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Abstract
Machine Learning Safety
by
Daniel Hendrycks
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California, Berkeley

Assistant Professor Jacob Steinhardt, Chair

Machine learning (ML) systems are rapidly increasing in size, are acquiring new capabilities,
and are increasingly deployed in high-stakes settings. To address the growing need for safe
ML systems, I first discuss works towards making systems perform reliably. Thereafter I
discuss works towards making systems act in accordance with human values. In closing I
discuss open problems in making ML systems safer.
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Chapter 1

Introduction

Machine learning (ML) systems are increasingly deployed in safety-critical settings. As with
any powerful technology, the safety of these systems is a high priority. In this work, we
describe research towards steering the development of machine learning (ML) systems in
a safer direction. This research is divided into two areas in ML safety, namely reliability
and alignment. Reliability can be thought of as reducing the tendency for the system not
achieve the intended goal in the face of adversarial or novel events. Meanwhile, alignment
can be thought of as the ability to steer an ML system in a specific desired direction. Put
differently, reliability reduces vulnerability and exposure to hazards, and alignment reduces
intrinsic hazards from powerful directed ML systems. Here, we provide an overview of work
we performed in these two areas.

1.1 Reliability

Laying Foundations through Well-Chosen Tasks

To operate in open-world high-stakes environments, machine learning systems need to with-
stand unusual events not captured in the training data (Torralba and Efros, 2011), as well as
shifts in the underlying environment. However, current ML systems often fail in the face of
real-world complexity and unknown unknowns. To make progress on these issues, my work
addresses the dual problems of robustness (withstanding change) and anomaly detection
(detecting change).
Characterizing Distribution Shift Robustness. To study the robustness of ML models
when the test distribution shifts and becomes unlike the training distribution, Tom Dietterich
and I developed the ImageNet-C dataset (Hendrycks and Dietterich, 2019¢). It contains 75
common visual corruptions, such as noise, blur, weather, and digital corruptions, applied to
the ImageNet (Russakovsky et al., 2015a) evaluation images. To test model generalization
in the face of unknowns, models are trained on ImageNet and tested on ImageNet-C.
Several ImageNet-C design choices helped advance the study of robustness. By stan-
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dardizing the corruptions, we limited methodological problems such as moving goalposts or
cherry-picking corruptions where a method does best. We included numerous corruptions to
make the benchmark harder to game and sieve out less useful methods. Since many models
have been trained on ImageNet and their performance correlates strongly with downstream
vision tasks (Kornblith, Shlens, and Le, 2019), ImageNet-C allowed us to evaluate many
existing models in a way that is likely to generalize.

In addition to ImageNet-C, we analyzed model robustness under several other distribu-

tion shifts. To test the extent to which models learn object shape, we collected images of
object renditions, sculptures, origami, and so on (Hendrycks et al., 2021i). We also pro-
posed a type of adversarial distribution shift by collecting naturally occurring images that
are challenging for ResNet models; we found that completely different models such as Vision
Transformers are fragile to these images as well, indicating shared weaknesses across archi-
tectures (Hendrycks et al., 2021f). In recent work we cover many real-world distribution
shifts including changes in data collection year, geographic location, and camera hardware
(Hendrycks et al., 2021i). For NLP models, we tested robustness to changes in new source,
review length, and genre (Hendrycks et al., 2020c).
Anomaly Detection. If a distribution shift gives rise to examples that are semantically
distinct from the training examples, then models should detect these anomalies and express
their uncertainty. This makes models safer to deploy, as one can flag unusual examples for
human intervention or carefully proceed with a fail-safe policy.

In 2016 there was not much work on anomaly detection with deep learning models.
Models of p(z) were near random-chance detection levels, and progress on anomaly detection
was divorced from the mainline progress on classification benchmarks such as ImageNet and
CIFAR. Kevin Gimpel and I sought to reinvigorate the area of anomaly detection, also
known as OOD detection, by proposing a new evaluation setup and a baseline (Hendrycks
and Gimpel, 2016a). We addressed the lack of anomaly datasets by repurposing several
existing classification datasets, allowing us to leverage the community’s acquired knowledge
on these tasks. We showed that a classifier’s prediction confidence provided a strong baseline
for anomaly detection and in fact outperformed p(x) models.
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Methods

Having grounded robustness and anomaly
detection through carefully designed bench-
marks, I next turned my attention to design-
ing better methods. I have helped contribute
methods that better leverage data and im-
prove the model loss.

Data. Data augmentation techniques pro-
duce useful inputs through synthetic varia-
tion and are often used to improve test accu-
racy. I identified data augmentation as a key
technique for improving not only accuracy
but also model reliability. For example, our
AugMix (Hendrycks et al., 2020a) technique
randomly mixes augmented images together
and improves robustness to texture, context
cues, and weather distribution shifts (Zhao
et al., 2021).

Motivated by this, I developed addi-
tional augmentation methods (Hendrycks et
al., 2021i), and finally found that lever-
aging high structural complexity (Lloyd,
2001) gives rise to a new data augmentation
method based on fractals. This clarified pre-
vious intuitions that were instead focused on
high entropy or noise rather than structural
complexity. Our method is near-Pareto opti-
mal across numerous safety-relevant metrics,
as shown in Figure 1.1.

Loss. To improve anomaly detection, we
introduced a method called Outlier Expo-
sure (OE) (Hendrycks, Mazeika, and Diet-

Anomaly Detection

Cutout Mixup
(2017) (2017)
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Outlier Exposure AutoAugment AugMix
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A

Figure 1.1: A comparison of representation
learning methods across time. Our methods
are bolded. AugMix was best-in-class for
corruption robustness, and Outlier Exposure
is best for anomaly detection. Our latest
method PixMix is nearly Pareto-optimal in
all five safety measures, while for at least one
measure, other methods are worse than the
baseline.

terich, 2019a) to teach models to have lower confidence on anomalous examples. The idea is
to collect a set of anomalous examples and train the model to have a uniform softmax distri-
bution on those examples. Formally, we add a term to the training objective that penalizes
the cross-entropy with a uniform distribution. This method generalizes to novel anomalies.
For instance, if the model was exposed to dog and cat images and some outlier images such
as rhinos and telephones at training time, the model will also have lower confidence on, say,

novel emojis and airplane anomalies.



CHAPTER 1. INTRODUCTION 4

1.2 Alignment

Objectives drive ML systems, but aligning objective functions with human values requires
that models understand diverse, highly complex human values (Hadfield-Menell et al., 2016)
and also translate that knowledge into action. In an ongoing line of work, I seek to build
machines that have ethical behavior towards humans, by representing several morally salient
factors, such as wellbeing, and using this to mediate ML systems’ behavior.

Laying Foundations. Since there was not a way to measure a system’s grasp of general
human values, we published a machine ethics paper at ICLR to demonstrate that empirical
progress can now be made on machine ethics using deep learning. In that paper, we showed
that is possible for machine learning models to represent five distinct, longstanding value
systems (Hendrycks et al., 2021a). Our paper was interdisciplinary and incorporated theories
in normative ethics including deontology, virtue ethics, and utilitarianism.

Many value systems place significant weight on human wellbeing, but this human value

is wrapped up in internal experiences, emotions (Picard, 1997), and feelings that may be
difficult for ML systems to model. While vision research focuses heavily on “what is where”
in a video (Achlioptas et al., 2021), we recently showed that these models can be repurposed
to estimate how a video makes viewers feel. We therefore showed that video recommender
systems have recently started to have traction on modeling how the content of videos affects
user wellbeing (Hendrycks et al., 2021d).
Methods. Models need to not only understand human values, but also mediate their
knowledge from value learning into appropriate action. Translating knowledge into action is
not straightforward: for instance, while computer vision models are advanced, successfully
applying vision models for robotics remains elusive. To study this for machine ethics, we
repurposed text adventure games and annotated hundreds of thousands of lines of game
source code to highlight whenever a morally salient event occurs. Using these diverse text-
based environments, we showed it is possible to use models from our previous machine ethics
paper (Hendrycks et al., 2021a) to transform reinforcement learning (RL) agents’ @Q-values
and cause them to behave less destructively. With our technique, agents propose actions,
and a separate model can successfully filter out unethical actions, preventing RL agents from
causing wanton harm (Hendrycks et al., 2021n).
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Reliability

In this section, we describe how self-supervised learning and pre-training can help improve
various safety metrics. Thereafter, we show how to perform anomaly detection at scale. Next,
we analyze safety goals in the context of natural language processing. We then describe
our datasets covering adversarial distribution shifts and then provide a meta-analysis of
robustness. Finally, we close showing that one method can improve numerous facets of
reliability.

2.1 Using Pre-Training Can Improve Model
Robustness and Uncertainty

Dan Hendrycks, Kimin Lee, Mantas Mazeika

He, Girshick, and Dollar (2018) have called into question the utility of pre-training by show-
ing that training from scratch can often yield similar performance to pre-training. We show
that although pre-training may not improve performance on traditional classification metrics,
it improves model robustness and uncertainty estimates. Through extensive experiments on
adversarial examples, label corruption, class imbalance, out-of-distribution detection, and
confidence calibration, we demonstrate large gains from pre-training and complementary
effects with task-specific methods. We introduce adversarial pre-training and show approx-
imately a 10% absolute improvement over the previous state-of-the-art in adversarial ro-
bustness. In some cases, using pre-training without task-specific methods also surpasses the
state-of-the-art, highlighting the need for pre-training when evaluating future methods on
robustness and uncertainty tasks.

Introduction

Pre-training is a central technique in the research and applications of deep convolutional
neural networks (Krizhevsky, Sutskever, and Hinton, 2012). In research settings, pre-training
is ubiquitously applied in state-of-the-art object detection and segmentation (He et al., 2017).
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Moreover, some researchers aim to use pre-training to create “universal representations” that
transfer to multiple domains (Rebuffi, Bilen, and Vedaldi, 2017). In applications, the “pre-
train then tune” paradigm is commonplace, especially when data for a target task is acutely
scarce (Zeiler and Fergus, 2014). This broadly applicable technique enables state-of-the-art
model convergence.

However, He, Girshick, and Dollar (2018) argue that model convergence is merely faster
with pre-training, so that the benefit on modern research datasets is only improved wall-
clock time. Surprisingly, pre-training provides no performance benefit on various tasks and
architectures over training from scratch, provided the model trains for long enough. Even
models trained from scratch on only 10% of the COCO dataset (Lin et al., 2014) attain
the same performance as pre-trained models. This casts doubt on our understanding of
pre-training and raises the important question of whether there are any uses for pre-training
beyond tuning for extremely small datasets. They conclude that, with modern research
datasets, ImageNet pre-training is not necessary.

