
A Simulator and Benchmark for the RingWorld

Protocol

Yichi Zhang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-121

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-121.html

May 13, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

$�6LPXODWRU�DQG�%HQFKPDUN�RI�WKH�5LQJ:RUOG�3URWRFRO

E\�<LFKL�=KDQJ

5HVHDUFK�3URMHFW

6XEPLWWHG�WR�WKH�'HSDUWPHQW�RI�(OHFWULFDO�(QJLQHHULQJ�DQG�&RPSXWHU�6FLHQFHV�
8QLYHUVLW\�RI�&DOLIRUQLD�DW�%HUNHOH\��LQ�SDUWLDO�VDWLVIDFWLRQ�RI�WKH�UHTXLUHPHQWV�IRU�WKH
GHJUHH�RI 0DVWHU�RI�6FLHQFH��3ODQ�,,�

$SSURYDO�IRU�WKH�5HSRUW�DQG�&RPSUHKHQVLYH�([DPLQDWLRQ�

&RPPLWWHH�

3URIHVVRU�6FRWW�6KHQNHU
5HVHDUFK�$GYLVRU

�'DWH�

�
�
�
�
�
�

3URIHVVRU�6\OYLD�5DWQDVDP\
6HFRQG�5HDGHU

�'DWH�

Scott Shenker
5/10/2022

Sylvia Ratnasamy
5/13/2022

A Simulator and Benchmark for the
RingWorld Protocol
Abstract

RingWorld is a new consensus protocol aiming for deployment in datacenters that
utilizes programmable top-of-rack (ToR) switches and multiple servers in a rack. The
ToRs connect to each other and form a logical ring. This report attempts to build a
simulator for RingWorld protocol’s normal execution model, and to benchmark the
protocol.

Introduction

Consensus protocols are protocols that make multiple systems agree on certain things.
It could often be represented as machines agreeing on the order of an append-only log
replicated on each machine.

Traditionally, there are two paradigms of consensus protocols. One is the leader-based
protocols, among them are Paxos [2] and Raft [3], etc. These protocols have low
latencies during normal operations, but because of the communication overheads, the
throughput is usually limited. In these protocols, although using more replicas increases
the ability to tolerate fault, it brings a performance hit with lower throughput and higher
latency. Furthermore, because of the existence of one single leader, the failure of it
usually leads to a view-change operation that needs to be carried out to elect a new
leader before they can resume normal operation.

Another is the ring-based protocols like Carousel [4]. These potentially have simpler
failure-recovery models, and have high throughput. However, the latency of these
systems scales up linearly with the number of replicas.

RingWorld [1] takes advantage of the programmable switches on top of each rack in
datacenters, and gets the best of both worlds by running on a ring of racks model. On
one hand, the latency is rather constant with the number of replicas because a constant
number of racks are involved. On the other hand, the throughput is high thanks to the
high speed of the switches. RingWorld also has a simple failure recovery protocol that
only involves machines local to the failed point.

The next section will present the RingWorld protocol in more detail.

Background

RingWorld adopts the new topology of ring-of-racks. As shown in the image above,
every switch is logically connected to two other switches in the ring - the predecessor
and the successor. The connections between switches are extremely fast. Each switch
is responsible for disseminating messages to the replicas under it, and Each switch only
has a local view of the ring. Similarly, a replica does not need to know about other
replicas’ presence to operate normally.

For a message to be added to an append-only log in RingWorld, the following steps are
taken. First, the incoming message from a client is routed to any one of the replicas.
Upon receiving the message, the replica initiates a request to add it and sends it to its
parent ToR. The ToR assigns the message an unique ID in the form of (sequence
number, switch ID), increments its sequence number counter, and starts the first round
for the request - the Propose round.

In this round, every ToR that receives the message will propagate it to its children, as
well as the next ToR. Replicas will need to keep a pending queue for messages that
they have received but not yet delivered, sorted using the unique ID of the message.
They will also need to acknowledge the message back to its parent, who will count the
ACKs it has received for the message. When the Propose packet gets forwarded back

to the original ToR, the Propose round ends and the second round, the Collect round,
begins.

A Collect packet contains the information about how many machines under each ToR
has acknowledged, and every ToR on the ring will forward the Collect packet after
writing this field. The Collect packet could potentially travel the ring for multiple rounds,
up to a configurable maximum value, because the time it takes for a packet to travel one
round on the ring is significantly shorter than that for one to travel to and from a replica.
After the Collect round is complete, the initial ToR can decide whether to proceed or
abort based on the information carried in the Collect packet. If more than f racks have
more than m acknowledgements each, the message is committed, and aborted
otherwise.

