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Abstract
Learning Rate Estimation for Stochastic Gradient Descent
by
Nadia Hyder
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Gerald Friedland, Chair

State-of-the-art gradient descent optimizers all attempt to tune learning rate such that we
can find the minimum of the loss function without overshooting or approaching it so slowly
that we fail to reach it by the end of training. Yet, current approaches fail to consider what
the shape of the error function means. In this work, we conduct experiments to better under-
stand complexity of error functions and develop systematic methods of measuring learning
rate using concepts from information theory and fractal geometry. Experiments conducted
suggest a few findings: (1) resulting loss curves from training over random, unlearnable data
resemble exponential decay, (2) oversized networks are less sensitive to hyperparameters, and
(3) fractal dimension can be a useful heuristic for learning rate scaling. Together, these 3
findings solidify that the underlying complexity of the learning problem should be accounted
for when measuring— rather than selecting— learning rate.
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Chapter 1

Introduction

Traditional neural networks are trained using stochastic gradient descent, an iterative opti-
mization technique that computes an expected gradient using minibatches of data. Network
weights are computed at each timestep: 0,1 = 0, —nV,;L(0;), where 7 is learning rate and £
is the loss function. Learning rate controls how quickly the model is adapted to the problem
and moves toward a minimum of the loss landscape. Smaller learning rates mean slower
convergence to a minimum (necessitating longer training) and possibly getting stuck, while
larger learning rates may result in rapid changes and possibly overshooting minima or con-
verging to a suboptimal solution (with shorter training).

As a result, the choice of learning rate can have a large effect on model performance and so
new methods of learning rate selection, adjustment, and adaptation have emerged. These
include using exponentially weighted averages of previous weight updates (momentum), vary-
ing learning rate over iterations using learning rate scheduling, and adapting learning rate
based on performance.

Existing methods mostly treat learning rate as a hyperparameter. By definition, hyper-
parameters are values manually selected to control the learning process whereas parameters
are derived from the learning process. Ideally, learning rate should be a parameter— not a
hyperparameter— measured and adjusted accordingly during training. Machine learning is
a scientific process and thus requires measurements beyond accuracy, along with parameter
configuration motivated by these measurements.

In this work, we (1) develop better intuition about error functions of data, and (2) take
an information theoretical and measurement-based approach to configure learning rate us-
ing the complexity of the error function. We analyze loss curves and their complexity versus
accuracy, observe how network capacity affects the choice of learning rate, and tie these
ideas back to the fractal geometry of error functions over various learning rates and network
capacities. With these considerations, we propose a method of learning rate scaling using
fractal dimension.



Chapter 2
Related Work

Existing work related to learning rate selection is motivated by the following issue: the
magnitude of gradients can change drastically between iterations as parameters change. This
makes it both difficult and suboptimal to choose a single, global learning rate. Approaches
to address this include learning rate scheduling and various gradient descent optimization
algorithms. Optimizers like Adagrad, Adadelta, RMSprop, and Adam implement adaptive
learning rates using momentum and/or scaling. Fractal geometry has been touched upon,
with current research showing promising results and room for further work.

2.1 Learning Rate Scheduling

Learning rate scheduling is a simple, yet common approach. There are several existing
predefined frameworks in which the learning rate is adjusted between iterations as training
progresses.

Time-based decay

Time-based decay takes on the following form:

_ o
Ty

where 1 and k are hyperparameters and ¢ is the current iteration number.

Exponential decay

Another common schedule is exponential decay, computed using the following equation:

n = no * ek
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Cosine Annealing

This learning rate schedule begins with a large learning rate and rapidly decreases it to a
minimum value before increasing it rapidly, then repeats this process [9]. The learning rate is
reset to mimic restarting the learning process, but better-performing weights are maintained
so as to give the learning process a “warm restart”.

4 1, : T
e = n;mn + _(nznaa: - nimn)(l + COS( = ﬂ-))
2 T;
where 1’ . and 7! . are the minimum and maximum learning rates, and Ty, is the current
iteration number since the last restart.

