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Abstract

The impact of information-aware routing on road tra�c
From case studies to game-theoretical analysis and simulations

by

Theophile Charles Prosper Cabannes

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences
Control, Intelligent Systems, and Robotics

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

During the 2010s decade, the increase of connectivity in the world led to the development
of navigation applications that help vehicles to travel within the transportation network
using real-time tra�c information. Information-aware routing changed tra�c patterns by
spreading congestion in the network. Before information-aware routing, route choice was
dictated by direction signs, themselves prescribed by city tra�c plans. As a consequence,
with these new routing behaviors, some tra�c plans have been outdated.

From a game theoretical point of view, by providing vehicles with the fastest path to reach
their destination, information-aware routing suggestions direct the state of tra�c toward a
Nash equilibrium. The gap between the state of a game and a Nash equilibrium can be
measured with the average deviation incentive. Using the restricting path choice model, we
show that the average deviation incentive monotonically decreases when information-aware
routing behaviors increase.

On the ground, if information-aware routing behaviors might (or might not) increase the
overall transportation e�ciency, some local roads received more tra�c than the one they are
designed to sustain. In Los Angeles, CA, we measure a 3-fold increase in the flow of one
I-210 o↵-ramp between 2014 and 2017. To our knowledge, this is likely a consequence of
the rise of information-aware routing behaviors due to an increase in navigational-app us-
age. Travel time data shows the travel time equalization between the main Eastbound I-210
route between Pasadena, CA, and Azusa, CA, and some alternate routes using local roads.
The travel time equalization expresses that the state of tra�c is a Nash equilibrium, which
demonstrates the presence of information-aware routing behaviors. However, the severity
of information-aware routing cannot be quantitatively assessed globally due to the lack of
available floating-car data (trajectory data). Qualitatively, many cities and neighborhoods
reported negative externalities of cut-through tra�c due to information-aware routing: Los
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Angeles, CA recorded several crashes on the steep Baxter Street, Leonia, NJ reported a fa-
tality on the Ford Lee Road, and Fremont, CA faced the challenges of cut-through tra�c on
the Mission Boulevard. All around the world, cut-through tra�c might induce higher travel
times, delays, unreliable travel times for residents, noise, gas emissions, tra�c accidents,
decrease accessibility in a↵ected neighborhoods, wrong directions, and infrastructure dam-
age, among others. To mitigate these issues, many cities changed the design of their road
network. Others used cap-and-trade techniques (e.g., access restriction for non-residents on
the Ford Lee Road in Leonia, NJ), or Pigovian taxes (e.g., road pricing on Lombard Street
in San Francisco, CA). The city of Fremont erected new stop signs, built speed bumps, and
updated its tra�c signal timing plans to decrease the Mission boulevard’s attractivity.

To pick the best mitigation techniques to fight against cut-through tra�c, we suggest using
a digital twin of the city tra�c. Tra�c microsimulators can replicate, in the digital world,
the movement of each vehicle within the road network. Because the challenges of running
a tra�c simulation are not apparent until one creates their own, we provide a blueprint to
develop, calibrate and validate a tra�c microsimulation. A tra�c simulation of the Fremont,
CA neighborhood a↵ected by cut-through tra�c due to information-aware routing is made
open source, for anyone that would like to understand how information-aware routing might
lead to cut-through tra�c.

On the way, we realized that simulating the behaviors of each vehicle in the network is
computationally expensive. Therefore, we proposed to cluster vehicles into a mean-field
by developing a mean-field routing game. While macroscopic routing models already exist
to estimate how, knowing the tra�c demand, tra�c evolves in the network, we envision
that the mean-field routing game is the best tool to perform large-scale dynamic routing
control. We also envision that large-scale dynamic routing control is enabled by navigational
applications, with already existing features like eco-routing that have been launched in 2021
by Google Maps.
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Chapter 1

Introduction

“Savoir, penser, rêver. Tout est
là.”

Victor Hugo

1.1 Motivations, contribution, and outline

This thesis aims to understand the impact of information-aware routing behaviors (more
specifically, fastest-path routing) on the transportation system, in order to enable novel
tra�c management strategies.

Chapter 2 o↵ers an overview of the fundamental concepts of tra�c engineering

to grasp the dissertation content, while section 1.2 presents the necessary mathematical
definitions. The transportation demand is spread to the transportation network based on
the people’s origin, destination, departure time, and mode of travel. Most of the vehicles
using the road network choose their route to reach their destination. Some of them follow
direction signs, and some of them have access to real-time information to uncover the route
that minimizes their travel time. Assuming the travel demand is similar every day, all the
vehicles might identify the route that minimizes their experienced travel time. In this case,
no vehicles have incentives to change their route, and the state of tra�c is in an equilibrium
(also called Nash equilibrium).

Chapter 3 demonstrates that information-aware routing behaviors steer road traf-

fic to a Nash equilibrium. The chapter introduces the restricted path choice model

that depicts the impact of an increase in information-aware routing behaviors by dividing
vehicles between the one that have access to the information (assumed to minimize their ex-
perienced travel time) and the others (assumed to follow the direction signs). Unintuitively,
the Braess paradox establishes that information-aware routing behaviors might not improve
the average delay in the network. Beside possible decrease in overall network metrics, chap-
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ter 4 reveals that information-aware routing behaviors induce cut-tra�c tra�c on some local
roads that cannot sustain the resulting tra�c flow.

Because cities do not have e�cient mitigation techniques against the negative externali-
ties of cut-through tra�c, chapter 5 investigates cut-through tra�c in Fremont, CA using a
microsimulation of the Mission San Jose road tra�c that reproduces the movement of each
vehicle within the network. As the creation, calibration, and validation of a tra�c microsim-
ulation is challenging, the chapter provides a blueprint for such a task, and the Fremont
tra�c microsimulation is made open-source.

Finally, chapter 6 introduces a game-theory dynamic-routing model to decrease the com-
putation runtime of dynamic routing models. Mean-field games are used to solve the curse
of dimensionality that occurs in dynamic games.

In this dissertation, we are mainly interested in short-term tra�c management, and tra�c
operations. We will try to understand how routing behaviors might be managed to improve
transportation e�ciency given a tra�c demand, assumed to be fixed. As a consequence, the
thesis does not take into account mode shift (Pigou–Knight–Downs paradox [11]), departure
time shift (rescheduling behavior [82]), or willingness to travel shift (“reduced demand” [235])
due to change in tra�c implied by routing behavior changes.

1.2 Necessary background: definitions and notations

In this section, we present some elementary notions from mathematics, probabilities, tra�c
engineering, and game theory, to ensure that the reader has enough background to un-
derstand the dissertation. The reader can skip this section for now, and come back to it
whenever some equations are not clear in the dissertation.

Primary mathematical notations

In chapter 3, in chapter 6, and in the few equations of chapter 5, we assume that the reader
is familiar with the mathematical notions listed in [252].

Especially, in this dissertation:

• N is the set of natural numbers.

• R is the set of real numbers.

• R+ = {x 2 R, x � 0} is the set of non-negative real numbers.

• R>0 = {x 2 R, x > 0} is the set of positive real numbers.

• For any natural number n 2 N, we denote Rn the set of the n-tuples of real numbers.
This notation is also used for n-dimensional vector space over the field R.

• For any finite set A, we denote its cardinal (i.e., number of elements) as |A|.
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• For any set A and B, we denote AB the set of functions which map each element of B
to an element of A. If B is countable, AB interprets as the set of sequences indexed
by elements of B.

• For any finite set A of n elements, we consider, by abuse of notations, that RA = R|A| =
Rn.

• For any set A and B, we denote A⇥ B the set of all ordered pairs (a, b) where a 2 A

and b 2 B (the Cartesian product).

• For any indexed family (Ai)i2I , we denote ⇥i2IAi the Cartesian product of the indexed
family.

• For any subset A and B of a set E, we denote A [ B the union of A and B.

• For any indexed family (Ai)i2I of subsets of a set E, we denote
S

i2I Ai the union of
the indexed family.

• For any set A and function f 2 RA, we define mina2A f(a) as the minimum of the
function f over A. If the minimum does not exist, the value of the min is set to infinity
1. We define argmina2A f(a) as the set of minimizers (possibly empty).

Notation 1.2.1 (Kronecker delta). For any predicate P , we denote �P =

(
1 if P

0 if ¬P
.

In the dissertation, we might see tuples of real numbers as vectors, or matrices.

• For any vectors x and y, x>
y denotes their scalar product.

• For any positive natural numbers p, n 2 N, for any vector x 2 Rn, we denote kxkp the
p-norm of the vector x.

Elementary probability theory definitions

Chapter 6 uses some concepts from the probability theory.
The set of probability measures on a space A is denoted M (A). Unless otherwise spec-

ified, random variables are denoted by capital letters. The expected value of a real-valued
random variable X given the probability measure m is denoted Em [X].

Fundamental tra�c engineering definitions

In this dissertation, we are interested in modeling the movement of vehicles.

Definition 1.2.1 (Time). Time is represented as an interval T = [0, T ] of R.
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Definition 1.2.2 (Time buckets). For convenience, time is continuously partition into time
buckets ✓ 2 ⇥ in chapter 5.

VThe vehicles travel across the road network on specific path and road sections. We
formalize the notion of network and paths using graphs [100].

Definition 1.2.3 (Network, paths and demand). The road network is defined as a finite
strongly connected directed graph G = (V ,L) where V is the set of vertices, and L ⇢ V ⇥ V
the set of links (links). For each origin o 2 V and destination d 2 V, we denote Pod the set
of feasible paths without cycles from o to d. We define the set of paths as P =

S
o,d2V

Pod.

Notation 1.2.2 (Links, vertices, and paths). Notations l and l̃ are used for links. Vertices
are represented by o and d. Paths are represented by p and p̃.

Across the dissertation, we assume that the number of vehicle N0 2 N using the network,
and their corresponding origin, destination, and departure time are known.

Definition 1.2.4 (Tra�c demand). The tra�c demand consists of N0-tuples of origin, des-
tination, and departure time (o, d, t) 2 V ⇥ V ⇥ T .

Tra�c micro-models model each individual vehicle and their dynamics (as done in chap-
ter 5). Solving analytically, or even computationally, a mathematical model with many
vehicles that are modeled individually might be challenging. To decrease the complexity,
vehicles can be aggregated into flow, using notions from fluid dynamics.

Remark 1.2.1 (Micro to macro: mean-field theory, non-atomic games, and mean-field
games). Aggregating a high-dimension of individual interacting agents (here vehicles that
impact each others through their location in the road network) into macroscopic dynamics is
known as non-atomic games in game theory [204]. Aggregating a high-dimension of individual
stochastic dynamics into deterministic macroscopic dynamics is known as mean-field theory
in physics [22]. Connecting both the game theory and the statistical physics community, non-
atomic dynamic games with stochastic noise are referred to as mean-field games [139, 118].
By extension, in this dissertation, we coined any non-atomic dynamic game with the name
mean-field game. In chapter 6,to improve the realism of the routing game models, we will
define a dynamic routing game that we will solve with a mean-field game approximation.

Tra�c macro-models use tra�c flow to model vehicles’ dynamics. More specifically,
vehicles are aggregated into path flows and link flows.

Definition 1.2.5 (Link flows). For each link l 2 L and each time bucket ✓ 2 ⇥, we define
link flow fl,✓ 2 R+ as the number of vehicles entering or exiting the link l during ✓.

We denote fl =
P

✓2⇥ fl,✓ as the number of vehicles entering or exiting the link l during
T . We note the link flow vector f = (fl)l2L.
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Definition 1.2.6 (Path flows). For each path p 2 P, we define the flow hp 2 R+ using the
path p (path flows) as the number of vehicles traveling along the path during T . We note the
path flow vector h = (hp)p2P .

In 1964, the Bureau of Public Roads described in the Tra�c assignment manual for
application with a large, high speed computer [239] that the average travel time on a highway
section over one hour can be derived from the average flow on the section, together with
the section’s capacity and its free flow travel time. Therefore, in many models (especially
static macroscopic models), it is assumed that link travel time can be derived from link flow
through travel time functions [181, 168, 208].

Definition 1.2.7 (Travel time function). For each link l 2 L, we define the link travel
time function tl 2 RR+

+ , which gives the link travel time given the number of vehicles on
the link: tl : x ! tl(x). We assume tl to be continuous. We define the travel time vector
t(x) = (tl(x))l2L.

By abuse of notations, we will use both t as the mapping between instantaneous volume
and link traversal time for vehicles entering the link in chapter 6, and as the mapping between
link flow fl and average link travel time over T in chapter 3.

Remark 1.2.2 (Travel time function). During the remainder of this dissertation, travel time
functions are assumed to be increasing as functions of the corresponding link volumes or link
flows. More vehicles on a link increase the travel time of this specific link. The dissertation
assumes that vehicles want to minimize their travel time. However, the travel time can be
interpreted as any type of cost (for example, it can be interpreted as gas emission [127]).

Definition 1.2.8 (Static tra�c demand). For convenience, we aggregate the tra�c demand
(definition 1.2.4) across time T into a static tra�c demand ddd 2 RV⇥V

+ . For any origin o 2 V
and destination d 2 V, dod denotes the number of vehicles traveling from the origin to the
destination during T .

Definition 1.2.9 (Transportation analysis zones and centroids). For convenience, vertices
are partitioned across time into connected transportation analysis zones (TAZs) c 2 C, also
known as centroids.

Definition 1.2.10 (Timed origin-destination matrices). We denote d(o, d, ✓) the aggregation
(i.e., sum) of the tra�c demand across time ✓ 2 ⇥ and space o, d 2 C.

By abuse of notations, depending on the context, o and d might denote vertices in chap-
ter 3, links in chapter 6, or centroids in chapter 5.

Elementary game theory definitions

In chapter 3 and chapter 6, we model vehicles as players that choose their route such that
they minimize their travel time using game theory [173]. The reader can refer to [165]
and [24] for comprehensive textbooks on game theory.
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In a game, it is assumed that players (e.g., vehicles) would like to play a strategy (e.g.,
choose a route) such that they minimize their costs (e.g., travel times).

Notation 1.2.3 (Player). We denote the set of players N = {1, 2, . . . , N}, where N 2 N is
the number of players. Players are represented by i and j 2 N .

Notation 1.2.4 (Strategy). Each player i 2 N can play a strategy ⇡i from a set of possible
strategies ⇧i.

The tuple of each player’s strategy is called a strategy profile ⇡ = (⇡i)i. The set of
strategy profiles is denoted ⇧ = ⇥i2N⇧

i.
For the sake of convenience, we might denote ⇡ = (⇡i

,⇡�i) where:

⇡�i = (⇡1
,⇡2

, . . . ,⇡i�1
,⇡i+1

, . . . ,⇡N)

Because the cost a player experienced might depend on the other players’ strategies, it
is hard for a player to know which strategy to play without knowing the strategies of the
other players. In tra�c, one vehicle might not know which route will minimize its travel
time without knowing how tra�c will evolve in the network.

Notation 1.2.5 (Cost function). For a player i 2 N , its cost is denoted J
i. The cost of a

player is a function of the strategy profile: J
i 2 R⇧.

In non-cooperative game theory, players are assumed to take the strategy that are es-
timated to minimize their experienced cost. In tra�c engineering, one can model that the
vehicles will take the routes that are predicted to be the fastest ones.

After the facts, a player might realize that their strategy did not minimize their cost.
In this case, the player will have counterfactual regrets: they should have chosen another
strategy.

Definition 1.2.11 (Counterfactual regret [55]). The counterfactual regret ⇢
i of a player

i 2 N is the di↵erence between their cost given a strategy profile ⇡ and the optimal cost they
could have by unilaterally changing their strategy:

⇢
i(⇡) = J

i(⇡)� min
⇡2⇧i

J
i(⇡,⇡�i)

We assume here that J i and ⇧
i are such that the minimum exists.

Remark 1.2.3 (Counterfactual regret, marginal regret, deviation incentives). In the context
of repeated games, counterfactual regret is sometimes referred to as marginal regret [55], or
hindsight regret. To distinguish the concept of cumulative regret and marginal regret, the
counterfactual regret (or marginal regret) is sometimes also referred to as deviation incen-
tive [24]: if the game would happen again, then the player that did not play the optimal
strategy to minimize their cost will have some incentive to deviate from their previous strat-
egy. In the remaining of the dissertation, we will use the term deviation incentive.
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If the game is played again and again (e.g., all the vehicles have the same trips every
day), then eventually the players will adapt their strategies to each other, until no one has
any incentive to change their strategy (e.g., all the vehicles travel along the same route for
their trip every day).

If no player has any incentive to change their strategies, then the game reaches an equi-
librium: for every instance of the game, each player will play the same strategy as in the
previous game instance. This equilibrium state is referred to as a Nash equilibrium.

Definition 1.2.12 (Nash equilibrium [24]). A strategy profile ⇡ is a Nash equilibrium, if,
and only if, no player has a deviation incentive:

8i 2 N , ⇢
i(⇡) = 0

Because players might not reach a state where no one has any incentive to deviate,
the notion of approximate Nash equilibrium can be defined. More specifically, an ✏-Nash
equilibrium is such that no one has a deviation incentive higher than ✏.

Definition 1.2.13 (✏-Nash equilibrium [24]). For any ✏ 2 R, a strategy profile ⇡ is a ✏-Nash
equilibrium, if, and only if, no player has a deviation incentive higher than ✏:

8i 2 N , ⇢
i(⇡)  ✏

As an ✏-Nash equilibrium considers the worst case for one player, we introduce the notion
of average ✏-user equilibrium that is better suited for non-atomic games (i.e., games with a
continuum of players, as modeled in both chapter 3 and chapter 6):

Definition 1.2.14 (Average ✏-Nash equilibrium). For any ✏ 2 R, a strategy profile ⇡ is an
average ✏-Nash equilibrium, if and only if, the average deviation incentive is smaller than ✏:

1

N

X

i2N

⇢
i(⇡)  ✏

Remark 1.2.4 (Average ✏-Nash equilibrium). In an average ✏-Nash equilibrium, an average
“player” can expect to save ✏ by changing unilaterally their strategy. As highlighted in [35],
this notion is similar to the definition of (✏, �)-Nash equilibria in [88].

Notation 1.2.6 (Average deviation incentive). Given a strategy profile ⇡ 2 ⇧, the average
deviation incentive is denoted ⇢̄(⇡) = 1

N

P
i2N ⇢

i(⇡).

Remark 1.2.5 (Average deviation incentive). Depending on the context, average deviation
incentive might be referred to as average marginal regret [55, 47], average counterfactual
regret [258], exploitability [149], hindsight routing, or relative gap to the Nash equilibrium
(in tra�c engineering, it is called relative gap to the user equilibrium [231]).
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o d

l

l̃

Figure 1.1: Benchmark network example to illustrate the average deviation incentive

Counterintuitively, a Nash equilibrium might not minimize the average cost of the players.
This is known as the price of anarchy [173]. The strategy profile that minimizes the average
cost of the players is called the social optimum.

Definition 1.2.15 (Social optimum [173]). A strategy profile ⇡ is a social optimum, if, and
only if, the average player cost is minimized:

8⇡0 2 ⇧,

X

i2N

J
i(⇡) 

X

i2N

J
i(⇡0)

Both chapter 3 and chapter 6 extends the classical definition of non-cooperative game
theory with N players using non-atomic game (in chapter 3), and dynamic games and mean-
field games (in chapter 6). Therefore, some notations might be overridden in the two chapters
for the sake of convenience.

Tra�c scenario considered in the dissertation

During the dissertation, we will consider several tra�c scenarios to illustrate our statements.
Two of them, the Pigou network and the Braess network, will be used across chapter 3
and chapter 6.

Pigou network

The Pigou network, shown in fig. 1.1, is formed by two parallel links l and l̃ joining the origin
o to the destination d.

In this network, each link is a path from the origin to the destination and P = {l, l̃}. The
demand dod and the cost functions tl and tl̃ will be defined when used in the dissertation.
The Pigou network is derived from Arthur Pigou’s work published in [184].

Braess network

The Braess network, shwon in fig. 1.2, is shaped by four nodes (A, B, C, and D). The
network is derived from [40]. There are three paths (ABD, ACD and ABCD) from A to
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A

B

C

D

AB

AC

BC

B
D

CD

Figure 1.2: Braess network considered.

B. The demand ddd and the cost functions tAB, tAC , tBC , tBD and tCD will be defined when
used in the dissertation.

Alongside with these two networks, the tra�c in Sioux Falls, ND, Fremont, CA, and Los
Angeles, CA will be modeled, and the corresponding network will be introduced when used.
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Part I

Tra�c control in the age of

information technology
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Chapter 2

Tra�c engineering perspective on

routing behaviors

This chapter introduces key elementary transportation concepts to provide the reader with
enough background on the topic of this dissertation: understanding the impact of

information-aware routing due to navigational apps on road tra�c. In section 2.1,
transportation supply and transportation demand are explained. Then, transportation plan-
ning and transportation management are described in section 2.2. Finally, the topic of the
dissertation is summarized in section 2.3.

2.1 Transportation demand and supply

Transportation systems are complex civil systems that facilitate the movement of people
and goods throughout the world. The transportation system has a tremendous impact on
the daily lives and well-being of both the users and nonusers of the system. Transportation
system users benefit from accessing the transportation system as long as they can travel
to and from desired locations in a timely, cost-e↵ective, and convenient manner. In 2019,
Texas A&M Transportation Institute estimates that the U.S. loses $166 billion per year due
to the impact of congestion on fuel usage and productivity loss [205]. The average auto
commuter spends 54 hours in congestion and wastes 21 gallons (79.5 liters) of fuel every year
due to congestion for $1,010 in wasted time and fuel. If transportation engineers succeed in
decreasing tra�c congestion by even 1% in the U.S., then it would result in over $1.6 billion
in annual savings.

Transportation engineering is the application of technology and scientific principles
to the planning, functional design, operation, and management of facilities for any mode of
transportation to provide for the safe, e�cient, rapid, comfortable, convenient, economical,
and ecological movement of people and goods [65]. At every level of granularity, from local,
intra-neighborhood to international travel, transportation engineering can be appreciated
through an economic lens as a market consisting of a supply (the road network) and a de-
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mand (goods or travelers). Planners and engineers working for cities, public institutions, or
consulting firms and transportation operators can adapt the supply to the transportation de-
mand as theorized and recommended by Adam Smith in 1776 in The Wealth of Nations [209].
On the other hand, they can also attempt to influence the transportation demand. In 1798,
Thomas Malthus predicted a “natural selection” between humans in case of higher demand
than the supply available in An Essay on the Principle of Population [155]. In 1930, the
adaptation of the demand to the available transportation supply was reported by the City of
St. Louis [64]. In transportation, this phenomenon is called induced demand: if the sup-
ply increases, then the demand will increase because some people – constituting the latent

demand – were unable to satisfy their demand before due to the higher cost of the supply.
An e�cient transportation system is designed such that the transportation network ca-

pacity is equivalent to the travel demand. If the travel demand exceeds the network capacity,
then the network will be critically congested leading to increased travel times, delays, in-
creased gas emissions, increased transportation costs, etc. On the contrary, if the network is
over-designed for the demand, then it is economically ine�cient [222]. While transportation
researchers provide tools to model, predict, estimate and analyze the impact of trans-

portation policies on the resulting system, the implementation of any policy is political
and should be seen like that – whether the policy supports laissez-faire as J.B. Colbert ad-
vocated in the 1680s, or if it supports that the supply should not pressure the demand and
that the demand should control or manage the supply as advocated by Karl Marx in 1848 in
The Communist Manifesto [159] and Capital, A Critique of Political Economy in 1867 and
1885 [158].

Influenced by Alfred Marshall – who defined mathematically the concept of supply and
demand in 1890 in Principle of Economics [157] – Arthur Pigou introduced the notion of
transportation supply and transportation demand in 1920 in The Economics of Welfare [184].

Transportation supply

The transportation supply results from the available transportation infrastructures, fa-
cilities, and theirmanagement. Transportation infrastructures and facilities include roads,
train stations, airports, bus stations, public transit, and tra�c control plans among others.
Within a transportation network – formally, a geographic area where almost all the
people using the transportation facilities are from and stay in – several public or private
organizations might control or manage some part of the transportation supply. Public in-
stitutions are generally in charge of planning the transportation infrastructures and might
delegate their design and their construction. Public and private transportation operators
are in charge of the control and management of the transportation facilities.

This dissertation focuses mainly on the road transportation network. In the road trans-
portation network, the roads are divided by type. In the U.S., tra�c engineers distinguish
three categories of roads, that are divided into seven subcategories [7, 232]: arterial roads
– including Interstate, other freeways and expressways, other principal arterials, and minor
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Table 2.1: Road types and their expected annual average daily tra�c (AADT) and per-
centage of vehicle miles traveled (VMT) in the U.S. [232]. The expected AADT and VMT
percentages depend on whether the road is in a rural or urban network. A rural network
means that less than 75% of the network population is located in urban centers.

arterials –, collectors – including major collectors and minor collectors – and local roads.
For each type of road, two notions of capacity are defined:

Definition 2.1.1 (Daily urban planning road capacity). The expected annual average daily
tra�c (AADT) [7, 8] is the daily vehicle count that a road is supposed to be able to sustain
before facing tra�c externalities that might lead to a significant decrease in residents’ quality
of life, high maintenance costs, and safety concerns. We refer to the expected AADT as
the daily urban planning capacity in this dissertation. These capacities are reported
in table 2.1.

Definition 2.1.2 (Hourly road tra�c capacity). The critical density [168] is the density
of vehicles that a road can receive without being congested. Above this density, adding new
vehicles to the road will lead to tra�c congestion. We refer to the critical density as the
hourly road tra�c capacity in this dissertation. These capacities can be measured using
the fundamental diagram of tra�c flow [208] or derived based on the road geometry and other
features [168]. They are usually used to define the link travel time functions (definition 1.2.7).

Paradoxically, due to latent demand, creating new infrastructures might not decrease
congestion in the network [64]. As an illustration, in Paris, the average daily time in trans-
portation is about 1h30min per person [120]. People with higher accessibility to transporta-
tion facilities (i.e., shorter commute times) make more trips per day (i.e., do more leisure
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trips and errands). Increasing the transportation supply in Paris might not improve the ef-
ficiency of the network (measured as the average delay time in congestion) but only increase
the total number of trips in the network (or total vehicle-miles traveled). On the opposite,
some road-rationing techniques, and other techniques (like parking-price management), are
used by the city of Paris to decrease congestion by decreasing the modal share of the car [74].
Through this approach, the city of Paris does not only manage the supply, but implicitly
manages the transportation demand.

Transportation demand

To implicitly manage the transportation demand, urban planners, transportation infras-
tructure designers, and transportation engineers are interested in understanding how it is
influenced by the transportation supply. Understanding traveler choices might provide key
elements to the question [222]. When one person travels, they will sequentially make 5
distinct choices that are expressed by the trip chain (fig. 2.1) [235]:

• Destination-choice; first, the traveler chooses their destination.

• Time-of-day choice; then, the traveler decides when they want to arrive or depart.

• Mode-choice; then, the traveler selects in which mode (e.g., public transportation,
private car, carpool, bike, walk, etc.) they want to travel.

• Route-choice; after picking their destination, their departure time, and their private car
to travel, the driver decides which route they will choose to arrive at their destination.

• Lane/facility use/choice; finally, once on the road and on a specific route, the driver
chooses which lane they can travel on.

Using this interpretation of travelers’ choices, the transportation demand can be divided
into three di↵erent types of demand [235]:

Definition 2.1.3 (Travel demand). First, the travel demand is the total number of trav-
elers that use the network from any origin to any destination, at any departure time (or
arrival time).

