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Abstract

A System for Automated Security Knowledge Extraction

by

Edward Choi

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Dawn Song, Co-chair

Professor Peng Gao (Virginia Tech), Co-chair

Complex cyber attacks have highly impacted many high-profile businesses. To remain aware
of the fast-evolving threat landscape, open-source Cyber Threat Intelligence (OSCTI) has
received growing attention from the community. Commonly, knowledge about threats is
presented in a vast number of OSCTI reports. Despite the pressing need for high-quality
OSCTI, current OSCTI management systems have primarily focused on isolated, low-level
Indicators of Compromise (IOC). On the other hand, higher-level concepts (e.g., adversary
tactics, techniques, and procedures) and their relationships have been overlooked, which
contain crucial knowledge about threat behaviors that is critical to uncovering the complete
threat scenario. To bridge the gap, we propose ThreatExtractor, a system for au-
tomated security knowledge extraction. In particular, ThreatExtractor automatically
collects a large number of OSCTI reports from a variety of sources, uses a combination of
AI and NLP techniques to extract high-fidelity knowledge about threat behaviors, and uses
this knowledge in the form of entities and relations to construct a security knowledge graph.
ThreatExtractor also provides a GUI that supports various types of interactivity to
facilitate knowledge graph exploration.
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Chapter 1

Introduction

Complex cyber attacks have greatly impacted many high-profile businesses [11, 1, 3, 4, 8,
5]. As a way to gain visibility and insights into the fast-evolving threat landscape, open-
source cyber threat intelligence (OSCTI) has garnered increasing attention from the security
community. In particular, knowledge about threats is presented in a massive number of
OSCTI reports in various forms (e.g., threat reports, security news and articles [23, 21].
Despite the pressing need for high-quality OSCTI, existing OSCTI management systems
[26, 10, 13], however, have primarily focused on simple Indicators of Compromise (IOCs) [50]
such as malicious file/process names, IP addresses, dmoain names, and signature of artifacts.
Though effective in capturing isolated, low-level IOCs, these systems cannot capture higher-
level threat behaviors such as adversary tactics, techniques, and procedures [19], which are
aligned with the adversary’s goals and thus much harder to change. Thus, IOCs lack the
capability of uncovering the complete threat scenario and can only capture partial views of
threats. To this end, there is a need for extraction of high-fidelity threat intelligence in an
automated way.

However, currently there are several problems in extracting security knowledge from
unstructured OSCTI reports. First, OSCTI reports are written in natural language texts,
which means they are not suited for automated analysis. Second, the natural language text
written in OSCTI reports also often has complex logical structures and deep semantics which
may be hard to understand well enough for accurate threat extraction. Third, individual
OSCTI reports also often only cover partial information about threat behaviors [49, 56], and
so it is important to combine knowledge from multiple reports to get a complete view of
threat behaviors.

1.1 Goals & Challenges
In this work, we design automated techniques to both extract comprehensive threat knowl-
edge from a large number of unstructured OSCTI reports from a wide range of OSCTI
sources and integrate the knowledge into a unified knowledge base that is able to provide a
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complete view of threats.
Based on these goals, we identify four challenges for building such a system:

1. Other than IOCs, OSCTI reports also contain other types of knowledge entities and
relations that capture threat behaviors. Thus, the system must cover a wide range of
knowledge entity and relation types that can comprehensively model threats.

2. OSCTI reports come in diverse formats including reports that contain structured fields
such as lists and tables (e.g., threat encyclopedia reports [27]) and reports that consist
of unstructured natural language text (e.g., security blogs [63]). The system should be
able to handle diverse report formats.

3. Threat reports from an OSCTI source may be irrelevant to threats (e.g., reports that
advertise security products of the company which maintains the OSCTI source [50]).
The system should be able to filter out these irrelevant reports.

4. Accurate extraction of threat knowledge natural language text is nontrivial because
of massive nuances specific to the security context such as special characters (e.g.,
periods, underscores) in IOCs. These nuances limit the performance of existing nat-
ural language processing (NLP) modules (e.g., sentence segmentation, tokenization)
and make current information extraction tools [28, 9] ineffective. In addition, some
learning-based information extraction approaches require large annotated corpus for
model training, which is expensive to obtain manually. Thus, the steps involved with
programmatically obtaining annotations becomes another challenge.

1.2 Contributions
We propose ThreatExtractor, a system for automated open-source cyber security knowl-
edge extraction. As part the system, ThreatExtractor collects a large number of OSCTI
reports from various sources, uses a combination of AI and NLP based techniques to filter
out irrelevant reports and extract high-fidelity threat knowledge as entities and relations,
and uses the knowledge to construct a security knowledge graph based on a security knowl-
edge ontology. In particular, to address the previously mentioned challenges, we make the
following contributions:

1. Fast & Robust OSCTI Report Crawlers: We build and deploy a robust multi-threaded
crawler framework that manages 40 brawlers for collecting OSCTI reports from major
security websites including threat encyclopedias [27, 16], enterprise security blogs [63,
23, 14], influential personal security blogs [22, 17], security news [25, 24], etc.

2. Security Knowledge Ontology: The construction of the security knowledge graph fol-
lows a pre-defined security knowledge ontology to model cyber threats from multiple
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dimensions. Our ontology covers both low-level entities such as IOCs (e.g., name/-
path, IP, URL, domain) which provides details on threat behavior and high-level enti-
ties such as malware, vulnerabilities, threat actors, techniques, software, and security-
related tools to provide a high-level threat context. Entities can have various types
of relations (e.g., <ACTOR_A, use, MALWARE_A>, <MALWARE_A, drop, FILE_A>,
<ACTOR_A, reported_in, REPORT_A>). Entities can also have attributes in the
form of key-value pairs (e.g., type of a “MALWARE” entity). In comparison to other
cyber ontologies (e.g., STUCCO [43], STIX [12]), our ontology covers a larger set of
entities and relations (see Section 2.4).

3. Parsers & Checkers: For each OSCTI source, ThreatExtractor maintains a source-
dependent parser which parses the structured fields (e.g., title, author, tables, lists,
text fields) (see Section 2.2) to handle diverse formats of OSCTI reports (e.g., different
HTML layouts). ThreatExtractor also maintains a set of rule-based and learning-
based checkers to screen out OSCTI reports that are irrelevant to cyber threats.

