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Abstract

The Dynamics of Recommender Systems

by

Karl M Krauth

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

Over the past three decades, the reach of recommender systems has grown exponentially.
Today, recommender systems are deployed on all major internet platforms, influencing our
opinions, decisions, careers, and relationships. However, despite their far-reaching impact,
these algorithms and their consequences are still poorly understood. In this thesis, we argue
that this is due to the challenging dynamics of the recommendation problem. We outline four
problems that distinguish the dynamics of recommendation from other dynamical systems,
making them particularly hard to reason about: (1) direct measurement and experimentation
are often infeasible, (2) feedback effects make it difficult to reason about cause and effect, (3)
the scale of internet platforms requires increased algorithmic complexity, and (4) incentives
created by recommender systems cause users to behave strategically. We build the foundations
necessary to understand and remedy these four problems, paving the way for a complete
understanding of the dynamics of recommender systems and their consequences.
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Chapter 1

Introduction

In 2012, the size of the internet exceeded a zettabyte (1021 bytes) [241]. The internet’s growth
from a gentle stream to a torrential flood of information spurred the development of new
methods to efficiently retrieve relevant data. Today, recommender systems and search engines
allow us to find useful content at the click of a button while also filtering out a vast sea of
informational noise. The year 2012 was also notable for the field of machine learning. In their
seminal paper, Krizhevsky, Sutskever, and Hinton [137] developed a convolutional neural
network that achieved a top-5 error rate of 15.3% in the ImageNet 2012 challenge [200], a 10
percentage point improvement over contemporary methods. This impressive feat launched a
new wave of investment and development in machine learning.

Since machine learning algorithms excel at processing large amounts of data, new devel-
opments in the field were rapidly incorporated into recommender systems and deployed on
large internet platforms such as Youtube [47], Facebook [112], Netflix [6], and Twitter [167].
These breakthroughs empower users to interact with recommender systems in new intuitive
ways [77] while also improving the inferential accuracy of these systems. Unfortunately, these
changes are not universally positive. Recommender systems now permeate every aspect of
our lives: affecting our purchasing decisions, our media consumption, our political views,
and even our social interactions. As a consequence, the societal impact of recommender
systems has come under scrutiny in recent years, with detractors claiming that these systems
contribute to societal ills such as addiction, polarization, radicalization, and misinformation
[52, 65, 158].

The debate about the culpability of recommender systems is still ongoing [33, 98, 141].
This uncertainty reflects the complex nature of the environments in which these systems
operate. Where much of this complexity stems from the dynamics of these environments
since they are impacted by the changing preferences of massive and highly heterogeneous
populations. Yet most recommendation research ignores the dynamics inherent to the problem,
and instead makes the simplifying assumption of a static environment [143, 177, 191, 206, 218,
231, 248]. Given that most visible breakthroughs in machine learning have stemmed from
accuracy improvements on standardized static benchmarks [186], this is perhaps unsurprising.
However, we argue that the dynamics of recommendation are key to properly understanding
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recommender systems and their impact, and thus can not simply be ignored.
In this thesis we study the dynamics of recommender systems. We argue that recommen-

dation environments are particularly challenging instances of dynamical systems due to the
following four characteristics:

1. Measurement: Recommender systems are primarily deployed on large internet plat-
forms where experimentation is often prohibitively expensive. Combined with the
closed-source nature of these platforms, it is often infeasible to measure recommenda-
tion effects.

2. Feedback: Recommendations impact user preferences and interactions, which in turn
impact future recommendations, thus creating a feedback loop that is challenging to
account for.

3. Scale: Given the massive user populations recommender systems must contend with,
platforms must deploy complex multi-stage pipelines where each stage is composed of a
different filtering algorithm. These pipelines are much harder to analyze in unison than
their individual components.

4. Incentives: Exposure on internet platforms is often tied to monetary compensation,
incentivizing certain users to act strategically. Since recommender systems play a
moderating role in directing user attention, users will adapt their behavior to the
recommendation algorithm to maximize their exposure. These strategic agents will
often act in a seemingly unpredictable fashion when their incentives aren’t considered.

We will explore how to manage all four of these issues in subsequent chapters. However, we
will begin by taking a deeper dive into each characteristic, explaining how they arise and
what makes them uniquely challenging to handle.

1.1 The Measurement Problem
Developing a principled understanding of recommendation algorithms and their effects
requires the ability to test hypotheses through experimentation. Unfortunately, experiments
are particularly challenging to develop in this regime. Since recommender systems are
primarily deployed on large internet platforms, experimental interventions often come at a
prohibitively high engineering cost, often requiring the collaboration of multiple teams. For
example, we might wish to understand whether expanding users’ horizon by recommending
novel content will increase their happiness. However, this would require making intrusive
modifications to a large software system. Furthermore, the experiment isn’t guaranteed to
increase user engagement with the platform: potentially causing a loss in revenue.

To make matters worse, many quantities such as user happiness and content quality are
only observable through indirect proxy measures such as click-through rate and ratings. And
this is in the ideal case where a researcher is one of the lucky few to have direct access to these
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measures. Due to privacy concerns this data is often only available to researchers working at
the company that owns the platform being experimented on. Most researchers must settle
for even more indirect measurements that are publicly accessible to all users.

It should therefore come as no surprise that most researchers instead choose to study
recommender systems through a static lens. In this regime, the performance of recommender
systems is quantified through offline metrics which are usually evaluated with respect to a
fixed held-out test set. The hope is that improvements in these offline metrics will reflect
performance improvements of the recommender system once it is deployed.

In Chapter 2 we show how to mitigate the measurement problem through the use of
simulation. We introduce RecLab: an extensible ready-to-use simulation framework. Using
RecLab we study empirically how the effects of distribution shifts and feedback loops
impact the validity of contemporary offline evaluation methodologies. We also explore what
knowledge can be gained through these studies given the mismatch between simulations
and real environments. This work first appeared as a standalone paper [134] which was
co-authored alongside Sarah Dean, Alex Zhao, Mihaela Curmei, Wenshuo Guo, Ben Recht,
and Michael I. Jordan.

1.2 The Feedback Problem
Feedback loops occur when the output of a system is the input of another system, the second
system’s output is then routed back as an input into the first system. Reasoning about cause
and effect in this regime is often tricky due to the closely coupled nature of the systems. This
notion is particularly relevant to the dynamics of recommendation wherein feedback is an
inherent property of the dynamics.

Recommender systems alternate between (1) making recommendations (2) collecting user
responses to these recommendations, and (3) retraining the recommendation algorithm based
on this feedback. During this process the recommender system influences the user behavioral
data that is subsequently used to update it, thus creating a feedback loop. Recent work has
shown that feedback loops may compromise recommendation quality and homogenize user
behavior, raising ethical and performance concerns when deploying recommender systems.

In Chapter 3 we propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm
that provably breaks feedback loops using causal inference and can be applied to any
recommendation algorithm that optimizes a training loss. Our main observation is that a
recommender system does not suffer from feedback loops if it reasons about causal quantities,
namely the intervention distributions of recommendations on user ratings. This work first
appeared as a standalone paper [135] which was co-authored alongside Yixin Wang and
Michael I. Jordan.
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1.3 The Scale Problem
In practice, recommender systems need to cater to millions or even billions of users. Each time
a user needs a recommendation these systems must filter through a massive catalogue of items
in only a few milliseconds. These requirements are too onerous for classical recommendation
algorithms. As a result, two-stage recommenders have become a popular solution to the
problem of scale.

Thanks to their scalability, two-stage recommenders are used by many of today’s largest
online platforms. These systems produce recommendations in two steps: (1) multiple
nominators—tuned for low prediction latency—preselect a small subset of candidates from
the whole item pool; (2) a slower but more accurate ranker further narrows down the
nominated items, and serves to the user. Despite their popularity, the literature on two-stage
recommenders is relatively scarce, and the algorithms are often treated as mere sums of
their parts. Such treatment presupposes that the two-stage performance is explained by the
behavior of the individual components in isolation.

In Chapter 4 we use synthetic and real-world data to demonstrate that interactions
between the ranker and the nominators substantially affect the dynamics of recommendation.
Motivated by these findings, we derive a generalization lower bound which shows that
independent nominator training can lead to performance on par with uniformly random
recommendations. We find that careful design of item pools, each assigned to a different
nominator, alleviates these issues. As manual search for a good pool allocation is difficult,
we propose to learn one instead using a Mixture-of-Experts based approach. This work first
appeared as a standalone paper [101] which was co-authored alongside Jiri Hron, Michael I.
Jordan, and Niki Kilbertus.

1.4 The Incentives Problem
Content creators compete for user attention. Their reach crucially depends on algorithmic
choices made by developers on online platforms. To maximize exposure, many creators adapt
strategically, as evidenced by examples like the sprawling search engine optimization industry.
This begets competition for the finite user attention pool.

This strategic behavior is problematic when it comes to designing recommender systems.
Changes in the recommendation algorithm can influence the type of content that is produced
in unexpected and sometimes harmful ways. Furthermore, strategic behavior is inherently
harder to model since we must account for the effect of the recommendation model on the
creator’s incentives.

In Chapter 5 we formalize these dynamics in what we call an exposure game, a model
of incentives induced by algorithms including modern factorization and deep two-tower
architectures. We prove that seemingly innocuous algorithmic choices significantly affect
the existence and character of Nash equilibria in exposure games. We then use our creator
behavior models as a pre-deployment audits. Such an audit can identify misalignment between
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desirable and incentivized content, and thus complement post-hoc measures like content
filtering and moderation. This work first appeared as a standalone paper [103] which was
co-authored alongside Jiri Hron, Michael I. Jordan, Niki Kilbertus, and Sarah Dean.
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Chapter 2

Evaluating Recommender Systems under
Distribution Shifts and Feedback Loops

2.1 Introduction
When machine learning systems are deployed in dynamical settings, their decisions often
influence the outcomes they wish to predict. This feedback loop can cause a distribution shift
not classically accounted for in supervised learning frameworks. This phenomena has not
gone unnoticed by the machine learning community, with recent works characterizing general
settings of performativity and concept drift [76, 183]. We take a complementary approach
by considering the specific setting of recommendation systems. In particular, we focus on
evaluation methodologies and examine their validity under such distribution shifts.

Though the recommender systems community is well aware of the challenges posed by
dynamical interactions [133], most recommendation algorithms are primarily designed and
evaluated on static datasets in an offline setting [143, 177, 191, 206, 218, 231, 248]. A typical
offline-first evaluation methodology involves the following four steps:

1. Dataset Creation: An organization or research group creates a dataset by collecting
user interactions with a set of items hosted on an internet platform. Two prominent
examples are the Netflix Prize and MovieLens datasets.

2. Offline Evaluation: Algorithm developers use these datasets to evaluate their recom-
mendation algorithms. They train their algorithm on a training split of the datasets,
tune on a validation split, and evaluate on a test split using various offline metrics
such as root-mean-squared error (RMSE) and normalized discounted cumulative gain
(nDCG).

3. Comparison with Baselines: Developers compare these offline metrics with other
algorithms, either by running the other algorithms themselves or by referring to
previously published work. If their algorithm compares favorably the developers may
publish their work, or, if they can, proceed to the next step.
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4. Online Evaluation: The algorithm is deployed on a real platform and its performance
is evaluated using online metrics, which are usually defined to capture some notion
of utility. Examples of popular online metrics include click-through rate (CTR) and
watch time.

Offline evaluations are sensible given the difficulty of evaluating algorithms online: most
researchers do not have access to a platform on which to experiment, and even those that do
may not be able to perform large-scale evaluations due to the engineering effort required or
the potential lost revenue. However, offline evaluation comes with its own set of challenges.
The data collected in step (1) is influenced by the recommender that is deployed at the time,
leading to selection bias [205]. Dacrema, Cremonesi, and Jannach [51] demonstrate that
baseline comparison in step (2) is often performed incorrectly, with practices like inconsistent
dataset splitting leading to non-reproducible results. Furthermore, they show that the
baselines in step (3) are often incorrectly tuned, leading to a false sense of progress, a finding
corroborated by Rendle, Zhang, and Koren [192]. The difficulty of properly evaluating
algorithms offline brings into question the relationship between steps (1) to (3) and step (4).

In this work, we study the validity of this evaluation pipeline in controlled simulated
environments. We focus on the effect of the offline dataset and the relationship between
online and offline evaluation. We aim to answer three main questions:

1. Does the distribution of offline datasets impact the conclusions of algorithm comparison?

2. Under what conditions can offline metrics reliably predict a recommender system’s
online performance?

3. Do feedback effects have a similar impact on differing recommender systems?

To answer these questions we evaluate eleven recommendation algorithms across six simulated
environments.

By using large-scale simulations, we are able to isolate specific effects devoid of any
confounding factors. The recommenders we evaluate encompass simple baselines (Random,
Oracle, TopPop), neighborhood-based models (ItemKNN, UserKNN [107, 231]), kernel-
based models (LLORMA [143]), linear models (EASE [218]), factorization models (SGF MF,
Bayes MF [191]), and neural models (CF-NADE [248], AutoRec [206]). The simulated
environments on which we evaluate represent a diverse set of scenarios including two settings
implemented in prior work and one setting that is initialized using the MovieLens dataset
[90]. We give further details of each environment in Section 2.3, and further details of each
recommender system in the supplementary.

We begin by investigating the effects of shifts in the sampling distribution of offline
datasets. We confirm and expand the finding of Schnabel et al. [205], demonstrating that
biased sampling can lead to biased evaluation metrics for a wide range of recommendation
algorithms. However, we find that the relative ordering of different recommendation algorithms
is stable under these sampling shifts. We therefore do not find evidence that these biases
affect the validity of the comparison.
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Figure 2.1: Left: The nDCG@20 plotted against the mean user ratings of all recommended
items on the topics-dynamic environment. Right: The RMSE plotted against the mean
user ratings. nDCG and RMSE are averaged across five folds on the offline dataset associated
with the environment, user ratings are averaged across ten trials. Each point represents a
single model evaluation with error bars representing 95% confidence intervals.

We then show that offline metrics can act as a good proxy for online performance by
replicating the offline-first evaluation methodology in a controlled setting. We compute RMSE
and nDCG on an offline dataset for each recommender, simulate the interactive process of
recommendation, compute the average user ratings of recommended items, and then compare
the offline and online metrics. Figure 2.1 shows such a comparison on the topics-dynamic
environment. While there is a strong correlation between nDCG and mean user rating, we
note that improvements in nDCG past a certain point suffer from diminishing improvement
in mean user ratings. We examine these effects in more details in Section 2.6.

Taken together, our large-scale simulation results suggest that offline metrics are a reliable
tool to supplement online evaluation. However, they also bring into question the value of
chasing small improvements in predictive performance, since those results might only lead
to very small noisy improvements in the online setting. This is especially true when data is
plentiful and state-of-the-art recommendation algorithms can predict near-optimally. Instead,
researchers should focus on a holistic evaluation of their algorithms; taking into account
metrics that look beyond predictive accuracy and considering issues of measurement and
sampling in the construction of the datasets they use.

Since there are many interesting research questions that can be studied through simulation,
we open-source our simulation package. Our package is designed with large-scale evaluation
in mind, and reproduces a number of popular and state-of-the-art recommenders. We also
make available many environments, while making it easy to extend the package with new
ones. A schematic view of the simulation and evaluation framework is shown in Figure 2.2.
It is our hope that this package can be integrated into the development and evaluation of
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Figure 2.2: Illustration of the RecLab evaluation pipeline.

recommendation algorithms.

2.2 Related Work
Other simulations There has recently been increased interest in studying recommenders
through simulation. Chaney, Stewart, and Engelhardt [43] propose an environment in which
users have limited knowledge of their utility, and show that recommendation algorithms
homogenize user behavior within their simulations. Schmit and Riquelme [204] evaluate
the performance of ridge regression and matrix factorization in a two timestep simulated
dynamical setting. Ie et al. [110] and Rohde et al. [195] both propose simulation frameworks
that are focused on evaluating reinforcement-learning based recommenders. Mansoury et al.
[158] and Jiang et al. [115] use simulation to study the negative effects of feedback loops in
recommender systems. Our work distinguishes itself from prior simulation studies by being
the first to investigate a wide range of recommendation algorithms across a large number of
environments. Furthermore, we are the first to investigate simulations at the scale of common
benchmark datasets, while still running for many timesteps.

Online recommendation Several empirical studies on deployed recommender systems
identify inconsistencies in online and offline performance [14, 172, 196], while others show
how richer sets of offline metrics can be used to predict online performance [157]. Our work
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brings a systematic lens to this problem to understand more broadly the validity of practices
around algorithm design and evaluation.

Many recommendation algorithms have been designed to address the difficulty of online
recommendation in dynamical environments. Classically, time-aware models exploit the
sequential nature of recommendation by incorporating temporal context [37, 130, 229]. More
recently, a body of work treats online recommendation as a causal inference problem where
the recommender model must de-bias logged training data [161, 201, 205, 215]. Lastly,
others seek to improve recommender systems by directly addressing the online problem either
through exploration strategies or reinforcement learning algorithms [45, 111, 125, 146].

Assessing metrics Our work complements research on the societal effects of recommender
systems, which considers alternative metrics including diversity, utility, serendipity and
fairness [2, 69, 176, 213, 242]. Many authors have examined the limitations of accuracy as the
sole metric for evaluating recommenders and have sought to define alternate metrics. Herlocker
et al. [93] proposed a variety of metrics for assessing a recommender’s coverage, diversity,
novelty, and serendipity, while Kaminskas and Bridge [120] provide a more recent survey of
the approaches for training recommenders with respect to these alternative metrics. Recently,
Dean, Rich, and Recht [55] introduced a measure of reachability which combines ideas of
coverage with user agency in interactive systems. Finally, recent meta-studies [166, 189, 192]
address the reliability of benchmarks in machine learning, and the associated leaderboards of
algorithms created by the research community. Our work extends this line of work by also
investigating the relationship between these leaderboards and online performance.

2.3 The RecLab Simulated Environments
In this section we summarize the environments that we provide through our simulation
framework. We consider both environments where users must consume the single item that is
recommended to them and environments where users can choose from a slate of items. Unless
mentioned otherwise we set our environments to have 1000 users and 1700 items, which is
similar to the MovieLens 100K dataset.

topics-static In the topics-static environment, each item is assigned to one of K
topics and users prefer certain topics. This is similar to the simulation presented by Ie et al.
[111]. The preference of user u for items i of topic ki is initialized as π(u, ki) ∼ Unif(0.5, 5.5),
while the topic k of item i is chosen randomly from the set of all topics. When user u is
recommended item i it will rate the item as rt(u, i) = clip(π(u, ki) + ϵ) where ϵ ∼ N (0, σ2)
represents exogenous noise not modeled by the simulation, and clip truncates values to be
between 1 and 5.

topics-dynamic In topics-dynamic items are rated in the same way as topics-static.
In this setting however, user preferences can change as a result of the items they consume.
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Since past work has shown that users might become more interested in a topic through
repeated exposure [78, 158], we incorporate this phenomenon into our model. If item i is
recommended to user u then their preferences are updated as

πt+1(u, k)← clip(πt(u, k) + a) k = ki,

πt+1(u, k
′)← clip

(
πt(u, k

′)− a

K − 1

)
∀k′ ̸= ki,

where a is a fixed affinity parameter. Another well-studied phenomenon is the fact that users
get bored from being recommended the same topic in a short period of time [124, 236]. We
model this as:

rt(u, i) = clip(πt(u, ki)− λ1{topic ki observed ≥ τ times
within m previous timesteps}+ ϵ).

The effect of boredom arises from three parameters: memory length m, boredom threshold τ ,
and boredom penalty λ. If a user observes the same topic more than τ times within the last
m timesteps then their ratings is penalized by λ.

latent-static In the latent-static environment, we represent users and items
with d-dimensional latent feature vectors. This is a common assumption when developing
factor models [15, 131, 132], and allows us to investigate a different user-item representation
than the topics-based simulations. The rating of user u on item i is computed using these
latent vectors as well as bias terms: r(u, i) = clip(µ0 + cu + bi + p⊤

u qi + ϵ), where µ0 = 3
is a global bias, cu ∼ N (0, 0.25) is the bias of user u, bi ∼ N (0, 0.25) is the bias of item i,
pu ∼ N (0,

√
0.5/d) is the latent factor of user u, qi ∼ N (0,

√
0.5/d) is the latent factor of

item i, and ϵ ∼ N (0, σ2). RecLab also includes a latent-dynamic environment with a
similar concept of boredom and affinity change as topics-dynamic. However, we do not
present experimental results on latent-dynamic.

ML-100K The ML-100K environment is identical to the
latent-static environment, except that the parameters are generated based on the
MovieLens 100K (ML_100K) dataset [90]. We train a LibFM factorization model on the
ML_100K dataset, with hyperparameters tuned to achieve low RMSE through cross validation.
We then extract the model’s biases and latent factors to initialize the environment. We use
ML-100K to confirm that our experiments generalize to situations where the simulator’s
parameters are initialized using real user interaction data.

latent-score The latent-score environment was proposed in Section 5.2.3 of Schmit
and Riquelme [204]. In latent-score users have partial knowledge of an item’s value.
They use this information, with the recommender’s predicted score, to select an item from
a slate of recommended items. We evaluate latent-score with 170 users and 100 items
due to computational limitations.
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beta-rank This environment was introduced by Chaney, Stewart, and Engelhardt [43].
It is similar to latent-score: users know part of the value for each item and users/items
are represented by latent vectors. In beta-rank the rating of a user i on an item j is given
by r(u, i) ∼ Beta(p⊤

u qi, σ
2), where pu is the latent vector for user i, qi is the latent vector

for item i, and the Beta distribution is parameterized according to its mean and variance.
In this setting users chose from a slate of items based upon their observed utility and the
recommender’s ranking. We evaluate this environment with 170 users and 100 items due to
computational limitations.

2.4 Reproduced Recommenders
We evaluate eleven recommenders including baseline models, neighborhood models, factoriza-
tion machine models, and several recent deep models. We choose to investigate recommenders
mentioned by Rendle, Zhang, and Koren [192] as these models have all been run on the
MovieLens10M dataset, giving us a starting point of comparison. The recommendation
algorithms that we consider choose items to recommend based on a relevance prediction.
Except when specified, recommendations are greedy, meaning that the item with the highest
relevance prediction will be recommended. Therefore, the main difference between the follow-
ing algorithms is their prediction component. All the models we reproduce only make use of
ratings when making predictions, in future work we wish to also evaluated content-based and
temporal models. We focus on the settings of rating prediction, where models are tuned so
that relevance predictions match ratings (e.g. RMSE).

• TopPop - The TopPop algorithm recommends the most popular items to every user
without personalization. The popularity of each item is measured by its average rating.

• ItemKNN - The ItemKNN algorithm is a collaborative filtering method using k-nearest
neighborhood and item similarities [231]. We implement ItemKNN in the same way as
Hug [107].

• UserKnn - The UserKnn algorithm is identical to ItemKnn, except that it uses user
features instead of item features [231].

• Oracle - The oracle recommender has access to the internals of the simulated envi-
ronment, and will recommend the item with the highest true rating at each time step.
Since this oracle baseline is still greedy, it does not plan for environment dynamics.
Additionally, since actual ratings are generated with some noise, the RMSE of the
oracle baseline is not zero.

• Random - This baseline predicts ratings uniformly at random.

• SGD MF - A factorization machine implemented in LibFM [191]. The model is trained
using SGD.
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• Bayes MF - Another variant of factorization machines implemented in LibFM. The
model is trained and the hyperparameters are automatically tuned using MCMC.

• AutoRec - An autoencoder framework for collaborative filtering [206]. We train
the algorithm with RMSProp and use the item-based version I-AutoRec. Our
implementation makes use of the source code provided by the authors.1

• CF-NADE - A neural autoregressive architecture for collaborative filtering [248] trained
with Adam. We adapt a publicly available implementation for our experiments.2

• LLORMA - LLORMA [143] is a generalization of low rank matrix factorization techniques.
LLORMA approximates the rating matrix as a weighted sum of low-rank matrices. We
adapt a publicly available implementation for our experiments.3

• EASE - EASE [218] is a linear model designed for sparse data, especially implicit
feedback data in recommenders. We do not include this recommender when computing
RMSE as it outputs non-normalized relevance scores.

