandating that all target designs have a synchronous reset that is
driven by a special peek-poke endpoint. The peek-poke endpoint ties off all unconnected I/O
on the target to memory-mapped registers that can be driven to specific constants during
initialization, or periodically changed during simulation. The driver can then “step” the
hub by controlling the emission of reset tokens by the peek-poke endpoint. Unlike for other
endpoints, channels between the peek-poke endpoint and the hub are wire-type by default:
enqueuing k reset tokens permits the hub to execute no more than k cycles.
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During simulation teardown, the simulator estimates the number of target cycles executed
by reporting the number of reset tokens enqueued by the peek-poke endpoint. This relies
on the observation that the hub must consume a single reset token for each target cycle of
execution. This is not exact since the hub may not have drained all tokens in the reset channel
(it is in the past relative to the peek-poke endpoint) and, additionally, other endpoints
connected to the hub may be relatively more or less advanced in simulation time.

3.4.4 MIDAS’s Generator Side Integration

MIDAS functions by providing an alternate generation flow for a Chisel generator. In their
Scala application, the Chisel user lazily instantiates their module class and calls out to Chisel
elaboration as they would normally. This produces a FIRRTL circuit and annotations for
what will become the hub model. Typically the lifetime of a Chisel module class ends after
elaboration, however the lazy reference to the class allows the user to extract the names and
Chisel types of the I/O interfaces of the top-level module after elaboration. This is critical
as MIDAS determines how to bind endpoints to the hub unit by querying a user-provided
map of Chisel-type to endpoint-module for each of the extracted I/O interfaces. Finally, the
user invokes MIDAS. To the compiler they pass the FIRRTL circuit and annotations, the
extracted I/O list, separate lists of FIRRTL transforms to run on the elaborated RTL and
then the complete simulator, and a parameters object which provides the aforementioned
map and enables various compiler features, such as printf and assertion synthesis.

3.4.5 The MIDAS Compiler Flow

We show the MIDAS compiler flow in Figure 3.8. Before running core transformations,
MIDAS schedules user-provided target transforms. Here, FireSim adds dedicated passes
to remove unsupported Verilog black-boxes and replace asynchronously reset registers with
synchronously reset ones.

Next MIDAS runs instrumentation transformations, including printf synthesis and as-
sertion synthesis (these were initially presented in DESSERT [57]), if they have been re-
quested by the user. These transformations “synthesize” printf and stop FIRRTL IR
nodes by replacing them with connections to new top-level outputs. stop statements are
replaced with a boolean that is asserted on cycles the stop condition is asserted. Simi-
larly, printf statements are replaced with an aggregate that contains the arguments for the
printf’s format string and an enable signal indicating that the printf would trigger on that
cycle. Like the other I/O interfaces, these new outputs will be bound to a single assertion
and printf endpoint later in the compiler.

Now MIDAS runs its FAME1 transform, transforming the RTL (an SSM) into a unit.
To this end, MIDAS generates the APort Network wrapper module shown previously in
Figure 3.5. MIDAS converts the SSM into a patient SSM by injecting clock-enables on
all registers (this introduces a 2:1 multiplexer on register inputs) and by masking FIRRTL
memory write enables. The transform divides and maps the SSM’s I/Os into token ports by



CHAPTER 3. ON THE DESIGN OF FPGA-BASED DISCRETE-EVENT
SIMULATORS 40

M
ID

AS
 C

om
pi

le
r

Host Decoupling (FAME1)

Simulation Mapping

Platform Mapping

Const.h

Software Units

FPGA ToolchainSoftware Build 
System

Source RTL Abstract RTL Units

main.cpp

FPGA 
Project

FPGA BitstreamCPU Binaries

Top.v

Desired Target Graph

MIDAS SW 
Libraries

User Target-Transforms

User Host-Transforms

Printf Synthesis

Assertion Synthesis

Figure 3.8: The end-to-end flow of a MIDAS compilation.



CHAPTER 3. ON THE DESIGN OF FPGA-BASED DISCRETE-EVENT
SIMULATORS 41

recursing through their corresponding Chisel types. Decoupled interfaces (latency-insensitive
interfaces that use a ready-valid handshake) are split into a forward and reverse port, all
other interface types are given a separate port per leaf-element.

To complete the simulator, MIDAS then wraps the hub unit with two layers of Chisel-
generated modules. In Simulation Mapping, MIDAS again recursively walks the Chisel types
of the I/O, this time to generate the channel implementations. Wire and pipe-type channels
are implemented using a queue whose payload is the underlying hardware type of the target
interface. The endpoint and hub can decouple as many cycles as these queues are deep. On
host reset, pipe-type-channels pre-enqueue a single token (with all bits cleared) to bootstrap
the simulation. Queue-type channels use a more sophisticated implementation that drives
forward and reverse token streams. The queue channel implementation allows endpoint and
hub to decouple under more specific runtime conditions (for example, while a queue is not
full it can continue to accept forward tokens and produce reverse tokens on its enqueue
interface).

In Host Platform Mapping, MIDAS recursively walks the Chisel-types of the I/O a final
time and attempts to find a provided endpoint for each type using the Endpoint Map. If
the map is defined on that type, MIDAS instantiates the endpoint module, and connects
its token-passing port (HostPort) to the freshly generated channels. All remaining un-
bound interfaces are then bound to the peek-poke endpoint. Once all endpoints have been
elaborated, MIDAS binds their MMIO interfaces and DMA interfaces (if present) to the
simulation control and DMA buses, respectively, using two AXI4 arbiters. Memory-timing
models have their host-memory interface driven to DRAM memory interfaces, this time
through an M + 1 : N AXI4 crossbar, where M is the number of target memory models
and N is the number of available host memory channels. The extra master port is driven
by a memory initialization module (loadmem), which bridges the simulation control bus and
memory bus and gives the driver the means to read and write to FPGA DRAM. The pa-
rameters of the host platform, notably the width of these buses and the number of memory
channels are defined in the user-provided parameters object. At this point MIDAS generates
a C++ header with all of the driver-required metadata for the simulator. Each endpoint
module emits a fragment which contains its allocated MMIO and DMA addresses, as well
as additional constructor parameters required by its endpoint driver.

In a final step before Verilog emission, MIDAS schedules the user’s host transforms. This
provides a means to programmatically modify simulator RTL to further customize it for
a host platform. In FireSim, the AutoILA transform is run here to plumb out annotated
signals to a Xilinx Integrated Logic Analyzer (ILA), which is required for EC2 F1 hosts due
to restrictions in Amazon’s compilation flow. Finally, the FIRRTL optimization passes are
run and the simulator Verilog is emitted.

At this point, the user links the generated header into the simulation driver, and compiles
the generated Verilog into a FPGA shell project. FireSim’s build system automates much
of this, and provides an FPGA shell project for EC2 F1 FPGAs. The FireSim manager’s
buildafi will batch out bitstream builds to remote hosts on EC2. Similarly, its infrasetup
process compiles the simulation driver and runs a number of other required tasks to prepare
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for simulation, such as flashing the host FPGA.

3.5 Reviewing MIDAS’s Limitations

At the end of the previous chapter, we identified two limitations with MIDAS that we aimed
to address in Golden Gate. The first was that it did little to optimize FPGA resource
utilization, precluding its use for systems of non-trivial scale. We made our first attempt
at addressing this in Golden Gate in its eponymous ICCAD 2019 publication [70]. We
did this by switching to an LI-BDN formalism, building in compiler support to identify
and extract target submodules, and supplying hooks to later replace those submodules with
optimized primitive LI-BDN implementations. We expand on the design of this initial version
of Golden Gate in the next chapter (Chapter 4). Continued work on FAME-compiler-driven
optimizations is the subject of Albert Magyar’s dissertation [71].

Tackling the second challenge of supporting targets with realistic clocking and reset
schemes required yet another rethinking, as the SSM assumption fundamental to LI-BDN and
APort Network formalisms no longer applies. In Chapter 5, we describe a simple extension to
Golden Gate to support multiple target clock domains under the assumption that they have
fixed, rational relationships to one another. Here, we can still treat the target as synchronous
but to a fast, virtual clock whose frequency is the least-common multiple of actual target
clocks. This assumption permits simulators to remain implicitly timestamped.

To build a true emulation environment capable of simulating the broad class of asyn-
chronous events that manifest in realistic SoCs, including asynchronous reset, clock genera-
tion and switching, and certain nonidealities like clock drift and jitter, we lifted the rational
clock assumption and introduced explicit timestamping into a sub-graph of the simulator.
Our prototype, described in Chapters 6 - 8, uses a hardware implementation of the Chandy-
Misra-Bryant algorithm to avoid deadlock. This explicitly timekept portion of the graph
coexists with SSM optimizations which can be applied locally to parts of the design where
the SSM assumption holds.
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Chapter 4

Golden Gate: An Optimizing FAME
Compiler

To the best of our knowledge, Golden Gate (née MIDAS II) is the first open-source, optimiz-
ing FAME compiler. The content in this chapter loosely mirrors that of our 2019 ICCAD
publication [70], but better contextualizes the design of the compiler against MIDAS; de-
scribes features, like target-to-host bridges, not discussed in the ICCAD publication; and
elaborates on implementation details pertinent to the later chapters of this dissertation. For
a second perspective, with expanded discussion on the optimizations themselves and how
they were verified, we direct the interested reader to Albert Magyar’s dissertation [71]. Code
references in this chapter will refer to sources in FireSim version 1.8.01.

4.1 Design Objectives

We had the following objectives in mind when we set to redesign MIDAS:

1. Maintain FireSim feature completeness. We wanted the ability to drop in Golden
Gate as a replacement for MIDAS in a future FireSim release, with the only user-
facing difference being the availability of new optimizations. As a side effect of a more
sophisticated compiler we expected compile times would increase, however we wanted
unoptimized simulators to have approximately the same performance and resource
utilization as those generated by MIDAS.

2. Minimize user modification of ASIC RTL. It is all too easy to provide a crutch
to the compiler by requiring that the user make RTL changes to expose optimization
opportunities. The difficulty is these changes can be invasive: they may introduce new
bugs, adversely affect ASIC QoR, or worsen source maintainability. While we expect
there may be times where these types of changes are desired, we made no such changes

1https://github.com/firesim/firesim/tree/1.8.0
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in the Rocket Chip or BOOM codebases to implement the optimizations described in
our ICCAD paper.

3. Provide a mechanism to rigorously verify the optimizations. RAMP-style,
multi-cycle resource optimizations introduce considerable complexity into the simula-
tor, making the resulting system harder to debug effectively. A buggy optimization
can introduce simulation deadlock or false bugs in the target design. More insidiously,
an optimization may produce a functionally correct simulator with slightly different
target-timing behavior (e.g., a latency-insensitive transaction may be delayed an extra
cycle), introducing difficult-to-detect performance discrepancies. We wanted users to
trust the compiler wasn’t changing their design beneath their feet.

4. Enable the use of FireSim as a library for hardware emulation. MIDAS and
FireSim had developed in isolation of the chip-design projects ongoing at UCB-BAR,
and used custom forks of many of the same hardware and target-software libraries. This
made it challenging for chip designers to use FireSim without help from a developer
to make their design “FireSim-compatible”. We wanted to make it possible to include
FireSim in a chip-like project—specifically, in what would would become Chipyard [3]—
to support seamlessly pushing real designs through an emulation flow.

Our desire to maintain FireSim feature completeness made it clear from the outset that a
complete redesign of the compiler was untenable in a reasonable timeframe. Instead, Golden
Gate was developed as a series of reimplementations of key phases of MIDAS. This let us con-
tinually build functional emulators of the same designs supported in mainline FireSim. We
started with introducing support for optimizations while maintaining the existing endpoint
support and compiler interface (described in Sections 3.4.1 and 3.4.4 respectively).

To enable optimizations, we considered a few possibilities such as leaning on the end-
point system and user modifications to the target RTL, which would imply abandoning our
second objective, or using specialized transformations to implement optimizations as modifi-
cations to the hub model, which would make it more difficult to achieve our third objective.
Ultimately, what we settled on was an LI-BDN-based compiler organization that leverages
extensive target module-hierarchy modifications to wrap and isolate optimization candidates
in their own modules. These modules become the reference SSMs for each unit. They can
be FAME-transformed into a primitive LI-BDN and reimplemented without consideration
for how they are connected to the rest of the simulator. Then, the unit and its correspond-
ing reference module can be fed into a verification flow to show the resulting unit partially
implements the reference SSM. In principle, this could be applied to every unit-SSM pair in
the network to show the simulator is a valid LI-BDN implementation of the source design.

The flexibility LI-BDN provides regarding how the the target is divided into units was
a critical factor in our choice to adopt it over a channel-bootstrapped formalism. LI-BDN
removes the explicit need for channels and permits modules (and thus resulting units) to
be combinationally coupled which substantially widens the scope of potential optimizations.
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While we acknowledge that forcing optimizations to apply only at registered boundaries be-
tween units (a requirement of a channel-bootstrapped formalism) would produce simulators
that could sustain greater FMRs, this would add complexity to the compiler and could make
many optimizations infeasible. We also note that these types of “channel-like” optimizations
are not fundamentally precluded by the LI-BDN formalism. For example, when an edge
between two units is driven by an output port with no combinational dependency on an
input, it may be possible to implement that edge using a flow-through queue to save a cycle
of transmission latency.

Moving to an LI-BDN formalism resolves a number of other modeling challenges MIDAS
users face. Requiring that non-wire-channels be injected between endpoints and the hub unit
is too restrictive in some cases where the user wishes to model a combinational path that
propagates through an endpoint. Another challenge was defining the reset semantics of these
stateful channels. MIDAS relies on FPGA programming to properly initialize these channels,
however they are not held in target reset during simulation: it is purely coincidental that
the hub unit does not spuriously enqueue target data into queue-type channels while parts
of the hub are under target reset. For a time, MIDAS would broadcast target reset tokens to
channels and endpoints, but this too is fraught, as reset signals driving registers in the hub
may be different from this special-cased global reset. Instead of requiring that user specify
this reset for each channel, LI-BDN can sidestep these issues entirely by removing the need
for stateful channels and allowing the compiler to assume fewer things about the target.

The second phase of Golden Gate’s development addressed the fourth objective, and re-
quired a redesign of the compiler interface and endpoint system. Here, we decoupled Golden
Gate from target elaboration. Instead, Golden Gate accepts a FIRRTL file and annota-
tions. Target-to-Host Bridges, or bridges for short, replace endpoints and are instantiated
throughout the target module hierarchy during target elaboration. Unlike MIDAS, Golden
Gate does not match on the Chisel I/O of the top-level module. Instead, it finds anno-
tations (BridgeAnnotations) bound to the aforementioned modules that provide the class
name of a Chisel generator Golden Gate should invoke to replace the black box.

4.2 Compiler Input & Target Specification

Golden Gate accepts a closed description of the target consisting of FIRRTL and annotations.
We show a pictoral example of this using a typical Chipyard-generated SoC in Figure 4.1.
By “closed” we mean that the top-level module has no I/O: the user instantiates their chip
in a top-level environment or harness module and drives all the chip I/O interfaces using
target-RTL or, if that is insufficient, bridges. Bridges are so named because they span the
host and target domains. The target side of a bridge consists of a Chisel module, generally
a black box, whose instance is annotated with a bridge annotation, and whose ports are
annotated to specify how the interface should be divided into token streams. The host
side of a bridge is a unit (a primitive LI-BDN) that implements that blackbox module.
Just like an endpoint, the host-side unit consists of a module (BridgeModule) and a driver
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(BridgeDriver). Finally, to enable optimizations, users identify specific structures in the
target by annotating them. As in MIDAS, additional compiler-side features are controlled
using a parameter object which enables instrumentation passes and configures host-platform
support. Additional user-supplied host and target FIRRTL transforms are provided with
this parameters instance.

Since it does not require access to unserializable Scala types like MIDAS, Golden Gate
can be invoked as a standalone application on an elaborated target. This permits running
the compiler on a target elaborated in a different environment that may include a different
versions of Chisel, FIRRTL, and Rocket Chip than those the compiler itself depends on. We
give an example invocation of Golden Gate in Listing 4.1.

1 sbt runMain midas.stage.GoldenGateMain \

2 -o <output filename > \

3 -td <output directory > \

4 -i <input FIRRTL filename > \

5 -faf <input FIRRTL annotations file > \

6 -ggcp <Golden Gate parameters scala package > \

7 -ggcs <Golden Gate parameters scala class string > \

8 -E verilog

Listing 4.1: An example command-line invocation of Golden Gate.

4.3 Updated Compiler Flow

We show a depiction of Golden Gate’s compilation flow and how it modifies an illustrative toy
design in Figure 4.2. We omit debug-synthesis transforms, and user-provided transformations
for brevity. Golden Gate tranformations, which are statically ordered in MidasTransforms2,
can be roughly3 divided into three phases:

1. Target Transformation. Here the module hierachy is mutated in preperation for
host decoupling. Bridges are extracted and unsynthesizable debugging constructs are
replaced and bound to a bridge interface. Primitives identified for optimization are
wrapped in modules and labelled with additional optimization annotations. These
modules are then promoted to the top of the design hierarchy. All top-level mod-
ule instances correspond to units in the eventual simulator and top-level connectivity
between these modules define edges in the graph.

2. Simulator Synthesis. Here top-level modules are transformed into, or replaced with,
primitive LI-BDN units. On completion, the output circuit consists of a series of uncon-
nected unit instances. Connectivity between units is captured in channel annotations
between top-level I/O.

2See sim/midas/src/main/scala/midas/passes/MidasTransforms.scala
3Note, these terms are not currently enshrined in the codebase.
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Figure 4.1: A typical Chipyard SoC passed to Golden Gate (top), and its associated Golden
Gate annotations (bottom). Clock domains are shown for reference in later chapters.
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Figure 4.2: Core phases of the Golden Gate compiler and a high-level depiction of the
transformations made to the underlying target and its annotations. The default LI-BDN
transform is the FAME1 transform.
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3. Platform Mapping. This consists of the Simulation Mapping and Platform Mapping
passes of MIDAS. A Chisel-generated wrapper includes all channel implementations
and elaborated host-side bridge modules. The resulting output circuit is compatible
with the same FPGA projects as MIDAS-generated simulators and plugs directly into
FireSim’s existing build flow.

