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Abstract

Towards diffraction-limited short-wavelength imaging systems

by

Gautam K. Gunjala

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laura Waller, Chair

Modern applications of optics, especially those which require shorter wavelengths of light,
place ever-increasing demands on the performance of optical tools and systems. Working
with extreme ultraviolet, soft x-ray and hard x-ray light poses complex limitations and
challenges to diagnosing and maintaining diffraction-limited performance by measuring and
controlling optical aberrations. By utilizing computational methods such as optimization
and machine learning, we show that some of these limitations can be circumvented without
sacrificing accuracy or precision.

In this work, we discuss a method for aberration measurement that is based on an analy-
sis of speckle images acquired in situ. By using a stationary random object, our method
eliminates the need for precise manufacturing and alignment of a test target. Moreover,
the method provides a full, dense characterization of the optical system under test using
relatively few images. The method has been successfully applied to an EUV microscope
system, and is shown to be accurate to within λ/180. We also discuss a method for aber-
ration compensation via the characterization and control of an adaptive optical element for
x-ray optical systems. Adaptive x-ray optics are a relatively new technology, and our work
aims to enable their use within the specifications of synchrotron beamline systems. To this
end, we demonstrate the ability to experimentally predict and control the behavior of the
glancing-incidence deformable mirror surface to within 2 nm rms, allowing the application
of sub-wavelength corrections to an incident wavefront.
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Chapter 1

Introduction

Many applications of modern science and engineering have come to rely on short wavelength
optics. For example, in the space of microscopy and metrology, shorter wavelengths enable
the visualization of smaller sample features. Imaging techniques based on x-ray illumination
are commonly employed in the life and materials sciences. In spectroscopy, many insights can
be drawn from the unique interactions between soft x-rays and matter. Projection imaging
using extreme ultraviolet light has been a relatively new innovation in photolithography,
helping maintain a decades-long trend of patterning semiconductors with higher density and
improving the performance of electronics.

While there are many motivations for using shorter wavelengths of light, working with
them in practice often poses significant challenges. As we push towards wavelengths of just
a few nanometers, our tolerance for errors in the alignment, fabrication and metrology of
optical systems is typically sub-nanometer. Errors on the same order of magnitude as the
wavelength are often prohibitive to the operation of the optical system. Additionally, the
absorption and transmission properties for short wavelengths of light and optical surfaces
can limit the design and placement of optical elements in a system. For example, extreme
ultraviolet light is significantly absorbed by most matter, which limits the number of ele-
ments that can be used while maintaining sufficient photon throughput. On the other hand,
most matter is transmissive to hard x-ray radiation, and so most focusing elements (e.g.
Kirkpatrick-Baez mirrors) operate at grazing incidence. In some cases, the high energies
associated with e.g. x-ray sources can also cause heat deformation in optical elements, re-
sulting in dynamic errors. Compared to visible light optics, where many of these problems
either do not exist or are much more easily solved, the design and maintenance of short
wavelength systems free of errors, or aberrations, remains an active area of research.

1.1 The diffraction limit and aberrations

Many of the challenges that arise when working with short wavelengths can be attributed
to the desire for “diffraction-limited” optical systems. The diffraction limit is a theoretical
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limit on the resolution of an optical system, defined:

r = k · λ

NA
(1.1)

where k is a context-specific constant factor, λ is the illumination wavelength, and NA is the
numerical aperture (angular acceptance) of the system. The quantity r represents the size
of the smallest resolvable detail, defined using one of several metrics. The resolution of an
optical system determines, for example, the image of a point source (point spread function)
and similarly the smallest possible focal spot for an incident plane wave. A practical system
(which generally has a fixed source wavelength and NA) whose performance closely aligns
with this theoretical ideal is called “diffraction-limited” [32, 23].

It is often the case however that practical systems deviate from this theoretical ideal, and
in such cases, the minimum resolvable detail or minimal spot size are larger than expected.
Errors in the fabrication and alignment of optical elements often result in this loss of per-
formance, and the resulting deviation from an ideal wavefront (aberrations) can be precisely
specified. It then follows that access to this information and the ability to act on it are
essential to the efficient operation of practical optical systems. In this thesis, we will explore
techniques for the measurement and correction of aberrations, with a particular emphasis
on extreme ultraviolet (λ ∈ [10, 120] nm) and soft x-ray (λ ∈ [0.1, 10] nm) systems.

1.2 Aberration measurement

Chapters 2 and 3 of this thesis will discuss a technique for the measurement of aberrations
in imaging systems and its application to an extreme ultraviolet (EUV) microscope. While
there are numerous existing methods for aberration measurement, they are generally difficult,
costly or impractical to apply to specialized modalities such as EUV imaging. Interferometric
techniques [29, 61, 8, 62, 77, 48, 47] or adaptive optics [78, 5, 37, 63], both widely used in the
visible spectrum, require the insertion of complicated and expensive hardware in the optical
system. These techniques are impractical in the EUV regime since the same range of optical
elements does not exist for this wavelength, and moreover, EUV systems typically exist in a
vacuum, making modification of the beam path impractical.

One measurement approach used in EUV is to image precisely-calibrated test objects [28,
16] such as gratings [53, 52], contact arrays [54, 83], or custom features [43], which do not
require modifying the system hardware. However, known test objects containing features
with sizes near the resolution limit of the imaging system are difficult or expensive to fabricate
with high fidelity. Fabrication errors and the 3D structure of test objects can also introduce
model mismatch and complicate analysis [65, 60]. Furthermore, many of these test objects
are not ideal for aberration and wavefront recovery. For example, periodic targets only
probe discrete points in frequency space, and custom features are generally designed to
retrieve a single component of the wavefront error. In both of these cases, a combination of
multiple feature sizes, orientations and focal positions must be measured in order to retrieve
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a relatively small amount of information [53]. In other words, these techniques are generally
not data-efficient and provide a limited, albeit highly accurate, characterization of an optical
system.

Another class of aberration measurement techniques operates by jointly estimating both
the sample of interest and the system aberrations using optimization [57, 11]. An inverse
problem is generally formulated using the imaging forward model and regularized to enforce
priors on the sample, aberrations or both. This method has the advantages of not requiring
any additional hardware or test targets and also capturing a complete characterization of the
aberrations and the sample image simultaneously. However, the use of strong regularizers
and priors often leads to a biased reconstruction of the aberration function that is highly
dependent on the sample being imaged.

In this work, we develop a method for characterizing the aberrations of a full-field imaging
system that does not require hardware modifications or the fabrication of test objects. To
implement, we acquire speckle images of a suitable diffuser object at multiple angles of plane-
wave illumination. The object being imaged does not need to be precisely fabricated; it only
needs to have a pseudo-random surface, weak phase and sufficient power-spectral density
extending to the imaging system’s resolution limit. A blank EUV photomask conveniently
meets these requirements, due to intrinsic surface roughness [55, 81].

Our method differs from a number of existing speckle-based wavefront sensing tech-
niques [10, 6] in that we rely on Fourier space properties of speckle imaged near-focus rather
than real-space properties of propagated speckle. Similar methods have been demonstrated in
electron microscopy, where amorphous carbon is imaged (i.e the Zemlin tableau method) [84,
80, 74, 15] as part of a calibration procedure; however, these are generally not based on in-
version of a precise forward model and are used only to determine low-order aberrations.

Our method has several advantages over other approaches that entail imaging test objects.
First, no special fabrication is required, as suitable objects can be found opportunistically.
Second, unlike periodic objects, uncorrelated surface roughness provides isotropic sampling
of frequency space. Third, no registration or alignment of the test object is required, as
the statistics of the roughness should not change across the object. Finally, our method is
data-efficient; in our implementation, we use 10 speckle images to recover all field-varying
aberrations of up to order 5. We apply the method to the SHARP High-NA Actinic Reticle
Review Project (SHARP) [21], an EUV microscope that operates near 13.5 nm wavelength,
but we emphasize that it is suitable for any full-field imaging system that has coherent,
steerable illumination.

1.3 Aberration correction

Chapters 4 and 5 of this thesis will discuss adaptive optics for rapid, open-loop aberration
correction in x-ray systems. In particular, we will emphasize applications to synchrotron
and free-electron laser (FEL) facilities as aberration control is crucial to their operation.
The next generation of light sources, including FELs and diffraction-limited storage rings
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Figure 1.1: X-ray beam profile at focus after aberrated mirror. (a) A mirror figure
error (MFE) of 2.0 nm rms causes a slight reduction in peak intensity with respect to reference
(no aberrations); however the beam can still be considered in focus. (b) An MFE of 4.0 nm
rms results in very low peak intensity, and the beam is not focused.

(DLSR) at synchrotrons, are poised to produce x-ray beams of unprecedented brightness and
coherent flux. Development of these upgraded light sources is already underway around the
world, including the Advanced Light Source Upgrade (ALS-U) and Advanced Photon Source
Upgrade (APS-U) projects in US national laboratories. The improved source characteristics
aim to enable fast experiments where wavefront phase information can be used to study
matter in exquisite detail.

Given these advances in beam quality, it becomes increasingly important to ensure that
this quality is not lost through aberrations in the beamline optics downstream. The scale
of tolerances for surface height errors in these short-wavelength imaging optics presents a
significant challenge, which is demonstrated in Fig. 1.1. Simulating a focusing element with
the intention of bringing incident illumination with a wavelength of 1.25 nm to a diffraction-
limited spot, we can see that while 2 nm rms of simulated figure error can be generally
tolerated, merely 4 nm rms of error render the element unable to focus light. In addition
to nominal surface figure errors, aberration correction is further complicated by dynamic
conditions such as heatload deformation owing to the energy of the incident illumination.

Under these circumstances, adaptive optics techniques have emerged as an attractive
solution for the design of beamlines with wavefront shaping capabilities [66, 59, 35, 41, 13,
69]. Over the last decade, significant advances [51, 67] have led to the commercial availability
of piezo-bimorph mirrors [1, 36] and their successful deployment on several beamlines [49,
76]. These mirrors have symmetrically placed bimorph elements attached to silicon mirror
substrates, which allow these systems to maintain thermal stability while providing one-
dimensional shape actuation. Investigations of the mirrors’ linear response demonstrate
that their shape can be controlled to a nanometer level in a predictable way [79, 1] as
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required for diffraction-limited performance. Studies of the mirrors’ dynamic response show
that appreciable shape changes on the scale of 1 second are possible [2].

In this work, we propose a two-part framework for the open-loop operation of an x-ray
deformable mirror, involving: (1) approximating the nonlinear system dynamics using a feed-
forward neural network, and (2) control to a desired surface shape using nonlinear quadratic
cost regulation over a finite time horizon. We will present an experimental demonstration
of our approach performed using an ex-situ visible-light Fizeau interferometer to record the
behavior of an adaptive mirror driven through various shape transitions. We note that our
methodology is broadly applicable to x-ray or other optical systems utilizing an adaptive
element, independent of the optical configurations and wavelength ranges.
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Chapter 2

Imaging systems, aberrations and
speckle

In this chapter, we will present the theoretical framework surrounding our method for aber-
ration measurement in optical imaging systems based on the acquisition of speckle images
under varying angles of illumination. Specifically, we will construct a mathematical model for
diffusers – weak-phase, stationary scattering media – and use it to develop a general image
formation model. We will show that under specific conditions, the system aberrations are
observable in intensity measurements, setting the stage for development of a reconstruction
algorithm.

2.1 Modeling imaging systems

We will begin with a Fourier optics model for imaging systems [23]. This model is built upon
the idea that signals (images) can be represented as a linear combination of components with
unique, single frequencies (plane waves). In this model, the action of an optical system is
analogous to low-pass filtering, where the frequencies permitted by the system are related
to its numerical aperture (NA). This relationship is illustrated in Fig. 2.1

Mathematically, the imaging system is expressed as a transfer function, P (·), acting on
time-averaged electric fields, E(·), and the measured intensity, I(·), is obtained by computing
the squared magnitude of the output electric field. In general, we have:

I(x) = |Ei(x)|2 = |P (x) ∗ Eo(x)|2, (2.1)

where x ∈ R2 is the spatial coordinate, ∗ denotes convolution and subscripts i and o indicate
the image and object planes, respectively. Taking the Fourier transform of Eq. (2.1) results
in an autocorrelation, which can be rewritten as a convolution. Expanding this, we obtain:

Î(u) = Êi(u) ∗ Ê∗i (−u) = P̂ (u)Êo(u) ∗ P̂ ∗(−u)Ê∗o(−u), (2.2)
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ˆ

Figure 2.1: A general imaging system. The optical transfer function fully describes the
relationship between the electric fields at the object and image planes. A sensor placed at
the image plane records intensity.

where u ∈ R2 is the NA-normalized spatial frequency coordinate and hatted quantities are
related to their counterparts by Fourier transform [24].

The function P̂ (u) is known as the optical transfer function, or the pupil function. This
complex-valued function generally consists of an indicator function that selects frequencies
permitted by the system’s aperture, an amplitude function that describes attenuation of
certain frequency components and a phase function which encodes system aberrations. We
will assume that the imaging system we wish to describe has a circular aperture, which is
the case for a majority of systems in practice. Mathematically, we have:

P̂ (u) = A(u) · exp [i ·W (u)] · Circ(u), (2.3)

where A(·) is the amplitude function, i is the imaginary unit and the Circ(·) function is
the characteristic function of the unit disk. The real-valued function W (·) represents the
aberrations present in the imaging system, and will be referred to as the wavefront error
function (WEF).

In our analysis, we will assume that the amplitude term of the pupil function, A(·), is
negligible. This is often true for visible light systems, for which typical optical elements (e.g.
lenses, mirrors) have very little absorption. In the case of the EUV system to which our
technique was applied, this was also approximately true due to its very low NA. We will
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Figure 2.2: Zernike polynomials. Plots depict the first-, second- and third-order polyno-
mials in the Zernike basis, which consist of tilt, defocus, astigmatism, coma and trefoil.

then turn our focus to the WEF, which our method aims to recover.

