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Abstract

Towards Privacy-Preserving and Regulation-Compliant Data Analysis

by

Lun Wang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Xiaodong Dawn Song, Chair

Data analysis has become an indispensable part of today’s society and is greatly impact-
ing our everyday life. At the same time, a variety of privacy attacks are threatening data
sovereignty and safety in each step of data analysis from data collection to result release.
Preservation of data privacy has been studied through various lens, and can be roughly clas-
sified into two categories: the top-down approach (e.g. General Data Protection Regulation)
attempts to design a set of universal rules to regulate sensitive data, and the bottom-up ap-
proach (e.g. differential privacy) targets concrete privacy challenges and solves them from
an algorithmic perspective.

These two approaches, although have achieved great success separately, suffer from their
intrinsic defects as well. Specifically, 1) the effective enforcement of the top-down regula-
tions and 2) the design of the bottom-up algorithms for various applications with different
trade-offs have been critical problems to solve. Fortunately, these two approaches are com-
plementary and can become more powerful once used together. The top-down approach can
be used for guidance when designing bottom-up solutions and the bottom-up methods can
be leveraged to enforce the top-down regulations.

In this dissertation, the researcher presents an end-to-end framework, namely Aegis. Aegis
comprises two main components, a sub-system verifying the compliance between a privacy
regulation and a data analysis task, and a library of standardized privacy-preserving algo-
rithms to implement the data analysis tasks. These two components respectively address
challenges 1) and 2) mentioned above to some extent. Furthermore, by gluing the two ap-
proaches, Aegis magnifies their advantages and promotes a new privacy-preserving data
analysis paradigm.
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Chapter 1

Introduction

Data analysis has become an indispensable part of today’s society and is greatly impacting
our everyday life. However, a variety of privacy attacks are threatening data sovereignty and
safety in every step of data analysis from data collection to result release. Preservation of
data privacy has been studied through various lens, but can be roughly classified into two
categories: 1) the top-down approach (e.g. General Data Protection Regulation) attempts
to design a set of universal rules to regulate sensitive data usage; 2) the bottom-up approach
(e.g. differential privacy) targets concrete privacy issues and solves them from an algorithmic
perspective. In this chapter, we introduce the two approaches respectively and discuss how
the combination of the two can potentially change the landscape of privacy-preserving data
analysis.

1.1 The Top-down Approach: A Regulator’s View

Since the introduction of GDPR, more and more regional privacy regulations have been leg-
islated to normalize user data usage. According to a report by the information technology &
innovation foundation [145], 34 states in the United States have passed or introduced 72 pri-
vacy bills regulating the commercial collection and use of personal data. An incomplete list
of today’s privacy regulations includes the Health Insurance Portability and Accountability
Act (abbrev. HIPAA, US), Family Educational Rights and Privacy Act (abbrev. FERPA),
the Children’s Online Privacy Protection Act (abbrev. COPPA, US), Gramm-Leach-Bliley
Act (abbrev. GLBA, US), General Data Protection Regulation (abbrev. GDPR, EU), Cali-
fornia Consumer Privacy Act (abbrev. CCPA, US), California Privacy Rights Act (abbrev.
CPRA, US), Massachusetts Data Privacy Law (US), New York Privacy Act (US), Hawaii
Consumer Privacy Protection Act (US), Maryland Online Consumer Protection Act (US),
Digital Privacy Act (Canada), Proposal Data Protection Law (Chile, drafting), Federal Data
Privacy Law (US, not yet drafting), General Data Protection Law (Brazil), ePrivacy Reg-
ulation (EU, drafting), Personal Data Protection Bill 2018 (India), Personal Information
Security Specification (China), Privacy Act 1988 and amendments (Australia).
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These regulations share common principles. As the pioneer of privacy regulations, GDPR
proposes seven key principles of personal data control:

• Lawfulness, fairness and transparency : Whenever processing personal data, you shall
have legitimate reason, be open about how the data is processed, and correctly handle
the data without withholding any information.

• Purpose limitation: You shall only collect data for “specified, explicit, and legitimate
purposes”.

• Data minimisation: You shall only collect the necessary amount of data to complete
your purposes.

• Accuracy : You are responsible for ensuring the accuracy of the collected data.

• Storage limitation: You shall justify data retention periods when collecting data.

• Integrity and confidentiality (security): You shall maintain the integrity and confiden-
tiality of the collected data.

• Accountability : You shall appropriately enforce the privacy regulations and keep a
clear record of your enforcement process in case you need to prove responsibility to
authorities.

Other privacy regulations share similar principles. For example, CCPA has three principles:
transparency, accountability, and control ; CPRA codifies the purpose limitation principle to
augment CCPA.

Despite the best intentions and well-designed principles, these regulations lack concrete
operational guidance. As a result, today’s compliance paradigm heavily relies on human
auditing, and is problematic in two aspects. First, it is an expensive process to hire and train
data protection personnel and rely on manual effort to monitor compliance. The information
technology & innovation foundation [145] has estimated that California’s privacy law will
cost $78 billion annually, with California’s economy bearing $ 46 billion and the rest of the
U.S. economy bearing the other $32 billion; California small businesses will bear $9 billion
of in-state costs, while out-of-state small businesses face $6 billion of costs. These estimates
highlight the overwhelming costs for states to create a patchwork of privacy laws and the need
for an efficient privacy enforcement framework to alleviate the economic burden and minimize
the impact on innovation. Second, human auditing is slow and error-prone. The inefficiency
of compliance impedes the effective use of data and hinders productivity. Errors made by
compliance officers can harm data subjects and result in legal liability. What makes things
worse is that these regulations differ a lot in specific terms despite their similar principles
and are still evolving rapidly to accommodate the ever-changing real-world requirements.
This makes developing a fixed solution once and for all infeasible and we need a versatile
solution to catch up the fast development of these privacy regulations.
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All these factors create unprecedented needs for a cost-efficient, versatile, verifiable, and
secure framework to enforce privacy regulations.

• Cost-Efficiency : The framework should be automatic or semi-automatic with modest
human efforts to alleviate the running cost.

• Versatility : The framework should be applicable to most current regulations today and
can accommodate possible future development.

• Verifiability : The enforcement process should be recorded and can be checked in the
future.

• Security : The framework should correctly enforce the privacy regulation under reason-
able threat models.

1.2 The Bottom-up Approach: A Programmer’s View

On the other end of the spectrum, a variety of privacy-preserving techniques, especially
customized defenses [150, 60, 164, 171], have been developed to address concrete privacy
attacks such as data poisoning attacks [24, 152], model inversion attacks [50], membership
inference attacks [128]. Among these techniques, differential privacy [39] is one of the most
widely used ones due to its mathematical rigorousness and negligible computation overhead.
Over the past decade, differential privacy has seen unprecedented prosperity and has been
deployed by large service providers and public organizations including including Google [46],
Apple [86], Microsoft [36], LinkedIn [77] and the US Census Bureau [135].

Differential privacy has derived many variants in the past few years including pan pri-
vacy [40], concentrated differential privacy [42], zero-concentrated differential privacy [21],
Rényi differential privacy [101], f-differential privacy [38], and Gaussian differential pri-
vacy [38]. Albeit the variety of definitions, they share a similar intuition.

Whether or not an individual’s record is in the input should not greatly influence
the output.

This intuition is initially captured in the vanilla definition of differential privacy.

Definition 1 (Approximate Differential Privacy). A randomized mechanism M is said to
follow (ε, δ)-approximate differential privacy if for two neighboring datasets D and D′ and
arbitrary subset of M’s output space S,

P[M(D) ∈ S] ≤ eεP[M(D′) ∈ S] + δ (1.1)

If δ = 0, we omit the δ part and refer to it as ε-differential privacy (also known as pure
differential privacy).
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Let’s interpret the above definition step by step. First, the common definition of neigh-
boring datasets are datasets differing in one record, capturing “whether or not an individual’s
record is in the input” in the intuition. Technically, the neighboring relation can be any sym-
metric relation. In practice, the definition also differs from case to case. We use the notion
D ∼ D′ to represent the neighboring relation. Second, Equation 1.1 captures “not greatly
influencing the output” in the intuition. ε and δ are privacy parameters measuring the dif-
ference of the output. Specifically, ε bounds the multiplicative difference while δ bounds the
probability of failure of the chosen ε. The complete interpretation of Equation 1.1 is out of
scope and we refer interested readers to Dwork and Roth’s well-celebrated privacy book [41].

Another important concept in differential privacy is the sensitivity of a deterministic
mechanismM. Intuitively, sensitivity upper bounds how much the output will change when
someone’s record is added to or removed from the input dataset. The most common way to
achieve differential privacy is to add noise to the output and sensitivity serves as a gauge to
calibrate the noise scale. There are many different sensitivity definitions, out of which the
most commonly used one is `k-sensitivity.

Definition 2 (`k-sensitivity). The `k-sensitivity of a deterministic mechanism M is:

sup
D∼D′

‖M(D)−M(D′)‖k

A nice property of differential privacy is composability [21, 1, 101, 6, 158, 38, 131, 80,
172]. If several differentially private mechanisms are applied adaptively to the same dataset,
then the concatenation of their outputs still satisfies differential privacy. The composed
privacy parameters can be derived from each mechanism’s privacy parameter.

Albeit all the advantages, most real-world deployments of differential privacy are still at
the experimental stage due to two major reasons. First, most differentially private mech-
anisms add noise to the output so the accuracy of the output typically drops. Whenever
designing a differentially private mechanism, the predominant question is always how to
balance the trade-off between privacy and accuracy. Although we already have got such
differentially private algorithms for several important applications such as convex optimiza-
tion [70, 11, 14, 12, 23], deep learning [1, 112, 73], there are still many applications without
such customized design and trivial usage of universal differentially private mechanism usu-
ally results in unacceptable accuracy. Second, the correct execution of differential privacy
requires support from upstream and downstream infrastructures. For example, the privacy
budget should be accurately tracked and data with an exhausted budget should be archived
or discarded. However, we lack such a system to track and execute actions triggered by
differential privacy in complex data processing pipelines.
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1.3 1+1>2: Synergy between the Two Approaches

Despite the great success achieved separately, the two approaches suffer from their intrinsic
defects. Specifically, how to enforce the privacy regulations or design and deploy differentially
private algorithms remains critical problems yet to solve. Fortunately, we observe that the
two approaches are complementary and can be much more effective if used together in an
organized way. Privacy regulations can be used to guide the design of privacy-preserving
algorithms and the corresponding ecosystems. In return, these algorithms and infrastructures
can serve as powerful tools to enforce the privacy regulations.

In this dissertation, the researcher’s persents an end-to-end framework, namely Aegis, to
glue the two approaches and remake the privacy enforcement paradigm. Aegis comprises two
main components: 1) a sub-system verifying the compliance between a privacy regulation
and a data analysis task; 2) a library of standardized differentially private algorithms used
to implement the data analysis tasks. The architecture of Aegis is shown in Figure 1.1. The

Put Aegis architecture here; two things (1) enforce 
top-down (2) support more bottom-up 

Regulation 
Enforcement

Privacy 
Regulation

DP Library

DP learning DP optimization

DP causality DP streaming

DP statistics

Program

Privacy Officer

Programmer

Verdict

Task

Authority

Sensitive Data

Figure 1.1: Aegis Architecture. The blue components are covered in this dissertation.

workflow of Aegis is described as follows. First, the programmer receives a data analysis task
and leverages the differential privacy library to code up a program. The program, together
with the privacy regulation, is fed into the regulation enforcement module which outputs
a verdict including 1) a decision whether the program satisfies the regulation; 2) a system
log of how the data is processed. If the decision is positive, then the program is allowed to
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run on the sensitive data. The system log will be periodically audited by the privacy officer
within the organization and can prove correct compliance to authorities.

As easy the workflow might look like, the correct execution hinges on two key properties.
First, the regulation enforcement framework should be cost-efficient, versatile, verifiable and
secure. To achieve these properties, we design a static analyzer [153] which can verify whether
an analysis program satisfies a given privacy regulation. To encode a privacy regulation in a
machine-readable format, we extend a policy-encoding language namely Legalease [125].
The combination of these two components significantly reduces the demand for human audit-
ing and thus greatly lowers the cost. Both the static analyzer and Legalease are extensible
so they can easily accommodate new changes in privacy regulations. Besides, we run the
system with encrypted data and trusted execution environments for security. The system is
introduced in detail in Chapter 2. Second, the differential privacy library should embrace
as many applications as possible. Today most differentially private algorithms fall in the
category of learning and optimization. We identify two under-explored areas: causal infer-
ence [154] and streaming [156], and develop customized differentially private algorithms for
them. The algorithms are introduced in Chapter 3 and 4. Besides, the regulation enforce-
ment module also tracks the consumed privacy budget to support correct applications of
these algorithms.

In Aegis, we see the potential to synergize the strengths of different parties, including
authorities, programmers, legal experts and privacy experts, to offer operational effective-
ness in a privacy-preserving data analysis pipeline. Programmers can productively analyze
sensitive data with verifiable privacy guarantees and shorter auditing time. Privacy officers
and authorities can also efficiently regulate data processing without looking at the cumber-
some and case-to-case details. The legislators can receive timely feedback from the system
to guide future legislation and amendments. The privacy researchers can also get a better
sense of the real-world demand and use it as guidance to design more practical differentially
private algorithms.
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Part I

Top-down Approach: Effective
Enforcement of Privacy Regulations
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Chapter 2

PrivGuard: Privacy Regulation
Compliance Made Easier

As discussed in Chapter 1, continuous compliance with privacy regulations, such as GDPR
and CCPA, has become a costly burden for companies from small-sized start-ups to busi-
ness giants. The culprit is the heavy reliance on human auditing in today’s compliance
process, which is expensive, slow, and error-prone. To address the issue, the researchers
propose PrivGuard, a novel system design that reduces human participation required and
improves the productivity of the compliance process. PrivGuard is mainly comprised of
two components: (1) PrivAnalyzer, a static analyzer based on abstract interpretation for
partly enforcing privacy regulations, and (2) a set of components providing strong security
protection on the data throughout its life cycle. To validate the effectiveness of this ap-
proach, the researchers prototype PrivGuard and integrate it into an industrial-level data
governance platform. The case studies and evaluation show that PrivGuard can correctly
enforce the encoded privacy policies on real-world programs with reasonable performance
overhead.

2.1 Introduction

With the advent of privacy regulations such as the EU’s General Data Protection Regulation
(GDPR) and California Consumer Privacy Act (CCPA), unprecedented emphasis is put on
the protection of user data. This is a positive development for data subjects, but presents
major challenges for compliance. Today’s compliance paradigm relies heavily on human
auditing, and is problematic in two aspects. First, it is an expensive process to hire and
train data protection personnel and rely on manual effort to monitor compliance. According
to a report from Forbes [144], GDPR cost US Fortune 500 companies $7.8 Billion as of May
25th, 2018. Another report from DataGrail [143] shows that 74% of small- or mid-sized
organizations spent more than $100,000 to prepare for continuous compliance with GDPR
and CCPA. Second, human auditing is slow and error-prone. The inefficiency of compliance
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impedes the effective use of data and hinders productivity. Errors made by compliance
officers can harm data subjects and result in legal liability.

An ideal solution would enable data curators to easily ensure fine-grained compliance
with minimal human participation and quickly adapt to new changes in privacy regulations.
A significant amount of academic work seeks to address this challenge [111, 121, 28, 125, 94,
93, 147, 5, 133, 151]. The European ICT PrimeLife project proposes to encode regulations
using Primelife Policy Language (PPL) [147] and enforce them by matching the policies with
user-specified privacy preferences and triggering actions when detecting specific behaviors.
A-PPL [5] extends the PPL language by adding accountability rules. These two pioneering
works play important roles in the exploration of efficient policy compliance. However, as
they focus on Web 2.0 applications, they provide limited support for fine-grained privacy
requirement compliance in complex data analysis tasks. The SPECIAL project [133] partly
inherits the design of the PPL project and, as a result, suffers from similar limitations. The
closest to our work is by Sen at al. [125], which proposed a formal language (Legalease) for
privacy policies and a system (Grok) to enforce them. However, Grok uses heuristics to
help decide whether the analysis process is compliant with a policy and thus human auditing
is required to catch false-negatives. Thus, effective compliance with privacy regulations at
scale remains an important challenge.

PrivGuard: Facilitating Compliance. This chapter describes a principled data analysis
framework called PrivGuard to facilitate compliance with privacy regulations with minimal
human participation. PrivGuard works in a five-step pipeline.

First, data protection officers (DPOs), legal experts, and domain experts collaboratively
translate privacy regulations into a machine-readable policy language. The translation pro-
cess is application-specific and requires domain-specific knowledge in both the application
and the privacy regulation (e.g. mapping legal concepts to concrete fields.). The encoded
policy is referred to as the base policy. Encoding the base policy is the step with the most
human effort in PrivGuard’s workflow.

Second, before the data is collected, the data subjects are aided by a client-side API to
specify their privacy preferences. They can either directly accept the base policy or add their
own privacy requirements. The privacy preferences are collected together with the data by
the data curator.

Third, data analysts submit programs to analyze the collected data. Analysts are required
to submit a corresponding guard policy, which is no weaker than the base policy, along with
their program. Only data whose associated policy is no stronger than the guard policy can
be used by the program.

Fourth, our proposed static analyzer, PrivAnalyzer, examines the analysis program
to confirm its compliance with the guard policy. At the same time, the subset of the data
whose privacy preferences are no stronger than the guard policy will be loaded to conduct
the real analysis.

Finally, depending on the output of PrivAnalyzer, the result will be either declassified
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to the analyst or guarded by the remaining unsatisfied privacy requirements (called a residual
policy). The whole pipeline is under the close protection of cryptographic tools and trusted
execution environments (TEEs) to ensure security and correctness of the execution.

Extension of Legalease: Encoding Policies. PrivGuard is designed to be compatible
with many machine-readable policy languages such as [147, 5]. In this work, we instantiate
our implementation with Legalease, a formal policy language from [125], because of its
readability and extensibility. We extend Legalease [125] by providing new attribute types,
including attributes requiring the use of privacy-enhancing technologies like differential pri-
vacy.