In this work, we demonstrate that pre-training is not needless. While He, Girshick,
and Dollar (2018) are correct that models for traditional tasks such as classification per-
form well without pre-training, pre-training substantially improves the quality of various
complementary model components. For example, we show that while accuracy may not
noticeably change with pre-training, what does tremendously improve with pre-training is
the model’s adversarial robustness. Furthermore, even though training for longer on clean
datasets allows models without pre-training to catch up, training for longer on a corrupted
dataset leads to model deterioration. And the claim that “pre-training does not necessar-
ily help reduce overfitting” (He, Girshick, and Dollar, 2018) is valid when measuring only
model accuracy, but it becomes apparent that pre-training does reduce overfitting when also
measuring model calibration. We bring clarity to the doubts raised about pre-training by
showing that pre-training can improve model robustness to label corruption (Sukhbaatar et
al., 2014), class imbalance (Japkowicz, 2000), and adversarial attacks (Szegedy et al., 2014);
it additionally improves uncertainty estimates for out-of-distribution detection (Hendrycks
and Gimpel, 2017a) and calibration (Nguyen and O’Connor, 2015a), though not necessarily
traditional accuracy metrics.

Pre-training yields improvements so significant that on many robustness and uncertainty
tasks we surpass state-of-the-art performance. We even find that pre-training alone improves
over techniques devised for a specific task. Note that experiments on these tasks typically
overlook pre-training, even though pre-training is ubiquitous elsewhere. This is problematic
since we find there are techniques which do not comport well with pre-training; thus some
evaluations of robustness are less representative of real-world performance than previously
thought. Thus researchers would do well to adopt the “pre-train then tune” paradigm for
increased performance and greater realism.
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Figure 2.1: Training for longer is not a suitable strategy for label corruption. By training
for longer, the network eventually begins to model and memorize label noise, which harms
its overall performance. Labels are corrupted uniformly to incorrect classes with 60% prob-
ability, and the Wide Residual Network classifier has learning rate drops at epochs 80, 120,
and 160.

Related Work

Pre-Training. It is well-known that pre-training improves generalization when the dataset
for the target task is extremely small. Prior work on transfer learning has analyzed the
properties of this effect, such as when fine-tuning should stop (Agrawal, Girshick, and Malik,
2014) and which layers should be fine-tuned (Yosinski et al., 2014). In a series of ablation
studies, Huh, Agrawal, and Efros (2016) show that the benefits of pre-training are robust
to significant variation in the dataset used for pre-training, including the removal of classes
related to the target task. In our work, we observe similar robustness to change in the
dataset used for pre-training.

Pre-training has also been used when the dataset for the target task is large, such as
Microsoft COCO (Lin et al., 2014) for object detection and segmentation. However, in a
recent work He, Girshick, and Dollar (2018) show that pre-training merely speeds conver-
gence on these tasks, and real gains in performance vanish if one trains from scratch for long
enough, even with only 10% of the data for the target task. They conclude that pre-training
is not necessary for these tasks. Moreover, Sun et al. (2017) show that the accuracy gains
from more data are exponentially diminishing, severely limiting the utility of pre-training for
improving performance metrics for traditional tasks. In contrast, we show that pre-training
does markedly improve model robustness and uncertainty.

Robustness. The susceptibility of neural networks to small, adversarially chosen input
perturbations has received much attention. Over the years, many methods have been pro-
posed as defenses against adversarial examples (Metzen et al., 2017; Hendrycks and Gimpel,
2017c), but these are often circumvented in short order (Carlini and Wagner, 2017a). In fact,
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the only defense widely regarded as having stood the test of time is the adversarial training
procedure of Madry et al. (2018a). In this algorithm, white-box adversarial examples are
created at each step of training and substituted in place of normal examples. This does
provide some amount of adversarial robustness, but it requires substantially longer training
times. In a later work, Schmidt et al. (2018) argue further progress on this problem may
require significantly more task-specific data. However, given that data from a different dis-
tribution can be beneficial for a given task (Huh, Agrawal, and Efros, 2016), it is conceivable
that the need for task-specific data could be obviated with pre-training.

Learning in the presence of corrupted labels has been well-studied. In the context of
deep learning, Sukhbaatar et al. (2014) investigate using a stochastic matrix encoding the
label noise, though they note that this matrix is difficult to estimate. Patrini et al. (2017)
propose a two-step training procedure to estimate this stochastic matrix and train a corrected
classifier. These approaches are extended by Hendrycks et al. (2018), who consider having
access to a small dataset of cleanly labeled examples, leverage these trusted data to improve
performance.

Zhang and Sabuncu (2018a) show that networks overfit to the incorrect labels when
trained for too long (Figure 2.1). This observation suggests pre-training as a potential fix,
since one need only fine-tune for a short period to attain good performance. We show
that pre-training not only improves performance with no label noise correction, but also
complements methods proposed in prior work. Also note that most prior works (Goldberger
and Ben-Reuven, 2017; Ma et al., 2018; Han et al., 2018) only experiment with small-
scale images since label corruption demonstrations can require training hundreds of models
(Hendrycks et al., 2018). Since pre-training is typically reserved for large-scale datasets,
such works do not explore the impact of pre-training.

Networks tend not to effectively model underrepresented classes, which can affect a classi-
fier’s fairness of underrepresented groups. To handle class imbalance, many training strate-
gies have been investigated in the literature. One direction is rebalancing an imbalanced
training dataset. To this end, He and Garcia (2008) propose to remove samples from the
majority classes, while Huang et al. (2016) replicate samples from the minority classes. Gen-
erating synthetic samples through linear interpolation between data samples belonging in
the same minority class has been studied in Chawla et al. (2002). An alternative approach
is to modify the supervised loss function. Cost sensitive learning (Japkowicz, 2000) balances
the loss function by re-weighting each sample by the inverse frequency of its class. Huang
et al. (2016) and Dong, Gong, and Zhu (2018) demonstrate that enlarging the margin of
a classifier helps mitigate the class imbalance problem. However, adopting such training
methods often incurs various time and memory costs.

Uncertainty. Even though deep networks have achieved high accuracy on many classi-
fication tasks, measuring the uncertainty in their predictions remains a challenging problem.
Obtaining well-calibrated predictive uncertainty could be useful in many machine learning
applications such as medicine or autonomous vehicles. Uncertainty estimates need to be use-
ful for detecting out-of-distribution samples. Hendrycks and Gimpel (2017a) propose out-of-
distribution detection tasks and use the maximum value of a classifier’s softmax distribution
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Table 2.1: Adversarial accuracies of models trained from scratch, with adversarial training,
and with adversarial training with pre-training. All values are percentages. The pre-trained
models have comparable clean accuracy to adversarially trained models from scratch, as
implied by He, Girshick, and Dollar, 2018, but pre-training can markedly improve adversarial
accuracy.

CIFAR-10 CIFAR-100
Clean (Capabilities) Adversarial (Safety) Clean (Capabilities) Adversarial (Safety)
Vanilla Training 96.0 0.0 81.0 0.0
Adversarial Training 87.3 45.8 59.1 24.3
Ours 87.1 57.4 59.2 33.5

as a baseline method. Lee et al. (2018a) propose Mahalanobis distance-based scores which
characterize out-of-distribution samples using hidden features. Lee et al. (2018b) propose
using a GAN (Goodfellow et al., 2014) to generate out-of-distribution samples; the network
is taught to assign low confidence to these GAN-generated samples. Hendrycks, Mazeika,
and Dietterich (2019b) demonstrate that using non-specific, real, and diverse outlier images
or text in place of GAN-generated samples can allow classifiers and density estimators to
improve their out-of-distribution detection performance and calibration. Guo et al. (2017a)
show that contemporary networks can easily become miscalibrated without additional regu-
larization, and we show pre-training can provide useful regularization.

Robustness

Datasets. For the following robustness experiments, we evaluate on CIFAR-10 and CIFAR-
100 (Krizhevsky and Hinton, 2009). These datasets contain 32 x 32 color images, both with
60,000 images split into 50,000 for training and 10,000 for testing. CIFAR-10 and CIFAR-
100 have 10 and 100 classes, respectively. For pre-training, we use Downsampled ImageNet
(Chrabaszcz, Loshchilov, and Hutter, 2017), which is the 1,000-class ImageNet dataset (Deng
et al., 2009b) resized to 32 x 32 resolution. For ablation experiments, we remove 153 CIFAR-
10-related classes from the Downsampled ImageNet dataset. In this paper we tune the entire
network. Code is available at github.com/hendrycks/pre-training.

Robustness to Adversarial Perturbations

Setup. Deep networks are notably unstable and less robust than the human visual system
(Geirhos et al., 2018; Hendrycks and Dietterich, 2019a). For example, a network may produce
a correct prediction for a clean image, but should the image be perturbed carefully, its verdict
may change entirely (Szegedy et al., 2014). This has led researchers to defend networks
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against “adversarial” noise with a small ¢, norm, so that networks correctly generalize to
images with a worst-case perturbation applied.

Nearly all adversarial defenses have been broken (Carlini and Wagner, 2017a), and ad-
versarial robustness for large-scale image classifiers remains elusive (Engstrom, Ilyas, and
Athalye, 2018). The exception is that adversarial training in the style of Madry et al.
(2018a) has been partially successful for defending small-scale image classifiers against £
perturbations. Following their work and using their state-of-the-art adversarial training pro-
cedure, we experiment with CIFAR images and assume the adversary can corrupt images
with perturbations of an ¢, norm less than or equal to 8/255. The initial learning rate is
0.1 and the learning rate anneals following a cosine learning rate schedule. We adversarially
train the model against a 10-step adversary for 100 epochs and test against 20-step untar-
geted adversaries. Additional results with 100-step adversaries and random restarts are in
the Supplementary Materials. Unless otherwise specified, we use 28-10 Wide Residual Net-
works, as adversarially trained high-capacity networks exhibit greater adversarial robustness
(Kurakin, Goodfellow, and Bengio, 2017a; Madry et al., 2018a).

Analysis. It could be reasonable to expect that pre-training would not improve ad-
versarial robustness. First, nearly all adversarial defenses fail, and even some adversarial
training methods can fail too (Engstrom, Ilyas, and Athalye, 2018). Current adversarial
defenses result in networks with large generalization gaps, even when the train and test dis-
tributions are similar. For instance, CIFAR-10 Wide ResNets are made so wide that their
adversarial train accuracies are 100% but their adversarial test accuracies are only 45.8%.
Schmidt et al. (2018) speculate that a significant increase in task-specific data is necessary
to close this gap. To reduce this gap, we introduce adversarial pre-training, where we make
representations transfer across data distributions robustly. However, successfully doing so
requires an unconventional choice. Choosing to use targeted adversaries or no adversaries
during pre-training does not provide substantial robustness. Instead, we choose to adver-
sarially pre-train a Downsampled ImageNet model against an untargeted adversary, contra
Kurakin, Goodfellow, and Bengio (2017a), Kannan, Kurakin, and Goodfellow (2018), and
Xie et al. (2018).

