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Abstract

Optimization Methods for Tracking and Mapping the Human Retina

by

Jay Shenoy

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ren Ng, Chair

The human retina contains a mosaic of light-sensitive photoreceptor cells that capture visual stim-
uli. Determining the structure of the retina is important for ophthalmology and vision science,
as well as for emerging display technologies that operate at the cellular level. Adaptive optics
scanning laser ophthalmoscopy (AOSLO) and optical coherence tomography (AO-OCT) are two
techniques for imaging the retina at high resolution in 2D and 3D, respectively. Both techniques
scan the eye over a set period of time, and as a result produce images that contain distortions aris-
ing from the motion of the eye during acquisition. Prior methods for AOSLO and AO-OCT image
processing have been reference-based, generating maps of the retina by registering the acquired im-
age frames against a motion-corrected reference image and averaging these frames together. These
methods rely on heuristics for estimating eye motion, resulting in inaccurate motion traces that en-
gender mapping artifacts. In this work, we introduce an optimization-based framework for retina
tracking and mapping that directly solves for the most likely trace of eye motion that occurred
during the recording session. Our framework, R-SLAM, uses inter-frame feature correspondences
and a novel convex optimization algorithm to compute the optimal motion solution, where opti-
mality is defined in a probabilistic sense. By directly solving the inverse problem of calculating
the likeliest map and motion trace that gave rise to the retina recording, we produce retina maps of
higher quality than those found in prior work. This report includes research on AOSLO image pro-
cessing that was part of a recent publication as well as subsequent work on applying R-SLAM to
the AO-OCT regime that was conducted during the master’s program. R-SLAM’s success in both
the AOSLO and AO-OCT domains indicates its utility as a theoretical and practical foundation that
opens up new avenues for research on optimization-based retinal image processing.
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Chapter 1

Introduction

The human retina contains a mosaic of photoreceptor cells that capture light. The purpose of
retinal imaging is to determine the visual structure of the retina at the cellular scale, which is im-
portant for ophthalmology and vision science. To that end, adaptive optics scanning laser ophthal-
moscopy (AOSLO) is an imaging technique that has found success in capturing high-resolution,
two-dimensional video recordings of the retina in vivo. In the three-dimensional setting, adaptive
optics optical coherence tomography (AO-OCT) produces volumes that enable depth-wise inspec-
tion of the different layers of the retina. Both AOSLO and AO-OCT acquire images of the retina
by scanning the eye over a set period of time. Figure 1.1 shows an AOSLO tabletop setup, and
figures 1.2 and 1.3 show typical captures from AOSLO and AO-OCT systems.

Figure 1.1: A subject conducting an imaging session with the AOSLO system. Photo credit: Elena
Zhukova.
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Figure 1.2: A typical frame captured by an AOSLO system, which possesses enough resolution
to identify individual cones in the image. The dots (both light and dark) correspond to individual
cells. The shearing and vertical elongation of the cone cells in the top part of the frame suggests
that the eye was undergoing a microsaccade directed down and to the right when the top portion
was scanned.

1.1 Retina Tracking and Mapping as Interdependent

Problems

There are two main problems we wish to solve when performing offline processing of AOSLO or
AO-OCT data: either (1) track the eye’s motion over the course of the recording or (2) generate
an accurate map of the retina. These two problems are interdependent in that solving one of them
allows one to easily solve the other. That is, given an accurate motion trace of the retina during the
recording, one can stabilize and average each frame to produce a retina map. Conversely, given a
retina map, one can register portions of the recorded frames against the map to retrieve an estimate
of the eye’s motion. Unfortunately, the solution space is underconstrained as there are (infinitely)
many different map and motion pairs that could give rise to the same retina recording, as illustrated
by figure 1.4. Solving for the map therefore requires perfect knowledge of the motion and vice
versa, which, combined with the infinite solution space, creates a chicken-and-egg problem with
no definite solution.

We make several assumptions to resolve the underconstrained nature of the problem setup.
First, we assume that the eye’s motion cannot exceed a certain speed, which, in our empirical
studies, always holds because we analyze retina recordings acquired while the subject is asked
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Figure 1.3: A single volume captured via AO-OCT, visualized with volume rendering to show
three-dimensional structure. The blue-green plane corresponds to the photoreceptor layer, and the
purple region is the enclosing volume.

to fixate steadily on a target. Second, we assume that while the retina exhibits a semi-regular
arrangement of photoreceptor cells, different regions of cones remain visually distinct from one
another under some metric. Together, these assumptions preclude the solution ambiguity found
in figure 1.4. The second assumption, in particular, permits the use of feature tracking algorithms
to derive information about the motion of cone regions over time. This sort of feature tracking
is standard across prior methods for retina tracking and mapping as well as the techniques we
introduce in this work.

1.2 Prior Work

Prior methods for retina tracking and mapping mostly operate under the same principle, which is to
designate a single frame as the reference and register all the other frames in the recording against
the reference. The registered frames are averaged to produce a retina map with a higher signal-to-
noise ratio than any individual frame, and sub-frame registration offsets provide estimates of eye
motion. The problem with this approach is that the eye is constantly moving during the acquisition
of each frame because of the rolling shutter nature of the imaging systems, so the approach fails
to correct for distortion in the reference itself. Alternative methods [2, 4] have been proposed to
perform intra-frame distortion correction, but they are not always accurate because they assume
that the eye’s motion is of zero-mean over the course of the entire recording, which fails to hold
for longer recordings. Even a few pixels of inaccuracy in the motion-corrected reference can
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Figure 1.4: An example of two distinct motion and map pairs giving rise to the same observation.
In the top pair (hypothesis 1), the retina is a rectilinear grid undergoing constant-velocity rightward
motion during the image acquisition, resulting in a slanted observation. In hypothesis 2, the retina
is a slanted grid undergoing zero motion, resulting in the same observed frame.

cause noticeable mapping artifacts when registering and stitching several other frames with the
reference. A more complete discussion on prior methods and their limitations can be found in
subsequent chapters.

1.3 An Optimization-Based Approach to Retina Tracking and

Mapping

The main contribution of this work is to frame the recovery of retinal appearance and motion as
an optimization problem. The novelty of this approach is that it simultaneously estimates the map
and motion that produced a given retina recording, which is commonly referred to as an inverse
problem in the field of computational imaging. Here, the optimization is done over the space of
all map and motion pairs. At a high level, the optimization objective aims to determine the most
likely map and motion pair giving rise to the recording, where likelihood is defined in terms of a
probabilistic prior on eye motion as well as a feature-based penalty. This optimization framework,
which we name retina-based simultaneous localization and mapping (R-SLAM), is general enough
to be applied to both AOSLO and AO-OCT imagery.
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Two versions of R-SLAM, one for AOSLO and another for AO-OCT, are described in the rest
of this report, which is organized as follows:

• Chapter 2 describes R-SLAM for 2D AOSLO Imaging, a method for retrieving the retina’s
appearance and motion from AOSLO video. 1 Practically, we perform retina tracking and
mapping in two steps: (1) tracking features in a dense fashion across the acquired frames
followed by (2) solving a convex optimization objective that produces a motion trace fitting
the tracked features as closely as possible while also obeying a chosen prior on eye motion.
The output motion trace is used to generate a retina map by stabilizing and averaging each
AOSLO frame. Finally, we perform a gradient-based refinement step for artifact correction.
The advantage of this optimization setup is its generality in allowing the user to implement
the feature tracking techniques and motion priors of their choice. We present robust feature
tracking methods that are tailored to retina imagery and choose a motion prior that renders
the optimization objective convex, which offers theoretical guarantees regarding the exis-
tence of a solution as well as practical performance benefits.