Definition 2.1.4 (Tra�c demand). Second, the road tra�c demand (definition 1.2.4) is
the travel demand that travels using the road network. It is the total number of vehicles that
use the network from any origin to any destination, at any departure time (or arrival time).

Definition 2.1.5 (Facility demand). Third, the road facility demand is the number of
vehicles on any route, road segment, or lane at any time of the day.

Due to the di�culties of changing people’s habits, influencing the tra�c demand (des-
tination choice or time-of-day choice) is mainly accomplished with long-term planning (i.e.,
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Figure 2.1: The trip chain. First, travelers choose their destination and time of departure.
This creates the travel demand of the network. Then, they select their mode. The ones
traveling by car establish the road tra�c demand. Then, they decide their route and their
lane, contributing to the facility demand of the route or the lane. The figure is adapted
from [235, Figure 4].

transportation planning). Accordingly, short-term facility management (i.e., trans-

portation management or tra�c operations) mostly impacts the facility demand (facil-
ity choice). Both the mode choice and the route choice can be impacted through long-term
planning or short-term tra�c management.

2.2 Transportation planning and management

When an urban planner or a tra�c engineer would like to improve the transportation network
e�ciency, they first need to define the key performance indicators (KPI) that they want
to improve. Then, they should define the time frame they want to impact (i.e., long-term
planning or short-term management). Finally, they should understand the tools they can
use and predict their impact on the KPIs they want to optimize.
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Transportation key performance indicators (KPIs)

We suggest dividing the KPIs of a transportation network into measures of transporta-

tion e↵ectiveness [143, 235] and measures of city e�ciency. In short-term planning
and facilities management, the measures of e↵ectiveness are monitored and forecasted by
tra�c engineers. In long-term planning, they are modeled and/or estimated to predict the
impact of development projects on tra�c. They are well-defined [143, 235, 36] and include:

• Travel metrics: including vehicle miles traveled (VMT), number of trips in the network,
and average daily tra�c on specific road sections.

• Travel time metrics: including vehicle hours traveled (VHT), mean waiting time at
bus stops, mean travel time reliability [90], average marginal regrets (also known as
the relative gap, or mean counterfactual regrets), mean bus delay, and travel times
between predefined locations.

• Congestion metrics: including mean delay per vehicle-mile, mean travel time per
vehicle-mile, mean time in queue, mean stopped time, mean speed in the network,
and mean bus travel time.

• E�ciency metrics: including mean link vehicle-occupancy, mean bus-occupancy, mean
vehicle-occupancy, and total time when bus capacity was exceeded.

• Sustainability metrics: including particles matters (PM) 2.5, PM 5, PM 10, O3, Car-
bon, NO2, SO2, CO, CO2, GHG, and volatile organic compounds emissions.

• Resiliency metrics: number of tra�c signal phase failures, and average tra�c incident
management response time.

To the knowledge of the author – who met with tra�c engineers of six di↵erent cities in
the U.S. and France – the measures of city e�ciency are more fuzzy because many cities react
to issues that are voiced by residents and business owners, without quantitatively defining,
measuring, or predicting the city e�ciency. Some city engineers are skeptical that the city’s
e�ciency can be described and measured only with indicators. Therefore, a lot of city e�-
ciency ratings are subjective, based on intuitions, and depend on the political circumstances
in the city. As stated before, we advise understanding any transportation policy as political,
even though it might have been derived based on data or scientific models. We suggest a
subclassification of possible city e�ciency metrics into financial metrics, economic metrics,
social metrics, environmental metrics, and operational metrics.

Financial metrics might include road maintenance cost and infrastructure damage, public
transit subsidy cost, operational cost, operational revenue, investment, and institution debt.

Economic metrics might include city productivity, job accessibility [146], business acces-
sibility [146], travel cost, fuel consumption and fuel cost, and battery consumption.

Social metrics might include safety (number of fatalities, number of accidents), air quality
(volatile organic compound density), and health (number of death related to transportation
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pollution), quality of life (average daily distribution of noise for specific segments), or trans-
portation equity (including underserved community accessibility).

Environmental metrics can include total greenhouse gas emissions due to the transporta-
tion system (either instantaneous emissions, or life-cycle emissions). Operational metrics can
include all the measures of transportation e↵ectiveness and resiliency metrics (like average
tra�c incident management response).

With clear objectives in mind, a time frame should be defined to understand the set of
tools that can be used to increase the system’s e�ciency. Long-term planning is referred to
as transportation planning, while short-term planning and management are referred to as
transportation management or operations.

Transportation planning

Transportation planning defines future policies, goals, investments, and spatial planning
designs to prepare for future needs to move people and goods to destinations. Planning use
cases include:

• Estimating the needs of transportation infrastructure when building a new mall.

• Design parking lots (for buses, cars, and bikes) when building new infrastructures (train
stations, housing units, etc.).

• Changing a car-only road to a bike-only road to make the transportation network more
sustainable.

• Implementing tra�c-calming measures to decrease tra�c on some streets.

Transportation planning is inherently related and interconnected to urban planning. As
shown in fig. 2.2, land use determines the need for transport, and transport, in return,
further determines spatial development.

First, the land use outlines the transportation infrastructure supplies. Second, it induces
the travel demand, because the distribution of human activities in space requires people
to move between the activities’ locations. Through the people’s decisions to make a trip
towards a specific destination, at a specific time, with a given mode of transportation, the
transportation demand induces the tra�c and facility demands (fig. 2.1). Tra�c features
and individual dynamics, which defines the transportation system e�ciency, follow from the
tra�c and facility demands being allocated to the transportation supply. The transporta-
tion e�ciency results characterize land accessibility and attractiveness. Depending on the
accessibility and attractiveness of each area, investors, developers, and planners decide on
choosing appropriate locations for di↵erent human activities. Then, constructions – includ-
ing building transportation infrastructure supplies – take place in the area. The distribution
of land usage over the urban area determines the locations of human activities. After con-
struction, people could update their decisions on where to live, to work, to do errands, to
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Figure 2.2: The land use cycle [249]. Land use determines the need for transport, and
transport, in return, further determines spatial development. The figure is adapted from [249,
Figure 1]



CHAPTER 2. TRAFFIC ENGINEERING AND ROUTING BEHAVIORS 19

Figure 2.3: Active tra�c and demand management (ATDM) can be divided into a four-
step process to optimize the tra�c system. First, the tra�c state is estimated through
tra�c monitoring. Then, the performance of the system is assessed. Finally, strategies can
be implemented. Before being implemented, their impact on the tra�c state needs to be
evaluated. Eventually, the best ones are implemented, and the tra�c state is evaluated
again. The figure is reproduced from [235, Figure 1].

get entertained, or to get an education. Depending on their needs for transportation, they
can also decide to buy or to sell their car.

When the transportation supply resources become limited, the engineer can manage
the transportation facilities to increase the network e�ciency without creating costly new
infrastructures (e.g., roads) or facilities (e.g., public transportation). For example, this might
include updating the tra�c signal timing plans [240].

Tra�c management and operations

Tra�c management (or tra�c operations) is the part of transportation engineering that
does not consider the planning of the transportation infrastructures [229]. Transportation
operations use cases include:

• Mass evacuation of an area due to hazard.

• Incident management when a car crash obstructs a highway lane.

• Changing tra�c signal plan operations.
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Tra�c management ([235]) can be divided into a four-step process to optimize the tra�c
system (see fig. 2.3) First, the tra�c state is estimated through tra�c monitoring. Then,
the performance of the system is assessed using transportation performance measures.
Finally, tra�c management strategies can be implemented. Before being implemented,
their impact on the tra�c state needs to be evaluated. Eventually, a trade-o↵ is done and
the best ones are implemented, and the tra�c state is evaluated again.

Tra�c monitoring

To evaluate the state of tra�c, field tra�c data measurements are made with tra�c de-
tectors [129] (see fig. 2.4). Then the data are combined and analyzed inside a system that
estimates and displays the state of tra�c.

Transportation performance measures

To assess the performance of the transportation system, key performance indicators are
defined and weighted together in a multi-objective function to optimize.

Tra�c management strategies

Many engineering techniques can be used to improve the transportation-system performance
without building new infrastructures. While the next subsection suggests a classification for
any transportation engineering tools, the tra�c management strategies can be subdivided
into three types based on static supply change, dynamic supply change, and demand man-
agement:

• Road geometric strategies; without building new roads, tra�c engineers might per-
form changes to the infrastructures to improve the transportation network. This
might include markings, guard fences, road signs, speed bumps (humps or lumps),
stop signs, lane restrictions, access eligibility (like high occupancy vehicle (HOV) and
high-occupancy toll (HOT) lanes), and speed limits. To promote safe and livable
streets, it might include complete street design (like in Los Angeles, CA [62]). More
dynamic infrastructure changes might include dynamic lane assignment, dynamic lane
restriction, temporal shoulder use, and managed lanes.

• Tra�c control strategies [235]; more dynamically, tra�c engineers can manage dynamic
infrastructure such as tra�c lights. Tra�c control strategies include tra�c signal con-
trol, lane-capacity control, variable speed limit, variable message sign (see fig. 2.6),
ramp metering, queue warning, speed harmonization, incident management, and dy-
namic HOT pricing.

• Tra�c demand management strategies [235]; tra�c engineers can also implement
strategies to control the tra�c demand (road geometric strategies and tra�c control
strategies are mainly about controlling the transportation supply). Tra�c demand
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Figure 2.4: Sensing infrastructures and devices. On top: Classical sensing infrastruc-
tures [129] used in the pre-smartphone era (and still used as the backbone of tra�c control
by cities without access to mobile data in su�cient quantities. From right to left: loop
detectors, CCTV cameras, radar, tolling RFID transponders used for tra�c monitoring, and
tra�c counting tubes. At the bottom: Superposition of the GPS tracks of 500 vehicles
sampled every 30 seconds throughout one day (yellow cab fleet of the city of San Francisco)
circa 2009, for one day [180].
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management includes cordon pricing, parking pricing, congestion pricing, road space
rationing, carpool incentives, “work from home” programs, “alternative working hours”
incentives, public transportation design, route guidance, and dynamic parking pricing.
More dynamically, it might also include: dynamic fare reduction, dynamic HOV /
managed lanes, dynamic pricing, dynamic ride-sharing, dynamic routing guidance, dy-
namic transit capacity assignment, on-demand transit (demand-responsive transport),
predictive traveler information, and transfer connection protection.

Both the tra�c control strategies and tra�c demand management strategies can be:

• Intelligent, if they use advanced technologies like digital systems.

• Active, if they can change depending on the time of the day.

• Adaptive, if they can adapt to the tra�c situation.

Implementation and trade-o↵

To improve the system performance, tra�c management strategies should be implemented.
Institutional actors can find the optimal strategies using control engineering. First, one needs
to evaluate the current state of tra�c with tra�c monitoring. Second, one needs to assess the
performance of the current state of tra�c through performance analysis. Then, one needs to
understand the impact of the tools that can be implemented on the tra�c state using models
or simulations. Once the impact of di↵erent strategies that can be implemented is known,
then one should be implemented. This requires synergies between the di↵erent institutional
actors that might have di↵erent objectives for the tra�c state as they pay attention to
di↵erent key performance indicators. Ideally, an objective function that uniquely quantifies
the transportation-system performance should be defined between the di↵erent institutional
actors. Then, the strategy that optimizes the objective function can be chosen.

Classification of the transportation planning and management

tools

The di↵erent tools that urban planners and tra�c engineers own to influence traveler choices
can be classified based on their impact on the three demands (definition 2.1.3, definition 2.1.4,
and definition 2.1.5).

The transportation planning tools can be divided between building or updating infras-
tructures and giving incentives to travelers [216]. The tra�c management strategies can be
clustered between the management of the road facilities, the management of the vehicle fa-
cilities, and the pricing and incentives policies [216]. Table 2.2 summarizes the di↵erent tools
based on their type and their impact on the trip chain (fig. 2.1). As an illustration, fig. 2.5
presents all the tra�c-calming tools that Fremont, CA has tried to mitigate the cut-through
tra�c in the Mission San Jose district.
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Figure 2.5: Left: Tra�c-calming strategies implemented by the city of Fremont to decrease
tra�c on local roads due to commuters’ cut-through. Right: An illustration of the Fremont
turn and access restriction during evening peak hours.
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Table 2.2: Classification of a non-exhaustive list of transportation planning tools and tra�c
management strategies based on their impact on the trip chain [235]. An e↵ort of listing all
the possible tools can be found in [216]. HOT = high-occupancy toll lane, HOV = high-
occupancy vehicle lane.

Predicting the impact of planning tools and management

strategies

To understand the impact of a city’s candidate-transportation policy/strategy, transporta-
tion planners have three main options. First, they can perform case studies. For example, if
the city of Fremont, CA would like to understand the impact of modifying the tra�c signal
timing plans on Mission Boulevard (a major street in the city) on cut-through tra�c [225],
the tra�c engineers can attempt to extrapolate from what the city of Leonia did for Ford
Lee Road [124] or what the city of Pleasanton did for Dublin Canyon Road [122]. If there are
enough case studies, machine learning techniques can be used to make statistically signifi-
cant predictions as to how a chosen policy or set of policies impacts a given state of tra�c.
Second, cities can use trial and error (often referred to as evidence-based practice or A/B
experiments). The city of Fremont might try to change tra�c signal plans, implement turn
and access restrictions, activate ramp metering, and beyond [225], keeping only the policies
that have the most desirable impact on the public. Third, a city can develop a digital twin
(i.e., a model) of its road tra�c network with which to try out and learn policies in a virtual
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Figure 2.6: One of the first Variable Message Signs (VMS) on the New Jersey turnpike in
the 1950s. Variable message signs were the first tools to manage route choice in real-time
without the need of a tra�c police agent, or temporary road signs. Nowadays, we envision
that eventually variable message signs will be overridden by navigational apps or any other
connected devices.

setting [160]. The city of Fremont might take this approach to avoid disturbing its citizens by
frequently changing experimental tra�c signal plans. Using digital twins is especially useful
when tackling complex transportation challenges in which there is a lack of case studies, or
it is infeasible to rapidly and a↵ordably test potential solutions in the real world. Such cases
include planning sustainable transportation systems where coordination between connected
vehicles, transportation planners, and tra�c managers is critical.

A blueprint to create, calibrate, and validate a large-scale tra�c microsimulation is in-
troduced in chapter 5.

2.3 Emerging routing behaviors in the 2010s decade

The evolution of the tra�c information systems until 2020

To the author’s knowledge, until World War II, tra�c information related to routing had
mostly been map information. In the 1950s, variable message signs (VMS) appeared [113],
conveying some local information about tra�c conditions (see fig. 2.6). The late 1960s
saw the birth of electronic route guidance systems [193], in which mostly static routing
information was provided to users (see fig. 2.7). In the 1975 the Highway Advisory Radio [80]
was among the earliest services to provide live tra�c information to its users. However, to
the author’s knowledge, for decades, only a few highways were instrumented by sensors.

Over the 2010 decade, thanks to the internet and crowdsourced GPS data, the informa-
tion provided to drivers saw a boom. First, the connectivity between people tremendously
increased due to the large expansion of the usage of the Internet allowed by the worldwide
adoption of smartphones. In July 2019, 4.3 billion active internet users were counted [211].
In the U.S., in 2019, 95% of the population used the Internet monthly [210, slide 33]. Second,
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Figure 2.7: Left: Onboard navigation unit prototype built by Honda in 1981 for route
guidance. Right: Newspaper commercial for Way to Go aftermarket device circa 1990, one
of the early prototypes of navigational apps built by UC Berkeley.

this connectivity led to the production of an extensive quantity of tra�c data, often referred
to as big data. In the fall of 2018, it was estimated that every smartphone used on average
7.0 GB of data every month [210, slide 178]. This number is 10 times higher in 2018 than in
2012 [210, slide 178]. Finally, the data can be processed because of the increase in the com-
putational power available to tra�c information companies due to cloud computing. As a
consequence, the decade had seen the emergence of new technologies like demand-responsive
transportation [153], ride-hailing services [66], and GPS-enable navigational apps (fig. 2.7),
that enables tra�c managers and operators to dynamically impact mode-choice and route
choice. As an example, in 2022, route-choice can be managed through fastest-path routing
guidance [251], eco-routing guidance [13, 104], or also mass evacuation routing guidance [170,
186]. In April 2018, Statista estimated that Google Maps receives 154.4 million monthly
users in the U.S. [213]. Eventually, all vehicles in the road network will be connected, and
tra�c managers will be able to considerably improve the e�ciency of the transportation
system through intelligent and adaptive routing suggestions.

Classical route-choice models

Route-choice and direction signs

To increase the transportation system e�ciency through economies of scale [209], the road
is designed such that the tra�c is aggregated to high-category roads where the speed and
the capacity are designed to be high [7]. Any trip should begin on a low road category
(i.e., a local road) where both the speed and the capacity are low. Along the trip, direction
signs are designed such that the category of the roads used by a vehicle following the signs
progressively increases and then decreases until the vehicle eventually reaches its destination
(see fig. 2.8). Therefore, historically, vehicles followed direction signs that were designed to
control the route choice [7].
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Within the routing models used by engineers to plan the road network, the all-or-

nothing route assignment model [181] assumes that vehicles follow the fastest path
between their origin and destination under free-flow conditions. This model represents that
vehicles follow the direction signs, given that the direction signs provide the fastest path
between any origin to any destination if there is no congestion on the road.

Wardrop equilibrium

When congestion arises in the network, the direction signs might not indicate the fastest
path to reach a destination anymore. Therefore, a second routing model – the static tra�c

assignment model (STA) [181] – considers that vehicles adapt their route based on conges-
tion. More specially, the model assumes that vehicles choose the routes that minimize their
experienced travel time (accounting for congestion created by other vehicles). Assuming
the travel demand is similar every day, once all the vehicles have identified the route that
minimizes their experienced travel time, no vehicles have incentives to change their route:
the state of tra�c is in an equilibrium (definition 1.2.12).

Answering Pigou’s notion of social cost [184], Frank Knight first described the notion
of tra�c equilibrium in 1924 in Some fallacies in the interpretation of social cost [130]. In
1950, John Nash developed conditions to prove the existence of non-cooperative game equi-
librium, now called Nash equilibrium [167] (definition 1.2.12). In 1952, the concept of Nash
equilibrium was applied to the road transportation network by John Wardrop [247]. The
tra�c equilibrium is now called Wardrop equilibrium, user equilibrium, or Nash equilibrium.
The Wardrop equilibrium is defined as a state where di↵erent vehicles traveling on several
paths between the same origin and destination cannot have better travel time by being the
only ones to change their path. In other words, the Wardrop equilibrium is such that vehi-
cles have no deviation incentives (definition 1.2.11) to change their path. In the Wardrop
equilibrium model, daily urban planning road capacities are not taken into account. There-
fore, some trips might not follow the direction signs anymore. Indeed, some trips might use
low-category roads between two highway roads (fig. 2.8).

The impact of information-aware routing behaviors on road tra�c

Using a combination of the two classical routing models introduced in the previous sub-
section, chapter 3 models the impact of an increase in information-aware routing by
dividing vehicles between the ones that have access to information (following the STA) and
others (following the all-or-nothing assignment) using the restricted path choice model.
It shows that the state of tra�c converges toward a Nash equilibrium (i.e., the average

deviation incentive decreases monotonically to 0) with an increase in information-aware
routing behaviors.
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Figure 2.8: July 14th, 2022 4:30 pm, tra�c guidance on Google Maps within the Fremont, CA
area. The request is done on July 13th and uses the Google Maps tra�c prediction system.
The first route suggested (in blue, orange, and red) uses a local road, then a collector road,
then a minor arterial road, and then an interstate before using a minor arterial, a collector,
and then a local road to reach its destination. The road categories of the road used by the
trip increase and then decrease. However, in the second road suggested (in grey), this is not
the case: a major arterial, a minor arterial, and a collector road are used between the same
interstate road.
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Chapter 3

Impact of information-aware routing

behaviors on tra�c from a game

theory perspective

Navigational apps (like Waze, Google Maps, and Apple Maps) allegedly provide vehicles
with the fastest path to reach their destinations [251]. Stepping back, at the system level,
when everyone follows their fastest paths, the state of tra�c becomes a Nash equilibrium or
Wardrop equilibrium, where di↵erent vehicles travelling on several paths between the same
origin and destination cannot have better travel time by being the only ones to change their
path [247]. This translates to an equalization of the travel times of every path used between
any specific origin and destination (fig. 3.1).

To model route-choice, transportation planners use the static tra�c assignment (STA)
[181, 161]. Used before app usage, this model assumes that vehicles choose the path that
minimizes their experienced travel time. Therefore, the STA cannot directly model the
impact of an increase in information-aware routing behaviors (i.e., navigation-app usage) on
tra�c. To account for the di↵erences between app users and non-app users, the restricted
path-choice model is introduced in section 3.1. In section 3.2, we show that an increase
of information-aware routing behaviors steers the tra�c to a Nash equilibrium (measured
with the average deviation incentive). Experiments with a tra�c microsimulation confirms
the theoretical results, even with imperfect travel time estimation. In section 3.3, thought-
experiments show that steering the state of tra�c to a Nash equilibrium can either improve
or decrease the network e�ciency (as measured by the total vehicle-hours travelled in the
network).

The content of this chapter is largely derived from [48, 45, 47].
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Figure 3.1: Illustrations of the impact of navigational apps on the Fremont, CA network.
On the left: travel time equalization of the highway commute and of the short-cut commute
routes (screenshot of Google Maps suggested directions to go north at 4pm on Monday July,
8th 2019). In the middle: before the apps. On the right: after the apps. The travel time
equalization encodes the fact that navigational apps stir the tra�c state toward a Nash
equilibrium.

3.1 Static tra�c assignment, navigational app usage,

and average deviation incentive

This section aims to introduce the tools used in section 3.2 to understand the impact of
an increase in information-aware routing behaviors (or navigational app usage) on the road
tra�c. First, the section describes the classical static tra�c assignment (STA) model![181]
that is also referred to as the static non-atomic routing game [173, Chapter 18]. Then,
the section introduces the restricted path choice model, used to understand the impact
of an increase in information-aware routing behaviors on road tra�c. Finally, the section
shows that the notion of average deviation incentive (or average marginal regret, average
counterfactual regret, or exploitability) in game theory is identical to the notion of relative
gap to the user equilibrium in transportation engineering.
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Overview of the static tra�c assignment, or non-atomic routing

game

The static tra�c assignment [181] is traditionally defined on a network G (definition 1.2.3).
For each path p 2 P of the network, the path flow hp 2 R+ of the path p is the flow of
vehicles using this path p (definition 1.2.6). Assuming that the path flow allocation is static,
the link flow fl 2 R+ on a link l 2 L (definition 1.2.5) is the sum of the path flows of all paths
using the link l. Then, for a given flow demand vector ddd 2 RV⇥V

+ (definition 1.2.8) – which
assigns for each origin o 2 V and destination d 2 V in the network, a flow demand dod 2 R+

– we say that a path flow allocation h = (hp)p is feasible if for any origin destination pair
(o, d), the demand between o and d is equal to the sum of the flows on the paths between o

and d. Given a link flow allocation f , we assume that the travel time J(p, f) of each path p is
the sum of the travel times tl (definition 1.2.7) of every link l used by the path p. We assume
that the travel time tl of the link l is only a function of the link flow on the link fl and of
the characteristics of the link l (like length, speed limit, hourly road tra�c capacity, etc.).
A flow allocation is called a user equilibrium (definition 1.2.12) if all paths used between
an origin o and a destination d have the same travel time for every od pair (Wardrop’s first
condition [247]). We specify this in the following.

Static Tra�c Assignment framework [181]

This section appends notations and definitions to the ones presented in section 1.2.
To keep the tra�c model simple, the static tra�c assignment assumes static equilibrium

conditions, and do not model any evolution of path flows and link flows over time.

Definition 3.1.1 (Incidence matrix). For each path p 2 P (definition 1.2.3), we define the
indicator �p = (�l2p)l2L (notation 1.2.1). This vector is called indicator of links included in
the path p. We denote the incidence matrix � = (�p)p2P

Assumption 3.1.1 (Static equilibrium model). We assume static equilibrium conditions,
i.e., 8p 2 P , hp is constant over time, and we have f = �h (with � the incidence matrix
in definition 3.1.1).

Remark 3.1.1 (Dynamic routing models). Inherently static models cannot model dynamic
rerouting phenomenon, therefore chapter 5 introduces microsimulations where each individual
is modeled. Because modeling each individual requires extensive computations, chapter 6
designs a dynamic routing game and solves it using mean-field game theory.

In this static model, all the demand should be assigned to paths:

Definition 3.1.2 (Feasible assignment). Given a demand ddd 2 RV⇥V
+ (definition 1.2.8), we

define:

• Hddd =

(
h 2 RP

+ | 8(o, d) 2 V2
,
P

p2Pod

hp = dod

)
, the set of feasible path flow allocations.
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• Fddd = � Hddd = {f | 9 h 2 Hddd, s.t. f = �h }, the set of feasible link flow allocations.

We extend the link travel time (definition 1.2.7) into path travel time. In the static
model, path travel time is the sum of the link travel time used by the path.

Definition 3.1.3 (Travel time function). For each path p 2 P, we define the travel time of
the path p as J(p, f) =

P
l2L

tl(fl) · �p(l).

Remark 3.1.2 (Path travel time). We sometimes refer to the travel time of a path as the
cost of the path.

The notation of the path travel time overrides notation 1.2.5, as vehicles will be modeled
to choose the routes that minimize their travel time.

As stated in section 2.3, transportation planners assume that vehicles choose their path
such that they minimize their travel time [247]. By interpreting each vehicle in the network
as a player (notation 1.2.3), each route choice of a vehicle as a player’s action (notation 1.2.4),
and the travel time of a route as the cost of the action (notation 1.2.5), then the static tra�c
assignment can be understood as a game: the non-atomic routing game.

Definition 3.1.4 (Non-atomic routing game (chapter 18 of [173])). The set (G, ddd, t) defines
the non-atomic routing game [173, chapter 18].

In a game, it is assumed that players (i.e., vehicles) would like to choose their actions
(i.e., routes) such that they minimize their costs (i.e., travel times) (see section 1.2). The
non-atomic routing game does not model individual vehicles. Instead, it models tra�c flow.
Therefore, the game should be understood as a game with a continuum of players (each
representing one vehicle).

Remark 3.1.3 (Non-atomic routing games are potential games). Non-atomic routing games
are games with an uncountable (or continuous) number of players. More specifically, they are
potential games [164, 202]. Some notions defined in a classic non-cooperative game with finite
number of players (see section 1.2) – like deviation incentives or regret (definition 1.2.11), ✏-
Nash equilibrium (definition 1.2.13), or average-✏-Nash equilibrium (definition 1.2.14) – can
be extended to non-atomic games using measure-theoretical tools to deal with the continuum
of players.

Definition 3.1.5 (Deviation incentive). We extend the notion of deviation incentive (def-
inition 1.2.11) to a vehicle. The deviation incentive of a vehicle is the di↵erence between
their travel time and the optimal travel time between their origin and destination. Because in
the non-atomic routing game the number of vehicles is uncountable, we define the deviation
incentive for a path p as:

⇢p(f) = J(p, f)� min
p̃2Pod

J(p̃, f)
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Definition 3.1.6 (Average deviation incentive). Given a tra�c demand ddd 2 RV⇥V
+ and a flow

allocation f = �h 2 Fddd, we extend the notion of average deviation incentive (notation 1.2.6)
to the state of tra�c defined by the flow allocation f :

⇢̄(f) =
1

kdddk1

X

o,d2V

X

p2Pod

hp · ⇢p(f)

We show in the next subsection that, given a tra�c demand ddd, the average deviation incentive
of a state of tra�c is uniquely defined by f .

