
GamesmanUni GUI Accessibility and Combinatorial

Games

Avery Liou
Dan Garcia, Ed.
Joshua Hug, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-148

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-148.html

May 19, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Professor Dan Garcia, for allowing me into his research group and
supporting me along the 2 years I was in GamesCrafters (as well as in the
two classes I took with him).
Professor Joshua Hug, for being my second reader and helping me
improve this paper.
The GamesCrafters Web team, for going along with the improvements and
new projects that I wanted to implement.
The GamesCrafters group, for helping with the constant issues with the
website and API.
My friends and family, for supporting me along my college career.

__

GamesmanUni GUI Accessibility and Combinatorial Games

by Avery Liou

__

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of

California at Berkeley, in partial satisfaction of the requirements for the degree of Master of

Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Teaching Professor Dan Garcia

Research Advisor

(Date)

* * * * * * *

Teaching Professor Joshua Hug

Second Reader

(Date)

Table of Contents

Abstract 4

Acknowledgements 5

1. Introduction 6

2. Background 9

2.1. GamesCrafters Front-end and Back-end APIs 9

2.2. AutoGUI 11

2.3. Combinatorial Game, Nimbers, and Mex values 14

2.4. Games 16

2.4.1. Nim 16

2.4.2. Dawson’s Chess 18

2.4.3. Kayles 22

2.4.4. Mancala 24

2.4.5. Dao 25

3. Results 27

3.1. Uni v4 27

3.1.1. Mancala Custom GUI 27

3.1.2. Dao Custom GUI 29

3.2. Uni v5 AutoGUI Port 31

3.3. Custom Board String Input 33

3.4. Combinatorial Games 35

3.4.1. Nim 35

3.4.2. Dawson’s Chess 36

1

3.4.3. Kayles 37

4. Future Work 40

4.1. Port Custom GUIs from Uni v4 40

4.2. New Combinatorial Games 40

4.3. Combinatorial Games API 41

4.4. Custom Board String Improvements 41

4.4.1. Descriptive Custom Input Interface 41

4.4.2. Custom Board String Validation 43

4.5. Documentation 44

5. Conclusion 44

6. References 45

7. Appendix 48

Nim in GamesCraftersUWAPI 48

Dawson’s Chess in GamesCraftersUWAPI 52

Kayles in GamesCraftersUWAPI 56

2

Abstract

This report explores the creation of graphical interfaces for two-player, complete-information,

abstract strategy games. My project can be divided into two smaller subgoals. First, I wanted to

provide more intuitive graphical interfaces for the public to play games on the web that have

been solved within the GamesCrafters research group, doing so through the web interface

named GamesmanUni. The GamesCrafters Web team and my work on GamesmanUni GUI

has been the creation of Graphical User Interfaces (GUIs) for pre-existing games that previously

only had text interfaces, improving accessibility. Both the development of custom GUIs and the

use of AutoGUI, an automatic GUI creation system, are encapsulated in this work.

The second goal was to bring the world of combinatorial games to the GamesmanUni

ecosystem. Combinatorial games are mathematically quite rich, and are a specialization of

abstract strategy games in which the goal is always to get the last move. Although the theory

behind the games is regularly discussed in the group, they have not been brought into the main

GAMESMAN software infrastructure such as the front-end web interface GamesmanUni. By

adding several combinatorial games to GAMESMAN, we hope to expand the scope of games

that the GamesCrafters research group will explore.

3

Acknowledgements

● Professor Dan Garcia, for allowing me into his research group and supporting me along

the 2 years I was in GamesCrafters (as well as in the two classes I took with him).

● Professor Joshua Hug, for being my second reader and helping me improve this paper.

● The GamesCrafters Web team, for going along with the improvements and new projects

that I wanted to implement.

● The GamesCrafters group, for helping with the constant issues with the website and API.

● My friends and family, for supporting me along my college career.

4

1. Introduction

GamesCrafters is a UC Berkeley research and development group created and headed by

Teaching Professor Dan Garcia that has been running for more than two decades. The group

originally focused on two-player, complete-information, abstract strategy games, such as

Tic-Tac-Toe and Othello, and exhaustively solved the game tree for games that fit these three

criteria. Since then, the group has expanded to include puzzles under its scope of examination.

In the last year, the group primarily focused its research and development efforts on

three main projects:

1. GamesmanClassic: games that are encoded and fully solved in C. Several new games

have been encoded and solved and added to this project.

2. GamesmenUni: the web graphical interface used to display playable versions of solved

games to the general public. The most recent version of the website, Uni v5 [1], differs

from the last major version Uni v4 [2], in that there are now computer players available

who will always play the best move possible. However, Uni v4, contains some custom

GUIs not ported to Uni v5 yet.

3. GamesCraftersUWAPI (Universal Web API): the interface that serves the data including

board states, move values, and remoteness values to GamesmenUni. The API compiles

data from several sources, including GamesmanClassic, hard-coded games with their

game tree data encoded in JSON files, and lastly, games written and solved in Python.

5

Figure 1: A diagram of the relationship between the main projects of GamesCrafters

The bulk of my project over the past two years has primarily been focused within

GamesmanUni and GamesCraftersUWAPI. I also started working on a subset of

perfect-information, two-player abstract strategy games known as combinatorial games. These

games have the additional constraint that the goal is to get the last move (other games have

goals to capture certain pieces or align N of one’s own pieces in a row). For the front-end work

6

on GamesmanUni I created, I worked on creating clear, identifiable game boards that were

easy to play. I defined the following criteria that GUIs and other assorted interfaces had to fulfill:

1. Complete information: all possible pieces, moves, and values for a given game board

state must be visible and clear.