Then the Commit round starts. Every rack will forward the Commit decision to its
children and its successor. When a replica receives a Commit packet, it will mark the
message in the pending queue to reflect the decision, and try to deliver some messages
in the pending queue. A replica iterates from the beginning of the sorted queue and
stops at the first undecided message. For each decided message in the queue, it either
gets flushed to the delivered log, or gets deleted. The original replica that issued the
request can reply to the client after a Commit packet is received.

The Simulator

As a simulator that runs on Linux, there are problems that it has to ignore and
compromises to make. For example, it cannot run even nearly as fast as an actual
programmable switch, and there is very little that can be done about it. In this section, I
will discuss some design considerations of the simulator, and address some of the road
blocks I have encountered.

Data Transport

First of all is the question of what layer and protocol to use to carry the payload.
RingWorld, as a protocol acting on programmable switches, is supposed to be a L2 or
L3 protocol. However, programming on lower layers is beyond my current knowledge
and too complicated for the sake of this project, so they are out of consideration.

The closest thing to a layer 2 frame is a UDP packet. It communicates in packets
instead of streams and it is not a reliable protocol, therefore the first version of the
simulator is written using the UDP transport protocol. It ran well until it was hit with a
large load, when it just dropped packets, and left the replicas and switches with partial
information, and very few messages could get delivered, so UDP is out of consideration.

This issue in packet loss led to another readthrough of the RingWorld paper, and it was
discovered that RingWorld actually assumes that the interconnects between switches
neither drop nor reorder packets. Therefore a second version of the simulator was
written using TCP. To reduce communication overhead, connections are made not for
each request being made, but at the beginning of the simulation between each replica
and its parent, and between the predecessors and successors on the ring. This way, no
packet loss will be exposed to the simulator, and not much overhead incurs except for
the potential packet retransmission.

Using TCP as the transport posed one roadblock as what I was taught in the internet
courses usually does a blocking listen and recv for incoming data, while in the simulator
we need to listen for multiple connections made from the children, the parent, or the
predecessor depending on the role. The solution to this is to use epoll. Epoll allows a
programmer to simultaneously listen for events on multiple file descriptors (fd) by
“combining” the fds of interest and giving a new one to the programmer to listen to. In
this scenario, every socket fd is added to the combined fd, after which we have the
ability to listen on all the sockets for incoming messages.

Switches

The switches are straightforward, and one big difference from that described in Section
(2) is that in the simulator, they also listen for Control messages. A control message
could be from me, the runner of the simulator, to instruct the switch to establish a
connection onto the port of its successor. It could also be from a replica which would
bear the meaning that the replica is joining the switch as a child, or from a switch
signaling that it is the predecessor. This is needed because of how the benchmark is set
up - all instances of switches and replicas need to be up and running before they
interconnect with each other. Only the runner of the simulator knows whether all
machines are up, and only the runner knows when to terminate all instances.

When a switch is initialized, it sets up the epoll fd, and binds to a master port, on which
it listens for incoming connections. Whenever a new connection is established, the new
connection is added to the epoll structure, and the switch needs to keep track of the role
of the connection - whether it’s from a child or a switch in its previous location. We
achieve this by keeping a mapping from the fd to a role-type enumeration. Keeping this
mapping could also serve as a debugging purpose since we can check for unexpected
messages.

The switch further contains two mappings. One is from a Message ID tuple
(sequence_number, switch_id) to the number of acknowledgements. This is to decide
whether a message is getting committed or not when it is time to decide. The other is
from a Message ID to the number of Collect rounds passed.

Replica

The replicas are quite similar to switches in terms of how they operate. They also have
a master port to listen on, so that requests from clients can get to them. They also listen
for Control messages to poke their parents about their presence. A replica also has the
responsibility to reply to the original client for each committed message, so it needs to
keep track of the messages it received. This is achieved by keeping a monotonically
increasing sequence number and a mapping between the sequence number and a
message at each replica. When it receives a Commit message targeting a message it
broadcasted, it sends back either a success or failure reply.

The function of the pending queue is provided by a C++ std::map using Message IDs as
keys. Since it is a custom struct, a custom comparator function, which prioritizes
sequence number over switch ID, needs to be provided to the map. When a Propose
message is received, it is inserted into the pending queue with the status marked as
UNDECIDED. When a Commit message is received, the status is marked as
PROCEED or ABORT. During delivery, a replica iterates from the beginning of the
ordered map, stops at the first UNDECIDED message, and takes action on the decided
messages.

