
Generative Modeling for Healthcare Applications and

Energy Demand Response with Normalizing Flows

Japjot Singh

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-162

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-162.html

May 20, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thank you to my advisor, Professor Costas Spanos, for opening the door
for me to research opportunities at Berkeley and helping shape my work.
Thank you to Hari Prasanna Das for introducing me to Normalizing Flows,
collaborating closely with me on several projects over the last two years,
and being a fantastic research mentor. Thank you to Lucas Spangher for
mentoring me this semester and providing support in my work on energy
demand response. Thank you to Professor Alberto Sangiovanni-Vincentelli
for feedback and suggestions on this work.

Finally, thank you to my family and friends for your unparalleled support
and unconditional love throughout my time at Berkeley--I feel incredibly
lucky to have you all by my side.

Generative Modeling for Healthcare Applications and Energy Demand Response with
Normalizing Flows

by Japjot Singh

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of
California at Berkeley, in partial satisfaction of the requirements for the degree of Master of
Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Costas J. Spanos
Research Advisor

(Date)

* * * * * * *

Professor Alberto L. Sangiovanni-Vincentelli
Second Reader

(Date)

�'� -/*���)"$*1�))$Ҋ�$)�)/ ''$�җ��4�ршѶ�спсс�рфѷтш۔����сҘ
'OEHUWR�9DQJLRYDQQL�<LQFHQWHOOL

��4�ршѶ�спсс

�*./�.��ѵ��+�)*.�җ��4�спѶ�спсс�пцѷпр����Ҙ
)RVWDV�0��9SDQRV

��4�спѶ�спсс

https://ucberkeley.na2.adobesign.com/verifier?tx=CBJCHBCAABAAvjWu17Fnj-wCscKiFnY1Akr8Yi0KHo14
https://na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAvjWu17Fnj-wCscKiFnY1Akr8Yi0KHo14

Generative Modeling for Healthcare Applications and Energy Demand Response with
Normalizing Flows

Copyright 2022

by

Japjot Singh

1

Abstract

Generative Modeling for Healthcare Applications and Energy Demand Response with
Normalizing Flows

by

Japjot Singh

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Costas J. Spanos, Chair

In the past decade, Machine Learning research has grown tremendously. The increased avail-
ability of data and powerful hardware has brought forward many applications in di↵erent
industries. Generative modeling, specifically synthetic data generation, has made headlines
with models capable of creating fake celebrity images and deep fakes. Normalizing Flows are
one family of generative models with desirable qualities, including exact density estimation
and inexpensive sampling. Unlike other generative modeling techniques like generative ad-
versarial networks, variational autoencoders, and autoregressive models, Normalizing Flows
show impressive results on both image and non-structured tabular data indicating their ef-
fectiveness in modeling complex distributions. Although still in relative infancy, they have
shown promising results when used with other models or as a synthetic data source for
separate downstream tasks.

This thesis explores applications in computer vision-based detection of COVID-19 and su-
pervisory planning in reinforcement learning for energy demand response. Our work in the
healthcare application presents a hybrid conditional generative model which decouples fea-
ture representations from input images to generate quality artificial samples in label scarce
domains, which prove to be e↵ective in several downstream tasks. We further investigate the
flexibility of normalizing flow methods to capture energy price responses within a proprietary
reinforcement learning environment and use this in a hybrid planning model scheme which
in turn improves the learning and performance of a price controlling agent.

i

Contents

Contents i

List of Figures iii

List of Tables vii

1 Introduction 1
1.1 Background in Machine Learning . 1
1.2 Pandemic Response . 2
1.3 Energy Demand Response . 3
1.4 Method . 4
1.5 Outline of Thesis . 4
1.6 Novelty . 4

2 Background 5
2.1 Generative Modeling . 5
2.2 Finite Normalizing Flows . 7
2.3 Continuous Normalizing Flows . 8
2.4 Related Works . 9

3 Methodology 12
3.1 Augmenting medical image-data . 13
3.2 Reinforcement Learning . 17
3.3 O✏ine RL and Synthetic Data . 22
3.4 Synthetic Data Generation . 23
3.5 Online Reinforcement Learning . 25
3.6 Approximating Prosumer Response . 25
3.7 O✏ine-Online RL . 26
3.8 Dataset Aggregation . 27
3.9 Guardrails . 27

4 Experiments and Results 29
4.1 Healthcare Experiments . 29

ii

4.2 Results: Conditional Synthetic Data Generation 31
4.3 Results: Conditional Synthetic Generation under Label Scarcity 32
4.4 Example Use of Synthetic Data: Robust Detection of COVID-19 via Data

Augmentation . 34
4.5 Microgrid Experiments . 35
4.6 Results: O✏ine-Online PPO . 36
4.7 Results: DAgger PPO . 38
4.8 Results: Guardrails Algorithm . 40
4.9 Results: Guardrails vs DAgger vs O✏ine vs Online for Demand Response . . 46

5 Discussion and Future Works 49

6 Conclusion 50

Bibliography 51

A Hyperparameters 60

B Network Architecture 62

iii

List of Figures

2.1 We train a generative model g✓ to transform samples from a simple distribution
Z to g✓(Z). The training objective is to make g✓(Z) indistinguishable from X . . 6

2.2 Illustration of a normalizing flow model. In this figure we are transforming a
simple distribution p0(z0) to a complex one pK(zK)(Image source: [86]) 7

2.3 One step fi of the Glow model. (Image source: [49]) 8

3.1 Synthetic CT scans generated by our proposed model, with Non-COVID (nor-
mal and pneumonia cases, images with green border)/ COVID (images with red
border) as the condition. 13

3.2 Illustration of the proposed conditional synthetic generation. (Best viewed in color) 14
3.3 Agent-environment interaction in the microgrid environment E . At each timestep,

the agent takes an action At and obtains a reward Rt+1. The state of the en-
vironment transitions to St+1 but since the system is partially observed and the
agent only sees Ot+1. 17

3.4 Illustration of classic online reinforcement learning (a), classic o↵-policy rein-
forcement learning (b), and classic o✏ine reinforcement learning. (Image source:
[53]) . 22

4.1 Original and generated synthetic CT scan samples. The top row consists of
original samples, and the corresponding image in the bottom row is the synthetic
sample obtained by preserving the original conditional feature representation and
varying the local noise. Image pairs with a red border: COVID samples, and a
green border: Non-COVID samples. 30

4.2 Illustration of the quantitative testing procedure for conditional synthetic gener-
ation. 31

4.3 Classification metrics for classifiers trained on synthetic data generated by various
models. The error bars indicate the variation in classifier performance when the
synthetic datasets used to train them were generated multiple times with di↵erent
seeds. A real data classifier does not involve multiple synthetic data generation,
so its error bars are not included. 31

4.4 Illustration of synthetic data augmentation and testing process. Improvement in
performance of classifiers trained on augmented data as compared to that trained
on original training data is a step toward robust COVID-19 detection. 34

iv

4.5 Classification results for models trained using real data (with class imbalance)
vs augmented data (class-balanced). The real data (having ⇠ 20% of COVID
samples) was augmented with synthetically generated COVID samples using the
proposed model for class balancing. 34

4.6 This figure illustrates our data pre-processing, specifically on the construction
of prosumer response approximation networks. We begin with o✏ine data from
some policy ⇡� and split it up into 10 tables, one for each prosumer p

j. Then we
train a continuous normalizing flow on each prosumer p

j which maps each row
in the table (at, pt, t) 2 R48+24+1 to a 73-dimensional gaussian. Then we sample
from this gaussian and use the inverse flow to generate synthetic data for each
prosumer p

j?. The 10 synthetic response tables induce a synthetic policy ⇡�? .
Then we combine the real and synthetic data for each prosumer j to train the
prosumer response approximation function �j. 36

4.7 Here we look at the number of years the agent is trained versus the weekly average
reward of $USD. We use the dotted line style to indicate steps in the planning
model and a solid line to show steps in the real world. Using a planning model for
one year and three years yields similar performance to using a planning model for
ten years and 30 years. With k � 3650, there is a noticeable drop-o↵ in reward
once the agent operates strictly in the real world. We also note that the agent
with k = 1095 has an odd drop-o↵ in performance in its last ten years. 37

4.8 We plot Figure 4.7 with a log scale on the x-axis. We use episode as the label
instead of day to not cause confusion to readers between synthetic and real days.
The log scale allows us to clearly see how many days it takes for the agent to
converge on a profitable policy once deployed in the real world. As we increase the
amount of time the agent spends in the planning model, we observe an exponential
increase in the reward that it starts with in the real world. 37

4.9 These figures depict the performance of di↵erent O✏ine-Online PPO agents
against the baseline Online PPO agent. Aside from k = 1095, all other agents
converge to the same reward once the planning model is removed. This is par-
ticularly noticeable in the drop-o↵ at year ten and year 30 for k = 3650 and
k = 10950. 37

4.10 In this figure, we compare the number of years trained against the weekly average
real reward in $USD.The value of M indicates the first day on which the agent
takes a real step, even though it only takes one step before going back to the
planning model. So we see a familiar drop-o↵ at the 10 years and 30 years for
M = 3650 and M = 10950. However, these dips are not as steep as Figure 4.7
and each of the learning curves gradually converge to the baseline reward. . . . 39

4.11 Here we look at the figure on the left with a log scale on the episodes. We are
clearly able to see that increasing M results in learning a profitable policy faster.
We also notice that M = 1095 converges to a reward value lower than the other
experiments. 39

v

4.12 Unlike Figure 4.9 we do not use dotted lines to indicate synthetic steps because
DAgger PPO alternates between synthetic steps and real steps until �Mi < 1. It
is important to note that this means the red curve is taking steps in the planning
model until year 30, the blue curve is taking steps in the model until year 10,
and so on. This makes learning cost is tricky to evaluate, but we can get a rough
estimate by looking at the value at decayed increments: for the red curve this
would be years 30, 45, 52 and so on. 39

4.13 In this figure we look at the average weekly reward versus year on real days,
varying k for Guardrails Cuto↵ agents. It is evident that increasing k corresponds
to higher rewards in the beginning but after the cuto↵, the rewards converge to
212 but there is a large window of standard error. 42

4.14 Here we look at the log-scaled day of the figure on the left. Cuto↵s of k � 3650
are identical until the 10-year point at which k = 10950 performs better until it
eventually converges back to the same value as the other curves. We also observe
that the value of k has an exponentially inverse relationship with the di↵erence
between experiments in real reward. As we increase k we notice an exponentially
decreasing di↵erence in weekly average reward between the GR-Cuto↵ agents. . 42

4.15 The two figures above illustrate the performance of GR-Cuto↵ agents aggregated
across all di↵erent values of ⌧ 2 [�100, 0, 100, 200, 400, 500]. 42

4.16 This figure shows the average weekly reward across 100 years for di↵erent values of
⌧ . A larger value of ⌧ leads to a larger reward, but with large values ⌧ 2 [400, 500]
the net total actually performs slightly worse. 43

4.17 We plot the figure on the left using a log scale for the day. It is evident that larger
values of ⌧ lead to a performance improvement in the real world. Specifically,
⌧ � 200 with guardrails only rolls out a profitable policy, regardless of the setting
of k. 43

4.18 The two figures above illustrate the performance of GR-Cuto↵ agents aggregated
across all di↵erent values of k 2 [365, 1095, 3650, 10950]. 43

4.19 This figure illustrates the weekly average reward for each year of training using a
Daily-GR agent with di↵erent values of ⌧ . There is a direct correlation between
values of ⌧ and the reward. 44

4.20 We plot the figure on the left with a log scale on the x-axis. Although all the
curves converge to a similar reward value of ⌧ 2 [100, 200] seem to have marginally
larger values. 44

4.21 These figures illustrate the performance of the Daily-GR agent with di↵erent
values of ⌧ . 44

4.22 Here we have the average weekly reward versus year for the Daily-GR agent for
di↵erent settings of k. This data shows that larger values of k correspond to
higher rewards which eventually converge to the same value. 45

4.23 This plot takes the figure on the left and plots the x-axis on a log scale. We are
able to see clearly on which day the agent’s policy becomes profitable. This data
shows that k � 3650 is always profitable. 45

vi

4.24 We illustrate the performance of the Daily-GR agent with di↵erent values of k in
the figures above. 45

4.25 In this figure, we compare the average weekly reward versus year for the best
configuration of each agent against the baseline. All the agents converge to the
same average reward but Daily-GR, GR-Cuto↵, and DAgger upper bound this
convergence. It is important to note that although both Guardrails are showing
actual real-world steps, DAgger and O✏ine-Online alternate between real and
planning model steps so those models may have some days at the beginning
where they actually incur a loss, whereas Guardrails with these choices is always
profitable. 46

4.26 The accumulated financial liability of the agent versus years stepped for di↵erent
agents. This plot illustrates the total training time each agent takes to become
profitable and can be measured in real-world steps. Both Guardrails agents only
report rewards on real-world steps and we observe they are always profitable in
the real world. The DAgger agent takes roughly 7.9 years until it is accumulated
reward is profitable, and the baseline requires 15.18 years. The O✏ine-Online
Agent requires 7.57 years but since k = 3650 the first 10 years are in the planning
model so the real-world accumulated financial liability is 0, equivalent to both
Guardrails agents. 47

4.27 This figure shows Figure 4.25 with a log-scale on the Episode axis. Episodes
are interchangeable with days but to prevent confusion with the data mixing in
DAgger we list episodes. 48

4.28 In this graph, we look at the weekly reward for the last 50 years. We notice that
DAgger seems to perform marginally better, but when the steps are strictly real
(after year 60) the performance converges to the rest of the models. 48

vii

List of Tables

3.1 Summary of steps for conditional inference and generation 14

4.1 Qualitative (Fréchet Information Distance) scores for synthetic data generated
by various models (the lower the better). 30

4.2 Results for classifiers trained on synthetic data generated by models that are
developed using a few labeled data. 33

4.3 Flow MMD values for each prosumer as described in Equation 3.13. 36

viii

Acknowledgments

I would like to thank some of the people who supported me throughout my academic journey.
Thank you to my advisor, Professor Costas Spanos, for opening the door for me to research
opportunities at Berkeley and helping shape my work. Thank you to Hari Prasanna Das for
introducing me to Normalizing Flows, collaborating closely with me on several projects over
the last two years, and being a fantastic research mentor. Thank you to Lucas Spangher for
mentoring me this semester and providing support in my work on energy demand response.
Thank you to Professor Alberto Sangiovanni-Vincentelli for feedback and suggestions on this
work. Thank you to all of the outstanding Berkeley faculty I had the privilege to learn from
and who helped me build a strong technical foundation and fostered my academic curiosity.

Finally, thank you to my family and friends for your unparalleled support and unconditional
love throughout my time at Berkeley–I feel incredibly lucky to have you all by my side.

1

Chapter 1

Introduction

1.1 Background in Machine Learning

In recent years, the availability of large datasets combined with improved algorithms and
an exponential growth in computation power has led to a surge of attention in Machine
Learning (ML). State of the art ML has shown great success on tasks including classifi-
cation, regression, and clustering, especially on complex and high-dimensional input data
distributions. Breakthroughs in neural network sizes, architectures, and fitting procedures
have transformed the use of ML and have shown superhuman abilities in di�cult tasks (such
as driving-cars [50], image classification [82], playing go [76]). As a result, ML has become a
large part of many peoples’ daily lives–for example: speech-recognition [18], fraud detection
[5], email filtering [13], chatbots [60], search engines [8] and many more are all powered by
machine learning algorithms.

Despite these advances, ML methods are often stymied by a lack of data availability in the
real world, which hobbles one of science’s most exciting new tools; unfortunately, these trends
occur as the societal problems ML may address, such as pathogen-related global health and
climate change, become worse and worse. A prominent branch of ML, generative modeling,
has proven to be e↵ective in capturing important statistical properties of the underlying
data and using that to create synthetic samples. Artificially generated data is inexpensive
compared to collecting large datasets, and is useful when privacy requirements limit data
availability, if the data needed does not exist or is not available, and when enough training
data is not available. Many industries and business functions benefit from using synthetic
data, but in this work we will focus on two: healthcare for general pandemic responses (i.e.
COVID-19) and energy (i.e. energy microgrids [24, 33] and energy demand response).

CHAPTER 1. INTRODUCTION 2

1.2 Pandemic Response

The COVID-19 pandemic created a public health crisis and continues to impact lives and
healthcare systems worldwide. In the fight against this pandemic, a number of algorithms
involving state-of-the-art machine learning techniques have been proposed. Data-based ap-
proaches have been used in a number of important tasks such as detection, mitigation, trans-
mission modeling, decision making on restrictions etc. For example, computer vision-based
detection of COVID-19 from chest computed tomography (CT) images has been proposed
as a supportive screening tool for COVID-19 [28], along with the primary diagnostic test of
transcription polymerase chain reaction (RT-PCR). This is beneficial since obtaining defini-
tive RT-PCR test results may take a lot of time in critical situations[10]. Reinforcement
learning based methods were also proposed to optimize mitigation policies that minimize
the economic impact without overwhelming the hospital capacity [52].