4.3.1 Annotations

Golden Gate relies on FIRRTL’s annotation system to communicate information about the
circuit from transform-to-transform instead of an auxiliary datastruture that persists across
transformations. The main motivation for doing so was to make transforms in the compiler
robust against running lowering or optimization transformations between core passes. The
FIRRTL compiler framework provides callbacks for defining how an annotation should be
updated when the circuit structures it targets are changed (a process known as renaming).
We describe the key annotations here:

• Bridge Annotations (BridgeAnnotation) label module instances in the target for
which a custom unit will be generated. In addition to labelling a target module in-
stance, they carry a fully qualified class name of the Bridge Module to be generated
and its optional constructor parameter. Finally, the annotation enumerates the names
of all of its channel annotations.

• Connection Annotations (FAMEChannelConnectionAnnotation), or channel anno-
tations, label connections between modules that correspond to units and bridges of the
simulator, and carry the information required to generate a channel to replace these
connections. A channel annotation consists of a list of sources (sources), I/O fields
on the instance that drives the connection (i.e., the instance sources the tokens), and
sinks (sinks), I/O fields on an instance receiving those connections. Channels carry
additional metadata, including a globally unique string identifier (globalName), as well
as a case class (chInfo) that captures target properties of connection and provides im-
plementation hints. Notably, chInfo has subclasses to indicate whether the channel
is latency insensitive and should be implemented with a queue-type channel, or is a
pipe-type channel.

• Port Annotations (FAMEChannelPortAnnotation) label groups of I/Os in a module
as corresponding to a channel source or sink. The list of sources or sinks in connection
annotations (which point at instances of the module) must agree with the port annota-
tion on the module itself. Port annotations are primarily consumed by transformation
passes and provide the simplest means to look up how the I/Os of the module should
be divided into channels.

• Model Annotations (FAMEModelAnnotation) serve a similar function to BridgeAn-
notations, in that they label a module as being a unit. Unlike bridges, instances of the
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target module are not extracted from the design hierarchy but instead are promoted
to the top-most level of the design hierarchy so that they can later be transformed by
the compiler in Simulator Synthesis.

At the start of compilation, bridge annotations are present, with connection annotations
labelling each bridge’s interfaces. Strictly speaking, this is an abuse of the abstraction
presented by the annotation (described above), which is fully realized only once bridges
are extracted. Finally, model annotations may also present alongside specific optimization
annotations.

4.4 Target Transformation

The primary function of Target Transformation is to coerce the design’s module hierarchy
into a form that matches the eventual simulator topology: top-level instances, which wrap
optimization candidates, map to unit instances (nodes) and top-level connections map to
channels (edges). Throughout this process, no host-time simulator constructs are introduced:
the RTL still directly represents the chip, albeit with a different module hierarchy. Target
Transformation consists of all transformations before top-level connectivity is removed (this
occurs in ChannelExcision).

Target Transformation commences with an initial lowering and optimization of the input
FIRRTL, after which the input circuit is checked for Golden Gate compatibility (namely, the
circuit presents no top-level I/O; see EnsureNoTargetIO). Next, Golden Gate runs assertion
and printf synthesis. Under-the-hood these do not fundamentally differ from what was
described in our DESSERT publication [57], however synthesized debug primitives are now
bound to bridges (more on this later).

Now Golden Gate finds all modules annotated with a bridge annotation and extracts
them (BridgeExtraction). Connections to instances of a bridge are replaced with connec-
tions to newly added top-level I/O. Note that a single bridge module with n instances will
produce n sets of ports at the top-level. The bridge and connection annotations are “pro-
moted” to point at these new top-level interfaces. Bridge annotations are then replaced with
a form of bridge annotation that targets top-level I/O (BridgeIOAnnotation) instead of a
module but are otherwise identical to the user-emitted form. Finally, connection annotations
are assigned new globalNames to ensure they are unique; corresponding bridge annotations
are updated to reflect naming changes.

Next, Golden Gate prepares for its optimization-focused hierarchy manipulations by
adding a wrapper module, the FAME wrapper, around the existing design (WrapTop). Once
optimization candidates have been promoted, the previous top-level module will become the
hub-unit of the simulator.

It is at this point we envisioned custom optimization analyses would be run find and label
optimization opportunities. Currently, the multi-ported RAM analysis is the only example
of this in the code base (see LabelSRAMModels). This pass finds FIRRTL memories that
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have been annotated as safe to optimize, wraps them in a module, and labels them with a
model annotation.

Now Golden Gate finds all module instances labeled with a model annotation, and pro-
motes them to the FAME wrapper. This process is nearly identical to bridge extraction, but
the module is not completely removed. Just as in bridge extraction, one annotated module
will produce as many top-level instances as there were instances of the module in the design
hierarchy. At this point the connectivity within the wrapper reflects the star-topology of
the eventual simulator: the original source module is the hub and all promoted modules and
bridge interfaces connect directly to it.

With the module hierarchy manipulations finished, Golden Gate completes Target Trans-
formation by fleshing out missing annotations (FAMEDefaults). This primarily consists of
labelling all inter-model connectivity with connection annotations. This pass makes no at-
tempt to group connections into a single channel: each ground-type connection between
the hub and a spoke gets its own annotation and thus will receive an independent channel
implementation.

4.5 Simulator Synthesis

Simulator Synthesis is so named because it begins introducing host-time constructs into the
circuit, most notably with the execution of the default FAME1 transformation. Simulator
Synthesis begins by removing all inter-model connectivity and replacing it with top-level
I/O (ChannelExcision). Connection annotations are promoted to point at these new inter-
faces. Only now are port annotations added (InferModelPorts), since connections between
nodes (both bridges and models) now uniformly target top-level I/O. This transformation
ensures that connection annotations on instances of the same module agree as to how ports
correspond to channels. Since FAMEDefaults makes no attempt to combine leaf channels
into aggregate ones, this mainly serves as a consistency check on bridge-bound channels and
ensures no connection annotations have been lost.

The bulk of the complexity in Simulator Synthesis is contained in its default FAME1
transform (FAMETransform). It has two fundamental tasks: first, it transforms all top-level
modules, including those that will be optimized later, into units using a default, wrapper-
based LI-BDN transform (described previously and shown in Figure 3.4). The transform
groups ports into new decoupled interfaces by consuming the port annotations for the module
under transformation. References to target ports are replaced with references to the payloads
of these decoupled channel ports. Valid and ready signals are used to build out the control
circuitry shown in Figure 3.4, however, this logic is appended to the existing module (to
avoid introducing another level into the module hierarchy). Finally, all references to the
target clock are replaced with references to the output of a clock buffer which is responsible
for driving a selectively gated target clock. The clock buffer itself is left as a black box that
will be implemented later for the desired host FPGA. The second major function of the
FAME transform is to rewire the FAME wrapper by replacing existing I/O and connectivity
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with decoupled equivalents. For example, a boolean driven by a model is replaced with a
three-bit interface: the valid and boolean payload signals are driven by the model, and the
ready signal is driven by the I/O interface in the FAME wrapper. Connection annotations
are updated to point at the payloads of these channels.

At this point, Golden Gate runs optimization transformations to replace the default
unit implementations. Since the default FAME transformation has already decoupled the
interfaces of the reference SSM, these transformations simply replace the module body of the
existing primitive LI-BDN units. Connectivity in the FAME wrapper remains unchanged.
Simulator Synthesis concludes with some fix-up transformations which provide a default clock
buffer implementation (DefineAbstractClockGate) compatible with RTL simulators, and
wires up the host-clock and reset to all units in the FAME wrapper (ConnectHostClock).

4.6 Platform Mapping

In Golden Gate, platform mapping is responsible for implementing all channels (previously
known as simulation mapping in MIDAS) and elaborating all remaining simulation collateral,
such as bridges and resource interconnect (previously platform mapping in MIDAS). This
happens in single Chisel invocation, and produces three layers of wrapper modules, shown
in Figure 4.3.

4.6.1 Channel Synthesis

The first wrapper layer (SimWrapper) directly interfaces with the transformed RTL and in-
stantiates channel implementations. Elaboration of this module is driven by two inputs: the
user-defined parameters instance which, as in MIDAS, specifies properties about the host-
platform. and the annotations, notably channel annotations, labelling the now transformed
target. Each channel annotation will correspond with a channel implementation, however
how that channel is bound depends on the sources and sinks enumerated by the annota-
tion. Channel annotations that possess both sources and sinks connect two models in the
transformed RTL: these are loopback channels that drive an input and an output interface
on the transformed target. Conversely, annotations that possess an empty sources or sinks
parameter are sunk or driven by a bridge module, respectively. In these cases, the channel
implementation has its dequeue or enqueue side interface exposed to the next wrapper layer
of the module hierarchy.

In all cases, the type of channel generated is parameterized by the channelInfo field
of the channel annotation. Target-decoupled channels, as in MIDAS, always instantiate a
model of a fully decoupled, two-deep queue. Pipe channels have a configurable latency.
Default bridge implementations always emit pipe-type channel annotations with a single-
cycle latency to improve FMR, and to maintain the performance characterisitics of legacy
MIDAS simulators. When no additional models are extracted (i.e., the simulator consists
only of the hub unit and bridges) the expected FMR is identical to MIDAS. When additional
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Figure 4.3: The wrapper circuit generated during platform mapping, with a handful of
bridges shown for illustration. The host interfaces at the top (in FPGAShim) match those
used in MIDAS. Interconnect between host interfaces and bridges initially was identical to
that in MIDAS, but has since been augmented. Loopback channels, not present in MIDAS,
connect two units in the transformed target.

units are extracted, they are always directly wired to the hub, since the compiler currently
cannot find and extract registers (that is to say, FAMEDefaults labels these channels as
wire-type). While it is possible to build simulators with unity FMR if an optimized model’s
outputs can runahead, at time of writing, we have no such implementations. Therefore, in
practise all multi-model simulators execute with an FMR of at least two.

4.6.2 Bridge Instantiation

The next level of the module hierarchy (FPGATop) corresponds to the wrapper circuit gener-
ated in MIDAS’s platform mapping. I/O on this wrapper module consist of AXI4 interfaces
to drive host-DRAM memory systems, and to support CPU-driven MMIO and DMA. Instead
of using an endpoint map, Golden Gate iterates through each bridge annotation and reflex-
ively invokes the constructor for the requested BridgeModule. I/O between the elaborated
bridge instance and the simulation wrapper are connected by looking up the correspond-
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ing channels via their globalName fields. Resource-interconnect generation is identical to
MIDAS’s, and for the same input design, the emitted header is the same. All MIDAS end-
points were ported to use the new Bridge system without changing existing host software.

4.6.3 Platform Wrapper

The last level of wrapper module is an FPGA-specific shim layer. The user selects their
desired shim through the parameters instance. This serves as an opportunity to introduce
FPGA-specific hardware and modify interface names to link into an FPGA shell project. We
note that this top-level module could instantiate all of the IP required to define a complete
FPGA project (as in SiFive’s FPGA shells repository), but none of our shims do so presently.
The class for this wrapper module can be defined outside of Golden Gate and provided by
a user wishing to support a non-standard FPGA.

4.7 ICCAD 2019 Golden Gate Publication

Armed with the machinery to selectively extract and reimplement FPGA-hostile components
of the target design, in our ICCAD2019 publication [70] we set about optimizing multi-ported
RAMs (we previously introduced this example in Section 3.1). ASIC multi-ported RAMs are
a classic culprit for poor resource utilization in FPGA prototypes, as they cannot be trivially
implemented in BRAM and are instead decomposed into LUTs and registers [105]. While
using double-pumping, BRAM duplication, or FPGA-optimized microarchitectures [64] can
help, here we used Golden Gate to replace the SRAM with a multi-cycle unit to further re-
duce resource utilization. This optimization implements a target memory possessing M asyn-
chronous read ports and N write ports with a single time-multiplexed dual-ported BRAM. In
contrast to the static time-multiplexing schemes described by Pellauer et al. [80] and Dwiel
et al. [33], our optimization can decouple arbitrary target memories and replace them with
an optimized model without any constraints on the structure or timing of the target design.

In order to rigorously verify optimizations, in our ICCAD publication we also introduced a
bounded-model checking flow, called Latency-Insensitive Model Equivalence (LIME). Hosted
in UCLID5 [89], LIME formally verifies that optimized models are valid LI-BDNs implemen-
tations of their reference RTL. Our manipulations of the module hierarchy were in direct
service of this goal, as any extracted RTL module could trivially serve as the reference SSM
for a verification flow. In our ICCAD paper, we used LIME to verify only our RAM optimiza-
tion, however, there is nothing that precludes applying LIME to all reference-unit pairs in
a simulator. This verification flow could be run in parallel to FPGA compilation, providing
a multi-hour window to catch potential bugs before a simulator is deployed to FPGA.

The LIME model checking flow and RAM optimization first described in our ICCAD2019
paper are primarily contributions of Albert Magyar and are described at length in Chapters
6 and 7 of his dissertation [71].
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Chapter 5

Support for Systems With Multiple
Fixed-Frequency Clocks

Until now all Golden Gate and MIDAS-generated simulators modeled systems with a single
clock domain. Anecdotally, the lack of support for simulating targets with more than a single
clock has been the most common criticism of FireSim offered by potential users, many of
whom turn to using a conventional FPGA prototype. The criticism is well justified: forcing
the outer memory hierarchy to run at the same frequency of the cores results in a memory
hierarchy that can sustain artificially high bandwidths at lower latencies.

To date, the only effort to validate FireSim performance against a silicon implementa-
tion was conducted by Lee and Waterman [67]. They compared SPEC2006 Integer results
collected from the HiFive Unleashed [91] against an equivalent design running on FireSim.
While the FireSim-collected SPEC score fell within 2% of the HiFive Unleashed’s, the largest
single-benchmark difference was 10.7% for 429.mcf, a benchmark with infamously poor mem-
ory locality (its working set has been measured at 680 MB[44]). The FireSim variant differed
in that it used non-standard UC Berkeley I/O devices (and backing FireSim Bridges) and a
FASED memory timing model instead of an ASIC DRAM memory controller. However, the
most pertinent difference between the two platforms is that the HiFive Unleashed core com-
plex and memory hierarchy span three clock domains. Tiles run at the fastest frequency (1.5
GHz in their study), the uncore runs at half this frequency (750 MHz), and the DRAM
memory system, capable of 2400 MT/s (resulting in a 600 MHz controller clock in the Un-
leashed), sits in its own clock domain behind an asynchronous crossing [92]. To model these
domains without native support for multi-clock simulation, they resorted to adding addi-
tional buffering between the L2 and the inner caches, and scaling FASED latencies to match
the times expected from a DRAM controller running at a slower frequency. Systems like
the Freedom Unleashed, which do not actively scale frequencies after boot, are relatively
common. For these systems, support for multiple statically defined clocks would suffice to
resolve this performance discrepancy.

To implement this feature, a natural place to look for inspiration is in FPGA proto-
typing. There, supporting multiple clock domains is a relatively straightforward process in
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theory. When mapping an ASIC design to an FPGA, clock-generating circuits, like PLLs,
are replaced with FPGA equivalents [4]. While the absolute frequencies used in the pro-
totype will be considerably slower due to frequency limitations of the FPGA, the relative
frequencies can be maintained and thus, latencies through an SoC cache hierarchy can be
properly modeled (though, the aforementioned problem of modeling off-chip memory systems
like DRAM remains). In practice, limited availability of clocking resources and restrictions
in FPGA clock distribution can sometimes require non-trivial changes to the ASIC RTL.
To ameliorate these challenges the FPGA-Based Prototyping Methodology Manual [4] sug-
gests a number of Design-For-Prototyping techniques such as implementing only a subset of
the clocking structures, sticking to conventional synchronous design techniques, and isolat-
ing clock generation and distribution structures in separate modules at the top-level of the
design hierarchy.

Applying the prototyping approach to a decoupled simulator—generating multiple host-
clocks whose relative frequencies match that of the target—is an abstraction-breaking change
that conflates host and target concerns. In practice, optimized models and bridges are going
to be resident in different target clock domains, and thus it will be necessary to independently
gate the different host clocks. This destroys much of the merit of generating multiple clocks
in the first place. Instead, we can derive multiple simulated clocks from a single host clock.
This approach has some appealing implications:

• It does not require FPGA-specific clocking resources beyond clock buffers capable of
gating the host clock. For smaller units where the fanout on the clock enable is small,
even these can be avoided by directly adding a clock enable to all state elements in the
domain. This makes it easier to port the same simulator to a different FPGA.

• It simplifies the implementation, since all simulator control logic is synchronous to the
same clock.

One potential benefit of generating host clocks with different frequencies is that it has
the potential to improve simulator throughput (3.1) by putting faster parts of the target in
faster host clock domains (thus improving ffpga). Intuitively, one would expect that a faster
target clock domain should close timing at higher frequency than a slower one. While this is
generally true, the ratio of critical-path delays between clock domains can differ substantially
from an ASIC implementation, because delay through ASIC elements do not scale uniformly
across all structures when mapped to an FPGA [63, 105]. We do not rule out using multiple
host clocks in the future, rather, we argue that host clock frequencies should be selected based
on simulator critical paths specifically to improve simulator throughput, not as a means to
enable simulation of multiple clocks in the target.