4. Rule-Based and Deep Learning-Based Techniques for Security Knowledge Extraction:
After the OSCTI report screening process, to extract further knowledge from the parsed
unstructured texts, ThreatExtractor maintains a set of rule-based and AI-based
extractors to extract a variety of security-related entities and relations. To accurately
these entities and relations from natural language (NL) OSCTI texts, ThreatEx-
tractor employs a combination of rule-based and deep learning-based techniques in
its extractors. Specifically, to extract IOCs, ThreatExtractor has a rule-based
IOC extractor that leverages a set of regular expression rules. Then to extract other
types of entities, as they are hard to extract using fixed rules, ThreatExtractor
employs a deep learning-based entity extractor that leverages a Bidirectional LSTM-
CRF (BiLSTM-CRF) [46] model for neural named entity recognition. To annotate a
large training corpus for the deep learning model, we leverage data programming [59]
to programmatically synthesize annotations for targeted entities in natural language
text in OSCTI reports. To extract relations, ThreatExtractor uses a dependency
parsing-based relation extractor.
During the IOC extraction process, we handle the nuances within the IOCs through pre-
processing the texts by replacing IOCs with dummy words in natural language context
(e.g., word “FILE” for a file IOC token), and restoring them after the tokenization
procedure. This way we guarantee that the potential entities are complete tokens.

In addition to the automated OSCTI report collection and threat extraction techniques,
ThreatExtractor also constructs a security knowledge graph containing the threat knowl-
edge in the form of entities and relations. Then on top of the constructed security knowledge
graph, ThreatExtractor provides a web GUI that provides various types of interactivity
to facilitate cyber threat knowledge exploration and acquisition (see Section 2.6). The sys-
tem proposed in this thesis was published and presented at SIGMOD 2021 Demonstrations
Track [36].
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At the time of writing, ThreatExtractor has collected 149K+ OSCTI reports from
40+ major OSCTI sources including websites for threat encyclopedias [27, 16], security
articles and blogs [7, 23, 14, 22, 17], security news [25, 24], etc. (see Section 2.1). The
constructed security knowledge graph contains 347K+ entities and 1.73M+ relations.

1.3 Evaluation
We deployed ThreatExtractor on a physical testbed and evaluated its effectiveness. The
evaluation results show that:

1. Our OSCTI report checkers are able to effectively filter out non-threat-related reports
with an average 89.69% F1 and 84.27% accuracy.

2. Our threat knowledge entity extraction model based on BiLSTM-CRF is able to effec-
tively extract a variety of entities from unstructured OSCTI texts and can generalize
to an unseen OSCTI source with 99.95% accuracy and 99.94% F1.

3. Using ThreatExtractor’s web GUI, our case studies on the wannacry ransomware
and the cozyduke threat actor show that it is easy to search for and acquire threat
knowledge.

Different from existing threat knowledge extraction techniques [68, 42, 61, 37], Threa-
tExtractor targets automatic threat knowledge extraction from OSCTI reports by using a
combination of AI and NLP techniques. ThreatExtractor also represents the extracted
threat knowledge which is in the form of entities and relations in a security knowledge graph
and provides a convenient web GUI for cyber threat knowledge graph exploration and ac-
quisition.
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Chapter 2

System Design

In this chapter, we present the system design for ThreatExtractor. We first present the
OSCTI report collection process, .

2.1 OSCTI Reports Collection
We built a robust multi-threaded crawler framework that manages 40 crawlers for con-
tinuously collecting OSCTI reports from major security websites (each crawler collects
HTML files from one website), including: threat encyclopedias [27, 16], enterprise secu-
rity blogs [63, 23, 14], influential personal security blogs [22, 17], security news [25, 24], etc.
Table 2.1 shows the complete list of websites that ThreatExtractor currently covers.

As each website has a diverse format, the crawlers are capable of handling both static
and dynamic web pages:

• Static web pages : Crawlers for OSCTI sources that have static web pages extract href
links (using the Python BeautifulSoup4 library) that route to individual report URLs,
which their HTML contents are then downloaded.

• Dynamic web pages : Crawlers for OSCTI sources with dynamic web pages requires
user interaction in order to load more content and gather href links (e.g., pressing the
“View More” button [63]. Thus, these crawlers leverage the Python Selenium library
and the Chrome Webdriver to simulate a headless browser environment, which uses
query selectors to locate the button and execute simulated clicks onto it to load more
content.

Because the security websites’ HTML templates can change unexpectedly, we also peri-
odically monitor the crawlers and ensure they are most up to date.

Due to the sheer number of crawlers to manage and the multitude of OSCTI reports to
handle, the crawler framework has a robust multi-threaded task scheduler to schedule the
parallel execution for (1) running multiple crawlers, and (2) fetching multiple OSCTI reports
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Table 2.1: OSCTI Report Source Names with Number of Reports and URLs
Source Number of Reports URL

apt_notes 539 https://github.com/aptnotes/data
attcybersecurity 244 https://cybersecurity.att.com
ciscoumbrella 478 https://umbrella.cisco.com
cloudflare 1,791 https://blog.cloudflare.com
crowdstrike 942 https://www.crowdstrike.com
csoonline 1,258 https://www.csoonline.com/
darknet 2,107 https://www.darknet.org.uk
fireeye 209 https://www.fireeye.com
forcepoint 1,190 https://www.forcepoint.com
hotforsecurity 9,496 https://hotforsecurity.bitdefender.com
kasperskydaily 3,350 https://www.kaspersky.com
krebsonsecurity 2,129 https://krebsonsecurity.com
malwarebytes 3,382 https://blog.malwarebytes.com
mcafee 6,295 https://www.mcafee.com
nakedsecurity 14,653 https://nakedsecurity.sophos.com
nccgroup 520 https://research.nccgroup.com
paloalto 3,284 https://blog.paloaltonetworks.com
recordedfuture 1,537 https://www.recordedfuture.com
rsa 71 https://www.rsa.com
securelist 5,630 https://securelist.com
shneieronsecurity 8,110 https://www.schneier.com
sophos 1,822 https://news.sophos.com
spiderlabs 1,401 https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
symantecthreatintelligence 177 https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/
thehackernews 8,432 https://thehackernews.com
threatpost 5,427 https://threatpost.com/
trendmicro 2,393 https://blog.trendmicro.com
trendmicrosecurityintelligence 4,001 https://blog.trendmicro.com/trendlabs-security-intelligence
trustwave 571 https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/
unit42_paloalto 645 https://unit42.paloaltonetworks.com/
webroot 1,438 https://www.webroot.com
welivesecurity 5,780 https://www.welivesecurity.com
zscaler 770 https://www.zscaler.com
malwarebytes 163 https://blog.malwarebytes.com
symantec_threats 37,588 http://asb-sngweb.symantec.com
symantec_vulnerabilities 7,431 http://asb-sngweb.symantec.com
kaspersky_threat 1,430 https://threats.kaspersky.com/en
kaspersky_vulnerability 1,968 https://threats.kaspersky.com/en
trendmicro_malware 534 https://www.trendmicro.com
trendmicro_spam 396 https://www.trendmicro.com
fsecure 4,083 https://www.f-secure.com