2.5 Effects of Rating Sampling Distribution
The datasets used for the offline evaluation of recommendation algorithms are often collected
from deployed systems and are therefore susceptible to sampling biases. How do these biases
affect evaluations of algorithm performance? To investigate these effects, we construct three
datasets. We derive each of them from the topics-static environment, we sample each
one using one of three sampling schemes:

UNIFORM-INIT - In UNIFORM-INIT we sample each user-item pair uniformly.
ML-100K-INIT - We ensure ML-100K-INIT has a rating distribution that matches a real
dataset by fitting two beta distributions to the MovieLens dataset. We fit the first distribution
to the magnitude of each rating, and we fit the second distribution to the number of ratings
each user has made. We then sample user-item pairs from the joint distribution of the two
beta distributions. The probability of selecting user u and item i is thus

P(u, i) =
Beta(r(u, i), α1, β1) Beta(rk(u), α2, β2)∑
u,i Beta(r(u, i), α1, α2) Beta(rk(u), α2, β2)

,

where α1, β1, α2, β2 are parameters fit to the MovieLens 100K dataset4, r is the rating function,
and rk is a random function that assigns a numerical rank to each each user. We shift and
scale both functions between 0 and 1.
ML-100K-INIT-FLIP - This distribution is identical to ML-100K-INIT, except we input

1https://github.com/mesuvash/NNRec
2https://github.com/JoonyoungYi/CFNADE-keras
3https://github.com/JoonyoungYi/LLORMA-tensorflow
4We use α1 = 3.61, β1 = 2.57, α2 = 0.70, β2 = 1.83.

https://github.com/mesuvash/NNRec
https://github.com/JoonyoungYi/CFNADE-keras
https://github.com/JoonyoungYi/LLORMA-tensorflow


CHAPTER 2. EVALUATING RECOMMENDER SYSTEMS UNDER DISTRIBUTION
SHIFTS AND FEEDBACK LOOPS 14

1− r(u, i) instead of r(u, i) in the first beta distribution, flipping the distribution of ratings
about r = 3. This results in a dataset with ratings biased toward lower values.

For each dataset our evaluation procedure is then as follows:
1. We create the dataset by sampling 100, 000 user-item pairs without replacement based on
the above sampling scheme. We then query topics-static for the corresponding ratings.
2. We tune the hyperparameters on UNIFORM-INIT using grid search which minimizes the
mean RMSE evaluated using five-fold cross-validation. We use the same hyperparameters for
all datasets because we did not observe a meaningful difference in performance from tuning
the hyperparameters on each dataset.
3. We evaluate each recommender by averaging the offline metrics (nDCG@20 and RMSE)
across five folds.

The left plot of Figure 2.3 shows the nDCG@205 of the recommenders on ML-100K-INIT
compared with UNIFORM-INIT, and the right plot shows the nDCG@20 of the recommenders
on ML-100K-INIT-FLIP compared with UNIFORM-INIT.
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Figure 2.3: Left: The nDCG@20 on ML-100K-INIT plotted against the NDCG@20 on
UNIFORM-INIT. Right: The nDCG@20 on ML-100K-INIT-FLIP plotted against the
NDCG@20 on UNIFORM-INIT. nDCG is averaged across five folds. Each point represents a
single model evaluation. A linear fit is shown in red.

Due to the uniform sampling, offline metrics evaluated on UNIFORM-INIT are unbi-
ased estimators of a recommender’s performance on the entire population of ratings. The
nDCGs closely follow a linear function in both plots, indicating that the relative ranking
of recommender systems evaluated on ML-100K-INIT and ML-100K-INIT-FLIP closely
corresponds to the relative ranking of these systems with respect to the entire population of
ratings. At first glance, this result seems to conflict with Schnabel et al. [205] who show that
offline metrics evaluated over biased samples of ratings may result in a biased estimate of

5We tried many different values for nDCG@k and obtained near identical behavior for all k.
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population-level performance. However, our results on ML-100K-INIT are actually in agree-
ment with their findings. The nDCG evaluated on ML-100K-INIT is on average higher than
the nDCG on UNIFORM-INIT. There are two possible reasons for this discrepancy: training
data from ML-100K-INIT results in better models, or it is easier to rank items correctly on
ML-100K-INIT than UNIFORM-INIT. We eliminate the first possibility by evaluating every
model trained with ML-100K-INIT on a held-out uniformly-sampled dataset. This results
in an nDCG on-par with models trained and evaluated in UNIFORM-INIT. Hence, only the
second reason remains, which is reflected by the higher nDCG of the Random recommender
on ML-100K-INIT.

We also observe that the nDCG on the ML-100K-INIT-FLIP dataset does not lead
to a biased estimator of overall performance. These results suggest that the ranking of
recommender systems are robust to natural changes in the rating sampling distribution.
Furthermore, it is not a given that a non-uniformly sampled dataset will result in a biased
estimator of population-level performance for recommender systems.
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Figure 2.4: Left: The RMSE on ML-100K-INIT plotted against the RMSE on
UNIFORM-INIT. Right: The RMSE on ML-100K-INIT-FLIP plotted against the RMSE
on UNIFORM-INIT. RMSE is averaged across 5 folds. Each point represents a single model
evaluation. A linear fit is shown in red.

Figure 2.4 shows the same trend holds for RMSE. Once again, we observe that the ranking
of recommenders is robust to the change in sampling distribution. However, the RMSE on
ML-100K-INIT once again overestimates the performance of models when compared to
UNIFORM-INIT, while RMSE on ML-100K-INIT-FLIP is a better predictor of RMSE on
UNIFORM-INIT.
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Figure 2.5: The performance of select recommenders over time on the topics-dynamic
environment. The left plot shows the mean rating of the items that are recommended at
each timestep. The right plot shows the RMSE between the predicted and true ratings of the
recommended items at each timestep. Both plots are created by averaging over 10 experiment
trials. The shaded areas represent 95% confidence intervals.

2.6 Effects of Feedback Loops
Having understood the validity of offline evaluation, we move to considering the distribution
shifts that occur during deployment due to feedback and dynamics. We explore the relationship
between offline metrics and online performance across all the environments described in
Section 2.3. Given an environment, we evaluate each recommender by following these steps:

1. We create an offline dataset by sampling user-item pairs without replacement and
get their ratings from the environment. We sample pairs uniformly, removing the sampling
bias introduced by data collected when a recommendation algorithm is already deployed.
Allowing us to focus on the effects of environment and recommender dynamics.
2. We tune the recommenders on the offline dataset using grid search on the hyperparameters.
Our search aims to minimize the mean RMSE evaluated using five-fold cross-validation. We
do not re-tune hyperparameters.
3. We begin by training each recommender using our offline dataset. At each timestep, online
users are uniformly sampled from the set of all users. We recommend items to the sampled
users and observe their ratings. Lastly, we retrain the recommenders on all the acquired
data so far, and repeat until the end of the experiment. We repeat for 10 trials for every
recommender on each environment.

This method of experimentation closely mimics the offline-first evaluation method men-
tioned in Section 2.1. Notice that we control for factors which may impact online performance,
including the initial sampling distribution and the distribution of online users, so that our
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results illustrate exclusively the effect of environment and recommender dynamics. Fur-
thermore, we consider simple online deployment, retraining from scratch whenever data is
added and using the same hyperparameters throughout. While it is possible to improve these
methods, for example by performing just a few gradient steps with new data, we wish to
avoid any confounding factors whose effect on performance aren’t well understood.

Throughout this section, we consider greedy recommendation: we always recommend the
item with the highest predicted relevance that hasn’t already been recommended to each
user.

Dynamic Environment

In this section we discuss results on topics-dynamic, an environment where user’s
preferences dynamically change over time. We sample 100k initial ratings on which to
tune the recommenders, at every timestep we sample 200 users to recommend items to, and
we run the simulation until we observe 200k ratings. As shown in Figure 2.1, nDCG@20 and
RMSE are predictive of mean user rating. While it is well known that no offline metric can
perfectly track online performance, the reason for these discrepancies has not been extensively
studied.

We explain some of these discrepancies by exploring the full time series of topics-dynamic
for a select group of recommenders. The left plot in Figure 2.5 shows the average rating over
the recommended items at each timestep, while the right plot shows the RMSE between
the predicted and true ratings of the recommended items at each timestep. We emphasize
that the RMSE shown in Figure 2.5 is only computed with respect to the recommended
items at each timestep, and hence is not a measure of accuracy on the whole population of
ratings. We are particularly interested in reasons why two recommenders might have: similar
offline nDCG/RMSE but dissimilar mean user rating, similar mean user rating but dissimilar
offline nDCG/RMSE, or dissimilar nDCG and RMSE. With these goals in mind we make the
following observations:

• Recommenders can affect user preferences in ways not captured by offline
metrics. TopPop improves its performance significantly as time progresses. There
is a large difference in mean rating between it and Random, despite the fact that
both recommenders have very close nDCG. As we discuss in Section 2.6, TopPop’s
improvements are due to the environment’s dynamics.

• The size of the initial dataset affects the offline ranking of recommenders.
LLORMA performs well starting at the first timestep. This seems to contradict its
relatively low NDCG on the offline dataset. However, further investigation reveals that
LLORMA’s NDCG increases to 0.948 when trained with 100, 000 datapoints instead of
the 80, 000 available during five-fold cross-validation.

• Recommender dynamics can affect their performance in ways not captured
by offline metrics. AutoRec performs much better than its offline nDCG and RMSE
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indicate. Unlike LLORMA, the initial performance of AutoRec is bad. At the first
timestep, it barely performs better than Random. However, once it observes data that
is sampled from its own recommendations, it is able to quickly match the performance
of the best recommenders. This result also indicates that, while uniform sampling of
ratings allows for an unbiased estimator of performance as discussed in Section 2.5,
alternate sampling schemes can lead to improved online performance.

• The same user dynamics can have a positive effect on one recommender,
while simultaneously having a negative effect on another. CF-NADE improves
much more slowly than LLORMA, explaining the difference in rating between both
algorithms despite the similar nDCG.6 As we show in Section 2.6, this is primarily due
to the negative effect of the user dynamics on CF-NADE.

• A low RMSE is sufficient for selecting high-value items, but it is not necessary.
SGD MF and Bayes MF both perform on-par with LLORMA, despite the fact that
LLORMA has a worse offline RMSE and per-timestep RMSE. This is because RMSE
captures a recommender’s ability to predict ratings, whereas mean user rating captures
a recommender’s ability to identify high-value items.

Static Environment

In this section, we investigate the performance of recommenders on the topics-static
environment. We focus on comparing these results with those obtained on topics-dynamic
to disentangle phenomena caused by the environment dynamics and those caused by the
recommender dynamics. We initialized topics-static with the same user preferences
and item topics as topics-dynamic. Furthermore, we ensure the offline dataset is the
same for both environments. As a result each recommender’s hyperparameters are the same
as in the topics-dynamic setting.

Figure 2.6 compares the nDCG@20 and RMSE of each recommender on the offline dataset
with the average user rating across all timesteps. In this setting, nDCG and RMSE are still
positively correlated with mean rating, and while most of the observations made in Section 2.6
are still a concern even when there are no environment dynamics at play, we identify two
notable differences. First, TopPop performs on par with Random. As Figure 2.7 shows:
without environment dynamics, the underlying preferences remain uniformly distributed, so
popularity is not predictive. This is in contrast to topics-dynamic where the average
preference for each topic is also initialized to be roughly 3, but by the end of the trial with
TopPop, two of the topics have average affinities higher than 4.5. TopPop pushes user
preferences toward certain topics, inducing item popularity effects in the data. Furthermore,
CF-NADE performs significantly better, showing that the same user dynamics can have
positive or negative effects on performance depending on the recommendation algorithm.

6This observation also holds for UserKnn and ItemKnn although we do not show all these recommenders
in Figure 2.5 to reduce clutter.



CHAPTER 2. EVALUATING RECOMMENDER SYSTEMS UNDER DISTRIBUTION
SHIFTS AND FEEDBACK LOOPS 19

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
NDCG

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

M
ea

n 
R

at
in

g

AutoRec

CF-NADE

EASE

ItemKnn

Bayes MF

SGD MFLLORMA
Oracle

Random

TopPop

UserKnn

0.50 0.75 1.00 1.25 1.50 1.75 2.00
RMSE

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

M
ea

n 
R

at
in

g

AutoRec

CF-NADE

ItemKnn

Bayes MF

SGD MF LLORMA

Oracle

RandomTopPop

UserKnn

Figure 2.6: Left: The nDCG@20 plotted against the mean user ratings of all recommended
items on the topics-static environment. Right: The RMSE plotted against the mean
user ratings of all recommended items on the topics-static environment. NDCG and
RMSE are averaged across five folds on the offline dataset associated with the environment,
user ratings are averaged across 10 trials. Each point represents a single model with error
bars representing 95% confidence intervals.

This emphasizes the importance of evaluating general-purpose recommenders across a diverse
range of datasets and environments. We observed similar results when comparing RMSE to
mean rating in the topics-static environment.

Just as in topics-dynamic, AutoRec performs much better than its offline nDCG@20
would indicate. We confirm that this improvement is caused by the distribution of the online
data AutoRec observes by training the model with 200, 000 randomly sampled datapoints.
We then evaluate the mean rating of AutoRec’s recommended items over a single timestep
(repeated over ten different seeds). We observe that the mean rating is 3.718± 0.055, which
is significantly lower than the recommender’s performance in our online experiments.

Other Environments

So far we have only demonstrated that RMSE and nDCG are predictive of online performance
for two environments: topics-static and topics-dynamic. To ensure that this
observation is robust, we benchmark the recommendation models across all environments
from Section 2.3. The left plot of Figure 2.8 shows the Spearman rank correlations between
the nDCG@20 and the mean rating, while the right plot shows the correlations between the
RMSE and the mean rating. We see that both nDCG and RMSE are predictive of online
performance across all environments. For latent-score and beta-rank we sample 1000
initial ratings and run the simulation until we have 2000 ratings. For all other environments,
we sample 100k ratings and run the simulation until we have 200k ratings.
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Figure 2.7: The mean affinity π for each topic averaged across all users after TopPop has
recommended 100, 000 items. Left: The mean affinity on the topics-dynamic environment.
Right: The mean affinity on the topics-static environment.
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Figure 2.8: Left: The Spearman correlation between the nDCG@20 and the mean user
ratings of all recommended items across all environments. Right: The Spearman correlation
between the RMSE and the mean user ratings of all recommended items across all environ-
ments.

2.7 Discussion
Our experiments demonstrate encouraging results regarding the way recommender systems
are currently evaluated. We showed that ranking recommender systems using offline metrics is
a methodology that is surprisingly robust to changes in the sampling distribution of the offline
dataset. Furthermore, the hyperparameter settings of recommender systems are also robust to
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such shifts in sampling distributions. These findings suggest that the sampling bias of popular
benchmark datasets is likely not a concern for the reliability of the corresponding leaderboard
of algorithms, although as we outlined in the introduction, prior work has surfaced a number
of alternate issues with this methodology.

We also showed that offline metrics are predictive of online performance across a wide-
variety of simulated environments, ranging from static environments where the feedback
effects are limited to the ratings the recommender system chooses to reveal at each timestep,
to dynamic environments where the recommender system also influences the behaviour of the
environment with its predictions. Further justifying the use of offline metrics as a screening
mechanism for recommendation algorithms.

However, our work also raises a number of concerns: the same feedback mechanism can
have a surprisingly different effect on different recommender systems, increases in offline
metrics can lead to diminishing returns in online performance, it is unclear what sampling
scheme for the training set will lead to the best online performance, and even when the
environment is static the dynamics created by the recommender system can lead to unexpected
behavior.

Given these issues, in the following subsections, we discuss two major issues we hope
future algorithm developers will have in mind when designing new recommender systems.

The Role of Simulation in Evaluation

In this work we designed simplified environments with reference to data-backed prior work
and implemented existing environments that are vetted by the research community. These
environments are not a perfect recreation of the real world. Nonetheless there is significant
value in studying algorithms and metrics in a simplified setting, since the ability to control
for many factors allows for a more mechanistic understanding of the complex dynamics in
recommendations.

This is a widely accepted fact in theory-oriented work [46, 233], and is starting to be
adopted within more empirical settings. For example, simulation has been widely accepted
within the field of reinforcement learning as a tool to benchmark algorithms. These simulations
vary from semi-realistic physical models [228] to video games with little grounding in reality
[23, 171].

While simulation should not replace online evaluation, academic recommender systems
are often developed as generalized rating prediction engines, with no specific platform in
mind. Hence, a recommender system failing to perform well in simulation should be taken as
strong negative evidence that such a system would fail to perform well in the real world and
should probably be reworked; just as a supervised learning algorithm that fails to fit a simple
toy problem would be seen with suspicion. As such, we hope that our simulation framework
can be incorporated in the evaluation pipeline of recommender systems since simulations can
catch many issues that would otherwise only surface when a recommender system is deployed.
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Diminishing Returns

Increases in offline metrics lead to diminishing returns in terms of online performance,
as shown in Figure 2.1. The hesitance of technology companies to adopt expressive yet
computationally expensive models [6] indicates that we may already operate in this regime of
diminished returns for real-world recommendation tasks. Furthermore, recommendation tasks
customarily involve an abundance of data with which most current algorithms might already
be predicting near optimally. Instead, large accuracy gains in these high-data settings could
be obtained through the measurement of new user and item features rather than algorithmic
innovation.

This issue is compounded by another source of diminishing returns: as predictive models
achieve higher-and-higher scores on offline benchmarks, their complexity grows exponentially
[7]. This is not a feasible solution for deployed recommenders where models must handle up to
billions of users and items [47]. Even our simulations, which are modest in size when compared
to a production system, took many thousands of compute hours due to the computational
complexity of state-of-the-art models. These issues indicate that further research effort would
be better spent gaining deeper understanding of existing algorithms and datasets to guide
the focus of algorithmic improvements.
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Chapter 3

Breaking Feedback Loops in
Recommender Systems with Causal
Inference

3.1 Introduction
In the previous chapter we started to examine feedback loops in recommender systems using
simulations. In this chapter we will show how to address feedback loops in a principled
manner using causal inference. First, a brief refresher on how feedback loops occur. At each
time step, a recommender system makes recommendations and collects user feedback. At the
next time step, the recommendation algorithm is updated based on this feedback. The process
alternates between these two steps, inducing a feedback loop: the recommendation algorithm
influences what user behavior data it observes; this data in turn affects the recommendation
algorithm, since the algorithm is trained on this data. Over time, the issue is exacerbated:
the recommender system is trained on a growing set of data points that have been biased by
recommendations.

Uncontrolled feedback loops create negative externalities that are shouldered by consumers
and producers. For example, they compromise recommendation quality as they bias the
behavioral data collected by the system. They also exacerbate homogenization effects [43]: if a
user interacts with an item early on, the recommendation system is more likely to recommend
similar items at the expense of dissimilar items that the user might prefer. A related issue
is the “rich-get-richer” problem where items that are popular early on are undeservedly
recommended over newer items since the recommender system has observed more data about
them [41, 202].

A naive way to break feedback loops is to recommend random items. Such a system does
not suffer from negative feedback effects because its recommendations no longer depend on
past data, but it does not learn from user behavior and would unacceptably degrade recom-
mendation quality. So how can we break feedback loops without making recommendations
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useless?
In this work, we study the causal mechanism underlying the recommendation process and

propose the causal adjustment for feedback loops (cafl), an algorithm that can provably
break feedback loops in recommender systems. Studying feedback loops with a causal lens
leads to a key observation: recommendation algorithms do not suffer from feedback loops if
they reason about causal quantities, namely the intervention distributions of recommendations
on user ratings. The reason is that a do intervention on a causal graph, by definition, breaks
the connection between the variable being intervened on (e.g., the recommendation) and its
normal causes (e.g., user feedback) [181].

The causal mechanism of recommendation also reveals that the intervention distributions
of recommendations are identifiable from observational data. To calculate the intervention
distributions, it is sufficient to adjust for the recommender system’s predictions, since feedback
loops in recommender systems only occur through this quantity (see Fig. 3.1b). Following
this observation, we show how to design an algorithm, cafl, that estimates intervention
distributions in training any loss-minimizing recommendation algorithms. cafl enables
recommender systems to break feedback loops without resorting to random recommendations.
In particular, it can be applied to situations where common causal assumptions (e.g. posi-
tivity [113]) are violated. For example, cafl can be applied when a recommender system
requires that all items can only be recommended at most once to each user, which violates
the positivity conditions required by standard causal adjustment methods (e.g. backdoor
adjustment or inverse propensity weighting).

Contributions. The contributions of this work are three-fold. (1) We formalize the
operation of recommender systems over time as a structural causal model over multiple time
steps. (2) We introduce cafl: a causal adjustment algorithm that can provably break
feedback loops for existing recommendation algorithms. cafl is easy to implement in
existing recommender systems as it only requires changing the weights of their loss function.
(3) Across multiple simulation environments, we show that cafl not only corrects the
dataset bias caused by feedback loops, but also improves predictive performance, moreso
than prior correction methods. cafl can also reduce homogenization when feedback loops
induce recommendation homogenization.

Related work. This work is motivated by a recent line of research that aims to
understand the effect of feedback loops in recommender systems. Using simulations, Schmit
and Riquelme [204] and Krauth et al. [134] have shown that ignoring feedback effects will
negatively impact performance. As recommender systems observe more data, they are also
prone to homogenization and bias amplification, which researchers often attribute to feedback
effects [43, 158]. Another related line of work studies the effects of feedback loops theoretically:
under assumptions of preference drifts, they show that feedback loops can have undesirable
effects on users [115, 119]. Hosseinmardi et al. [99] and Sharma, Hofman, and Watts [209]
further illustrate the impacts of recommender systems and feedback loops using observational
data from large internet platforms.

Feedback loops can induce a sampling bias in the collected user behavior dataset, so
the feedback loop problem is a form of the missing-not-at-random (mnar) problem over
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multiple time steps [160]. The mnar problem has been extensively studied in single-step
recommender systems: the recommender system aims to infer missing ratings over a single
timestep using a static dataset. One approach to this problem is to assume an exposure model
between users and items and corrects the bias such an exposure model would induce [94,
147, 215]. Another approach is to use tools from causal inference to correct this bias under
different assumptions [30, 205, 234]. In contrast to these works that focus on single-step
recommender systems, this work studies the setting over multiple time steps and proposes
adjustments based on the special structure of feedback loops.

Correcting feedback effects in recommender system is comparatively less studied than
the mnar problem. Earlier work augments algorithms with temporal information, but
does not model feedback effects [130]. More recently, Sun et al. [220] combines inverse
propensity weighting (IPW) with active learning to correct for feedback effects, assuming
the same rating model as Liang et al. [147]. Pan et al. [178] modify their IPW correction to
account for sequential effects. However, their method requires the marginal probability of
an item being observed at each time step. Estimating these probabilities requires access to
observational user data over a long period of time; the algorithm is thus unable to correct
for feedback effects at the initial period when estimation is performed. Further, estimating
these marginal probabilities is a challenging task, which compromises the prediction accuracy
of algorithms even at later time steps. In contrast to these works, the cafl algorithm
only requires calculating the probabilities of an item being recommended conditioned on the
history of observed data, which is available to the recommender system. As a result, cafl
is data-efficient, simple, and does not require strong modeling assumptions.

Finally, the problem of feedback loops in training machine learning algorithms is not
unique to recommender systems. Farquhar, Gal, and Rainforth [67] focus on the problem of
active learning where one collect one data point at each time step; they propose two unbiased
weighting estimators for empirical risk minimization. Perdomo et al. [183] present a general
framework to study the impact of feedback loops in machine learning predictions. In contrast
to these works, the cafl algorithm takes an explicitly causal view of the feedback loop.
It leads to unbiased weighting estimators that are applicable to recommender systems with
multiple data points acquired in a single time step. The explicit causal view also enables
the use of other causal adjustment strategies for breaking feedback loops, e.g., backdoor
adjustment.

