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To address prosthetic applications and the issues that cause users to abandon them, 

particularly to lessen the burden of prosthetic control on users, this work aims to 

implement the concept of “shared control” for prosthetic reflex task response. The 

proposed algorithm, Hyperdimensional Computing (HDC), has previously been 

demonstrated to recall reactive behavior [1] and also improves sensor fusion performance 

by inherently binding features extracted from arbitrary data streams. Towards exploring 

HDC sensor fusion, both early and late sensor fusion inference ASICs are synthesized in 

the TSMC 28HPM process and various optimizations to the algorithm are proposed and 

evaluated that have significant implications on multi-modal fusion power and area 

requirements. Additionally, vectorization of the many-channel HDC architecture is 

explored through implementation on the Rocketchip RISC-V processor [2] by optimizing 

an existing C implementation of HDC inference [3]. A strategic combination of algorithm 

tweaks, code optimizations, and vector acceleration using the Hwacha vector processor 

[4] yielded multiple orders of magnitude (∼200×) speedups for HDC classification 

compared to [3]. Towards the goal of developing a platform to explore HDC recall of 

reactive behavior for prosthetic applications, force sensors have been selected and 

characterized, and a PCB has been fabricated to integrate the force sensors into the 

existing EMG classification adapter board [5]. The proposed algorithm was demonstrated 

to be well-suited for sensor fusion tasks leaving exciting avenues for future work in 

integrating the sensor fusion properties with the recall of reactive behavior platform. 



Acknowledgements

I would like to thank the following people who contributed to this work: Harrison Liew

with whom the HDC sensor fusion ASIC syntheses and CPU optimization/vectorization

was jointly done, Professor Krste Asanovic who provided invaluable feedback on the bit-

serial word-parallel technique used in the CPU optimized spatial encoder and Professor

Sophia Shao who helped shape the direction of the sensor fusion point exploration work.

Professor Jan Rabaey has my deepest appreciation for providing me with guidance

for the past 4 years. My research career in engineering began thanks to him giving an

opportunity to an undergraduate student who had only interest and little experience. I

would not be where I am today without his kindness and support. Thank you to Professor

Rikky Muller who has continuously been beyond generous with her time and mentorship.

Thank you to Ali Moin and Andy Zhou who have been a constant resource and provided

advice throughout my time at UC Berkeley.

I want to express my sincere gratitude towards Rozhan Rabbani and Rebekah Zhao; I

am privileged to have been able to walk on this journey and make precious memories over

the past few years with two incredibly strong friends by my side.

Thank you to KNJ, KSJ, MYG, JHS, PJM, KTH and JJK for inspiring me everyday to

reach higher, to see the ups and downs in a new light, and to become a person who stands

confidently on her own.

Lastly my family, to whom I am forever indebted. Words can’t describe how much I

love and owe you for always supporting me, encouraging me and believing in me more than

anyone else, including myself. Since leaving home two years ago I have learned so much

from so many people, but even with the distance I always learn the most from you three

who give me the tools and love to live my life with pride and without fear.

i



Chapter 1

Introduction

Existing prosthetic systems face difficulty in accurately and quickly accomplishing re-

flex tasks which would require little to no effort for a human arm. To address prosthetic

applications and the issues that cause users to abandon them, this work contributes towards

the goal of lessening the burden of prosthetic control on users by exploring the concept of

“shared control.” This involves combining user input and a trained controller to achieve an

objective. Through the integration of information from force or motion sensors in addition

to the physiological signals (e.g. EMG) used to decode intention, low-level reflex controls

are transferred from the user to the prosthesis.

Previous work in this area [1] has attempted to implement shared control through the

use of an multilayer perceptron (MLP) for myoelectric decoding and a previously devel-

oped robotic controller to maximize area of contact between the prosthetic and an object

to maintain grip. In [1] however, the controller assumes full control once contact with an

object is made until all contact points are met, removing the user’s ability to manipulate the

prosthetic during that time. Additionally, this approach is applicable only to paradigms

in which contact should be maximized such as grasping and can’t be expanded to other

reflex actions. [2] developed a method for context-based prosthetic grasping where a vari-

ety of sensors are used to to determine the state of the grasping action (free, preshaped,

grasping, holding, and moving). Different rules are applied to the myoelectric controller

output depending on the current state such as modulating wrist rotation and hand opening

thresholds to reduce the impact of accidental rotations or openings during grasping. This

system uses additional sensors to decrease the effect of potential errors in intent decod-

ing, but does not actually assist in task performance; the burden of completing the action
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through prosthetic control remains completely on the user. However, it does demonstrate

an interesting concept to build into a shared control scheme.

A unique reflex control is seen in [3] which primarily focused on texture classification and

implements a control loop to detect “pain”. At recognition of a sharp object, the robotic

hand automatically releases grip on an object. This is an example of another reflex reaction

that benefits from shared control. Additional work [4] uses a neuromimetic tactile sensing

system to detect the onset and offset of object contact. Using that information, the level of

user control through EMG is modulated to reduce the effect of misclassifications on object

grasping. Changes in sensor information trigger object slip control implemented through

directly increasing prosthetic grip in a quantized manner. Though [4] does technically

share control between the prosthetic and the user, the technique is still only applicable to

the problem of object grasping.

To achieve a shared control system that equally integrates user intent with a controller

to truly share the performance of a variety of reflex tasks, not just limited to object grip or

release, this work proposes to use Hyperdimensional computing (HDC), an area of active

research that is used very effectively for classifying physiological signals. It is based on the

idea that human brains do not perform inference tasks using scalar arithmetic, but rather

manipulate large patterns of neural activity. These patterns of information are encoded in

binary HVs, with dimensions ranging in the 1,000’s to ensure that any two random HVs are

completely orthogonal to each other. There are three operations that are performed on these

HVs: bundling, binding, and permutation. Bundling is a component-wise add operation

across input vectors, binding is a component-wise XOR operation, and permutation is a

1-bit cyclical shift. The simplicity of these operations suggests and previous work [5] [6] has

shown that HDC is very computationally efficient.

HDC has been preliminarily demonstrated in previous work [7] to be able to encode

reactive behavior for later recall, specifically for a navigation task. Through integration

of force sensors into a previously developed HDC EMG classification system [8], this work

proposes to use this technique to accomplish prosthetic shared control. HDC encodes in-

formation in the same form no matter the complexity of the sensor inputs; this lends itself

well to the sensor fusion aspect. Using this property, the bundling operation to create a

vector similar to the inputs and the binding operation to create a vector different from

the inputs, but from which each input can be recoverable, the force sensors, EMG signals

and actuator (prosthetic) signals are fused to create a set of vectors over the course of the

training period that are bundled together and stored in the “program memory” as a single
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Figure 1.1. HDC recall of reactive behavior technique applied to prosthetic reflex using
EMG and force sensors

HV. Then, using EMG signals and force sensors, the resulting actuator vectors can be later

decoded/recalled from the program memory by unbinding them from the sensor-actuator

pairs. An associative memory is used to decode and return a cleaned up actuator signal to

the prosthetic to react to sensor events. This technique is shown in Figure 1.1; the method

has the potential to become a very powerful tool for recalling various reflex tasks, while

still maintaining the user’s control over the system through integration of EMG sensors and

force sensors.

Towards the sensor fusion aspect of shared control, neural networks (NNs) have been

the subject of intense research, but there has not been significant results in optimizing

training/inference with multi-sensor inputs. NNs are often comprised of many layers (con-

volutional, fully-connected, etc.), so the natural question arises: at which point should

sensor data be fused? Prior work [9] evaluated the performance of a object detector using

a camera + light detection and ranging (Lidar) as input. The underlying feature encoder

is based on VGG16 (5-layer convolutional NN) with classification generated using an MLP.

Variations of this network performing the camera/Lidar sensor fusion early as in Figure

1.2, late as in Figure 1.3, or in the middle are evaluated, showing that the later the sensor

data is fused, the better the object detection rate, but at the expense of multiple parallel

convolutional layers. Essentially, this implies that it is difficult to parameterize a NN suffi-

ciently to extract all the features from early-fused sensor inputs to achieve equal accuracy
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Figure 1.2. Early fusion architecture implemented in [9]

Figure 1.3. Late fusion architecture implemented in [9]

as compared to a NN where the already extracted features are being fused. This represents

a trade-off between complexity & accuracy - early fusion degrades accuracy because of un-

intelligent feature extraction, unless compensated by larger nets while late fusion requires

parallel networks up to the fusion point.