2. Ease of use: the moves for a board must be easy to make.

3. Click-only: the moves on a board can only be executed through clicking

4. Smoothness: the game should run relatively smoothly on an average computer without

significant lag or delay

For my work on GamesCraftersUWAPI, I focused on functionality – adding custom board

string supports as well as combinatorial games. For anything that was added, I performed

regression testing to ensure that nothing pre-existing in the API failed after committing changes.

7

2. Background

The following Background section will define important terms and projects commonly used in

the GamesCrafters research group. It will also briefly summarize the definitions of

combinatorial games and their winning and losing positions. Finally, this section will briefly

define rules for games explored in this report, including how to play them, and what constitutes

a win or a loss.

2.1. GamesCrafters Front-end and Back-end APIs

Before defining the front-end and back-end APIs that are developed and used in

GamesCrafters, it is important to first define what “front-end”, “back-end”, “and “APIs” are.

Front-end refers to the layer of a piece of software that presents information, usually the client

or the main webpage [19]. In the case of GamesCrafters, this corresponds to GamesmanUni.

Back-end refers to the layer of software that accesses data, usually from a database or some

other store of information [19]. For GamesCrafters, this is GamesCraftersUWAPI. Finally, an

API, standing for application programming interface, is a connection between different

programs or pieces of software [20]. In our case, this generally refers to methods in one

program that can be called by other programs to access specific information or data.

GamesCraftersUWAPI is a prominent example of an API within GamesCrafters. [5]

The main interface for the general public to play games solved in GamesCrafters is

through GamesmanUni [2]. Currently, GamesmanUni is in its 5th public version, referred to

in this report as Uni v5. The previous version of GamesmanUni is referred to in this paper as

8

Uni v4. GamesmanUni is written primarily in VueJS, HTML, SCSS, and TypeScript.

GamesmanUni currently supports interfaces of one-player games, referred to as ‘Puzzles’, and

two-player games, referred to as ‘Games’. GamesmanUni also supports the conversion of

board strings into front-end interfaces automatically through a system called AutoGUI, defined

in the next section. Figure 2 shows the AutoGUI interface for a game called Dragons and

Swans.

Figure 2: The AutoGUI interface for the Dragons and Swans game

The main data source that GamesmanUni draws information from is

GamesCraftersUWAPI (GamesCrafters Universal Web Application Programming Interface).

The API [4] draws data from several different sources including GamesmanClassic, the original

C project used to solve games, and games defined in Python or JSON within the UWAPI

repository itself. The architecture abstracts away where the database for each game’s tree is

9

stored and hosted and presents a universal single place that any front end can draw from.

GamesCraftersUWAPI provides the entire list of games that have been solved in entirety,

solved variants for each game, and corresponding game boards, moves, and values for moves

and positions. GamesCraftersUWAPI provides these responses in a JSON format shown in the

figure below..

Figure 3: Part of the JSON response containing all of the games available on GamesCraftersUWAPI

2.2. AutoGUI

The AutoGUI system, or automatic graphical user interface system, is an interface that was

developed within GamesmanUni in 2020 to automatically create playable interfaces for

grid-based games. The system can automatically generate these interfaces for two-player,

complete-information, strategy games that fulfilled the following criteria:

1. Every board string can be displayed as a 2-dimensional rectangular grid.

2. Every move falls under one of the following three categories:

10

a. Add a piece to the board, replace an existing piece with a new one, or remove a

piece.

b. Move an existing piece on the board.

c. Shift a row of the board in a direction by some amount.

Figure 4: A diagram representing the use of AutoGUI for a game of Dragons and Swans

11

If the game fulfilled those criteria, then they could be provided to the AutoGUI system to

generate a GUI. The board strings provided had to take the format shown in Figure 5. The move

strings provided had to take the format shown in Figure 6. [21]

Figure 5: The required string format for board strings provided to AutoGUI. [21]

Figure 6: The required string format for move strings provided to AutoGUI [21]

12

2.3. Combinatorial Game, Nimbers, and Mex values

Combinatorial games are a subset of 2-player, perfect information games where the goal is to

make the last move. Some examples of combinatorial games include Nim and Kayles, which are

explored more in depth later in this paper.

Combinatorial games are incredibly rich in depth of theory and mathematics. The

foundation of these games are based in surreal numbers, a “totally ordered proper class

containing the real numbers as well as infinite and infinitesimal numbers.” [22] There are many

properties that are specific to combinatorial games that are not explored in this paper, such as

Grundy values, nim-sequences, and P-positions [16]. We mainly focus on the position values of

win/lose/tie/draw as well as the remoteness of a position instead. [1]

Any given combinatorial game position has an integer value, also called a nimber,

representing whether or not a game is a win/loss for the player whose turn it is, given that

players alternate turns playing only that game. Any game position whether the player is unable

to make a move (and has thus, lost) has a nimber of 0. All other non-zero nimber values are

winning positions. To evaluate non-terminal game positions, one must first calculate the

nimbers of all children positions reachable in one move from the current position. The nimber

of the current position is the Mex of the set of those nimbers. The mex value, standing for

minimum excluded value, is the smallest non-negative integer from the whole set that does not

belong to the set. For example, the mex of {0, 1, 3} is 2. [13]

A particular property of combinatorial games is the ability to combine them. One can

combine multiple combinatorial games and find the nimber of the combined game by taking the

Nim sum of all the individual games. The Nim sum is defined to be the bitwise XOR of the

13

https://en.wikipedia.org/wiki/Proper_class
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Infinity

nimbers of each of the individual games. If a combinatorial game position with a nimber of 2

and a combinatorial game position with a nimber of 1 were combined, that combined game

position would have a nimber of 2 XOR 1 = 3. [7]

14

2.4. Games

This section explores the rules of the games that have been worked on in this report. This

includes combinatorial games added to the system as well as custom GUIs made for previous

computational games.