3.2 Feedback loops in recommender systems
We describe feedback loops and their consequences in recommender systems. We focus on
multi-step recommender systems; these systems are regularly retrained as they collect more
data.
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Figure 3.1: (a) Feedback loops depict the process where the recommendations A affect the
ratings R. They in turn affect the recommendation A because recommendation algorithms
are trained on the collected ratings data. (b) The causal graph of recommender systems over
multiple times steps with feedback loops unrolled.

Multi-step recommender systems

A multi-step recommender system operates over T time steps. At each time step, it makes
recommendations to users, observes their feedback, and is then retrained on all the data
observed so far.

A multi-step recommender system begins with a set of U new users and I new items.
At time step t = 1, it recommends N items to a random set of users. Denote At as
the U × I recommendation matrix, where its (u, i)-entry At,ui is a binary variable that
indicates whether user u was recommended item i at time t. Then, at time t = 1, we
have A1

iid∼ Multinomial(n = N, p = p0), where p0 is a matrix of the initial probabilities of
recommendation each item to each user.

After making recommendations, the multi-step recommender then collects user ratings
on the items consumed at this time step. We denote the data we collect at time t as Rt,
which is a U × I rating matrix; its (u, i)-entry Rt,ui is user u’s rating of item i if the item is
consumed at time step t, and Rt,ui = 0 otherwise.

Given the user ratings, the multi-step recommender then infers users’ preferences based
on the collected data from this first time step, {A1,R1}. Denote Θ̂t as the inferred user
preference and item attribute parameters at time t, which are usually minimizers of some loss
function. More formally, the inferred user preference Θ̂t can be seen as a maximum likelihood
estimator under some parametric probability model PΘ with parameter Θ̂,

Θ̂1 = argmin
Θ

EA1 [KL (P (R1 |A1) ||PΘ (R1 |A1))]

= argmax
Θ

EA1

[
EP (R1 |A1) [logPΘ (R1 |A1)]

]
,
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where P (R1 |A1) is the (population) conditional distribution of R1 given A1, from which the
collected data {A1,R1} is drawn, and PΘ (R1 |A1) is a parametric model we posit. KL(·||·)
denotes the Kullback–Leibler divergence between the two distributions.

Many existing recommendation algorithms fall into this setup. For example, assuming
a probabilistic matrix factorization (prob-mf) model for ratings [170] is equivalent to
fitting Θ̂ through a Gaussian linear factor model with maximum likelihood estimation,
PΘ (R1 |A1) =

∏U
u=1

∏I
i=1N

(
R1,ui | θ⊤u βi · A1,ui, σ

2
)
, where the K × 1 user vectors θu and

the K × 1 item vectors βi constitute the parameters Θ =
(
(θu)

U
u=1, (βi)

I
i=1

)
, and σ2 is

assumed known. Similarly, performing weighted matrix factorization [105] and nonnegative
factorization [83, 84] also correspond to fitting parametric probability models using maximum
likelihood [234].

After fitting a parametric model of user preferences, the recommender system then
recommends items based on the inferred user preferences; that is, A2,u∼Pu(A2,u | Θ̂1), u =

1, . . . , U , where Pu(A2,u = 1 | Θ̂1) describes the probability of each item being recommended
to user u based on the inferred parameters Θ̂1. This distribution Pu(· | Θ̂) captures how
recommender systems make decisions based on user preferences; it is usually specified by
recommender systems a priori and can target different goals. For example, a recommender
system may set up Pu(· | Θ̂) to maximize the potential rating of recommended items, or to
increase user consumption, or to maximize the diversity of the recommendations without
sacrificing users’ utility by more than 10%.

Going from time t = 1 to time t = 2, . . . , T , a multi-step recommender system further
updates its inferred preferences, unlike a one-step recommender system which does not update
its inferred user preferences. At time t, it makes new recommendations At, collects new data
{At,Rt}, and updates its parameters Θ̂t by fitting the model to P ({Rs}ts=1 | {As}ts=1) using
all the data collected up to this point, {(A1,R1), (A2,R2) . . . , (At,Rt)} .

But how should a recommender system update its user preference parameters Θ̂t after the
first time step? In particular, the data collected from different time steps are not independent.
Future recommendations depend on past ratings because the recommender system tries to
recommend items that users will like, which is inferred from past ratings. Handling this
dependence over time is a core challenge in developing multi-step recommender systems since
naively repeating the optimization problem in Equation 3.2 would be sub-optimal.

Feedback loops in recommender systems

To handle the dependence between data points collected at different time steps, we study
their dependency structure. This dependency structure is often referred to as feedback loops
in recommender systems, describing how (At,Rt)—the data collected at time t—depends on
the data collected at all previous time steps, {(A1,R1) , . . . , (At−1,Rt−1)}.

In more detail, feedback loops refer to the A → R → A loop, going from the recom-
mendation At, to the rating Rt, and finally back to the recommendation At+1 (Fig. 3.1a).
The recommender system begins by making recommendations At, these recommendations
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increase the probability of the recommended items being rated, hence affecting the rating
we observe Rt. The collected ratings Rt—together with all past collected ratings—in turn,
affect the recommendation matrix At+1, because the recommender infers user preferences
from this data and makes recommendations based on this inference.

To learn user preferences from this sequentially collected data, the most common approach
is to aggregate the data from different time steps [143, 177, 191, 206, 218, 231, 248]. We fit
the probability model for the first time step (i.e. Section 3.2) to all the data collected up to
time t, and infer user preferences as follows:

Θ̂naive
t = argmax

Θ

t∑
s=1

EAs

[
EP (Rs |As) [logPΘ (Rs |As)]

]
= argmin

Θ
E

[
KL

(
t∏

s=1

P (Rs |As) ||
t∏

s=1

PΘ (Rs |As)

)]
.

This approach considers a product of the likelihood terms from each time step, implicitly
assuming data {At,Rt} observed at different time steps are independently collected. However,
they are in general not independent in multi-step recommender systems, that is,

P ({Rs}ts=1 | {As}ts=1) =
t∏

s=1

P (Rs |As, {Rs′ ,As′}s−1
s′=1) ̸=

t∏
s=1

P (Rs |As)

since P ({As,Rs}ts=1) ̸=
∏t

s=1 P (Rs,As). The only exception is when all recommendations
As’s are completely random, and thus they do not depend on past observations. By treating
dependent data as if they were independent, Θ̂naive

t is a biased estimator of user preferences.
Beyond biased estimation, feedback loops are also known to produce a “rich get richer”

phenomenon, leading to homogenization in recommendations over time [43]. As an example,
we contrast two toy movie recommender systems, one with feedback loops (making recom-
mendations based on Θ̂naive

t at time t) and one without feedback loops (making random
recommendations at time t). We then consider their recommendations to two different users:
user A likes both drama and horror movies, and user B likes both drama and sci-fi movies.

The recommender with feedback loops often experiences recommendation homogenization
over time. For example, suppose it recommends drama movies to both users at t = 1 by
chance. Both users will rate it highly because the recommendation aligns with (part of)
their preferences. The recommender then collects these ratings and infers that both users
like drama movies. It thus continues to recommend drama movies at t = 2, and again both
users will rate it highly. Continuing with this process, the recommender with feedback loops
will incorrectly infer that the two users have the same preferences, hence homogenizing user
recommendations.

In contrast, the recommender without feedback loops does not homogenize recommenda-
tions. Again suppose it recommends a drama movie to both users at t = 1 by chance; both
users rate it highly; the recommender will then infer that both like drama movies, as with the
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recommender with feedback loops. At time t = 2, however, the recommender will not solely
recommend drama movies. Rather, it may recommend some other movies like a sci-fi movie.
In this case, only user B may rate it highly. With this data from t = 2, the recommender will
correctly infer that the two users have different user preferences.

Given these concerns about biased and homogenized recommendations, multi-step recom-
mender systems ought to avoid feedback loops [43]. One immediate way to avoid feedback
loops is to adopt a random recommendation mechanism. Such recommendations are not
affected by past ratings and thus are feedback-free. But the user experience will suffer with
random recommendations. How can we then break the feedback loop without making random
recommendations? In the next sections, we analyze the causal mechanism of feedback loops
and show that a recommender system does not suffer from feedback loops if it reasons about
causal quantities, namely the intervention distributions of recommendations As on ratings
Rs. This observation leads us to develop a causal adjustment algorithm that can provably
break feedback loops without resorting to random recommendations.

3.3 Breaking Feedback Loops in Recommendation
Systems with Causal Inference

We begin with a description of the causal mechanism of feedback loops in recommender
systems. This causal perspective will lead to an adjustment algorithm that can provably
break feedback loops.

The causal mechanism of feedback loops

To break feedback loops, we first study its causal mechanism by unrolling it over t time steps.
Begin by writing down the causal graphical model [181] of recommender systems in

Fig. 3.1b. At time t = 1, the recommender system begins with some recommendations
A1. These recommendations causally affect the observed user ratings R1 by increasing the
probability of the recommended items being rated. Both the recommendations and the
observed ratings also affect the inferred user preference parameters Θ̂1 since the recommender
optimizes Θ̂1 based on {A1,R1}. This inferred user preference Θ̂1 then affects A2, i.e. what
items are recommended at t = 2.

The causal structure of
{
A1,R1, Θ̂1,A2

}
then repeats itself at each time step t. In

particular, the inferred user preferences Θ̂t generally depends on all past recommendations
and ratings

{
A1:(t−1),R1:(t−1)

}
. Finally, the (unobserved) true user preferences Θ affects all

ratings across all time steps, hence there is an arrow from Θ to all (Rt)
T
t=1 .

The existence of feedback loops is evident in the causal graph (Fig. 3.1b), where past
recommendations and ratings constantly inform future recommendations. The data {At,Rt}
collected at different time steps are thus not independent, i.e. P ({Rs}ts=1 | {As}ts=1) ̸=∏t

s=1 P (Rs |As) as in Section 3.2; they causally depend on each other, preventing us from
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fitting a single model to the data from all time steps. Given the causal graph from Fig. 3.1b,
how can we break the feedback loop A → R → A → R → A → · · · in updating
recommendation algorithms and fitting Θ̂t?

Breaking feedback loops in recommender systems using causal
inference

To break the feedback loops in Fig. 3.1b, we need to find a distribution P̃ about recommen-
dations and ratings {As,Rs}ts=1 such that it does achieve independence over time steps, i.e.
P̃ ({Rs}ts=1 | {As}ts=1) =

∏t
s=1 P̃ (Rs |As). Such a distribution does not suffer from feedback

loops or their resulting model-fitting bias in Section 3.2; it would allow us to learn user
preference parameters Θ̂t from all past time steps.

Causal inference provides a solution to this challenge: the intervention distribution of
recommendations on ratings P (Rs | do(As = a)) achieves this independence and does not
suffer from feedback loops [181]. In more detail, P (Rs | do(As = a)) denotes the distribution
of Rs under the intervention of setting As to be equal to the value a. It does not suffer from
feedback loops because, by definition, a do intervention do(As = a) breaks the connection
between the variables being intervened on As and its parents Θ̂s−1 in the causal graph
(Fig. 3.1b), thus breaking the As → Rs → As+1 feedback loop. The following lemma
formalizes this argument.

Lemma 1. Assuming the causal graph in Fig. 3.1b, we have

P ({Rs}ts=1 | do({As}ts=1 = {as}ts=1) =
t∏

s=1

P (Rs | do(As = as)),

∀as ∈ {0, 1}U×I , t ∈ {2, . . . , T}.

Lemma 1 is an immediate consequence of the do calculus [181].
Moreover, the intervention distribution is the distribution with the highest fidelity to the

observational data while staying immune from feedback loops. More precisely, among all
distributions P̃ that satisfy independence across time steps (Lemma 1), the intervention dis-
tribution

∏t
s=1 P (Rs | do(As = a)) is the distribution that is closest to P̃ ({Rs}ts=1 | {As}ts=1)

in Kullback-Leibler (kl) divergence:

Lemma 2. Assuming the causal graph in Fig. 3.1b, we have, for all as ∈ {0, 1}U×I and
t ∈ {2, . . . , T},

t∏
s=1

P (Rs | do(As = as))

= argmin
P̃∈Q

KL
(
P ({Rs}ts=1 | {As}ts=1 = {as}ts=1)

∣∣∣∣∣∣P̃ ({Rs}ts=1 | {As}ts=1 = {as}ts=1)
)
,
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where Q =
{
P̃ : P̃ ({Rs}ts=1 | {As}ts=1 = {as}ts=1) =

∏t
s=1 P̃ (Rs |As = as)

}
is the set of all

distributions that satisfies the independence relationship in Lemma 1.

Lemma 2 is an immediate consequence of Theorem 1 in Wang, Sridhar, and Blei [235].
Taken together, Lemmas 1 and 2 imply that, to avoid feedback loops in recom-

mender system, one should fit the parametric model PΘ to the intervention distributions
P (Rs | do(As = as)) instead of the observational distributions P (Rs |As = as) in Section 3.2,

Θ̂causal
t = argmin

Θ
E{As}ts=1

[
KL

(
t∏

s=1

P (Rs | do(As = As)) ||
t∏

s=1

PΘ (Rs |As)

)]
= argmax

Θ
Lcausal,

where Lcausal ≜
t∑

s=1

EAs

[
EP (Rs |do(As=As)) [logPΘ (Rs |As)]

]
.

We term Section 3.3 as the feedback-free causal objective. How can we solve the optimiza-
tion problem in Section 3.3 then? How can we estimate the intervention distributions
P (Rs | do(As = As)) using the observational data {(A1,R1) , . . . , (At,Rt)}? We discuss
these questions in the next section.

Inferring user preferences from intervention distributions

To estimate the intervention distributions P (Rs | do(As = As) in recommender systems, we
first write them as a functional of the observational data distribution P ({As,Rs, Θ̂s}ts=1).
This procedure is also known as causal identification [181]. These results will lead to unbiased
estimates of the optimization objectives in Section 3.3, enabling us to infer the parameters
Θ̂causal

t from observational data and perform recommendation with the inferred parameters.
To identify the intervention distributions P (Rs | do(As = As), we return to the causal

graph (Fig. 3.1b) of multi-step recommender systems. The causal graph implies that
P (Rs | do(As = As) is identifiable from the observational data. Moreover, it is sufficient
to adjust for the inferred user preferences Θ̂s−1 to calculate the intervention distribution
P (Rs | do(As = As), since the feedback loop A→ R→ A occurs only through Θ̂s−1 in the
causal graph (Fig. 3.1b). We first state the key assumption this argument relies on, namely
the positivity condition, and then state this argument formally.

Assumption 1 (Positivity, a.k.a. overlap [113]). The random variables As satisfies the
positivity condition if, for all values of s, as and Θ̂s−1, we have

P (As = as | Θ̂s−1) > 0.

Loosely, the positivity condition requires that it must be possible to recommend any
subset of items to any subset of users at any time steps. Under positivity, we can identify the
intervention distributions as follows.
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Lemma 3. Assuming the causal graph in Fig. 3.1b. Then under Assumption 1, we have

P (Rs | do(As = as)) =

∫
P (Rs |As = as, Θ̂s−1)P (Θ̂s−1) dΘ̂s−1.

Lemma 3 is an immediate consequence of the backdoor adjustment formula for identifying
intervention distributions [181]. Plugging Lemma 3 into Section 3.3, Lemma 3 implies that,
when positivity holds, one can estimate Θ̂causal

t by solving

Θ̂causal
t = argmax

Θ

t∑
s=1

∫ ∫ ∫
P (As)P (Rs |As, Θ̂s−1)P (Θ̂s−1) logPΘ(Rs |As) dΘ̂s−1 dAs dRs

= argmax
Θ

t∑
s=1

EP (As,Rs,Θ̂s−1)

[
P (As)

P (As | Θ̂s−1)
logPΘ(Rs |As)

]
,

where Section 3.3 is due to the chain rule P (As,Rs, Θ̂s−1) = P (Rs |As, Θ̂s−1) ·P (As | Θ̂s−1) ·
P (Θ̂s−1).

The expectation in the optimization objective for Θ̂causal
t (Section 3.3) can be unbiasedly

estimated from observational data. Specifically, Section 3.3 implies that, under positivity, we
can solve for Θ̂causal

t via weighted maximum likelihood estimation,

Θ̂causal
t = argmax

Θ
L̂causal
IPW (Θ),

where L̂causal
IPW (Θ) ≜

t∑
s=1

∑
as∈A

1{As = as}
P (As = as | Θ̂s−1)

· logPΘ(Rs |As = as).

The set A = {0, 1}U ·I denotes the set of all possible values that As can take. The next
proposition justifies this estimator.

Proposition 1 (Unbiased estimation of the causal objective (Section 3.3) under positivity
assumptions). If positivity (Assumption 1) holds, then L̂causal

IPW (Θ) is an unbiased estimator of
the causal objective in Section 3.3,

E
[
L̂causal
IPW (Θ)

]
= Lcausal(Θ).

Proposition 1 is an immediate consequence of Section 3.3. It implies that L̂causal
IPW (Θ)

provides a causal adjustment to the maximum likelihood objective that does not suffer
from feedback loops. It takes the form of the standard inverse probability weighting (ipw)
estimator in causal inference [113], where L̂causal

IPW is a weighted sum of the one-step optimization
objective for recommendations (Section 3.2) with weights being the inverse of the probabilities
P (As | Θ̂s−1).
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The weighting estimator L̂causal
IPW (Θ) is different from the other ipw estimators targeting

mnar issues in one-step recommender systems (e.g. Marlin and Zemel [160] and Schnabel et al.
[205]): the weights in L̂causal

IPW are inverses of the probabilities given the inferred user preferences
at the previous time step Θ̂s−1; in contrast, the weights in other ipw estimators are often
inverses of the probabilities given user covariates like their demographics or characteristics.
This difference is due to the particular causal structure of feedback loops in multi-step
recommender systems (Fig. 3.1b); this structure is not present in one-step recommender
systems.

Taking Section 3.3 together, we can infer user preferences Θ̂t by fitting matrix factorization
models PΘ to intervention distributions, when the positivity condition holds. For example, we
can extend the prob-mf in Section 3.2 from one-step recommender systems to multi-step
recommender systems with feedback loops: we infer user preferences at each time step by
solving

Θ̂causal
t,PROB−MF

= argmax
Θ

t∑
s=1

U∑
u=1

I∑
i=1

∑
as,ui∈{0,1}

1{As,ui = as,ui}
P (As,ui = as,ui | Θ̂s−1)

· logN (Rs,ui | θ⊤u βi · As,ui, σ
2)

= argmax
Θ

t∑
s=1

U∑
u=1

I∑
i=1

1{As,ui = 1}
P (As,ui = 1 | Θ̂s−1)

· logN (Rs,ui | θ⊤u βi, σ
2),

where Θ = ((θu)
U
u=1, (βi)

I
i=1), and the second equation is due to Rs,ui = 0 if and only if

As,ui = 0.

Estimating user preferences under violations of positivity

The ipw estimator L̂causal
IPW in the previous section provides an unbiased estimator of the

maximum likelihood objective for fitting intervention distribution. However, the validity of
L̂causal
IPW relies on a core causal assumption, namely the positivity condition (Assumption 1) in

Lemma 3. It requires that, for all a, s, Θ̂s−1, we have P (As = as | Θ̂s−1) > 0. In other words,
it must be possible to recommend any subset of items to any subset of users at any time
steps, no matter what the inferred user preferences are.

This positivity condition is often violated in multi-step recommender systems. For example,
multi-step recommender systems often require that an item cannot be recommended to the
same user twice. In such cases, an item cannot possibly be recommended to a user at a
later time step if it has already been recommended, constituting a violation of the positivity
condition. In such cases, the ipw estimator does not apply since the probability of some
recommendation configurations P (As = as | Θ̂s−1) is zero, and thus the inverse probability
weight is infinite.

In this section, we extend the ipw estimator L̂causal
IPW to settings where positivity is violated.

We construct an unbiased estimator of causal objective (Section 3.3) for these settings. The
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key idea is to leverage additional invariance structures of the intervention distributions
P (Rs,ui | do(As,ui)) over time to overcome the challenge of positivity violation. Specifically,
we assume that P (Rs,ui | do(As,ui)) is stationary over time, and all user-item pairs have a
non-zero probability of recommendation at a non-empty subset of time steps. Then, for (u, i)
pairs with probability zero of recommendation at time t, we could form an unbiased estimator
for time t using other time steps with non-zero recommendation probabilities.

Theorem 2 (Unbiased estimation of the causal objective (Section 3.3) under positivity
violations). Suppose the following assumptions hold:

1. There is no interference between users or items at a single time step, i.e. recom-
mending an item to a user does not affect the ratings of other users or items at the
same time step, P (Rs | do(As = as)) =

∏U
u=1

∏I
i=1 P (Rs,ui | do(As,ui = as,ui)). More-

over, the parametric model PΘ satisfies a similar factorization. PΘ(Rs |As = as) =∏U
u=1

∏I
i=1 PΘ(Rs,ui |As,ui = as,ui).

2. The intervention distributions of recommendations on ratings are stationary over time,
P (Rs,ui | do(As,ui = as,ui)) = P (Rs′,ui | do(As,ui = as′,ui)) for any s, s′.

3. For each user-item pair, there exists some time step when there is nonzero probability
for this pair to be recommended: for each (u, i), there exists some s ∈ {1, . . . , t} such
that P (As,ui | Θ̂s−1) > 0.

Then any L̂causal
CAFL(Θ ; c) is an unbiased estimator of the causal objective (Section 3.3): for any

c = (c1, . . . , ct) with
∑t

s=1 cs = t, we have

E
[
L̂causal
CAFL(Θ ; c)

]
= Lcausal(Θ),

where

L̂causal
CAFL(Θ ; c)

≜
t∑

s=1

cs


∑
u,i:

P (As,ui=

as,ui | Θ̂s−1)=0

∑
as,ui∈{0,1}

L̂unobs
s,u,i (Θ ; as,ui) +

∑
u,i:

P (As,ui=

as,ui | Θ̂s−1)>0

∑
as,ui∈{0,1}

L̂obs
s,u,i(Θ ; as,ui)

 ,

with

L̂unobs
s,u,i (Θ ; as,ui) ≜

∑
r:P (Ar,ui=as,ui | Θ̂r−1)>0 1 {Ar,ui = as,ui} · logPΘ (Rr,ui |Ar,ui = as,ui)∑

r:P (Ar,ui=as,ui | Θ̂r−1)>0 1 {Ar,ui = as,ui}
,

L̂obs
s,u,i(Θ ; as,ui) ≜

1 {As,ui = as,ui} · logPΘ (Rs,ui |As,ui = as,ui)

P
(
As,ui = as,ui | Θ̂s−1

) .
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The proof of Theorem 2 is in Section 3.6. Loosely, L̂causal
CAFL(Θ ; c) treats the entries where

positivity holds in L̂obs
s,u,i and the other entries where positivity is violated in L̂unobs

s,u,i . The
term L̂obs

s,u,i is the standard ipw estimator as in Proposition 1. The term L̂unobs
s,u,i leverages the

stationary assumption on intervention distributions to form an unbiased estimate for entries
with positivity violations, namely the empirical average of the likelihood term at other time
steps.

Theorem 2 suggests that, to avoid feedback loops in recommender systems, we should
make recommendations at each time step by solving for

Θ̂causal
t = argmax L̂causal

CAFL(Θ ; c)

at each time step t.
In the special case where the recommender systems do not allow the same item to be

recommended twice, we can instantiate Theorem 2 in the following corollary.

Corollary 1. When (1) only one user-item pair is recommended at each time step, and no
item can be recommended twice to the same user, (2) all assumptions of Theorem 2 hold, we
have

L̂causal
CAFL(Θ ; c)

=
∑
u,i

t∑
s=1

cs

∑
r<s

1 {Ar,ui = 1} logPΘ (Rr,ui |Ar,ui) +
1 {As,ui = 1} logPΘ (Rs,ui |As,ui)

P
(
As,ui | Θ̂s−1

)


+ constant

Corollary 1 is an immediate consequence of Theorem 2. The first term in Corollary 1
considers the terms where As,ui = 1, and the constant term absorbs the As,ui = 0 terms
because Rs,ui = 0 if and only if As,ui = 0.