In contrast, HDC inherently binds features extracted from arbitrary data streams with-

out exceeding the capacity of HVs, suggesting early fusion will have less effect on accuracy

using this algorithm, breaking the complexity-accuracy tradeoff. In addition, using a spatial

encoder to map channels and feature values into HVs, a temporal encoder to map changes

over N samples, and an associative memory (AM) to store classes and conduct inference,

HDC offers a reduction of computation and memory requirements, ability to use the same

hardware for training & inference, rapid training time, and robustness to noise/variations

in input data making it a viable choice for embedded sensor fusion applications. In this

work, the accuracy and hardware implications of the sensor fusion point for HDC are ex-

plored through synthesizing an ASIC for both early and late fusion architectures (details in

Chapter 3.2 & Chapter 4.3), with additional work on optimizations specific to multi-modal

applications.

In terms of hardware acceleration, the fundamental operations underneath the many lay-

ers in a NN (convolutional, fully-connected, etc.) are multiply-and-accumulates on tensors

in floating-point for training, potentially low-precision integer for inference. Accelerating

NN training has benefited greatly from existing SIMD architectures such as GPUs, while

inference has been accelerated further using specialized hardware implementing the gen-
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Figure 1.4. HDC sensor late fusion architecture datapath [10]

eral matrix multiplies (GEMM) in systolic arrays. In comparison, HDC for both training

and inference can be accelerated on almost any existing computing architecture because of

the simplicity of its binary bit-wise operations which are present in one form or another

on all hardware platforms, and is further resilient to slight changes to the algorithm for

platform-specific optimizations as long as the orthogonality of HVs is maintained. Because

of the basic binary operations conducted on the very-large hypervectors, it was hypothe-

sized that a vector accelerator would be able to hugely impact the performance in terms of

cycle count of the HDC algorithm, specifically in cases with very large numbers of channels

as in sensor fusion applications. Therefore, in addition to the early/late fusion hardware

trade-offs demonstrated through ASIC synthesis, the vectorizability of HDC for sensor fu-

sion was explored deeply in this work on the Rocketchip RISC-V CPU with the Hwacha

vector accelerator.

The algorithm in [10] is used as the basis for optimizations and evaluation of HDC

sensor fusion. In this algorithm, features from three different modalities are fused together

into one HV that can be used for learning and inference of a classification outcome. The

method of fusion occurs only before the associative memory which results in multiple par-

allel spatial/temporal encoders for each sensor modality. Using this algorithm, the paper

demonstrated better accuracy than SVM, XGB, and Gaussian NB for all amounts of train-

ing data. The HDC algorithm does not show significant degradation in accuracy as the

amount of training data decreases even down to 20% while other algorithms’ performances

slowly degrade. Figure 1.4 shows the late fusion architecture used in [10] for multi-modal

sensor fusion which contains a spatial encoder and temporal encoder for each modality.

These are bundled together to form a query HV used for inference in the AM.
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To evaluate the impact of the sensor fusion point on the accuracy of HDC classification,

Chapter 2 details the original algorithm used in [10] and proposes a modification to bundle

HVs across the various modalities before the temporal encoder instead of after it. Chapter

3 describes prior work in mapping other HDC algorithms to various hardware platforms

providing evidence of HDC computational efficiency and a baseline for comparison for the

two target platforms in this work: ASIC and Rocketchip RISC-V CPU with the Hwacha

vector accelerator.

Chapter 4.1 describes the modifications to [10] for both early and late fusion for the

multi-modality dataset, and the algorithm design and parameter selection process for opti-

mal accuracy. Targeting an ASIC, Chapter 4.2 elaborates on the subsequent translation to

RTL. Chapter 4.3 details the synthesis efforts in the TSMC 28HPM process. Chapter 4.4

analyzes the accuracy of the algorithm and its area and power requirements, and Chapter

4.5 identifies and evaluates specific areas for further optimizations for multi-modal sensor

fusion applications.

Targeting a vector accelerated Rocketchip RISC-V CPU, Chapter 5.1 describes the

translation of the designed early fusion HDC architecture to C code, optimizations to target

the open-source Rocketchip RISC-V CPU, and translation to vector assembly to utilize the

Hwacha vector accelerator. Chapter 5.2 details the simulations that were run on both the

Rocket-only and the combined Rocket + Hwacha systems and profiling methods. Chapter

5.3 analyzes the speedups obtained with each optimization implemented, and Chapter 5.4

identifies areas for further optimizations.

The last part of this work returns to the HDC recall of reactive behavior technique.

Chapter 6 elaborates on the steps taken towards demonstrating proof-of-concept for this

technique. Finally, it is concluded in Chapter 7 that HDC algorithms are well-suited for

early sensor fusion as well as acceleration on vector machines with exciting avenues for fur-

ther research efforts in exploring optimizations specifically targeted towards multi-modal

classification tasks based on the results found in this work and in integrating the demon-

strated HDC sensor fusion techniques with the developed HDC recall of reactive behavior

platform.
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Chapter 2

Multi-Modal Dataset & Algorithm

2.1 AMIGOS Dataset

Previous work [10] on HDC for multi-modal physiological signals used the AMIGOS

dataset developed by [11]. In this study, GSR, ECG and EEG signals were measured for 33

subjects as they watched 16 videos. Each video for each subject was classified to have either

led to a positive or negative emotion (valence), and the strength of the emotion was classified

as either strong or weak (arousal). From the 3 modalities, [12] carefully selected 214 features

relevant to an accurate classification. GSR has 32 features, ECG has 77 features, and EEG

has 105 features. The 1,467 seconds of data for all 33 subjects were appended and a moving

average of 15 seconds over 30 seconds was applied resulting in a total of 3,036 samples. This

was further downsampled by a factor of 8 for more rapid processing and usage of the HDC

classification algorithm.

2.2 HDC-MER Architecture

The original HDC multi-modal sensor fusion architecture in [10] includes three main

blocks. The spatial encoder projects feature channel information into the hyperdimensional

space through the use of a randomly generated binary channel HV for each of the 214

features. For this implementation, a HV dimension of 10,000 is used for the full datapath.

The channel HVs are stored in an item memory (iM). In order to encode feature values,

an additional feature projection vector {-1,0,1} is randomly generated for each channel and
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Figure 2.1. HDC sensor fusion architecture [10] (a) previous work’s implementation (b)
proposed modification for early fusion

stored in the feature projection memory. This vector is then multiplied by the feature value

and binarized.

The binding operation is utilized to combine the feature projection HV with the channel

HV, generating a spatially encoded HV for that channel. To develop a complete HV for each

modality, the bundling operation combines the many spatially encoded HVs. To complete

the encoding process and include information about temporal changes, the permutation

operation is used to keep track of previous samples. HVs coming from the spatial encoder

are permuted and then bound with the next HV N times in the temporal encoder. This

results in an output that observes changes over time.

In order to combine the temporally encoded vectors from different modalities, a final

bundling operation is used. During the training process, many such encoded HV are gen-

erated, bundled to represent a class and then stored into the final block, the associative

memory. During inference, the encoded HV is compared against each trained HV using

Hamming distance. For binary vectors, this involves an XOR and then popcount. The

comparison with least distance is the inferred label. For this dataset, there are two classi-

fications to be made, one for strength of emotion and one for polarity of emotion, resulting

in two separate AMs.

2.3 Early/Late Fusion

The HDC-MER architecture implements “late fusion” in that the fusing of the three

physiological modalities occurs only after the temporal encoder. This results in three parallel

encoding datapaths. Because HDC binds information streams through encoding in large,

orthogonal vectors with a very large capacity, it was hypothesized that fusing at an earlier
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point would not result in any significant classification accuracy degradation. Therefore, in

this work, an “early fusion” scheme is proposed in which the fusion point occurs after the

spatial encoder as opposed to after the temporal encoder as shown in Figure 2.1. This

eliminates the need for two temporal encoders, thereby reducing the necessary blocks down

to three spatial encoders, a temporal encoder and an AM.
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Chapter 3

State of the Art Hardware

Implementations

Much of the algorithm development in HDC research has been implemented in MAT-

LAB, which is great for prototyping but inefficiently encodes every ”bit” in the HVs as

distinct floating-point numbers. To date, there have been some efforts to map HDC to

CPUs, GPUs, FPGAs, and custom hardware. These previous hardware implementations

and comparisons have demonstrated the benefits of HDC for other applications, providing

a baseline for comparison of this work.