PrivAnalyzer: Enforcing Policies. The core component of PrivGuard is PrivAn-
alyzer, a static analyzer capable of checking the compliance of an analysis program with
a privacy policy. PrivAnalyzer performs static analysis of the programs submitted by
analysts to check their compliance with the corresponding guard policies.

In contrast to previous approaches relying on access control [160] or manual verifica-
tion [125, 53, 133], PrivAnalyzer is a novel policy enforcement mechanism based on
abstract interpretation [108]. PrivAnalyzer does not rely on heuristics to infer policy or
program semantics, and provides provable soundness for some properties. PrivAnalyzer
examines only the program and the policy (not the data), so the use of PrivAnalyzer
does not reveal the content of the data it protects. Our approach works for general-purpose
programming languages, including those with complex control flow, loops, and imperative
features. Thus, PrivAnalyzer is able to analyze programs as written by analysts—so
analysts do not need to learn a new programming language or change their workflows. We
instantiate our implementation with Python, one of the most widely used programming
languages for data analysis.

We implemented PrivAnalyzer in about 1400 lines of Python and integrated it in
an industrial-level data governance platform to prototype PrivGuard. We evaluated the
prototype experimentally on 23 open-source Python programs that perform data analytics
and machine learning tasks. The selected programs leverage popular libraries like Pan-
das, PySpark, TensorFlow, PyTorch, Scikit-learn, and more. Our results demonstrate that
PrivGuard is scalable and capable of analyzing unmodified Python programs, including
programs that make extensive use of external libraries.

2.2 PrivGuard Overview

In this section, we outline the design and implementation of PrivGuard. We first walk
through PrivGuard using a toy example and then introduce the system design and imple-
mentation. As last, the threat model and the security of PrivGuard are discussed.
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A Toy Example

We use a toy example to demonstrate the workflow of PrivGuard, which also allows us to
present the main components used. A company launches a mobile application and collects
user data to help make informed business decisions. To facilitate compliance with privacy
regulations, the company deploys PrivGuard to protect the collected data.

First, the DPOs, legal experts, and domain experts encode two requirements in the base
policy: (1) minors’ data shall not be used in any analysis; (2) any statistics on the data shall
be protected using differential privacy.

Second, the privacy preferences are collected from the data subjects together with the
data. Some data subjects (Group 1) trust the company and directly accept the base policy.
Some (Group 2) are more cautious and want their zip codes to be redacted before analysis.
The others (Group 3) do not trust the company and do not want their data to be used for
purposes except for legitimate interest.

Third, a data analyst wants to survey the user age distribution. It specifies a guard policy,
that besides the base policy, zip codes shall not be used in the analysis either. The analyst
submits a program calculating the user age histogram to PrivGuard. She remembers to
filter out all the minor information and redact the zip code field but forgets to protect the
program with differential privacy.

Fourth, PrivGuard uses PrivAnalyzer to examine the privacy preferences and loads
data of Group 1 and 2 into the TEE as their privacy preferences are no stricter than the
guard policy. PrivGuard runs the program and saves the resulting histogram. However,
after examining the program and the guard policy, PrivGuard finds that the program
fails to protect the histogram with differential privacy. Thus, the histogram is encrypted,
dumped to the storage layer and guarded by a residual policy indicating that differential
privacy should be applied before the result can be declassified.

Lastly, PrivGuard outputs the residual policy to the analyst. The analyst, after check-
ing the residual policy, submits a program which adds noise to the histogram to satisfy
differential privacy. PrivGuard then decrypts the histogram, loads it into TEE, and exe-
cutes the program to add noise to it. This time, PrivGuard finds that all the requirements
in the guard policy are satisfied, so it declassifies the histogram to the analyst.

System Design

Base Policy Encoding. Encoding the base policy is the step with the most human par-
ticipation in PrivGuard’s workflow. The base policy should be designed collaboratively by
DPOs, legal experts, and domain experts to accurately reflect the minimum requirements of
the privacy regulation. Note that only one base policy is needed for each data collection and
can be reused throughout all the analyses on the data. The purpose of the base policy is
two-fold. First, the text version of the base policy is to be presented to data subjects as the
minimum privacy standard before they opt in the data collection. Second, the data analysts
need to understand the base policy before conducting analysis. If their analysis satisfies a
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ALLOW ROLE
Physician

ALLOW
SCHEMA
HealthInformation

AND FILTER
age < 90

AND REDACT
zip

(a) General encoding.

ALLOW ROLE
Physician

ALLOW
SCHEMA
SerumCholestoral

AND FILTER
age < 90

(b) Concrete encoding.

Figure 2.1: Encoding of several HIPAA requirements.

stricter privacy standard, they can specify their own guard policy to take advantage of more
user data.

We demonstrate the encoding process using a subset of the HIPAA safe harbor method1

(Figure 2.1). The DPOs and legal experts first encode the regulation in a general way
without considering concrete data format. As shown in Figure 2.1a, the first clause (line
1-2) allows the patient’s physician to check his or her data. The second clause (lines 3-7)
represents some safe harbor requirements: health information may be released if the subject
is under 90 years old and the zip codes are removed. Then the DPOs and domain experts
map the encoding to a concrete data collection by introducing real schemas and removing
unnecessary requirements. For example, in Figure 2.1b, HealthInformation is replaced with a
concrete column name in the dataset, SerumCholestoral, and the last requirement is removed
as the dataset does not contain zip codes. For longer example encodings of GPDR, HIPPA,
CCPA and FERPA, please refer to Appendix B.

Data & Privacy Preference Collection. Besides the base policy, the data subjects
can also specify additional privacy preferences to exercise their rights to restrict processing.
These privacy preferences are sent to the data curator along with the data, where they
will be kept together in the storage layer. To defend against attacks during transmission
and storage, the data is encrypted before sent to the data curator. The decryption key is
delegated to a key manager for future decryption (Section 2.2).

A natural question is ”how much expertise is needed to specify privacy preferences in
Legalease?” Sen et al. [125] conducted a survey targeting DPOs and found that the ma-
jority were able to correctly code policies after training. To complement their survey and
better understand how much expertise is needed, we conducted an online survey targeting
general users without training. The survey reveals two interesting facts: (1) there is a signif-

1Recent research has shown that the approach prescribed in HIPAA does not really protect the privacy
of individuals. In the future, we expect that many data subjects will add a PRIVACY attribute requiring the
use of a provable privacy technology like differential privacy.
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icant positive correlation between the difficulty of understanding and encoding Legalease
policies and the user’s familiarity with other programming languages; (2) most users can-
not correctly understand privacy techniques such as differential privacy without training.
According to these observations, we strongly recommend the users without programming
experience directly accept the base policy instead of encoding their own. Although out of
scope, we deem it important future direction to simplify privacy preference specification by
developing more user-friendly UI and translation tools. The details of the survey are deferred
to Section 2.3.

Analysis Initialization. To initialize an analysis task, the analyst needs to submit (1)
the analysis program, and (2) a guard policy, to PrivAnalyzer. A guard policy should be
no weaker than the base policy to satisfy the minimum privacy requirements. The stricter
the guard policy is, the more data can be used for analysis.

PrivAnalyzer Analysis. After receiving the submission, PrivAnalyzer will load the
privacy preferences from the storage layer and compare them with the guard policy. Only
the data with preferences no stricter than the guard policy will be loaded into the TEE,
decrypted using keys from the key manager, and merged to prepare for the real analysis.
Meanwhile, PrivAnalyzer will (1) check that the guard policy is no weaker than the base
policy and (2) then examine the guard policy and the program to generate the residual
policy. To make sure the static analysis runs correctly, PrivAnalyzer is protected inside
a trusted execution environment (TEE).

The compliance enforcement actually hinges on three checks: (1) the guard policy is no
weaker than the base policy; (2) only data with privacy preferences no stronger than the
guard policy is used; (3) the guard policy should be satisfied before declassification. For (3),
the guard policy can be satisfied either by a single program or by multiple programs applied
sequentially on the data. This design endows PrivGuard with the ability to enforce privacy
policies in multi-step analyses.

Execution & Declassification. After PrivAnalyzer finishes its analysis, the submitted
program will be executed with the decrypted data inside the TEE. If the residual policy
generated in the previous step is empty, then the result can be declassified to the analyst.
Otherwise, the output will be encrypted again and stored in the storage layer protected by
the residual policy.

Attentive readers might ask “why does PrivGuard not directly reject programs that
fail to comply with the guard policy?” The design choice is motivated by two considerations.
First, it is not always possible to get an empty residual policy when the guard policy contains
ROLE or PURPOSE attributes. These attributes will be satisfied by human auditing after
the real data analysis. Second, PrivGuard is designed to be compatible with multi-step
analysis, a common case in real-world product pipelines. In multi-step analysis, it is likely
that privacy requirements are satisfied in different steps.
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Figure 2.2: PrivGuard prototype infrastructure. White: data/policies; green: analysis
programs; blue: off-the-shelf components; yellow: newly-designed components.

System Security

In this section, we present the threat model and demonstrate how to secure PrivGuard
under the threat model.

Threat Model. Our setting involves four parties - (1) data subjects (e.g. users), (2) a data
curator (e.g. web service providers, banks, or hospitals), (3) data analysts (e.g. employees
of the data curator), and (4) untrusted third parties (e.g. external attackers). Data is
collected from data subjects, managed by the data curator, and analyzed by data analysts.
Both the data subjects and the data curator would like to comply with privacy regulations
to either protect their own data or avoid legal or reputational risk. The data analysts,
however, are honest but reckless, and might unintentionally write programs that violate
privacy regulations. The only way that a data analyst can interact with the data is to submit
analysis programs and check the output. The untrusted third parties might actively launch
attacks to steal the data or interfere with the compliance process. A concrete example is the
cloud provider which hosts a small company’s service or data. We protect data confidentiality
and execution integrity from third parties under the following two assumptions. First, we
assume that the untrusted third parties cannot submit analysis programs to PrivAnalyzer
or compromise insiders to do so. Second, we assume that the untrusted third parties fit in
the threat model of the chosen TEE so that they cannot break the security guarantee of the
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TEE.

Security Measure. PrivGuard takes the following measures to defend against untrusted
third parties and establish a secure workflow under the above threat model. First, data is
encrypted locally by the data subjects before transmitted to the data curator. The decryption
key is delegated to the key manager so no one can touch the data intentionally or carelessly
without asking the key manager or the data subject for the decryption key. To bind data and
policy in an immutable way, the encrypted data contains a hash value of the corresponding
policy. Second, all transmission channels satisfy transport layer security standards (TLS 1.3).
Third, PrivAnalyzer is run inside a TEE to guarantee the integrity of the static analysis.
The key manager can attest remotely to confirm that PrivAnalyzer correctly examines
the program and the policies before issuing the decryption key. Fourth, data decryption and
analysis program execution are protected inside the TEE as well.

Security of PrivGuard against untrusted third-parties is based on the following sources
of trust. First, confidentiality and integrity of data are preserved inside TEE and TLS
channels. Second, the integrity of code execution is preserved inside the TEE. Remote
attestation can correctly and securely report the execution output. Third, the key manager
is completely trusted such that the confidentiality of decryption keys is preserved. The design
of trusted key managers is orthogonal to the focus of the section. Potential solutions include
a key manager inside TEE or a decentralized key manager [95].

2.3 PrivAnalyzer: Static Analysis for Enforcing

Privacy Policies

This section describes PrivAnalyzer, a static analyzer for enforcing the privacy policies
tracked by PrivGuard. We first introduce the design challenges of such a static analyzer.
Then we review the Legalease policy language [125], which we use to encode policies
formally, then describe how to statically enforce them with both an empirical example and the
formal model. We conclude this section with a usability survey of the extended Legalease
language.

Background & Design Challenges

Legalease is one example of a growing body of work that has explored formal languages for
encoding privacy policies [121, 28, 125, 94, 93, 151, 148, 27, 83, 53]. A complete discussion of
related work appears in Section 2.5. We adopt Legalease to express PrivGuard policies
due to its expressive power, formal semantics, and extensibility.

Sen et al. [125] developed a system called Grok that combines static and dynamic
analyses to enforce Legalease policies. Grok constructs a data dependency graph which
encodes all flows of sensitive data, then applies a set of inference rules to check that each
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attr ∈ ROLE, SCHEMA, PRIVACY, FILTER,
REDACT,PURPOSE

A ∈ attribute ::= attr attrValue
C ∈ policy clause ::= A | A AND C | A OR C
P ∈ policy ::= (ALLOW C)+

Figure 2.3: Policy language surface syntax

node in the graph satisfies the policy. Grok combines analysis of system logs with limited
static analysis to construct the graph.

The Grok approach presents two challenges. First, the approach is a heuristic: it
examines syntactic properties of the program and individual executions of the program (via
system logs), and thus may miss policy violations due to implicit flows [103, 170, 116, 54].
Second, the Grok approach requires making the entire dataflow graph explicit; in large
systems with many data flows, constructing this graph may be intractable.

PrivAnalyzer is designed as an alternative to address both challenges. It uses static
analysis based on abstract interpretation instead of Grok’s heuristic analysis and avoids
making the dataflow graph explicit by constructing composable residual policies.

Policy Syntax & Semantics

PrivAnalyzer enforces privacy policies specified in Legalease [125], a framework for
expressing policies using attributes of various types. Attributes are organized in concept
lattices [49], which provide a partial order on attribute values. We express policies according
to the grammar in Figure 2.3 (a slightly different syntax from that of Legalease). A
policy consists of a top-level ALLOW keyword followed by clauses separated by AND (for
conjunction) and OR (for disjunction). For example, the following simple policy specifies
that doctors or researchers may examine analysis results, as long as the records of minors
are not used in the analysis:

ALLOW (ROLE Doctor OR ROLE Researcher)
AND FILTER age >= 18

Sen et al. [125] define the formal semantics of Legalease policies using a set of inference
rules and the partial ordering given by each attribute’s concept lattice. We take the same
approach, but use a new attribute framework based on abstract domains [108] instead of con-
cept lattices. Our approach enables PrivPolicy to encode policies with far more expressive
requirements, like row-based access control and the use of privacy-enhancing technologies as
described below.

Attributes. Attributes are the basic building blocks in Legalease. Sen et al. [125]
describe a set of useful attributes. We extend this set with two new ones: FILTER encodes
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row-based access control requirements, and PRIVACY requires the use of privacy-enhancing
technologies.

Role. The ROLE attribute controls who may examine the contents of the data. Roles are
organized into partially ordered hierarchies (See Appendix A). A particular individual may
have many roles, and a particular role specification may represent many individuals. For
example, the doctor role may represent doctors with many different specialties. The following
policy says that only individuals with the role Oncologist may examine the data it covers:

ALLOW ROLE Oncologist

Schema. The SCHEMA attribute controls which columns of the data may be examined. For
example, the following policy allows oncologists to examine the age and condition columns,
but no others:

ALLOW ROLE Oncologist
AND SCHEMA age, condition

Privacy. The PRIVACY attribute controls how the data may be used, by requiring the
use of privacy-enhancing technologies. As a representative sample of the spectrum of avail-
able mechanisms, our implementation supports the following (with easy additions): (1)
De-identification (or pseudonymization); (2) Aggregation; (3) k-Anonymity [137]; (4) `-
diversity [92]; (5) t-closeness [87]; (6) Differential privacy [39, 41]. For example, the following
policy allows oncologists to examine the age and condition columns under the protection of
differential privacy with certain privacy budget:

ALLOW ROLE Oncologist
AND SCHEMA age, condition
AND PRIVACY DP (1.0, 1e-5)

Filter. The FILTER attribute allows policies to specify that certain data items must be
excluded from the analysis. For example, the following policy says that oncologists may
examine the age and condition of individuals over the age of 18 with differential privacy:

ALLOW ROLE Oncologist
AND SCHEMA age, condition
AND PRIVACY DP (1.0, 1e-5)
AND FILTER age > 18

Redact. The REDACT attribute allows policies to require the partial or complete redaction
of information in a column. For example, the following policy requires analysis to redact the
last 3 digits of ZIP codes (e.g. by replacing them with stars). The (2 : ) notation is taken
from Python’s slice and indicates the substring between the third character and end of the
string.
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Figure 2.4: PrivAnalyzer Overview. PrivAnalyzer inputs an analysis program and
policies, and produces residual policies; it can be applied repeatedly (dashed line) for multi-
step analyses.

ALLOW ROLE Oncologist
AND SCHEMA age, condition
AND PRIVACY DP (1.0, 1e-5)
AND FILTER age > 18
AND REDACT zip (2 : )

Purpose. The PURPOSE attribute allows the policy to restrict the purposes for which data
may be analyzed. For example, the following policy allows the use of age and medical
condition for public interest purposes with all the above requirements:

ALLOW ROLE Oncologist
AND SCHEMA age, condition
AND PRIVACY DP (1.0, 1e-5)
AND FILTER age > 18
AND REDACT zip (2 : )
AND PURPOSE PublicInterest

PrivAnalyzer Overview

PrivAnalyzer performs its static analysis via abstract interpretation [108], a general frame-
work for sound analysis of programs. Abstract interpretation works by running the program
on abstract values instead of concrete (regular) values. Abstract values are organized into
abstract domains : partially ordered sets of abstract values which can represent all possible
concrete values in the programming language. An abstract value usually represents a specific
property shared by the concrete values it represents. In PrivAnalyzer, abstract values are
based on the abstract domains described earlier.

Our approach to static analysis is based on a novel instantiation of the abstract interpreta-
tion framework, in which we encode policies as abstract values. The approach is summarized



CHAPTER 2. PRIVGUARD: PRIVACY REGULATION COMPLIANCE MADE
EASIER 19

in Figure 2.4. The use of abstract interpretation allows us to construct the static analysis
systematically, ensuring its correspondence with the intended semantics of attribute values.

Analyzing Python Programs. The typical approach to abstract interpretation is to
build an abstract interpreter that computes with abstract values. For a complex, general-
purpose language like Python, this approach requires significant engineering work. Rather
than building an abstract interpreter from scratch, we re-use the standard Python interpreter
to perform abstract interpretation. We embed abstract values with attached privacy policies
as Python objects and define operations over abstract values as methods on these objects.