Choosing the constants c. A final challenge is to choose the constants c in the
unbiased estimators (Theorem 2 and corollary 1), since any constant c with

∑t
s=1 cs = t

will lead to an unbiased estimator of Section 3.3. A common choice is to choose c such that
the expectation of the weights in front of each term logPΘ(Rs,ui |As,ui) is the same, since all
(Rs,ui, As,ui) pairs shall be similarly informative for Θ.

In the special case of Corollary 1, one can obtain the c vector by calculating thet
expected weights in front of each term. In more detail, the expected weight of the s-th term
logPΘ(Rs,ui |As,ui) is

∑t
s′=s+1 cs′ + cs · (UI − s + 1)/UI. The reason is that the sth term

does not contribute to L̂causal
CAFL(Θ ; c) in the first s′ = 1, . . . , s− 1 time steps, i.e. before the

first occurrence where As,ui = 1. It then contributes with weight cs/P (As,ui | Θ̂s−1) at the
sth time step, where P (As,ui | Θ̂s−1) has an expectation of (UI − s+ 1)/UI since UI − s+ 1
items out of the total UI items remains to have nonzero probability of being recommended.
Finally, it contributes weight c′s for all future time steps s′ = s+ 1, . . . , t due to the first term
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of Corollary 1. This calculation leads to cs = (UI(UI − t))/((UI − s)(UI − s+ 1)), which
repeats the calculation in Appendix B.4. of Farquhar, Gal, and Rainforth [67].

Intuitive understanding of the weighting estimator. Given the weighting estimator
in Theorem 2, we next develop some intuitive understanding of the weights in the special
case of Corollary 1. Focusing on the choice of cs = (UI(UI − t))/((UI − s)(UI − s + 1))
above, the weight Wui of each log-likelihood term logPΘ (Rs,ui |As,ui = 1) is

Wui =
UI

UI − s︸ ︷︷ ︸
Normalization

t− s︸︷︷︸
Fix 1

+
UI − t

UI − s+ 1︸ ︷︷ ︸
Fix 2

P
(
As,ui = a | Θ̂t−1

)−1

︸ ︷︷ ︸
IPW Weight

 ,

where s is the time at which that user-item pair (u, i) was observed and t is the current
time step. To understand these weights intuitively, we first notice that, in Section 3.3, the
ipw weight ensures that likely (u, i)-pairs will be down-weighted while unlikely pairs will be
up-weighted. This weighting scheme mimics a uniformly sampled distribution over the set
of remaining items, as with standard ipw weighting. It ensures E

[
WuiP

(
At,ui | Θ̂t−1

)]
is

constant across all unobserved (u, i)-pairs at time t.
Beyond the ipw weighting, Wui also exerts several fixes. Fix 1 upweights the observed

(u, i)-pair since it has not had a chance at being recommended for t−s time steps, this mimics
a uniformly sampled distribution over the set of all items. In combination with the ipw
weight, Fix 1 ensures E

[
WuiP

(
At,ui | Θ̂t−1

)]
is constant across all (u, i)-pairs both observed

and unobserved. Next, Fix 2 accounts for the fact that if a (u, i)-pair is recommended
earlier on, it likely had a smaller chance of being recommended at that time step than if
it were recommended at a later time step. Hence, ipw weights will tend to be larger for
(u, i)-pairs recommended early, which implies their ipw weight should be downweighted as
time progresses. By rewriting Fix 2 as 1

UI−s+1

(
1

UI−t

)−1, we observe that it is equal to the
ipw weight of a random recommender at time step t multiplied by the inverse of the IPW
weight of a random recommender at time step s− 1. In this sense, we are effectively canceling
out the effect of the sample space’s size on the ipw weight at time s− 1 and replacing it
with the effect of the sample space’s size at time t.

Applicability of cafl to general probability models and time-varying user
preferences. Zooming out from the special case of Corollary 1, we note that the cafl
algorithm can be applied to any common parametric probability model originally developed
as a one-step recommender system. The reason is that most recommendation models satisfy
the constraints (especially the first assumption on PΘ(·)) in Theorem 2. While we mainly
illustrated the adjustment with prob-mf in Section 3.3, cafl can be applied to general
matrix factorization models, including weighted matrix factorization [105], Poisson matrix
factorization [84], variational autoencoders [148].

The cafl algorithm can also be extended to accommodate time-varying user preferences.
We simply replace the time-invariant parametric model PΘ with a time-varying one P t

Θ,
indicating the user behavior patterns at time t. To infer P t

Θ, we can extend the parametric
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model to take in time as a parameter, e.g. P t
Θ(Rt |At; t). For example, one can extend

prob-mf to its time-varying counterpart with Rs,ui ∼ N ((g(t, θu)
⊤βi · As,ui, σ

2) for some
parametric function g (e.g., a neural network). Such a time-varying parametric model,
together with cafl, will enable us to handle time-varying user preferences in the presence
of feedback loops.

Connections between cafl and existing ipw estimators. We conclude the section
by discussing the connections between cafl and other similar-looking ipw estimators.
We begin with the connection between cafl and existing ipw weigting estimators in
one-step recommender systems [160, 205]. The L̂cafl(Θ) objective differs from these standard
ipw estimators in one-step recommender systems, because these latter estimators often rely
on adjusting for the probability of recommendation given external user characteristics or
covariates. They are different from cafl, which adjusts for the probability given inferred
user preferences from the previous time step. This adjustment of cafl, in particular its
sufficiency for breaking feedback loops, is unique to the multi-step recommender systems
we consider here. Moreover, existing estimators always assume positivity (Assumption 1);
they cannot provide unbiased estimation in multi-step recommendation settings where some
variables may not be freely manipulated at certain time steps.

Finally, in the special case of Corollary 1, the L̂cafl(Θ) objective coincides with the RLURE

estimator of Farquhar, Gal, and Rainforth [67]. However, the L̂cafl(Θ) in Theorem 2 can be
applied to general statistical estimation and causal inference settings when feedback loops are
present. For example, it extends to settings where multiple data points are acquired at each
time step and/or where data points acquired need not be distinct across time steps. The
derivations of the two estimators are also complementary to each other: RLURE is constructed
by finding weights that do not depend on the time at which data points are collected. In
contrast, Corollary 1 is derived from an explicitly causal perspective and finding the optimal
distribution that does not suffer from feedback loops.

3.4 Empirical Studies
In this section, we evaluate the proposed cafl algorithm using two environments from the
RecLab simulation framework [134]. We show that cafl mitigates negative feedback effects:

1. cafl corrects the dataset bias caused by feedback loops and improves the predictive
performance and recommendation quality of our model.

2. cafl reduces homogenization when feedback loops induce homogenization.

3. In settings where feedback loops do not cause homogenization, we show that the
behavior of cafl tracks random sampling, suggesting that cafl breaks feedback
loops.

Furthermore, we compare cafl in the experiment proposed by Pan et al. [178] in
Section 6.3 of their paper. We show that cafl significantly outperforms both the correction
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method proposed by Pan et al. [178], Poisson factorization [83], a popularity-based correction,
and uncorrected matrix factorization.

Evaluation of feedback effects in recommender systems

In this section we detail the experimental setup in Sections 3.4 and 3.4. We outline the
experimental setup comparing cafl to prior work in Section 3.4.

Metrics of feedback effects. We begin by defining the metric we use for measuring
feedback effects.

Definition 1. Let Ãt be the recommendation matrix from a random recommender and let R̃t

be the corresponding rating matrix. Furthermore, let Ât ∼ P (Θ̃t−1) be the recommendation
matrix where Θ̃t−1 are the parameters derived by observing the “shadow” randomly sampled
dataset {(Ã1, R̃1), (Ã2, R̃2), . . . , (Ãt−1, R̃t−1)}. Then the effect of feedback at time t with
respect to some metric M is defined as:

M (Rt)−M
(
R̂t

)
.

This definition states that the effect of feedback is the difference in performance between
a model that observes the ratings of the items it recommends, and a model that observes
the ratings of items drawn at random. This definition allows us to differentiate between true
feedback effects and phenomena caused by confounding factors, such as the inductive bias of
matrix factorization models.

While R̂t is not usually observable and must be approximated, it can easily be computed
in simulated environments. Therefore, we reportM

(
R̂t

)
in all the experiments to quantify

feedback effects.
Simulation environments. The two simulated environments we consider are beta-

rank-v1 and ml100k-v1. Beta-rank-v1 is an implementation of the environment developed by
Chaney, Stewart, and Engelhardt [43], it is of significance since it was used to demonstrate
that recommender systems under feedback loops homogenize user interactions. Ml100k-v1
represents each user and item as a 100-dimensional latent vector. These latent vectors
were generated by fitting a matrix factorization model to the MovieLens 100K dataset [90].
Ml100k-v1 allows us to evaluate the algorithms in a simulation initialized with a real-world
dataset.

Across all experiments, we use matrix factorization trained using alternating least squares
as the parametric model PΘ [16]. We implement cafl in this setting by running weighted
least squares, where the weight for each observed rating Rt,ui is as defined in Equation 1. We
repeat each experiment 10 times and report results averaged across all runs.

Competing methods. We compare cafl with two other algorithms: (1) matrix
factorization re-trained on the newly collected data at each time step; (2) matrix factorization
trained on uniformly sampled unrecommended items at each time step. The first algorithm
is the usual multi-step recommendation algorithm that suffers from feedback loops; it is a
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baseline algorithm on which cafl performs causal adjustment and improves upon. The
second uniform sampling approach does not suffer from feedback loops because it observes
randomly sampled data (although makes non-random recommendations). If the performance
of an algorithm tracks uniform sampling, then it suggests that it does not suffer from feedback
loops.

cafl improves recommendation quality

In this section, we evaluate how cafl impacts the model’s accuracy over time. To evaluate
the algorithm in an unbiased manner, we create a test set by randomly sampling user-item
pairs. User-item pairs in the test set can not be recommended during the run.

Evaluation metrics for recommendation quality. We evaluate each algorithm
using root mean squared error (RMSE), which measures predictive accuracy, and normalized
discounted cumulative gain (NDCG), which measures ranking accuracy and places a heavier
emphasis on higher rankings. We report RMSE and NDCG with respect to the held-out test
set.
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Figure 3.2: The mean RMSE of the models in the beta-rank-v1 (left) and ml-100k-v1
(right) environments averaged across 10 runs. Shaded areas indicate 95% confidence intervals.
RMSE was evaluated with respect to a randomly sampled test set of size 100,000. Both
cafl and Feedback observe their own recommendations, while Uniform observes randomly
chosen user-item pairs. Lower RMSE is better.

Results. As shown in Figs. 3.2 and 3.3, cafl increases the model’s predictive (RMSE)
and ranking (NDCG) accuracy, when compared to the uncorrected version (Feedback).We
note that the model that observes uniformly chosen datapoints (Uniform) still outperforms
cafl in most cases. This is expected since the cafl correction is attempting to use the
observed feedback data to approximate the empirical risk that Uniform observes. Uniform
effectively observes more datapoints than cafl at any given timestep.
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Figure 3.3: Left: The mean NDCG of the models averaged across all users and across 10
runs in the beta-rank-v1 (left) and ml-100k-v1 (right) environments. Shaded areas indicate
95% confidence intervals. NDCG was evaluated with respect to a randomly sampled test
set of size 100,000. Both cafl and Feedback observe their own recommendations, while
Uniform observes randomly chosen user-item pairs. We use a logit scale for the Y-axis for
readability. Higher NDCG is better.

cafl, feedback loops, and homogenization

Recommendation systems and their feedback loops have been shown to homogenize the set
of items that users will observe beyond what is necessary to achieve optimal utility [43]. This
is troublesome since it implies algorithmic minutia may have an undeservedly large impact
on the popularity of different items.

Here we evaluate the homogenization effect of uniform sampling, cafl, and the vanilla
recommender with feedback loops. We show that cafl reduces homogenization when
feedback loops induce homogenization. In settings where feedback loops do not induce
homogenization (i.e. when feedback loops induce the same or less homogenization than
uniform sampling), we show that the behavior of cafl tracks random sampling, suggesting
that cafl breaks feedback loops in those settings too.

Evaluation metrics for homogenization. We define homogenization as the mean
similarity between every pair of users’ recommended items, for which we use the Jaccard
coefficient as the measure of similarity between two different users u1 and u2:

S(u1, u2) =

∑
i At,u1i ∧At,u2i∑
i At,u1i ∨At,u2i

.

Results. When feedback loops increase homogenization, cafl successfully mitigates
homogenization. The right plot of Figure 3.4 shows the Jaccard index over time for the
ml-100k-v1 environment. In this setting, feedback effects cause the uncorrected recommender
system to further homogenize the user experience when compared to a recommender system
that observes uniformly sampled data. cafl is able to reduce homogenization in this setting.
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We note that this outcome is not self-evident. In particular, the cafl correction only leads
to a more accurate empirical risk estimate and does not explicitly consider homogenization.

Turning to the beta-rank-v1 homogenization results, we observe that cafl is unable
to reduce homogenization when it is not caused by feedback effects. As shown in the left
plot of Figure 3.4, cafl increased homogenization in this setting when compared to the
uncorrected feedback recommender. Surprisingly, the uniform recommender also leads to
higher homogenization. This suggests that homogenization is not always caused by feedback
effects, since we would otherwise expect the feedback recommender to have the highest
homogenization if that were the case. In fact, these results suggest that feedback can
sometimes reduce homogenization.
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Figure 3.4: The mean Jaccard coefficient between the set of recommended items of each
user-item pair at each timestep minus the Jaccard coefficient of an oracle recommender system
on the beta-rank-v1 (left) and ml100k-v1 (right) environments. Both cafl and Feedback
observe their own recommendations, while Uniform observes randomly chosen user-item pairs.
Lower change in Jaccard index is better.

Comparison with Prior Work

We replicated the experimental setup of Pan et al. [178] to compare cafl with prior
correction methods. We evaluate cafl on a variation of the simulated environment first
proposed by Chaney, Stewart, and Engelhardt [43]. In this setup if user u interacts with item
i at time t we have

Rt,ui ∼ Beta′
(
θ⊤u βi

)
where Beta′(µ) is a reparametrized beta distribution with variance σ2 = 0.01 that is equivalent
to Beta(a, b) where a =

(
1−µ
σ2 − 1

µ

)
µ and b = a

(
1
µ
− 1
)
. The latent user and item vectors
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have distribution

θu ∼ Dirichlet(µθ), µθ ∼ Dirichlet(20)

βi ∼ Dirichlet(µβ), µβ ∼ Dirichlet(100).

We consider U = 3000 users and I = 1000 items. We sample one item for each user over 30
timesteps, where items are selected uniformly at random when t = 1 and for t > 1 we have

P (At,ui = 1) ∝


0 if user u already interacted with item i

10 if rankt(u, i) <= 100

1 otherwise,

where the ranking function rankt(u, i) orders items from largest to smallest based on a score
function intended to mimic the recommendation process:

scoret(u, i) ∝
t−1∑
s=1

I∑
j=1

As,ujRs,uj exp (Sij),

where Sij is an item-item similarity matrix with distribution

Sij ∼ Beta′
(
β⊤
i βj

)
.

We use the first 20 sampled items for each user as the training set and do not consider the
last 10 for consistency with Pan et al. [178].1 Finally, we sample an additional 20 unobserved
ratings uniformly at random for each user to create the test set.

We then train a generalized matrix factorization model [92] using Adam with identical
hyperparameter settings to Pan et al. [178] but with each observation in the training loss
weighted according to cafl. We then evaluate the recommender’s predictions on the test
set, repeating the entire simulation procedure 10 times.

Table 3.1 shows the performance of cafl averaged across all 10 runs compared to the
correction methods evaluated by Pan et al. [178]. cafl outperforms all prior methods
both in terms of MSE and MAE. We observe that the improvement in MSE/MAE when
comparing cafl to Pan is larger than the improvement in MSE/MAE when comparing
Pan to Poisson Factorization. Furthermore, we note that the MSE gap between the simple
popularity-based re-weighting scheme and Pan is equal to the MSE gap between cafl
and Pan, indicating that the cafl algorithm proposed in this work leads to significant
performance improvements.

1Pan et al. [178] use half of the last 10 items for evaluations and the other half as a validation set.
This requirement does not apply to our algorithm: we do not need a validation set since we use the same
hyperparameter settings as Pan et al. [178].
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Correction MSE MAE
Naive 2.001± 0.066 1.087± 0.021
Pop 1.990± 0.035 1.080± 0.010

PF [83] 1.945± 0.038 1.065± 0.010
Pan [178] 1.896± 0.042 1.042± 0.011

cafl (This paper) 1.818± 0.019 1.015± 0.005

Table 3.1: Predictive performance (MSE and MAE) of generalized matrix factorization on a
benchmark derived from a modification of the simulation proposed by Chaney, Stewart, and
Engelhardt [43] when trained with: no correction (Naive), a correction that scales inversely
with item popularity (Pop), Poisson Factorization (PF), the correction by Pan et al. [178]
(Pan), and the correction algorithm proposed in this work (cafl).

3.5 Discussion
Feedback loops are endemic in multi-step recommender systems. Recommendations affect
user behavior; which in turn affect future recommendations through the retraining process.
Feedback loops in recommender systems bias the inference of user preferences, compromise
recommendation quality, and can homogenize recommendations. To this end, we propose
cafl, a causal adjustment algorithm that can provably break feedback loops. Across
empirical studies, we find that cafl improves recommendation quality and mitigates negative
feedback effects. It also significantly improves predictive performance when compared to
prior correction methods.

Furthermore, our results on homogenization show the importance of isolating feedback
effects when evaluating models in dynamic setting. Our results indicate that the model’s
inductive bias and the number of datapoints, can sometimes have a stronger effect on
homogenization than feedback loops. The picture of how and when homogenization occurs
in recommender systems still remains incomplete. Future work that meticulously evaluates
recommender systems in dynamic settings will likely shed light on this phenomenon.
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3.6 Proofs

Proof of Theorem 2

Proof. We decompose the causal objective into terms where positivity holds and those where
positivity is violated:

Lcausal(Θ)

=
1

t

t∑
s=1

U∑
u=1

I∑
i=1

EAs

[
EP (Rs,ui | do(As,ui=As,ui)) [logPΘ (Rs,ui |As,ui)]

]
=

t∑
s=1

ct

[
U∑

u=1

I∑
i=1

EAs

[
EP (Rs,ui | do(As,ui=As,ui)) [logPΘ (Rs,ui |As,ui)]

]]

=
t∑

s=1

ct

 U∑
u=1

I∑
i=1

∑
as,ui∈{0,1}

EP (Rs,ui |do(As,ui=as,ui)) [1{As,ui = as,ui} · logPΘ (Rs,ui |As,ui)]



=
t∑

s=1

ct


∑
u,i:

P (As,ui=

as,ui | Θ̂s−1)>0

∑
as,ui∈{0,1}

EP (Rs,ui | do(As,ui=as,ui)) [1{As,ui = as,ui} · logPΘ (Rs,ui |As,ui)]



+
t∑

s=1

ct


∑
u,i:

P (As,ui=

as,ui | Θ̂s−1)=0

∑
as,ui∈{0,1}

EP (Rs,ui | do(As,ui=as,ui)) [1{As,ui = as,ui} · logPΘ (Rs,ui |As,ui)]

 .

The first equation is due to Section 3.3; the second equation is due to the stationary
assumption of intervention distributions (i.e. the second assumption of Theorem 2); the third
equation is an unbiased estimator of the expectation over As; the fourth equation separates
the loss into two terms, one where positivity holds and the other where positivity fails.
L̂obs
s,u,i(Θ ; as,ui) in the theorem is an unbiased estimator of the second term, following the same

inverse probability argument as in Proposition 1 and section 3.3. L̂unobs
s,u,i (Θ ; as,ui) is an unbi-

ased estimator of the first term due to the stationary assumption of intervention distributions,
together with the inverse probability argument as in Proposition 1 and section 3.3.
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Chapter 4

Component Interactions in Two-Stage
Recommender Systems

4.1 Introduction
In the last two chapters we studied recommendation dynamics in the idealized setting of
single-stage recommender systems. However, in practice these single-stage systems are unable
to handle the scale of data with which internet platforms must contend with. A key technical
challenge is ensuring recommender systems can sift through billions of items to deliver a
personalized experience to millions of users with low response latency. A widely adopted
solution to this problem are two-stage recommender systems [31, 47, 64, 243, 247] where
(i) a set of computationally efficient nominators (or candidate generators) preselects a small
number of candidates, which are then (ii) further narrowed down, reranked, and served to
the user by a slower but more statistically accurate ranker.

Nominators are often heterogeneous, ranging from associative rules to recurrent neural
networks [45]. A popular choice are matrix factorization [132, 170] and two-tower [243]
architectures which model user feedback by the dot product between user and item embeddings.
While user embeddings often evolve with the changing context of user interactions, item
embeddings can typically be precomputed before deployment. The cost of candidate generation
is thus dominated by the (approximate) computation of the embedding dot products. In
contrast, the ranker often takes both the user and item features as input, making the
computational cost linear in the number of items even at deployment [47, 155].

With few exceptions [102, 121, 155], two-stage specific literature is sparse compared
to that on single-stage systems (i.e., recommenders which do not construct an explicit
candidate set within a separate nominator stage [e.g., 44, 92, 111, 132, 170, 190, 205]). This
is especially concerning given the considerable ethical challenges entailed by the enormous
reach of two-stage systems: according to the recent systematic survey by Milano, Taddeo,
and Floridi [165], recommender systems have been (partially) responsible for unfair treatment
of disadvantaged groups, privacy leaks, political polarization, spread of misinformation, and
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‘filter bubble’ or ‘echo chamber’ effects. While many of these issues are primarily within
the realm of ‘human–algorithm’ interactions, the additional layer of ‘algorithm–algorithm’
interactions introduced by the two-stage systems poses a further challenge to understanding
and alleviating them.

The main aim of our work is thus to narrow the knowledge gap between single- and two-
stage systems, particularly in the context of score-based algorithms. Our main contributions
are:

1. We show two-stage recommenders are significantly affected by interactions between the
ranker and the nominators over a variety of experimental settings (Section 4.3).

2. We investigate these interactions theoretically (Section 4.3), and find that while inde-
pendent ranker training typically works well (Proposition 1), the same is not the case
for the nominators where two popular training schemes can both result in performance
no better than that of a uniformly random recommender (Proposition 2).

3. Responding to the highlighted issues with independent training, we identify specialization
of nominators to smaller subsets of the item pool as a source of potentially large
performance gains. We thus propose a joint Mixture-of-Experts [114, 118] style training
which treats each nominator as the expert for its own item subset. The ability to
learn the item pool division alleviates the issues caused by the typically lower modeling
capacity of the nominators, and empirically leads to improved precision and recall at K
(Section 4.4).

4.2 Two-stage recommender systems
The goal of recommender systems is to learn a policy π which maps contexts x ∈ X to
distributions π(x) over a finite set of items (or actions) a ∈ A , such that the expected reward
Ex

[
Ea∼π(x) [ra |x]

]
is maximized. The context x represents information about the user and

items (e.g., interaction history, demographic data), and ra is the user feedback associated with
item a (e.g., rating, clickthrough, watch-time). We assume that ra|x has a well-defined fixed
mean f ⋆(x, a) := E [ra |x] for all the (x, a) pairs. To simplify, we further assume only one
item at is to be recommended for each given context xt, where t ∈ [T ] with [T ] := {1, . . . , T}
for T ∈ N.