The application of machine learning algorithms in healthcare depends upon ample avail-
ability of disease data along with their attributes and labels. At the beginning of a pandemic,
data corresponding to the disease might be unavailable or sparse. Sparse data often have
limited variation in several important factors relevant to disease detection such as age, and
underlying medical conditions. Class imbalance is another issue faced by machine learn-
ing algorithms when pandemic-disease related data is limited. For example, at the onset of
COVID-19, the number of CT scan images corresponding to COVID-19 was far less than that
of other existing lung diseases (e.g. pneumonia). ML models fed with such class-imbalanced
data could be biased and thus provide inaccurate results. Furthermore, the amount of data
with correct labels among all available pandemic data might be minimal. This issue can
arise because healthcare professionals and domain experts who are able to review and label
the data are busy treating patients inflicted with the new disease, or also because of privacy
concerns associated with medical data sharing.

Concurrently, after a new disease has been discovered, healthcare ML tools must rapidly
adapt to the new disease in order to assist medical professionals in diagnosing and treating
a↵ected individuals as quickly as possible. A swift response is also necessary in the design of
policy interventions based on insights from pandemic data. In addition to speed of response,
another issue in development of machine learning algorithms for emerging pandemics is
privacy [63, 17]. Development of solutions to pandemics at the scale of COVID-19 requires
collaborative research which in turn presses the need for open-sourced healthcare data. But,
even if healthcare organizations wish to release relevant data, they are often restricted in the
amount of data to be released due to legal, privacy and other concerns. In this this work
we present a novel conditional synthetic data generation method for augmenting COVID-
19 CT-scan data and motivated by these results we explore the e↵ectiveness of flow based
models in a much more challenging reinforcement learning settings.

CHAPTER 1. INTRODUCTION 3

1.3 Energy Demand Response

As electrical grids decarbonize to assist in achieving climate goals, natural resources like
wind and solar will replace non-rewnewable resources like fossil fuels. This change from an
on-demand energy resource to a volatile one brings out an inconsistency between energy
generation and demand. This paves the way for demand response, where customers will
adjust their demand for energy resources to hours where generation is plentiful. Furthermore,
with the recent advances in photovoltaic technology solar panels have become an e�cient
and reliable solution for customers to harvest solar energy for their own direct use and
resale. These prosumers, in addition to large electric companies, are integral players in
energy marketplace.

As with any marketplace, there is an opportunity for price-setters to buy and sell units at
optimized prices to shift market demand and potentially generate profit. However, given the
complexity, non-stationarity of demand response applying traditional optimization methods
is methods is di�cult. This is an appropriate setting for Reinforcement Learning (RL), an
area of machine learning where an agent repeatedly takes an action, observes the result of
this action in the system, and learns how to take actions which will maximize its notion of
reward. Where traditional methods struggle with handling stochasticity in such systems,
RL methods focus on balancing exploration and exploitation of optimal actions in light of
uncertainty with dynamic programming techniques and deep neural networks.

In this work we consider prosumer aggregations which facilitate the trading of energy be-
tween participants in the aggregation, and balance the net load by purchasing from or selling
to the utility. These prosumer aggregations can be formed for several di↵erent applications:
a private entity can manage these aggregations for a fee or for a profit, and participants
could cooperate their aggregations to maximize social welfare. Each aggregation controls
the energy consumption and generation of each participant. Each prosumer will have an
independent cost minimization objective, and will seek to optimize their time of use to meet
their demand and maximize their own profits. The price of electricity directly influences the
operation of these independent entities, and this strategy is denoted as transactive control
[7]. It is easier for prosumers to respond to a day-ahead price as opposed to real time prices
which may require predicting their load/generation schedule in advance. The aggregator
is able to communicate prices one day-ahead to the participants, who will also process the
utility prices and then schedule their daily operation to their objective. The aggregator’s
task is to design prices to reach its own objective (profit maximization, emissions reduction
etc) while dealing with an uncertain environment. This uncertainty stems from several fac-
tors: the load and response of prosumers to energy prices is unknown to the aggregator, and
the generation of electricity by prosumers is unpredictable and has inherent weather driven
stochasticity.

CHAPTER 1. INTRODUCTION 4

1.4 Method

The purpose of this work is to experiment with the flexibility of flow based methods as a
source of generative modeling.

We begin by presenting a hybrid model consisting of a conditional generative flow and a
classifier for conditional synthetic data generation. The classifier decouples an input image’s
feature representation which is then fed through the flow to remove local noise from the
underlying signal. We then generate synthetic data by perturbing local noise within the
fixed underlying signal. We also propose a semi-supervised approach to generate samples in
the case of label scarcity.

To further assess their e↵ectiveness we investigate the performance of flows on non-
structured tabular data in a proprietary reinforcement learning environment. We examine
how o✏ine training and supervisory planning can be leveraged to minimize data and learning
costs of a price controller agent in a energy demand response context.

1.5 Outline of Thesis

This chapter provides a general overview of the thesis topic, goal, and approach. Chapter 2
covers some preliminaries, and related work. In Chapter 3 we describes the general method-
ologies for our approach and Chapter 4 details the experiments we ran and shows our results.
A discussion of this work is provided in Chapter 5 followed by a conclusion in Chapter 6.

1.6 Novelty

To our knowledge, we present novel innovations in both of the methods we consider and we
are the first to investigate applications of flow based methods in two divergent applications.

In healthcare, we present a novel conditional synthetic generative model which is e↵ective
in creating samples which lead to improved performance in a supervised task (detection of
COVID-19). We also propose and experiment with di↵erent approaches to e�ciently generate
data under label scarce conditions, representing a significant methodological contribution.

In energy demand response, we are the first to try summarizing energy price responses
using a continuous normalizing flow model. Methodologically, we are the first to use that
specific generative model as a planning model to simulate steps in an RL framework.

5

Chapter 2

Background

2.1 Generative Modeling

This work focuses on applying a specific class of deep generative models to two di↵erent
classes of learning problems: supervised learning and reinforcement learning. For the sake
of this work, we will reiterate a conventional definition that we adhere to of generative
modeling: the unsupervised ML task of learning underlying patterns of the input data in
a model which can be used to artificially create new samples that plausibly could have been
sampled from the input data [9]. In this background section we will provide an overview of
the framework we are working with.

The increase in GPU technology over the last decade has led to developments of deeper
generative models capable of creating fake celebrity images, and deep fakes. These applica-
tions will pose legal and ethical challenges but also promise new beneficial technologies. The
potential for applications has brought considerable research interest to generative modeling
in recent years.

Deep generative models are neural networks with millions of parameters and many hid-
den layers used to approximate complex, highly dimensional probability distributions. The
shared goal of all generative models is to learn some unknown, and potentially intractable
probability distribution ⇢0 from some number of independent and identically distributed
samples. A successfully, trained DGM can be used to calculate the likelihood of a given
sample x ⇠ ⇢0, and to create new samples resembling those from ⇢0.

Despite recent success, DGM su↵ers several key mathematical challenges [72]:

1. Generative model training is ill-posed from a information theoretic perspective: iden-
tifying a unique probability distribution from a finite number of samples is impossible.

CHAPTER 2. BACKGROUND 6

X Zg✓(Z)

Figure 2.1: We train a generative model g✓ to transform samples from a simple distribution
Z to g✓(Z). The training objective is to make g✓(Z) indistinguishable from X .

This is why generative models are sensitive to network architecture, hyperparameters
and training algorithms.

2. We need a way to test the quality of generator samples, specifically how close they
resemble the source distribution X . We can do this by either inverting the generator,
or comparing the distribution of synthetic data g✓(Z) to X . Inverting a generator is
not di�cult if the generator is linear, but a linear neural network architecture will
severely limit expressiveness and sample quality. Comparing distributions is not easy
by any means either. They require us to conduct a two-sample test problem during
training, which is di�cult without any prior assumptions on X and g✓(Z).

3. Most DGM approaches approximate intractable X by learning a transformation be-
tween X and some known distribution such as a Gaussian in a d-dimensional latent
space. The choice of the latent space is critical to performance, but usually impossible
to determine and is left as hyperparameter. If the latent space is too small, the gener-
ator will struggle to approximate the data and fit X poorly. If the latent space is too
large we end up with a generator that is not injective which makes training di�cult.

Mathematical formulation

Generative models try to learn a representation of intractable distribution X with support
Rn where n is large and the distribution is complex. For example consider MNIST [61], each
image is 28-by-28 so n = 784 representing each pixel in an image and x 2 R784. We assume
that we have access to a large but finite number of independent and identically distributed
(i.i.d.) samples x ⇠ X referred to as our training data. Our goal is to learn a generator,
parameterized by ✓ to map samples from a tractable distribution Z 2 Rd to Rn as illustrated
in Figure 2.1. The key challenge is defining an objective function to quantify the di↵erence
between X and g✓(Z). Once we have g we can generate new samples and compute the
likelihoods of di↵erent samples.

Hand-designing a function to transform samples from a univariate Gaussian to images of
celebrities is impossible and so we use deep neural networks (DNN) to parameterize g, hence

CHAPTER 2. BACKGROUND 7

the term deep generative models, so we denote the DNN generator g✓ and its weights by ✓.

2.2 Finite Normalizing Flows

In normalizing flows we model the generator as a di↵eomorphic and orientation-preserving
function, in practice this is just the composition of invertible functions. This composition
transforms the probability density from X ! Z by repeatedly applying the change of vari-
ables formula and allows us to calculate the likelihood of a sample x as

pg✓(x) = pZ(g�1
✓ (x))

���det
⇣

@g
�1
✓ (x)

@x

⌘��� (2.1)

where invertibility requires that dim (X) = dim (Z). Despite this restriction, flows can
be used in conjunction with other approaches to work around this. The notation above may
be slightly misleading since the flow function transforms the source distribution, f : X ! Z,
and the generator is actually the inverse g = f

�1. During training the objective becomes
to minimize the Kullback-Leibler (KL) divergence between pX and pg✓ . In practice this is
intractable so we maximize the likelihood of samples from X under pg✓ by minimizing the
negative log-likelihood. As it turns out, the parameters ✓ which minimize this objective also
minimize the KL divergence.

A finite normalizing flow is the full chain of invertible functions

g✓(z) = f
�1
1 � f

�1
2 � · · · � f

�1
K (z) (2.2)

where each layer fi is invertible and has an easily computable Jacobian determinant.

Figure 2.2: Illustration of a normalizing flow model. In this figure we are transforming a
simple distribution p0(z0) to a complex one pK(zK)(Image source: [86])

CHAPTER 2. BACKGROUND 8

We can perform maximum likelihood of a sample using

g
�1
✓ (x) = fK � fK�1 � · · · � f1(x) (2.3)

where log detrg
�1
✓ (x) =

PK
j=1 log detrfj(y(j)), y

(j+1) = fj(y(j)) and y
(K+1) = z = g

�1
✓ (x).

The tradeo↵ in finite normalizing flows is the design of the coupling layers fi, between
expressive transformations and tractable Jacobians. One approach is to use a�ne coupling
layers. Each bijection fi : y

(i�1) ! y
i splits the dimensions in two parts:

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d) + t(x1:d))
(2.4)

where s(·) and t(·) are scale and translation functions mapping Rd ! RD�d, more details
can be found in [19] and [20].

Figure 2.3: One step fi of the Glow model. (Image source: [49])

The Glow model [49] extends on the previous models by replacing the permutation oper-
ation on channeling with 1x1 convolutions and uses the rest of the design same as RealNVP,
details can be found in their paper.

2.3 Continuous Normalizing Flows

Continuous normalizing flows (CNF) remove the need to artificially design coupling layers
and let the model learn those dynamics itself. CNFs approach the flow steps as an euler

CHAPTER 2. BACKGROUND 9

discretization of the continuous transformation g
�1
✓ = fK � · · ·�f1(x). Taking this discretiza-

tion in its limit defines a neural ODE characterizing the continuous dynamics of the hidden
units. Given the parametrized ODE v✓(y(t), t), we solve the initial value problem

y(t0) = z0

@y(t)

@t
= v✓(y(t), t)

(2.5)

where v✓ is a neural network. The change in log-density under this model follows a second
di↵erential equation called instantaneous change of variables formula [11]:

@ log p(y(t))

@t
= �Tr

⇣
@v

@y(t)

⌘
(2.6)

and we can compute the total change in log-density by integrating:

log p(y(t1)) = log p(y(t0))�
Z t1

t0

Tr
⇣

@v

@y(t)
dt

⌘
(2.7)

y(x, t)
l(x, t)

�
=

Z t0

t1

v✓(y(x, t), t)
�Tr(@v

@y(t))

�
dt (2.8)

with initial values
y(x, 0)
l(x, 0)

�
=

x

0

�
(2.9)

for some t 2 [0, T], x 2 R
d and l(x, T) = log detry(x, T). The first component maps points

from x to g
�1
✓ (x) = y(x, T) subject to the dynamics v. The second component is derived

from the instantaneous change of variables formula. The dynamics are trained by minimizing
negative likelihood, details can be found in [65].

2.4 Related Works

In healthcare, synthetic data generation has been proposed to expand the diversity and
amount of the existing training data, often to improve the robustness of machine learning
models. [24] propose a generative adversarial network (GAN)-based synthetic data generator
to enhance the diversity and the amount of skin lesion images. [51] synthesize pathology
images for cancer with realistic out-of-focus characteristics to evaluate general pathology
images for focus quality issues. [32] propose synthetic generation to produce high-resolution
artificial radiographs. In combating COVID-19, [6] propose a method of strengthening
the COVID-19 forecasts from compartmental models by using short-term predictions from
a curve fitting approach as synthetic data. Similarly, [84] and [45] present a conditional

CHAPTER 2. BACKGROUND 10

GAN-based generator for synthetic chest X-ray/CT scan data generation and augmentation
for robust COVID-19 detection. These prior works do not focus on the case where data with
proper labels might be unavailable or sparsely available, whereas we tackle this challenge
using a semi-supervised approach. We also show the robustness achieved using our model
via experiments with several bootstrapping methods.

There has been considerable work studying demand response interactions in energy de-
mand response [21, 1, 2, 29]. Works in this area investigate energy market equilibrium
behavior and focus on consumer response to prices. In contrast, we focus on controlling
pricing to learn and manipulate both consumer responses and market behavior. There is
prior work on coordinating pricing strategies of both appliances and buildings to achieve
demand profiles [56, 78, 15, 47], but these strategies achieve dynamic energy management
using direct model predictive control. Instead, we achieve dynamic pricing using RL, which
is still relatively new [46, 55, 77, 3, 43]. Specifically, the use of supervisory planning models
in online learning, especially in an energy demand response setting, is relatively new [42, 44].
One of the most important components of these planning models is the ability to capture the
underlying stochasticity of demand in our environment. Competitions such as The Global
Energy Forecasting Competition (GEFCom) have showcased numerous successful forecasting
techniques including quantile regression, random forests, autoregressive methods, and neural
networks [36, 38, 37] . Unfortunately, these methods are not as successful when extended
to multivariate distributions. Our use of continuous normalizing flows to summarize these
distributions in conjunction with a planning model contributes to RL literature.

In conditional generation, a hybrid flow and a GAN-based model have been proposed in
CAGlow [54]. In general, GAN-based methods are known to be hard to train [73] and do not
provide a latent embedding suitable for feature manipulations [49]. In contrast, we proposed
a conditional generation method with e�cient decoupling of the conditional information and
local noise over an embedding space, along with a flow based generator, which recently has
proved e�cient in synthetic data generation [35, 16]. We compared results for our proposed
method over CAGlow and ACGAN for synthetic COVID CT scan generation, and showed
improved results.

Decoupling of global and local representation for synthetic generation has been pro-
posed in [58], where the global information is decoupled using a Variational AutoEncoder
(VAE) [48]. For conditional synthetic generation, it is necessary that the feature representa-
tions salient to the given conditions (COVID/Non-COVID) are decoupled from local noise,
which is not guaranteed while extracting the same using a VAE. By employing a classifier
network for the same, we ensure the relevant conditional information is not lost in the local
noise.

Semi-supervised learning approaches to enhance classification models have been promi-
nent in domain adaptation tasks, where knowledge about the labels is generally unavailable

CHAPTER 2. BACKGROUND 11

in the target domain except for a few samples. A number of domain adaptation models,
such as FADA [62, 81, 89, 87] etc. employ few-shot learning approach, leveraging the few
labeled data available to make the model e�cient. In healthcare, semi-supervised learning
approaches have been used for skin disease identification from limited labeled samples in
[59], to enhance X-ray classification in [68] and in COVID-19 detection from scarce chest
X-ray image data in [41]. We propose the use of semi-supervised learning in the space of
synthetic data generation, to adapt our proposed generative model to label scarce scenarios,
common at the onset of a pandemic.

12

Chapter 3

Methodology

Deep convolutional neural networks (CNN) have proven to be remarkably e↵ective on classi-
fication tasks; however, these networks rely on a large amount of data to prevent overfitting.
Overfitting is a phenomenon that occurs when a statistical model learns a high variance
function to fit the training data perfectly but fails to accurately classify data the model has
not seen before. Furthermore, many applications of CNNs are held back by a lack of access
to big data, including those in medical fields and the energy sector. As a result, there is
currently a significant e↵ort to create and improve Data Augmentation techniques that can
enhance the size and quality of datasets used by CNNs. We can primarily break down these
data augmentation techniques into three categories: geometric augmentation, photometric
augmentation, and entropy-inducing augmentations [75]. Geometric transformations include
rotation, flipping, and cropping. Photometric transformations include sharpening, color cast-
ing, jittering, and edge enhancements. Unlike geometric and photometric augmentations,
entropy-inducing augmentations are not transformations. Specifically, these augmentations
require adding datapoints that do not already exist in the data. For example, if we in-paint
accessories (i.e., earrings, jewelry, hat) onto an individual and include that as a new sample,
it would be considered an entropy-inducing augmentation. Similarly, if we were working with
an image generation model and augmented our original dataset with synthetically generated
images from a generative adversarial network (GAN) [25], those images would be entropy-
inducing since they are adding new and unseen samples to our data. This work will use
normalizing flows as our deep generative model of choice for image generation.