Learning-Rate Annealing Methods for Deep Neural Networks

Nakamura et al. [11] discuss various different approaches to scheduled-annealing for SGD
and experiment with deep neural networks on image classification datasets. Nakamura et
al. propose an annealing approach combined with the sigmoid function with warmup, and
argue that this approach overtakes both adaptive methods and existing schedules in terms
of accuracy.

The primary shortcoming associated with learning rate schedules is their dependence on
pre-defined hyperparameters, the data, and the type of model used.

2.2 Gradient Descent Optimization

Stochastic Gradient Descent with momentum

SGD with momentum (SGDM) [12] is an optimization method which adds a momentum
term to regular SGD. Momentum is a moving average of gradients used to update network
weights. This approach works better and faster than regular SGD as it helps accelerate
gradient vectors in the right direction for faster convergence. In SGDM, parameters are
updated as follows:

vy = yv—1 + Ny J(0)

0y =01 — vy

where 7 is another hyperparameter that needs to be configured and typically has a value of
0.9.

Adagrad

Adagrad [4] is a gradient descent optimization algorithm in which each parameter has its own
learning rate. The optimizer automatically adapts learning rates in each dimension based
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on gradients seen, assigning high learning rates for parameters related to infrequent features
and low learning rates for frequent ones. Overall, Adagrad modifies the general learning rate
at time step t for every parameter 6, based on its past gradients.

.
/—thii T 6gt,z

Since Adagrad performs smaller updates, it is well-suited for sparse data. A major drawback
of using Adagrad is that it accumulates squared gradients in the denominator. Since every
added term is positive, the accumulated sum continues to grow during training, potentially
diminishing the learning rate until it is infinitesimal.

6)t—i—l,z’ = Qt,i -

Adadelta

Adadelta [18] is an extension of Adagrad that reduces the effects of accumulation in the
denominator. Instead of accumulating all past gradients, Adadelta restricts the window of
accumulated gradients to a fixed size. The sum of gradients is instead a decaying average of
all past squared gradients, and the running average E[g?]; at time step t is computed using
the running average at the previous time step and the current gradient:

Elg")e = vE[g%]e-1 + (1 — 7)g{
7 is traditionally set to 0.9, and SGD updates as follows:
A, = —n* gy
Opr1 = 0, + AO,

with the equation for Adadelta:

n
Al = ————
t E[g2]t n egt

where the denominator is equivalent to the root mean squared error criterion of the gradient.
Adadelta provides the advantage of not needing to set a default learning rate while also
eliminating the major drawback of diminishing learning rate associated with Adagrad.

RMSprop

RMSprop [7] is a similar adaptive learning rate method also developed as a way to resolve
Adagrad’s diminishing learning rates. RMSprop has an identical update rule.

E[¢*; = 0.9E[¢%);_1 + 0.1¢7

7
Opyr = 0 — ———g
t+1 t E[g2]t—|—e t
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Adam

Adam (Adaptive Moment Estimation) [8] utilizes both momentum and scaling, combining
methodologies from SGD with momentum and RMSprop. This optimizer works well for data
with noisy and sparse gradients. The weight update is performed using the equation:

A

my
0, =0, —
t t—1 n\/UTt_i_e
where
N my
my =
1—pt
A Vg
V¢ =
1—p4

my = fimy_1 + (1 — B1)g
vy = Boveor + (1= B2)g;
and 7 is the learning rate (le-3 in the original paper), € is a small number like 1le-10 to

prevent division by 0 and 3 and (3, are forgetting parameters typically set to 0.9 and 0.99,
respectively.

Hypergradient descent

Baydin et al. [2] discuss a method for improving gradient descent optimizers by dynamically
updating learning rate during training. This is achieved by updating the gradient with
respect to the learning rate of the update itself, which they define as a “hypergradient.” The
update rule is the following:

Or = 01 — mAf(0r-1)
and the learning rate is computed using the formula:

Ne = N1+ BAS(0r—1) * Af(0r—2)
where [ is the hypergradient learning rate. This algorithm requires setting both ny and 5.