• Chapter 3 describes R-SLAM for 3D AO-OCT Imaging, a method for performing retina
tracking and mapping from AO-OCT scans. The method initially projects the 3D volumes
to 2D frames containing cellular structure similar to that captured by AOSLO. Next, we use
the fast feature tracking method from chapter 2 to obtain 2D feature information, followed
by 1D cross-correlation to retrieve feature information for the projected dimension. Splitting
feature tracking into 2D and 1D subproblems improves the efficiency of this step, which is a
bottleneck in prior methods. Finally, the 3D features are input to a 3D variant of the convex
optimization procedure from chapter 2, which outputs the motion trace and therefore the
retina map. We skip the gradient refinement step here as it is too computationally expensive
in the 3D setting.

1Based on work originally published in ICCV 2021 [22].
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Chapter 2

R-SLAM for 2D AOSLO Imaging

The adaptive optics scanning laser ophthalmoscope (AOSLO) is a device that images the retina at
high resolution, capturing a 30 FPS video stream that can resolve individual photoreceptor cells.
The AOSLO has mainly been applied in ophthalmology settings for recording videos of the retina,
and existing approaches demonstrate real-time eye tracking speeds of 1 kHz [26]. These meth-
ods register strips of incoming retinal video against a pre-computed retina map, which in turn
is generated by stabilizing a previously-recorded AOSLO video using offline eye tracking algo-
rithms. Unfortunately, these offline techniques often produce distorted maps because they fail to
completely correct for the entanglement of eye motion with the AOSLO’s rolling shutter capture
process.

In this chapter, we introduce a principled approach to disentangling eye motion from the rolling
shutter video. We formulate and solve a holistic optimization problem that simultaneously com-
putes retina motion and a map of retina appearance that faithfully explain the recorded AOSLO
video. Jointly solving for this motion and retina map has not been attempted before because
it is an under-determined problem; much like in visual SLAM (Simultaneous Localization and
Mapping [24]), there is an inherent ambiguity between the moving location of the retina/eye and
the underlying map of the retina’s appearance. Our method, R-SLAM (for retina-based SLAM)
consists of two stages (see Figure 2.1): first, we use convex optimization to compute an initial
estimate of the motion. Formulating this initial step in a convex fashion offers guarantees about
the existence and uniqueness of the optimal motion solution, as well as efficient algorithms to find
this solution. Second, we perform joint refinement of the retina map and initial motion estimate,
aiming to reconstruct the input video using gradient descent. Our contributions include:

• Formulation of eye-tracking from rolling-shutter retina video as an optimization problem.
• Convex initialization and gradient-based refinement of retina motion and retina map, in an

offline algorithm that results in 3x less tracking error than prior work.
• Real-time eye tracking with 2x less error than prior methods, using the high-accuracy retina

maps produced in the offline process and applying robust statistics to fast tracking based on
normalized cross-correlation.
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Figure 2.1: Our offline tracking algorithm’s pipeline. R-SLAM receives as input distorted video
of the retina, then proceeds to compute an initial motion estimate using convex optimization. We
then use constrained gradient descent to jointly optimize the retina’s motion and map, the latter of
which can be used for real-time tracking.

2.1 Related Work

2.1.1 AOSLO-Based Eye Tracking

The AOSLO offers promising hardware for high-frequency eye tracking with subarcminute accu-
racy, but current software solutions for processing AOSLO video fail to completely disentangle the
effect of rolling shutter from motion of the eye, leaving artifacts in motion estimates and residual
distortions in estimated retina maps. Full details of AOSLO are provided by Roorda et al. [20], but
we provide a brief overview here. The AOSLO records an image by measuring the scattered light
from a focused spot on the retina as it sweeps in a raster scan. AOSLOs are capable of recording
a live video of the human retina at a cellular resolution and high sampling density (typically 9.5
pixels per arcminute). Since the laser scans line-by-line from the top to bottom of each frame,
the bottom portions of video frames are recorded later in time than the top portions. This vertical
sweep combined with the eye’s motion introduces rolling shutter distortion in the video frames
[23] but also provides the opportunity for high-speed tracking [21].

There are several techniques that attempt to dewarp rolling shutter AOSLO video. Stevenson
et al. [23] perform offline tracking by constructing a reference frame from a registered set of seed
frames from a video sequence and subsequently registering all video frames to that reference,
strip-wise, to form a larger retina map. Azimipour et al. [2] solve for motion within a single
frame by registering the strips in the frame against the other frames and computing a dewarping
bias. Bedggood et al. [4] use a similar method to [2], except Bedggood et al. solve for the eye’s
motion in the whole video by registering all the other frames against the single dewarped frame in
a strip-based fashion.

These methods are moderately effective. Stevenson et al.’s approach reduces, but does not
eliminate, artifacts from distortions in the reference frame. The outcome is that the apparent mo-
tion that gives rise to the distortion in the reference frame appears in the motion trace from each
frame in the video. Empirically, these periodic artifacts manifest as spikes in the power spectrum
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at the frame rate and higher harmonics (30 Hz, 60 Hz, 90 Hz, and so on) [5]. We make use of
this phenomenon in analyzing tracking error in the absence of ground truth motion data in Section
2.3.2. Azimipour et al. and Bedggood et al. effectively minimize these artifacts, but their algo-
rithms are not suited to stabilize the movie over the entire extent of the field of view, generate high
fidelity images over the largest possible extent, or generate the most accurate and continuous eye
motion traces. Unlike R-SLAM, these methods rely on registering motion against one or more
seed frames that may contain rolling shutter artifacts themselves, and attempts to dewarp the seed
frames fail to utilize dense interframe correspondence information throughout the entire video.

2.1.2 Rolling Shutter Correction for Frame Dewarping

A variety of algorithms exist to correct for rolling shutter, but most of them assume 3D world
geometry [12, 27, 28]. Baker et al. [3] use the same 2D translational motion assumption as us,
and their method is similar to our convex optimization step. Their algorithm consists of feature
tracking via optical flow followed by linear programming to solve for a camera motion trace that
is consistent with the tracked features. Our method is different from [3] in that we track features
across the whole video instead of just neighboring frames in order to enable loop closure, which is
important for the mapping aspect of our algorithm. Secondly, we use an l2 loss to impose a Brow-
nian random walk prior on the eye’s motion, whereas [3] uses an l1 loss to remove outliers from
the set of tracked features (which we handle using RANSAC [11]). Thirdly, we refine the initial
output of the convex step using gradient-based optimization over a different objective function.

Figure 2.2: (Left) Comparison of
offline tracking techniques on two
different simulated AOSLO videos.
Note that the simulated motion was
set to a high level to stress-test
all methods. R-SLAM, Azimipour
et al., and Bedggood et al. are
able to track the motion and offer
a fair comparison, but the Steven-
son et al. algorithm was not suited
to track this magnitude of motion.
Stevenson was able to track the real
AOSLO videos (see Table 2.1) al-
beit with evident reference frame
artifacts (Figure 2.4). R-SLAM
achieves the most faithful recon-
struction of the ground truth mo-
tion, particularly in the vertical (y)
direction.
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Figure 2.3: Comparison of different techniques for offline estimation of the retina map from simu-
lated retina video, which contains extreme eye motion for stress testing. Stevenson fails to stabilize
the input video, Azimipour (using only one frame) contains significant noise because it only sta-
bilizes a single frame, and Bedggood et al. (equivalent to Azimipour with averaging of multiple
frames) suffers from blurry cones in the top portion of the inset. Only R-SLAM properly resolves
all cone cells in the image.