For example, the Pandas library defines operations on concrete dataframes; PrivAn-
alyzer defines the AbsDataFrame class for abstract dataframes. The AbsDataFrame class has
the same interface as the Pandas DataFrame class, but its methods are redefined to compute
on abstract values with attached policies. We call the redefined method a function sum-
mary, since it summarizes the policy-relevant behavior of the original method. For example,
the Pandas indexing function getitem is used for filtering, so PrivAnalyzer’s function
summary for this function removes satisfied FILTER attributes from the policy.

def getitem ( self , key) :
......

If isinstance (key, AbsIndicatorSeries ) :
# ‘ runFilter ‘ removes satisfied FILTER attributes
newPolicy = self . policy . runFilter (...)
return Dataframe (..., newPolicy)

......

Multi-step Analyses & Residual Policies. As shown in Figure 2.4, the output of
PrivAnalyzer is a residual policy. A residual policy is a new policy for the program’s
concrete output—it contains the requirements not yet satisfied by the analysis program. For
a multi-step analysis, each step of the analysis can be fed into PrivAnalyzer as a separate
analysis program, and the residual policies in the previous step become the input policies for
the next step. PrivAnalyzer is compositional : if multiple analyses are merged together
into a single analysis program, then the final residual policy PrivAnalyzer returns for the
multi-step analysis will be at least as restrictive as the one for the single-step version. The
use of residual policies in PrivGuard enables compositional analyses without requiring
explicit construction of a global dataflow graph, addressing the challenge of Grok [125]
mentioned earlier.

Handling libraries. Scaling to large programs is a major challenge for many static analy-
ses, including abstract interpreters. Libraries often present the biggest challenge, since they
tend to be large and complex; it may be impossible to analyze even a fairly small target
program if the program depends on a large library. This is certainly true in our setting
(Python programs for data processing), where programs typically leverage large libraries
like pandas (327,007 lines of code), scikit-learn (184,144 lines of code), PyTorch (981,753
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Figure 2.5: Python library frequency statistics. We summarized the top frequently used
libraries.

lines of code) and Tensorflow (2,490,119 lines of code). Worse, many libraries are written in
a mix of languages (e.g. Python and C/C++) for performance reasons, so analysis for each
one of these languages would be needed.

Our solution is to develop specifications of the abstract functionality of these libraries,
like the AbsDataFrame example shown earlier, in the form of function summaries. We use the
function summaries during analysis instead of the concrete implementation of the library
itself. This approach allows PrivGuard to enforce policies even for analysis programs that
leverage extremely large libraries written in multiple languages.

Our approach for handling libraries requires a domain expert with knowledge of the li-
brary to implement its specification. In our experience, the data science community has
largely agreed upon a core set of important libraries which are commonly used (e.g. NumPy,
pandas, scikit-learn, etc.), so providing specifications for a small number of libraries is suffi-
cient to handle most programs. To validate the conjecture empirically, we randomly selected
200 programs from the Kaggle platform and counted the libraries they use (Figure 2.5). The
results confirmed that most data analysis programs use similar libraries. We have already
implemented specifications for the most frequently used libraries (Section 2.4). Fortunately,
the abstract behavior for a library function tends to be simpler than its concrete behavior.
We have implemented 380 function summaries mainly for Numpy, Pandas, and scikit-learn
and are actively working on adding more function summaries for various libraries.

We require correct specifications to rigorously enforce privacy policies. An illustrative
example of the importance of correctly implementing specifications is the renaming func-
tion. Cunning inside attackers may want to bypass the static analysis by renaming sensitive
columns. A correct specification which renames the columns in both the schema and the
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privacy clauses should mitigate such attacks. To mitigate risks due to such errors, function
summaries should be open-sourced so the community can help check their correctness.

Comparison with dynamic approaches. Our choice of a static analysis for PrivAn-
alyzer is motivated by two major advantages over dynamic approaches: (1) the ability
to handle implicit data flows, and (2) the goal of adding minimal run-time overhead. The
ability to detect implicit flows is a major advantage of static analysis systems [103, 170,
116, 54], including PrivAnalyzer. Unlike dynamic approaches, PrivAnalyzer cannot
be defeated by complex control flow designed to obfuscate execution. For example, the data
subject might specify the policy ALLOW REDACT name (1 : ), which requires redacting most of
the name column. An analyst might write the following program:

if data.name == ’Alice’:
return 1

else :
return 2

This program clearly violates the policy, even though it does not return the value of data.name

directly. This kind of violation is due to an implicit flow of the name column to the return
value. A return value of 1 allows the analyst to confirm with certainty that the data subject’s
name is Alice. This kind of implicit flow presents a significant challenge for dynamic analyses,
because dynamic analyses only execute one branch of each conditional, and can make no
conclusions about the branch not taken. A dynamic analysis must either place significant
restrictions on the use of sensitive values in conditionals, or allow for unsoundness due to
implicit flows.

Static analyzers like PrivAnalyzer, on the other hand, can perform a worst-case anal-
ysis that inspects both branches. PrivAnalyzer’s analysis executes both branches with
the abstract interpreter and returns the worst-case outcome of both branches. For loops
with no bound on the number of iterations, the analysis results represent the worst-case out-
come, no matter how many iterations execute at runtime. This power comes at the expense
of a potential lack of precision—the analysis may reject programs that are actually safe to
run. Our evaluation suggests, however, that PrivAnalyzer analysis is sufficiently precise
for programs that perform data analyses. Static analysis tools like PrivAnalyzer do not
require the policy specification to be aware of implicit flows as it combines both types of
flows in its results.

PrivAnalyzer by Example

The input to PrivAnalyzer is a single analysis program, plus all of the policies of the data
files it processes. For each of the program’s outputs, PrivAnalyzer produces a residual
policy. After running the analysis, PrivGuard will attach each of these residual policies
to the appropriate concrete output.
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Figure 2.6: Example Abstract Interpretation with PrivAnalyzer.

PrivAnalyzer works by performing abstract interpretation, where the inputs to the
program are abstract values containing representations of the associated policies. The output
of this process is a set of abstract values containing representations of the residual policies.

A complete example of this process is summarized in Figure 2.6. The analysis is a
Python program adapted from an open-source analysis submitted to Kaggle [32]. Important
locations in the program are labeled with numbers (e.g. 1○) and the associated residual
policy PrivAnalyzer computes at that program location.

Reading Data into Abstract Values. The program begins by reading in a CSV con-
taining the sensitive data (Fig. 2.6, 1○). PrivAnalyzer’s abstract interpretation library
redefines read\ csv to return an abstract dataframe containing the policy associated with the
data being read. At location 1○, the variable df thus contains the full policy for the pro-
gram’s input. In this example, the policy allows the program to use the “age,” “credit,”
and “duration” columns, requires filtering out the data of minors, and requires the use of
de-identification.

Mixing Concrete and Abstract Values. The next part of the program defines some
constants, which PrivAnalyzer represents with concrete values lacking attached policies.
Then, the program drops one of the input columns (Fig. 2.6, 2○); this action does not change
the policy, because the columns being dropped are not sufficient to satisfy any of the policy’s
requirements, so the df variable is unchanged.
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Satisfying FILTER Requirements. The next statement (Fig. 2.6, 3○) performs a filtering
operation. The PrivAnalyzer library redefines this operation to eliminate the appropriate
FILTER requirements from the policy; since this filtering operation removes individuals below
the age of 25, it satisfies the FILTER requirement in the policy, and the new value of df is an
abstract dataframe whose policy does not have this requirement.

Handling Loops. The next part of the program contains a for loop (Fig. 2.6, 4○). Loops
are traditionally a big challenge for static analyzers. PrivAnalyzer is designed to take
advantage of loops over concrete values, like this one, by simply executing them concretely.
PrivAnalyzer can also handle loops over abstract values (described later in this section),
but these were relatively rare in our case studies.

Libraries and Black-box Operations. The next pieces of code (Fig. 2.6, 5○ and 6○)
first take the log of each feature, then scale the features. Both of these operations impact
the scale of feature values. After these operations, it becomes impossible to satisfy policy
requirements like FILTER, because the original data values have been lost. For lossy operations
like these, which we call black-box operations (detailed below), PrivAnalyzer is designed
to raise an alarm if value-dependent requirements (like FILTER) remain in the policy.

Training a Model. The final piece of code (Fig. 2.6, 7○ and 8○) uses the KMeans imple-
mentation in scikit-learn to perform clustering. We summarize this method to specify that it
satisfies de-identification requirements in the policy. The result in our example is an empty
residual policy, which would allow the analyst to view the results.

Challenging Language Features

We now address the approach taken in PrivAnalyzer for several challenging language
features.

Conditionals. Conditionals depending on abstract values require the abstract interpreter
to run both branches and compute the upper bound on both results. Since Python does not
allow redefining if statements, we add a pre-processing step to PrivGuard that transforms
conditionals by running both branches.

Loops. Loops are traditionally the most challenging construct for abstract interpreters to
handle. Fortunately, loops in Python programs for data analytics often fall into restricted
classes, like the ones in the example of Figure 2.6. Both loops in this example are over
constant values—so our abstract interpreter can simply run each loop body as many times
as the constant requires.

Loops over abstract values are more challenging, and the simple approach may never
terminate. To address this situation, we define a widening operator [108] for each of the
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abstract domains used in PrivAnalyzer. Widening operators force the loop to arrive at a
fixpoint; in our example, widening corresponds to assuming the loop body will be executed
over the whole dataframe.

Aliasing. Another challenge for abstract interpretation comes from the issue of aliasing,
where two variables point to the same value. Sometimes, it is impossible for the analysis
to determine what abstract value a variable references. In this case, it is also impossible to
determine the outcome of the side effects on the variable.

Our approach of re-using the existing Python interpreter helps address this challenge: in
PrivAnalyzer, all variable references are evaluated concretely. In most cases, references
are to concrete objects, so the analysis corresponds exactly to concrete execution. In a few
cases, however, this approach leads to less precise analysis. For example, if a variable is
re-assigned in both branches of a conditional, PrivAnalyzer must assume the worst-case
abstract value (i.e. with the most restrictive policy) is assigned to the variable in both cases.
This approach works well in our setting, where conditionals and aliasing are both relatively
rare.

Attribute Enforcement

We now describe some attribute-specific details of our compliance analysis.

Schema, Filter, and Redact. The SCHEMA, FILTER, and REDACT attributes can be de-
fined formally and compliance can be checked by PrivAnalyzer. In our implementation,
relevant function summaries remove the attribute from the privacy policy if the library’s
concrete implementation satisfies the corresponding requirement. Our summaries thus im-
plement abstract interpretation for these functions. Note that PrivAnalyzer assumes
that functions without summaries do not satisfy any policy requirements. PrivAnalyzer
is therefore incomplete: some programs may be rejected (due to insufficient function sum-
maries) despite satisfying the relevant policies.

Privacy. The PRIVACY attribute is also checked by PrivAnalyzer. Analysis programs
can satisfy de-identification requirements by calling functions that remove identifying in-
formation (e.g. aggregating records or training machine learning models). Programs can
satisfy k-Anonymity2, `-diversity2, t-closeness or differential privacy requirements by calling
specific functions that provide these properties. Our function summaries include represen-
tative implementations from the current literature: IBM Differential Privacy Library [65],
K-Anonymity Library [72], and Google’s Tensorflow Privacy library [141].

2 k-Anonymity and `-diversity are vulnerable to disclosure attacks as pointed out in [87]. k-Anonymity
is vulnerable to homogeneity and background knowledge attacks, and `-diversity suffers from skewness and
similarity attacks. We strongly encourage using t-closeness or differential privacy for stronger protection.
PrivGuard provides weaker approaches only for compatibility purposes.
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There are two subtleties when enforcing differential privacy attributes. First, programs
that satisfy differential privacy also need to track the privacy budget [41]. By default, Priv-
Guard tracks a single global cumulative privacy cost (values for ε and δ) for each source of
submitted data, and rejects new analysis programs after the privacy cost exceeds the budget
amount. PrivAnalyzer reports the privacy cost of a single analysis program, allowing
PrivGuard to update the global privacy cost. A single global privacy budget may be
quickly exhausted in a setting with many analysts performing different analyses. One solu-
tion to this problem is to generate differentially private synthetic data, which can be used
in later analyses without further privacy cost. The High-Dimensional Matrix Mechanism
(HDMM) [98] is one example of an algorithm for this purpose, used by the US Census Bureau
to release differentially private data. In PrivGuard, arbitrarily many additional analyses
can be performed on the output of algorithms like HDMM without using up the privacy
budget. Another solution is fine-grained budgeting, at the record level (as in ProPer [44]) or
a statically defined “region” level (as in UniTraX [102]). The first is more precise, but re-
quires silently dropping records for which the privacy budget is exhausted, leading to biased
results. Both approaches allow for continuous analysis of fresh data in growing databases
(e.g. running a specific query workload every day on just the new data obtained that day).
Second, to calculate privacy budget, PrivGuard initializes a variable to track the sensitiv-
ity of the pre-processing steps before the differentially private function. The pre-processing
function summaries should manipulate the variable to specify their influence on the sensitiv-
ity. If such specification is absent in any function before the differentially private function,
PrivGuard will throw a warning and recognize the differential privacy requirement as un-
satisfied. We also plan to incorporate differential privacy type systems such Fuzz [114],
DFuzz [51], PathC [4], HOARe2 [10], LightDP [165], Fuzzi [166] and DUET [104].

Role. ROLE attributes are enforced by authentication techniques such as password, 2-factor
authentication , or even biometric authentication . In addition, ROLE attributes are also
recorded in an auditable system log described in the next paragraph, and the analysts and
the data curators will be held accountable for fake identities.

Purpose. The PURPOSE attribute is inherently informal. Thus, we take an accountability-
based approach to compliance checking for purposes. Analysts can specify their purposes
when submitting the analysis program, and may specify an invalid purpose unintention-
ally or maliciously. These purposes will be used by PrivAnalyzer to satisfy PURPOSE

requirements. PrivGuard produces an audit log recording analysts, analysis programs,
and claimed purposes. Thus, all the analysis happening in the system can be verified after
the fact, and analysts can be held legally accountable for using invalid purposes.
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Formal Model of PrivAnalyzer

In this section, we formally present technique for proving soundness of our static analysis.
We use the filter attribute as an example to demonstrate the technique for proving soundness
in the context of a simple model of a programming language. As described in Section 2.3,
Python is a more dynamic language than our model, and these dynamic features may rep-
resent possible side channels for malicious adversaries.

Abstract Domains

We provide the formal definition on of the abstract domains used in PrivGuard in this
section. Formally, given a concrete domain D, we define the following components:

• an abstract domain < D],v> containing abstract values (D]) which represent classes
of abstract values, and a partial ordering (v) on those values.

• an abstraction function α : D → D] mapping concrete values to abstract values.

• a concretization function γ : D] → P(D) mapping abstract values to sets of concrete
values.

For each attribute type, we define D], v, α, and γ. We define each abstract domain in terms
of a tabular data format approximating a Pandas dataframe (which we denote df).

As described earlier, some kinds of loops may cause the abstract interpreter to loop
forever. To address this challenge, we adopt the standard approach of using a widening
operator [108], denoted ∇, in place of the standard partial ordering operator v. Unlike the
partial ordering, the widening operator is guaranteed to stabilize when applied repeatedly
in a loop. Finite abstract domains do not require a widening operator; for infinite domains
(like the interval domain used in FILTER attributes), we adopt the standard widening operator
used for the underlying domain (e.g. widening for intervals [108]).

Filter Attributes. We track filtering done by analysis programs using an interval do-
main [108], which is commonly used in the abstract interpretation literature. Abstract
dataframes in this domain (denoted D]) associate an interval (denoted I) with each column
ci, and analysis results are guaranteed to lie within the interval. In addition to known in-
tervals (i.e. (n1, n2)), our set of intervals includes > (i.e. the interval (−∞,∞)) and ⊥
(i.e. the interval containing no numbers). Our interval domain works for dataframe columns
containing integers or real numbers; our formalization below uses R∞ to denote the set of
real numbers, extended with infinity.

i ∈ IR = (R∞ × R∞) ∪ {>,⊥}
df ] ∈ D] = (c1 : IR)× ...× (cn : IR)
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f ∈ field m ∈ int s ∈ schema x ∈ dataframes

ϕ ∈ filter ::= c < m | c > m
e ∈ expr ::= x | filter(ϕ, e) | project(s, e)

| redact(c, n, n, e) | join(e, e)
| union(e, e) | dpCount(ε, δ, e)

Figure 2.7: Program surface syntax

eval(ρ, x) = ρ(x)
eval(ρ,filter(ϕ, e)) = σϕeval(ρ, e)
eval(ρ,project(s, e)) = Πseval(ρ, e)
eval(ρ, redact(c, n1, n2, e)) = {c : stars(s, n1, n2) |

c : s ∈ eval(ρ, e)}
eval(ρ, join(e1, e2)) = eval(ρ, e1) ./ eval(ρ, e2)
eval(ρ,union(e1, e2)) = eval(ρ, e1) ∪ eval(ρ, e2)

Figure 2.8: Concrete interpreter for language in Figure 2.7.

For ease of presentation, and without loss of generality, we define α and γ in terms of
dataframes with a single column c. We denote values in the column c by df.c.

c : ⊥ v D]
D] v c : >
c : (n1, n2) v c : (n3, n4) if n1 ≥ n3 ∧ n2 ≤ n4

α(df) = c : (min(df.c),max(df.c))
γ(c : >) = D
γ(c : ⊥) = {}
γ(c : (n1, n2)) = {df | ∀v ∈ df.c. n1 ≤ v ≤ n2}

Soundness

A sound analysis by abstract interpretation requires defining the following:

• A programming language of expressions e ∈ Expr. We define a simple language for
dataframes, inspired by Pandas, in Figure 2.7.