Using a single host clock still enables a variety of implementation styles. Our initial
prototypes revolved around modeling clock-domain crossings in channels. For example, one
could model a two-to-one crossing from a fast clock domain to a slow clock domain by
dropping every second token or, if in the reverse direction, duplicating every token. An early
prototype of this approach can be found in FireSim version 1.4, which permitted users to
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model a clock division in the crossing between the hub and an endpoint. Huang et al. [49] used
this to simulate targets with a DRAM memory system running at one third the rate of the rest
of the simulator. To apply this technique across the target and not simply between bridges,
we considered using Golden Gate’s hierarchy manipulations to divide the target design into
synchronous islands. Each of these islands would become separate units transformed with an
unmodified FAME transform. In simulation mapping, Golden Gate would synthesize wire-
type CDC channels between these islands. Note that the clock-domain crossing present in
target still exists, but it is split into two synchronous halves across the units. Clock frequency
information would be baked into CDC channels during channel synthesis. We began a
prototype implementation of this approach (we sketched out FIRRTL transformations to
perform this partitioning and designed the channels) before reconsidering. This approach
introduced considerable structural changes to the design’s module hierarchy, making the
simulator more difficult to debug, and complicating a reimplementation of Strober-style state
snapshotting. Secondly, it introduced non-trivial amounts of queuing when cuts between
clock domains spanned large sets of signals. Perhaps most importantly, it was considerably
more complex than the solution we ultimately selected.

5.1 Implementation

Our approach instead was to modify the hub unit to simulate multiple clock domains in situ.
The hub unit instantiates separate clock buffers, specifically Xilinx BUFGCE primitives, for
each clock domain, and selectively fires clocks and channels based on the set of clock edges it
is scheduled to simulate. A single clock bridge, generates the clock schedule as a token stream
of bit-vectors indicating which clocks are scheduled to fire in a given simulator timestep.

5.1.1 Simplifying Assumptions

To expedite the implementation of our initial prototype, we made the following assumptions:

1. The behavior of all clocks can be statically deduced. To further restrict this, we also
mandate that all clocks are rationally related.

2. All clocks in the target must be sourced from the singleton clock bridge. Specifically,
when in FIRRTL’s low form, all clock-type members of FIRRTL statements and ex-
pressions must be driven by the clock bridge exclusively through a sequence of Connect
statements.

3. All clock sinks must be positive-edge triggered. While Chisel has no native support
for negative-edge-triggered or level-sensitive state elements, the user must avoid using
these structures in black-box Verilog.

4. It must be legal to replace asynchronous resets with synchronous ones. Unlike in an
ASIC implementation, the designer can exploit the fact that all clocks in the target
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will come up at time zero to avoid using asynchronous resets where typically necessary.
The implementation outlined in this chapter has no mechanism to separately handle
launching asynchronous reset edges. This restriction will be relaxed in Chapter 6.

5. All extracted models and bridges must be synchronous. This permits all existing
resource optimizations to remain unchanged, and simplifies bridge design.

All of these assumptions were implicitly made about the target in older versions of
FireSim. The only difference lies in how the target clock is sourced: instead of using an
explicit bridge, the target clock was driven by a input (this was the only legal I/O permitted
on the module) on the source FIRRTL.

Strictly speaking, a target with more than one clock cannot be an SSM, and so generated
multi-clock simulators will no longer be LI-BDNs. However, extracted models will remain
primitive LI-BDNs with reference SSMs. We suspect that multi-clock RTL that conforms
to the restrictions above can be cast as an SSM synchronous to a single fast clock whose
equivalent slow clocks have been replaced with selectively enabled state elements. We leave
an extension of LI-BDN to support targets the conform to the assumptions above as future
work.

5.1.2 Annotation Modifications

Where previously all channels were implicitly synchronous to the sole target clock, now
channels bound for different units may be synchronous to different clocks. To support
this, we extended channel annotations to carry a reference to a clock in the hub model, so
that the FAME transform may associate the correct subset of channels with each clock do-
main. Bridge-emitted channel annotations indicate their clock at instantiation time, whereas
compiler-extracted models have their clock inferred (more on this later). Additionally, we in-
troduced a new clock-type channel field (TargetClockChannel) to label the singleton clock
channel in the simulator. This must be handled specially by the FAME transform and
channel synthesis.

5.1.3 Modified FAME Transform

The bulk of the complexity in supporting multiple clock domains is contained in modified
FAME transform. We show the resulting hub unit implementation in Figure 5.1. Unlike
in the single-clock implementation, the wrapper circuit must selectively operate on a subset
of channels based on which clocks are scheduled to fire. Output state machines (shown in
blue) remain mostly unchanged but are now selectively reset based on the scheduled clock.
We added input FSMs (shown in green), essentially a pipeline stage, to help cut the fanout
delay from the clock token port to input channel dequeue. These too are selectively reset.

Clock scheduling is managed by a two-cycle control path (shown in orange). In stage
one, input FSMs (in green) are reset so that they may dequeue a new input token in the
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Figure 5.1: A wrapper-module-based conversion of multi-clock target RTL into a unit.

second stage. In stage two, output FSMs are reset and a pulse is launched through the
target clock by enabling a dedicated clock buffer for that domain. The pipeline advances
under largely the same firing condition as the synchronous wrapper: all channel inputs must
be valid, including the clock channel, and all outputs must have enqueued or be enqueuing.
Since output channels for clock domains not scheduled to fire in stage two are not reset,
their fired registers remain set and cannot stall the pipeline.

Initially all output FSMs are reset to zero, and the clock pipeline register marked invalid
(no clock is scheduled to fire). This permits all combinational paths across all clock domains
resolve based on the initial input token values and target state. As previously discussed,
all target clocks are gated under host reset such that BRAM and register state initialized
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Figure 5.2: An example encoding of three rationally related clocks (clocks B and C have
periods 1.5 and 2 times longer than clock A) into a clock token stream. Here there is a
recurrence after eight tokens, with the fastest clock active in all but two tokens.

during FPGA programming cannot spuriously change as the FPGA comes out of reset.

5.1.4 Clock Bridge

The clock bridge is responsible for determining the clock schedule by generating an infinite
token stream of n-wide bit-vectors, where n is the number of clock domains in the target.
We show an example of this encoding for three rationally related clocks in Figure 5.2. Each
clock token corresponds to a simulator timestep. Any clock with a positive edge in a given
timestep will have its bit set in the corresponding clock token.

Per our earlier assumption, the clock bridge implementation included in FireSim 1.10
accepts clock specifications that define the frequency of all clocks as a rational multiple of
the frequency of the zeroth clock1. To model a clock that is not rationally related (e.g., a
periphery clock that generated by a secondary PLL or is sourced from off-chip), the user
should select a rational multiple that would best match the desired frequency of the clock.
During elaboration, the clock bridge determines a virtual fast clock from which all output
clocks can be derived via an integer division (in other words, it finds a clocks whose frequency
is the least common multiple of the frequency of the requested clocks). Then for each output
clock, it generates a series of down counters (timeToNextEdge) which are systematically
reset to the division required to generate that output clock.

To generate an output token, the bridge does a min-reduction of timeToNextEdge across
all clocks, and broadcasts the result. All clocks whose timeToNextEdge matches the mini-
mum are scheduled clocks: their bit is set in the output token, and their timeToNextEdge

register is reset to their division. Unscheduled clocks subtract the broadcasted time delta
from their registers, simulating the advance of time. This implementation is capable of
producing a clock token with at least one bit set every host cycle.

1Another reasonable approach would be to specify the periods of all clocks in an agreed upon timebase.
We note that in this case all clocks are rationally related to a fast clock whose period equals the resolution
of the timebase.
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5.1.5 Other Compiler & Bridge Modifications

In our and our users’ experience, bridges are difficult to write as they force the developer to
reason about both host and target-time considerations. To prevent further exacerbating this
problem, we elected to forbid bridges and extracted models from having channels in multiple
clock domains. This had three primary implications:

1. User-instantiated bridges must explicitly indicate the clock to which they are syn-
chronous. Bridge-emitted channel annotations contain references to this clock. This is
a relatively trivial change, but one that affects user facing code.

2. Debug synthesis passes must emit multiple bridges. For example, assertion synthesis
must generate a new bridge for each clock domain in which there is at least one as-
sertion. To do so, we built FIRRTL analyses to find source clocks by walking clock
connectivity (FindClockSources), and to group and wire nodes (like an assertion con-
dition) to the top-level based on each nodes source clock( BridgeTopWiring).

3. To populate extracted-model channels with references to clocks, we introduced a trans-
form (FindDefaultClocks, run before ChannelExcision) that analyzes top-level clock
connectivity between extracted models and the hub. Any stateful module once ex-
tracted will have connection between a new clock output port on the hub module and
a sink port on the model. By finding these connections, models can be labeled with a
clock reference on the hub model and their channels annotations can be subsequently
updated.

5.1.6 The Base Clock

In a target system with a single global clock it is natural to specify time in cycles of that
clock. Bridges can easily keep time with a counter that tracks the number of times it has
fired. Introducing multiple clocks complicates this: specifications of time must either be
made explicit, or specified in clock cycles of some agreed-upon common clock. In either case,
these specified times cannot be compared against a bridge-local cycle counter without the
local clock’s frequency, or its relative frequency to the agreed-upon common clock. This is
problematic because many of FireSim’s features use specifications of global time. For ex-
ample, instrumentation bridges (e.g., assertion and print bridges) accept runtime arguments
that specify windows of time over which they should be enabled. Since these features are
implemented over multiple bridges in multi-clock targets, clock domain information must
be provided to each bridge such that they can translate time specifications into local cycle
counts.

Here we exploited our assumption that all clocks are rationally related and, to provide a
user experience similar to the existing one, we elected to specify times in cycles of the zeroth
clock generated by the bridge. We refer to this clock as the base clock. In Chipyard 1.4, the
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clock bridge is configured to make the fastest clock in the system its base clock, which in
practice, always drives the cores of the design.

To propagate information about a bridge’s clock domain to its host-side components, we
added an analysis pass (TargetClockAnalysis, which runs during target transformation)
that determines the clock index for each bridge by walking the clock netlist back to the
clock bridge’s output port. Using that index, the pass looks up the ratio of the bridge’s
clock relative to the base clock. This is passed through the parameters instance to each
bridge module during platform mapping. Bridge modules typically serialize this information
to the simulation header so they can be used in the driver to recalculate times specified in
base-clock cycles in terms of their local clock.

5.1.7 Rethinking Simulation Performance

In Section 3.1. we described simple equations that govern simulation performance. Under a
system with multiple clocks, these need to be updated. Among our users FMR (Equation
3.1) is a popular abstraction, and sees frequent use in conversations regarding simulation
performance. Perhaps, the most natural extension of FMR for multi-clock contexts is to
define it in terms of the fastest target clock:

FMRfastest =
cyclesh

cyclest,fastest
(5.1)

Henceforth, when referring to FMR in the context of multi-clock simulators we’ll be using
FMRfastest unless otherwise stated. Given our implementation, when all other clocks in the
target can be expressed as an integer divisions of the fastest target clock (this target clock
is the virtual fast clock), the simulator can execute with unity FMR. However, this is often
not the case, especially when modeling device clocks. For example, in a two-clock system
where the second clock has a frequency 2

3
that of the base, the best-case FMR the simulator

can achieve is 4
3
. This occurs since every other slow clock edge will not be coincident with

a fast clock edge and thus will require a simulator timestep in which no fast clock edge is
processed. We show this effect in the token stream illustrated in Figure 5.2).

An alternate measure of simulator efficiency, one that reveals the presence of host-time
stalls independent of frequency selection, considers all host cycles in which the hub model is
firing at least one target clock. We define model activity ratio (MAR):

MAR =
cyclesh

timesteps
(5.2)

Where timesteps is the number of host cycles in which one or more target clock edges
are launched, or in other words, the total number of clock tokens consumed by the hub
model. Like FMR, a larger MAR corresponds to worse simulation performance, however, in
the absence of other host-time stalls all Golden Gate simulators can run at unity MAR.
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5.2 Case Study - SPEC CPU 2017 Integer

Performance

Armed with the capacity to simulate multiple clock domains natively, we can quantify the
performance difference between single clock designs and more realistic multi-clock designs.
For this experiment we used otherwise standard Chipyard SoCs (their block diagrams match
that shown in Figure 4.1) and modified the clock domain organization. For simplicity,
in all cases we coupled the periphery and uncore domains. We considered three different
configurations:

1. A completely synchronous configuration running at 1.5 GHz. FASED DRAM timings
were scaled up by approximately 1.5 times to match a DDR3-2133 speedgrade.

2. A two-domain organization with the memory bus and backing DRAM subsystem sitting
behind an asynchronous CDC. Here the memory bus runs at 1.0 GHz, and the rest of
the system remains clocked at 1.5 GHz.

3. A three-domain organization that loosely matches the Freedom Unleashed where tiles
run at 1.5 GHz and the uncore runs at 750 MHz with a low-latency rational CDC
between them. The DRAM memory system remains unchanged from the previous
organization.

For each of these three organizations, we studied SoCs based around two fundamentally
different pipeline microarchitectures: Rocket [8], a 5-stage, in-order scalar core, and Son-
icBOOM [108], the latest iteration of UCB-BAR’s out-of-order superscalar core. We used
the preset “Large” core configurations for both microarchitectures: their parameters can be
found in Table 5.1. Since BOOM can dynamically schedule around hazards like load misses,
it should be able to drive more memory system bandwidth (it has 4 L1 data cache MSHRs)
and tolerate additional latency through the memory system. We kept the uncore and DRAM
memory system configurations, which consisted of a four-bank, 2 MiB L2 Cache and FASED-
modeled, single-channel DDR3 memory system, fixed across the two designs. Note, we are
not using FASED’s optional last-level-cache model, but instead an ASIC-optimized design
generated using SiFive’s open-source cache generator [40].

We used the ccbench [41] caches microbenchmark to measure round-trip latencies la-
tencies through the memory system under all three clock organizations. In Figure 5.3, we
show the loop trip latency when doing a randomized pointer chase over different working
set sizes running on BOOM (note, the pointer chase touches each cache line only once).
Marginal latency introduced in the two-domain design over the synchronous design can be
attributed to the addition of an asynchronous CDC plus the additional latency introduced
by register stages now running relatively more slowly than the cores (these could not be
trivially scaled by multiplying a configurable value). Marginal latency introduced in three
domain configuration can be attributed solely to running the uncore clock at half rate.
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Parameter Rocket SonicBOOM
Machine Width 1 5 issue, 3 commit

ROB Depth N/A 96
L1 I$ Capacity 16 KiB 32 KiB

L1 I$ Associativity 4-way 8-way
L1 ITLB Capacity 32 32

L1 D$ Capacity 16 KiB 32 KiB
L1 D$ Associativity 4-way 8-way
L1 DTLB Capacity 32 16
L1 & L2 Block Size 64B
L2 TLB Capacity 1024

L2 Cache Capacity 2 MiB
L2 Cache Associativity 8-way

L2 Cache Banks 4
System Bus Width 128b
Memory Bus Width 256b
DRAM Speedgrade DDR3-2133 (14-14-14-47)

Memory Access Scheduler FR-FCFS

Table 5.1: Microarchitectural parameters of the two targets under test. Note, that BOOM’s
L1 cache under the under the “Large” preset is twice as large as Rocket’s (32 vs 16 KiB).

In this case study, we’ll look at single-threaded performance of SPEC 2017 Integer Speed
benchmark suite. This suite has many of the same benchmarks as its predecessor, the
SPEC2006 suite used by Lee and Waterman in their VLSI evaluation of FireSim, however
each of the benchmark’s inputs are larger to better stress modern memory systems. To
provide some insight into the suite’s memory system characteristics, in Table 5.2 we report
dynamic instruction counts and L1 cache misses-per-kilo-instruction (MPKI) running on a
Rocket configuration with the same L1 cache organization as the ones we use in our study2.
We cross-compiled SPEC using Speckle [43] and GCC version 9.2.0 with -O2 optimizations
enabled. We ran SPEC on top of simple Buildroot Linux distributions that we assembled
using FireMarshal [81]. Our system-software setup is reproducible without modification using
FireSim version 1.11 and Chipyard 1.4, following the instructions for building SPEC2017
provided in our documentation.

In Figure 5.4 and Figure 5.5, we report SPEC runtimes as speedups relative to the most
detailed three-domain configuration. BOOM designs insulated themselves better from the
additional memory system latency brought about by running the outer memory systems
at slower frequencies, with synchronous designs running only 1.09× faster versus 1.15× for
Rocket based designs. While in Rocket’s case, speedups correlate closely with L1 cache
MPKI, BOOM’s ability to dynamically schedule around these misses complicates the story.

2These figures were originally reported in our 2019 FASED publication.
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Figure 5.3: Execution latency, measured in core cycles, of one iteration of a randomized
pointer chase for different array sizes (running on BOOM).

605.mcf, the benchmark with the highest frequency of L1 data cache misses3, runs 1.37×
faster on a synchronous Rocket design vs 1.20× on a BOOM design. Instead, BOOM sees
its largest performance change on 602.gcc (1.21× versus 1.26× for Rocket), which reveals
that the core is able to find more instruction-level parallelism in 605.mcf despite having less
data locality than 602.gcc.