Figure 2.4: Comparison of different techniques for offline estimation of the retina map from real
AOSLO video. Bedggood et al. suffers from blurry/distorted cone cells, and Stevenson contains
sharpness issues and duplicated cone cells towards the bottom of the image. Only R-SLAM prop-
erly resolves all cone cells in the image.

2.2 Mathematical Background and System Overview

Our system directly models the AOSLO’s video capture process to simultaneously optimize the
retina’s motion and appearance from an input recording. This allows arcminute accurate offline
tracking and distortion-free map generation that subsequently enables high-quality real-time track-
ing.

We define the problem mathematically as follows:
We define the retina map as a 2D rigid image, with scalar intensity given by R(x, y), where

(x, y) are spatial coordinates on the retina. All spatial units are defined such that the AOSLO’s
output has unit width and height.

We define the retina’s motion as a function of time, with the retina’s 2D position given by
M(t) = [X(t), Y (t)]. This [X(t), Y (t)] is a position within the map of the retina. We ignore
any torsional effects (rotations about the eye’s optical axis) and model retina motion completely
as translations. While torsion indeed occurs during fixational eye movement [15], we find that the
translational eye motion assumption suffices for our AOSLO data.
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We define the AOSLO’s video as V (u, v, i), which is the scalar intensity at position (u, v)
within frame i. Positive u is rightward, and positive v is downward, with u, v 2 [0, 1]. One unit of
time is the inverse of the AOSLO’s FPS.

We define the AOSLO forward model as F (M,R), a function that attempts to reconstruct V
given the retina’s appearance R and its motion M . That is, F (M,R)(u, v, i) = R(X(i + v) +
u, Y (i + v) + v). Notice that we sample M at time i + v rather than i to model rolling shutter
capture.

We define the true motion and retina map to be M⇤, R⇤. Our goal is to produce M̂, R̂ from V
which are as close to M⇤, R⇤ as possible. To do this, we minimize the squared error between our
reconstruction F (M,R) and the input V :

M̂, R̂ = argmin
M,R

||F (M,R)� V ||2 (2.1)

2.2.1 Conceptual Overview

Equation 2.1 represents a video reconstruction objective. If it were of the form argminx ||Ax�b||2,
then we could potentially apply inverse-problem, optimization-based reconstruction techniques
often used in computational imaging. However, in our case the map and motion are entangled in
F , so we instead use constrained gradient descent (CGD) to optimize the objective as described in
Section 2.2.4.

We initialize this gradient descent search with an input M̂0, R̂0 which is sufficiently close to
M⇤, R⇤. Empirically, gradient descent search on Equation 2.1 performs poorly unless it is initial-
ized well. We efficiently compute this initialization with a convex optimization to find a sufficiently
accurate M̂0 followed by simple image rasterization to find the accompanying R̂0.

Our convex optimization step efficiently finds M̂0 as a globally optimal minimizer to a separate
objective function defined in Section 2.2.2. Surprisingly, this convex optimization not only finds a
good M̂0 to initialize CGD with, but it can do so independent of the retina map R. That is, rather
than needing to jointly estimate both M⇤ and R⇤ simultaneously, this convex optimization step can
estimate M⇤ directly without ever computing an R̂0. This is done by substituting V with a set of
dense 2D features that are globally motion-tracked in V , as described in Section 2.2.2.1.

Given an estimate M̂ and the original video V , we can use simple image rasterization tech-
niques to produce an accompanying R̂. This R̂ is chosen to minimize Equation 2.1 for a fixed M̂ .
This rasterization is expressed as S(M,V ), which yields a 2D image analogous to R. This is how
we get R̂0 as S(M̂0, V ). S is described in more detail in Section 2.2.3.

2.2.2 Initial Eye Motion Estimation via Convex Optimization

We use convex optimization to efficiently compute an initial estimation of the eye’s motion M̂0.
Our construction is novel in the way it formulates global eye motion recovery as a convex problem
using motion-tracked 2D points.
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We define G to be a list of globally motion-tracked 2D image features found via the method
described in Section 2.2.2.1. Each G 2 G is a single 2D image patch which we represent as a list
of the times and locations it is found in V . That is, (uj, vj, tj) 2 G means that the jth time that G
was found in V , it was found at time tj at position uj, vj within the frame. G is sorted in increasing
t.

Each G 2 G is a noisy estimate of M⇤, as visualized in Figure 2.5. We define the following
loss for our estimate of M⇤ given a single G 2 G:

L(M,G) =
|G|�1X

j=1

||(M(tj)�M(tj+1))� (pj+1 � pj)||2 (2.2)

where pj = (uj, vj).
We also impose a Brownian prior on M⇤ to help regularize our estimation. We model M⇤

as a Brownian random walk sampled at discrete steps. The sample times are a list T , sorted in
increasing order, and are the collection of all tj for all G in G. Each step of the Brownian random
walk is a zero-mean 2D Gaussian with variance equal to the duration of the step. Taking the
negative log likelihood:

L(M) =
|T |�1X

i=1

||M(ti+1)�M(ti)||2

ti+1 � ti
(2.3)

By combining the inter-frame, tracking-based objective of Equation 2.2 with the intra-frame
objective of Equation 2.3, we arrive at our overall convex optimization formulation:

M̂0 := argmin
M

�BL(M) + �T

X

G2G

L(M,G) (2.4)

Here, �B,�T � 0 are hyperparameter weights. Equation 2.4 is a convex quadratic program
(QP) with no constraints, and so we can readily use existing convex optimization software pack-
ages [1, 7] to compute an optimal solution for M̂0. A proof of convexity is provided in appendix A.
M̂0 is a discrete motion trace. We form a continuous representation of M̂0 via linear interpolation.

2.2.2.1 Feature Tracking

We track patch features across the entire duration of the video to ensure loop closure, doing so
using a map-aware tracker that runs in linear time with respect to the size of the map times the
duration of the input video.

Each incoming video frame (384 pixels wide by 496 pixels tall) of the input V is divided into
a grid of 64 by 16 patches. The patch height of 16 pixels in the vertical scan direction corresponds
to 1 ms of capture time, which is short enough to prevent the eye from moving significantly and
causing distortion within the patch (in the absence of saccades). Each patch is a single feature
that is tracked forward through time by registering it against all future incoming frames via fast



CHAPTER 2. R-SLAM FOR 2D AOSLO IMAGING 12

Figure 2.5: The relationship between tracked video features and eye motion trace, used as a loss
term in our convex optimization formulation (Equation 2.4). Left: horizontal position of the retina
as a function of time. The noisy motion samples from a single feature are shown as diamonds.
The dashed curve is the motion estimate M̂0(t) resulting from our convex optimization. Right:
a sequence of video frames with a single feature highlighted. If a feature appears at column u1

at time t1, and appears at column u2 at time t2, then the eye must have moved horizontally by
approximately u1 � u2 between t1 and t2. The difference between the total estimated motion M̂0

and the motion implied by the feature tracking is minimized in Equation 2.2.

normalized cross-correlation [13] implemented on the GPU. To make this feature tracking robust
to outliers, we group together features that lie in the same row into strips and perform RANSAC
on these strips, aiming to calculate each strip’s displacement in every subsequent frame based on
the maximum number of constituent features that agree on that displacement. Features are said to
agree if their displacements are less than 2 pixels apart.