2.4.1. Nim

The game of Nim is a two-player combinatorial game whose rules are quite simple– there are n

number of piles, each with any number of sticks in each pile, which do not have to be equal. The

play alternates between two players– on a player’s turn, they may pick any number of sticks

from a single pile. This can range from one stick to the entire pile. Like all combinatorial games,

the player who is unable to make a move loses. All combinatorial games can be reduced to a

Nim game in some capacity [6]. A Nim position is defined as the number of sticks in each pile,

which can be represented as an array of numbers. For example, if the Nim game starts with piles

of 1, 3, 5, and 7 sticks, we can represent the position as [1, 3, 5, 7].

The game of Nim is quite unique within the scope of combinatorial games in that it has a

completely closed-form solution. The Mex value of any given Nim position is simply the bitwise

XOR of all of the piles. In other words, for the aforementioned position of [1, 3, 5, 7], we find

the position by calculating 1 XOR 3 XOR 5 XOR 7, thereby obtaining a MEX value of 0, or a losing

position.

15

Figure 7: A Nim game with a game board of [1, 3, 5, 7]. [17]

16

2.4.2. Dawson’s Chess

The game of Dawson’s Chess is played on a 3 x n chessboard. On the first row is a row of pawns

for one player, and on the last row is a row of pawns for the other player. Figure 8 depicts the

starting position for a 3 x 12 Dawson’s Chess board. Each player alternates turns– a player may

only push a pawn forward if and only if there are no pawns that they can capture. If they can

capture a pawn, their move must be a capture. Pawns that reach the other end of the board do

not promote to another piece, as is in traditional chess rules, and cannot keep moving. The

game ends when a player is unable to make a valid move. [9]

Figure 8: The 3 x 12 Dawson's Chess starting position

The game is reducible to a single row where the players take turns picking a spot on the

board to place a piece. Placing a piece on the board also blocks out the adjacent spaces from

pieces being placed. The position in Figure 10 depicts a position where one player has placed a

piece in position 6, blocking position 5 and 7. Identically, if one player pushes their pawn in

column 6 in Figure 8, because of the rule requiring captures to be made, this leads to a chain of

captures where both players lose their own pawns in column 4 and column 6. Then, the pawns

17

left in column 5 are directly adjacent and thus cannot be moved anymore. The sequence can be

seen in the figure below.

18

Figure 9: The sequence of moves that leads to the position equivalent to that of Figure 8. Neither white or black

has pawns in position 5 or position 7, and the pawns in position 6 are blocking each other.

19

Figure 10: An equivalent n=12 Dawson’s Chess position where one player has placed a piece in position 6,

represented by the x’s. Position 5 and position 7 are blocked off as a result, represented by the o’s. [9]

The numbers for any given starting Dawson’s Chess position can be looked up from the

following table in Figure 11. The sequence given in Figure 11 has a period of 34 with exceptions

at n=0, 14, 16, 17, 31, 34 and 51 (highlighted in red). Thus, we only have to record the periodic

sequence (and included exceptions) to have the nimber for any given starting position.

Once a move has been made, the nimber of the board can be deduced by taking the Nim

sum of all disjoint, continuous chains of empty spaces. In Figure 10, we see a space of size 4 on

the left and a space of size 5 on the right. Thus, we can look up the nimbers of starting position

4 and starting position 5 and take their XOR. 0 XOR 3 is 3, thus the nimber value of the position

in Figure 10 is 3, which is a winning position.

Figure 11: The Nimber sequence for Dawson’s Chess with period 34. [10]

20

2.4.3. Kayles

Kayles is a game typically depicted as starting with a single row of N upright pins. Two players

alternate throwing a ball to knock over either a single pin or two adjacent pins. The game ends

when there are no pins left to knock over. [23]

Figure 12: An n=7 game of Kayles. A player is about to knock over the pins in position 3 and position 4 [18]

The game can be equivalently represented as an row of n empty spaces, where players take

turns placing a piece either in one space or two adjacent spaces.

Figure 13: An n=7 game of Kayles, where the player placed pieces in adjacent positions 3 and 4.

21

The numbers for any given starting Kayles position can be looked up from the following

table in Figure 14. The sequence given in Figure 14 has a period of 12 with exceptions at n=0, 3,

6, 9, 11, 15, 18, 21, 22, 28, 34, 39, 57 and 70, highlighted in red.

Once a move has been made, the nimber of the board can be deduced by taking the Nim

sum of all disjoint, continuous chains of empty spaces, similar to Dawson’s Chess. In Figure 13,

we see a space of size 3 on the left and a space of size 2 on the right. Thus, we can look up the

nimbers of starting position 2 and starting position 3 and take their XOR. 3 XOR 2 is 1, thus the

nimber value of the position in Figure 13 is 1, which is a winning position.

Figure 14: The Nimbers for Kayles with period 12. [11]

22

2.4.4. Mancala

Mancala is a family of two-player games involving small stones placed in pits, or pockets, where

the objective is to capture the opponent’s pieces. The version of Mancala that is solved and

presented in GamesmanUni has three pockets on opposing sides of a board, each with three

pieces. On the left and right sides of the board, there are large pockets, called stores, each

belonging to one player. Players make moves by “scooping up their stones from one of their

pockets and dropping one stone into the pocket to the right, continuing up the board

counterclockwise placing one stone into each pocket.” The game ends when there are no stones

left in the non-store pockets– whichever player has more stones in their corresponding store

wins. This game has no closed-form solution and was exhaustively solved for a 6-pocket version

in GamesmanClassic. [24]

Figure 15: The Mancala available in GamesmanUni

23

2.4.5. Dao

Dao is a game played on a 4x4 square board. One player has pieces on each square of one

diagonal, and the other player has pieces on each square of the other diagonal, shown in the

figure below. [25]

Figure 16: The starting board for a Dao game.

