
Low Overhead Remote Procedure Call System for

Saturn DSP

Christiaan Banister

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-144

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-144.html

May 19, 2022



Copyright © 2022, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
We would like to thank the sponsors of SLICE lab for providing the
infrastructure needed to do this research, and the staff for administering the
lab space and coordinating meetings. We also thank Albert Ou for
providing early direction and reading an early draft of this paper.



Low Overhead Remote Procedure Call System for Saturn DSP

by Max Banister

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Krste Asanovi'
Research Advisor

(Date)

* * * * * * *

Professor Yakun Sophia Shao
Second Reader

(Date)

Sophia Shao

Krste Asanovic
5/19/2022



Low Overhead Remote Pro-
cedure Call System for Sat-
urn DSP

Max Banister
UC Berkeley
maxbanister@berkeley.edu

Abstract

System-on-a-Chip designs with specialized processors
and domain-specific accelerators have grown in popu-
larity over the last decade to meet ever-increasing com-
pute demands. This is due to the superior performance-
per-watt that can be obtained from such designs as well
as the inherent limitations in scaling up traditional out-
of-order superscalar CPUs. However, a heavy reliance
on microarchitectural details and a lack of coordination
between software writers and hardware designers makes
targeting these specialized IPs highly non-trivial. In ad-
dition, offloading tasks from the CPU to an accelerator
introduces overheads that may nullify the advantage of
utilizing it in the first place. This paper investigates a
transparent method for allowing programmers to run user
code on digital signal processing units (DSPs) and quan-
tifies the impact of such an offload.

We propose a lightweight framework at the system
software level in the style of message passing Asymmet-
ric Multiprocessing kernels. By pairing a large symmetric
multiprocessing kernel with a lightweight real-time oper-
ating system, we find that we can achieve near speed-
of-light accelerator communication while maintaining a
relatively straightforward programming model.

1 Introduction

Modern SoCs sport dozens of programmable accelerators
at the high end. The Apple A12 mobile SoC, for instance,
has 42 specialized IP blocks. Although accelerators are
often thought of as fixed-function (e.g. matrix multipli-
cation), software is often needed to change configuration
settings (weight station vs. output stationary), initiate
DMA transfers, or perform I/O. Software also provides
a degree of flexibility when application use cases change
post-silicon. While FPGAs can solve the rigidity prob-
lem, they impose a stiff tradeoff in terms of power, per-
formance, and area, and they are hard to justify when the
space of accelerator designs is small and well-understood
[16]. Digital signal processors, alternatively, provide a
familiar software interface and may be used as a "control
processor" for a larger accelerator. Therefore, attaching
accelerators to a DSP core, or simply exposing a DSP at
the system level, may be a sweet spot in accelerator con-
trollability.

A growing problem with having a sea of accelerators
on the same die is developing new programming mod-
els to exploit them [21]. In the status quo, this problem
is currently solved by vertical integration, whereby the
same company providing the hardware design also writes
software targeting it, similar to how device drivers are
developed today. Under this paradigm, accelerator pro-
gramming is largely relegated to "experts", who use in-
house expertise to hand-write kernels1 targeting domain-
specific accelerators. The ability to harness accelerators
is thus gated behind APIs, which makes it hard for ap-
plication writers to optimize their code beyond what the
designer has envisioned it being used for, as well as mak-
ing it more difficult to understand, profile, and debug their
code.

Examples of this on mobile SoCs include Apple’s Ac-
celerate and CoreML frameworks [7][10]. The Accel-
erate framework provides library functions for image
processing, DSP, neural nets, BLAS, and transcendental
math functions. This library is agnostic to the underly-
ing hardware platform, and will make use of the CPU,
GPU, or domain-specific accelerators based on what is
available to it. After setup, the API for a library call is:
input operands are passed as arguments, and an output
buffer (sometimes in place) is produced. The program-
mer has no control over which hardware block a kernel
executes on. The API is purposefully high-level to encap-
sulate details about the hardware and provide backwards-
compatibility, the latter of which is an issue that plagues
accelerator programming models.

In the Android world, the tablets and smartphones
made by OEMs are generally less vertically integrated
than Apple, and SoCs are sourced from a variety of
vendors. One particular SoC designer, Qualcomm, has
shipped a DSP in their Snapdragon line of SoCs since
2006, leading to a well-cemented programming model
and tooling that we will analyze here. The Qualcomm
Hexagon DSP is a typical VLIW architecture, with 4
micro-instructions within a single instruction packet. It
supports dynamic multi-threading, wherein the running
context is swapped out on an L2 miss. The DSP runs
at maximum 2GHz. Some configurations have HVX, a
SIMD vector coprocessor. The most recent Hexagon, the

1Kernels in this context means tightly nested looped code,
not an operating system kernel.



780, is capable of 4K video encoding and decoding at 120
frames per second [18].

To program, one must use the Hexagon SDK provided
by Qualcomm [5]. The SDK consists of a C/C++ com-
piler for the Hexagon instruction set architecture, as well
as tools for generating stub code to call a remote func-
tion. Hexagon uses a system called FastRPC to offload
work to the DSP and transparently serialize/deserialize
arguments. A programmer first declares the function
they would like to use in an Interface Description Lan-
guage (IDL), for which a compiler then generates C/C++
function definitions and stubs to be called by application
code. Each interface function can specify input and out-
put buffers, which may be optionally marked uncached
(if the memory was not written by the CPU) and non-
coherent, to avoid an expensive cache flush operation.
These regions were allocated by the Android ION mem-
ory allocator, but presumably they will be changed to use
DMA-BUF in the release of Android 12 after the discov-
ery of security holes [22]. Usage of this allocator pro-
vides zero-copy buffers for RPC. The round-trip latency
for a FastRPC call is 200-300 microseconds with highest
clock settings. The overhead of launching a thread on the
DSP is 5,000 cycles.

2 Background
Digital signal processors are specialized processing units
designed for manipulating analog signal data. Compared
to CPUs, DSPs are more power-efficient when executing
certain algorithms and are architected with real-time la-
tency considerations in mind. Because of their narrower
domain, DSPs often have custom architectures that are
optimized for digital signal processing. Certain opera-
tions, like discrete fourier transforms, convolutions, fused
multiply-accumulates, and polynomial evaluation may be
accelerated in hardware. There is also often support for
fixed point and saturating arithmetic. The instruction set
may be customized for such a processor: Very Long In-
struction Word (VLIW) architectures are popular in the
space, and hardware loops may be included to eliminate
loop overhead. Scratchpads, on the order of a hundred
of kilobytes large, may be used in addition to or in place
of a cache when access patterns are known statically. A
vector coprocessor may be attached. Applications in-
clude video encoding/decoding, image processing, and
Simultantaneous Localization and Mapping (SLAM) for
robotics and augmented reality.