2.2 Aberrations in imaging systems

The wavefront error function (WEF) is a quantitative description of the aberrations of an
imaging system. This function is often expressed using the Zernike polynomial basis (see
Fig. 2.2), which is an orthonormal basis over the unit disk. This representation is convenient,
as many of the basis elements (e.g. defocus, coma) correspond to commonly occurring
alignment errors in imaging systems. For example, a system whose sample plane is axially
displaced will have significant defocus, which can be described by a parabolic phase error.
Moreover, a parametric representation of the WEF greatly reduces the dimensionality of an
algorithm which seeks to recover it. Rather than solving for the graph of the WEF over
an arbitrarily fine mesh, we can simply search for the best set of a few coefficients which
generate the graph.

Considering Eq. 2.3, we see that if aberrations are absent or negligible (i.e. W (u) = 0),
then the complex exponential term results in unity and we are left with an ideal low-pass
filter based on the system’s aperture. Under these conditions, the image of a point emitter
would be an Airy function, and the system would be considered diffraction-limited. It follows
that a departure from these conditions (W (u) 6= 0) implies imperfect imaging and can result
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in a system which is no longer diffraction-limited.
The severity of aberrations in an imaging system can be described by computing the root-

mean-square (RMS) magnitude of the WEF. That is, if c is a vector of Zernike polynomial
coefficients such that W (u) =

∑
i ci · Zi(u), then:

m = π · ‖c‖2 = π ·
√∑

i

c2
i (2.4)

is the magnitude of the system aberrations and has units of radians RMS. A practical
point of reference for interpreting the magnitude of aberrations in a system is known as
the Maréchal criterion [46]. This states that if the aberrations are limited to within λ/14
nanometers RMS, then the system is virtually diffraction limited. This suggests that for an
aberration measurement method to be useful in practice, it must achieve adequate sensitivity
for measurements at this scale. We will also use the Maréchal criterion to comment on the
results of our application to EUV microscopy.

Note 1: Zernike polynomials represent functions over two spatial dimensions and are thus
ambiguously ordered. In this work, we will use the OSA/ANSI ordering.

Note 2: The standard normalization of Zernike polynomials is such that the norm of each
polynomial is π, resulting in the scalar term in Eq. 2.4 [25].

2.3 Modeling a diffuser

The crux of our aberration measurement method is the use of a weak diffuser as the sample,
whose properties enable simplifications to the imaging forward model. To start, we assume
that the randomness of the scattering medium is stationary, meaning that its scattering
properties do not vary spatially [68, 26]. Assuming plane wave illumination, we construct a
general model E(·) for the electric field immediately beyond a diffuser as follows:

E(x) = exp
{
i ·
(
exp

{
−a|x|2 ∗ η(x)

})}
(2.5)

where evaluations of η(x) ∼ N (0, σ2) for unique spatial positions are independent and
identically distributed. The parameters a and σ are related to the width (lateral) and height,
respectively, of an average feature on the rough diffuser surface. The phase component of
Eq. 2.5 can be interpreted as “smoothed noise” in that the noise term η(·) is smoothed by
a normalized Gaussian function parametrized by a. Large values of a result in a rapidly
decaying Gaussian and hence small features in the phase.

Additionally, we assume that the diffuser phase is weak, which has two major conse-
quences [27, 75, 64, 40]. First, weak phase implies very small spatial variation in optical
path distance, and so, we can view a weak phase diffuser as a small perturbation to a trans-
mission flat or flat mirror in transmission- and reflection-mode imaging, respectively. As a
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Figure 2.3: Measured phase of holographic diffuser compared to simulated phase.
(a) Phase of a 10◦ holographic diffuser (Edmund Optics #54-493) measured using Fourier
ptychographic microscopy. (b) Phase simulated using Eq. 2.5 (arbitrary units).

result, we have omitted an amplitude (attenuation) term from Eq. 2.5. Second, weak phase
allows for accurate approximation via first-order Taylor expansion. Mathematically, we have:

E(x) ≈ 1 + i ·
(
exp

{
−a|x|2

}
∗ η(x)

)
. (2.6)

This linearization of the sample phase is crucial to simplifying the imaging forward model. To
validate our model for the (real space) phase of a diffuser, Eq. 2.5, we obtain a quantitative
phase measurement of a 10◦ holographic diffuser using Fourier ptychographic microscopy [85,
57, 12]. We compare this measured phase to the surface generated by the model in Fig. 2.3.
Note that the units in the simulated phase are arbitrary, as this can be scaled to match
experimental conditions via the parameters a and σ.

To aid in our derivation of the imaging forward model, we will now consider the Fourier
transform of Eq. 2.6. We have:

Ê(u) = δ(u) + i · exp
{
−b|u|2

}
· η̂(u) (2.7)

where the convolution in the imaginary term of Eq. 2.6 is now a multiplication. Note that the
scalar relationships between Eq. 2.6 and Eq. 2.7 have been omitted. It is worth discussing
here the nature of the noise term, η̂(u), which is the Fourier transform of η(x) in Eq. 2.5.

We first decompose η(x) into the sum of its even (f(x) = f(−x)) and odd (f(x) =
−f(−x)) components. Assuming that η(x) ∼ N (0, σ2), we can show that the even and odd
components are uncorrelated.
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Figure 2.4: Distributions of Fourier transform of Gaussian white noise. (a) We
begin with a representative sampling of Gaussian white noise, η(x) in Eq. 2.5. (b-c) The
distributions of the real and imaginary parts of the Fourier transform of Gaussian white
noise, η̂(u), both follow a Gaussian distribution. (d) The magnitude |η̂(u)| follows a Rayleigh
distribution.
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Cov

[
η(x) + η(−x)

2
,
η(x)− η(−x)

2

]
= E

[(
η(x) + η(−x)

2
− E

[
η(x) + η(−x)

2

])(
η(x)− η(−x)

2
− E

[
η(x)− η(−x)

2

])]
=

1

4
· E [(η(x) + η(−x)− E [η(x)]− E [η(−x)]) (η(x)− η(−x)− E [η(x)] + E [η(−x)])]

We know that E [η(x)] = E [η(−x)] = 0 and can cancel terms accordingly.

Cov

[
η(x) + η(−x)

2
,
η(x)− η(−x)

2

]
=

1

4
· E [(η(x) + η(−x)) (η(x)− η(−x))]

=
1

4
· E
[
η(x)2 − η(−x)2

]
=

1

4
· E
[
η(x)2

]
− E

[
η(−x)2

]
=

1

4
·
[
σ2 − σ2

]
= 0. �

Note that η(x) and η(−x) are independent for all nonzero x, since they represent i.i.d. white
noise. This implies that the odd and even components both follow a Gaussian distribution
almost everywhere. We also note that the Fourier transform of a real, even function is
purely real, and the Fourier transform of a real, odd function is purely imaginary. Due to
the linearity of the Fourier transform, it follows that the transforms of the even and odd
components maintain their Gaussian distributions (almost everywhere) in frequency space.
Thus, we have Re{η̂(u)} ∼ N (0, ρ2) and Im{η̂(u)} ∼ N (0, ρ2). This implies that the
frequency space white noise, η̂(u), has a magnitude which follows the Rayleigh distribution:

|η̂(u)| ∼ Rayleigh(ρ). (2.8)

Visual depictions of simulated white noise components, their Fourier transforms and their
distributions are shown in Fig. 2.4. Using these models and assumptions about the diffuser,
we may proceed with the derivation of our imaging forward model.

2.4 Derivation of the imaging forward model

In this section, we will derive the image formation model and show that information pertain-
ing to system aberrations is present in images of weak diffusers. We will begin with Eq. 2.2,
reproduced below:

Î(u) = P̂ (u)Êo(u) ∗ P̂ ∗(−u)Ê∗o(−u). (2.9)
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From the previous sections, we may substitute specific expressions for P̂ (·) and Êo(·). Prior to
this substitution, however, we will generalize for the case of off-axis plane-wave illumination.
In real space, this illumination may be viewed as a multiplication of the object function with
a phase ramp, i.e.:

Eo(x) = exp
[
i 2π

(
uT

0x
)]
· E(x). (2.10)

Its Fourier transform is then:

Êo(u) = E(u− u0). (2.11)

Combining Eq. 2.7 and Eq. 2.11, we have:

Êo(u) = δ(u− u0) + i · exp
{
−b|u− u0|2

}
· η̂(u− u0). (2.12)

We now substitute Eq. 2.3 and Eq. 2.12 into Eq. 2.2, recalling that the amplitude term of
the general pupil function is negligible within our assumptions. This results in:

Î(u) =
[
δ(u− u0)P̂ (u) ∗ δ(−u− u0)P̂ ∗(−u)

]
+ i
[
δ(−u− u0)P̂ ∗(−u) ∗ ϕ̂(u− u0)P̂ (u)

]
− i
[
δ(u− u0)P̂ (u) ∗ ϕ̂∗(−u− u0)P̂ ∗(−u)

]
+
[
ϕ̂(u− u0)P̂ (−u) ∗ ϕ̂∗(−u− u0)P̂ ∗(−u)

]
, (2.13)

where

ϕ̂(u) = exp
{
−b|u|2

}
· η̂(u) (2.14)

is the phase of the diffuser prior to linearization. Since the weak phase of the object is
noise-like and hence, uncorrelated, we can assume that the interactions between the phase
of the object and itself, captured by the fourth term in Eq. (2.13), is a delta-like function
scaled by some scalar γ. As such, simplification of the above results in:

Î(u) = δ(u)
[
P̂ (u0)P̂ ∗(u0) + γ

]
+ iP̂ ∗(u0)

[
ϕ̂(u)P̂ (u+ u0)

]
− iP̂ (u0)

[
ϕ̂∗(−u)P̂ ∗(−u+ u0)

]
. (2.15)

Note that we have also made a change of variable in the arguments of P̂ (·) and ϕ̂(·). In
doing so, we interpret the effect of off-axis illumination as the interaction of a fixed object
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function with a shifted pupil, rather than a shifted object function with a fixed pupil. Since
ϕ(x) is a real-valued function, we know that its Fourier transform, ϕ̂(u), satisfies conjugate
symmetry, i.e. ϕ̂(u) = ϕ̂∗(−u). Using this fact, we can factor Eq. 2.15 to obtain:

Î(u) = δ(u)
[
|P̂ (u0)|2 + γ

]
+ iϕ̂(u)

[
P̂ ∗(u0)P̂ (u+ u0)− P̂ (u0)P̂ ∗(−u+ u0)

]
. (2.16)

For pupil recovery, we will primarily be concerned with the latter term in Eq. 2.16. We
define:

Î∅(u) = iϕ̂(u)
[
P̂ ∗(u0)P̂ (u+ u0)− P̂ (u0)P̂ ∗(−u+ u0)

]
, (2.17)

where Î∅(·) represents the DC-suppressed counterpart of Î(·).

To further simplify the above equation, we introduce the symmetric (even) and anti-symmetric
(odd) decomposition operators, denoted by S{·} and A{·}, respectively:

S {f(u)} =
f(u) + f(−u)

2
, A{f(u)} =

f(u)− f(−u)

2
. (2.18)

Recall that any function can be decomposed as f(u) = S {f(u)}+A{f(u)}.

Using this notation and substituting Eq. 2.3 into Eq. 2.17, we obtain:

Î∅(u) = 2i · exp [iA{W (u+ u0)}] · ϕ̂(u) · sin (S {W (u+ u0)}) . (2.19)

We remark that this simplification requires both difference operands in Eq. 2.17 to be
nonzero, such that interference can occur and produce contrast in intensity. Since each
instance of the pupil P̂ (·) is band-limited by the Circ(·) function, the region where the
interference condition is met is given by the set:

U = {u : Circ(u+ u0) = 1} ∩ {u : Circ(u− u0) = 1}. (2.20)

As a result, Eq. 2.19 is valid only within the region where the shifted pupils overlap. We also
note that the even part of the WEF exists inside a real-valued multiplicative factor, while the
odd part exists inside a complex exponential. The complex exponential structure makes the
recovery of odd aberration functions challenging due to its interactions with the complex-
valued noise term of ϕ̂(·) in Eq. 2.14. As a result, we exclude this term by considering the
magnitude of Eq. 2.19. Although we lose information about the odd WEF components, we
will demonstrate in the following section that this information remains accessible via off-axis
illumination.

Taking the magnitude of both sides of Eq. 2.19, we arrive at our real-valued forward model:

|Î∅(u)| = 2 · |ϕ̂(u)| · |sin (S {W (u+ u0)})| , u ∈ U . (2.21)
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2.5 Properties of the imaging forward model

In this section, we will examine the structure of the imaging forward model, Eq. 2.21, and
demonstrate its behavior through examples. We will first establish the relationship between
the WEF, W (·), and the spectrum of measured intensity. For simplicity, we will consider the
case of on-axis illumination, i.e. u0 = 0, for a system whose aberrations are purely defocus
with varying magnitude. The WEF in this case is:

W (u) = z4 · 2
√

3|u|2, (2.22)

where z4 is a Zernike coefficient with units π rad rms.
The simulated results of imaging a diffuser through such a system are presented in Fig. 2.5.

The left column shows the WEF as we change the Zernike coefficient from 0.5π to 3.5π
rad rms. The middle column shows the Fourier transform of an intensity measurement,
simulated without using our derived forward model (i.e. without explicitly making the weak
phase approximation). As the coefficient z4 increases, we see more rings in the Fourier
spectrum. This is due the sinusoid in the forward model interacting with the defocus function,
a paraboloid, resulting in a radial chirp pattern. This sinusoidal component is simulated and
shown in the right column, where a visual correspondence is evident. We note that the
randomness of the diffuser results in a noisy realization of the predicted ring pattern. Recall
from Eq. 2.14 that this noise follows a Rayleigh distribution.