2.3 Learning Rates and Fractal Geometry

Learning Figures with the Hausdorff Metric by Fractals

Sugiyama et al. [16] present a method of learning figures, defined as “nonempty compact sets
in Euclidean space” in which a machine learner takes as input discretized vectors and outputs
discrete representations of the target figure as self-similar sets, or fractals. The generalization
error of outputs is measured with the Hausdorff metric (fractal dimension). Sugiyama et al.
argue there is a connection between fractal geometry and learning by measuring complexity
using the Hausdorff and VC dimensions, which give a lower bound on the number of positive
examples.
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The Fractal Geometry of Backpropagation

Rojas [13] highlights the shapes of iteration paths in linear associator training using back-
propagation with momentum. Rojas shows that regardless of the learning rate selected,
structure of error functions (or the “iteration path for on-line learning”) is a fractal.

Acceleration via Fractal Learning Rate Schedules

Agarwal et al. [1] discuss a Chebyshev learning rate scheduler for gradient descent in which
step sizes are ordered fractally. They claim that a step-size schedule derived from Chebyshev
polynomial roots gives unstable optimization trajectories, but when a fractal permutation
of Chebyshev step sizes is selected, stable acceleration is achieved.



Chapter 3

Conceptual Background

3.1 Stochastic Gradient Descent

Stochastic Gradient Descent is the standard optimization technique for finding network pa-
rameters that minimize loss. Gradients of the loss function £ are computed over minibatches
of data at each iteration using backpropagation until the algorithm converges.

9,5_;,_1 == Qt - nvlﬁ(et)

0, represents the network parameters (weights) at timestep t, i refers to the minibatch sample,
and 7 is learning rate. The learning rate is the step size in the loss curve and determines
how quickly the optimization algorithm moves towards a minimum of the loss function.

3.2 Information Theory

Information theory provides a powerful framework for measurement in machine learning,.

Z | f(@)
7] 0
2 1
T3 1
2y, 1

Table 3.1: Table containing input to a machine learner where z; is an instance containing
input features and f(z;) is the corresponding output.

In the table above, each outcome under f(Z) is one bit of information if and only if the
learner is a binary classifier and outcomes are equiprobable. If there are more than two
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classes or outcomes are non-uniform, the amount of information in the outcome is adjusted
according to Shannon entropy [15],

H = —Xp(x) log p(x).

Supervised machine learners have a memory equivalent capacity which can be measured and
computed in bits. Below we discuss how to measure this capacity and determine architectural
requirements for a good learner.

Memory-Equivalent Capacity

Intellectual capacity refers to the number of unique target functions a machine learner is able
to represent, as a function of model parameters [10]. When a machine learner can represent all
2V binary labelling functions of any N inputs, its intellectual capacity is memory-equivalent
to N bits. This is defined as memory-equivalent capacity (MEC). Given uniformly random
data points, MEC is equal to VC dimension [6]. VC dimension is a well-known measure
of network capacity, defined as the cardinality of the largest set of points the learner can
shatter (the largest set of points for which there exists a perfect classifier f for at least one
configuration of the data points) [17].

The capacity of a dataset has two bounds [5]:
1. Capacity Requirement (upper bound), or the size of the dataset’s lookup table,

2. Expected Capacity Requirement (lower bound), achieved when weights are set to iden-
tity and biases are learned, which in the best case is logarithmic.

Meanwhile, artificial neural networks have capacity upper limits that can be determined
analytically using the following engineering principles [6]:

1. The output of a perceptron is maximally 1 bit.

2. Maximum memory capacity of a perceptron is the number of parameters (including
bias) in bits.

3. Maximum memory capacity of perceptrons in parallel is additive.

4. Maximum memory capacity of a layer of perceptrons depending on a previous layer of
perceptrons is limited by the maximum output (in bits) of the previous layer.

Measuring capacity allows us to determine optimal network architecture, including number
of neurons and layers.
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3.3 Fractal Geometry

Fractals are non-geometric, infinitely complex mathematical shapes in which patterns repeat
(self-similar). A self-similar figure can be split into parts, each of which is a scaled copy of
the whole. The study of fractals, or fractal geometry, provides a way of understanding
complexity in not just shapes, but also in systems.

