Dynamic Linking in Trusted Execution Environments
in RISC-V

Catherine Lu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-142
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-142.html

May 18, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Dynamic Linking in Trusted Execution Environmentsin RISC-V

by Catherine Lu

Resear ch Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of Californiaat Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan 11.

Approval for the Report and Comprehensive Examination:

Committee:

ke dsnsS

7
Professor Krste Asanovic

Research Advisor

(Date)

* *k k *k * % %

G L'Dcw

Pro{essor John'lﬁwrzynek
Second er

(Date)

Dynamic Linking for Trusted Execution Environments in RISC-V

Catherine Lu

Abstract

Dynamic linking is an important feature for many appli-
cations, making it an integral function to provide in Trusted
Execution Environments (TEEs) to improve the ease of use
and encourage adoption of TEEs for security and privacy.
However, the implementation of dynamic linking in enclaves
poses many challenges, for example, the proper verification of
code loaded after an enclave has begun execution and the effi-
cient initialization of enclaves. Previous TEEs have included
dynamic linking functionality but either fail to accommodate
library sharing or require that libraries be manually loaded in
advance. Our work draws upon previous studies to provide
two methods of dynamic loading that allow for customization
to users’ needs. First, we provide trusted loading after enclave
execution as the default loading method that can automatically
load in shared libraries by coordinating with an untrusted OS.
Second, we provide library enclaves as an optimization for
commonly used libraries to be pre-loaded and verified prior
to enclave execution. These library enclaves allow for shar-
ing between multiple enclave applications. While previous
work has been done on proprietary software, we implement
our design in Keystone, an open-source RISC-V framework
for constructing customizable TEEs, making our work acces-
sible for future research and study. Finally, we expand on
previous dynamic library implementations by accounting for
mitigations against side-channels attacks. We propose a cache
tagging solution to defend against the Flush+Reload side-
channel attack and analyze its performance tradeoffs through
simulation.

1 Introduction

Data privacy and the security of sensitive code has become
an increasingly large concern, especially with the growth
of cloud computing. Typically, encryption is used to ensure
the confidentiality and integrity of data. However, when data
is actively in use, operating on encrypted data can be very
slow. Instead, Trusted Execution Environments (TEEs) have

seen rising utilization to preserve the privacy of sensitive
code and data. TEEs, also known as enclaves, are isolated
environments that are used to protect the confidentiality and
integrity of programs and data within the region from an
untrusted host. They typically provide a security property
called shielded execution [13] which hides execution from the
host and prevents host tampering. Under the confidentiality
guarantees of shielded execution, only inputs and outputs of
an enclave are revealed, but any intermediate state is hidden.
With the integrity guarantees of shielded execution, no part of
the host system may affect behavior of programs executing
within an enclave.

To facilitate the adoption of TEEs, it is necessary for TEEs
to support unmodified legacy applications. Additionally, many
applications rely on dynamically-linked libraries (DLLs) for
core functionalities. Dynamic libraries are efficient for com-
pilation because the library and application are compiled
separately, preventing the other component from needing to
be re-compiled when a change is made to only one or the
other. Furthermore, when multiple applications reference the
same shared library, only one copy must be kept in memory.
Load time is also reduced if shared library code is already
present. To enable these optimizations, it is necessary to sup-
port dynamic linking in TEEs.

Although shared libraries are commonly used outside of
TEEs, allowing dynamic linking within enclaves poses several
challenges. Enclave memory is typically isolated from the rest
of the processor in order to preserve the confidentiality and
integrity of programs running within it. The enclave must be
verified to ensure that its memory has not been tampered with.
These requirements make it difficult to share code or link a
dynamic library at runtime. Additionally, the dynamic linking
implementation must not significantly increase enclave start
up time.

Some previous studies have proposed solutions to the dy-
namic linking problem for TEEs. Graphene-SGX [13], now re-
named to Gramine, implements shared libraries with a trusted
loader that verifies each of the loaded libraries. This is per-
formed by maintaining a manifest file for each enclave which

contains the list of loadable binaries and their hashes. During
the loading process, the trusted loader will load the library
OS, the standard libraries, and then load any other libraries
specified by the user by comparing the SHA-256 hash of the
library with the hash within the manifest file. If the hash does
not match, the loader will not open the library.

While Gramine provides a system for shielding dynamic
libraries, which are used in a large majority of applications,
it comes with some drawbacks. Because Gramine requires
that all needed libraries be included in the enclave and man-
ifest file prior to measurement, it may be necessary to over-
approximate the needed libraries in order to cover possible
libraries that will be accessed. Additionally, since integrity is
verified through a manifest file, when libraries are updated, it
is also necessary to update the hash of the library within the
manifest file.

Plug-in enclaves provide an alternative solution to dynamic
linking. With the plug-in enclave (PIE) [9] model, a new
shared enclave region primitive is created. The shared enclave
is an immutable memory region that can be mapped to other
host enclaves. Dynamic libraries can be added by running a
shared enclave containing the desired library. The library will
be attested on enclave initialization. If a host enclave requires
the dynamic library, the shared enclave can then be mapped
into the host enclave’s virtual memory.

This paper presents another implementation of dynamic li-
braries in enclaves using Keystone [8], an open-source frame-
work for trusted execution environments in RISC-V. We draw
from both Gramine and PIE dynamic loading. We provide a
trusted loading verified by a manifest file as the default load-
ing scheme. Additionally, we allow users to construct library
enclaves, read-only enclaves that can be mapped into vari-
ous host enclaves, as an optimization to the default loading
method. The use of library enclaves in conjunction with the
trusted loading scheme allows commonly used libraries to be
pre-loaded and verified, reducing enclave initialization times.