Next we will examine the effects of off-axis illumination. We will consider a system whose
aberrations are a fixed amount of pure horizontal coma. The WEF in this case is:

W (u) = z8 · 3
√

8|u|2 · ux. (2.23)

The simulated results of imaging a diffuser through such a system are presented in Fig. 2.6.
The left column shows a schematic of incident light on the surface of the diffuser (not to
scale). The middle column again shows the Fourier transform of an intensity measurement,
simulated without using our derived forward model. The right column shows our forward
model, evaluated in the region U where it is valid (see Eq. 2.20). We note here that off-
axis illumination has the effect of shifting the two copies of the pupil function present in
the Fourier transform of intensity in opposite directions by a distance that scales with the
illumination angle. The result is a self-interference pattern whose fringes are determined by
the underlying polynomial. Information about the odd components of the original WEF can
be inferred from the even components of the shifted polynomial, which are visible in these
measurements.

It is important to consider the magnitude of illumination angles used. Comparing the
cases of θx = −3.0◦ and θx = −1.5◦, we can see that the former results in a larger shift
and hence smaller area of overlap. In the limiting case, an illumination angle at precisely
the numerical aperture of the imaging system would result in only a single point of overlap.
This single value cannot represent an interference pattern. Practically, one must consider
the sampling of the sensor and the NA of the imaging system when choosing illumination
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Figure 2.5: Imaging a diffuser through a system with varying defocus and on-axis
illumination. (left column) The wavefront error function is given by varying magnitudes
of defocus. (center column) Fourier spectrum of intensity measurements simulated inde-
pendently of the derived forward model (Eq. 2.21). (right column) Deterministic sinusoidal
component of the derived forward model.
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Figure 2.6: Imaging a diffuser through a system with coma and varying illumi-
nation angle. (left column) The wavefront error function is given by varying magnitudes
of defocus. (center column) Fourier spectrum of intensity measurements simulated inde-
pendently of the derived forward model (Eq. 2.21). (right column) Deterministic sinusoidal
component of the derived forward model.
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angles, such that there are enough values from which to infer the system aberrations. In
general, the illumination angles used for our method are small, and can be viewed as slight
perturbations with respect to on-axis illumination.

We note that no information exists in the spectrum of the on-axis measurement (θx = 0).
This is due to our assumption that the system contained pure coma, which is represented by
an odd polynomial. Thus, the even part of the WEF is the zero function, and no interference
occurs. We also note that the measurements for θx = −1.5◦ and θx = 1.5◦ have identical
spectra. Because the two shifted copies of the pupil move in opposite directions in Fourier
space, there is an inherent symmetry with respect to illumination angles. This is useful to
consider as illumination angles that are equal but opposite do not carry new information.
Practically, this case may be avoided for speed or included for redundancy.

We now consider the contribution of the diffuser phase, ϕ̂(·) to the forward model.The
diffuser essentially behaves as an all-pass filter in expectation, but for any given realiza-
tion, we can think of the diffuser as corrupting the self-interference fringe patterns of our
forward model with Rayleigh-distributed multiplicative noise. The results of imaging mul-
tiple realizations of simulated diffusers (with the same statistical parameters) are shown in
Fig. 2.7. Each row represents a new realization of a diffuser surface. We note that the Fourier
transforms of the simulated intensity measurements all display an identical ring structure
characteristic of defocus, but the function is not identically sampled in each case. We also
note that, due to the nature of multiplicative noise, the regions of the image where the signal
is low (i.e. zeros) are particularly well-defined.

As a final remark, we observe that the forward model cannot distinguish between wave-
front error functions of opposite sign. Because we are only sensitive to the even part of the
real-valued WEF, there is an inherent sign ambiguity such that W (u) and −W (u), probed
under the same conditions, will generate identical Fourier spectra. This is unlikely to be
prohibitive in practice, as in practical situations, it is fairly evident which of the two possible
solutions is correct. In addition, external or prior knowledge can be used to rule out the
solution with incorrect sign.

2.6 Summary

In this section, we laid the groundwork for modeling imaging systems, aberrations and weak-
phase diffusers in the context of Fourier optics. We then derived a simplified model for the
case of imaging a weak-phase diffuser, demonstrating that the wavefront error function (i.e.
aberrations) is directly observable in the computed Fourier spectra of intensity measure-
ments. We examined the various components of our derived model and their impact on
the measured images. In the next chapter, we will use our derived models to formulate an
inverse problem for the recovery of imaging system aberrations, and we will demonstrate its
effectiveness in simulations and experimental conditions.
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Spectrum of intensity
φ(x) |IØ(u)|ˆ

Diffuser phase

Figure 2.7: Imaging multiple diffusers through a system with defocus and on-axis
illumination. (left column) The wavefront error function is given by varying magnitudes of
defocus. (right column) Deterministic sinusoidal component of the derived forward model.
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2.7 List of symbols

Symbol Description

Coordinates
x = (x, y) Real domain coordinates
u = (ux, uy) Frequency (Fourier) domain coordinates

Imaging system
I(x) Intensity
E(u) Electric field
Eo(u) Electric field at object (sample) plane
Ei(u) Electric field at image (sensor) plane

P̂ (u) Optical transfer function (pupil function)
W (u) Wavefront error function
Circ(·) Characteristic function of unit disk

Î∅(u) DC-suppressed Fourier transform of intensity

Diffuser
ϕ(x) Phase of diffuser
η(x) Random component of diffuser phase model
N (µ, σ2) Normal distribution

Operators
Cov [·, ·] Covariance
E [·] Expectation
Re{·} Real part
Im{·} Imaginary part
S{·} Symmetric (even) part
A{·} Anti-symmetric (odd) part
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Chapter 3

Aberration recovery using weak
diffusers

In this chapter, we will use the theoretical models derived previously to formulate an inverse
problem for the recovery of imaging system aberrations, or the wavefront error function
(WEF). We will then develop an optimization based approach for solving the inverse problem.
We will show that our algorithm is able to accurately recover aberrations in both simulations
and proof-of-concept visible light experiments, and we will show the results of the application
of our method to an EUV imaging system. Finally, we will conclude the chapter with a
discussion of error performance and feasibility for extreme ultraviolet (EUV) systems and
their modern applications.

3.1 Inverse problem formulation

In the previous chapter, we derived a simplified imaging forward model by assuming a weak
diffuser at the sample plane; this model is reproduced here:

|Î∅(u)| = 2 · |ϕ̂(u)| · |sin (S {W (u+ u0)})| , u ∈ U , (3.1)

where we recall that the set U is given by the overlap region of two circles that are shifted
based on the angle of incidence of plane waves on the diffuser. Using this model, we can
formulate an inverse problem for the recovery of system aberrations. Generally, we will define
a scalar loss function that penalizes mismatch between measurements and the forward model
according to an appropriate metric. Such a loss function will have a small value when the
parameters of the forward model accurately approximate the measurements. Hence, we will
solve the inverse problem by minimizing the loss function with respect to the parameters of
interest in the forward model, typically performed using gradient-based optimization. This
section will outline the formulation of this problem.
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Parametrization of solution space

The first step we must perform is the discretization of Eq. 3.1. While inverse problems in
imaging often treat images as vectors of their pixel values, our specific application allows
for a parametrization of the quantity of interest, W (u), greatly reducing the dimension of
the solution space and the burden of computation. In addition, many of the functions in
the forward model which represent polynomial operations can be written elegantly as linear
operators.

In most practical situations, we can expect that the wavefront errors arising from the
manufacturing and alignment of optics are smooth functions, and so the WEF is typically
expressed in a Zernike series:

W (u) =
N∑
i=3

ci · Zi(u) = Zc, (3.2)

where Z is a matrix whose columns are the unrolled evaluations of Zernike polynomials in
OSA/ANSI order and c is a vector of corresponding coefficients. We note that the summation
in Eq. 3.2 begins at 3 instead of 0, due to piston (degree 0) and tilt (degree 1) terms not
being recoverable using our model. Consider Eq. 2.17, reproduced below:

Î∅(u) = iϕ̂(u)
[
P̂ ∗(u0)P̂ (u+ u0)− P̂ (u0)P̂ ∗(−u+ u0)

]
. (3.3)

For constant W (u), and hence constant P (u), the bracketed term in this equation will
cancel, and there will be no contrast in the intensity spectrum. For tilt terms, we note that
these have degree 1 and are thus odd functions. A shift applied to an odd function can
only produce even terms of lower degree than the original function. As a result, any new
information brought about by off-axis illumination can only exist as a constant term, which
we previously showed cannot produce intensity contrast. As such, the minimum degree of
a recoverable WEF is 2, corresponding to defocus and astigmatism. For the majority of
our simulations and experiments, we recover the set of Zernike coefficients corresponding to
polynomials of degree 5 and lower. These are the polynomials Z3 to Z21, and hence, c is a
vector of length 18.

While the Zernike basis is most convenient for describing 2D wavefront error functions
in optical systems, it is not necessarily the simplest basis for performing operations on
polynomials. As such, we will define the change-of-basis matrix, E, which converts a vector
from the Zernike basis to the standard basis defined over a finite polynomial space. The
elements of this basis are the functions {1, x, y, x2, xy, y2, ...}. Note that there is again
ambiguity in the ordering of standard basis polynomials in 2 dimensions. In this work, we
will order them in increasing degree, with higher powers of x taking priority. If c is a vector
a Zernike coefficients and d is a vector of standard basis coefficients, then the following hold:

d = Ec , c = E−1d. (3.4)
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Translation of polynomials as a linear operator

Now that we can represent polynomials in the standard basis, and easily convert to and from
the Zernike basis, we can formulate the polynomial shift operator as a linear operation on
standard basis coefficients. That is, we want a matrix representation Hk for the function:

Hk{f} : f(x) 7→ f(x+ k) (3.5)

We note that this mapping is only linear as long as k is fixed; this can safely be assumed
in our context as we attribute a single illumination angle to an acquired image or image
segment.

For clarity, we will derive the construction of Hk for the case of polynomials in 1D, noting
that the extension to 2D is simply a matter of carefully ordering polynomials in two variables
and iterating over separate indices for x and y terms. Transformation of monomial terms
(standard basis elements) results in expressions of the form (x+k)n, which can be expanded
in general using the binomial theorem. The i-th row of the matrix determines the coefficient
of xi−1 in the output polynomial, and the j-th column acts on the coefficient of xj−1 in the
input polynomial. Hence we have an upper triangular matrix whose entries are given by:

[Hk]i,j =

(
j − 1

i− 1

)
kj−i, j ≥ i. (3.6)

As an example, we will construct H2 for the space of degree 3 polynomials. Evaluation of
Eq. 3.6 yields the matrix:

1 1 · k 1 · k2 1 · k3

0 1 2 · k 3 · k2

0 0 1 3 · k
0 0 0 1


k=2

=


1 2 4 8
0 1 4 12
0 0 1 6
0 0 0 1

 .
Now if we consider a polynomial, e.g. f(x) = 2x3 + 3x2 − x+ 1, we have:

f(x+ 2) = 2(x+ 2)3 + 3(x+ 2)2 − (x+ 2) + 1 = 2x3 + 15x2 + 35x+ 27

Using our matrix, we compute the same set of coefficients:
1 2 4 8
0 1 4 12
0 0 1 6
0 0 0 1




1
−1
3
2

 =


27
35
15
2

 . �
The following code is used to compute the coefficients of a translated 2D polynomial,

given the initial coefficients.
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1 function [ M ] = shiftOperator( maxDeg , a, b, x0, y0 )

2 % M = shiftOperator( maxDeg , a, b, x0, y0 )

3 %

4 % Creates a matrix operator , M, which maps coefficients of a polynomial of

5 % degree maxDeg to coefficients of the transformed polynomial

6 % g(x,y) = f(ax + x0, by + y0) with respect to the standard basis

7

8 % Compute size of matrix

9 N = 1/2 * (maxDeg + 1) * (maxDeg + 2);

10 M = zeros(N);

11 I = eye(N);

12

13 % Populate columns by applying transformation to standard basis elements

14 for i = 1 : N

15 M(:,i) = getCoefs2DShiftedPoly( I(:,i), maxDeg , x0, y0, a, b );

16 end

17 end

1 function [ s ] = getCoefs2DShiftedPoly( c, maxDeg , dx, dy, sx, sy )

2 % dx, dy: shifts in x, y

3 % sx, sy: scale in x, y

4 s = zeros(size(c));

5 N = maxDeg;

6

7 for i = 0 : N

8 for j = 0:(N-i)

9 idx = (i+j)*(i+j+1)/2 + j + 1;

10 coef = c( idx );

11 for n = 0 : i

12 for m = 0 : j

13 idxO = (n+m)*(n+m+1)/2 + m + 1;

14 s(idxO) = s(idxO) + ...

15 coef*nchoosek(i,n)*sx^n*dx^(i-n) * ...

16 nchoosek(j,m)*sy^m*dy^(j-m);

17 end

18 end

19 end

20 end

21 end

Additional linear operators

Once the shifted polynomial coefficients have been computed, there are two remaining linear
operations in the forward model, Eq. 3.1, that act on them. The first will take the even part
of the function represented by the coefficients, and the second will evaluate the polynomial
on the normalized image frequency space grid, which is defined by the physical dimensions
of the detector and the NA of the imaging system.
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Taking the even part of a polynomial is straightforward since the elements of the standard
basis are all either even or odd functions. Hence, we can define the matrix S as a diagonal
matrix with 1’s corresponding to the even basis elements and 0’s corresponding to the odd
basis elements. As an example, we will consider the space of 2D polynomials of degree at
most 2. The standard basis elements for this space are {1, x, y, x2, xy, y2} in this order. From
the parity of these functions, it follows that:

S = diag
([

1 0 0 1 1 1
])
.

Note that in a practical implementation, the rows and columns zeroed by S can be omitted
from computation for speed.

Evaluation of polynomials onto the image grid is also a straightforward procedure. We
construct the matrix Ψ, known as the evaluation map, whose columns are the vectorized
evaluations of the standard basis elements. We note that these columns must be ordered
to correspond with the coefficient vector (in our case, increasing degree with priority given
to x). We also note that vectorizing the image grid may be done in either row-major or
column-major fashion, but consistency must be maintained throughout the application of
the technique.