The extension of the notion of Nash equilibrium (definition 1.2.12) to the non-atomic
routing game is sometimes called Wardrop equilibrium [247] or user equilibrium [181].

Definition 3.1.7 (User equilibrium [181]). For the tra�c demand ddd, a flow allocation f =
�h 2 Fddd is a user equilibrium if and only if:

8o, d 2 V , 8p 2 Pod, hp > 0 =) ⇢p(f) = 0 (3.1)

The user equilibrium condition is also called the Wardrop’s first condition [247].

Theorem 3.1.1 (Routing game Nash equilibrium is the STA user equilibrium [173]). The
user equilibrium is the Nash equilibrium of the non-atomic routing game (G, ddd, t) [194, 164,
202, 173]. See Section 2.6.1 of [181] for a deeper discussion on the connection between tra�c
equilibria and network games.

Similarly to the Nash equilibrium, the notion of ✏-Nash equilibrium (definition 1.2.13),
average-✏-Nash equilibrium (definition 1.2.14), and social optimum (definition 1.2.15) are
extended to the tra�c routing scenario.

Definition 3.1.8 (✏-user equilibrium). For the tra�c demand ddd 2 RV⇥V
+ , a flow allocation

f = �h 2 Fddd is an ✏-user equilibrium for ✏ 2 R>0 if and only if:

8o, d 2 V , 8p 2 Pod, hp > 0 =) ⇢p(f) < ✏ (3.2)

Definition 3.1.9 (Average ✏-user equilibrium [35]). Let ✏ 2 R>0. For the tra�c demand
ddd 2 RV⇥V

+ , a flow allocation f = �h 2 Fddd is an average ✏-user equilibrium if and only if:

⇢̄(f) < ✏ (3.3)

Remark 3.1.4 (Average ✏-user equilibrium). In an average ✏-Nash equilibrium, an average
“vehicle” (infinitesimal fraction of tra�c flow) can expect to save ✏ by changing unilaterally
their path.

Definition 3.1.10 (Social optimum). For the tra�c demand ddd 2 RV⇥V
+ , a flow allocation

f 2 Fddd is a social optimum if and only if:

8f 0 2 Fddd, t(f)>f  t(f 0)>f 0 (3.4)

In tra�c engineering, the social optimum is also known as the system-optimum [247].
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Variational inequality and minimization problem formulation

For a static non-atomic routing game, Nash equilibrium exists, is unique, and is easy to
compute as it can be expressed as the solution to a convex optimization problem, using a
convex potential function (Rosenthal function) [194].

Definition 3.1.11 (Variational inequality [181]). We define the variational inequality prob-
lem as finding an f 2 Fddd, such that:

8f 0 2 Fddd, t(f)>(f 0 � f) � 0 (3.5)

Definition 3.1.12 (Minimization problem [194]). We define the following optimization prob-
lem with the classical Rosenthal potential:

min
f2Fddd

X

l2L

Z fl

0

tl(x) dx (3.6)

Property 3.1.1 (Interpretation and equivalences [194]). If for all links l 2 L, the link travel
time functions tl(fl) are strictly increasing functions of the link flow fl then the solution
of the minimization problem (3.6), the variational inequality (3.5) and the user equilibrium
(3.1) are the same: (i.e, (3.1) () (3.5) () (3.6)).

Modeling navigational app usage

In this subsection, we update the static tra�c assignment model to model the impact of an
increase of information-aware routing behaviors in the network.

In the static tra�c assignment model (definition 3.1.12), vehicles are assumed to possess
perfect information over the state of the network. Therefore, the STA model is useful to
model information-aware routing (app usage). However, it cannot model how a vehicle with
no access to information (non-app usage) might choose its route, and therefore cannot explain
the impact of information-aware routing on tra�c. To tackle this, the restricted path choice
model separates vehicles into two populations: those who have access to information (app
users) and those who do not (non-app users). In the restricted path choice model, non-app
users are following the direction signs, while app users are modeled by the STA. This model
is a way to reconcile both the all-or-nothing model and the static tra�c assignment model
(see section 2.3).

To make the restricted path choice model more generic, the non-app users are actually
modeled to choose their path into a subset of possible paths.

Restricted path choice model

App users possess perfect knowledge of the path set Pod between every origin o 2 V and
destination d 2 V (see definition 1.2.3). Non-app users route themselves on a non-empty
subset Pna

od of the possible path Pod (Pna
od ⇢ Pod) between every origin o 2 V and destination
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d 2 V . The app users path flow vector is denoted by h
a and the non-app users path flow

vector by h
na (see definition 3.1.1). We note h = h

a + h
na. Let ↵ 2 [0, 1] be the ratio (or

percentage) of app users. If ↵ = 1, the restricted path choice model is equivalent to the
static tra�c assignment defined in definition 3.1.12 and [181]. In this case, every vehicle
possesses perfect information, the user equilibrium is reached.

Definition 3.1.13 (User equilibrium of the restricted path choice model). The Wardrop’s
first condition for the restricted path choice model can be express as, there exist (⇡a

od)o,d2V ,
(⇡na

od )o,d2V , (h
a
p)p2P , and (hna

p )p2Pna such that:

h
a
p · (J(p,�h)� ⇡

a
od) = 0 8o, d 2 V , 8p 2 Pod (3.7)

h
na
p · (J(p,�h)� ⇡

na
od ) = 0 8o, d 2 V , 8p 2 Pna

od (3.8)

h
a
p � 0 8o, d 2 V , 8p 2 Pod (3.9)

h
na
p � 0 8o, d 2 V , 8p 2 Pna

od (3.10)

⇡od � 0 8o, d 2 V (3.11)

⇡
na
od � 0 8o, d 2 V (3.12)

X

p2Pna
od

h
na
p = (1� ↵)dod 8o, d 2 V (3.13)

X

p2Pod

h
a
p = ↵dod 8o, d 2 V (3.14)

Theorem 3.1.2. With the assumption of strictly increasing travel time functions (as in prop-
erty 3.1.1), only a unique flow allocation satisfies the above Wardrop’s condition ([39]).

Proof.

Lemma 1. The user equilibrium of the restricted path choice model solves the following
optimization problem:

min
(ha

p)p2P , (hna
p )p2Pna

X

l2L

Z fl

0

tl(x) dx

subject to f =
X

p2P

h
a
p · �p +

X

p2Pna

h
na
p · �p

(1� ↵)dod =
X

p2Pna
od

h
na
p 8o, d 2 V

↵dod =
X

p2Pod

h
a
p 8o, d 2 V

Under the assumption of strictly increasing travel time functions, the optimization prob-
lem is a strictly convex problem, with a non-empty constraint set, therefore it admits a
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unique solution [39]. Definition 3.1.13 is the KKT conditions of this optimization prob-
lem [181]. Therefore, the solution of the convex problem solves definition 3.1.13. This shows
that definition 3.1.13 has a solution. Finally, the unicity of the solution can be shown by
contradiction [48, Property 4.2.].

Notation 3.1.1 (Restricted path choice Wardrop equilibrium). Following assumption 3.1.1,
definition 1.2.6, definition 3.1.1 and definition 3.1.2, we denote the Wardrop flow allocation
f
?
↵ = �(ha,? + h

na,?).

Introducing the average deviation incentive

This section is focused on introducing a function to evaluate how far a tra�c state is from
a user equilibrium. We present the characteristics desired for this function. We first discuss
several quantities one might consider using and explain their advantages and disadvantages.
Then, we explain why the average deviation incentive (definition 3.1.6) best meets the target.

Evaluating the distance between a tra�c state and a user equilibrium

An observed tra�c state – defined as a feasible flow allocation f (definition 3.1.2) – could be
neither a user equilibrium (definition 3.1.7) nor a social optimum (definition 3.1.10). It can
be interesting to know how far from a user equilibrium this tra�c state is. For example, it
would constitute a way to know whether vehicles e�ciently chose the route that minimizes
their own travel time given the flow allocation f . This will be particularly relevant to
experimentally assess the impact of routing apps on tra�c. To achieve this goal, we define
a function R which takes as an input the tra�c state f and returns a positive real value
which quantifies how far this tra�c state f is from a user equilibrium.

Formally, given a network G (definition 1.2.3), a tra�c demand ddd 2 RV⇥V
+ (defini-

tion 1.2.8), and a travel time vector function t (definition 1.2.7), R should satisfy the
following properties:

i. R : Fddd 7! R+, is a function of a feasible flow allocation f 2 Fddd (definition 1.2.5) and
returns a non-negative real value.

ii. R (f) = 0 () f is a user equilibrium (definition 3.1.7). The function should
characterize all user equilibria.

iii. If R (f) < ✏ then f is at an average-✏-user equilibrium for ✏ 2 R>0 given (defini-
tion 3.1.9).

iv. For every f 2 Fddd, R (f) is tractable, i.e., R (f) can be computed in polynomial time
with respect to |L| and |V|.

v. R is a continuous function of the flow allocation f .
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These properties should be satisfied for every network G, tra�c demand ddd and travel time
vector function t.

Remark 3.1.5 (Distance). As we want R to be only a function of the observed state of
tra�c f , it cannot be defined as a mathematical distance. We present later why defining
R (f) = min

f?2F?
ddd

d(f , f?) – where F?
ddd is the set of user equilibrium flow allocation and d is a

metric like d(x, y) = kx� yk2 – would not satisfy properties we want for R .

A benchmark example to give some context and refute possible Nash gap

quantifier candidate functions

In this section, we present di↵erent functions that can be considered to quantify the gap
between an observed state of tra�c and a user equilibrium. We present a benchmark network
to show that average deviation incentive is more appropriate to define R than the other
candidates of functions.

The case considered. Let us consider the Pigou network in fig. 1.1. The network consists
of two nodes (o and d) and two paths (l1 = l and l2 = l̃). The cost of each path depends
on the flow on this path (f1 and f2). The link travel time functions (definition 1.2.7) are:
t1(f1) = 1 + f1 and t2(f2) = M + 2 + f2 with M 2 R+ given. We consider a demand of
dod = 1 between o and d. The user equilibrium flow can be directly determined from the
Wardrop first principle: f

?
1 = 1 and f

?
2 = 0. We note f

? the vector f
? = (f ?

1 , f
?
2 ). Now,

imagine that we observe a tra�c flow f
0 where f 0

1 = 1� ↵ and f
0
2 = ↵ with 0  ↵  1 given.

We seek to understand what kind of functions could serve as good candidates (in the sense
of properties (i), (ii),(iii),(iv) and (v) defined previously) to measure how far the observed
flow f

0 is from a Nash equilibrium (here f
?).

Inadequacy of a flow-based function. A first intuition approach might consist of com-
paring the link flows between the observed state f

0 and the Nash equilibrium flow f
?:

R (f 0) = kf? � f
0k2. In the case considered, we have that R (f 0) =

p
2↵. The function

R (f 0) satisfies properties (i), (ii) and (iv) for the case we consider. But the function R (f 0)
does not satisfy the property (iii). Indeed, R (f 0) does not depend onM (or on the di↵erences
on the cost of both paths). Therefore, we consider that a flow based function is not relevant
to quantify a gap to Nash.

Inadequacy of a cost-based function. Another possible approach would be to consider
the travel time function R (f 0) = kt(f?) � t(f 0)k2. In the case considered, the travel time
function is just a translation of the flow vector, so that we still have R (f 0) =

p
2↵. For the

same reasons as the flow based function, we consider the cost based function inadequate.
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Inadequacy of a hybrid-based function. A third approach is to consider norm on
f · t(f): R (f 0) = |f? · t(f?)� f

0 · t(f 0)| (like in [189]). But, as seen in definition 3.1.10, f · t(f)
is the total travel time on the network (the sum of the travel times of all cumulated flows).
So any function on f · t(f) will be related to the social optimality of the solution. This
will not satisfy the fact that we want to measure a gap between a tra�c state f and a user
equilibrium. In the case considered, R (f 0) = ↵|M � 1+ 2↵|. If |M � 1+ 2↵| = 0, f 0 is not a
Nash equilibrium but R (f 0) = 0. So R (f 0) does not satisfy the property (ii).

Inadequacy of a price of anarchy-like function. Considering an idea similar to the
price of anarchy [195], one can define R (f 0) = f 0·t(f 0)

f?·t(f?) where f
? is a user equilibrium. This is

similar to the hybrid based function: f 0·t(f 0)
f?·t(f?) = 1 + 1

f?·t(f?) · (f
0 · t(f 0)� f

? · t(f?)). Therefore,
this type of function is equivalent to a hybrid-based function and, thus, is inadequate for our
purpose.

The worst “deviation incentive” of vehicles function. Another type of approach
is to define R using the game theoretical framework. Using deviation incentives, we do
not need to know every user equilibrium flow allocation f

? to find out whether a state of
tra�c is a user equilibrium. A user equilibrium (definition 3.1.7) is defined as a state of
tra�c where nobody can achieve a better travel time by being the only one changing their
route (Wardrop’s first condition, see definition 3.1.7): i.e., no one has deviation incentive
(definition 3.1.5). One idea is to define R (f 0) as the worst deviation incentive of vehicles
in the observed tra�c assignment. This is equivalent to define R (f 0) as the smallest ✏ such
that f 0 is a ✏-Nash equilibrium:

R (f 0) = max
p2P
hp>0

⇢p(f
0)

As the deviation incentive is defined for a path flow allocation hp and not a link flow
allocation f , property (i) is not satisfied. Assuming hp is known, properties (i) and (ii) are

satisfied. As k·k1
n  k · k1, property (iii) is also satisfied. Satisfying property (iv) is more

complicated, as the number of paths of a network is generally an exponential function of the
number of nodes |V| and the number of links |L|.

Property (v) is not satisfied. For the considered case, we have that

R (f 0) =

(
M + 2↵ if ↵ > 0

0 if ↵ = 0
.

We see that R (f 0) is not continuous in f
0. If ↵ = 0 then R (f 0) = 0. However, if ↵ = 0+ then

R (f 0) = M .

The average “deviation incentive” of vehicles function. We define R (f 0) as the
average deviation incentive (definition 3.1.6) of the state of tra�c defined by f

0:

R (f 0) = ⇢̄(f 0)
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Based on the definition of the average-✏-user equilibrium (definition 3.1.9), R (f 0) is the
smallest ✏ such that f

0 is at average-✏-user equilibrium. We will use the average deviation
incentive function ⇢̄ as R in the remainder of the chapter.

The next subsection shows that the function satisfies properties (i), (ii), (iii), (iv) and
(v).

The average deviation incentive

In this section, we formulate some properties of the average deviation incentive, which quan-
tifies how much time an average vehicle can expect to save by changing their path to the
optimal one. In particular, the average deviation incentive satisfies the properties stated
before.

Definition 3.1.14 (Best path, optimal flow pattern). Given a flow allocation f 2 Fddd, which
provides the cost vector t(f), we define:

• An optimal path between o and d, as p⇤od(f) 2 argmin
p2Pod

�
>
p t(f) = P⇤

od(f)

• An all-or-nothing allocation y(f) 2 Fddd based on the travel times at the flow f , as
y(f) =

P
o,d2V

dod · �p⇤od(fl) for �p⇤od(fl)
2 P⇤

od(f). In this definition, the full od demand

dod is allocated to an optimal path (between o and d) computed with the current flow
allocation f .

Definition 3.1.15 (Shortest travel time). From definition 3.1.14, any optimal path p
⇤
od(f)

is a shortest path (with respect to cost) between o and d given the cost on each link t(f).
Therefore, given f 2 Fddd, we can define the minimum travel time between any o, d 2 V as:

⇡od(f) = t(f)>�p⇤od(fl)

Remark 3.1.6 (Existence and non-uniqueness). For all f 2 Fddd, p⇤od(f) and y(f) exist but
might not be unique.

We show that the average deviation incentive can be computed as the inner product of
the travel time vector and the actual flow allocation minus the all-or-nothing flow allocation
normalized with the total demand.

Property 3.1.2 (Average deviation incentive). The average deviation incentive of the flow
pattern f 2 Fddd can be computed as follows:

⇢̄(f) =
1

kdddk1
t(f)>(f � y(f)) (3.15)

where kdddk1 =
P

o,d2V
dod and y(f) is an all-or-nothing solution, as in definition 3.1.14.
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Proof. Using f = �h, we have:

t(f)>f =
X

(o,d)2V2

X

p2Pod

hp · J(p, f)

t(f)>y(f) =
X

(o,d)2V2

t(f)>�p⇤od(fl) · dod =
X

(o,d)2V2

⇡od(f) · dod

t(f)>(f � y(f)) =
X

(o,d)2V2

  
X

p2Pod

hp · J(p, f)
!

� dod · ⇡od(f)

!

X

p2Pod

hp = dod =) t(f)>(f � y(f)) =
X

(o,d)2V2

X

p2Pod

hp · (J(p, f)� ⇡od(f))

1

kdddk1
· t(f)>(f � y(f)) = ⇢̄(f)

Note that this shows that ⇢̄ is defined even if y(f) is not unique.

Remark 3.1.7 (Measuring the average deviation incentive). Because the average deviation
incentive is a function of the link flow only, the link travel time and the tra�c demand, it can
be accessed with loop detectors and demand survey. Knowing the path flows is not required
to measure the average deviation incentive. The function ⇢̄ satisfies the property (iv).

Remark 3.1.8 (Interpretation of the average deviation incentive). Since ⇢p(f) represents
the time a vehicle on path p 2 Pod could save by choosing the best path for their trip, ⇢̄ can be
interpreted as the average time a vehicle could expect to save by changing unilaterally their
path.

Property 3.1.3 (The average deviation incentive is a positive real value and characterizes
all user equilibria). As p

⇤
od(f) is the fastest path between o and d, we have

1

kdddk1
· t(f)>(f � y(f)) = max

x2Fddd

1

kdddk1
· t(f)>(f � x) � 0 (3.16)

thus:
⇢̄(f) = 0 () 8f 0 2 Fddd, t(f)>(f 0 � f) � 0 (3.17)

Equation (3.16) implies that 8f 2 Fddd, ⇢̄(f) � 0: ⇢̄ : Fddd 7! R+, is a function of a feasible
flow allocation and returns a positive real value (property (i)).

Equation (3.17) – using the variational inequality definition of user equilibrium (defini-
tion 3.1.11) – provides that ⇢̄(f) = 0 () f is a user equilibrium (property (ii)).

Property 3.1.4 (The average deviation incentive as a measure of vehicle e�ciency). Given
✏ 2 R>0, from remark 3.1.8, it is straightforward that 8f 2 Fddd, ⇢̄(f)  ✏ () f is an
average-✏-Nash equilibrium (definition 3.1.9). This is property (iii).
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So, the average deviation incentive is a good way to characterize how close to a user
equilibrium the state of tra�c is.

A player is defined as e�cient if they take one of the best routes between their origin and
destination. Then ⇢̄ can be interpreted as a measure of the e�ciency of the vehicles.

The closer ⇢̄ is to 0, the less inclined players are to change their paths. If ⇢̄ = 0, the user
equilibrium is reached.

Property 3.1.5 (Continuity). The average deviation incentive ⇢̄(f) is continuous with re-
spect to f . Property (v) is satisfied.

Proof. We have ⇢̄(f) = 1
kdddk1 t(f)

>(f � y(f)) = 1
kdddk1

✓
t(f)>f �min

f̃2Fddd

t(f)>f̃

◆
. Because t(f) is

continuous with respect to f (definition 1.2.7), it su�ces to show that minf̃2Fddd
t(f)>f̃ is

continuous with respect to f . This is a linear program (LP) (Fddd defined in definition 3.1.2 is
a polytope). The optimal objective value of an LP is continuous with respect to perturbation
on the objective function [39].

Remark 3.1.9 (Computational time). An optimal path p
⇤
od can be found in O(|L| · log(|V|))

with Dijkstra’s algorithm [78]. The average deviation incentive can be found in O(|L| ·
|V| log(|V|)) with a sequential application of |V| Dijkstra’s algorithms. Therefore, the average
deviation incentive satisfies property (iv).

The average deviation incentive ⇢̄ can be computed with “local data” only, i.e. link cost,
link flow and demand. Property 3.1.2 shows that we only need to compute the inner product
of the travel time vector and the di↵erence between the flow allocation and the all-or-nothing
flow allocation given the current travel time vector. To compute the all-or-nothing flow
allocation, only the demand and the current travel time vector are needed.

Remark 3.1.10 (Frank Wolfe’s Algorithm [94, 35]). The user equilibrium can be seen as the
Nash equilibrium of the static non-atomic routing game (theorem 3.1.1). It has been shown
that a no-regret learning algorithm in selfish routing converges to a user equilibrium of the
system [35, 132, 173, Chapter 4].

For solving the minimization problem (3.6), we can use the Frank Wolfe’s algorithm [94],
a projected gradient descent algorithm. This algorithm minimizes an approximation of ⇢̄ over
each iteration of the algorithm. It is equivalent to a no-regret learning algorithm [35]:

At the termination of this algorithm, we have ⇢̄(f)  ✏. Here, ✏ is an input parameter of
the algorithm which represents the accuracy threshold on the value of f .

In tra�c engineering, the average deviation incentive is called the relative gap to the user
equilibrium [231], and it is used as a termination condition for the Frank-Wolfe algorithm.
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Algorithm 1: Frank Wolfe’s algorithm: the average deviation incentive as a crite-
rion of convergence

Data: (V ,L), ✏ 2 R>0, ddd 2 R|V|⇥|V|
+ , t 2 R|L|

+ ! R|L|
+

Set k = 1;
Take any f

k 2 Fddd;
while ⇢̄(fk) > ✏ do

k = k + 1;
f
k = f

k�1 + 1
k · (y(fk�1)� f

k�1);
end

Result: f
k

3.2 Information-aware routing behaviors steer the

state of tra�c toward a Nash equilibrium

Sensitivity analysis of the equilibrium state of the restricted path choice model with respect
to the app usage ratio proves that the average deviation incentive monotonically decreases
to 0 with an increase of app usage.

Theoretical convergence of the restricted path choice model to

Nash with the increase of app usage.

In the Nash equilibrium of the restricted-path choice model (definition 3.1.13), app users do
not have “regrets” while non-app users “regret” to not know Pod. Without loss of generalities,
and for the sake of convenience, we assume in this section that kdddk1 = 1. We can express
the average deviation incentive associated with f

?
↵ (notation 3.1.1):

⇢̄(f?↵) =
X

o,d2V

X

p2Pod

hp⇢p(f
?
↵)

eq. (3.7), eq. (3.8) =) ⇢̄(f?↵) =
X

o,d2V

X

p2Pod

h
a
p · (⇡od(f

?
↵)� ⇡od(f

?
↵)) + h

na
p · (⇡na

od (f
?
↵)� ⇡od(f

?
↵))

⇡od(f
?
↵) = ⇡od(f

?
↵) =) ⇢̄(f?↵) =

X

o,d2V

X

p2Pod

h
na
p · (⇡na

od (f
?
↵)� ⇡od(f

?
↵))

Then eq. (3.13) gives:

⇢̄(f?↵) = (1� ↵)
X

o,d2V

dod · (⇡na
od (f

?
↵)� ⇡od(f

?
↵)) (3.18)

Similarly to satisfying property (v) of the average deviation incentive (continuity with
respect to the link flow allocation), we are interested in the continuity of ⇢̄(f?↵) with respect
to ↵.
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Theorem 3.2.1 (Continuity of the average deviation incentive with the ratio of app users).
The average deviation incentive ⇢̄(f?↵) is continuous as a function of ↵.

Proof. This follows from the continuity of the average deviation incentive (see property 3.1.5)
and of the continuity of f?↵ with respect to ↵. The continuity of f?↵ with respect to ↵ is due
to the convexity of the restricted path choice model, as shown in the proof of theorem 3.1.2.
A more detailed proof is given in [110, Theorem 1].

Theorem 3.2.2 (Monotonicity and convergence to Nash). For ↵1,↵2 such that 0  ↵1 
↵2  1:

⇢̄(f?↵2
)  ⇢̄(f?↵1

) and lim
↵2!1

⇢̄(f?↵2
) = 0

Proof. First, given that ⇢̄(f?↵) is continuous with ↵ (theorem 3.2.1), ⇢̄(f?↵=1) = 0 (eq. (3.18))
gives that lim

↵!1
⇢̄(f?↵) = 0.

Then, we can use the sensitivity analysis of the travel cost ⇡od(f?↵) and ⇡
na
od (f

?
↵) with

respect to ↵ (as in [72, 166]). By using eq. (3.18), we have:

⇢̄(f?↵1
)� ⇢̄(f?↵2

) = (1� ↵1)
X

o,d2V

dod ·
�
⇡
na
od (f

?
↵1
)� ⇡od(f

?
↵1
)
�

� (1� ↵2)
X

o,d2V

dod ·
�
⇡
na
od (f

?
↵2
)� ⇡od(f

?
↵2
)
�

= (↵2 � ↵1)
X

o,d2V

dod · (⇡na
od (f

?
↵1
)� ⇡od(f

?
↵1
))

+ (1� ↵2)
X

o,d2V

dod ·
�
(⇡na

od (f
?
↵1
)� ⇡

na
od (f

?
↵2
))� (⇡od(f

?
↵1
)� ⇡od(f

?
↵2
))
�

Because ↵1  ↵2 and ⇡
na
od (f

?
↵1
) � ⇡od(f?↵1

) then (↵2�↵1)
P

o,d2V dod · (⇡na
od (f

?
↵1
)�⇡od(f?↵1

)) � 0.
Using Dafermos sensitivity analysis of travel cost with respect to the demand [72, The-

orem 4.2], we will show that
P

o,d2V dod ·
�
(⇡na

od (f
?
↵1
)� ⇡

na
od (f

?
↵2
))� (⇡od(f?↵1

)� ⇡od(f?↵2
))
�
� 0.

Since (1� ↵2) � 0, it will complete the proof.
Changing the problem (in definition 3.1.13) into a stationary tra�c assignment problem

by vectorizing it, we denote ⇡̃o,d = (⇡od(f?↵1
), ⇡

na
od (f

?
↵1
)), d̃o,d = (↵1 dod, (1 � ↵1) dod), and

⇡̃
?
o,d = (⇡od(f?↵2

), ⇡
na
od (f

?
↵2
)), d̃

?

o,d = (↵2 dod, (1 � ↵2) dod). This notation is inspired by
Dafermos [72]. Then, the Dafermos sensitivity analysis of the travel cost with respect to the
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demand [72, Theorem 4.2] gives:

X

o,d2V

(⇡̃?
o,d � ⇡̃o,d)

>(d̃
?

o,d � d̃o,d) � 0

Going back to previous notations:
X

o,d2V

(⇡od(f
?
↵2
)� ⇡od(f

?
↵1
))>((↵2 � ↵1) do,d)� (⇡na

od (f
?
↵2
)� ⇡

na
od (f

?
↵1
))>((↵2 � ↵1) do,d) � 0

(↵2 � ↵1)
X

o,d2V

do,d·
�
((⇡od(f

?
↵2
)� ⇡od(f

?
↵1
))� (⇡na

od (f
?
↵2
)� ⇡

na
od (f

?
↵1
))
�
� 0

X

o,d2V

do,d·
�
((⇡na

od (f
?
↵1
)� ⇡

na
od (f

?
↵2
))� ((⇡od(f

?
↵1
)� ⇡od(f

?
↵2
))
�
� 0

This shows the claim ⇢̄(f?↵1
) � ⇢̄(f?↵2

).

The average deviation incentive decreases monotonically to zero when the ratio of app
users increases uniformly using the restricted path choice model.