Introducing dynamic libraries in Keystone allows our TEEs
to support a wider range of applications. However, the use of
shared memory also gives rise to new vulnerabilities, namely
cache side-channel attacks. Side-channel attacks target the
security of a system by exploiting indirect effects of the sys-
tem or hardware instead of directly attacking the code. Cache
side-channels typically utilize minute differences in cache
access times to infer information about the instructions or
data being accessed.

Side-channel attacks are a growing threat and as a result
there have been many prior publications on timing- and cache-
related side-channels including Spectre [7], Meltdown [10],
Prime+Probe [15], and Flush+Reload [14]. We will focus on
the potential Flush+Reload side-channel attack introduced by
adding shared libraries in Keystone. The Flush+Reload attack
takes advantage of a cache side-channel that occurs when
different processes run shared code. This attack utilizes the
last-level cache (LLC), an inclusive cache that is also shared

by multiple cores on the same processor. An inclusive cache
is one that contains copies of data at all higher cache levels.
Thus, an attacker can take advantage of these two properties
by flushing target memory lines from the LLC. To execute an
attack on a victim process, the adversary can evict the desired
memory line, wait for a chosen period to allow the victim time
to access the line, then measure the time it takes to access
the same line again. If the victim had accessed the line, the
time to load should be short since the memory line should
be in the cache again; otherwise, the data must be retrieved
from memory so the load time should be much longer. This
vulnerability exists when using library enclaves, since two
enclaves that share the same library enclave will be directly
sharing those physical pages. We propose a cache-line tagging
scheme to defend against the Flush+Reload attack.
Our contributions in this paper include:

* An implementation of dynamically linked libraries in an
open-source RISC-V based TEE framework

* The design of a cache-line tagging system to defend
against the Flush+Reload attack

* A cache simulation analysis of the performance impacts
of cache tagging

The rest of the paper is organized as follows. Section 2
describes the background on Keystone and the threat model
for our TEE framework. Section 3 details the design of our
dynamic linking implementation in Keystone and analyzes the
security tradeoffs of DLLs in enclaves. Section 4 introduces
our proposed cache tagging design for defending against the
Flush+Reload attack in TEEs and presents the results of our
cache simulation and analysis. Finally, we conclude our paper
in Section 5.

2 Keystone Background

Keystone is an open-source framework that allows for cus-
tomizable TEEs in RISC-V, enabling more developers to make
use of TEEs for data security and privacy. At its core, Key-
stone relies on restricting application and operating system
access to memory using physical memory protection (PMP)
registers. An overview of the Keystone system is shown in
1. The following sections will provide further detail of the
relevant components.

2.1 RISC-V Privilege Modes

RISC-V has three privileged modes that Keystone uses to
enforce access and execution permissions. These three modes,
with increasing permissions, are User (U-mode), Supervisor
(S-mode), and Machine (M-mode). U-mode supports user
processes such as untrusted applications and enclave applica-
tions (EAPPs). S-mode, which is above U-mode, supports the

Figure 1: Keystone System Diagam [8]

Figure 2: Enclave Lifecycle [8]. On creation, memory is allo-
cated for the enclave and binaries are loaded. Then, the SM
sets PMP entries for the enclave region and removes access.
Finally, the SM verifies the loaded binaries. On execution,
the SM provides the enclave r-w-x permissions on entering
the enclave, and removes them when stopping or exiting. On
destruction, enclave memory is cleared and PMP entries are
deallocated.

host operating system as well as the runtime kernels running
within each enclave. Finally, M-mode is the highest privilege
level with no limitations and operates on physical memory. In
Keystone, the Security Monitor (SM) is the only component
that runs in M-mode and comprises Keystone’s TCB.

2.2 RISC-V PMP entries

Keystone’s main access control comes from RISC-V’s PMP
standard. PMP registers are control and status registers (CSRs)
that are used to control S- and U-Mode accesses to a region
of memory. Each PMP entry may be assigned to a region
of physical memory and can be set to allow or deny r-w-x
permissions. PMP entries are statically prioritized, with the
Oth entry having highest priorty and the (N — 1)th entry having
the lowest.

2.3 Keystone Security Monitor

Keystone’s security monitor (SM) is the M-mode software re-
sponsible for ensuring the security and isolation of Keystone
enclaves. The SM ensures proper memory isolation by config-
uring PMP entries throughout the enclave lifecycle. The full
enclave lifecycle is shown in Figure 2. When an enclave is
created, it sets a PMP entry for the enclave’s physical memory
region and another PMP entry for a shared region between
the enclave and the host OS. These entries are initially set to
no access so that the host OS and other applications may not
access enclave memory. When executing an enclave, the SM
flips the PMP entries so that the enclave has access to it’s own
memory and no other regions.

In addition to memory isolation, the SM also handles mea-
surement and verification of enclaves prior to execution. The
SM must hash and measure each enclave to ensure enclave
integrity before it is allowed to run.

Furthermore, the SM is also responsible for handling traps
and interrupts. These may be resolved directly by the SM or
forwarded to the host OS. Additionally, communication to the
OS through system calls are also passed through the SM.

2.4 Keystone Runtime

The Eyrie Runtime (Eyrie-RT) is a lightweight kernel running
within each enclave that handles memory management and
environment calls. It is responsible for enclave initiated com-
munication to the SM and untrusted OS including network
calls, access to the untrusted file system, I/O, and other func-
tionality. The RT executes in S-Mode within the enclave and
is trusted by the enclave application.

2.5 Threat Model

To discuss the Keystone threat model, we must first elaborate
on Keystone’s trusted components. Keystone creates a chain
of trust beginning from the hardware root-of-trust, which is
used in the verification of the SM. The SM must then verify
all enclave components, including the RT and EAPP. Thus,
the RT and EAPP trust the SM. The RT loads the EAPP, so
the EAPP also trusts the RT. All components must trust the
SM. These chains of trust are also dependent on a correct
hardware implementation.