for each individual crawler. The scheduler is easily customizable allowing the user to specify
the desired number of threads, and after the scheduler starts, each thread is assigned a task
to execute. After the current batch of tasks are finished, the crawler framework will remain
idle and schedule the execution of the crawlers again after a specified period of time (e.g.,
every 24 hours). The crawler framework is also resilient to failures (e.g., due to timeout or
connection refusal), and crawlers that suffer failures will be scheduled for reboot. In addition,
the framework also provides isolation because the underlying scheduler performs exception
handling within each thread, meaning a single crawler’s failure will not affect other crawlers.
The crawler framework is able to achieve a throughput of approximately 350+ reports per
minute on a single deployed host. At the time of writing, the crawler framework has collected
149, 015 reports in total so far.

https://github.com/aptnotes/data
https://cybersecurity.att.com
https://umbrella.cisco.com
https://blog.cloudflare.com
https://www.crowdstrike.com
https://www.csoonline.com/
https://www.darknet.org.uk
https://www.fireeye.com
https://www.forcepoint.com
https://hotforsecurity.bitdefender.com
https://www.kaspersky.com
https://krebsonsecurity.com
https://blog.malwarebytes.com
https://www.mcafee.com
https://nakedsecurity.sophos.com
https://research.nccgroup.com
https://blog.paloaltonetworks.com
https://www.recordedfuture.com
https://www.rsa.com
https://securelist.com
https://www.schneier.com
https://news.sophos.com
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/
https://thehackernews.com
https://threatpost.com/
https://blog.trendmicro.com
https://blog.trendmicro.com/trendlabs-security-intelligence
https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/
https://unit42.paloaltonetworks.com/
https://www.webroot.com
https://www.welivesecurity.com
https://www.zscaler.com
https://blog.malwarebytes.com
http://asb-sngweb.symantec.com
http://asb-sngweb.symantec.com
https://threats.kaspersky.com/en
https://threats.kaspersky.com/en
https://www.trendmicro.com
https://www.trendmicro.com
https://www.f-secure.com
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2.2 Parsers and Checkers

Parsers. After the crawlers collect the OSCTI reports, we take them and convert them into
intermediate report representations by grouping multi-page reports and adding metadata
like ids, sources, titles, files locations, and timestamps. An example is shown in Figure 2.1.

Figure 2.1: Example Intermediate Report Representation

We then have parsers that take advantage of prior knowledge of the OSCTI source struc-
ture to extract keys and values from report files. They are responsible for converting the
list of intermediate report representations into a list of intermediate security knowledge rep-
resentations (which we showed an example in Figure 2.2).
OSCTI Report Checkers. After the list of intermediate security knowledge representa-
tions is built, we run checkers on it which works as a filter by screening out reports that are
irrelevant to cyber threats (e.g., empty pages or ads) through conditional checks. As the
crawlers only download HTML report files from the gathered URLs regardless of their con-
tents, there could be reports that do not contribute valuable information to cyber threats
(e.g., empty pages, ads, product promotions, irrelevant news). Keeping these OSCTI re-
ports out of the processing pipeline saves on computational and storage resources for the
downstream extraction and storage tasks.

We introduce two types of checkers; namely a rule-based checker and a learning-based
checker:

1. The rule-based checker screens out empty or error HTML pages.
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Figure 2.2: Example Intermediate Security Knowledge Representation

2. The learning-based checker screens out ads and other irrelevant reports by performing
binary classification to predict whether a given report is relevant to cyber threats or
not. To train the classifier, we extract a set of useful features from a given report,
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including:

• Keyword Count & Density in the Report Body: We obtain the list of keywords
from MITRE ATT&CK [19] for examples from important threat-related categories
such as threat actor, malware, tool, and technique.

• Keyword Count & Density in the Report Title: We scan the same list of keywords
in the report title, as the title typically reflects the overall theme of the report.

• IOC Count & Density in the Report Body: The IOCs are extracted using regex
rules (see Table 2.2). We didn’t compute these metrics for the report title as the
title typically does not contain IOC details.

• Report Article Length: Based on our observations, a longer report is more likely
to contain threat contexts and threat behavior details (e.g., indicators).

• TF-IDF Values for Tokens: We prioritize the frequent, unique tokens in the
training report corpus by calculating the TF-IDF [58] value for each token in the
report.

Table 2.2: Representative IOC regex rules

IOC Type Regex

Windows Filepath \b[A−Z]:\\[A−Za−z0−9−_\.\\]+\b
Linux Filepath \b(/[^/ ]∗[^/.,() %%\n ]+)+/?\b
URL \b([a−z]{3,}\:\/\/[\S]{16,})\b
IP \b(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})

(:\d{1,5})?\b
Email \b([a−z][_a−z0−9−.]+@[a−z0−9−]+\.[a

−z]+)\b
MD5 \b([a−f0−9]{32}|[A−F0−9]{32})\b
SHA1 \b([a−f0−9]{40}|[A−F0−9]{40})\b
SHA256 \b([a−f0−9]{64}|[A−F0−9]{64})\b
CVE \b(CVE\−[0−9]{4}−[0−9]{4,6})\b
Registry \b((HKLM|HKCU)\\[\\A−Za−z0−9−_

]+)\b
Filename \b([A−Za−z0−9−_\.]+\.(EXE|exe|dll|

bat|sys|htm|html|js|jar|jpg|png|vb|scr|pif|
chm|zip|rar|cab|pdf|doc|docx|ppt|pptx|xls|
xlsx|xlsm|swf| gif | txt |ps1|so|apk))\b
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OSCTI reports collected from different sources have different structures, writing styles,
and focused topics. Thus, considering the distributional shift in the training data, a clas-
sifier might benefit more from data within the same source compared with other sources.
Our evaluation results in Section 3.2.1 validate this for a variety of machine learning mod-
els, including: Logistic Regression, Random Forest, Linear SVM, SVM with RBF Kernel,
XGBoost [32], and LightGBM [44].