Tracking features across the entire video is important because it ensures loop closure, allowing
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the algorithm to recognize when a frame in the video revisits a part of the map that was explored
much earlier. However, tracking every feature against every other frame would be of complexity
O(mn2), where n is the number of frames and m is the number of features per frame. This
brute force approach is computationally infeasible, so we instead only choose to track features
that correspond to distinct areas of the underlying retina map. Every time our map-aware tracker
encounters a new frame, if a particular candidate feature in that frame has been matched with
a previously-seen feature, then we discard the candidate feature and don’t add it to the set of
tracked features. More specifically, if some fraction �f of the candidate feature’s area intersects
a previous feature, the candidate is discarded. This ensures that the number of tracked features
remains proportional to the size of the map, making the algorithm run in O(rn) time, where r is
the number of tracked features.

Furthermore, the feature tracker maintains a concept of good and bad features within the
tracked set - if a feature has not been matched to at least �n frames in total or one of the past
�m frames, it is immediately discarded. This rule removes features that offer little tracking data.

The � hyperparameters can be tuned to give various trade-offs between speed and the density
of features, but in practice �f = 0.9, �n = 4, and �m = 6 give considerable speed-up for no
noticeable loss in performance.

2.2.3 Drawing a Retina Map Given Estimate of Eye Motion

If we are given M , then we can directly solve for a map S(M,V ) which minimizes minR ||F (M,R)�
V ||2 for the fixed M . Given the motion of the retina, we know where in retina map each pixel of
V is sampling from. Therefore, we construct the retina map S where the value at each location is
the average of the samples taken at that location. This average value minimizes the squared error
against the noisy samples, thus minimizing ||F (M,R) � V ||2. Conceptually, we build S(M,V )
by first using M to cancel out the motion in each frame of V , producing a stabilized video. The
frames of this stabilized video are averaged together to produce S.

2.2.4 Simultaneous Refinement of Eye Motion and Retina Map via

Constrained Gradient Descent (CGD)

R-SLAM jointly estimates the retina map and motion using constrained gradient descent (CGD),
with the initialization M̂0, V̂0 from the earlier steps. CGD converges much faster than naively
performing gradient descent on Equation 2.1 because it enforces consistency between the current
map estimate R and the input video V .

Using M̂0, V̂0 as the starting point for gradient descent is not enough to ensure quick conver-
gence. One issue is that the optimization problem in Equation 2.1 is not sufficiently constrained.
To remedy this, we expect the following to hold true for M⇤, V ⇤:

||S(M⇤, V )�R⇤||2  ✏. (2.5)
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In Equation 2.5, ✏ serves as a measure of the noise in the process used record V . This constraint
can be added to Equation 2.1 to produce the new optimization problem:

argmin
M,R

||F (M,R)� V ||2

s.t. ||S(M,V )�R||2  ✏.
(2.6)

Recall that M⇤, R⇤ are the desired optimal solutions. To make the constraint in Equation 2.6
amenable to gradient descent, we observe that in the presence of white noise, S(M⇤, V ) = R⇤ in
expectation, which holds in deterministic terms as the number of video frames goes to infinity by
the central limit theorem. That is, averaging noisy frame measurements should yield the true retina
map R⇤ as the number of frames goes to infinity. Thus, given sufficient frames, the constant ✏ that
bounds the difference between S(M⇤, V ) and R⇤ is negligible. We then make the approximation
that ✏ = 0, which implies:

||S(M,V )�R||2  ✏ = 0

=) ||S(M,V )�R||2 = 0

=) S(M,V ) = R.

(2.7)

We approximate Equation 2.6 with the new objective:

argmin
M

||F (M,S(M,V ))� V ||2. (2.8)

The retina map R is no longer a variable being optimized directly—it is captured completely
in the stabilization function S. Nevertheless, the retina map is still being jointly estimated with the
motion M , it is simply stored as a function of the input video V . Equation 2.8 ensures consistency
between M̂ , R̂, and V , enabling faster convergence. We iteratively optimize Equation 2.8 via
Algorithm 1.

Algorithm 1: Motion Refinement
Input: V, M̂0,↵, n
for i 1 to n do

R̂i�1  S(M̂i�1, V );
V̂  F (M̂i�1, R̂i�1);
L ||V � V̂ ||2;
M̂i  M̂i�1 � ↵rM̂i�1

L;
end

In this algorithm, ↵ and n are tunable hyperparameters corresponding to the step size and num-
ber of descent iterations, respectively. The functions S and F are implemented as differentiable
rasterization operations in PyTorch [19], and the reconstruction loss L is naturally differentiable
as it is simply the Euclidean norm of the difference of two three-dimensional tensors (video repre-
sentations).



CHAPTER 2. R-SLAM FOR 2D AOSLO IMAGING 15

2.2.5 Real-Time Eye Motion Tracking

Like the prior art reviewed above, our real-time tracking method uses normalized cross-correlation
to calculate the position of the latest strip of video against a retina map. We make two important
improvements. First, we use a more accurate retina map, optimized in the offline process described
above. Second, we increase robustness of calculating the location of the latest strip by applying
RANSAC. Every incoming video frame from the AOSLO is split into horizontal strips 384 pixels
wide and 16 pixels tall. Each strip is split into n sub-strips each of size b384/nc x 16. Each sub-
strip is then independently registered to acquire n estimates P = {p1, . . . , pn} for the retina’s 2D
position relative to the AOSLO. We use RANSAC [11] to filter out outliers, which is more robust
than determining strip registration quality directly with the peak values output by normalized cross-
correlation.

2.3 Evaluation

R-SLAM is evaluated on both simulated and real AOSLO video. Simulated tests allow us to
compute exact accuracies at the arcminute scale, while tests on real video highlight R-SLAM’s
ability to remove distortions that manifest as spikes in the power spectrum. We only compare R-
SLAM to prior motion estimation techniques intended for retinal imagery. More general SLAM
algorithms are excluded from comparison because they typically employ feature trackers that are
tailored for macroscopic objects and are therefore ill-suited for tracking the self-similar cone cells
of the retina.

2.3.1 Simulation

We first evaluate the accuracy of tracking algorithms on simulated AOSLO video, where we have
ground truth eye motion. First, we generate 15 synthetic cone mosaics using the particle system
described in [2]. Then, we compute a pair of three-second videos per mosaic using artificial eye
motion traces derived from the random walk model in [9], which integrates fixational eye move-
ments and microsaccades. The simulated motion was set to a high level as a stress-test for all
methods. Altogether, the simulated dataset contains 30 synthetic videos. The results of the evalu-
ations described below on this dataset are given in Table 2.1.

The offline tracking algorithm is tested on individual simulated videos, whereby the trace out-
put by our method is sampled at the frequency of the ground truth motion trace and then compared
to this ground truth. We compute the average magnitude of the 2D vector difference between the
output and ground truth traces. Since these traces can be arbitarily offset, we use the offset that
minimizes the error magnitude.

The real-time algorithm is tested on individual videos, using retina maps generated by other
videos of the same cone mosaic.