We find that an adversarially pre-trained network can surpass the long-standing state-of-
the-art model by a significant margin. By pre-training a Downsampled ImageNet classifier
against an untargeted adversary, then adversarially fine-tuning on CIFAR-10 or CIFAR-100
for 5 epochs with a learning rate of 0.001, we obtain networks which improve adversarial
robustness by 11.6% and 9.2% in absolute accuracy respectively.

As in the other tasks we consider, a Downsampled ImageNet model with CIFAR-10-
related classes removed sees similar robustness gains. As a quick check, we pre-trained and
tuned two 40-2 Wide ResNets, one pre-trained typically and one pre-trained with CIFAR-10-
related classes excluded from Downsampled ImageNet. We observed only a 1.04% decrease
in adversarial accuracy compared to the typically pre-trained model, which demonstrates
that the pre-trained models do not rely on seeing CIFAR-10-related images, and that simply
training on more natural images increases adversarial robustness. Notice that in Table 2.1
the clean accuracy is approximately the same while the adversarial accuracy is far larger.
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Figure 2.2: Error curves for label noise correction methods using training from scratch and
pre-training across a full range of label corruption strengths. For the No Correction baseline,
using pre-training results in a visibly improved slope of degradation with a more pronounced
elbow at higher corruption strengths. This also occurs in the complementary combinations
of pre-training with previously proposed correction methods.

This indicates again that pre-training may have a limited effect on accuracy for traditional
tasks, but it has a strong effect on robustness.

It is even the case that the pre-trained representations can transfer to a new task without
adversarially tuning the entire network. In point of fact, if we only adversarially tune the
last affine classification layer, and no other parameters, for CIFAR-10 and CIFAR-100 we
respectively obtain adversarial accuracies of 46.6% and 26.1%. Thus adversarially tuning
only the last affine layer also surpasses the previous adversarial accuracy state-of-the-art.
This further demonstrates that that adversarial features can robustly transfer across data
distributions. In addition to robustness gains, adversarial pre-training could save much
wall-clock time since pre-training speeds up convergence; compared to typical training rou-
tines, adversarial training prohibitively requires at least 10x the usual amount of training

time. By surpassing the previous state-of-the-art, we have shown that pre-training enhances
adversarial robustness.

Robustness to Label Corruption

Setup. In the task of classification under label corruption, the goal is to learn as good
a classifier as possible on a dataset with corrupted labels. In accordance with prior work
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(Sukhbaatar et al., 2014) we focus on multi-class classification. Let x, y, and y be an input,
clean label, and potentially corrupted label respectively. The labels take values from 1 to
K. Given a dataset D of (z,y) pairs with = drawn from p(z) and y drawn from p(y | y, x),
the task is to predict argmax, p(y | z).

To experiment with a variety of corruption severities, we corrupt the true label with a
given probability to a randomly chosen incorrect class. Formally, we generate corrupted
labels with a ground truth matrix of corruption probabilities C', where Cj; = p(y = j | y = 1)
is the probability of corrupting an example with label 7 to label j. Given a corruption
strength s, we construct C with (1—s)I+s117 /K, I the K x K identity matrix. To measure
performance, we use the area under the curve plotting test error against corruption strength.
This is generated via linear interpolation between test errors at corruption strengths from 0
to 1 in increments of 0.1, summarizing a total of 11 experiments.

Methods. We first consider the baseline of training from scratch. This is denoted as
Normal Training in Table 2.2. We also consider state-of-the-art methods for classification
under label noise. The Forward method of Patrini et al. (2017) uses a two-stage training
procedure. The first stage estimates the matrix C' describing the expected label noise, and
the second stage trains a corrected classifier to predict the clean label distribution. We also
consider the Gold Loss Correction (GLC) method of Hendrycks et al. (2018), which assumes
access to a small, trusted dataset of cleanly labeled (gold standard) examples, which is also
known as a semi-verified setting (Charikar, Steinhardt, and Valiant, 2017). This method
also attempts to estimate C'. For this method, we specify the “trusted fraction,” which is
the fraction of the available training data that is trusted or known to be cleanly labeled.

In all experiments, we use 40-2 Wide Residual Networks, SGD with Nesterov momen-
tum, and a cosine learning rate schedule (Loshchilov and Hutter, 2016). The “Normal”
experiments train for 100 epochs with a learning rate of 0.1 and use dropout at a drop rate
of 0.3, as in Zagoruyko and Komodakis (2016). The experiments with pre-training train
for 10 epochs without dropout, and use a learning rate of 0.001 in the “No Correction”
experiment and 0.01 in the experiments with label noise corrections. We found the latter
experiments required a larger learning rate because of variance introduced by the stochastic
matrix corrections. Most parameter and architecture choices recur in later sections of this
paper. Results are in Table 2.2.

Analysis. In all experiments, pre-training gives large performance gains over the models
trained from scratch. With no correction, we see a 45% relative reduction in the area under
the error curve on CIFAR-10 and a 29% reduction on CIFAR-100. These improvements
exceed those of the task-specific Forward method. Therefore in the setting without trusted
data, pre-training attains new state-of-the-art AUCs of 15.9% and 39.1% on CIFAR-10 and
CIFAR-100 respectively.

These results are stable, since pre-training on Downsampled ImageNet with CIFAR-10-
related classes removed yields a similar AUC on CIFAR-10 of 14.5%. Moreover, we found
that these gains could not be bought by simply training for longer. As shown in Figure 2.1,
training for a long time with corrupted labels actually harms performance as the network
destructively memorizes the misinformation in the incorrect labels.
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Table 2.2: Label corruption robustness results with and without pre-training. Each value is
an area under the error curve summarizing performance at 11 corruption strengths. Lower
is better. All values are percentages. Pre-training greatly improves performance, in some
cases halving the error, and it can even surpass the task-specific Forward Correction.

CIFAR-10 CIFAR-100
Normal Training Pre-Training Normal Training Pre-Training
No Correction 28.7 15.9 55.4 39.1
Forward Correction 25.5 15.7 52.6 42.8
GLC (5% Trusted) 14.0 7.2 46.8 33.7
GLC (10% Trusted) 11.5 6.4 38.9 28.4

We also observe complementary gains of combining pre-training with previously proposed
label noise correction methods. In particular, using pre-training together with the GLC on
CIFAR-10 at a trusted fraction of 5% cuts the area under the error curve in half. Moreover,
using pre-training with the same amount of trusted data provides larger performance boosts
than doubling the amount of trusted data, effectively allowing one to reach a target perfor-
mance level with half as much trusted data. Qualitatively, Figure 2.2 shows that pre-training
softens the performance degradation as the corruption strength increases.

Importantly, although pre-training does have substantial additive effects on performance
with the Forward Correction method, we find that pre-training with no correction yields
superior performance. This observation implies that future research on label corruption
should evaluate with pre-trained networks or else researchers may develop methods that are
suboptimal.

We observe that pre-training also provides substantial improvements when swapping out
the Wide ResNet for an All Convolutional Network (Springenberg et al., 2014). In the
No Correction setting, area under the error curves on CIFAR-10 for Normal Training and
Pre-Training are 23.7% and 14.8% respectively. On CIFAR-100, they are 46.5% and 41.0%
respectively. Additionally, when fine-tuning a Wide ResNet on Places365 downsampled in
the same fashion as ImageNet in earlier experiments, we obtain area under the error curves of
19.3% and 49.5% compared to 28.7% and 55.4% with Normal Training. These experiments
demonstrate the generalizability of our results across architectures and datasets used for
pre-training.

Robustness to Class Imbalance

In most real-world classification problems, some classes are more abundant than others,
which naturally results in class imbalance (Van Horn et al., 2018). Unfortunately, deep
networks tend to model prevalent classes at the expense of minority classes. This need not
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Table 2.3: Experimental results on the imbalanced CIFAR-10 and CIFAR-100 datasets.

Dataset Imbalance Ratio 0.2 0.4 0.6 0.8 1.0 1.5 2.0
Method Total Test Error Rate / Minority Test Error Rate (%)

~  Normal Training 23.7 /26.0 21.8 /265 21.1 /258 20.3/24.7 20.0 / 24.5 18.3 /23.1 15.8 / 20.2
T Cost Sensitive 22.6 /249 21.8 /262 21.1 /257 202 /243 20.2 /24.6 18.1 /229 16.0 / 20.1
= Oversampling 21.0 /231 19.4 /236 19.0 /23.2 182 /222 183 /224 17.3 /222 153/ 19.8
= SMOTE 19.7 /217 19.7 /24.0 19.2 /234 19.2 /234 18.1 /221 17.2 /221 15.7 /204

Pre-Training 80/88 79/95 76/92 80/97 74/91 74/95 72/94
g Normal Training 69.7 / 72.0 66.6 / 70.5 63.2 /69.2 58.7 / 65.1 57.2 /64.4 50.2 /59.7 47.0 / 57.1
= Cost Sensitive 67.6 / 70.6 66.5 /70.4 62.2 /68.1 60.5/66.9 57.1 /64.0 50.6 / 59.6 46.5 / 56.7
£ Oversampling 62.4 / 66.2 59.7 / 63.8 59.2 / 65.5 55.3 / 61.7 54.6 / 62.2 49.4 / 59.0 46.6 / 56.9
B SMOTE 57.4 / 61.0 56.2 / 60.3 54.4 /60.2 52.8 /59.7 51.3 / 584 48.5 /57.9 45.8 / 56.3
“  Pre-Training 37.8 /41.8 36.9 / 41.3 36.2 /41.7 36.4 /423 34.9 / 41.5 34.0 / 41.9 33.5 / 422

be the case. Deep networks are capable of learning both the prevalent and minority classes,
but to accomplish this, task-specific approaches have been necessary. In this section, we
show that pre-training can also be useful for handling such imbalanced scenarios better than
approaches specifically created for this task (Japkowicz, 2000; Chawla et al., 2002; Huang
et al., 2016; Dong, Gong, and Zhu, 2018).

Setup. Similar to Dong, Gong, and Zhu (2018), we simulate class imbalance with a power
law model. Specifically, we set the number of training samples for a class ¢ as follows, n. =
la/(b+ (¢ —1)77)], where |-] is the integer rounding function, - represents an imbalance
ratio, a and b are offset parameters to specify the largest and smallest class sizes. Our
training data becomes a power law class distribution as the imbalance ratio v decreases.
We test 7 different degrees of imbalance; specifically, v € {0.2,0.4,0.6,0.8,1.0,1.5,2.0} and
(a,b) are set to force (max,mn., min.n.) to become (5000,250) for CIFAR-10 and (500, 25)
for CIFAR-100. A class is defined as a minority class if its size is smaller than the average
class size. For evaluation, we measure the average test set error rates of all classes and error
rates of minority classes.