Geometric and Photometric transformations are su�cient for augmentation when the
raw dataset is already able to provide decent performance. These augmentations add an
inductive bias which encourages the network to focus on patterns in local image structure
for classification. Entropy-inducing augmentations are necessary when working with imbal-
anced datasets or label scarce datasets. An imbalanced dataset does not provide enough
information to learn an e↵ective deep network. The objective will encourage the network to
focus on classifying the majority class correctly while neglecting the minority class, and this

CHAPTER 3. METHODOLOGY 13

is reflected in poor f1-scores. In label scarce domains we are forced to choose between lower
classification accuracy and a smaller dataset since samples with no labels cannot be used for
training in a supervised classification model. We seek to resolve both of these problems with
Normalizing Flows.

3.1 Augmenting medical image-data

In this section, we present a novel conditional synthetic data-generation method to augment
the available pandemic data of interest. Our proposed method can also help organizations
release synthetic versions of their actual data with similar behavior in a privacy-preserving
manner. At the onset of a pandemic, when the availability of disease data is limited, our pro-
posed model learns the distribution of available limited data and then generates conditional
synthetic data that can be added to the existing data in order to improve the performance
of machine learning algorithms. To tackle the challenge of label scarcity, we propose semi-
supervised learning methods to leverage the small amount of labeled data and still generate
qualitative synthetic samples. Our methods can enable healthcare ML tools to adapt to a
pandemic rapidly.

We apply this method to generate conditional CT scan images corresponding to COVID
cases (Fig. 3.1) and conduct qualitative and quantitative tests to ensure that our model
generates high-fidelity samples and is able to preserve the features corresponding to the
condition (COVID/Non-COVID) in synthetic samples. As a downstream use of conditional
synthetic data, we improve the performance of COVID-19 detectors based on CT scan data
via synthetic data augmentation. Our results show that the proposed model is able to
generate synthetic data that mimic the real data, and the generated samples can indeed be
augmented with existing data in order to improve COVID-19 detection e�ciency.

Figure 3.1: Synthetic CT scans generated by our proposed model, with Non-COVID (normal
and pneumonia cases, images with green border)/ COVID (images with red border) as the
condition.

CHAPTER 3. METHODOLOGY 14

Figure 3.2: Illustration of the proposed conditional synthetic generation. (Best viewed in
color)

Inference Phase Generation Phase

1. (Classifier) Train the COVID and Non-COVID classifier. 1. (Classifier) Corresponding to an input sample x, find its
conditional feature representation z using the trained classifier.

2. (Flow) For each input sample x, 2. (Flow) Sample a local representation ⌫̃ ⇠ N (0, I).
2.1 Feed x to the classifier and extract the conditional 3. (Flow) Get a synthetic sample x̃ = f

�1
✓ (⌫̃, z).

feature representation z from its penultimate layer.
2.2 Get the local representation as ⌫ = f✓(x, z)
2.3 Train the flow model with maximum-likelihood.

Table 3.1: Summary of steps for conditional inference and generation

We present a hybrid model consisting of a conditional generative flow and a classifier for
conditional synthetic generation. We also introduce a semi-supervised approach, to generate
conditional synthetic samples when a few samples out of the whole dataset are labeled.

COVID and Non-COVID Classifier

Our model is characterized by the e�cient decoupling of feature representations correspond-
ing to the condition and the local noise. Suppose we have N samples X with labels Y , with
2 possible classes, COVID/Non-COVID. We first train a classifier C (consisting of a feature
extractor network denoted by g(·), and a final fully-connected and softmax layer, denoted by
h(·), i.e. C(x) = h(g(x))) to classify the input sample (which in our case are CT Scans) and
associated labels as COVID and Non-COVID. Mathematically, this step solves the following

CHAPTER 3. METHODOLOGY 15

minimization with backpropagation:

min
C

LC(X, Y) = �E(x,y)⇠(X,Y)

2X

l=1

⇥
I[l=y] log C(x))

⇤
(3.1)

By virtue of the training process, the classifier learns to discard local information and
preserve the features necessary for classification (conditional information) towards the down-
stream layers. Once the classifier is trained, we freeze its parameters and use it to extract
the conditional (COVID/Non-COVID) feature representation z = g(x) (as a vector without
spatial characteristics) at the output of the feature extractor network for input image x. The
dimension of z is chosen such that dim(z) << dim(x).

Conditional Generative Flow

During the training phase for the flow model, the conditional feature representation z is fed
to the conditional generative flow. The flow model is trained using maximum-likelihood,
transforming x to its local representation ⌫, i.e.

f✓(x, z) = ⌫ ⇠ N (0, I) (3.2)

with ⌫ having the same dimension as x by the inherent design of flow models. We use the
method introduced by [58] to incorporate the conditional input z in flow model. Coupling
layers in a�ne flow models have scale (s(·)) and shift (b(·)) networks [20, 14], which are
fed with inputs after splitting, and their outputs are concatenated before passing on to the
next layer. We incorporate the conditional information z in the scale and shift networks.
Mathematically, (with x as the input, D as input dimension, d as the split size,and y as
output of the layer),

x1:d, xd+1:D = split(x)

y1:d = x1:d

yd+1:D = s(x1:d, z)� xd+1:D + b(x1:d, z)

y = concat(y1:d, yd+1:D)

(3.3)

Since flow models are bijective mappings, the exact x can be reconstructed by the inverse
flow with z and ⌫ as inputs. During the generation phase, for an input sample x, we compute
the conditional feature representation z. Keeping the conditional feature representation the

CHAPTER 3. METHODOLOGY 16

same, we sample a new local representation ⌫̃, and generate a conditional synthetic sample
x̃, i.e.

⌫̃ 2 N (0, I), x̃ = f
�1
✓ (⌫̃, z) (3.4)

Here, x̃ has the same conditional (COVID/Non-COVID) features as x , but has a di↵erent
local representation. An illustration of the proposed model is provided in Fig. 3.2 and the
steps for the inference and generation phases are summarized in Table 3.1.

Semi-supervised Learning for Conditional Synthetic Generation
under Label Scarcity

In reality, often a small amount of the already limited pandemic data available are labeled.
Consider the case when only a few of the datapoints are labeled, denoted by {Xl

, Y
l}. The

rest of the data (unlabeled) is denoted by Xu. To generate conditional synthetic samples un-
der such label scarce situations, we propose a semi-supervised method to modify the classifier
design process, in order to e↵ectively decouple the feature representations corresponding to
the conditions.

We first design a label learning algorithm to assign presumptive labels Ỹ
l to the un-

labeled samples Xu. Assuming ki labeled samples are available for class i, we train the
classifier network using the labeled samples only and compute in the embedded (z) space (1)
the centroid vector ci for each class and (2) a similarity metric between each unlabeled target
sample x

u 2 Xu and the specific centroid. Depending on the dimension of the transformed
feature space, this similarity metric can simply be a Gaussian kernel to capture local simi-
larity [83], or the inverse of Wasserstein distance [74] for better generalization with complex
networks.

Ideally, the semi-supervised scheme should be able to (1) identify the correct labels of
unlabeled target samples, and (2) update the classifier with the additional information. We
establish an alternating approach that recursively performs (1) fixing the feature mapping
g and propagating presumptive labels using a greedy assignment, i.e., an unlabeled sample
is presumed to have the same label to its closest centroid, and (2) updating the feature
mapping (the classifier) as supervised learning by treating the presumptive labels as true
labels.

The proposed greedy propagation, intuitively simple and practically easy to implement,
in fact, has theoretical guarantees since the entropy objective is approximately submodular
when the feature mapping is fixed. Please refer to [88] for a detailed theoretical analysis. The
above is conducted alternately until the convergence of the feature mapping and presumptive

CHAPTER 3. METHODOLOGY 17

label assignment. In practice, the convergence is usually achieved in a few iterations. Once
the classifier has been trained with this semi-supervised approach, the conditional generative
flow training is performed as specified before in the conditional generation section.

3.2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method where an agent is trained in an
environment where it learns to take actions that will maximize some reward. Formally, RL
is defined as an MDP made up by the tuple: (S,A, R, �) where S is the state space, A is
the action space, R is the reward, and � is a discount factor. The agent’s functioning in the
MDP is modeled as a discrete-time stochastic control process [22] where the agent interacts
within its environment at s0 2 S, gathering an initial observation !0 2 ⌦. At each timestep t

the agent chooses an action at 2 A according to a policy function, which maps S �! A. As
a consequence of actions, the agent receives a reward rt, and the environment transitions to
st+1. The agent seeks to maximize the long term discounted sum of rewards; i.e. maximize
J where:

J =
1X

t=0

�
t
R(s, a) (3.5)

Agent

Observation
Ot

Reward
Rt

Rt+1

Ot+1

E

Action
At

Utility Price

Figure 3.3: Agent-environment interaction in the microgrid environment E . At each timestep,
the agent takes an action At and obtains a reward Rt+1. The state of the environment
transitions to St+1 but since the system is partially observed and the agent only sees Ot+1.

CHAPTER 3. METHODOLOGY 18

The Microgrid Environment

As illustrated in Figure 3.3, the microgrid environment E , simulates energy demand dynamics
between an energy supplier, a middleman, and prosumers. At each time-step the agent selects
an action at = (abuy

t , a
sell
t) from the continuous 48-dimensional action space A. We define

a
buy as the price the prosumer will pay to the agent for 1 Kilowatt-hour (kWh) of energy,

and a
sell as the price the agent will pay to the prosumer for 1 (kWh) of energy. This action

is passed to the microgrid environment and modifies its internal state yielding a prosumer
response pt 2 R24. In general E is stochastic. Each time-step represents one full day, and
at the start of each timestep the external grid (large energy provider i.e. PG&E) outputs
ut = (ubuy

t , u
sell
t) 2 R48. These external grid prices are determined from historical data. The

environments internal state is not observed by the agent; instead the agent observes ot 2 R72

comprised of pt�1, ut, and a noisy reading of the total energy generated by prosumers on day
t. The agent also receives a reward rt representing its net cashflow.

The prosumer response pt(h) is di↵erence between its electricity demand and generation
at hour h. The prosumer will purchase pt(h)(kWh) of energy if the value is positive, and
sell |pt(h)| if the value is less than 0. The prosumer trade with the agent only if it provides
a strictly competitive rate, i.e. a

buy
t (h) < u

buy
t (h) or a

sell
t (h) > u

sell
t (h). At each timestep the

prosumer will run a convex linear optimization to minimize its total cost of energy for the
day, thus we can define demand response as some unknown function:

f(st, at) = pt (3.6)

where st 2 S is the internal state of the grid.

We can configure E by specifying the number of participating prosumers, and battery
sizes which define the energy generation capacity of each prosumer. We define the set of
prosumers as P , and denote prosumer participant j as p

j.

The microgrid requires the conservation of energy. The agent aims to insert itself into
this equilibrium and make a profit by serving as the middleman between multiple prosumers
and the external grid. To sustain this equilibrium, the agent must honor at, so it cannot
default on its prices. This means if a

buy
t (h) < u

buy
t (h) and the net demand response from

prosumers
P

j2P p
j
t(h) is positive, then the agent is forced purchase this surplus from the

external grid at rate u
sell
t (h). Alternatively if a

sell
t (h) > u

buy
t (h) and

P
j2P p

j
t(h) < 0 , then

the agent has extra Kilowatt-hours which it will sell to the utility company at u
buy
t (h) — the

agent cannot save energy to use at later hours or timesteps.

Since the agent does not observe the internal state of our system, the task is partially

CHAPTER 3. METHODOLOGY 19

observed, and many environment states are aliased, i.e., it is impossible to understand pt

from only ot. The goal of the agent is to interact with E by selecting actions that will
maximize reward by maximizing its net cashflow. Our time-horizon T = 1, since we are
interested in a single-day feedback loop. This means our episode length is one day, and the
agent receives its reward in dollars for that day.

Cashflow Reward

The agent’s net cashflow, can be broken down by handling its interactions with the external
grid and prosumers separately. From the discussion of energy equilibrium, we define the
cashflow between the agent and the external grid as money to utility. If we define the net
prosumer energy demand as Pt(h) =

P
j2P p

j
t(h) and Pt(h) = 0 when at(h) is not a strictly

competitive rate, then at timestep t we calculate the net cashflow to the utility from the
agent:

money to utility =
24X

h=1

1Pt(h)>0(Pt(h)abuy
t (h)) + (1� 1Pt(h)>0)(Pt(h)asell

t (h)) (3.7)

where Pt(h)abuy
t (h) is a positive cashflow for the external grid (utility), and Pt(h)asell

t (h)
is a negative cashflow so the net cashflow to the utility is just the sum of these two terms.
Meanwhile, we define the cashflow between the agent and the prosumers as money from
prosumers. This interaction happens after the utility interaction to ensure the energy is
conserved in our system and the agent has fulfilled its commitments. We calculate the net
cashflow to the agent from the prosumers at timestep t:

money from prosumers =
X

j2P

24X

h=1

1pjt (h)>0(p
j
t(h)abuy

t (h)) + (1� 1pjt (h)>0)(p
j
t(h)asell

t (h))

(3.8)

where p
j
t(h)abuy

t (h) is a positive cashflow and p
j
t(h)asell

t (h) is a negative cashflow, so the
net cashflow to the agent is the sum of these two terms. There is an arbitrage opportunity
if a

sell
t (h) > a

buy
t (h). Any prosumer would be able to drive money from prosumers to �1.

However, the prosumer’s demand response optimizes energy cost and will not take advantage
of this situation, so we add a large penalty for actions that violate this inequality.

The RL agent’s reward at timestep t as rt = (money from prosumers - money to utility):

CHAPTER 3. METHODOLOGY 20

rt =
X

j2P

24X

h=1

1pjt (h)>0(p
j
t(h)abuy

t (h)) + (1� 1pjt (h)>0)(p
j
t(h)asell

t (h))

�
⇣ 24X

h=1

1Pt(h)>0(Pt(h)abuy
t (h)) + (1� 1Pt(h)>0)(Pt(h)asell

t (h))
⌘ (3.9)

Thus the goal of our agent is to maximize its profit margin. We also note that our reward
is in units of USD. The dynamics of this profit margin are driven by the relationship between
a
buy
t � a

sell
t , ut, and p

j
t .

MDP formulation

After prices are posted the environment transitions from state st to st+1 according to the
transition function P(st+1|st, at). In MDP terminology, our RL agent is learning is a feasible
policy ⇡(at|st) which specifies a distribution over prices at 2 A. When we repeatedly apply
⇡ across time we generate a state-action trajectory (or rollout) (s1, a2, s2, a2, . . . , sT , aT),
where P⇡(s1, a1, s2, a2, . . . , sT , aT) = P(s1)

QT
t=1 ⇡(pt|st)P(st+1|st, pt). The task of building

a profitable agent is formulated as finding a policy that maximizes the discounted expected
reward:

max
⇡2⇧

E
h TX

t=1

�
t�1

r(st, at)|s1
i

(3.10)

Where s1 is our initial state and the expectation is maximized with respect to the tra-
jectory induced by ⇡ and subject to environment transition dynamics.

This MDP cannot be solved directly since we do not know the state transition dynamics
P(st+1|st, at), nor the demand response function f : S ⇥A! P . We can leverage deep RL
to tackle these issues.

Model-free RL

Model-based RL has been used extensively in energy management and grid control appli-
cations. The unknown functions are learned from o✏ine data before optimizing the policy
in these contexts. These models, which learn from the o✏ine models, are referred to as
planning models [31] in reinforcement learning because the agent spends time interacting
with the planning model instead of the ”real world” environment.

CHAPTER 3. METHODOLOGY 21

Model-free RL skips the planning model by learning directly from the real-world envi-
ronment to optimize the policy. At the core of this approach is the exploration-exploitation
tradeo↵. Exploration is the process of trying actions to understand the environment’s re-
sponse and reach more of the state space to understand the reward surface better, not just
to achieve the highest reward. An example exploration strategy is to sample actions within
a neighborhood around the agent’s chosen price. Meanwhile, exploitation is strictly choosing
actions to optimize short-term rewards. Since model-free RL does not contain a planning
model, we rely on the policy to implicitly encode knowledge of the state space, so striking
the right balance of exploration and exploitation is critical. The amount of data needed to
learn a good pricing policy that maximizes reward translates to the number of days the agent
incurs financial liability in the real world. This financial liability during the learning phase
could make the model-free price controller economically not viable. This cost motivates the
need for a nonstandard approach that is more favorable for deployment.

We propose a deep RL approach that uses a planning model to reduce the learning cost
of model-free RL. We will use a model-free RL template that can e↵ectively learn from a
limited amount of real-world data and incurs a minimal learning cost.