Simulations showing decrease of the average deviation incentive

implied by an increase in app-usage

In this subsection, we compute the user equilibrium of the restricted path choice model for
di↵erent ratios of app users/non-app users on two networks. First, on a benchmark network
with three paths, we show that the average deviation incentive (definition 3.1.6) converges
to 0 when the app usage increases. Then, on the Los Angeles, CA (L.A.) network, simula-
tions show the same phenomenon with the restricted path choice model (definition 3.1.13).
Because the restricted path choice model is a static model, we also simulate tra�c with the
Aimsun microsimulator [227], that models each vehicle independently. Calibrated simula-
tions of the I-210 tra�c in Los Angeles, CA confirm that an increase of information-aware
routing behaviors steer the tra�c to a Nash equilibrium.

Open source code to solve static tra�c assignment used for the work. Trans-
portation networks with hourly road tra�c capacity (definition 2.1.2), free-flow travel times,
travel demand, (definition 1.2.8) and the solver used for the static tra�c assignment are
open source [109, 134]. The link travel time functions (definition 1.2.7) are set to tl(fl) =

t
0
l

✓
1 + 0.15

⇣
fl
cl

⌘4◆
where t

0
l is the free flow travel time on the link, cl is its hourly road

tra�c capacity, and fl is the flow on the link (definition 1.2.5), as suggested by [239]. Open
Street Map [109], and OSMNX [37] can be used to model the road network.
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App usage on a benchmark network

The first computation (shown in fig. 3.2) studies the impact of the number of app users
on the tra�c state. The highway hourly road tra�c capacity is 6,000 veh./h. The arterial
hourly road tra�c capacities are fixed at 2,000 veh./h. The OD demand (definition 1.2.8)
is set to 20,000 veh./h (dod = 20, 000). We split the demand between the two populations
of vehicles: app users ddda and non-app users dddna. We have ddda + dddna = ddd and ddda = ↵ ddd

with ↵ 2 [0, 1]. We call ↵ the ratio (or percentage) of app users. Using the restricted path
choice model (definition 3.1.13), non-app users stay on the highway regardless of the tra�c
conditions.

Figure 3.2: On top: Benchmark network. At the bottom: The path travel times (on the
left) and the average deviation incentive (on the right) as a function of the percentage of app
usage. On the benchmark network, the tra�c converges to a user equilibrium state when
app usage increase. Figure reproduced from [47, Figure 3].

As shown in fig. 3.2, with 0% routed users, the entire flow stays on the highway. As the
ratio of app users increases, app users start using Arterial Road 2 (AR2), because it is faster
than the congested highway. This transfer relieves the freeway, but increases congestion on
AR2. When the travel time on AR2 becomes as high as the travel time on Arterial Road 1
(AR1), app users start taking AR1 as well. Travel times stop evolving when app usage reaches
18%, which corresponds to a travel time equalization phenomenon: in these conditions, no
app-user can reroute to decrease their travel time and Wardrop’s first condition is reached.
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The average deviation incentive decreases with the increase of app usage. It reaches 0
when app usage reaches 18% at this point the user equilibrium condition is reached.

Remark 3.2.1 (Cut-through tra�c and hignway e�ciency). Interestingly, in 1989, Adolf D.
May working with CalTrans and General Motors supported the development of navigational
apps stating that apps will spread congestion over space, which will lead to a decrease of the
highway facility demand and therefore improve the highway e�ciency [71]. This is confirmed
by this first benchmark model. However, the decrease of highway facility demand is at the
price of an increase of some local road facility demand, that have a lower urban planning
capacity (definition 2.1.1) than highways. Therefore, some challenges due to congestion on
local roads arise from the new information-aware routing behaviors, as explained in chapter 4.

App usage on the L.A. network

A second simulation is performed on the L.A. network (fig. 3.3). Simulations use the cognitive
cost static model [224] with app user percentages ranging from 0% to 100%, with a 1%
increment. For each of these simulations, tra�c demand data is collected from the American
Community Survey, composed of 96,077 od pair. The network is built from Open Street
Map [109]. Tra�c demand is set consistently at rush hour levels to find the e↵ects of app
usage when networks are congested.

Figure 3.3: Los Angeles, CA (L.A.) network considered for experiment. On the left: a map
of the L.A. basin, on the right: the graph we use to model the L.A. basin. Figure reproduced
from [47, Figure 4].

The average deviation incentive decreases monotonically with the increase of naviga-
tional app usage (fig. 3.4). The fact that the decrease is monotonic tells that whatever the
percentage of app users is, the tra�c will be closer to a user equilibrium when app usage
increases.
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Figure 3.4: Average deviation incentive as a function of the percentage of app usage on the
L.A. network. The average deviation incentive decreases monotonically to 0 when app usage
increases. Figure reproduced from [47, Figure 5].

Remark 3.2.2. For every simulation run and on every type of network, the average deviation
incentive monotonically decreases with the increase of navigational app usage. This is not
the case with the price of anarchy, which depends on the network configuration.

We show the evolution of path flow for a particular od pair. This od pair has been chosen
to be one of the od pairs with the highest demand. This particular od pair starts in slightly
southeast of Compton and ends just north of Burbank. Figure 3.5 shows the top five paths
taken for this od pair. Almost all of these paths take the SR 2 through Glendale. One takes
the I-210 through Pasadena (the green one).

In the 0% to 35% app usage range, almost all app users take the green path, which is
the fastest. But then, with 35% app usage, app users begin to take other paths, particularly
the blue (Path 1) and red (Path 3) ones. 35% app usage is exactly when the travel time of
path green, blue, and red equalize. App users always follow the fastest paths. Then, after
35% app usage, the travel time of the other paths fall below that of the green path and all
app users leave the green path for other paths.

Remark 3.2.3 (Travel time evolution). It is important to see that here the travel time of
these paths depends on other od pairs. Even after 35% app usage, when no rerouting occurs,
the path travel time still varies, Mainly because vehicles from other od pairs still change their
path while the ratio of app usage increases.

Further demonstration through microsimulations

While the previous models present several desirable features such as being analytical, com-
pact, and implementable at scale, they are idealized and static. To further connect this work
with practice, we implemented the concepts embedded in these models into microsimula-
tions (which integrate app usage at the individual vehicle level). This was completed using
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Figure 3.5: Impact of the increase of app usage on path choice and path travel time for a
specific od pair with the increase of app usage. On top: The 5 main paths are used by app
users. The blue path is the path used by non-app users. At the bottom right: the travel
time of the 5 paths as a function of the app usage. At the bottom left: the percentage of app
users on the 5 paths as a function of the overall app usage. When there are no app users,
every vehicle uses the highway. The green side road is a shortcut for app users. When there
are more than 35% of app users, the green path is not a shortcut anymore. This path gets
congested because of other motorists that use this path for their trips. App users always use
paths that have the smallest travel time. Figure reproduced from [47, Figure 6].
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Figure 3.6: On top: The selected od pair for the microsimulation experiments. At the
bottom: A selection of alternate paths that app users took instead of the I-210 and the I-210
route (taken by non-app users) shown in red. Figure reproduced from [48, Figure 7].

TSS’ Aimsun [227] on the I-210 corridor segment between Pasadena and Monrovia (fig. 3.6).
Aimsun uses a car following model to describe the movement of individual vehicles through
a network (see chapter 5 for more explanations about tra�c microsimulators). The Aimsun
model of the I-210 is a calibrated corridor model [179]. Data from the California Department
of Transportation (DOT) freeway loop sensors and city tra�c studies are used to establish
realistic OD demand. Tra�c control plans from the California DOT, Arcadia, and Pasadena
are incorporated into the model. The Connected Corridors project is a fundamental compo-
nent of creating response plans for incident response and congestion mitigation in the I-210
corridor. As a result, the Aimsun model of the I-210 realistically simulates the evolution of
tra�c over the network.

We explicitly model the e↵ect of information on routing behaviors by considering app
users and non-app users. We assume that apps suggest to the app users the route that they
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estimate to be the fastest one. We also assume that app users follow the recommendation of
the apps. App users select their fastest paths based on the state of the network. They are
allowed to dynamically reroute based on real-time information. We assume that the paths
induced by the direction signs are designed to be the path obtained by solving the static user
equilibrium. Therefore, assuming that non-app users mainly follow direction signs, they are
routed based on the static tra�c assignment. Non-app users are unable to change routes
during the simulation. We expect to see non-app users spend more of their trip on the I-210,
whereas app users may be encouraged to use alternate routes that make use of arterial roads
to avoid highway congestion.

Since path costs (i.e., path travel times) are an essential component of app user behavior,
these costs have to be updated frequently in order to guarantee that vehicles are routed based
on up-to-date travel time information. A low frequency of cost updates (e.g., updating path
costs every 20 minutes in a 60-minute simulation) will lead to undesired e↵ects. For instance,
assume that a path has low travel time (i.e., a low cost) due to low tra�c flow. App users
will start routing themselves onto this path, which will lead to the congestion of the path.
However, the cost of the path is not updated (since the cost update frequency is low) so
app users will continue to route onto the path, further worsening the congestion. To prevent
such e↵ects, we use a one-minute cost update frequency.

Definition 3.2.1 (Cost update frequency). The cost update frequency is the frequency at
which the path costs are updated in the Aimsun simulation. In Aimsun, the cost update
frequency is referred to as the routing cycle time interval size (or cycle time).

The I-210 corridor is composed of over 4, 000 od pairs and more than 10, 000 links.
There are four major highways in the I-210 corridor, namely the east/west-bound I-210, the
north/south-bound I-605, the north/south-bound California 101, and the east/west-bound
I-134. Background flow from a typical weekday morning peak hour is obtained from PeMS
and city data collected for the Connected Corridors project [242]. During the peak hour, over
75, 000 vehicles enter the network hourly. As in the benchmark scenario, we fix the demand
between od pairs and then perturb the percentage of app users between a single od pair as
shown in fig. 3.6. We start with 10% app users and increase to 90% using 10% increments.
We focus our analysis on a single od pair because the complexity of the network is high and
therefore results are di�cult to interpret when all od pairs are perturbed simultaneously.

The path flows and travel times of the main path (freeway) and alternative paths (shown
in orange and green in fig. 3.6) converge as the number of app users between the specific od
pair increases (fig. 3.7). The average deviation incentive shown in fig. 3.7 also decreases as
the percentage of app users increases. The average deviation incentive increases slightly at
30%, 50%, 80%, and 90% app users. This phenomenon is caused by a discrepancy between
predicted travel time and experienced travel time when many vehicles use the navigation
applications. In the simulation, the suggestions given to the app users only take into account
current and past information, it does not forecast future tra�c conditions. As a result, large
numbers of app users will reroute themselves onto alternative routes with low predicted costs
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Figure 3.7: The I-210 network simulation results. On the top left: Path flow on the main
path (freeway shown in red in fig. 3.6) and all alternative paths (shown in blue, purple, and
green in fig. 3.6). On the top right: Path travel time convergence between the main freeway
path and all alternative paths. At the bottom: Absolute and relative the average deviation
incentive as percentage of app users in the network increases. The average deviation incen-
tive shows that after 30% of navigational-app usage, the e�ciency of the apps’ predictions
decreases if they do not take into account their own impact on the evolution of tra�c. Figure
reproduced from [45, Figure 3].

that will turn out to have high experienced cost, because too many are using them. In order
words, after 30% of navigational-app usage, the e�ciency of the apps’ predictions

decreases if they do not take into account their own impact on the evolution of

tra�c.
As a conclusion, information-aware routing behaviors steer tra�c to a Nash

equilibrium.

3.3 Case studies of information-aware routing

behaviors

Section 3.2 shows that an increase in information-aware routing behaviors steer the state of
tra�c to a Nash equilibrium. However, it does not explain if it increases or decreases the
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Figure 3.8: Impact of the increase of app usage on the first Braess network scenario: every-
body gets a better travel time when the app usage increase.

overall network e�ciency. In this section, we show that the answer of whether an increase
in app usage increases or decrease the overall network e�ciency cannot be answered: it is
specific to each scenario considered.

On the Braess network [40], we show that an increase of app usage might decrease the
individual travel time of each vehicle (both for app users and non-app users) in the network.
But it might also increase the individual travel time of each vehicle. The phenomenon is
known as the Braess paradox [40], a replica of the prisoner’s dilemma [230] in routing games.

When information-aware routing make things better for everyone

This section shows on a toy example that the increase of app usage could lead to a situation
better for everybody (even for the non-app users).

To this end, let us consider the restricted path choice model (definition 3.1.13) on the
Braess network (fig. 1.2) with four nodes (A,B,C,D) and three paths (ABD, ACD and
ABCD). The demand is set to 100 vehicles which want to go from A to D. Link travel time
functions (definition 1.2.7) are tAB(x) = 1 + x

100 , tAC(x) = 2, tBC = 0.25, tBD(x)(x) = 2 and
tCD = 1 + x

100 . This is equivalent to the experiment of [69].
App users are routed on the shortest path between ABCD, ABD and ACD. Non-app

users are assumed to not know the path AC and BD. Therefore, they are routed on the
shortest path ABCD.

We observe that the travel times of both app users and non-app users decrease as a
function of the percentage of app users (fig. 3.8).
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Figure 3.9: Impact of the increase of app usage on the second Braess network scenario:
everybody gets a worse travel time when the app usage increases. On the left: the average
deviation incentive as a function of the app usage. The average deviation incentive of the
vehicles decreases monotonically when app usage increases. On the right: the travel time of
app users (blue) and non-app users (orange) as a function of the app usage. The travel time
of every traveler (non-app users and app users) increases when app usage increases. Figure
reproduced from [47, Figure 8].

When information-aware routing is worse for everybody

In his book [184], Pigou introduced the notion of selfish routing through an example
where the tra�c equilibrium is not socially optimum (i.e., where spreading congestion over
the network does not decrease the average delay in the network).

In this subsection, we provide a thought-experiment where the information-aware rout-
ing brings a modern version of William Forster Lloyd and Garrett Hardin’s Tragedy of the
Commons [148], where the cows have been replaced by vehicles, the grass has been replaced
by road capacity, and the action of eating the grass is now embodied by the vehicles’ route
choice (see section 1.1.2 of [173]). Indeed, section 3.2 shows that the increase of app usage
leads the tra�c to converge to a Nash equilibrium. It is known that Nash equilibria tra�c
assignment can be worse than the socially optimal tra�c assignment; this is the price of
anarchy [167, 181, 195]. We claim that routing apps can reproduce the Braess paradox [40].
In the Braess paradox, adding a new road might increase total travel time in the network,
even without an increase of the facility demand.

To this end, we consider the same setup as the previous subsection (fig. 1.2), but with
a di↵erent knowledge of the network Pna by non-app users. App users are routed on the
shortest path between ABCD, ABD and ACD. Non-app users are assumed to not know
the link BC. Therefore, they are routed on the shortest path between ABD and ACD.

The increase of travel times of both app users and non-app users as a function of the
percentage of app users in shown in fig. 3.9.
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In this particular case, even if the usage of apps decreases the average deviation incentive
(definition 3.1.6), the travel time of every vehicle increases with an increase of app usage.
This toy example shows that the use of apps might not be beneficial for society. Indeed, the
chapter shows that app usage leads the state of tra�c to converge to a Nash equilibrium
(using the average deviation incentive as quantifier) which might not be socially optimal.

Urban planning consideration

This chapter was focused on the impact of shortest-time routing on the road tra�c network
e�ciency. It shows that the increase of information-aware routing steers tra�c to a Nash
equilibrium. This phenomenon might decrease or increase the total travel time in the road
network. However, this chapter was mainly focusing on the hourly tra�c road capacities
(definition 2.1.2) and not the daily urban planning road capacities (definition 2.1.1). Ulti-
mately, navigation apps influence the distribution of vehicles across space and time within
the transportation system, without taking into account urban planning road capacities, or
taking into account the di↵erences between roads and streets. In doing so, routing guidance
systems have a nontrivial impact on the magnitude and distribution of the external costs of
road transport. The external costs (or externalities) might include a decrease of some traf-
fic operational performance measures (like total vehicle-miles traveled), a decrease in travel
time reliability, a possible decrease of network resiliency in case of misleading guidance sug-
gestions, an increase in infrastructure damage, or even a decrease of a neighborhood quality
of life, or an increase of safety concerns, among others. Chapter 4 studies the negative ex-
ternalities of cut-through tra�c induced by information-aware routing behaviors from the
residential point of view.
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Chapter 4

Cut-through tra�c due to

information-aware routing and

residential anger

“Apple Maps: Our artisanal
cartographers hope you enjoy
this pleasant journey. 28 min

Google Maps: Our algorithm
has determined an optimal path
for the most e�cient route
given curent tra�c conditions.
25 min

Waze: Drive through this
dude’s living room. 17 min.”

Anonymous tweet

During the 2010s decade, information-aware routing had changed the state of tra�c
(see chapter 3), mainly by spreading congestion away from congested areas. In 1920, Arthur
Pigou [184] showed that information-aware routing (or selfish-routing) can lead to a sub-
optimal state of tra�c due to the price of anarchy [195]. Besides a possible decrease in
the transportation operational performance in the Pigou paradox thought experiment (sec-
tion 3.3), information-aware routing provokes cut-through tra�c on some local roads. Sec-
tion 4.1 showed that both travel time equalization (Wardrop equilibrium condition, see def-
inition 3.1.7) and the resulting cut-through tra�c are observed from ground data in Los
Angeles, CA. Regrettably, on some low-capacity local roads, the cut-through tra�c due
to information-aware routing leads to an excess of the daily urban planning road capac-
ity (definition 2.1.1) by the facility demand (definition 2.1.5). As predicted by Thomas
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Figure 4.1: Sample of the occurrences of the negative externalities of the information-aware
routing in the popular media in the US and specifically Northern and Southern California.
The figure is adapted from [48, Figure 1].

Malthus [155], this leads to a negative impact on the system e�ciency. Indeed, congestion
incurs fixed, non-market, and indirect costs for society [147], which can lead to anger from
residents negatively impacted by tra�c (section 4.2). On the ground, in neighborhoods
across the U.S. and abroad, residents alerted the public to their experiences. Countless re-
ports in the media (see fig. 4.1) exhibited serious safety risks to related cut-through tra�c
on local roads induced by information-aware routing, in addition to degradation of public
health caused by noise and air pollution, and congestion e↵ects such as delay and poor
travel time reliability. In the long term, these externalities can be mitigated by decreasing
the tra�c demand (definition 2.1.4) or increasing the facilities supply. But, in the short-
term, or in urban areas where decreasing tra�c demand or increasing the facility supply is
challenging, the mitigation of the negative externalities due to information-aware routing can
only be tackled by impacting the route choice of the vehicles. Unfortunately, as of 2022, few
tra�c-management tools can impact route choice; some of which are presented in section 4.3.
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4.1 Measuring the cut-through tra�c through

induction-loop detectors

Due to information-aware routing, vehicles – that would usually stay on the main road for
their trips – might use the fastest path to reach their destination. For example, fig. 4.2
shows that in Fremont, CA during peak hours, routes using side roads might be 10 minutes
faster than routes using the congested highway. As a consequence, some vehicles take such
shortcuts, changing tra�c patterns and changing the facility demand. Eventually, it creates
tra�c on local roads in residential areas. If the new facility demand induced by cut-through
tra�c in local roads exceeds the daily urban planning road capacity, then negative exter-
nalities of tra�c – such as degradation of public health caused by noise and air pollution,
safety risks from the high chance of tra�c collisions, and congestion – occur.

Travel time equalization showcases that information-aware

routing behaviors occurs in Los Angeles, CA

In this section, a case study – borrowed from [48] – is performed along the eastbound
I-210 corridor in the Los Angeles, CA basin. Because of the geography of the corridor,
information-aware routing moves some tra�c from the highway to routes parallel to the
I-210. To study cut-through tra�c due to information-aware routing behaviors, five routes
– routinely suggested by Google Maps in 2017 – that lead from northwest Pasadena, CA to
Azusa, CA (in northeast Los Angeles, CA) are considered for the study, one along I-210 and
four alternative routes (see fig. 4.3).

Using travel time data from INRIX (fig. 4.3), we see that on March 10th, 2014, the travel
time on the freeway increased from 3:30 pm to 4 pm until it is not beneficial to use the
freeway anymore. At this time (4 pm), the travel times of all paths increased until 4:20 pm,
and remained almost equal between 4 pm to 5 pm. This travel time equalization between the
paths between 4 pm to 5 pm translates that the state of tra�c is in a Nash equilibrium. This
is expected if some vehicles in the network follow information-aware routing suggestions.

Likely, the state of tra�c before 4 pm was already in a Nash equilibrium, even if the
travel times on each path are not equal. Indeed, all the vehicles, which traveled from the
origin to the destination shown in fig. 4.3, used the highway. Rerouting on local roads only
happens when the tra�c is highly congested.

This equalization of the travel times translates into the spread of freeways’ congestion
to parallel side-roads, as shown in chapter 3 in fig. 3.1. If the spread of congestion from
highways to side-roads can be seen as an increase in the network e�ciency (as stated by the
public relations departments of the companies developing navigational apps [218, 248]), it was
shown that this phenomenon might generate high flow on low-volume capacity roads [224,
Figure 6].

Human-based knowledge (newspaper articles, resident complaints), tracking of the navi-
gational apps route suggestions (fig. 4.2), and consulting case studies [177] have qualitatively
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Figure 4.2: Cut-through tra�c in Fremont, CA. On the left: Screenshot of directions sug-
gested by Google Maps in July 2019 to go from the south to the north-east of the map. The
distance between the west and the east side of the map is around 2 miles (3 km). On the
right: Fremont, CA map showing the usual freeway commute and the cut-through commute
routes.



CHAPTER 4. CUT-THROUGH TRAFFIC DUE TO INFORMATION-AWARE
ROUTING AND RESIDENTIAL ANGER 59

Figure 4.3: I-210 freeway section and four alternative arterial paths considered for the travel
time analysis. These paths have been chosen among the routinely suggested routes provided
by Google Maps for the experiment because they include primarily arterial roads. The
bottom-right sub-figure shows the distance and the free flow travel time of each path. The
figure is reproduced from [48, Figure 2].

demonstrated that app usage increases cut-through tra�c. To quantify how much the in-
crease in tra�c flow is due to navigational app usage and how much is due to an increase
in tra�c demand, tra�c data is needed. Without tra�c data, one cannot quantify how
substantial the cut-through problem is.

Road tra�c data

Tra�c engineers distinguish two types of tra�c data [229]:

• Tra�c counts are cross-sectional data. At a specific location, a detector counts the
number of vehicles going through a given road section (see fig. 4.5). It provides tra�c
engineers with the tra�c flow of the road section depending on the hours of the day
(definition 1.2.5).

• The trajectories of every or a subset of vehicles that are inside the road network are
trajectory and floating-car data (see fig. 4.5). It requires vehicle identification and
tells to tra�c engineers how the tra�c flow moves inside the network (definition 1.2.6).
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Figure 4.4: Evolution of travel times on the paths parallel to the I-210 considered (fig. 4.3)
on March 10th, 2014. At the beginning and end of the peak hour (3-6 PM), the travel
time on the freeway is close to the free flow travel time, and the freeway is faster than the
arterial routes. However, when the freeway travel time increases, arterial detours become
beneficial alternatives. During high congestion, drivers can reroute themselves to arterial
roads to reduce their travel time, leading to travel time equalization among parallel routes.
The figure is reproduced from [48, Figure 3].
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(a) Cross-sectional data

(b) Trajectory data

Figure 4.5: Schematic illustration of cross-sectional, floating-car, and trajectory data. (a)
Cross-sectional data can be obtained through loop detectors. It counts the number of vehicles
going through specific points. Aggregated in a system, the data can estimate the number
of vehicles on any road section. However, it cannot explicitly show the existence of cut-
through tra�c, as it does not render the routes of the vehicles. (b) Trajectory data can
be obtained through license plate reader cameras. It identifies every vehicle and derive its
route. Combined with a system, it can estimate the number of vehicles on any route of the
network. It can explicitly show the existence of cut-through tra�c (i.e., the vehicles in red).
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Cross-sectional data suggests that information-aware routing

increases tra�c on local roads near the I-210 in Los Angeles, CA

Cross-sectional data can be seen as tra�c counts: it gives the tra�c flow at a specific location
at any time [229]. From a fluid mechanics point of view, cross-sectional data is called Eulerian
data. It might also be called static data.

Cross-sectional data can be obtained from several types of sensors [129], including in-
ductive Loops, show in fig. 2.4 magnetometers, magnetic sensors, microwave radars, shown
in fig. 2.4, active infrared sensors or laser radars, passive infrared sensors, ultrasonic sensors,
acoustic sensors, and video Image Processors, show in fig. 2.4.

Combined inside a system, cross-sectional data can indicate the tra�c flow on almost
every road section of the network (called link flow allocation). For example, current tra�c
flow on California highways is monitored by PeMS [243]. PeMS data, which consists of flow
data from inductive loop sensors, are publicly available.

PeMS data analysis (fig. 4.6) shows that, during the evening peak hours, the median
o↵-ramp flow during March weekdays on the Michillinda Avenue and Baldwin Avenue I-210
exits had seen a 1.5 and 3-fold increase respectively between 2013 and 2017. Both exits
are located along the I-210 path shown in fig. 4.3, and they were commonly suggested by
applications like Google Maps in 2017. While some of this increase can be explained by an
increase in demand for Arcadia, it is unlikely that this can be explained solely by demand
growth. Additionally, since these exits were frequently recommended by navigation-apps
that had increased in popularity during the same period, the increased flow can be partially
explained by app usage. Nevertheless, cross-sectional data does not reveal the cut-through
caused by the drivers using exit 31.

Remark 4.1.1 (PeMS data quality). PeMS data is not exploitable for the Fremont, CA
case, because the o↵-ramp loop detectors on the I-680 to Mission Street boulevard are almost
broken (only 14% of the tra�c is observed on the O↵ Ramp VDS 403255 – Mission Blvd o↵
diag – I680-N from Tue 03/11/2014 00:00 to Mon 03/11/2019 11:59:59).

In addition to observing the e↵ect of navigational apps during peak hours of a single day
(fig. 4.4), or examining o↵-ramp flow increase on the congested highway across the years,
we examine INRIX speed data over the 2014 and 2015 years on the I-210 alternate paths
(fig. 4.3). As the number of app users increases, it is expected that the travel time on arterial
streets will increase as well, due to increased flow rerouting around congestion on the freeway.
The average travel time on the paths was computed during peak hours for each week from
January to June each year. As expected, in one year, the travel times along the alternative
paths increased by roughly 20%, i.e., around five minutes (fig. 4.7).

Figure 4.7 also shows that the I-210 was always faster on average during a day than the
arterial roads. This gives an additional hint that the rerouting phenomenon only happened
during peak hours (as it can be similarly guessed from fig. 4.4).

The travel time on the I-210 path oscillated around 15 minutes over the two years,
remaining roughly constant over time. This occurrence can be explained by latent demand
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Figure 4.6: On the left: Location of the o↵-ramp tra�c detector of exit 31 of the I-210
East in Arcadia, CA. On the right: Evolution of the median o↵-ramp flow from I-210 during
March weekday peak hours between 2013 and 2017. The 3-fold increase in o↵-ramp flow that
occurs between 2014 and 2017 coupled with the decrease in speed on parallel paths provides
evidence in favor of app-induced arterial rerouting patterns. The figure is adapted from [48,
Figure 4].

Figure 4.7: Evolution of the average travel time computed with INRIX data on the five
paths during peak hours (4:30 to 5:30 PM) considered (fig. 4.3) in 2014 and 2015, for each
week from January to June. While the travel time on the I-210 remains roughly constant
over two years, alternative paths su↵er a 20% increase in travel time. The observed drops
in 2014 may be irregularities from data flaws. The figure is reproduced from [48, Figure 4].
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or by the very low marginal cost of extracting vehicles from the freeway (when a typical
freeway lane capacity is around 2000 veh./h). Either, all the vehicles that are removed
due to information-aware routing behaviors are replaced by vehicles that were not traveling
before because of congestion on the highway. Either, the amount of vehicles removed is too
small when compared to the total number of vehicles using the highway to impact travel
time on the highway.