To test the effect of CGD on RMSE, we evaluate an ablation of our system with CGD held out.
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Method Stevenson
[23]

Bedggood
et al. [4]

Azimipour
et al. [2]

R-SLAM
without
CGD

R-SLAM

1

Simulated Video:
Offline Mean Error
Magnitude (pixels /

arcmin) #

9.97 / 1.05 2.67 / 0.280 N/A 1.15 / 0.121 0.821 /

0.086

2

Simulated Video:
Real-time Mean Error

Magnitude (pixels /
arcmin) #

4.82 / 0.506 2.67 / 0.280 2.68 / 0.281 1.31 / 0.138 1.31 / 0.138

3
Real Video: Offline

Spectral Error (X / Y
Direction) #

4.84 / 6.54 3.25 / 5.59 N/A N/A 1.81 / 1.67

4

Real Video: Real-time
Average Difference

Magnitude w.r.t.
Offline R-SLAM

(pixels / arcmin) #

26.95 / 2.83 34.60 / 3.63 38.17 / 4.01 N/A 23.98 / 2.52

Table 2.1: R-SLAM evaluated on simulated video (rows 1/2) and real AOSLO video (rows 3/4).
Row 1: we compute the magnitude of the error (displacement) of each output motion trace against
the ground truth, taking the mean over all tracking points in the trace. R-SLAM incurs 3x less
error than prior work. Row 2: each method outputs a map that is used for real-time tracking, and
the real-time traces are compared against the ground truth. We compute the mean magnitude of
the error for each real-time motion trace. R-SLAM incurs 2x less error than prior work. Row 3:
in the absence of ground truth, we compute the spectral error of each output motion trace, which
penalizes spike artifacts occurring at the harmonics of 30 Hz in the power spectrum (defined in
Section 2.3.2). Row 4: each method outputs a map that is used for real-time tracking, and the real-
time traces are compared to the trace output by offline R-SLAM, which is the best offline tracking
method available in the absence of ground truth. Azimipour et al. [2] is only used to test real-time
tracking because we only use it to compute a retina map. R-SLAM without CGD is only included
as an ablation for comparison on simulated video.
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2.3.2 Real-World AOSLO Video

We validate R-SLAM on 34 real AOSLO videos previously recorded from two of the human sub-
jects that were reported in a paper published by Wang et al. [25]. Since real-world AOSLO videos
do not have ground truth motion traces, we use alternative metrics to evaluate the performance of
our algorithms. The results of the evaluations described below on this dataset are given in Table 2.1.

One method consists of a spectral analysis, in which we inspect the amplitude vs. frequency of
the estimated motion trace. As described in Section 2.1.1, periodic artifacts arising from distortions
in the retina map manifest as spikes at the video frame rate and higher harmonics (30 Hz, 60 Hz,
90 Hz, and so on) that deviate from the expected inverse-frequency dependence of eye movements
(-1 slope on a log-log plot) [10]. Similar-appearing spectral artifacts are reported in prior work [5,
23]. To quantify the magnitude of these spikes in the power spectrum, we fit a line to the spectrum
on a log-log plot and define the spectral error as the sum of any positive deviations from the linear
fit evaluated at 30 Hz and higher harmonics.

We also run our real-time method using various offline retina mapping techniques. The 34
videos consist of 17 pairs, where each pair comes from a single retinal location in one of the two
subjects. The real-time method is evaluated on each video by using the other video in the pair to
create a retina map, and the real-time motion trace is compared to the output of offline R-SLAM
on the same video.

Figure 2.6: Comparison of power spectra of motion traces output by Stevenson [23] (left) and R-
SLAM (right). In black is the power spectrum of the motion trace for a given video, in blue is the
best linear regression fit, and in red are markers denoting the harmonics of 30 Hz (30 Hz, 60 Hz,
90 Hz, and so on). Stevenson exhibits large spikes at these harmonics, indicating that their motion
traces contain periodic artifacts. The R-SLAM estimated motion does not exhibit these artifacts.
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2.4 Discussion

In this section, we examine in greater detail R-SLAM’s differences with prior methods. We also
provide further directions for future work.

2.4.1 Analysis of Results

On the simulated dataset, R-SLAM achieves the lowest error on both real-time and offline eye
motion tracking compared to prior work (Table 2.1). R-SLAM achieves 0.8 pixels of mean dis-
placement error against the ground truth (improving from 1.15 pixels of error with only convex
optimization and no CGD). This represents a 3x error reduction compared to prior work. When
using each method’s estimated retina maps for real-time tracking, we find that R-SLAM achieves
2x lower error compared to prior work. There is no significant difference between using the retina
maps obtained before and after CGD. This is unsurprising since the cross-correlation step in real-
time tracking is only accurate to a pixel, and CGD only yields sub-pixel improvements on this
dataset.

On the real-world dataset, R-SLAM also achieves lower errors on both real-time and offline
eye motion tracking compared to prior work (Table 2.1). The real-world data lacks known ground
truth motion. In place of ground truth we use R-SLAM’s offline output since in simulation it
achieves sub-pixel error. For this reason, it is impossible to evaluate the offline output using the
same metric as in Row 1 of Table 2.1. Using the spectral error metric defined in Section 2.3.2,
R-SLAM achieves the lowest error, which corresponds to the artifact-free power spectra shown in
Figure 2.6.

2.4.2 Future Work

We hope that our optimization-based framework can bring new AOSLO applications within reach.
One place for improvement is to incorporate 2D rotation (torsion) into our model. Baker et al. [3]
show some success in approximating rotation with a general affine transform, and similar modifica-
tions may be applicable to our model. Another future direction is to generate maps that encompass
larger areas of the retina, which would require us to address its curvature. We currently model the
retina as a planar surface, which proves sufficient for our motion and map estimation experiments.
However, a natural extension would be to adopt a spherical model, which would enable the creation
of larger maps where the retina’s curvature becomes a significant factor.

Empirically, we have used R-SLAM to produce larger, 2x2 degree retina maps from grids of
retina recordings. One limitation we have noticed is that running R-SLAM multiple times on the
same set of input videos produces slight perturbations between consecutive tracking points in the
output motion traces. As a result, retina maps output from separate runs of R-SLAM do not align
along the vertical dimension. The issue is that due to rolling shutter, the system loses information
about the absolute positioning of consecutive lines of video such that multiple motion traces with
subpixel offsets between consecutive lines may appear equally optimal to R-SLAM, while in fact
the accumulation of these offsets over entire frames can produce retina maps that are visually
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different from one another. One potential area for future work is to incorporate alternate scanning
patterns into the solution of the motion objective in order to resolve the ambiguity that arises from
rolling shutter.
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Chapter 3

R-SLAM for 3D AO-OCT Imaging

Adaptive optics optical coherence tomography (AO-OCT) is a technique for imaging the 3D struc-
ture of the retina in vivo. Figure 3.1a shows a retina volume scanned via AO-OCT, with a canonical
set of axes overlaid for the purpose of visualizing the scanning mechanism. The volumes studied
in this chapter are acquired via line scan AO-OCT, which operates by imaging a two-dimensional
fast B-scan aligned with the xz plane that consists of multiple one-dimensional A-lines captured
simultaneously along the z axis. A scanner then sweeps along the y axis, stacking consecutive fast
B-scans to produce a 3D volume.

There are three types of axis-aligned 2D images that can be sliced from an AO-OCT vol-
ume: (1) a fast B-scan, which is parallel to the xz plane and directly measured by the system via
simultaneously-captured A-lines, (2) a slow B-scan, which is parallel to the yz plane, and (3) a
C-scan, which is parallel to the xy plane. Figure 3.1a labels three examples of these images. In
addition, one can average all the C-scan images to produce an en face projection image that cap-
tures the appearance of the photoreceptors. Figures 3.1b and 3.1c compare a C-scan image with an
en face projection, demonstrating that the latter can reveal structures that are not visible in a single
C-scan.