Model-free deep RL approach

Policy Gradient and Value iteration are the two main RL techniques for model-free learning.
We will focus on policy gradient and more specifically actor-critic architectures. Actor-critic
methods have an actor-network which selects actions that are processed by a separate critic
network that estimates the long-term value of the actions and nudges the policy accord-
ingly. Proximal Policy Optimization (PPO) is a state-of-the-art actor-critic architecture
that updates the policy by maximizing the PPO-Clip objective (taken from [67]):

✓k+1 = arg max
✓

1

|Dk|T
X

⌧2Dk

TX

t=0

min
⇣

⇡✓(at|st)
⇡✓k(at|st)

A
⇡✓k (st, at), g(✏, A⇡✓k (st, at))

⌘
(3.11)

where Dk = {⌧i} is a set of trajectories collected by running policy ⇡k = ⇡(✓k) in the
environment, R̂t is the reward-to-go, and At is any method of advantage estimation based
on V�k

where

�k+1 = arg min
�

1

|Dk|T
X

⌧2Dk

TX

t=0

⇣
V�(st)� R̂t

⌘2

(3.12)

We seek to explore if an RL agent can preemptively estimate the most profitable demand
response price using historical data and implicitly predict causal factors. We investigate if

CHAPTER 3. METHODOLOGY 22

we can pre-train an agent in simulations that can adapt to real-world data and whether
or not this is more e↵ective than employing a softer guardrails approach which includes
incorporating o✏ine data into online training.

We use the RLLib implementations of PPO; with its default neural network architecture,
we provide training hyperparameters in Appendix A. The reward for the price-setting agent
is the net cashflow defined in Equation 3.9.

3.3 O✏ine RL and Synthetic Data

In online reinforcement learning, the policy at update k, denoted ⇡k, is updated with data
rollout(s) collected using ⇡k. In o↵-policy reinforcement learning, the agent accumulates
its experience into a data bu↵er (replay bu↵er) D so that the bu↵er contains samples from
⇡0, ⇡1, . . . , ⇡k and all of this data is used to update the policy. In o✏ine reinforcement
learning, some unknown behavioral policy ⇡� is used to collect D. Once D is collected, it is
not altered, and the policy is trained without interacting with the MDP, and the policy is
only deployed after being fully trained. Figure 3.4 illustrates the relationship between these
di↵erent approaches.

In this section, we focus on data-driven online reinforcement learning. Specifically, we
explore how we can leverage o↵-policy data to limit data-cost and learning-cost of our agent
in an online setting. Data-cost is the cost of acquiring the rollout data, and learning-cost
is the financial cost accumulated with an agent that loses money during rollout, where net
cashflow is defined in Equation 3.9. We take this approach since the rollout data in D is not
directly used to learn the policy ⇡, unlike with o↵-policy algorithms like Soft Actor-Critic
(SAC) [30]. So we use D to learn an approximation of the underlying transition function in
the environment. This allows us to use the o✏ine data in a supervised planning model.

Figure 3.4: Illustration of classic online reinforcement learning (a), classic o↵-policy rein-
forcement learning (b), and classic o✏ine reinforcement learning. (Image source: [53])

CHAPTER 3. METHODOLOGY 23

3.4 Synthetic Data Generation

Energy demand response datasets are expensive. A single sample in our dataset is an entire
day of demand response interaction. Furthermore, the external grid prices ut and prosumer
responses for the first ten prosumer participants are based on real-world data. Experiments
with o✏ine RL done in this environment require upwards of 70 years of data [44], and in
the real world, this can be an infeasible constraint. If we could get access to more data, we
would be able to explore o✏ine RL algorithms without incurring a high data cost. In the
classical o✏ine reinforcement learning settings, we store and use data collected from some
policy ⇡�. We propose applying generative methods to augment the data bu↵er D in o✏ine
RL problems, and in the micro-grid environment, we can incorporate this data directly into
a planning model. We will use ⇡�? to denote the policy induced by synthetically generated
data. Our goal will be to generate data that resembles real rollout data. This will reduce
our data cost and significantly improve the performance of agents trained with data-driven
methods. In this section, we will distinguish ⇡� and ⇡�? , and in practice, ⇡� can come from
any policy. Our goal is to synthesize data inducing some ⇡�? which spans the agent’s action
space, and then we can use this data to train a planning model which will allow the agent to
learn a better policy and converge to that policy faster. In the remaining sections we handle
⇡� and ⇡�? interchangeably and refer to an arbitrary behavior policy for o✏ine training as
⇡�.

Continuous Normalizing Flows

The synthetic generation problem statement is to synthesize tabular data which resembles
rollouts from ⇡�. The input data is 73-dimensional: at 2 R48, pt 2 R24, and day t 2 [0, 364].
We experimented with including the utility information and building information, which
indicate the usage behavior of the specific prosumer who generates response pt, but we prefer
to leave accessible state variables out of the data since they add to the number of columns,
greatly increasing the sparsity of our data and are not the most important covariates for the
underlying system.

We use continuous normalizing flows because finite flow models fail to perform well on
non-image datasets. This is because the choice of permutation heavily influences finite
flows in their coupling layers. This is fine with image data since we can incorporate prior
knowledge about image structure, like the importance of neighboring pixels and splitting
across channels. There is no such intuition with tabular data, so we do not know how to come
up with sensible partitions of these features. Free-Form Jacobian of Reversible Dynamics
(FFJORD) [26] completely sidesteps this issue by deferring the decision of how to permute
features to the network parameters. This leads to good performance, and in fact, FFJORD
consistently outperforms competing reversible models. Furthermore, on tabular datasets, the
performance of FFJORD is on par with state-of-the-art autoregressive methods (MADE [23],
MAF [66], TAN [64], MAF-DDSF [40]) all of which cannot be e�ciently sampled from, and

CHAPTER 3. METHODOLOGY 24

some cannot be sampled from at all. OT-Flow [65] iterates upon FFJORD by incorporating
an optimal transport regularizer, a potential function, and other engineering optimizations
which ultimately allows it to train roughly 20x faster than FFJORD with better performance;
for these reasons, we use OT-Flow as our generative model.

Maximum Mean Discrepancy

Most normalizing flows use the loss C for evaluation. The loss C is used to train the
forward flow and the testing set loss should provide the same qualification, however, as
reported in OT-Flow [65] there are cases where testing loss is low even when the flow is
poor. Furthermore, as flows are invertible this also implies the data generated by the reverse
flow ⇢0 is also poor. For this reason, we use maximum mean discrepancy (MMD) [27] to
evaluate the flow:

MMD(X, Q) =
1

N2

NX

i=1

NX

j=1

k(xi, xj) +
1

M2

MX

i=1

MX

j=1

k(qi, qj)�
2

NM

NX

i=1

MX

j=1

k(xi, qj) (3.13)

where X = {xi}Ni=1 are samples from ⇢0, and we generate Q = {qi}Mi=1 where qi = f
�1(yi)

and we use a Gaussian kernel k(xi, qj) = exp(�1
2 ||xi � qj||2). MMD tests the di↵erence

between these two distributions (⇢0 and our flow estimate of ⇢0). A low MMD value indicates
that the two distributions, real samples and synthetic samples are likely to have been drawn
from the same distribution [27]. We do not use MMD in training and only use it at the end
to evaluate the e↵ectiveness of our generative modeling e↵orts.

Interpreting C

The loss C mentioned above is one of three components that are optimized, the remaining
two terms are regularizers whose weights ↵1, ↵2 require finetuning. We use a hidden space of
size m = 256, nt = 8 steps in the Runge-Kutta solver, and 2 ResNet layers for the potential
model � for all experiments. The loss C is derived from the KL divergence between ⇢0 and
⇢1, the full derivation is available in [65]. A low C does not imply good quality generation,
but it does indicate whether or not training was successful. Specifically, we seek to minimize
the KL divergence between our flowed distribution and target distribution

DKL = E⇢0(x){log(⇢0(x)) + C(x, T)} (3.14)

where the flowed distribution at time T is denoted ⇢(x, T) and our target distribution
is the normal distribution. Specifically, we want this value to be small, so we expect a

CHAPTER 3. METHODOLOGY 25

negative value for C since log(x0) is an increasing function. This can be misleading as the
only negative term in C(x, T) is l(x, T) = log detrf(x). It is important to note that this
gradient is not a loss surface, rather, it describes the change in density from ⇢0 to our target
Gaussian distribution.

Unlike our conditional normalizing flow with image data, there is no an easy way for us
to incorporate conditional information into the coupling layers as we do on CT-Scans with
data features [58]. Specifically, with tabular datasets, time-series features are important,
and there has been work done in incorporating past hidden state and attention into the
coupling layers [79, 70], but there is no easy way for us to concatenate it into the flow since
the network parameters decide the coupling patterns and how frequently they occur.

This begs whether our data will have any benefit to our downstream task. Specifically, if
we are not adding any new information to our generative model, we must only add noise that
will certainly stunt performance. However, we believe that OT-Flow shines through in this
application because it allows us to generate from minimal data. This means the generator
is learning to extract the most salient features from ⇢0 = ⇡� such that with a synthetically
augmented dataset the net signal-to-noise ratio is still very low. Thus our artificially gener-
ated data functions as feature engineering to de-noise our real data. Using a planning model
leads to better estimates of the underlying transition function and, accordingly, better and
faster policy convergence.

3.5 Online Reinforcement Learning

We begin with a naive approach to using PPO to learn policies using purely online data by
deploying the model in the real-world microgrid environment. This approach is classic online
reinforcement learning, and we refer to this as Online PPO.

3.6 Approximating Prosumer Response

O✏ine data does not work out of the box with on-policy training, so we explore leveraging
the o✏ine data from ⇡� to implement a planning model. The critical component of this
planning model is an approximation of the prosumer demand response function, as described
in Equation 3.6. If our approximation function is fitted to the o✏ine data f

0 ⇡ f , we filter
out actions that may lead to lower rewards during the policy gradient. We do this by using
f
0 to provide an approximate distribution of prosumer response from the action distribution,

and then we apply the reward function and check if it corresponds to positive net cashflow.
If the reward approximation indicates the action as unprofitable, we resample a di↵erent
action.

CHAPTER 3. METHODOLOGY 26

We try two approaches to learn this approximation function. The first uses 10 fully
connected neural networks �1, �2, . . . , �10 (batch normalized, with ReLU activations, details
provided in Appendix B) to learn f . The networks receive at, t and predict pt. The neural net-
work approach requires fine-tuning, so we also tried querying the o✏ine history for a response.
We queried the o✏ine response for a matched prior experience in several di↵erent ways: no-
history, full-day, and k-hour history. No-history builds up the day response by querying the
o✏ine data one hour at a time (abuy(h), asell(h)), full-day queries for the entire 48-dimensional
at, and k previous hours queries for (abuy(h�k), asell(h�k), . . . , abuy(h), asell(h)). We imple-
ment KD-Trees with caching to query the o✏ine data e�ciently, but this approach fails to
scale well when ⇡�? contains more than 30 years of history, so in our experiments, we elect
to use the neural network approach.

3.7 O✏ine-Online RL

With the online PPO procedure, we collect 25 years worth of training data, and we denote
the policy-induced by this data as ⇡�. The aggregate o✏ine data has 121 columns: 48 for ut,
48 for at, 24 for pt, and one to record each day. Our goal is to train the best agent using a
limited amount of data to reflect the real-world setting. We should also note that although
the utility prices theoretically provide bounds on the agent action space, the agent may
violate these bounds and o↵er non-competitive prices to express the action of doing nothing
and e↵ectively sit out that day; future work could entail structuring the action space so that
such actions do not happen ever. Although PPO is an on-policy algorithm, we leverage state
transitions that originate from ⇡� in a planning model to train a new policy. We propose
training PPO in the planning model for k steps and then deploying this warm-start policy
in the real world. The planning model is parameterized by �1, �2, . . . , �10 and trained on
the o✏ine dataset of state transitions collected from our previous simulation combined with
our synthetically generated simulations. We hypothesize that this will warm-start the policy
network and enable the agent to learn a profitable policy with minimal real-world steps.
This process decreases the data cost and learning cost induced by training the model. We
refer to this procedure as O✏ine-Online PPO, motivated by [42], because this network is
first trained fully on synthetic o✏ine data before transitioning to online data.

The idea of pre-training an on-policy algorithm with a behavioral cloning and tuning the
policy gradient after has been explored in dexterous manipulation tasks [69]. E↵ectively the
data from ⇡� will train the critic with purely random exploration, but we need to ensure the
critic transfers its learning without causing it to learn from scratch again. Policy gradient
methods like Actor-Critic rely on the stochasticity of the action distribution to perform
exploration. This approach is susceptible to poor initialization, so in addition to planning
models, we propose future works to explore alternative ways of leveraging behavioral cloning
for better exploration.

CHAPTER 3. METHODOLOGY 27

3.8 Dataset Aggregation

Dataset Aggregation (DAgger) [71] is an iterative algorithm that trains a policy solely de-
pendent on the distribution of states of the original and generated dataset. We provide
pseudocode for DAgger from [4] in Algorithm 1.

Algorithm 1 DAgger Algorithm
1: Initialize D ;
2: for i = 1 to N do
3: Sample T-step trajectories using ⇡i

4: Collect Di = {(s⇡i , ⇡
?
i)} . dataset of visited states by ⇡i, and actions by expert ⇡

?
i

5: Aggregate datsets D D
S

Di

6: Train policy ⇡i+1 on D
7: end for
8: return best ⇡i on validation set

DAgger was initially used to solve the problem of coalescing the distribution between
training states from an expert behavioral policy and testing states from the RL agent. We
explore interleaving o✏ine and online training using a DAgger style approach. We incor-
porate the o✏ine data in our training by alternating between taking synthetic steps in the
planning model and the real-world environment, and we exponentially decay the ratio of
planning model steps as training continues. We hope that the RL agent learns as much
about the planning model’s environment dynamics and prosumer response function as possi-
ble since there is no cost for an unprofitable agent in the planning model, and sampling data
is cheap. As the agent learns from the planning model, real-world steps are slowly introduced
into the dataset until we have an agent that performs well in the target environment without
incurring a high learning cost. Since PPO is on-policy, we cannot mix artificial experiences
in a replay bu↵er, instead we keep track of timestep and on synthetic steps we circumvent
the step where the grid calculates the prosumer response and use our approximation function
instead, we refer to this as DAgger PPO and provide an implementation in Algorithm 2.
Although this approach still has an upfront 30-year data cost to train the planning model,
we investigate under which circumstances this cost is worthwhile.

3.9 Guardrails

Let �(at) 2 {0, 1} denote the probability of resampling the agent’s action, then 1 � �(at)
is the probability the agent posts prices at for the day. This idea has been explored with
application to modeling demand response with RL [44], and we employ a similar approach
to theirs, but instead of using a temperature ↵, we use a hard condition on the threshold.
Our goal is to define �(at) such that our agent is able to leverage information from the o✏ine
data to avoid taking actions that will incur a loss in net cashflow. If f is the true transition

CHAPTER 3. METHODOLOGY 28

function, we let f
0 define our planning model approximation function, and then we define

the guardrail
�(at) = 1[r(f 0(at)) > ⌧] (3.15)

where ⌧ is the minimum reward we want to employ at. The indicator function tells the
guardrail if the o✏ine data suggests at will bring a net cashflow greater than ⌧ . This indicator
function’s performance is significantly impacted by the quality of the prosumer response
approximator f

0. We refer to this as guardrails PPO, GR-PPO, and the implementation can
be found in Algorithm 3.

29

Chapter 4

Experiments and Results

4.1 Healthcare Experiments

Data Collection: We conduct experiments on chest CT scan data based on the COVIDx
CT-1 dataset [28].The dataset consists of 45,758 images for healthy individuals, 36,856 images
for individuals a✏icted with common pneumonia, and 21,395 images for individuals with
COVID-19.

Pre-processing: We combine the images in the Normal and Pneumonia classes into a
single Non-COVID class. We use the train, validation, and test splits defined by the o�cial
annotation files. In addition to class labels, the annotations include bounding boxes for the
lungs region in the whole CT scan image. We crop the images as per the bounding box and
resize them to 64⇥ 64.

Hyperparameters, Network Design and Computation used: Please refer to Ap-
pendix A and Appendix B.

Testing Procedure: We performed both quantitative and qualitative testing for conditional
synthetic data generation by our model. A test set is held out from the real dataset to be
used for quantitative testing. We then compare the classification performance (COVID/Non-
COVID) on this test set for a classifier trained on real data vs a classifier trained on the
generated synthetic data. This testing procedure is illustrated in Fig. 4.2. Since the datasets
are imbalanced, we report the precision, recall, and macro-F1 score (together referred to as
classification metrics) along with the accuracy. For more information on the metrics, please
refer to [39]. The closeness of the classification metrics of classifiers trained on synthetic and
real data indicates an e�cient design of the conditional synthetic generator. To evaluate the
quality of generated samples, we report the Fréchet Inception Distance (FID) [34] for the
synthetic samples. For FID calculation, we use the embeddings from our classifier trained

CHAPTER 4. EXPERIMENTS AND RESULTS 30

Figure 4.1: Original and generated synthetic CT scan samples. The top row consists of
original samples, and the corresponding image in the bottom row is the synthetic sample
obtained by preserving the original conditional feature representation and varying the local
noise. Image pairs with a red border: COVID samples, and a green border: Non-COVID
samples.

Model FID

Ma et al.[58] 0.2504
ACGAN 0.0986
CAGlow 0.0483
Ours 0.0077

Table 4.1: Qualitative (Fréchet Information Distance) scores for synthetic data generated by
various models (the lower the better).

using real data, in place of the o�cial inception network [80], since the latter is not trained
on medical imaging data.