Figure 3.1: Sierpinsky triangle, a well-known fractal

Fractal Dimension

Fractal dimension measures the complexity of a self-similar figure; more specifically, it is a
ratio measuring how a fractal pattern changes with the scale it is measured at.
Simple figures provide better intuition of fractals and their dimensions.

1
1. A line segment of length n can be split into n' smaller lines when each is — the length
n
of the original (here, the scaling factor is n). The fractal dimension of a line is 1.
2. An n x n square can be split into n? unit squares. Each square has a magnification

factor of n, as scaling it by n gives back the size of the original square. The fractal
dimension of a square is 2.

3. An n X n x n cube can be split into n® unit cubes. Each cube has a scaling factor of
n to generate the original cube. The fractal dimension of a cube is 3.

The following formulas are used in fractal geometry, where N is the number of sub-pieces in
a fractal, S is the scaling factor, and D is the dimension of the figure.

N =58P

~ logN
~ logS
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Looking at our equations for fractal dimension computation, we can see that there exists a
relationship between MEC and fractal dimension. N bits of MEC is equivalent to a fractal
dimension in which S = 2.

Minkowski Dimension

The Minkowski dimension, or box-counting dimension, is a method of determining the fractal
dimension of a set in R™. Formally, the Minkowski dimension of a set is defined as follows:
For set F C R? and § > 0, N5(F) denotes a collection containing the smallest number of
closed balls with diameter less than or equal to ¢ which cover F'. The upper limit of the
Minkowski dimension of F' is:

1
dim,, F' = limsup;_,, [ o8

Fractal dimension measures how a pattern fills space— the dimensionality of the pattern need
not be the same as the dimension of the space it exists in. One well-known application of
fractal dimension is measuring the complexity and irregularity of coastlines. This emerged
from the observation that the scale at which a coastline is measured affects the resulting
measurement. The fractal dimension of a coastline is a value between 1 and 2, which cor-
responds to the range between a line that is so straight and a line that is so irregular it
completely fills up all of 2D space. The higher the fractal dimension, the more complex and
irregular the figure is, whereas the lower the fractal dimension, the smoother it is. These
same principles hold for fractal dimensions of error functions.

3.4 Main Hypotheses

The complexity of the original problem (3.1) is reflected in the complexity of the model we
must design (MEC, 3.2) and this complexity should be reflected in the observable loss func-
tion (Minkowski dimension, 3.3). Complexity is assumed to never go up or down without
loss, according to the Law of Conservation of Complexity [14]. For this reason, we speculate
that the fractal dimension of the error curve tells us how learning rate should be scaled.
Highly complex functions (as reflected by the error curve complexity) should be approached
slowly with a small learning rate, less complex functions can have higher learning rates.

From this theory, we formulated the following hypotheses:
1. The error function reflects the complexity of the function implied by the data.

2. The learning rate should therefore by adapted according to the complexity of the
function modeled.

3. Fractal dimension measures said complexity.
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Chapter 4

Experimental Setup

To test our hypotheses, we ran a series of experiments to better understand what fractal
dimension tells us about the error function, the effect of network capacity, and the effect of
varying both network capacity and fractal dimension on performance. In this section, we
discuss these experiments and their setup.

4.1 List of Experiments

1. Examining loss curves of random data
2. Examining the effect of learning rate when network capacity is varied

3. Measuring and adapting learning rate based on fractal dimension of the error function
and analyzing performance compared to other optimizers

4.2 Classifier Setup

For each of the experiments, we used a simple binary classifier implemented in PyTorch and
cross-entropy loss to compute error. The following is the model implementation:

class Classifier (torch.nn.Module):

def __init__(self, input_size, hidden_size):
super ( Classifier , self). __init__()
self .layer_1 = torch.nn.Linear(input_size , hidden_size)
self.layer_out = torch.nn.Linear (hidden_size, 1)
self.sigmoid = torch.nn.Sigmoid ()

def forward(self , inputs):
x = self.sigmoid(self.layer_1(inputs))
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x = self.layer_out (x)
return x

def predict (self ,x):
pred = self.forward(x)
return (pred.detach ().numpy() > 0)

For each experiment, we trained with the following learning rates: 10, 5, 3, 1, 0.1, 0.01,
0.001. Optimizer selection and number of iterations varied by experiment.