2.3 Security Knowledge Extraction
The ThreatExtractor extraction process involves further refining the intermediate secu-
rity knowledge representations by extracting information (e.g., IOCs, malware names) using
entity recognition and relation extraction and putting them into the corresponding fields.

2.3.1 Security-related Entity Recognition

Table 2.3: Entity tags for NER in IOB2 format

Tags Description

B-BADACTOR Beginning of a BADACTOR entity
I-BADACTOR Part of BADACTOR entity
B-MALWARE Beginning of a MALWARE entity
I-MALWARE Part of MALWARE entity
B-TOOL Beginning of a TOOL entity
I-TOOL Part of TOOL entity
B-TECHNIQUE Beginning of a TECHNIQUE entity
I-TECHNIQUE Part of TECHNIQUE entity
B-MITIGATION Beginning of a MITIGATION entity
I-MITIGATION Part of MITIGATION entity
O Non-targeted entity

ThreatExtractor has a rule-based IOC extractor that utilizes a set of regular expres-
sion rules (shown in Table 2.2) to extract IOC entities. During the IOC extraction process,
we handle the nuances within the IOCs through pre-processing the texts by replacing IOCs
with dummy words in natural language context (e.g., word “FILE” for a file IOC token), and
restoring them after the tokenization procedure. This way we guarantee that the potential
entities are complete tokens.

Since other types of entities are hard to extract using fixed rules, ThreatExtractor
also uses a deep learning-based entity extractor that runs separately from the rule-based
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Figure 2.3: BiLSTM-CRF for security-related entity recognition

IOC extractor. Specifically, we construct a Bidirectional LSTM-CRF (BiLSTM-CRF) model
architecture [46] to perform neural named entity recognition (NER) over natural language
OSCTI texts. Compared to conventional NER approaches like HMM [67] and CRF [45],
deep learning-based approaches avoid the time-consuming feature engineering stage and can
better understand deep semantics of OSCTI texts and capture hidden patterns, leading to
more accurate entity recognition.

The BiLSTM-CRF model takes as input sentences, which are broken down into word
tokens, from OSCTI report texts, and outputs an entity tag for each word token. The entity
tags are based on the IOB2 format, which assigns tags using three types of prefixes: (i) B-
prefix, used for a token in the beginning of an entity chunk, (ii) I- prefix, used for a token
inside a chunk, and (iii) O- prefix, used for a token outside a chunk. The set of entity tags
that we use for the BiLSTM-CRF model are shown in Table 2.3.

Figure 2.3 shows our BiLSTM-CRF model architecture, which consists of the following
layers:

1. Embedding Layer : Sentences come in as initial inputs to the model. Then, each sen-
tence is broken down into tokens (words) via tokenization and each token is then
transformed into an embedding vector using one-hot encoding.



CHAPTER 2. SYSTEM DESIGN 12

2. BiLSTM Layer : The embeddings are then forwarded as input to the bidirectional
LSTM (BiLSTM) layer. A BiLSTM is a sequence processing model that consists of
two Long-Short Term Memory (LSTM) networks: one taking the input in the forward
direction, and the other in the backward direction. An LSTM [41] is a variant of
recurrent neural networks that combats the gradient vanishing and exploding problems,
and is better at capturing long-term dependencies of tokens in the sequence. A single
LSTM network can only remember and process information from the past context.
However, for tasks like NER which require understanding the context of a word (token)
through past and future contexts, an additional LSTM network is needed. In BiLSTM,
the first LSTM processes a sequence of tokens in the forward direction and induces
a representation of tokens in the past context, while the second LSTM processes the
sequence in the backward direction and induces a representation of tokens in the future
context. The BiLSTM network is able to understand the information provided to it
in a bidirectional manner, which improves the contextual relationship of tokens. In
essence, the BiLSTM layer extracts semantic features from the sequence and provides
the features to the CRF model for the NER task.

3. CRF Layer : The output vectors from the BiLSTM layer are forwarded as input to
a linear layer, which maps the features extracted by the BiLSTM from feature space
into tag space. After the mapping, the output is sent to the Conditional Random
Field (CRF) model which decodes the input sequence and outputs the tag predictions.
Essentially, the CRF model is responsible for finding the most optimal sequence path
for our tags, which does so by maximizing the probability of seeing the given tag at
every state. Thus, we use the Viterbi algorithm [35] to decode the input sequence and
calculate the tag predictions.

As part of the training process for the BiLSTM-CRF model, we need to label the OSCTI
text corpus first. Specifically, we use the IOB2 format [60] to assign entity tags to every
token in the corpus.

A major challenge for the training process is the need to annotate a large training cor-
pora. Thus, to address this challenge, we programmatically synthesis annotations using data
programming [59]. In particular, we create labeling functions that are based on our curated
lists of entity names. For example, the list of threat actors, malware, techniques, and tools
are constructed from MITRE ATT&CK [19].

When training the BiLSTM-CRF model, we tuned a set of hyperparameters, including:
epochs, batch size, maximum report length, hidden units, embedding dimension, LSTM
layers, and learning rate.

2.3.2 Security-related Relation Extraction

To extract relations between entities recognized by our BiLSTM-CRF model, since it is rel-
atively difficult to synthesize annotations for relations, we take an unsupervised approach.
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In particular, we leverage the IOC relation extraction approach proposed in [37], which uses
dependency parsing to analyze the grammatical structure of a sentence and constructs a
dependency tree and then uses a set of dependency grammar rules to locate the subject-
verb-object relations between IOCs to finally extract the relation verb. According to [37],
this approach has achieved high extraction accuracy on a large OSCTI corpus. We further
extend [37] to support the extraction of relations between IOCs and other entities recog-
nized by our BiLSTM-CRF model (e.g., <MALWARE_A, drop, FILE_A>, <ACTOR_A, use,
MALWARE_A>, <ACTOR_A).