The en face projection resembles a 2D AOSLO image in that it makes cellular structures visible.
Because all the samples along each A-line are captured simultaneously, the information recorded in
each pixel of the en face projection corresponds to a unique instant in time. Moreover, the en face
projections are less noisy than the individual C-scans that produce them, suggesting that en face
projection images could be amenable to the 2D feature tracking algorithm introduced in chapter 2.

The main contribution of this chapter is to cast the problem of estimating the retina’s map and
motion from AO-OCT in terms of the R-SLAM optimization framework. The core idea of simul-
taneously estimating the retina map and motion remains the same as in the AOSLO setting, and the
convex optimization setup is identical, with the addition of a z variable for the depth dimension.
The main difference from chapter 2 is that we split 3D feature tracking into two steps: first, we per-
form 2D feature tracking on the en face projections of the volumes to estimate dense, inter-volume
(x, y) offsets, and second, we perform 1D correlation on the tracked features to retrieve z offsets.
The retina map is generated by stabilizing and averaging all the input volumes.
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3.1 Related Work

Previous approaches to 3D retina tracking and mapping fall into two categories: one based on
3D correlation and a second based on segmentation. 3D correlation-based techniques register
entire volumes against a reference in 3D, while segmentation-based techniques first perform 2D
registration on en face projections followed by z-dimensional registration to correct depth-wise
motion. Both approaches rely on heuristics to remove intra-volume distortion, and are described in
more detail in the following sections. For clarity, these sections refer to the volume being registered
against the reference as the target volume.

3.1.1 3D Correlation-Based Registration

3D correlation-based techniques operate by registering each fast B-scan of the target volume
against the reference. However, 3D correlation is an expensive operation as it involves computing
the Fourier transforms of volumes containing tens of millions of voxels. As such, registering every
single fast B-scan in the target volume against the entire reference volume is too costly. To remedy
this issue, Do [8] proposes a coarse-to-fine scheme that first registers every n-th fast B-scan in the
target volume against the reference and subsequently registers the remaining fast B-scans against
subsets of the reference. The coarse-to-fine technique effectively reduces the search space for most
of the fast B-scans, speeding up registration as a result.

Do’s algorithm does not address distortions in the reference volume itself. Li et al. [14] attempt
to account for these distortions by extending the correction technique of Bedggood and Metha [4]
to 3D, employing a coarse-to-fine strategy that is similar to that of Do.

3.1.2 Segmentation-Based Registration

Segmentation-based methods perform registration separately in the xy and z dimensions. Az-
imipour et al. [2] achieve this by first segmenting, or cropping, each volume to just the photorecep-
tor layer, followed by conducting xy registration of the target volume’s en face projection against
that of the reference. The z dimension is resolved by registering strips from the slow B-scan projec-
tion of the target against that of the reference. Finally, Azimipour et al. correct reference distortions
via a technique similar to that of Bedggood and Metha [4]. The advantage of segmentation-based
methods is that they rely on 2D registration, which is computationally cheaper than 3D registration.
Our method, outlined in the following section, similarly splits 3D feature tracking into a 2D reg-
istration step on the en face projections followed by a 1D correlation step along the z dimension,
which has the added benefit of allowing us to use the robust 2D feature tracking method developed
in chapter 2. We use a segmentation-based method described by Li et al. [14] as a baseline with
which to compare our method.
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3.2 Method

R-SLAM for AO-OCT operates by a similar principle as in the AOSLO case, which is to estimate
the retina map and motion that most likely produced the set of acquired volumes. This optimization
problem is described by equation 2.1 from the previous chapter, restated below for clarity.

M̂, R̂ = argmin
M,R

||F (M,R)� V ||2 (2.1 revisited)

In this equation, M is the retina motion, R is the map, and V is the set of AO-OCT input
volumes. F represents the forward operator, which computes the volumes that would be recorded
if the retina map R were to undergo motion M . Practically, solving the optimization problem in
equation 2.1 involves the same two steps as for the AOSLO case: feature tracking followed by
convex optimization to retrieve the motion trace.

3.2.1 3D Feature Tracking

3D features correspond to one or more consecutive fast B-scans stacked together into a volume
– in other words, subsets of the input volumes. Given a feature f1 located in volume v1, the aim
of feature registration is to determine the location of f1 within a second volume v2. Formally,
we compute the the spatial displacement (x0, y0, z0) of f1 between the two volumes. Figure 3.2
illustrates this definition of 3D registration.

Our method first determines the (x0, y0) components of the displacement by performing 2D
feature registration between the en face projections of v1 and v2. Afterwards, we resolve the z0

displacement via 1D correlation. Figure 3.3 illustrates how we split feature registration along the
xy and z dimensions. To perform feature tracking, we compute dense feature correspondences
between all the input volumes, skipping previously tracked features in the same manner as in
chapter 2.

3.2.2 Convex Optimization

The convex optimization step is identical to that of the AOSLO case, with the addition of a z
variable. At a high level, its objective is to calculate a motion trace that agrees with the feature
correspondences as closely as possible while also obeying a Brownian prior. This objective is
captured in equation 2.4 from the previous chapter, which is reproduced below.

M̂0 := argmin
M

�BL(M) + �T

X

G2G

L(M,G) (2.4 revisited)

As stated before, this objective function now solves for a 3D motion trace instead of a 2D trace
as done for AOSLO. The problem still remains convex because even in the AOSLO setting, the
solution of the x and y dimensions can be considered independent, convex quadratic programs, and
the z dimension behaves symmetrically, maintaining the convexity property of the overall problem.
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As such, we use the same solver from the previous chapter, extended with 3D coordinates, to
retrieve the motion trace for the AO-OCT volumes. This motion trace is used to stabilize the input
volumes, which are then averaged to obtain a 3D retina map.

3.3 Evaluation and Discussion

We evaluate our method on a dataset of volumes acquired during a single imaging session us-
ing adaptive optics line scan spectral domain OCT, courtesy of the Sabesan Lab at the Univer-
sity of Washington [16, 17, 18]. Qualitatively, we observe that R-SLAM stabilizes input vol-
umes in a smooth, realistic fashion, avoiding some of the discontinuous artifacts exhibited by the
segmentation-based method of Li et al. [14].

Figure 3.4 compares the retina maps generated by R-SLAM and the segmentation-based method
of Li et al. [14]. Visually, the two methods perform similarly, with R-SLAM producing a map of
slightly higher quality that avoids some of the vertical artifacts produced by Li et al. These maps
are created by stabilizing and averaging all the input volumes.

Figures 3.5 and 3.6 compare the efficacy of R-SLAM and Li et al. at correcting motion ar-
tifacts in two distinct input volumes. The portion of the retina being imaged in these figures is
approximately planar, but intra-volume motion causes significant z-dimensional distortion in the
input volumes shown. R-SLAM is able to correct this distortion in order to properly resolve the
true appearance of the retina, as evidenced by the fact that its slow B-scan projections contain a
smooth photoreceptor layer exhibiting slight curvature. By contrast, Li et al.’s corrected volumes
contain sawtooth artifacts that fail to represent the continuous nature of the photoreceptor layer.
These sawtooth artifacts occur because the segmentation-based method of Li et al. attempts to reg-
ister discrete vertical strips from the slow B-scan projections of the input volumes to that of the
reference volume, resulting in discontinuities between consecutive strips when the input volumes
are stabilized. By contrast, R-SLAM computes a continuous motion trace for all the volumes,
smoothly correcting intra-volume motion distortion for each fast B-scan.