Two-stage systems differ from the single-stage ones by the two-step strategy of selecting
at. First, each nominator n ∈ [N ] picks a single candidate an,t from its assigned pool
An ⊆ A (An ̸= ∅,

⋃
nAn = A). Second, the ranker chooses an item at from the candidate

pool Ct := {a1,t , . . . , aN,t}, and observes the reward rt = rtat associated with at. Since
the goal is expected reward maximization, recommendation quality can be measured by
instantaneous regret r⋆t − rt where r⋆t = rta⋆t is the reward associated with an optimal arm
a⋆t ∈ argmaxa∈A f ⋆(xt, a). This leads us to an important identity for the (cumulative) regret
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Figure 4.2: Left: The two-stage recommendation setup. Right: Amazon reward histogram.
The top 5 arms are responsible for 19.22% whereas the bottom 50 only for 19.85% of the
positive rewards.

in two-stage systems which is going to be used throughout:

R2s
T =

T∑
t=1

r⋆t − rt =
T∑
t=1

(r⋆t − rtãt)︸ ︷︷ ︸
=:RN

T

+
T∑
t=1

(rtãt − rt)︸ ︷︷ ︸
=:RR

T

,

with ãt ∈ argmaxa∈Ct f
⋆(xt, a). In words, RN

T is the nominator regret, quantifying the
difference between the best action presented to the ranker ãt and the best overall action
a⋆t , and RR

T is the ranker regret which measures the gap between the choice of the ranker
at and the best action in the candidate set Ct. The two-stage recommendation process is
summarized in Fig. 4.2 (left).

While Section 4.2 is typical for the bandit literature (data collected interactively, only rtat
revealed for each t), we also consider the supervised learning case (a dataset with all {rta}ta
revealed is given). In particular, Section 4.3 presents an empirical comparison of single- and
two-stage systems in the bandit setting, followed by a theoretical analysis with implications
for both the learning setups.

4.3 Comparing single- and two-stage systems
Since the ranker and nominators could each be deployed independently, one may wonder
whether the performance of a two-stage system is significantly affected by factors beyond the
hypothetical single-stage performance of its components. This question is both theoretically
(new developments needed?) and practically interesting (e.g., training components inde-
pendently, as common, assumes targeting single-stage behavior is optimal). In Section 4.3,
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we empirically show that while factors known from the single-stage literature also affect
two-stage systems, there are two-stage specific properties which can be even more important.
Section 4.3 then investigates these properties theoretically, revealing a non-trivial interaction
between the nominator training objective and the item pool allocations {An}n.

Empirical observations

Setup

We study the effects of item pool size, dimensionality, misspecification, nominator count, and
the choice of ranker and nominator algorithms in the bandit setting. We compare single- and
two-stage systems where each (component) models the expected reward as a linear function
ft(x, a) = ⟨θ̂t, xa⟩ (xa differs for each a). Abbreviating xt = xtat , the estimates are converted
into a policy via either:

1. UCB (U) [9, 146] which computes the ridge-regression estimate with regularizer λ > 0

θ̂t := Σt

t−1∑
i=1

xiri , Σt :=

(
λI +

t−1∑
i=1

xix
⊤
i

)−1

,

and selects actions with exploration bonus α > 0: at ∈ argmaxa ⟨θ̂t, xta⟩+ α
√

x⊤
taΣtxta .

2. Greedy (G) [13, 123] which can be viewed as a special case of UCB with α = 0.
The argmax is restricted to An (resp. Ct) in two-stage systems, with pool allocation {An}n
designed to minimize overlaps and approximately equalize the number of items in each pool
(see Section 4.8).

We chose to make the above restrictions of our experimental setup to limit the large
number of design choices two-stage recommenders entail (architecture and hyperparameters
of each nominator and the ranker, item pool allocation, number of nominators, etc.), and
with that isolate the variation in performance to only a few factors of immediate interest.

We use one synthetic and one real-world dataset. The synthetic dataset is generated
using a linear model rta = ⟨θ⋆, xta⟩+ εta for each time step t ∈ [T ] and action a ∈ A. The
vector θ⋆ is drawn uniformly from the d-dimensional unit sphere at the beginning and then
kept fixed, the contexts xta are sampled independently from N (0, I), and εta ∼ N (0, 0.01) is
independent observation noise.

The real-world dataset ‘AmazonCat–13K’ contains Amazon reviews and the associated
product category labels [27, 163].1 Since ‘AmazonCat–13K’ is a multi-label classification
dataset, we convert it into a bandit one by assigning a reward of one for correctly predicting
any one of the categories to which the product belongs, and zero otherwise. An |A|–armed
linear bandit is then created by sampling |A| reviews uniformly from the whole dataset,

1We did not use ‘MovieLens’ [90] since it contains little useful contextual information as evidenced by its
absence even from the state-of-the-art models [192]. Two-stage recommenders are only used when context
matters as otherwise all recommendations could be precomputed and retrieved from a database at deployment.
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and treating the associated features as the contexts {xta}a∈A. This method of conversion is
standard in the literature [63, 79, 152, 155].

We use only the raw text features, and convert them to 768-dimensional embeddings using
the HuggingFace pretrained model ‘bert-base-uncased’ [58, 239];2 we further subset
to the first d = 400 dimensions of the embeddings, which does not substantially affect the
results. Because we are running thousands of different experiment configurations (counting
the varying seeds), we further reduce the computational complexity by subsetting from the
overall 13K to only 100 categories. Since most of the products belong to 1–3 categories, we
take the categories with 3rd to 102nd highest occurrence frequency. This ensures less than
5% of the data points belong to none of the preserved categories, and overall 10.73% reward
positivity rate with strong power law decay (Fig. 4.2, right).

While the ranker can always access all d features, the usual lower flexibility of the
nominators (misspecification) is modelled by restricting each to a different random subset of
s out of the total d features on both datasets. This is equivalent to forcing the corresponding
regression parameters to be zero. Both UCB and Greedy are then run with xt replaced by
the s-dimensional xn,t = xn,tat everywhere. The same restriction is applied to the single-stage
systems for comparison. In all rounds, each nominator is updated with (xn,t, at, rt), regardless
of whether at ∈ An (this assumption is revisited in Section 4.3). Thirty independent random
seeds were used to produce the (often barely visible) two-sigma standard error regions in
Figs. 4.3 and 4.4. More details—including the hyperparameter tuning protocol and additional
results—can be found in Sections 4.8 and 4.9.

Results

Starting with the synthetic results in Fig. 4.3, we see that the number of arms and the
feature dimension d are both correlated with increased regret in single- and two-stage systems.
Another similarity between all the algorithms is that misspecification—as measured by d/s—
also has a significant effect on performance.3 This is also the case for the Amazon dataset in
Fig. 4.4.

The influence of the number of arms, dimensionality, and misspecification on single-stage
systems is well known [139]. Figs. 4.3 and 4.4 suggest similar effects also exist for two-stage
systems. On the other hand, while the directions of change in regret agree, the magnitudes
do not. In particular, two-stage systems perform significantly better than their single-stage
counterparts. This is possible because the ranker can exploit its access to all d features
to improve upon even the best of the nominators (recall that nominators and single-stage

2Encoded dataset: https://twostage.s3-us-west-2.amazonaws.com/
amazoncat-13k-bert.zip.

3Misspecification error typically translates into a linear regret term ϵT [48, 61, 70, 71, 80, 136, 140]. We can
thus gain some intuition for the concavity of d/s 7→ RT from the L2 error ϵ = minθn(E

[
(ra − ⟨θn, xn,a⟩)2

]
)1/2

where a ∼ Unif(A) [136]. Using xta ∼ N (0, I), the minimum is achieved by (E
[
xn,ax

⊤
n,a

]
)−1E [xn,ara] = θ⋆n,

with θ⋆n the s entries of θ⋆ corresponding to the dimensions available to n. The L2 error is thus a concave
function of d/s by symmetry: ϵ =

√
E [E [(rta − ⟨θ⋆n, xn,ta⟩)2 | θ⋆]] =

√
E [∥θ⋆∥22 − ∥θ⋆n∥22] =

√
1− s/d.

https://twostage.s3-us-west-2.amazonaws.com/amazoncat-13k-bert.zip
https://twostage.s3-us-west-2.amazonaws.com/amazoncat-13k-bert.zip
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Figure 4.3: Synthetic data results. The x-axis is the ratio between the true feature dimension
d and the size of the subset available to the nominators and the single-stage systems s. The
y-axis shows the expected regret at T = 1000. In plot (a), N = 5 nominators are used, and
columns represent the total number of features d. In plot (b), d = 40 features are used,
and columns show the number of nominators N . The legend describes model architectures,
where two-stage systems are labeled by ‘[ranker]+[nominator]’ (e.g., ‘U+G’ is a
UCB ranker with Greedy nominators).

systems share the same model architecture). In other words, the single-stage performance of
individual components does not fully explain the two-stage behavior.

To develop further intuition about the differences between single- and two-stage systems,
we turn our attention to the Amazon experiments in Fig. 4.4. The top row suggests the
performance of two-stage systems improves as the number of nominators grows. Strikingly,
the accompanying UCB ranker + nominator plots in the bottom row show the nominator
regret RN

T dominates when there are few nominators, but gives way to the ranker regret RR
T

as their number increases.
To explain why, first note that the single-stage performance of the ranker can be read off

from the bottom left corner of each plot where d = s (because all the components are identical
at initialization, and then updated with the same data). Since the size of the candidate set
Ct increases with the number of nominators, the two-stage performance in the d > s case
eventually approaches that of the single-stage UCB ranker as well, even if the nominators
are no better than random guessing. In fact, because ≈ 10% of the items yield optimal
reward, the probability that a set of ten uniformly random nominators with non-overlapping
item pools nominates at least one optimal arm is on average 1 − ( 9

10
)10 ≈ 0.65, i.e., the

instantaneous nominator regret would be zero 65% of the time.
To summarize, we have seen evidence that properties known to affect single-stage

performance—number of arms, feature dimensionality, misspecification—have similar qualita-
tive effects on two-stage systems. However, two-stage recommenders perform significantly
better than any of the nominators alone, especially as the nominator count and the size
of the candidate pool increase. Complementary to the evidence from offline learning [155],
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Figure 4.4: Amazon data results. The axes are the same as in Fig. 4.3, except the y-axis
is plotted at T = 5000 with the regret divided by that of a uniformly random agent. The
feature dimension is fixed to d = 400, and the number of arms to 100 in plot (a), and to 1000
in plot (b). The columns represent varying number of nominators N . The legend is shared,
where the one in (a) corresponds to the top row plots and has the same interpretation as
in Fig. 4.3, and the one in (b) belongs to the bottom row plots which show the proportion
of ranker and nominator regret (see Section 4.2) for the ‘U+U’ two-stage system as a
representative example (all two-stage systems perform similarly here).

and the effect of ranker pretraining [102], these observations add to the case that two-stage
systems should not be treated as just the sum of their parts. We add theoretical support to
this argument in the next section.

Theoretical observations

The focus of Section 4.3 was on linear models in the bandit setting. We lift the bandit
assumption later in this section, and relax the class of studied models to least-squares
regression oracle (LSO) based algorithms, which estimate the expected reward by minimizing
the sum of squared errors and a regularizer ∥ · ∥F over a given model class F

ft ∈ argmin
f∈F

{
∥f∥F +

t−1∑
i=1

(ri − f(xi, ai))
2

}
.

These estimates are then converted into a policy either greedily, πt(x) =
Unif(argmaxa ft(x, a)), or by incorporating an exploration bonus as in LinUCB [9, 46,
53, 146, 199], or the more recent class of black-box reductions from bandit to online or offline
regression [70, 71, 72, 136, 211]. The resulting algorithms are often minimax optimal, and
(some) also perform well on real-world data [28].

We choose LSO based algorithms because they (i) include the Greedy and (Lin)UCB
models studied in the previous section, and (ii) allow for an easier exposition than the
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similarly popular cost-sensitive classification approaches [e.g., 3, 45, 47, 62, 138]. The
following proposition is an application of the fact that algorithms like LinUCB or SquareCB
[1, 71, 72] provide regret guarantees robust to contexts chosen by an adaptive adversary, and
thus also to those chosen by the nominators.

Proposition 1. Assume the ranker achieves a single-stage regret guarantee RT ≤ BR
T for

some constant BR
T ∈ R (either in expectation or with high probability), even if the contexts

{xt}Tt=1 are chosen by an adaptive adversary. The ranker regret then satisfies

RR
T =

T∑
t=1

rtãt − rt ≤ BR
T ,

in the sense of the original bound (i.e., in expectation, or with high probability).

While proving Proposition 1 is straightforward, its consequences are not. First, if BR
T is

in some sense optimal, then Section 4.2 implies the two-stage regret R2s
T will be dominated

by the nominator regret RN
T (unless it satisfies a similar guarantee). Second, RR

T ≤ BR
T holds

exactly when the ranker is trained in the ‘single-stage mode’, i.e., the tuples (xt, at, rt) are
fed to the algorithm without any adjustment for the fact Ct is selected by a set of adaptive
nominators from the whole item pool A.

The above however does not mean that the ranker has no substantial effect on the overall
behavior of the two-stage system. In particular, the feedback observed by the ranker also
becomes the feedback observed by the nominators, which has the primary effect of influencing
the nominator regret RN

T , and the secondary effect of influencing the candidate pools Ct
(which creates a feedback loop). The rest of this section focuses on the primary effect, and
in particular its dependence on how the nominators are trained and the item pools {An}n
allocated.

Pitfalls in designing the nominator training objective

The primary effect above stems from a key property of two-stage systems: unlike the ranker,
nominators do not observe feedback for all items they choose. While importance weighting can
be used to adjust the nominator training objective [155], it does not tell us what adjustment
would be optimal.

We thus study two major types of updating strategies: (i) ‘training-on-all,’ and
(ii) ‘training-on-own.’ Both can be characterized in terms of the following weighted or-
acle objective for the nth nominator

fn,t ∈ argmin
fn∈Fn

{
∥fn∥Fn +

t−1∑
i=1

wn,i(ri − fn(xn,i , ai))
2

}
,

where Fn is the class of functions the nominator can fit, ∥ · ∥Fn the regularizer, and wn,t =
wn,at ≥ 0 the weight. ‘Training-on-all’—used in Section 4.3—takes wn,a = 1 for all (n, a),
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which means all data points are valued equally regardless of whether a particular at belongs
to the nominator’s pool An. ‘Training-on-all’ may potentially waste the already limited
modelling capacity of the nominators if the pools An are not identical. The ‘training-on-
own’ alternative therefore uses wn,a = 1{a ∈ An} so that only the data points for which
at ∈ An influence the objective.4

While ‘training-on-all’ and ‘training-on-own’ are not the only options we could consider,
they are representative of two very common strategies. In particular, ‘training-on-all’ is
the default easy-to-implement option which sometimes performs surprisingly well [28, 198].
In contrast, ‘training-on-own’ approximates the (on-policy) ‘single-stage mode’ where the
nominator observes feedback only for the items it selects (in particular, at ∈ An only if
at = an,t when the pools are non-overlapping).

Proposition 2 below shows that neither ‘training-on-all’ nor ‘training-on-all’ is guaranteed
to perform better than random guessing in the infinite data limit (T → ∞). We consider
the linear setting f ⋆(xt, a) = ⟨θ⋆, xta⟩ for all (xt, a), θ⋆ fixed, with nominators using ridge
regression oracles fn,t(xn,t, a) = ⟨θ̂n,t, xn,ta⟩ as defined in Item 1, λ ≥ 0 fixed, and xn,ta again
a subset of the full feature vector xta. We also assume the nominators take the predicted
best action with non-vanishing probability (Assumption 2), which holds for all the cited LSO
based algorithms.

Assumption 2. Let fn,t be as in Section 4.3, and denote AG
n,t := argmaxa∈An

fn,t(xn,t, a).
We assume there is a universal constant δ > 0 such that for all n ∈ [N ] and a ∈ An with
lim supT−1

∑
1≤t≤T P(a⋆t = a) > 0, we have lim supT−1

∑
1≤1≤T P(an,t ∈ AG

n,t | a⋆t = a) ≥ δ.

Proposition 2. In both the supervised and the bandit learning setup, there exist two distinct
context distributions with pool allocations {An}n, and ra ∈ [0, 1] almost surely (a.s.) for all
a ∈ A, such that ‘training-on-own’ (resp. ‘training-on-all’) leads to asymptotically linear
two-stage regret

lim sup
T→∞

E [R2s
T ]

T
> 0 .

Moreover, the asymptotic regret of ‘training-on-all’ is sublinear under the context distribution
and pool allocation where ‘training-on-own’ suffers linear regret, and vice versa.

Proof. Throughout, we use θ̂n,t → (E
[
xn,ax

⊤
n,a

]
)−1E [xn,ara] =: θ

⋆
n (a.s.) by Lemma 4 (Sec-

tion 4.7), assuming invertibility and that at is i.i.d.; note θ⋆n = argminθn E [(ra − ⟨θn, xn,a⟩)2].
We allow any zero mean reward noise which satisfies ra ∈ [0, 1] (a.s.) for all a ∈ A.

(I) Supervised setup. Take two nominators, A1 = {a(1)}, A2 = {a(2), a(3)}, a single
context

X :=

 xa(1)

xa(2)

xa(3)

 =

1 0−1
0 1 0
0 0 1

 ,

4There are two possible definitions of ‘training-on-own’: (i) wn,t = 1{at ∈ An}; (ii) wn,t = 1{at = an,t}.
While the main text considers the former, Proposition 2 can be extended to the latter with minor modifications.
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and restrict the nominators to the last two columns of X. As |A1| = 1, the first nominator
always proposes a(1), disregards of its fitted model. Since all rewards are revealed and used
to update the model in the supervised setting, ‘training-on-all’ t→∞ limit for the second
nominator’s θ̂2,t is

θ⋆2 = argmin
β∈R2

Ea∼Unif(A)

[
(ra − ⟨β, x2,a⟩)2

]
= argmin

β∈R2

{
(r1 + β2)

2 + (r2 − β1)
2 + (r3 − β2)

2
}
= [r2,

r3−r1
2

]⊤ ,

where r is the mean reward vector for the single context (θ⋆ is then X−1r). If we take, e.g.,
r = [1

4
, 1
2
, 1]⊤, then a(3) ̸= argmaxa∈A2

⟨θ⋆2, x2,a⟩ = a(2). On the other hand, ‘training-on-own’
would yield θ⋆2 = [r2, r3]

⊤, and thus correctly identify a(3) via argmaxa∈A2
⟨θ⋆2, x2,a⟩.

In contrast, consider the modified setup A1 = {a(1)}, A2 = {a(2), a(3), a(4)}

X :=


xa(1)

xa(2)

xa(3)

xa(4)

 =


1 0 0−1
0 1 0−1
0 0 1 0
0 0 0 1

 .

Restricting nominators to the last two columns of X, ‘training-on-own’ would yield θ⋆2 =
[r3,

r4−r2
2

]⊤ under full feedback access, whereas ‘training-on-all’ would converge to θ⋆2 =
[r3,

r4−r2−r1
3

]⊤. Hence with, e.g., r = [3
4
, 1, 1

6
, 7
8
]⊤, ‘training-on-own’ would make the second

nominator pick a(3) via argmax, but ‘training-on-all’ would successfully identify the optimal
a(2).

(II) Bandit setup. Take X from Section 4.3, but use r = [3
4
, 7
8
, 1
6
, 1]⊤ and the associated

θ⋆ = X−1r. For each j ∈ [4], let X(j) be a deterministic context matrix which is the same as
X except all but the jth row are replaced by zeros. Observe that for each j, the mean reward
vector X(j)θ

⋆ has exactly one strictly positive component, and thus a⋆t = a(j) when X(j) is
drawn.

Let Unif({X(j)}j) be the context distribution, A1 = {a(1)}, A2 = {a(2), a(3), a(4)}, and
restrict nominators to the last two columns of each sampled X(j). We employ a proof by con-
tradiction. Assume lim supT−1E [R2s

T ]→ 0. Then θ̂2,t → θ⋆2 in probability by Lemma 5 (Sec-
tion 4.7), with θ⋆2 as stated right after Section 4.3 for both the update rules. Since θ⋆2,2 =

1
16

> 0
under ‘training-on-own’, resp. θ⋆2,2 = − 5

24
< 0 under ‘training-on-all’, argmaxa∈A2

⟨θ⋆2, x2,ta⟩
would fail to select a⋆t when X(2), resp. X(4), is sampled (see Section 4.3). This would translate
into an expected instantaneous regret of at least ∆ := mini ri =

1
6
> 0. Hence by Section 4.2

and P(a⋆t = a) = |A|−1

E
[
R2s

T

]
≥ E

[
RN

T

]
≥ ∆

|A|
∑
a∈A2

P(a2,t ̸= a | a2,t ∈ AG
2,t, a

⋆
t = a)P(a2,t ∈ AG

2,t | a⋆t = a) .

For ‘training-on-own’, P(a2,t ≠ a(2) | a2,t ∈ AG
2,t, a

⋆
t = a(2)) = P(θ̂2,t2 · (−1) < 0) → 1

by the above established θ̂2,t → θ⋆2 in probability, and the continuous mapping theorem.
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Analogously for ‘training-on-all’. Hence lim supT−1E [R2s
T ] ≥ |A|−1∆δ > 0 by Assumption 2,

a contradiction, meaning both modes of training fail, but for a different item (a(3) is picked out
correctly by both again by the convergence in probability). To make lim supT−1E [RN

T ]→ 0
for exactly one of the two setups, add a third nominator with A3 = {a(2)}, resp. A3 = {a(4)},
so that P(a⋆t ∈ Ct)→ 1.

Proposition 2 shows that the nominator training objective can be all the difference
between poor and optimal two-stage recommender.5 Moreover, neither ‘training-on-own’ nor
‘training-on-all’ guarantees sublinear regret, and one can fail exactly when the other works.
The main culprit is the difference between context distribution in and outside of each pool:
combined with the misspecification, either one can result in more favorable optima from the
overall two-stage performance perspective. This is the case both in the supervised and the
bandit setting.

Proposition 2 can be trivially extended to higher number of arms and nominators (add
embedding dimensions, let the new arms have non-zero embedding entries only in the new
dimensions, and the expected rewards to be lower than the ones we used above). We think
that the difference between the in- and out-pool distributions could be exploited to derive
analogous results to Proposition 2 for non-linear (e.g., factorization based) models, although
the proof complexity may increase.

To summarize, beyond the actual number of nominators identified in the previous section,
we have found that the combination of training objective and pool allocation can heavily
influence the overall performance. We use these insights to improve two-stage systems in the
next section.

4.4 Learning pool allocations with Mixture-of-Experts
Revisiting the proof of Proposition 2, we see the employed pool allocations are essentially
adversarial with respect to the context distributions. However, we are typically free to
design the pools ourselves, with the only constraints imposed by computational and statistical
performance requirements. Proposition 2 thus hints at a positive result: a good pool allocation
can help us achieve an (asymptotically) optimal performance even in cases where this is not
possible using any one of the nominators alone.

Crafting a good pool allocation manually may be difficult, and could lead to very bad
performance if not done carefully (Proposition 2). We thus propose to learn the pool
allocation using a Mixtures-of-Experts (MoE) [114, 117, 118, 244] based approach instead.
A MoE computes predictions by weighting the individual expert (nominator) outputs using a
trainable gating mechanism. The weights can be thought of as a soft pool allocation which

5Covington, Adams, and Sargin [47] reported empirically observing that the the training objective choice
has an outsized influence on the performance of two-stage recommender systems. Proposition 2 can be seen
as a theoretical complement which shows that the range of important choices goes beyond the selection of the
objective.
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allows each expert to specialize on a different subset of the input space. This makes the MoE
more flexible than any one of the experts alone, alleviating the lower modeling flexibility of
the nominators due to the latency constraints.

We focus on the Gaussian MoE [114], trained by likelihood maximization (Section 4.4).
We employ gradient ascent which—despite its occasional failure to find a good local optimum
[156]—is easy to scale to large datasets using a stochastic approximation of gradients

1

T

T∑
t=1

log
N∑

n=1

pn,t exp

{
−(rt − r̂n,t)

2

2σ2

}
≈ 1

B

B∑
t=1

log
N∑

n=1

pn,t exp

{
−(rt − r̂n,t)

2

2σ2

}
,

with pn,t ≥ 0 (
∑

n pn,t = 1) the gating weight assigned to expert n on example t, r̂n,t the
matching expert prediction, σ > 0 a hyperparameter approximating reward variance, and
B ∈ N the batch size.

MoE provides a compelling alternative to a policy gradient style approach applied to the
joint two-stage policy π2s(a |x) = ∑

a1,...,aN
πR(a |x, C)∏N

n=1 π
N
n(an |x) as done in [155]. In

particular, a significant advantage of the MoE approach is that the sum over the exponentially
many candidate sets C = {a1, . . . , aN} is replaced by a sum over only N experts, which can
be either computed exactly or estimated with dramatically smaller variance than in the
candidate set case.