Saturn is a parameterized, fully-synthesizable digital
signal processing research core developed at UC Berke-
ley. It is written in the Chisel hardware construction lan-
guage, and leverages the Rocket Chip SoC generator for
many supporting components, such as caches, control
and status registers, and debug functionality [3]. In ad-
dition to two scalar pipelines and floating point, Saturn

has nascent support for the RISC-V Bitmanip extension.
Saturn was taped out for the first time in May 2022 us-
ing the Intel 16 technology on the BearlyML chip. Bear-
lyML is a heterogeneous SoC which will serve as the ref-
erence platform for our modeling. It features 4 general
purpose cores having the in-order Rocket Core proces-
sor, and one instantiation of Saturn. The CPU and DSP
run at 500MHz, while the memory subsystem and uncore
run at 100MHz.

Rivet is a timing model for Spike, the RISC-V ISA
simulator. While Spike provides a "golden model" ref-
erence for hardware implementations, it does not by de-
fault provide timing information that could be used for
performance modeling. Rivet adds support for modeling
the microarchitecture of a few cores, Saturn in particu-
lar. Rivet is able to capture salient microarchitectural de-
tails like pipeline hazards for use in counting cycles-per-
instruction (CPI). Branches taken/not taken, read-after-
write hazards, write-after-write hazards, and I$ misses all
affect the cycle count of a code sequence. There is also
support for a two-level cache hierarchy, with separate in-
struction and data caches and an inclusive L2. Timing
parameters are constants that can be provided to Rivet
in a configuration file. We believe that Rivet provides a
level of timing granularity suitable for software develop-
ment on experimental hardware that goes beyond simple
dynamic instruction count. However, no model is perfect,
and the shortcomings of Rivet will be addressed further
on.

3 Related Work

3.1 Asymmetric Multiprocessing Kernels

At the advent of shared memory multiprocessor systems,
a flurry of new operating system research emerged to deal
with the new hardware. At the time, computer archi-
tects were faced with having to port millions of lines of
operating system code, usually developed by an outside
company, to support new multiprocessor systems. To get
around this impracticality, it was proposed to have the
system be partitioned per-processor and have an operat-
ing system kernel run on every core. The Disco virtual
machine monitor [4], for instance, allowed multiple op-
erating systems to run side-by-side on a cache-coherent
non-uniform memory access system. The virtual machine
monitor, which had a smaller code footprint, would be
the only element needed to scale across all cores, and it
would export hardware resources such as physical mem-
ory and virtual processors down to the operating system.
Operating systems that didn’t support NUMA or multi-
core yet would have the illusion they were running on a
uniprocessor system. The Disco authors conclude, how-
ever, that with long enough development timelines, the
operating system is the best place to manage such re-



sources.
Another early attempt at scaling the operating sys-

tem across disparate hardware is CHORUS [6]. CHO-
RUS is a distributed operating system based on micro-
kernels, providing a familar UNIX-like interface. The
CHORUS project originally supported running on mul-
tiple discrete machines, each running an instance of the
core microkernel, called the nucleus, and with distributed
system servers and actors2. The core nucleus handles in-
terrupts, virtual memory, and IPC, while filesystem and
I/O drivers are delegated to system servers. Like many
microkernel implementations, actors communicate using
asynchronous message passing, but uniquely to CHO-
RUS, IPC is network-transparent, so actors can commu-
nicate across multiple sites. As the provenance of operat-
ing systems became more clear over time, and the meth-
ods of RPC more wrought-out, CHORUS shifted its fo-
cus to small embedded systems where it found a niche
use-case for multi-OS configurations.

While AMP kernels have lost mindshare to symmetric
multiprocessing (SMP) kernels, where a single operating
system image manages all the application cores in a sys-
tem, they may yet see a revival for heterogenous hardware
platforms, where disparate hardware may have different
supervisor needs, such as for hard real-time scheduling
or for no-MMU processors. Similar to how microkernel
research lives on in the form of virtual machine monitors
[9], we believe that AMP kernels may find a fruitful fu-
ture in heterogenous SoCs. The ecosystem of operating
system kernels running on an SoC may include a large
SMP kernel for high-throughput, general-purpose apps,
and low-latency RTOSes for real-time and power-critical
tasks.

3.2 OpenAMP
OpenAMP [2] is potentially the closest existing frame-
work that attempts to solve the problem of OS commu-
nication in heterogeneous systems. Like our work, Ope-
nAMP attempts to define a communication channel be-
tween a general-purpose operating system and a bare-
metal RTOS, with a master and remote topology. Ope-
nAMP itself is an umbrella project; the components of
which primarily relate to our work are remoteproc and
RPCMsg. The scope of OpenAMP is broader than the
goals of our project, with high-level App Services built on
top of its communication substrate as well as the System
Device Tree, which attempts to standardize device tree
bindings for processors with different bus views within a
heterogeneous system.

Remoteproc is responsible for loading the remote im-
age for the foreign agent. It partially specifies the con-

2An actor encapsulates resources, such as memory regions,
threads, and communication ports, a concept similar to pro-
cesses in UNIX.

tents of the ELF file used for loading firmware images.
The resource table, optionally included in the ELF, speci-
fies the load address of the image, shared memory regions
for data, and trace buffers for remote software. Within
the resource table is the VirtIO resource, which describes
the vring, the circular queue used for master-remote data
sharing. The master will parse this image, read the re-
source table to set up the shared memory regions, and
start the remote processor at the entry address. If a re-
source table is not embedded in the ELF image, no sub-
sequent inter-host communication is expected.

RPMsg is the protocol for interprocess communication
used in OpenAMP. RPMsg defines a packet format, sim-
ilar to Internet Protocol (IP), which includes a header de-
scribing the source and destination addresses, as well as
the data being sent. These packets are sent over a bidirec-
tional channel, which is generally established at runtime
using a Name Service announcement. When the packet
reaches an endpoint, a callback is invoked to consume
that data. Underlying RPMsg is VirtIO, the collection of
primitive shared memory data structures. VirtIO provides
a way to access device memory space using virtqueues,
which are queues of buffer descriptors that describe some
region of memory. Virtqueues consist of some control
data structures and the vring, which is a basic ring buffer
implementation. VirtIO has its origins in a hypervisor,
wherein the host and guest would exchange memory de-
scriptors, such as the master and remote do in AMP ker-
nel configurations.

In comparison to OpenAMP, our implementation de-
fers the loading of the firmware image of the remote tar-
get, a concern of remoteproc, to some unspecified mech-
anism. The RTOS image is expected to be loaded early
during system boot. Loading of user program code, on
the other hand, is of primary concern to our implementa-
tion, and is a application-level service that could possibly
be implemented on top of RPMsg-type communication
channels. Channel discovery is also not dynamic in our
implementation, but at a known location relative to the
firmware image, to improve setup time. Finally, basic
support for soft IRQ doorbells are implemented in our
Linux kernelspace code.