R-SLAM succeeds at producing volumes with realistic appearance and curvature, indicating
that it can accurately estimate eye motion even in the presence of heavy distortion. In some settings,
it may be desirable to flatten the photoreceptors into a horizontal plane rather than reconstructing
the true, curved appearance of the retina as done by R-SLAM. This type of flattening could be
performed as a post-processing step following R-SLAM by: (1) identifying a set of points lying
on the photoreceptor layer, (2) triangulating these points into a mesh, and (3) warping the volume
such that the 2D mesh becomes a horizontal flat plane.

The quality of R-SLAM’s mapping and motion tracking points to the effectiveness of an inverse
optimization approach in the AO-OCT regime. Our 3D feature tracking and convex optimization
techniques perform well on the provided dataset, and we hope they find immediate application
within the lab. R-SLAM has fast performance, processing the provided dataset of 39 volumes at a
rate of about 1 minute and 4 seconds per volume end-to-end. While the input volumes are of cubic
complexity, our method’s memory requirements (excluding the input and output volumes) are of
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sub-cubic complexity because we operate on 2D and 1D projections of the volumetric data. Our
codebase will be made available to researchers upon request.

It is important to note that while our particular implementation choices are effective, R-SLAM
as presented is a general framework that offers an optimization-based theoretical foundation for
retina tracking and mapping. Future work could be done to improve, for instance, the 3D feature
tracking method (the splitting technique is a heuristic we use for speed purposes) or even the choice
of motion prior in the convex optimization objective. The framework is agnostic to these particular
choices. Indeed, one could forgo the feature tracking and convex optimization entirely and directly
solve the inverse problem by using a gradient-based approach similar to that in chapter 3, although
we avoid that here due to the inefficiency of 3D gradient-based optimization.
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(a) AO-OCT volume with labeled axes. A series of A-lines are captured simultaneously to form a single fast
B-scan, and a scanner repeats this process along the y dimension to produce the volume.

(b) C-scan taken from the photoreceptor
layer of the volume above, which reveals
some but not all of the cellular structure.

(c) En face projection computed by aver-
aging the C-scans from the volume above,
revealing the entire photoreceptor layer.

Figure 3.1: Visualization of an AO-OCT volume with an example of a C-scan and en face projec-
tion.
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Figure 3.2: High-level 3D feature registration pipeline. Here, registration provides us the spatial
displacement (x0, y0, z0) of feature f1 between volumes v1 and v2. Figure 3.3 illustrates this pipeline
in more detail.
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Figure 3.3: Illustration of 3D feature registration, which proceeds by 2D registration to resolve the
xy shifts followed by 1D correlation to determine the z shift. Here, we wish to locate 3D feature
f1 from volume v1 within volume v2. First, we take the C-scan projection of both volumes, and
then register f1 within v2 in 2D, which provides the relative shift (x0, y0). Using this information,
we extract the 3D feature f2 from v2, and average f1 and f2 along the x and y dimensions to
produce one-dimensional vectors aligned with the z-axis. These 1D vectors are illustrated with
nonzero width for clarity. We apply 1D cross-correlation to these vectors, producing the relative
z-dimensional shift z0. (x0, y0, z0) is then the relative displacement of feature f1 within volume v2.
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(a) R-SLAM map: en face projection (b) [14] map: en face projection

(c) R-SLAM map: slow B-scan projection (d) [14] map: slow B-scan projection

Figure 3.4: Comparison of retina maps generated by R-SLAM and a segmentation-based method
[14]. Both maps are produced by stabilizing and averaging all the input volumes. Figures 3.4a and
3.4c are projections of R-SLAM’s map, and 3.4b and 3.4d are projections of the segmentation-
based map. The slow B-scan projections are cropped to the photoreceptor layer for clarity. Both
techniques perform similarly, with R-SLAM achieving slightly better visual quality by avoiding
some of the vertical artifacts found in the segmentation-based map.
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(a) Input volume 1

(b) R-SLAM stabilization

(c) [14] stabilization

Figure 3.5: Comparison of R-SLAM and a segmentation-based method [14] at stabilizing distorted
input volume 1. Shown are the slow B-scan projections of the input volume and the outputs of R-
SLAM and [14]. R-SLAM does a better job of straightening out the photoreceptor layer, which is
assumed to be locally planar. By contrast, the stabilized volume output by [14] contains sawtooth
artifacts that appear as discontinuities in the photoreceptor layer.
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(a) Input volume 2

(b) R-SLAM stabilization

(c) [14] stabilization

Figure 3.6: Comparison of R-SLAM and a segmentation-based method [14] at stabilizing distorted
input volume 2. Shown are the slow B-scan projections of the input volume and the outputs of R-
SLAM and [14]. As in figure 3.5, R-SLAM is more effective at flattening the photoreceptor layer,
while the segmentation-based stabilization exhibits sawtooth artifacts.
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Chapter 4

Conclusion

In this work, we have demonstrated that R-SLAM is effective at tracking and mapping the retina
in both the 2D AOSLO and 3D AO-OCT domains. Our methods outperform prior work in this
area, producing motion traces and retina maps that are highly accurate and contain enough detail
to resolve fine cellular structure. Through extensive evaluation, we validate that our optimization-
based approach is able to solve the underconstrained inverse problem of estimating the retina’s map
and motion from retina recordings, indicating the efficacy of this inverse approach as a framework
for reasoning about retinal imaging. R-SLAM is both theoretically sound, relying on a probabilistic
optimization algorithm that is proven to be convex, as well as efficient in practice, with robust
methods for feature tracking and fast solvers for the convex optimization procedure.

R-SLAM is not without its limitations. We only test our method on data acquired during
fixation, in which the subject focuses on a target and only exhibits smaller movements such as
drift, tremor, and microsaccades. Another limitation of our method is that we model the retina as
a planar surface, which is approximately true for the portion of the retina imaged during fixational
acquisitions but does not hold for larger fields of view. Further research should be done to extend
our approach to handle saccades and, more generally, retina recordings in which the subject is free
to gaze in any direction.

These limitations are not inherent issues with R-SLAM, but rather the result of practical choices
we make to process retinal imagery acquired during fixation. Future work can be done to ex-
tend R-SLAM to handle larger saccades and retinal curvature, for example, while still working
within the same framework of inverse reconstruction. The novelty of R-SLAM is that it offers an
optimization-based technique for performing retina tracking and mapping at higher accuracy than
seen in prior work. Our method enables the collection of ground truth eye motion traces that offer
useful information about the behavior of the human visual system, and it opens up new possibilities
for the cellular-scale display technologies of the future.
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Appendix A

Additional Experiments and Proofs

A.1 Additional Experiments

We provide further evidence of how R-SLAM achieves better tracking quality over prior work,
both with real AOSLO video and in simulation. Since real videos lack ground truth motion data,
we use the quality of the generated map as a proxy for tracking performance since map artifacts
indicate poor tracking. With simulated videos, we directly compare each method’s output motion
trace against the synthetic ground truth trace.

A.1.1 Offline Map Generation With Real AOSLO Video

We compare the retina maps output by R-SLAM with those of other offline mapping techniques
in figures A.1, A.2, and A.3. Each method is allowed to drop frame data when generating maps
because we wish to evaluate map quality as opposed eye tracking quality. The three input videos
are real AOSLO recordings published by Wang et al. [25], which are attached to this supplementary
submission. In each case, R-SLAM outperforms both Bedggood et al. [4] and Stevenson [23] in
producing maps that are artifact-free and contain clear cone cells. The method of Azimipour et al.
[2] is excluded because it is nearly identical to that of Bedggood et al. [4].