3.1 Voice-HD

In [13], HDC was implemented and evaluated for efficient speech recognition. The HDC

algorithm was benchmarked and compared against a DNN with 3 hidden layers on CPU

cores using Intel Core i7 processor with 16 GB memory (4-core, 2.8GHz) for training and

testing. HDC was shown to recognize voices with similar accuracy as DNNs but with 11.9×
higher energy efficiency and 5.3× faster testing time. This provides evidence of the hardware

efficiency of HDC as compared to other ML algorithms and also introduces motivation for

exploration of HDC hardware accelerators to test the performance limits and bottlenecks.
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Figure 3.1. ASIC Energy per prediction for various classification tasks from [6]

Figure 3.2. ASIC QOR results and block breakdown (right: area, left: power) from [6]

3.2 Generic, programmable and scalable HD architecture

A generic, programmable, and scalable HD architecture on CPU, eGPU, and a synthe-

sized ASIC design in a 28nm HK/MG process are presented in [6]. The results are shown in

Figure 3.1 & Figure 3.2 for a 2048-dimension HV HDC ASIC processor. The processor was

scalable up to 256 channels, had an AM with 8-cycle latency to reduce the timing critical

path, and was synthesized in TSMC 28HPM with the iM compiled into ROM. The results

from [6] show that the ASIC was dominated by the item memory for area and dominated

by both the item memory and the associative memory for power. This accelerator doesn’t

provide the architecture for multiple modalities, thus leaving room for exploration and op-

timization of HDC ASICs for sensor fusion, specifically regarding early and late fusion, but

it does provides a baseline for the work done in this project.
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Figure 3.3. PULP-HD performance and memory footprint vs. input channels [5]

3.3 PULP-HD

Efforts to accelerate a generic HDC algorithm using two generations of the parallel ultra-

low power (PULP) platform [14] (an embedded SoC that exploits near-threshold operation

and multi-core processing to accelerate many tasks including signal processing applications)

are presented in [5]. Compared to a single ARM Cortex M4, the algorithm on the PULPv3

platform achieved 3.7× speedup using 4 cores and on the Wolf platform which employs 8

cores and special bit manipulation instructions [15]) achieved a total 18.4× speedup.

The major optimizations the authors applied in the process of mapping from MATLAB

were the packing of HVs across many 32-bit unsigned integers, multi-core processing, and

data partitioning between L1$ and L2$. The work also analyzes the impact on the memory

footprint and load cycles for various different HDC parameters, such as the HV dimension

D, number of channels, and temporal encoder size N . An interesting analysis is shown in

Fig. 3.3, where the algorithm’s footprint scales super-linearly with the number of input

channels. Since the algorithm chosen for the multi-modal sensor fusion application in this

work has a 214 input channels, this is a prime area for optimization.

3.4 Optimization Techniques

Additional relevant work [16] proposes hardware techniques to optimize HDC in a open-

source VHDL library. The goal was to co-locate learning and classification tasks on a small

portion of Xilinx UltraScale FPGAs via tricks such as rematerializing HVs on the fly to save

storage, counter-less binarized back-to-back bundling, and single-cycle associative memories.

The optimizations save 2.39× in area and 2,337× in throughput. The Pareto optimal HD
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architecture to learn and classify five hand gestures using four electromyography sensors is

mapped on only 18,340 configurable logic blocks (CLBs).
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Chapter 4

HDC Sensor Fusion ASICs

4.1 Algorithm

The HDC algorithm was first designed in MATLAB, building upon the original HDC-

MER architecture. The “early fusion” scheme was implemented to determine accuracy

performance as compared to the original late fusion scheme. The resulting overall mean

classification accuracy is shown in Figure 4.1. These results are very encouraging as they

demonstrate that, not only does early fusion perform as well as late fusion, it actually

performs better than late fusion for larger values of N in the temporal encoder (observing

changes over a larger number of samples). This is hypothesized to be a result of the temporal

encoder’s effect on each modality. Fusing after the temporal encoder results in selection of

N that may not be optimal for each modality, just best overall performance. Fusing before

the temporal encoder allows each modality to be encoded temporally together which could

Figure 4.1. Late and early fusion mean accuracy vs. temporal Ngrams
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Figure 4.2. Change in late fusion mean accuracy as hypervector dimension decreases com-
pared to the known best alternative (XGB) vs. temporal Ngrams

lessen the impact of temporal Ngrams on specific modalities, improving the overall accuracy

across all N values.

Based on these results, N = 3 was selected as the optimal for mean accuracy. For

this dataset that includes signals of various relevant frequencies (GSR the slowest at [0

- 2.4] Hz, ECG at [0 - 6] Hz and EEG the fastest at [2 - 47] Hz), N = 3 may be the

optimal point due to the tradeoff between observing larger periods for the slower signals

and smaller periods for the faster signals. Specifically in this case, since EEG has the

largest number of features (105 EEG features compared to 77 for ECG and 32 for GSR),

perhaps the algorithm performs better when observing smaller time periods to track faster

changes from the faster signals like EEG which can help to better represent the classes.

Future work could include a ”parameter-less” temporal encoder that does not require this

parameter selection beforehand, making it more generalizeable to different datasets.

In conclusion, as suspected, early fusion for HDC does perform just as well as late fusion,

breaking the trade-off between early fusion and accuracy that traditional ML methods face.

4.2 ASIC Implementation

4.2.1 Algorithm Optimization

In order to optimize for hardware, a few preliminary changes were made to decrease

the number of necessary operations and memory. The first and most significant was the

dimension of the HVs. The original work was done using D = 10, 000 for which random HV
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Figure 4.3. Mean accuracy using the same iM per modality, D = 2,000 and multiplexed
feature projection vectors for early and late fusion compared to known best alternative
(XGB) vs. temporal Ngrams

pseudo-orthogonality is sufficiently high for the purposes of the AMIGOS dataset. As the

dimension decreases, the pseudo-orthogonality also decreases leading to greater uninten-

tional clustering hence impacting accuracy. This is demonstrated in Figure 4.2 which shows

the accuracy degradation that occurs as D decreases. The baseline in the figure represents

the performance of the known best alternative classification algorithm, extreme gradient

boosting (XGB). The smallest dimension that still performs better than the baseline was

D = 2, 000 at N = 3.

The next optimization that was made was using the same iM for each modality which

led to no performance degradation, likely due to the fact that the feature projection vectors

for each channel were still different resulting in there still being 214 different encoded vectors

for each feature. Another preliminary optimization made was using a multiplexer for the

feature projection vectors. In the original algorithm, the feature projection vector {-1, 0,

1} for each of the 214 channels is multiplied by the feature value and then binarized by

reducing the positive values in the vector to 1s, and the zeros and negative values to 0s. This

process can be simplified to selecting between a pre-generated and pre-multiplied negative

or positive feature projection vector depending on the feature value’s sign. The optimization

resulted in the elimination of multipliers which would otherwise have been very costly. The

result of these changes is shown in Figure 4.3 to still perform better than the known best

alternative classification method for N = 3.
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Figure 4.4. Verilog HDC for sensor fusion built on previous architecture for EMG

Figure 4.5. Late Fusion Structure

4.2.2 RTL: Verilog

The HDC multi-modal sensor fusion algorithm that was designed was then written in

Verilog for the purpose of synthesizing an ASIC. Previous Verilog code has been written for

64-channel HDC EMG gesture classification [8] based on [16] which demonstrates optimiza-

tion of the basic HDC algorithm blocks for FPGA implementation and includes models for

pipelining and parallelism for the spatial encoder, the temporal encoder, and the associative

memory that provide a tradeoff between latency and energy/prediction.

The sensor fusion architecture was built on top of a ready/valid handshake protocol

Figure 4.6. Early fusion structure
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between the different blocks in the datapath as shown in Figure 4.4. In order to modify the

RTL for this application, the feature encoder was removed and, since this project focuses

on inference, the AM was pre-trained, feature values were pre-processed, and all training

mode logic was removed. In addition, the temporal encoder was modified for the selected

N = 3. Then, to include the sensor fusion aspect, parallel paths for early and late fusion of

multiple data modalities were implemented resulting in the structures shown in Figure 4.5

and Figure 2.1.