4.3 Datasets

We ran our experiments on several datasets including generated data that took on the
following shapes/ forms: random data, circle data, and spiral data. Finally, we ran our
experiments on MNIST data— from which we arbitrarily selected 2 classes to perform binary
classification— to see how our experiments performed on more widely utilized datasets. Re-
sults were approximately the same regardless of which two classes we selected from MNIST.
All datasets used were balanced.



CHAPTER 4. EXPERIMENTAL SETUP 13

Figure 4.1: Randomly generated, 2 fea-

ture data Figure 4.2: Circle data

Figure 4.3: Spiral data
Figure 4.4: MNIST sample for digit 7.

Contains 28x28 features, 1 for each pixel.

4.4 Measurement Tools

Network architecture was constructed carefully so as to either be at or above MEC (depend-
ing on the experiment). We determined the appropriate network capacity for each dataset
using Brainome [3], a tool that computes capacity expectations for datasets using different
machine learning algorithms. Using Brainome and the aforementioned engineering princi-
ples for neural networks, we determined appropriate network architecture (number of hidden
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layer neurons) to achieve the desired capacity.

4.5 Experiment 1: Randomness and Exponential
Decay

To gain insight into complexity of error functions, especially from a poor learner on unlearn-
able data, we analyzed loss curves resulting from training on randomly generated data. We
then compared these to exponential decay curves.

In this experiment, we generated uniform random data with 1000 data points, 10 features,
and binary outcomes. We found the capacity expectations using Brainome and built a model
with appropriate capacity of 102 bits using 10 features and 1 hidden layer with 2 neurons.
We trained over 2000 iterations using stochastic gradient descent and learning rates 10, 5,
3, 1, 0.1, 0.01, 0.001. After training, we plotted (a) the training and test loss, and (b) the
running average of the loss curve. We then fit an exponential decay curve to the running
average curve, which took on the form a x 27% 4 ¢. Finally, we measured the area between
the two curves as a measure of similarity.

4.6 Experiment 2: Network Size and Learning Rate
Sensitivity

State-of-the-art machine learners like GPT-3 have many layers and billions of parameters.
Consequently, these networks are incredibly powerful. To better understand the effect of
learning rate on overparametrized networks, we trained several different models of varying
capacities over a binary class MNIST dataset.

We trained each network multiple times with learning rates 10, 5, 3, 1, 0.1, 0.01, 0.001.
For each model, we tried different optimizers including stochastic gradient descent, RM-
SProp, and Adam. Our MNIST dataset has a memory equivalent capacity of 1573 bits (as
determined by Brainome). We constructed networks with capacities of 1572 bits, 7860 bits
(5x MEC), and 157200 bits (100x MEC) and analyzed how learning rate affected training
for networks which were (a) at capacity, (b) larger than capacity, and (c) substantially larger
than capacity.
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4.7 Experiment 3: Fractal Dimension and Loss
Curves

To compute the complexity of error functions, we implemented the box counting algorithm
for fractal dimension. We then used this computation to perform learning rate scaling.

Box Counting Algorithm

In practice, the Minkowski dimension is computed using box counting over the data. Box
counting is performed by overlaying a grid on the data, counting how many boxes of the grid
are covering part of the data, and redoing this process with a finer grid with smaller boxes.
The fractal dimension is the slope of the line when we plot the value of log, NV on the y-axis
against the value of log, R on the x-axis, where N is the number of boxes covering the curve
and R is the magnification (inverse of box size). This gives the rate of change in complexity
with scale.

Algorithm 1 Box counting algorithm
1: procedure BOXCOUNT(Z)

2 transform 7 into binary array

3 p < minimal dimension of data

4: n < greatest power of 2 > p

5 build boxsizes from 2" to 2!