Handling uncertainty in diffuser phase

We will now turn our attention to the contribution of the sample being imaged – in our case,
a diffuser – to the Fourier spectrum of the recorded image. In Eq. 3.1, this is given by the
term |ϕ̂(u)|. We recall from the previous chapter (Eq. 2.14) that the Fourier space model for
the diffuser consists of a deterministic Gaussian window related to the average lateral size of
surface features and an instance of i.i.d. Rayleigh-distributed multiplicative noise. We will
write this as:

|ϕ̂(u)| = ϕ̂d(u) · η̂(u), η̂(u) ∼ Rayleigh(σ), (3.7)

where ϕ̂d(u) represents the deterministic Gaussian window and η̂ the noise. The multi-
plicative nature of the noise in our problem makes recovery of the aberration parameters
challenging. A rigorous formulation of an inverse problem given this forward model would
typically involve the derivation of a likelihood function containing logarithms [4]. However,
because the deterministic component of our signal is the magnitude of a sinusoid (which
has zeros), doing so would result in an unstable reconstruction algorithm. Instead, we ap-
proximate the noise using an additive model, treating the true Rayleigh distribution as a
Gaussian distribution of equivalent mean and variance:

η̂(u) ≈ E [η̂(u)] + ξ(u) , ξ(u) ∼ N
(

0,
4− π

2
σ2

)
. (3.8)

Using an unbiased estimator for the Rayleigh parameter, σ [71]:
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σ̂ =

(
K∑
j=1

η(u)2

2K

)1/2

4KK!(K − 1)!
√
K

(2K)!
√
π

≈

(
K∑
j=1

η(u)2

2K

)1/2

e1
√
K√

K − 1

(
K − 1

K

)K
, (3.9)

the expected value of the Rayleigh noise can be computed as:

E [η̂] = σ̂
(π

2

)1/2

. (3.10)

Note that in computing the unbiased estimate of the Rayleigh distribution parameter, an
approximation is made using Stirling’s formula [17] to numerically evaluate factorials.

Discrete forward model

With all of our major operators defined and the noise reformulated, we can proceed with the
discretization of our forward model for application to image data. Upon this discretization,
we will drop the spatial coordinate u. We have:

|Î∅| = 2 · 1Uk
· ϕ̂d · (E [η̂] + ξ) · |sin (ΨSHkEc)| , (3.11)

where · indicates element-wise multiplication. Upon expansion of the parenthetical term,
we note that we are left with heteroscedastic additive noise [70], meaning that its variance
changes across space. This variance is signal-dependent, proportional to | sin (ΨSHkEc) |2.
However, because our model function is sinusoidal with a range of [0, 1], we can further
approximate this term as simple additive Gaussian noise. Practically, the reconstruction
errors introduced by doing so are negligible, especially for the case of small aberrations,
where the lack of zeros in the signal (caused by wrapping of strong wavefront phase) results
in more uniformity of noise statistics. As a result, we have the discrete forward model:

|Î∅| ≈ 1Uk
· (2 · ϕ̂d · E [η̂] · |sin (ΨSHkEc)|+ ξ) . (3.12)

Objective (Loss) function

To solve for the system aberrations – the vector c in Eq. 3.12 – we will write down an
objective (or loss) function based on our forward model that aims to penalize model mis-
match. Minimization of this objective function will yield the aberration coefficients which
minimize the error between the measured data and model predictions. In our case, we will
use a mean squared error (MSE) objective function. We denote the Fourier transform of the
measurement acquired under the k-th illumination angle as m̂k. Then the loss function is:

L(c) =
N∑
k=1

1Uk
· ‖m̂k − 2 · ϕ̂d · E [η̂] · |sin (ΨSHkEc)| ‖2

2 (3.13)
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and the inverse problem is written:

c? = arg min
c
L(c), (3.14)

assuming that a total of N images are acquired.

3.2 Solving the inverse problem

Having formulated the inverse problem, Eq. 3.14, we will now discuss methods for solving for
the optimal aberration coefficients c?. Generally, this involves the use of iterative, gradient-
based optimization techniques to minimize the loss function, Eq. 3.13. However, there are
two major caveats to this approach that we must keep in mind.

First, gradient-based optimization is only guaranteed to converge to an optimal solution
when the objective function is convex. A convex function, f , has the property that any local
minimum of f is also the global minimum of f . The oscillatory nature of the sine function
in our forward model produces local extrema, and thus results in a non-convex loss function.
Second, in order to use gradient-based methods, the gradient of the loss function must be
well-defined for all values in the solution space for the variable c. However, due to the
absolute value function in our forward model, the point c = 0 does not have a well-defined
gradient.

The latter can be handled by generalizing our notion of a gradient to a set of “sub-
differentials” [34]. Where a differentiable function will have a well-defined gradient related

(a) (b)Gradient of differentiable function Sub-differentials of non-differentiable function

Figure 3.1: Derivatives, tangent lines and sub-differentials. (a) A differentiable
1D function has a unique tangent line associated with its derivative at zero. (b) A non-
differentiable function has a set of sub-differentials associated with all lines that do not
intersect the graph except at zero.
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to a unique tangent hyperplane to its graph, a function that is not strictly differentiable
at a point will have a set of hyperplanes that only intersect the graph of the function at
that point. All hyperplanes in this set are associated with a sub-differential. Example sub-
differentials of the absolute value function in a single variable are shown in Fig. 3.1b. In the
case of our forward model, we simply need to choose a value within the sub-differential set,
such that a gradient-based algorithm may proceed if an element of c is zero. Typically, we
choose zero as our sub-differential. Practically speaking, it is improbable that the algorithm
will ever encounter this situation, as long as we do not initialize with any zero values in c.

The former caveat is more challenging in that it cannot be completely addressed. We
must accept that no guarantee of global optimality of recovered solutions exists when ap-
plying convex optimization techniques to non-convex objective functions. Despite a lack of
provable optimality, we can still increase the robustness of our algorithm to local minima by
using accelerated gradient techniques, in which an update is not only on the gradient but
also previous steps taken. This can be thought of as an update based on “momentum”. Ad-
ditionally, we can use multiple random initializations spread throughout the solution space,
such that some may avoid paths which converge to local minima. One would then select
the solution which converged to the minimum overall cost. In our case, we use 100 random
initializations to solve for the set of coefficients, c.

Derivation of loss function gradient

Here we derive the gradient of our loss function, Eq. 3.13, which is the crux of our gradient
descent algorithm. We will start by making some modifications to the loss function. First,
we can simplify the expression by combining matrices that represent known quantities into
a single matrix:

Ak = ΨSHkE. (3.15)

Additionally, rather than including ϕ̂d as part of the forward model, we can divide the
measurement by this (deterministic) quantity in a process known as ”noise whitening” [31].
This is a safe operation since sufficiently small surface roughness features ensure a wide full-
width at half-maximum (FWHM) of ϕ̂d, so that we are generally dividing by values close to
1. We will define a whitened measurement as:

m̂
′

k =
m̂k

ϕ̂d

, (3.16)

where division is performed element-wise. Finally, for simplicity of differentiation, we will
rewrite | sin(x)| as

√
sin2(x). The loss function is then rewritten:

L(c) =
N∑
k=1

1Uk
· ‖m̂k

′ − 2 · E [η̂] ·
√

sin2 (Akc)‖2
2. (3.17)

To simplify notation, we will define:
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ek = m̂k
′ − 2 · E [η̂] ·

√
sin2 (Akc). (3.18)

Then we have [58]:

∇cL =
N∑
k=1

−2 · 2 · E [η̂] · eᵀk
d

dc

[√
sin2 (Akc)

]

= −4 · E [η̂] ·
N∑
k=1

eᵀk diag

[
sin (Akc) · cos (Akc)√

sin2 (Akc)

]
Ak

= −4 · E [η̂] ·
N∑
k=1

eᵀk diag

[
sin (Akc) · cos (Akc)

| sin (Akc) |

]
Ak

= −4 · E [η̂] ·
N∑
k=1

eᵀk diag [sgn (sin (Akc)) · cos (Akc)] Ak, (3.19)

where sgn(·) is the sign function, returning ±1.

Calibration of known quantities

In order to fully formulate our inverse problem and solve for the aberration coefficients in
practice, certain quantities in the model must be defined through a separate calibration
process. Fortunately, the required information can be recovered from the same or similar
image data to that of the aberration estimation process, and so calibration adds minimal
overhead to our method. The specific quantities we must specify are the plane wave illumi-
nation angles used in each measurement (used in defining Hk), and the parameters defining
the surface roughness characteristics, ϕ̂d and E [η̂]. In this section we will outline these
calibration procedures.

First, we discuss the calibration of illumination angles for each measurement. Practically,
a desired illumination angle is either manually adjusted or input to a system controller;
however, any deviation between what is physically realized and this desired input results
in aberration reconstruction errors. As a result, we generally infer illumination angles from
the acquired data, using our desired values as an approximate guess. As shown in Fig. 2.6,
the Fourier transform of our weak-phase speckle images under off-axis illumination is highly
structured, demonstrating two circles of equal radius which overlap. We also know their
centers depart from the origin with equal distance and opposite directions. This well-defined
structure informs image processing algorithms that can identify the placement of these circles
and thus, recover the illumination angle.

For large images, for which the circle boundaries are clearly defined with sufficient sam-
pling, a method for recovering illumination angles is given in [14]. At a high level, this
method operates by evaluating a set of candidate circle center points against the image
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(a) (b)

(c)

Spectrum of off-axis measurement Accurate candidate solution

Inaccurate candidate solution
NA

Candidate
illumination angle

ur

ur

NA

Figure 3.2: Illumination angle estimation, method #1. (a) A candidate illumination
angle defines a point in 2D Fourier space at which our image formation model predicts a circle
with radius defined by the system NA. (b) If the candidate is accurate, interpolation of the
Fourier spectrum along radial lines will have a sharp and consistent change coincident with
the NA-defined radius. (b) If the candidate is inaccurate, this change will be inconsistent.

data. The image spectrum is interpolated along radial lines originating at the candidate
center. For an erroneous candidate center, these radial evaluations will reach the circle’s
radius (determined by the imaging system NA) at varying positions, while for the true cen-
ter, all radial evaluations should experience a sharp decrease precisely at the radius. This
method is visualized in Fig. 3.2.

While the previous method is reliable when there are plenty of pixels which constitute
the circle boundaries, interpolation along radial lines is more prone to errors when using
images with a pupil of much lower resolution. Use of an incorrect angle of illumination
results in an incorrect crop of the interference region, and thus an incorrect interpretation
of the interference pattern, as shown in Fig. 3.3. Hence, we often use a different procedure
for finding the circle centers which does not require interpolation of the spectrum.

We begin with the observation that the general spectrum of an off-axis speckle measure-
ment (u0 6= 0) will have exactly two axes of symmetry, as shown in Fig. 3.4a. The projection
of the domain of interest along one axis will always be equal to the diameter of one circle,
which can be derived from the system NA; we will refer to this axis as the minor axis. The
major axis then defines the line along which the two circle centers lie, and the additional
information of its total length fully specifies the angle of incident illumination. The problem
is thus reduced to finding axes of symmetry and projection lengths. For the former, we will
take advantage of the relationship between axes of symmetry and moments of inertia for a
spatial distribution of mass.
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(a) (b)True illumination angle Incorrectly calibrated illumination angle

Figure 3.3: Incorrectly calibrated illumination angle. (a) The true angle of incident
illumination correctly identifies and crops the domain of the interference pattern. (b) Using
an incorrect angle results in a different fringe pattern, and eventually, a different recovered
aberration polynomial.

(a) (b)Spectrum of off-axis measurement Low-resolution angle calibration method

ux

uy

E[I(u)] = 1ˆ

Figure 3.4: Illumination angle estimation, method #2 (for low-resolution pupil
images). (a) The general structure of the spectrum of an intensity image of a weak diffuser
will have two axes of symmetry, shown in yellow. (b) After smoothing and thresholding the
intensity spectrum, we identify axes of symmetry and major/minor axis lengths by treating
the binary image as a thin mass with moments of inertia. This informs the placement of
circle centers, and hence, illumination angles.

We first perform Gaussian smoothing of the Fourier spectrum of the intensity measure-
ment due to its noisy nature, owing to the surface roughness being imaged. This ensures that
the domain of interest upon thresholding will be contiguous. We then threshold the smooth
image to acquire a binary representation of the domain of interest; this should roughly re-
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semble two circles. Various image processing techniques may be applied at this stage to
refine the binarization process. For example, a combination of erosion and dilation may be
used to exclude outliers near the edges of the domain, and a flood-fill algorithm may be
used to fill in any holes resulting from applying the threshold to the interference region. We
note that threshold selection can be difficult to automate, but images acquired under simi-
lar circumstances using the same imaging system will generally have a consistent threshold.
The threshold must be able to distinguish the regions of the image where signal is present
(i.e. within the NA-defined circles) and background noise which generally exists outside this
domain.

Once the image is binarized, it is treated as a spatial distribution of mass, and its moments
of inertia are found by computing the eigenvectors of the following matrix:

I =

[ ∫
u2
y dS −

∫
uxuy dS

−
∫
uxuy dS

∫
u2
x dS

]
. (3.20)

The eigenvectors and their corresponding eigenvalues can be used to discern the major and
minor axes of symmetry. If we define θ as the angle between the major axis and the ux-axis,
and we define the length of the major axis (interval occupied by the projection of the image
onto the major axis) as 2 + 2r, then the coordinate (r, θ) specifies the incident illumination
angle exactly. We note that there is sign ambiguity in both of the angle calibration methods
presented. However, as this angle is only used to crop the data to the interference region,
this does not affect our aberration recovery technique.