CHAPTER 4. EXPERIMENTS AND RESULTS 31

COVID/Non-COVID
Classifier (trained on

synthetic data)

Conditional
Synthetic

Data Generator

COVID/Non-COVID
Classifier (trained on

real data) Compare
classification

results on
hold out
test set

Figure 4.2: Illustration of the quantitative testing procedure for conditional synthetic gen-
eration.

Accuracy F1 Score Precision Recall
Classification Metrics

55

60

65

70

75

80

85

90

95

100

S
co

re
s

(i
n

%
)

96.46
94.53 94.95 94.12

96.3

93.98

97.05

91.56
85.08

75.33

78.69

73.49

82.18

75.53
73.8

78.88

76.4

65.5

67.51

65.44

Ma et al.,(2021)

ACGAN

CAGlow

Ours

Real Data

Figure 4.3: Classification metrics for classifiers trained on synthetic data generated by various
models. The error bars indicate the variation in classifier performance when the synthetic
datasets used to train them were generated multiple times with di↵erent seeds. A real
data classifier does not involve multiple synthetic data generation, so its error bars are not
included.

4.2 Results: Conditional Synthetic Data Generation

The classification results for a classifier trained on the real data vs a classifier trained on
purely conditional synthetic data, and tested on a hold-out set of real data, are given in
Fig. 4.3. Across the existing methods for conditional synthetic generation, the classifier
trained with synthetic data from our proposed model has the closest accuracy, F1 score,
precision, and recall to that of the classifier trained on real data. This shows the capability
of our method to generate synthetic samples with a distribution that closely matches the

CHAPTER 4. EXPERIMENTS AND RESULTS 32

real conditional data distribution. The qualitative results (FID scores) for synthetic data
generated by various models are tabulated in Table 4.1. The FID scores for our model are
the lowest among all models, demonstrating that the quality of the generated samples closely
matches the real ones.

It is worth noting that the accuracy/F1 score of the classifier trained with synthetic data
generated by [57] is much smaller as compared to those by other models, not to mention
the classifier trained on real data. This can be justified by the fact that [57] relies on an
unsupervised method of decoupling global and local information. But for conditional syn-
thetic generation applications, such as the one presented in this paper, the model needs
information on what the model designer/ domain experts consider as the conditional infor-
mation (COVID/Non-COVID in our case). ACGAN and CAGlow have di↵erent generators,
but both include an auxiliary supervision signal to conditionally guide the generation pro-
cess. Hence, the performance of classifiers trained on synthetic data generated by them is
close. We encode the conditions using feature extractors to feed to the generator, leading to
state-of-the-art results.

The original samples along with the synthetic samples generated by preserving the orig-
inal conditional feature representation and a di↵erent local noise for CT scans are shown in
Fig. 4.1. The characteristic features for COVID CT scan samples, i.e., ground-glass opacity
are well preserved in the synthetic samples. The non-conditional local features, e.g. axial
plane position for CT scans are considered local noise. Since original samples for normal
and pneumonia cases are merged together to form a single Non-COVID class, sometimes the
corresponding synthetic image for a normal sample is a sample with pneumonia character-
istics and vice-versa. This occurs since the conditional model learns to treat them as local
information. As exhibited by our model, the ability to decouple the feature representations
for given conditions from other information in the data should be considered the strength of
an e↵ective conditional generative model.

4.3 Results: Conditional Synthetic Generation under
Label Scarcity

Previously, we proposed a semi-supervised learning approach to e�ciently generate condi-
tional synthetic samples when the number of samples labeled out of the available pandemic
data is less. To test our approach, we retained the assigned label (COVID/Non-COVID) for
a few samples and discarded the label for the rest of the samples. The number of labeled
samples varied from 20 samples to 50 samples to 0.5%, 1%, and 5% of the total training
data. The ratio between COVID and Non-COVID samples was maintained among the la-
beled samples. We conducted presumptive labeling and classifier training in an iterative
manner and then trained the conditional generative flow using the conditional feature em-

CHAPTER 4. EXPERIMENTS AND RESULTS 33

[With di↵erent sets of labeled samples and test set bootstrapping]
Amount of labeled data Accuracy (%) F1 Score (%) Precision (%) Recall (%)

20 samples 84.84 ± 2.91 76.32 ± 5.24 77.15 ± 4.87 76.35 ± 5.87
50 samples 90.87 ± 1.31 85.86 ± 1.73 86.48 ± 2.68 85.43 ± 1.32

0.5% of training samples 93.90 ± 0.46 90.49 ± 0.61 91.30 ± 1.28 89.8 ± 0.68
1% of training samples 95.06 ± 0.49 92.14 ± 0.69 93.94 ± 1.30 90.62 ± 0.48
5% of training samples 95.80 ± 0.20 93.24 ± 0.28 95.09 ± 0.84 91.23 ± 0.50

100% of training samples 96.30 ± 0.11 93.98 ± 0.17 97.05 ± 0.38 91.56 ± 0.20

[With multiple synthetic sets generated using random seeds]
Amount of labeled data Accuracy (%) F1 Score (%) Precision (%) Recall (%)

20 samples 85.70 ± 0.32 78.65 ± 0.65 77.96 ± 0.49 79.48 ± 1.18
50 samples 90.74 ± 0.77 85.27 ± 0.88 86.93 ± 2.03 83.98 ± 0.68

0.5% of training samples 94.66 ± 0.86 91.41 ± 1.27 93.93 ± 2.02 89.39 ± 0.80
1% of training samples 95.04 ± 0.32 92.00 ± 0.47 94.53 ± 0.88 89.96 ± 0.42
5% of training samples 95.62 ± 0.21 92.95 ± 0.28 95.33 ± 0.77 90.99 ± 0.18

100% of training samples 96.30 ± 0.11 93.98 ± 0.17 97.05 ± 0.38 91.56 ± 0.20

Table 4.2: Results for classifiers trained on synthetic data generated by models that are
developed using a few labeled data.

beddings obtained using the feature extractors. We then generated conditional synthetic
data using the above trained generative model. To show the robustness of our method, we
perform bootstrapping on the test set and repeat our experiments using di↵erent sets of
labeled samples from the training data. For each model, we also evaluated multiple syn-
thetic sets generated using random seeds. The results of classification models trained on the
synthetic data under di↵erent bootstraps and seeds are given in Table 4.2.

As is apparent from the table, using even a few labeled samples, our method is able to
achieve results on par with the case when all the labels are available. This further reinforces
the strength of our approach in generating conditional synthetic data to rapidly adapt ML
models to a new pandemic at its onset, when there is a scarcity of such labels. As expected,
at lower levels of labeled data, the uncertainty associated with synthetic data generation is
high, as is apparent from Table 4.2, which dies down as we increase the labeled data amount.
The uncertainty associated with classification models trained on synthetic sets generated by
our model using di↵erent seeds is low. Both the above observations establish the robustness
of the proposed method.

An important point to note here is that the closeness of results obtained by utilizing 5% of
labels as compared to using 100% of labels does not denounce the importance of the remaining
95% of labels. In healthcare, an improvement of even 1% of accuracy/F1 score corresponds
to a significant number of samples classified accurately, and is important, especially during a

CHAPTER 4. EXPERIMENTS AND RESULTS 34

COVID/Non-COVID
Classifier (trained on
augmented data)

Test on
hold out
test set

Conditional
Synthetic

Data Generator

Figure 4.4: Illustration of synthetic data augmentation and testing process. Improvement in
performance of classifiers trained on augmented data as compared to that trained on original
training data is a step toward robust COVID-19 detection.

Accuracy F1 Score Precision Recall
Classification Metrics

94.0

94.5

95.0

95.5

96.0

96.5

97.0

97.5

98.0

S
co

re
s

(i
n

%
)

97.17

95.66 95.68 95.64

96.46

94.53
94.95

94.12

Model trained using Real Data

Model trained using Augmented Data

Figure 4.5: Classification results for models trained using real data (with class imbalance)
vs augmented data (class-balanced). The real data (having ⇠ 20% of COVID samples) was
augmented with synthetically generated COVID samples using the proposed model for class
balancing.

pandemic. Thus, our proposed semi-supervised approach should be considered as a remedy
for cases when labels are scarce, not as an alternative to a fully-supervised approach.

4.4 Example Use of Synthetic Data: Robust
Detection of COVID-19 via Data Augmentation

Generated synthetic data can be utilized in a number of downstream tasks. We conduct
experiments on one of the tasks: robust detection of COVID-19 via synthetic data aug-
mentation. The training data is inherently highly class-imbalanced, with limited samples
of COVID and abundant samples for pneumonia and normal cases. To design a robust
COVID-19 detection mechanism under such a class imbalance scenario, we augment the
training data with synthetic COVID samples generated using the proposed model to in-
crease the % of COVID samples and balance the dataset. The augmentation process and
the testing procedure are illustrated in Fig. 4.4. The classification metrics for classifiers

CHAPTER 4. EXPERIMENTS AND RESULTS 35

trained on the augmented training data are given in Fig 4.5.

Examining the classification results, the classifier trained on augmented training data
has better performance than classifiers trained only on limited real training data for all
augmentation levels. Note that even a slight improvement in the recall score translates to
numerous samples classified correctly (e.g. 1% improvement in recall for CT scan corresponds
to 200 more correctly classified samples), leading to better diagnosis and accurate and timely
treatment.

4.5 Microgrid Experiments

Data-Collection: The RL agent solves an MDP defined by the state space S := (Utility
prices, noisy predicted solar generation, yesterday’s prosumer demand) 2 R48+24+24 and
action space A := (abuy, asell) = (energy buy prices, energy sell prices) 2 R24+24. The agent’s
goal is to maximize a reward defined by its individual profit. We collect data by logging the
training trajectory of an Online-PPO agent for 9255 days, and since we use 4 workers during
training, this e↵ectively provides us with 37,020 (at, pt) rollouts of one day. We denote the
policy-induced by this data as ⇡�.

Pre-Processing: We split the rollout data into ten separate tables. Where table j, denoted
p
j? contains rollouts for prosumer j, specifically these are the tuples (at, p

j
t , t) 2 R48+24+1

for each day t 2 [0, 9254]. As illustrated in Figure 4.6, we train a normalizing flow on the
real data and then generate 100,000 synthetic samples for each prosumer j by first sampling
100,000 points from N 73, where N denotes a standard normal Gaussian and then using the
inverse flow for prosumer j to generate p

j?. Since we used real data p
j to create p

j?, we
include the real data when training the prosumer response function �j. When training the
normalizing flow we normalize each feature to be between [0, 1].

Hyperparameters, Network Design and Computation used: Please refer to Ap-
pendix A and Appendix B.

Testing Procedure: We test each synthetic flow’s performance by calculating its MMD as
defined in Equation 3.13. Once the raw synthetic data is produced we train our prosumer
response predictors �1, �2, . . . , �10 to predict the response vector pt 2 R24 given data input
(at, t) 2 R49 using mean square error loss and validate performance on a held-out test set of
20% of the data. Once these planning model components are complete we leverage them in
di↵erent ways (O✏ine-Online, DAgger, Guardrails) and compare weekly averaged rewards
in $USD versus time across our di↵erent calibrations with a focus on both the rate and value
of convergence. We run our experiments and plot the exponentially weighted average using
↵ = 0.01 across multiple random seeds and show standard errors.

CHAPTER 4. EXPERIMENTS AND RESULTS 36

⇡�
⇡�?

p
1

p
2

p
10

p
1?

p
2?

p
10?

CNF

�

�1
�2 �10

Figure 4.6: This figure illustrates our data pre-processing, specifically on the construction
of prosumer response approximation networks. We begin with o✏ine data from some policy
⇡� and split it up into 10 tables, one for each prosumer p

j. Then we train a continuous
normalizing flow on each prosumer p

j which maps each row in the table (at, pt, t) 2 R48+24+1

to a 73-dimensional gaussian. Then we sample from this gaussian and use the inverse flow
to generate synthetic data for each prosumer p

j?. The 10 synthetic response tables induce a
synthetic policy ⇡�? . Then we combine the real and synthetic data for each prosumer j to
train the prosumer response approximation function �j.

Benjamin Bianca Brian Eileen Elie Benthe Bobbi Bryon Elizabeth Evelyn
MMD 0.27 0.27 0.05 0.23 0.25 0.11 0.29 0.08 0.14 0.19

Table 4.3: Flow MMD values for each prosumer as described in Equation 3.13.

We train each continuous normalizing flow using the methods described above and we
report the MMD values for each prosumer flow and we report these values validating the
performance of our normalizing flows in Table 4.3.

4.6 Results: O✏ine-Online PPO

Motivated to resolve the learning cost of a strictly online agent, we hypothesize that simply
warm starting the agent by training it in a synthetic simulator for the right amount of time
will prevent it from losing money once deployed in the real world. Elaborating on Section
3.7, we train the synthetic model in our planning model for the first k episodes and then we
turn o↵ our planning model for the rest of training. In the planning model our reward is

CHAPTER 4. EXPERIMENTS AND RESULTS 37

Figure 4.7: Here we look at the number of
years the agent is trained versus the weekly
average reward of $USD. We use the dot-
ted line style to indicate steps in the plan-
ning model and a solid line to show steps in
the real world. Using a planning model for
one year and three years yields similar per-
formance to using a planning model for ten
years and 30 years. With k � 3650, there
is a noticeable drop-o↵ in reward once the
agent operates strictly in the real world. We
also note that the agent with k = 1095 has
an odd drop-o↵ in performance in its last ten
years.

Figure 4.8: We plot Figure 4.7 with a log
scale on the x-axis. We use episode as the
label instead of day to not cause confusion
to readers between synthetic and real days.
The log scale allows us to clearly see how
many days it takes for the agent to converge
on a profitable policy once deployed in the
real world. As we increase the amount of
time the agent spends in the planning model,
we observe an exponential increase in the re-
ward that it starts with in the real world.

Figure 4.9: These figures depict the performance of di↵erent O✏ine-Online PPO agents
against the baseline Online PPO agent. Aside from k = 1095, all other agents converge to
the same reward once the planning model is removed. This is particularly noticeable in the
drop-o↵ at year ten and year 30 for k = 3650 and k = 10950.

parameterized by �1, �2, . . . , �10 so we focus on the performance of our agent after the first
k episodes. It is important to take note that there is a significant oscillation in prosumer
demand for a period of one year. This oscillation is mirrored in all of our agent reward curves
at convergence since each prosumer’s daily load and generation come from real seasonal data
that parameterizes the environment.

CHAPTER 4. EXPERIMENTS AND RESULTS 38

These results in Figure 4.9 show that providing the agent with a head-start in the real
world, via warm-starting, is beneficial for bypassing the learning cost the baseline agent
incurs for the first 5 years. All of the O✏ine-Online PPO agents perform at least as well
as the baseline. Each O✏ine-Online agent breaks a reward of 0 before the baseline and
converges to the same average reward in the real world, suggesting that the planning model
accurately captures the dynamics of a profitable policy. However, there are some di↵erences
between the planning model and real-world pricing dynamics as suggested by the dropo↵s
we observe when the planning model is removed. These dropo↵s indicate that a profitable
policy in the planning model is a profitable policy in the real world, but the margin of profit
is actually higher in the planning model. This discrepancy highlights the distribution shift
between our real o✏ine data ⇡� and our synthetic o✏ine data ⇡

?
� and is to be expected

unless our goal is to create a synthetic simulator that is a clone of the real world, which is
impossible because even if we had access to the underlying transition function we would still
have to capture all of the environment’s stochasticity.

4.7 Results: DAgger PPO

The O✏ine-Online agent results are promising and validate the e↵ectiveness of our planning
model as a place for the agent to learn virtually for free. Technically, there is a financial cost
of initially getting o✏ine data for the agent. Still, it is worth it since we can train multiple
profitable agents in numerous environments using o✏ine data from one environment. These
experiments investigate the drop-o↵ we observed when turning o↵ the planning model. We
hypothesize that using a DAgger style approach will allow our agent not only to learn a
profitable policy faster than the baseline (as with O✏ine-Online) but also to help make
convergence smoother as real-world steps are gradually introduced into training. We use
� = 0.5, and as illustrated in our pseudocode (Algorithm 2) we alternate between M�

i steps
in the planning model and 1 step in the real world until we are only taking real steps. For
di↵erent choices of M = [365, 1095, 3650, 10950] the DAgger PPO algorithm spends roughly
[2, 6, 20, 60] years, respectively, in the planning model.

We illustrate our results in Figure 4.12. Similar to Figure 4.8 we observe that increasing
the number of steps in the synthetic model, despite the mixing scheme, leads to the model
learning a profitable policy. The mixing scheme provides us with a smoother convergence to
the baseline reward than the O✏ine-Online agent as illustrated in Figure 4.9. Although the
convergence is smoother, there is no evidence that the DAgger agent learns a policy with
a greater profit margin or that the agent learns a profitable pricing policy faster. This is
not a negative result, but it suggests that the only advantage of using DAgger PPO over
O✏ine-Online PPO is a smoother convergence.

CHAPTER 4. EXPERIMENTS AND RESULTS 39

Figure 4.10: In this figure, we compare the
number of years trained against the weekly
average real reward in $USD.The value of
M indicates the first day on which the agent
takes a real step, even though it only takes
one step before going back to the planning
model. So we see a familiar drop-o↵ at the 10
years and 30 years for M = 3650 and M =
10950. However, these dips are not as steep
as Figure 4.7 and each of the learning curves
gradually converge to the baseline reward.