4.2.3 RTL: Chisel

The Verilog RTL as written only has the logic to process the HVs, but does not store

the HVs needed to implement the item and feature projection HV memories. To obtain

accurate power and area numbers, real memories were required, so a wrapper module was

written in the Chisel hardware description language with the Verilog RTL blackboxed.

In Chisel, abstract sequential memory constructs can be described very easily to be later

mapped down to technology SRAMs. This wrapper module is written as a memory-mapped

peripheral block to the open-source Rocketchip RISC-V core and can eventually be expanded

to generate an SoC with an HDC accelerator attached.

4.3 Synthesis

The Chisel wrapper and Verilog are elaborated in the Chipyard SoC generator [17],

and the memory mapping and synthesis flows were rapidly developed using the Hammer

framework included within. At first, the Intel 22FFL technology was selected due to a

mature Hammer flow through place-and-route; however, it was quickly discovered that the

required memory sizes were not present in this technology. Specifically, the item and feature

projection HV memories need to be of size channels deep and D wide.

Unfortunately, the minimum depth of Intel 22FFL’s SRAMs was 512, meaning many

rows would be wasted. Therefore, the TSMC 28HPM was selected for synthesis instead,

which has the requisite SRAM ranges for this use case. The metrics of interest for compar-

ison are power and area. Post-synthesis simulations were not yet run on the design, so the

power numbers are not workload-accurate, future work could include FPGA synthesis for

prior testing. Since the focus is on the difference between early and late fusion, the absolute

number is less important for the analysis than the difference and breakdowns by block.
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4.4 ASIC Results

4.4.1 Accuracy

Initial partial synthesis results demonstrated a clearly overwhelming contribution to the

overall area and power by the SRAMs. To address this before completing a full synthesis,

further optimization was explored on the algorithm side as to how best to decrease the

necessary memory. Previous optimization involved using the same iMs for each modality,

another obvious choice was to use the same iMs and projMs for both classifications be-

ing made (strength of emotion - arousal, and polarity of emotion - valence). Since this

would still result in random vectors for each channel, in theory this would have no affect

on the performance. Pushing further, using even the same feature projection vectors for

each modality was explored. This would result in both the positive and negative feature

projection vector memory being reduced by 109 HVs out of the original 214 channels with

the limiting factor being the 105 channels in EEG, the largest modality.

Mean accuracy Early Fusion Late Fusion

(1) Shared modality iM 78.17% 79.10%

(2) A&V shared iM & projM 79.77% 78.70%

(3) Shared modality iM & projM 78.18% 79.24%

(4) Best known alt. 74.25% 74.25%

Table 4.1. Accuracy performance of HDC early and late fusion for: (1) a shared iM across
each modality, (2) in addition using the same iM and projMs for both valence and arousal
classification, (3) in addition using the same projMs across each modality, (4) the best
known alternative classification method (XGB).

Both of these changes were implemented in MATLAB for D = 2, 000 in addition to

all previous optimizations. Since using the same feature projection vectors (projMs) led to

inconsequential changes in mean accuracy (early fusion accuracy decreased by 1.6% while

late fusion increased by 0.5%), HDC was still consistently around 4% better than the next

best alternative as shown in Table 4.1.

In theory, the re-used feature projection vectors might lead to some correlation between

specific channels in each modality, but the extent of that for high-dimensional vectors was

not enough to result in any significant loss in performance on this specific dataset. This

suggests that either the randomness was sufficient enough that resulting accuracy changes

are due to chance, or that this dataset is resistant to correlation between modalities. In
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terms of a tradeoff, the benefits of the 50.93% memory reduction far outweighed the slight

early fusion accuracy degradation that still maintains HDC’s top performance on AMIGOS.

The final architecture for which synthesis was completed included all previous optimiza-

tions: D = 2, 000, multiplexed feature projection vectors, shared iM and feature projection

vectors across each modality, and the same iM and feature projection vectors used for both

strength of emotion and polarity of emotion classifications.

4.4.2 Power & Area

The results from synthesis on the RTL implementing both early and late fusion are

shown in Table 4.2. At a 3ns clock period, the early fusion version has 6.2% lower power

and 4.3% lower area than the early fusion version. Digging deeper into the reports, it was

found that despite sharing the memories between the modalities, the memories are still a

very sizable portion of the power and area requirements. The breakdown of the area and

power utilization for each hierarchical block in both versions are shown in Tables 4.3 and

4.4, respectively. It can easily be calculated that without sharing the memories, the area

requirement for memories alone would balloon to 72% for the early fusion version.

Metric Late Fusion Early Fusion Difference

Instances 398253 381294 -4.3%

Total Area (mm2) 0.932 0.893 -4.3%

Total est. power (mW) 334.5 313.6 -6.2%

Table 4.2. Early vs. Late Fusion Synthesis Results

Block Early Fusion Late Fusion

Spatial encoder 48.9% 46.4%

Temporal encoder 2.0% 5.8%

Associative mem 1.2% 1.5%

Item & Proj. mems 47% 45.1%

Table 4.3. Area Breakdown

Block Early Fusion Late Fusion

Spatial encoder 42.7% 39.6%

Temporal encoder 3.1% 8.0%

Associative mem 2.3% 3.5%

Item & Proj. mems 49.9% 47.0%

Table 4.4. Power Breakdown
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An interesting observation is that for HDC classification tasks, the item and feature pro-

jection HV memories need to be identical between training and inference. Furthermore, they

are mostly collections of orthogonal HVs, and not dependent on the classification task, as

long as there are enough HVs to cover the number of channels for each modality. Therefore,

these memories could be implemented using technology non-volatile ROMs. Unfortunately,

the Chipyard infrastructure does not allow compiling down to technology ROMs like it can

to SRAMs, so Table 4.5 describes the differences between ROMs and SRAMs of equivalent

size (the ones this work’s algorithm require) for the TSMC 28HPM technology.

It is clear that using ROMs provides significant reductions in area and power at the

expense of higher leakage power and longer clock cycles. These are amplified as the size of

the memory increases, corresponding to larger numbers of channels per modality. Notably,

since HDC classifiers are often used for slow biological signals, the leakage power may be

of more concern than timing closure. In another technology, the ROM leakage power and

cycle time may perform better; there is room for further exploration on technology selection

based on its ROM performance, especially for HDC sensor fusion applications in which the

memory dominates the power and area of the ASICs.

Mem. Size Area Dyn. Power Leak. Power Cycle Time

32x125 -31% -18% +131% +133%

128x125 -39% -20% +170% +133%

Table 4.5. ROM vs. SRAM comparison

Further analysis of the reasons for why the difference between early and late fusion

is so small shows that this stems from the fact that performing temporal binding is not

an expensive operation: all that is necessary is a couple of registers to store HVs and 3-

input XOR gates for each bit in the resulting HV. Consequently, each temporal encoder is

only about 8400 instances, which is a small fraction of the total. The associative memory

block is similarly small, with only 1 set of XOR gates and logic to return the popcount

for one HV per class. In this work’s implementation, the associative memory is not stored

in SRAMs because of the relatively small number of classes we compare against. The

Hamming distance calculation is a design space worth exploring for tasks with much larger

numbers of classes, so that classification latency and power/area can be traded off with

each other. Finally, the spatial encoder dominates the remaining area and power. This

is expected because its size scales with the number of channels within each modality, and

within each ones there are muxes, XOR gates, and counters used to perform the bundling

and binding operations needed for spatial encoding. Spatial encoding is already being
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performed sequentially across all the modalities of a channel, so one way to reduce its

footprint further would be to have a single spatial encoder over all modalities, adding more

latency.

4.5 ASIC Discussion

Based on the synthesis results, there is potential for much more hardware optimization.

The first problem to tackle is reducing the size of the item and feature projection HV

memories. As alluded to in Chapter 4.4, the memories are essentially just a collection of

random HVs. Since the only requirement to maintain orthogonality is that each channel

across all modalities needs to use different HVs, one could devise a method where a common

collection of HVs is used but the rows of that collection is randomly chosen before being

sent to each modality’s spatial encoder item & feature projection HV inputs. Since each

channel within a modality is being calculated sequentially, access to a different random row

of the common memory for every subsequent channel is all that would be needed. This

was validated in Matlab using a common set of 105 HVs, with the feature projection HVs

accessed using the randperm(105,1) function and common item memories for all modalities.

The results in Table 4.6 show that the algorithm, even with this scheme, continues to

perform better than the best known alternative classification method.