• A concrete interpreter eval : Env×Expr→ D specifying the semantics of the program-
ming language on concrete values. We define the concrete interpreter for our simple
language in Figure 2.8.
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eval](ρ, x) = ρ(x)
eval](ρ,filter(ϕ, e)) = eval](ρ, e)− interval(ϕ)
eval](ρ,project(s, e)) = eval](ρ, e)
eval](ρ, redact(c, n1, n2, e)) = eval](ρ, e)
eval](ρ, join(e1, e2)) = eval](ρ, e1) t eval](ρ, e2)
eval](ρ,union(e1, e2)) = eval](ρ, e1) t eval](ρ, e2)

interval(c < m) = c : (−∞,m)
interval(c > m) = c : (m,∞)

c : (l1, u1)− c : (l2, u2) = c : (l3, u3)
where l3 = −∞ when l1 ≤ l2, and l1 otherwise

u3 =∞ when u1 ≥ u2, and u1 otherwise

Figure 2.9: Abstract interpreter for FILTER attributes

• An abstract interpreter eval] : Env] × Expr → D] specifying the semantics of the
programming language on abstract values. An example for FILTER attributes appears
in Figure 2.9.

The concrete interpreter eval computes the concrete result of a program e in the context of an
environment mapping variables to concrete values. The abstract interpreter eval] computes
an output policy of a program e in the context of an abstract environment mapping variables
to their policies. The program satisfies its input policies if it has at least one empty clause
(i.e. a satisfied clause) in its output policy.

The soundness property for the abstract interpreter says that the concrete result of eval-
uating a program e is contained in the class of values represented by the result of evaluating
the same program using the abstract interpreter.

Theorem 1 (Soundness). For all environments ρ and expressions e, the abstract interpreter
eval] is a sound approximation of the concrete interpreter eval:

eval(ρ, e) ∈ γ(eval](α(ρ), e))

where the abstract environment α(ρ) is obtained by abstracting each value in the concrete
environment ρ (i.e. α(ρ)(x) = α(ρ(x))).

Soundness can be proven for each abstract domain separately. In each case, the proof
of soundness proceeds by induction on e, with case analysis on the kind of abstract value
returned by uses of eval] on subterms.

Soundness for Filter Attributes. We present the abstract interpreter for the filter ab-
stract domain in Figure 2.9. The interesting case of this interpreter is the one for filter
expressions, which converts the filter predicate ϕ to an interval and returns an abstract
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value derived from the meet of this interval and the recursive call. We prove the soundness
of the interpreter as following.

Proof of soundness. By induction on e. We consider the (representative) case where e =
filter(ϕ, e′). By the inductive hypothesis, we have that eval(ρ, e′) ∈ γ(eval](α(ρ), e′)). Let
interval(ϕ) = (n1, n2). We want to show (by definition of eval and eval]:

eval(ρ,filter(ϕ, e′)) ∈ γ(eval](α(ρ),filter(ϕ, e′)))
⇐⇒ σϕeval(ρ, e′) ∈ γ(eval](α(ρ), e′)− interval(ϕ))
⇐⇒ σn1≤c≤n2

eval(ρ, e′) ∈ γ(c : (n1, n2) u eval](α(ρ), e′))
⇐⇒ σn1≤c≤n2

eval(ρ, e′) ∈ γ(c : (max(n1, n3),min(n2, n4)))
⇐⇒ σn1≤c≤n2

eval(ρ, e′) ∈
{df | ∀v ∈ df.c. max(n1, n3) ≤ v ≤ min(n2, n4)}

which holds by the inductive hypothesis and semantics of selection in relational algebra.

Usability Survey

To complement the survey in [125] targeting privacy champions, we conducted an online
survey targeting general users to obtain a preliminary understanding of how far expertise is
needed to understand or encode privacy preferences. The survey is granted IRB exemption
by Office for Protection of Human Subjects under category 2 of the Federal and/or UC
Berkeley requirements.

We recruit 30 participants in total among which 7 has no background in programming
(Group A), 2 has programmed in one language (Group B), 15 has programmed in two lan-
guages or more (Group C), and 6 self-identify as experts in programming language (Group
D). The survey is comprised of 8 questions in total. The first three are about understanding
privacy policies and the latter five are to choose the correct option from 4 possible choices.
Group A makes 38.1% (8/21) mistakes when understanding and 31.4% (11/35) mistakes
when selecting. Group B makes 16.7% (1/6) mistakes when understanding and 20.0% (2/10)
mistakes when selecting. Group C makes 15.6% (7/45) mistakes when understanding and
17.3% (13/75) mistakes when selecting. Group D makes 11.1% (2/18) mistakes when under-
standing and 13.3% (4/30) mistakes when selecting. Besides, each question has a different
focus. For example, Question 2 focuses on understanding ROLE and PURPOSE attributes. The
details of the survey results are included in Table 2.1.

We observe several interesting facts in the survey results. First, there is a big gap
in accuracy between Group A and B. This indicates that it might not be trivial for users
without programming experience to specify their privacy preferences in Legalease directly.
We deem it an important future direction to simplify this process for Group A users using
more user-friendly API or machine-learning-based translation tools. Besides, this also shows
that any programming experience is helpful in understanding and encoding in Legalease.
Second, there is no obvious accuracy gap between Group B and Group C, and Group D
has better accuracy than them. Third, it is hard for all groups to answer questions related
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to PRIVACY attributes. The hardness stems from the hardness in understanding privacy
techniques such as differential privacy.

#Question Type Group A Group B Group C Group D
1 SCHEMA, FILTER, REDACT 50% 0.0% 11.7% 0.0%
2 ROLE, PURPOSE 66.7% 25.0% 11.7% 0.0%
3 nested clauses 16.7% 25.0% 23.5% 25.0%
4 SCHEMA, PRIVACY 66.7% 25.0% 52.9% 50.0%
5 SCHEMA, ROLE 33.3% 25.0% 58.8% 0.0%
6 SCHEMA, PURPOSE 83.3% 0.0% 11.7% 0.0%
7 SCHEMA, FILTER 0.0% 0.0% 0.0% 0.0%
8 SCHEMA, REDACT 0.0% 25.0% 11.7% 25.0%

Table 2.1: Survey results in detail. #Question refers to the ID of the question.

Ethical Considerations. The survey was posted as a public questionnaire on Twitter
and Wechat with informed consent. The participants opted in the survey voluntarily. In
order to fully respect the participants’ privacy, we do not collect any personal identifiable
information from them. Only the answers to the questionnaire are collected.

2.4 Evaluation

The evaluation is designed to demonstrate that (1) PrivAnalyzer supports commonly-
used libraries for data analytics and can analyze real-world programs, and (2) PrivGuard
is lightweight and scalable. To demonstrate, we (1) test PrivAnalyzer using 23 real-world
analysis programs drawn from the Kaggle contest platform, and (2) measure the overhead
of PrivGuard using a subset of these programs. The results show that PrivGuard
can correctly enforce PrivPolicy policies on these programs with reasonable performance
overhead.

Experiment Setup

We implemented PrivAnalyzer in about 1400 lines of Python and integrated it in an
industrial-level data governance platform, Parcel [110], to prototype PrivGuard. We in-
stantiated our implementation with Inter Planetary File System (IPFS) for the storage layer,
AES-256-GCM for the encryption algorithm, and AMD SEV for TEE.

To evaluate PrivGuard’s static analysis on real-world programs, we collect analysis
programs for 23 different tasks from Kaggle, one of the most well-known platforms for data
analysis contests. These programs analyze sensitive data such as fraud detection [67] and
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Index Application Type # LoC External libraries
1 Fraud Detection[67] 157 LightGBM, NumPy, pandas, scikit-learn
2 Fraud Detection[67] 157 LightGBM, NumPy, pandas, scikit-learn
3 Merchant Recommendation[45] 199 LightGBM, NumPy, pandas, scikit-learn
4 Customer Satisfaction Prediction[118] 104 NumPy, pandas, scikit-learn, XGBoost
5 Customer Transaction Prediction[119] 89 NumPy, pandas, scikit-learn
6 Customer Transaction Prediction[119] 89 NumPy, pandas, scikit-learn
7 Bank Customer Classification[8] 276 NumPy, pandas, scikit-learn
8 Bank Customer Segmentation[9] 75 NumPy, pandas, scikit-learn
9 Credit Risk Analysis[32] 57 NumPy, pandas, sklearn
10 Bank Customer Churn Prediction[7] 169 NumPy, pandas, SciPy, scikit-learn
11 Heart Disease Causal Inference[62] 83 NumPy, pandas, SHAP, scikit-learn
12 Classify Forest Categories[30] 50 NumPy, pandas, PySpark
13 PyTorch-Simple LSTM[129] 178 NumPy, pandas, Keras, PyTorch
14 Tensorflow-Solve Titanic[142] 163 NumPy, pandas, scikit-learn, Tensorflow
15 Earthquake Prediction[84] 132 NumPy, pandas, tsfresh, librosa, pywt, SciPy
16 Display Advertising[37] 60 math
17 Fraud Detection[139] 106 NumPy, pandas, Keras, Tensorflow
18 Restaurant Revenue Prediction[115] 115 NumPy, pandas, FastAI, scikit-learn
19 NFL Analytics[107] 152 NumPy, pandas, SciPy, scikit-learn
20 NCAA Prediction[59] 561 NumPy, pandas, Pymc3
21 Home Value Prediction[173] 272 NumPy, pandas, sklearn, XGBoost
22 Malware Prediction[99] 194 NumPy, pandas
23 Web Traffic Forecasting[159] 346 NumPy, pandas

Table 2.2: Case Study Programs. # LoC = Lines of Code.

transaction prediction [119]. We selected these programs as case studies to demonstrate
PrivGuard’s ability to analyze real-world analysis programs and support commonly-used
libraries. These case studies are chosen to be representative of the programs written by
data scientists during day-to-day operations at many different kinds of organizations. We
surveyed 100 kaggle programs randomly and found that approximately 85% programs are
less than 300 lines of code (after removing blank lines). Correspondingly, our case studies
range between 50 and 276 lines of code, total exactly 1600 lines of code and include randomly
picked programs from Kaggle notebook and top-ranked programs on the contest leaderboard.
As shown in Table 2.2, these programs use a variety of external libraries including widely
used libraries like pandas, PySpark, Tensorflow, PyTorch, scikit-learn, and XGBoost.

As the first step of the evaluation, we use PrivAnalyzer to analyze the collected
programs listed in Table 2.2. In the experiment, we manually designed an appropriate
Legalease policy for each program, and then attached them to each of the datasets. For
each program, we recorded both the time running on the dataset and the time for PrivAn-
alyzer to analyze the program. We also manually checked that the analysis result output
by PrivAnalyzer was correct. All the experiments were run on a Ubuntu 18.04 LTS
server with 32 AMD Opteron(TM) Processor 6212 with 512GB RAM. The results appear in
Table 2.3. As the second step of the evaluation, we picked 7 case studies with open-source
datasets, ran them on the PrivGuard prototype, and measured the system overhead.
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Index Exec Time (s) Analysis Time (s) Overhead Soundness

1 12571.01 1.41 1.12e− 2% !

2 19951.10 3.32 1.66e− 2% !

3 16762.65 1.18 7.04e− 3% !

4 151.72 1.22 8.04e− 1% !

5 17.14 1.08 6.30% !

6 33.71 0.96 2.84% !

7 32.66 2.03 6.22% !

8 86.82 2.19 2.52% !

9 4.65 1.01 21.72% !

10 295.16 1.29 4.37e− 1% !

11 3.99 1.00 25.06% !

12 1017.83 1.01 1.00e− 1% !

13 717.58 6.84 9.53e− 1% !

14 13.33 4.78 35.86% !

15 217.36 2.26 1.04% !

16 3.60 1.20 33.33% !

17 5.19 1.37 26.40% !

18 47.12 1.57 3.33% !

19 202.96 1.33 6.55e− 1% !

20 59.83 1.66 2.77% !

21 54.44 2.55 4.68% !

22 51.36 1.23 2.39% !

23 45.58 2.45 5.37% !

Table 2.3: Execution Time vs. Analysis Time. The index of case studies is the same as in
Table 2.2.

Results

Support for Real-World Programs. Our experiment demonstrates PrivGuard’s abil-
ity to analyze the kinds of analysis programs commonly written to process data in organi-
zations. The results in Table 2.3 show that the static analysis took just a second or two for
most programs, with three outliers taking 3.32, 4.78, and 6.84 seconds. The reason for the
outliers is described in the next paragraph.

As in other abstract interpretation and symbolic execution frameworks, we expect that
conditionals, loops, and other control-flow constructs will have a bigger effect on analysis time
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Figure 2.10: System overhead of PrivGuard prototype with one million simulated users.

than program length. Fortunately, programs for data analytics and machine learning tend
not to make extensive use of these constructs, especially compared to traditional programs.
Instead, they tend to use constructs provided by libraries, like the query features defined in
pandas or the model construction classes provided by scikit-learn. The outliers mentioned
above (case studies 2, 13, and 14) contain relatively heavy use of conditionals, and as a
result, their analysis took slightly longer than the other programs. These results suggest
that PrivGuard will scale to even longer programs for data analytics and machine learning,
especially if those programs follow the same pattern of favoring library use over traditional
control-flow constructs.

Table 2.3 reports performance overhead for all 23 case studies. The results report analysis
performance overhead—the ratio of the time taken for static analysis to the native execution
time of the original program. The results show that this overhead is negligible. For case
study programs which take a significant time to run, the performance overhead of deploying
PrivGuard is typically less than 1%. For faster-running programs, the absolute overhead
is similar—just a second or two, typically—but this represents a larger relative change when
the program’s execution time is small. The maximum relative performance overhead in our
experiments was about 35%, for a program taking only 13.33 seconds.

Overall Performance Overhead and Scalability. We also evaluate 7 case studies on
our prototype implementation and measure the total overhead of the PrivGuard system.
The results appear in Figure 2.10 and 2.11. For each case study, we synthesize one million
random policies by combining possible attributes and changing parameters in the attributes
to simulate one million data subjects’ privacy preferences. The results show that the perfor-
mance overhead for ingesting one million policies is under 150 seconds. Concretely, over half
of the overhead is spent on Parcel’s system overhead such as data uploading, data storage,
data encryption, etc. Data ingestion takes about one-third of the overhead and the static
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analysis only takes less than 10 seconds.
We also benchmark the overhead with different numbers of users as shown in Figure 2.11.

Parcel overhead refers to the overhead incurred by the Parcel platform such as data loading
or transmission. Scan overhead refers to the time spent on finding the policies no stricter
than the guard policy. Merge overhead refers to the time used to merge the datasets inside
TEE. Analysis overhead refers to the overhead of running PrivAnalyzer. As shown in
Figure 2.11, Parcel overhead, scan overhead and merge overhead are relatively stable when
the number of users is small and then scale linearly with the number of users. Note that we
use the log10 scale to represent the x-axis. The curves are exponential but the rate scales
linearly. For all experiments except the static analysis: Overhead = O(#Users) +O(1). Not
surprisingly, the analysis overhead is almost constant for a fixed program. The results show
that PrivGuard is scalable to a large number of users and datasets.

2.5 Related Work

Work related to PrivGuard falls into two categories: (1) efforts to formalize privacy poli-
cies; (2) efforts to enforce privacy policies in data processing systems; Next we briefly sum-
marize work in these categories.

Privacy Policy Formalism. Tschantz et al. [148] use modified Markov Decision Pro-
cesses to formalize purpose restrictions in privacy policies. Chowdhury [27] present a policy
language based on a subset of FOTL capturing the requirements of HIPAA. Lam et al. [83]
prove that for any privacy policy that conforms to patterns evident in HIPAA, there exists
a finite representative hospital database that illustrates how the law applies in all possible
hospitals. Gerl et al. [53] introduce LPL, an extensible Layered Privacy Language that al-
lows to express and enforce new privacy properties such as user consent. Trabelsi et al. [147]
propose the PPL sticky policy based on XACML [48] to express and process privacy policies
in Web 2.0. Azraoui et al. [5] focus on the accountability side of privacy policies and extend
PPL to A-PPL.

Privacy Policy Compliance Enforcement. Going beyond the formalism of privacy
regulations, recent research also explores techniques to enforce formalized privacy policies.
Chowdhury et al. [28] propose to use temporal model-checking for run-time monitoring of
privacy policies. Sen et al. [125] introduce Grok, a data inventory for Map-Reduce-like big
data systems. PODS / SOLID [94] focuses on returning control over data to its owners. In
PPL policy engine [147], the policy decision point (PDP) matches the data curator’s privacy
policy and data subjects’ privacy preferences to decide compliance. The privacy policy is
enforced by the policy enforcement point. Compared with our work, the PPL policy engine
provide limited support for fine-grained privacy compliance in complex data analysis tasks
as its enforcement engine relies on direct trigger-to-action translation. In addition, PPL does
not provide a rigorous soundness proof. Similar differences exist in its extension A-PPL [5]
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(a) Parcel overhead.
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(b) Scan overhead.
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(c) Merge overhead.
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(d) Analysis overhead.

Figure 2.11: PrivGuard overhead details. The scalability is linear (note the logarithmic
scale).

and the SPECIAL project [133]. Our work provides an enforcement mechanism necessary to
address these issues and can be seen as a first step towards meeting the ambitious challenge
posed by Maniatis et al. [93].

2.6 Discussion

We propose PrivGuard, a framework for facilitating privacy regulation compliance. The
core component is PrivAnalyzer, a static analyzer supporting compliance verification
between a program and a policy. We prototype PrivGuard on Parcel, an industrial-level
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data governance platform. We believe that PrivGuard has the potential to significantly
reduce the cost of privacy regulation compliance.

There are also several future directions we would like to pursue for future versions of
PrivGuard. First, we would like to further improve the usability of PrivGuard’s API in
consideration of HCI requirements so that non-experts can easily specify their own privacy
preferences. Second, PrivGuard now adopts an one-shot consent strategy, which covers
most current application scenarios but has several defects as pointed out in [123]. This
limitation can be addressed by allowing the data curator to ask data subjects for dynamic
consent after data collection, as depicted in [123].
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Part II

Bottom-up Approach: Differentially
Private Data Analysis
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Chapter 3

Differentially Private Causal Inference

Causal graph discovery refers to the process of discovering causal relation graphs from purely
observational data. Like other statistical data, a causal graph might leak sensitive informa-
tion about participants in the dataset. In this section, we present a differentially private
causal graph discovery algorithm, Priv-PC, which improves both utility and running time
compared to the state-of-the-art. The design of Priv-PC follows a novel paradigm called
sieve-and-examine which uses a small amount of privacy budget to filter out “insignifi-
cant” queries, and leverages the remaining budget to obtain highly accurate answers for the
“significant” queries. We also conducted the first sensitivity analysis for conditional indepen-
dence tests including conditional Kendall’s τ and conditional Spearman’s ρ. We evaluated
Priv-PC on 7 public datasets and compared with the state-of-the-art. The results show that
Priv-PC achieves 10.61 to 293.87 times speedup and better utility. The implementation of
Priv-PC, including the code used in our evaluation, is available at https://github.com/

sunblaze-ucb/Priv-PC-Differentially-Private-Causal-Graph-Discovery.