Players take turns moving a single one of their pieces horizontally, vertically, or

diagonally. Upon moving a piece in a direction, the piece slides until it hits another piece or the

edge of the board, where it stops. For example, moving the top left piece in the figure above to

the right results in the board shown below.

24

Figure 17: The board after moving the top left piece to the right.

A player wins when they have all four of their pieces fulfilling one of the following

criteria:

1. In a straight line (vertically, horizontally, or diagonally).

2. In each of the four corners of the board

3. In a 2x2 square

25

3. Results

The Results section details GUIs created on Uni v4 and Uni v5, as well as the addition of

games with custom starts and combinatorial games in Uni v5.

3.1. Uni v4

The Uni v4 section focuses on work done on the previous version on the website. Result on

Uni v4 was focused on the custom GUIs of Mancala and Dao.

3.1.1. Mancala Custom GUI

The Mancala custom GUI is currently located on Uni v4 [3]. The GUI was created for a 6-pocket

(3 on each player’s side) version of the game, with each player having 4 stones in each pocket

on their side of the board, totaling 12 pieces for each player. The custom GUI was created

entirely using SVGs, and thus is automatically scalable. Features of the game beyond basic

GamesmanUni functionalities include:

1. Numeric counters or the number of pieces in each pocket and store

2. Opacity lightening on mouseover of each pocket

3. Coloring on pockets that indicate winning/losing moves, including different opacities to

show varying remotenesses of the moves

As seen in Figure 18, the pockets are represented by circles while the stores are represented by

oblong ovals. The blue circles represent the ‘stones’. The numbers adjacent to each shape

26

display the number of pieces in that pocket/store. A move is triggered when a user clicks

anywhere within their pocket.

Figure 18: The Mancala custom GUI. [14]

27

3.1.2. Dao Custom GUI

The Dao custom GUI is currently located on Uni v4. The GUI was created for a 4x4 version of

the game, with each player having pieces across a diagonal of the board. The custom GUI was

created entirely using SVGs, and thus is automatically scalable. The animations for the arrows

and the sliding pieces were done with built-in CSS properties. The GamesmanUni Dao is one of

the first online playable versions of the game and also the first version of the game with

animations. Features of this game beyond basic GamesmanUni functionalities include:

1. Pulsing animations for mouseover on each arrow

2. Coloring on arrows that indicate winning/losing moves, including different opacities to

show delta remoteness

3. Custom animations for sliding of pieces on move, including undo, redo, and restart

As seen in Figure 19, the board is a 4x4 grid with black pieces representing one player,

and white pieces representing the other. For the player whose turn it is, arrows are displayed on

each of their pieces, showing where the piece can be slid. In this figure, the third black piece on

the diagonal has a larger arrow in the upper right direction because the mouse is hovering over

it. The arrows are sized so that even when crossing each other, they remain distinct, and are

consistent in styling with the arrows in our Tcl/Tk GUI [1].

28

Figure 19: The Dao custom GUI. [15]

29

3.2. Uni v5 AutoGUI Port

As part of the transition from Uni v4 to Uni v5, the AutoGUI had to be ported over into the

new codebase. In the case of this port, my goal was to port AutoGUI in a form identical to that

of Uni v4. As seen in Figure 20 and Figure 21, Othello, which is a game utilizing the AutoGUI

system, looks nearly identical in its game board between Uni v4 and Uni v5, albeit with some

small differences in circle sizes. The readability and ease of use that is present in the AutoGUI

in Uni v4 is mirrored in the AutoGUI in Uni v5.

Figure 20: Othello in Uni v4

30

Figure 21: Othello in Uni v5

31

3.3. Custom Board String Input

For games with closed-form solutions, there is no need to fully solve the entire game tree if we

can deduce the solution from a given board string. This condition is particularly common in

combinatorial games such as Nim and Kayles, where we can calculate whether or not a position

is winning or losing from the board string from their periodic sequence (or in the case of Nim, a

simple calculation of bitwise XOR). Since we can deduce the solution from any board string, we

are not constrained to only board sizes that we have solved – we can play any board size the

user requests.

The interface for games that have this property allows the user to type in and enter a

starting board string or size in a specified format. As seen in Figures 22 and 23, after beginning a

Dawson’s Chess game, the user has input a starting board size of 7. Then, a Dawson’s Chess

board of N = 7 has been created. Although the computational limit for these custom boards

have not been found, in the case of Dawson’s Chess and Kayles, the readability of the board is

dramatically impaired for N > 10 on a 15-inch screen.

Although each board string that is sent by Uni to UWAPI must have its solution

calculated in the backend instead of through a database lookup, these custom boards run quite

fast in practice, with no noticeable delay or lag in gameplay. The “calculation” itself is a simple

lookup and XOR of MEX numbers, resulting in a constant runtime. In practice, the performance

of these boards is more limited by the size impacting readability rather than the calculation

runtime.

32

Figure 22: The user inputting a starting board size of 7

Figure 23: A starting board of n=7 has been created

33

3.4. Combinatorial Games

The Combinatorial Games section details the combinatorial games added to

GamesCraftersUWAPI and GamesmanUni. Each game also has a custom starting board

input available, as detailed in the Custom Board String Input section. Because each of these

games had a closed form solution where we did not exhaustively solve the entire game tree, we

also did not have access to the remoteness information of any given move. We used a

remoteness of 1 as a placeholder for all moves of these combinatorial games.