The Keystone threat model is similar to that of many other
TEEs and considers the host OS, other enclaves, and other
programs running on the system as untrusted. We assume
that the attacker may have access to physical hardware and
can measure outputs coming off the chip. Attackers can also
take control of system software, such as the OS, and may
also create their own enclaves. We do not consider denial-of-
service attacks in the scope of our attacker model, since the
host OS can deny service at any time by refusing to schedule
enclave threads.

This work expands on the initial scope of the Keystone
threat model by taking into consideration side-channel attacks.
We account for an attacker that may be able to observe and
measure the timing of cache accesses.

3 Enabling Dynamic Linking in Keystone

In the Gramine dynamic linking model, shared libraries are
linked after enclave execution by loading DLL object files
directly into enclave physical memory from the host oper-
ating system. Plug-in enclaves take a different approach by
pre-loading dynamic libraries into a separate enclave to be
mapped to existing host enclaves. In our implementation of
dynamic linking in Keystone enclaves, we provide both op-
tions to ensure correct functionality of dynamically linked
programs, while taking advantage of the efficient memory us-
age and fast enclave initialization provided by shared libraries.
In this section, we detail the design of our dynamic library
implementation in Keystone and provide a security analysis
of our implementation.

3.1 Design

We propose two dynamic linking methods for Keystone: the
first introduces a new Keystone primitive, library enclaves,
and the second relies on trusted loading with a user-provided
manifest file.

Library enclaves allow DLLs to be shared securely across
multiple enclaves and applications. These can be used for
commonly used shared libraries, so that the physical memory
region can be shared between enclaves. Additionally, library
files into library enclaves before the host enclave is created,
allowing for faster host enclave start-up times since the library
can be pre-verified by the SM.

When a library enclave does not exist for a required shared
library, enclaves will default to the trusted loading method that
is verified with a manifest file. This is advantageous for DLLs
that are not as frequently used or shared by other applications.
With this method, libraries are loaded after the enclave is exe-
cuted and the EAPP is parsed for needed libraries. It ensures
that an EAPP can still run, even if a shared library has not
yet been pre-loaded, as long as the user has provided the ex-
pected hash within the manifest file. Additionally, it allows us
to conserve PMP entries, since libraries are directly added to
the host enclave and do not require a separate memory region.
Our trusted loading design also simplifies the measurement
and validation process compared to statically-linked enclave
applications in Keystone. The following sections will describe
the design and evaluation of these two linking methods.

3.1.1 Library Enclaves

We created a new Keystone primitive, the library enclave, to
facilitate efficient linking of shared libraries. The library en-

Security Monitor

|
Host
I Enclave | Measurement
1
I

eapp1 aaaaaaaaaa...
elibrary1 | bbbbbbbbbb...

elibrary2 | 8606de8454...

— Measurement
8606d08454c350dc768...

Measurement
8606d08454c350dc768...

PMP_NO_PERM

Figure 3: Library Enclave Creation

clave is a read-only enclave that stores a dynamic library ELF
file. It does not run independently but can be mapped into
a host enclave’s memory for execution. Because library en-
claves are immutable and DLLs are typically accessible code,
they can be securely mapped to multiple host enclaves, allow-
ing the physical DLL object files to be shared by different
enclaves.

In our implementation, the security monitor is responsible
for linking library enclaves to hosts and controlling library
enclave permissions. On library enclave creation, a PMP entry
is allocated for the library enclave memory region, and it is set
so that r-w-x permissions are removed from library enclave
memory. When a library enclave is linked to a host enclave,
the SM creates a reference from host to library enclave. On
host enclave execution, the SM loops through library enclaves
referenced by the host and modifies each library enclave’s
PMP entry so that the permissions are changed to read-only,
prior to context switching to the host enclave.

Since library enclaves are not executed directly, we sim-
plify its design from host enclaves by removing execution
structures such as the runtime kernel and the untrusted buffer.
This allows library enclaves to be easily verified by the SM by
computing a hash over the library enclave physical memory.
The library enclave only stores the DLL, so this hash can be
directly compared to the expected hash of the DLL object files.
This is a simplification from the prior host enclave verifica-
tion process, where the SM needed to walk the enclave page
tables to iteratively build a measurement of the entire enclave
memory. This is no longer necessary because library enclaves
store only the library ELF and are mapped and loaded into
a host enclave at runtime. Thus, they can be verified before
virtual memory is setup.

3.1.2 Trusted Loading by the Runtime Kernel

For our default loading scheme, we implemented a trusted
loader within the Runtime kernel. This loader is used to load
any necessary libraries that have not yet been added as li-
brary enclaves. The loader first parses the enclave application
ELF file to identify required libraries. Then, the loader com-
municates with the SM to select relevant library enclaves

and determine unloaded libraries. To load these remaining
DLLs, the loader communicates with the host operating sys-
tem through the enclave’s untrusted buffer to copy the library
ELFs into enclave memory.

Due to the untrusted nature of this channel, it is necessary
to verify the loaded libraries before linking them for execution.
This verification is performed using a list of hashes provided
within the manifest file on enclave creation. The loader hashes
the library ELFs and compares these measurements to the
expected hashes within the manifest file. If any hashes are
incorrect or are not present, the loader initiates the enclave
destruction subroutine.

Once the DLLs are validated, they can be safely loaded
and mapped with the enclave’s page tables in preparation for
execution.

3.1.3 Memory Modifications for Trusted Loading

In order to support dynamic linking of enclaves after enclave
execution, we made significant changes to the memory struc-
ture for host enclaves. In Keystone’s previous implementation,
enclave memory is entirely initialized by the host operating
system. During the enclave creation process, the host OS
parses and maps the runtime and enclave application ELF
files into a physical memory region designated for the enclave.
It then loads each ELF object file, creating a preliminary page
table for the enclave before the enclave begins execution.