We will now discuss the calibration of the diffuser surface roughness, in order to specify
ϕ̂d and E [η̂]. Unlike the broader class of aberration measurement techniques which rely
on known test targets, our technique only requires a statistical description of the target
which is much easier to calibrate. We acquire one speckle image with the surface roughness
significantly out of focus to ensure that the defocus aberration term will be the dominant
component of the wavefront error function. Using the Fourier spectrum of this single image,
m̂cal, we solve the following simplified inverse problem:

{α?, β?, z?} = arg min
α,β,z
‖m̂cal − α · exp

{
−iβ‖u‖2

}
· | sin

(
z‖u‖2

)
|‖2, (3.21)

where the scalar parameters α, β and z fit both the chirp pattern caused by significant
defocus and the Gaussian decay due to surface roughness feature size. Due to the small
number of relevant parameters in this non-convex optimization problem, we find that using
a derivative-free optimization technique, such as the Nelder-Mead simplex method [82], is
faster and more robust than gradient methods. Once the optimal set of parameters is found,
we have:

ϕ̂d = α · exp
{
−iβ‖u‖2

}
, (3.22)

A comparison of an evaluation of the simplified forward model to a simulated Fourier spec-
trum is shown in Fig. 3.5a. We then use this fitted model to isolate the residual noise values



CHAPTER 3. ABERRATION RECOVERY USING WEAK DIFFUSERS 33

(a) (b)Simulated window estimation Simulated noise distribution estimation

ur  [μm-1]

|I
Ø
(u

)|
ˆ

20

40

80

60

0
0 0.1 0.2 0 1 2 3

C
ou

nt
s

20

40

η

Figure 3.5: Diffuser calibration process. (a) The deterministic window function, ϕ̂d, is
fit alongside a defocus model for a significantly defocused, on-axis illuminated calibration
image. (b) Division by the window function (where stable) results in a set of i.i.d. samples
of Rayleigh noise, from which the distribution parameter is estimated. Note that fitting is
performed in 2D, and radial averaging is only used for visualization.

and thus characterize the distribution of the Rayleigh white noise. We divide the spectrum
of the measurement by the deterministic terms where division is numerically stable to obtain
independent samples of white noise drawn from the Rayleigh distribution:

m̂cal

2 |ϕ̂d| | sin (z‖u‖2) |
= η ∼ Rayleigh(ρ). (3.23)

Generally, we perform this division wherever evaluation of the sinusoidal component of the
model does not result in values close to zero. Once we obtain this set of i.i.d. Rayleigh noise,
the distribution parameter is estimated using Eq. 3.9 and Eq. 3.10. An example of this
distribution characterization is shown in Fig. 3.5b. We note that the parameter α and the
expected value of the noise are both multiplicative components in the full imaging forward
model, and thus they do not have precise physical meaning themselves. The product of these
parameters accounts for all phenomena that scale the sinusoidal fringe pattern, including
surface roughness characteristics, image exposure time and scaling conventions in numerical
Fourier transforms.

With the constant factors of our forward model calibrated and the loss function gradient
derived, we can proceed to solve our optimization problem via gradient descent.
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3.3 Recovery of simulated aberrations

In this section, we will apply the techniques outlined in the previous section to the recovery
of aberrations in simulated imaging systems. We will simulate (without using the weak
phase approximation) a set of speckle images acquired using an aberrated imaging system,
from which we will attempt to recover the wavefront error function. This set of consists of a
number of images acquired with the diffuser surface in focus and distinct illumination angles
and one additional image with the diffuser surface significantly out of focus and on-axis
illumination for calibration, as described in the previous section. In this section, we consider
reconstruction under ideal circumstances and do not account for noise due to the sensor. We
will assume that the imaging system aberrations can be described using a 5-th order Zernike
polynomial; since piston and tilt do not influence our forward model they are irrecoverable,
and we are hence solving for a vector, c, of 18 coefficients.

We define our real and Fourier coordinate systems and normalize Fourier space using
the known NA of the system; these coordinate systems are used to define the matrices of
Eq. 3.13. We then apply our diffuser calibration procedure to the defocused image and our
angle estimation procedure to the remaining images. With the model and inverse problem
fully specified, we are ready to solve for the wavefront error function coefficients. Due to
the non-convexity of the problem, we choose 100 points within a bounded norm at which
to initialize gradient descent. Furthermore, we use backtracking line-search [82] to improve
speed of convergence, and perhaps, robustness to local minima. We run 200 iterations of
gradient descent with backtracking line-search for each of the 100 initialization points. Of
our 100 converged solutions, we report the one associated with the minimum cost as defined
by the loss function.

An example of aberration recovery performed on simulated data is shown in Fig. 3.6. Four
speckle images such as Fig. 3.6a are generated by an aberrated imaging system with wavefront
error function (WEF) given by Fig. 3.6b. The peak-valley (PV) wavefront deviation of the
simulated aberrations is approximately 1.6 rad rms. The DC-suppressed Fourier spectra
of the simulated intensity measurements are shown in Fig. 3.6c, and their whitened and
cropped counterparts are shown in Fig. 3.6d. Note that the whitening process results in
larger values near the edges of the pupil, where the Gaussian decay due to surface feature
size most significantly impacts the spectrum. Also note that for off-axis measurements, the
non-interference regions are cropped out as they do not contain information about the system
aberrations. The result of evaluating the forward model using the true WEF is shown in
Fig. 3.6e. Note that these images closely resemble the measurements albeit without the
Rayleigh noise caused by the rough surface. The close agreement (3.11% relative error)
between the recovered coefficients and the true coefficients is shown via evaluation of the
forward model in Fig. 3.6f and by plotting the coefficient values in Fig. 3.6g.

Note that we did not introduce sensor noise into our simulated measurements, which
implies that we do not achieve a perfect reconstruction even in ideal circumstances. This is
again due to the noisy nature of the spectra due to the diffuser surface. The expectation of
our measurements is a smooth interference pattern which can uniquely identify the WEF;
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Figure 3.6: Wavefront error function recovery from simulated data. (a) Example
intensity measurement, simulated without using simplified weak-phase forward model. (b)
Wavefront error function composed of 18 random Zernike coefficients (OSA/ANSI indices
3-20). (c) ) Fourier spectra of 4 intensity images with illumination angles described by
azimuthal angle θ and deflection angle (from optical axis) φ. (d) Processed spectra, m

′

k,
as defined in Eq. 3.16; the spectrum has been whitened by removing a Gaussian decay and
cropped to the interference region. (e) Evaluation of the imaging forward model using the
true Zernike coefficients. (f) Evaluation of the forward model using the recovered Zernike
coefficients. (g) Recovered coefficients demonstrate accurate recovery (3.11% relative error)
of 5th order polynomial using four input images for a particular initialization.

however, practically, the Rayleigh noise randomly corrupts the information contained in the
spectra, leading to reconstruction errors. These errors can be mitigated by averaging images,
which we will describe in more detail at the end of this chapter.
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3.4 Experimental aberration recovery: visible light

To demonstrate the accuracy of our method experimentally, we constructed a visible-light
imaging system and conducted a series of proof-of-concept experiments. A diagram of the
experimental setup is shown in Fig. 3.7. The key features of the system are coherent,
steerable laser illumination, an index-matched holographic diffuser in the object plane, and
a deformable mirror (DM) in the Fourier plane to generate ground-truth wavefront error
functions. An off-the-shelf diffuser generally does not satisfy our conditions for a weak-
phase diffuser, and so we index match its rough surface using oil under a glass coverslip (see
Fig. 3.8). It is important for the deviation in refractive index between the diffuser and the
oil to be small, so that the weak object approximation is valid. In our experiment, we have
ndiffuser = 1.5805 and noil = 1.5890. Additionally, we assume aberrations inherent to the 4f
system are negligible with respect to those introduced by the DM.

We applied a series of aberration functions to the DM and acquired speckle images from
3 different illumination angles, which we used to recover the system aberrations via our

(a)

(b)(c)(d)

(e)

Figure 3.7: Setup for experimental aberration recovery in a visible-light system.
(a) Melles-Griot HeNe laser (632 nm). (b) 4f system with mirror tilt used to control il-
lumination angle at the object (diffuser) plane. (c) 10◦ holographic diffuser (Edmund Op-
tics, #54-493) index-matched with oil. (d) Deformable mirror (Iris AO PTT111, 7 mm
pupil diameter, gold-coated) in Fourier plane to introduce controlled aberrations in a unit-
magnification imaging system. (e) ThorLabs DCC1240C CMOS camera (1280×1024 pixels,
5.3 µm pixels).
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Figure 3.8: Index-matched holographic diffuser. Holographic diffuser (ndiffuser = 1.5805)
with index matching oil (noil = 1.5890) underneath a square glass coverslip.

reconstruction algorithm; this result was compared to our original inputs to the DM. Each
aberration function consisted of a single Zernike coefficient (OSA/ANSI indices 3-9), and
our reconstruction algorithm assumed the solution was a general 2D polynomial of order 3.
For this experimental data, we modified the image spectrum processing procedure to remove
a small neighborhood of low frequencies rather than simply suppressing the DC value, since
correlated surface roughness produces a peak of finite width.

The results of these experiments are shown in Fig. 3.9. In the left column, we have
recovered Zernike coefficients plotted against the recovered coefficients; ideally, these plots
should be close to the line y = x. To the right we show examples of processed speckle
image spectra that are used in our reconstruction algorithm, along with evaluations of the
forward model using the converged coefficients. Note the visual correspondence between the
measured information and the predicted fringe patterns. Similar performance is achieved for
Z3 and Z5; however, results for Z6 are somewhat degraded and those for Z7 are significantly
worse. Differences in performance among the aberrations appear to be related to the fringe
contrast in experimental measurements. We see that Z3 and Z5 have high contrast fringe
patterns, Z6 has lower contrast, and Z7 has substantially less contrast, particularly at the
edge of the pupil. In all cases, Fig. 3.9 shows agreement between the measured and best-fit
intensity spectra in areas with high fringe contrast, demonstrating the accuracy of our model
and the capabilities of our solver.

Despite successfully demonstrating our modeled phenomenon and recovering aberrations,
there are a few hardware limitations of our experiment that are worth noting. These limita-
tions are due to the design of the deformable mirror, which consists of hexagonal reflective
panels with independent piston, x-tilt and y-tilt actuators. An immediate consequence is
that our desired aberration functions are experimentally realized as the closest piecewise-
linear function within the reachable set of the actuators. This, along with some amount
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Figure 3.9: Visible-light aberration recovery results. Results of recovering aberrations
introduced by the deformable mirror, including oblique astigmatism (Z3), vertical astigma-
tism (Z5), vertical coma (Z7) and vertical trefoil (Z6).
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of spacing between adjacent reflective panels, contributes somewhat to reconstruction er-
rors as the true aberration function likely contains significant higher-order terms outside of
our 3rd-order approximation. Additionally, the hexagonal packing of mirror panels and the
spacing between panels impose restrictions on the achievable illumination angles. Since the
deformable mirror exists at the pupil plane of the imaging system, we do not want light to
focus between panels. For this reason, a second camera (not shown in Fig. 3.7) was installed
to view the pupil plane (mirror surface).

3.5 Experimental aberration recovery: EUV

Having accurately recovered imaging system aberrations in our visible light proof-of-concept
experiments, our technique was then implemented in an extreme ultraviolet (EUV) imaging
system. This was made possible by the existence of a convenient, readily-available sample
which satisfies the requirements for a weak-phase diffuser at the scale of 13.5 nm EUV light
– an EUV photomask blank. These are highly polished surfaces which have atomic-scale
roughness [18], with height variations on the order of 0.2 nm and a mean lateral bump size
of 50 nm. In this section, we will describe the EUV system characterized using our method,
outline the characterization process and present our main result.

SHARP EUV microscope

The imaging system that we characterized is known as SHARP (SHARP High-NA Ac-
tinic Reticle review Project) and is a synchrotron-based, full-field EUV imaging system at
Lawrence Berkeley National Laboratory, designed to emulate aerial image formation in indus-
trial photolithography scanners. It also serves as a research platform for answering modern
questions about materials, defects and illumination conditions in semiconductor patterning.

The imaging objective characterized in our experiments is an off-axis zone plate with a
focal length of 500 µm, that is manufactured at the Center for X-Ray Optics. The zone
plate achieves an NA of 0.082, and its 6◦ off-axis geometry prevents the specular beam
from reaching the sensor (see Fig. 3.10). The image of the sample is formed on a back-
thinned CCD camera (PIXIS:2048, Princeton Instruments) located 450 mm downstream,
providing an effective 900× magnification. The illumination angle-scanning mirror is a 1 mm
x 1 mm MEMS device (Mirrorcle Technologies) coated with an Mo/Si reflective multilayer
tuned for the 55◦ nominal angle of operation. A elliptical condenser mirror is placed such
that the angle-scanning mirror is conjugate to the object plane. Angle scanning during
image acquisition is used to improve the uniformity of the illumination and reduce coherent
artifacts. The microscope operates at a wavelength of 13.5 nm (91.7 eV) with a bandwidth
of 1:1450, under ultra-high vacuum conditions.
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Rough substrate

EUV photomask

Off-axis zone plate

CCD

Local aberrations
due to objective

Figure 3.10: SHARP EUV microscope imaging configuration. A mirror conjugated
with the object plane (which contains a blank EUV photomask) allows control over illumi-
nation angle. The objective lens (an off-axis Fresnel zone plate) images the beam scattered
by the mask blank onto the sensor. The system suffers from field-dependent aberrations,
primarily due to Petzval curvature.