3.1 Introduction

Causal graph discovery refers to the process of discovering causal relation graphs from purely
observational data. Causal graph discovery has seen wide deployment in areas like genomics,
ecology, epidemiology, space physics, clinical medicine, and neuroscience. The PC algo-
rithm [134] is one of the most popular causal discovery algorithms. It is comprised of a series
of independence tests like Spearman’s ρ [132], Kendall’s τ [76], G-test [96] or χ2-test [97]. The
algorithm starts by connecting all variables in the graph. If an independence test indicates
that two variables are independent, the edge between the two variables will be removed from
the causal graph. The process will continue until the edges between independent variables
are totally removed.

Like other statistical data, a causal graph can leak information about participants in
the dataset. For instance, Genome-Wide Association Studies involve finding causal relations
between Single Nucleotide Polymorphisms (SNPs) and diseases. In this case, a causal link

https://github.com/sunblaze-ucb/Priv-PC-Differentially-Private-Causal-Graph-Discovery
https://github.com/sunblaze-ucb/Priv-PC-Differentially-Private-Causal-Graph-Discovery
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between a specific SNP and a disease may indicate the participation of a minority patient.
However, the problem of effective causal graph discovery with differential privacy remains
largely unsolved.

State-of-the-art. The most straightforward solution is to perturb all the independence
tests in the PC algorithm with calibrated noise such as Laplace or Gaussian noise [41]. How-
ever, as pointed out in [161], the numerous independence tests incur too much noise to out-
put meaningful causal graphs. Even tight composition techniques based on Rényi differential
privacy [1, 101, 158] cannot address the issue. The state-of-the-art solution to differentially
private causal graph discovery is EM-PC [161], a modification of the PC algorithm which uses
the exponential mechanism to guarantee differential privacy. Instead of perturbing each in-
dependence test with noise, EM-PC randomly selects how many and which edges to delete
using the exponential mechanism. In this way, EM-PC manages to achieve a relative balance
between utility and privacy. However, EM-PC has two severe defects. First, EM-PC suffers
from extremely slow computation because: 1) many independence tests which should have
been pruned have to be computed because the exponential mechanism can only deal with
off-line queries; 2) the utility function used in applying the exponential mechanism is com-
putationally intensive. In fact, the computation overhead of the utility score is so large that
the implementation from the original paper [161] uses a greedy search to approximate the
solution presented in the paper. It is unclear whether the differential privacy still holds given
this compromise since the original sensitivity bound does not hold anymore. Second, EM-PC
also suffers from low utility because it changes the intrinsic workflow of the PC algorithm.
Concretely, EM-PC explicitly decides how many edges to delete while PC makes this decision
in an on-line fashion. Thus, EM-PC does not converge to the PC algorithm and cannot achieve
perfect accuracy even with substantial privacy budget.

Proposed solution. In this section, we proposed Priv-PC, a differentially private causal
graph discovery algorithm with much less running time and better result utility compared to
EM-PC. The design of Priv-PC follows a novel paradigm called sieve-and-examine. Intu-
itively, sieve-and-examine spends a small amount of privacy budget to filter out “insignifi-
cant” queries and answers the rest of queries carefully with substantial privacy budget. The
proof that Priv-PC is differentially private is straightforward. The challenge is to understand
why it also gives less running time and better utility.

Sieve-and-examine, as the name indicates, comprises two sub-processes executing al-
ternately: sieve and examine. In the context of causal graph discovery, the sieve process
uses sub-sampled sparse vector technique [41, 6] to filter out variable pairs unlikely to be
independent with a little privacy budget. Then the examine process uses Laplace mecha-
nism [41] to carefully check the remaining variable pairs and decide whether they are really
independent with substantial privacy budget.

We choose sparse vector technique for its nice properties. First, sparse vector technique
can answer a large number of threshold queries but only pay privacy cost for those whose
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output is above the threshold1. Fortunately, in causal graph discovery, only a few indepen-
dence tests will yield results above the threshold so with sparse vector technique, we can
save much privacy cost. Second, sparse vector technique can deal with online queries, so re-
dundant independence tests can be pruned adaptively once their target edge is removed due
to a previous independence test. Thus, with sparse vector technique, we can get rid of the
unnecessary independence tests in EM-PC and significantly accelerate private causal discov-
ery. We propose to further accelerate the execution and reduce privacy cost by augmenting
the sparse vector technique using sub-sampling without replacement [6].

However, sparse vector technique is known for its poor utility [91], which raises concern
about the accuracy of sieve-and-examine. Actually, there exist two types of errors in
sieve-and-examine. Type I error refers to mistakenly filtering out truly independent pairs.
Type II error refers to the failure to filter out variable pairs that are not independent. To
reduce the errors, we take a two-step approach. First, we suppress type I error by tweaking
the threshold lower so the noise is more unlikely to flip over the output from independence
to the opposite. The tweak, on the other hand, will increase the number of type II errors.
Fortunately, type II errors can be corrected by the examine process with a high probability.
Furthermore, the threshold tweak typically only increases type II errors slightly because a
meaningful threshold should be far away from the clusters of both independent pairs and
dependent pairs.

Independence tests in Priv-PC. The noise magnitude in Priv-PC grows proportionally
to the sensitivity of the independence test. Thus, to obtain an appropriate noise level, we
conducted rigorous sensitivity analysis for commonly used conditional independence tests
including conditional Kendall’s τ [79, 140] and conditional Spearman’s ρ [140]. We finally
chose Kendall’s τ in Priv-PC because of its small sensitivity. It also remains an interesting
open question how to integrate independence tests with infinite sensitivity such as G-test [96]
or χ2-test [97] in Priv-PC.

3.2 Problem Setup

In this section, we review necessary background knowledge about differential privacy and
causal graph discovery.

Differentially Private Selection.

In this chapter, we mainly touch two differentially private selection mechanisms, namely
exponential mechanism and sparse vector technique. Exponential mechanism is designed for
differentially private selection from infinite output set. It computes an utility score for each
candidate output and randomly selects from the output candidates based on probability

1Sparse vector technique can also only pay for queries below the threshold. For clarity, we only focus on
the above-threshold queries.
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derived from the utility score. The pseudo-code for exponential mechanism is shown in
Algorithm 1.

Algorithm 1: Exponential Mechanism

Input: D: dataset, O: output set, u: 1-sensitive utility function, ε: privacy
parameters.

1 Function EM(D, O, u, ε):
2 Initiate U as an empty lists
3 for o ∈ O do
4 Append u(D, o) to U

5 Randomly select o from O according to probability exp(εuo/2)∑
ui∈U

exp(εui/2)
.

Sparse vector technique is a widely used differentially private mechanism. It can answer
a large number of queries while only paying privacy cost for a small portion of them. The
pseudo-code for sparse vector technique is shown in Algorithm 2.

Algorithm 2: Sparse Vector Technique.

Input: D: dataset, {fi}: 1-sensitive queries, T : threshold,
c: quota of above-threshold queries, (ε, δ): privacy parameters.

1 Function SVT(D, {fi}, T, c, ε, δ):

2 if δ = 0 then Let σ = 2c
ε

else Let σ =

√
32c log 1

δ

ε

3 Let count = 0, T̂count = T + Lap(σ)
4 for Each query i do
5 Let ν = Lap(2σ)

6 if fi(D) + νi ≥ T̂count then
7 Output ai = >
8 Let count = count + 1 Let T̂count = T + Lap(σ)

9 else Output ai = ⊥
10 if count ≥ q then Halt

Composability is an important property of differential privacy. If several mechanisms are
differentially private, so is their composition. The privacy parameters of the composed mech-
anism can be derived using standard composition theorem like advanced composition [41]
and moments accountant [1]. The sparse vector technique [41] can be viewed as a special
case for composition because it can answer a large number of threshold queries while only
paying privacy cost for queries above the threshold.
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Causal Graph Discovery.

In statistics, causal graphs are directed acyclic graphs (DAGs) used to encode assumptions
about the data-generating process, which are formally defined as follows.

Definition 3 (Causal Graph). A causal graph G is a directed acyclic graph (DAG) repre-
sented by a vertex set V = {v1, v2, · · · , vk} and an edge set E ⊆ V ×V . Adj(G, vi) represents
the adjacent set of node vi in graph G. The skeleton of a DAG is the undirected version of
the graph.

Causal graph discovery refers to the process of discovering causal graphs under an ob-
served distribution such as a dataset. The output of a causal graph discovery algorithm is
a completed, partially directed acyclic graph (CPDAG) because the directions of some edges
cannot be determined only based on the observational distribution.

There exist a variety of causal graph discovery algorithms and the PC algorithm is one of
the most popular ones. The first step in the PC algorithm is to find the skeleton of the causal
graph using conditional independence tests. Then the edges are directed based on some
auxiliary information from the independence tests to obtain CPDAG. Because the second
step does not touch the data, we only focus on the first step given the post-processing
theorem [41] in differential privacy. The pseudocode of the PC algorithm is provided in
Algorithm 3.

Algorithm 3: PC Algorithm.

Input: V : vertex set, D: dataset, T : threshold
1 Function PC(V,D, T ):
2 G = complete graph on V, ord = 0
3 while ∃ vi s.t. |Adj(G, vi)− vj| ≥ ord do
4 while ∃ edge (vi, vj) s.t. |Adj(G, vi)− vj| ≥ ord that has not been tested do
5 select edge (vi, vj) in G s.t. |Adj(G, vi)− vj| ≥ ord
6 while ∃ S that has not been tested do
7 choose S ⊆ Adj(G, vi)− vj, |S| = ord
8 if indep test(ij|S) ≥ T then
9 remove (vi, vj) from G

10 break

11 ord = ord + 1

12 Output G

Conditional Independence Test.

Conditional independence test is an important building block in many causal discovery al-
gorithms. It is used to test whether two random variables are independent conditional on
another set of variables.
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Definition 4 (Conditional independence test). A conditional independence test f : V ×V ×
2V ×D → {0, 1} decides whether variable i 6= j ∈ V are independent conditional on another
set of variables k ⊆ V, i, j /∈ k. f is composed of a dependence score s : V ×V ×2V ×D → R
and a threshold T ∈ R.

f(D) =

{
0, s(D) ≤ T

1, s(D) > T

, where 1 represents “independent” and 0 represents “not independent”. f is called |k|-order
conditional independence test where |k| is the size of the conditional set.

Commonly used independence tests include Spearman’s ρ, Kendall’s τ , G-test and χ2-
test. Note that some independence tests like Kendall’s τ output 1 when the dependence score
is below the threshold. However, for clarity, we assume all the independence tests output 1
when the dependence score is above the threshold without loss of generality. Here we focus
on Kendall’s τ because of its small sensitivity (Section 3.3).

3.3 Priv-PC: Private Causal Graph Discovery

In this section, we proposed Priv-PC to effectively discover causal graphs following sieve

-and-examine paradigm. Concretely, Priv-PC leverages the sieve process to sift out vari-
able pairs unlikely to independent using a little privacy cost and then carefully examines
the remaining ones with substantial privacy budget. We first introduce sieve-and-examine

mechanism and then demonstrate how to apply sieve-and-examine to the PC algorithm to
obtain Priv-PC. At last, we bridge sieve-and-examine and Priv-PC by providing sensitivity
analysis for Kendall’s τ .

Sieve-and-examine Mechanism.

Most causal graph discovery algorithms like the PC algorithm need to answer many inde-
pendence tests – too many to obtain an acceptable privacy guarantee using independent
perturbation mechanisms like Laplace mechanism [41]. EM-PC is the first step towards rec-
onciling the contradiction between utility and privacy in private causal discovery. However,
EM-PC suffers from extremely slow running time because it additionally runs a large number
of independence tests that should have been pruned. A straightforward solution is to replace
the exponential mechanism [41] with the sparse vector technique [41, 91]. Sparse vector
technique allows adaptive queries so unnecessary independence tests can be pruned early.
Besides, the privacy cost of sparse vector technique only degrades with the number of queries
above the threshold. Fortunately, only a few independence tests in causal discovery yield
values above the threshold so the sparse vector technique can also save considerable privacy
budget in causal discovery. However, sparse vector technique suffers from low accuracy as
pointed out in [91], which is not acceptable in many use cases such as medical or financial
analysis.
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One-off sieve-and-examine. To address the issue, we propose a novel paradigm called
sieve-and-examine which alternately executes sub-sampled sparse vector technique and
output perturbation. Intuitively, the sieve process uses sub-sampled sparse vector technique
to filter out independence tests unlikely to be above the threshold with small privacy budget.
Then the left queries are examined carefully with substantial privacy budget using output
perturbation.

For simplicity, we first introduce one-off sieve-and-examine shown in Algorithm 4, a
simplified version of sieve-and-examine that halts after seeing one query above the thresh-
old. We prove that one-off sieve-and-examine is ε-differentially private. The result can be
generalized to multiple above-threshold queries using composition theorem.

Algorithm 4: One-off sieve-and-examine mechanism.

Input: D: dataset, {fi}: queries, T : threshold, t: threshold tweak, m: subset size,
ε: privacy parameters, ∆: sensitivity of f

1 . Function Sieve and examine(D, {fi}, T, t,m, ε,∆):

2 D′ $← D, n = |D|,m = |D′|;
3 Let ε′ = ln( n

m
(eε/2 − 1) + 1);

4 Let T̂ = T − t+ Lap(2∆
ε′

);
5 for Each query i do

6 if fi(D′) + Lap(4∆
ε′

) ≥ T̂ then
7 Let k = i;
8 Break;

9 if fk(D) + Lap(2∆
ε

) ≥ T then Output k ;
10 else Output ⊥;

Theorem 2. Algorithm 4 is ε-differentially private.

Proof Sketch. We separately prove that sieve and examine are both ε/2-differentially pri-
vate. The main body of sieve is a sparse vector technique with ε′ = ln( n

m
(eε/2 − 1) + 1)

privacy cost. Sub-sampling reduces the cost to ε/2 following Theorem 9 from [6]. Examine

process is a ε/2-differentially private Laplace mechanism. Thus, sieve-and-examine is ε-
differentially private using composition theorem.

Result Utility. The differential privacy proof is straightforward. The challenge will be to
understand when it also gives utility. Thus, we bound the probability of type I error and
type II error in Algorithm 4 separately.

Theorem 3 (Error bound).

• (Type I error) Let Eα
1 denotes the event that Algorithm 4 filters out f(D) ≥ T + α.

P[Eα
1 ] ≤ exp(−ε

′(α + t)

6∆
)− 1

4
exp(−ε

′(α + t)

3∆
)
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.• (Type II error) Let Eα
2 denotes the event that Algorithm 4 fails to filter out f(D) ≤

T − α. If α ≥ t, then

P[Eα
2 ] ≤ exp(−12εα + ε′(α− t)

6∆
)− 1

4
exp(−6εα + ε′(α− t)

3∆
)

.

Proof for Type I error. We want to upper bound the probability of Eα
1 . Equally, we lower

bound the probability of ¬Eα
1 by the probability that the noise on the threshold is smaller

than 1
3
(t+α) and the noise on the query output is smaller than 2

3
(t+α). Because for Laplace

noise, P[x ≥ w] = exp(−w/b), we have

P[¬Eα
1 ] ≥ (1− 1

2
exp(−ε

′(α + t)

6∆
))2 = 1− exp(−ε

′(α + t)

6∆
) +

1

4
exp(−ε

′(α + t)

3∆
)

. Thus,

P[Eα
1 ] ≤ 1− P[¬Eα

1 ] ≤ exp(−ε
′(α + t)

6∆
)− 1

4
exp(−ε

′(α + t)

3∆
)

Proof for Type II error. If f(D) is not filtered out, it needs to be missed by both sparse
vector technique and the Laplace mechanism. The probability bound for being missed by
the sparse vector technique is

P[Eα
svt] ≤ exp(−ε

′(α− t)
6∆

)− 1

4
exp(−ε

′(α− t)
3∆

)

following similar proof path to theorem 3. The probability being missed by the Laplace
mechanism is bounded by

P[Eα
lm] = exp(−2εα

∆
)

. Thus,

P[Eα
2 ] = P[Eα

svt] · P[Eα
lm] ≤ (exp(−ε

′(α− t)
6∆

)− 1

4
exp(−ε

′(α− t)
3∆

)) · exp(−2εα

∆
)

= exp(−12εα + ε′(α− t)
6∆

)− 1

4
exp(−6εα + ε′(α− t)

3∆
)

Intuitively, theorem 3 bounds the probability of errors conditional on the distance from
the dependence score to the threshold. An interesting observation is the tweak on the
threshold t decreases the probability of type I errors and increases the probability of type
II errors at the same time. Because each type II error increases the privacy cost by ε, the
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question is “will the increment of type II errors add too much privacy cost?” Fortunately,
the answer is “no” because the increment of type II errors also depends on the distribution
of dependence scores. Generally the empirical distribution of an independence score is a
twin-peak curve and the threshold locates in the middle valley. In this case, the threshold
tweak only slightly increases the number of type II errors because most dependence scores
are far from the threshold2.

Priv-PC Algorithm.

In this section, we demonstrate how to apply sieve-and-examine to PC algorithm to obtain
Priv-PC. We first give an overview of Priv-PC. Then we discuss how to optimize the sub-
sampling rate in Priv-PC.

The complete pseudo-code for Priv-PC is shown in Algorithm 5. Priv-PC follows the
same workflow as the PC algorithm. It starts from a complete undirected graph (line 1) and
gradually increases the order of the independence tests (line 6, 17). Within a fixed order,
Priv-PC traverse all the variable pairs with large enough adjacent set (line 8). It selects
the conditional variables from the adjacent set (line 9-10) and then executes the conditional
independence test to decide whether the edge will be removed from the graph.