In our design, instead of loading the runtime and enclave
application binaries prior to enclave execution, we initialize
the enclave by simply copying the ELF files into enclave
physical memory. All loading functionality is performed by
a Trusted Bootloader (TB) that is responsible for parsing RT
and EAPP ELF files and setting up enclave page tables so
that the RT kernel may have access to all of the enclave’s
DRAM. To facilitate the enclave boot process, we initialize
the enclave’s physical memory with the TB ELF file, the RT
ELF file, and the EAPP ELF file.

Because our design does not have virtual memory on ini-
tialization, it significantly reduces the complexity of the initial
enclave memory system. This clarifies the verification process
for the SM. With Keystone’s previous enclave memory layout,
the SM measured enclave memory by walking the enclave’s
page tables and computed a hash iteratively by measuring
each page. In our design, the SM can hash each segment of
the EPM separately and compare the computed measurement
with the expected hash of each component’s ELF file.

3.1.4 Putting it all together: Lifecycle of a Dynamically
Linked Enclave

A dynamically-linked Keystone enclave goes through sev-
eral different stages. Prior to enclave creation, the program-
mer can create library enclaves to store DLL files. This pre-
loading allows these DLLs to be verified prior to actual en-

Host

sM

Enclave | Measurement

Enclave

Enclave
Loader

Runtime

eapp1 aaaaaaaaaa...
Host initiates | R P |

enclave

creation

Loader
elibrary1 | bbbbbbbbbb...

Runtime

elibrary2 | 8606d08454...

Eapp
eapp2 98138ad4f3...

User passes a
manifest file
containing expected
hashes of DLL

Measurement

PMP_NO_PERM 98138ad4f38b977dcad..

Measurement

1

1

|

|

1

'

1
Eapp 1
1

|

|

|

1
98138ad4£38b977dcad... |
1

Figure 4: Host Enclave Creation

clave creation, speeding up the enclave initialization process.
On enclave creation, the EPM is initialized with the Trusted
Bootloader, Runtime kernel, and enclave application. The SM
measures each of these components to verify their integrity.
During the first execution, the TB boots the RT, which then
parses the EAPP for its required DLLs. The RT loader com-
municates with the SM to request existing library enclaves to
be linked with the current host enclave. The SM creates refer-
ences from host to the relevant library enclaves and updates
PMP entries to allow the host enclave read-only access. Any
remaining DLLs will be resolved by the RT loader by com-
municating with the host OS through the enclave’s untrusted
buffer. After these DLLs are verified by the SM, the loader
will parse and map each DLL the enclave’s virtual memory.
When the enclave is destroyed, the SM removes references
from host to library enclaves and cleans up enclave memory.
In the event that a library enclave is destroyed, the SM will
immediately destroy any enclaves that are dependent on the
library enclave.

3.2 Implementation

In our implementation of dynamic linking in Keystone, we
added 213 lines of code to the SM for our library enclave
creation and 1522 lines to the RT kernel for trusted loading.
The Trusted Bootloader that we implemented was 3645 lines.
Our implementation has resulted in only minor increases to
the TCB and trusted code. Some key details from the Trusted
Bootloader are discussed in the following section.

3.2.1 Trusted Bootloader

Our Trusted Bootloader (TB) is a lightweight program that
boots the runtime kernel. In our design, the bootloader must
be the first program that is executed upon transferring control
to the enclave.

The context switch from security monitor into the enclave
occurs using the mret instruction, which on the first execution,
switches the RISC-V privilege mode from M-mode to S-mode
to boot the Runtime. To ensure that the bootloader is the
first program that runs when entering into enclave memory,
we copy the loader program into the first physical page of

enclave DRAM and load this address into the mepc register,
so that the pc is pointing to the beginning of DRAM when
execution begins. Because we want this instruction to be the
first instruction of the TB, we extract only the text section of
the TL ELF to be copied to enclave memory.

Before the enclave begins execution, its memory contains
only unloaded ELF files. Thus, the TB initially operates only
on physical addresses. After setting up the enclave’s page
tables, it must then switch from physical to virtual addresses.
We perform this change by setting stvec, the register con-
taining the address of the trap handler, to the start address of
the RT kernel. Then, we change the satp CSR from 0, which
indicates execution with physical addresses, to the physical
address of the root page table. After switching to virtual ad-
dressing, the processor initially still tries to execute the next
physical address, which will result in a trap since the address
is likely not to correspond to a valid instruction in virtual
memory. Since stvec is set to the starting address of the RT,
the trap will cause the pc to be set to the RT start, triggering
execution of the RT with virtual addressing.

3.3 Security Analysis

The addition of dynamically linked libraries reduces the strict
memory isolation of prior enclave designs. Thus, it is neces-
sary to discuss the security trade-offs of the dynamic library
implementation.

For the library enclave implementation, once the DLL is
loaded into a library enclave, the SM measures and verifies
that the hash of library enclave memory matches the expected
measurement of the DLL object files. This verifies that the
DLL has not been modified, which ensures the integrity of
the library enclave. All following accesses to the library en-
clave will be read-only accesses facilitated by the trusted SM.
Therefore, we can be confident that the integrity of library
enclave contents are preserved.

For the DLLs that are loaded later by the RT loader, the
loader partners with the SM to measure each library file before
execution. The measurements are compared to the expected
hashes provided within the manifest file. The SM requires
that the measurements match to allow the enclave to continue
execution. Then, the RT loader can load the dynamic libraries
for execution. In this scheme, the SM verifies the integrity of
the library, but we must also trust the RT loader for correct
loading and linking of the DLLs.