3.4.1. Nim

The game of Nim was added to GamesCraftersUWAPI and GamesmanUni along with

custom board input mentioned in the Custom Board String Input section. The GUI for Nim in

GamesmanUni was created through the AutoGUI system. For the custom starting board string

input, Nim accepts underscore delimited integers representing the size of each pile. Figure 24

shows the game board created for the custom board string input of the game of 1, 3, and 5

sticks, represented in each column of the board. Each column represents one pile of sticks and

the player takes all the sticks from the piece they select to the top of the pile. For example, in

Figure 24, if the player took the stick highlighted in green, they would take away that stick as

well as the two directly above it.

34

Figure 24: Nim board for 1_3_5 in Uni v5

3.4.2. Dawson’s Chess

The game of Dawson’s Chess was added to GamesCraftersUWAPI and GamesmanUni along

with custom board input. The GUI for Dawson’s Chess in GamesmanUni was created through

the AutoGUI system. The Dawson’s Chess graphical representation follows the form of the

game described in Figure 10. For the custom starting board input, Dawson’s Chess accepts single

integer values representing the length of the board, limited only by readability issues for N > 10

mentioned in the Custom Board String Input section. Figure 25 shows the game board created

for the custom input of 7. Each space in the row represents a place where a piece can be placed.

35

After the player places a piece, the two adjacent spaces next to it are automatically filled as well

to denote that are unavailable for piece placement.

Figure 25: Dawson’s Chess board for input 7 in Uni v5

3.4.3. Kayles

The game of Kayles was added to GamesCraftersUWAPI and GamesmanUni along with

custom board input. The GUI for Kayles in GamesmanUni was created through the AutoGUI

system. The Kayles graphical representation follows the form of the game described in Figure

13. For the custom starting board input, Kayles accepts single integer values representing the

length of the board. Figure 26 shows the game board created for the custom input of 9. Each

space in the row represents a place where a piece can be placed. After the player places a piece,

they have the option of selecting one of the adjacent spaces to place two pieces down in one

36

turn or selecting the ‘1’ at the very end of the board to end their turn with a singular piece

placement. This additional ‘1’ space allows for these two-phase moves, where the same player

clicks twice to complete any given move. Figure 27 depicts the middle of the player’s turn - after

placing the piece down, the player can end their turn by clicking ‘1’ or place one of the adjacent

pieces.

Figure 26: Kayles board for input 9 in Uni v5

37

Figure 27: A piece has been placed down as indicated by the grey filled square – the player has the option of

selecting one of the adjacent spaces to place down a second piece, or ending their turn with just one piece placed

by clicking the number “1” at the end.

38

4. Future Work

The below Future Work section details changes and improvements that are in the roadmap for

Uni v4 and Uni v5. This includes features in Uni v4 that were not added to Uni v5 like the

Dao and Mancala custom GUIs. It also explores possible improvements to combinatorial games

within GamesCraftersUWAPI and GamesmanUni and the added custom board string input

interface.

4.1. Port Custom GUIs from Uni v4

Many of the custom GUIs from Uni v4 such as the Mancala and Dao Custom GUI mentioned

earlier in the paper have not been ported to Uni v5. As a result, these games are present in Uni

v5 as either AutoGUI interfaces, which tend to be less clear and accessible than their custom

counterparts, or completely text interfaces, which are difficult to interpret and visualize. Porting

the GUIs over is crucial to completely finishing the migration from Uni v4 to Uni v5 while

maintaining GamesmanUni’s mission of accessibility and ease of use.

4.2. New Combinatorial Games

There are many combinatorial games that have not been added to the database. Many

combinatorial games have closed form solutions and can be added rather easily, as long as their

board strings and moves fit in the AutoGUI system. Other games like Mock Turtles and Dots

and Boxes have not been added because they do not have an easy closed-form solution that fits

in the design of GamesmanUni. However, they can still be exhaustively solved for a fixed size

39

rather than for custom board strings and added in this limited manner. Since combinatorial

games are newly explored within GamesmanUni and GamesCraftersUWAPI, there are still

many games to add.

4.3. Combinatorial Games API

With the increased addition of combinatorial games, there are methods that are common to

every closed-form combinatorial game that can be implemented. Every closed form

combinatorial game must implement a custom start function and a way to get the nimber for a

given board string. Adding an API to describe these methods would make it clearer for future

contributors of closed-form combinatorial games to ensure they have the proper methods to

make their games work with GamesCraftersUWAPI.

4.4. Custom Board String Improvements

4.4.1. Descriptive Custom Input Interface

Currently, the interface for accepting a user input starting board string for customized-start

games does not detail the valid format for such strings in each game. As seen below in Figure 28

and Figure 29, the input interfaces for Nim and Dawson's Chess are identical. However, valid

input strings for Nim are underscore delimited integers (e.g., 3_3_4) and valid input strings for

Dawson’s Chess are integers.

40

Figure 28: Current interface for Nim custom board string

Figure 29: Current interface for Dawson’s Chess custom board string

41

A more detailed description of what entails a valid board string for each game is

necessary for ease of use. Future developments could also show a preview of the resulting

board from the user’s input, or even have a GUI for the selection to make custom games even

more accessible.

4.4.2. Custom Board String Validation

Currently, if the custom board string is invalid for the given game, GamesmanUni has no way

to validate and reject the input. Instead, it redirects to a completely empty board, as seen in

Figure 30. Adding validation for these custom board strings for each game would ensure

graceful failures and prevent a confusing empty board.

Figure 30: The Kayles board created for the input ‘a’, which is invalid.

42

4.5. Documentation

Both GamesmanUni v5 and GamesCraftersUWAPI are not extensively documented – as a

result, newcomers to the GamesCrafters research group often find it difficult to contribute

without the direct guidance of someone who is already familiar with the codebase. Adding

centralized documentation detailing available functions and classes that are already widely used

in the current code would facilitate development greatly. This is particularly pertinent for

GamesmanUni v5, which has a relatively large codebase compared to many other

GamesCrafters projects and is significantly modularized – documentation of the location of

each individual component file would help reduce onboarding time.