2.4 Security Knowledge Ontology
We use the high-fidelity security knowledge represented by entities and relations found
through entity recognition and relation extraction to build a security knowledge graph con-
taining the entity-relation triplets. However, before we construct the security knowledge
graph, we design a security knowledge ontology that is able to model the wide range of high-
level and low-level threat entities and relations. Figure 2.4 shows our security knowledge
ontology.

CTI CTI	Vendor

Malware
Report

Vulnerability
Report

Attack
Report

Malware

Malware
Family

Malware
Platform

Vulnerability Attack

Tool

Technique

Threat	Actor

Software

IOC

Figure 2.4: Security knowledge ontology

Based on our observations of various OSCTI data sources, we classify OSCTI reports
into three types: malware reports, vulnerability reports, and attack reports. These reports
are created by specific CTI vendors and contain information including:

1. malware (e.g., “BlackEnergy” Trojan [15])

2. vulnerabilities (e.g., CVEs)
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3. threat actors (e.g., “CozyDuke” group [6])

4. techniques (e.g., “credential stuffing” [19])

5. vulnerable software products (e.g., “Microsoft Word”)

6. security-related tools (e.g., “Mimikatz”)

7. IOCs (e.g., file name, file path, IP , URL, email domain, registry, hashes)

We create entities out of these concepts as well. Entities have relationships between them
(e.g., <ACTOR_A, use, MALWARE_A> describes a "use" relationship between an "ACTOR"
entity and a "MALWARE" entity). Entities also have attributes in the form of key-value
pairs. By using such a security knowledge ontology, we are able to capture different types of
security knowledge in the system.

Compared to other cyber ontologies (e.g., STIX [12], STUCCO [43]), our ontology covers
a larger set of entities and relations.

2.5 Security Knowledge Graph Construction
After the completion of the security knowledge extraction process, ThreatExtractor con-
structs the security knowledge graph from the entity-relation triplets. ThreatExtractor
stores the security knowledge graph in the database backend through database connectors
to persist the threat knowledge. The connector merges the intermediate security knowledge
representations, which is refined with the extracted entities and relations, into the corre-
sponding storage backend by refactoring them to match our security knowledge ontology.
Currently, ThreatExtractor uses a Neo4j [20] database for its storage, with nodes being
entities and edges being relations. Each node is associated with a category (e.g., malware or
threat actor), a unique name (e.g., specific malware or threat actor name) and a collection
of attributes.

2.6 Frontend Web GUI
To facilitate security knowledge graph exploration and threat knowledge acquisition, we built
a web GUI using React and Elasticsearch. Figure 2.5 shows an example subgraph of security
knowledge graph in the GUI. Currently, the GUI interacts with the Neo4j database through
a Neo4j JS driver, and provides various interactivity, which we describe next.

We designed features to simplify the user view. The user can zoom in/out and pan
the canvas. Node names and edge types are displayed by default for convenient threat
identification. Nodes are also colored according to their labels (e.g., IOC, malware, threat
actor). When a node is hovered over, its detailed information is displayed (e.g., URL of a
report node).
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Figure 2.5: The web GUI of ThreatExtractor

We also designed features to facilitate threat search and security knowledge graph explo-
ration. First, the GUI provides multilingual query support so that the user can search in-
formation using keywords (through Elasticsearch) or Cypher queries (through Neo4j Cypher
engine), which enables the user to easily identify targeted threats in the large graph. Second,
the user can drag nodes around on the canvas. The GUI actively responds to node movements
to prevent overlap through an automatic graph layout using the Barnes-Hut algorithm [30],
which calculates the nodes’ approximated repulsive force based on their distribution. The
dragged nodes will lock in place but are still draggable if selected. This feature helps the
user define custom graph layouts, while still obeying the constraints of the graph layout
algorithm described above, making the graph visualizable. Third, the GUI supports inter-
graph navigation. This means that when a node is double-clicked, if its neighboring nodes
have not appeared in the view yet, these neighboring nodes will automatically spawn. On
the contrary, once the user is done investigating a node, if its neighboring nodes or any
downstream nodes are shown, double clicking on the node again will hide all its neighbor-
ing nodes and downstream nodes, which also helps reduce clutter in the view. This node
expansion/collapse feature is essential for convenient graph exploration.

We also designed features that provide flexibility to the user. The user can configure the
number of nodes displayed and the maximum number of neighboring nodes displayed for a
node. The user can view the previous graphs displayed by clicking on the back button. The
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user can also fetch a random subgraph for exploration.
We note that the Neo4j database also offers Neo4j Browser, a graphical tool which allows

users to interact with their graph databases. However, our UI differs from Neo4j Browser in
the following ways:

1. Unlike Neo4j Browser that can only performed structured Cypher query search, our
GUI also offers fuzzy keyword search powered by Elasticsearch, which is easier to use
and facilitate quick exploration

2. Although our current implementation relies on the Neo4j graph database as the un-
derlying data storage system, our UI is adaptable enough such that switching to a
different data storage connector is still capable of providing the same UI functionality.
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Chapter 3

Evaluation

We built ThreatExtractor based on the following tools: Python for the system, Beau-
tifulSoup and Selenium for OSCTI reports collection, scikit-learn and Ray Tune (hyperpa-
rameter optimization) for the OSCTI report checkers, and PyTorch for the BiLSTM-CRF
model for threat entity recognition.

In the evaluations, we answer the following research questions:

• RQ1: What is the performance of the article checker in predicting whether a given
article is related to the threat context or not? Will the article checker perform better if
it is trained on all OSCTI data sources combined or if it is trained on each individual
OSCTI data source?

• RQ2: What is the performance of our security-related entity recognition model? How
can data programming help? How is the performance of the entity recognition model
when generalizing to unseen OSCTI data sources?

• RQ3: What is the statistical information for the number of collected OSCTI reports
and the constructed security knowledge graph? How many new OSCTI reports are
collected on a daily basis? How effective is the web GUI in threat investigation?