Methods. The class imbalance baseline methods are as follows. Normal Training is
the conventional approach of training from scratch with cross-entropy loss. Ouversampling
(Japkowicz, 2000) is a re-sampling method to build a balanced training set before learn-
ing through augmenting the samples of minority classes with random replication. SMOTE
(Chawla et al., 2002) is an oversampling method that uses synthetic samples by interpolating
linearly with neighbors. Cost Sensitive (Huang et al., 2016) introduces additional weights
in the loss function for each class proportional to inverse class frequency.

Here we use 40-2 Wide Residual Networks, SGD with Nesterov momentum, and a co-
sine learning rate schedule. The experiments with pre-training train for 50 epochs without
dropout and use a learning rate of 0.001, and the experiments with other baselines train for
100 epochs with a learning rate of 0.1 and use dropout at a drop rate of 0.3.

Analysis. Table 2.3 shows that the pre-training alone significantly improves the test
set error rates compared to task-specific methods that can incur expensive back-and-forth
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costs, requiring additional training time and memory. Here, we remark that much of the gain
from pre-training is from the low test error rates on minority classes (i.e., those with greater
class indices), as shown in Figure 2.3. Furthermore, if we tune a network on CIFAR-10
that is pre-trained on Downsampled ImageNet with CIFAR-10-related classes removed, the
total error rate increases by only 2.1% compared to pre-training on all classes. By contrast,
the difference between pre-training and SMOTE is 12.6%. This implies that pre-training is
indeed useful for improving robustness against class imbalance.

Class-Wise Error Rates

N
o

= N N W W
U O U O U
1 1 1 1 1

Test Error (%)

10 A

1 2 3 4 5 6 7 8 9 10
Class Number

== Normal == SMOTE
=@— Cost Sensitive =@= Pre-Training
=N Qversampling

Figure 2.3: Class-wise test set error rates are lower across all classes with pre-training. Here
the imbalanced dataset is a CIFAR-10 modification with imbalance ratio v = 0.2.

Uncertainty

To demonstrate that pre-training improves model uncertainty estimates, we use the CIFAR-
10, CIFAR-100, and Tiny ImageNet datasets (Johnson et al., n.d.). We did not use Tiny
ImageNet in the robustness section, because adversarial training is not known to work on
images of this size, and using Tiny ImageNet is computationally prohibitive for the label
corruption experiments. Tiny ImageNet consists of 200 ImageNet classes at 64 x 64 resolution,
so we use a 64 x 64 version of Downsampled ImageNet for pre-training. We also remove the
200 overlapping Tiny ImageNet classes from Downsampled ImageNet for all experiments on
Tiny ImageNet.

In all experiments, we use 40-2 Wide ResNets trained using SGD with Nesterov momen-
tum and a cosine learning rate. Pre-trained networks train on Downsampled ImageNet for
100 epochs, and are fine-tuned for 10 epochs for CIFAR and 20 for Tiny ImageNet without
dropout and with a learning rate of 0.001. Baseline networks train from scratch for 100
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epochs with a dropout rate of 0.3. When performing temperature tuning in Section 2.1, we
train without 10% of the training data to estimate the optimum temperature.

Out-of-Distribution Detection

Setup. In the problem of out-of-distribution detection (Hendrycks and Gimpel, 2017a;
Hendrycks, Mazeika, and Dietterich, 2019b; Lee et al., 2018b; Lee et al., 2018a; Liu et al.,
2018), models are tasked with assigning anomaly scores to indicate whether a sample is in-
or out-of-distribution. Hendrycks and Gimpel (2017a) show that the discriminative features
learned by a classifier are well-suited for this task. They use the maximum softmax probabil-
ity maxy p(y = k | ) for each sample x as a way to rank in- and out-of-distribution (OOD)
samples. OOD samples tend to have lower maximum softmax probabilities. Improving over
this baseline is a difficult challenge without assuming knowledge of the test distribution of
anomalies (Chen et al., 2018). Without assuming such knowledge, we use the maximum
softmax probabilities to score anomalies and show that models which are pre-trained then
tuned provide superior anomaly scores.

To measure the quality of out-of-distribution detection, we employ two standard metrics.
The first is the AUROC, or the Area Under the Receiver Operating Characteristic curve.
This is the probability that an OOD example is assigned a higher anomaly score than an
in-distribution example. Thus a higher AUROC is better. A similar measure is the AUPR,
or the Area Under the Precision-Recall Curve; as before, a higher AUPR is better. For
in-distribution data we use the test dataset. For out-of-distribution data we use the var-
ious anomalous distributions from Hendrycks, Mazeika, and Dietterich (2019b), including
Gaussian noise, textures, Places365 scene images (Zhou et al., 2017), etc. All OOD datasets
do not have samples from Downsampled ImageNet. Further evaluation details are in the
Supplementary Materials.

Analysis. By using pre-training, both the AUROC and AUPR consistently improve
over the baseline, as shown in Table 2.4. Note that results are an average of the AUROC
and AUPR values from detecting samples from various OOD datasets. Observe that with
pre-training, CIFAR-100 OOD detection significantly improves. Consequently pre-training
can directly improve uncertainty estimates.

Calibration

Setup. A central component of uncertainty estimation in classification problems is confi-
dence calibration. From a classification system that produces probabilistic confidence es-
timates C of its predictions Y being correct, we would like trustworthy estimates. That
is, when a classifier predicts a class with eighty percent confidence, we would like it to be
correct eighty percent of the time. Nguyen and O’Connor (2015a) and Hendrycks and Gim-
pel (2017a) found that deep neural network classifiers display severe overconfidence in their
predictions, and that the problem becomes worse with increased representational capacity



CHAPTER 2. RELIABILITY 17

Table 2.4: Out-of-distribution detection performance with models trained from scratch and
with models pre-trained. Results are an average of five runs. Values are percentages.

AUROC AUPR
Normal Pre-Train Normal Pre-Train
CIFAR-10 91.5 94.5 63.4 73.5
CIFAR-100 69.4 83.1 29.7 52.7

Tiny ImageNet  71.8 73.9 30.8 31.0

(Guo et al., 2017a). Integrating uncalibrated classifiers into decision-making processes could
result in egregious assessments, motivating the task of confidence calibration.

To measure the calibration of a classifier, we adopt two measures from the literature.
The Root Mean Square Calibration Error (RMS) is the square root of the expected squared
difference between the classifier’s confidence and its accuracy at said confidence level,

VEC[P(Y =P|C =¢) o).

The Mean Absolute Value Calibration Error (MAD) uses the expected absolute difference
rather than squared difference between the same quantities. The MAD Calibration Error
has the same form as the Expected Calibration Error used by Guo et al. (2017a), but it
employs adaptive binning of confidences for improved estimation. In our experiments, we
use a bin size of 100. We refer the reader to Hendrycks, Mazeika, and Dietterich (2019b) for
further details on these measures.

Analysis. In all experiments, we observe large improvements in calibration from using
pre-training. In Figure 2.4 and Table 2.5, we can see that RMS Calibration Error is at least
halved on all datasets through the use of pre-training, with CIFAR-100 seeing the largest
improvement. The same is true of the MAD error. In fact, the MAD error on CIFAR-100 is
reduced by a factor of 4.1 with pre-training, which can be interpreted as the stated confidence
being four times closer to the true frequency of occurrence.

We find that these calibration gains are robust across pre-training datasets. With
Places365 pre-training the RMS error is 3.1 on CIFAR-10, and with ImageNet pre-training
the RMS error is 2.9; meanwhile, the baseline RMS error is 6.4. The gains are also com-
plementary with the temperature tuning method of Guo et al. (2017a), which further re-
duces RMS Calibration Error from 4.15 to 3.55 for Tiny ImageNet when combined with
pre-training. However, temperature tuning is computationally expensive and requires addi-
tional data, whereas pre-training does not require collecting extra data and can naturally
and directly make the model more calibrated.
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Table 2.5: Calibration errors for models trained from scratch and models with pre-training.
All values are percentages.

RMS Error MAD Error

Normal Pre-Train Normal Pre-Train
CIFAR-10 6.4 2.9 2.9 1.2
CIFAR-100 13.3 3.6 10.3 2.5
Tiny ImageNet 8.5 4.2 7.0 2.9

Calibration Error with Pre-Training

s Normal
I Pre-Training

=
H

=
N
1
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RMS Calibration Error (%)

CIFAR-10 CIFAR-100 Tiny ImageNet

Figure 2.4: Root Mean Square Calibration Error values for models trained from scratch and

models that are pre-trained. On all datasets, pre-training reduces the RMS error by more
than half.

Conclusion

Although He, Girshick, and Dollar (2018) assert that pre-training does not improve perfor-
mance on traditional tasks, for other tasks this is not so. On robustness and uncertainty
tasks, pre-training results in models that surpass the previous state-of-the-art. For uncer-
tainty tasks, we find pre-trained representations directly translate to improvements in pre-
dictive uncertainty estimates. He, Girshick, and Dollar (2018) argue that both pre-training
and training from scratch result in models of similar accuracy, but we show this only holds
for unperturbed data. In fact, pre-training with an untargeted adversary surpasses the
long-standing state-of-the-art in adversarial accuracy by a significant margin. Robustness
to label corruption is similarly improved by wide margins, such that pre-training alone out-
performs certain task-specific methods, sometimes even after combining these methods with
pre-training. This suggests future work on model robustness should evaluate proposed meth-
ods with pre-training in order to correctly gauge their utility, and some work could specialize
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pre-training for these downstream tasks. In sum, the benefits of pre-training extend beyond
merely quick convergence, as previously thought, since pre-training can improve model ro-
bustness and uncertainty.

2.2 Using Self-Supervised Learning Can Improve
Model Robustness and Uncertainty

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, Dawn Song

Self-supervision provides effective representations for downstream tasks without requiring
labels. However, existing approaches lag behind fully supervised training and are often not
thought beneficial beyond obviating or reducing the need for annotations. We find that self-
supervision can benefit robustness in a variety of ways, including robustness to adversarial
examples, label corruption, and common input corruptions. Additionally, self-supervision
greatly benefits out-of-distribution detection on difficult, near-distribution outliers, so much
so that it exceeds the performance of fully supervised methods. These results demonstrate
the promise of self-supervision for improving robustness and uncertainty estimation and
establish these tasks as new axes of evaluation for future self-supervised learning research.