From an emulation performance perspective, simulating a more realistic clock organiza-
tion comes at the expense of increased runtime. As shown in Table 5.3, benchmarks take
on average of 49.4% and 53.0% longer to simulate on the three-domain Rocket and Boom
configurations, respectively. The drivers of this are twofold. First, since not all target clocks
are integer divisions of the tile clock, simulation performance is bound to a best-case FMR
of 4/3 (due to the effect we described in Section 5.1.7). This caps femul to 82.5 MHz and 45
MHz for the Rocket and BOOM-based designs, respectively. Second, the multi-clock designs

3This remains the case on the BOOM configuration’s larger 32 KiB L1 cache.
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Benchmarks Insns (T) D$ MPKI I$ MPKI
600.perlbench s 2.98 9.0 10.0

602.gcc s 2.43 36.6 9.7
605.mcf s 1.60 97.9 0.1

620.omnetpp s 1.11 56.9 9.3
623.xalancbmk s 1.21 62.9 7.9

625.x264 s 4.55 3.0 2.9
631.deepsjeng s 2.51 8.7 15.4

641.leela s 2.59 5.8 1.5
648.exchange2 s 3.24 0.0 0.1

657.xz s 9.41 19.8 0.2

Table 5.2: Dynamic instruction counts and L1 MPKIs of SPEC2017 Integer Speed (single-
threaded) benchmarks.
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Figure 5.4: SPEC 2017 Integer Speed performance on Rocket. Speedups are relative to the
three-domain clock organization. Geomean speedups for the two domain and synchronous
configurations are 1.12× and 1.15× respectively.

are simply slower target-designs thus will take more target clock cycles to evaluate (this
is captured in Figure 5.4 and Figure 5.5). These effects are offset modestly in multi-clock
simulators by a reduced MAR: the host DRAM memory system has more time to serve
FASED requests leading to fewer memory-system induced stalls. This is reflected in mem-
ory intensive benchmarks like 605.mcf, where Rocket femul runs at 93% of the maximum
82.5 MHz (MAR = 1.08), whereas the synchronous design achieves only 79 % of 110 MHz
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Figure 5.5: SPECint2017 Integer Speed performance on BOOM. Speedups are relative to the
three-domain clock organization. Geomean speedups for the two domain and synchronous
configurations are 1.07× and 1.09× respectively.

host frequency (MAR = 1.49). Conversely, the runtime of benchmarks like 648.exchange2,
which run completely out of cache and thus have unity MAR, are completely exposed to the
3
4
× slowdown brought about by the clock-token stream. Finally, in a testament to recent

BOOM microarchitectural improvements, the BOOM-based experiments took less time to
run than the equivalent Rocket configurations despite having average femuls of roughly half
that of Rocket’s.

The times we report in Table 5.3 are directly proportional to the cost of running the
benchmark on AWS. At time of writing, EC2 F1 2x.large instances cost $1.65/hr for on
demand instances, and $0.50/hr (typically) for spot instances. Considering just the BOOM
designs, total emulation time was 164 and 251 hours for the synchronous and three-domain
designs, respectively: on the spot these experiments would cost $82 and $126. One implica-
tion of AWS’s cost model is that there is no disincentive to using more FPGAs to improve
simulation throughput. While Table 5.3 reports an enormous runtime for 657.xz, this is the
sum of its two roughly balanced inputs, so we split the benchmark into two parallel runs
to better balance the runtime of the suite. Since this is more difficult to achieve using the
SPEC-provided runcpu utility, in these experiments we are directly invoking the benchmark
binaries using Speckle-generated scripts. All told, 605.mcf is the longest running benchmark
on Rocket (28.0 h and 44.3 h) versus the CPU2006docs input of 657.xz on BOOM (23.4 h
and 35.8 h).
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Target
perlbench gcc mcf omnetpp xalancbmk
time femul time femul time femul time femul time femul

BOOM-1D 19.8 64.5 21.6 57.0 22.7 53.1 11.8 60.3 8.5 61.9
BOOM-3D 29.5 44.9 34.4 43.4 34.4 42.1 18.1 43.9 14.2 44.4
Rocket-1D 14.2 108.9 19.8 94.9 28.0 87.8 10.8 103.5 9.0 103.9
Rocket-3D 20.5 82.2 30.3 78.0 44.3 76.2 16.9 81.2 14.7 80.8

Target
x264 deepsjeng leela exchange2 xz

time femul time femul time femul time femul time femul

BOOM-1D 10.0 63.5 8.5 62.7 8.9 64.4 7.1 65.0 45.3 62.3
BOOM-3D 15.0 44.4 12.5 44.2 13.4 44.8 10.3 45.0 69.3 44.4
Rocket-1D 14.7 108.4 10.7 109.0 9.5 109.5 9.7 109.9 47.8 107.2
Rocket-3D 20.4 81.8 15.9 82.3 13.3 82.3 13.0 82.5 70.7 82.2

Table 5.3: SPEC 2017 Integer Speed (single-threaded) emulation performance. We report
time (wallclock) in hours, and femul, the effective emulation frequency of the cores of the
design, in MHz. Note that xz had its inputs split over two emulators to approximately halve
its runtime.

5.3 Scaling Target Clock Count

Though clock routing and distribution was enhanced in Xilinx’s Ultrascale architecture,
global clock resources are decidedly scarce relative to conventional logic interconnect and
subject to a unique set of constraints which limit the scalability of our approach. To illustrate
this we first give an overview of Ultrascale+ global clock resources and constraints imposed
by Vivado, before measuring the practical limits of our current implementation in FireSim.

The Ultrascale+ clocking architecture divides a device into a regular grid of rectangular
clock regions (CR). Each CR has vertical and horizontal tracks which can be connected to
the four adjacent CRs via configurable buffers at its boundary. At the center of a CR lie
switches for driving clocks from the tracks to CR-local clock sinks like CLBs and BRAMs.
Global clock tracks have two flavors: routing tracks, which connect a clock from its source
(e.g., an I/O or a PLL) to the root of the clock tree, and distribution tracks, which implement
a balanced tree to deliver the clock from its root to all CRs in which there are clock sinks.
To feed this interconnect, global clock buffers and clock-generation blocks, like PLLs, are
vertically striped down the device in physical layer (PHY) blocks. These feed into global
routing and distribution networks in adjacent CRs. In each these PHY blocks there are 24
BUFGCEs—the primitives we rely upon to implement target-clock gating.

To implement our simulators, by default Vivado tries to match delays through each clock
tree carrying a target clock. It places all BUFGCEs for target clocks, as well as the global
buffer (BUFG) to supply the ungated clock, in the same PHY block. To minimize clock
skew between each domain, these buffers drive trees rooted at the same CR, and each tree
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spans the same rectangular region of CRs. Critically, this means that all target clocks,
even those whose sinks reside in a single CR, consume tracks in all other CRs with sinks
belonging to another target clock domain. Given our current implementation, this puts an
upper bound on the scalability of our approach of 23 target clocks (alongside the emulator
clock). Unfortunately, this upper bound neglects periphery IP, like DRAM controllers and
PCI-E interfaces, which consume CR resources that may fall within the rectangular region
required to implement the target-domain clock trees.

To establish a practical upper bound for the scalability of our current implementation, we
synthesized a toy target consisting a shift register with each of its stages driven by a different
clock. Thus for an n-stage shift register, n BUFGCEs will be instantiated in the hub unit.
Since the number of clock sinks per domain is small, this will produce an optimistic result:
the size of simulator clock trees will be defined by the location of sinks in the main emulation
clock domain. Given no additional bridges are instantiated, this is close to the smallest class
of design one can push through Golden Gate.

Using Vivado 2018.3 and FireSim’s custom AWS shell (based off version 1.4.8), we found
that we could synthesize a 12-stage pipeline before running out of global clock resources in
at least one CR. In this CR only 13 of 24 available nets are used for the implementation
of the hub model: the remaining 11 are used to route clocks for IP blocks and other AWS-
shell-related utilities. Excluding the clocks used in Golden Gate-generated RTL, median
global clock-net utilization across the device is 11 (ranging between 9 and 23) across the 90
available CRs of our VU9P FPGA. This will prove problematic for simulating systems with
dozens of clocks, which is not unheard of in modern SoCs.

There are a few means to address this challenge. The first is to simply reduce the number
of unique clocks required in each CR with a more optimized resource allocation. One way to
achieve this is to break Vivado’s default behavior of putting gated target clocks in the same
clock group (so as to produced matched delays). This would permit smaller clock domains
to have proportionally smaller clock trees, freeing up significant global clock resources. The
downside is that this may significantly hamper Vivado’s ability to meet timing constraints
on paths that span clock domains. That said, our simulators tend to have lower fmax than
many FPGA applications and may therefore be more robust against intra-domain variability
in clock delay. Alternatively, it may be possible to optimize the AWS shell to reduce the
number of global clock resources it requires, or better isolate its clock domains from the
rest of the simulator’s. Expending approximately half of all available clock routing resources
on the FPGA shell represents an unfortunately large overhead. Clock utilization overhead
should be an important consideration when porting FireSim to new FPGAs in the future.

A second approach is to consume fewer global clocks by using finer-grained clock gating
where possible. Vivado has native support for gated-clock conversion, a historical pain-
point in building FPGA prototypes, wherein it synthesizes behavioral clock-gates or specially
annotated clocks into an FPGA-optimized equivalent based on the size of the clock domain.
For clocks with large numbers of sinks, it appears to use BUFGCEs much like we do. For
smaller numbers, it may use clock gates on leaf clocking resources (not exposed to the user),
or finer still, the clock enables on logic elements and block rams themselves. This would
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permit Vivado to avoid the use of a BUFGCE in cases where we use one currently. In
the event Vivado cannot effectively perform this gated-clock conversion, finer-grained clock
gating can be implemented in Golden Gate itself by adding clock enables to stateful elements
in FIRRTL, much like MIDAS’s FAME transform.

5.4 Improving Simulator Performance with

Multi-Cycle Setup Constraints

On the surface, one challenge with using a single host clock is that all paths in the target
must close timing at the emulator frequency. In effect, Vivado will use the same setup
relationship to close timing on paths whose delays are many times longer than that of the
critical path in the fastest clock domain. FPGA prototypes avoid this problem entirely since
each domain is driven with clocks of the same relative frequency as would exist on the SoC,
giving slower clock domains more time to meet setup constraints. When this is combined
with the fact that out-of-phase edges in slower domains can be launched between fast-clock
edges, FPGA prototypes have a considerable performance advantage over the equivalent
multi-clock FireSim emulator.

One way to close this gap is to improve ffpga by giving Vivado more setup margin on
paths in slower target-clock domains. Here we exploit the observation that, given our current
clock-token generation scheme, clocks in all but the fastest target-clock domain cannot have
positive edges launched in back-to-back host clock periods. This implies that data launched
in one domain will not be captured by state elements in the same domain until at least two
host cycles later. We can indicate this to Vivado using a multi-cycle setup constraint on
all timing arcs that are internal to that domain. In many cases this setup relationship can
be larger than two periods. A clock that has a frequency one nth that of the fastest clock,
can be given a setup constraint of n periods. Additionally, the presence of other clocks
with frequencies that are not integer divisions of the fastest clock can further lengthen
this constraint. Since the clock token stream is known at compile time, Golden Gate can
analyze these relationships and emit target-specific multi-cycle constraints. In principle,
similar constraints could be emitted for inter-clock-domain paths, but this would require the
presence of intermediate clock-tokens between the positive edges of both domain clocks.

To illustrate the potential of these relaxations, we manually applied a two-cycle setup
constraint to all intra-domain paths in the DRAM and uncore domains for the three-domain
targets we evaluated in Section 5.2. We then resynthesized both sets of designs, with the
constraints and without, using overconstrained host frequencies to establish an emulator
fmax. We report the improved simulator frequencies in Table 5.4. The Rocket-based design
saw greater improvements than BOOM for a few potential reasons. Firstly, in an ASIC
technology, Rocket can be realized at higher frequencies than BOOM. Second, delays through
common structures in OoO microarchitectures scale more poorly when mapped to FPGAs
relative to in-order designs which lack many of the same structures. Taken together, the ratio
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Design Unrelaxed fmax Relaxed ffmax % Difference
Quad-Core Rocket 112.5 168.1 49.4%

Single-Core Large Boom 70.5 90.0 28.5%

Table 5.4: Simulator fmax for the designs of the SPEC performance study without (Unre-
laxed) and with (Relaxed) multi-cycle setup constraints applied.

Design
Unrelaxed Relaxed

ffpga FMR femul ffpga FMR femul Speedup
Quad-Core Rocket 110 1.45 76.0 150 1.49 107.3 1.41×

Single-Core LargeBoom 60 1.57 38.2 90 1.65 54.5 1.43×

Table 5.5: Simulator performance for the designs of the SPEC performance study without
(Unrelaxed) and with (Relaxed) multi-cycle setup constraints applied. Note, the BOOM
result is arguably optimistic since the unrelaxed variant still has a fair amount of setup
margin under a good initial placement.

of core path-delay to uncore path-delay is closer to parity in BOOM, than in the Rocket-
based design where it is closer to the expected one-to-two ratio one would realize in the
equivalent ASIC.

One consequence of increasing ffpga is that various extra-emulator domain delays will
now appear to have greater latency (e.g., FASED’s host DRAM requests will take more
cycles to be served), which could increase FMR. To provide some perspective on this effect,
we booted Linux on instances of the relaxed and original designs that passed timing (we
used the same simulators from the SPEC performance experiment). We report the change
in simulation performance in Table 5.5. Linux boot differs from SPEC in that it has periods
of sustained disk and DRAM use and so tends to have a greater FMR. While FMR does
increase in the relaxed simulators it only modestly reduces the improvement brought about
by the increased ffpga. Were we to re-run the SPEC performance study from Section 5.2. we
estimate the multi-clock designs would take roughly as long to simulate as the synchronous
ones, permitting a SPEC run to complete in approximately a day.

5.5 Future Work

The support for multiple clock domains described in this chapter and released in FireSim
1.10 is an important development over previous iterations of the compiler, as it eliminates
a key barrier to doing realistic pre-silicon performance validation. Within the assumptions
laid out in Section 5.1.1, there are still a number of improvements we could explore.

1. Automatic generation of target-specific, multi-cycle setup constraints. As
we showed for a limited set of designs in Section 5.4, multi-cycle setup constraints can
provide an enormous performance benefit. In the future, we plan to have Golden Gate
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emit target-tailored constraints during compilation so these benefits can be automati-
cally passed on to the user.

2. Improve best-case FMR by combining clock tokens. Here we leverage the
observation that if the state updates brought about by clock token n are not observable
by any domain scheduled to fire in clock token n+ 1, it is safe to fuse these two tokens
into single token with the union of their bits set. In many cases, this will address
the performance cost described in Section 5.1.7. In that example, clock tokens that
fire only the DRAM clock can be fused into prior tokens that fire only the tile clock,
and vice versa. This would restore the best-case FMR to 1, since all tokens would
carry a tile clock edge. However, this optimization does not come without cost. First,
it complicates any debug utility that wants to observe target state at time between
the edges scheduled in fused token. Second, it may preclude applying the multi-cycle
setup constraints described above to some domains (in our example, the DRAM domain
now fires in back-to-back host cycles), potentially offsetting some of the benefit of the
optimization. From an implementation perspective, producing a simplified connectivity
graph that could be fed into the clock bridge generator is relatively straightforward
process in FIRRTL and so this optimization can be easily explored.

3. Investigate schemes for improving clock scalability. In Section 5.3, we proposed
two means to improve the number of clocks we can simulate in a single target: place and
route global clocks more efficiently, and use fewer global clocks where possible. While
these should be evaluated on the Xilinx VU9P available in AWS, the portability of
any approach should take into better account the feature set available in Intel FPGAs,
which we have neglected in this work.

4. Runtime-configurable target clock frequencies. To avoid needing to synthesize
multiple bitstreams to evaluate different clock frequency selections, we could make the
rational relationships encoded in the clock bridge runtime programmable. Note, the
number of clocks and target clock-crossing circuitry would remain fixed, which limits
the utility of this feature. From an implementation perspective, this feature would
require propagating clock domain information to relevant bridges at runtime instead
of at compile time, but otherwise this feature is straightforward to implement.

Ultimately, some of the assumptions we outlined in Section 5.1.1, could be relaxed without
a large-scale reimplementation. For instance, the clock bridge can easily be modified to
generate tokens for any clock whose edge times are known a priori. Lifting effectively all of
these constraints, most notably to support dynamically changing clock frequencies, is a more
challenging undertaking that requires a rethinking of the clock bridge abstraction. This is
the subject of the final chapters of this dissertation.
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Chapter 6

Distributed Simulation of Clocking
Structures via Explicit Timekeeping

The fundamental assumption made in the previous chapter was that the clocks of the target
cannot change as a function of the simulated behavior of the target itself. This permits
generating a clock-token stream that can run ahead of the rest of the simulator and gives good
simulation performance. Lifting this assumption introduces a performance-critical feedback
loop into the emulator: scheduled clocks determine when target state updates occur, but
those updates affect when target clocks are scheduled.

Academic work using hardware acceleration to rapidly simulate these sorts of systems is
lacking. However, one FPGA-based example for studying SoCs that can perform DVFS was
built by Mantovani et al. [72]. This work is essentially a highly configurable FPGA prototype:
it presupposes a particular target organization (a grid of tiles interconnected with a network-
on-chip) and directly instantiates FPGA-specific clocking primitives. Using FPGA clocking
primitives directly skirts the performance challenge we outlined above, allowing their system
to run fast (100 MHz on a Virtex 7 FPGA). This makes it an attractive platform for research
on new DVFS policies, but not generally useful for pre-silicon verification or performance
validation of an SoC which does not derive from their input RTL. For examples of FPGA-
based hardware emulation of systems that support dynamic frequency scaling, one must look
to industry. While Mentor Veloce and Synopsys ZeBu both have support for this form of
frequency scaling, their underlying implementation is proprietary.

The approach we outline in this chapter is radically different from known prior work.
Our simulators have thus far represented a restricted form of parallel discrete-event simula-
tion, wherein explicit timekeeping can be eschewed—they are ITDC. Since the time interval
between tokens is fixed, timestamps are not required, saving considerable FPGA resources.
In PDES terms, these simulators are conservative, as units do not speculate ahead in time,
and deadlock-avoiding, as LI-BDN and channel-bootstrapped formalisms avoid deadlock by
construction. However, the simplicity of these implementations derives from their assump-
tion that the target is an SSM. So, to simulate non-SSM circuits like the structures required
to support DVFS, our approach selectively returns to a more general “de-optimized” form



CHAPTER 6. DISTRIBUTED SIMULATION OF CLOCKING STRUCTURES VIA
EXPLICIT TIMEKEEPING 75

of PDES.
Concretely, we achieve this by introducing timestamped units (TUs) which like con-

ventional untimestamped units (UUs) are promoted and extracted into separate latency-
insensitive modules. TUs communicate between themselves and the hub by sending mes-
sages over FIFO channels. Deadlock avoidance within this subgraph is maintained using
null messages à la the Chandy-Misra-Bryant [18] algorithm. This approach supports a large
class of non-SSM digital circuits, as it makes few assumptions about the underlying physical
process modeled in a given TU.