Figure 4.11: Here we look at the figure on
the left with a log scale on the episodes. We
are clearly able to see that increasing M re-
sults in learning a profitable policy faster.
We also notice that M = 1095 converges to
a reward value lower than the other experi-
ments.

Figure 4.12: Unlike Figure 4.9 we do not use dotted lines to indicate synthetic steps because
DAgger PPO alternates between synthetic steps and real steps until �Mi < 1. It is important
to note that this means the red curve is taking steps in the planning model until year 30,
the blue curve is taking steps in the model until year 10, and so on. This makes learning
cost is tricky to evaluate, but we can get a rough estimate by looking at the value at decayed
increments: for the red curve this would be years 30, 45, 52 and so on.

CHAPTER 4. EXPERIMENTS AND RESULTS 40

Algorithm 2 DAgger mixing procedure
Require: D ; . Initialize with empty data bu↵er
Require: ⇡1 ⇠ ⇧ . Random initialization for initial policy
1: for i = 0 to N do
2: Sample one episode, T -timesteps using policy ⇡i

3: for j = 1 to bMic do . Taking bMc synthetic steps
4: aj a ⇠ ⇡1

5: r
0
j r(a, f

0(a), u) . Approximate synthetic response f
0(a) = p

0

6: Collect synthetic step Dij = (sj, aj, sj+1, r
0
j)

7: end for
8: D D

S
Di0,Di1, . . . ,DibMic

9: Train ⇡i+1 on D
10: Mi+1 Mi ⇤ �

11: end for

4.8 Results: Guardrails Algorithm

Our results with O✏ine-Online PPO and DAgger PPO validate our planning model approach
illustrated in Figure 4.6 and we have successfully shown that we can use it to push the agent
to learn a profitable policy faster and eliminate the real-world financial cost of learning
a profitable policy. We now shift our focus to exploring additional ways to leverage the
planning model for shaping the agent’s learned policy. The guardrails approach explained
in Section 3.9 is very similar to DAgger PPO but we parameterize the mixing procedure by
threshold choice ⌧ which is easier to interpret than our arbitrary choices of M in DAgger
PPO.

After it has been generated, our planning model provides free training to the agent
because there is no financial or data cost. We investigate using guardrails in two di↵erent
ways: Guardrails-Cuto↵ and Daily-Guardrails. The former use guardrails until a cut-o↵ after
which the planning model is no longer used, the latter keeps guardrails but forces the agent
to take a real step. Both of these variations use the cuto↵ component from O✏ine-Online
PPO and use parameterized data mixing similar to DAgger PPO during training.

Guardrails-Cuto↵

Guardrails-Cuto↵ (GR-Cuto↵) uses guardrails until a cuto↵ point k after which we only take
real-world steps. During the guardrails portion, our agent takes a step in the planning model,
and if the planning model reward is greater than a threshold ⌧ the agent takes this action in
the real world. If the action is below a threshold the agent does not take any action for that
day. After k steps in the real world, the planning model is removed. We added this cuto↵
component because we found that for higher values of ⌧ the agent would never take steps

CHAPTER 4. EXPERIMENTS AND RESULTS 41

Algorithm 3 Guardrails Agent Rollout
Require: ⇡✓ . Policy with parameters ✓

Require: f
0 : At ! pt . Prosumer Response approximator

Require: � : At ! R 2 [0, 1] . Guardrail function
1: for i in 1, ..., T do
2: Observe st

3: at at ⇠ ⇡✓(at|st) . Sample action from current policy
4: p �(at) . Resolve guardrail on action, yielding probability this action is profitable
5: if use guardrails then . Di↵erent for GR-Cuto↵ and Daily-GR
6: pt f(at)
7: r rt(at, pt, ut)
8: Rollout (st, at, st+1, r)
9: else

10: p
0
t f

0(at)
11: r

0 rt(at, p
0
t, ut)

12: Rollout (st, at, st+1, r
0)

13: end if
14: end for

on the same set of days which correspond to seasons of the year where prosumer generation
was high. By enforcing the cuto↵ we will be able to observe how beneficial the guardrails are
as an intelligently parameterized data mixing procedure. Because the O✏ine-Online agent
performed better with larger k, we hypothesize that larger values of k for GR-Cuto↵ will
result in better performance once the planning model is removed. We also believe that tuning
⌧ is important. If the value is too small then bad actions will get approved and our model
will be no di↵erent than Online PPO. It may seem that a really large ⌧ is conservative and
better since this will only rollout actions in the planning model that will yield a high reward,
but the seasonal change in prosumer generation, a significant contributor to demand, may
cause the agent to never learn how to act on those days where a reward of ⌧ is unreachable.
We believe that an optimal choice of ⌧ is in the upper half of the best attainable rewards
and forces the model to consistently take actions that bring a higher profit margin across all
days in the year.

The rewards in Figure 4.15 are reported only on real days. This means that before the
cuto↵ k, a collection of 365 days may be more than a year since guardrails will prevent the
agent from taking real-world steps if the predicted reward is less than ⌧ . This explains why
we see higher rewards for larger values of k, the guardrails will only let the agent act when
the reward is su�ciently high. This is beneficial in the beginning to close in a profitable
subspace of the action space quickly, but it can be impractical because we wish to use our
agent on all days, not just the ones where it will yield a larger profit. When we turn o↵
the guardrails on the day k we are able to see that although the policy is net profitable, the

CHAPTER 4. EXPERIMENTS AND RESULTS 42

Figure 4.13: In this figure we look at the
average weekly reward versus year on real
days, varying k for Guardrails Cuto↵ agents.
It is evident that increasing k corresponds to
higher rewards in the beginning but after the
cuto↵, the rewards converge to 212 but there
is a large window of standard error.

Figure 4.14: Here we look at the log-scaled
day of the figure on the left. Cuto↵s of
k � 3650 are identical until the 10-year point
at which k = 10950 performs better until it
eventually converges back to the same value
as the other curves. We also observe that
the value of k has an exponentially inverse
relationship with the di↵erence between ex-
periments in real reward. As we increase k

we notice an exponentially decreasing di↵er-
ence in weekly average reward between the
GR-Cuto↵ agents.

Figure 4.15: The two figures above illustrate the performance of GR-Cuto↵ agents aggregated
across all di↵erent values of ⌧ 2 [�100, 0, 100, 200, 400, 500].

profit on the entire year smoothens out to a value similar to what the baseline achieves.

CHAPTER 4. EXPERIMENTS AND RESULTS 43

Figure 4.16: This figure shows the average
weekly reward across 100 years for di↵er-
ent values of ⌧ . A larger value of ⌧ leads
to a larger reward, but with large values
⌧ 2 [400, 500] the net total actually performs
slightly worse.

Figure 4.17: We plot the figure on the left
using a log scale for the day. It is evident
that larger values of ⌧ lead to a performance
improvement in the real world. Specifically,
⌧ � 200 with guardrails only rolls out a prof-
itable policy, regardless of the setting of k.

Figure 4.18: The two figures above illustrate the performance of GR-Cuto↵ agents aggregated
across all di↵erent values of k 2 [365, 1095, 3650, 10950].

The rewards in Figure 4.18 provide evidence that the choice of ⌧ is very important to
control how many steps it takes for our agent to become profitable in the real world. In fact,
Figure 4.16 shows that if ⌧ � 200 then our agent will not lose any money from the start.
Specifically, if our agent action receives more than $200 in the planning model, for all of our
choices of k, the agent is necessarily profitable in the real-world environment. Ultimately
tuning is important for both k and ⌧ and specific calibrations helped us gain key insights
into the e↵ectiveness of our planning model.

Daily-Guardrails

Daily-Guardrails (Daily-GR) uses an identical scheme as Guardrails-Cuto↵ until k real days
have passed. After this point, we use the planning model every day up to 20 times. The
interpretation of this is that we use Guardrails as usual to warm-start the algorithm, and
after the cuto↵, we require the agent beat a simulation before posting prices to the real
world. After the cuto↵, the agent is required to take an action every day and has up to 20
attempts after which the last action is posted to the real world regardless of reward. The
agent propagates gradients on every planning model step and we believe this will push the

CHAPTER 4. EXPERIMENTS AND RESULTS 44

Figure 4.19: This figure illustrates the
weekly average reward for each year of train-
ing using a Daily-GR agent with di↵erent
values of ⌧ . There is a direct correlation be-
tween values of ⌧ and the reward.

Figure 4.20: We plot the figure on the left
with a log scale on the x-axis. Although all
the curves converge to a similar reward value
of ⌧ 2 [100, 200] seem to have marginally
larger values.

Figure 4.21: These figures illustrate the performance of the Daily-GR agent with di↵erent
values of ⌧ .

agent to converge on a policy that exceeds threshold ⌧ since we take up to 20 steps for
every real step after the cuto↵. If the planning model is accurate we hypothesize the agent
will perform the best under this use of the planning model, since it incorporates the best
components of all previous experimental variations: warm-start, intelligent data mixing, and
guardrails. Even if the planning model is not completely accurate, we know that our planning
model does a good job of capturing the dynamics of a net profitable policy, so at the very
least we believe that the right choice of ⌧ will ensure we perform as well as GR-Cuto↵.

Overall we observe similar trends to GR-Cuto↵ (Figure 4.18), which makes sense since
we employ the exact same training scheme until the cuto↵. After the cuto↵, we expect better
convergence since we are taking up to 20 additional steps in the planning model for every
real step and this is evident in Figure 4.20 as the curves appear to reach their converged
reward more smoothly than Figure 4.17.

We would expect k = 1095 to be profitable and the standard error dipping below 0 in
Figure 4.23 is likely due to the fact we are averaging over ⌧ = �100. Overall the trends we
observed with GR-Cuto↵ are consistent with Daily-GR, but we observe a smoother conver-

CHAPTER 4. EXPERIMENTS AND RESULTS 45

Figure 4.22: Here we have the average
weekly reward versus year for the Daily-GR
agent for di↵erent settings of k. This data
shows that larger values of k correspond to
higher rewards which eventually converge to
the same value.

Figure 4.23: This plot takes the figure on
the left and plots the x-axis on a log scale.
We are able to see clearly on which day the
agent’s policy becomes profitable. This data
shows that k � 3650 is always profitable.

Figure 4.24: We illustrate the performance of the Daily-GR agent with di↵erent values of k

in the figures above.

gence since we are able to take up to take more steps between each real step.

The performance of this approach best illustrates the transferability of our planning
model since our actions for Daily-GR with ⌧ are shaped to almost certainly post actions
that exceed ⌧ in the planning model. Since higher values of ⌧ 2 [400, 500] do not translate to
the best performance in the real world this can mean two things: our planning model does
not perfectly capture the dynamics of prosumer response for the price settings, and that
it is impossible to exceed ⌧ on certain days. The environment settings confirm the second
claim since the prosumer demand oscillates within one year depending on solar generation
which itself is dependent on the season. Our results in both Figure 4.25 and 4.26 support
the first claim: although the planning model is able to accurately capture the dynamics of
a profitable policy, the actual threshold dynamics are best represented for ⌧ 2 [100, 200].
One explanation for this is that our original o✏ine data ⇡� comes from an agent trained for
30 years and during this time the agent converges to an average reward of 200. Although
our planning model can extrapolate on regions of the policy it may have explored briefly, it
cannot be expected to capture those dynamics it has not seen at all during the initial data
collection period.

CHAPTER 4. EXPERIMENTS AND RESULTS 46

4.9 Results: Guardrails vs DAgger vs O✏ine vs
Online for Demand Response

Figure 4.25: In this figure, we compare the average weekly reward versus year for the best
configuration of each agent against the baseline. All the agents converge to the same average
reward but Daily-GR, GR-Cuto↵, and DAgger upper bound this convergence. It is important
to note that although both Guardrails are showing actual real-world steps, DAgger and
O✏ine-Online alternate between real and planning model steps so those models may have
some days at the beginning where they actually incur a loss, whereas Guardrails with these
choices is always profitable.

Figure 4.25 and Figure 4.27 clearly illustrate the advantage of both Guardrails approaches
over the other o✏ine approaches. Specifically, the margin of profit is larger in earlier steps
and there is no cost of learning since guardrails use the planning model to decide how
long the agent needs to get ready for the real world prosumer responses. We observe that
both guardrails perform best with ⌧ = 200 which makes sense since our o✏ine data ⇡� has
taken the most steps in this range. A perfect planning model would guarantee that actions
exceeding ⌧ in the planning model also yield a reward greater than ⌧ in the real world. For
the reasons mentioned earlier this is almost impossible, but our goal is to get close. Our
planning model gets within $100 of predicting whether the reward will exceed ⌧ = 200, and

CHAPTER 4. EXPERIMENTS AND RESULTS 47

Figure 4.26: The accumulated financial liability of the agent versus years stepped for di↵erent
agents. This plot illustrates the total training time each agent takes to become profitable
and can be measured in real-world steps. Both Guardrails agents only report rewards on
real-world steps and we observe they are always profitable in the real world. The DAgger
agent takes roughly 7.9 years until it is accumulated reward is profitable, and the baseline
requires 15.18 years. The O✏ine-Online Agent requires 7.57 years but since k = 3650 the
first 10 years are in the planning model so the real-world accumulated financial liability is
0, equivalent to both Guardrails agents.

really close in terms of capturing profitable dynamics. Based on our plots it is evident that
the planning model accurately captures the dynamics of the environment to be used to train
a profitable policy (profit � 0), even if the margin of profit is not completely accurate.

CHAPTER 4. EXPERIMENTS AND RESULTS 48

Figure 4.27: This figure shows Figure
4.25 with a log-scale on the Episode axis.
Episodes are interchangeable with days but
to prevent confusion with the data mixing in
DAgger we list episodes.

Figure 4.28: In this graph, we look at
the weekly reward for the last 50 years.
We notice that DAgger seems to perform
marginally better, but when the steps are
strictly real (after year 60) the performance
converges to the rest of the models.

49

Chapter 5

Discussion and Future Works

We believe artificially generated samples cannot bring any new information into the dataset;
rather synthetically generated data is just a noise-filtering technique that helps downstream
tasks draw attention to the most essential components of the task. We hypothesize that the
act of synthesizing data may be a feature engineering technique the same way re-sampling
is a filtering technique. We propose future work to investigate this further. Specifically, we
hypothesize that the performance of a downstream objective trained and tested solely on
synthetic data compared to a real data baseline may provide better insight into the role of
the synthetic data. We believe better performance in the purely synthetic task may provide
evidence supporting this noise-filtering hypothesis.

Although we were able to conditionally generate CT-Scans, the actual information used
to construct these samples were features embedded in the real data. Our synthetic sampling
technique quite directly supports the argument that good artificial samples are just ablations
of noise around various combinations of those features (both clinically visible and latent).
Similarly, in the energy demand response application, the underlying signal is the stochastic
process facilitating prosumer demand response. Our generation technique tries to capture
that underlying signal and provide synthetic samples that maintain a high signal-to-noise
ratio for a downstream data-driven task to benefit from. In the demand response setting
the reinforcement learning loop contains an environment response in between the agent’s
action and the returned environment reward. This environment response is a distribution of
variables and phenomena which the agent does not directly observe. Our approach with the
flow models forces us to exemplify the relevant environment responses and repeat many runs
on them via the planning model. By manipulating which runs are exemplified via conditional
generation, we can control for desired behavior and influence the agent’s policy search. We
believe this is an exciting direction for future work along with further exploration into time-
series feature extraction for o✏ine data and ablation with di↵erent o✏ine RL methods.

50

Chapter 6

Conclusion

We presented a novel conditional synthetic generative model to multiply the samples of in-
terest at the onset of a pandemic. We conducted extensive experiments on the chest CT scan
dataset to show the e�cacy of the proposed model and improvements in COVID-19 detection
performance achieved via synthetic data augmentation. We also proposed and experimented
on a semi-supervised learning approach to e�ciently generate conditional synthetic data in
label scarce conditions. One of the limitations of our proposed method is that it does not
exert selective control over the local noise, which can sometimes contain information for
important interactions in the data, e.g., in our experiments, we extracted conditional infor-
mation salient to COVID/Non-COVID, whereas the information corresponding to everything
else, such as CT scan axial positions, variations of pneumonia, etc. are all considered to be
the noise for the model. In general, this can be attributed to the way conditional generative
models e.g. ACGAN, CAGlow function.

We also experimented with continuous normalizing flows to summarize energy price re-
sponses and constructed a planning model to simulate steps in an online RL framework.
We performed extensive experiments to show the performance of our planning model and
improvements in the price controller profitability. Our method takes a finite number of data
points on prosumer demand, given price signals, and trains an RL agent to profitably set
prices immediately without requiring online training in the environment. This approach is a
unique use of synthetic data augmentation in reinforcement learning but from an information
theory standpoint, it is limited by the span of the underlying signal provided in the o✏ine
data we collect.

51

Bibliography

[1] Daniel Adelman and Canan Uçkun. “Dynamic Electricity Pricing to Smart Homes”.
In: Operations Research 67.6 (Nov. 2019). Publisher: INFORMS, pp. 1520–1542. issn:
0030-364X. doi: 10.1287/opre.2019.1882. url: https://pubsonline.informs.
org/doi/abs/10.1287/opre.2019.1882.

[2] René Aı̈d, Dylan Possamäı, and Nizar Touzi. “Optimal electricity demand response
contracting with responsiveness incentives”. In: (Oct. 22, 2018). doi: 10.48550/arXiv.
1810.09063. url: https://arxiv.org/abs/1810.09063v3.