3.3 Accelerator-Level Parallelism
As the number of accelerators grows, especially on mo-
bile platforms, it becomes necessary to consider the
system-level view of how they all fit together. Since
the field is still new, the science is immature about how
one should choose the accelerators for a particular SoC,
allocate SRAMs amongst them, and expose program-
ming them to the user. Researchers Mark Hill and Vi-
jay Reddi, PhD. coined the term Accelerator-Level Par-
allelism to describe the interplay between multiple accel-
erators in a system [14]. In their work they put forth the



Gables model for analyzing multiple accelerators, which
expands on the standard roofline model to examine multi-
ple accelerator compute units operating in a pipeline and
sharing the same main memory interface. In their view,
accelerators will be Swiss-Army Knives useful for one
task, but many applications, and multiple of them will be
strung together to build complex programs. An example
is taking a picture in a camera app, which may involve
the ISP, GPU, DSP, and CPU. They call for new pro-
gramming models to be explored for many-accelerator
systems. While this problem is too large to tackle in the
general case, we seek to examine the system software-
level components needed to facilitate such communicate
among accelerators, and specifically look at the involve-
ment of the CPU: should it be a command-and-control
center for all accelerator activity, or merely the kick-off
point for an autonomous program?

3.4 Cache Coherence Overheads
When evaluating loosely-coupled accelerators, it is rele-
vant to look at how many cycles are spent in the mem-
ory subsystem. Research by Sophia Shao, PhD. et al.
shows that as much as 40% of the total runtime of an of-
floaded kernel may be spent in data movement and cache
coherence overhead [19] [20]. Thus, it is advantageous to
co-design the memory subsystem alongside an accelera-
tor to ensure that the optimum of low-leakage power and
high-performance computation due to accelerator datap-
ath parallelism is achieved. Accelerators are often inco-
herent with other agents in the system, and as such must
communicate with CPU hosts via DRAM or last-level
cache (LLC). As such, the CPU must first flush its useful
data out of its local cache to be visible to the accelerator,
and invalidate the shared output buffer.

Accelerators’ interface to memory may be through
DMA or cache. DMA can be considered a "push" based
design where the data is preloaded upfront, while caches
can be considered a "pull" design, whereby the data is
only retrieved when it is first requested. DMA is gen-
erally more popular, because caches introduce hardware
overheads in terms of tag checking and block manage-
ment. However, caches provide fine-grain access to data,
whereas DMAs perform block transfers, meaning that la-
tency under cached designs is typically better, as the most
critical data is delivered first. It is also easy to overlap ac-
celerator computation with cache refills in a non-blocking
hit-under-miss cache, which further reduces the latency.
Optimizations to DMA, such as pipelining the CPU-side
cache flush with the DMA transfer, may be employed,
although they are not explored in our investigation.

This research shows that data movement overheads
may contribute a significant fraction of a accelerator’s
overall offload time. If the overhead is too high, it may
negate the runtime advantage of running a job on an ac-

celerator. Though accelerators have been used for coarse-
grain tasks in the past, scaling laws may lead to them be-
ing used for smaller tasks more frequently, necessitating
minimizing overheads as much as possible. The paper
shows a whole-SoC modeling using gem5-Aladdin, but
only uses system call emulation, meaning overheads due
to system software are not measured. We seek to quan-
tify the "Linux tax" to better understand software’s role
in introducing overheads.

4 Implementation
We modeled the full-stack of hardware and software that
might exist on an SoC to get an accurate picture of the
overheads associated with the system layer. To this end,
development was done at the firmware, operating system,
and hardware simulator level. Our model SoC consists of
two cores: Rocket and Saturn. Rocket is our stand-in for
the application processor that runs a full SMP operating
system, in our case Linux. Saturn is the domain-specific
processor that handles DSP workloads and is managed
by FreeRTOS. They communicate at the hardware level
through shared memory and the software interrupt con-
troller. Support for both operating systems had to be
added, as well as changes to Rivet to enable two proces-
sors with independent attributes and cache hierarchies.

4.1 Linux Kernel Support
The general-purpose operating system used for our in-
quiry was Linux, version 5.15-rc5. Mild changes were
needed in order to forward low-level access to shared
memory and interrupts to user-space processes. As much
as possible, we sought to offload code from kernelspace
to userspace, to preempt security concerns by keeping a
small footprint of privileged kernel code. Furthermore,
almost no changes were necessary to core systems, as
most functionality was confined to a singular driver.

Some discussion is warranted regarding interrupt han-
dling. Our RPC mechanism uses a doorbell model,
wherein Rocket and Saturn alert one another of changes
to shared data structures via an interprocessor interrupt
(IPI). Rocket Chip and Spike use the SiFive Core Lo-
cal Interruptor (CLINT) for sending software IPIs. When
Rocket or Saturn want to interrupt the other, they perform
a write to an MMIO register in the CLINT’s memory re-
gion that causes a software interrupt at the foreign hart3.
If that interrupt is unmasked and interrupts are active,
a trap will be taken on the foreign hart and control will
transfer to the interrupt handler. Linux uses software IPIs
for the purpose of scheduling, and since there is no in-
band mechanism for specifying the sender, minor tweaks
were needed to the default interrupt controller driver to

3Hart is short for hardware thread; in our system, every core
is a hart.



differentiate a scheduling IPI from an RTOS-originating
one. The flow of control during an incoming IPI to Linux
would go: 1) arch-specific interrupt controller driver, 2)
generic irqchip driver, and 3) Saturn device driver top-
half handler.

4.2 Interrupt Controllers
Using the CLINT is not the only theoretical way to re-
ceive an interrupt coming from Saturn. In addition to the
CLINT, there is SiFive’s Platform Level Interrupt Con-
troller [11]. Both interrupt controllers are usually global
entities, serving every core in the system. While the
CLINT is used mainly for software and timer interrupts,
the PLIC handles external (I/O) interrupts. The CLINT
runs at the same frequency as the core, while the PLIC
may be decoupled from the core’s clock, usually an inte-
ger quotient of the core’s clock speed. The CLINT has
a fixed set of priorities based on static privilege levels,
whereas the PLIC has dynamic, configurable priorities.
It is possible to connect Saturn to the PLIC to deliver in-
terrupts. This would, however, require a more complex
handshake with the PLIC: one for claiming an interrupt,
and another for marking completion, adding some addi-
tional overhead.

Besides the PLIC, hardware FIFOs could be used to
transmit messages under a so-called mailbox model. This
would permit some small amount of data, such as a
pointer, to be sent along with the interrupt request. This
would trim down the overhead of interrupt processing
even more, but requires hardware-level changes.