3.1 Evaluation Setup
Our experiments were carried out on a single virtual machine instance running Ubuntu 20.04
with an AMD EPYC 7282 CPU @ 2.80GHz and an Nvidia GRID T4-16Q GPU with 16GB
RAM.
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3.2 Evaluation Results

3.2.1 RQ1: Article Checker Performance

To construct the dataset, we randomly selected three OSCTI sources and a random subset of
articles from each source. This led to a dataset of 755 articles from three sources: Securelist,
Symantec Threat Intelligence, and Webroot. The dataset was then manually labeled. The
binary labels indicate whether the article is threat-related or not. There are 517 threat-
related articles and 238 non-threat related articles. We ran two experiments on this dataset
to investigate RQ1: (1) For each source, we train a source-specific classifier and evaluate its
performance on its own source; (2) We combine all sources to train a universal classifier and
evaluate performance on each source individually.

Table 3.1: Source-specific checker results

Symantec Threat Intelligence Securelist Webroot
Models Accuracy F1 FPR FNR Accuracy F1 FPR FNR Accuracy F1 FPR FNR

Logistic Regression 94.29% 96.00% 18.18% 0.00% 80.26% 87.18% 56.52% 3.77% 80.00% 87.10% 61.54% 0.00%
Random Forest 94.29% 96.00% 18.18% 0.00% 81.58% 88.33% 60.87% 0.00% 77.50% 85.71% 69.23% 0.00%
Linear SVM 94.29% 96.00% 18.18% 0.00% 80.26% 87.18% 56.52% 3.77% 80.00% 87.10% 61.54% 0.00%
Kernel SVM 88.57% 92.31% 36.36% 0.00% 82.89% 88.89% 52.17% 1.89% 80.00% 87.10% 61.54% 0.00%
LightGBM 94.29% 96.00% 18.18% 0.00% 82.89% 88.70% 47.83% 3.77% 77.50% 85.25% 61.54% 3.70%
XGBoost 94.29% 96.00% 18.18% 0.00% 78.95% 85.71% 47.83% 9.43% 75.00% 83.87% 69.23% 3.70%
Average 93.33% 95.38% 21.21% 0.00% 81.14% 87.67% 53.62% 3.77% 78.33% 86.02% 64.10% 1.23%

Source-Specific Checkers. We trained binary classifiers individually for each OSCTI
source. For each of the three OSCTI sources, we created a train/dev/test split of 70%, 10%,
and 20%. The models were then trained using the best hyperparameters found using the dev
set and finally evaluated on the test set. The results are shown in Table 3.1. We define false
positives as non-threat-related articles (e.g., ads, production promotions, irrelevant news)
which were classified as threat-related. We define false negatives as threat-related articles
which were classified as non-threat-related. We observe that the average F1 scores are above
86% and the average false negative rates (FNRs) are below 3.77%. The false positive rates
(FPRs) are high, especially when trained on the Securelist and Webroot datasets, but we
deemed this as acceptable as long as the FNR remains low. The goal is to extract as much
information as possible without overlooking threat-related articles.
Universal Article Checker. We also trained a universal classifier which combined the three
OSCTI sources. We then performed a train and dev split of 87.5% and 12.5%, respectively.
We note that to preserve the ground truth across experiments, the test sets were the same
for both the single source classifiers and universal classifier experiments. The results for this
experiment are shown in Table 3.2.

Comparing the F1 scores for both experiments, we found that the performance of uni-
versal checkers doesn’t benefit from more training data because similar to the domain gen-
eralization problem in natural language processing, the distributional shift of articles from
different sources prevents the ML models from being able to learn the semantics across ar-
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Table 3.2: Universal checker results
Symantec Threat Intelligence Securelist Webroot

Models Accuracy F1 FPR FNR Accuracy F1 FPR FNR Accuracy F1 FPR FNR

Logistic Regression 94.29% 95.83% 9.09% 4.17% 84.21% 89.09% 34.78% 7.55% 82.50% 88.52% 53.85% 0.00%
Random Forest 94.29% 96.00% 18.18% 0.00% 76.32% 85.48% 78.26% 0.00% 70.00% 81.82% 92.31% 0.00%
Linear SVM 97.14% 97.96% 9.09% 0.00% 85.53% 90.43% 43.48% 1.89% 72.50% 83.08% 84.62% 0.00%
Kernel SVM 97.14% 97.96% 9.09% 0.00% 72.37% 83.20% 86.96% 1.89% 75.00% 84.37% 76.92% 0.00%
LightGBM 91.43% 93.88% 18.18% 4.17% 82.89% 88.29% 39.13% 7.55% 70.00% 81.25% 84.62% 3.70%
XGBoost 91.43% 93.88% 18.18% 4.17% 78.95% 85.45% 43.48% 11.32% 72.50% 81.97% 69.23% 7.41%
Average 94.29% 95.92% 13.64% 2.08% 80.04% 86.99% 54.35% 5.03% 73.75% 83.50% 76.92% 1.85%

ticles from different sources. Thus, based on our empirical experiment results, we believe
that in practice with larger datasets, training classifiers to check different sources separately
leads to better overall accuracy.

3.2.2 RQ2: Entity Recognition Performance

Table 3.3: BiLSTM-CRF OSCTI dataset statistics

OSCTI Source Number of Reports

APTnotes 538
attcybersecurity 229
ciscoumbrella 406
cloudflare 1,545
crowdstrike 641
csoonline 1,126
fireeye 93
forcepoint 955
hotforsecurity 4,342
kasperskydaily 2,961
krebsonsecurity 1,931

We gathered a dataset corpus of 14,767 reports from APTnotes and 10 other OSCTI
report sources. The source names and report counts are shown in Table 3.3. Then, to train
the BiLSTM-CRF model, we labeled the OSCTI corpus using data programming. With this
dataset construction, we created an a train/test split of 80% and 20% and performed two
experiments: (1) We trained the BiLSTM-CRF model and evaluated it on a test set from the
same sources. (2) We then evaluated the trained model on a new OSCTI source, Spiderlabs,
which was not part of the original dataset. These experiments evaluate the generalizability
of our BiLSTM-CRF neural network architecture. The hyperparameters and their values we
chose for the experiments are: 45 epochs, batch size of 64, maximum report length of 2,000,
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Table 3.4: Entity recognition on test set from same sources