[3] William Arnold et al. “Adapting Surprise Minimizing Reinforcement Learning Tech-
niques for Transactive Control”. In: Proceedings of the Twelfth ACM International
Conference on Future Energy Systems. e-Energy ’21. New York, NY, USA: Association
for Computing Machinery, June 22, 2021, pp. 488–492. isbn: 978-1-4503-8333-2. doi:
10.1145/3447555.3466590. url: https://doi.org/10.1145/3447555.3466590.

[4] Alexandre Attia and Sharone Dayan. Global overview of Imitation Learning. arXiv:1801.06503.
type: article. arXiv, Jan. 19, 2018. arXiv: 1801.06503[cs,stat]. url: http://arxiv.
org/abs/1801.06503.

[5] John O. Awoyemi, Adebayo O. Adetunmbi, and Samuel A. Oluwadare. “Credit card
fraud detection using machine learning techniques: A comparative analysis”. In: 2017
International Conference on Computing Networking and Informatics (ICCNI). 2017
International Conference on Computing Networking and Informatics (ICCNI). Oct.
2017, pp. 1–9. doi: 10.1109/ICCNI.2017.8123782.

[6] Nayana Bannur et al. “Synthetic Data Generation for Improved covid-19 Epidemic
Forecasting”. In: medRxiv (2020). doi: 10.1101/2020.12.04.20243956. eprint:
https://www.medrxiv.org/content/early/2020/12/07/2020.12.04.20243956.

full.pdf. url: https://www.medrxiv.org/content/early/2020/12/07/2020.12.
04.20243956.

[7] Eder Baron-Prada, César A. Uribe, and Eduardo Mojica-Nava. “A Method for Dis-
tributed Transactive Control in Power Systems based on the Projected Consensus
Algorithm”. In: (Sept. 3, 2018). doi: 10.48550/arXiv.1809.00712. url: https:
//arxiv.org/abs/1809.00712v1.

https://doi.org/10.1287/opre.2019.1882
https://pubsonline.informs.org/doi/abs/10.1287/opre.2019.1882
https://pubsonline.informs.org/doi/abs/10.1287/opre.2019.1882
https://doi.org/10.48550/arXiv.1810.09063
https://doi.org/10.48550/arXiv.1810.09063
https://arxiv.org/abs/1810.09063v3
https://doi.org/10.1145/3447555.3466590
https://doi.org/10.1145/3447555.3466590
https://arxiv.org/abs/1801.06503%20%5Bcs,%20stat%5D
http://arxiv.org/abs/1801.06503
http://arxiv.org/abs/1801.06503
https://doi.org/10.1109/ICCNI.2017.8123782
https://doi.org/10.1101/2020.12.04.20243956
https://www.medrxiv.org/content/early/2020/12/07/2020.12.04.20243956.full.pdf
https://www.medrxiv.org/content/early/2020/12/07/2020.12.04.20243956.full.pdf
https://www.medrxiv.org/content/early/2020/12/07/2020.12.04.20243956
https://www.medrxiv.org/content/early/2020/12/07/2020.12.04.20243956
https://doi.org/10.48550/arXiv.1809.00712
https://arxiv.org/abs/1809.00712v1
https://arxiv.org/abs/1809.00712v1

BIBLIOGRAPHY 52

[8] Justin Boyan, Dayne Freitag, and Thorsten Joachims. “A Machine Learning Architec-
ture for Optimizing Web Search Engines”. In: (), p. 8.

[9] Jason Brownlee. A Gentle Introduction to Generative Adversarial Networks (GANs).
Machine Learning Mastery. June 16, 2019. url: https://machinelearningmastery.
com/what-are-generative-adversarial-networks-gans/.

[10] CDC. Healthcare Workers. Centers for Disease Control and Prevention. Feb. 11, 2020.
url: https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.
html.

[11] Ricky T. Q. Chen et al. Neural Ordinary Di↵erential Equations. arXiv:1806.07366.
type: article. arXiv, Dec. 13, 2019. arXiv: 1806.07366[cs, stat]. url: http://

arxiv.org/abs/1806.07366.

[12] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accurate
deep network learning by exponential linear units (elus)”. In: arXiv preprint arXiv:1511.07289
(2015).

[13] Emmanuel Gbenga Dada et al. “Machine learning for email spam filtering: review,
approaches and open research problems”. In: Heliyon 5.6 (June 1, 2019), e01802.
issn: 2405-8440. doi: 10 . 1016 / j . heliyon . 2019 . e01802. url: https : / / www .

sciencedirect.com/science/article/pii/S2405844018353404.

[14] Hari Prasanna Das, Pieter Abbeel, and Costas J Spanos. “Dimensionality reduction
flows”. In: arXiv preprint arXiv:1908.01686 (2019), pp. 1–10.

[15] Hari Prasanna Das et al. “Do Occupants in a Building exhibit patterns in Energy
Consumption? Analyzing Clusters in Energy Social Games”. In: NeurIPS 2020 Work-
shop on Tackling Climate Change with Machine Learning. 2020. url: https://www.
climatechange.ai/papers/neurips2020/65.

[16] Hari Prasanna Das et al. CDCGen: Cross-Domain Conditional Generation via Nor-
malizing Flows and Adversarial Training. 2021. arXiv: 2108.11368 [cs.CV].

[17] Emiliano De Cristofaro. “An Overview of Privacy in Machine Learning”. In: (May 18,
2020). doi: 10.48550/arXiv.2005.08679. url: https://arxiv.org/abs/2005.
08679v1.

[18] Li Deng and Xiao Li. “Machine Learning Paradigms for Speech Recognition: An
Overview”. In: IEEE Transactions on Audio, Speech, and Language Processing 21.5
(May 2013). Conference Name: IEEE Transactions on Audio, Speech, and Language
Processing, pp. 1060–1089. issn: 1558-7924. doi: 10.1109/TASL.2013.2244083.

[19] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent
Components Estimation. arXiv:1410.8516. type: article. arXiv, Apr. 10, 2015. arXiv:
1410.8516[cs]. url: http://arxiv.org/abs/1410.8516.

[20] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real
NVP. 2017. arXiv: 1605.08803 [cs.LG].

https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html
https://arxiv.org/abs/1806.07366%20%5Bcs,%20stat%5D
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
https://doi.org/10.1016/j.heliyon.2019.e01802
https://www.sciencedirect.com/science/article/pii/S2405844018353404
https://www.sciencedirect.com/science/article/pii/S2405844018353404
https://www.climatechange.ai/papers/neurips2020/65
https://www.climatechange.ai/papers/neurips2020/65
https://arxiv.org/abs/2108.11368
https://doi.org/10.48550/arXiv.2005.08679
https://arxiv.org/abs/2005.08679v1
https://arxiv.org/abs/2005.08679v1
https://doi.org/10.1109/TASL.2013.2244083
https://arxiv.org/abs/1410.8516%20%5Bcs%5D
http://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803

BIBLIOGRAPHY 53

[21] Romuald Élie et al. “Mean–field moral hazard for optimal energy demand response
management”. In: Mathematical Finance 31.1 (Jan. 2021), pp. 399–473. issn: 0960-
1627, 1467-9965. doi: 10.1111/mafi.12291. url: https://onlinelibrary.wiley.
com/doi/10.1111/mafi.12291.

[22] Vincent François-Lavet et al. “An Introduction to Deep Reinforcement Learning”. In:
Foundations and Trends® in Machine Learning 11.3 (2018), pp. 219–354. issn: 1935-
8237, 1935-8245. doi: 10.1561/2200000071. url: http://www.nowpublishers.com/
article/Details/MAL-071.

[23] Mathieu Germain et al. MADE: Masked Autoencoder for Distribution Estimation.
arXiv:1502.03509. type: article. arXiv, June 5, 2015. doi: 10.48550/arXiv.1502.
03509. arXiv: 1502.03509[cs,stat]. url: http://arxiv.org/abs/1502.03509.

[24] Amirata Ghorbani et al. DermGAN: Synthetic Generation of Clinical Skin Images with
Pathology. 2019. arXiv: 1911.08716 [cs.CV].

[25] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.2661
[stat.ML].

[26] Will Grathwohl et al. FFJORD: Free-form Continuous Dynamics for Scalable Re-
versible Generative Models. arXiv:1810.01367. type: article. arXiv, Oct. 22, 2018. doi:
10.48550/arXiv.1810.01367. arXiv: 1810.01367[cs,stat]. url: http://arxiv.
org/abs/1810.01367.

[27] Gretton et al. “A Kernel Two-Sample Test”. In: Machine Learning Research 13 ().
url: https://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf.

[28] Hayden Gunraj, Linda Wang, and Alexander Wong. COVIDNet-CT: A Tailored Deep
Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest
CT Images. 2020. arXiv: 2009.05383 [eess.IV].

[29] Bowei Guo and Melvyn Weeks. “Dynamic tari↵s, demand response, and regulation in
retail electricity markets”. In: Energy Economics 106 (Feb. 2022), p. 105774. issn:
01409883. doi: 10 . 1016 / j . eneco . 2021 . 105774. url: https : / / linkinghub .

elsevier.com/retrieve/pii/S0140988321006149.

[30] Tuomas Haarnoja et al. Soft Actor-Critic: O↵-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. arXiv:1801.01290. type: article. arXiv,
Aug. 8, 2018. doi: 10.48550/arXiv.1801.01290. arXiv: 1801.01290[cs,stat].
url: http://arxiv.org/abs/1801.01290.

[31] Jessica B. Hamrick et al. On the role of planning in model-based deep reinforcement
learning. arXiv:2011.04021. type: article. arXiv, Mar. 17, 2021. doi: 10.48550/arXiv.
2011.04021. arXiv: 2011.04021[cs]. url: http://arxiv.org/abs/2011.04021.

[32] Tianyu Han et al. “Breaking Medical Data Sharing Boundaries by Employing Artificial
Radiographs”. In: bioRxiv (2019). doi: 10 . 1101 / 841619. eprint: https : / / www .

biorxiv.org/content/early/2019/11/14/841619.full.pdf. url: https://www.
biorxiv.org/content/early/2019/11/14/841619.

https://doi.org/10.1111/mafi.12291
https://onlinelibrary.wiley.com/doi/10.1111/mafi.12291
https://onlinelibrary.wiley.com/doi/10.1111/mafi.12291
https://doi.org/10.1561/2200000071
http://www.nowpublishers.com/article/Details/MAL-071
http://www.nowpublishers.com/article/Details/MAL-071
https://doi.org/10.48550/arXiv.1502.03509
https://doi.org/10.48550/arXiv.1502.03509
https://arxiv.org/abs/1502.03509%20%5Bcs,%20stat%5D
http://arxiv.org/abs/1502.03509
https://arxiv.org/abs/1911.08716
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.48550/arXiv.1810.01367
https://arxiv.org/abs/1810.01367%20%5Bcs,%20stat%5D
http://arxiv.org/abs/1810.01367
http://arxiv.org/abs/1810.01367
https://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf
https://arxiv.org/abs/2009.05383
https://doi.org/10.1016/j.eneco.2021.105774
https://linkinghub.elsevier.com/retrieve/pii/S0140988321006149
https://linkinghub.elsevier.com/retrieve/pii/S0140988321006149
https://doi.org/10.48550/arXiv.1801.01290
https://arxiv.org/abs/1801.01290%20%5Bcs,%20stat%5D
http://arxiv.org/abs/1801.01290
https://doi.org/10.48550/arXiv.2011.04021
https://doi.org/10.48550/arXiv.2011.04021
https://arxiv.org/abs/2011.04021%20%5Bcs%5D
http://arxiv.org/abs/2011.04021
https://doi.org/10.1101/841619
https://www.biorxiv.org/content/early/2019/11/14/841619.full.pdf
https://www.biorxiv.org/content/early/2019/11/14/841619.full.pdf
https://www.biorxiv.org/content/early/2019/11/14/841619
https://www.biorxiv.org/content/early/2019/11/14/841619

BIBLIOGRAPHY 54

[33] Nikos Hatziargyriou et al. “Microgrids”. In: IEEE Power and Energy Magazine 5.4
(July 2007). Conference Name: IEEE Power and Energy Magazine, pp. 78–94. issn:
1558-4216. doi: 10.1109/MPAE.2007.376583.

[34] Martin Heusel et al. GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium. 2018. arXiv: 1706.08500 [cs.LG].

[35] Jonathan Ho et al. Flow++: Improving Flow-Based Generative Models with Variational
Dequantization and Architecture Design. 2019. arXiv: 1902.00275 [cs.LG].

[36] Tao Hong, Pierre Pinson, and Shu Fan. “Global Energy Forecasting Competition
2012”. In: International Journal of Forecasting 30.2 (Apr. 1, 2014), pp. 357–363.
issn: 0169-2070. doi: 10.1016/j.ijforecast.2013.07.001. url: https://www.
sciencedirect.com/science/article/pii/S0169207013000745.

[37] Tao Hong, Jingrui Xie, and Jonathan Black. “Global energy forecasting competition
2017: Hierarchical probabilistic load forecasting”. In: International Journal of Fore-
casting 35.4 (2019). Publisher: Elsevier, pp. 1389–1399. url: https://ideas.repec.
org/a/eee/intfor/v35y2019i4p1389-1399.html.

[38] Tao Hong et al. “Probabilistic energy forecasting: Global Energy Forecasting Compe-
tition 2014 and beyond”. In: International Journal of Forecasting 32.3 (July 2016),
pp. 896–913. issn: 01692070. doi: 10 . 1016 / j . ijforecast . 2016 . 02 . 001. url:
https://linkinghub.elsevier.com/retrieve/pii/S0169207016000133.

[39] Mohammad Hossin and Md Nasir Sulaiman. “A review on evaluation metrics for data
classification evaluations”. In: International journal of data mining & knowledge man-
agement process 5.2 (2015), p. 1.

[40] Chin-Wei Huang et al. Neural Autoregressive Flows. arXiv:1804.00779. type: article.
arXiv, Apr. 2, 2018. arXiv: 1804.00779[cs,stat]. url: http://arxiv.org/abs/
1804.00779.

[41] Shruti Jadon. “COVID-19 detection from scarce chest x-ray image data using few-shot
deep learning approach”. In: Medical Imaging 2021: Imaging Informatics for Health-
care, Research, and Applications. Vol. 11601. International Society for Optics and Pho-
tonics. 2021, p. 116010X.

[42] Doseok Jang et al. “O✏ine-online reinforcement learning for energy pricing in o�ce
demand response: lowering energy and data costs”. In: Proceedings of the 8th ACM In-
ternational Conference on Systems for Energy-E�cient Buildings, Cities, and Trans-
portation. BuildSys ’21: The 8th ACM International Conference on Systems for Energy-
E�cient Buildings, Cities, and Transportation. Coimbra Portugal: ACM, Nov. 17,
2021, pp. 131–139. isbn: 978-1-4503-9114-6. doi: 10.1145/3486611.3486668. url:
https://dl.acm.org/doi/10.1145/3486611.3486668.

https://doi.org/10.1109/MPAE.2007.376583
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1902.00275
https://doi.org/10.1016/j.ijforecast.2013.07.001
https://www.sciencedirect.com/science/article/pii/S0169207013000745
https://www.sciencedirect.com/science/article/pii/S0169207013000745
https://ideas.repec.org/a/eee/intfor/v35y2019i4p1389-1399.html
https://ideas.repec.org/a/eee/intfor/v35y2019i4p1389-1399.html
https://doi.org/10.1016/j.ijforecast.2016.02.001
https://linkinghub.elsevier.com/retrieve/pii/S0169207016000133
https://arxiv.org/abs/1804.00779%20%5Bcs,%20stat%5D
http://arxiv.org/abs/1804.00779
http://arxiv.org/abs/1804.00779
https://doi.org/10.1145/3486611.3486668
https://dl.acm.org/doi/10.1145/3486611.3486668

BIBLIOGRAPHY 55

[43] Doseok Jang et al. “Using Meta Reinforcement Learning to Bridge the Gap between
Simulation and Experiment in Energy Demand Response”. In: Proceedings of the
Twelfth ACM International Conference on Future Energy Systems. e-Energy ’21. Vir-
tual Event, Italy: Association for Computing Machinery, 2021, pp. 483–487. isbn:
9781450383332. doi: 10.1145/3447555.3466589. url: https://doi.org/10.1145/
3447555.3466589.

[44] Doseok Jang et al. Decarbonizing Buildings Via Energy Demand Response and Deep
Reinforcement Learning: The Deployment Value of Supervisory Planning and Guardrails.
SSRN Scholarly Paper 4078206. Rochester, NY: Social Science Research Network,
Apr. 7, 2022. doi: 10.2139/ssrn.4078206. url: https://papers.ssrn.com/

abstract=4078206.

[45] Yifan Jiang et al. “Covid-19 ct image synthesis with a conditional generative adver-
sarial network”. In: IEEE Journal of Biomedical and Health Informatics (2020).

[46] Byung Gook Kim et al. “Dynamic pricing and energy consumption scheduling with re-
inforcement learning”. In: IEEE Transactions on Smart Grid 7.5 (Sept. 2016), pp. 2187–
2198. issn: 1949-3053. doi: 10.1109/TSG.2015.2495145. url: http://www.scopus.
com/inward/record.url?scp=84946762039&partnerID=8YFLogxK.