Introduction

Self-supervised learning holds great promise for improving representations when labeled data
are scarce. In semi-supervised learning, recent self-supervision methods are state-of-the-art
(Gidaris, Singh, and Komodakis, 2018; Dosovitskiy et al., 2016; Zhai et al., 2019), and self-
supervision is essential in video tasks where annotation is costly (Vondrick, Pirsiavash, and
Torralba, 2016; Vondrick et al., 2018). To date, however, self-supervised approaches lag
behind fully supervised training on standard accuracy metrics and research has existed in
a mode of catching up to supervised performance. Additionally, when used in conjunction
with fully supervised learning on a fully labeled dataset, self-supervision has little impact on
accuracy. This raises the question of whether large labeled datasets render self-supervision
needless.

We show that while self-supervision does not substantially improve accuracy when used
in tandem with standard training on fully labeled datasets, it can improve several aspects of
model robustness, including robustness to adversarial examples (Madry et al., 2018a), label
corruptions (Patrini et al., 2017; Zhang and Sabuncu, 2018b), and common input corruptions
such as fog, snow, and blur (Hendrycks and Dietterich, 2019a). Importantly, these gains
are masked if one looks at clean accuracy alone, for which performance stays constant.
Moreover, we find that self-supervision greatly improves out-of-distribution detection for
difficult, near-distribution examples, a long-standing and underexplored problem. In fact,
using self-supervised learning techniques on CIFAR-10 and ImageNet for out-of-distribution
detection, we are even able to surpass fully supervised methods.
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These results demonstrate that self-supervision need not be viewed as a collection of
techniques allowing models to catch up to full supervision. Rather, using the two in con-
junction provides strong regularization that improves robustness and uncertainty estimation
even if clean accuracy does not change. Importantly, these methods can improve robustness
and uncertainty estimation without requiring larger models or additional data (Schmidt et
al., 2018; Kurakin, Goodfellow, and Bengio, 2017a). They can be used with task-specific
methods for additive effect with no additional assumptions. With self-supervised learn-
ing, we make tangible progress on adversarial robustness, label corruption, common input
corruptions, and out-of-distribution detection, suggesting that future self-supervised learn-
ing methods could also be judged by their utility for uncertainty estimates and model ro-
bustness. Code and our expanded ImageNet validation dataset are available at https:
//github.com/hendrycks/ss-ood.

Related Work

Self-supervised learning. A number of self-supervised methods have been proposed, each
exploring a different pretext task. Doersch, Gupta, and Efros (2015) predict the relative
position of image patches and use the resulting representation to improve object detec-
tion. Dosovitskiy et al. (2016) create surrogate classes to train on by transforming seed
image patches. Similarly, Gidaris, Singh, and Komodakis (2018) predict image rotations
(Figure 2.5). Other approaches include using colorization as a proxy task (Larsson, Maire,
and Shakhnarovich, 2016), deep clustering methods (Ji, Henriques, and Vedaldi, 2018), and
methods that maximize mutual information (Hjelm et al., 2019) with high-level representa-
tions (Oord, Li, and Vinyals, 2018; Hénaff et al., 2019). These works focus on the utility of
self-supervision for learning without labeled data and do not consider its effect on robustness
and uncertainty:.

Robustness. Improving model robustness refers to the goal of ensuring machine learning
models are resistant across a variety of imperfect training and testing conditions. Hendrycks
and Dietterich (2019a) look at how models can handle common real-world image corruptions
(such as fog, blur, and JPEG compression) and propose a comprehensive set of distortions
to evaluate real-world robustness. Another robustness problem is learning in the presence
of corrupted labels (Nettleton, Orriols-Puig, and Fornells, 2010; Patrini et al., 2017). To
this end, Hendrycks et al. (2018) introduce Gold Loss Correction (GLC), a method that
uses a small set of trusted labels to improve accuracy in this setting. With high degrees of
label corruption, models start to overfit the misinformation in the corrupted labels (Zhang
and Sabuncu, 2018b; Hendrycks, Lee, and Mazeika, 2019a), suggesting a need for ways
to supplement training with reliable signals from unsupervised objectives. Madry et al.
(2018a) explore adversarial robustness and propose PGD adversarial training, where models
are trained with a minimax robust optimization objective. Zhang et al. (2019a) improve
upon this work with a modified loss function and develop a better understanding of the
trade-off between adversarial accuracy and natural accuracy.
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Figure 2.5: Predicting rotation requires modeling shape. Texture alone is not sufficient
for determining whether the zebra is flipped, although it may be sufficient for classification
under ideal conditions. Thus, training with self-supervised auxiliary rotations may improve
robustness.

Out-of-distribution detection. Out-of-distribution detection has a long history. Tra-
ditional methods such as one-class SVMs (Scholkopf et al., 1999) have been revisited with
deep representations (Ruff et al., 2018), yielding improvements on complex data. A cen-
tral line of recent exploration has been with out-of-distribution detectors using supervised
representations. Hendrycks and Gimpel (2017a) propose using the maximum softmax prob-
ability of a classifier for out-of-distribution detection. Lee et al. (2018b) expand on this
by generating synthetic outliers and training the representations to flag these examples as
outliers. However, Hendrycks, Mazeika, and Dietterich (2019a) find that training against a
large and diverse dataset of outliers enables far better out-of-distribution detection on unseen
distributions. In these works, detection is most difficult for near-distribution outliers, which
suggests a need for new methods that force the model to learn more about the structure of
in-distribution examples.

Robustness
Robustness to Adversarial Perturbations

Improving robustness to adversarial inputs has proven difficult, with adversarial training
providing the only longstanding gains (Carlini and Wagner, 2017a; Athalye, Carlini, and
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Wagner, 2018a). In this section, we demonstrate that auxiliary self-supervision in the form
of predicting rotations (Gidaris, Singh, and Komodakis, 2018) can improve upon standard
Projected Gradient Descent (PGD) adversarial training (Madry et al., 2018a). We also
observe that self-supervision can provide gains when combined with stronger defenses such
as TRADES (Zhang et al., 2019a) and is not broken by gradient-free attacks such as SPSA
(Uesato et al., 2018).

Clean 20-step PGD 100-step PGD

Normal Training 94.8 0.0 0.0
Adversarial Training 84.2 44.8 44.8
+ Auxiliary Rotations (Ours)  83.5 50.4 50.4

Table 2.6: Results for our defense. All results use ¢ = 8.0/255. For 20-step adversaries
a = 2.0/255, and for 100-step adversaries v = 0.3/255. More steps do not change results, so
the attacks converge. Self-supervision through rotations provides large gains over standard
adversarial training.

Setup. The problem of defending against bounded adversarial perturbations can be
formally expressed as finding model parameters 6 for the classifier p that minimize the
objective

ming B, ) op [Maxyes Lop(y, p(y | 2);0)] where S ={z': ||z — 2’| <e} (2.1)

In this paper, we focus on ¢, norm bounded adversaries. Madry et al. (2018a) propose that
PGD is “a universal first-order adversary.” Hence, we first focus on defending against PGD.
Let PGD(z) be the K" step of PGD,

et =1 (2% + o sign(VaLep(y, p(y | 2%);0))) and  2° =2+ U(—¢,¢) (22)

where K is a preset parameter which characterizes the number of steps that are taken,
I1g is the projection operator for the I, ball S, and Lcg(y, p(y | 2); 0) is the loss we want to
optimize. Normally, this loss is the cross entropy between the model’s softmax classification
output for x and the ground truth label y. For evaluating robust accuracy, we use 20-step
and 100-step adversaries. For the 20-step adversary, we set the step-size « = 2/256. For the
100-step adversary, we set v = 0.3/256 as in (Madry et al., 2018a). During training, we use
10-step adversaries with a = 2/256.

In all experiments, we use 40-2 Wide Residual Networks (Zagoruyko and Komodakis,
2016). For training, we use SGD with Nesterov momentum of 0.9 and a batch size of 128.
We use an initial learning rate of 0.1 and a cosine learning rate schedule (Loshchilov and
Hutter, 2016) and weight decay of 5 x 10~%. For data augmentation, we use random cropping
and mirroring. Hyperparameters were chosen as standard values and are used in subsequent
sections unless otherwise specified.
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Adversarial Accuracy on CIFAR-10 vs. ¢
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Figure 2.6: The effect of attack strength on a ¢ = 8/255 adversarially trained model. The
attack strengths are ¢ € {4/255,5/255,...,10/255}. Since the accuracy gap widens as ¢
increases, self-supervision’s benefits are masked when observing the clean accuracy alone.

Method. We explore improving representation robustness beyond standard PGD train-
ing with auxiliary rotation-based self-supervision in the style of (Gidaris, Singh, and Ko-
modakis, 2018). In our approach, we train a classification network along with a separate
auxiliary head, which takes the penultimate vector from the network as input and outputs
a 4-way softmax distribution. This head is trained along with the rest of the network to
predict the amount of rotation applied to a given input image (from 0 90 180 and 270. Our
overall loss during training can be broken down into a supervised loss and a self-supervised
loss

L(z,y;0) = Lce(y, p(y | PGD(2));0) + ALss(PGD(); 6). (2.3)

Note that the self-supervised component of the loss does not require the ground truth training
label y as input. The supervised loss does not make use of our auxiliary head, while the
self-supervised loss only makes use of this head. When A = 0, our total loss falls back to
the loss used for PGD training. For our experiments, we use A = 0.5 and the following
rotation-based self-supervised loss

Lss(x;0) = i Z Lcg(one hot(7), Protneaa(r | Br(2));0) | , (2.4)

re{0°,90°,180°,270°}

where R,(x) is a rotation transformation and Lcg(z,7;0) is the cross-entropy between the
auxiliary head’s output and the ground-truth label » € {0°,90°,180°,270°}. In order to adapt
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the PGD adversary to the new training setup, we modify the loss used in the PGD update
equation (2) to maximize both the rotation loss and the classification loss. We find that this
modification is optional and that the main source of improvement comes from the rotation
loss itself. We report results with the modification here, for completeness. The overall loss
that PGD will try to maximize for each training image is Lor(y,p(y | ©);0) + Lss(x;0).
At test-time, the PGD loss does not include the Lgg term, as we want to attack the image
classifier and not the rotation classifier.

Results and analysis. We are able to attain large improvements over standard PGD
training by adding self-supervised rotation prediction. Table 2.6 contains results of our model
against PGD adversaries with K = 20 and K = 100. In both cases, we are able to achieve
a 5.6% absolute improvement over classical PGD training. In Figure 2.6, we observe that
our method of adding auxiliary rotations actually provides larger gains over standard PGD
training as the maximum perturbation distance ¢ increases. The figure also shows that our
method can withstand up to 11% larger perturbations than PGD training without any drop
in performance.