If cross-sectional data gives significant clues (i.e., travel time equalization, and I-210 o↵-
ramp 3-fold increase over 4 years) about the existence of cut-through tra�c, it does not
indicate where the people come from or go to (called path flow allocation) (see fig. 4.5).
Therefore, the severity of cut-through tra�c due to an increase in navigation-app usage and
induced information-aware routing has never been globally quantified due to lack of publicly
available trajectory data.

Floating-car data are needed to quantify the magnitude of

cut-through tra�c due to information-aware routing

Trajectory data is the trajectories of every vehicle that is inside the road network. Floating-
car data is a subset of the trajectory data: it is the trajectories of some vehicles inside the
road network. From a fluid mechanics point of view, trajectory data is called Lagrangian
data. It might also be called dynamic data.

Current trajectory and floating-car data requires identifying the vehicles inside the net-
work. It can be obtained from license plate readers, camera vehicles tracking with drones
or fixed cameras (like Next Generation Simulation data [241]), GPS devices that give GPS
position in real-time of vehicles, or GPS traces that give past GPS position of vehicles [229].

High penetration floating-car data can explicitly show the existence of the cut-through
tra�c caused by navigational app users. The data will show the cut-through used by the
navigational app users, it will also reveal the number of people using the di↵erent cut-through
routes. In Fremont, a tra�c study [192] using floating car data showed that, during the 2019
afternoon rush hours, 10% of the tra�c supposed to take the I-680 were using the Mission
Boulevard or the Paseo Padre Parkway instead. In Pleasanton, a tra�c study [123] showed
that cut-through tra�c accounted for 84% of the tra�c on the Laurel Creek drive in 2016.

Currently, the author is not aware of any tra�c control center or any city tra�c engineers
in the U.S. or in Europe that have access to such data. This is mainly because getting
floating car data requires vehicle identification, which might be expensive and can raise
privacy concerns.

However, smartphone apps record the location of people through smartphones. Therefore,
apps have access to floating-car data (see fig. 4.8).

To improve the quality of tra�c control strategies implemented by cities, cities might want
to ask the navigational apps for floating car data from the app users. This might require new
regulations or new partnerships between cities and navigational apps. France has already
passed a regulation to ask navigational applications to share their tra�c data [14]. However,
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Figure 4.8: Google Maps location and transportation mode tracking. Screenshot from the
author’s iPhone in June 2019.
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there are obvious privacy issues that might disable navigational applications to share any
user data with any government entities. Also, a lot of navigational apps are trying to store
fewer users’ location data on their servers to increase users’ privacy [103].

4.2 Materialization of the cut-through tra�c at the

residential level

As shown in section 4.1, one of the consequences of information-aware routing is that tra�c
congestion is spread onto local roads near congested highways. It becomes a challenge when
some of these roads receive a higher tra�c flow than they are designed to sustain (i.e., when
the facility demand on some local roads exceeds their corresponding urban planning road
capacity). It eventually turns into a nightmare for the residents living near these streets.
Inherently, this is due to the fact that navigational-apps consider the hourly tra�c road
capacity when suggesting routes to their users without taking into account the daily urban
planning road capacity. In other words, the shortest-path algorithm does not consider any
other path characteristics than its travel time. For example, it does not include explicit
knowledge about streets with a lot of pedestrian crossings, locations of elementary schools,
or di�cult intersection crossings.

The geometry of the roads is designed as a function of the expected flow that they would
receive [7] based on their category (fig. 2.8). As shown in fig. 2.8, in the U.S., local roads are
designed to receive less than 400 vehicles per day on average in rural areas and 700 in urban
areas [8]. A countless number of complaints emerged against the negative externalities of
cut-through tra�c due to information-aware routing (see fig. 4.1).

Enumeration of some negative externalities due to cut-through

tra�c

On the one hand, some commuters save a few minutes due to the usage of apps. On the other
hand, navigational apps create high tra�c flows on local roads that lead to many negative
externalities for the communities a↵ected by cut-through tra�c. These negative externalities
can include higher travel times, delays, unreliable travel times for residents [90], noise, gas
emissions, tra�c accidents (fig. 4.9), decreased accessibility in a↵ected neighborhoods, wrong
directions [131], and infrastructure damage, etc.

Cut-through tra�c changes the spatial distribution of noise levels and emissions in the
neighborhood [174, 87]. From an individual’s long-term perspective, congestion increases
psychological stress [246, 174] and decreases people’s leisure time, which consequently de-
creases people’s physical activities. Many studies and media reports showed that road tra�c
systems have a strong association with the decreased mental well-being of commuters or
residents who live close to the road: tra�c’s unpredictability is a significant source of stress,
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and it can easily disrupt daily routines; the air and noise pollution produced by tra�c further
add to such frustration and anxiety [174].

Infrastructure damage. The cumulative load on the road depends on the number of ve-
hicles using it and their weight. Infrastructure damage increases with the number of vehicles
using the road [171, 128, 221]. Recognizing that current road users usually adopt various
transportation modes including driving, cycling, and walking, policymakers adjust the com-
ponent of transportation funding such that everyone bears the cost of transportation [226].
There are three major funding resources (cost of driving): (1) general taxes, such as income
and sales tax ; (2) gas taxes; (3) revenue from tolls and fares [226, 34]. In the U.S., most
of these revenues go to the states, therefore, the states mainly pay for the transportation
infrastructures. Especially, the states are in charge of maintaining highways; the roads de-
signed to be used by commuters. The states are not in charge of maintaining local roads.
Because small cities cannot a↵ord damages caused by heavy usage of their local roads, if the
commuters use some local roads, then the state should subsidize the maintenance of these
roads.

Safety concerns. Based on a survey of road safety performance, speeding is the number
one road safety problem in many countries, often contributing to as many as one-third of
fatal crashes and serving as an aggravating factor in most crashes [52]. In Leonia, NJ, one
pedestrian died struck by a bus in 2014 on Ford Lee Road, a road with a lot of cut-through
tra�c [91].

Of 69 newspaper articles about negative externalities of information-aware routing, 39 of
them discuss safety issues due to cut tra�c that the author analyzed (a subset of the articles
shown in fig. 4.1), 23 of them deal with congestion issues, and 16 report noise and quality
of life issues.

Remark 4.2.1 (Feature-specific routing). Note that some navigational-app might take some
road characteristics in their routing suggestions, like tolls, fuel consumption, or safety [187].
For example, in 2021, Google Maps launched eco-routing to account for fuel consumption
[104, 13].

The negative externalities due to cut-through tra�c are all over

the world

Cut-through tra�c and the resulting negative externalities due to information-aware routing
have been reported all around the world. To name a few cities, San Francisco, CA, Boston,
MA, Medford, MA, Tel Aviv, Israel, Leonia, NJ, Los Angeles, CA, Fremont, CA, Bordeaux,
France, Lyon, France, Meudon, France, have been vocal about these issues [152].

In early 2018 residents of Echo Park, Los Angeles County, CA began reporting excessive
thru-tra�c on Baxter St.; one of the steepest streets in America. Drivers unfamiliar with the
32% grade of Baxter St. are in danger of collisions with di�cult-to-see oncoming tra�c and
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Figure 4.9: Bus crash because it was routed on a road too steep. Photos by Ingrid Peterson
via Flickr.

brake failures. Many vehicles even spun out onto neighbors’ gardens [215] (see fig. 4.9). The
rerouting typically occurred during peak hours, when southbound vehicles on Alessandro
St. were routed onto N. Alvarado St. to avoid the build-up of tra�c caused by the merging
of both the Glendale Freeway and Alessandro St. onto Glendale Blvd. The app users were
directed to turn left onto Baxter St. from Alessandro St. to bypass the bottleneck by traveling
down either N. Alvarado St. or Lake Shore Blvd. instead of Glendale Blvd. In May 2018,
Echo Park converted the two blocks of Baxter St. on either side of N. Alvarado St. into
disjoint one-way roadways to prohibit through tra�c from driving uphill on Baxter St [54].
In Los Angeles, the Sherman Oaks neighborhood residents also reported high tra�c due to
cut-through [23].

In Leonia, NJ (9,200 residents), the tra�c flow on Fort Lee Road increased from 4,000 to
14,000 vehicles per day between 2014 and 2017 according to Mayor Judah Zeigler [175]. If
the tra�c is uniformly distributed over 11 hours, it represents a tra�c flow that increases
from 6 vehicles entering the road every minute to 24 vehicles entering the road

every minute! Fort Lee Road is an urban collector street. Therefore, it is designed to
receive a daily tra�c flow lower than 6,300 vehicles per day, which represents 9 vehicles
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entering the road every minute [232] (see fig. 2.8). Consequently, safety concerns were raised
by the residents [124]. Indeed, a pedestrian died in 2014 on Ford Lee Road after being struck
by a bus [91].

In Lyon, France, as of 2022, vehicles coming from the south might use the Quai Jean-
Jacques Rousseau to avoid congestion on highway A7. In Bordeaux, France, the Avenue de
Courrejean is used by some vehicles wishing to short-cut the congested highway A62 coming
from the south. In Meudon, France, the Rue d’Arthelon is used by some commuters reaching
Paris from the southwest suburbs that do not take the congested N118 highway.

In Fremont, CA, faced with increased congestion due to altered commuter behaviors, Mis-
sion San Jose neighborhood residents encounter heavy tra�c while commuting, but also when
doing mundane tasks like picking children up from school or grocery shopping (see fig. 4.10).
Mission San Jose is a neighborhood of the City of Fremont, CA, a suburb of the San Fran-
cisco Bay Area located in Alameda County. The community is situated at the southern
entrance to the Sunol Grade, a mountain pass for Interstate 680 that links the major job
centers of Silicon Valley to the southwest with bedroom communities to the northeast. Due
to its position at the entrance to one of the most heavily-tra�cked transportation corridors
in the region, tra�c next to the neighborhood along Interstate 680 has always been severe [4].
However, with the rise of real-time detours pioneered by GPS-navigational apps, more and
more of this tra�c has been routed onto local neighborhood streets over time [176]. De-
spite the tra�c-calming measures implemented by the city of Fremont, the Mission San Jose
neighborhood still su↵ers from heavy tra�c. This problem has been exacerbated in recent
years by an increase in job growth in Silicon Valley, which might have counterbalanced the
improvement due to the city’s policies [225]. With the continued increase in congestion,
residents have started blaming the concern on city policies for allowing the development of
new housing units and o�ce parks nearby. The cut-through tra�c challenges are induced
both by information-aware routing and high tra�c demand.

Aggravating factors of the negative externalities of cut-through

tra�c: travel and tra�c demand

As stated before, the negative externalities of cut-through tra�c are due to a facility demand
(definition 2.1.5) that exceeds the daily urban planning road capacity of local roads in the
a↵ected areas. Because, the facility demand is at the end of the trip chain ((fig. 2.1), any
increase in the travel demand (definition 2.1.3) or the tra�c demand (definition 2.1.4) will
aggravate cut-through tra�c.

Increase of the travel demand

The travel demand is globally increasing due to several factors. First, the world population
is increasing: 2,536 millions in 1950, 7,380 in 2015 [237]. So, as a consequence of having more
people, they are more travelers. Secondly, people are more clustered in cities. Urbanization
(percentage of people living in urban areas) is growing everywhere in the world: in 2020,
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Figure 4.10: Congested Fremont, CA neighborhood near I-680. The picture was taken from
a drone camera and published in [61, Page 1].

55% of the world’s population lives in urban areas, and in 2050, the number is expected
to be 68% [238]. As a consequence, the increase in travelers is focused on metropolitan
areas, creating more travel demand for these specific areas. An indirect consequence of
urbanization – that increases, even more, the travel demand – is the development of urban
sprawl, leading to an increase in the average commute distance. For example, in France,
the median commute distance has increased from 7 km in 1975 [223, Table 2] to 8 km in
1982 [223, Table 2], 13 km in 1999 [70, Table 6], and 15 km in 2013 [70, Table 6].

Fremont, CA is a striking example where the increase in travel demand has largely
exacerbated cut-through tra�c (fig. 4.11). Fremont, CA is located in the San Francisco
Bay Area, to the east of Silicon Valley. Between 2014 and 2018, 152,000 new jobs have
been created in Silicon Valley. However, only 28,000 housing units have been created in the
Valley. Of the 152,000 new workers of the Silicon Valley, 86,000 live north or east of Fremont,
CA, increasing the number of commuters between the East bay and the Silicon Valley. On
the I-680 going north, a cut-through given by apps like Google Maps is Mission Boulevard,
Fremont, CA (see fig. 4.2). In 2018, the tra�c on Mission boulevard was so heavy that even
small businesses have complained about the decrease in business accessibility.

Increase of the tra�c demand

As a result of the increase in the travel demand, the tra�c demand is increasing all over the
world. However, the tra�c demand is also increasing independently of the travel demand.
Indeed, tra�c demand increases faster than travel demand because of the mode-shift im-
plied by transportation network companies (TNCs) and the increase in on-demand

delivery.
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Figure 4.11: Schematic illustration of tra�c created in Fremont, CA due to the demographic
increase in the San Francisco Bay Area. Screenshot from March 2019 Fremont Mobility
Action Plan [225, Page 4].

Tra�c demand had considerably increased due to the sudden emergence of transportation
network companies (TNCs) like Uber and Lyf [44]. Uber was created in March 2009. Ten
years later, in 2019, Uber was estimated to have 110 million worldwide monthly users [212].
Statista states that 996.7 million people used TNCs in 2019 [212]. These new users – almost
1 billion new users in 10 years – often represent new cars on the roads. As reported by the
Boston Metropolitan Area Planning Council, in 2018, 59% of trips made by TNCs are adding
vehicles to the road network (see fig. 4.12 or [97, Figure 11]). Accordingly, the worldwide

increase of tra�c demand due to TNCs can be approximately estimated to be

588 million annual riders (56% of 996.7 million TNCs users). In San Francisco, CA, Lyft,
and Uber were responsible for 13% of the combined Vehicle Miles Traveled inside the city in
2019 [20].

Concurrently to the increase of the tra�c demand due to TNCs, another increase in the
tra�c demand is due to the development of last-mile delivery. According to the economic
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Figure 4.12: Mode of transportation replaced by transportation network companies (TNCs)
like Uber and Lyft in Boston in February 2018 [97, Figure 11].

research department of the Federal Reserve Bank of St.Louis [10], e-commerce retail sales
had heavily grown during the 2010s decades. Representing 1% of the total sales in 2000,
it represented 10% of the total sales in 2019. Consequently, last-mile delivery had densely
increased the number of trucks and small delivery trucks on the roads. Brookings’s analysis
of Federal Highway Administration data [42] shows that trucks – which used to drive 40%
of the time on urban roadways (and 60% on highways) in 1966 – drove 60% of the time
on urban roadways in 2014. This leads to an 8-fold increase in urban vehicle miles

traveled by all trucks between 1966 and 2014.

4.3 Cut-through tra�c mitigation techniques

To mitigate the negative externalities of cut-through tra�c, cities can use several approaches,
including the ones listed in table 2.2. Externality is a concept from economics where the free
market leads to some indirect costs to society. Interestingly, the concept was first introduced
by Pigou in [184] in 1920, using the example of road tra�c and cut-through tra�c due to
information-aware routing. Many answers to mitigate negative externalities can be found in
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the economics literature. As stated in section 4.2, the negative externalities of cut-through
tra�c can also be alleviated by decreasing the tra�c demand in the network.

Mitigation of negative externalities in economics

In the economics literature, several types of solutions to decrease the externalities of a market
are suggested [60]:

• Cap-and-trade: assigning property rights for supply usage.

• Pigovian tax: taxing the market that generates the externalities.

In the specific case of the externalities due to navigational-app usage, if a regulator
cannot directly control the navigational apps (which is the case in free economies), then
the regulations and policies to mitigate the externalities cannot di↵erentiate app users and
non-app users. Adding a tax that is applied to everyone but should target a specific set of
users is known as imperfect taxation [107].

Cap-and-trade

A first approach to mitigate cut-through tra�c is to ban it. In this approach, the road can
be restricted to non-resident tra�c. In economics, this approach was theorized by Ronald
Coase in [67]; property rights are assigned to the use of supply.

In the U.S., Leonia used this approach, NJ. On January 22nd, 2018, under the pressure
of inhabitants of the city, the city closed 60 streets to thru-tra�c during rush hours [145,
175]. Any commuter going through Ford Lee Road during the rush hours was fined by the
local police. However, in the U.S. the roads are public. Therefore, on January 30th, 2018,
a resident from a nearby city filed a complaint accusing Leonia of “infringing on her access
to public roads and violating the public’s right to freedom of travel” [188]. The road was
opened back in August 2018 after the invalidation of the restriction ordinances by the state
Superior Court [133].

In France, some roads can be marked as residential-only [68]. Commuters do not have the
right to use residential-only roads. However, because turning a local road into a residential-
only road requires a lot of administrative work, and can only be done for some specific roads,
the French Parliament decided to directly regulate the navigational apps in 2021 [15]. In Tel
Aviv, Israel, some residents gathered to create a group that filed suit against one navigational
app [256].

In economics, the cap-and-trade approach is relevant when tools exist to mitigate the
externality, and when the externalities can be evaluated properly. If the externalities are
not correctly evaluated, then the cap-and-trade approach might negatively a↵ect the market
without being aware of it. For example, in Leonia, NJ the restrictions on non-residents
created issues for local businesses because it decreased the city’s accessibility and, as a
consequence, its attractivity [217].
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When the system is complex, and accurately estimating the externalities of the market
is arduous. Instead of putting hard constraints on the market, softer constraints can be put
through the use of taxes.

Internalizing the externality with Pigovian taxes.

Another way to reduce the negative externalities of a market (or market failures) is to
internalize them. More specifically, a regulator can tax the costs of the externalities to the
market participants. Such taxes are called Pigovian taxes [203], as they were derived from
Arthur Pigou’s work [184]. For example, a sugar tax that discourages unhealthy diets and
o↵sets the economic costs of obesity is a Pigovian tax.

In the case of information-aware routing, an obvious Pigovian tax consists of charging
commuters for using a specific route. As an illustration, between Monterey, CA, and Carmel-
by-the-Sea, CA, the 17-miles drive is tolled to keep quiet the residential area around it [233].

Lombard Street pricing. Another example is Lombard Street in San Francisco, CA. In
the 2010s, according to a study led by the San Francisco transport authority, the “crooked
street” welcomed over 2 million visitors per year [200]. During a busy day, the scenic section
of Lombard Street (between Hyde St and Leavenworth St) was overcrowded by more than 8
thousand pedestrians and 2.5 thousand vehicles. This swarming congests the nearby areas,
especially above the winding part (spilling back above Larkin St). Residents complained
about the mess led by the visitors’ spillover: indeed, according to a survey, the noise, the
littering, and trespassing incidents were making that place less bearable than a common
residential area [200]. To counter those issues, many propositions had been proposed. For
instance, a short-term proposition (made by residents through a survey) was to penalize
the tour companies that were contributing to the super-concentration of visitors and to be
stricter on people’s behavior (add more o�cers and raise the fines in that area). There was
also a proposition of putting signs in di↵erent languages to dissuade visitors from using that
road. A long-term solution was to implement cut-through pricing to regulate the number of
comings and goings. In June 2014, the “crooked street” was completely closed for vehicles
(except for residents) during the 6 most crowded hours of the day (12:00 PM to 6:00 PM).
As a result, there was no more congestion above the problematical section of the street, and
the pedestrians were more numerous [200]. Regulating the number of cars and remodeling
the infrastructure seemed to be a solution to counter cut-through issues. To that extent, San
Francisco’s Board of Supervisors unanimously OKed state legislation on April 16th, 2019,
that requires people who want to drive down the street to make a reservation and pay a fee
($5 or $10 depending on the day). The bill was accepted by both the Californian assembly
and senate with a large majority [49]. However, the bill was later vetoed by Gov. Gavin
Newsom to prevent social equity issues [106]: the road should be “available to all, regardless
of their ability to pay”.
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Electronic Road Pricing (ERP) in Singapore. In Singapore, electronic road pricing
enables the government to tax the usage of given roads during specific hours of the day [101].
Combined with license plate readers, the ERP system in Singapore can recover the routes of
vehicles in the network. Therefore, this system is able to influence any vehicle’s route choice
through specific financial incentives. However, the author believes that due to potential
privacy threats, it is unlikely that such systems will exist in the U.S. or Europe anytime
soon.

Speed limit decrease as an imperfect Pigovian tax. When thinking about the travel
time as a cost of travel, increasing travel time on some local roads can also be interpreted
as a Pigovian tax. For example, the city of Fremont installed speed bumps in 2016 to slow
down tra�c and avoid cut-through in the Mission San Jose neighborhood [26]. The tra�c
management strategies presented before were selective: controlled access (like in Leonia,
NJ), or road pricing for non-residents (like the 17-miles drive between Monterey, CA and
Carmel, CA) only impacts the commuters. However, decreasing the speed limit increases the
travel time for every vehicle, penalizing the residents as much as commuters. This uniform
impact over the vehicles is due to imperfect tax di↵erentiation [77]: it impacts every vehicle
the same way, even if cut-through travelers have a higher negative externality on local roads
than residential drivers.

The cost of imperfect di↵erentiation in tra�c congestion management

In this subsection, we introduce a benchmark example to understand the cost of imperfect
di↵erentiation when decreasing speed limit in order to calm tra�c. Let consider the network
shown in fig. 4.13.

The network is a benchmark for Fremont, CA, the link l1 represent the I-680 highway,
and both link l2 and l3 represents the Mission boulevard, a minor arterial urban road used
as a cut-through by some commuters. We use the static tra�c assignment (section 3.1) to
represent the tra�c allocation in the network. The commuter demand is set to dod1 = 20,
the resident demand is set to dod2 = 1. There is no other demand.

We consider three routes p1 = od1, p2 = od2d1, and p3 = od2. We do not consider any
other route. All the resident demand is using the route p3, and the commuter demand should
be allocated between p1 and p2. We denote h1 = hp1 , h2 = hp2 , and h3 = hp3

We consider that the city of Fremont can change the speed limit on the Mission boulevard
section l2. Therefore, the link travel time functions (definition 1.2.7) are given by:

t1(h) = 8 + f1

t2(h) = 2 + ⇡ + 2f2
t3(h) = 4 + 2f3

Where ⇡ 2 R+ is a variable that Fremont can set to update the speed limit on l2, and
f = �h.
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Figure 4.13: The benchmark Fremont game network.
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We denote � = h1
dod1

the percentage of commuters using the I-680 freeway. The user

equilibrium condition (definition 3.1.7) gives that � = min{1, 0.8 + 0.1⇡}.
We consider that the city of Fremont would like to set the speed limit (i.e., find ⇡) such

that the travel time of the resident is minimized and that no commuters use local roads.
A tradeo↵ needs to be made by the city when setting the speed limit: a high speed limit
means fast travel time for the resident but high cut-through tra�c, while a low speed limit
can decrease cut-through tra�c but penalizes the residents who drive. We model the cost
that the city of Fremont minimizes as:

JF (h) = h
2
2 + 2t2(h)

In this set up, ⇡? = 5 minimizes the cost of the city. In this case, � = 0.85, t2 = 25 and
t1 = 15. The results are presented and discussed in fig. 4.14.

The variable ⇡? can be interpreted as a Pigovian tax. The commuters are su↵ering from
the Pigovian tax. If ⇡ = 0, then � = 0.85 and the commuters’ travel time would be t1 = 24.
Therefore, the commuters have a deadweight loss of 1 [114].

Ideally, the city could minimize the amount of cut-through tra�c while maximizing the
speed for the residents. This could be done with route-based pricing, for example. In this
context, the usage of p2 would be heavily taxed, while the usage of p3 would not be taxed
at all. However, in the scenario shown, the city cannot di↵erentiate between the commuters
and the residents when setting the speed limit on Mission boulevard (l2). Decreasing the
speed limit on Mission boulevard is a Pigovian tax with imperfect di↵erentiation [77]. The
optimal tax would be such that � = 1 and ⇡ = 0. In this case, the resident would have
a travel time of t2 = 4. Therefore, the cost of imperfect di↵erentiation in this benchmark
example is 11 [77].

Instead of increasing the cost of the market participants (the vehicles) that create exter-
nalities, a regulator can subsidize market participants that do not create externalities. For
example, a city can subsidize public transportation to decrease the tra�c demand.

Reducing the facility demand through road facilities management

Because the cut-through tra�c is a facility demand issue, a city can manage its road facilities
to decrease the facility demand. As of 2022, the author mainly found that decreasing the
speed on cut-through roads (Pigovian taxes) and adding access restrictions (cap-and-trade)
have been implemented to mitigate cut-through tra�c.

To decrease the speed of cut-through roads, cities can:

• Set up stop signs, as done by Fremont, CA (see fig. 2.5) [121].

• Set up speed bumps/humps/lumps, as done by Passadena, CA [156] or partially
by Fremont, CA [26].

• Reduce the speed limits [52]. This can be achieved by setting up low-speed alerts or
low-speed zone around schools or senior apartments [214].
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Figure 4.14: The Fremont game results. The cost of the path p1 as a function of the
percentage of commuters using the I-680 freeway � is shown in blue. This cost does not
depend on the action ⇡ of Fremont. The other curves represent the cost of the path p2 for
di↵erent scenarios. The user equilibrium condition is translated by the equalization of the
travel time between p1 and p2. On the figure, this equalization happens at the intersections
of the curves (points A and B). When the market is not regulated (⇡ = 0), the cost of
p2 is shown in green. In this case, the user equilibrium is located at the point B, where
� = 0.8 and t1 = 24. When the city of Fremont best regulate the market (⇡ = 5), the cost
of p2 is shown in orange as a function of �. In this case, the user equilibrium is such that
� = 0.85 and t1 = 25. The optimal regulation would be such that � = 1 and ⇡ = 0. In
this case, the cost of p2 is independent to �, and it is equal to 9 as shown in red on the
figure. In economics, the di↵erence in the cost of p2 between the free market scenario and
the scenario with regulation is referred to as the deadweight loss. It is the y distance between
A and B (equal to 1 in this scenario). The di↵erence in the cost of p3 between the scenario
with regulation, and the scenario with optimal regulation (� = 1 and ⇡ = 0) is the cost of
imperfect di↵erentiation. As an example, the cost of imperfect di↵erentiation for p2 can be
seen as the distance between B and the red curve (equals to 15 in this scenario).
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• Change the timing of the signals [81], as done by Fremont (see fig. 2.5).

Access restriction can be done using:

• Diverters; Berkeley, CA uses diverters to forbid the usage of some roads. This had
been done to redirect tra�c on main roads in a very grid-like tra�c network with small
residential roads.

• Turn restrictions; In Sherman Oaks’ in Los Angeles, CA “no-turn” road signs have
been set up to redirect cut-through tra�c [23].

• Dynamic turn restrictions; In Fremont, CA, variable message signs [253] that in-
dicate dynamic turn restriction have been used (see fig. 2.5).

• Controlled access; In Leonia, NJ, the police enforced the road closure of 60 streets to
all drivers aside from residents and people employed in the borough during the morning
and afternoon peak hours in 2018 [145]. The city of Leonia, NJ was soon joined by
Weehawken, NJ, a nearby city [125].

• Road closure [234]; In Baxter street, Los Angeles, CA went even further and closed
one direction of the road [54] to prevent crashes from drivers following directions from
navigation apps that are inept to handle the steep incline drive.

Other tools have been implemented. For example, the city of Fremont used variable
message signs to incentive drivers to not take the cut-through roads (fig. 2.5).