4 Mitigating Cache Side-Channels with
Shared Libraries

Our dynamic linking design enables efficient code sharing
and fast enclave start-up times. However, sharing libraries
across enclaves also creates a security risk due to side-channel
attacks on shared memory. One such well studied attack is the
Flush+Reload cache side-channel attack [14]. In this section,

we give an overview of how the Flush+Reload attack could be
implemented on our linked enclaves and propose a mitigation
using cache tagging. In addition, we simulate caches with and
without our proposed modifications to analyse the trade off
between enhanced security and performance.

4.1 The Flush+Reload Side-Channel Attack

Even the most cryptographically secure systems may leak
indirect information from computation. This leakage of infor-
mation results in vulnerabilities that may be exploited through
side-channel attacks. Side-channel attacks can exploit infor-
mation such as power consumption, timing channels, or elec-
tromagnetic emissions to gain an understanding of the system
Or running processes.

In computer architecture there have been a number of well
studied side-channel attacks on enclave-based systems. For
example, Nilsson et al. [12] break down well known attacks on
Intel-SGX into control-channel attacks, cache attacks, branch-
prediction attacks, speculative-execution attacks, rogue data-
cache loads, microarchitectural data sampling, and software-
based fault-injection attacks just to mention a few.

In this work we will focus on cache side-channel attacks.
Cache side-channels take advantage of the cache structure
and the indirect information created by caching memory from
the DRAM. Typically, this includes timing information from
cache hits or misses. These are accessed from outside the
protected memory region since caches are shared between
processes and enclaves. Some major variations of cache side-
channel attacks include Prime+Probe [15], Evict+Reload [5],
and Flush+Reload. In the Prime+Probe attack, the attacker
primes the cache with their data and can determine if a
victim has accessed certain physical addresses if they dis-
cover that their data has been evicted. The Evict+Reload and
Flush+Reload attacks rely on having some shared physical
memory between the victim and the attacker. In these attacks,
the attacker evicts a cache line and then measures the timing
of their next access to determine if the victim accessed this
cache line. Since our DLL implementation introduces shared
memory, we analyze the Flush+Reload attack on our system
in the following sections.

4.1.1 The Attack

The Flush+Reload attack [14] targets the last-level cache
(LLC) of a processor. This attack targets the LLC because it
is generally shared across all processors in modern hardware
implementations. We show an example of the Intel Ivy cache
structure in Figure 5.

Since pages within the LLC are shared, an attack process
can evict memory from the cache and then monitor the cache
for timing information about what is accessed. Flush+Reload
is executed in three phases. First, the attacker flushes the
memory line that is of interest. Second, the attacker waits

Figure 5: Intel Ivy Cache Structure [14]

to give the victim process time to access data in the cache.
When the victim accesses the flushed cache line, data will be
loaded into the cache. In the final stage, the attacker reloads
the memory line. Using timing analysis the attacker can tell
if data was loaded by the victim. The data will be quickly
loaded if the victim accessed the data, and the data will take
longer if there is a cache miss because data will needed to be
loaded from the DRAM.

Yarom et al. [14] highlight the risk of this attack by demon-
strating that they were able to successfully extract private
encryption keys from Intel x86 processors.

4.1.2 Flush+Reload Mitigations

Yarom et al. [14] provide some suggestions for mitigating
the Flush+Reload attack, including limiting the use of the
clflush command in x86, limiting sharing of pages between
processes, and reducing clock resolution or adding noise so
that an attacker cannot accurately measure accesses.

There is also related work on evaluating and defending
against the Flush+Reload attack in the literature that we draw
inspiration from. CATalyst [11] uses Intel Cache Allocation
Technology to partition the LLC into secure and non-secure
partitions. The secure partition stores cache-pinned secure
pages that can be assigned to VMs on launch. Thus, security-
sensitive code is always a cache hit since they are essentially
pre-loaded to the secure partition. Dynamically Allocated
Way Guard (DAWG) [6] is another mitigation against cache
timing side-channels. DAWG securely partitions set associa-
tive caches so that hits and line replacements are restricted to
the partition that issued a memory access. This prevents pro-
cesses in other partitions from learning metadata about other
partitions memory accesses. SiFive’s WorldGuard security
feature [4] also provides another implementation of a generic
system for separating processes into protection domains, or
worlds. These protection domains can likewise be used to
partition cache accesses based on a world ID.

Similar to many of these approaches we restrict accesses to
the shared cache. However, our approach is unique in that it
enables enclaves to still make efficient use of the entire cache
space without allowing a malicious program to gain detailed

timing information.

4.1.3 Flush+Reload on Keystone

Now that we have explored the structure of the Flush+Reload
attack, we elaborate on the affects of Flush+Reload on the
Keystone framework. Generally, Keystone is not vulnerable
to Flush+Reload attacks because there is no shared physical
memory between enclaves. However, in our dynamic library
implementation, we allow library enclaves to be shared be-
tween enclaves, introducing a cache side-channel vulnerabil-
ity. We will analyze the risk of a successful Flush+Reload
exploit on our design and provide a solution for mitigation.

Attack Scheme. The Flush+Reload attack depends on be-
ing able to flush specific lines or all of the cache. RISC-V’s
recently added cache management extensions, Zicbom [2],
provide instructions for flushing, invalidating, and cleaning a
cache line. When this extension is enabled, these instructions
would allow an attacker to execute Flush+Reload. To attack a
victim enclave in Keystone, an attacker can create their own
enclave with an EAPP that uses a dynamic library also shared
by the victim. The attacker can then periodically flush cache
lines shared by their enclave and the victim enclave. By mea-
suring the access time for these memory lines, the attacker
can learn information about the victim enclave process.