6

7

8

9

counts « [|
for size in boxsizes do
currcount <— number of non-empty and non-full boxes in Z
: add currcount to counts
10: end for

11: fit successive logs(boxsizes) with logy(counts) using OLS
12: return slope of fitted linear regression line

13: end procedure
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Figure 4.5: Boxes overlaid on the coast of Great Britain

Figure 4.6: Computing the box counting dimension of the coast of Great Britain

Learning Rate Scaling using Fractal Dimension

The goal of this experiment was to develop an adaptive learning rate algorithm that uses
fractal dimension of the error function. We drew on ideas from related work, particularly
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the concept of a “warm restart” [11]. Using the box counting algorithm and the same
MNIST dataset, capacities, and learning rates described before, we developed an algorithm
for learning rate scaling. At every iteration, the learning rate is scaled according to the
computed Minkowski dimension. The closer the fractal dimension is to 1, the greater the
increase in learning rate. This is to increase complexity in the error function. In this
implementation, the learning rate begins with a specified initial value 7,,;, and increases
every iteration until it reaches a maximum learning rate 7,,,., after which the learning rate
is reset to the initial minimum, and the process repeats. This differs from learning rate
scheduling as learning rate is not adjusted by a constant value but instead by a factor of the
fractal dimension. Learning rate scaling is performed with the following equations:

A, = { |1 — boxcount(Z)|, if |1 — boxcount(Z)| > o } (41)

0, otherwise

=n,_1(14+
Ne = Ne—1( TnAtq)
if Nt—1 > Mmaz OF Mt > Nmaz * Mt = Nmin
Where Z is data computed from our error function up until iteration t, 6 = 0.01 so n does
not increase rapidly, and 7, is the total number of training iterations.

Algorithm 2 Fractal Dimension Learning Rate Scaling
1: procedure FRACTALSCALING(Z, Nmin = 10, Mmaz = 10,5 = 0.01)
2: fd < boxcount(Z)

3 A<+ |1— fd|

4: if A <4 then

5: A0
6
7
8
9

end if
(14 )
=N %
nnew 77 TnA
if 7 > Nmaz OF Nnew > Mmaz then
10: else

11 N < Nnew
12: end if

13: end procedure

Additionally, we ran fractal scaling on the spiral dataset to see how it stacked up in perfor-
mance against other optimizers.
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Chapter 5

Results

We found the following results, which together verified our hypotheses.
1. Loss curves of random data resemble exponential decay.
2. The greater the network capacity, the less the learner is sensitive to learning rate.

3. Fractal dimension measures the complexity of the error function and can be used as a
method of adapting the learning rate.

Below we discuss these findings in detail by experiment.

5.1 Exponential Decay in Loss Curves

When we trained our learner at MEC on random data, the classifier achieved near 50%
accuracy on the test set as expected with each learning rate and SGD. For each learning
rate, our moving average loss closely resembled exponential decay. Furthermore, the area
between the moving average and fitted exponential decay curve was at maximum 10, meaning
the two curves were quite similar.

We speculate that when we do not get exponential decay loss curves across learning rates, our
data is learnable and likely just needs hyperparameter tuning or improvements in network
architecture for better performance. In this case, on the other hand, our selected network
architecture was appropriate but the data was unlearnable. It is worth noting that loss
curves resembling exponential decay are quite smooth and have fractal dimension close to
1. This shows a strong relationship between the complexity of the error function and the
complexity of the function implied by the data. The ‘function” was simply random guessing
and the smoothness of the error function reflected this lack of complexity.
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Figure 5.1: Plot of loss curve + exponential decay approximation, fitted equation for decay,
area between the curves, and accuracy for decreasing learning rates
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5.2 Oversized Networks

When we varied network capacities using the MNIST dataset and stochastic gradient descent,
we achieved the following accuracies:

MEC n=10 n=5 n=3 n=1 n=01 n=001 n=0.001
1572 bits 99.83% 99.83% 99.7%  99.76% 99.46% 54.03% = 46.68%
7860 bits 99.86% 99.83% 99.83% 99.80% 99.59% 98.85% = 46.72%
157200 bits  99.76% 99.59% 99.83% 99.63% 99.39% 98.95% = 95.67%

Table 5.1: Test accuracy by network capacity and learning rate using SGD

MEC mean SD
1572 bits 85.61% 22.39
7860 bits 92.06% 18.52
157200 bits 98.97% 1.38

Table 5.2: Mean and standard deviation of accuracy by capacity using SGD

Learners performed well for a greater number of learning rates as their capacity increased.
By increasing capacity from 1572 to 7860 bits, the learner increased its ability to learn at
one more specified learning rate than the previous model (at learning rate 0.01). When we
further increased the capacity to 157200 bits, the learner could learn across all learning rates
used. This model clearly outperformed the other two. These outcomes make it clear that
larger networks are less sensitive to learning rate.