4.3 Linux Device Driver
The way most setups communicate with a system-level
accelerator is through a device driver; ours is no dif-
ferent. We implement a small device driver embedded
in Linux and running on the application processor that
can communicate with the RTOS running on Saturn. It
does all the work of setting up shared memory buffers
and interpreting IPIs. We expose a filesystem binding at
/dev/saturn to control it from userspace. Android
vendors tend to protect access to their drivers to exclusive
apps using a policy in SELinux; however, we are unopin-
ionated about which users can access it. While our device
driver uses Linux kernel APIs, the concepts involved in
its implementation are generalizable to other OS kernels.

The device driver is rather small: only two methods
need be implemented for it: mmap, to set up shared
memory buffers, and ioctl, to instruct Saturn to be-
gin running a task. When an open call is made to the
device driver, it first setups up a context for the newly
opened file. mmap is used to allocated physically contigu-
ous memory for use on both Rocket and Saturn. mmap
calls need to be page aligned in Linux, so we allocate
memory in units of whole pages (4K). We use a simple

kzalloc call to allocate and zero the backing mem-
ory, though a DMA or purpose-built allocator could be
explored as an optimization. kzalloc has the addi-
tional benefit that power-of-2 size allocations will be nat-
urally aligned, which fits with RISC-V PMP’s idea of a
NAPOT region (Naturally Aligned Power of Two). How-
ever, kmalloc allocations come from a common page
pool, and to our knowledge no Rowhammer [15] miti-
gates have been added to the kernel allocator, meaning
that it is ill-suited for production use as it may leak sen-
sitive kernel data. Because we require allocations to be
physically contiguous, there is a risk of fragmentation in
the buffer pool causing large allocations to fail. We find
that, empirically, long-running kernels will fail to allocate
space above an order 10 (4MB) size. After an mmap call
is placed, the user program has a view into a non-coherent
array of memory shared with Saturn.

After creating up to 5 mmapped regions, the user driver
program can then make an ioctl call into the driver to
instruct Saturn to begin running a job. The driver program
must first set up an array of memory descriptors of every
allocation it has made, and pass a buffer with the number
of regions and the memory descriptors as the argument
to the ioctl call. The device driver will then check
each virtual memory region to ensure that they indeed
have been previously allocated. It does this by iterating
through a linked list of virtual memory areas (VMAs) be-
longing to the process and checking to see if to see if
the provided memory falls within one of those regions.
The VMA list is usually small, so this is not expected to
create significant overhead. It then flushes the cache for
each region marked as an input, and invalidates the cache
for each output region. These memory descriptors are
passed as pairs of physical memory pointers and lengths
to Saturn’s RTOS over the command queue, so this setup
enables a completely zero-copy implementation.

4.4 OpenSBI
It was necessary to make mild modifications to the
Linux bootloader, OpenSBI. OpenSBI is an implemen-
tation of the RISC-V Supervisor Binary Interface4 as
well as platform-level firmware [19]. OpenSBI sup-
ports more hardware than we make use of on our sim-
ple Rocket/Spike platform, such as the Advanced Core
Local Interruptor, which adds support for supervisor-to-
supervisor IPIs. Because upstream Linux does not yet
have support for this, we did not include it in our imple-
mentation. Early on in our project, the decision had to
be made whether OpenSBI would act as a layer between
all harts and the hardware platform, or whether FreeR-
TOS would be a standalone kernel that loaded itself. In

4The Supervisor Binary Interface is the way supervisor
code, like Linux, communicates with the machine mode Super-
visor Execution Environment (SEE).



the end, it was decided to use OpenSBI for Linux SMP
harts, but not FreeRTOS. This was motivated by the fact
that OpenSBI uses PMP configuration registers to set up
trust zones, which FreeRTOS-MPU would normally use
for isolating task memory.

However, not allowing OpenSBI to boot all the ker-
nels in the system added some complexity. The way IPIs
are normally sent in RISC-V SMP systems is with SBI
calls. Because OpenSBI is normally the SBI layer for all
harts, it maintains per-hart metadata indicating the IPI op-
eration to be performed, and may perform synchroniza-
tion between harts when one is sent, e.g. when conduct-
ing a TLB shootdown. Allowing FreeRTOS to send IPIs
directly through the CLINT meant that OpenSBI would
no longer coordinate all IPI communication with shared
data structures. Hence, an escape hatch was added to
OpenSBI to send and receive "raw" IPIs, rather than ones
accompanied with metadata. In production implemen-
tations, we encourage designers to think carefully about
how platform firmware will setup and interact with the
entire system.

4.5 FreeRTOS Port
We chose FreeRTOS to as the archetypical RTOS for our
implementation. FreeRTOS is a real-time operating sys-
tem maintained by Amazon Web Services with ports for
dozens of MCU architectures [19]. FreeRTOS has an
upgrade path to SafeRTOS, which provides certifications
for safety-critical industries. While crash-safety is not of
the utmost concern in application space, firmware RTOS
crashes typically require a system reboot, and can be an-
noying to the end user. In addition, safety and security
often go hand-in-hand, and security is still a concern to
us: FreeRTOS is an operating system like any other, and
needs to isolate processes from one another and from it-
self. Security vulnerabilities allowing for the execution
of privileged code have been discovered on QuRT for the
Hexagon DSP [13]. Because of the ubiquity, safety, and
small size of the code base, we found FreeRTOS well-
suited for our research needs.

Although there was already a port of FreeRTOS for
RISC-V on Spike, support had to be added for the float-
ing point and memory protection units. For the FPU,
floating point state had to be saved and restored on a con-
text switch, and the fscr and mstatus registers had to
be updated based on their contents. For the MPU, every
task switch required the RISC-V Physical Memory Pro-
tection (PMP) address and configuration registers to be
swapped out, though for handling simple interrupts and
system calls, it is unnecessary as the MPU is turned off.
FreeRTOS was compiled using GCC with the -O2 flag
and the Newlib C standard library, and the heap_4 allo-
cator was used with 64K of area. The executable was
150KB without debug information.

When microcontrollers have an MPU, they can op-
tionally use FreeRTOS-MPU, a variant of FreeRTOS
configured at compile time by setting the portUS-
ING_MPU_WRAPPERS #define in the config file.
In this mode, only the core parts of the kernel, like the
scheduler, interrupt handler, and timer task run in M-
mode, the highest privilege level. All other tasks run in
user mode, under which they will be subject to physi-
cal memory protection through the PMP registers. When
running in M-mode however, PMP checks are not en-
abled, so the processor has full access to all of physical
memory, unless the L bit in the pmpcfg register is set,
at which point the protection is permanent, until a sys-
tem reset. User tasks can interact with the RTOS through
system calls. Which system calls are implemented is ulti-
mately left up to the designer, however, we do not imple-
ment any system calls for the moment, in part to derisk
any possibility of privilege escalation, and in part to keep
object code compatibility with normal userspace RISC-V
programs.