4.2 Cache Tagging

To defend against this information leakage, we propose a
cache-tagging mechanism to prevent an attacker from gaining
information about data that is loaded into the cache by sepa-
rate enclaves. The attacker is able to gain information about
victim enclave memory accesses because the attacker is able
to (1) flush cache lines corresponding to victim enclaves and
(2) hit on cache lines loaded by victim enclaves. We prevent
(2) by creating security domains for different enclaves and
tagging each cache line with a corresponding domain ID. On
a memory access, this domain tag is checked along with the
address tag to allow a cache hit only if the memory access
comes from an enclave corresponding to the same ID. Oth-
erwise, the cache access results in a cache miss, and a new
cache line is loaded in with the enclave’s domain ID and the
requested data.

By default, each running enclave is assigned a separate
domain ID. Since the number of enclaves is limited by the
number of PMP entries, we allocate [ogN bits in each cache
line for the domain ID where N is the number of PMP entries
on the system. To improve performance, multiple enclaves or
PMP regions may be assigned to the same domain ID when
mutually trusted, for example, when created by the same user.
A diagram showing how our domain ID is added to the cache
tag is shown in 6.

The key insight of our method is that every process can still
execute evictions (1), from any location in the shared cache,

Figure 6: Additional Domain ID is Added to the Cache Tag

but cannot gain significant timing information about cache
lines loaded by another enclave.

4.3 Cache Simulation

We use Spike, the RISC-V ISA simulator [1], to create a simu-
lation of our cache-tagging mechanism. We implemented
cache tagging on the Spike source code. Finally, we ran
our code on two commonly used benchmarks and compare
our results to the untagged Spike source code. We find that
while performance decreases, the average memory access
time (AMAT) only increases by about 4.26% on average.
While SiFive’s WorldGuard security feature [4] provides an
implementation of a generic system for separating processes
into protection domains that can similarly be used to partition
caches, we did not have access to the necessary hardware, so
we chose to evaluate the performance trade offs of the cache
partitioning defense for Keystone through simulation.

4.3.1 Assumptions

We make a few key assumptions when simulating our cache-
tagging proposal. First, we discovered that Spike does not
have the full support for running the entire Keystone frame-
work. Thus, although Keystone does not require that enclaves
are run in separate processes, we model each enclave with a
separate simulated hardware thread for the sake of simulation
and ease of tagging.

Second, we trust that Spike provides an accurate repre-
sentation of cache access performance. Spike uses separate
instruction and data caches as its L1 cache and uses a uni-
fied L2 cache. We assume that the L1 caches are not shared,
but the L2, which is the LLC in this case, is shared between
processors. Thus, we perform our analysis on the L2 cache,
which would be susceptible to Flush+Reload.

Finally, we also assume, along the lines of other work
on side-channel mitigations, that denial-of-service is out-of-
scope. Since we allow the attacker to flush the cache, just
not measure what data is reloaded, the attacker could prevent
other enclaves from benefiting from the shared cache. This
could significantly reduce performance. While a real concern,

Cache Sizes | Block Sizes (bytes) \ Cache Ways

256KB 64 4
512KB 128 -
IMB - -
2MB - -
4MB - -
8MB - -

Table 1: Cache Parameters

this work does not address this risk. Additionally, we do not
provide a comprehensive analysis of side-channels within the
system. Rather we attempt to prevent risks and evaluate the
performance cost of the side-channel attack exposed by our
DLL implementation.

4.3.2 Implementation

In Spike, we modify the cache access function. When an
enclave accesses an address in memory, we check the thread
ID of the running thread against the domain ID of the cache
line, in addition to the address tag. If the IDs match, then the
access is allowed and is treated as a cache hit. In the case that
the IDs do not match, this access is treated as a cache miss
even if the same block of physical memory is present. On
eviction, we do not check domain IDs and evict according to
Spike’s normal LRU policy.

4.3.3 Experiment Setup

To compare the performance cost of cache tagging, we ran our
modified code on RISC-V benchmarks [3] for matrix multiply
and vector add. We execute each benchmark with multiple
threads, where each simulated hardware thread represents an
enclave process.

Initially, when running tests, we observed that the size of
the cache negatively correlates with the number of misses.
To account for this behavior we test with cache sizes both
larger and smaller than the datasets we used. For the vector
addition benchmark, we use an 80 KiB dataset, and for matrix
multiplication we use a 1 KiB dataset. The dataset sizes differ
because it took a prohibitively long time to generate a larger
dataset for the matrix multiply benchmark.

Similarly, for our L1 cache design, we observed that a large
L1 cache resulted in fewer hits in the L2 cache. Though
this is desirable behavior for normal execution, we wanted
to compare L2 performance which necessitates L2 usage.
Therefore, we restrained our L1 cache to a 4-way cache with
only 16 sets and 64-byte cache blocks for both the instruction
and data cache. This is much smaller than typical modern
day processors, but for our experimental setup it is reasonable
because we are focused on the shared LLC only. We also
carefully selected LLC cache parameters to use based on

modern processor designs. The parameters we tested with are
shown in Table 1.

We ran two types of experiments using Spike. The first
used an area-neutral model to examine the effect of adding
additional domain ID bytes to the cache line on the cache miss
rate. Recall that only an additional logN bits, where N is the
number of PMP entries in the system, are needed in each cache
line to represent the domain ID. Since RISC-V supports 16
PMP entries in the most conservative case we need 4 bits per
cache line for the domain ID. Our baseline Spike simulation
used 8 byte tags with 128 byte cache lines. Therefore, to
achieve the same cache data capacity we would need a 0.42%
area overhead. Unfortunately Spike and typical processors
only accept blocks and sets in powers of two. Therefore, in
our experiments, we were limited to simulating either half the
number of sets or half the block size, representing a 50% area
overhead. This provides an extremely conservative estimate
of performance decrease due to the overhead cache space
used by the domain ID tags.