A.1.2 Real-time Tracking on Simulated Video

We offer additional visualizations of the performance of various real-time AOSLO trackers on
simulated video. Each real-time tracker differs in how it generates the reference image of the
retina. Figures A.4 and A.5 show the real-time tracking performance of R-SLAM, Bedggood et al.
[4], and Stevenson [23] on two videos, evaluated against the ground truth. In each case, R-SLAM
more faithfully estimates the ground truth motion.
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A.2 Proof of Convexity for Motion Initialization Objective

We prove that the objective in Equation 2.4 is convex by showing that the optimization function
can be expressed as a Tikhonov regularized problem [6], which is known to be convex:

min
x

||Ax� b||2 + ||Dx||2 (A.1)

Where A and D are matrices and b is a vector. x is a vector which we are optimizing.
The loss functions from the main paper are reproduced here for clarity:

L(M,G) =
|G|�1X

j=1

||(M(tj)�M(tj+1))� (pj+1 � pj)||2 (A.2)

L(M) =
|T |�1X

i=1

||M(ti+1)�M(ti)||2

ti+1 � ti
(A.3)

�BL(M) + �T

X

G2G

L(M,G) (A.4)

With Equation A.4 being the function we want to reduce to the form given in Equation A.1.
The first term will turn into the regularization ||Dx||2 and the second term will turn into the least-
squares ||Ax� b||2.

The following subsections illustrate how this is done.

A.2.1 Proof that the first term is reducible to ||Dx||2

M is a vector-valued function, but we will split it into its X and Y components to make this proof
easier to follow. Split L(M) into L(M) = LX(M) + LY (M), where LX(M) and LY (M) operate
on the individual components X and Y which make up M :

LX(M) =
|T |�1X

i=1

[X(ti+1)�X(ti)]2

ti+1 � ti
(A.5)

LY (M) =
|T |�1X

i=1

[Y (ti+1)� Y (ti)]2

ti+1 � ti
(A.6)

We will only examine LX(M) in detail, but the same reasoning applies to LY (M).
Let x 2 R|T | be a vector. Let the ith element of x be X(ti). We can therefore rewrite LX as

follows:



APPENDIX A. ADDITIONAL EXPERIMENTS AND PROOFS 37

LX(x) =
|T |�1X

i=1

[xi+1 � xi]2

ti+1 � ti
(A.7)

Let d(ta, tb) 2 R|T | be a vector of zeros, except with a 1 in the index where element X(ta)
appears in x and a �1 where element X(tb) appears in x. Conceptually, d is a vector which lets us
express a scalar difference as a vector dot product: X(ta)�X(tb) = d>x.

Then we can rewrite LX as follows:

LX(x) =
|T |�1X

i=1

(d(ti+1, ti)>x)2

ti+1 � ti
(A.8)

Expanding terms and rearranging:

LX(x) =
|T |�1X

i=1

x>d(ti+1, ti)d(ti+1, ti)>x

ti+1 � ti
(A.9)

LX(x) = x>

0

@
|T |�1X

i=1

d(ti+1, ti)d(ti+1, ti)>

ti+1 � ti

1

A x (A.10)

Collapsing the inner summation into a single matrix, we are left with:

LX(x) = x>HXx (A.11)

where HX 2 R|T |⇥|T | is a symmetric matrix.
We can apply the same process to LY with y 2 R|T | where yi = Y (ti):

LY (y) = y>HY y (A.12)

Combining terms into block matrix form:

x =


x
y

�
(A.13)

H =


HX 0
0 HY

�
(A.14)
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We have

�BL(M) = �Bx
>Hx (A.15)

Notice that since L(M) � 0 by Equation A.3, this shows that H is positive semidefinite.
Therefore, let D0 = H1/2 be the matrix square root of H (such that H>H = D0). Let D =

p
�BD0.

We have:

�BL(M) = ||Dx||2 (A.16)

as desired.

A.2.2 Proof that the second term is reducible to ||Ax� b||2

This section will proceed similar to Section A.2.1. We will analyze each X and Y component
separately, then re-combine into block matrix form to yeild the final result.

We will split L(M,G) into L(M,G) = LX(M,G) + LY (M,G):

LX(M,G) =
|G|�1X

j=1

[(X(tj)�X(tj+1))� (uj+1 � uj)]
2 (A.17)

LY (M,G) =
|G|�1X

j=1

[(Y (tj)� Y (tj+1))� (vj+1 � vj)]
2 (A.18)

Again, we will only examine LX(M,G) in detail, but the same reasoning applies to LY (M,G).
Let x and d be defined as in Section A.2.1. We have:

LX(M,G) =
|G|�1X

j=1

[d(tj, tj+1)
>x� cj]

2 (A.19)

where cj = uj+1 � uj .
Let qG 2 R|G|�1 be a vector where the jth element is cj . Similarly, let KG 2 R(|G|�1)⇥|T | be a

matrix where the jth row is d(tj, tj+1). Then we have:

LX(M,G) = ||KGx� qG||2 (A.20)

by construction.
Let G have some arbitrary ordering, so that Gk is the kth element of G.
Then, in block matrix form define the following matrix:

PX =

2

6664

KG1

KG2

...
KG|G|

3

7775
(A.21)
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Similarly, define the following vector:

bX =

2

6664

qG1

qG2

...
qG|G|

3

7775
(A.22)

We have:
X

G2G

LX(M,G) = ||PXx� bX ||2 (A.23)

Define x as before. We define P and b as follows in block matrix form:

P =


PX 0
0 PY

�
(A.24)

b =


bX
bY

�
(A.25)

Therefore:
X

G2G

L(M,G) = ||Px� b||2 (A.26)

Taking A =
p
�TP and b =

p
�T b, we have:

�T

X

G2G

L(M,G) = ||Ax� b||2 (A.27)

as desired.
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Figure A.1: R-SLAM does better than Bedggood et al. [4] at clearly resolving all the cone cells.
R-SLAM also avoids the sorts of horizontal seam artifacts found in the map output by Stevenson
[23].
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Figure A.2: R-SLAM avoids the vertical seams and blurry artifacts found in the map output by
Bedggood [4]. R-SLAM’s map is also far less noisy than that of Stevenson [23]. Note that these
maps are the same as those found in figure 2.4.
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Figure A.3: R-SLAM does a better job of resolving cone cells and removing blurry distortions,
particularly near the bottom of the zoomed inset. The region displayed in the inset is close to the
foveal center, where the cones are the smallest. Accurate registration is critical within the fovea in
order to achieve adequate resolution of cone cells.
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Figure A.4: Comparison of real-time trackers on a simulated input video with a synthetic motion
trace. R-SLAM achieves lower root-mean-square error (RMSE) than the other two methods in
both directions. Visually, R-SLAM is closer to the synthetic ground truth motion (black), which is
more apparent in the vertical (y) direction.
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Figure A.5: Comparison of real-time trackers on a second simulated input video with a synthetic
motion trace. R-SLAM outperforms the other two methods in terms of root-mean-square error
(RMSE) from the ground truth. While R-SLAM’s motion trace looks visually similar to that
of Bedggood [4] in the horizontal (x) direction, R-SLAM visibly outperforms Bedggood in the
vertical direction.