Mean accuracy Early Fusion Late Fusion

(1) Synthesized Architecture 78.18% 79.24%

(2) iM & projM rand. of 105 78.97% 76.32%

(3) Best known alt. 74.25% 74.25%

Table 4.6. Accuracy performance of HDC early and late fusion for (1) the synthesized
architecture, (2) memory reduction through selecting iM and feature projection vectors
randomly out of 105, (3) the best known alternative classification method (XGB).

Since this selection is random, different iterations of this optimization lead to variations

in accuracy up to 4%. An additional area for exploration could include running a similar

analysis for different HV dimensions, specifically ones larger than 2,000 for which the accu-

racy variation may decrease due to increased orthogonality. Hardware implementation of

the above in order to feed 3 spatial encoders simultaneously would require that the set of

105 HVs be broken down into 4 banks of memory, each of which has 2 ports. This is because

over 3 modalities, generatation of 6 distinct feature projection HVs and 1 common item

HV is needed. There would need to be one pseudorandom number generator in the system
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with a fixed seed that must be common to training and inference, and functions that will

generate distinct memory bank and row addresses for for all 7 desired HVs. The output

HVs from these banks will be multiplexed and routed to their appropriate destination based

on which bank it was accessed from. This logic overhead would be very minimal in contrast

to a further 3x saving in memory area compared to this work’s implementation, resulting

in a memory area contribution of only 25%.

There may even be a possibility to compress this even further, as there only needs to be

105 distinct combinations of HVs for feature projection vectors and item memories across all

channels. Given that
(
14
3

)
/
(
3
2

)
= 121.3, this could potentially mean we would only need 14(!)

HVs if there was a method to generate all the distinct combinations. More interesting is

the potential of extending this optimization to applications with larger numbers of sensors.

The effect of this optimization on other datasets would help explore different types of

classifications that may or may not be as resilient to replication across modalities. To

what extent can this technique still maintain sufficient performance? Could the number of

modalities be artificially increased in order to take advantage of this discovery? If the iM &

feature projection HVs are able to be shared across modalities, increase in modalities would

decrease the channel count of the largest modality and increase the re-use of the encoding

HVs.

The usage of ROMs instead of SRAMs would further improve the memory area by

around 30-40% and the memory power by around 20% based on the comparison shown in

Table 4.5, though with 30% increase in leakage power for a 32×125 ROM size and 33% in-

crease in cycle times, there may be a point at which this no longer becomes beneficial. This

is especially true if only ∼14 HVs are used, depending on the ratios between dynamic power

and leakage power for both SRAM and ROM of that memory size. Additionally, given the

potential order of magnitude compression of iM size, efforts may be better spent slimming

down the logic in the spatial encoders, specifically the bundling operation that performs

bitwise addition. It is not clear what can be done about the D number of log2(channels)-

bit counters. More efficient popcounts could be used, but only if multiple channels were

processed simultaneously, which has even larger area penalty. Finally, the training state

machine and feature extractors need to be added to the RTL implementation to also ex-

plore the training process. Since training uses the same underlying datapath, the above

observations still apply, but it remains to be seen what the impact of the feature extractors

would be. Furthermore, feature extraction blocks are different between different types of

sensors - another direction for future research.
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Chapter 5

Vectorized HDC Sensor Fusion

5.1 Implementation

5.1.1 Algorithm optimization

Another area of interest that is explored in this work is the vectorizability of the HDC

algorithm. The basic binary operations used in HDC applied to very-large vectors suggest

that vectorization could provide significant speedups. For very-large number of channels

such as in the sensor fusion case, optimization of the spatial encoder is of particular interest

since it dominates the overall operation count. Targeting the open-source Rocketchip RISC-

V CPU, preliminary optimizations of the early fusion sensor fusion algorithm architecture

were made. This, based on the success of this method for ASIC memory storage, included

using the same iM for each modality. The optimization of using a multiplexer for the feature

projection vectors was also preserved. However, a dimension of D = 10, 000 was selected

to fully explore the limiting blocks at full capacity instead of reducing down. The result of

the multiplexed feature projection is shown in Figure 5.1 to still perform better than the

best alternative classification method for N = 3 and D = 10, 000.

5.1.2 Software: C

The HDC multi-modal sensor fusion algorithm was then mapped from MATLAB to

the existing C code from [5]. First, the code was changed to remove the optimizations for

the PULP platform and to target the RV64 ISA by using 64-bit instead of 32-bit unsigned
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Figure 5.1. Mean accuracy using D = 10,000 and multiplexed feature projection vectors for
early and late fusion compared to the best known alternative (XGB) vs. temporal Ngrams

Figure 5.2. Visualization of 214 channel features encoded into HVs to bundle in spatial
encoder

integers, which provides a theoretical 2× speedup. The bit-manipulation extensions to

the RISC-V ISA [15] were not retained because the Rocket core does not yet support this

draft specification, and no multi-core optimizations were implemented because the target

platform was Hwacha instead of a multi-core Rocket. Next, the architecture was modified to

accommodate the multi-modality dataset, which triples the number of spatial encoders—a

large penalty since it is the most computationally-intensive block. Finally, much effort was

put in to optimize the code in order to be able to vectorize it efficiently later, as described

below. Some of these optimizations that actually changed the algorithm were re-validated

in MATLAB to ensure that they maintained accuracy by not affecting the orthogonality of

HVs.
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Listing 5.1. PULP Naive Mode

// componentwise major i ty : e x t r a c t the va lue o f the i t h b i t o f

// each row in to ”major i ty ”

// then compute the popcount w/ numOfSetBits ( u i n t 6 4 t i )

// f o r bundled query HV

u i n t 6 4 t major i ty = 0 ;

for ( int z = 63 ; z >= 0 ; z−−){

for ( int j = 0 ; j < channe l s + 1 ; j++){

major i ty = major i ty | ( ( ( chHV [ j ] [ i ] & (1<<z ) ) >> z ) << j ) ;

}

i f ( numOfSetBits ( major i ty ) > channe l s /2) {

query [ i ] = query [ i ] | (1 << z ) ;

}

major i ty =0;

}

Optimization 1: Spatial Encoder

The first major optimization was made to the spatial encoder block, which has by far the

most instructions executed given the large number of channels that need to be processed.

The most computationally-expensive operation here is finding the mode across all channel

HVs, which is visualized in Fig. 5.2 for 214 channels of dimension D = 10, 000. To count

the number of black squares in each column, a word-parallel majority count (popcount)

must be performed. The PULP-HD implementation is naive, looping through every single

32-bit word, extracting each bit into a new unsigned integer and then executing a popcount

on that, as shown in Listing 5.1. This is highly inefficient due to the 3 nested loops and

excess memory accesses to the large chHV (channel HV) variable, but was sufficient for their

implementation due to a small number of channels (4).

An intermediate optimization for sufficiently large number of channels is to break the

HVs up into a set of bit matrices (i.e. 64-element array of 64-bit unsigned integers), trans-

posing them, and then performing a popcount on each row, as visualized in Fig. 5.3. This
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Figure 5.3. Bit matrix transpose and popcount

Listing 5.2. Most efficient RV64 popcount

int numberOfSetBits ( u i n t 6 4 t i ){

i = i − ( ( i >> 1) & 0 x5555555555555555 ) ;

i = ( i & 0 x3333333333333333 ) + ( ( i >>2) & 0 x3333333333333333 ) ;

return ( ( ( i +( i >>4))&0x0F0F0F0F0F0F0F0F)∗0 x0101010101010101 )>>56;

}

Figure 5.4. Bit serial, word parallel popcount
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was implemented using an algorithm from [18]. However, while this removes 1 loop, it still

requires channels number of unsigned integers to be concurrently stored in memory, and

cannot benefit from a single-instruction hardware popcount because it is not yet imple-

mented in the RISC-V ISA. Instead, the most efficient popcount instruction using RISC-V

instructions is shown in Listing 5.2.

The final optimization was to recognize that there was actually no need to do any

transposition. Instead, using a trick similar to the transition counting implemented in [19],

separate unsigned integers were used to represent every bit of 64 parallel counters. The

resulting query HV is just the MSB word of these counters, as shown in Fig. 5.4, provided

that the counters are initialized properly given the number of channels. This allows for the

chHV variable to be implemented as just a single unsigned integer by performing the channel

HV mapping and majority update in the same loop in a bit-serial, word-parallel fashion.