Objective aberration characterization

Our general procedure for aberration recovery closely follows that of the visible-light exper-
iment. We acquire a total of 10 images: one defocused calibration image and 9 in-focus
images with varying illumination angle. These images have 2048 × 2048 pixels with an ef-
fective pixel size of 15 nm, accommodating a field of view of approximately 30.72 × 30.72
µm. These images are shown in Fig. 3.11a. The dark region at the bottom of each image
is caused by occluding optical elements; we are primarily interested in analyzing the lighter
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Figure 3.11: Measurements and computed Fourier spectra. (a) Ten intensity images
(9 with varying illumination angle, 1 with defocus) are acquired by SHARP with a blank
EUV photomask as the object. (b) Spatial spectra computed at the sub-region of the full
field indicated by the magenta square in (a). Illumination angles are given with respect
to the 6◦ central ray angle, as shown by the schematic in the lower left. Note that these
angles should be treated as inputs in the acquisition process, and do not account for angle
variations across the FOV due to wavefront curvature.

gray region of the images which exhibit speckle patterns.
For this EUV experiment, we modify the scope of our inverse problems and reconstruc-

tions on account of significant field variation in aberrations. Due to the single-lens imaging
geometry, we expect aberrations which are minimized near the center of the field of view and
increasing in magnitude radially outward. In addition, due to the off-axis imaging geometry,
we expect a focal gradient along one axis. For this reason, we segment the full 2048× 2048
pixel field of view into 256 × 256 pixel sub-regions with 50% overlap in the horizontal and
vertical directions. Sub-regions in which the photomask was occluded or did not provide
sufficient contrast (near the image boundaries) were excluded.
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Figure 3.12: Speckle images and processing for acquisitions under on- and off-
axis coherent illumination. (a-b) Illumination with a 6◦ central ray angle produces an
effective on-axis speckle image of the photomask. (c) Fourier spectrum magnitude of on-axis
measurement. (d-e) Illumination with deviation of φ from the 6◦ central ray angle produces
an off-axis image of the photomask. (f) Fourier spectrum magnitude demonstrating a shift of
σ = sinφ/NAobj. (g-h) Filters that crop the spectral magnitudes to their interference regions
and divide out the Gaussian window |ϕ̂d| to whiten the residual noise. (i-j) Whitened Fourier
spectra computed by applying filters (g) and (h) to spectra (c) and (f), respectively.

Corresponding sub-regions of the acquired images are marked by magenta squares in
Fig. 3.11a, and their Fourier transforms are shown in Fig. 3.11b. This set of image spectra
represents the input to one instance of our aberration recovery inverse problem. This problem
is formulated and solved for each sub-region of the full microscope field of view. Note that due
to the characteristics of our image spectra, we do not need to delete as large a neighborhood
around the DC as we did in our visible light measurements; however, we delete values along
the frequency space axes due to noise.

We determine the statistical properties of the photomask surface roughness using the defo-
cused calibration image and we estimate the illumination angle for each sub-region spectrum
using the procedure detailed in the previous section. This information is used to produce
whitened [30] and appropriately cropped spectra, as shown in Fig. 3.12 for the case of on-
and off-axis illumination. Note that the final processed spectra (Fig. 3.12i,j) do not show
oscillatory fringe patterns, which suggests that the aberrations in SHARP are not significant
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Figure 3.13: Field-dependent aberrations. (a) Wavefront error functions (WEFs) plotted
across the field-of-view (FOV), demonstrating minimal aberrations in the center and an
increase in magnitude at edges. Each WEF is a function of (ux, uy) within the unit disk and
corresponds to an (x, y) position in the FOV, as shown in the schematic in the lower left.
(b) Square sub-regions of the full FOV show the (x, y) positions represented by the WEFs,
with one sub-region highlighted to demonstrate size.
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enough to result in phase wrapping. Under these circumstances, the statistical calibration
step is of greater importance as it determines the scaling of the fitted polynomial.

Once the calibration steps are complete, we proceed with the computational reconstruc-
tion algorithm. For each image sub-region, we generate 125 random vectors with Gaussian-
distributed elements as initialization points. From each, we compute 200 iterations of gra-
dient descent using backtracking line search and select the resulting coefficient vector with
minimum cost, given by Eq. 3.17.

The recovered wavefront error functions for all sub-regions of the field of view are shown
in Fig. 3.13. They show that aberrations reach a minimum at the center of the FOV and
increase progressively outward, as expected [20]. Averaged over the central 5-µm region, the
total wavefront error was 0.0476± 0.0055 waves rms (after the removal of residual defocus),
corresponding to λ/21 rms with a measurement accuracy within λ/182 (see following section
for error analysis). This indicates that the central region comfortably satisfies the Maréchal
criterion (λ/14), and this result agrees with the nominal performance for a single-lens design,
for which the region where the aberrations are contained below λ/20 is approximately 5× 5
µm2 [56, 22]. Additionally, defocus dominates along the vertical direction due to the off-axis
geometry, as expected. We emphasize that these results were achieved without the use of
any additional optical hardware or any precise knowledge, fabrication or alignment of the
sample.

3.6 Analysis of error and algorithmic performance

In this section, we will describe additional simulation studies that were done to estimate
the error bounds for recovered aberrations, and also to assess convergence behaviors across
multiple initializations.

To estimate the reconstruction error in our aberration recovery algorithm, we simulated a
set of measurements based on the sub-region size we consider (256×256) and the parameters
of the SHARP imaging system (NA, wavelength, magnification and illumination angles).
To characterize the effects of shot noise, we simulated measurements of a fixed aberration
polynomial with various levels of photon counts per pixel and attempted to recover the WEF.
For each level, we initialized the algorithm with 50 randomly chosen points, selected the
converged result with minimum cost and recorded its error. The aberration magnitude used
roughly corresponds to the value measured in the sweet spot of SHARP (roughly 0.158 waves-
rms, or ≈ λ/6 rms, including defocus). The results of these trials are shown in Fig. 3.14a,
in which the vertical black line corresponds to the imaging conditions of SHARP—roughly
6,300 photons/pixel. At this level, the absolute reconstruction error (εa = 1

2
||c−c∗||2) of the

reported coefficient vector was 0.0069λ waves rms (λ/145 rms), corresponding to a relative
error (εr = ||c− c∗||2/||c||2) of 4.3%.

To characterize the performance of our algorithm at various magnitudes of system aber-
rations, we generated 25 datasets at each of 11 levels of rms wavefront error. For each
dataset, we initialize our algorithm with 50 random vectors with approximately the same



CHAPTER 3. ABERRATION RECOVERY USING WEAK DIFFUSERS 45

Noise-free
1e5 photons/pixel
6.3e3 photons/pixel

Ab
so

lu
te

 e
rro

r [
w

av
es

-rm
s]

λ/1000

λ/100

λ/10

1λ

10λ

Mean absolute reconstruction error 
vs simulated aberration magnitude

(b)

5% rel. err.

SH
AR

P 
m

ea
su

re
m

en
t

Wavefront aberration magnitude [waves-rms]
λ/100 λ/10 1λ

(a)

λ/100

λ/10

1λ

102 106104

Photons / pixel [counts]

Absolute reconstruction error 
vs simulated photon counts

Ab
so

lu
te

 e
rro

r [
w

av
es

-rm
s]

SH
AR

P 
m

ea
su

re
m

en
t

Figure 3.14: Reconstruction error analysis. (a) Relative reconstruction error for a single
simulated WEF (magnitude 0.158 waves rms) and images corrupted by varying levels of
shot noise. The vertical black line represents the imaging conditions of SHARP, roughly
6,300 photons/pixel. (b) Mean absolute reconstruction error for 25 independent WEFs at
each of several magnitudes of rms wavefront error. The analysis was performed without
adding noise to images (blue), simulating experimental conditions of 6,300 photons/pixel
(red) and simulating 105 photons/pixel – corresponding roughly to averaging 16 images at
each illumination angle. The minima, maxima and interquartile ranges of absolute errors for
simulations at 6,300 photons/pixel are also shown.
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magnitude as the true coefficient vector, and we report the converged solution with minimum
cost (see Eq. 3.17) as the recovered Zernike coefficient vector. We then note the absolute
reconstruction errors for each of the 25 reported solutions. We performed an identical anal-
ysis under three different levels of simulated shot noise: noise-free, 105 photons/pixel and
experimental conditions (6,300 photons/pixel). The mean absolute reconstruction errors are
shown in Fig. 3.14b, along with the minima, maxima and interquartile ranges for simulations
under experimental illumination conditions. The vertical black line corresponds to the ex-
perimentally obtained aberration magnitude of SHARP (including defocus). At the nearest
sampled aberration magnitude to this level (roughly 0.158 waves rms, approximately λ/6
rms), the simulated aberration polynomials were reconstructed with a mean absolute error
of 0.0063 waves-rms (λ/159 rms), corresponding to a mean relative error of 4.0%. As a
result, we claim that the true aberrations in the sweet spot of SHARP lie within 4.0% of our
reconstruction. In the sweet spot of SHARP, we recover a local aberration WEF magnitude
of 0.138 waves rms (approximately λ/7 rms), which is mostly due to a defocus coefficient of
0.130 waves rms. Computing a 4.0% relative error, we have an uncertainty of 0.0055 waves
rms (λ/182 rms), which we reported in the previous section.

In addition, we further examine the simulated reconstruction of aberrations at a specific
magnitude (0.2π rad rms) and exposure level similar to SHARP in Fig. 3.15. We run 100
initializations for each of 25 unique datasets and record the converged solution of minimum
cost for each. The mean overall reconstruction error across those 25 solutions is shown in
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Figure 3.15: Total reconstruction error and error per coefficient. (a) Total reconstruc-
tion error for 25 datasets of simulated speckle images for imaging systems with aberrations
of magnitude 0.2π rad rms (from 100 initializations). (b) Reconstruction error per coefficient
for the same set of simulated reconstructions.
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Fig. 3.15a. In Fig. 3.15b, we examine the reconstruction error for each individual Zernike
coefficient of the 18 that we typically solve for. We find that this error is relatively uniform,
i.e. no particular coefficients have a significantly larger spread than others.

In this context, it is also worth noting the two main sources of noise in acquired images:
measurement noise resulting from low photon counts, and noisy sampling of polynomial
patterns due to surface roughness. The latter is intrinsic to our use of speckle to probe the
phase of the pupil plane. While the effects of photon noise on reconstruction error are shown
in Fig. 3.14a, here we consider the effects of both noise sources on the spectra themselves. In
Fig. 3.16a, we see that low photon counts reduce spectral fringe contrast significantly, which
inevitably leads to poor fitting of polynomials and large reconstruction errors. We also see
that as the number of photons per pixel tends to infinity, the zeros of the fringe patterns
become more and more clearly defined, but peaks in the spectrum remain noisy. This is due
to the multiplicative Rayleigh noise produced by the surface roughness. In Fig. 3.16b, we see
that as multiple realizations of speckle images for the same imaging system and illumination
angle are averaged, the Rayleigh noise begins to average out. In the limiting case as the
number of realizations averaged tends to infinity, the resulting image would be a scaled
(biased) but noise-free image of the fringe pattern, resembling the deterministic part of the
forward model.

With these effects in mind, we can revisit Fig. 3.14b and analyze the end behavior. On
the right side, we see a sharp increase in reconstruction error for aberrations of increasing
magnitude. This is due to inadequate sampling of fringe patterns with significant phase
wrapping for the imaging system NA and pixel size in the SHARP system. These imaging
system properties specify the number of pixels available within the NA to represent the
self-interference patterns containing aberration information. In the case of very strong aber-
rations, this information is simply lost and our method cannot recover the wavefront error
function accurately. However, on the left side, we see a slight increase in reconstruction
error for very small aberrations. This is likely due to the lack of true fringes for aberration
phase that does not wrap, resulting in a signal that is below the floor of the previously
described sources of noise. In this case, averaging multiple acquisitions to artificially raise
the photon count, or translating the photomask surface to acquire and average images with
unique speckle can potentially improve reconstruction error at the cost of total speed of
image acquisition.

3.7 Summary

In this section, we discussed in detail our method of aberration measurement for optical
imaging systems based on imaging a weak diffuser, including the discretization of the previ-
ously described imaging forward model, simulations across a range of aberration magnitudes
and experimental application to both visible light and EUV imaging systems. Finally, we
performed an analysis of simulated reconstructions to estimate the accuracy of the proposed
technique.
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Figure 3.16: Sources of noise in speckle image spectra. (a) Effect of increasing sim-
ulated exposure time on speckle image spectra. (b) Effect of averaging multiple measure-
ments acquired using unique realizations of diffuser surfaces, with the ideal forward model
(no Rayleigh noise) shown as the limit of averaging.
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3.8 List of symbols

Symbol Description

Matrix / vector
quantities
c Zernike coordinate vector
E change of basis matrix operator, Zernike to standard
Hk matrix operator defining translation of a polynomial as an action

on its coefficients; related to the k-th illumination angle
S matrix operator that selects the even part of a polynomial via

its coefficients
Ψ evaluation mapping from polynomial coefficients to graph of

function on a specified grid
η̂ Rayleigh noise due to diffuser surface, vectorized
ϕ̂d deterministic part of diffuser model in Fourier space (Gaussian)
1U k

indicator function of interference region for the k-th illumination
angle, vectorized

Î∅ DC- (or axis-) suppressed Fourier transform of speckle intensity
measurement, vectorized

Ak composite matrix operator, Ak = ΨSHkE
m̂k DC- (or axis-) suppressed Fourier transform of the speckle in-

tensity measurement acquired under the k-th illumination angle,
i.e. Î∅,k

m̂
′

k whitened Fourier spectrum of k-th speckle intensity image, i.e.
m̂

′

k = m̂k

ϕ̂d

m̂cal Fourier spectrum of defocused speckle image used for diffuser
calibration

Operators
L{·} Loss function, or objective function
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Chapter 4

Aberration correction in
short-wavelength beamline systems

In this chapter, we will outline our methods for the data-driven characterization and control
of a prototype deformable mirror, including both the modeling of the system dynamics and
formulation of the optimal control problem.

4.1 Modeling the dynamics of a deformable mirror

The primary challenge in the implementation of adaptive optics for beamline systems lies
in driving the deformable mirror to a desired surface profile both quickly and accurately.
While demonstrations of a repeatable linear response have been shown, this effect requires
a very long duration of actuation, i.e. it describes steady-state behavior. For example,
the predicted surface profile using a linear model may only be reached after waiting for 15
minutes or longer. On the other hand, while the surface profile does have an appreciable
transient response, this is much more difficult to model and includes nonlinear and hysteretic
effects. Our approach aims to model these nonlinear dynamics and use this model to obtain
the optimal control for a desired shape change.