Benchmark Setup

We run two groups of benchmarks with a different network setup. In both groups, we
measure the latency of RingWorld with different numbers of switches and replicas. In
these benchmarks, two computers are involved: (a) an AMD Ryzen 5 3600 CPU with 6
cores and hyperthreading, clocked at 4.0 GHz, and (b) an Intel i3-8100 CPU with 4
cores and no hyperthreading, clocked at 3.6 GHz. Both of them run Linux, and both of
them are on the same wired LAN. All messages are sent from one python script on
computer (a).

Setup 1

We have all instances of switches and replicas running on computer (a). This would be
the theoretical fastest setup I will have access to: pinging localhost has an average
round-trip time of 0.03 milliseconds.

Setup 2

We have all instances of switches on computer (a), and all replicas on (b). Since they
are on the same LAN, the connections between switches and replicas are quite small
(0.16 milliseconds in ping), but connections between switches are even faster (still 0.03
milliseconds). The choice to make switches on (a) and replicas on (b) instead of the

other way around is made because of the fact that switches process many more
messages than replicas do even though there are more replicas than switches.

Results

We ran the two setups using these test suites. With 5 replicas for each switch, we test
using {3, 5, 7, 9} switches, and with 9 replicas for each switch, we test using 3 switches.
For each suite, we bombard the system with a total of 10,000 messages, each one
about 8 bytes, and note down several time lengths: the time from a replica receives
from a client to the time it replies back, and the time it delivers the message; the time
from a switch starts a propose round to the end of the propose round, the end of all
collect rounds, and the end of the commit round. All times are measured in milliseconds
using C++ std::chrono::steady_clock. Because 10,000 data points make the plotting
software slow, and to make the graph smoother, we take the average of five data points
and use the resulting 2,000 to plot.

Setup 1

Here we observe one effect. Because of the low latency in this setup, the load on the
machine as well as the processing time of the replicas affect more on the reply time of
the system, and as a result, we see that it matters not that much to have either 3
switches on the ring or 5. This is mentioned in the RingWorld paper, and in real
deployment, this could potentially extend to a larger number of switches.

Again, we observed the effect mentioned above. Furthermore, we can see that with 9
replicas, the load on the system increases because of the increase in the number of
packets to be processed. This is reflected in the graph as a wider “line”, showing an
increase in variance.

We also try to explain a few things here. The gradual decrease in the total time could be
caused by the gradual decrease in the number of packets flowing in the system,
because the influx of messages stops rather early on. The crossover of total time and
reply time is because we measure the two times on switches and replicas, respectively.
This means that a portion of the network latency is not captured by these numbers, and
results in the total time shorter than the reply time.

Setup 2

In setup 2, because everything gets slower - the network is slower because we are on
the LAN, the replicas run slower because they are on a slower machine - a ring of size 3
as opposed to 5 actually has an effect on the time. We also see a great increase in reply
times (in the 1300 ms area for 3 switches as opposed to 500 in the previous setup)
There’s also bigger variance compared to setup 1, and again, this could be because of
the nature of networks.

Here, once again, we see the huge fluctuations in total times especially in the scenario
with 9 replicas, and the gradual decrease in total times.

Future Works

This simulator could potentially benefit greatly from a total rewrite using C++’s Boost
library. The asynchronous I/O should be more performant than the current
single-threaded approach. It could also be implemented using only one host and add in
artificial internet delay to mimic a real environment. Being asynchronous also gives the
option to add in manual network delay, which makes running on one single machine
more versatile.

Also, for some reason, the data gathering code stopped working at 10000 ms, and the
benchmark had to stop at 9 switches with 9 replicas.

Conclusion

This report discusses the normal operation of RingWorld protocol, and ran a benchmark
to investigate how RingWorld scales with an increased number of machines.

References

[1] Aisha Mushtaq. RingWorld: Consensus for Datacenters. 2022.

[2] Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately complex.
ACM Computing Surveys (CSUR), 47(3):1-36, 2015.

[3] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In USENIX ATC, 2014

[4] Rachid Guerraoui, Jad Hamza, Dragos-Adrian Seredinschi, and Marko Vukolic. Can
100 machines agree? arXiv preprint arXiv: 1911.07966, 2019.

Appendix

Other Graphs