The facility demand can also be reduced by reducing travel and tra�c demand. Some
tools have been shown in table 2.2. However, decreasing the travel or the tra�c demand is
not something that can be done by cities alone (e.g., Fremont, CA is in the San Francisco Bay
Area or Leonia, NJ is in the New York City metropolitan area). And it requires long-term
thinking about urban planning, which is not directly related to tra�c management.

Pleasanton case study. Before navigational apps, the city of Pleasanton, CA was already
fitting against cut-through tra�c on their local roads [141]. In 2000, during morning peak
hours, vehicles coming from the cities east of Pleasanton (like Livermore, Tracy, or Stockton),
and going to the Bay Area (especially going to the Silicon Valley) were facing congestion to
reach the Southbound I-680 from the Westbound I-580 (and vice versa in the afternoon). To
avoid congestion, some vehicles cut through Pleasanton local roads, creating a lot of tra�c
in residential areas.

Following the tra�c management steps outlined in section 2.2 (fig. 2.3), the city of
Pleasanton first evaluated the state of tra�c using speed surveys in 2002 [33]. The city
of Pleasanton then decided to implement several tra�c-calming measures, including ramp
metering, decreasing speed limits, and closing some roads.

Later, to answer each resident complaint, the city launched its tra�c-calming program:
the City of Pleasanton Neighborhood Tra�c Calming Program [63]. As of 2022, the program
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filters the complaints of the residents regarding speeding or high volumes and sends them
to the Tra�c Unit Supervisor. After determining the importance of the tra�c concerns,
the tra�c unit supervisor ensures e↵ective and proportionate solutions. First, speed trailers
and speed limit signs are set up to decrease speeding. Then, speed radars might be intro-
duced. If the problem persists, the city may implement speed lumps, street closures, or turn
restrictions. For example, residents complained about cut-through tra�c on Laurel Creek
drive [123]. Tra�c studies in 2016 showed that the cut-through drivers amount to 84% of
the tra�c [123]. The city decided to implement the first set of tra�c-calming measures,
which lead to a 60% decrease in the cut-through tra�c. To have a larger impact, the city
eventually decided to close the Southbound Laurel Creek to all turns from Dublin Canyon.

Out-of-the-box mitigation techniques

While the city of Pleasanton addressed the cut-through tra�c challenges using techniques
from a tra�c management textbook, other cities and residents have used out-of-the-box
techniques.

Fake street signs were posted to confuse drivers. For instance, in the Sherman Oaks
neighborhood in Los Angeles, CA, “no-turn” signs were installed by residents [23]. Signs
that aim to raise the awareness of commuters about cut-through tra�c have been observed
by [196, 191].

Some residents went further and tried to spoof the apps by injecting fake data into
the app, asking residents to walk slowly with the app turned on to provide slow-moving
GPS points to the app, or reporting false accidents. This technique had been previously
used by Technion students to highlight weaknesses of Waze against cyberattacks [172]. The
web contained several discussion forums on how to “spoof” apps (or “keep apps out of
neighborhoods”), see for example [6].
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Part II

Simulating routing behaviors
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Chapter 5

Calibration and validation of Aimsun

tra�c microsimulation

In order to pick the best mitigation techniques against cut-through tra�c, tra�c planners
and operators should predict or evaluate the impact of possible of the management strategies
they can implement (see fig. 2.3). Because transportation systems are complex, this might be
challenging. As stated in section 2.2, cities can perform case studies (by looking at chapter 4
for example), they can use trial and errors, or they can use models and simulations to predict
the impact of tra�c management techniques.

In this chapter, we desire to understand the impact of information-aware routing and
tra�c-calming measures (e.g., tra�c signal timing changes) on congestion and business at-
tractivity in the Mission San Jose district in Fremont, CA. The di↵erent type of simulations
a city can perform are presented in section 5.1. Most of the challenges of running a tra�c
simulation are not apparent until one creates their own. Therefore, this chapter first gives
an overview of tra�c microsimulations and describes the process to create, calibrate and
validate them (section 5.2). To illustrate the process, a realistic, open-source simulation
with a 2000-link network where tra�c conditions dictate the routing behaviors of around
75,000 vehicles every day – namely, the Mission San Jose district in Fremont – is provided
to researchers that seek to try out and test ideas in a similar environment [135]. Section 5.3
specifies the input data needed, and section 5.4 enumerates the steps to follow to run an
Aimsun simulation [227]. Finally, section 5.5 explains the model calibration process and sec-
tion 5.6 describes the output analysis that can be done after running the simulation.

The work presented in this chapter was done in collaboration with a team of UC Berkeley
researchers.

5.1 Existing tra�c simulator

Every year, each person living in a city in the United States loses in average 84 hours and
33 gallons (124.92 liters) of fuel in tra�c congestion [150]. To address congestion, cities can
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understand the impact of tra�c congestion mitigation techniques using digital twins (i.e.,
simulations) of their tra�c (see section 2.2).

As stated in section 2.2, transportation planning is inherently related and interconnected
to urban planning. Specific interaction within the land use cycle (fig. 2.2) can be cast using
di↵erent type of models, depending on the problem a planner might want to solve.

Land use models

Land use models [249] estimate how accessibility and attractiveness impact the land use.
As an illustration, using tra�c data and demographics as input, UrbanSim [245] models
household, employment, real estate, and potential evolution in job location, urban density,
and building constructions.

Travel demand models and simulations

Using land use data coupled with demographics data, travel demand models estimate the
need for transportation [169, 201]. More specific, they estimate and forecast the travel and
tra�c demand (definition 2.1.3 and definition 2.1.4). These models are relevant to estimate
mode-shifting opportunities or latent demand, for example. There are three main approaches
of transport demand modeling.

Trip-based models [169] are the historical way to generate facility demand from so-
ciodemographic data. In particular, since the 1950s, the classical four-step model [161] has
been used extensively by planners. In this model, a trip is an origin, and a destination.
Trips are aggregated across space in origin-destination demand matrix (OD matrix) (defi-
nition 1.2.10) using transportation analysis zones (TAZs) (definition 1.2.9. The model first
generates a distribution of outbound and inbound trips across transportation analysis zones
(TAZs) (trips generation). Second, the inbound trips and outbound trips across all TAZs
are matched into origin-destination (OD) matrices (trip distribution). Third, for each od

pairs, the modal split is estimated (modal split). Finally, the tra�c demand is assigned to
routes using the static tra�c assignment (definition 3.1.12) (route assignment). The four-
step model is a static model, that estimates total travel during a day without modeling any
dynamics in the network.

Activity-based models [32] extends the trip-based models by associating to each trip a
purpose (work, shopping, or leisure). This feature enables modeling heterogeneous departure
times. It also enables taking into account the demand elasticity with respect to the network
tra�c conditions. MATSim [21], TransCAD [151], Visum, or CEMDAP [185] are few software
products that enable solving activity-based models.

Finally, agent-based models extend the activity-based model by modeling each agent,
instead of each trip [257]. Therefore, agent-based models can reproduce carpooling behaviors,
and model that most commuters come back to their home after working during the day.
MATSim [21], BEAM [19] (that was built on MATSim), or ActivitySim [95] are few software
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products that enable solving agent-based models. Agent-based models can also be solved by
researchers using their own algorithm, like [160].

The travel demand models do not represent the tra�c dynamics on individual links.

Tra�c models and simulators

Assigning the OD demand (definition 1.2.10) to dynamic routes is done by dynamic tra�c

assignment models [59, 231]. Once the route of each vehicle is known, computing the
dynamic road section tra�c loads in the network is called dynamic network loading [59].

In this dissertation, we refer to the tra�c demand (definition 2.1.4) as the demand that
travels using the road network, without a route being specified (see fig. 2.1). However,
in the transportation engineering academic literature, the tra�c demand might refer to a
di↵erent notion: in the four-step model [161], it refers to what we called in fig. 2.1 the
link facility demand (definition 2.1.5). Our choice is motivated by the fact that we are
interested in understanding the impact of information-aware routing on tra�c. With the
rise of information-aware routing behaviors, the author believes that the tra�c demand

should not include the individual route choice anymore. Consequently, tra�c models
might refer to models that perform both the dynamic tra�c assignment and the dynamic
network loading, but it might also refer to models that only perform dynamic network
loading.

Three types of tra�c flow modeling exist [57, 59].
Macroscopic models aggregate vehicles into tra�c flow (definition 1.2.5), making the

internal assumption that tra�c behaves like a fluid [59]. These models can be static (like the
four-step model [161], or the static tra�c assignment (definition 3.1.12)) or dynamic. Aim-
sun [227], Cube, POLARIS [16], Visum, TransCAD [151] are few macrosimulation software
products.

Microscopic models represent each vehicle in the network [59]. Microsimulation re-
produces individual driving behaviors and fine-grain tra�c resolution. The interaction of
each vehicle with its environment is modeled using car-following models, lane-changing
models, and route-choice models [59]. Aimsun [227], Cube, TransModeler, POLARIS [16],
SUMO [27], Vissim [86], MISIMLab, Synchro, BEAM [19], Paramics [50], ActivitySim [95]
are few microsimulation software products.

Mesoscopic models fit in between and represent a compromise between macroscopic and
microscopic modelling [59]. They model every vehicle, but only the interaction between a
vehicle and the tra�c flow is modeled. The interaction between a vehicle and the tra�c flow
can be modeled with fundamental diagrams of tra�c flow, exit-functions, or queuing mod-
els [59]. Some mesoscopic models are event-based models: they model interaction between
vehicles and the tra�c flow as events that might not require to model time continuously.
The mean-field routing game model presented in chapter 6 is an event-based mesoscopic
model that uses fundamental diagrams of tra�c flow. Aimsun [227], Cube, TransModeler,
POLARIS [16], SUMO [27], Vissim [86], MISIMLab, Synchro, BEAM [19], Paramics [50],
ActivitySim [95] are few mesosimulation software products.
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In the team’s knowledge, within the tra�c simulations options, only microsimulations
can help understand the impact of a change in tra�c signal timing plans on road tra�c at
scale. Within the available tra�c microsimulator, Aimsun is used in this chapter because
it includes macroscopic, mesoscopic and microscopic simulation options, and it can be used
with an academic license.

Motivation

This chapter aims to give city planners and tra�c engineers the necessary tools and method-
ology to create, calibrate, and validate a large-scale road tra�c microsimulation (i.e., where
routing behaviors impact the state of tra�c). An accurate tra�c simulation model will
facilitate transportation engineering in multiple aspects, from tra�c congestion improve-
ment [206] to applications for autonomous driving [57]. Existing literature provides a high-
level overview and comparison of tra�c simulation and its development [183, 9, 57, 206],
the benefits and applications of tra�c simulation [57], and an abstract framework for con-
structing a simulation [143, 236]. Existing literature also includes a closer examination of
simulation models with various techniques for calibration and validation of simulations under
di↵erent scenarios [154, 30, 115, 178, 220, 41]. This chapter has a similar pattern of creating
a microsimulation compared to [236], but it also introduces a machine learning based method
for model calibration. The team found that none of the above-mentioned literature shares
any generalizable or transferable blueprint for the end-to-end process of creation, calibration,
and validation of a microsimulation. Because the processes of developing tra�c microsimula-
tions are very similar across di↵erent cities, this chapter aims to provide a detailed handbook
and publicly available code source for creating a microsimulation.

Note that tra�c microsimulation only makes sense when fine-grain tra�c data needs
to be modeled and when case studies or A/B experiments are unavailable or unrealistic
(see section 2.2). Tra�c microsimulations cannot be used for demand analysis (such as for
assessing the impact of ride-hailing companies with the respect to the number of trips [97])
or mode shift analysis [32, 169, 257]. In addition, microsimulations are not relevant when
data is missing to calibrate the simulation.

5.2 Simulation overview and its creation process

Tra�c simulations [57] provide tra�c information visualizations and related figures, which
include vehicle hours traveled (VHT), vehicle miles traveled (VMT), mean delay per vehicle,
gas emission, accessibility index, etc.. It facilitates a comprehensive analysis of the design
and e�ciency of the transportation system in question (section 5.6).

In this chapter, we refer to tra�c simulations as the simulation of road tra�c (vehicle
flows in the network over time), given a tra�c demand (people’s origin, destination, and de-
parture time grouped into timed origin-destination matrices) and a road network (including
road sections, lanes, intersections, road signs, and tra�c signal timing plans) as inputs.
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Simulations can be aggregated macroscopically, mesoscopically, and microscopically [57]
(see section 5.1). In this work, Aimsun Next 22 [227] is used to perform microsimulations,
where the focus is on the individual elements in a transportation system.

In a microsimulation, individual vehicles are generated and assigned to a route. Their
movements are simulated across the road sections [57]. Before being generated, each ve-
hicle is defined by an origin, destination, departure time, and optionally, a vehicle type
(definition 1.2.4). The vehicle input data are aggregated across space and time into timed
origin-destination (OD) matrices for each vehicle type (definition 1.2.10). Space aggregation
uses transportation analysis zones (TAZs) (definition 1.2.9), while time aggregation uses
time buckets (definition 1.2.2). Lanes of contiguous road sections are connected through
unsignalized intersections (with yield or stop signs) or signalized intersections (with given
tra�c signal timing plans and a master control plan). Assigning each vehicle to a route is
sometimes referred to as route assignment, while the simulation of vehicle movement through
the network is commonly referred to as dynamic network loading [57]. Simulated link flows
(definition 1.2.5) and network traversal times can be compared to ground data with which
to calibrate and validate a proposed model. For the Fremont San Jose Mission district
microsimulation, input data are described in (section 5.3).

Generally, when it comes to modeling transportation systems, there exists a notable
tradeo↵ between the number of model variables and the risk of overfitting, a result of the
large quantity of data needed to calibrate complex transportation models [41]. With this in
mind, real data – set aside for model calibration – should be split into training and testing
data to decrease the overfitting risk [255].

Before calibrating a microsimulation (section 5.5), one needs first to fix any existing
network and demand issues (connectivity issues, wrong number of lanes, wrong tra�c signal
plans, small mistakes in the master tra�c control plan, obvious error in the demand data).
The first phase of calibration is done without simulation by matching simulated and ground
total counts of vehicles entering or exiting the network. This is then followed up by the second
phase of calibration, done through macrosimulation. Once the OD demand is calibrated,
the driving behaviors (routing, car-following, lane-changing models), and microsimulation
parameters (like simulation time step) can be calibrated using optimization algorithms that
work with expensive function evaluations (this work uses a genetic algorithm that is highly
parallelizable).

Once calibrated, the microsimulation can be validated using eyeball estimation or con-
crete metrics alike. Eyeballing mainly consists of understanding where and when the con-
gestion occurs in the input network and checking for consistency with any prior knowledge
about the network’s congestion. Metrics of e↵ectiveness (MOE) can then be used for a more
rigorous second validation. For example, the mean delay per vehicle over time in the net-
work indicates when the peak hour happens in the network and is a strong indicator of the
global quality of the simulation. Finally, more specific data like detector flows and network
traversal times can be used to validate the simulation against ground data.

Once the simulation is created, calibrated, and validated, it can be used for tra�c analysis
(section 5.6). For example, the causes of congestion can be derived from the simulation, and
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it can be used to test congestion mitigation policies.

5.3 Microsimulator input data

The required inputs for a microsimulation are a network (definition 1.2.3) and a dataset
of timed origin-destination demand (definition 1.2.10). Tra�c data may also be used to
calibrate and validate the simulation. The data used by the team to simulate the tra�c
in the Mission San Jose district around Interstate 680 and Mission Boulevard (State Route
238/262) in Fremont, CA is openly available and the process of calibrating the input data
and importing it in Aimsun is reproducible [135].

Network

The road network is made up of constituent road sections connected through signalized or
unsignalized intersections. To create this network, the team downloaded the OpenStreetMap
(OSM) [109] network model using the bounding box defined by the following coordinates:
north: 37.5524, east: -121.9089, south: 37.4907, and west: -121.9544 and first cleaned it in
ArcGIS [38] (see fig. 5.1). After importing the network into Aimsun [227], Google satellite,
Google Maps, and Google StreetView images were used to perform manual adjustments to en-
sure the accuracy of connectivity, yield and stop sign locations, and lane counts (see fig. 5.2).
Speed limits were calibrated using the data provided by the City of Fremont and road ca-
pacities were adjusted using the data from the Behavior, Energy, Autonomy, and Mobility
(BEAM) model which is an open-source agent-based regional transportation model [19].
Then, tra�c signal plans (including the ramp meters and the master control plan) from
the city and CalTrans were added using the Aimsun graphical user interface (GUI). Finally,
tra�c-calming measures (primarily turn-restrictions) were created in the simulator. In sum-
mary, the modeled network has 5,626 links, including 111 freeway sections, 373 primary road
sections, 2,916 residential road sections, and 2,013 nodes (intersections), 313 of which have
stop signs and 37 of which have tra�c lights (26 operated by the city and 11 operated by
CalTrans). The overall process to create and fix the network (with tra�c signal plans) took
our team about 600 person-hours to complete.

Origin-Destination Demand

The origins, destinations, and departure times for every vehicle are aggregated into timed
origin-destination demand matrices (definition 1.2.10). Origins (or destinations) are clus-
tered into transportation analysis zones (TAZ) (definition 1.2.9), which are bijective to the
set of centroids connected to internal or external entry/exit nodes in the network. The 16
square-kilometers network area is divided into 84 internal centroids and 11 external centroids
(see fig. 5.3). Departure times are aggregated into 15-minutes time intervals. Between 2pm
and 8pm, 75,000 vehicles are modeled (including 45,000 commuters and 30,000 residents).
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Figure 5.1: On the left: OSM network with the bounding box. On the right: corresponding
Aimsun network after cleaning.

In this work, the demand data was derived from the SF-CHAMP demand model [126] from
the San Francisco County Transportation Authority and from a StreetLight study [192] per-
formed for the City of Fremont. Unfortunately, there is no reproducible process to create
accurate demand data as of now, which is where most of the major challenges of realistic
tra�c simulation remain. However, demand data accuracy can still be slightly improved
through calibration against ground data (section 5.5).

The overall process to create and calibrate the origin-destination demand took our team
around 600 person-hours to complete.

Tra�c data

To calibrate against ground data, one can utilize ground flow, speed, or/and travel time data,
each of which can be directly imported within Aimsun as a Real Data Set. In this study, flow
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Figure 5.2: An intersection of the Aimsun network before and after manually editing the
OSM network using Google Satellite images.

data is generated from 56 city flow detectors and 27 CalTrans Performance Measurement
Systems (PeMS) detectors [243]. Speed and travel time data can be acquired using the
Google Maps API [102]. In this study, travel time data was gathered from driving in the
area. The overall process to create tra�c data took our team 400 person-hours to complete.

5.4 Simulation

Once the input data is imported into the Aimsun simulator, simulations can be run, gener-
ating simulated tra�c data as output.

Running a simulation

To run a tra�c simulation in Aimsun, one first needs to create/import the network. Second,
the OD demand data should be imported, and a tra�c demand (a list of timed OD demand
matrices with scaling factors) should be generated. Optionally, tra�c data can also be
imported. Once all imports are complete, a tra�c simulation can be created, with many
mutable parameters (see full list in section 5.5). From here, the simulation can be run.

Creating and running a simulation can be done using the Aimsun’s GUI, but, for the
sake of reproducibility, the team opted to write Python scripts for each step of the process.
The open-source repository is self-contained, and any readers with an Aimsun 22.0.1 license
should be able to reproduce all the steps explained below and run the same simulation
performed by the team [135].
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Figure 5.3: On the left: Transportation analysis zones (TAZ). On the right: The OD demand
plotted with desire lines. A commuter (aggregated into red lines on the right plot) is a vehicle
with an origin and a destination, which are both external centroids (red TAZ on the left
plot). A resident (aggregated into blue lines on the right plot) is a vehicle departing or/and
arriving from or/and to an internal centroid (blue TAZ on the left plot).
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First, the network can be imported directly from OpenStreetMap (OSM) in Aimsun.
For this work, the team did some processing of the OSM network data in ArcGIS before
importing the OSM network from an external file in Aimsun. Speed limits and vehicle
capacities for each of the road sections can then be updated. Then, the ramp meters, the
tra�c control plans, the master control plan, and the tra�c management strategies are
imported. Among these, correctly configuring the tra�c control plans took most of the time
because of the many parameters that needed to be changed for each tra�c light to consider
various settings and actuation. The demand data is also imported into Aimsun, which is
created by importing the centroid data with the centroid connectors. The centroid data
contains the OD demand data, which is converted to tra�c demand. The ground flow data,
the final bit of input, is then imported as a real data set inside Aimsun.

A Jupyter Notebook was designed to define any configurable model characteristics out-
side Aimsun (including time step size, routing model, driving behavior, or output database
location) needed to generate the simulation. Finally, the simulation can be run. Running
the 6-hour-long simulation takes between 30 minutes and 4 hours, depending on the data to
output and the input data size.

Simulation Output Data Description

Microsimulation models can generate detailed data for every vehicle corresponding to its car
following, lane-changing, and gap acceptance behavior. These characteristics can be observed
through simulation playback, using Aimsun’s GUI to visualize each vehicle’s motion through
the network. These results can also be aggregated to compare the macroscopic simulation
results vs. real data sets with respect to factors such as flow, speed, and travel time.

In Aimsun, while the outputs can be accessed using the GUI, it is also possible to save
them as SQLite tables. The output tables [228] contained in the output database are defined
in the microsimulation configuration. Each table contains di↵erent types of statistics, and it
is important to identify which tables are necessary to generate before running the simulation
to prevent data cluttering. For example, the MISYS (microsimulation system) table contains
system-level statistics about the entire network, such as VMT, VHT, total gas emissions, or
average delay across all road sections. The SQLite output databases are used as primary data
sources for simulation outputs throughout calibration (section 5.5), validation, and analysis
(section 5.6).

5.5 Calibration

The challenges of creating a realistic microsimulation of city tra�c lie in its calibration. To
calibrate a microsimulation, one needs first to fix all the network issues. Then, OD demand
can be calibrated without simulation by matching the total counts of vehicles entering or
exiting the network. Macrosimulation can then be used to conclude the demand calibration,
by matching all detector counts in the network. Once the OD demand is calibrated, and
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after having chosen a route choice model, the driving behaviors are calibrated using a genetic
algorithm. The OD demand calibration and driving behavior calibration procedures can be
reproduced from the provided open-source code [135].

Network and demand apparent issue fixes

A first test to ensure that the input network and demand data are not flawed can be done
by running a simulation with 50% of the demand and checking that no congestion occurs in
the network. Congestion can be detected with the Aimsun GUI by playing the simulation.
It can also be detected with total delay in the network across time, or with the mean travel
time per vehicle-mile. A second check – with a full-demand simulation – can be done by
looking at gaps between the ground flow and the simulated flow that are below 50% or above
200%.

The team used GitHub [98] to report, follow and solve any apparent network or demand
issues. On average, simulation tests found 4 to 5 issues. Each issue was assigned to a team
member, and around 2 issues were solved per team member per week. 43 issues of this
variety were reported in total. The overall apparent issues fixes process took around 500
person-hours. The issues included:

• Updating incorrect lane connections at intersections.

• Changing erroneous road section geometries.

• Changing wrong numbers of lanes on road sections.

• Removing parking lots, where cut-throughs were performed in the simulation to avoid
congestion at tra�c lights.

• Updating improperly imported tra�c signal plans.

• Updating master tra�c control plans to solve missing synchronization between tra�c
signal plans. The team found one ground truth congestion issue that could be solved
by synchronizing tra�c lights operated by the state with the tra�c lights operated by
the city on Auto-Mall Pkwy and the I-680.

The team realized during this process that the input demand data used was biased
towards the northwest, which is likely a byproduct of the demand being sourced from the
SFCTA CHAMP demand model, which aims to replicate tra�c in San Francisco (located to
the northwest of Fremont). An accurate initial demand data is key for a realistic simulation.

OD demand calibration without simulation

A first calibration of the OD demand described in (section 5.3) can be done without simu-
lation. To do so, the total demand is scaled up or down such that the ground flow data at
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every external entry or exit point matches the demand data that enter or exit the network at
said point (each of which is represented by an external centroid derived from external TAZs).
This approach is very similar to the one used in [105]. The objective function minimizes is
shown in eq. (5.1):
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(5.1)
Where, using notations and definitions from section 1.2; C is the set of centroids, o and d are
origin and destination centroids, ⇥ is the set of time bucket, and ✓ is one time bucket, fl,✓ is
the ground flow data for the time bucket ✓ on the detector l, and d(o, d, ✓) is the number of
vehicle that exit the origin o to reach the destination d during the time bucket ✓.

And, where; Cext is the subset of external centroids, mapd(d) is the detector associated
with the destination centroid d, and mapo(o) is the detector associated with the origin
centroid o.

This approach can be used to derive how the demand changes over time in cases when
the current OD demand matrices and the flow data over the years are available.

OD demand calibration with macrosimulation

Once the OD demand is calibrated against entry or exit flows, it can be calibrated against
all detector flows in the network by assigning the OD demand to routes and counting the
number of vehicles going over each detector. To assign the OD demand to routes without
simulating each individual dynamics, the static tra�c assignment can be used [181]. OD-
demand calibration aims to better align the simulated and ground detector flows. This OD
adjustment is done by solving the constrained generalized least-squares described in eq. (5.2)
as adopted from [29]:
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Where, using notations and definitions from section 1.2; d̂ is the calibrated timed OD de-
mand, D ⇢ L is the set of detectors, f̂l,✓(d̂) is the simulated flow on detector l during
the time bucket ✓ given the demand d̂, ddd is the prior demand before the calibration with
macrosimulation and after the calibration without simulation, and � is a scaling factor to
avoid overfitting the flow data. In this subsection, the simulation to create f̂l,✓(d̂) is the
static tra�c assignment (definition 3.1.7).

To reduce the risk of overfitting, a regularization term that penalizes large modifications
of the prior demand can be added to provide a balancing e↵ect [29], formulated as the
Frobenius norm [28] of the di↵erence between the calibrated and the original OD demand
matrices. This approach is not exclusive to the Frobenius norm – other norms such as the
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nuclear norm [28] could be considered for regularization. In [162], the l1 norm is used to
compare the OD matrix elements. The comparison of results between the macrosimulation
results after OD adjustment using the training and testing sets with a small regularization
term is shown in fig. 5.4, where overfitting can be observed. In this work, to avoid overfitting,
the regularization term was scaled by a large factor � = 10 such that the OD demand matrix
after the macrosimulation calibration was very similar to the OD demand matrix after the
calibration without simulation.

Finally, the validation of the calibrated matrix was done with flow regression plots. Flow
regression plots compare simulated values with real-world values by scatter-plotting them as
y and x-axes, respectively. A linear regression is then fitted onto the data points to draw
the line of best fit [83]. The slope and intercept of the regression can then be compared to
the ideal y = x line to determine whether the simulation model tends to over/underestimate
the plotted metrics and whether there is bias in the model. Performance metrics of the
linear regression [83], such as the coe�cient of determination (R2), root-mean-square error
(RMSE, or nRMSE when normalized), and the mean absolute percentage error (MAPE) can
be computed to determine the accuracy of the simulated flow.

Choice of the routing model

Once the network is bug-free and the OD demand is calibrated, the microsimulation can be
run. By design, the microsimulation has many modifiable parameters to calibrate individual
driver behaviors. Some of the most important microsimulation parameters are about routing
behaviors.

A routing model assigns travelers to a series of links to get from one centroid (origin) to
another (destination). There exist two types of routing models [59]:

1. The one-shot assignment model assigns routes and runs the simulation once. When
assigning vehicles to route, only past and current information are used, and no assump-
tions are made about the future. The route is given following a stochastic route choice
(SRC) model [59].