To achieve differential privacy, the conditional independence tests are augmented with
sieve-and-examine. Concretely, Priv-PC first sub-samples a subset D′ from D, derives
privacy parameter for the sieve process and tweaks the threshold (line 3-5). Then, Priv-PC
executes the sieve process by adding noise to both the tweaked threshold (line 5) and the
independence test (line 11). Note that the noise parameters here are different from standard
sieve-and-examine (Algorithm 4) because the sensitivity for Kendall’s τ is dependent on the
dataset size (Section 18). Once an independence test on the sub-sampled dataset exceeds the
threshold (line 11), the examine process will run the independence test again on the complete
dataset with substantial privacy budget. If the result still exceeds the un-tweaked threshold
(line 12), the edge is removed from the graph (line 13). Then, the sub-sampled dataset and
the threshold are refreshed for the next round of sieve-and-examine (line 14-15).

In Algorithm 5, we require the caller of the function to explicitly give the size of the
sub-sampling set. However, since the sensitivity of Kendall’s τ also depends on the data
size, we can actually derive an optimal sub-sampling size which adds the smallest noise un-

der the same privacy guarantee. This requires to minimize the noise level

√
n/m

ln( n
m

(exp(ε/2)−1)+1)
.

Although there is no explicit solution for the optimization problem, we can obtain an ap-
proximate solution with numerical solver such as BFGS [109]. On the other hand, when ε
is small, the optimal sub-sampling size is also too small to yield meaningful independence

2A complete explanation contains two parts. First, since most of the dependence scores are far from the
threshold, the threshold tweak does not directly change the test results for most queries. Second, because
the dependence scores are far from the threshold, the absolute increase of type II error probability is small.
Thus, the increment of type II errors is small.
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Algorithm 5: Priv-PC Algorithm with Kendall’s τ .

Input: V : vertex set, D: dataset, T : threshold, t: threshold tweak, m: subset size,
ε: privacy parameter, ∆: sensitivity on the full dataset.

1 Function Priv PC(V,D, T, t,m, ε,∆):
2 G = complete graph on V, ord = 0

3 D′ $← D, n = |D|,m = |D′|
4 Let ε′ = ln( n

m
(eε/2 − 1) + 1)

5 Let T̂ = T − t+ Lap(2
√
n∆√
mε′

)

6 while ∃ vi s.t. |Adj(G, vi)− vj| ≥ ord do
7 while ∃ edge (vi, vj) s.t. |Adj(G, vi)− vj| ≥ ord that has not been tested do
8 select edge (vi, vj) in G s.t. |Adj(G, vi)− vj| ≥ ord
9 while ∃ S ⊆ Adj(G, vi)− vj that has not been tested do

10 choose S ⊆ Adj(G, vi)− vj, |S| = ord

11 if τ(ij|S) +Lap(4
√
n∆√
mε′

) ≥ T̂ then

12 if τ(ij|S) + Lap(2∆
ε

) ≥ T then
13 delete (vi, vj) from G
14 D′ $← D, |D′| = m

15 T̂ = T − t+ Lap(2
√
n∆√
mε′

)

16 break

17 ord = ord + 1

18 Output G, compute the total privacy cost (εtot, δtot) with advanced composition.

test results. Thus we take the optimal sub-sampling size by clipping the solution to range
( n

20
, n).

Independence Tests in Priv-PC.

The last missing piece is the sensitivity of the conditional independence test functions. We
finally choose conditional Kendall’s τ for its small sensitivity. Conditional Spearman’s ρ is
another candidate but it can only be used on large datasets because of the large coefficient
in its sensitivity.

Kendall’s τ . The sensitivity of Kendall’s τ is inversely proportional3 to the training set
size as pointed out in [82]. However, in our scenario, the conditional version of Kendall’s τ
is needed while [82] only gives the sensitivity for non-conditional Kendall’s τ . In order to fill
the gap, we derive the sensitivity of the conditional Kendall’s τ . We first give the complete
definition of Kendall’s τ and its conditional version.

3Note that this requires the size of the dataset to be public which is a common case.
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Definition 5 (Kendall’s τ). Let {(a1, b1), · · · , (an, bn)} denotes the observations. A pair of
observation indices (i, j) are called concordant if ai > aj and bi > bj. Otherwise (i, j) is
called discordant. Kendall’s τ is defined as

τij :=
2|C −D|
n(n− 1)

where C is the number of concordant pairs and D is the number of discordant pairs.

The first step towards complete sensitivity analysis for unconditional Kendall’s τ is to
extend the neighboring relation to increment.

Theorem 4. Kendall’s τ is 2
n−1

-sensitive.

Proof. When the neighboring datasets are defined by replacement, the proof is done in [82].
Now we prove that the sensitivity bound generalizes to neighboring datasets defined by
increment.

If we increment a dataset by one row, |C −D| can increase by at most n.

s(τij) ≤
|C −D|+ n

1
2
n(n+ 1)

− |C −D|
1
2
n(n− 1)

≤ |C −D|+ n
1
2
n(n− 1)

− |C −D|
1
2
n(n− 1)

≤ 2

n− 1

Now we are ready to give the full definition of conditional Kendall’s τ and derive its
sensitivity.

Definition 6 (Conditional Kendall’s τ). We omit the pair indices i, j and use τi to represent
Kendall’s τ in the ith block of the conditional variables. If there are k blocks in total, then
conditional Kendall’s τ is defined as

τ =

∑k
i=1 wiτi√∑k
j=1 wj

where wi = 9ni(ni−1)
2(2ni+5)

is the inverse of τi’s variance.

Theorem 5. If the conditional variables have k blocks, then conditional Kendall’s τ is cτ√
n−1

-

sensitive, where cτ is an explicit constant typically close to 9
2
.

Proof. If the ith block contains ni observations, then s(τi) = 2
ni−1

.
Then we need to bound wi√∑k

j=1 wj
and its sensitivity. Assuming ∀i ∈ [1, k], ni ≥ c1, then

c2(ni − 1) ≤ wi ≤ 9(ni−1)
4

for some explicit constants c2 = 9c1
2(2c1+5)

. Thus

wi√∑k
j=1wj

≤ 9(ni − 1)

4
√
c2(n− k)
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and

s(
wi√∑k
j=1wj

) ≤ w′i√∑
j 6=iwj + w′i

− wi√∑k
j=1wj

≤ w′i − wi√∑k
j=1wj

≤ 9

4
√
c2(n− k)

. Thus the complete sensitivity is bounded as follow.

s(τ) ≤ (
wi√∑k
j=1wj

+s(
wi√∑k
j=1wj

))(τi+s(τi))−
wi√∑k
j=1wj

τi ≤
27

4
√
c2(n− k)

+
9

2c1

√
c2(n− k)

Theorem 6. (Sensitivity of conditional Kendall’s τ .) The sensitivity of conditional Kendall’s
τ in Definition 6 is c1√

n
where n is the size of the input dataset and c1 is an explicit constant

approaching 9/2 when the dataset size grows.

Spearman’s ρ. We also derive the sensitivity of Spearman’s ρ here. We first give the
complete definition of Spearman’s ρ and its conditional version.

Definition 7 (Spearman’s ρ). Let {(a1, b1), · · · , (an, bn)} denotes the observations. If we
independently sort the observations {a1, · · · , an} and {b1, · · · , bn} in ascending order. Let di
represent the distance between the order of ai and bi. Spearman’s ρ is defined as

ρ = |1− 6
∑n

i=1 d
2
i

n(n−1)
|

.

Kusner et al. [82] derive the sensitivity for unconditional Spearman’s ρ when the neigh-
boring relation between datasets are constrained to replacement. The first step towards
complete sensitivity analysis for unconditional Spearman’s ρ is to extend the neighboring
relation to increment.

Theorem 7. Spearman’s ρ is 30
n

-sensitive.

Proof. When the neighboring datasets are defined by replacement, the proof is done in [82].
Now we prove that the sensitivity bound generalizes to neighboring datasets defined by
increment. And we denote the incremented observation with (an+1, bn+1). First, ∀i 6= n+ 1,
di changes at most 2. Thus d2

i − (di− 2)2 ≤ 4(di− 1) ≤ 4(m− 2), because di is smaller than
m− 1. Besides, dn+1 is at most m. Therefore, the sensitivity of ρ si bounded by

s(ρ) ≤ 30m(m− 1)

m(m2 − 1)
≤ 30

m
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Now we introduce the definition of conditional spearman’s ρ and derive its sensitivity.

Definition 8 (Conditional Spearman’s ρ). We omit the pair indices i, j and use ρi to repre-
sent Spearman’s ρ in the ith block of the conditional variables. If there are k blocks in total,
then conditional Spearman’s ρ is defined as

ρ =

∑k
i=1 wiρi√∑k
j=1wj

where wi = ni − 1.

Theorem 8. Conditional Spearman’s ρ is cρ
√
k√

n−k -sensitive, where cρ is an explicit constant
typically close to 31.

Proof. If the ith block contains ni observations, then s(ρi) = 30
ni

.
Then we need to bound wi√∑k

j=1 wj
and its sensitivity.

wi√∑k
j=1 w

2
j

≤ ni − 1√
n− k

and

s(
wi√∑k
j=1wj

) ≤ w′i√∑
j 6=iwj + w′i

− wi√∑k
j=1wj

≤ w′i − wi√∑k
j=1wj

≤ 1√
n− k

. Thus the complete sensitivity is bounded as follow.

s(ρ) ≤ (
wi√∑k
j=1wj

+ s(
wi√∑k
j=1wj

))(ρi + s(ρi))−
wi√∑k
j=1wj

ρi ≤
31√
n− k

+
30

c1

√
n− k

3.4 Evaluation

In this section, we evaluate the effectiveness of Priv-PC by answering the following two
questions. 1) How accurate is the result of Priv-PC? 2) How much running time does
Priv-PC save?

Experiment Setup.

In order to answer the above questions, we selected 7 datasets. The detailed information
about the datasets is shown in Table 3.1.
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Dataset # Features # Samples # Edges Type
Earthquake [78] 5 100K 4 Binary
Cancer [78] 5 100K 4 Binary
Asia [85] 8 100K 10 Binary
Survey [124] 6 100K 6 Discrete
Alarm [15] 37 100K 46 Discrete
Sachs [117] 11 100K 17 Discrete
Child [16] 20 100K 25 Discrete

Table 3.1: Datasets used in the evaluation.

To directly compare EM-PC and Priv-PC, we ran the two algorithms on the datasets
with 21 different privacy parameters and presented the results with accumulated privacy
cost between 1 and 100. Furthermore, to demonstrate the utility improvement due to
sieve-and-examine, we also directly applied sparse vector technique to PC algorithm (SVT-PC)
and evaluated it under the same setting. For each privacy parameter, we ran the three algo-
rithms for 5 times and recorded the mean and standard deviation of the utility of the output
graph and the running time. We fix δ = 1e-3 for both EM-PC and Priv-PC across all the
experiments. Utility is measured in terms of F1-score4. All the experiments were run on a
Ubuntu18.04 LTS server with 32 AMD Opteron(TM) Processor 6212 with 512GB RAM.

Utility

In the evaluation, Priv-PC achieves better utility than EM-PC when the privacy budget is
reasonably large as shown in Figure 3.1. Priv-PC always converges to perfect accuracy when
privacy cost grows while EM-PC does not. The reason is that Priv-PC converges to PC when
privacy cost grows but EM-PC does not because it contains a unique sub-routine to explicitly
decide the number of edges to delete. The sub-routine intrinsically inhibits the accuracy of
EM-PC. On the other hand, EM-PC achieves better utility under small privacy budget because
the exponential mechanism has better utility than the sparse vector technique under small
privacy budget as pointed out in [91].

Compared with SVT-PC, Priv-PC always achieves much better utility in the medium
privacy region (Figure 3.1). The improvement should be attributed to sieve-and-examine

because it effectively suppresses type I and type II errors in sparse vector technique 3.3.
Second, because the sensitivity of Kendall’s τ is inversely proportional to the size of the
input dataset, the noise is typically small when the dataset is large. Thus, the noise does
not severely harm the utility while preserving rigorous privacy.

4If a causal graph discovery outputs G = (V,E) and the ground truth is G′ = (V,E′). Then F1-score is

defined as: F1 = 2·Precision·Recall
Precision+Recall ,Precision = |E∩E′|

|E| ,Recall = |E∩E′|
|E′|
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(d) Survey.

Figure 3.1: F1-Score vs. Privacy Budget.

Running Time

Priv-PC achieves 10.61 to 32.85 times speedup on small graphs and 74.13 to 293.87 times
speedup on larger graphs compared with EM-PC as shown in Table 3.2. The improvement is
due to two reasons. First, Priv-PC can deal with online queries while EM-PC cannot. Thus, if
an edge is removed due to a previous independence test, later tests on the same edge can be
skipped to avoid extra computation overhead. Second, in the sieve process, Priv-PC only
runs independence tests on a subset of the dataset which further accelerates the process.
This also explains why Priv-PC sometimes runs faster than SVT-PC.

To better understand how the two factors contribute to the speedup, we run Priv-PC
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(g) Child.

Priv-PC
EM-PC
SVT-PC

Figure 3.1: F1-Score vs. Privacy Budget. (Continued)

without sub-sampling under the same setting and include the results in Table 3.2. The
results show that on small graphs, the first factor provides 5.97 to 27.41 times speedup and
sub-sampling provides 1.20 to 2.40 times speedup; on larger graphs, the first factor provides
33.62 to 131.41 times speedup and sub-sampling provides 2.20 to 4.38 times speedup.

To better illustrate the source of the speedup, we measure the number of independence
tests conducted in EM-PC and Priv-PC as shown in Table 3.3. The results show that Priv-PC
saves 34.4% to 56.0% independence tests on small graphs and 84.3% to 86.8% on larger graphs
compared to EM-PC.



CHAPTER 3. DIFFERENTIALLY PRIVATE CAUSAL INFERENCE 54

Average Running Time EM-PC SVT Priv-PC Priv-PC w/o sub-sampling
Earthquake [78] 176.04s 3.38s 6.62s 11.01s

Cancer [78] 64.62s 2.94s 6.09s 10.83s
Asia [85] 531.80s 10.06s 16.19s 19.40s

Survey [124] 68.13s 1.21s 2.13s 5.12s
Alarm [15] 10601.33s 71.23s 143.01s 315.32s
Sachs [117] 4858.42s 4.29s 16.65s 72.98s
Child [16] 25140.67s 32.85s 85.55s 191.31s

Table 3.2: Running time when privacy budget for each sieve-and-examine is 1.

#IDP tests Priv-PC EM-PC

Asia 95 216
Cancer 37 57

Earthquake 40 61
Survey 29 38
Alarm 1843 12979
Sachs 165 1224
Child 1162 7393

Table 3.3: The number of independence tests in Priv-PC and EM-PC.

3.5 Related Work

Causal inference has a long history and there are several excellent overviews [113, 56] of
this area. In this section, we briefly introduce the related works in the two most relevant
sub-areas: causal discovery based on graph models and private causal inference.

Causal discovery based on graph models can be roughly classified into two categories.
The first category is constraint-based causal discovery. The PC algorithm [134] is the most
well-known algorithm in this category. It traverses all the edges and adjacent conditional sets
in the causal graph and removes the edge if the conditional independence test indicates that
the edge connects two independent variables. An important variation of the PC algorithm
is the Fast Causal Inference (FCI) [134], which tolerates latent confounders. The Greedy
Equivalence Search (GES) [25] is another widely-used algorithm in this category which starts
with an empty graph and gradually adds edges. The second category is based on functional
causal models (FCM). A FCM represents the effect Y as a function of the direct causes X and
some noise: Y = f(X, ε; θ). In Linear, Non-Gaussian and Acyclic Model (LiNGAM) [127],
f is linear, and only one of ε and X can be Gaussian. In Post-Nonlinear Model (PNL) [167,
168], Y = f2(f1(X) + ε). Additive Noise Model (ANM) [66] further constrains the post-
nonlinear transformation of PNL model.
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Private causal discovery has a relatively short history. In 2013, Johnson et al. [71] studied
differentially private Genome-Wide Association Studies (GWAS). They used Laplace mech-
anism and exponential mechanism to build specific queries of interest in GWAS. In 2015,
Kusner et al. [82] analyzed the sensitivity of several commonly used dependence scores on
training and testing datasets, and then applied Laplace mechanism to the ANM model. Xu
et al. [161] proposed to apply exponential mechanism to the PC algorithm. Another line of
work focuses on private bayesian inference including [35, 63, 17]. Their pioneering works
are inspiring but lack novelty from differential privacy side because they all directly leverage
off-the-shelf differentially private mechanisms without any modification.

3.6 Discussion

Priv-PC takes an important step towards practical differentially private causal discovery with
high accuracy and short running time. We also performed an empirical study to demonstrate
the advantages compared with the state-of-the-art.

At the same time, we observe many challenges in differentially private causal discovery
that existing techniques are not capable of handling. For example, it is unclear how to
reconcile independence tests with infinite sensitivity such as G-test and χ2-test; it is unclear
how to handle data type beyond categorical data like numerical data since PC algorithm
only handles discrete data. We consider all these problems as important future work in the
research agenda toward solving the private causal discovery problem.
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Chapter 4

Differentially Private Frequency
Moments Estimation in Streaming

We prove that Fp sketch, a well-celebrated streaming algorithm for frequency moments es-
timation, is differentially private as is when p ∈ (0, 1]. Fp sketch uses only polylogarithmic
space, exponentially better than existing DP baselines and only worse than the optimal non-
private baseline by a logarithmic factor. The evaluation shows that Fp sketch can achieve
reasonable accuracy with differential privacy guarantee.

4.1 Introduction

Counting is one of the most fundamental operations in almost every area of computer science.
It typically refers to estimating the cardinality (the 0th frequency moment) of a given set.
However, counting can actually refer to the process of estimating a broader class of statistics,
namely pth frequency moment, denoted Fp. Frequency moments estimation is at the core
of various important statistical problems. F1 is used for data mining [31] and hypothesis
tests [69]. F2 has applications in calculating Gini index [90, 55] and surprise index [58],
training random forests [19], numerical linear algebra [29, 120] and network anomaly detec-
tion [81, 146]. Fractional frequency moments are used in Shannon entropy estimation [61,
169] and image decomposition [52].