The second experiment examines the impact of the cache-
tagging implementation on miss rates when multiple enclaves
are running at once. We expect the miss rates to increase
when multiple enclaves are sharing the LLC because the
cache lines loaded by one enclave may not be utilized by an
other enclave, rather a second enclave must also load the data
from DRAM. This creates the effect of aliasing within the
cache, decreasing cache efficiency. To test the performance
impacts of this phenomenon, we run up to five threads at once
using our modified Spike code which implements domain ID

tagging.

4.3.4 Results

In our simulations, we found that although miss rates did
increase due to our security feature for both the matrix multi-
plication and vector addition benchmarks, these changes were
very small and only had minor impacts on performance. We
found that reducing sets to manage the cache capacity had
less of an effect on miss rate compared to reducing the block
size. Additionally, adding more enclaves in parallel increased
the overall miss rates.

Cache Capacity Overhead. In our first experiment we
modeled the area overhead by reducing either the number of
sets or the block size while keeping the cache size consistent.
We found that in our experiments modeling area overhead
by reducing sets, L2 miss rates were similar to the baseline,
with relatively larger increases on smaller cache sizes for the
vector addition benchmark. The baseline parameters used a
block size of 128 bytes and sets ranging from 512 to 16384.

For vector addition, we measured an increase of at most
10% when sets were reduced. Results were much less encour-
aging for reduced block size which miss rates reaching well
above 60%. Vector addition results are shown in Figure 7. For
matrix multiplication, reducing the sets increased the miss

Vector Addition with 4-Way L2 Cache

EEm Baseline
B Reduce Sets
I Reduce Block Size

L2 Miss Rates (%)
B e NNWW RS GG O
5L838883&884883

o u

256KB 512KB 1MB 2MB

Cache Size

Figure 7: Vector addition benchmark running on
Spike with the baseline parameters, sets reduced by
a factor of two and block size reduced by a factor
of two.

Matrix Multiplication with 4-Way L2 Cache

85 4 EEm Baseline
80 W Reduce Sets
754 B Reduce Block Size

256KB 512KB 1MB 2MB 4MB 8MB
Cache Size

Figure 8: Matrix multiplication benchmark running
on Spike with the baseline parameters, sets reduced
by a factor of two and block size reduced by a factor
of two.

rate by only a few percentages, while again reducing the block
size increased the miss rate to approximately 65%. Matrix
multiplication results are shown in Figure 8. These results
indicate that for our parameters and computational loads it
makes sense to compensate for the added space due to domain
IDs using additional sets.

Multiple Enclaves. In our second experiment we examined
the impact of our cache tagging implementation on L2 miss
rate. This was modeled by running up to five threads at a time.

For vector addition and matrix multiplication, Figure 9 and
Figure 10 respectively show the difference in miss rate from
the baseline unmodified code. For vector addition, when only
one enclave is running, the increase is marginal. However
the delta is around 25% when five enclaves are running. For
matrix multiplication, there is an increase of about 10% for
two enclaves. Again the delta gets to around 25% when three
to five enclaves are running.

Vector Addition with 4-Way L2 Cache

—— 1lenclave
2 enclaves
—— 3 enclaves
—— 4 enclaves
5 enclaves

— =

35

w
o
L

N
v
L

N
o
L

-
v
L

L2 Miss Rates Delta (%)

T T T T
1MB 2MB 4MB 8MB

Cache Size

T T
256KB 512KB

Figure 9: Vector addition running on Spike with one to five
enclaves

Matrix Multiplication with 4-Way L2 Cache

—— 1lenclave
2 enclaves
—— 3enclaves
—— 4 enclaves
5 enclaves

w
vl

w
o
L

N
v

-
v
L

L2 Miss Rates Delta (%)

1MB 2MB 4MB 8MB

Cache Size

256KB 512KB

Figure 10: Matrix multiplication running on Spike with one
to five enclaves

For this experiment, we also computed the AMAT while
running the experiment with different numbers of enclaves.
Since our experiments are performed on a simulator, we did
not have physical cache hit times from hardware. Our compu-
tations assume that L1 hit time is 4 cycles, L2 hit time is 10
cycles, and DRAM accesses take 100 cycles. The percentage
increases in AMAT for each benchmark are shown in Table 2.

We found that our tagged implementation had an AMAT
of 4.48 cycles on average, which was only a minimal increase
compared to the baseline with an AMAT of 4.3 cycles. In the
worst case, we found that for the the vector addition bench-
mark with five enclaves, the tagged simulation had an 11.82%
increase resulting in an AMAT of 4.85 cycles. These results
show that using this cache tagging security feature will have
little impact on the performance of enclaves in Keystone.

10

Number of | % Increase in AMAT | % Increase in AMAT
Enclaves for vvadd for matmul
1 0.00% 0.00%
2 5.17% 0.96%
3 8.52% 1.92%
4 10.36% 2.10%
5 11.82% 1.75%

Table 2: Percent Increase in AMAT for Vector Addition and
Matrix Multiplication Benchmarks

4.4 Discussion

We provide a simulation and evaluation of a viable
Flush+Reload attack mitigation for shared dynamic library
linking. This mitigation further illustrates the viability of dy-
namically linked libraries on a RISC-V based enclave system.
As with most systems, however, there are trade offs and limi-
tations to our approach.

We see that there are indeed some performance drawbacks
to preventing Flush+Reload attacks on our system. When five
enclaves are running together on the same system the miss rate
increases substantially. This matches our intuition because
when there are more enclaves there is more cache space that
will miss because it was accessed by another enclave. We
argue that these increases are relatively minor and would be
acceptable in cases where security is of the utmost importance.
For example, for medical or financial data enclave users may
value data security over performance. Additionally, the added
performance benefits of DLL may outweigh the performance
costs of cache tagging for applications that make use of many
shared libraries.