5. Conclusion

This report describes work done to improve accessibility and ease of use to the current

GamesmanUni project, which will in turn improve the general user experience of the website.

We improved the GUIs for individual games as well as increased the flexibility of the AutoGUI

system. In addition, it details our addition of combinatorial games, which have not previously

deeply explored within the GamesCrafters research group or been added to projects like

GamesmanUni. We hope that future GamesCrafters members will continue to add more

games with both custom GUIs and AutoGUIs, as well as explore the scope of combinatorial

games and add more games with closed-forms solutions.

43

6. References

1. Garcia, D. D. (1990). GAMESMAN [A finite, two-person, perfect-information game

generator]. GamesCrafters.

https://people.eecs.berkeley.edu/~ddgarcia/software/gamesman/GAMESMAN.pdf

2. GamesmanUni. (n.d.). Retrieved May 12, 2022, from https://nyc.cs.berkeley.edu/uni

3. GamesmanUni. Gamesmanuni. (n.d.). Retrieved May 12, 2022, from

https://dev01.nyc.berkeley.mintkit.net/uni

4. GamesCraftersUWAPI. (n.d.). Retrieved May 12, 2022, from

https://nyc.cs.berkeley.edu/universal/v1/

5. GamesCrafters Wiki. (n.d.). Retrieved May 12, 2022, from

https://nyc.cs.berkeley.edu/wiki

6. Wikimedia Foundation. (2021, December 25). Sprague–Grundy theorem. Wikipedia.

Retrieved May 12, 2022, from

https://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_theorem

7. Ferguson, T. S. (n.d.). Game Theory. Retrieved May 12, 2022, from

http://www.inf.ufsc.br/~joao.dovicchi/pos-ed/pos/games/comb.pdf

8. Ferguson, T. S. (n.d.). A note on Dawson’s chess - UCLA mathematics. Retrieved May 12,

2022, from https://www.math.ucla.edu/~tom/papers/unpublished/DawsonChess.pdf

9. Dawson's Chess. Dawson's chess. (n.d.). Retrieved May 12, 2022, from

https://www.math.ucla.edu/~tom/Games/dawson.html

44

10. Sprague-Grundy values for Dawson's Chess. OEIS. (n.d.). Retrieved May 12, 2022, from

https://oeis.org/A002187

11. Sprague-Grundy values for Kayles. OEIS. (n.d.). Retrieved May 12, 2022, from

https://oeis.org/A002186

12. Theory of impartial games - MIT. (n.d.). Retrieved May 12, 2022, from

https://web.mit.edu/sp.268/www/nim.pdf

13. Wikimedia Foundation. (2021, April 18). Mex (mathematics). Wikipedia. Retrieved May

12, 2022, from https://en.wikipedia.org/wiki/Mex_(mathematics)

14. Mancala (Regular). GamesmanUni. (n.d.). Retrieved May 12, 2022, from

https://dev01.nyc.berkeley.mintkit.net/uni/games/mancala/variants/regular

15. Dao (Regular). GamesmanUni. (n.d.). Retrieved May 12, 2022, from

https://dev01.nyc.berkeley.mintkit.net/uni/games/dao/variants/regular

16. Berlekamp, E. R., Conway, J. H., & Guy, R. K. (2001). Winning ways: For your

mathematical plays. A.K. Peters.

17. Wikimedia Foundation. (2022, April 29). Nim. Wikipedia. Retrieved May 12, 2022, from

https://en.wikipedia.org/wiki/Nim#/media/File:NimGame.svg

18. Wikimedia Foundation. (2022, May 10). Kayles. Wikipedia. Retrieved May 12, 2022, from

https://en.wikipedia.org/wiki/Kayles#/media/File:Bowling_ball_and_pins_for_strike_-_fr

ont_view.jpg

19. Wikimedia Foundation. (2022, January 16). Frontend and backend. Wikipedia. Retrieved

May 16, 2022, from https://en.wikipedia.org/wiki/Frontend_and_backend

45

20. Wikimedia Foundation. (2022, May 7). API. Wikipedia. Retrieved May 16, 2022, from

https://en.wikipedia.org/wiki/API

21. GamesCrafters. (2020, May 1). GamesCrafters Universal Web API Regular 2D Board

Encoding Format. GamesCrafters.

22. Wikimedia Foundation. (2022, March 30). Surreal number. Wikipedia. Retrieved May 16,

2022, from https://en.wikipedia.org/wiki/Surreal_number

23. Wikimedia Foundation. (2022, May 10). Kayles. Wikipedia. Retrieved May 17, 2022, from

https://en.wikipedia.org/wiki/Kayles

24. Ho, K. (n.d.). Mancala. GamesCrafters. Retrieved May 17, 2022, from

http://gamescrafters.berkeley.edu/games.php?game=mancala

25. Garcia, D. (n.d.). Dao. GamesCrafters. Retrieved May 17, 2022, from

http://gamescrafters.berkeley.edu/games.php?game=dao

46

7. Appendix

Nim in GamesCraftersUWAPI

`import json

from .models import AbstractGameVariant

def nim_custom_start(variant_id):

try:

piles = variant_id.split('_')

for i in range(len(piles)):

piles[i] = int(piles[i])

except Exception as err:

return None

return NimGameVariant(piles)

class NimGameVariant(AbstractGameVariant):

piece_char = 'l'

def __init__(self, start_piles):

name = "custom"

desc = "custom"

status = "stable"

self.start_piles = start_piles

self.board_rows = max(self.start_piles)

self.board_cols = len(self.start_piles)

super(NimGameVariant, self).__init__(name, desc, status)

def start_position(self):

return NimGameVariant.getUWAPIPos(self.board_rows, self.board_cols,

self.start_piles, "A")

def stat(self, position):

try:

47

position_arr = NimGameVariant.get_position_arr(position,

self.board_rows, self.board_cols)

position_value = NimGameVariant.position_value(position_arr)

remoteness = 1

except Exception as err:

print(f'Other error occurred: {err}')

else:

response = {

"position": position,

"positionValue": position_value,

"remoteness": remoteness,

}

return response

def next_stats(self, position):

rows = self.board_rows

cols = self.board_cols

try:

position_arr = NimGameVariant.get_position_arr(position, rows, cols)

player = NimGameVariant.get_player(position)

moves = NimGameVariant.get_moves(position_arr, rows, cols, player)

except Exception as err:

print(f'Other error occurred: {err}')

else:

response = [{

"move": move,

**self.stat(position)

} for move, position in moves.items()]

return response

def getUWAPIPos(rows, cols, position_arr, player):

elements = ['R', player, rows, cols]

board_str = ""

for i in range(cols):

num_pieces = position_arr[i]

next_col = NimGameVariant.piece_char * num_pieces + "-" * (rows -

num_pieces)

board_str += next_col

48

board_str = NimGameVariant.rotateBoardStr(board_str, rows, cols)

elements.append(board_str)

return "_".join(map(str, elements))

def rotateBoardStr(board_str, rows, cols):

new_board_str = ""

for i in range(rows):

for j in range(cols):

start_index = j * rows

offset = rows - i - 1

new_board_str += board_str[start_index + offset]

return new_board_str

def get_player(position_str):

return position_str.split('_')[1]

def get_board_str(position_str):

return position_str.split('_')[4]

def position_value(position_arr):

value = 0

for pile in position_arr:

value = value ^ int(pile)

if value == 0:

return "lose"

return "win"

def get_position_arr(position_str, rows, cols):

board_str = NimGameVariant.get_board_str(position_str)

assert(rows * cols == len(board_str))

piles = []

for i in range(cols):

pile_sum = 0

for j in range(rows):

index = i + j * cols

if board_str[index] == NimGameVariant.piece_char:

pile_sum += 1

piles.append(pile_sum)

49

return piles

def get_moves(position_arr, rows, cols, player):

move_arr = ["A", NimGameVariant.piece_char, 0]

moves = {}

for i in range(len(position_arr)):

pile_amount = position_arr[i]

for j in range(pile_amount):

row_coord = rows - j - 1

placement = row_coord * cols + i

move_arr[2] = str(placement)

move = '_'.join(move_arr)

next_position = position_arr[:]

next_position[i] = j

next_position_str = NimGameVariant.getUWAPIPos(rows, cols,

next_position, NimGameVariant.next_player(player))

moves[move] = next_position_str

return moves

def next_player(player):

return 'B' if player == 'A' else 'A'

50

Dawson’s Chess in GamesCraftersUWAPI

import json

from .models import AbstractGameVariant

def dawsonschess_custom_start(variant_id):

try:

board_len = int(variant_id)

except Exception as err:

return None

return DawsonsChessGameVariant(board_len)

class DawsonsChessGameVariant(AbstractGameVariant):

def __init__(self, board_len):

name = "custom"

desc = "custom"

status = "stable"

self.board_str = ''.join(['-' for i in range(board_len)])

super(DawsonsChessGameVariant, self).__init__(name, desc, status)

def start_position(self):

return DawsonsChessGameVariant.getUWAPIPos(1, len(self.board_str),

self.board_str, "A")

def stat(self, position):

try:

position_str = DawsonsChessGameVariant.get_position_str(position)

position_value = DawsonsChessGameVariant.position_value(position_str)

remoteness = 1

except Exception as err:

print(f'Other error occurred: {err}')

else:

response = {

"position": position,

"positionValue": position_value,

"remoteness": remoteness,

51

}

return response

def next_stats(self, position):

try:

position_str = DawsonsChessGameVariant.get_position_str(position)

player = DawsonsChessGameVariant.get_player(position)

moves = DawsonsChessGameVariant.get_moves(position_str, player)

except Exception as err:

print(f'Other error occurred: {err}')

else:

response = [{

"move": move,

**self.stat(position)

} for move, position in moves.items()]

return response

def getUWAPIPos(rows, cols, board_str, player):

elements = ['R', player, rows, cols, board_str]

return "_".join(map(str, elements))

def get_player(position):

return position.split('_')[1]

def get_position_str(position):

return position.split('_')[4]

def position_value(position):

value = 0

pile_lengths = DawsonsChessGameVariant.get_pile_lengths(position)

for pile_len in pile_lengths:

pile_mex = DawsonsChessGameVariant.get_mex(pile_len)

value = value ^ pile_mex

if value == 0:

return "lose"

return "win"

def get_pile_lengths(position):

pile_lengths = []

52

curr_pile = 0

for i in range(len(position)):

if position[i] == '-':

curr_pile += 1

elif position[i] != '-' and curr_pile != 0:

pile_lengths.append(curr_pile)

curr_pile = 0

if curr_pile != 0:

pile_lengths.append(curr_pile)

return pile_lengths

def get_moves(position, player):

move_arr = ["A", 'x', 0]

moves = {}

for i in range(len(position)):

if position[i] == '-':

move_arr[2] = str(i)

move = '_'.join(move_arr)

next_position = list(position)

next_position[i] = 'x'

if i > 0:

next_position[i-1] = 'x'

if i < len(position) - 1:

next_position[i+1] = 'x'

next_position = ''.join(next_position)

next_position_uwapi = DawsonsChessGameVariant.getUWAPIPos(1,

len(position), next_position, DawsonsChessGameVariant.next_player(player))

moves[move] = next_position_uwapi

return moves

def next_player(player):

return 'B' if player == 'A' else 'A'

def get_mex(board_len):