Non-private frequency moments estimation is systematically studied in the data stream-
ing model [3, 22, 146, 47, 68, 89, 75, 105, 106, 74]. This model assumes extremely limited
storage such as network routers. The optimal non-private algorithm [74] uses only polyloga-
rithmic space to maintain frequency moments. In the present work, we inherit the low space
complexity requirement for the versatility of the algorithm.

The data being counted sometimes contains sensitive information. For example, to cal-
culate Gini index, the data should contain pairs of ID and income. Frequency moments of
such data, if published, might leak sensitive information. To mitigate, the gold standard of
differential privacy (DP) should be applied. Special cases of DP frequency moments estima-
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tion such as p = 0, 1, 2 are well-studied in a wide spectrum of works [26, 130, 18, 126, 149,
26, 20, 100].

In the present work, we make the first customized effort towards DP estimation of frac-
tional frequency moments, i.e. p ∈ (0, 1] with low space complexity. We show that a
well-known streaming algorithm, namely Fp sketch [68], preserves differential privacy as is.
With its small space complexity, Fp sketch elegantly solves the trilemma between efficiency,
accuracy, and privacy.

Problem Formulation. We use bold lowercase letters to denote vectors (e.g. a,b, c) and
bold uppercase letters to denote matrices (e.g. A,B,C). {1, · · · , n} is denoted by [n].

Let S = {(k1, v1), · · · , (kn, vn)} (n ≥ 1) be a stream of key-value pairs where ki ∈
[m] (m ≥ 2), vi ∈ [M ] (M ≥ 1). We would like to design a randomized mechanism M that
estimates the pth frequency moment:

Fp(S) =
m∑
k=1

(
n∑
i=1

I(ki = k)vi)
p

for p ∈ (0, 1] where I is an indicator function returning 1 if k = ki and 0 otherwise. Often-
times, n,m is large (e.g. IP streams on routers) so M should take polylogarithmic space in
terms of n,m.

Proof Intuition. We summarize the intuition behind the proof that Fp sketch is differen-
tially private when p ∈ (0, 1]. Recall that when proving DP for traditional mechanisms such

as the Gaussian mechanism, the core is to upper-bound the ratio P (x)
Q(x)

where P (x) and Q(x)
are the probability density functions of outputs when the inputs are neighboring datasets. In
the proof of Gaussian mechanism, P (x) and Q(x) can be viewed as a horizontal translation
of each other and the distance between their mean values is the sensitivity of the output.

For Fp, however, neighboring inputs do not translate the output distribution but instead
change its scale. For example, when p = 2, P (x) and Q(x) are Gaussian distributions with
the same mean and different variance. Inspired by the analogy to Gaussian mechanism, we
need to address the below two questions to prove differential privacy for Fp sketches.

Q1. How to bound the difference between the scales of P (x) and Q(x)?

Q2. How to bound the ratio between the density functions of P (x) and Q(x)?

To answer Q1, we propose a new sensitivity definition called pure multiplicative sensitiv-
ity. Pure multiplicative sensitivity depicts the maximal multiplicative change in the output
when the inputs are neighboring datasets. We analyze frequency moments estimation and
find that its pure multiplicative sensitivity is approximately max{22p−2, 22−2p} when p ∈ (0, 1]
and n�M .

To answer Q2, we first analyze the special case of p = 1. When p = 1, P (x)
Q(x)

is rigorously
upper-bounded and thus F1 sketch preserves ε-DP. By analogy, we conjecture that Fp, p ∈
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(0, 1] also satisfies similar properties, which is doubly confirmed by the numerically simulated
plots in Figure 4.2. The conjecture is formally proved in Theorem 11.

4.2 Differentially Private Fractional Frequency

Moments Estimation

In this section, we first revisit Fp sketch and then prove the differential privacy guarantee for
Fp sketch step by step. Different from most differential privacy analyses based on additive
sensitivity, our proof depends on a variant of the multiplicative sensitivity [43] called pure
multiplicative sensitivity. We give the first analysis of pure multiplicative sensitivity for p-th
frequency moments. Then we motivate the differential privacy proof using a special case
when p = 1. Finally we proceed to the general proof that Fp sketch preserves differential
privacy. The main challenge stems from the fact that the density functions of p-stable
distributions have no close-form expressions when p ∈ (0, 1).

Revisiting Fp Sketch

For completeness, we revisit the well-celebrated Fp sketch by [68] (also known as stable pro-
jection or compressed counting). We first introduce p-stable distribution, the basic building
block in Fp sketch. Then we review how to construct and query Fp sketch using stable
distributions.

Definition 9 (p-stable distribution). A random variable X follows a β-skewed p-stable dis-
tribution if its characteristic function is

φX(t) = exp(−ζ|t|p(1−
√
−1β sgn(t) tan(

πp

2
))

where −1 ≤ β ≤ 1 is the skewness parameter, ζ > 0 is the scale parameter to the pth power.

In this section, we focus on stable distributions with β = 0, namely symmetric stable
distributions. We denote a symmetric p-stable distribution by Dp,ζ , and slightly abuse the
notation to denote the density function as Dp,ζ(x). Note that the density function is the
inverse Fourier transform of the characteristic function.

Dp,ζ(x) =
1

2π

∫
R

exp(−
√
−1tx)φ(t)dt =

1

2π

∫
R

cos (xt) exp(−ζ|t|p)dt

If two independent random variables X1, X2 ∼ Dp,1, then C1X1 + C2X2 ∼ Dp,Cp1+Cp2
. We

refer to this property as p-stability. Fp sketch leverages the p-stability of these distributions
to keep track of the frequency moments.

The pseudo-code for vanilla Fp sketch is presented in Algorithm 6. To construct, a sketch
of size r is initialized to all zeros and a projection matrix P is sampled from Dr×mp,1 (line 2).
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For each incoming key-value pair (ki, vi), we multiply the one-hot encoding of ki scaled by
vi with the projection matrix P and add it to the sketch (line 4).

a =
n∑
i=1

P× vieki =
m∑
k=1

P× (
∑
ki=k

vi)eki ∼ Drp,Fp(S)

To query the sketch, we estimate ζ from a using various estimators such as median, inter-
quantile, geometric mean or harmonic mean as suggested by [68], [89] and [88].

Algorithm 6: Fp sketch.

Input : Data stream: S = {(k1, v1), · · · , (kn, vn)}
1 Construct:
2 Initialize a = {0}r, P ∼ Dr×mp,1 ;

3 Update:
4 for i ∈ [n] do Let eki be the one-hot encoder of ki, a = a + P× vieki ;
5 Query:
6 return scale estimator(a);

Pure multiplicative sensitivity of frequency moments estimation

As we will see in the following two subsections, the differential privacy proof for Fp sketch
depends on the pure multiplicative sensitivity of p-th frequency moments. As the first step,
we give the definition of pure multiplicative differential privacy. “Pure” is to distinguish
from multiplicative sensitivity as defined in [43].

Definition 10 (Pure multiplicative sensitivity). The multiplicative sensitivity of a function
M is defined as the maximum ratio between outputs on neighboring inputs S and S ′.

ρp(n) = sup
|S|=n,|S′|=n,d(S,S′)=1

∣∣M(S)

M(S ′)
∣∣

We might omit the subscript and argument when they are clear from the context.

The pure multiplicative sensitivity of Fp is as below. Note that the below theorem is for
the cash register model. Similar sensitivity holds for the strict turnstile model as proved in
Appendix C.

Theorem 9 (Multiplicative sensitivity of Fp). A mechanism M which calculates Fp, p ∈
(0, 1] has pure multiplicative sensitivity upper bounded by

ρp ≤ 22−2p
( n− 1 +M

n− 1 + (m− 1)
p−1
p

)p
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Proof for Theorem 9. Theorem 9 gives an upper bound on the multiplicative change when
two input datasets with the same size m differ in one entry. To prove, we first consider a
slightly different setting when the second dataset is generated by adding an entry to the first
dataset. Then the neighboring datasets in the original setting can be generated by adding
different entries to the same dataset. Thus, taking the division of the upper and lower bound
of the sensitivity in the incremental setting will give an upper bound for sensitivity in the
original setting.

Concretely, let u = {u1, · · · , um} where ui > 0,
∑m

i=1 ui = s, ∆ ≥ 0. We would like to
find both upper and lower bounds for the below expression.∑m

i=2 u
p
i + (u1 + ∆)p∑m
i=2 u

p
i + up1

,∀p ∈ (0, 1] (4.1)

To bound expression (4.1), we first observe the following two inequalities (4.2) and (4.3).

∀a, b, c, d > 0, a ≥ b, c ≥ d,
a+ c

a+ d
≤ b+ c

b+ d
. (4.2)

∀p ∈ (0, 1], (
m∑
i=1

ui)
p ≤

m∑
i=1

upi ≤ m1−p(
m∑
i=1

ui)
p (4.3)

Inequality (4.2) can be proved with simple algebra. The left-hand-side of inequality (4.3)
follows because

∑m
1 u

p
i is concave in (u1, . . . , un) in the simplex defined by the conditions

ui ≥ 0 for all i, and
∑m

1 ui = s and hence the minimum of
∑m

1 u
p
i on the simplex is attained

at a vertex of the simplex. The right-hand-side of inequality (4.3) is an instance of the
well-known generalized mean inequality [138] or Hölder inequality [64].

First, let’s upper bound expression (4.1). According to inequality (4.2) and (4.3),∑m
i=2 u

p
i + (u1 + ∆)p∑m
i=2 u

p
i + up1

(2)+(3)

≤ (
∑m

i=2 ui)
p + (u1 + ∆)p

(
∑m

i=2 ui)
p + up1

=
(s− u1)p + (u1 + ∆)p

(s− u1)p + up1
(3)

≤ 21−p(1 +
∆

s
)p
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Similarly, to lower bound expression (4.1),∑m
i=2 u

p
i + (u1 + ∆)p∑m
i=2 u

p
i + up1

(2)+(3)

≥ (m− 1)1−p(
∑m

i=2 ui)
p + (u1 + ∆)p

(m− 1)1−p(
∑m

i=2 ui)
p + up1

=
(s− u1)p + ((m− 1)

p−1
p (u1 + ∆))p

(s− u1)p + ((m− 1)
p−1
p u1)p

(3)

≥ 2p−1
(((m− 1)

p−1
p − 1)u1 + s+ (m− 1)

p−1
p ∆

((m− 1)
p−1
p − 1)u1 + s

)p
≥ 2p−1(1 +

(m− 1)
p−1
p ∆

s
)p

Taking the division between the supremum and the infimum, we get

ρp ≤ 22−2p(
s+M

s+ (m− 1)
p−1
p

)p ≤ 22−2p(
n− 1 +M

n− 1 + (m− 1)
p−1
p

)p

In a typical streaming model where m is large and n � M , ρp / 22−2p ≤ 4. To get a
better sense of how ρ changes with p, we plot several curves with different hyper-parameters
in Figure 4.1. Note that the pure multiplicative sensitivity only depends on n,m,M and p
which are public information.

Differentially Private F1 Sketch

Instead of directly diving into the complete analysis, we first motivate the analysis with the
special case of p = 1. In this case, the symmetric 1st-stable distribution is the well-known
Cauchy distribution: D1,ζ(x) = 1

π
· ζ
ζ2+x2

, and thus the analyses are significantly simplified.
The main purpose of this section is to pave the way for the proof of general Fp sketch.

Theorem 10 (ε-DP for F1 sketch). Let ρ1 represent the multiplicative sensitivity of the first
frequency moments. When the size of the sketch r = 1, F1 is ln ρ1-differentially private.

Proof for Theorem 10.
D1,F1

(x)

D1,ρ1F1
(x)

=
ρ21F

2
1 +x2

ρ1(F 2
1 +x2)

is a decreasing function of x when x ∈ (0,∞)

because its derivative
2(ρ1−ρ31)F 2

1 x

ρ21(F 2
1 +x2)2

is non-positive. Thus,

1

ρ1

=
D1,F1(∞)

D1,ρ1F1(∞)
≤ D1,F1(x)

D1,ρ1F1(x)
≤ D1,F1(0)

D1,ρ1F1(0)
= ρ1

Then, for any data stream S and arbitrary measurable subset s,

P[F1(S) ∈ s] =

∫
x∈s
D1,F1(S)(x)dx =

∫
x∈s

D1,F1(S)(x)

D1,F1(S′)(x)
D1,F1(S′)(x)dx

≤
∫
x∈s

ρ1D1,F1(S′)(x)dx = eln ρ1P[F1(S ′) ∈ s]
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Figure 4.1: Pure multiplicative sensitivity.

Differentially Private Fp Sketch, p ∈ (0, 1]

The example of F1 being ε-DP indicates the possibility that Fp might have similar property
when p ∈ (0, 1]. To validate, we plot the curves for different values of ps as shown in

Figure 4.2. From the figure we can tell that when p ∈ (0, 1], the ratio Dp,1(x)

Dp,2(x)
seems to be

well-bounded and preserve ε-DP.
We now prove the conjecture as formalized in Theorem 11.

Theorem 11 (ε-DP for Algorithm 6). Let ρp represent the multiplicative sensitivity of the
p-th frequency moments. When r = 1 and p ∈ (0, 1], Fp sketch (Algorithm 6) is 1

p
ln ρp-

differentially private.

.

Proof for Theorem 11. To prove Theorem 11, we prove the following inequality.

ρ
− 1
p

p < ρ−1
p ≤

Dp,Fp(x)

Dp,ρpFp(x)
≤ ρ

1
p
p

We first prove the right-hand-side of the inequality. Observe that ζ−
1
pDp,1(ζ−

1
px) =

ζ
− 1
p

2π

∫
R cos(ζ−

1
pxt) exp(−|t|p)dt ?

= 1
2π

∫
R cos(xt) exp(−ζ|t|p)dt = Dp,ζ(x) where ? substitutes t
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Figure 4.2: The curves of Dp,1(x)
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with different values of p ∈ (0, 1] on R+. The negative half

is symmetric.

with ζ
1
p t using integration by substitution. Thus,

Dp,Fp(x)

Dp,ρpFp(x)
= ρ

1
p
p
Dp,1(F

− 1
p

p x)

Dp,1((ρpFp)
− 1
px)
≤ ρ

1
p
p
Dp,Fp(0)

Dp,ρpFp(0)
= ρ

1
p
p

as Dp,1 is increasing on (−∞, 0] and decreasing on [0,∞), and ρp ≥ 1.
To prove the left-hand-side of the inequality, we reorganize it into the format of a Fourier

transform. ∫ ∞
0

(ρp exp(−Fptp)− exp(−ρpFptp)) cos(tx)dt ≥ 0

It suffices to show that

h(ρ) =

∫ ∞
0

exp(−ρFptp)
ρ

cos(tx)dt

is decreasing. Taking the first derivative of h, we have

∂h

∂ρ
= − 1

ρ2

∫ ∞
0

g(t) cos(tx)dt , where g(t) = exp(−ρFptp)(ρFptp + 1)

According to Pólya criterion [57], it suffices to show that g is positive definite. We first

observe that the function 0 ≤ u 7→ (1 + u1/2)e−u
1/2

is the Laplace transform [122] of the
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Figure 4.3: Privacy budget ε vs. p. n = 215,m = 220,M = 24.

positive function 0 < t 7→ e−1/(4t)

4
√
π t5/2

(the proof is deferred to the end) and hence a mixture

of exponential functions 0 ≤ u 7→ e−cu with c > 0. Thus with variable substitution, the
function s 7→ (1 + |s|p)e−|s|p is a mixture of functions s 7→ e−c|s|

2p
with c > 0, which are

positive definite for any p ∈ (0, 1] as they are characteristic functions of stable distributions.

The last step is to prove the function F (u) = (1 + u1/2)e−u
1/2
, u ≥ 0 is the Laplace

transform of f(t) =
e−1/(4t)

4
√
π t5/2

, t > 0:

F (u) =

∫ ∞
0

f(t)e−utdt, u ≥ 0

. LetR(u) = F (u) and L(u) =
∫∞

0
f(t)e−utdt. We observe that limx→∞ L(x) = limx→∞R(x) =

limx→∞ L
′(x) = limx→∞R

′(x) = 0 so it is enough to show that L′′(u) = R′′(u). After a simple
rescaling, it is enough to show

J(a) :=

∫ ∞
0

exp
{
− 1

t
− at

} dt

2
√
t

=

√
π

2

e−2
√
a

√
a
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where a > 0 as both sides do not contain linear terms. Using substitutions t = u2 and then
u = 1/(x

√
a), we get

J(a) =

∫ ∞
0

exp
{
− 1

u2
− au2

}
du = K(a)/

√
a,

where

K(a) :=

∫ ∞
0

exp
{
− ax2 − 1

x2

} dx
x2
.

Note that K ′(a) = −J(a) and K(a) = J(a)
√
a. So, we get the differential equation

J ′(a) = −
( 1√

a
+

1

2a

)
J(a),

whose general solution is given by

J(a) =
c√
a
e−2
√
a

for a constant c. To determine c, note that

K(a) = J(a)
√
a =

∫ ∞
0

exp
{
− 1

u2
− au2

}
du
√
a =

∫ ∞
0

exp
{
− a

y2
− y2

}
dy

and

c = K(0+) =

∫ ∞
0

exp{−y2} dy =

√
π

2
.

Privacy Amplification by Sub-sampling

The last step of Algorithm 6 estimates ζ given samples from the stable distributions. There
are many candidate estimators such as the geometric estimator and the harmonic estima-
tor [89, 88]. These estimators typically, as suggested in [89], require at least r ≥ 50 samples
to give an accurate estimation of ζ. However, the privacy parameter ε grows linearly with r
with trivial composition [39], which might result in too weak privacy protection.

To address, we follow the standard approach, amplifying privacy using sub-sampling.
Different from Algorithm 6, each input has probability q to be inserted into each dimension of
a, as presented in Algorithm 7. If we take q = 1

r
, then the privacy parameters in Theorem 11

hold as is. The proof is a simple application of the composition theorems [39] and privacy
amplification [6].