[47] Young-Jin Kim. “Optimal Price Based Demand Response of HVAC Systems in Multi-
zone O�ce Buildings Considering Thermal Preferences of Individual Occupants Build-
ings”. In: IEEE Transactions on Industrial Informatics 14.11 (Nov. 2018). Conference
Name: IEEE Transactions on Industrial Informatics, pp. 5060–5073. issn: 1941-0050.
doi: 10.1109/TII.2018.2790429.

[48] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2014. arXiv:
1312.6114 [stat.ML].

[49] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1
Convolutions. 2018. arXiv: 1807.03039 [stat.ML].

[50] B Ravi Kiran et al. “Deep Reinforcement Learning for Autonomous Driving: A Sur-
vey”. In: IEEE Transactions on Intelligent Transportation Systems (2021), pp. 1–
18. issn: 1524-9050, 1558-0016. doi: 10.1109/TITS.2021.3054625. url: https:
//ieeexplore.ieee.org/document/9351818/.

[51] Timo Kohlberger et al. “Whole-slide image focus quality: Automatic assessment and
impact on ai cancer detection”. In: Journal of pathology informatics 10 (2019).

[52] Varun Kompella et al. Reinforcement Learning for Optimization of COVID-19 Miti-
gation policies. 2020. arXiv: 2010.10560 [cs.LG].

[53] Sergey Levine et al. O✏ine Reinforcement Learning: Tutorial, Review, and Perspectives
on Open Problems. arXiv:2005.01643. type: article. arXiv, Nov. 1, 2020. doi: 10 .

48550/arXiv.2005.01643. arXiv: 2005.01643[cs,stat]. url: http://arxiv.org/
abs/2005.01643.

https://doi.org/10.1145/3447555.3466589
https://doi.org/10.1145/3447555.3466589
https://doi.org/10.1145/3447555.3466589
https://doi.org/10.2139/ssrn.4078206
https://papers.ssrn.com/abstract=4078206
https://papers.ssrn.com/abstract=4078206
https://doi.org/10.1109/TSG.2015.2495145
http://www.scopus.com/inward/record.url?scp=84946762039&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=84946762039&partnerID=8YFLogxK
https://doi.org/10.1109/TII.2018.2790429
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1807.03039
https://doi.org/10.1109/TITS.2021.3054625
https://ieeexplore.ieee.org/document/9351818/
https://ieeexplore.ieee.org/document/9351818/
https://arxiv.org/abs/2010.10560
https://doi.org/10.48550/arXiv.2005.01643
https://doi.org/10.48550/arXiv.2005.01643
https://arxiv.org/abs/2005.01643%20%5Bcs,%20stat%5D
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643

BIBLIOGRAPHY 56

[54] Rui Liu et al. Conditional Adversarial Generative Flow for Controllable Image Synthe-
sis. 2019. arXiv: 1904.01782 [cs.CV].

[55] Renzhi Lu, Seung Ho Hong, and Xiongfeng Zhang. “A Dynamic pricing demand re-
sponse algorithm for smart grid: Reinforcement learning approach”. In: Applied Energy
220 (C 2018). Publisher: Elsevier, pp. 220–230. url: https://ideas.repec.org/a/
eee/appene/v220y2018icp220-230.html.

[56] Kai Ma, Guoqiang Hu, and Costas J. Spanos. “A Cooperative Demand Response
Scheme Using Punishment Mechanism and Application to Industrial Refrigerated Ware-
houses”. In: (Nov. 17, 2014). url: https://escholarship.org/uc/item/34p35679.

[57] Xuezhe Ma et al. Decoupling Global and Local Representations from/for Image Gen-
eration. 2020. arXiv: 2004.11820 [cs.CV].

[58] Xuezhe Ma et al. “Decoupling Global and Local Representations via Invertible Gen-
erative Flows”. In: International Conference on Learning Representations. 2021.

[59] Kushagra Mahajan, Monika Sharma, and Lovekesh Vig. “Meta-dermdiagnosis: Few-
shot skin disease identification using meta-learning”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 2020, pp. 730–
731.

[60] Rohit Binu Mathew et al. “Chatbot for Disease Prediction and Treatment Recommen-
dation using Machine Learning”. In: 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI). 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI). Apr. 2019, pp. 851–856. doi: 10.1109/ICOEI.
2019.8862707.

[61] MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.
url: http://yann.lecun.com/exdb/mnist/.

[62] Saeid Motiian et al. Few-Shot Adversarial Domain Adaptation. 2017. arXiv: 1711.
02536 [cs.CV].

[63] Blake Murdoch. “Privacy and artificial intelligence: challenges for protecting health
information in a new era”. In: BMC Medical Ethics 22.1 (Sept. 15, 2021), p. 122. issn:
1472-6939. doi: 10.1186/s12910-021-00687-3. url: https://doi.org/10.1186/
s12910-021-00687-3.

[64] Junier B. Oliva et al. Transformation Autoregressive Networks. arXiv:1801.09819. type:
article. arXiv, Oct. 23, 2018. doi: 10 . 48550 / arXiv . 1801 . 09819. arXiv: 1801 .

09819[stat]. url: http://arxiv.org/abs/1801.09819.

[65] Derek Onken et al. “OT-Flow: Fast and Accurate Continuous Normalizing Flows via
Optimal Transport”. In: (May 29, 2020). doi: 10.48550/arXiv.2006.00104. url:
https://arxiv.org/abs/2006.00104v5.

https://arxiv.org/abs/1904.01782
https://ideas.repec.org/a/eee/appene/v220y2018icp220-230.html
https://ideas.repec.org/a/eee/appene/v220y2018icp220-230.html
https://escholarship.org/uc/item/34p35679
https://arxiv.org/abs/2004.11820
https://doi.org/10.1109/ICOEI.2019.8862707
https://doi.org/10.1109/ICOEI.2019.8862707
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1711.02536
https://arxiv.org/abs/1711.02536
https://doi.org/10.1186/s12910-021-00687-3
https://doi.org/10.1186/s12910-021-00687-3
https://doi.org/10.1186/s12910-021-00687-3
https://doi.org/10.48550/arXiv.1801.09819
https://arxiv.org/abs/1801.09819%20%5Bstat%5D
https://arxiv.org/abs/1801.09819%20%5Bstat%5D
http://arxiv.org/abs/1801.09819
https://doi.org/10.48550/arXiv.2006.00104
https://arxiv.org/abs/2006.00104v5

BIBLIOGRAPHY 57

[66] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow
for Density Estimation. arXiv:1705.07057. type: article. arXiv, June 14, 2018. doi:
10.48550/arXiv.1705.07057. arXiv: 1705.07057[cs,stat]. url: http://arxiv.
org/abs/1705.07057.

[67] Proximal Policy Optimization — Spinning Up documentation. url: https://spinningup.
openai.com/en/latest/algorithms/ppo.html#id3.

[68] Deepta Rajan et al. “Self-training with improved regularization for sample-e�cient
chest x-ray classification”. In: Medical Imaging 2021: Computer-Aided Diagnosis. Vol. 11597.
International Society for Optics and Photonics. 2021, 115971S.

[69] Aravind Rajeswaran et al. Learning Complex Dexterous Manipulation with Deep Rein-
forcement Learning and Demonstrations. arXiv:1709.10087. type: article. arXiv, June 26,
2018. doi: 10 . 48550 / arXiv . 1709 . 10087. arXiv: 1709 . 10087[cs]. url: http :

//arxiv.org/abs/1709.10087.

[70] Kashif Rasul et al. Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows. arXiv:2002.06103. type: article. arXiv, Jan. 14, 2021. doi: 10.

48550/arXiv.2002.06103. arXiv: 2002.06103[cs,stat]. url: http://arxiv.org/
abs/2002.06103.

[71] Stephane Ross, Geo↵rey J. Gordon, and J. Andrew Bagnell. A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning. arXiv:1011.0686.
type: article. arXiv, Mar. 16, 2011. doi: 10.48550/arXiv.1011.0686. arXiv: 1011.
0686[cs,stat]. url: http://arxiv.org/abs/1011.0686.

[72] Lars Ruthotto and Eldad Haber. An Introduction to Deep Generative Modeling. type:
article. arXiv, Apr. 11, 2021. arXiv: 2103.05180[cs]. url: http://arxiv.org/abs/
2103.05180.

[73] Tim Salimans et al. Improved Techniques for Training GANs. 2016. arXiv: 1606.03498
[cs.LG].

[74] Jian Shen et al. “Wasserstein distance guided representation learning for domain adap-
tation”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32.
2018.

[75] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data Augmentation
for Deep Learning”. In: Journal of Big Data 6.1 (July 6, 2019), p. 60. issn: 2196-1115.
doi: 10.1186/s40537-019-0197-0. url: https://doi.org/10.1186/s40537-019-
0197-0.

[76] David Silver et al. “Mastering Chess and Shogi by Self-Play with a General Reinforce-
ment Learning Algorithm”. In: (), p. 19.

https://doi.org/10.48550/arXiv.1705.07057
https://arxiv.org/abs/1705.07057%20%5Bcs,%20stat%5D
http://arxiv.org/abs/1705.07057
http://arxiv.org/abs/1705.07057
https://spinningup.openai.com/en/latest/algorithms/ppo.html#id3
https://spinningup.openai.com/en/latest/algorithms/ppo.html#id3
https://doi.org/10.48550/arXiv.1709.10087
https://arxiv.org/abs/1709.10087%20%5Bcs%5D
http://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1709.10087
https://doi.org/10.48550/arXiv.2002.06103
https://doi.org/10.48550/arXiv.2002.06103
https://arxiv.org/abs/2002.06103%20%5Bcs,%20stat%5D
http://arxiv.org/abs/2002.06103
http://arxiv.org/abs/2002.06103
https://doi.org/10.48550/arXiv.1011.0686
https://arxiv.org/abs/1011.0686%20%5Bcs,%20stat%5D
https://arxiv.org/abs/1011.0686%20%5Bcs,%20stat%5D
http://arxiv.org/abs/1011.0686
https://arxiv.org/abs/2103.05180%20%5Bcs%5D
http://arxiv.org/abs/2103.05180
http://arxiv.org/abs/2103.05180
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0

BIBLIOGRAPHY 58

[77] Lucas Spangher et al. “Engineering vs. Ambient type visualizations: Quantifying ef-
fects of di↵erent data visualizations on energy consumption”. In: Proceedings of the
1st ACM International Workshop on Urban Building Energy Sensing, Controls, Big
Data Analysis, and Visualization. BuildSys ’19: The 6th ACM International Confer-
ence on Systems for Energy-E�cient Buildings, Cities, and Transportation. New York
NY USA: ACM, Nov. 13, 2019, pp. 14–22. isbn: 978-1-4503-7014-1. doi: 10.1145/
3363459.3363527. url: https://dl.acm.org/doi/10.1145/3363459.3363527.

[78] Michael R. Starke et al. A Dynamic Simulation Tool for Estimating Demand Response
Potential from Residential Loads. Oak Ridge National Lab. (ORNL), Oak Ridge, TN
(United States), Jan. 1, 2015. url: https://www.osti.gov/biblio/1265252.

[79] Rhea Sanjay Sukthanker et al. Generative Flows with Invertible Attentions. type: ar-
ticle. arXiv, Mar. 31, 2022. arXiv: 2106.03959[cs]. url: http://arxiv.org/abs/
2106.03959.

[80] Christian Szegedy et al. Going Deeper with Convolutions. 2014. arXiv: 1409.4842

[cs.CV].

[81] Takeshi Teshima, Issei Sato, and Masashi Sugiyama. “Few-shot domain adaptation
by causal mechanism transfer”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 9458–9469.

[82] Hugo Touvron et al. “Going deeper with Image Transformers”. In: 2021 IEEE/CVF
International Conference on Computer Vision (ICCV). 2021 IEEE/CVF International
Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, Oct. 2021,
pp. 32–42. isbn: 978-1-66542-812-5. doi: 10.1109/ICCV48922.2021.00010. url:
https://ieeexplore.ieee.org/document/9710634/.

[83] Laurens Van der Maaten and Geo↵rey Hinton. “Visualizing data using t-SNE.” In:
Journal of machine learning research 9.11 (2008).

[84] A. Waheed et al. “CovidGAN: Data Augmentation Using Auxiliary Classifier GAN
for Improved Covid-19 Detection”. In: IEEE Access 8 (2020), pp. 91916–91923. doi:
10.1109/ACCESS.2020.2994762.

[85] Linda Wang, Zhong Qiu Lin, and Alexander Wong. “COVID-Net: a tailored deep
convolutional neural network design for detection of COVID-19 cases from chest X-
ray images”. In: Scientific Reports 10.1 (Nov. 2020), p. 19549. issn: 2045-2322. doi:
10.1038/s41598-020-76550-z. url: https://doi.org/10.1038/s41598-020-
76550-z.

[86] Lilian Weng. Flow-based Deep Generative Models. Section: posts. Oct. 13, 2018. url:
https://lilianweng.github.io/posts/2018-10-13-flow-models/.

[87] An Zhao et al. “Domain-adaptive few-shot learning”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 2021, pp. 1390–1399.

https://doi.org/10.1145/3363459.3363527
https://doi.org/10.1145/3363459.3363527
https://dl.acm.org/doi/10.1145/3363459.3363527
https://www.osti.gov/biblio/1265252
https://arxiv.org/abs/2106.03959%20%5Bcs%5D
http://arxiv.org/abs/2106.03959
http://arxiv.org/abs/2106.03959
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://doi.org/10.1109/ICCV48922.2021.00010
https://ieeexplore.ieee.org/document/9710634/
https://doi.org/10.1109/ACCESS.2020.2994762
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1038/s41598-020-76550-z
https://lilianweng.github.io/posts/2018-10-13-flow-models/

BIBLIOGRAPHY 59

[88] Yuxun Zhou and Costas J Spanos. “Causal meets submodular: Subset selection with
directed information”. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems. Citeseer. 2016, pp. 2657–2665.

[89] Han Zou et al. “Consensus Adversarial Domain Adaptation”. In: AAAI Conference on
Artificial Intelligence 2019. 2019.

60

Appendix A

Hyperparameters

Classifier

• Batch size: 64

• Optimizer: AdamW optimizer

• Learning rate: 1e� 5

• Learning rate decay parameters: 0.99, 0.998, 0.999, 0.999, 0.9998, 0.9998 for classifiers
trained on 100% of the training set, 5%, 1%, 0.5%, 50 samples, and 20 samples respec-
tively. The decay parameter was set to 0.99 during epochs with presumptive labels
during semi-supervised training.

• Weight decay rate: 1e� 7

• Beta parameters: (0.9, 0.999)

Conditional Generative Flow

• Batch size: 320 across 4 GPUs

• Optimizer: AdamW

• Learning rate: 5e� 4

• Learning rate decay: It had a warm-up period of 10 epochs and was decayed on an
exponential schedule with decay parameter 0.99.

• Weight decay: 1e� 6

APPENDIX A. HYPERPARAMETERS 61

• Beta parameters: (0.5, 0.999)

• Temperature for Gaussian Noise Sampling: 0.9

PPO Agent

• Batch size: 28

• SGD minibatch size: 4

• Learning rate: 526e� 6

• PPO-Clip: 0.60725

• PPO-SGD-iter: 6

OT-Flow

• Batch size: 64

• Hidden dim: 256

• ↵C : 100

• ↵R: 15

• Learning rate: 4e� 3

• Weight decay rate: 0.08

�-networks

• Batch size: 256

• Learning rate: 5e� 4

• Optimizer: Adam

62

Appendix B

Network Architecture

Classifier
Our classifier network is based on COVIDNet, by [85]. It is composed of lightweight
projection-expansion-projection-extension (PEPX) modules. The PEPX modules consist
of 1⇥ 1 convolutions for first stage projection that projects input features to a lower dimen-
sion, 1 ⇥ 1 to expand the features to a higher dimension di↵erent than that of the input
features, a depth-wise representation of features to learn spatial characteristics with 3 ⇥ 3
convolutions, 1 ⇥ 1 convolutions to project features back to a lower dimension and finally
1 ⇥ 1 convolutions to extend the channel dimensionality to produce the final features. We
take the dimension of the conditional input (z) to be 32, and perform l2-normalization on it
before feeding it to the conditional generative flow.

Conditional Generative Flow
We use a variant of a Glow [49] model that features a reorganized flow step, designed to
reduce the number of invertible 1⇥ 1 convolutions, together with a fine-grained multi-scale
architecture. Each coupling layer consists of a 3⇥3 convolution with ELU [12] non-linearity,
a 1⇥ 1 convolution, a channel-wise summation with a condition vector, a non-linearity, and
a final 3 ⇥ 3 convolution. The condition vector is obtained by taking the embedding of the
image at the penultimate layer of our classifier and projecting it to the hidden dimension of
the 1⇥ 1 convolution layer.

We use a 4-level flow, with a granularity factor M = 4. The first and last levels consist of 8
flow steps, and the two internal levels each consist of a sequence of 3 blocks of 8 flow steps.
The hidden dimension of the a�ne coupling layer at each level is 24, 512, 512, 512 in that
order.

�-networks
use a feed-forward network with 3 hidden layers, batch normalized, with ReLU activations.
The input data is [0, 1] normalized, 49-dimensional encodings (abuy, asell, day) and the hidden

APPENDIX B. NETWORK ARCHITECTURE 63

layers have 64, 49, 24 units and we take the mean square error loss between our prediction
and the actual prosumer response.