2. The iterative assignment model assigns routes and runs the simulation iteratively
until the travel cost experienced by each vehicle at the end of their trip cannot be
minimized by unilaterally changing the route of the vehicle. This equilibrium state is
referred to as the dynamic user equilibrium [59] (sometimes called Wardrop equilibrium
or Nash equilibrium, see definition 3.1.7).

Because running many simulations iteratively takes a lot of time, the team opted for a
stochastic route choice (SRC) model. Several SRC models are available in Aimsun (fixed-
route under free-flow conditions, fixed-route under warm-up period tra�c conditions, bino-
mial model, proportional model, logit model, and C-logit model). Considering the tradeo↵
between accuracy and simulation run time, the team chose to use the C-logit model [53]
after experimenting with the di↵erent models.
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Figure 5.4: Assigned/simulated tra�c vs. observed/actual tra�c flow regression plots after
Aimsun’s default OD demand calibration with macrosimulation. On top: Training results.
At the bottom: Testing results. Very good training results (slope of 0.96 and R

2 of 0.9, both
close to 1) accompanying poor-quality testing results (slope of 1.11 and R

2 of 0.81, further
away to 1) show that the calibration has over-fitted the training demand data.
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The C-logit route choice parameters include [53]:

• The number of alternate routes considered for each vehicle route choice.

• The cost update frequency (definition 3.2.1)

• The percentage of vehicles allowed to reroute en route.

• The averaging parameters for past and current (instantaneous) travel cost parameters.

• The route cost function parameters (utility, scaling cross-factor, overlap parameter).

The calibration of the C-logit route choice parameters was done as part of the microsimula-
tion calibration.

Driving behavior calibration

Once the routing choice model is chosen, the microsimulation-specific parameters (like sim-
ulation time step length) and the driving behavior can be calibrated. The driving behavior
parameters include the routing behavior parameters (like cost update frequency), the car
following parameters (like reaction time), and the lane changing parameters (like aggressive-
ness). The full list of parameters that can be calibrated can be found in [135].

The routing calibration aims to find the configuration of parameters that minimizes the
di↵erence between simulated data and ground truth data, without overfitting. A first manual
calibration can be done based on intuition with simulation recording (for example, reaction
time can be adjusted if the output to input flow ratio at some intersection seems low). Then,
bounds can be set for each parameter based on physical intuitions (reaction time is between
0.2 to 3 seconds) and a systematic calibration can be performed.

In the systematic calibration, an objective function, described in eq. (5.3), is set to be
minimized (similarly to OD demand calibration in eq. (5.2)):

min
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(5.3)

Where � is a set of parameters to calibrate, f̃l,✓(�) is the simulated flow on detector l for
the time bucket ✓ given the calibrated demand, and the set of parameters �. If we have any
prior on the set of parameters �, a regularization term can be added to avoid overfitting.

An optimization algorithm can be run to find the optimal microsimulation-specific pa-
rameters and driving behavior parameters. Optimization algorithms include brute force al-
gorithms like grid search, random search [190], classical optimization algorithms that can be
found in the SciPy.Optimize toolbox [244], neural-network [140], or genetic algorithm [163].
Because evaluating the objective function given the input parameters is costly, since it re-
quires running a microsimulation, the team decided to use a genetic algorithm. Genetic
algorithms are particularly e�cient for opaque box functions with a high stochastic e↵ect.
In addition, they are easily parallelizable and can handle multi-criteria optimization [163].
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Genetic algorithm for microsimulation calibration

The team followed the approach presented by [154] to fine-tune the driving and microsimu-
lation parameters.

Because of the significant number of model parameters (35 for micro-simulation using
the C-logit stochastic route choice model) and the runtime for each simulation on the team’s
computers (30-40 minutes), the search space (i.e., number of model parameters to calibrate)
has been decreased through a sensitivity analysis. Only the 10 parameters that have the
most impact on the measures of e↵ectiveness were selected by comparing the relative metric
evolution over small increments of each parameter using the Latin hypercube sampling (LHS)
algorithm [119]. The calibration of the 10 selected parameters was done using the Non-
dominated Sorting Genetic Algorithm-III [75] from the Distributed Evolutionary Algorithms
in Python library [89] using the objective function described in eq. (5.3). The initial value
of the parameters was set to the Aimsun default ones if not updated based on intuition after
few initial simulations.

5.6 Post-Processing Analysis

Once the simulator is calibrated, one needs to validate the accuracy of the simulation to
ensure the credibility of its results. Once the accuracy of the simulation is satisfactory, tra�c
analysis can be conducted to observe how certain metrics change in di↵erent scenarios.

Validation

The first step in validating the simulation is to use the Measures of E↵ectiveness (MOE) [36,
143] (see section 2.2), which serves as an indicator for general correctness of system-wide
results. Some examples of metrics that can be used for MOE are average delay time, total
distance traveled by vehicles in the entire network, and average number of vehicles in the
virtual queue at each time step.

After determining that the MOE are accurate, the next step is to validate system-wide
and location-specific metrics for the simulation. System-wide metrics denote data encap-
sulating property or properties across the entire simulation network, such as flow at all
detectors. Location-specific metrics, on the other hand, deal with data specific to a subset
of the network, such as a corridor.

Validation of system-wide metrics

For validation of system-wide metrics, regression plots comparing simulated versus real-world
data are commonly used across previous literature [206, 12, 56]. In this work, detector flow,
OD travel times, OD route distances, and system-wide metrics were used to validate the
simulation results (fig. 5.5).
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Figure 5.5: Linear regression plot of simulated vs. ground vehicle counts during 15-minutes
time buckets across 83 detectors in the networ.



CHAPTER 5. CALIBRATION AND VALIDATION OF AIMSUN TRAFFIC
MICROSIMULATION 99

Figure 5.6: Slope of the simulated vs. ground 15-minutes vehicle count linear regression for
as a function of the time bucket (red). Setting arbitrary lower and upper bounds of 0.8 and
1.2 (blue), respectively, shows that the simulation does not over- or under-estimate the real
flow.

To conduct a more detailed analysis of regression plots, a time series of regression statistics
for each regression plot can be plotted, which gives insight into specific points in time when
the simulation needs more calibration (fig. 5.6).

In addition, it might be useful to identify the times for each detector in which the sim-
ulated flow was over 1.2 or below 0.8 times the ground flow to know which detectors need
more calibration.

Distributions of actual and simulated values can also be used for eyeball validation of the
simulation (fig. 5.7). Though distributions show that the general trend that the simulated
data is correctly approached, they provide less insight into the individuality of each data
point than regression plots.

Validation of specific location metrics

After validation of system-wide metrics, one can validate location-specific metrics in areas of
high importance to ensure the accuracy of the simulation. To do so, we need to identify the
scope of the location critical to our study. In this example, the team set the I-680 corridor
as the scope of specific location metric validation. Metrics one can validate include flow
(veh/h), speed (km/h), delay time (h or h/veh), and density of vehicles (veh/km) observed
at each flow detector within the corridor (fig. 5.8).

The team divided up validation of location specific metrics into two processes. The first
process is to visualize a time-series of each metric observed in each detector. The trend and
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Figure 5.7: On the left: Kernel density estimation (KDE) plot of real speeds at each road
section. On the right: Corresponding simulated speeds. Each distribution is grouped by the
speed limit on the road where the speed was observed. The simulation is able to capture a
majority of trends seen in real average speed distributions. The simulation better performs
on highway data than local road data.

values observed at each time step help determine the accuracy of each metric at each critical
geographic point at the granular level.

Then, a time-space diagram (fig. 5.9) is used to validate the macroscopic spatio-temporal
relations across detectors in one corridor. Time-space graphs describe the relationship be-
tween the location of vehicles in a tra�c stream and the time as the vehicles progress along
the highway [96]. Note that on or o↵-ramp detectors are not included when creating the flow
time-space diagram of the highway.

Analysis

After successful validation, the microsimulation can be used for tra�c analysis study. The
study can help understand the current tra�c in a city or predict the impact of a “what-if”
scenario. Note that microsimulation can only be used to study e↵ects that do not require
changing the input demand data. Changing the demand data will result in comparisons of
two di↵erent tra�c simulation models.



CHAPTER 5. CALIBRATION AND VALIDATION OF AIMSUN TRAFFIC
MICROSIMULATION 101

Figure 5.8: Simulated and ground flow profile for a detector on the I-680 South corridor.
The trends observed align with each other.

Some examples of scenario changes include implementing new tra�c-calming strategies
or changes in routing behaviors or driving behaviors. Motivating examples of scenarios that
can be analyzed include:

• Changing tra�c signal timing plans [225].

• Changing speed limit or adding speed bumps [225].

• Adding turn and/or access restrictions [225].

• Understand the impact of increase in usage of navigational-apps on tra�c (see sec-
tion 3.2).

• Understand the impact of eco-routing adoption [13, 104] by changing the cost function
that a portion of the drivers minimizes when choosing their route.

• Changing the type of some vehicles to study the impact of mixed-autonomy in traf-
fic [254].

The all the measures of e↵ectiveness metrics that have been enumerated in section 2.2
can be computed with the microsimulation outputs.

5.7 Conclusion

Through the development of a tra�c microsimulation of the San Jose Mission district in
Fremont, CA, the team designed and shared a reproducible process to create, calibrate and
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Figure 5.9: Time-space diagram of real versus simulated flow in I-680 South. Patterns of
congestion are similar across real and simulated plots.



CHAPTER 5. CALIBRATION AND VALIDATION OF AIMSUN TRAFFIC
MICROSIMULATION 103

validate a large-scale microsimulation. The development of a large-scale tra�c microsimu-
lation is a tedious process that took the team around 2,500 person-hours, and it is relevant
only if case studies or A/B experiments cannot be performed and if enough data is available
to accurately reproduce the demand data. A realistic tra�c microsimulation can be used to
understand current tra�c and estimate policies that might impact routing or driving behav-
iors without changing the tra�c demand (number of trips, departure times, and origins and
destinations). If the simulation quality is very high compared to existing literature (slope of
the flow regression line of 0.976 and corresponding R

2 of 0.8456), it is not good enough yet
to be used o↵-the-shelves by the city of Fremont tra�c engineers (flow nRMSE of 47%).

If microsimulations can reproduce individual dynamics in the road network, one of the
barriers to develop microsimulations is the simulation running time. To tackle this hin-
drance, chapter 6 develops a dynamic routing game, where each individual vehicle route-
choice and dynamics are modeled. Mean-field game theory is used to e�ciently solve the
routing game with numerous vehicles.
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Chapter 6

Computable dynamic routing game:

the mean-field routing game

With the emergence of navigational applications and consequent information-aware routing
behaviors, the tra�c patterns evolved (chapter 2, chapter 3, chapter 4). Being able to model
tra�c and especially route choice adequately can enable tra�c control to leverage the new
routing behaviors in order to improve the network e�ciency.

However, solving realistic route choice problems requires the consideration of large scale
multi-agent systems, where the number of vehicles making strategic decisions is not tractable
within classical algorithms [73]. This chapter focuses on finding a scalable approach to model
the routing behaviors of each vehicle in a dynamic road tra�c environment as a large multi-
agent dynamic system. First, section 6.1 presents a review of dynamic routing models.
Second, section 6.2 introduces a novel routing model that can represent dynamically in-
dividual behaviors using dynamic game theory: the N-player dynamic routing game.
The N -player dynamic routing game is a dynamic mesoscopic tra�c model with explicit
congestion dynamics (i.e., congestion impacts the evolution of the tra�c state). In addi-
tion, section 6.3 introduces the mean-field routing game to e�ciently simulate the novel
routing model. Finally, section 6.4 proves experimentally that the mean-field routing game
provides a scalable approach to model the routing behaviors of numerous agents (14,000) in
road networks.

The chapter is derived from [46], and it is still ongoing work.

6.1 Background on dynamic routing models

Dynamic tra�c assignment

Dynamic tra�c simulations are used to model the evolution of the locations of the vehicles
in the road network across time. Within dynamic models, simulations are divided between
macro, meso and microsimulations (section 5.1).
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Dynamic routing models are divided between one-shot assignments and iterative assign-
ments (see choice of the routing model subsection in section 5.5).

In static routing games (definition 3.1.4), the congestion on each link does not evolve
over time. These games cannot replicate dynamic phenomena like departure time choice or
congestion spill back. Therefore, dynamic extensions of the static routing game were intro-
duced. Using the potential formulation of the static tra�c assignment (definition 3.1.12), a
first dynamic tra�c assignment model was defined as the solution of a dynamical variational
inequality in 1993 [93]. The variational inequality approach was later extended in 2013 to
consider both route choices and departure time choices [111]. However, in such dynamical
models, the game theoretical aspect is not explicit. In parallel, a first dynamic routing game
was defined in 1993 [250] using di↵erential games [92]. The resolution of the dynamic routing
game via multi-agent reinforcement learning has been studied in 2020 [207]. Nevertheless, as
of 2022, to the knowledge of the author, current multi-agent learning algorithms do not scale
in terms of population size [73]. This inherently calls for new methods to study route choice
problems with very numerous vehicles. We next explain how a mean-field game perspective
can help to make an important step in this direction.

Mean-field game

Mean-field games (MFGs) were introduced in [139, 118] to model di↵erential game dynamics
between infinitely many players with symmetric interactions. Similar to mean-field theory
from statistical physics[22], the key idea is to use a macroscopic approximation of a large
population with anonymous and symmetric players. When the population is infinite, each
player has no influence on the population distribution. So, in a MFG, one does not need
to study the pairwise interactions between all players, but simply the interaction between
a representative infinitesimal player and the distribution of players’ states. Because players
are assumed to be identical, it su�ces to determine the strategy of a representative player in
response to the full population behavior. From a mathematical point of view, the solution of
a MFG can be characterized by a coupled system of a forward equation for the population
evolution and a backward dynamic programming one for the player’s value function. This
system is easier to solve than the Nash equilibrium of a finite-player dynamic game with
numerous players (solved through a large system of coupled Bellman equations). Intuitively,
this is true when representing each player is more costly than representing a distribution
over all possible states, which is the case for instance when the number of players is larger
than the number of possible states.

Applications of MFGs include crowd modeling [136, 17, 2], energy management [199,
142, 5], epidemiology [79, 84, 18] or financial markets [137, 51, 85]. In tra�c theory, similar
approaches model the evolution of vehicles in the network using tra�c flow (remark 1.2.1).
Modeling microscopic vehicles on a link as a macroscopic tra�c flow has been interpreted as a
mean-field game in 2015 [58], developing the application of MFGs to road tra�c management.
Extending on this interpretation, [116] connected the Lighthill-Whitham-Richards (LWR)
model [144] on a single road to a MFG model with myopic players in 2019. In this mean-
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field game [116], vehicles are assumed to choose their speed to minimize a cost function that
penalizes traveling near other vehicles. In 2021, the authors of [116] extended the vehicles’
controls to route choice in [117]. In parallel, mean-field routing games have been developed
by [198] and [219] building on the construction of MFGs on graphs done in 2015 by [108].

Related work

Several works study mean-field routing games. First, continuous time models have been
studied. The existence and uniqueness of the Nash equilibrium of a MFG with congestion
on a graph has been shown in [108], where the state space is the set of nodes. Models
in which the state space is given by the edges have been analyzed in [3], which proved
existence and uniqueness for a forward-backward system of equations with suitable conditions
at the vertices of the network. In [25], the authors analyzed a MFG model for tra�c flow
on networks by using an extended state space that includes the distribution of players on
the network. They also connected the dynamic Wardrop equilibria condition to the Nash
equilibria of the MFG. In existing discrete time MFG models for routing, the players move
one edge per time step and pay a cost that increases with the proportion of players on the
same edge. In [198], the authors analyzed a MFG model and studied the impact of adding or
removing edges on the equilibrium tra�c flow. Their work provides a discrete time resolution
of a mean-field routing game on an 11 link network with 6 time steps. In [219], the authors
proposed a MFG model that reduces to a linearly solvable Markov Decision Process and
showed connections with Fictitious Play [43] in some cases. In [117], the route choice is
coupled with the speed choice to model how autonomous vehicles might choose both their
speed and their route to optimize tra�c.

The fact that existing models take congestion into account only through the cost functions
leads to an ambiguity about the definition of travel time: the graph traversal time and the
player cost can di↵er. Such issues make these models hardly applicable for tra�c engineering.
Also, in this chapter, the main motivation for using a MFG-based routing methods is to
obtain an e�cient equilibrium policy in the finite-player routing game, which has not been
performed in previous works.

Section 6.2 introduces a N -player dynamic routing game with explicit congestion dynam-
ics. Section 6.3 introduces the corresponding mean-field routing game. Finally, section 6.4
solves N -player dynamic routing games with the corresponding mean-field routing game.

6.2 Dynamic N-player game

This section introduces the dynamic routing game. The dynamic routing game models the
evolution of N vehicles on a road network. The vehicles are described by their current link
location, the time they will spend on the link before exiting it (i.e., their waiting time),
and their destination. The action of a vehicle is the successor link they want to reach when
exiting a given link. When arriving at a link, the waiting time of the player is assigned based
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on the number of players on the link at this time. As time goes by, the waiting time of a
vehicle decreases until it becomes negative, then the vehicle moves to a successor link and
the waiting time gets reassigned. The total cost for the vehicle is its travel time. In the
corresponding mean-field game (MFG), the vehicles of the N -player game are replaced by a
representative vehicle and the probability distribution of the vehicles states.

Tra�c flow environment

In this chapter, we reuse the notations introduced in section 1.2. For the sake of convenience,
we assume that the time horizon T (definition 1.2.1) is large enough so that any vehicle will
have time to travel through the network.

The number of players in the game N 2 N (notation 1.2.3) is not necessarily the total
number of vehicles N0 in the real-life scenario (definition 1.2.4). Each player of the model
corresponds to a proportion of the real number of vehicles, which allows defining a player as
an infinitesimal portion of flow that does not impact network travel time in the corresponding
mean-field game (MFG) (see section 6.3). In the case where N = N0, a player is a vehicle.
A player i 2 N starts at an origin link L

i
0 2 L with a departure time W

i
0 2 T , and

has a destination link D
i
0 2 L. This is the initial state of the player: the player wants

to depart at time W
i
0 from L

i
0 and tries to reach D

i
0. We assume that the players’ initial

state (Li
0,W

i
0, D

i
0) 2 (L⇥ T ⇥L)N are distributed according to a finite-support distribution

m0 2 M (L⇥ T ⇥ L). Both the origin and the destination are modeled as links, so that the
location of the vehicle is always described as a link. In experimental setups, an origin link is
added before each origin node and a destination link is added after each destination node.
Being on the origin link means having not departed yet, and being on the destination link
means having finished the trip.

At any time t, the state of a player i is not only the link L
i
t 2 L where they stand, but also

their waiting time W
i
t 2 T before exiting this link together with their destination D

i
t 2 L.

L
i
t and W

i
t are random variables due to the randomness in the action choices. Even though

the destination is constant through time (Di
t = D

i
0 for all t), including this information in

the state allows keeping track of the objective in the player’s policy. So the state space for
each vehicle is X = L ⇥ T ⇥ L, where the first component is for the current location and
the last one is for the destination (recall that the destination is represented by a link in our
model). Then, the space of vehicle trajectories is X = X T . The state trajectories are in the
space of triples (location, waiting time, destination), which provide more information than
the physical trajectories just in terms of locations. At the population level, the states of all
the agents is a vector X = (X i)i2N . The state space for the whole population is X = XN ,
and the corresponding space of trajectories is X = X T ⇥N . We respectively call game state
and game trajectory, the state and trajectory of the population.
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Routing policy

When at a link l 2 L, a player can try to move to another link among the successors of l, and
the transition is realized provided the waiting time is non-positive. The players are allowed
to randomize their actions. We thus call strategy function and denote by ⇡ a function from
X ⇥ T to M (L) such that for any x = (l, w, d), ⇡t(x) has support in the successors of
l. Each player has the same set of strategies, therefore we denote by ⇧ the set of strategy
functions (notation 1.2.4). Therefore, the set of strategy profile is ⇧ = ⇧

N A strategy might
also be called a (feedback or closed-loop) policy. The notation ⇡t(l̃|l, w, d) represents the
probability at time t with which the agent would like to go from l to l̃ given the fact that
their waiting time is w and their destination is d.

State dynamics

Since the players’ initial states and actions are randomized, their trajectories are stochastic.
Given a policy profile ⇡ 2 ⇧, X t = (Lt,W t, Dt) 2 X denotes the random variable corre-
sponding to the links, waiting times and destinations for all the players at the time t 2 T .
The stochastic process of the population state is denoted X = (X t)t2T 2 X . The players’
interactions are through the travel time functions (tl)l2L (definition 1.2.7). When arriving
at a link, a player will get assigned to a travel time that is given by tl as a function of the
number of vehicles on the link. So, the interaction between a vehicle and the rest of the
vehicles is only modeled through the number of vehicles on the same link. It is thus con-
venient to introduce the empirical vehicles’ locations distribution ⌫l 2 M (L) corresponding
to a location profile l = (li)i2N 2 L. For every l̃ 2 L, ⌫l(l̃) = 1

N#{i | li = l̃} 2 [0, 1] is the

proportion of players on the link l̃ 2 L, given l 2 LN . This is all the information one needs
from the game state to compute the interactions between players at link l̃. Note that ⌫l(l̃)
is invariant by permutation of the components of the vector l.

Let us fix a policy profile ⇡ 2 ⇧. We denote by U the LT ⇥X⇥N -valued random variable
assigned to the probability distribution given by the policy profile: for each (t, x, i) 2 T ⇥
X ⇥N , U i

t (x) is an L-valued random variable with probability distribution ⇡i
t(x).

The evolution of the state of the game X t = (Lt,W t, Dt) is given by the following
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dynamics. At initial time, (Li
0,W

i
0, D

i
0), i 2 N are given, and then the dynamics is:

tk+1 = tk +min{W i
tk
, i 2 N}

L
i
tk+1

=

(
U

i
tk+1

(X i
tk
) if i 2 Itk+1

L
i
tk

otherwise;

W
i
tk+1

=

(
tLi

tk+1

�
⌫Ltk+1

(Li
tk+1

)
�

if i 2 Itk+1

W
i
tk
� (tk+1 � tk) otherwise;

L
i
t = L

i
tk

8k, 8t 2 [tk, tk+1[, 8i 2 N
W

i
t = W

i
tk
� (t� tk) 8k, 8t 2 [tk, tk+1[, 8i 2 N

D
i
t = D

i
0, t 2 T ,

where Itk+1
:= {i 2 N , W

i
tk
+ tk � tk+1 = 0} and using (tk)k2N 2 T N the sequence of times

when one of the vehicles changes link with t0 = 0 and, for any k 2 N, tk = T if all the
players have arrived at their destination. The destination is constant through time and is
not a↵ected by the policy’s randomness. Note that U i = (U i

t )t2T is defined for all t but used
only when the player moves from one link to the next one, i.e., when the waiting time has
vanished. This enables reducing any pure (i.e., deterministic) policy as a path choice.

Cost function

Given a policy profile ⇡ 2 ⇧, the cost for the player i 2 N (notation 1.2.5) is its average
arrival time, which can be defined as:

J
i(⇡) = E⇡

⇥
min{t 2 T , L

i
t = D

i}
⇤
= E⇡

Z

t2T
r(X i

t)dt

�

where the instantaneous cost is defined as: for every x = (l, w, d), r(x) = �l 6=d (nota-
tion 1.2.1). Note that the running cost is independent of the rest of the population state,
contrary to other models for routing or crowd motion in which the interactions are not in
the dynamics but in the cost function, like [108, 25, 198, 219, 117].

Furthermore, the population is homogeneous (all players have the same dynamics evolu-
tion and same running cost). The player i 2 N interacts with the other players only through
⌫ and for this reason, the cost function J

i does not depend directly on the index i but only
on ⇡i: as a function, J i = J

j for all j 2 N . The policy profile ⇡�i for the rest of the
population is used only to compute ⌫ = (⌫t)t2T . Although ⇡�i is necessary to compute ⌫,
it is not su�cient because ⌫ is also influenced by the policy ⇡i chosen by the player under
consideration. However, the influence of each player decays as N increases. This will be the
basis for the mean-field approach presented in section 6.3, where ⌫ can be computed with
⇡�i only.
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Nash equilibrium

In this chapter, we are interested in computed a Nash equilibrium of the game (defini-
tion 1.2.12), assuming that all the players are individually optimizing their own. Therefore,
we call a Nash equilibrium a solution of the game.

Theorem 6.2.1 (Existence of N -player Nash equilibrium, Kakutani-Fan-Glisckberg theo-
rem [99]). Assuming the continuity of the cost function with respect to the policy profiles,
there exists a Nash equilibrium in the N-player routing game.

Proof of Theorem 6.2.1. The proof of the existence of a Nash equilibrium relies on the
Kakutani-Glicksberg-Fan theorem [99] which needs the continuity of the cost function with
respect to the policy profile.

Because N and L are finite and original waiting times are given, the time between two
actions in the N -player game is necessary of the form

X

l,k

↵l,ktl

✓
k

N

◆
+
X

i2N

�iW
i
0 ,

where (↵l)l2L 2 {�1, 0, 1}L, k 2 {0, . . . , N} and �i 2 {�1, 0, 1}N . This generates at most
3|L|(N+1)+N possibilities. Therefore, there is a minimum time between two actions. As the
time horizon T is fixed, this implies that there is a maximum number of times M where an
action can be taken. Therefore, a policy only needs to define an action on all the possible
tuples of times when an action should be taken. The number K of possible tuples is smaller

than
�
3|L|(N+1)+N

M

�
. Without loss of generality, we restrict ourselves to the set of policies which

is a subset of M (L)L⇥K , making the set of pure policies a subset of LL⇥K finite, and the set
of mixed-policies (its convex hull) a compact subset of the Euclidean vector space RL⇥L⇥K .
We will later show that any Nash equilibrium in the set of restricted mixed-policies is a Nash
equilibrium in the set of non-restricted mixed-policies.

We denote by K ✓ N the set of pure policy indices. We denote P = {pk, k 2 K} the set
of path (definition 1.2.3) (in this case the set of pure policies). The set of mixed-policies is
a subset of the simplex over the set of pure policy M (P). Therefore, for all ⇡ 2 M (P),
there exists ↵ 2 M (K) identified with a vector of length |K| such that ⇡ = ↵ · (pk)k2K.
We denote by e⇧ ✓ M (P) the set of restricted mixed-policies and by e⇧ = e⇧

N
the set of

restricted mixed-policy profiles.

Lemma 2 (Cost is a convex combination of pure strategy cost). For any ⇡ 2 S, and for
any i 2 N with corresponding ↵ 2 M (K) such that ⇡i = ↵ · (pk)k2K

J
i(⇡i

,⇡�i) =
X

k2K

↵kJ
i(pk,⇡

�i).

Proof. The equality is a direct consequence of the linearity of the expected value with respect
to the probability distribution.
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Next, let the (set-valued) best response map � : e⇧ ! 2
e⇧ be defined by for all: for ⇡ 2 e⇧,

�(⇡) =⇥
i2N

argmin
⇡02 e⇧

J
i(⇡0

,⇡�i).

Lemma 3 (Best response map has a closed graph). � has a closed graph.

Proof. For any sequence (⇡q)q2N 2 e⇧
N
converging to ⇡1 and any sequence (xq)q2N 2 e⇧

N

converging to x1 such that xq 2 �(⇡q) for all q 2 N, we have that, for any i 2 N :

J
i(xi

q,⇡
�i
q )  ↵ ·

�
J
i(pk,⇡

�i
q )
�
k2K 8↵ 2 M (K) ,

which holds in the limit provided that J i is continuous w.r.t. the policy profile (our regularity
assumption). Therefore, x1 2 �(⇡1) and � has a closed graph.