There are a few limitations to our approach. Due to time
constraints, we only ran one dataset size for each benchmark.
It would be interesting to examine how the cache miss rate
changes based on the dataset size. While we simulated the
effect of adding tags on an area neutral model, adding tags
to the cache in hardware may have slightly different effects
on performance. We leave the hardware implementation and
evaluation to future work.

Unfortunately, we only had the time to study the
Flush+Reload attack, but there are still potential side-channel
attacks that could be executed against Keystone enclaves. One
particular cache side-channel attack that we considered was
the Prime+Probe attack. The Prime+Probe attack differs from
Flush+Reload in that the attacker primes the cache by filling
it with their own data and then measures the timing of ac-
cesses to their own addresses to figure out if the victim has
accesses physical addresses that map to the same way. While
the Prime+Probe attack can still be executed with our cache
tagging scheme if an attacker fills an entire cache way with
their data, this attack does not rely on shared memory. Thus,
Keystone may be vulnerable to this attack, even without the
addition of our dynamic library implementation, so we leave

the analysis and mitigation of this side-channel vulnerability
to future work on Keystone.

5 Conclusion

We present an implementation of dynamic libraries in an open-
source RISC-V framework for customizable TEEs. With our
design, we enable efficient memory usage by allowing shar-
ing of dynamic libraries and expedite enclave initialization
times by removing library loading from the enclave startup
sequence. We analyze a potential cache-side channel attack
that results from our library design and provide an efficient
and secure cache-tagging solution. This new dynamic library
functionality with aid adoption and ease of use for Keystone
and encourage further TEE research.

Acknowledgements

I would like to thank Dayeol Lee for the direction he has
given me in the preliminary design discussions for the dy-
namic library implementation and cache tagging schemes.
Additionally, I would like to thank Tess Despres for her work
on implementing the Spike simulation and data collection
for the cache tagging experiments as well as her contribution
to the first drafts of this paper, in particular to the section
for Mitigating Cache Side-Channels with Shared Libraries. I
would also like to thank Anay Wadhera for his help on the
initial memory management implementation for the Trusted
Bootloader. Thank you also to Professor John Wawrzynek
for his encouragements to delve deeper into the the architec-
tural components of this work. Finally, I would like to thank
Professor Krste Asanovic for his mentorship, guidance, and
feedback throughout this year that have shaped this project.
This research was partially funded by ADEPT industrial spon-
sors and affiliates and Amazon Web Services.

References

[1] RISC-V ISA simulator. https://github.com/
riscv-software-src/riscv-isa-sim, 2021.

[2] Cache management operations for RISC-V. https:

//github.com/riscv/riscv-CMOs, 2022.

[3] RISC-V tests. https://github.com/

riscv-software-src/riscv-tests, 2022.

[4] Shield SOC security - SiFive. https://www.sifive.

com/technology/shield-soc-security, 2022.

[5] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
{Last-Level} caches. In 24th USENIX Security Sympo-

sium (USENIX Security 15), pages 897-912, 2015.

11

[6] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. Dawg: A defense
against cache timing attacks in speculative execution
processors. In 2018 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages
974-987. 1IEEE, 2018.

[7] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1-19.

IEEE, 2019.

[8] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanovi¢, and Dawn Xiaodong Song. Keystone: an
open framework for architecting trusted execution en-
vironments. Proceedings of the Fifteenth European

Conference on Computer Systems, 2020.

Mingyu Li, Yubin Xia, and Haibo Chen. Confidential
serverless made efficient with plug-in enclaves. In 2021
ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 306-318. IEEE,
2021.

[10] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In 27th
USENIX Security Symposium (USENIX Security 18),

pages 973-990, 2018.

[11] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Car-
los Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE international symposium on
high performance computer architecture (HPCA), pages

406-418. IEEE, 2016.

[12] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim
Brorsson. A survey of published attacks on Intel SGX.

ArXiv, abs/2006.13598, 2020.

[13] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-SGX: A practical library OS for unmodified
applications on SGX. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17), pages 645-658,

2017.

[14] Yuval Yarom and Katrina E. Falkner. Flush+reload: A
high resolution, low noise, 13 cache side-channel attack.

In USENIX Security Symposium, 2014.

[15] Younis A Younis, Kashif Kifayat, Qi Shi, and Bob
Askwith. A new prime and probe cache side-channel

attack for cloud computing. In 2015 IEEE International

https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv/riscv-CMOs
https://github.com/riscv/riscv-CMOs
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://www.sifive.com/technology/shield-soc-security
https://www.sifive.com/technology/shield-soc-security

Conference on Computer and Information Technology;
Ubiquitous Computing and Communications, Depend-
able, Autonomic and Secure Computing; Pervasive Intel-
ligence and Computing, pages 1718-1724. IEEE, 2015.

12

	Introduction
	Keystone Background
	RISC-V Privilege Modes
	RISC-V PMP entries
	Keystone Security Monitor
	Keystone Runtime
	Threat Model

	Enabling Dynamic Linking in Keystone
	Design
	Library Enclaves
	Trusted Loading by the Runtime Kernel
	Memory Modifications for Trusted Loading
	Putting it all together: Lifecycle of a Dynamically Linked Enclave

	Implementation
	Trusted Bootloader

	Security Analysis

	Mitigating Cache Side-Channels with Shared Libraries
	The Flush+Reload Side-Channel Attack
	The Attack
	Flush+Reload Mitigations
	Flush+Reload on Keystone

	Cache Tagging
	Cache Simulation
	Assumptions
	Implementation
	Experiment Setup
	Results

	Discussion

	Conclusion