Using this method, the memory footprint in the spatial encoder stays constant as channels

increase and vastly improves its vectorizability. The code for this final implementation is in

Appendix A (note: some intricacies in the actual implementation are omitted for clarity).

Optimization 2: Spatial Encoding Ordering

The next optimization was to the ordering of the spatial encoding blocks in the main

method, afforded by the memory savings from above. The PULP-HD implementation

calculates N query HVs to feed the temporal encoder at every input sample, which means

that N ×modalities spatial encoders are run, instead of having a sliding window of N pre-

computed query HVs. Implementing this does require N HVs to be stored concurrently,

a relatively small penalty, but drastically reduces the amount of cycles devoted to spatial

encoding by a factor of N .

Optimization 3: Temporal Encoder

The permutation operation needed for temporal encoding, which is nominally a 1-bit

cyclical right shift, is quite expensive as shown in Listing 5.3 from the PULP-HD imple-

mentation. It requires figuring out the overflow bit from every 32-bit unsigned integer in

a ripple-shifting scheme. To speed up this operation, it was noted that the point of per-

mutation is to remove correlation between HVs in every binding iteration of the temporal

encoder. Therefore, two CPU-friendly optimizations were explored: 1) logical right shifting
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Listing 5.3. PULP-HD 1-bit cyclic shift

//Here the hypervec tor q i s s h i f t e d by 1 po s i t i o n as permutation ,

// b e f o r e performing the componentwise XOR opera t ion

over f l ow = q [ 0 ] & mask ;

for ( int i = 1 ; i < bit d im ; i ++){

o l d o v e r f l o w = over f l ow ;

over f l ow = q [ i ] & mask ;

q [ i ] = ( q [ i ] >> 1) | ( o l d o v e r f l o w << (32 − 1 ) ) ;

q [ i ] = q N [ i ] ˆ q [ i ] ;

}

o l d o v e r f l o w = over f l ow ;

over f l ow = ( q [ b i t d im ] >> 16) & mask ;

q [ b i t d im ] = ( q [ b i t d im ] >> 1) | ( o l d o v e r f l o w << (32 − 1 ) ) ;

q [ b i t d im ] = q N [ b i t d im ] ˆ q [ b i t d im ] ;

q [ 0 ] = ( q [ 0 ] >> 1) | ( over f l ow << (32 − 1 ) ) ;

q [ 0 ] = q N [ 0 ] ˆ q [ 0 ] ;

by 64 bits, thereby injecting 64 0’s and only requiring an index pointer increment; and 2)

logical right shifting by 1 every 64 bits, thereby injecting 1 zero every 64 bits. Both ap-

proaches were validated in MATLAB to show that accuracy is hardly impacted using either

scheme. In the end, approach two was taken, as this is more easily vectorizable, despite

requiring more instructions to execute on CPU.

Optimization 4: Memory Footprint

Finally, memory optimizations were considered from the algorithm side. Though this

particular algorithm can tolerate HV dimensions down to 2,000, 10,000-dim HVs were re-

tained because it is a commonly-used size to balance HV size against orthogonality and to

explore the full-scale vectorization implications. It was previously noted that the spatial

encoding takes an item memory HV and 2 feature projection HVs to embed the informa-

tion from each channel. Since these HVs are nominally all orthogonal, memory usage could
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be saved by sharing the item memory across all 3 modalities as done for the HDC sensor

fusion ASIC, resulting in a 2x item memory footprint reduction. Additionally, bundling

the outputs from all the channels across all modalities at once (instead of 2-step: within

each modality, then across modalities) was considered due to reduced computation with

the transpose popcount scheme, but because the number of channels per modality differs,

this places excess weight on modalities with more channels and degrades accuracy for this

dataset.

Finally, randomly assigning feature projection HVs to each modality from a common

bank of HVs was also explored after the technique was discovered during ASIC optimization

attempts. However, a pseudo-random number generator in the C code that could match

what was used in the MATLAB training to be able to evaluate the memory footprint

reduction was not implemented; it has been left for future work. In theory, as long as each

channel within a modality receives an orthogonal combination of item memory and feature

projection HVs, a common bank of HVs could be indexed into with the absolute minimum of

HVs needed a result of the combinatorics problem to get 105 distinct combinations (limited

by EEG channel features). The critical piece here would be the method to generate all the

combinations using only 14 HVs—also left for future work.

5.1.3 Software: Hwacha

Targeting Hwacha [20], the vector unit developed at UC Berkeley, requires that vector

assembly code be written inline with the original C code. The approach was to break up

the datapath into blocks that could maximally utilize vector registers in place of memory

loads/stores, and then vectorize those blocks. The first block that was vectorized was the 3-

input majority function. This implements the (A&B)|(B&C)|(C&A) operation for the query

vectors after spatial encoding for each of the 3 modalities. In the code repository, this can

be found in the vec majority 3 asm.S file.

The second block that was vectorized was the spatial encoder. The optimizations de-

scribed above were crucial to being able to use a minimal register footprint in the vector

unit and minimize loads/stores. In total, only the number of majority counter bits + 4 data

registers, 4 address registers, and 5 shared registers needed to be used across all the vector

fetch blocks. Manual unrolling of some loops was required for maximum register reuse, and

versions for a 6-bit and 7-bit majority counter were written for the GSR and ECG/EEG

modalities, respectively due to the differing numbers of channels. There are only 2 vector
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loads required for each channel and 1 vector store at the end of spatial encoding. In the code

repository, this can be found in the vec computeNgram.c and vec computeNgram asm.S

files.

The third block that was vectorized was the temporal encoder. As described above, the

final implementation was the permutation with logical right shift followed by the binding

operator. This is executed for each of the N HVs generated by the spatial encoder. Since

the N parameter was selected to be three during the algorithm design section for optimal

performance, this loop was unrolled to reduce the unnecessary additional loading and storing

of the output at each iteration. The final code mapped to just three loads, one stores, two

shifts, and two XORs. In the code repository, this can be found in the main vec.c and

ngram bind asm.S files.

The final block that was vectorized was the associative memory. The number of classes

was unrolled and hardcoded for maximum efficiency and stored in the vector data registers.

Part of the Hamming distance is calculated using just XOR and the vector equivalents of

the popcount from Listing 5.2. However, the accumulation of the popcounts between the

157 unsigned integer elements in the vector could not be implemented on Hwacha due to

the inexistence of a vector accumulation instruction, and is instead done on the Rocket

core. Since there are only two classes to compare, this penalty is not important compared

to the spatial encoder. In the code repository, this can be found in the fusion funcs.c,

vec hamming distance.c, associative memory vec.c, and AM v.S files.

5.2 Vectorized HDC Evaluation

The C code and inline Hwacha assembly were simulated at the block- and top-levels

using Spike (with --extension=hwacha) and in VCS on the default HwachaRocketConfig

found in Chipyard [17]. This config has 1 large Rocket core, 1 default-sized Hwacha lane,

and an 8-way 512KB L2$. For each optimization and block, the number of cycles needed

was compared pre- and post-optimization and between the Rocket-only and Hwacha imple-

mentations. It is important to note that Spike is unable to count the number instructions

executed on Hwacha, so speedup numbers on the vectorized code is only given from the

VCS simulations. Additionally, the instruction used to print the number of cycles actually

consumes some 10’s of instructions, so the actual speedups may actually be slightly higher

than reported.
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Since the task implemented was inference-only, functional correctness was verified by

comparing classification results against the golden MATLAB model. Each optimization

that altered the algorithm (e.g. the new permutation algorithm) would change the golden

accuracy, and since HDC is fundamentally somewhat random, these accuracy numbers

would vary within a couple percent. Unfortunately, the full inference task was not able to

be run on VCS due to the sheer number of cycles required to get through all 380 input

samples, so accuracy was verified in Spike and overall speedup numbers are generated using

only the first 30 input samples for Rocket-only vs. Rocket with Hwacha and the first 10

input samples for comparison with the original unoptimized work.

5.3 Vectorized HDC Results

5.3.1 CPU-only Optimizations

The first optimization, which was the transposition of the bit matrices, resulted in a

6.8× reduction in the number of cycles required for the 32-channel GSR modality as com-

pared to a 64-bit version of the original PULP-HD implementation. It is important to note

that the transpose method has a number of instructions that grows by ceil(channels/64)

as opposed to channels from the original method.