Proposition 1 (Best response map has a fixed-point). The map � is a Kakutani-Glicksberg-
Fan map, therefore it admits a fixed-point [99], which is a Nash equilibrium of the N-player
game.

Proof.
The set e⇧ is:

• non-empty (we assume the graph is non-empty, so at least one path exists)

• compact (as a probability distribution over finite set)

• convex (as a probability distribution over finite set)

• subset of a Hausdor↵ locally convex topological vector space (as a probability distri-
bution over finite set)

The function �(⇡) is non-empty and convex for all ⇡ 2 ⇧ (because the minimization is
a linear problem). The function � has a closed graph (lemma 3). Hence, by Kakutani-
Glicksberg-Fan theorem [99], � has a fixed point.

The proof of theorem 6.2.1 is concluded by noting that a fixed point ⇡ 2 e⇧ of � is a
Nash equilibrium in ⇧. Indeed, by definition of �:

8i 2 N , 8⇡0 2 e⇧, J
i(⇡i

,⇡�i)  J
i(⇡0

,⇡�i).

From here, by lemma 2 and by construction of e⇧:

8i 2 N , 8⇡0 2 ⇧, J
i(⇡i

,⇡�i)  J
i(⇡0

,⇡�i).

The last line states that the Nash equilibrium in the set e⇧ is a Nash equilibrium in the set
⇧ and finishes the proof of existence of the Nash equilibrium.
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6.3 Mean-field routing game

Solving the N -player game in section 6.2 is infeasible when N is very large. We thus turn
to a MFG version of the above routing game, which can be used to provide approximate
Nash equilibria and whose quality improves as N ! +1. This is based on considering
the interactions between a typical player and a distribution representing the rest of the
population. This is possible thanks to the anonymity and the symmetry in the interactions,
which allows us to focus on symmetric Nash equilibria. Intuitively, the law of large numbers
allows considering the state distribution instead of numerous random variables induced by
it.

Set-up

The state of a typical player at time t is a random variable denoted by Xt = (Lt,Wt, Dt)
which takes values in X = L⇥ T ⇥ L. At time 0, the population’s state distribution is m0

and is known to the players.
The space of policies is still ⇧. For a policy ⇡, we denote by ⇡t(l̃|l, w, d) the probability

with which a typical player using the policy ⇡ would like to go from l to l̃ given that their
waiting time is w and their destination is d. The routing random variable is denoted by U .

Assume that an infinitesimal agent uses policy ⇡ while the rest of the population uses
⇡0. Let ⌫ = (⌫t)t2T 2 M (L)T be the flow of distributions on L induced by the population
that uses ⇡0. The evolution of a typical player’s state is given by the following dynamics.
Let t0 = 0 and let (L0,W0, D0) be a given initial state. Then, the dynamics follow:

tk+1 = Wtk + tk

Ltk+1
= Utk(Xtk)

Wtk+1
= tLtk+1

�
⌫tk+1

(Ltk+1
)
�

Lt = Ltk 8k, 8t 2 [tk, tk+1[

Wt = Wtk � (tk � t) 8k, 8t 2 [tk, tk+1[

Dt = D0, t 2 T .

Here (tk)k2N 2 T N denotes the sequence of times when the representative player changes link
(we take tk = T when there are no more changes), and ⌫t(l) 2 [0, 1] is the proportion of the
mean-field population on link l at time t.

The cost of the typical player using policy ⇡ when the population uses policy ⇡0 is defined
as:

J(⇡,⇡0) = E⇡,⇡0

Z

t2T
r(Xt)dt

�

where the state of the representative playerX = (Xt)t2T has the above dynamics with policy
⇡, and the instantaneous cost function r is the same function as in the finite player game
(see section 6.2). Analogously to the N -player game, the policy ⇡0 is used only to deduce
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⌫ = (⌫t)t2T that appears in the evolution of W . So the cost function J could alternatively
be written as a function of (⇡,⌫) instead of (⇡,⇡0). In contrast with the finite player regime,
we highlight that here ⇡0 completely determines ⌫ because the player under consideration is
infinitesimal and hence their policy ⇡ does not a↵ect the flow ⌫ of distributions of locations
of the population.

Nash equilibrium

The counterpart of the N -player Nash equilibrium in the mean-field regime can now be
introduced.

Definition 6.3.1 (Mean-field Nash equilibrium (Definition 3.1. of [197])). A mean-field
Nash equilibrium (MFNE) is a policy ⇡? 2 ⇧ such that: J(⇡?

,⇡?)  J(⇡0
,⇡?) for all ⇡0,

or equivalently:
⇡? 2 argmin

⇡2⇧
J(⇡,⇡?).

Theorem 6.3.1 (Existence of mean-field Nash equilibrium, Kakutani-Fan-Glisckberg the-
orem [99]). Assuming the continuity of the cost function with respect to the policy profiles,
and assuming that the support of the initial distribution of the waiting time is a finite set,
there exists a mean-field Nash equilibrium.

Proof of theorem 6.3.1. This proof is similar to the proof of theorem 6.2.1 as long as the
cost function is continuous with respect to the policy profile, which is assumed here. In the
mean-field game, given a departure time the set of pure policies can be restricted to the set
of path Psupp(W0) given the departure time W0, with K the number of possible path (with
less than a given number of cycles, which is possible due to minimum travel time on each
link and finite time horizon) times the number of possible departure time. It is assumed that
the support of the departure time random variable supp(W0) is finite by design. Therefore,
a pure policy, should be understood as choosing a path p 2 P given a departure time W0.
Encoding the policy in ⇧ that correspond to any choice of a path given a departure time
might require some notation work, that we will not do here. The reader should understand
that the proof relies on finding a Nash equilibrium where the set of policies is the set of
probability distributions on the set of paths given the departure time, and then showing
that this Nash equilibrium policy can be translated into a policy in ⇧, and then showing
that in the set of ⇧ the policy is still a Nash equilibrium. To establish the existence of a
Nash equilibrium in the set of probability distribution on the set of paths given a departure
time S = M

�
Psupp(W0)

�
, the same arguments that the ones in the proof of theorem 6.2.1

can be used with the map � : S ! 2S defined by:

�(⇡) =⇥
i2N

argmin
⇡02S

J(⇡0
,⇡)

which is a Kakutani-Fan-Glisckberg map. Then, one can convert the path choice given a
departure time to a list of actions in time, therefore convert it to a policy ⇡? in ⇧. Then,
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one can show by contradiction that they cannot exist a policy ⇡ in ⇧ that gives a strictly
better outcome than the policy ⇡? in the cost function J(⇡,⇡?). Therefore, ⇡? is also a
Nash equilibrium in the set ⇧.

The continuity of the cost function with respect to the policies plays a crucial role.

Remark 6.3.1 (Counter-example of the existence of a Nash equilibrium without continuity).
Here, we present a counter-example of the existence of a Nash equilibrium of the mean-field
game when congestion functions are not continuous.

Consider a network with two links, say l, l̃, connecting the origin and destination links.
Let the congestion function be fined as:

tl(µ) =

(
1 if µ < 0.5

2 otherwise

tl̃(µ) =

(
1 if µ  0.5

2 otherwise

Then the mean-field game admits no Nash equilibrium. Indeed, if ⌫t(l) < 0.5, then tl = 1
and tl̃ = 2, and if ⌫t(l) � 0.5, then tl = 2 and tl̃ = 1. In this case there is no flow
allocation such that travel times are equal on the paths that are used, therefore there is no
Nash equilibrium. This is due to the discontinuity of the cost of pure actions with respect to
the state distribution.

One of the advantages of considering a mean-field setting, is that any MFNE is a dynamic
Wardrop equilibrium.

Theorem 6.3.2 (Dynamic Wardrop equilibrium [247]). For any mean-field Nash equilib-
rium, all induced trajectories of players with the same initial state (origin, waiting time,
destination), have the same travel time (i.e., the same total cost).

Proof of theorem 6.3.2. Lemma 2 is still valid in the mean-field game setup, with the set of
pure policies corresponding to a choice of paths. This implies that if the equilibrium policy
⇡? is a mix-policy; i.e., there exist K? ⇢ K and ↵ 2 M (K) such that:

⇡? = ↵ · (pk)k2K
↵k > 0 8k 2 K?

↵k = 0 8k 2 K\K?
.

Then J(⇡?
,⇡?) = J(pk,⇡?) for all k 2 K?. In the mean-field game, this translates in the

equality of the travel time on all path pk with k 2 K?.

Any mean-field Nash equilibrium policy ⇡? can be used by the players in an N -player
game. Intuitively, the larger N is, the closer the population is to the mean-field regime. In
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fact, it can be shown under suitable conditions that ⇡? = (⇡?
, . . . ,⇡?) 2 ⇧ is an approximate

Nash equilibrium whose quality improves with N in the sense that:

⇢̄
N(⇡?) ! 0, as N ! +1.

Where ⇢̄
N(⇡?) is the average deviation incentive (notation 1.2.6) of the optimal mean-field

policy ⇡? in the N -player routing game. So if all the agents use the mean-field Nash equi-
librium policy, then any single player’s incentive to deviate decreases when the population
becomes larger. For example, [197] prove in their setting that: if ⇡? is a MFNE, then for
every ✏ > 0, there exists N0 2 N such that for every N � N0, the N -player policy profile
(⇡?

, . . . ,⇡?) 2 ⇧ satisfies: ⇢̄N(⇡)  ✏.

Remark 6.3.2 (Halmiton-Jacobi-Bellman equation). One can show that the backward
Halmiton-Jacobi-Bellman that needs to be solved for the representative player when the player
state distribution is known is equivalent to finding the shortest path for the representative
player. When several shortest paths exist, any shortest path will minimize the Hamiltonian
of the system. The Hamiltonian is a linear combination of the travel time of the di↵er-
ent possible paths weighted by the representative player action choice distribution. However,
the fix-point condition indicates that the player state distribution should be split between the
shortest paths such that their travel times are still equal.

Next, to illustrate this property in our model, an explicit computation is carried out in
the simple Pigou network and then is empirically verified on both Pigou (fig. 1.1) and Braess
(fig. 1.2) networks.

Mean-field equilibrium policy in the N-player Pigou game

For the sake of illustration, we present a toy example for which the solution can be computed
analytically.

The network (fig. 1.1) has 2 nodes and 2 parallel links, l, l̃, relating these 2 nodes. The
cost function is: tl(x) = 0.5T , tl̃(x) = xT for all x 2 [0, 1], where x is the proportion of tra�c
on each link (this is similar to set the demand dod = 1. The departure time (initial waiting
time) is the same for all the agents. The mean-field Nash equilibrium can be computed and
yields an equilibrium distribution with proportions ⌫t(l) = ⌫t(l̃) = 0.5. On the other hand,
the Nash equilibrium for the N player game is such that ⌫t(l) – the current proportion of
players on l̃ – is included in [12 �

1
N ,

1
2 ]. One can check that the average deviation incentive

of the mean-field equilibrium policy in the N -player game is

T

N2N

NX

m=1

✓
N � 1

m

◆
max

⇢
N

2
�m� 1,m+ 1� N

2

�
,

which goes to 0 when N ! 1.



CHAPTER 6. COMPUTABLE DYNAMIC ROUTING GAME: THE MEAN-FIELD
ROUTING GAME 116

6.4 Experiments

Experiments show that (1) computing the mean-field equilibrium is easier than comput-
ing the N -player Nash equilibrium using state-of-the-art algorithms (sampled counterfactual
regret minimization [258]) and (2) it gives an excellent approximation of the N -player equi-
librium when N is large (above 30 in the case of the Pigou [184] and the Braess [40] network).
The experiments also show that (3) online mirror descent algorithm [182] enables computing
the mean-field equilibrium on the Sioux Falls network, a classic use case in road tra�c net-
work games [1], with 14,000 vehicles (across two origin-destination pairs) and realistic travel
time functions.

Context

All the experiments are conducted within the OpenSpiel framework [138], an open source
library that contains a collection of environments and algorithms to apply reinforcement
learning and other optimization algorithms in games. The code is publicly available on
GitHub [76].

Goal of the experiments. The experiments aim to show that the mean-field equi-
librium policy is faster to compute than the N -player policy and approximates well an
equilibrium policy in the corresponding N -player game. With this perspective, the mean-
field approach solves the curse of dimensionality regarding the number of players in N -player
games. Intuitively, the MFG approach is relevant when the number of possible states for any
player is lower than the number of players. In that case, computing the population’s distri-
bution probabilities over the possible states is faster than simulating each player trajectory.
The approximation is correct when representing the probability distribution over the state
space is equivalent to representing the sum of each individual player random variable state,
which is the case with large number of players thanks to the central limit theorem [31]. In
the MFG, heterogeneity between the players is encoded in the state, to use the same policy
for each player without a loss of generality. As an example, in our model, the destination of
a player is represented in its state.

Metrics. The quality of the approximation of the Nash equilibrium policy completed
by the candidate policy is measured using the average deviation incentive (notation 1.2.6).

Implementation. The N -player game is encoded as a simultaneous, perfect infor-
mation, general sum game. The corresponding MFG is encoded as a mean-field, perfect
information, general sum game. OpenSpiel provides many algorithms to find Nash equilibria
of simultaneous games or MFGs. These algorithms include model-free algorithms such as
Neural Fictitious Self-Play [112] and model-based algorithms such as Counterfactual Regret
Minimization (and some variants) [258] which we use to solve the N -player game. The ex-
periments solve the MFG using the online mirror descent algorithm [182]. The experiments
performed in OpenSpiel use a fixed time discretization.

Networks. As classical network games consider demand between nodes, we add artificial
origin and destination links before and after each node in the network (Pigou [184], Braess [40]
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and Sioux Falls). This enables defining vehicle location only using links, and defining state
of not having begun a trip and having finished it.

The Pigou network [184] has two links l, l̃ and two nodes (an origin and a destination
one) which come from the conversion of the origin and the destination nodes (fig. 1.1). A
time discretization of 0.01, with a time horizon of 2 is used. The cost functions are tl(x) = 2,
tl̃(x) = 1 + 2x and all the demand leaves the origin link at time 0 and head towards the
destination link.

The Braess network game is the dynamic extension of the game described in [40] (fig. 1.2).
The network has 5 links AB, AC, BC, BD and CD, one origin node A converted to an
origin link OA and a destination node D converted to a destination link DE. The cost
functions are tAB(x) = 1 + x, tAC(x) = 2, tAB(x) = 0.25, tBD(x) = 2, tCD(x) = 1 + x. All
the demand leaves the origin link at time 0 and head towards the destination link. We use
a time step of 0.05 and a time horizon of 5.

In the augmented Braess network game, a destination link CF is added to the Braess
network (fig. 1.2) and 50 more vehicles leave the origin to DE at time 0, 0.5 and 1, while
50 others leaves the origin to CF at times 0 and 1, totaling 250 vehicles with 2 di↵erent
destinations and 3 di↵erent departure times.

The Sioux Falls network game is used by the tra�c community for proof of concepts
on a network with around 100 links. The network (76 links without the origin and des-
tination links), the link congestion functions, and an origin-destination tra�c demand are
open source [1] (the network is shown with the results in fig. 6.5). As the classical routing
game [173, Chapter 18] is a static game, the demand is only a list of tuple origin, destination
and counts, and does not provide any departure time. We use the network data (including
the congestion functions) and generate a demand specific to the game. We model 7,000
vehicles departing at time 0 from node 1 to node 19, and 7,000 vehicles departing at time 0
from node 19 to node 1. We use a time step of 0.5 and a time horizon of 50.

Mean-field game solves the curse of dimensionality in the number

of players

In this section, the mean-field equilibrium policy is computed for both the Braess and the
Pigou network games. In addition to being considerably faster to compute compared to the
N -player Nash equilibrium, the mean-field equilibrium provides an excellent approximation
when N is above 30.

The evolution of the Braess mean-field Nash equilibrium policy is given in fig. 6.1. The
travel time on the three possible paths are equals, which encodes the Nash equilibrium
condition of the MFG provided that the travel time on each link is a multiple of the time
step, accordingly to theorem 6.3.2.
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Figure 6.1: Braess network dynamics in the mean-field Nash equilibrium. From left to right,
top to bottom: the locations of the cars at time 0.0, from time 0.25 to 1.75, at time 2.0,
from time 2.25 to 3.75, at time 4.0. The travel time on each path is equal to 3.75. The travel
time equalization characterizes the mean-field Nash equilibrium (theorem 6.3.2). This figure
is reproduced from [46, Figure 1].

While solving N-player game is intractable for numerous players, this can be

done for the mean-field game.

We compare the running time of the algorithms for solving the N -player game and the mean-
field player game, depending on the number of players it models. The counterfactual regret
minimization with external sampling (ext CFR) is used in the N -player game, as it is the
fastest algorithms to solve the dynamic routing N -player game within the OpenSpiel library
of algorithms (comparison done within the OpenSpiel framework are not reported here).
Online mirror descent (OMD) is used in the MFG. The running time of 10 iterations of ext
CFR and OMD as a function of the number of vehicles modeled are reported in fig. 6.2. On
one hand, as the mean-field Nash equilibrium does not depend on the number of vehicles the
MFG models, the computation time of 10 iterations of OMD is independent of the number
of vehicles modeled. On the other hand, the computational cost of 10 iterations of ext
CFR increases exponentially with the number of players, making the computation of a Nash
equilibrium with many players intractable using the OpenSpiel library algorithms.

The mean-field equilibrium policy is a good approximation of the N-player

equilibrium policy whenever N is large enough.

In the Pigou network game, the mean-field equilibrium policy is almost a Nash equilibrium
in the N -player game as soon as N is larger than 20 players (fig. 6.3). This was shown
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Figure 6.2: Computation time of 10 iterations of Online Mirror Descent in the MFG and
of 10 iterations of sampled Counterfactual regret minimization as a function of the number
of players N . As a first approximation, the running time of the MFG algorithm does not
depend on the number of players. This figure is reproduced from [46, Figure 2].

theoretically in section 6.3, and is confirmed using approximate average deviation incentive
of the mean-field equilibrium policy in the N -player game.

In the Braess network game, the mean-field equilibrium policy is almost a Nash equilib-
rium in the N -player game as soon as N is larger than 30 players.

Experiments show the ability to learn the mean-field equilibrium policy on the 76 links
Sioux Falls network, with 14,000 vehicles going to two di↵erent destinations. Using online
mirror descent, we see that the average deviation incentive decreases to 1.55 (for a travel
time of 27) over 100 iterations, see fig. 6.4. We use a fixed learning rate of 1 in the 30 first
iterations of the algorithm, 0.1 in the 31 to the 60 first iterations and a fixed learning rate
of 0.01 in the 40 remaining iterations to produce fig. 6.4.

The resulting mean-field policy is not exactly the Nash equilibrium policy of the MFG
as its average deviation incentive is 1.55 (for a travel time of 27.5). The game evolution
displayed in fig. 6.5 shows that some vehicles going from node 19 to node 1 have a longer
travel time than others: on time step 26.5 (section 6.4) some vehicles have arrived to node
1 (top left) and some have not.

Average deviation of the learned mean-field policy cannot be computed numerically in
the 14,000 player game, due to the large number of players.
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Figure 6.3: Average deviation incentive of the Nash equilibrium mean-field policy in the
N -player game as a function of N in the case of the Pigou game. The sampled values are the
values computed in OpenSpiel by testing all the possible pure best responses, and sampling
game trajectories to get the expected returns. This figure is reproduced from [46, Figure 3].

Figure 6.4: Online mirror descent average deviation incentive in the Sioux Falls MFG as a
function of the number of iterations of the descent algorithm. After 100 iterations of the
algorithm, the average deviation incentive is 1.55. This figure is reproduced from [46, Figure
4].
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Figure 6.5: Sioux Falls network dynamics in the mean-field Nash equilibrium. From left
to right, top to bottom: the locations of the cars at time 0.0, 2.5, 10.0, 12.5, 21.0, 22.0,
26.5, 27.5. Some vehicles arrived at their destination before some other vehicles that left the
origin at the same time: the Nash equilibrium has not been reached. On average, players
can expect saving 1.55 time by being the only one to be rerouted on a better path. This
figure is reproduced from [46, Figure 5].
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Chapter 7

Conclusion

During more than 5 years of collaboration with the mobile sensing lab, I was able to show
that information-aware routing steers tra�c to a Nash equilibrium. For that pur-
pose, I developed the restricted path-choice model picturing that the vehicles that do not
have access to information are following known paths, and that the vehicles that have ac-
cess to information are minimizing their experienced travel time. I showed that the average
deviation incentive, the average marginal regret, the average counterfactual regret, the ex-
ploitability, and the relative gap to the user equilibrium are the same mathematical object
used in di↵erent contexts. I demonstrated that the average deviation incentive decrease
monotonically to 0 with an increase of information-aware routing behaviors in the restricted
path-choice model. I further showed on microsimulation that information-aware routing also
decreases the average deviation incentive of the vehicles. In addition, the microsimulations
exhibited that navigational-apps should take into account their own impact on tra�c in their
tra�c predictions when they are used by more than 30% of the vehicles. On small thought
experiments, I illustrated that information-aware routing behaviors might not increase the
transportation e�ciency.

I connected the tra�c engineering literature with case studies about the impact of cut-
through tra�c induced by information-aware routing behaviors. I displayed that the travel
time of some parallel paths to the I-210 in Los Angeles, CA became balanced with the
highway travel time during peak hours, giving clues about the existence and the intensity
of information-aware routing behaviors. I gave evidences about cut-through tra�c induced
by these information-aware routing behaviors in the Los Angeles, CA network. Case studies
indicate that in Fremont, CA, during the 2019 evening peak hours, up to 10% of the tra�c
supposed to take the I-680 will take local roads instead. In Pleasanton, CA, cut-through
tra�c accounted for up to 84% of the tra�c on some local roads in 2016.

In order to help cities to improve possible mitigation techniques against cut-through traf-
fic, I have provided a blueprint for developing, calibrating, and validating tra�c microsim-
ulations. I used this sketch to create a tra�c microsimulation of a Fremont neighborhood.
For the sake of reproducibility, the full process has been made open source, along with the
Fremont tra�c microsimulation. Finally, I have developed the mean-field routing game, to
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enable simulating promptly how individual dynamic routing behaviors impact the overall
state of tra�c. The mean-field routing game enables simulating numerous vehicles together,
as illustrated on the Sioux Falls network with 76 links and 100 time steps with 14,000 vehicles.

The way forward

The Ph.D. journey helped me envision what the future of transportation research should
be focusing on. First, in my opinion, the research community should continue bridging
economics, urban planning, tra�c engineering, and optimal control of dynamical systems
when working on transportation related problems. Second, the transportation planning
community should establish and communicate clear criteria to know when case studies,
A/B experiments or simple models should be used instead of simulations. As part of this
recommendation, the community should also establish which type of simulations (land-use,
travel demand, tra�c model, micro/macro/meso, static/dynamic) should be used based on
the use cases that cities have.

Within the transportation research community working on transportation simulation,
the e↵ort to develop large-scale simulation models should be continued to improve tra�c at
the metropolitan scale. Especially, with the rise of information-aware routing behaviors, I
believe that the tra�c demand (i.e., the output of the travel demand models) should not
include the individual route choice anymore. I expect that mean-field routing games will be
a useful tool to portray route choice e�ciently at a metropolitan scale. Moreover, standard-
ized validation toolboxes for tra�c microsimulation should be developed. These toolboxes
should leverage the work done in machine learning about model validation. In particular, all
tra�c models and all tra�c simulations should be validated against ground truth with data
separated between training and testing data. Building on this dissertation, the tra�c sim-
ulation community can develop a calibration toolbox for tra�c microsimulations. I believe
that new tools can be brought to the transportation data analysis (like Koopman operator,
principal component analysis, or sensitivity analysis). I also think that the work done to
decrease the level of under-determination in tra�c simulator calibration can leverage work
done by the machine learning community (for example, using robust principal component
analysis on the OD demand matrices).

Finally, I think that the transportation research community should try as much as possible
to stay connected to the needs of transportation planners and engineers by working on ground
truth use cases. Especially, research projects should be built in collaboration with cities and
tra�c engineers.
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[29] Michael GH Bell. “The estimation of origin-destination matrices by constrained gener-
alised least squares”. In: Transportation Research Part B: Methodological 25.1 (1991),
pp. 13–22.

[30] E. Bert, A. Torday, and A. Dumont. “Calibration of Urban Network Microsimulation
Models”. In: Proc., 5th Swiss Transport Research Conf., Ascona, Switzerland January
(2005).

[31] Dimitri P Bertsekas and John N Tsitsiklis. Introduction to probability. Vol. 1. Athena
Scientific Belmont, MA, 2002.

[32] Chandra R. Bhat and Frank S. Koppelman. “Activity-Based Modeling of Travel De-
mand”. In: Handbook of Transportation Science. Boston: Kluwer Academic Publishers,
2006, pp. 39–65. doi: 10.1007/0-306-48058-1_3. url: http://link.springer.
com/10.1007/0-306-48058-1_3.

[33] Jeb Bing. City cameras now watch your car, but not you. 2002. url: https://www.
pleasantonweekly.com/morgue/2002/2002_05_10.cameras10.html (visited on
07/15/2022).

[34] Laura Bliss. U.S. Transportation Funding Is Not Created Equal. 2017. url: https:
//www.citylab.com/transportation/2017/07/us-transportation-funding-
is-not-created-equal/534327/ (visited on 08/18/2019).

[35] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. “Routing without regret: on con-
vergence to nash equilibria of regret-minimizing algorithms in routing games”. In:
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing. Vol. 6. PODC ’06 1. New York, NY, USA: ACM, 2006, pp. 45–52. doi:
10 . 4086 / toc . 2010 . v006a008. url: http : / / www . theoryofcomputing . org /
articles/v006a008.

https://patch.com/california/fremont/speed-lumps-being-installed-slow-traffic
https://patch.com/california/fremont/speed-lumps-being-installed-slow-traffic
https://doi.org/10.1007/0-306-48058-1_3
http://link.springer.com/10.1007/0-306-48058-1_3
http://link.springer.com/10.1007/0-306-48058-1_3
https://www.pleasantonweekly.com/morgue/2002/2002_05_10.cameras10.html
https://www.pleasantonweekly.com/morgue/2002/2002_05_10.cameras10.html
https://www.citylab.com/transportation/2017/07/us-transportation-funding-is-not-created-equal/534327/
https://www.citylab.com/transportation/2017/07/us-transportation-funding-is-not-created-equal/534327/
https://www.citylab.com/transportation/2017/07/us-transportation-funding-is-not-created-equal/534327/
https://doi.org/10.4086/toc.2010.v006a008
http://www.theoryofcomputing.org/articles/v006a008
http://www.theoryofcomputing.org/articles/v006a008


BIBLIOGRAPHY 127

[36] Transportation Economics Committee Transportation Research Board. Transporta-
tion Benefit-Cost Analysis. url: http://bca.transportationeconomics.org/.

[37] Geo↵ Boeing. “OSMnx: A Python package to work with graph-theoretic Open-
StreetMap street networks”. In: Journal of Open Source Software 2.12 (2017).

[38] Bob Booth, Andy Mitchell, et al. Getting started with ArcGIS. 2001.

[39] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004. isbn: 0521833787.
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[120] DRIEAT Île-de-France. “Enquête globale de transport”. In: Enquêtes transport et
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[197] Naci Saldi, Tamer Başar, and Maxim Raginsky. “Markov–Nash Equilibria in Mean-
Field Games with Discounted Cost”. In: SIAM Journal on Control and Optimization
56.6 (2018), pp. 4256–4287.

[198] Rabih Salhab, Jerome Le Ny, and Roland P Malhamé. “A mean field route choice
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