A secondary challenge when working with these short-wavelength beamline systems is the
relative lack of non-invasive wavefront sensing techniques. As a result, it is often inconvenient
or impossible to simultaneously use a light source for imaging or other experimental purposes
while continuously monitoring its beam profile. In these circumstances, an even greater
importance is placed on having accurate models for the dynamics of the adaptive optics,
since model mismatch cannot be easily compensated using feedback control. In other words,
it is imperative for the dynamics model to demonstrate predictive performance with minimal
error.

In this section, we will first describe the linear approach used in a variety of existing
demonstrations of x-ray adaptive optics and characterizing their long-term behavior. Fol-
lowing that, we will describe our data-driven approach for modeling the short-term dynamics
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Figure 4.1: Influence functions measured for JTEC adaptive mirror. By applying
voltage changes to each of the 9 central actuators in isolation, the resulting change of the
mirror surface per volt is estimated. Note that piston and tilt terms are excluded from all
measurements and computation.

of a similar deformable mirror system.

A linear approach

A large body of existing work in adaptive x-ray optics is based on the approximation of
deformable reflectors as linear systems for very small changes in inputs and a very long
duration of settling time. One can think of such a linear characterization as describing the
steady state response of a mirror to an input or change in inputs. A basis of “influence
functions” (also called “actuator response functions” or “characteristic functions”) [33, 19,
50] is constructed by supplying voltage to individual actuators in isolation and measuring
the resulting surface once the mirror has settled. The basis can then be used for prediction,
making the assumption that the response to a linear combination of input voltages is a linear
combination of these influence functions.

A basis of influence functions measured for the JTEC adaptive optic is shown in Fig. 4.1.
Each curve represents the predicted shape change across the visible area of the mirror surface
per volt of change applied to the corresponding actuator. Due to measurement sensitivity
constraints, and in the interest of generalizing to a larger neighborhood of applied voltage, the
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curves are generated by applying voltages in the set {−100,−50, 0, 50, 100}V and computing
the average per-volt shape change between consecutive measurements. For example, for a
single actuator k, we computed

bk =
1

50
· (S−100,k − S−50,k), (4.1)

using surface measurements S to estimate the shape change per volt, and we averaged 4 such
measurements to arrive at the influence function for that actuator. The mirror was allowed
to settle for one minute after an input was applied. Of the 18 actuators which influence local
surface curvature, only the central 9 produced measurable changes to the mirror surface
beyond piston and tilt within the imaged field of view.

To use the measured influence functions for shape prediction, we will construct the matrix
B which consists of all measured influence functions as column vectors. For an initial mirror
shape Sinit and change in voltage ∆v, we have:

Sfinal = Sinit + B∆v. (4.2)

We applied this predictive model to a series of experimental shape changes, noting the root
mean square error (RMSE) between the measured and predicted shapes. A total of 497
shape changes were observed over 3 separate experiments in which the applied input voltage
was held for 2, 12 and 30 seconds, respectively. The results of these experiments are shown
in Fig. 4.2.

As expected, linear prediction generally becomes more accurate as the duration of time
increases, evidenced by the reduction in spread of the distributions in Fig. 4.2. Of the
three experiments, the one corresponding to 30-second input intervals was the closest in
reproducing the steady-state responses that the linear model is designed to predict. At the
other extreme, the experiment with an input interval of 2 seconds shows that the linear
model is a very poor approximation of the system’s highly nonlinear transient response.

Despite the model’s performance in representing some steady state behavior, the linear
method is fundamentally limited in its ability to make accurate predictions over short time
scales and across a large range of motion. This is demonstrated in a few selected examples
of shape changes observed after 30 seconds and associated linear predictions in Fig. 4.3.
In the top example, we see that significant prediction error arises from cases in which the
curvature of the mirror is greatly altered. In the following two examples, we see that actu-
ation corresponding to surface height changes in excess of 100 nm are similarly difficult to
predict with the linear model. Note that as the influence functions were determined by the
application of voltages in range [−100, 100]V, no actuator was driven outside of this range
in our experimental studies.

The underlying assumptions in linear modeling are that input voltage is the only factor
which determines the shape of the mirror and that the response is consistent across varying
initial positions (i.e. that the change in shape from -100V to -50V is identical to the change
in shape from 50V to 100V). Given observations of hysteresis in these adaptive mirror sys-
tems [3], it is clear that linear models are incomplete and, like any linearizations of nonlinear
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Figure 4.2: Linear prediction errors using influence functions. Distribution of pre-
diction errors when using linear influence function model. Errors are defined with respect to
measurements taken 2, 12, and 30 seconds after inputs are applied.
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Figure 4.3: Selected examples of linear prediction performance. Observed initial
mirror surface shapes and final shapes after 30s of actuation, along with linear predictions.
Prediction error is generally large when the mirror is driven through large changes in surface
height or curvature / convexity.
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systems, only valid within a small neighborhood of the calibration data by which they are
defined.

In practice, a linear model such as this may still be used effectively in control systems
where state feedback is readily available. The linear model is very fast in both forward and
inverse computations, and state feedback can to some extent make up for inaccuracies in
system modeling. However, this method is poorly suited for the conditions and challenges
of x-ray adaptive optics, which justifies the use of a more complex but complete model.

Approximation using a neural network

Given the shortcomings of linear modeling, it is clear that we would like to have a model
for the mirror system dynamics with the ability to describe nonlinear effects – specifically
hysteresis and drift. A number of approaches [72, 38] have been demonstrated in which the
goal was to obtain a physically precise model for the behavior of similar hysteretic devices.
These approaches often begin from first principles and use models based on, for example,
finite element methods to fully describe the deformation process. While such models can
be highly accurate and are physically transparent, they require complicated characterization
procedures for practical implementation which are not always feasible, and they are often
too unwieldy for applications such as inverse modeling and control. Furthermore, despite
attempts to be as inclusive as possible to physical effects in the system, some level of model
mismatch or perturbation must still be calibrated and accounted for.

As an alternative, we propose the use of machine learning to model the mirror surface
deformation and address some of the challenges in general modeling of nonlinear systems.
Machine learning techniques have been widely applied in recent years to a vast set of prob-
lems in classification and regression. Similar complex systems with strict demands on per-
formance, such as synchrotron storage rings, are now using techniques derived from machine
learning to improve their stability [42]. Given their success, we aim to apply similar data-
driven techniques to the operation of adaptive x-ray optics. We hope that this method will
circumvent the limited scope of linear modeling, and at the same time enable a lightweight
forward model for fast and efficient control.

As a first step, we will define the specific problem of modeling the system dynamics and
discuss the resulting model parameters to consider. For simplicity, we will use a discrete-time
model with the assumption that time steps will be small. Hence the model will be designed
to predict the mirror surface shape after a fixed duration of time, and predictions over
longer periods of time are obtained via iterative application of the forward model. We will
also assume that the effects of hysteresis and drift can be sufficiently modeled using a series
of prior inputs applied and prior surface shapes. It has been shown [36] that the mirror’s
response to inputs is repeatable, and hence it can be reasonably assumed that no additional
factors significantly influence the surface shape. We will assume that environmental factors
such as temperature are constant.

Based on the assumptions above, we are looking for a function f(·) such that:
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St+∆t = f(St, St−∆t, St−2∆t, ..., vt, vt−∆t, vt−2∆t, ...), (4.3)

where St is a representation of the mirror surface at time t and vt is a representation of
inputs applied at time t. Note that at time t, the input vt is instantaneously applied and has
not yet perturbed the mirror surface. Representation of inputs is straightforward, as each
actuator is associated with a scalar voltage input; hence, each input v is a vector of length
9. Representation of the mirror surface profile on the other hand requires some processing.
Measurements of the mirror surface are obtained as images via Fizeau interferometery and
are compressed into a spline curve representation of the 1D surface along the dimension of
interest. This prevents the function f(·) from scaling with the number of pixels in mea-
sured images and allows for faster training and evaluation of the model. It was determined
from data that surface representations using greater than 14 parameters offered negligible
improvements in performance, and so each surface S is a vector of length 14.

With our inputs and outputs defined, we then consider the structure of the function f(·).
We will use a feedforward neural network [7] (also known as a multi-layer perceptron, or
MLP) as our discrete-time forward model, with five fully-connected layers and exponential
linear unit (ELU) activation functions. The relevant parameters for this model are the
dimensions of each layer, the number of layers and the number of surface and voltage vectors
used as input. For simplicity, we maintain a constant layer width for all intermediate layers
in the network, Through an exhaustive search over this parameter space, it was found that
improvements in performance were limited when layer width exceeded 150 and greater than
5 layers were used. Additionally, it was found that the set of inputs:

{St, St−∆t, St−2∆t, vt, vt−∆t, vt−2∆t, vt−3∆t}
produced significant improvements over the set of inputs:

{St, St−∆t, vt, vt−∆t, vt−2∆t},
but using additional inputs resulted in negligible improvements in accuracy and adversely
affected the speed of inverse computations for control.

The final discrete-time system dynamics model and neural network architecture are il-
lustrated in Fig. 4.4. A history of 3 inputs and measurements, in addition to the input at
the current time, are concatenated as a vector of length 78; this is treated as the input to
the neural network. Each layer of the network computes a vector of length 150 and applies
an ELU nonlinearity. (These nonlinearities introduced between layers allow for the approxi-
mation of nonlinear functions.) An ELU was chosen since it is an invertible function, which
will be important when using this learned model for control. The final layer outputs a vector
of length 14, which corresponds to the representation of the final surface profile. Note that
a skip connection was introduced, which appends an initial input to the vector at an inter-
mediate layer. This greatly improved the model’s ability to predict when the mirror was at
rest (i.e. predicting that when St = St−∆t = St−2∆t and vt = vt−∆t = vt−2∆t = vt−3∆t, then
St+∆t = St) or approaching a steady-state surface shape.
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Figure 4.4: Discretization and neural network architecture. (a) Our discrete-time
model aims to predict the shape of the mirror at a time ∆t in the future (st+1) using a
finite history of mirror shapes and voltages input to actuators. Note that st−3 and vt+1 are
not used in the prediction of st+1. (b) Our learned system dynamics model consists of 5
fully connected (FC) layers ([input dimension, output dimension]) followed by exponential
linear unit (ELU) activation functions. Additionally, a skip connection was introduced which
greatly improved its ability to predict when the mirror was at or close to rest.

4.2 Control of a deformable mirror

In this section, we will describe our method for the control of the deformable mirror, which
is formulated as an inverse problem using our predictive model. We will assume that the
forward model f(·), defined in the previous section, has been specified using acquired data
and is able to make accurate predictions of the surface response to inputs. We can then
formulate and solve an optimization problem to obtain a sequence of inputs, to be applied
at consecutive time steps in accordance with our discrete-time model, which will drive the
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mirror to a desired surface shape.

Linear quadratic regulator

Our method draws inspiration from the linear quadratic regulator (LQR) [9, 73], which
is an optimization-based technique that can generate the optimal sequence of inputs that
drives a linear system to a desired state. Specifically, we will be looking at the discrete-time
finite-horizon variant of the LQR algorithm, which is applied to systems of the form:

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k] (4.4)

where x[·] is the state variable, u[·] is the input to the system, y[·] is the measurable quan-
tity, and {A,B} and {C,D} describe the state dynamics and output readout relationships,
respectively. In our application, this problem is somewhat simplified in that we will assume
access to the state variable, x[·]. In practice, this could mean direct imaging of the mirror sur-
face using e.g. interferometry, or a combination of wavefront sensing and back-propagation
to an effective mirror plane. Hence, we can ignore the second part of Eq. 4.4.

Since we have access to the state variable, we can directly formulate the quadratic cost
function in terms of the quantities in the state dynamics equation. This cost function will
be minimized with respect to the input sequence {u[k]}, and the optimization problem (for
the case of driving the state variable to the zero vector) is written:

{u[k]}N−1
k=0 = min

{u}
x[N ]ᵀQx[N ] +

N−1∑
j=0

(x[j]ᵀQx[j] + u[j]ᵀRu[j] + x[j]ᵀNu[j]) (4.5)

where N represents the number of time steps (or horizon) to solve for, and the matrices
{Q,R,N} are specified to adjust the meaning of optimality in the context of the problem.
For example, Q determines the penalty applied to state error (distance from zero) at every
time step, and R determines the penalty applied to inputs for applications in which there
is a cost associated with actuation. In our problem, we will assume there is no penalty
to applying input voltage and will thus ignore R and N and drop their quadratic forms
in Eq. 4.5. The variables x[j] are fully constrained by the system dynamics and initial
condition.

Simplifying the full formulation of LQR for our problem context, we have:

{u[k]}N−1
k=0 = min

{u}
x[N ]ᵀQx[N ] +

N−1∑
j=0

x[j]ᵀQx[j]. (4.6)

This formulation can be viewed as a minimization of the cost-to-go, meaning that penalty or
cost is associated with both the final state error (i.e. how much x[N ] deviates from zero) and
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remaining progress at intermediate steps. Intuitively, a minimum cost would be achieved
if an input could drive the system to zero with only one step and all future inputs would
completely eliminate further motion of the system; however, this is generally not feasible
under the constraints of system dynamics and so a more gradual convergence is expected.

The LQR problem can be solved analytically by formulating and solving the Riccatti
equation [9]. It is important to note that this method is guaranteed to output the optimal
set of inputs {u[k]} for the specific formulation of the objective function. This guarantee
does not exist in the context of nonlinear systems, but the technique is still practical and
often yields favorable results.

Application to nonlinear systems often involves a technique known as the Iterative
LQR [45], in which a nonlinear system is linearized about its initial condition, and the LQR
problem is then formulated and analytically solved using the linearized system dynamics.
Due to the possibility that the solved system trajectory extends beyond the neighborhood
of the initial condition (where the linearized dynamics are sufficiently accurate), this proce-
dure is applied iteratively. The state variable may be probed frequently, leading to a new
linearization of the system dynamics and computation of an updated trajectory.