By moving to the bit-serial, word parallel popcount method, an additional 4.64×
speedup was achieved for the 32-channel GSR modality. Unfortunately, this speedup de-

creases as the number of channels increases vs. the transpose method because it too grows

proportional to channels. Given that ECG (77 channels) and EEG (105 channels) were

sped up by 3.23× and 2.39×, respectively, it appears that the breakeven point will be some-

where around 250 channels per modality. This number would be approx. 2.3x lower if the

RISC-V bit-manipulation instructions could be used for the transpose method, based on

the Wolf speedup numbers in [5]. Furthermore, by combining the channel HV mapping

and popcount instructions into the same inner loop, the memory footprint was reduced,

resulting in 3.3 - 8.7% reduction in cycle count in VCS simulations (higher with more

channels), suggesting there were fewer indices to calculate and increased cache hits.

By ordering the spatial encoders into a sliding window, an exactly 3× speedup was

achieved, which is expected because the spatial encoders dominate the overall cycle count

and because of the selected N = 3. This benefit would undoubtedly increase with larger

N , which may be needed to maximize accuracy for other classification tasks. Based on this
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result, the extra memory requirements needed to store N query HVs seems to have been far

outweighed by the number of cycles required for the spatial encoding computation itself.

By moving to the logical right shift by 1 for every unsigned integer, a speedup of just

11.8% is seen in the temporal encoding. Further investigation shows that this operation is

actually memory bound, as it needs to load from and store into the query HVs in memory,

which may be in disjoint places after the initial spatial encoding. This is confirmed by the

Spike simulations, which suggest that there are just 77.5% fewer instructions required by

using the shifting despite having many fewer operations in the C code.

5.3.2 Hwacha Acceleration

In Table 5.1, the speedup from mapping to a single Hwacha lane for each of the major

blocks and in aggregate in comparison to the Rocket implementation with all the above

CPU optimizations enabled is shown.

Block Condition CPU cycles Hwacha cycles Speedup

3-input Maj. 2,437 849 2.87×
Spatial Enc. 32 ch. 340,439 26,296 12.95×
Spatial Enc. 105 ch. 1,275,872 95,424 13.37×
Temp. Enc. N = 3 3,313 58 57.1×
Assoc. Mem. 2 classes 9,879 2,592 3.8×

All 30 samps. 75,844,682 6,083,890 12.47×

Table 5.1. Speedup: Hwacha vs. CPU (post-optimization)

When run on 30 input samples, an overall speedup of 12.47× is achieved! This is

better than the speedup presented in [5] for the most directly-comparable implementation:

the 8-core Wolf vs. 1-core without bit manipulation extensions (7.96×). This comparison

makes the most sense because the default Hwacha configuration has 8 sequencer entries,

which to the first order parallelizes computations 8 ways. Further, the speedup presented

in [5] was demonstrated for an application with only four channels as compared to the multi-

modal model with 214 total channels used in this work. This shows that the optimizations

selected for the spatial encoder are beneficial for even 2 orders of magnitude larger number

of channels.

A deeper dive into the blocks reveals that the maximum speedup is obtained on vector

fetch blocks that have have a higher proportion of load/store operations (temporal encoder)

vs. computation (spatial encoder). This shows that the higher memory interface bandwidth
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and decoupled access/execute architecture of the Hwacha accelerator benefit the temporal

encoder. Still, the ∼13× speedup of the spatial encoder is very significant and, as expected,

dominates the overall speedup of the algorithm.

5.3.3 Overall Speedup vs. PULP-HD

To measure the overall speedup of the vectorized implementation versus the the original

PULP-HD implementation translated to RV64 on a single Rocket core, some extrapolations

had to be made. This is due to the fact that VCS simulations on all input samples using

the non-optimized implementation takes a very, very long time (it needs to simulate 10’s of

billions of cycles). Therefore, an extrapolation is made based on the speedup result from

the previous section combined with some Spike simulations, as well as simulations on a

small subset of samples (10 total).

Version Instruction Count

Original PULP-HD 11,728,914,671

CPU optimized 734,919,671

Vectorized w/ Hwacha 15,159,673

Table 5.2. Spike simulation instruction count for full inference task (380 samples)

Spike simulations on the entire inference task (380 samples) yields the instruction counts

as shown in Table 5.2. Since Spike is unable to count Hwacha cycles, the last two rows

suggest that Spike overcounts the Hwacha speedup by 3.9×. The overall Spike speedup is

773.7×, so the estimated actual speedup should be on the order of 773.7/3.9 = 198×!

Version Cycle Count

Original PULP-HD 266,984,854

CPU optimized 25,360,374

Vectorized w/ Hwacha 2,050,319

Table 5.3. VCS simulation cycle count for 10 samples

VCS simulations for 10 samples were successfully run in reasonable time. The VCS cycle

counts are shown in Table 5.3. The total speedup is 130.2×. This speedup result is hindered

by the cold start penalty from the sliding window temporal encoder optimization, which

would have a significant impact on the comparison for a smaller number of inferences—in

this case only 7 out of the total 377. The gains should approach the predicted speedup of

198× as the number of inferences increases.

34



5.4 Vectorized HDC Discussion

A speedup of 198× would have a significant impact on not only sensor fusion applica-

tions, but specifically the recall of reactive behavior paradigm that this work proposed as it

reduces the total time per classification for each input sample. Reducing the overall compu-

tation time for the dataset is generally desirable in most classification tasks, but specifically

in prosthetic embedded sensor fusion applications where real-time classification is critical to

prosthetic performance, latency between sensor signal samples and decisions for prosthetic

action could result in the difference between success or failure of task completion. This is

especially true in the reflex action case where prosthetic response times should aim to be in

par with human reflex delays (0.15 seconds in reaction to touch stimulus [21]). Additionally,

for prostheses, not only do classifications need to continuously run throughout its usage,

but the overall usage time is a significant factor in usability. Reduction of cycle counts per

classification should also result in reduction of energy per classification, improving usage

time for embedded applications. Further work should be done to quantify the energy per

classification improvement as a result of these optimizations.

Based on the results of this work, there are two ISA-specific optimizations that would

yield additional performance beyond this work: 1) integration of the draft RISC-V bit

manipulation ISA extensions [15] which would implement the single-instruction popcount,

and 2) implementation of a proposed addition to the Hwacha vector reduction instructions

to accumulate the value across a vector register into a shared register, which would help in

the Hamming distance calculation.

This work’s optimizations did not require additional vector lanes or sequencer entries

because each block of computation was able to be performed within one iteration of the

vsetvl instruction due to this work’s efficient reuse of vector data registers. Conceivably,

adding vector lanes or sequencer entries would add additional speedup, but it would run

into Amdahl’s law and soon be constrained by the memory load/store bandwidth.

Extensive benchmarking of cache utilization like in [5] would inform further optimiza-

tions that could be made. While the optimizations in this work already drastically reduce

the memory footprint, only a handful of HVs already exceed the size of L1$, so it would

be interesting to see if variables could be compacted together in such a way to maximize

cache hits. Future work should also analyze the impact of parameters like [5] in order to

analyze how to maximally use the cache hierarchy and the resulting latency improvement.

There is also more work to be done to implement the training in software and to vectorize
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it. The underlying computations and optimizations here are all reused, but the only addi-

tions would be some additional feature encoders and methods that write to the associative

memory instead of reading from it.

On the algorithms side, some of the on-the-fly HV generation, approximate majority,

and single-cycle Hamming distance schemes employed in [16] appear to be directly appli-

cable to architectures other than FPGAs. Implementing those techniques on this work’s

algorithm could yield additional speedups in the spatial encoder and associative memory

blocks, whilst remaining vectorizable. Another area left for future work would be extending

the vectorization to architectures with much larger associative memories and observing the

corresponding growth in cycle count—at which point does it become the dominating block?

Finally, these optimizations are broadly applicable to other ISAs with vector extensions,

such as Intel’s AVX-512. It would be a good test to see if the built-in GCC support for those

extensions are able to compile this work’s final C code as optimally as the hand-written

assembly used for the Hwacha vector accelerator.
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Chapter 6

HDC Recall of Reactive Behavior

6.1 Force Sensor Characterization

Towards the goal of integrating force sensors into the EMG classification system devel-

oped in [8], Tekscan A201 force sensors shown in Figure 6.1 and Figure 6.2 were selected for

replicability and precision. The resistive force sensors are placed in a voltage divider with

the selected reference voltage and unity-gain buffer to get an output signal that changes

with the force applied. In order to improve the replicability and stability of the signal for

weights with larger radii, a bumper was added to centralize the force onto the sensor area.