Theorem 12 (ε-DP for Algorithm 7). Let ρp represent the multiplicative sensitivity of the
p-th frequency moments. When p ∈ (0, 1], Fp sketch with sub-sampling rate q is qr

p
ln ρp-

differentially private.
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Algorithm 7: Fp sketch with sub-sampling. The only change appears in line 3-4
and 7, corresponding to line 3 and 5 in Algorithm 6. Bernoulli(q) refers to Bernoulli
distribution with success probability q.

Input : Data stream: S = {(k1, v1), · · · , (kn, vn)}
1 Construction
2 Initialize a = {0}r, P ∼ Dr×mp,1 ;

3 for i ∈ [n] do
4 b ∼ Bernoulli(q);
5 Let eki be the one-hot encoder of ki, a = a + P× bvieki
6 Query
7 return scale estimator(a)/qp;

Utility of Algorithm 7

We depict the accuracy of a Fp estimator with a pair of parameters (γ, η).

Definition 11 ((γ, η)-Accuracy). A randomized algorithm M is said to be (γ, η)-accurate if

(1− γ)Fp(S) ≤M(S) ≤ (1 + γ)Fp(S) w.p. 1− η

Algorithm 7 satisfies the following utility guarantee. The space complexity is only worse
than the optimal non-private algorithm [74] by a logarithmic factor. The accuracy bound
is also a worst-case bound and the performance in practice is typically much better (Sec-
tion 4.3).

Theorem 13 (Utility of Algorithm 7). ∀p ∈ (0, 1] and ∀γ, η ∈ (0, 1), Algorithm 7 is (γ +√
qp−q2p
λ

, η + λ)-accurate if r = O
(
γ−2 log( 1

η
)
)
. In this case, Algorithm 7 uses

O
(
γ−2 log(mM/(γη)) log( 1

η
)
)

bits.

Proof. Let SAq(·) represent the sub-sampling process and Frp represent a Fp sketch with
length r. Then Algorithm 7 can be represented as Frp ◦ SAq where ◦ represents composition
of mechanisms.

First, we need the accuracy of Fp sketch. According to Theorem 4 of [68], if we fix the
sub-sampled items,

P[|F
O
(
γ−2 log( 1

η
)
)

p ◦ SAq(S)− Fp ◦ SAq(S)| ≤ γFp ◦ SAq(S)] ≥ 1− η

Second, we need the accuracy of the sub-sampling process. The expectation and variance
of the sub-sampling process is as follow.

E[Fp ◦ SA(S)] = qpFp(S) (4.4)
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V[Fp ◦ SA(S)] = E[(Fp ◦ SA(S))2]− E2[Fp ◦ SA(S)]

≤ Fp(S)× E[Fp ◦ SA(S)]− q2pF 2
p (S) = (qp − q2p)Fp(S)

(4.5)

According to Chebyshev’s inequality,

P[|Fp ◦ SA(S)− qpFp(S)| ≤
√
qp − q2p

λ
Fp(S)] ≥ 1− λ (4.6)

Combining (4.4), (4.5) and (4.6) we get Theorem 13.

4.3 Evaluation

Evaluation Setup
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Figure 4.4: Results on Synthetic Data.

As we would like to empirically understand Fp sketch’s trade-off between space, error and
privacy, we evaluate Fp with p ∈ {0.25, 0.5, 0.75, 1} using synthetic streams of different sizes
and distributions. We also evaluate Fp with p ∈ {0.05, 0.1, · · · , 0.95, 1} on real-world data.
All the experiments were run on a Ubuntu18.04 LTS server with 32 AMD Opteron(TM)
Processor 6212 with 512GB RAM.

Synthetic Data. We first evaluate Fp sketches using synthetic data. We synthesize two
kinds of data: the key domain is either uniformly or binomially distributed. The value
domain is {1} by default. The size of the key domain is 1000.

Real-world Data. We also evaluate Fp sketches using real-world application usage data [163]
collected by TalkingData SDK. There are more than 30 million events in this dataset, each
representing one access to the TalkingData SDK. We view the event type as the key and the
value is set to 1 by default.
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Evaluation Results

In this section, we present the evaluation results. To avoid the influence of outliers, we
report the median and interquartile of 100 runs for each data point except for the real-
data evaluation. For all the evaluation, the sketch size r is 50 as suggested in [89]. The
sub-sampling rate in all the experiments is 0.02.

Synthetic Data. The evaluation results on synthetic data are presented in Figure 4.4. For
uniformly distributed data, we observe that as the stream size increases, the multiplicative
error decreases. We conjecture the reason to be the effect of sub-sampling. Concretely,
each bin in the value domain has to get enough samples to approximate the behavior of
the true distribution. On the other hand, when the data is binomially distributed, the
multiplicative error is relatively stable with small fluctuation. We conjecture the reason is
that as binomial distribution is more concentrated, the sample complexity is smaller than
uniform distribution. Besides, for uniformly distributed data, ps close to 0 have relatively
large errors while the errors when p is close to 1 are small. The reason is that the further p
is from 1, the larger the influence of sub-sampling.
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Figure 4.5: Results on Real-world Data.
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Real-world Data. The evaluation results for real-world data are presented in Figure 4.5.
We sampled 100,0000 data points from the dataset and the key has a domain of size 1488095.
Each data point is the median of 5 runs. We observe that the further p is from 1, the higher
the multiplicative error. This conforms with our observation in the evaluation on synthetic
data.

4.4 Related Work

Frequency moments estimation is thoroughly studied in the data streaming model. Alon et
al. [3] proposed the first space-efficient algorithm for estimating pth frequency moments when
p is integer. Indyk [68] extended the use case from integer moments to fractional moments
using stable distributions. A line of following works improve Indyk’s algorithm in various
aspects such as space complexity [75, 105], time complexity [106, 74] or accuracy [89, 88].

Several special cases in private frequency moments estimation such as p = 0, 1, 2 were also
well studied. Choi et al. [26], Smith et al. [130] and Dickens et al. [34] studied differentially
private F0 estimation, also known as cardinality estimation. They separately proved that
the Flajolet-Martin sketch is differentially private as is. Several independent works [18, 126,
149, 26, 20] studied the differential privacy guarantee in the special case p = 2 under the
name of Johnson-Lindenstrauss projection.

On the other hand, there is barely any prior work focusing on differentially private frac-
tional frequency moments estimation. Differentially private distribution estimation algo-
rithms [2, 162, 13, 136, 157] can be used to provide a differentially private estimation of
fractional frequency moments. However, they are overkill as their outputs contain much
more information than the queried fractional frequency moment. They only provide sub-
optimal privacy-utility trade-off and are exponentially worse in terms of space complexity.

Datar et al. [33] considered a similar (but not the same) mathematical problem to the
present work when designing a locality-sensitive hashing scheme. However, their analysis
focuses on the simple cases when p = 1 and p = 2 and totally depends on numerical analysis
for p ∈ (0, 1).

4.5 Discussion

This chapter takes an important step towards narrowing the gap of space complexity be-
tween private and non-private frequency moments estimation algorithms. We prove that
Fp is differentially private as is when p ∈ (0, 1] and thus give the first differentially private
frequency estimation protocol with polylogarithmic space complexity.

At the same time, we observe several open challenges. First, the proof does not easily
extend to p ∈ (1, 2). Figure 4.6 exhibits the complexity of monocity of Dp,1(x)

Dp,2p (x)
when p ∈

(1, 2). The most complex curve when p = 1.99 is composed of three monotonic parts in
the figure. Hence, an interesting next step is to fully understand the monotonicity pattern
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Figure 4.6: The curves of Dp,1(x)
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with different values of p ∈ (1, 2) on R+. The negative half

is symmetric. The x-axis is log-scale to highlight the complex monotone trends.

of the ratio curve when p ∈ (1, 2) and get corresponding privacy parameters. Second, the
space complexity of Algorithm 7 is still worse than the optimal non-private algorithm by a
factor of log(m). It is interesting to check whether the optimal algorithm [74] also preserves
differential privacy.
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Chapter 5

Conclusion

In this dissertation, we present Aegis, a privacy-preserving and regulation-compliant data
analysis framework. Aegis synergizes the top-down and bottom-up efforts towards a prac-
tical and cost-efficient privacy-preserving data analysis pipeline. Aegis comprises two main
components: 1) a privacy regulation enforcement framework; and 2) a library embracing
various differentially private functionalities.

In chapter 2, we present PrivGuard, our design for the privacy regulation enforcement
framework. PrivGuard integrates a policy-encoding language, a static analyzer and a set
of security measures to support regulation compliance verification. The verification process
is cost-efficient, versatile, verifiable and secure under external attacks.

For the differential privacy library, we identify two under-explored areas: causal inference
and streaming and develop differentially private algorithms for them. In chapter 3, we study
the problem of causal graph discovery. We refine the well-known PC algorithm to obtain
Priv-PC, which beats prior works with its outstanding privacy-utility trade-off. In chapter 4,
we study a sketching algorithm for frequency moments estimation namely Fp sketch and prove
that it is differentially private as is.

5.1 Future Work

We envision that Aegis has the potential to reshape today’s privacy-preserving paradigm.
However, there are still several grand challenges towards deploying Aegis in the real world:
(1) the limitation of the threat model of the regulation enforcement framework; (2) the
differential privacy library only deals with centralized data which contradicts the trend of
decentralization; 3) other bottom-up techniques are not supported.

Dynamic Analysis for Privacy Regulation Enforcement

In PrivGuard, the threat model highlights external attacks but ignores possible internal
risks. However, as has been proved many times in the past, most systems are destroyed
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from inside. However, because of the dynamic property of Python, it is nearly impossible
to use pure static analysis to prevent arbitrary code execution attacks launched by internal
personnel. To patch the loophole, we propose to augment PrivGuard with dynamic anal-
ysis. Concretely, we plan to look into the Python interpreter, find all the function entrances
that might lead to arbitrary code execution, and instrument a code snippet there to prevent
suspicious behaviors.

Differentially Private Federated Learning and Analytics

Decentralization is one of the leading trends today in the world of which decentralized data
analysis is an essential part. Among all the decentralized data analysis proposals, federated
learning is one of the most promising ones because of its low computation cost and excellent
performance in practice. How to augment federated learning with differential privacy has
received much attention in the past few years and still has a long way to go. Besides learning,
how to run other analytics in a federated manner is another important direction to pursue.

A Broader Class of Privacy-Preserving Techniques

Another important direction to pursue is to support a broader class of privacy-preserving
techniques beyond differential privacy. For example, federated learning and multiparty-
computation are another two promising approaches for privacy-preserving data analysis.
The researcher has also conducted research in these directions [155, 171, 95] and plan to
integrate them into Aegis.
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Appendix A

Role Lattices in Privacy Regulations

The incomplete role lattices for GDPR, HIPAA, FERPA and CCPA are shown in Figure
A.1, A.2, A.3 and A.4.

Figure A.1: Role Lattice of GDPR.



APPENDIX A. ROLE LATTICES IN PRIVACY REGULATIONS 88

Figure A.2: Role Lattice of HIPAA.
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Figure A.3: Role Lattice of FERPA.
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Figure A.4: Role Lattice of CCPA.
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Appendix B

Legalease Encodings of Privacy
Regulations

The longer Legalease encodings of HIPAA, FERPA and CCPA are shown in Figure B.2,
B.3 and B.4.

1 ALLOW SCHEMA PersonalInformation
2 AND FILTER ConsentObtained = 1
3 AND PRIVACY De−Identify
4

5 ALLOW SCHEMA PersonalInformation
6 AND ROLE UserAffiliatedOrganization
7

8 ALLOW SCHEMA PersonalInformation
9 AND ROLE SupervisoryAuthority OR ROLE HealthcareOrganization

10 AND PURPOSE PublicInterest LegalObligation PublicHealth
11

12 ALLOW SCHEMA PersonalInformation
13 AND ROLE LegalAuthority
14 AND PURPOSE PublicInterest ForJudicialPurposes

Figure B.1: Formal encoding of several GDPR requirements.
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1 ALLOW SCHEMA PersonalInformation
2 AND FILTER age < 90
3 AND REDACT zip
4

5 ALLOW SCHEMA ProtectedHealthInformation
6 AND ROLE PersonalHealthRepresentative
7

8 ALLOW SCHEMA ProtectedHealthInformation
9 AND (ROLE HealthcareProvider OR ROLE Institution)

10 AND FILTER ConsentObtained = 1
11 AND PURPOSE Treatment Payment HealthCareOperations
12

13 ALLOW SCHEMA ProtectedHealthInformation
14 AND ROLE HealthcareProvider
15 AND PURPOSE Treatment Payment HealthCareOperations
16

17 ALLOW SCHEMA ProtectedHealthInformation
18 AND (ROLE HealthcareProvider OR ROLE Institution)
19 AND PURPOSE FraudDetection
20

21 ALLOW SCHEMA ProtectedHealthInformation
22 AND ROLE HIPAA Secretary
23 AND PURPOSE HIPAACompliance
24

25 ALLOW SCHEMA ProtectedHealthInformation
26 AND (ROLE CoveredEntity OR ROLE HospitalBusinessAssociate)
27 AND PURPOSE PublicHealth Research
28

29 ALLOW SCHEMA ProtectedHealthInformation
30 AND FILTER YearsDead >= 50
31

32 ALLOW SCHEMA ProtectedHealthInformation
33 AND (ROLE LawEnforcement OR ROLE JudicialAuthority)
34 AND PURPOSE CrimeInvestigation
35 AND FILTER ConsentObtained = 1
36

37 ALLOW SCHEMA ProtectedHealthInformation
38 AND FILTER ConsentObtained = 1
39 AND PURPOSE Marketing Sale

Figure B.2: Formal encoding of a subset of HIPAA.
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1 ALLOW SCHEMA EducationRecords
2 AND ROLE Parent
3

4 ALLOW SCHEMA EducationRecords
5 AND ROLE UserInstitutions
6

7 ALLOW SCHEMA EducationRecords
8 AND FILTER ConsentObtained = 1
9

10 ALLOW SCHEMA EducationRecords
11 AND ROLE (EducationOfficial EducationalInstitution
12 EducationalRepresentative )
13 AND PURPOSE Education
14

15 ALLOW SCHEMA EducationRecords
16 AND ROLE (ComptrollerGeneral AttorneyGeneral Secretary
17 StateLocalAuthority )
18

19 ALLOW SCHEMA EducationRecords
20 AND PURPOSE FinancialAid
21

22 ALLOW SCHEMA EducationRecords
23 AND ROLE (StateLocalAuthority)
24

25 ALLOW SCHEMA EducationRecords
26 AND ROLE Institution
27 AND PURPOSE (ConductEducationStudy)
28

29 ALLOW SCHEMA EducationRecords
30 AND ROLE AccreditingOrganization
31 AND PURPOSE AccreditingFunction
32

33 ALLOW SCHEMA EducationRecords
34 AND PURPOSE JudicialOrder Subpoena
35

36 ALLOW SCHEMA EducationRecords
37 AND PURPOSE PublicInterest PublicHealth
38

39 ALLOW SCHEMA DirectoryInformation
40

41 ALLOW SCHEMA EducationRecords
42 AND ROLE LawEnforcement JudicialAuthority
43 AND PURPOSE CrimeInvestigation

Figure B.3: Formal encoding of a subset of FERPA.
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1 ALLOW SCHEMA PersonalInformation
2 AND FILTER ConsentObtained = 1
3

4 ALLOW SCHEMA PersonalInformation
5 AND ROLE LawEnforcementAgency
6 AND PURPOSE CrimeInvestigation
7

8 ALLOW SCHEMA PersonalInformation
9 AND ROLE PersonCoveredByEvidentaryPrivilegeUnderCALaw

10 AND PURPOSE PrivilegedCommunication
11

12 ALLOW SCHEMA ProtectedHealthInformation
13 AND ROLE CoveredEntityByFDHH
14 AND PURPOSE HIPAA
15

16 ALLOW SCHEMA PersonalInformation
17 AND PURPOSE ConsumerReport
18

19 ALLOW SCHEMA PersonalInformation
20 AND (ROLE AttorneyGeneral
21 OR ROLE DistrictAttorney
22 OR ROLE CountyCounsel)

Figure B.4: Formal encoding of several CCPA requirements.
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Appendix C

Pure Multiplicative Sensitivity in
Strict Turnstile Model

In this appendix, we derive the pure multiplicative sensitivity of Fp in the strict turnstile
model. In the strict turnstile model, for a key-value stream S = {(k1, v1), · · · , (kn, vn)} (n ≥
1) where ki ∈ [m] (m ≥ 2), vi ∈ {−M, · · · ,M} (M ≥ 1), the sum of vs of the same key
should always be non-negative:

n∑
i=1

I(ki = k)vi ≥ 0

Besides, for the utility of the result, we need to assume that M < n− 1.

Theorem 14 (Multiplicative sensitivity of Fp in strict turnstile model). A mechanismM <
n− 1 which calculates Fp, p ∈ (0, 1] in the strict turnstile model when has pure multiplicative
sensitivity upper bounded by

ρstp ≤ 22−2p(1 +
2M

n− 1−M
)p

Proof for Theorem 14. An upper bound for the sensitivity of Fp in the strict turnstile model
can be derived by taking the division of the upper and lower bound in the incremental setting
following the same logic as the proof for Theorem 9. The upper bound is the same as in the
proof of Theorem 14 so we only need to calculate the lower bound of the following expression.

First, we observe the following two inequalities.

∀a, b, d > 0, c ≥ 0, a ≤ b, c ≤ d,
a+ c

a+ d
≤ b+ c

b+ d
. (C.1)
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∑m
i=2 u

p
i + (u1 −∆)p∑m
i=2 u

p
i + up1

(3)+(7)

≥ (
∑m

i=2 ui)
p + (u1 −∆)p

(
∑m

i=2 ui)
p + up1

=
(s− u1)p + (u1 −∆)p

(s− u1)p + up1
(3)

≥ 2p−1(1− ∆

s
)p

Taking the division between the supremum and the infimum, we get

ρst
p ≤ 22−2p(1 +

2∆

s−∆
)p ≤ 22−2p(1 +

2M

n− 1−M
)p

As shown in Figure C.1, when m is the same, the sensitivity is very close to the sensitivity
in the cash register model if M � n.
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Figure C.1: Pure multiplicative sensitivity in the Strict Turnstile Model.
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