In order to demonstrate that our method does not rely on gradient obfuscation, we
attempted to attack our models using SPSA (Uesato et al., 2018) and failed to notice any
performance degradation compared to standard PGD training. In addition, since our self-
supervised method has the nice property of being easily adaptable to supplement other
different supervised defenses, we also studied the effect of adding self-supervised rotations to
stronger defenses such as TRADES (Zhang et al., 2019a). We found that self-supervision is
able to help in this setting as well. Our best-performing TRADES + rotations model gives
a 1.22% boost over standard TRADES and a 7.79% boost over standard PGD training in
robust accuracy. For implementation details, see code.

Robustness to Common Corruptions

Setup. In real-world applications of computer vision systems, inputs can be corrupted in
various ways that may not have been encountered during training. Improving robustness to
these common corruptions is especially important in safety-critical applications. Hendrycks
and Dietterich (2019a) create a set of fifteen test corruptions and four validation corruptions
common corruptions to measure input corruption robustness. These corruptions fall into
noise, blur, weather, and digital categories. Examples include shot noise, zoom blur, snow,
and JPEG compression.

We use the CIFAR-10-C validation dataset from (Hendrycks and Dietterich, 2019a) and
compare the robustness of normally trained classifiers to classifiers trained with an auxiliary
rotation prediction loss. As in previous sections, we predict all four rotations in parallel
in each batch. We use 40-2 Wide Residual Networks and the same optimization hyperpa-
rameters as before. We do not tune on the validation corruptions, so we report average
performance over all corruptions. Results are in Figure 2.7.

Results and analysis. The baseline of normal training achieves a clean accuracy of
94.7% and an average accuracy over all corruptions of 72.3%. Training with auxiliary ro-
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Figure 2.7: A comparison of the accuracy of usual training compared to training with auxil-
iary rotation self-supervision on the nineteen CIFAR-10-C corruptions. Each bar represents
an average over all five corruption strengths for a given corruption type.

tations maintains clean accuracy at 95.5% but increases the average accuracy on corrupted
images by 4.6% to 76.9%. Thus, the benefits of self-supervision to robustness are masked
by similar accuracy on clean images. Performance gains are spread across corruptions, with
a small loss of performance in only one corruption type, JPEG compression. For glass blur,
clean accuracy improves by 11.4%, and for Gaussian noise it improves by 11.6%. Perfor-
mance is also improved by 8.9% on contrast and shot noise and 4.2% on frost, indicating
substantial gains in robustness on a wide variety of corruptions. These results demonstrate
that self-supervision can regularize networks to be more robust even if clean accuracy is not
affected.

Robustness to Label Corruptions

Setup. Training classifiers on corrupted labels can severely degrade performance. Thus,
several prior works have explored training deep neural networks to be robust to label noise in
the multi-class classification setting (Sukhbaatar et al., 2014; Patrini et al., 2017; Hendrycks
et al., 2018). We use the problem setting from these works. Let x, y, and y be an input,
clean label, and potentially corrupted label respectively. Given a dataset D of (x,y) pairs
for training, the task is to obtain high classification accuracy on a test dataset Dy of
cleanly-labeled (x,y) pairs.

Given a cleanly-labeled training dataset 25, we generate D with a corruption matrix C,
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where C;; = p(y = j | y = i) is the probability of a ground truth label i being corrupted to j.
Where K is the range of the label, we construct C according to C' = (1 —s)Ix +s117 /K. In
this equation, s is the corruption strength, which lies in [0, 1]. At a corruption strength of 0,
the labels are unchanged, while at a corruption strength of 1 the labels have an equal chance
of being corrupted to any class. To measure performance, we average performance on Dy
over corruption strengths from 0 to 1 in increments of 0.1 for a total of 11 experiments.

Methods. Training without loss correction methods or self-supervision serves as our first
baseline, which we call No Correction in Table 2.7. Next, we compare to the state-of-the-art
Gold Loss Correction (GLC) (Hendrycks et al., 2018). This is a two-stage loss correction
method based on (Sukhbaatar et al., 2014) and (Patrini et al., 2017). The first stage of
training estimates the matrix C' of conditional corruption probabilities, which partially de-
scribes the corruption process. The second stage uses the estimate of C' to train a corrected
classifier that performs well on the clean label distribution. The GLC' assumes access to a
small dataset of trusted data with cleanly-labeled examples. Thus, we specify the percent of
amount of trusted data available in experiments as a fraction of the training set. This setup
is also known as a semi-verified setting (Charikar, Steinhardt, and Valiant, 2017).

To investigate the effect of self-supervision, we use the combined loss Log(y, p(y | x);0)+
Ass(z;0), where the first term is standard cross-entropy loss and the second term is the
auxiliary rotation loss defined in Section 2.2. We call this Rotations in Table 2.7. In all
experiments, we set A = 0.5. Gidaris, Singh, and Komodakis (2018) demonstrate that
predicting rotations can yield effective representations for subsequent fine-tuning on target
classification tasks. We build on this approach and pre-train with the auxiliary rotation loss
alone for 100 epochs, after which we fine-tune for 40 epochs with the combined loss.

We use 40-2 Wide Residual Networks (Zagoruyko and Komodakis, 2016). Hyperparame-
ters remain unchanged from Section 2.2. To select the number of fine-tuning epochs, we use
a validation split of the CIFAR-10 training dataset with clean labels and select a value to
bring accuracy close to that of Normal Training. Results are in Table 2.7 and performance
curves are in Figure 2.8.

CIFAR-10 CIFAR-100
Normal Training Rotations Normal Training Rotations
No Correction 27.4 21.8 52.6 47.4
GLC (5% Trusted) 14.6 10.5 48.3 43.2
GLC (10% Trusted) 11.6 9.6 39.1 36.8

Table 2.7: Label corruption results comparing normal training to training with auxiliary
rotation self-supervision. Each value is the average error over 11 corruption strengths. All
values are percentages. The reliable training signal from self-supervision improves resistance
to label noise.

Analysis. We observe large gains in robustness from auxiliary rotation prediction. With-
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Figure 2.8: Error curves for label corruption comparing normal training to training with
auxiliary rotation self-supervision. Auxiliary rotations improve performance when training
without loss corrections and are complementary with the GLC loss correction method.

out loss corrections, we reduce the average error by 5.6% on CIFAR-10 and 5.2% on CIFAR-
100. This corresponds to an 11% relative improvement over the baseline of normal training
on CIFAR-100 and a 26% relative improvement on CIFAR-10. In fact, auxiliary rotation
prediction with no loss correction outperforms the GLC with 5% trusted data on CIFAR-100.
This is surprising given that the GLC was developed specifically to combat label noise.

We also observe additive effects with the GLC. On CIFAR-10, the GLC with 5% trusted
data obtains 14.6% average error, which is reduced to 10.5% with the addition of auxiliary
rotation prediction. Note that doubling the amount of trusted data to 10% yields 11.6%
average error. Thus, using self-supervision can enable obtaining better performance than
doubling the amount of trusted data in a semi-supervised setting. On CIFAR-100, we observe
similar complementary gains from auxiliary rotation prediction. Qualitatively, we can see in
Figure 2.8 that performance degradation as the corruption strength increases is softer with
auxiliary rotation prediction.

On CIFAR-100, error at 0% corruption strength is 2.3% higher with auxiliary rotation
predictions. This is because we selected the number of fine-tuning epochs on CIFAR-10 at
0% corruption strength, for which the degradation is only 1.3%. Fine-tuning for longer can
eliminate this gap, but also leads to overfitting label noise (Zhang and Sabuncu, 2018b).
Controlling this trade-off of robustness to performance on clean data is application-specific.
However, past a corruption strength of 20%, auxiliary rotation predictions improve perfor-
mance for all tested corruption strengths and methods.
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Out-of-Distribution Detection

Self-supervised learning with rotation prediction enables the detection of harder out-of-
distribution examples. In the following two sections, we show that self-supervised learning
improves out-of-distribution detection when the in-distribution consists in multiple classes
or just a single class.

Multi-Class Out-of-Distribution Detection.

Setup. In the following experiment, we train a CIFAR-10 classifier and use it as an out-
of-distribution detector. When given an example x, we write the classifier’s posterior dis-
tribution over the ten classes with p(y | z). (Hendrycks and Gimpel, 2017a) show that
p(y | ©) can enable the detection of out-of-distribution examples. They show that the maxi-
mum softmax probability max.p(y = ¢ | z) tends to be higher for in-distribution examples
than for out-of-distribution examples across a range of tasks, enabling the detection of OOD
examples.

We evaluate each OOD detector using the area under the receiver operating characteristic
curve (AUROC) (Davis and Goadrich, 2006). Given an input image, an OOD detector
produces an anomaly score. The AUROC is equal to the probability an out-of-distribution
example has a higher anomaly score than an in-distribution example. Thus an OOD detector
with a 50% AUROC is at random-chance levels, and one with a 100% AUROC is without a
performance flaw.

Method. We train a classifier with an auxiliary self-supervised rotation loss. The loss
during training is Lo (5, (Y | ©)) + e or 000 1500 27001 L5 (00 BOT(), Pros neaa( | (1)),
and we only train on in-distribution CIFAR-10 training examples. After training is complete,
we score in-distribution CIFAR-10 test set examples and OOD examples with the formula
KL[U||p(y | )] + izre{ooﬂgoqwoomoo} Lcog(one hot(r), Protneaa(r | Rr(x))). We use the KL
divergence of the softmax prediction to the uniform distribution U since it combines well
with the rotation score, and because Hendrycks, Mazeika, and Dietterich (2019a) show that
KL[U||p(y | )] performs similarly to the maximum softmax probability baseline max. p(y =
c|x).

Method AUROC
Baseline 91.4%
Rotations (Ours) 96.2%

Figure 2.9: OOD detection performance of the maximum softmax probability baseline and
our method using self-supervision.

The training loss is standard cross-entropy loss with auxiliary rotation prediction. The
detection score is the KL divergence detector from prior work with a rotation score added
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to it. The rotation score consists of the cross entropy of the rotation softmax distribution
to the categorical distribution over rotations with probability 1 at the current rotation and
0 everywhere else. This is equivalent to the negative log probability assigned to the true
rotation. Summing the cross entropies over the rotations gives the total rotation score.

Results and Analysis. We evaluate this proposed method against the maximum soft-
max probability baseline (Hendrycks and Gimpel, 2017a) on a wide variety of anomalies with
CIFAR-10 as the in-distribution data. For the anomalies, we select Gaussian, Rademacher,
Blobs, Textures, SVHN, Places365, LSUN, and CIFAR-100 images. We observe performance
gains across the board and report average AUROC values in Figure 2.9. On average, the
rotation method increases the AUROC by 4.8%.