In our implementation, we use no FPGA-specific clocking resources beyond a clock gate,
making our implementation portable across different FPGAs. Finally, our approach maps
well to the inherently parallel nature of clock generation and selection in a SoC. However, this
implementation strategy begets its own difficulties, notably that, as in all conservative PDES,
achieving good performance without deadlocking hinges on finding sufficient lookahead. In
some cases this may not be possible without restricting target behavior.

6.1 Context, Goals and Motivation

To understand how we arrived at our implementation, we update the goals we outlined when
we designed Golden Gate (Section 4.1) given the current capability of FIRRTL to express
clocking primitives, and the machinery available in Golden Gate to implement them. These
goals were:

1. Maintain FireSim feature completeness. Just as in the original redesign, it was
critical that support for dynamic frequency scaling function in conjunction with exist-
ing bridges and multi-cycle resource optimizations. We were willing to accept a loss of
simulation FMR in exchange for more rapidly obtaining a working prototype.

2. Minimize user modification of ASIC RTL. Specifically, we wanted to avoid ex-
tensive changes to the design’s module hierarchy. The use of a singleton clock bridge
in the previous chapter violated this objective. Here, we were willing to replace ASIC
clock-generating circuits with inexact models, but we wanted to avoid centralizing all
clock generation at a single point in the design.

3. Provide a mechanism to rigorously verify simulation models. While, as in the
LI-BDN case, it would be ideal if parts of the simulator could be verified against the
underlying ASIC implementation using a LIME-like flow, we leave this to future work.
In this chapter we relied on dynamic verification to test our clock-generating units.

4. Enable the use of FireSim as a library for hardware emulation. This is closely
related to the second point. Clocking and reset structures remain the single largest
point of divergence between real chip configurations and FireSim-modeled configu-
rations of Chipyard SoCs. Minimizing ASIC modification is critical to empowering
FireSim’s use as a hardware emulator.
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5. Avoid the use of FPGA-specific Clocking Primitives. In the interest of support-
ing other FPGAs in the future, and to avoid more of the placement and DRC challenges
associated with using those devices, we wanted a design that used conventional logic
and interconnect resources where possible.

At time of writing, native support for clocking structures in FIRRTL is nascent and
designers tend to use black-box Verilog to describe structures that act on clocks (these
tend to have process-specific implementations that will be used in physical design anyways).
Building a compiler capable of analyzing a hybrid FIRRTL-Verilog netlist without designer
help was going to be challenging, so we elected to leave that to future work.

6.2 Other Designs We Considered

To reuse most of our work in building out support for simulation of systems with fixed clocks,
we initially tried to frame this new challenge as solving the smaller problem of reconstituting
the clock-token stream. The most straightforward way of doing so is to a provide a means for
users to specify that certain clocks have dynamic behavior on the centralized clock bridge.
For these clocks, the clock bridge would accept parameters to describe how it derives from
other clocks in the system (e.g., it should in effect simulate a clock multiplexer and select
between two other output clocks). Based on this selected behavior new inputs on the bridge
would be exposed and driven by target RTL. This would require the smallest modification
to existing infrastructure.

While this would suffice for simulating simple systems, the main problem with this ap-
proach is that it forces the designer to re-express, in a centralized fashion, how all clocks
in a system are generated. This runs counter to the inherently distributed process of clock
generation and distribution in an SoC. In a simple system, a clock source might feed a
centralized PLL with closely coupled output dividers, which in turn may drive downstream
dividers, clock multiplexers and ICGs distributed throughout the chip. This simplified model
is complicated by I/O devices which tend to provide their own clock generation schemes that
derive from still other off-chip clocks. As such, it would be better if information about target
clocks could be extracted from the instantiations of ASIC clocking circuits and accompany-
ing design constraint files, which already encode these clock relationships for other back-end
implementation flows, instead of forcing the user to re-express these properties at the clock
bridge.

With this in mind, we set out designing a system that would transform or replace existing
ASIC circuits with FPGA-compatible equivalents. As in the previous chapter, this cannot
be achieved simply by substituting a primitive with an FPGA analog, but instead requires
a custom representation of that circuit that is deterministic under variable host timings.

The defining design decision of this project was whether to replace these clock-generating
circuits with independent latency-insensitive units or whether the compiler should attempt
to centralize them into a single chunk of logic integrated into the hub. In effect this reduces



CHAPTER 6. DISTRIBUTED SIMULATION OF CLOCKING STRUCTURES VIA
EXPLICIT TIMEKEEPING 77

to a question of distributed versus centralized control. We chose a distributed approach
for the following reasons. First, it was a natural extension of the Golden Gate framework.
Replacing modules with decoupled units slots neatly into the existing abstractions and so
reuses much of the existing infrastructure. Second, our abstraction is flexible enough to
capture the behavior of practically all non-SSM digital circuits that FireSim cannot currently
support. This uniformity made it easier to reason about correctness of pieces of the target
independently, without having to “special case” support for certain types of clock primitives.

6.3 Implementation Overview

To summarize, our approach replaces non-SSM modules, notably those related to clock
generation, switching, or gating, with timestamped units (TUs). Strictly speaking, both
timestamped and untimestamped units (UUs) are logical processes (LP), however in this
chapter we will use LP and TU interchangeably. TUs are extracted and replaced in the
same fashion as UUs, like a bridge or an optimized model, however, their channels are
labeled as timestamped. These channels carry messages between TUs, which consist of data
value and a timestamp. Analogously, tokens can be thought of as implicitly timestamped
messages, however we’ll reserve the term messages for timestamped transmissions.

Now, simulator graphs have two halves: an untimestamped subgraph, which includes
all of the optimized models and conventional bridges described in previous chapters, and a
timestamped subgraph, which includes the TUs. The hub is the only unit that resides in
both subgraphs and serves to reconcile the two domains. We show an example graph in
Figure 6.1.

For this approach to have acceptable performance, we needed to permit TUs to send mes-
sages directly to one another, instead of forcing these transmissions to propagate through
the hub. To do so, we introduced a compiler optimization that removes passthrough connec-
tivity in the hub, permitting two units (timestamped or untimestamped) to drive each other
directly. As a result, simulator graphs are no longer guaranteed to have a star topology (this
is visible in Figure 6.1). While essential for the prototype described here, this optimization
also improves FMR in designs described in previous chapter when multiple optimizations are
enabled. We expand on this optimization and other compiler modifications in Section 6.9

Since there is no longer a clock token stream, we modified the hub unit to schedule
across multiple timestamped inputs. Timestamped inputs can be either clock-type or data-
type (used for modeling asynchronous resets), these differ in how they are presented to target
RTL. The hub unit explicitly tracks target time, which it uses to populate the timestamps
of output messages as it advances. We expand on the hub-unit modifications in Section 6.8.

TUs are implemented as bridges that use timestamped channels exclusively. From the
RTL designer’s perspective, they are employed no differently than conventional bridges in
the target design. However, writing TUs that were both correct (deterministic, deadlock
free, and timing exact) and performant we found to be the most challenging aspect of our
approach. To ease this process, we wrote a Chisel library of timestamped circuit primitives
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Figure 6.1: An example simulator graph with a timestamped subgraph responsible for mod-
eling clock generation. Note, the ports represented in timestamped models are logical. The
clock divider and clock mux both have a single output: output messages are duplicated and
transmitted to each sink over separate channel.
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to make it possible to write simple TUs as translations of Verilog RTL. Unfortunately,
these primitives are conservative and cannot exploit lookahead that might emerge in their
composition. We describe these baseline TU implementations in Section 6.10.

6.4 Simplifying Assumptions

While our approach imposes few restrictions on what an individual TU models, some new
complexities arise when considering interactions that span timestamped and untimestamped
regions of the simulator. In our initial prototype, we make the following assumptions:

• Untimestamped channels remain synchronous in that they observe the hub only on
positive edges of their associated clock and once at time zero. For example, if the
input to a unit is driven by asynchronously reset state the sink unit will never see a
token launched by the assertion of that reset. If these transitions must be modeled
with sub-cycle accuracy a TU must be used.

• All clocks must be sourced by TUs. Clocks cannot be generated in FIRRTL with type
casts from other data types.

• All stateful target hardware in the hub or in UUs must be positive-edge triggered.
While this restriction can be easily relaxed in the future, for the time being level-
sensitive and negative-edge-triggered hardware need to be modeled in TUs or replaced
with positive-edge-triggered equivalents driven by an inverted clock (if applicable).

6.5 Target-Side User Interface

To deploy a TU, the user annotates a clock-generating module with a BridgeAnnotation,
and divides its target-side interface into channels. The bridge annotation calls out a specific
BridgeModule class implements the desired timing model. In Listing 6.1, we show an exam-
ple of this annotation process, using our library implementations of a clock multiplexer and
divider as examples.
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1 // The existing clock divider module instantiation

2 val clockDivider = Module(new rocketchip.util.ClockDivider2)

3 clockDivider.io.clk_in := fullRate

4 val halfRate = clockDivider.io.clk_out

5
6 // Annotate the divider indicating it can be replaced

7 // with a TU. This is a strict addition , and requires

8 // no other modification to the design

9
10 BridgeableClockDivider(

11 // The first parameter provides the module

12 clockDivider ,

13 // Successive parameters provide the mapping

14 // from target signal to timestamped channels

15 clockDivider.io.clk_in , // Input

16 clockDivider.io.clk_out , // Output

17 // The BridgeModule ’s constructor parameter

18 div = 2)

19
20 // A similar example , using a clock mux

21 val clockMux = Module(new testchipip.ClockMux2)

22 clockMux.io.clocksIn (0) := fullRate

23 clockMux.io.clocksIn (1) := halfRate

24
25 // Annotate the clock mux , as above

26 BridgeableClockMux(

27 clockMux ,

28 clockMux.io.clocksIn (0),

29 clockMux.io.clocksIn (1),

30 clockMux.io.clockOut ,

31 clockMux.io.sel)

Listing 6.1: An example of the target-side modifications required to call out clock-generating
primitives as units.

6.6 Message Representation and Channel Design

In our system, a signal that spans two TUs is represented with a trace of messages, each
labeling a transition with the time at which it occurs. In hardware engineering terms, this
in effect defines a two-state value-change dump (VCD) for the signal. While there are many
ways to optimize message encoding, logically all messages in our system have two fields: a
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timestamp, which is a 64-bit unsigned integer representing an absolute time in a simulator-
global timebase, and data, which represents the value of the signal at the associated time.

For a concrete example, consider a clock. A clock-type message consists of the 64-
bit timestamp and a boolean data field. To represent the clock over the duration of a
simulation, a source must send a message on every transition, so to encode N periods the
source must send at least 2N messages. We say “at least”, because we rely on the Chandy-
Misra-Bryant [18] deadlock-avoidance algorithm, and so practically speaking, many message
streams will include null messages. In our implementation, a null message shares the same
data value as the most recently sent message but with a later timestamp.

In our initial implementation, all timestamped channels are implemented with a single
fully decoupled queue. This means they can transmit at most (i.e., enqueue or dequeue)
a single message per host cycle. Without further optimization, this implies that simulator
FMR has a lower bound of two, since any unit processing a clock-message stream must
handle a negative-edge transition in every other cycle. While there are many approaches
that can overcome this limitation, which we discuss in Chapter 8, in this chapter we work
within this simple but general representation.

6.7 Correctness Of Logical Processes

In their paper, Chandy and Misra [23] provide a formal specification of their null-message-
based conservative PDES and define its correctness vis-a-vis the physical system it simulates.
We provide an informal summary here. As we introduced in Chapter 3.5, a physical system
consists of a graph of communicating physical processes. In our systems, physical processes
are digital circuits of any scale, that communicate by driving wires that connect them.

To reason about the correctness of TUs, much like LI-BDNs, we must frame them against
output traces generated by their references (PPs). Chandy and Misra dub the sequence of
all messages sent from source i (PPi) to sink j (PPj) up until time t, as a message history,
hij(t). LI-BDN’s have an analogous definition of history: their “messages” simply lack
explicit timestamps, and t is specified in cycles. In the logical system, the message history
between the equivalent source and sink LP is given by Hij(t), where analogously, Hij(t) is
the sequence of messages sent from LPi to LPj up until time t. Crucially, H and h differ in
that h can never contain null messages: these are an artifice of the simulation required to
avoid deadlock.

Chandy and Misra say a message history between a source and sink LPs is correct if and
only if all messages of hij are present in Hij, and every message in Hij either exists in hij

or is a null message. In simpler terms, rejecting all null messages in Hij should produce hij.
This gives a concrete means to verify a TU against a piece of reference RTL: pass identical
inputs (i.e., H for this input is “correct” in the sense above) to the reference module and the
TU and compare the reference RTL’s output transitions and their times against the output
message history of the unit after removing all null messages. With null-messages removed,
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this notion of correctness is analogous to establishing sequential equivalence [83] between the
reference RTL and that behavior represented by the TU.

6.8 Hub Unit Modifications

At a high-level, the primary change to the hub-unit is the introduction of a frontend to the
pipeline that reconstitutes the clock token from a set of timestamped inputs. Timestamped
inputs are processed in two groups, based on the FIRRTL type of their target signals:

• Clocks: These drive FIRRTL clock-typed inputs. As mentioned in Section 6.6, these
are timestamped booleans. On a positive-edge transition, a dedicated clock buffer
responsible for driving the target clock is enabled.

• Data: These drive any FIRRTL non-clock ground-type including UInt, SInt, and,
notably, AsyncReset. Updated values are presented to the target RTL by latching
new values into a register at the times indicated in the message stream. In this way,
an asynchronous reset transition can be presented at a time when no clocks are active,
and timestamped outputs can observe newly launched transitions in distinct messages.

We show the updated hub unit in Figure 6.2. The frontend of the control pipeline (bot-
tom) consists of a series of decoders that unpack messages to provide the horizon over which
an input is defined (definedUntil) and detect transitions. If an input message produces a
transition it is not dequeued: the decoder sets definedUntil to that message’s timestamp
and waits. Conversely, null messages and negative-edge transitions in clock-type channels
are dequeued upon arrival, which allows that input’s horizon to advance further. When no
message is available, the decoder holds definedUtil at the timestamp of the last message.

With the inputs unpacked, the frontend performs a minimum-reduction across the hori-
zons of all timestamped inputs and an upper bound provided through the control inter-
face (ctrl.timeHorizon). This becomes the candidate time for the next timestep and is
broadcast back to each decoder (advanceToTime). If the pipeline can advance, all decoders
with a transition or positive clock edge at the scheduled time dequeue their input messages,
and have their updated signal value latched. The concatenation of all enabled positive edges
(posedgeEnable) corresponds to a clock token in the sense defined in the previous chapter.
Note that it is possible for there to exist no transitions in a given timestep, it is scheduled
anyway for reasons we will discuss momentarily.

The “clock token” and data updates are scheduled and flow through the pipeline as in
the previous chapter (note, the first stage of the pipeline for data values is absorbed into
the scheduler). Untimestamped input (UI) and output (UO) channels handling has not
changed, their control FSMs are only reset when their clock has been scheduled to fire. One
critical implication of this is that asynchronous events launched by data-type transitions in a
particular domain do not launch new tokens in an untimestamped channel. This is consistent
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with our previous assumption from Section 6.4, that untimestamped channels only observe
outputs synchronously with respect to their associated clock.

Timestamped outputs are managed differently. To avoid certain deadlock conditions,
TOs generate a new message on every timestep, notably those in which no clock or data
transitions have been scheduled. In effect, these outputs have their FSMs reset on every
timestep (via s1 valid), and source their timestamp from the pipeline (s2 time). Without
further optimization, this baseline hub unit guarantees that output channels will always be
defined only as far as it oldest timestamped input. Critically, this means the hub unit has
zero lookahead. Thus to avoid deadlock, any arc that spans one or more TUs and begins
and ends at the hub must provide non-zero lookahead.

To provide finer-grained control and instrumentation, the hub exposes specific signals
to a memory-mapped simulation controller. This controller can detect whether clocks are
scheduled to fire (ctrl.clocksActive), the time of the associated timestep (ctrl.time),
and is responsible for setting the time upper-bound (ctrl.timeHorizon) past which the hub
must not advance.

6.9 Compiler and Annotation Modifications

At first blush, baseline support for timestamped channels is relatively straightforward to
implement. Since all timestamped channels are wire-type, the timestamp of a message can
be treated as target data in an otherwise conventional token, and wiring between channels
and bridges can be left unchanged. However, to provide a workable baseline implementation,
we needed TUs to be directly connected to one another, and not indirectly through the hub.
This permits TUs to advance ahead of the hub unit (which in its current form has zero
lookahead). Our earlier assumption that only TUs can source clocks and signals that launch
asynchronous events lets us ensure that sources are only ever directly connected to their sinks
( i.e., through a series of FIRRTL Connect statements). This in turn simplifies the process
of finding and extracting these paths into point-to-point channels between two units. We
refer to this enhancement as the passthrough connections optimization and give a pictorial
representation of the process in Figure 6.3.

The core of this change revolves around the PromotePassthroughConnections trans-
form, which extracts wires of any FIRRTL type that passthrough any top-level SSM. We
run this pass in target transformation, after bridge and model extraction. Note, if a signal
drives no other sinks aside from output ports, we leave the connection to the original unit in
place instead of removing the connectivity altogether. This simplifies connectivity analyses
that occur later in the compiler, and ensures that all clocks still drive the hub (even if all of
the state for a particular domain has been extracted).

At this point top-level connectivity in the design now includes fanouts. To handle this
new class of connectivity we modified ChannelExcision. In general, a fanout of n produces
one output interface, and n input interfaces (sunk by the hub unit and optimized models)
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on the FAMEWrapper (see the right-most fanout in Figure 6.3). The resulting channel
annotations share the same source targets, but their sink targets point at unique inputs.