To confirm this holds regardless of optimizer choice, we ran this experiment again using
RMSprop and Adam and got similar results.

MEC n=10 n=5 n=3 n=1 n=01 =00l n=0001
1572 bits ~ 98.65% 98.71% 93.99% 99.05% 99.09% 99.32%  48.77%
7860 bits  99.09% 98.95% 98.68% 99.02% 99.39% 99.20%  99.42%
157200 bits  99.22% 99.15% 99.15% 98.71% 99.19% 99.32%  99.49%

Table 5.3: Test accuracy by network capacity and learning rate using RMSprop
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MEC mean SD
1572 bits 91.80% 17.57
7860 bits 99.12% 0.25
157200 bits  99.18% 0.22

Table 5.4: Mean and standard deviation of accuracy by capacity using RMSprop

MEC n=10 n=5 n=3 n=1 n=01 =00l n=0001
1572 bits  98.65% 98.78% 99.05% 99.12% 99.15% 99.39%  46.41%
7860 bits  99.19% 98.85% 99.36% 99.56% 99.36% 99.36%  99.39%
157200 bits  99.49% 99.46% 99.36% 99.46% 99.42% 99.32%  99.36%

Table 5.5: Test accuracy by network capacity and learning rate using Adam

MEC mean SD
1572 bits 91.51% 18.41
7860 bits 99.30% 0.21
157200 bits 99.41% 0.06

Table 5.6: Mean and standard deviation of accuracy by capacity using Adam

The two optimizers performed better than SGD at learning rate 0.01 but performed just as
poorly at learning rate 0.001. We can still see a clear relationship between model capacity
and learning rate sensitivity: the smaller the network, the more sensitive to learning rate,
and the larger the network, the better its performance regardless of learning rate. These
findings also show the shortcomings of current adaptive optimizers; though Adam and RM-
Sprop adjust learning rate based on performance, initial selected learning rate can have a
large effect on performance at MEC.

5.3 Learning Rate Scaling using Fractal Dimension

Fractal dimension of an error function can be approximately between 1 and 2, where higher
fractal dimension means more irregularity and complexity and lower fractal dimension cor-
responds to smoother, simpler curves. Furthermore, as determined in experiments with
random data, poor learners have more predictable and smooth loss curves (i.e. exponential
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decay) with fractal dimension close to 1. These are the motivating principles behind the
algorithm for fractal scaling. The proposed algorithm adds complexity to error functions to
match the complexity of the original problem.

MNIST Data

We first trained learners using fractal scaling on the MNIST dataset with the same afore-
mentioned learning rates and varying capacities. The results are shown below:

1572 bits 96.49% 97.03%  98.49%  98.10%  95.20% 95.34% 98.60%
7860 bits 97.06% 98.57%  97.85%  98.53%  95.45% 98.89% 98.67%
157200 bits  97.96% 98.75%  98.92%  98.49% = 98.71% 99.28% 99.28%

Table 5.7: Test accuracy by network capacity and learning rate for MNIST data using fractal
scaling

MEC mean SD

1572 bits 97.04% 1.32
7860 bits 97.86% 1.14
157200 bits 98.77% 0.42

Table 5.8: Mean and standard deviation of accuracy by capacity using fractal scaling

Fractal scaling gave significant improvements in model performance, namely for the 1572
bit capacity model with learning rate 0.001 and 0.01. We achieve, on average, much higher
and more consistent accuracies than we did using vanilla stochastic gradient descent. Ad-
ditionally, unlike RMSprop and Adam, the learner performed similarly across learning rates
and network capacities. There are slight fluctuations, but these appear to be independent
of learning rate.