The force sensors were characterized over time in that setup for weights between 20g

and 500g—approximately the weights expected to be used for concept demonstration. The

results are shown in Figure 6.4 and Figure 6.3. The removal of force is reflected in the signal

within a second, but the addition of a force results in a signal that drifts over time. The

differences in the signal between weight amounts is also not very linear, this suggests that

for any learning algorithm, differentiating between smaller weights will be more challenging

Figure 6.1. Selected force sensor top view, bumper added on bottom sensor
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Figure 6.2. Selected force sensor front view, bumper added on right sensor

Figure 6.3. Force sensor characterization over time with weight added at t=0s

Figure 6.4. Force sensor characterization over time with weight removed at t=0s
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Figure 6.5. Force-flex-EMG Adapter PCB

than between larger ones. Additionally, the sensor range is quite large so its replicability

on smaller force signals is less. This characterization is useful in designing protocols to best

demonstrate the HD recall of reactive behavior technique.

6.2 EMG & Force Sensor Integration: PCB

Previous work for the EMG classification system [8] designed a PCB to interface with

the flexible EMG sensor arrays. In this work, both force sensors and EMG sensors are

integrated into the system. As a result, the original PCB was modified to replace five EMG

channels with force sensors. The additions include a force sensor connector, op-amps for

unity gain buffers and resistors for the voltage dividers for each sensor, and a 3V coin cell

battery to power the voltage supplies and reference voltages. The design is shown in Figure

6.5. It was fabricated and is waiting on testing.

Future work will involve design of experiments using this platform to demonstrate the

ability to build a program memory between various sensors and actuators. Exploration

of context-based shared control could involve different program memories depending on

additional information from orientation and motion sensors. Limitations on the number of

states that can be stored into the program memory given that states may be similar to one

another, and the ability of the decoder to discriminate between these states of motion will

be determined.
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Chapter 7

Conclusion & Future Work

In this work, the accuracy and hardware implications of early fusion and late fusion for

a multi-modal Hyperdimensional Computing paradigm were explored. In contrast to other

traditional ML algorithms, due to the inherent binding of information without exceeding

HV capacity, early sensor fusion not only performs as well as late sensor fusion, but actually

performs better for certain parameters in HDC. Both versions of the algorithm were imple-

mented in Verilog by modifying a previous codebase to add additional parallel blocks for

each sensor modality and fit the temporal parameters selected during the algorithm design

process.

Several preliminary optimizations were made in anticipation of reducing the overall

ASIC hardware costs once synthesized. These included reducing the HV dimension to

2,000, multiplexing feature projection vectors, sharing iM and feature projection vectors

across each modality, and using the same iM and feature projection vectors for both strength

of emotion and polarity of emotion classification. These changes reduced the memory size

from an initial 642 HVs to 315 HVs (-50.9%).

Final synthesis results demonstrate the hardware implications of early fusion vs. late

fusion. Early fusion reduced the total area by 4.3% and the total est. power by 6.2%.

The breakdown of area and power by block validates the expected results showing that the

temporal encoder increases from 3.1% to 8% of the total power and from 2.0% to 5.8% for

area between early to late fusion due to the additional two temporal encoders required for

the multiple modalities in late fusion. However, in contrast to the overall demands of the

spatial encoder and memory, the effect of removing two temporal encoders is small.
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Final synthesis results showed that the overall area due to the memory was 47% for early

fusion and 45.1% for late fusion and the overall power due to memory was 49.9% for early

fusion and 47% for late fusion. Simple calculations show that without the memory opti-

mizations made, the memories alone would’ve been 72% for early fusion. This demonstrates

the significant impact of hardware-software co-design. The spatial encoder also contributes

a significant amount towards the power (48.9% for early fusion and 46.4% for late fusion)

and area (42.7% for early fusion and 39.6% for late fusion).

Given these results, it is clear that effort would be better spent trying to further optimize

the memory requirements and spatial encoder. In that direction, preliminary algorithm

exploration was done to further reduce the size of the iM and number of feature projection

vectors. Using only a common set of 105 HVs, the iM is selected sequentially, but the 6

required different feature projection vectors were randomly selected and assigned to the

3 modalities. This resulted in slight performance degradation and varying accuracy on

different iterations due to the randomness involved, but HDC still performed better than

the next best classification method even when using this method.

This result suggests that there is much room for exploration in this area, specifically for

the sensor fusion application where the presence of different modalities allows for further

reduction and potentially acceptable correlation. The possibility of further compressing the

memory size to only the number of HVs necessary to generate 105 distinct combinations of

HVs from feature projection vectors and item memories across all channels could mean that

only 14 HVs would need to be stored given a method to generate combinations. At that

point, optimization of the spatial encoder would be required to further reduce the hardware

costs.

The vectorizability of a multi-modal Hyperdimensional Computing paradigm was also

explored. The early fusion HDC paradigm was implemented on top of [5] with architec-

tural changes made to reflect the multi-modality of the algorithm. Several optimizations

were made to the prior work in [5] to maximize speedup. These included new bundling

and permutation algorithms, memory footprint improvements, and removal of redundant

computations. In contrast to traditional ML algorithms, the operations used in HDC are

simple and thus easily vectorizable with significant speedup in a RISC ISA.

To demonstrate this, all of the HV operations in the spatial encoder, temporal en-

coder and associative memory were vectorized through inline assembly instructions using

the Hwacha RISC-V vector ISA extensions. The vector fetch blocks were re-designed to
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minimize the amount of loads/stores over the vector memory interface and to minimize the

number of vector registers used so that the amount of vector chaining could be maximized.

Final simulation results paint a true picture of the actual hardware implications of

accelerating HDC algorithms with a vector processor versus multi-core platforms. First,

vector processors provide parallelism with more optimized memory loads/stores. Second,

the vector processor’s registers and cache further reduce the need to share memory resources

with the control processor. Combined, this results in a better-than-8× speedup that would

be suggested given the sequencer depth of 8. Compared to the original implementation in [5],

an approximate 198× speedup is calculated with 12.47× from Hwacha vector acceleration

and 15.96× from optimizing the architecture.

Given these results, similar to the ASIC results, effort should continue to be spent trying

to further optimize the memory footprint and spatial encoder, some of which has been

tackled in [16]. Specifically, the growth in storage and computation demand will increase in

sensor fusion applications with large numbers of modalities and/or channels. The possibility

of further compressing the memory size to only 14 HVs would significantly reduce storage

given a method to generate combinations. At that point, aggressive optimization of data re-

use to take advantage of caching and further improvements in the spatial encoder would be

required to further reduce cycle count and hardware costs. Integration of the draft RISC-

V bit manipulation ISA extensions for single-instruction popcount as well the inclusion

to the Hwacha vector accelerator of an accumulation instruction across a vector register

for Hamming distance calculation could both also be explored for additional performance

improvements.

Finally, a platform for integration of force sensors into the previously developed EMG

sensor adapter board was developed. It is clear that not only does HDC performs incredibly

well, especially compared to alternative algorithms, on sensor fusion datasets because of the

ability to encode any input into the hyperdimensional space regardless of sensor complexity,

but also the many successful optimization techniques explored in this work demonstrate

that the HDC property of pseudo-orthogonality is highly resistant to simplifications and

adjustments made for platform-specific performance improvements.

These results suggest that HDC sensor fusion for the recall of reactive behavior technique

- where the modalities are force sensors, EMG sensors, and prosthetic actuator - will be

able to maintain high accuracy while still allowing for significant optimization between

modalities to reduce the hardware memory and logic requirements for embedded training

and inference. Additional sensors could be integrated as well to implement context-based
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shared control, further utilizing the sensor fusion property of HDC. Exploration using the

optimization techniques verified in this work for sensor fusion and the platform designed

for HDC recall proof-of-concept together to dig deeper into the concept and properties of

recalling reactive behavior for prosthetic reflex response is left for future work.
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Appendix A

Optimized Spatial Encoder

46



Appendix B

Code Repository

In the code repository [22], the MATLAB algorithm is contained in the MATLAB

HD Sensor Fusion folder. The Verilog RTL is in the Verilog HD Sensor Fusion

folder, the Chisel wrapper is in generators/src/main/scala/Fusion.scala and syn-
thesis configurations are in the vlsi folder. The C and assembly code is found in the
generators/HD sensor fusion/software/fusion folder.
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