While a model-driven fanout can be deduced by looking for matching source fields in
channel annotations, this does not apply to a bridge-driven fanout, since bridge-driven chan-
nels leave their sources field empty. Since bridges are already removed (they are interfaces
on the FAMEWrapper), a bridge-sourced fanout of n produces n inputs and no output in-
terfaces. The clock-source-driven interface (CS.out) in Figure 6.3 is an example of this. To
re-associate these inputs with a single source, we collect bridge-driven sources in fanout an-
notations (FAMEChannelFanoutAnnotation). This allows simulation mapping to drive the
correct set of input interfaces from the same bridge source. For consistency, we emit the
same annotations for unit-driven fanouts (AddRemainingFanoutAnnos).

Since this optimization now removes passthrough clock paths in extracted SSMs, an
SSMs’s target clock will be driven not from the hub, but instead from a TU-driven input
(the path from CD.out to the FPGA hostile block in Figure 6.3). This required a modification
to FindDefaultClocks to infer the clock fields of intra-UU channels by finding a clock sink
port on the hub that shares the same source as the clock sink on the extracted SSM. This
works because, as we previously suggested, PromotePassthroughConnections ensures that
all clocks remain driven to the hub.

The final necessary change for this optimization was to generalize the FAMEtransform’s
re-wiring of the FAMEWrapper, which previously relied on the assumption that all channels
had to be sourced by a unit and sunk by a top-level interface (or vice versa). Now inter-unit
connectivity, like the connection between the CS and CD in Figure 6.3, must also be rewired.

The optimization, while critical for the implementation of this dissertation work, can
improve FMR in simulators without a timestamped subgraph notably when using multi-
cycle optimizations inter-model or bridge-to-model, paths need not propagate through the
hub model first. In a target in which a passthrough path would winds through the hub,
through an extracted model, and back to hub (with no other combinational paths that
span the same arc), FMR improves from a best-case of three to two. This improvement
becomes more pronounced for paths that run through a cascade of connected models. This
was the first major contribution of the work of this chapter back to mainline FireSim (the
optimization is available in version 1.12).

6.10 Baseline Timestamped Units

Beyond a doubt, writing TUs was the most difficult aspect of building out our prototype.
Many of the aforementioned difficulties associated with writing UUs apply. TUs must not
only be robust against changes in message arrival times (latency insensitive), but they must
be able to tolerate the presence of additional null messages. In UUs, the designer must
manage cycle-scale decoupling (for example, that the output has advanced some number
of cycles ahead of the input), whereas in TUs this decoupling is considerably finer-grained.
Additionally, whereas SSMs without combinational loops have well-defined outputs for a
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given input trace, this is not true of many of the circuits we wish to model here. One typical
example of this is that there can often be race conditions in standard Verilog implementations
of these circuits that arise due to the simultaneous arrival of inputs. This can produce non-
deterministic simulation behavior that is still compliant with Verilog’s event-ordering model.
Since determinism is critical for making FireSim simulations debuggable, the TU designer
is forced to pick one behavior. Finally, TUs must extract sufficient lookahead from their
reference RTL to avoid deadlock and provide good simulation performance.

We built our baseline TUs using a modular approach that would make it easy to rewrite
Verilog implementations as TUs. Specifically, we built a library of timestamped utilities to
manage and unpack message streams, circuit primitives for registers, single-output combi-
national logic functions, and fanouts. For each of these primitives we wrote deterministic
Verilog reference implementations, and built timestamping hardware capable of translating
the reference output into a message stream. This let us compare TU outputs with reference-
generated message traces as part of a dynamic verification flow.

A key limitation of these initial implementations is that they omit asynchronous reset.
While not insurmountable, asynchronous reset poses a key challenge to our approach as it
tends to remove lookahead opportunities afforded by target state. In lieu of this, we rely
on FPGA programming or host reset to put TUs in a desired initial state. We discuss the
complexity of modeling asynchronous reset in these TUs in Future Work (Chapter 8).

6.10.1 Timestamped Tuples: Unpacked Messages

Message streams are difficult to directly act upon, as in general, we are often interested in
data values between messages. One reasonable approach is to insert incoming messages into
an age-ordered event queue (as a software implementation would) and update TU state in
message order. In our TUs we took a distributed approach in which we wrote ad-hoc state
machines to schedule over per-input datastructures to avoid serialization on a single event
queue. Given our baseline message encoding it is not possible to detect transitions in a
signal without comparing it to an older value, so these hardware datastructures, which we
refer to as timestamped tuples, ease this process by holding a pair of messages: the latest
message (the head of the channel’s queue), and the previous message. When a unit wishes
to process events created by a non-null input message, it asserts observed, which moves the
latest message into the secondary slot and the next message in the queue becomes visible.
At that point the former previous message is no longer visible and cannot affect output
messages and internal state changes.

Unlike early conservative PDES work, in which lookahead in an LP is statically defined,
our TUs can dynamically extract lookahead based on the values of currently visible inputs.
This is a domain-specific optimization akin to that first described by D. Nicol [75] and B.
Lubachevsky [69]. To describe lookahead properties of our library primitives, it is useful to
define variables that derive simply timestamped tuples. Suppose we have an input I, we
define:
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• TI to be the time of the latest message. We refer to this as the horizon of I.

• PI to be the time of the previous message.

• IH to be the data value of I at its horizon.

• IP to be the data value of I before its horizon, and defined at least as far as PI .

• I(t) to be the data value of I at time t, where:

I(t) =


IH if t = TI

IP if TI > t ≥ PI

undefined otherwise

Generally speaking, lookahead is defined with respect to the oldest input received by an
LP. In many of our TUs, lookahead will be zero, notably when a clock lags lags all other
inputs. However, this may be permissible if the clock input is not part of a cycle in the
timestamped subgraph, or if at least one other TU in a cycle containing this input has non-
zero lookahead. As we will see, of particular concern for deadlock avoidance are hub-driven
control inputs to TUs. Here, we define relative lookahead, which is the available lookahead
in a TU, when a specific input lags all other inputs. For example, select-relative lookahead
on a clock multiplexer refers to the lookahead available when the select input to the mux
lags all clock inputs.

6.10.2 Edge-Triggered D Flip-Flops

D flip-flops, both positive and negative-edge triggered, are critical elements for building inte-
ger clock dividers and clock multiplexers. Our basic timestamped model has three compile-
time parameters: the Chisel type the register stores, the initialization value register assumes
at time 0, and flip-flop’s edge sensitivity. Structurally, it has a clock-type input, and a data-
type input (D) and output (Q) of the data type above. This primitive models no clock-to-Q
delay, and so an output transition on Q occurs simultaneously with a latching edge. Ad-
ditionally, this register observes the value of D one timescale unit before the positive edge.
Thus, if a clock and data transition occur simultaneously, the clock always observes the old
value of D. This is often a data-race in a Verilog expression of a flip-flop as the assignment
to D and the evaluation of RHS of a non-blocking assignment to Q can be executed in either
order. Our implementation ensures the non-blocking RHS evaluation occurs first. We give
the rules governing the timestamp of an output message based on the available inputs, and
thus the available lookahead (TL) below:
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if Tclock ≥ TD then
if Clock = latching edge and (Tclock − TD) > 1 then

tL = (Tclock − 1)− TD

else
tL = Tclock − TD

end if
else

if DH = QH then
tL = TD − Tclock

else
tL = 0

end if
end if

Using the information encoded in the message streams alone, this register’s output can-
not always advance ahead of both Clock and D. However, it does have non-zero D-relative
lookahead, which will suffice to avoid deadlock in many important classes of designs we will
discuss in Section 6.12. We note, the most natural way to introduce clock-relative lookahead,
if required, is to model a clock-to-Q delay. Similarly, D-relative lookahead could be improved
by having the model observe D earlier relative to the clock edge, as the path will need to
meet a reasonable setup-time constraint to avoid metastability.

6.10.3 Generic Combinational Functions

Our baseline utility to describe combinational functions schedules over a set of timestamped
tuples, and generates a single output message at the timestamp of the oldest input message.
This is convenient in that the user can generate arbitrary combinational logic over all input
tuples, however it comes at the cost of zero lookahead. Without providing additional hints
about input transitions, there are two mechanisms for finding more lookahead. The first is
modeling propagation delays through gates. Here,

tL = min
∀I

(TI + minPDI)

where minPDI is the minimum propagation delay of the circuit from input I to the output.
The second means is to leverage logic redundancy. If the oldest input to a combinational
function cannot affect the output (i.e., it can be treated as a don’t-care) the output can
advance ahead of that input.

6.10.4 Fan Outs

To broadcast a timestamped tuple from one source to many sinks, we wrote a fanout primi-
tive. Under-the-hood, this repacks the tuple into a message that is then broadcast to a set of
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1 module ClockDivider2 (output reg clk_out , input clk_in);

2
3 initial clk_out = 1’b0;

4 always @(posedge clk_in) begin

5 clk_out = ~clk_out; // Must use =, NOT <=

6 end

7
8 endmodule // ClockDivider2

Listing 6.2: A reference phase-aligned clock-divider from Rocket Chip used in RTL
simulation.

queues, much in the same way a fanout channel is implemented in the simulation wrapper.
These queues are of finite depth, and must be sized conservatively by the designer to avoid
deadlock.

6.10.5 Clock and Asynchronous-Reset Sources

For use in test harnesses, we wrote primitives to act as idealized sources for clocks and
asynchronous resets. Our clock source generates an infinite trace of clock messages, and
has a compile-time configurable period, initial value, and duty cycle. Having only a single
clock output and no inputs, it effectively has infinite lookahead and can run arbitrarily far
ahead of other TUs in the graph. Similarly, our asynchronous reset source drives a pulse of
configurable length and polarity, after which it remains deasserted-asserted for the remainder
of simulation (a total of three messages). Note that asynchronous resets can also be generated
by other TUs (like clocks) or by target logic itself: this primitive is useful for supplying off-
chip resets that cannot be defined in terms of other signals. Both of these primitives have a
wrapper bridge module, and so can be used in target RTL.

6.10.6 Library Timestamped Units

Using these library primitives we built simple TUs by translating Verilog into timestamped
equivalents. We give an example of this using a phase-aligned, by-two clock divider: its refer-
ence Verilog is shown in Listing 6.2 and its timestamped translation is shown in Listing 6.3.
Using this scheme, we also wrote baseline TUs for a by-three clock divider (Figure 6.4a), a
glitchless two-to-one clock multiplexer (Figure 6.4b) and an AND-based, ICG (Figure 6.4c).
Note that the output clock in each of these circuits is not combinationally dependent on a
control input: they all have non-zero control-relative lookahead.
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1 class ClockDivider2 extends MultiIOModule {

2 val clk_in = IO(Flipped(new TimestampedTuple(Bool())))

3 val clk_out = IO(new TimestampedTuple(Bool()))

4 val reg = Module(new TimestampedRegister(Bool(), Posedge ,

init = Some(false.B)))

5 reg.simClock <> clk_in

6 val Seq(feedback , out) = FanOut(reg.q, "feedback", "out")

7 clk_out <> out

8 reg.d <> (new CombLogic(Bool(), feedback){

9 out.latest.bits.data := ~valueOf(feedback)

10 }).out

Listing 6.3: The equivalent TU for the clock divider shown in Listing 6.2 implemented using
library primitives.
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clockIn clockOut

clk_out

0

delay

1
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(a) By-3 clock divider.
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(b) Glitchless clock mux.

en

clockIn
clockOut

(c) Clock-gating cell.

Figure 6.4: Reference circuit diagrams for the baseline TUs. Verilog for the by-2 divider is
provided in Listing 6.2 so we omit it here.

6.11 Verification

We relied on dynamic verification to check our implementations. We wrote a SystemVerilog
“timestamper” which translates a signal into a decoupled message stream, by leverage Ver-
ilog’s $time system function to produce a timestamp. We then wrote Chisel testbenches to
show that two message streams were correct in the manner described in Section 6.7.

As we have mentioned, many of the aforementioned circuits have non-deterministic be-
havior when written in a conventional Verilog style. To ease verification, we wrote race-free
reference implementations which guarantee a particular ordering by judiciously adding sub-
time unit delay to statements in the reference. This approach does not scale to compositions
of these circuits, but suffices to verify small circuits are deterministically represented by its
TU.
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Figure 6.5: Five illustrative clock organizations that leverage each of the TUs we have built.

6.12 Performance in Common Clock Organizations

What should be clear from Section 6.10 is that the baseline TUs are pessimistic. Since they
make no assumptions about the behavior of their inputs, they cannot find lookahead in all
of their input corners, specifically in cases where a clock-type input is the oldest input to
the unit. Fortunately, in many useful classes of clock organizations (depicted in Figure 6.5),
there are no cycles that do not span the hub unit. Since all of our TUs have non-zero relative
lookahead with respect to their hub-driven inputs—which are necessarily data-type—all of
these circuits narrowly avoid deadlock. Of course, this does not imply that the resulting
simulator is performant: here we measure the FMR of our prototype simulating the circuit
organizations of Figure 6.5, and shed light on the origin of performance losses where they
exist. We summarize the FMRs of these circuits in Table 6.1.
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Divider Mux Gate 3-Mux Cascade Mux-Gate
3.0 11.0 6.0 (12.5, 13.0) 15.5

Table 6.1: Measured FMR of the clock organizations shown in Figure 6.5 using the baseline
TUs. For the 3-mux cascade, we report the FMR when domain i− 1 drives domain i’s clock
select (12.5), and when domain i drives its own select (13.0).

6.12.1 Feedforward Divider Networks

A feedforward network of clock sources and dividers (Figure 6.5, circuit A) is the simplest
case, and suffices to model the systems we described in Chapter 5. Performance in these
circuits is bandwidth bound on the ability of the downstream dividers to process input mes-
sages from the high-frequency reference clock. The baseline by-two clock divider, reported in
Table 6.1, takes three cycles on average to process two input messages (one reference clock
cycle). This arises because the flip-flop model, unaware that it is driving itself in a feedback
loop, waits for its D input to be defined one time unit before the next positive clock edge,
introducing a single internal null message. Thus, when the fastest clock is driving other logic
in the target, the best case FMR of these targets is three.

It is important to note that if we remove the fast clock domain (domain zero in Figure 6.5),
from the user’s perspective the FMR doubles to six (when using by-two clock divider).
Unfortunately, cases in which the high-frequency clock is not widely deployed in the target-
design is a common case. For example, in order to generate the 1.5, 1.0, and 0.75 GHz clocks
for the three-domain target SoC we described in Section 5.2, we would be forced to generate
a 3.0 GHz reference, and then use by-two, by-three, and by-four (two by-twos) clock divisions
to generate the target clocks. The cost of directly simulating the fast clock increases as the
ratio between the reference and the fastest derived clock grows. We describe solutions to
this problem in Chapter 8.

6.12.2 Simple Hub Cycles

ICGs and clock multiplexers (Figure 6.5, circuits B and C) create a two-unit cycle in the
simulator graph that span a hub-driven control signal and a TU-driven clock. Performance
in these configurations is latency bound on message transmission through this cycle and is
further deteriorated by null message transmissions that may require multiple serialized trips
through the cycle.

This is most clearly illustrated with the clock gate configuration, which has a measured
FMR of six. Both the reference clock and gated clock have the same frequency, so there no
new bandwidth bound introduced. Any additional slowdown is the result of the ICG TU
waiting on message propagation from the hub. We show this process in Figure 6.6. In this
example the reference clock has a period of four, and there is a positive edge at t = 0. Since
the hub must wait for input message from both the source and the ICG TU, and since the
ICG TU always lags the source, we neglect the source in this diagram.
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Figure 6.6: An illustration of the clock gate configuration’s measured FMR of 6.0. Mes-
sages are labeled host cycle: {data, time}.

There are two effects at play here. After the ICG has enqueued a positive-edged message
for its output clock at host cycle zero, it takes four cycles for an enable message sharing that
timestamp (t = 0) to arrive at the TU’s input. A transition in enable would be visible in
this message if it was to occur. Unaware that it should expect no further transitions, the
register model in the ICG waits for an input defined one time unit before clock’s negative
edge (t ≥ 1). This requires a null message (the TU’s second output message) to propagate
through the loop. Once it arrives at cycle five, the negative edge is processed and the new
enable value is latched. In host cycle six, the second positive edge is finally enqueued. This
cycle recurs thus giving an FMR of six.

The clock multiplexer configuration has significantly worse FMR (11.0) because null
message propagation loops are not always overlapped with the propagation of an edge (as
in the previous example). In other words, a null message received on the select input by the
multiplexer launches a new null message that must propagate through the simulator, instead
of allowing the unit to enqueue a new output edge.

6.12.3 Multi-Unit Cycles

Multiplexer cascades (Figure 6.5, circuit D) and multiplexer-gate complexes (Figure 6.5,
circuit E) are also common occurrences in SoCs. Here a cycle starts at a hub-driven control
signal, passes through multiple cascaded TUs, and terminates at a clock input on the hub.
One might expect that these topologies would have greater FMRs, since the transmission time
across the loop is longer without extracting substantially more lookahead per TU crossed.

This is not always case with multiplexer cascades when selecting between clocks of the
same frequency: it depends on which domain drives the select signal. When the select
is driven by the same domain the multiplexer drives, these circuits run with an FMR of
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11.0 (note shown) independent of the depth of the cascade (N). When select is driven by
the previous clock domain, the FMR increases to 13.0. When each stage is fed by a different
frequency, for instance with clock divider with a division of i+ 1, where i is the index of the
current domain, the story becomes more complicated. Here increasing the cascade depth,
marginally increases FMR (12.5, 13.2, 13.2, from N = 3 to N = 6), due to the introduction
of new null messages by the dividers themselves. Removing these messages would return
FMR to 11.0.

Topologically, the mux-gate complex is analogous to the previous-domain-drives-select
mentioned in multiplexer-cascade example, as the clock enable cannot solely be driven by
state in the domain it is gating. Here we measured an increase in FMR from 11 to 15.5 over
the single multiplexer case, because the launch of an enable message is serialized directly
behind the selection of a clock. Indeed, the primarily driver of increased FMR is not the
length of a cycle, which can be problematic, but rather tight coupling clock generation and
the control logic.