Offloaded kernels are permitted 5 separate memory re-
gions that they can use freely. The limitation of 5 regions
is due to there being only 16 hardware PMP registers in
Saturn. More PMP registers can be provided, but 16 is
about the upper limit that can be obtained without nega-
tively impacting cycle time. In FreeRTOS, 5 are already
used: two for the bottom and top markers of the unpriv-
ileged data section, one 4-byte region for the privilege
status, and two for each task’s stack. There are 11 re-
maining PMP registers which can be used to protect 5
segments, given that the start and end each take up a reg-
ister. Further optimizing this number is an area for future
engineering, as not all of the FreeRTOS-provided PMP
regions are strictly necessary, and it could be possible to
allow the user to use NAPOT regions, each of which only
use a single PMP address register. Nevertheless, five re-
gions was sufficient for most kernels we explored.

4.6 End-to-End Offload Flow
A program wanting to make use of the Saturn DSP will
begin its journey as an ordinary userspace program un-
der Linux on the Rocket processor. From userspace, it
will then open the Saturn device driver and create up to
5 shared memory buffers with mmap calls. It must load
the DSP function code into the first of those buffers, with
the entry vector at the top of the binary. Then, it will con-
struct an array of memory descriptors using the returned
virtual memory of those mmap calls. This array will be
the argument to an ioctl that will call into the device
driver. An example of the initialization procedure using
the C interface is shown here:

int fd = open("/dev/saturn", O_RDWR);
if (fd < 0) {

/* error */



}

volatile char *buf;
buf = mmap(NULL, 4096, PROT_READ |

PROT_WRITE, MAP_SHARED, fd, 0);

if (buf == MAP_FAILED) {
/* error */

}

uintptr_t taskDesc[] = {1, buf, buf +
4096};

int ret = ioctl(fd, 0, &taskDesc);
if (ret) {

/* error */
}

The ioctl call will block while the DSP code is run-
ning. Alternatively, one could implement a non-blocking
ioctl, and have the user poll the file descriptor, or use a
number of Linux’s rich operations on file descriptors to
await completion. However, we found the blocking code
easiest for the programmer to reason about.

Most of the setup code is intentionally pushed to
userspace. While somewhat tedious to manually set up
shared memory regions and perform syscalls, we believe
the interface is simple enough that an average program-
mer could be productive, and higher-level libraries could
be easily written to encapsulate this functionality. Low-
level implementation details need not be obscured from
the programmer, as long as those details are sensible.

Inside the driver, each virtual memory address in the
buffer array is mapped back to its physical address and
checked to make sure it falls within a previously allocated
region. Then, the buffer array is enqueued on the com-
mand queue, a standard ring buffer that is addressable by
both Linux and FreeRTOS. It is assumed that the com-
mand queue exists in coherent memory with Saturn, i.e.
updates to the command queue are made visible to Sat-
urn through the cache coherence protocol, even though
no similar assumption is made about the data regions.
The buffers are then cautiously flushed from Rocket’s lo-
cal cache, including the DSP library code, and the out-
put region is invalidated. Then, Rocket interrupts Saturn
through the aforementioned IPI mechanism.

On the FreeRTOS side, the flow begins in the ISR with
the buffer array being dequeued, and then quickly passed
to the task spawning server via an internal queue. The
task spawning server runs in task context and is itself a
high-priority task that is awoken when a new task arrives.
It creates the MPU-protected task with the memory de-
scriptors passed to it by Linux, and assigns a priority to
the user task (by default, all are equal). It also passes in
the buffer pointers as arguments to the top-level, "main"

Figure 1: Overview of the model system.

function of the DSP code. Then, control is handed off
to this newly spawned task to execute. It may use these
buffers to perform some computation, and finally cache-
flush the results in the output region. Once complete,
the user task returns from its top-level function, and the
wrapper code will make a system call that will perform
the management duties of notifying Rocket of its comple-
tion, and marking the task as destroyed, deferring freeing
its memory for a later time by a background server.

5 Evaluation
We quantify the system software communication over-
heads of our RPC mechanism using an SoC modeled in
Rivet, a RISC-V software simulator and timing model.
Rivet was configured with one in-order Rocket core, with
a 32KB L1 data and instruction cache and a 512KB in-
clusive L2 data cache, and a Saturn core with 32KB local
instruction and data caches. We chose to give Saturn a
cache, rather than a scratchpad and DMA, to defer any
questions about specializing the DMA, and to make the
DSP as algorithm agnostic as possible. This also roughly
approximates the design point achieved in the research
chip BearlyML.

Saturn was configured with two pipelines, of which
only the first can perform floating point operations. The
latencies of the memory system are statically defined: a
L1 data cache hit is 2 cycles, while a miss incurs a penalty
of 16 cycles, and an L2 miss incurs a 58 cycle penalty.
Not-taken branches have a penalty of 4 cycles. The one-
stage branch predictor is similarly borrowed from Rocket.

First, we will briefly look at the overheads of the setup
functions, open and mmap. For mmap, a cycle count is
shown both for cold and warm caches, as it is likely to
be executed consecutive times. Most of the time is spent
zeroing out newly allocated pages. Each datum is the
average of three trials, and rounded to the nearest inte-
ger. Measurements were obtained by post facto analysis



Op Cycles (Cold) Cycles (Warm) Instructions
open 14,710 –– 3,831

mmap 50,184 49,325 22,446

Table 1: Times to run open and mmap on twenty 4K
pages in the device driver.

of the timing log in Rivet, or occasionally by reading the
cycle and instret counters.

5.1 RPC Overheads for DGeMM
To examine the RPC latencies of a real workload, we
benchmarked a dense general matrix multiplication ker-
nel on our system. The DSP code was compiled with
GCC with the -O2 optimization level and -mtune set to
SiFive’s Series 7 processor family, which is dual-issue
like Saturn. The data elements were double-precision
floating point, and size of the input and outputs matrices
were 100 by 100. Thus, the size of the two input matri-
ces were each 80KB. Due to the compute intensity of the
algorithm, O(n3), this is a good candidate for offload, as
the linear data movement costs are quickly exceeded by
the compute time.

Table 2 shows the costs associated with offload in both
the outbound and inbound directions. While the costs of
the cache management sections are proportional to the
kernel sizes, the system overheads of Linux and FreeR-
TOS are fixed. Nevertheless, we see that operating sys-
tem costs are a large portion of the total overhead, with
the Linux irqchip, driver code, and scheduler taking up
nearly a quarter of the overhead, and the RTOS taking
over 5,000 cycles to start a new task. These costs rep-
resent fairly typical, unavoidable activity that one expe-
riences when starting and stopping tasks on an operating
system kernel. Altogether, overheads account for 36,500
cycles, or 73 microseconds on a 500MHz clock. We be-
lieve this is faster than commercial systems due to the
pre-allocation of buffers and zero copies. In real world
software, it may not be practical for data to originate in
a specially allocated region, so a copy step may be un-
avoidable.