This method does not require additional data as in Outlier Exposure (Hendrycks, Mazeika,
and Dietterich, 2019a), although combining the two could yield further benefits. As is, the
performance gains are of comparable magnitude to more complex methods proposed in the
literature (Xie et al., 2018). This demonstrates that self-supervised auxiliary rotation pre-
diction can augment OOD detectors based on fully supervised multi-class representations.

One-Class Learning

Setup. In the following experiments, we take a dataset consisting in k classes and train a
model on one class. This model is used as an out-of-distribution detector. For the source of
OOD examples, we use the examples from the remaining unseen k — 1 classes. Consequently,
for the datasets we consider, the OOD examples are near the in-distribution and make for
a difficult OOD detection challenge.

CIFAR-10

Baselines. One-class SVMs (Scholkopf et al., 1999) are an unsupervised out-of-distribution
detection technique which models the training distribution by finding a small region contain-
ing most of the training set examples, and points outside this region are deemed OOD. In
our experiment, OC-SVMs operate on the raw CIFAR-10 pixels. Deep SVDD (Ruff et al.,
2018) uses convolutional networks to extract features from the raw pixels all while modelling
one class, like OC-SVMs.

RotNet (Gidaris, Singh, and Komodakis, 2018) is a successful self-supervised technique
which learns its representations by predicting whether an input is rotated 0 90 180 or 270
After training RotNet, we use the softmax probabilities to determine whether an example
is in- or out-of-distribution. To do this, we feed the network the original example (0 and
record RotNet’s softmax probability assigned to the 01pt class. We then rotate the example
90 and record the probability assigned to the 90 class. We do the same for 180 and 270
and add up these probabilities. The sum of the probabilities of in-distribution examples
will tend to be higher than the sum for OOD examples, so the negative of this sum is the
anomaly score. Next, Golan and El-Yaniv (2018) (Geometric) predicts transformations such
as rotations and whether an input is horizontally flipped; we are the first to connect this
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method to self-supervised learning and we improve their method. Deep InfoMax (Hjelm
et al., 2019) networks learn representations which have high mutual information with the
input; for detection we use the scores of the discriminator network. A recent self-supervised
technique is Invariant Information Clustering (IIC) (Ji, Henriques, and Vedaldi, 2018) which
teaches networks to cluster images without labels but instead by learning representations
which are invariant to geometric perturbations such as rotations, scaling, and skewing. For
our supervised baseline, we use a deep network which performs logistic regression, and for
the negative class we use Outlier Exposure. In Outlier Exposure, the network is exposed
to examples from a real, diverse dataset of consisting in out-of-distribution examples. Done
correctly, this process teaches the network to generalize to unseen anomalies. For the outlier
dataset, we use 80 Million Tiny Images (Torralba, Fergus, and Freeman, 2008) with CIFAR-
10 and CIFAR-100 examples removed. Crucial to the success of the supervised baseline is
our loss function choice. To ensure the supervised baseline learns from hard examples, we
use the Focal Loss (Lin et al., 2017).

Method. For our self-supervised one-class OOD detector, we use a deep network to
predict geometric transformations and thereby surpass previous work and the fully supervised
network. Examples are rotated 0 90 180 or 270 then translated 0 or £8 pixels vertically
and horizontally. These transformations are composed together, and the network has three
softmax heads: one for predicting rotation (R), one for predicting vertical translations (75),
and one for predicting horizontal translations (7). Concretely, the anomaly score for an
example x is

Z Z Zprotjead(r | G(ZE)) +pvert,transljlead(3 ‘ G(l’)) + phoriz,translllead(t | G(l’)),

reR s€Ty teTh

where G is the composition of rotations, vertical translations, and horizontal translations
specified by r, p, and g respectively. The set R is the set of rotations, and prot neaa(” | )
is the softmax probability assigned to rotation r by the rotation predictor. Likewise with
translations for T,, Th, S, 1, Pvert_transl head; NA Proriz transi head- 1he backbone architecture
is a 16-4 WideResNet (Zagoruyko and Komodakis, 2016) trained with a dropout rate of
0.3 (Srivastava et al., 2014). We choose a 16-4 network because there are fewer training
samples. Networks are trained with a cosine learning rate schedule (Loshchilov and Hutter,
2016), an initial learning rate of 0.1, Nesterov momentum, and a batch size of 128. Data is
augmented with standard cropping and mirroring. Our RotNet and supervised baseline use
the same backbone architecture and training hyperparameters. When training our method
with Outlier Exposure, we encourage the network to have uniform softmax responses on
out-of-distribution data. For Outlier Exposure to work successfully, we applied the afore-
mentioned geometric transformations to the outlier images so that the in-distribution data
and the outliers are as similar as possible.

Notice many self-supervised techniques perform better than methods specifically designed
for one-class learning. Also notice that our self-supervised technique outperforms Outlier
Exposure, the state-of-the-art fully supervised method, which also requires access to out-
of-distribution samples to train. In consequence, a model trained with self-supervision can
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surpass a fully supervised model. Combining our self-supervised technique with supervision
through Outlier Exposure nearly solves this CIFAR-10 task.

ImageNet

Dataset. We consequently turn to a harder dataset to test self-supervised techniques. For
this experiment, we select 30 classes from ImageNet (Deng et al., 2009b).

Method. Like before, we demonstrate that a self-supervised model can surpass a model
that is fully supervised. The fully supervised model is trained with Outlier Exposure using
ImageNet-22K outliers (with ImageNet-1K images removed). The architectural backbone
for these experiments is a ResNet-18. Images are resized such that the smallest side has
256 pixels, while the aspect ratio is maintained. Images are randomly cropped to the size
224 x 224 x 3. Since images are larger than CIFAR-10, new additions to the self-supervised
method are possible. Consequently, we can teach the network to predict whether than image
has been resized. In addition, since we should like the network to more easily learn shape
and compare regions across the whole image, we discovered there is utility in self-attention
(Woo et al., 2018a) for this task. Other architectural changes, such as using a Wide RevNet
(Behrmann et al., 2018) instead of a Wide ResNet, can increase the AUROC from 65.3% to
77.5%. Self-supervised methods outperform the fully supervised baseline by a large margin,
yet there is still wide room for improvement on large-scale OOD detection.

Method AUROC
Supervised (OE) 56.1
"RotNet 65.3
RotNet + Translation 77.9
RotNet + Self-Attention 81.6
RotNet + Translation + Self-Attention 84.8
RotNet + Translation + Self-Attention + Resize (Ours) 85.7

Table 2.8: AUROC values of supervised and self-supervised OOD detectors. AUROC values
are an average of 30 AUROCSs corresponding to the 30 different models trained on exactly
one of the 30 classes. Each model’s in-distribution examples are from one of 30 classes, and
the test out-of-distribution samples are from the remaining 29 classes. The self-supervised
methods greatly outperform the supervised method. All values are percentages.

Conclusion

In this paper, we applied self-supervised learning to improve the robustness and uncertainty
of deep learning models beyond what was previously possible with purely supervised ap-
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proaches. We found large improvements in robustness to adversarial examples, label corrup-
tion, and common input corruptions. For all types of robustness that we studied, we observed
consistent gains by supplementing current supervised methods with an auxiliary rotation
loss. We also found that self-supervised methods can drastically improve out-of-distribution
detection on difficult, near-distribution anomalies, and that in CIFAR and ImageNet exper-
iments, self-supervised methods outperform fully supervised methods. Self-supervision had
the largest improvement over supervised techniques in our ImageNet experiments, where the
larger input size meant that we were able to apply a more complex self-supervised objec-
tive. Our results suggest that future work in building more robust models and better data
representations could benefit greatly from self-supervised approaches.

2.3 Scaling Out-of-Distribution Detection for
Real-World Settings

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Moham-
madreza Mostajabi, Jacob Steinhardt, Dawn Song

Detecting out-of-distribution examples is important for safety-critical machine learning appli-
cations such as detecting novel biological phenomena and self-driving cars. However, existing
research mainly focuses on simple small-scale settings. To set the stage for more realistic
out-of-distribution detection, we depart from small-scale settings and explore large-scale
multiclass and multi-label settings with high-resolution images and thousands of classes. To
make future work in real-world settings possible, we create new benchmarks for three large-
scale settings. To test ImageNet multiclass anomaly detectors, we introduce a new dataset
of anomalous species. We leverage ImageNet-21K to evaluate PASCAL VOC and COCO
multilabel anomaly detectors. Third, we introduce a new benchmark for anomaly segmenta-
tion by introducing a segmentation benchmark with road anomalies. We conduct extensive
experiments in these more realistic settings for out-of-distribution detection and find that a
surprisingly simple detector based on the maximum logit outperforms prior methods in all
the large-scale multi-class, multi-label, and segmentation tasks, establishing a simple new
baseline for future work.

Introduction

Out-of-distribution (OOD) detection is a valuable tool for developing safe and reliable ma-
chine learning (ML) systems. Detecting anomalous inputs allows systems to initiate a con-
servative fallback policy or defer to human judgment. As an important component of ML
Safety (Hendrycks et al., 2021k), OOD detection is important for safety-critical applica-
tions such as self-driving cars and detecting novel microorganisms. Accordingly, research
on out-of-distribution detection has a rich history spanning several decades (Scholkopf et
al., 1999; Breunig et al., 2000; Emmott et al., 2015a). Recent work leverages deep neural
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representations for out-of-distribution detection in complex domains, such as image data
(Hendrycks and Gimpel, 2017a; Lee et al., 2018b; Mohseni et al., 2020; Hendrycks, Mazeika,
and Dietterich, 2019a). However, these works still primarily use small-scale datasets with
low-resolution images and few classes. As the community moves towards more realistic,
large-scale settings, strong baselines and high-quality benchmarks are imperative for future
progress.

Large-scale datasets such as ImageNet (Deng et al., 2009a) and Places365 (Zhou et
al., 2017) present unique challenges not seen in small-scale settings, such as a plethora of
fine-grained object classes. We demonstrate that the maximum softmax probability (MSP)
detector, a state-of-the-art method for small-scale problems, does not scale well to these
challenging conditions. Through extensive experiments, we identify a detector based on the
maximum logit (MaxLogit) that greatly outperforms the MSP and other strong baselines in
large-scale multi-class anomaly segmentation. To facilitate further research in this setting, we
also collect a new out-of-distribution test dataset suitable for models trained on highly diverse
datasets. Shown in Figure 2.11, our Species dataset contains diverse, anomalous species
that do not overlap ImageNet-21K which has approximately twenty two thousand classes.
Species avoids data leakage and enables a stricter evaluation methodology for ImageNet-21K
models. Using Species to conduct more controlled experiments without train-test overlap,
we find that contrary to prior claims (Fort, Ren, and Lakshminarayanan, 2021; Koner et al.,
2021), Vision Transformers (Dosovitskiy et al., 2021a) pre-trained on ImageNet-21K are not
substantially better at out-of-distribution detection.