Precision Recall F1 Support

B-BADACTOR 99% 79% 87% 1,140
B-MALWARE 99% 95% 97% 5,294
B-MITIGATION 97% 99% 98% 467
B-TECHNIQUE 100% 100% 100% 22,357
B-TOOL 100% 100% 100% 18,699
I-BADACTOR 93% 66% 78% 346
I-MALWARE 85% 96% 90% 211
I-MITIGATION 97% 99% 98% 651
I-TECHNIQUE 96% 98% 97% 1,713
I-TOOL 100% 100% 100% 12
O 100% 100% 100% 4,600,467
Accuracy 99.98% Weighted F1 99.98%

Table 3.5: Entity recognition on Spiderlabs OSCTI source

Precision Recall F1 Support

B-BADACTOR 100% 100% 100% 38
B-MALWARE 100% 87% 93% 1,459
B-MITIGATION 98% 96% 97% 179
B-TECHNIQUE 99% 99% 99% 7,155
B-TOOL 100% 100% 100% 2,599
I-BADACTOR 67% 100% 80% 2
I-MALWARE 100% 88% 94% 182
I-MITIGATION 94% 85% 89% 52
I-TECHNIQUE 93% 89% 91% 577
I-TOOL 0% 0% 0% 1
O 100% 100% 100% 891,349
Accuracy 99.95% Weighted F1 99.94%

256 hidden units, embedding dimension of 512, 2 LSTM layers, the Adam optimizer, and a
learning rate of 1e−2.
Performance on Test Data from the Same Sources. We evaluated the model perfor-
mance on the test set from the same sources. As shown in Table 3.4, we are achieving high
weighted F1 score (99.98%) and accuracy (99.98%), which is practical in real-world use.
Performance on Test Data From Spiderlabs OSCTI Source. We evaluate the perfor-
mance of the model trained in the previous experiment on a new OSCTI source, Spiderlabs,
which contains 1,349 articles. The goal of this experiment is to evaluate the generalizability
of the model. The results for the experiment are shown in Table 3.5. While we expect a
performance drop in most NLP domain generalization tasks, here we see that the overall
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accuracy is still 99.95% while the weighted F1 score is 99.94%.
In order to explain the high F1 score, we compared the data used for the two experiments

and observe a high similarity between text in the training set and the text from the unseen
source. Specifically, 96% of the tokens that have a targeted entity type exist in both the
training dataset and the new Spiderlab OSCTI source. Because the model performs well on
seen entities, it explains the high generalizability across different sources. This suggests that
different from the article checkers where it is more practical to train separate classifiers for
different OSCTI sources, training a universal entity recognizer achieves better results.

We also observe that the entity I-TOOL, which only has one instance, achieved a 0%
F1 score. This is because the model has a hard time identifying the entity type when a
token is used in isolation compared to when it is combined with other tokens. For example,
on its own the powershell token has a correct entity type of B-TECHNIQUE but when used
with other tokens such as powershell empire, the correct entity types should be <B-TOOL
I-TOOL>. Uncoincidentally, this exact token phrase consists of the only instance of I-TOOL
in the Spiderlabs dataset, but the model is unable to predict the correct entity tags on this
instance and predicts the token pair as <B-TECHNIQUE B-TOOL> instead.

3.2.3 Measurement Study & Case Study

Figure 3.1: OSCTI report collection update frequency

Measurement Study. We perform a measurement study to provide statistical information
on both the collected OSCTI reports and the final constructed knowledge graph: (1) We
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Table 3.6: ThreatExtractor Security Knowledge Graph Entity Names and Counts

Entity Name Count

AttackReport 87,153
Attack 81,074
IOC 58,429
Malware 23,359
BlogTag 23,305
MalwareReport 22,993
MalwareFamily 21,328
Vulnerability 9,136
VulnerabilityReport 9,136
BlogCategory 1,663
Technique 1,449
ThreatActor 248
MalwarePlatform 147
Tool 72
Mitigation 70
CTIVendor 36
CTI 3
Total 339,601

Table 3.7: ThreatExtractor Security Knowledge Graph Relation Types and Counts

Relation Type Count

COOCCUR 620,886
REPORTED_IN 546,318
HAS_TAG 155,300
CREATED_BY 119,282
IS_A 119,282
HAS_CATEGORY 77,466
ACTION 26,230
BELONGS_TO_FAMILY 22,894
ON_PLATFORM 21,044
Total 1,708,702

deployed the system for 1 month (starting 03/21/2022 until 04/21/2022) and recorded the
total number of OSCTI reports collected daily. We started with a total number of 148,663
reports on day 1 and ended with 149,015 reports in the system on the final day. Table 2.1
shows the final number of reports for each OSCTI source along with their names and URLs.
We also present the update frequency of the collected reports in Figure 3.1. We observe
that there are more reports collected on weekdays (i.e., days 1-5, 8-12, etc) compared to
the weekend (i.e., days 6-7, 13-14, etc). (2) At the time of writing this paper, the final
constructed knowledge graph contains 347K+ entities and 1.73M+ relations. We provide a
count breakdown of the entity names and relation types in Table 3.6 and Table 3.7.
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Security Case Study. To demonstrate the effectiveness of the GUI, we walk through 2
threat investigation case studies with one using Cypher query search and the other using
keyword search:

• Cypher query search on "wannacry" : We investigate the wannacry ransomware to ob-
serve its behavior and impact. After submitting the Cypher search query MATCH(n)
WHERE n.name = “wannacry” RETURN n, which takes 2.93 seconds to execute,
we see a Malware node named wannacry. Double clicking on this node will reveal
direct neighbors which enables convenient inter-graph navigation and facilitates sim-
pler knowledge graph exploration. From the unveiled neighboring nodes, we see that
there are many OSCTI reports that discuss this ransomware. Users are able to drag
these nodes around and pan/zoom in and out of the canvas to facilitate user interac-
tion. Users are also able to hover over nodes which will display key information. For
example, in the report nodes, information such as the name, title, node type, and URL
are shown. If we select one of the report nodes, which has the title report_buckeye-
windows-zero-day-exploit, and double click, we will see relevant nodes that contain
information related to the Wannacry ransomware, including threat actors (e.g., gothic
panda, apt3, and buckeye) and techniques used during the process (e.g., Python and
Powershell). Besides this report node, there are also other report nodes, including
one named report_petya-ransomware-wiper. If we double click on this node and re-
veal its neighbors, we will see additional information regarding wannacry including
related malware such as petya and IOCs (e.g., rundll32.exe). From this case study, we
see that ThreatExtractor’s GUI provides convenient interactive features to help
users explore the security knowledge graph and acquire threat knowledge.