Our evidence tentatively suggests that even small ker-
nels may be worthwhile to offload, so long as one is care-
ful to place it in physically contiguous buffers from the
start. Table 3 shows the various sized matrix multipli-
cations and their corresponding overheads; matrices as
small as 20x20 still exhibit small overheads in relation to
the time spent doing useful work. This will, however, dif-
fer for other algorithms. In other words, operating on data
that fits on just two 4K pages is amenable to cross-core
acceleration, even with needing to flush/invalidate cache

Cycles Instructions Percentage
Host Side

Flush Code 34 16 0.0%
Flush Input 7,730 7,690 21.2%
Inv. Output 3,863 3,845 10.6%
Linux Ioctl 3,275 1,006 9.0%

Accel. Side
FRTOS Spawn 5,502 3,686 15.1%

Inv. Input 5,052 7,518 13.8%
Compute 13,531,723 8,112,795 ––

Flush Output 2,524 3,053 6.9%
Linux Sched. 8,542 3,053 23.4%

Table 2: RPC call latencies broken down by stage. Over-
heads are given as a percentage of total overhead cycles.

Size (N) Total Cycles % Overhead
100 13,565,721 0.03%
50 1,542,729 1.5%
30 336,195 5.8%
20 114,674 16%
15 60,448 30%
10 31,341 58%

Table 3: The runtimes, in cycles, of various size matrix
multiplication jobs and the proportion which is overhead.

blocks.

5.2 Cache Management
In order to flush the caches, we used the RISC-V Cache
Block Operations (Zicbom) extension. Cache lines were
assumed to be flushed with 64 byte granularity. Since
GCC assembler did not have mainline support for this ex-
tension at the time of experimentation, instructions were
inserted manually with inline assembly. Every cache in-
struction was assumed to execute with 1 IPC. Saturn was
able to execute these sequences about 50% faster than
Rocket, due to the extra issue slot, which allowed the
pointer increment instruction to execute in the same bun-
dle. In general, Saturn proved very effective at eliminat-
ing loop overheads from compiler generated code. Some-
what unoptimally, software on Saturn had to flush the en-
tirety of the input buffers, even if they were larger than
the small, local cache Saturn possessed. One optimiza-
tion might be to include an instruction for flushing the
entire cache, rather than doing so line by line, like what
Rocket’s non-standard cflush.d.l1 does. This would



allow the cache flushes to be O(1) with respect to the
size of the data operands.

There are some times when we conservatively invali-
date memory when it is perhaps unnecessary. If we al-
locate a new buffer that we haven’t used before, it is un-
likely we will need to invalidate it, both on the Rocket
and the Saturn side. However, because we are unaware
of the previous contents of our cache, we must be conser-
vative and invalidate it anyway. Linux could potentially
track physical memory addresses used in allocation to de-
termine is a process has ever seen it before, and not inval-
idate the region on an RPC if it is fresh. Likewise, Linux
could communicate to FreeRTOS by attaching metadata
to each buffer descriptor sent over the command queue to
tell it whether it has been used before.

5.3 Sources of Variance
While we tried controlling for most factors outside of
the critical path of the RPC flow, there were some un-
avoidable external factors that interfered with our mea-
surements. Control was maintained by using a clean boot
of Linux, with only kernel daemons running, and hav-
ing tight control over the running tasks in FreeRTOS.
Still though, there is variability to be expected in such
measurements. In Linux especially, the presence of other
tasks may enact strange behavior on the one you want to
observe. In some cases, latencies will scale with the num-
ber of running threads on one’s system. For example, to
restart the user task after an IRQ, Linux must go through
the scheduler, which runs in log(n) time w.r.t. the num-
ber of threads. Furthermore, the device driver must make
calls into kmalloc to set up the shared memory regions
- these calls could block while the OOM killer runs if the
system is out of memory. While this did not happen in
our experimentation, we should mention that our cycle
counts are based on linear, non-preemptive code schedul-
ing. Furthermore, while theoretically the SLUB allocator
that Linux uses can perform minimal block management
if certain power-of-2 sizes are requested, here we request
multiple pages, often in odd sizes. As such, the kernel
may need to do free block coalescing or other structure
management, which will run with slightly different times
with differing heap state. FreeRTOS’s heap_4 allocator
suffers the same nondeterminism, though there runtime
is bounded by the small absolute size of the heap.

5.4 Discussion
We found it easy to target the Saturn processor once the
AMP communication framework was written. All that
was needed to write on the driver program side was a
few system calls, and the framework took care of the
rest. The task that ran on the DSP was likewise easy
to compile, as the entry point was a function that was
passed its memory buffers as arguments, similar to exist-

ing threading libraries like pthreads5. Since the compiled
code was compliant with the RISC-V LP64D ABI, we
could transparently switch to running on the application
processor to keep code compatibility with systems with-
out a DSP (or not configured with such). While our com-
piled DSP library cannot make use of global or thread lo-
cal data, we opted not to add them after not needing them
in practice, while the lackthereof encouraged the writing
of more functional style code. We find DSP offloaded
tasks best suited for numerical code and image process-
ing passes - in other words, programs that have explicit
inputs and outputs. Programs that needed to communi-
cate with the CPU often, however, were more difficult
to write, as one had to either hand-write synchronization
code with the CPU using incoherent memory buffers, or
break up a long running task into several small ones, in-
curring the overhead of spawning a thread on the DSP
each time.

We also found Rivet a good platform for the co-
development of hardware and software. It was quick and
easy to make a change to the simulator to test out e.g.
different cache parameters and then see the evaluation on
a relevant benchmark. While an FPGA-based evaluation
platform like FireSim allows for cycle-accurate simula-
tion of an entire system orders of magnitude faster than
Rivet [12], changing hardware parameters requires the
regeneration and reflashing of the FPGA image, slow-
ing down iteration cycles. For small kernels or RPC mi-
crobenchmarks, Rivet is ideal for rapid testing.

5.5 Limitations
The Rivet timing model has a few shortcomings that
impact the quality of our analysis. It especially fails
to model the memory subsystem to high fidelity. Mi-
croarchitectually salient events like L2 bank conflicts and
DRAM row refreshes are not accounted for individu-
ally. Rather, Rivet uses average latencies from real-world
workloads, which tend to be accurate over long dynamic
instruction counts. However, very short or pathological
code sequences may induce timing irregularities. Also,
contention in the memory subsystem is not accounted for:
we only consider two cores whose traffic does not interact
with one another. With greater development time, these
details could be added to the Rivet timing model.