6.12.4 Compositions Of Circuits

We speculate that, in general, the circuits we present in Figure 6.5 can compose with zero
or modest increase FMR if they derive from the same clock source, or from a second clock
source that is a phase-aligned integer division of the source. This is because their message
propagation happens in parallel, and few, if any, new simulator timesteps are introduced.
More complex compositions that derive from a clock driven by a multiplexer require more
detailed analysis, as which domains drive control signals can have a large bearing on FMR.
This effect is manifest in both the mux-gate complex and multiplexer cascade circuits.

6.13 Lookahead Optimized Units

While there are systemic approaches for improving simulation performance in our initial
implementation, the lowest hanging fruit revolve around optimizations that can extract more
lookahead in non-hub TUs. Without introducing logic or propagation delay, this must rely
upon leveraging the presence of state in the reference circuits. This state provides a multi-
period interval of opacity [69] wherein changes in the hub-driven control signal are not
observable in the output message stream—an effect we first described in the context of
channel-bootstrapped formalisms. To this end, here we throw out the library primitives
in favor of fully handwritten TUs. The cost of this approach is that writing correct TUs
becomes more challenging, as these units cannot be simply transcribed from Verilog.

6.13.1 Integer Clock Dividers

If we continue to neglect asynchronous reset, it is trivial to write a clock divider TU that
can consume an input message per cycle. On positive input clock edges, the TU increments
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Divider Mux Gate 3-Mux Cascade Mux-Gate
Baseline 3.0 11.0 6.0 (12.5, 13.0) 15.5

Optimized Dividers 2.0 11.0 — (13*, 13) 15.5
Optimized ICGs — — 4.0 — 14.0
Sync Mux, k = 1 — 2.6 — (3.0, 4.8) 5.3
Sync Mux, k ≥ 2 — 2.0 — (3.0, 4.8) 5.0

All 2.0 2.0 4.0 (2.0 2.8) 2.7

Table 6.2: Measured FMR of the clock organizations in Figure 6.5 when introducing
lookahead-optimized TUs. Bolded figures represent an improvement over the previous best.
While previous rows substitute only a single type of TU to isolate FMR changes, the All
row uses optimized units exclusively.

a counter, and if the counter has reached a threshold for a positive or negative output edge,
it supplies the appropriate output message. Otherwise, the TU greedily enqueues output
null messages stamped to the arrival time of the last input clock edge. Assuming an input
message stream has no null messages, the only circumstance under which this unit cannot
process an input edge per host-cycle is when there is output backpressure.

6.13.2 Integrated Clock-Gating Cells

A typical latch-based ICG is difficult to optimize because the latch is transparent in the
half-period directly before an input positive edge. As a result, late-arriving enable signals
produce observable changes in the output. Indeed, the latch exists to prevent glitches in the
output clock, so from a lookahead perspective it is more illustrative to think of this circuit
as a combinational-AND of its inputs. To avoid this, in our primitive model, we used a
negative-edge-triggered D flip-flop instead of a latch.

Without modeling new delays in the TU, the only recourse the unit designer has is
to exploit knowledge about the behavior of the input message streams. Here the main
observation is that the clock-enable function tends to be synchronous to the input clock. If
this is the case, and the enable signal is being driven by the hub, there should eventually
be an input message with the same timestamp as the input positive edge that launched
it. Whereas the baseline implementation must be sure the enable remains stable until the
time of the latching edge, in this case, the TU can lookahead one input cycle. This removes
the need to wait for null messages to arrive that ensure there are no further changes in the
enable. Referring to the FMR illustration for the clock gate organization (Figure 6.6), this
optimization permits the ICG TU to enqueue the second positive edge on the same cycle
the enable message for the previous edge arrives (note, the negative edge message for the
previous cycle would be enqueued on host cycle one).
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Figure 6.7: A synchronized, glitchless two-to-one clock multiplexer that can safely switch
between two unrelated clocks. k is the length of the synchronizer chain.

6.13.3 Clock Multiplexers

Our baseline clock multiplexer is based on the circuit in Figure 6.4b, and extracts the smallest
degree of lookahead available to avoid deadlock. While a handwritten model could do better
by exploiting knowledge of the feedback loop between the two clock-select registers, to do
better still, we can model multiplexers that produce observable changes in the output clock
many cycles after the select has changed (they have a longer opaque period). This is true of
typical glitchless clock multiplexers designed to switch unrelated clocks (Figure 6.7), which
we shall refer to as a sync-multiplexer or sync-mux for short. Here the clock select must
be first synchronized to each clock domain, before it produces an observable change in the
output clock.

We designed a TU unit to model this variety of clock multiplexer. Our implementation is
configurable in the number of input clocks (n), and the depth of the synchronizer chain (k).
Internally, this TU consists of n clock handlers which dequeue input messages up to k positive
edges in advance of the select. In steady state, a clock edge k periods in the future of the
current clock select value can be driven to the output. On a transition no further clock edges
are presented. Instead, after a negative edge for a currently selected clock has been sent,
the TU sends a null message corresponding to a dead window of k periods in the new clock
domain. At this point, positive edges for the newly selected domain are made visible as they
arrive at the clock handler. The choice of k is the key determiner of the available lookahead
in this variety of multiplexer. In Table 6.2 we present FMRs for both k = 1 and k ≥ 2 cases.
While the k = 1 case already provides an enormous improvement over the baseline, it is
typical to set k = 2 or k = 3. Under these configurations, the FMR cost of the multiplexer
is almost entirely removed.
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TU Logic LUTs Registers Memory LUTs fmax

Clock Source 38 63 0 200
ICG Baseline 1134 283 84 128

ICG Optimized 260 131 0 200
Clock Mux 3372 1084 420 164

Clock Mux (Sync, k = 3) 911 82 80 200
Divider (By 2) 986 282 84 200
Divider (By 3) 2527 793 294 153

Divider Optimized 40 67 0 200

Table 6.3: TU resource utilization when targeting a Xilinx Ultrascale+ device (VU9P). We
constrained our designs to 200 MHz as that represents a substantial margin over typically
realizable ffpga.

6.14 FPGA QoR And Scalability

The feasibility of our approach hinges on the assumption that managing large timestamps
for relatively few and small TUs would incur a small resource cost relative to the rest of the
simulator. Here we quantify these costs by measuring TU and hub-unit resource utilization
and reporting their fmax.

6.14.1 TU Resource Utilization

One would expect that building TUs that process multiple streams of messages with large
timestamps would bring about a large resource cost despite the underlying simplicity of the
target circuits they model. To collect these results for a given TU, we elaborate a top-level
wrapper circuit that registers all input and output interfaces of the TU. We then used Vivado
version 2018.2, with the default synthesis and implementation strategies, to measure circuit
QoR. To estimate fmax we over constrained the host clock in these designs to 200 MHz.

Table 6.3 lays bare the reality that the abstraction cost of the library primitives used
in the baseline implementations is significant. The largest driver of utilization, in both
optimized and baseline TUs, are timestamp comparisons. These occur in multiple places
in the baseline units, since each library primitive independently schedules across its local
inputs. Conversely, in the optimized ICG and clock multiplexer, this happens only at the I/O
boundary of the TU. Most starkly, since there is only a single input to our clock divider TU,
no timestamp comparisons are required: this produces the large savings shown in Table 6.3.
Nonetheless, as a fraction of the resources available on the VU9P, TUs resource utilization,
even in the unoptimized models, is insignificant: the baseline clock mux uses 0.32% of the
VU9P’s available LUTs, whereas the optimized TU uses just 0.1%1. We suspect that using a

1This is still an amusingly large figure given that a fraction of a single LUT is required to implement
most of the other 1-bit, 2:1 multiplexers in our simulators.
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Figure 6.8: Measured ffpga for simulators of 1-bit-wide scan-chain whose number of times-
tamped inputs is equal to the length of the chain plus one. Each point consists of a single
design run. The underlying timing variability in FPGA implementation is evident with many
64-bit designs out-performing 48-bit equivalents.

more optimized message encoding and writing TU implementations that avoid acting directly
on absolute timestamps would suffice to make the cost of the entire timestamped subgraph
negligible in nearly all target systems. For example, if an upper bound between events is
known a priori, a narrower internal timestamp may be used to disambiguate event orderings
without having to operate on the full timestamp width.

TU fmax is also acceptably fast. While some of the baseline units fail to meet timing at
200 MHz, all of the optimized units do. 200 MHz is considerably greater than the achievable
ffpga of systems we typically simulate and thus is unlikely ever adversely affect ffpga.

6.14.2 Hub Unit QoR and fmax Scaling

Another scaling challenge of our approach are costs associated with the frontend of the hub
unit’s pipeline, which features a large minimum-reduction across timestamps. We measured
the per-timestamped-input scaling trends of the hub by synthesizing a scan chain where each
register is asynchronously reset by an independent source. This adds a new timestamped
input per register in the chain while only using a single BUFGCE. Here we build complete
simulator bitstreams using FireSim’s standard build flow with the “timing” strategy and
Vivado version 2018.3.

In Figure 6.8, we plot ffpga of the simulator as a function of the number of timestamped
inputs used under both 48 and 64 bit timestamps. To produce these numbers, we coarsely
overconstrained ffpga (by up to 10 MHz in some cases). Given this heavy-handed overcon-
straint and the inherently stochastic nature of FPGA place and route especially when lacking
placement constraints, fluctuations in ffpga are expected. The overall trend is clear however.
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Figure 6.9: Measured LUT utilization, combined logic and memory, of the design hierarchy
enclosed by the simulation wrapper as a function of timestamped input count. The main
driver of increased utilization is the frontend of the hub unit’s control pipeline, followed by
the introduction of new message queues.

For both widths, Vivado can successfully close timing over 100 MHz when using as many as
48 timestamped inputs. While this is beyond the ffpga we achieve for larger targets it may
become problematic in highly congested designs. Practically speaking, global clock resource
limitations will prevent the hub’s frontend from becoming the simulators critical path. If we
consider N = 12, the point at which Vivado struggles to place and route more global clocks,
the simulators ffpga was 144 MHz and 158 MHz for 48b and 64b timestamped respectively.
By comparison, recall that with multi-cycle setup constraints the Rocket and Boom targets
of the previous chapter closed timing at 150 MHz and 90 MHz respectively.

Another potential concern is the LUT utilization of the frontend of the hub. In Figure 6.9,
we report LUT utilization of all modules under the simulation wrapper versus the length of
the scan chain. This includes the hub and channel implementations, but excludes all bridges
and FPGA-shell collateral like DRAM controllers. LUT utilization scales nearly linearly
with increasing input count with approximately 86 and 74 additional LUTs required per
timestamped input for 64 and 48 bit designs respectively. While not insignificant, the 4494
LUTs used in the 48 input, 64-bit variant accounts for just 0.38% of the total available LUTs
in a Xilinx Ultrascale+ VU9P.
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Chapter 7

Full-System Case Studies of SoCs
Deploying Frequency Scaling

The support we have described thus far unlocks fast deterministic simulation of a large
space of more realistic SoCs. To illustrate this, and demonstrate some of the compelling
properties of our infrastructure, in this chapter we present two full-system experiments. In
the first, we simulate a Rocket-based SoC that uses dynamic frequency scaling to stay within
a desired thermal envelope. This serves as a simple example for how our system could be
used to study novel thermal management and DVFS policies. In the second, we evaluate the
simulation performance of a BOOM-based SoC when using our ICCAD2019 [70] register file
optimization, to explore whether slowdowns induced by our PDES-based approach can be
hidden by those introduced by multi-cycle optimizations.

7.1 Thermal Regulation via Dynamic Frequency

Scaling

In this case study, we explore an SoC that, using Linux’s standard thermal and frequency
scaling subsystems, switches between two core frequencies to stay within a desired thermal
envelope. Our infrastructure is unique among academic works in its generality and non-
invasiveness: in principle no simulation-specific devices need to be exposed to target software,
and target drivers need not be modified for FireSim since they continue to write to the same
memory-mapped registers that would be present in the actual chip. Of course, performance-
accurate simulation is only one half of this puzzle—a detailed power model is required to
complete the loop. Prior work based on FireSim, notably Simmani [59], would be a good fit
if and when it is upstreamed into FireSim. In lieu of a more accurate power model, we’ve
used a simple replacement which is sufficient to demonstrate our simulation infrastructure.
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Figure 7.1: The modified, single-tile target used to illustrate thermal throttling. Modules
in grey are TUs. The “Temp Model”, in blue, is a CPU-hosted bridge. It is connected to
the tile’s trace interface to measure cycle count and instructions retired, and drives an 8-bit
register in the “Temp Sense” module.

7.1.1 Target SoC Description

Our target is a single-core rocket-based SoC, shown in Figure 7.1, which differs minimally
from what one can generate from Chipyard 1.4 out-of-the-box. While it would be easy to
implement a simple PLL TU that could step up a slower reference clock to the required
frequency, here we directly supply a high-speed reference clock that is divided down on chip.
This matches what Chipyard does by default for software RTL simulation. We modified the
divider sources to annotate themselves when they are instantiated (as in Listing 6.1), and
instantiated our clock source bridge to supply the reference. Our largest clocking-related
change was to introduce tile clock multiplexers which select between the uncore clock and
a fast clock that runs at two times the uncore frequency. The select for this multiplexer is
driven by a memory-mapped register bound to the periphery bus which resides in the uncore
domain.

To integrate a temperature model, we added a temperature sensor that consists of an
8-bit memory-mapped register fed by a CPU-hosted temperature bridge. Target memory-
mapped reads to this register return twice the current temperature in Celsius. The bridge
periodically updates this register as a function of tile-cycles elapsed and instructions retired.
To do so, the bridge driver polls its module every P uncore cycles, measures a change in
cycle count (∆C) and instructions retired (∆I), calculates an updated temperature (Tnew),
and writes the updated temperature back to the target. The temperature model selects a
core voltage by adding a scaling factor proportional to ∆C to a base. In the overwhelming
majority of cases, V will be either be the base voltage or 1.5× greater, as the tile is unlikely
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to undergo a frequency change in any given polling interval. We give the temperature model
used in the bridge below:

V = 0.5 +
∆C

2P
Edynamic ∝ ∆I ∗ V 2

Estatic ∝ ∆C ∗ V
Qheating ∝ Edynamic + Estatic

Qcooling ∝ P (Tambient − Told)

Tnew = Told + Qheating + Qcooling

(7.1)

This simple model, while completely insufficient for conducting meaningful power studies,
suffices for creating regimes of high dynamic power utilization which will induce Linux to
switch between the two operating points.

7.1.2 System Software Description

Practically speaking, the most time consuming aspect of building this prototype was writing
system software, since we could not reuse code from an existing chip. While Linux provides
many generic drivers that can be configured entirely from the device tree, in the short term
it was easier to write primitive drivers as kernel modules tailored for our target. We wrote
two new kernel modules, requiring roughly 200 lines of mostly boilerplate C code:

• A frequency scaling driver (extending cpufreq driver that binds to Linux’s cpufreq
subsystem. cpufreq is the canonical mechanism for implementing dynamic frequency
scaling in Linux. The target-specific component of this driver supplies a table of
two operating points and implements functions for initialization, de-initialization, and
frequency switching. The latter accepts an index into the aforementioned table and
writes to the tile clock multiplexer accordingly.

• A thermal zone device driver that implements a function to read the device’s tempera-
ture. This driver defines polling intervals, temperature trip points and trip types. We
configured the driver polls the temperature sensor every 100 ms and added a single
trip point set to 40C.

Interaction between these two drivers is fairly straightforward. When Linux brings up
the cpufreq subsystem during boot, it creates a new policy backed by our custom driver.
We use Linux’s ondemand governor for this policy, which picks the fastest available operating
point unless the system is idle. Later in boot, the thermal zone device for our temperature
sensor initializes and binds itself as a cooling device to the cpufreq policy above. When the
thermal zone device reads a temperature above the 40C trip point, cpufreq will restrict the
available operating points of the policy to the slower frequency. When this occurs the policy
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Figure 7.2: IPC and temperature (C) versus simulated time for 657.xz running its test
input. Regions in lavender indicate the core is running at the slower operating point (uncore
frequency) whereas regions in white indicate is core is running at two times the uncore
frequency. We plot IPC and temperature sampled every hundred thousand cycles, and
apply a ten-sample rolling average.

is then forced to update: it switches to the available operating point, which produces a write
to a memory-mapped register driving our clock multiplexer. When the temperature drops
below this trip point, both operating points once again become available, and so unless
the system is idle, the ondemand governor picks the faster operating point and the clock
multiplexer setting is updated.

7.1.3 Demonstration

To demonstrate the operation of this system, we booted Linux on the target above, with our
custom drivers, and ran the SPEC 2017 benchmark 657.xz with its smaller “test” input.
We tuned the coefficients of our model to produce frequency transitions in the timescales
of this benchmark. Notably, we set P = 106, and Tambient = 20C. In Figure 7.2, we plot
temperature (C) and IPC versus time. We calculate IPC in terms of the fixed uncore clock
to better highlight operating point changes: this permits rocket’s IPC to reach two when
running at the faster operating point despite being a scalar core. Regions of the graph shaded
in lavender indicate the core is running at the slower operating point; the graph has white
background otherwise.
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After coming out of reset, the tile starts at the slower frequency. Here it remains until
Linux brings up the cpufreq subsystem. After initialization, the governor switches to the
faster operating point, producing the first transition visible in Figure 7.2. Later during
Linux boot the thermal zone device for our temperature sensor is registered, and bound to
the cpufreq policy above. Since the chip is not above 40 C, no frequency changes are made.
Linux boot completes around 0.8 seconds into simulation time and the workload immediately
starts.

The first throttling event occurs after a burst of relatively high IPC in the benchmark
around 1.2 seconds. Here there is a precipitous drop in IPC that reflects that the core
frequency has been halved. After one polling interval of the sensor, the temperature of
the device has dropped sufficiently to re-enable the faster operating point, and the policy
switches back to the faster mode. The policy performs this dance for the remainder of the
simulation, though later periods of the benchmark have relatively lower IPC which permit
the chip to run at the higher frequency longer before the core is throttled.