Moreover, in the common real-world case of multi-label data, the MSP detector cannot
naturally be applied in the first place, as it requires softmax probabilities. To enable research
into the multi-label setting for anomaly detection, we contribute a multi-label experimental
setup and explore various methods on large-scale multi-label datasets. We find that the
MaxLogit detector from our investigation into the large-scale multi-class setting generalizes
well to multi-label data and again outperforms all other baselines.

In addition to focusing on small-scale datasets, most existing benchmarks for anomaly
detection treat entire images as anomalies. In practice, an image could be anomalous in
localized regions while being in-distribution elsewhere. Knowing which regions of an image
are anomalous could allow for safer handling of unfamiliar objects in the case of self-driving
cars. Creating a benchmark for this task is difficult, though, as simply cutting and pasting
anomalous objects into images introduces various unnatural giveaway cues such as edge
effects, mismatched orientation, and lighting, all of which trivialize the task of anomaly
segmentation (Blum et al., 2019).

To overcome these issues, we utilize a simulated driving environment to create the novel
StreetHazards dataset for anomaly segmentation. Using the Unreal Engine and the open-
source CARLA simulation environment (Dosovitskiy et al., 2017), we insert a diverse array
of foreign objects into driving scenes and re-render the scenes with these novel objects. This
enables integration of the foreign objects into their surrounding context with correct lighting
and orientation, sidestepping giveaway cues.

To complement the StreetHazards dataset, we convert the BDD100K semantic segmen-
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Figure 2.10: We scale up out-of-distribution detection to large-scale multi-class datasets with
thousands of classes, multi-label datasets with complex scenes, and anomaly segmentation
in driving environments. We introduce new benchmarks for all three settings. In all of these
settings, we find that an OOD detector based on the maximum logit outperforms previous
methods, establishing a strong and versatile baseline for future work on large-scale OOD
detection. The bottom-right shows a scene from our new anomaly segmentation benchmark
and the predicted anomaly using a state-of-the-art detector.

tation dataset (Yu et al., 2018) into an anomaly segmentation dataset, which we call BDD-
Anomaly. By leveraging the large scale of BDD100K, we reserve infrequent object classes to
be anomalies. We combine this dataset with StreetHazards to form the Combined Anomalous
Object Segmentation (CAOS) benchmark. The CAOS benchmark improves over previous
evaluations for anomaly segmentation in driving scenes by evaluating detectors on realistic
and diverse anomalies. We evaluate several baselines on the CAOS benchmark and discuss
problems with porting existing approaches from earlier formulations of out-of-distribution
detection.

Despite its simplicity, we find that the MaxLogit detector outperforms all baselines on
Species, our multi-class benchmark, and CAOS. In each of these three settings, we discuss
why MaxLogit provides superior performance, and we show that these gains are hidden if
one looks at small-scale problems alone. The code for our experiments and the Species and
CAOS datasets are available at [anonymized]. Our new baseline combined with Species
and CAOS benchmarks pave the way for future research on large-scale out-of-distribution
detection.
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Anomalous Species Dataset

Figure 2.11: The Species out-of-distribution dataset is designed for large-scale anomaly
detectors pretrained on datasets as diverse as ImageNet-21K. When models are pretrained
on ImageNet-21K, many previous OOD detection datasets may overlap with the pretraining
set, resulting in erroneous evaluations. To rectify this, Species is comprised of hundreds of
anomalous species that are disjoint from ImageNet-21K classes and enables the evaluation
of cutting-edge models.

Related Work

Multi-Class Out-of-Distribution Detection. A recent line of work leverages deep neural
representations from multi-class classifiers to perform out-of-distribution (OOD) detection
on high-dimensional data, including images, text, and speech data. Hendrycks and Gim-
pel (2017a) formulate the task and propose the simple baseline of using the maximum
softmax probability of the classifier on an input to gauge whether the input is out-of-
distribution. In particular, they formulate the task as distinguishing between examples
from an in-distribution dataset and various OOD datasets. Importantly, entire images are
treated as out-of-distribution.

Continuing this line of work, Lee et al. (2018b) propose to improve the neural represen-
tation of the classifier to better separate OOD examples. They use generative adversarial
networks to produce near-distribution examples and induce uniform posteriors on these syn-
thetic OOD examples. Hendrycks, Mazeika, and Dietterich (2019a) observe that outliers are
often easy to obtain in large quantity from diverse, realistic datasets and demonstrate that
OOD detectors trained on these outliers generalize to unseen classes of anomalies. Other
work investigates improving the anomaly detectors themselves given a fixed classifier (De-
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Vries and Taylor, 2018; Liang, Li, and Srikant, 2018a). However, as Hendrycks, Mazeika,
and Dietterich (2019a) observe, many of these works tune hyperparameters on a particular
type of anomaly that is also seen at test time, so their evaluation setting is more lenient. In
this paper, all anomalies seen at test time come from entirely unseen categories and are not
tuned on in any way. Hence, we do not compare to techniques such as ODIN (Liang, Li, and
Srikant, 2018a). Additionally, in a point of departure from prior work, we focus primarily
on large-scale images and datasets with many classes.

Recent work has suggested that stronger representations from Vision Transformers pre-
trained on ImageNet-21K can make out-of-distribution detection trivial (Fort, Ren, and
Lakshminarayanan, 2021; Koner et al., 2021). They evaluate models on detecting CIFAR-10
when fine-tuned on CIFAR-100 or vice versa, using models pretrained on ImageNet-21K.
However, over 1,000 classes in ImageNet-21K overlap with CIFAR-10, so it is still unclear
how Vision Transformers perform at detecting entirely unseen OOD categories. We create
a new OOD test dataset of anomalous species to investigate how well Vision Transformers
perform in controlled OOD detection settings without data leakage and overlap. We find
that Vision Transformers pre-trained on ImageNet-21K are far from solving OOD detection
in large-scale settings.

Anomaly Segmentation. Several prior works explore segmenting anomalous image
regions. One line of work uses the WildDash dataset (Zendel et al., 2018), which contains
numerous annotated driving scenes in conditions such as snow, fog, and rain. The WildDash
test set contains fifteen “negative images” from different domains for which the goal is to
mark the entire image as out-of-distribution. Thus, while the task is segmentation, the
anomalies do not exist as objects within an otherwise in-distribution scene. This setting
is similar to that explored by Hendrycks and Gimpel (2017a), in which whole images from
other datasets serve as out-of-distribution examples.

To approach anomaly segmentation on WildDash, Kreso et al. (2018) train on multiple
semantic segmentation domains and treat regions of images from the WildDash driving
dataset as out-of-distribution if they are segmented as regions from different domains, i.e.
indoor classes. Bevandié¢ et al. (2018) use ILSVRC 2012 images and train their network to
segment the entirety of these images as out-of-distribution.

In medical anomaly segmentation and product fault detection, anomalies are regions of
otherwise in-distribution images. Baur et al. (2019) segment anomalous regions in brain
MRIs using pixel-wise reconstruction loss. Similarly, Haselmann, Gruber, and Tabatabai
(2018) perform product fault detection using pixel-wise reconstruction loss and introduce an
expansive dataset for segmentation of product faults. In these relatively simple domains,
reconstruction-based approaches work well. In contrast to medical anomaly segmentation
and fault detection, we consider complex images from street scenes. These images have high
variability in scene layout and lighting, and hence are less amenable to reconstruction-based
techniques.

The two works closest to our own are the Lost and Found (Pinggera et al., 2016) and
Fishyscapes (Blum et al., 2019) datasets. The Lost and Found dataset consists of real
images in a driving environment with small road hazards. The images were collected to



CHAPTER 2. RELIABILITY 37

mirror the Cityscapes dataset (Cordts et al., 2016) but are only collected from one city
and so have less diversity. The dataset contains 35 unique anomalous objects, and methods
are allowed to train on many of these. For Lost and Found, only nine unique objects
are truly unseen at test time. Crucially, this is a different evaluation setting from our
own, where anomalous objects are not revealed at training time, so their dataset is not
directly comparable. Nevertheless, the BDD-Anomaly dataset fills several gaps in Lost and
Found. First, the images are more diverse, because they are sourced from a more recent
and comprehensive semantic segmentation dataset. Second, the anomalies are not restricted
to small, sparse road hazards. Concretely, anomalous regions in Lost and Found take up
0.11% of the image on average, whereas anomalous regions in the BDD-Anomaly dataset are
larger and fill 0.83% of the image on average. Finally, although the BDD-Anomaly dataset
treats three categories as anomalous, compared to Lost and Found it has far more unique
anomalous objects.
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Figure 2.12: Small-scale datasets such as CIFAR-10 have relatively disjoint classes, but
larger-scale datasets including ImageNet-1K have several classes with high visual similarity to
other classes. This implies that large-scale classifiers disperse probability mass among several
classes. If the prediction confidence is used for out-of-distribution detection, then images
which have similarities to other classes will often wrongly be deemed out-of-distribution due
to low and dispersed confidence. This motivates our MaxLogit out-of-distribution detector.

The Fishyscapes benchmark for anomaly segmentation consists of cut-and-paste anoma-
lies from out-of-distribution domains. This is problematic, because the anomalies stand out
as clearly unnatural in context. For instance, the orientation of anomalous objects is un-
natural, and the lighting of the cut-and-paste patch differs from the lighting in the original
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image, providing an unnatural cue to anomaly detectors that would not exist for real anoma-
lies. Techniques for detecting image manipulation (Zhou et al., 2018; Johnson and Farid,
2005) are competent at detecting artificial image elements of this kind. Our StreetHazards
dataset overcomes these issues by leveraging a simulated driving environment to naturally
insert anomalous 3D models into a scene rather than overlaying 2D images. These anoma-
lies are integrated into the scene with proper lighting and orientation, mimicking real-world
anomalies and making them significantly more difficult to detect.

FPR95 | AUROC 7 AUPR 1
Din MSP  DeVries MaxLogit |[MSP  DeVries MaxLogit [MSP  DeVries MaxLogit
ImageNet [44.2 46.0 35.8 84.6 76.9 87.2 38.2 30.5 45.8
Places365 |52.6 85.8 36.6 76.0 31.1 85.8 8.2 2.0 19.2

Table 2.9: Multi-class out-of-distribution detection results using the maximum softmax prob-
ability (MSP) baseline (Hendrycks and Gimpel, 2017a), the confidence branch detector of
DeVries and Taylor (2