There are (at least) two ways of incorporating MoE into existing two-stage recommender
deployments:

1. Use a provisional gating mechanism, and then distill the pool allocations from the
learned weights, e.g., by thresholding the per arm average weight assigned to each
nominator, or by restricting the gating network only to the item features. Once pools
are divided, nominators and the ranker may be finetuned and deployed using any
existing infrastructure.

2. Make the gating mechanism permanent, either as (i) a replacement for the ranker, or
(ii) part of the nominator stage, reweighting the predictions before the candidate pool
is generated. This necessitates change of the existing infrastructure but can yield better
recommendations.

Unusually for MoEs, we may want to use a different input subset for the gating mechanism and
each expert depending on which of the above options is selected. We would like to emphasize
that the MoE approach can be used with any score-based nominator architecture including
but not limited to the linear models of the previous section. If some of the nominators are not
trainable by gradient descent but are score-based, they can be pretrained and then plugged
in during the MoE optimization, allowing the other experts to specialize on different items.

We use the ‘AmazonCat-13K’ dataset [27, 163] to investigate the setup with a logistic
gating mechanism as a part of the nominator stage. We employ the same preprocessing as
in Section 4.3. Due to the success of greedy methods in Section 4.3, and the existence of
black-box reductions from bandit to offline learning [70, 211], we simplify by focusing only
on offline evaluation. We compare the MoE against the same model except with the gating
replaced by a random pool allocation fixed at the start.
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Figure 4.5: Mixture-of-Experts results on the 100-item Amazon dataset. The x-axis is the
size of the BERT embedding dimension subset. The y-axis shows the average precision@5
(top row) and recall@5 (bottom row) over 50,000 entries from an independent test set
(both set to zero for entries with no positive labels—about 5.5% of the test set). The columns
in both plots (a) and (b) correspond to the number of examples per arm c in the training
set. Ten (resp. twenty) nominators were used in (a) (resp. (b)). The legend shows whether
pool allocations were learned (MoE) or randomly assigned (random), and the dimension of
item embeddings de employed by both model types.

The experts in both models use a simple two-tower architecture, where de-dimensional
dense embeddings are learned for each item, the s-dimensional subset of the BERT embeddings
is mapped to Rde by another trained matrix, and the final prediction is computed as the
dot product on Rde . To enable low latency computation of recommendations, the gating
mechanism models the logits {log pn}n as a sum of learned user and item embeddings. Further
details are described in Section 4.8.

Fig. 4.5 shows that MoEs are able to outperform random pool allocation for most
combinations of model architecture and training set size. The improved results in recall
suggest that the specialization allows nominators to produce a more diverse candidate set.
Since the gating mechanism can learn to exactly recover any fixed pool allocation, the MoE
can perform worse only when the optimizer fails or the model overfits. This seems to be
happening for the smallest training set size (c = 100 samples per arm), and also when the
item embedding dimension de is high. In practice, these effects can be counteracted by tuning
hyperparameters for the specific setting, regularization, or alternative training approaches
based on expectation–maximization or tensor decomposition [117, 156, 244].
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4.5 Other related work
Scalable recommender systems. Interest in scalable recommenders has been driven by
the continual growth of available datasets [83, 145, 203, 223]. The two-stage architectures
examined in this paper have seen widespread adoption in recommendation [31, 47, 64, 247,
249], and beyond [8, 246]. Our paper is specifically focused on recommender systems which
means our insights may not transfer to application areas like information retrieval without
adaptation.

Off-policy learning and evaluation. Updating the recommendation policy online,
without human oversight, runs the risk of compromising the service quality, and introducing
unwanted behavior. Offline learning from logged data [63, 173, 221, 226] is an increasingly
popular alternative [45, 116, 155, 222]. It has also found applications in search engines,
advertising, robotics, and more [5, 116, 144, 219].

Ensembling and expert advice. The goal of ‘learning with expert advice’ [4, 10, 149,
214] is to achieve performance comparable with the best expert if deployed on its own. This is
not a good alternative to our MoE approach since two-stage systems typically outperform any
one of the nominators alone (Section 4.3). A better alternative may possibly be found in the
literature on ‘aggregation of weak learners’ [35, 36, 73, 74, 96], or recommender ensembling
(see [38] for a recent survey).

4.6 Discussion
We used a combination of empirical and theoretical tools to investigate the differences between
single- and two-stage recommenders. Our first major contribution is demonstrating that
besides common factors like item pool size and model misspecification, the nominator
count and training objective can have even larger impact on performance in the two-stage
setup. As a consequence, two-stage systems cannot be fully understood by studying their
components in isolation, and we have shown that the common practice of training each
component independently may lead to suboptimal results. The importance of the nominator
training inspired our second major contribution: identification of a link between two-stage
recommenders and Mixture-of-Experts models. Allowing each nominator to specialize on
a different subset of the item pool, we were able to significantly improve the two-stage
performance. Consequently, splitting items into pools within the nominator stage is not just
a way of lowering latency, but can also be used to improve recommendation quality.

Due to the the lack of access, a major limitation of our work is not evaluating on
a production system. This may be problematic due to the notorious difficulty of offline
evaluation [14, 134, 196]. We further assumed that recommendation performance is captured
by a few measurements like regret or precision/recall at K, even though design of meaningful
evaluation criteria remains a challenge [55, 93, 120, 167]; we caution against deployment
without careful analysis of downstream effects and broader impact assessment. Several topics
were left to future work: (i) extension of the linear regret proof to non-linear models such as



CHAPTER 4. COMPONENT INTERACTIONS IN TWO-STAGE RECOMMENDER
SYSTEMS 59

those used in the MoE experiments; (ii) slate (multi-item) recommendation; (iii) theoretical
understanding of how much can the ranker reduce the regret compared to the best of
the (misspecified) nominators; (iv) alternative ways of integrating MoEs, including explicit
distillation of pool allocations from the learned gating weights, learning the optimal number
of nominators [187], using categorical likelihood [244], and sparse gating [68, 210].

Overall, we believe better understanding how two-stage recommenders work matters due
to the enormous reach of the platforms which employ them. We hope our work inspires further
inquiry into two-stage systems in particular, and the increasingly more common ‘algorithm-
algorithm’ interactions between independently trained and deployed learning algorithms more
broadly.

4.7 Auxiliary lemmas
Throughout the paper, we assume the ‘stack of rewards model’ from chapter 4.6 of [139].

Lemma 4. Let θ̂t = Σt

∑t−1
i=1 xiri where Σt = (λI +

∑t−1
i=1 xix

⊤
i )

−1 for some fixed λ ≥ 0.
Assume (xi, ri) are i.i.d. with E [x1r1] and E

[
x1x

⊤
1

]
well-defined, and the latter invertible.

Then

θ̂t → (E
[
x1x

⊤
1

]
)−1E [x1r1] a.s.

Proof. Rewriting θ̂t+1 = (λ
t
I + 1

t

∑t
i=1 xix

⊤
i )

−1 1
t

∑t
i=1 xiri, λ

t
I + 1

t

∑t
i=1 xix

⊤
i → E

[
x1x

⊤
1

]
and

1
t

∑t
i=1 xiri → E [x1r1] a.s. by the strong law of large numbers. Since A 7→ A−1 is continuous

on the space of invertible matrices, the result follows by the continuous mapping theorem.

Lemma 5. Consider the setup from Part II of the proof of Proposition 2. Define

θ̂n,t = Σn,t

t−1∑
i=1

wn,txn,iri , Σn,t = (λI +
t−1∑
i=1

wn,ixn,ix
⊤
n,i)

−1 ,

with λ ≥ 0 fixed, and θ⋆n = (E
[
wn,axn,ax

⊤
n,a

]
)−1E [wn,axn,ara], a ∼ Unif(A). Then θ̂n,t → θ⋆n

in probability, if lim supT−1E [R2s
T ]→ 0.

Proof. Since xn,t = 0 unless at = a⋆t by construction, θ̂n,t+1 is equal to(
λ

t
I +

1

t

t∑
i=1

|A|∑
j=1

1{a⋆i = ai = a(j)}wn,ixn,ix
⊤
n,i

)−1
1

t

t∑
i=1

|A|∑
j=1

1{a⋆i = ai = a(j)}wn,ixn,iri .

Define S⋆
t(j) :=

∑t−1
i=1 1{a⋆i = a(j)}wn,i for each a(j) ∈ A, and take, for example, the term

|A|∑
j=1

S⋆
t(j)

t− 1

1

S⋆
t(j)

t−1∑
i=1

1{a⋆i = ai = a(j)}wn,ixn,iri .
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Since a⋆t
i.i.d.∼ Unif(A) by construction,

S⋆
t(j)

t−1
→ |A|−1 a.s. by the strong law of large numbers,

and St(j) → ∞ a.s. by the second Borel-Cantelli lemma. Furthermore, defining St(j) :=∑t−1
i=1 1{a⋆i = ai = a(j)}wn,i, S⋆

t(j)−St(j) ≥ 0 is the number of ‘a(j) mistakes’, and is associated
with positive regret when the inequality is strict. Observe that we must have t−1(S⋆

t(j)−St(j))→
0 in probability, as otherwise there would be c, ϵ > 0 such that lim supP(t−1(S⋆

t(j) − St(j)) >

ϵ) > c, implying

lim supT−1E
[
R2s

T

]
≥ lim supT−1E

[
RN

T

]
≥ ∆ lim supE

[
S⋆
T (j)

−ST (j)

T

]
> ∆cϵ > 0 ,

which contradicts the assumption lim supT−1E [R2s
T ]→ 0 (recall ∆ = mini ri > 0).

Finally, t−1(S⋆
t(j)−St(j))→ 0 implies St(j)

S⋆
t(j)
→ 1 and St(j) →∞ in probability, and therefore

S⋆
t(j)

t− 1

|A|∑
j=1

St(j)

S⋆
t(j)

1

St(j)

t−1∑
i=1

1{a⋆i = ai = a(j)}wn,ixn,iri → Ea∼Unif(A) [wn,axn,ara] ,

in probability by the law of large numbers, the continuous mapping theorem, and |A| <∞.
Since an analogous argument can be made for the covariance term, and A 7→ A−1 is
continuous on the space of invertible matrices, θ̂n,t → θ⋆n in probability by the continuous
mapping theorem, as desired.

4.8 Experimental details
The experiments were implemented in Python [197], using the following packages: abseil-py,
h5py, HuggingFace Transformers [239], JAX [34], Jupyter [128], matplotlib [108], numpy
[91], Pandas [164, 225], PyTorch [179], scikit-learn [182], scipy [230], seaborn [237], tqdm.
The bandit experiments in Section 4.3 were run in an embarrassingly parallel fashion on an
internal academic CPU cluster running CentOS and Python 3.8.3. The MoE experiments
in Section 4.4 were run on a single desktop GPU (Nvidia GeForce GTX 1080). While each
experiment took under five minutes (most under two), we evaluated hundreds of thousands
of different parameter configurations (including random seeds in the count) over the course
of this work. Due to internal scheduling via slurm and the parallel execution, we cannot
determine the overall total CPU hours consumed for the experiments in this work.

Besides the UCB and Greedy results reported in the main text, some of the experiments we
ran also included policy gradient (PG) where at each step t, the agent takes a single gradient
step along ∇Ex

[
Ea∼π(x) [ra]

]
= Ex

[
Ea∼π(x) [ra∇ log πa(x)]

]
where the policy is parametrised

by logistic regression, i.e., log πa(x) = ⟨θ, xa⟩ − log
∑

a′ exp{⟨θ, xa′⟩}, and the expectations
are approximated with the last observed tuple (xt, at, rt). PG typically performs much worse
than UCB and Greedy in our experiments which is most likely the result of not using a
replay buffer, or any of the other standard ways of improving PG performance. We eventually

https://github.com/abseil/abseil-py
https://www.h5py.org/
https://github.com/tqdm/tqdm
https://slurm.schedmd.com/documentation.html
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decided not include the PG results in the main paper as they are not covered by the theoretical
investigation in Section 4.3.

For the bandit experiments, the arm pools {An}n, and feature subsets s < d, were divided
to minimize overlaps between the individual nominators. The corresponding code can be
found in the methods get_random_pools and get_random_features within run.py
of the supplied code:

• Pool allocation: Arms are randomly permuted and divided into N pools of size
⌊|A|/N⌋ (floor). Any remaining arms are divided one by one to the first |A|−N⌊|A|/N⌋
nominators.

• Feature allocation: Features are randomly permuted and divided into N sets of size
s′ = min{s, ⌊d/N⌋}. If s′ < s, the s − s′ remaining features are chosen uniformly at
random without replacement from the d− s′ features not already selected.

To adjust for the varying dimensionality, the regularizer λ was multiplied by the input
dimension for UCB and Greedy algorithms, throughout. The λ values reported below are
prior to this scaling.

Synthetic bandit experiments (Fig. 4.3)

Hyperparameter sweep: We used the single-stage setup, no misspecification (d = s), 100
arms, d = 20 features, and 0.1 reward standard deviation, to select hyperparameters from
the grid in Table 4.1, based on the average regret at T = 1000 rounds estimated using 30
different random seeds.

Table 4.1: Hyperparameter grid for the synthetic dataset. Bold font shows the selected
hyperparameters.

algorithm parameter values

UCB regularizer λ [10−4, 10−3,10−2, 10−1, 100, 101, 102]
exploration bonus α [10−4, 10−3,10−2, 10−1, 100, 101, 102]

Greedy regularizer λ [10−4, 10−3,10−2, 10−1, 100, 101, 102]

PG learning rate [10−4, 10−3, 10−2, 10−1,100, 101, 102]

With the hyperparameters fixed, we ran 30 independent experiments for each configuration
of the UCB, Greedy, and PG algorithms in the single-stage case, and ‘UCB+UCB’, ‘UCB+PG’,
‘UCB+Greedy’, ‘PG+PG’, and ‘Greedy+Greedy’ in the two-stage one. Other settings we
varied are in Table 4.2. The ‘misspecification’ ρ was translated into the nominator feature
dimension via s = ⌊d/ρ⌋. For the nominator count N , the configurations with N > |A| were
not evaluated.
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Table 4.2: Evaluated configurations for the synthetic dataset.

parameter values

arm count |A| [10, 100, 10000]
feature count d [5, 10, 20, 40, 80]
nominator count N [2, 5, 10, 20]
reward std. deviation [0.01, 0.1, 1.0]
misspecification ρ [0.2, 0.4, 0.6, 0.8, 1.0]

Amazon bandit experiments (Fig. 4.4)

The features were standardized by computing the mean and standard deviation over all
dimensions.

Hyperparameter sweep: We used the single-stage setup, s = 50 features, 100 arms, to
select hyperparameters from the grid in Table 4.3, based on the average regret at T = 5000
rounds estimates using 30 different random seeds.

Table 4.3: Hyperparameter grid for the Amazon dataset. Bold font shows the selected
hyperparameters.

algorithm parameter values

UCB regularizer λ [10−4, 10−3, 10−2, 10−1,100, 101, 102]
exploration bonus α [10−4,10−3, 10−2, 10−1, 100, 101, 102]

Greedy regularizer λ [10−4, 10−3, 10−2, 10−1,100, 101, 102]

PG learning rate [10−4, 10−3, 10−2, 10−1, 100,101, 102]

With the hyperparameters fixed, we again ran 30 independent experiments for the same
set of algorithms as in Section 4.8, but now with fixed d = 400 as described in Section 4.3.
Since d is fixed, we vary the nominator feature dimension s directly. Other variables are
described in Table 4.4.

Table 4.4: Evaluated configurations for the Amazon dataset.

parameter values

arm count |A| [10, 100, 1000]
nominator count N [2, 5, 10, 20]
nominator feature dim s [5, 10, 20, 40, 80, 150, 250, 400]
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Mixture-of-Experts offline experiments (Section 4.4)

Hyperparameter sweep: We ran a separate sweep for the MoE and the random pool
models using 100 arms, N = 10 experts, and ck = 500 training examples per arm. We
swept over optimizer type (‘RMSProp’ [95], ‘Adam’ [126]), learning rate ([0.001, 0.01]), and
likelihood variance σ2 ([0.01, 1.0]). The selection was made based on average performance over
three distinct random seeds. The 0.01 learning rate was best for both models. ‘RMSProp’
and σ2 = 1 were the best for the random pool model, whereas ‘Adam’ and σ2 = 0.01 worked
better for the MoE, except for the embedding dimension de = 50 where σ2 = 1 had to be
used to prevent massive overfitting.

Evaluation: We varied the number of training examples per arm ck ∈ {100, 500, 750},
number of dimensions of the BERT embedding revealed to the nominators s ∈ {10, 25, 50, 100},
the dimension of the learned item embeddings de ∈ {5, 10, 50}, and the number of experts
N ∈ {5, 10, 20}. We used 50000 optimization steps, batch size of 4096 to adjust for the
scarcity of positive labels, and no early stopping. Three random seeds were used to estimate
the reported mean and standard errors.

4.9 Additional results

Synthetic bandit experiments (Fig. 4.3)

The interpretation of all axes and the legend is analogous to that in Fig. 4.3, except the
relative regret (divided by that of the uniformly guessing agent) is reported as in Fig. 4.4.

Amazon bandit experiments (Fig. 4.4)
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Figure 4.6: Relative regret for two nominators on the synthetic dataset.
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Figure 4.7: Relative regret for five nominators on the synthetic dataset.
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Figure 4.8: Relative regret for ten nominators on the synthetic dataset.
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Chapter 5

Content Creator Incentives Induced by
Recommender Systems

5.1 Introduction
Having studied recommendation dynamics with a focus on users that consume content, we
now turn to understand how recommender systems impact users that produce content. In
2018, Jonah Peretti (CEO, Buzzfeed) noticed that junk and divisive content was increasingly
elevated following a change to the Facebook main feed algorithm [87]. In Poland, politicians
increased negative messaging following the same update [87]. Adapting content in response
to an algorithm is not limited to social media. An example can be found in search engine
optimization (SEO), where some professionals specialize on managing impacts of specific
Google Search updates [57, 82, 159, 180, 207]. While the motivation for adapting content to
an algorithm may range from economic to socio-political, it often translates into the same

R7cm

n producers

s1

s2

...
sn

fixed
demand distribution

c ∼ Pc

utility of si
E [c ∼ Pc] softmax

(
1
τ

[
⟨c, sj⟩

]n
j=1

)
i

Figure 5.1: Exposure game. Items si ∈ Sd−1 placed to maximize exposure to consumers
c ∼ Pc.
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operative goal: exposure maximization.
We therefore study how different algorithmic choices affect the incentives of exposure-

maximizing content producers. We propose an incentive-based behavior model called an
exposure game, where producers compete for a finite user attention pool by crafting content
ranked highly by a given algorithm (Section 5.1). When producers act strategically, a steady
state—Nash equilibrium (NE)—may be reached, with no one able to unilaterally improve
their exposure (utility). The content produced in a NE can thus be interpreted as what the
algorithm implicitly incentivizes.

We focus on algorithms which model user preferences as an inner product of d-dimensional
user and item embeddings, and rank items by the estimated preference. Section 5.2 presents
theoretical results on the NE induced by these algorithms. We identify cases where algorithmic
changes seemingly unconnected to producer incentives—e.g., switching from non-negative
to unconstrained embeddings—determine whether there are zero, one, or multiple NE. The
character of NE is also affected by the level of algorithmic exploration. Perhaps counter-
intuitively, we show that high levels of exploration incentivize broadly appealing content,
whereas low levels lead to specialization.

In Section 5.3, we explore how a creator behavior model can facilitate a pre-deployment
audit. Such an audit could be particularly useful for assessing the producer impact of
algorithmic changes, which is hard to measure by A/B testing for two important reasons:
(1) producers cannot be easily randomized to distinct treatment groups, and (2) there is often
a delay between deployment and content adaptation. Our hope is that this style of auditing
will enable detection of misalignment between the induced and desired incentives, and thus
flag issues to either immediately address, or monitor in content filtering and moderation. For
demonstration, we execute a pre-deployment audit on the MovieLens and LastFM datasets
using the exposure game model. We find the incentivized content exhibits a strong dependence
between algorithmic exploration and content diversity (confirming our theory), and between
model expressivity and bias towards gender-based user and creator groups.

Setting and the exposure game incentive model

We assume there is a fixed recommender system trained on past data, and a fixed population
of users (consumers). Together, these induce a demand distribution Pc which represents
typical traffic on the platform over a predefined period of time. Content is created by n ∈ N
producers who try to maximize their expected exposure (utility). Denoting consumers by
c ∼ Pc, an item created by the ith producer by si (strategy), s := (si)i∈[n], and s\i := (sj)j ̸=i,
we define (expected) exposure as the proportion of the “user attention pool” captured by the
ith producer

ui(s) = ui(si, s\i) := Ec∼Pc [1{c is exposed to si}] ⋆
= Ec∼Pc [pi(c)] ,

with pi(c) ≥ 0 the probability that the algorithm exposes c to si rather than any s\i. As
common in game theory, we can extend from deterministic single item strategies to random
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strategies si ∼ Pi for some distribution Pi. The interpretation of this extension is discussed
in detail in Section 5.2.

The assumption that E [1{c is exposed to si}] ⋆
= E [pi(c)] ignores cases where some

interactions are not mediated by the algorithm (e.g., YouTube videos linked to by an external
website). This may be a reasonable approximation for infinite feed platforms (e.g., Twitter,
Facebook, TikTok) where most consumers scroll through items in the algorithm-defined
order, and search engines (e.g., Google, Bing) where first-page bias is well documented [49].
While similar assumptions are common in the literature [e.g., 19, 45, 50, 146], alternative
interaction models are an important future research direction.

Unlike previous work (Section 5.1), we focus on the popular class of factorization-based
algorithms. These models rank items by a score estimated by the inner product of user and
item embeddings c, si ∈ Rd. The larger this score, the higher the probability of exposure,
which we model as

pi(c) =
exp(τ−1⟨c, si⟩)∑n

i′=1 exp(τ
−1⟨c, si′⟩)

= softmax
([
τ−1⟨c, si′⟩

]n
i′=1

)
i
,

where τ ≥ 0 is a temperature parameter which controls the spread of exposure probabilities
over the top scoring items. When τ = 0 (i.e., hardmax), these probabilities correspond to
top-1 recommendation or absolute first-position bias. Taking τ > 0 models the effects of
ranked position, injected randomness for exploration, and even interactions not mediated by
the algorithm. While an approximation in some settings, Section 5.1 has been directly used,
e.g., by YouTube [45]. We emphasize that we make no assumption on how the embeddings
are obtained, and our conclusions thus apply equally to classical matrix factorization and
deep learning-based systems.

We are now ready to formalize exposure games, an incentive-based model of creator
behavior.

Definition 1. An exposure game consists of an embedding dimension d ∈ N, a demand
distribution Pc ∈ P(Rd), and n ∈ N producers (players), each with an associated (pure)
strategy space si ∈ Sd−1 and utility function ui(s) = Ec∼Pc [pi(c)] with pi(c) as in Section 5.1
for a given τ ≥ 0.

We restrict items si to the unit sphere Sd−1 = {v ∈ Rd : ∥v∥ = 1}. A norm constraint is
necessary as otherwise the rational behavior would often be to infinitely inflate ∥si∥, which is
not observed in practice.1 We further distinguish non-negative games where all embeddings
lie in the positive orthant. This includes algorithms ranging from TF-IDF and bag-of-words,
to non-negative matrix factorization [142], topic models [29], and constrained neural networks
[11].

Definition 2. A non-negative exposure game is an exposure game where the support of Pc is
restricted to the positive orthant, i.e., Pc({c ∈ Rd : cj ≥ 0 ,∀j ∈ [d]}) = 1.

1Possibly due to the often finite rating scale, and use of gradient clipping and various forms of regularization.
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We assume all producers are rational, have complete information, and full control over
placing si in Sd−1. Full control is perhaps the least realistic, since producers can only modify
their features ingested by the algorithm in practice. This assumption has a significant
advantage though: it abstracts away an explicit model of producer actions (cf. the variety of
SEO techniques). Appropriateness of rationality and complete information are then context-
dependent; they may be respectively reasonable in environments where strong profit motives
or user profiling tools are common. However, investigating alternatives to each of the above
assumptions is an important direction of future work.