We ran this workload on an earlier version of our prototype that used the baseline TUs.
We measured FMR = 12.5 giving an femul of 9.6 MHz. The increase of FMR over the 11.0
baseline we reported in Table 6.1 is due to simulation stalls induced by the temperature bridge
to measure and update the core temperature. There is no reason this can not be overlapped
with simulator execution, which would be critical if we re-ran this experiment using the
optimized TUs. Indeed, with the optimized TUs we expect femul to be close to 60 MHz—a
figure approaching the throughput achievable using prototyping-based approaches like that
proposed by Mantovani et al. [72] but without many of the aforementioned limitations.

7.2 Latency Overlapping in Resource-Optimized

BOOM-Based Simulators

One justification for exploring a distributed approach was that a potential FMR increase
may overlap with one brought about by multi-cycle optimizations. This might hide some
or all of the potential slowdown. These optimizations increase FMR significantly because
tokens must propagate between a hub and spoke (the same effect responsible for two cycles
of latency in our clock gate target) but, in contrast to some of our TUs, the UU itself
takes multiple host cycles to process one target cycle. Theoretically, this means that FMR
increases brought about by multi-cycle optimizations should exceed many of the figures we
reported in Section 6.12 and Section 6.13.

To illustrate this effect we measure the performance of three quad-core BOOM simu-
lators, one based off mainline FireSim and two using the work of this chapter. We use
the “LargeBoom” configuration: core microarchitectural parameters match those previously
shown in Table 5.1. As we reported in our ICCAD paper [70], this system cannot fit on a
single VU9P device, so we will recruit the assistance of the multi-cycle RAM optimization
to efficiently implement BOOM’s integer and floating point register files. Note, the target
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Tiles @ 1.5 GHz Tiles @ 750 MHz
Static Baseline Optimized Baseline Optimized

FMR
12.1 21.0 12.1

16.0 7.0
FMRtile 32.0 14.0

Table 7.1: Measured FMR of a quad-core multi-clock“Large BOOM” SoC with the multi-
cycle RAM optimization applied to all register files. Tile frequency in the dynamically
clocked configurations (columns labeled with “Tiles @ {1.5 GHz, 750 MHz}”) was set by
the first stage bootloader and fixed for the remainder of simulation. FMR in these systems
is with respect to the 1.5 GHz clock regardless of frequency selection. FMRtile reports the
FMR of the clock used to drive the tiles.

RTL for the statically and dynamically clocked systems differs only in how their clocks are
generated. All of these systems have clocks running at three distinct frequencies: a 500
MHz DRAM clock, a 750 MHz uncore clock, and 1.5 GHz tile clock. The statically clocked
system uses the clock generation scheme described in the previous chapter and fixes all four
tiles at 1.5 GHz. The two dynamically clocked systems resemble the target we used in the
thermal throttling demonstration (Figure 7.1: a high-speed clock source (1.5 GHz) feeds
parallel clock dividers to provide the uncore and DRAM clocks, and each of the four tiles is
given its own clock multiplexer. The two dynamically clocked variants differ only in their
TU selection: ones uses the lookahead-optimized units and the other uses the baseline im-
plementations. All-in-all, resource utilization is approximately the same across all designs,
though the dynamically clocked configurations use seven BUFGCEs instead of three. All
three designs closed timing at 40 MHz.

For the pair of dynamically clocked systems, we consider two runtime operating condi-
tions: one in which all cores are clocked at 1.5 GHz, and one in which they are all clocked
at 750 MHz for the duration of boot. We had the first-stage bootloader (BBL) configure
the tile multiplexers before the kernel starts. In the slower case, the RAM models are only
active in every other fast-clock cycle, providing fewer opportunities for the delays in times-
tamped message passing to be hidden. As a final note, in this experiment we use the RAM
optimization first presented at ICCAD2019 [70] and not the throughput-optimized variant
presented by A. Magyar in his dissertation [71]. This unit statically schedules all register
file accesses thus has a fixed FMR. A. Magyar reports an FMR of 12.1 for “Large BOOM”
configurations using this optimization.

To a first order, we expect latency overlapping to occur when two conditions are met:

1. Latency-critical messages propagate in the same simulator timestep where a multi-cycle
UU is active.

2. The data values of the aforementioned messages do not combinationally depend on
tokens generated by the UU with the longest latency.
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Since the register driving the clock multiplexer select is many cycles removed from a register
file access, the second condition is met in our designs. Otherwise, the FMR penalties of reg-
ister file access and message propagation would be serialized. Thus, any observed slowdowns
should arise because the first condition has not been met.

We report the FMR of these configurations in Table 7.1. Since the timestamped subgraph
in these simulators is identical to that of the clock multiplexer organization we studied in
Section 6.12, we would expect FMRs of at least 11.0 and 2.0 for designs using baseline
and optimized TU implementations respectively. When running at the fast clock frequency,
the optimized clock multiplexer configuration can completely hide its FMR cost because
the negative edge is squeezed out of hub-unit pipeline while the multi-cycle RAM model is
operating (this is possible because the hub already has a future positive edge it can schedule).
Conversely, in the baseline configuration the negative edge timestep cannot be squeezed out,
since the clock multiplexer requires a null message at that timestamp to produce the next
positive-edged message on the multiplexer-selected clock. Since the RAM model is not active
on negative edges of the tile’s clock, this latency cannot be overlapped. This produces the
apparent partial overlapping observed in the baseline configuration.

When all tiles run at the slower frequency, FMR decreases but FMRtile increases in both
cases, because the RAM models remain idle on every other fast clock edge. Note that FMRtile

is larger than a static configuration would be running at the same frequency (where FMR =
12.1). Here the FMR of the timestamped subgraph is exposed directly to the simulator on
every other fast clock positive edge. Thus, adding the expected FMR of the the timestamped
subgraphs running in isolation (11.0, 2.0), to the measured FMRs of the “Tiles @ 1.5 GHz”
case, produces the observed FMRtile in these slower configurations.

The main takeaway here is that, if a TU depends only on messages in timestamps in
which multi-cycle UUs are active, their latencies can generally be completely hidden. For
example, if we were to add clock gates to the tile, the four cycle FMR penalty would be
hidden so long as at least one other core is not clock gated. In a single-tile configuration,
any cycle in which the core is clock gated disables execution of the multi-cycle RAM unit,
exposing the clock-gate’s FMR penalty of four. The expected FMR of this system would
therefore be FMR = 4p+ 12.1(1− p), where p is the fraction of tile clock cycles in which the
clock is gated. Naturally, these observations are closely tied to our current implementation,
specifically to that of the hub unit—in the next chapter, we explore future work including
some ideas that would expose more opportunities to overlap latencies.
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Limitations and Future Work

Perhaps the most attractive aspect of our PDES-based approach is that it provides a flexible
abstraction for describing arbitrary models of non-SSM circuits. While it is more resource in-
tensive then a more direct centralized approach, the real cost of this abstraction is increased
FMR. As we showed in Section 7.2, in some cases the latency introduced by modeling TUs
can be overlapped with the increased execution time of multi-cycle UUs—in this way, our
approach dovetails with Golden Gate’s defining feature. However, the overwhelming major-
ity of FireSim users simulate smaller target systems in which no optimizations are required
and the expectation is that simulators run close to unity FMR. So, for our approach to be
viable, it needs to recoup the performance losses it has introduced over the implementation
described in Chapter 5. This will require overcoming throughput bounds that limit feedfor-
ward topologies (e.g., clock divider trees), and more critically, the latency bounds introduced
by cycles in the timestamped subgraph.

8.1 Performance: Overcoming Throughput Bounds

To replace the existing clock generation in FireSim, described in Chapter 5, overcoming the
throughput bounds of feedforward networks would be sufficient, as networks of clock sources
and dividers can subsume the existing feature set.

The best case FMR of our approach is currently two because positive and negative edges
for clocks are enqueued and dequeued as separate messages. There are a few potential fixes
for this. The first is to use a better clock-message encoding, for example, one that encodes
both positive and negative edge times. This is not a panacea, because both positive and
negative edge times may not be known at enqueue time. In practice, TUs would need to
support both single and double-edged variants of clock messages. Alternatively, for fixed
clocks whose frequencies are known at the start of simulation, the time zero message could
simply encode the period and phase of the clock: sinks would need only one message to be
set for the remainder of simulation.

Even if the FMR-of-two limitation is lifted, the presence of high-frequency reference
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clocks, that are not used to drive logic in the target, can introduce a new bandwidth bound.
In a system with clocks running at 1.5 GHz, 1 GHz, and 750 MHz (as in our system described
in Chapter 5), using only integer dividers requires a 3 GHz reference clock. Even with the
denser double-edged message encoding described previously, the system would run with FMR
of two for the core domain. To improve this and support modeling high-frequency clock
generators like VCOs in independent TUs, some form of multi-period encoding of clocks is
unavoidable.

Without this there are two simple paths forward. The first is to preclude modeling
high-frequency clock sources and downstream dividers as distinct units, but instead fold
them into a single unit. This removes the high frequency channel from the timestamped
subgraph. Since output dividers are often integrated into PLL IP, it would be natural to
swap them out together and replace them with a general but abstract PLL model whose
implementation is optimized to ensure high output-message throughput. In the short term,
if we do not wish to modify clock token encodings, we could configure clock dividers to
assume their inputs have fixed periods, which they would learn after receiving their first pair
of input messages. This would permit them to look arbitrarily far ahead of their inputs.

8.2 Performance: Overcoming Latency Bounds

If there is a fundamental problem with the deadlock-avoiding approach we have presented, it
is that latency through loops in the timestamped subgraph graph can substantially increase
FMR. This is especially evident in the baseline TUs. Since many clocking primitives are
tightly coupled to the rest of the target, it not always possible to build TUs that have
sufficient lookahead to hide message transmission and hub-unit pipeline latency. This was
most clearly demonstrated with our optimized ICG, which directly exposes the four-cycle
hub-TU loop latency. Staying within the regime of using decoupled TUs, there are a few
general approaches to improving FMR.

This first is to simply cut latencies where possible. The four-cycle update loop between
the hub and a TU could be improved by using flow-through queues between the hub unit
and sink TU, shaving one cycle of latency. More aggressively, it may also be possible to
combine the first two stages of the hub’s control pipeline for small numbers of timestamped
inputs. Since Vivado places all BUFGCEs in the same clock region as the main simulator
clock (to produce balanced trees), there may be little benefit to having the extra stage as
there is insignificant routing delay from the stage-1 registers to the clock buffers. Both of
these “fixes” have the potential to decrease ffpga, and may not be universally applicable.

A more intelligent messaging encoding and channel implementation is also worth ex-
ploring. Currently, null messages occupy slots in the channel queues. This may produce
head-of-line blocking where a TU is forced to dequeue a null message before it can observe
a real transition, potentially adding an extra cycle of latency. Ideally, these extraneous null
messages would be squashed out. In practice there is no need to enqueue null messages, in-
stead, the channel could update a secondary time register whose value would always match
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or exceed the timestamp of the non-null message at the head of the queue. When any new
message is enqueued this value is increased. Null messages could then be dropped with no
loss of information.

Some other approaches which we have not previously mentioned in earlier in sections
include:

• Introducing global optimizations that would share information about source behavior
to sinks. The example from the previous section where a clock divider may assume its
input is fixed is one example of this.

• Allowing hub-unit output channels to decouple. If a clock domain has just fired,
timestamped outputs affected by transitions in that domain likely are not going to
change in the near future. This information could be captured in first output message,
instead of waiting for additional timesteps to issue new null messages.

8.3 Future Work, Performance Aside

Working within the PDES abstraction described in this dissertation there are many other
avenues, beyond performance optimizations, worthy of consideration:

• Build out a larger library of optimized TUs. Notably absent from this work is a PLL
TU. Here, it would be relatively easy to build a simple model with integrated output
dividers. This could be expanded to include a laundry list of other features, including
modeling locking time and supporting fractional output dividers. As previously men-
tioned, all of this could be done without exposing the high-frequency VCO output to
the simulation graph.

• Add asynchronous reset to existing TUs. For this to perform well, the asynchronous-
reset message stream will need to lead other inputs (which may be difficult to ensure),
or the TU will have to find asynchronous-reset relative lookahead, which generally
speaking is not possible. Here the designer could artificially introduce lookahead if
they know that asynchronous-reset-launched transitions can be safely be ignored such
that they may be delayed.

• Explore automatic translation of Verilog to TU implementations. Writing complex
TUs can be difficult. This would sidestep that challenge and produce models that,
ideally, faithfully represent the source (once the tool itself has been verified). For this
to work well, the compiler must find lookahead opportunities that span the circuit.

• If bespoke TUs are required for high performance having a better strategy for verifying
them against a reference becomes crucial. For the same reasons LIME was effective
for verifying primitive LI-BDNs, an equivalent model checking flow would be useful for



CHAPTER 8. LIMITATIONS AND FUTURE WORK 111

TUs. Simulator deadlock avoidance could be guaranteed by proving a TU implementa-
tion has non-zero lookahead. Checking message correctness would be be considerably
more difficult.

• Integrate an accurate power model. In providing RTL-faithful timing accuracy, our
infrastructure satisifies one critical prerequisite for performing accurate research on
DVFS-capable systems. Adding a power model, tailored for the target, would make
FireSim a compelling framework for full-stack DVFS research. Here, integrating Sim-
mani [59] is the obvious next step. This would only require a new target transformation,
to wire up signals of interest as selected by Simmani to a custom bridge, and no in-
ternal modifications to Golden Gate. Alternatively, a snapshot and replay approach
like Strober’s [58] is also tractable but considerably more challenging to enable under
Golden Gate due to increased simulator complexity.
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Chapter 9

Conclusion

Our goal for the FireSim project was to build a radically inexpensive, yet fast and pro-
ductive, cycle-accurate full-system simulation technology. This was in service of reducing a
key contributor to the NRE of building silicon. While FireSim is most similar to existing
hardware emulators, our approach is unique in that it uses a single commercial-off-the-shelf
FPGA, and depends on a completely open-source toolchain. However, it was difficult to
make a comparison to existing hardware emulation solutions in good faith, as early versions
of FireSim had two critical limitations: the SoCs it could support were small, and could
possess only a single-clock domain.

We designed Golden Gate to address these limitations (Chapter 4). First, Golden Gate
uses a LI-BDN target formalism and RAMP-inspired multi-cycle optimizations to fit larger
SoCs on a single FPGA. Descriptions of these optimizations can be found in Albert Mag-
yar’s dissertation [71]. Overcoming the clocking limitations was the primary focus of this
dissertation. To model multiple clock domains, we introduced a new FAME transform that
avoids using dedicated FPGA clocking resources like prior academic work [72], in favor of a
clock-gating scheme that should be portable to many different FPGA platforms (Chapter 5).
To model clock switching and generation circuits, which form the basis of dynamic frequency
scaling support in realistic SoCs, we introduced a timestamped subgraph into the simulator
that implements a conservative PDES (Chapter 6).

One take-away from our work in supporting clock switching and generation structures is
that closely coupled circuits, like ICGs and clock multiplexers, are probably best simulated
in situ, instead of being extracted into a decoupled unit. State for these circuits can be left in
the target, and combinational functions they perform on clocks can be hoisted into the hub
unit’s second stage. Here they would act directly on future clock enables to drive additional
clock buffers. Clearly, this would be insufficient for modeling clock generators, like PLLs,
that can’t be described as combinational functions on existing clocks. For modeling circuits
of this nature having an independent TUs seems entirely sensible. This hybrid approach
would also reduce the number of timestamped inputs on the hub unit, addressing a potential
scalability challenge in systems with many clocks. Implementing and studying this approach
is the logical continuation of the work described in this dissertation.
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While Golden Gate has made inroads in simulating far more realistic SoCs on a single
FPGA, there are still many domains under the FireSim project that require attention. First,
FireSim should be ported to other FPGAs to verify our claims about the flexibility of our
approaches. Here there are ongoing efforts both at Berkeley and from the community at
large. Perhaps the biggest frontier for innovation lies in improving FireSim’s debuggability.
Snapshotting features, to provide greater visibility over the target, are important feature
in commercial hardware emulators that FireSim currently lacks. MIDAS did have support
for this, but its implementation presupposed a monolithic, single clock domain hub. Sup-
porting resource-efficient state capture that co-exists with resource optimizations is both an
important and compelling avenue for future work.

FireSim’s growing user base, both academic and industrial, suggests our vision for a more
cost-effective full-system simulation technology addresses a material technology gap. We
hope that FireSim and the contributions of this dissertation inspire more academic research
in this domain in the future.
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Asanović. “Firesim: FPGA-Accelerated Cycle-Exact Scale-out System Simulation in
the Public Cloud”. In: Proceedings of the 45th Annual International Symposium on
Computer Architecture. ISCA ’18. Los Angeles, California: IEEE Press, 2018, pp. 29–
42. isbn: 9781538659847. doi: 10.1109/ISCA.2018.00014. url: https://doi.org/
10.1109/ISCA.2018.00014.



BIBLIOGRAPHY 120

[54] Sagar Karandikar, Albert Ou, Alon Amid, Howard Mao, Randy Katz, Borivoje Nikolić,
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Alon, Bora Nikolic, and Krste Asanović. “An Agile Approach to Building RISC-V
Microprocessors”. In: IEEE Micro 36.2 (2016), pp. 8–20. doi: 10.1109/MM.2016.11.

[69] Boris D. Lubachevsky. “Efficient Parallel Simulations of Dynamic Ising Spin Sys-
tems”. In: J. Comput. Phys. 75.1 (Mar. 1988), pp. 103–122. issn: 0021-9991. doi:
10.1016/0021- 9991(88)90101- 5. url: https://doi.org/10.1016/0021-

9991(88)90101-5.

[70] Albert Magyar, David Biancolin, Jack Koenig, Sanjit Seshia, Jonathan Bachrach,
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