Spiral Data

Next, we trained with fractal scaling over the spiral data at MEC over 3000 iterations to
see how it performed compared to SGD, RMSprop and Adam. We added the following
features to make our data more learnable: sin(x) and sin(y). The table below shows how
performance compared over several learning rates and optimizers.



CHAPTER 5. RESULTS

23

Optimizer n=10 n=5 n=3 n=1 n=01 n=001 n=0.001
SGD 61.50% 69.00% 61.50% 71.50% 59.50% 59.50%  45.50%
RMSprop 57.00% 45.40% 54.50% 57.00% 69.00% 70.50%  62.00%
Adam 45.50% 56.50% 58.50% 73.50% 73.50% 80.50%  68.50%
Fractal Scaling 79.50% 82.50% 83.50% 81.50% 83.00% 74.00%  79.00%

Table 5.9: Test accuracy by optimizer and learning rate for spiral data

Optimizer mean SD
SGD 61.14% 7.74
RMSprop 59.34% 8.05
Adam 65.21% 11.28
Fractal Scaling 80.42% 3.06

Table 5.10: Mean and standard deviation of accuracy by optimizer

Again, we see more consistent accuracies with our fractal scaling algorithm and performance
did not depend on the choice of learning rate. Loss curves generated using fractal scaling
versus other optimizers are notable as well.
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Figure 5.2: Loss curve using SGD and 7 Figure 5.3: Loss curve using RMSprop
=3 and n =3

Figure 5.4: Loss curve using Adam and 7 Figure 5.5: Loss curve using fractal scal-
=3 ingand n =3

These loss curves have several important implications. Firstly, the loss curves corresponding
to RMSprop and Adam for learning rate 3 both resemble exponential decay, and both achieve
accuracy in the 50% range, only slightly better than random guessing. This illustrates our
previous finding that exponential decay loss is indicative of a poor learner that is at best
performing random guessing and needs hyperparameter tuning if the data is not random.
Secondly, the curve corresponding to SGD is a little more varied and less smooth. This
model has better accuracy than the other two (61.5%). Finally, the curve corresponding
to fractal scaling shows exactly what we intended it to— it reflects the complexity we have
added to the curve by accounting for fractal dimension. This proves empirically that by
adding complexity to the loss function, fractal dimension scaling improves performance.
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Chapter 6

Conclusion

In this work, we drew on concepts from information theory, fractal geometry, and related
work to develop a methodical way of measuring and scaling learning rate. Our experiments
showed the following results: (1) error functions resemble exponential decay when the learner
performs random guessing, (2) oversized networks are less sensitive to learning rate, and (3)
fractal dimension is a useful heuristic for learning rate scaling. Perhaps the most interesting
finding is that empirically, fractal scaling outperforms SGD, RMSprop, and Adam as it is
more consistent across learning rates and network capacity. These results ultimately give a
clear takeaway: the error function reflects the complexity of the function implied by the data
and for this reason complexity is a valuable measurement for learning rate computation.

6.1 Future Work

While we concluded that larger networks are less sensitive to learning rate, further explana-
tion is needed. Particularly, how increasing network size changes loss landscape in such a
way that gradient descent always converges to a minimum. Next, it could be helpful to find
a better upper limit for fractal dimensions of error functions. Although in theory the fractal
dimension of an error function can be between 1 and 2, in practice the curves seen in this
work did not have fractal dimension greater than approximately 1.3. This could be a useful
limiting measure in an optimizer which uses fractal dimension. It is also worth exploring
whether fractal scaling performs better simply because it varies the learning rate or because
we scale the learning rate appropriately, though our result on spiral data suggest that fractal
scaling is a better method of adaptation. Another consideration is that the fractal scaling
algorithm we developed uses 7, and 7,4, Which adds two more hyperparameters to set.
Although 7, corresponds to the initial specified learning rate (which had little effect) and
Nmae €mpirically performs well as 10, there may be other, better optimization methods using
fractal dimension which do not need additional hyperparameters. Finally, because of the
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fluctuation in loss using fractal scaling, the learner may need to stop training at the right
time or risk an increase in loss and decrease in accuracy. There are possible drawbacks to
introducing complexity and fluctuation, which have not been observed in this work.
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