Related work

Most relevant to our theoretical results are several works studying incentives of exposure-
maximizing creators induced by recommender and information retrieval systems [17, 18, 19,
20, 21, 185]. Interesting features which we do not consider include (i) repeated interaction with
the algorithm [19, 20, 185], (ii) user welfare [17, 18, 19, 21], and (iii) incomplete information
scenarios [185].

The most important distinction of our approach is that the above works only allow
production of items from a predefined finite catalog. This excludes the popular factorization-
based algorithms—ranging from standard matrix factorization [132] to (deep) two-tower
architectures [106, 243]—whose continuous embedding space translates into an infinite
number of possible items. The only exception is [18] where users and items are represented
by numbers in [0, 1], which is equivalent to the special case of two-dimensional non-negative
exposure games. Continuous embedding spaces were recently studied in [169, 245], though
neither focuses on producer competition. Mladenov et al. [169] consider producers who decide
whether to stay or leave the platform if their exposure is too low. Zhan et al. [245] study
design of recommender systems which optimize for both user and producer utility.

Our work is also related to literature on adaptive behavior in the presence of a decision-
making algorithm [88, 127, 183]. The social impact and potential disparate effects of strategic
adaptation have been analyzed in [104, 151, 168]. Most relevant for us is a recent paper by
Liu, Garg, and Borgs [150] which studies strategic adaptation in the context of finite resources
(e.g., number of accepted college applicants). Unlike us, the authors assume a single score for
each competitor, who can pay cost to improve it. A principal then designs a reward function
which allocates the finite resource based on the scores, and the authors study how different
choices affect various notions of welfare. The preliminary results on multi-dimensional scores
(appendix B) assume that the scores and individual improvements are independent, whereas
our scores—⟨c, si⟩ for each c—imply complex dependence and trade-offs.

Finally, our proposed methods for auditing recommender and information retrieval systems
belong to a rapidly growing algorithm auditing toolbox. We focus on understanding producer
incentives caused by a known algorithm. Thus, we complement prior work that aims to audit
these systems based upon: the degree of consumer control [50], fairness [59], compliance with
regulations [39], and dynamical behavior in simulations [134, 153] or deployed systems [89].
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5.2 Equilibria in exposure games
This section presents theoretical results on incentives in exposure games. We focus on
the impact of the recommender/information retrieval model on the competitive equilibria.
Throughout, we find that one of the most important factors determining existence and
character of equilibria is the temperature τ (see Section 5.1). We thus distinguish the softmax
(τ > 0) and the hardmax (τ = 0) case.

In competitive settings, a key question is whether there are equilibria in which players are
satisfied with their strategies, as otherwise there may be never-ending oscillation in search
for better outcomes. We thus consider several solution concepts (i.e., definitions of equilibria)
related to NE. A pure NE (PNE) is a point in strategy space sNE ∈ (Sd−1)n where no player i
can increase their utility by unilaterally deviating from sNE

i ∈ Sd−1. In other words, no content
producer can increase their exposure by modifying their content. Mixed NE (MNE) refer to
the setting where players are allowed to choose randomized (mixed) strategies Pi ∈ P(Sd−1).
Rather than selecting a single piece of content, a creator following a mixed strategy samples
si ∼ Pi. Alternative interpretation is that producers create multiple items, splitting their
time/budget proportionally to the Pi-probabilities.

In later sections, we explore the weaker solution concepts of ϵ-NE, local NE (LNE), and
their combination ϵ-LNE. An ϵ-NE is an approximate NE where no producer can unilaterally
increase their utility by more than ϵ (MNE/PNE are “0-NE”). LNE are analogous to local
optima: points where no player benefits from small deviations from their strategy. The
approximate and local perspectives are relevant when deploying local search algorithms to
find NE numerically (Section 5.3).

Exposure games are symmetric, meaning that any permutation of strategies forming an
equilibrium produces another equilibrium. Our statements on the existence and uniqueness
of equilibria hold up to player permutation. All proofs for the results in this section are
presented in the appendix.

Pure and mixed Nash equilibria

We begin by characterizing the existence of pure and mixed NE in general exposure games.

Theorem 2. Every exposure game has at least one mixed Nash equilibrium.

A key property of softmax games is that the utilities ui are continuous in s. This fact,
combined with the compactness of the strategy space Sd−1, guarantees existence of MNE
via a classic result by Glicksberg [81]. In the hardmax case (τ = 0), we can show that MNE
are guaranteed to exist through a direct application of proposition 4 due to Simon [212].
The producer utilities ui are not differentiable in the hardmax case though, which means
we cannot use gradient information to find NE as in the softmax case. The only procedure
we know for finding NE in hardmax games requires solving the hitting set problem which is
NP-complete [54]. See Section 5.6 for further discussion.
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Figure 5.2: A) A game with no PNE. B) n − 1 producers at midpoint, s1 along slice
λc1 + (1− λ)c2 (dashed line). C) Change in utility along the slice in B) demonstrates lack of
quasi-concavity. D) A non-negative game with very different PNE depending on τ . E) PNE
with “protective positioning.”

We now turn to existence of pure NE, which is the setting where creators strategically
design a single piece of content. Unlike MNE, PNE are not guaranteed to exist even in the
softmax case.

Theorem 3. PNE need not exist in either the hardmax (τ = 0) or softmax (τ > 0) exposure
games.

Fig. 5.2A illustrates this non-existence result. The counter-example holds even for n = 2
players and planar (d = 2) strategies. A reader familiar with classic PNE existence results
[56, 66, 81] may wonder if PNE would appear if we relaxed the strategy space from Sd−1

to the convex Bd = {v : ∥v∥ ≤ 1}. This is not the case because the exposure utility is not
quasi-concave (Fig. 5.2B and C).

Our next point of interest is the special case of non-negative exposure games (Definition 2).
For the n = d = 2 case, non-negative hardmax exposure games are equivalent to Hotelling
games [100], and more generally to facility location games on a line [18, 184]. The following
proposition lists several special cases in which we understand existence and character of PNE.

Proposition 3. A PNE always exists in n = d = 2 non-negative hardmax games, but may
not without non-negativity or when d > 2. For n = 2 non-negative softmax games with
ĉ := 1

n
(1− 1

n
)E [c] ̸= 0, the only possible PNE is s1 = s2 = c with c := ĉ

∥ĉ∥ (independently of
d), but a PNE may not exist. When n > 2, non-negative softmax games can have a PNE
other than s1 = · · · = sn = c.

Fig. 5.2D illustrates a 4-player non-negative exposure game. Depending on the temperature,
we observe either the collapsed si = c (large τ), or what we term “protective positioning”
(small τ). In Fig. 5.2D, players place their strategies between a consumer and the next closest
producer. Fig. 5.2E illustrates protective positioning for a higher number of consumers and
n = 3. Here, consumers are roughly clustered around three centers (blue dots). The producer
strategies are close to these centers, but again offset towards the most contested consumers.
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ϵ-Nash equilibria

While existence of NE is not guaranteed, the situation changes when we adopt the weaker
solution concept of ϵ-NE, in which no producer can unilaterally increase their utility by more
than ϵ.

The existence and character of such equilibria strongly depends on the temperature
parameter τ . When τ = ∞, exposure is equally likely pi(c) =

1
n

for all i and c regardless
of the adopted strategies. Thus, every strategy profile is an NE. Considering a sequence of
increasing (τi)i≥1, we can therefore argue that the limit of any convergent sequence of NE
indexed by τ is a NE at τ =∞. Interestingly, Theorem 4 shows that a sufficiently large but
finite τ > 0 is sufficient for existence of ϵ-(P)NE. The result is constructive, showing that the
ϵ-PNE is parallel to the average consumer embedding.

Theorem 4. For any ϵ > 0 and Pc ∈ P(Rd) with compact support and E [c] ̸= 0, ∃τ0 > 0 s.t.
s1 = . . . = sn = c is an ϵ-PNE for all τ ≥ τ0. Moreover, for all τ ≥ τ0, the smallest ϵτ for
which c is an ϵτ -PNE satisfies ϵτ ≤ ϵ

τ
. If also ϵ < ∥ĉ∥, then the set of better-responses to c

Ψ(c) := {v ∈ Sd−1 :u1(v, c, . . . , c) ≥ u1(c, c, . . . , c)} ,

is a subset of Bd
δ (c) = {v : ∥v − c∥ ≤ δ} with δ = 2ϵ/(∥ĉ∥ − ϵ), and δ → 0 as τ →∞.

This result shows that all ϵ-improvements concentrate near the consumer average ϵ-PNE
as τ →∞. Additionally, the “consumer symmetry” ∥ĉ∥ = 1

n
(1− 1

n
) ∥E [c]∥ determines how

quickly δ → 0. When consumers are spread approximately symmetrically w.r.t. the origin,
the degenerate equilibrium appears only for large τ . However, smaller τ are sufficient for
more directionally concentrated Pc. A high number of producers also slows the concentration
as the appeal of ui(c, . . . , c) =

1
n

decreases with n. We conclude by stating a corollary based
on the development in the last two sections.

Corollary 5. There is a fixed ϵ0 > 0 and a demand distribution Pc which—depending on the
chosen τ—induce zero, one, multiple, or infinitely many ϵ-NE for all ϵ ≤ ϵ0.

Corollary 5 underscores the sensitivity of exposure games to the temperature parameter
τ , with uniformly homogeneous content at one end (high τ), and potentially persistent
oscillation behavior in competition when no NE exist (low τ). A higher τ > 0 can be a result
of algorithmic exploration [40, 45, 139], which is provably necessary for optimal performance
in static environments [139]. In contrast, our results show that in environments with strategic
actors, exploration may incentivize content which is uniform and broadly appealing rather
than diverse.

This may contradict the intuition that more exploration should lead to greater content
diversity due to the higher exposure of niche content. One way to understand this result is
the tension between randomization and the ability of niche creators to reach their audience:
producers may be discouraged from creating niche content when the algorithm is exploring
too much (τ high), and encouraged to mercilessly seek and protect their own niche when the
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algorithm performs little exploration (τ low). Exploration effects are typically thought of as
having negative impact on user experience through immediate reduction in quality of service
as a result of suboptimal recommendations. However, the above results show secondary
long-term effects.

Local Nash equilibria

In a local NE, no producer can benefit from changing si in some neighborhood within the
embedding space. Sometimes motivated as a form of bounded rationality, LNE can often be
found by local search algorithms [e.g., 162]. Since our motivation in studying exposure games
is ultimately better system understanding and audits, we are particularly interested in these
algorithmic benefits.

Practical first-order algorithms for identifying LNE operate analogously to gradient
descent, implying they may terminate in critical points that are not LNE. Unlike NE, critical
points always exist.

Proposition 4. Every τ > 0 exposure game with E [c] ̸= 0 has a critical point at s1 = . . . =
sn = c.

As we have seen, s1 = . . . = sn = c may be an equilibrium (Proposition 3). To distinguish
LNE from mere critical points, we use the Riemannian version of the second derivative test
[32].

Definition 3. A point s in strategy space satisfies the second derivative test if ∀i ∈ [n]
(1) the Riemannian gradient (I − sis

⊤
i )∇siui(s) are zero, and (2) the Riemannian Hessian

(I − sis
⊤
i )
[
∇2

si
ui(s)

]
(I − sis

⊤
i )− ⟨si,∇siui(s)⟩(I − sis

⊤
i ) ,

is strictly negative definite in the subspace perpendicular to si.

This condition is sufficient but not necessary for a critical point to be an LNE. The LNE
that do satisfy Definition 3 are termed differentiable Nash equilibria [12, 188]. The distinction
can be understood as analogous to the flat minimum at zero of x4 compared with the more
well-behaved x2.

5.3 Pre-deployment audit of strategic creator incentives
Beyond regularly retraining on new data, online platforms continuously roll out algorithm
updates. While A/B testing can detect changes in user metrics, like satisfaction or churn,
prior to the full-scale deployment [85, 97, 224, 240], assessing the impact on content producers
is comparatively harder due to the longer delay between the roll-out and corresponding
content adaptation. Furthermore, since producers cannot be easily assigned to distinct
treatment groups without limiting their content to only a subset of consumers, modern A/B
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testing methods must eschew making causal statements about producer impact [109, 174,
227]. Undesirable results including promulgation of junk and abusive content then have to be
addressed via post-hoc measures like content filtration and moderation.

A tool for ex-ante (pre-deployment) assessment of producer impact could thus limit the
harm experienced by users, moderators, and other affected parties. We demonstrate how
to utilize a creator behavior model for this purpose, using the exposure game as a concrete
example. The incorporation of factorization-based algorithms in exposure games allows us
to use real-world datasets and rating models. While exposure games have limitations as a
behavior model, we believe our experiments provide a useful illustration of the insights the
proposed audit can offer to platform developers.

Setup

We use the MovieLens-100K and LastFM-360K datasets [24, 90, 208], implement our
code in Python [197] and rely on numpy [91], scikit-surprise [107], pandas [225],
matplotlib [108], jupyter [128], reclab [134], and JAX [34] packages to fit probabilistic
[PMF; 170] and non-negative [NMF; 142] matrix factorization. The models are trained to
predict the user ratings (centered in the PMF case). To select regularization and learning
rate, we performed a two-fold 90/10 split cross-validation separately on each dataset. The
tuned recommenders were then fit on the full dataset, and the resulting user embeddings,
{cj}j∈[m] ⊂ Rd, were used to construct the demand distribution Pc =

1
m

∑
j δcj , and evaluate

the recommendation probabilities pi(c). Details in Section 5.7.
The only algorithm we know for finding NE in hardmax exposure games has exponential

worst-case complexity. We therefore focus on the softmax case. While search for general mixed
NE is possible in special cases [22, 75, 122], we are not aware of any technique applicable
to n-player exposure games. We therefore focus on first-order methods and pure ϵ-LNE
(Section 5.2). We employ simple gradient ascent combined with reparametrization, where we
set si = θi/∥θi∥ for each producer, and iteratively update θi,t = θi,t−1+α∇θi,t−1

ui(si,t−1, s\i,t−1)
for shared step size α > 0, and

∇θiui(s) =
1

τ∥θi∥2 (I − sis
⊤
i )E [pi(c)(1− pi(c))c] =

1
∥θi∥2 (I − sis

⊤
i )∇siui(s) .

Section 5.3 shows the update direction is proportional to the Riemannian gradient of ui(s) w.r.t.
si ∈ Sd−1 (Section 5.2). We also experimented with the related Riemannian gradient ascent
optimizer [32], but abandoned it after (predictably) observing little qualitative difference. We
note that the local updates themselves define better-response dynamics linked to iterative
minor content changes; investigation of their relation to real-world producer behavior is an
interesting future direction.

We investigate dependence of the incentivized content on the following parameters:
(i) rating model ∈ {PMF, NMF}, (ii) embedding dimension d ∈ {3, 50}, and (iii) temperature
log10 τ ∈ {−2,−1, 0}. We further vary the number of producers n ∈ {10, 100} to examine
scenarios with different producer to consumer ratios (user count is fixed to the full 943 for
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Figure 5.3: Clustering of strategic producers depends on the exploration level
τ . As Theorem 4 predicts, large τ (e.g., more exploration) leads to higher concentration,
i.e., creating content which appeals to more users. Left: MovieLens. Right: LastFM. See
Section 5.3 for more discussion.

MovieLens, and 13,698 for LastFM). The above values were selected in a preliminary sweep
as representative of the effects presented below. For every setting, we used five random
seeds for initialization of the recommender (affects Pc), and for each ran the gradient ascent
algorithm 10x to identify possible ϵ-LNE. We applied early stopping when ℓ2-change in
parameters between iterations dipped below 10−8 ·

√
d; the number of iterations was set to

50K so convergence was achieved for every run. We only report runs where the second-order
Riemannian test from Section 5.2 did not rule out an ϵ-LNE. Additional results, including
those where the Riemannian test was conclusive, are in Section 5.7.

Results

Emergence of clusters with growing τ . Theorem 4 shows that producers concentrate
around c = E [c] /∥E [c] ∥ for sufficiently high temperature τ . Fig. 5.3 corroborates the result
on both MovieLens and LastFM, with the concentration happening already at τ = 1.0
regardless of the embedding dimension d and producer count n. We also see that lower τ
can lead to “local clustering” where only few producers converge onto the same strategy. We
hypothesize that the simultaneous local updates of the consumers create “attractor zones”
where close-by producers collapse onto each other; they will remain collapsed henceforth
due to equality of their gradients (by symmetry). Theorem 4 does tell us collapse is to be
expected for high τ , and it is possible that a local version of the result with more than one
clusters is true for intermediate values of τ . This highlights how crucial the algorithmic choice
of τ is for the induced incentives within our model.

Targeting of incentivized content by gender. The MovieLens dataset contains
binarized women/men user gender information. In Fig. 5.4, we examine targeting of incen-
tivized content on women and men. To do so, we employ aggregate statistics of predicted
ratings. While predicted ratings may differ from actual user preferences, they do determine
recommendations and thus user experience. Since effect of τ on rating models varies, we
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Figure 5.4: Targeting of incentivized content by gender on MovieLens. Left:
Difference between medianc∈G{maxi∈[n] ri(c)} for men and women (group G), with ri(c) the
normalized rating (cosine similarity between c and the strategic si). Positive values imply bias
towards men (higher median). Note the higher bias when d = 50 (more expressive algorithm);
especially NMF incentivizes more biased content relative to the pre-adaptation baseline ‘b’.
Right: Difference in proportions of si with best (normalized) rating by women/men. Positive
imply bias towards men (more items best-rated by men). Bias again more pronounced at
d = 50. See Section 5.3 for more discussion.

also include baseline values (labeled by ‘b’) computed using the original learned item
embeddings (i.e., item locations before strategic adaptation). Since the baseline embeddings
need not satisfy the unit norm constraint (see Definition 1), we measure normalized ratings
ri(c) :=

⟨c,si⟩
∥c∥∥si∥ to facilitate comparison. The normalization also alleviates the known issue of

varying interpretation of ranking scales between users [154].
Both plots in Fig. 5.4 estimate a difference of group statistics ∆ = ϕmen − ϕwomen, where

ϕG = medianc∈G{maxi∈[n] ri(c)} (left), and ϕG = 1
n

∑n
i=1 1{argmaxc ri(c) ∈ G} (right).

The former is a user-centric metric measuring whether preferences of either group are
more targeted by the new content. The latter statistic is producer-centric, measuring the
proportion of producers who create content expected to be most liked by either women or
men. In both cases, higher values signify content crafted towards male audience (users skew
71% to 29% male). Notably, higher embedding dimension results in higher bias, presumably
due to the higher model expressivity, and thus option to create more targeted content.
Interestingly, NMF consistently incentivizes more biased content.

Association between incentivized content and creator gender. Platform
developers may want to know if some creators are being disadvantaged [194]. While solutions
were proposed in the static case [e.g, 25, 232], understanding if the algorithm (de)incentivizes
content by particular creator groups may limit future harm. In Fig. 5.5, we measure the
difference between the proportion of (left) and the median distance to (right) baseline creator
embeddings (learned by the recommender before strategic adaptation), within increasingly
large neighborhoods of each strategic si. Since the baseline embeddings need not be unit
norm, we use the cosine distance to define the neighborhoods.

Starting with the proportion (left), higher embedding dimension (more flexible model)
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Figure 5.5: Incentivized content and creator gender on LastFM. Quantifying relative
difficulty of strategic adaptation for female and male content creators, Uses baseline creator
embeddings (and associated gender), and their cosine distance from strategic embeddings.
Left: Difference between fractions of male and female creators in increasingly large neighbor-
hood of each strategic item. Values above zero imply bias towards male producers. Higher
embedding dimension (model expressivity) again results in larger bias. The bias also seems
to be larger for higher τ and for the PMF rating model. Right: Difference between median
cosine distance to female and male creators within increasingly large neighborhood of each
strategic item. Values above zero imply bias towards male producers. Higher bias is again
associated with higher embedding dimension and the PMF rating model, but the impact of
temperature τ is less pronounced. See Section 5.3 for more discussion.

incentivizes content more typical of male artists. This may be related to the higher prevalence
of men in LastFM, combined with training by average loss minimization. The gender
imbalance also explains why the proportion (left) stabilizes at a positive value, whereas the
median distance (right) reverts to zero, as the number of considered neighbors grows. The
bias is also related to the choice of rating model, where especially PMF at high temperatures
results in significant advantage for male artists.

5.4 Discussion
From social media and streaming to Google Search, many of us interact with recommender and
information retrieval systems every day. While the core algorithms have been developed and
analyzed years ago, the socio-economic context in which they operate received comparatively
little attention in the academic literature. We make two main contributions: (a) we define
exposure games, an incentive-based model of content creators’ interactions with real-world
algorithms including the popular matrix factorization and two-tower systems, and (b) we
formulate a a pre-deployment audit which employs a creator behavioral model to identify
misalignment between incentivized and desirable content.

Our main theoretical contributions focus on the existence and character of Nash equilibria
in exposure games. We found that seemingly innocuous algorithmic choices like temperature τ ,
embedding dimension d, or a non-negativity constraint on embeddings can have serious impact
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on the induced incentives. For example, high τ incentivizes uniform broadly appealing content,
whereas low τ motivates targeting smaller consumer groups. Since higher τ is often linked to
exploration, which is necessary for optimal performance in a static setting [139], this result
highlights the importance of considering the socio-economic context in algorithm development.

Our producer model has several limitations which we aim to address in the future, from
assuming rationality, complete information, and full control, to taking the skill set of each
producer to be equivalent, their utility to be linear in total exposure, and ignoring algorithmic
diversification of recommendations. We also consider the attention pool as fixed and finite,
neglecting the problematic reality of the modern attention economy, and the constant struggle
of online platforms to increase the number of users and daily usage [26, 47, 238]. The empirical
evaluation of our behavior model is hindered by the lack of academic access to the almost
exclusively privately run platforms [86].

Due to their sizable influence on individuals, societies, and economy [165], information
and recommender systems are of critical importance from an ethical and societal perspective.
While we hope that a better understanding of the incentives these algorithms create will
mitigate their negative social consequences, this also entails risks. Perhaps the most
important is the possibility of employing an optimizer such as the one in Section 5.3 to game
a real-world algorithm. This is especially relevant to the current debate about transparency
[e.g., 193, 216, 217], and the proposal to (partially) open-source the Twitter code base [129].
Due to the aforementioned limitations, we also caution against treating the predictions of
our incentive-based behavior model as definitive, especially given the significant complexity
of many real-world algorithms and the environments in which they operate.

Going forward, we want to deepen our understanding of exposure games, and make
pre-deployment audits a practical addition to the algorithm auditing toolbox. We hope this
research enriches the debate about online platforms by a useful perspective for thinking about
harms, (over)amplification, and design of algorithms with regard to the relevant incentives of
the involved actors.

5.5 Proofs

Stand-alone statements

Theorem 3. PNE need not exist in either the hardmax (τ = 0) or softmax (τ > 0) exposure
games.

Proof of Theorem 3. (I) Hardmax: Take n = d = 2 and Pc =
1
3

∑3
j=1 δcj where the angle

between any cj ̸= ck is 2π
3

. Place s1 anywhere on the circle. W.l.o.g. c1 = argmaxj⟨s1, cj⟩.
Then there is v on the geodesic connecting c2 and c3 which has higher dot product with both
c2 and c3 than s1.

(II) Softmax: Let n = d = 2, and Pc =
1
3
(2δe1 + δe2) where e1 = [1, 0]⊤ and e2 = [0, 1]⊤.

By Proposition 3, we know that the only possible PNE is s1 = s2 = c ∝ E [c] = [2, 1]/3, where
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both players enjoy u1(s) = u2(s) =
1
2
. Let s′1 = (c+ ϵe1)/∥c+ ϵe1∥ for some ϵ > 0. As τ → 0,

u1(s
′
1, c)→ 2

3
by continuity. Hence ∃τ0 > 0 s.t. s1 = s2 = c is not a PNE for all τ < τ0.