• Keyword search for "cozyduke" : We use keyword search supported by Elasticsearch
to explore the threat actor cozyduke. After submitting the keyword search query
cozyduke, which takes 60 milliseconds to execute, we see the cozyduke node which
is linked to 1 OSCTI report node named report_forkmeiamfamous-seaduke-duke. Sim-
ilar to the case study above, the report node reveals information such as related threat
actors (e.g., cozy bear, the dukes) and techniques used by cozyduke and these
threat actors including file deletion and Powershell. From this case study, we
see that ThreatExtractor’s GUI provides convenient keyword-based threat search
and knowledge graph exploration.
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Chapter 4

Related Work

In this chapter, we survey five categories of related work.

4.1 OSCTI Analysis and Management
Besides existing standards and platforms for OSCTI gathering and management [26, 10,
13, 2, 12, 18], research progress has developed to better analyze OSCTI reports, includ-
ing extracting IOCs [50], extracting threat action terms from semi-structured Symantec re-
ports [42], understanding vulnerability reproducibility [56], and measuring threat intelligence
quality [49, 33]. Research has also proposed to leverage IOC information extracted from in-
dividual OSCTI reports for cyber threat hunting [37]. ThreatExtractor distinguishes
from all these works in the sense that it targets the automated extraction of security-related
knowledge from OSCTI reports using a combination of AI and NLP techniques. Then it uses
the extracted knowledge in the form of entities and relations to build a security knowledge
graph.

4.2 CTI Ontologies
STIX[12] is an open standard CTI format for exchanging threat intelligence by providing a
flexible and expressive representation language, but lacks support for inference and cyber
investigation [31, 52]. There are some ontologies [55, 64, 40] with inference functions, but
they only focus on sub-domains of threat intelligence, such as IDS and malware behavior.
The STUCCO ontology [43] is designed to integrate both structured and unstructured data
sources but lacks support for high-level threat knowledge such as techniques. Unlike the
ontologies mentioned above, the ontology of ThreatExtractor is a hierarchical struc-
ture that includes both high-level and low-level threat intelligence, such as IOCs, malware,
threat actors, and techniques. Such comprehensive threat intelligence enables better threat
knowledge inference. For example, two attacks using the same tools are likely to use simi-
lar techniques and have similar attack traces. MITRE ATT&CK[19] is a manually curated
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knowledge base by security experts for adversary behaviors based on real-world observa-
tions, but it does not contain IOC relations and also does not focus on automated knowledge
extraction from unstructured reports as done in ThreatExtractor.

4.3 Threat Knowledge Extraction
There have been several works proposed for threat knowledge extraction from OSCTI reports.
iACE[50] extracts IOCs from security articles using a graph mining technique. ChainSmith
[68] is an IOC extraction system which classifies the IOCs into different attack campaigns
(e.g., baiting, exploitation, installation and C&C) using neural networks. TTPDrill [42]
extracts threat actions from Symantec reports and maps them to pre-defined attack patterns.
EXTRACTOR [61], ThreatRaptor [37], and HINTI [66] use various NLP techniques to
extract IOC entities and relations. These works primarily focus on IOCS or IOC relations,
while ThreatExtractor covers a wider range of entities (e.g., threat actors, techniques,
tools) and relations. In addition, these works only extract knowledge from a single OSCTI
report while ThreatExtractor automatically extracts knowledge from a large volume
of OSCTI reports and represents the knowledge in the form of entities and relations in a
security knowledge graph.

4.4 Knowledge Graphs
A knowledge graph is a large-scale semantic network composed of entities and their rela-
tionships. It plays an increasingly important role in intelligent recommendation, hidden
information mining, etc. There are a number of knowledge graphs [53, 29, 65, 62, 51, 54]
that are designed for storing and representing general knowledge, such as people, locations,
and organizations. Different from them, ThreatExtractor targets automated extraction
of high-level cyber threat knowledge with more threat behavior details gathered from OSCTI
reports and builds a security knowledge graph for the security domain. In this way, Threa-
tExtractor provides a chance to uncover valuable threat knowledge, such as the goals
of attackers and attack stages in multi-step threat scenarios. Thus, by leveraging Threa-
tExtractor, a variety of downstream security applications (e.g., threat hunting, attack
investigation, intrusion detection) can be further empowered.
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Chapter 5

Empowering Downstream Security
Applications

ThreatExtractor is capable of empowering many existing downstream security applica-
tions while supporting new applications that were not previously possible. Since ThreatEx-
tractor automatically extracts structured knowledge from unstructured OSCTI reports,
systems and platforms that previously benefit from the structured OSCTI can also ben-
efit from the knowledge provided by ThreatExtractor. For example, the knowledge
extracted by ThreatExtractor can be converted into open formats like STIX [12], ex-
changed in platforms like AlienVault OTX [13], and integrated in existing intrusion detection
systems [57, 47, 48] that take IOC and STIX feeds as input.

Other works like [37] have proposed to use the knowledge extracted from individual OS-
CTI reports to guide threat hunting. Thus, with the automated extraction of threat knowl-
edge by ThreatExtractor combined with the constructed security knowledge graph, a
new way of threat hunting can be enabled. For example, we can reduce the efforts of manual
query construction in threat hunting, by synthesizing or suggesting queries based on the
security knowledge graph and partial user input. The knowledge extracted from OSCTI
reports can also be used to empower other types of defenses like attack detection [38] and
attack investigation [39, 34]
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Chapter 6

Conclusion

We have presented ThreatExtractor, a system for automated cyber threat knowledge
extraction. ThreatExtractor collects a large number of OSCTI reports from various
sources, uses a combination of AI and NLP based techniques to extract comprehensive threat
knowledge from the reports, constructs a security knowledge graph, and persists the knowl-
edge in the database. ThreatExtractor also provides a web GUI that facilitates security
knowledge graph exploration and cyber threat knowledge acquisition. ThreatExtractor
has the potential to empower a variety of downstream security applications.
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