In addition, real mobile SoCs will make use of Dy-
namic Voltage and Frequency Scaling (DVFS), to opti-
mize for power efficiency when not running compute in-
tensive jobs. This makes real-world performance difficult
to reason about, as a CPU-DSP combined job may cross
multiple power and clock domains. For long running
DSP tasks on the Hexagon, it often happens that the CPU

5The pthread_create(3) POSIX library call allows users to
pass a void function as the entry point and a generic pointer to
arguments.



enters a low power state, at which point a long wakeup
sequence will occur when the task completes and notifies
the CPU, which can take on the order of milliseconds. We
control for this by only considering maxima clock fre-
quencies (500MHz on BearlyML) for our analysis. Both
the CPU and DSP are assumed to run at the same clock
frequency, and measurements are given in terms of cy-
cles.

6 Future Work
6.1 Page-Based Virtual Memory
Currently, our FreeRTOS port uses an MPU to protect
tasks from one another, using a classic base-and-bound
protection scheme. This works for certain classes of al-
gorithms that operate on dense data; however, algorithms
with less spatial locality will be harder to map onto our
system, as many small data buffers will have to be in-
dependently allocated, which will be unwieldy to pro-
gram and, in all likelihood, quickly exhaust the number
of PMP registers available. Page-based virtual memory
comes with its own set of drawbacks, such as increased
memory usage overhead from page table allocations, and
more latency when transferring page table mappings from
the main operating system to the RTOS. Thus, DSPs with
virtual memory typically employ large page sizes to mit-
igate some of these downsides. There is an optimization
problem in finding the ideal unit size for memory protec-
tion such that the overhead of setting up virtual memory
mappings doesn’t swamp the execution time of small ker-
nels. Also, one could consider sharing some page tables
with the host kernel, though this introduces more invasive
changes to Linux’s memory management code.

6.2 Out of Order Core Modeling in Rivet
Many of our Linux benchmarks were pessimized due to
the relatively simple design of the Rocket core that we
modeled the application processor on. We achieved IPCs
of around 0.8 on Rocket, even though 2+ could be ex-
pected of even a modest out-of-order core. A more re-
fined model might simulate a large, out-of-order proces-
sor in Rivet, which could provide a comparison between
the same task running on Saturn and the OoO core.

6.3 User-Level Interrupts
User-level interrupts are a popular design choice on mi-
crocontrollers, where individual tasks might want to sub-
scribe to incoming interrupts. This concept could be ap-
plied to tasks running jointly on the CPU and DSP, which
may want to notify one another, for example, when new
data has arrived. User-level interrupts remove the need
for a supervisor/user privilege transition by delivering in-
terrupts to the lower privileged mode directly. However,
it is unclear if the reduction in jitter could not be achieved

in software by including a "fast path" in the interrupt han-
dler. Until a clear use case for user-level interrupts arises,
we will avoid relying on any hardware-level changes.

7 Conclusion
In this work, we have analyzed problems with offload-
ing compute jobs to programmable DSP cores in a het-
erogenous processor system. We propose a mechanism
for RPC between compute complexes, using Asymmet-
ric Multiprocessing kernel communication, to coordinate
the offloading of compute jobs to more specialized cores.
With minimal system call setup, one can describe and
launch a job on the DSP using a familiar programming in-
terface in a sandboxed environment. Finally, we quantify
the system call, RTOS, and cache coherence overheads to
show where the opportunities for improvement lie. We
hope to see more progress in enabling application devel-
opers to target DSP cores, as the performance uplift can
be significant and as the landscape of purpose-built cores
continues to grow.

8 Acknowledgements
We would like to thank the sponsors of SLICE lab for
providing the infrastructure needed to do this research,
and the staff for administering the lab space and coordi-
nating meetings. We also thank Albert Ou for providing
early direction and reading an early draft of this paper.

References
[1] Krste Asanović Andrew Waterman. 2019. The risc-v

instruction set manual volume ii: Privileged architec-
ture. https://riscv.org/technical/specifications/.

[2] Etsam Anjum and Jeffrey Hancock.
2020. Introduction to openamp library.
https://www.openampproject.org/docs/whitepapers/
Introduction_to_OpenAMPlib_v1.1a.pdf.

[3] Krste Asanović, Rimas Avizienis, Jonathan
Bachrach, Scott Beamer, David Biancolin, Christo-
pher Celio, Henry Cook, Palmer Dabbelt, John R.
Hauser, Adam M. Izraelevitz, Sagar Karandikar, Ben
Keller, Donggyu Kim, Jack Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao,
Miquel Moretó, Albert J. Ou, David A. Patterson,
Brian C. Richards, Colin Schmidt, Stephen Twigg,
Huy D. Vo, and Andrew Waterman. 2016. The rocket
chip generator.

[4] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. 1998. Disco: Running com-
modity operating systems on scalable multiproces-
sors. ACM Transactions on Computer Systems 15.
https://doi.org/10.1145/265924.265930.

https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://www.openampproject.org/docs/whitepapers/%20Introduction_to_OpenAMPlib_v1.1a.pdf
https://www.openampproject.org/docs/whitepapers/%20Introduction_to_OpenAMPlib_v1.1a.pdf
https://www.openampproject.org/docs/whitepapers/%20Introduction_to_OpenAMPlib_v1.1a.pdf
https://doi.org/10.1145/265924.265930
https://doi.org/10.1145/265924.265930
https://doi.org/10.1145/265924.265930
https://doi.org/10.1145/265924.265930


[5] Lucian Codrescu. 2013. Qualcomm
hexagon dsp: An architecture optimized
for mobile multimedia and communications.
https://developer.qualcomm.com/qfile/27696/qualcomm-
hexagon-architecture.pdf.

[6] M. Gien. 1995. Evolution of the chorus open micro-
kernel architecture: the stream project. In Proceedings

of the Fifth IEEE Computer Society Workshop on Fu-

ture Trends of Distributed Computing Systems. pages
10–16. https://doi.org/10.1109/FTDCS.1995.524963.

[7] Simon Gladman. 2019. Introducing accelerate for
swift. https://developer.apple.com/documentation/ ac-
celerate.

[8] Rich Goyette. 2007. An analysis and descrip-
tion of the inner workings of the freertos kernel.
https://class.ece.uw.edu/474/peckol/doc/FreeRTOSPaper-
1.pdf.

[9] Gernot Heiser, Volkmar Uhlig, and
Joshua LeVasseur. 2006. Are virtual-
machine monitors microkernels done right?
SIGOPS Oper. Syst. Rev. 40(1):95–99.
https://doi.org/10.1145/1113361.1113363.

[10] Apple Inc. 2020. Apple core ml framework.
https://developer.apple.com/documentation/coreml/
mlmodel.