Theorem 4. For any ϵ > 0 and Pc ∈ P(Rd) with compact support and E [c] ̸= 0, ∃τ0 > 0 s.t.
s1 = . . . = sn = c is an ϵ-PNE for all τ ≥ τ0. Moreover, for all τ ≥ τ0, the smallest ϵτ for
which c is an ϵτ -PNE satisfies ϵτ ≤ ϵ

τ
. If also ϵ < ∥ĉ∥, then the set of better-responses to c

Ψ(c) := {v ∈ Sd−1 :u1(v, c, . . . , c) ≥ u1(c, c, . . . , c)} ,

is a subset of Bd
δ (c) = {v : ∥v − c∥ ≤ δ} with δ = 2ϵ/(∥ĉ∥ − ϵ), and δ → 0 as τ →∞.

Proof of Theorem 4. We w.l.o.g. focus on the defection strategies for s1. By the mean-value
theorem

∆ := u1(s1, c, . . . , c)− u1(c, . . . , c) = ⟨g′1, s1 − c⟩ ,

where g′1 = ∇s′1
u1(s

′
1, c, . . . , c) for some s′1 on the line connecting s1 and c. While the rigorous

argument below relies on a few technicalities, the main idea is simple: as τ →∞, τ · g′1 → ĉ =
1
n
(1− 1

n
)E [c] uniformly over s1 ∈ Sd−1 (Lemma 6), and thus τ ·∆ ≈ ⟨ĉ, s1−c⟩ ≤ ∥ĉ∥(1−1) = 0.

Lemma 6. limτ→∞ sups1∈Sd−1 ∥τ · g′1 − ĉ∥ → 0 .

Proof of Lemma 6. Since supp(Pc) is compact by assumption, and τ · g′1 =
E [p1(c)(1− p1(c))c], all we need is p1(c)(1 − p1(c)) → 1

n
(1 − 1

n
) pointwise in c (dominated

convergence), and uniform over s′1 ∈ Bd = {v : ∥v∥ ≤ 1} (mean-value theorem yields s′1 on
the line connecting s1 with c). As

s′1 7→
∣∣p1(c)(1− p1(c))− 1

n
(1− 1

n
)
∣∣ , with p1(c) =

exp(τ−1⟨c,s′1⟩)
exp(τ−1⟨c,s′1⟩)+(n−1) exp(τ−1⟨c,c⟩) ,

is continuous, it is maximized by some (s⋆1, c⋆) ∈ Bd×supp(Pc) (Tychonoff and compactness of
supp(Pc)). By monotonicity, (s⋆1, c⋆) will be a maximizer ∀τ ′ ≥ τ . Conclude by continuity.

For any given ϵ > 0, Lemma 6 can be combined with

τ ·∆ ≤ ⟨ĉ, s1 − c⟩+ ∥τ · g′1 − ĉ∥∥s1 − c∥ ,

where ⟨ĉ, s1 − c⟩ ≤ 0 for all s1 ∈ Sd−1 by c = ĉ/∥ĉ∥, to obtain ∆ < ε for a sufficiently large τ .
In particular, Lemma 6 yields a τ0 such that ∥τ0 · g′1 − ĉ∥ ≤ ϵ/2, which ensures

∥τ · g′1 − ĉ∥∥s1 − c∥ ≤ 2∥τ · g′1 − ĉ∥ ≤ ϵ ,

for all τ ≥ τ0. Hence c is at least an ϵ
τ
-PNE for all τ ≥ τ0 (w.l.o.g. τ0 ≥ 1).
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The above can be used to obtain a bound on δ := ∥s1 − c∥ for s1 ∈ Ψ(c). Using
orthogonality

∆ = ⟨(I − cc⊤)g′1, s1 − c⟩+ ⟨c, g′1⟩⟨c, s1 − c⟩
≤ τ−1∥s1 − c∥

[∥∥(I − cc⊤)τ · g′1
∥∥− 1

2
⟨c, τ · g′1⟩ ∥s1 − c∥

]
,

by the triangle inequality, and ⟨c, s1 − c⟩ = 1
2
(2⟨c, s1⟩ − 2) = −1

2
∥s1 − c∥2 by s1, c ∈ Sd−1.

Again by orthogonality, ϵ2 > ∥τ ·g′1− ĉ∥2 = ∥(I− cc⊤)τ ·g′1∥+ |⟨c, τ ·g′1⟩−∥ĉ∥|2, which implies

τ ·∆ < δ
[
ϵ− δ

2
(∥ĉ∥ − ϵ)

]
.

The r.h.s. is positive only when 0 < δ < 2ϵ/(∥ĉ∥ − ϵ). Since ϵ in Section 5.5 is only used as
an upper bound on ∥τ · g′1 − ĉ∥, and Lemma 6 tells us this norm converges to zero, δ → 0 as
τ →∞.

Proposition 3. A PNE always exists in n = d = 2 non-negative hardmax games, but may
not without non-negativity or when d > 2. For n = 2 non-negative softmax games with
ĉ := 1

n
(1− 1

n
)E [c] ̸= 0, the only possible PNE is s1 = s2 = c with c := ĉ

∥ĉ∥ (independently of
d), but a PNE may not exist. When n > 2, non-negative softmax games can have a PNE
other than s1 = · · · = sn = c.

Proof of Proposition 3. (I) Hardmax: For existence when n = d = 2, let θc be the angle
of c from (w.l.o.g.) [1, 0], and let A ⊂ C denote the set of angles such that for every θm ∈ A,
P(θc ≤ θm) = 1

2
and P(θ ≥ θm) = 1

2
, with P implied by the underlying Pc. Then any

(s1, s2) ∈ A× A is a PNE.
For non-existence when d > 2, consider d = 3 and Pc =

1
3

∑3
j=1 δcj where cj are the

three canonical basis vectors. Disregards of s1 location, there will be a point on the great
circle connecting the two most distant points from s1 (break ties arbitrarily) which is closer
to both of the two.

For non-existence without non-negativity in d = 2, see the hardmax part of the
Theorem 3 proof.

(II) Softmax: In the n = 2 case, a necessary condition for s = (s1, s2) to be a PNE
is that the Riemannian gradients of the utility—(I − sis

⊤
i )gi with gi = ∇siui(s)—are zero.

Since ∇siui(s) = τ−1E [pi(c)(1− pi(c))c], gi belongs to the first orthant by the definition of
the non-negative game, and it is not zero (for τ > 0, all probabilities lie in (0, 1), and c is not
a.s. zero since we assumed E [c] ̸= 0). Hence the Riemannian gradients can only be zero if
si ∝ gi, and in particular si = gi/∥gi∥2 because this is the direction which makes dot products
with all vectors in the first orthant positive.

Crucially, g1 = g2 in 2-player games due to the symmetry of p1(c)(1−p1(c)) = p1(c)p2(c) =
p2(c)(1 − p2(c)). Therefore at a PNE, s1 = s2 in which case pi(c) =

1
2

for all c, and thus
gi(s) ∝ E [c], implying s1 = s2 = c is the only possible PNE. To show it may not be a
PNE, consider Pc =

1
3
(2δc1 + δc2) for arbitrary non-zero c1 ̸= c2 in the first orthant. Then

c ∝ 2c1 + c2 with u1(c, c) = u2(c, c) = 1/2. Fixing s1 = c1/∥c1∥2 and taking τ ↓ 0, we get



CHAPTER 5. CONTENT CREATOR INCENTIVES INDUCED BY RECOMMENDER
SYSTEMS 81

u1(s1, c)→ 2/3, and thus there exists a τ > 0 for which s1 = c1/∥c1∥2 is a strict improvement
over s1 = c when s2 = c.

For the n > 2 case, we focus on a two-dimensional n = 4 game with Pc =
1
2
(δc1 + δc2)

with c1 = [1, 0]⊤ and and c2 = [0, 1]⊤ (the two canonical basis vectors). In particular, we
investigate existence NE of the form s1 = s2 and s3 = s4. Since d = 2, the strategies are
restricted to S1, we can use polar coordinates to parameterize si = φ(θi) := [cos(θi), sin(θi)]

⊤.
The maximum utility of each player in a NE is 1/4, since otherwise each of the two

players in the less profitable location (say s1 = s2) could jump to the other location (s3 = s4),
gaining utility ≥ 1/4. This narrows down our search to configurations where every player has
utility equal to 1/4, which is only the case when θ1 = θ2 = θ and θ3 = θ4 =

π
2
− θ for some

θ ∈ [0, π
4
] =: K. We can thus define

Q :=

(
0 −1
1 0

)
,

and look for which values of θ ∈ K does (w.l.o.g.) ∇θ1u1(s) = ⟨g1, Qs1⟩ equal zero.

Lemma 7. For a sufficiently small τ > 0, f : θ 7→ ⟨g1(s), Qs1⟩ is strictly convex on K.

Proof of Lemma 7. It is sufficient to prove that f ′′ > 0 on K. For this, observe f ′(θ) =
∥Qs1∥2H1

− ⟨g1, s1⟩ where H1 := ∇2
s1
u1(s), and f ′′(θ) = ∥Qs1∥2∇θ1

H1
− ⟨Qs1, 3H1s1 + g1⟩ ≥

∥Qs1∥2∇θ1
H1
− 3∥H1∥2 − ∥g1∥2, where by construction

g1 =
1
2τ

(
p1(c1)(1− p1(c1))
p1(c2)(1− p1(c2))

)
,

H1 =
1

2τ2

(
(1− 2p1(c1))p1(c1)(1− p1(c1)) 0

0 (1− 2p1(c2))p1(c2)(1− p1(c2))

)
∇θ1H1 =

1
2τ3

(
(1− 6p1(c1)(1− p1(c1))p1(c1)(1− p1(c1)) 0

0 (1− 6p1(c2)(1− p1(c2))p1(c2)(1− p1(c2))

)
,

Hence ∥Qs1∥2∇θ1
H1
∼ τ−3, ∥H1∥2 ∼ τ−2, and ∥g1∥2 ∼ τ−1, implying that for τ low enough, the

positive term ∥Qs1∥2∇θ1
H1

dominates (using that all expressions share the term p1(c)(1−p1(c)),
and thus after dividing and observing τ → 0 gives p1(c) close to either one or zero, we get
that all the terms scale as p1(c)(1− p1(c))/τ

k for the appropriate k ∈ {1, 2, 3}).
Lemma 7 implies there are at most two NE (f is strictly convex, and f(θ) = 0 is a necessary

condition). At θ = π
4
, s1 = s2 = s3 = s4 = c by definition, which we know is a critical

point, so f(π
4
) = 0. Since g1 ∝ E [p1(c)(1− p1(c))c] ̸= 0 for any τ > 0 (c cannot be a.s. 0 by

E [c] ̸= 0 and the non-negativity assumption), f(0) = ⟨g1, Qs1⟩ > 0 (s1 = φ(0) = e1 = [1, 0]⊤).
The other possible root of f thus could only be in the interior (0, π

4
) of K. Since f is negative

when moving towards e1 = [1, 0]⊤ increases utility, we can see for example f(π
8
) < 0 if τ is

sufficiently small. Hence there exists τ > 0 and θ⋆τ ∈ (0, π
8
) s.t. f(θ⋆τ ) = 0 by the mean value

theorem.
So far we have established that s1 = s2 = φ(θ⋆τ ), s3 = s4 = φ(π

2
− θ⋆τ ) is a local NE for the

corresponding small τ . By symmetry, it is sufficient to check if there is a defection strategy
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for s1. Any defection to θ1 ∈ (θ⋆τ ,
π
2
− θ⋆τ ] will result in p1(c) <

1
4

for both c = c1, c2, and thus
worse utility. Defection to (π

2
− θ⋆τ ,

π
2
] will not yield utility greater than defection to [0, θ⋆τ )

since s3 = s4 = φ(π
2
− θ⋆τ ), so it is sufficient to focus on θ1 ∈ [0, θ⋆τ ). Here

∇θ1u1(s) = ⟨g1, Qs1⟩
∝ p1(c2)(1− p1(c2)) cos(θ1)− p1(c1)(1− p1(c1)) sin(θ1)

≥ p1(c1)(1− p1(c1))[cos(θ1)− sin(θ1)] ,

since p1(c1) grows quicker than p1(c2) decays. By construction, θ⋆τ < π
4
, and we know

cos(θ) − sin(θ) > 0 for θ ∈ [0, π
4
). In other words, the utility of s1 is strictly increasing

on θ1 ∈ [0, θ⋆τ ), i.e., none of the corresponding s1 = φ(θ1) is an improvement. Hence
s1 = s2 = φ(θ⋆τ ), s3 = s4 = φ(π

2
−θ⋆τ ) is a NE. (The construction is illustrated in Fig. 5.6.)
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Figure 5.6: n > 2 softmax case from the proof of Proposition 3. Left: Symmetric
PNE location (here for τ = 1

4
). Middle left: Plot of f(θ) = ⟨g1(s), Qs1⟩ with s1 = s2 = φ(θ)

and s3 = s4 = φ(π
2
− θ). Right: Plot of utility and its gradient for all possible defection

strategies s1 = φ(θ1) with s2, s3, s4 kept put in the positions shown on the right. Vertical line
shows π

4
(right end of K).

Inline statements

Lemma 8. The distribution from the part (I) of the proof of Theorem 3—d = 2, Pc =
1
3

∑3
j=1 δcj with cj ̸= ck

2π
3

apart—admits a mixed NE P1 = P2 = Pc at τ = 0.

Proof of Lemma 8. By symmetry, ui(Pc, Pc) = 1
2
, ∀i. Since for any s1 ∈ supp(Pc) =

{c1, c2, c3}

Ec,s2 [u1(s1, s2) | s1] = 1
3
[u1(s1, c1) + u1(s1, c2) + u1(s1, c3)] =

1
3
[1 · 1

2
+ 2 · 1

3
(1 + 1

2
+ 0)] = 1

2
,

all we need is to show that Ec,s2 [u1(s1, s2) | s1] ≤ 1
2

for any s1 /∈ supp(Pc). W.l.o.g. assume s1
lies on the geodesic connecting c1 and c3 (i.e., on the arc opposite of c2). Such an s1 is closer
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to c1 and c3 then c2 (u1(s1, c2) =
2
3
), but is further from c1 and c2 (resp. c3 and c2) than c1

(resp. c3). Hence

Ec,s2 [u1(s1, s2) | s1] = 1
3
[u1(s1, c1) + u1(s1, c2) + u1(s1, c3)] =

1
3
[1 · 2

3
+ 2 · 1

3
] = 4

9
.

Since 4
9
< 1

2
, s1 has no incentive to move any of its mass away from supp(Pc).

5.6 Hardmax games
In this section we present two different algorithms for finding mixed Nash equilibria in
two-player hardmax games. We note that the set of allowable mixed strategies must be
restricted in some way since certain distributions with support on the unit-sphere Sd−1 require
infinite storage. Hence, our first algorithm finds a mixed NE for a discretized strategy space,
while our second algorithm considers settings where Pc is discrete and finds a mixed NE with
support over a finite number of pure strategies in the original non-discretized space, assuming
such a mixed NE exists.

We caution that both of these algorithms can only find mixed NE for small exposure
games due to their poor scaling properties. We list them here to highlight the difficulty of
solving hardmax games when compared to the softmax setting and to serve as inspiration for
future research into more efficient algorithms.

Discretized Games

We first consider the setting where both players may only choose mixed strategies with
support over a finite subset A = {s(1), s(2), . . . , s(m)} ⊂ Sd−1 of pure strategies. This setting
includes embeddings that are represented using floating point numbers although A will be
very large. In this case the mixed strategy of the players can be expressed as an m-dimensional
probability vector πi with πij = Pi

(
s(j)
)
. Since there are a finite set of pure strategies a

mixed NE is guaranteed to exist [175]. Furthermore since this is a two-player constant-sum
game we can find a mixed NE by solving the following linear program [60]

maximize
α

α

subject to Ux ≥ α1

1⊤x = 1

xi ≥ 0, i = 1, . . . ,m,

where Uij = u1

(
s(i), s(j))

)
. Then the strategies where π1 = π2 = x, correspond to a mixed NE.

While such a problem is simple to formulate and solve, the number of possible strategies will
grow rapidly as d increases for most discretization schemes. For example, we might create a
uniform grid of k points over each spherical coordinate, in which case we will have m = kd−1

pure strategies to consider.
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Finite Support

Next, we consider the setting where both players choose mixed strategies with support over
at most m pure strategies and the support of Pc is over l points, supp(Pc) = {c1, c2, . . . , cl}.
Unlike the discretized case however, the players may choose any pure strategy that lies
on Sd−1. We begin by outlining a method that, given a mixed strategy P , finds all pure
strategies D that dominate it: Es1∼P [u1(s1, s2) − u2(s1, s2)] < 0 for all s2 ∈ D. Where we
assume Player 1 provides the mixed strategy without loss of generality by symmetry. We will
then use this method as a subroutine to find mixed nash equilibria.

Lemma 9. (P1, P2) is a mixed NE if and only if Es1∼P1 [u1(s1, s)] ≥ 1
2

and Es2∼P2 [u2(s, s2)] ≥ 1
2

for all pure strategies s ∈ Sd−1.

Proof of Lemma 9. Assume (P1, P2) is a mixed NE, then by definition
E(s1,s2)∼(P1,P )[u1(s1, s2)] ≥ 1

2
for all mixed strategies P ∈ P(Sd−1), since each pure

strategy is also a mixed strategy it follows that Es1∼(P1,s)[u1(s1, s)] ≥ 1
2

for all s ∈ Sd−1.
Similarly for Player 2.

Now assume we have two mixed strategies (P1, P2) such that Es1∼P1 [u1(s1, s)] ≥ 1
2

and
Es2∼P2 [u2(s, s2)] ≥ 1

2
for all s ∈ Sd−1. Given a mixed strategy P ∈ P(Sd−1) it follows that

E(s1,s2)∼(P1,P )[u1(s1, s2)] = Es2∼P [Es1∼P1 [u1(s1, s2)]]

=

∫
Sd−1

Es1∼P1 [u1(s1, s2)]dP (s2)

≥
∫
Sd−1

1

2
dP (s2) =

1

2
.

Similarly for Player 2.

Lemma 9 allows us to only consider pure strategies when checking if strategies are mixed
NE.

Now given a mixed strategy P with finite support supp(P ) = {s(1), s(2), . . . , s(m)} we can
find every subset of Sd−1 that does not satisfy the condition in Lemma 9. Each s(i) partitions
Sd−1 into 3l disjoint partitions X (i) = {X(i)

1 , X
(i)
2 , . . . , X

(i)

3l
}, with X

(i)
j satisfying

jk =


2 if ⟨s(i), ck⟩ > ⟨s, ck⟩
1 if ⟨s(i), ck⟩ = ⟨s, ck⟩
0 if ⟨s(i), ck⟩ < ⟨s, ck⟩,

for all pure strategies s ∈ X
(i)
j , where jk is the k-th digit in the ternary representation of j.

We can further partition the space into 3lm disjoint partitions Y = {Y1, Y2, . . . , Y3lm} with
Yi =

⋂m
j=1X

(j)
ij

where ij is the j-th digit of the 3l-ary representation of i.
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For every Y ∈ Y we have Es1∼P [u1(s1, s)] = Es1∼P [u1(s1, s
′)] for all s, s′ ∈ Y by construc-

tion. Thus, we can find the set of all pure strategies D that dominate P by iterating over Y ,
testing a single point in each partition, and taking unions:

Z =

{
Y ∈ Y : s ∈ Y =⇒ Es1∼P [u1(s1, s)] <

1

2

}
, D =

⋃
Y ∈Z

Y.

It follows from Lemma 9 that (P, P ) is a mixed NE if and only if D is empty.
Finally, we outline a method to find mixed NE. We first note that for every positive

integer m, every pure strategy s ∈ Sd−1 defines a feasible set Fs of all mixed strategies with
support over at most m pure strategies that are not dominated by s, that is:

Fs =

{
P =

m∑
i=1

πiδs(i) :
m∑
i=1

πiu1(s
(i), s) ≥ 1

2

}
,

where π is an m-dimensional probability vector. It follows from Lemma 4 that if P is
mixed strategy with support over at most m points then (P, P ) is a mixed NE if and only if
P ∈ ⋂s∈Sd−1 Fs. We can frame finding such a strategy P as an optimization problem

minimize
P⊂P

|P|

subject to P ∩ Fs ̸= ∅, s ∈ Sd−1,

where P is the set of all mixed strategies with support over at most m pure strategies. An
optimal solution with more than one element in P indicates that there does not exist a mixed
strategy with support over m points or fewer, whereas if |P| = 1 then (P, P ) is a mixed
strategy where P is the singleton element in P.

This is an instance of the implicit hitting set problem. Hence, we can use the algorithm
proposed in Section 2.1 of Chandrasekaran et al. [42] to solve the above optimization problem.
Their algorithm assumes an oracle that, given a proposed subset P ⊆ P will return a subset
Fs that is not hit P∩Fs = ∅ or will certify P as a feasible solution to the above optimization
problem. We can easily achieve this by finding all dominating pure NE using our proposed
method above for each P ∈ P and taking the intersection of the resulting sets. If the
intersection is empty then P is a feasible solution, otherwise every element in the intersection
represents a subset Fs that has not been hit by P.

5.7 Experiments

Setup

The LastFM dataset was preprocessed by Shakespeare et al. [208]. Original larger scale
sweep was executed with n ∈ {10, 25, 100, 500, 1500}, d ∈ {3, 10, 50, 100}, stepsize in
{10−3, 10−2, 10−1}, and τ ∈ {10−2, 10−1, 0.25, 0.5, 1.0}. We only used 2 random seeds for the
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recommender, and 3 random seeds for our LNE-finding algorithm (i.e., 6 runs in total per
configuration). For the reported results, stepsize sweep was restricted to{10−2, 10−1}; the
number of steps was upper bounded by 50,000 (all runs have successfully converged to a fixed
point as mentioned). While our code contains an option to scale_lr_by_temperature
(see the config.py file in the provided code), which multiplies the stepsize by τ before its
use, we did not use this option in the experiments.

The second-order Riemannian test (Definition 3) is implemented in manifold.py.
Defining the tangent space projection Πi := (I−sis⊤i ), we consider a candidate strategy profile
s ∈ (Sd−1)n as violating the second order test if any of the Riemannian gradients Πi∇siui(s)
had ℓ2-norm higher than 10−5·

√
d, or the Riemannian Hessian Πi[∇2

si
ui(s)]Πi−⟨si,∇siui(s)⟩Πi

had a strictly positive eigenvalue (no tolerance used here).
The final MovieLens and LastFM experiments were run on 72 AWS machines, each with 4

CPU cores, for 5 hours. Including preliminary and failed runs, we used over 50K CPU hours.

Additional plots

Section 5.7 contains plots where the second-order test confirmed and LNE. Section 5.7 then
offers comparison to a third ranking algorithm: standard matrix factorization [MF; 132], i.e.,
PMF with additional bias terms. The bias terms effect interpretation of τ values, and we also
ignore them when running the LNE-finding algorithm. This makes the comparison with PMF
and NMF difficult, which is why we excluded MF from the main text. Results in Section 5.7
again contain runs where the second-order test did not rule out a LNE.

LNE confirmed by the second-order test

As mentioned, the plots shown in the main body of the paper are for runs where the second-
order Riemannian test did not rule out that the found pure strategy profile is a LNE. Here
we show exactly the same plots with only the runs where the test confirmed a LNE. The
difference is that here we exclude the runs where the Riemannian Hessian had at least one
zero eigenvalue associated with a direction perpendicular to si, for at least one i ∈ [n]. As
you see below, this had little effect on the LastFM results, but has non-negligibly reduced
the number of admitted runs for MovieLens.

Matrix factorization (PMF with biases) results
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Figure 5.7: A counterpart to Fig. 5.3 with runs where LNE test was inconclusive excluded.
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Figure 5.8: A counterpart to Fig. 5.4 with runs where LNE test was inconclusive excluded.
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Figure 5.10: A counterpart to Fig. 5.3 with added MF results.
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Figure 5.11: A counterpart to Fig. 5.4 with added MF results. Baselines omitted to reduce
clutter.
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