53

periodic = [8, 1, 1, 2, 0, 3, 1, 1, 0, 3, 3, 2, 2, 4, 4, 5, 5, 9, 3, 3,

0, 1, 1, 3, 0, 2, 1, 1, 0, 4, 5, 3, 7, 4]

zero_exceptions = [0, 14, 34]

two_exceptions = [16, 17, 31, 51]

if board_len in zero_exceptions:

return 0

elif board_len in two_exceptions:

return 2

else:

return periodic[board_len % 34]

54

Kayles in GamesCraftersUWAPI

import json

from .models import AbstractGameVariant

def kayles_custom_start(variant_id):

try:

board_len = int(variant_id)

except Exception as err:

return None

return KaylesGameVariant(board_len)

class KaylesGameVariant(AbstractGameVariant):

piece_char = 'l'

def __init__(self, board_len):

name = "custom"

desc = "custom"

status = "stable"

self.board_str = ''.join(['-' for i in range(board_len)])

super(KaylesGameVariant, self).__init__(name, desc, status)

def start_position(self):

return KaylesGameVariant.createUWAPIPos(1, len(self.board_str),

self.board_str, "A")

def stat(self, position):

try:

position_str = KaylesGameVariant.get_position_str(position)

prev_move = KaylesGameVariant.get_prev_move(position)

player = KaylesGameVariant.get_player(position)

move_value = None

if prev_move != None:

moves = KaylesGameVariant.get_moves(position_str, player,

prev_move)

55

position_value =

KaylesGameVariant.get_position_value_from_moves(moves)

move_value = position_value

else:

position_value = KaylesGameVariant.position_value(position_str)

remoteness = 1

except Exception as err:

print(f'Other error occurred: {err}')

else:

response = {

"position": position,

"positionValue": position_value,

"remoteness": remoteness,

"moveValue": move_value,

}

return response

def next_stats(self, position):

try:

position_str = KaylesGameVariant.get_position_str(position)

prev_move = KaylesGameVariant.get_prev_move(position)

player = KaylesGameVariant.get_player(position)

moves = KaylesGameVariant.get_moves(position_str, player, prev_move)

except Exception as err:

print(f'Other error occurred: {err}')

else:

response = [{

"move": move,

**self.stat(position)

} for move, position in moves.items()]

return response

def createUWAPIPos(rows, cols, board_str, player):

elements = ['R', player, rows, cols, board_str]

return "_".join(map(str, elements))

def get_player(position):

return position.split('_')[1]

56

def get_position_str(position):

return position.split('_')[4]

def get_prev_move(position):

position_arr = position.split('_')

if len(position_arr) >= 6:

prev_move_str = position_arr[5]

return int(prev_move_str.split('=')[1])

else:

return None

def position_value(position):

value = 0

pile_lengths = KaylesGameVariant.get_pile_lengths(position)

for pile_len in pile_lengths:

pile_mex = KaylesGameVariant.get_mex(pile_len)

value = value ^ pile_mex

if value == 0:

return "lose"

return "win"

def get_position_value_from_moves(moves):

for _, position in moves.items():

pos_value = KaylesGameVariant.position_value(position)

if pos_value == "lose":

return "win"

return "lose"

def get_pile_lengths(position):

pile_lengths = []

curr_pile = 0

for i in range(len(position)):

if position[i] == '-':

curr_pile += 1

elif position[i] != '-' and curr_pile != 0:

pile_lengths.append(curr_pile)

curr_pile = 0

if curr_pile != 0:

pile_lengths.append(curr_pile)

57

return pile_lengths

def get_moves(position, player, prev_move):

move_arr = ["A", 'x', 0]

moves = {}

If this is the second part of the multi-part move, you can only pick

the piece adjacent to the first part of the multi-part move

if prev_move != None:

next_moves = [prev_move + 1, prev_move - 1]

for move_idx in next_moves:

if move_idx >= 0 and move_idx < len(position):

if position[move_idx] == '-':

move_arr[2] = str(move_idx)

move = '_'.join(move_arr)

next_position = list(position)

next_position[move_idx] = 'x'

next_position = ''.join(next_position)[:-1] # Exclude

last character because it isn't used for first part of multi-part

next_position_uwapi = KaylesGameVariant.createUWAPIPos(1,

len(next_position), next_position, KaylesGameVariant.next_player(player))

moves[move] = next_position_uwapi

one_pin_only = ['A', '1', str(len(position) - 1)]

one_pin_move = '_'.join(one_pin_only)

next_position = position[:-1] # Exclude last character because it

isn't used for first part of multi-part

next_position_uwapi = KaylesGameVariant.createUWAPIPos(1,

len(next_position), next_position, KaylesGameVariant.next_player(player))

moves[one_pin_move] = next_position_uwapi

else:

for i in range(len(position)):

if position[i] == '-':

move_arr[2] = str(i)

move = '_'.join(move_arr)

58

next_position = list(position)

next_position[i] = 'x'

next_position.append('-')

next_position_len = len(next_position)

next_position = ''.join(next_position) + '_prevmove=' +

str(i)

next_position_uwapi = KaylesGameVariant.createUWAPIPos(1,

next_position_len, next_position, player)

moves[move] = next_position_uwapi

return moves

def next_player(player):

return 'B' if player == 'A' else 'A'

def get_mex(board_len):

periodic = [4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7]

exceptions = {

0: 0,

3: 3,

6: 3,

9: 4,

11: 6,

15: 7,

18: 3,

21: 4,

22: 6,

28: 5,

34: 6,

39: 3,

57: 4,

70: 6,

}

if board_len in exceptions:

return exceptions[board_len]

else:

return periodic[board_len % len(periodic)]

59