[11] SiFive Inc. 2019. Sifive interrupt cookbook ver-
sion 1.2. https://www.starfivetech.com/uploads/sifive-
interrupt-cookbook-v1p2.pdf.

[12] Sagar Karandikar, Howard Mao, Donggyu Kim,
David Biancolin, Alon Amid, Dayeol Lee, Nathan
Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, Qijing Huang, Kyle Kovacs, Borivoje
Nikolić, Randy Howard Katz, Jonathan Bachrach,
and Krste Asanović. 2019. Firesim: Fpga-
accelerated cycle-exact scale-out system simulation
in the public cloud. IEEE Micro 39(3):56–65.
https://doi.org/10.1109/MM.2019.2910175.

[13] Slava Makkaveev. 2021. Pwn2own qualcomm
dsp. https://research.checkpoint.com/2021/pwn2own-
qualcomm-dsp/.

[14] Vijay Janapa Reddi Mark D. Hill. 2021.
Accelerator-level parallelism. In Communi-

cations of the ACM. volume 64, pages 36–38.
https://doi.org/10.1145/3460970.

[15] Onur Mutlu and Jeremie S. Kim. 2020.
Rowhammer: A retrospective. IEEE Trans-

actions on Computer-Aided Design of Inte-

grated Circuits and Systems 39(8):1555–1571.
https://doi.org/10.1109/TCAD.2019.2915318.

[16] Ann Steffora Mutschler. 2018. What makes a good
ai accelerator. https://semiengineering.com/what-
makes-a-good-accelerator/.

[17] OpenSBI. 2021. Risc-v open source supervisor
binary interface (opensbi). https://github.com/riscv-
software-src/opensbi.

[18] Martin Saint-Laurent, Paul Bassett, Ken Lin,
Baker Mohammad, Yuhe Wang, Xufeng Chen,
Maen Alradaideh, Tom Wernimont, Kartik Ay-
yar, Dan Bui, Dwight Galbi, Allan Lester, Marzio
Pedrali-Noy, and Willie Anderson. 2015. A 28
nm dsp powered by an on-chip ldo for high-
performance and energy-efficient mobile applications.
IEEE Journal of Solid-State Circuits 50(1):81–91.
https://doi.org/10.1109/JSSC.2014.2371454.

[19] Yakun Sophia Shao. 2016. Design and modeling of
specialized architectures.

[20] Yakun Sophia Shao, Sam Likun Xi, Vijay-
alakshmi Srinivasan, Gu-Yeon Wei, and David
Brooks. 2016. Co-designing accelerators and
soc interfaces using gem5-aladdin. In 2016

49th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO). pages 1–12.
https://doi.org/10.1109/MICRO.2016.7783751.

[21] Mark Silberstein. 2017. Accelerators
in data centers: the systems perspective.
https://www.sigarch.org/accelerators-in-data-centers-
the-systems-perspective/.

[22] Hang Zhang, Dongdong She, and Zhiyun Qian.
2016. Android ion hazard: The curse of
customizable memory management system. In
Proceedings of the 2016 ACM SIGSAC Confer-

ence on Computer and Communications Secu-

rity. Association for Computing Machinery, New
York, NY, USA, CCS ’16, page 1663–1674.
https://doi.org/10.1145/2976749.2978320.

https://developer.qualcomm.com/qfile/27696/qualcomm-hexagon-architecture.pdf
https://developer.qualcomm.com/qfile/27696/qualcomm-hexagon-architecture.pdf
https://developer.qualcomm.com/qfile/27696/qualcomm-hexagon-architecture.pdf
https://developer.qualcomm.com/qfile/27696/qualcomm-hexagon-architecture.pdf
https://developer.qualcomm.com/qfile/27696/qualcomm-hexagon-architecture.pdf
https://doi.org/10.1109/FTDCS.1995.524963
https://doi.org/10.1109/FTDCS.1995.524963
https://doi.org/10.1109/FTDCS.1995.524963
https://developer.apple.com/documentation/%20accelerate
https://developer.apple.com/documentation/%20accelerate
https://developer.apple.com/documentation/%20accelerate
https://developer.apple.com/documentation/%20accelerate
https://class.ece.uw.edu/474/peckol/doc/FreeRTOSPaper-1.pdf
https://class.ece.uw.edu/474/peckol/doc/FreeRTOSPaper-1.pdf
https://class.ece.uw.edu/474/peckol/doc/FreeRTOSPaper-1.pdf
https://class.ece.uw.edu/474/peckol/doc/FreeRTOSPaper-1.pdf
https://doi.org/10.1145/1113361.1113363
https://doi.org/10.1145/1113361.1113363
https://doi.org/10.1145/1113361.1113363
https://developer.apple.com/documentation/coreml/%20mlmodel
https://developer.apple.com/documentation/coreml/%20mlmodel
https://developer.apple.com/documentation/coreml/%20mlmodel
https://www.starfivetech.com/uploads/sifive-interrupt-cookbook-v1p2.pdf
https://www.starfivetech.com/uploads/sifive-interrupt-cookbook-v1p2.pdf
https://www.starfivetech.com/uploads/sifive-interrupt-cookbook-v1p2.pdf
https://www.starfivetech.com/uploads/sifive-interrupt-cookbook-v1p2.pdf
https://doi.org/10.1109/MM.2019.2910175
https://doi.org/10.1109/MM.2019.2910175
https://doi.org/10.1109/MM.2019.2910175
https://doi.org/10.1109/MM.2019.2910175
https://research.checkpoint.com/2021/pwn2own-qualcomm-dsp/
https://research.checkpoint.com/2021/pwn2own-qualcomm-dsp/
https://research.checkpoint.com/2021/pwn2own-qualcomm-dsp/
https://research.checkpoint.com/2021/pwn2own-qualcomm-dsp/
https://doi.org/10.1145/3460970
https://doi.org/10.1145/3460970
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://semiengineering.com/what-makes-a-good-accelerator/
https://semiengineering.com/what-makes-a-good-accelerator/
https://semiengineering.com/what-makes-a-good-accelerator/
https://semiengineering.com/what-makes-a-good-accelerator/
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://doi.org/10.1109/JSSC.2014.2371454
https://doi.org/10.1109/JSSC.2014.2371454
https://doi.org/10.1109/JSSC.2014.2371454
https://doi.org/10.1109/JSSC.2014.2371454
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1109/MICRO.2016.7783751
https://www.sigarch.org/accelerators-in-data-centers-the-systems-perspective/
https://www.sigarch.org/accelerators-in-data-centers-the-systems-perspective/
https://www.sigarch.org/accelerators-in-data-centers-the-systems-perspective/
https://www.sigarch.org/accelerators-in-data-centers-the-systems-perspective/
https://doi.org/10.1145/2976749.2978320
https://doi.org/10.1145/2976749.2978320
https://doi.org/10.1145/2976749.2978320