Non-convex optimization for mirror control

While the iterative LQR technique has been demonstrated in practice for the control of
nonlinear systems, we note that it requires frequent sampling of the state variable to update
both the linearized system dynamics and the trajectory toward a desired state. In our imple-
mentation, we chose instead to apply convex optimization techniques to the full, nonconvex
optimization problem that follows from the nonlinear system dynamics.

Specifically, we formulate the control problem as:

{u[k]}N−1
k=0 = min

{u}

N∑
j=1

wj‖x[j]‖2 subject to:

x[k + 1] = f(x[k],x[k − 1],x[k − 2],u[k],u[k − 1],u[k − 2],u[k − 3])

x[k] = x[0] ∀k < 0

u[k] = u[−1] ∀k < 0.

(4.7)

In the notation above, the state variable x[k] is the vector representation of the mirror
surface St, and e.g. x[k + 1] corresponds to St+∆t. Similarly, the input variable u[k] is the
vector of voltages applied to mirror actuators vt, and e.g. u[k+ 1] corresponds to vt+∆t. The
constraints listed in Eq. 4.7 consist of the system dynamics, with the relationship specified
by the neural network architecture, and an assumption that the mirror begins at rest (steady
state) when the control is applied. Note that x[0] has been excluded from the computation
of cost since this is an initial condition. Also note that we assume the matrix Q in Eq. 4.6
is a diagonal matrix, and have simplified the objective function to contain scalar weights.
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In our experiments, these weights are all set to a single constant value. Solution of this
optimization problem will be discussed in the following chapter.

4.3 Summary

In this section, we motivated the problem of aberration correction in short wavelength sys-
tems such as synchrotron and free-electron laser facilities, along with its challenges and
constraints. We discussed early attempts at prediction and control using linear models, and
the incompatibility of these methods with large shape changes and open-loop (feedback-free)
operation. We then outlined our general approach, involving: (1) approximating the non-
linear system dynamics using a feedforward neural network, and (2) control to a desired
surface shape using nonlinear quadratic cost regulation over a finite time horizon. This sets
the stage for the following chapter, in which we discuss the experimental implementation of
our method and analyze the results.

4.4 List of Symbols

Symbol Description

Matrix / vector
quantities
bk influence function associated with the k-th actuator of the mirror
B basis of influence functions for approximation of mirror as a linear

system
x[k] state variable (instantaneous mirror shape) at time step k in

discrete-time model
u[k] input variable (actuator voltages) applied at time step k in

discrete-time model
Functions
f(x[·], ...,u[·], ...) nonlinear system dynamics describing mirror surface response to

inputs (neural network)
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Chapter 5

Characterization and control of an
X-ray deformable mirror

In this chapter, we will present our experimental implementation of our proposed charac-
terization and control algorithms for an adaptive x-ray optics system. We will provide a
description of the experimental setup, discuss the specific procedure that we followed, and
present and analyze the results of our experiments. We will estimate the errors that can
be expected in both the prediction and control problems, and we will show the algorithms’
performance in a specific use case of interest in beamline facilities.

5.1 Adaptive mirror and experimental setup

The mirror used in our experiments was a prototype piezo-bimorph mirror [36] fabricated by
JTEC Corporation. The mirror substrate (enclosed in the mirror box as shown in Fig. 5.1)
has an overall dimension of 160 mm (length) × 50 mm (width) × 10 mm (thickness). The
platinum-coated optical surface is 150 mm (length) × 8 mm (width), centered on the top side
of the mirror. In its intended use case, short-wavelength radiation is incident at a grazing
angle along the length of the optical surface.

Deformations of the mirror surface are enabled by piezoelectric actuators that are bonded
to the substrate and locally perturb the curvature (second derivative) of the optical surface.
Two piezo strips (one strip is visible in Fig. 5.1), each comprised of 18 separate electrodes,
sandwich the optical surface. The two electrodes at a corresponding position of the two
strips comprise one electrode channel (referred to as actuator). There are a total of 18 such
actuator channels (CH1 to CH18). There are two additional piezo strips glued to the bottom
surface of the mirror, which act as a single electrode channel (CH20) that globally perturbs
the curvature optical surface. The grounded channel (CH19) is on the backside of all piezo
strips.

We define the resting state of the mirror as the steady-state surface shape when all 20
channels are at the same voltage. In this work, we kept CH19 and CH20 at the fixed voltage
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piezo strip

optical surface

Figure 5.1: Piezo-bimorph deformable x-ray mirror. Adaptive x-ray mirror (JTEC
Corporation) that was studied and characterized in our experiments. A segmented piezo
strip enables spatially-localized deformations of the optical surface.

of 500 V and only varied the top-surface channels in a relative range of [-100 V, 100 V]
around their nominal value of 500 V. We note that in this resting position, the mirror is not
flat.

Measurements of the mirror surface were performed using a visible-light metrology setup
designed in-house at the Advanced Photon Source at Argonne National Laboratory. The
setup includes a FizCam 2000 Fizeau interferometer (4D Technology) with 100 mm aper-
ture mounted vertically above the sample. The mirror is placed on a manual tip-tilt stage
underneath the interferometer with the optical surface facing up. The mirror, stage and
transmission flat of the interferometer are enclosed by Lexan polycarbonate to reduce the
effects of air turbulence and temperature fluctuation on the measurements. An image of the
setup is shown in Fig. 5.2a.

An example image acquired by the interferometer and surface reconstruction are shown
in Fig. 5.2b. The interferometer simultaneously collects 4 phase-shifted fringe patterns like
the one shown via polarization-based multiplexing onto the sensor pixels. This allows for
rapid acquisition of surface profiles without moving parts, and is crucial to our ability to
characterize the mirror system dynamics over short time scale. Due to vibrations in the
system setup, and some loss of information in recovering surface height information from
interferograms, we remove tilt and piston from all recovered surface profiles. In practice, tilt
and piston are likely to be measured and compensated by a separate mechanism, and so we
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(a)

(b)

-1.0 0.4[waves]

10 mm

10 mm

Exposure: 0.1644 ms

Figure 5.2: Experimental setup. (a) Mirror surface profiling with a Fizeau interferometer
(λ = 658 nm) mounted vertically above the bimorph mirror. (b) An example interferogram.
Four such measurements are acquired simultaneously and used to recover a surface profile,
which is cropped to the active area of the mirror.

will restrict the scope of wavefront perturbation via adaptive optics to higher-order effects.
We also note that the aperture of the Fizeau interferometer (100 mm) is smaller than the
length of the mirror, resulting in actuators outside the field of view contributing only tilt to
the surface profile. Since tilt is excluded from computation, we restrict actuation to the 9
central channels (CH5 to CH13) for all of our experiments.
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5.2 Data acquisition for model training

The data used to train our neural network model was acquired by applying sequences of
random voltages to the central 9 mirror actuators and recording the resulting mirror shapes
after a fixed, 2 s, time interval. An acquisition consists of 10 images captured with an
exposure time of 0.126 ms and averaged together. Acquisitions are triggered such that this
exposure time does not contribute delays to the 2 s interval. The voltages are uniform
random values in the range [−100, 100]V and are rounded to the nearest tenth of a volt.
A time interval of 2 s between the application of voltage inputs and surface measurement
is maintained throughout the acquisition of training data. Note that this corresponds to
∆t = 2 s in our discrete-time model (see Fig. 4.4a). We remark that the choice of time step
was limited by the speed at which inputs are sent to the prototype mirror, and not the speed
of acquisition of surface measurements.

We acquire 8 separate sequences of surface measurements, starting with an initial mea-
surement followed by 500 voltage changes. We acquire an additional 4 sequences of 501
measurements in which voltage changes are held for 5 time steps (i.e. the same voltage input
is applied for 5 consecutive measurements). We believe this data is vital to informing the
model of system convergence behavior. Since each training example requires 4 sequential
measurements (one state to be predicted from three inputs), we can extract a maximum
of 497 training examples from each of the 501-measurement sequences. In total, the 12
sequences give 5,964 training examples.

After the set of surface profiles is processed (tilt and piston removed, masked to optical
surface of mirror), the 2D images are averaged along the narrow, sagittal direction to produce
1D curves along the dimension of actuation. These curves are then compressed into the 14-
parameter spline representation described in the previous chapter.

We used the PyTorch library as the machine learning framework. To train our dynamics
model, we perform 15-fold cross validation on the training dataset with 3000 iterations of
Adam per fold. To test the trained model’s performance, we acquire another independent
sequence of measurements and divide into sub-sequences, as described above, resulting in
497 test examples. Additionally, we repeated the acquisition of the test set with identical
voltage changes and longer time intervals (12s, 30s) between measurements. This was done
to test the model’s ability to predict convergence behaviors.

5.3 Predictive performance of data-driven model

Some examples of shape prediction are demonstrated in Fig. 5.3a, and the corresponding
prediction errors for neural network (proposed method) and linear prediction are labeled.
Linear prediction is performed using the basis of influence functions shown in Fig. 4.1. The
aggregate performance over the entire test dataset is shown in Fig. 5.3b. Overall, the mean
prediction error for our method was 1.26 nm root mean square (RMS), compared to 4.20 nm
RMS for linear prediction. Our neural network model demonstrated lower prediction error



CHAPTER 5. CHARACTERIZATION AND CONTROL OF AN X-RAY
DEFORMABLE MIRROR 65

than the linear model in 460/497 test examples. The cases for which linear prediction
demonstrated lower prediction error generally involved very small changes in input voltage.

We then attempt surface profile prediction with longer time intervals, and again compare
with linear modeling. In Fig. 5.4, the prediction errors for both models are plotted against
the magnitude of observed shape change for a variety of time scales. Testing the model’s
predicted system response with a 2 s time interval gives the highest measured accuracy
because the test data is acquired through a procedure identical to that of the training data.
At this short time scale, errors from the linear model are essentially random.

For longer time scales, we apply our learned model iteratively, using predicted, intermedi-
ate surface shapes as input for subsequent steps toward the goal shape. For 12 s intervals (6
prediction steps), we see that the neural network prediction performs worse on a somewhat
sparse set of examples, and linear prediction begins to exhibit a linear correlation between
the shape change observed (requested) and error. For 30 s intervals (15 prediction steps),
neural network predictive performance degrades over a larger set of examples, and linear
prediction maintains its linear correlation, albeit with lesser slope.

Unsurprisingly, the tests show that the predictive performance of our neural network
model is best at the time interval used to acquire the training data; its performance degrades
when used at longer time intervals. This is likely due to the much more limited representation
of repeated inputs in our training data set; the data extracted from measurements with
repeated inputs (no voltage input change) comprises only one-third of the total training
data set. Also, the maximum number of consecutive measurements with repeating voltage
inputs is only five, corresponding to a maximum of 10 s mirror relaxation without varying
voltages. While the network effectively predicts shape changes when all voltage inputs are
updated, more data is likely required to inform the network of convergence behaviors at
different states when the inputs are held constant.

The results also demonstrate the relationship between the magnitude of surface shape
change and linear prediction error. While Fig. 4.2 demonstrated a reduction in spread of
errors with increasing settling time after an input, Fig. 5.4 clearly shows that there is limited
room for improvement. Even after waiting for long time intervals, the linear model is still
unable to accurately predict large shape changes. This shows that linear-model prediction
is primarily effective for small shape changes (< 20 nm RMS) over long time scales.

5.4 Directed shape control

Once the parameters of the nonlinear system dynamics model are learned, the model is used
to determine a sequence of voltage inputs that will drive the mirror from a measured initial
state to a desired final state in a given, finite number of steps. In our experiments, we examine
the performance of the control algorithm with a 10-step horizon. Our algorithm directly
minimizes the non-convex objective function (Eq. 4.7) using Adam [39], a variant of stochastic
gradient descent. While this formulation does not theoretically guarantee optimality of the
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dataset. (b) Predictive performance of neural network and linear models across full test
dataset.
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converged solution, we show that the observed performance meets our specifications in a
majority of experiments.

In practice, mirror shape control will be used to compensate phase errors in the wavefront
of a focused beam. Therefore, it is of central importance to be able to direct the mirror to
achieve and hold arbitrary shapes within its capabilities. As a demonstration, we test the
ability of our control algorithm to direct the mirror to a series of 50 random, prescribed
shapes. For each target shape, an initial surface measurement is acquired and used to
generate a 10-step sequence of voltage inputs, to achieve the shape and stabilize the mirror.
We allow 150 s to elapse between experiments so that the initial conditions (see Eq. 4.7) are
approximately true.

The results of these experiments are shown in Fig. 5.4. A selected sequence of transitions
to 3 prescribed shapes is shown in Fig. 5.4a, where the measured surface profiles (colored,
dashed) closely approximate the desired shapes (black, solid). Figure 5.4b shows the voltages
applied to each of the 9 actuators over the 10 steps that were generated by the optimization
algorithm.

We observe that these voltage sequences sometimes demonstrate oscillatory behavior,
suggesting that the model is accommodating dynamic effects such as overshoot and creep.
In Fig. 5.6a, we see that the algorithm drives the mirror close to the goal after the first step,
with the remaining 9 steps being used to maintain the position. Some overshoot may still
occur, as the error with respect to the prescribed shape is often slightly larger after 10 steps
than after the first step. This may be caused by a combination of the non-convexity of the
optimization problem and the lack of guaranteed optimality, and by any residual errors in the
predictive capability of our learned system dynamics model. The former can be somewhat
addressed by changing the parameters of the Adam algorithm (learning rate, iterations)
or the weights wk in Eq. 4.7, or by adding regularization to the objective function, e.g.
penalizing RMS differences between time-adjacent voltage inputs or predictions (‘velocity’).
Figure 5.6b shows the aggregate performance of our control algorithm across the 50 test
cases. The mean RMS errors between the measured and prescribed shapes are 1.70 nm after
the first step and 1.91 nm after 10 steps.

Use case: varying focal distance

Among the directed shape-control tests, we drove the mirror to a set of cylindrical shapes
with prescribed radii of curvature from 2 km to 6 km. This emulates the case of an adaptive
mirror used to vary the focal distance, as in Ref. [76]. In our applications, we consider these
to be relatively large moves, with central surface height changes from 146.3 nm in the 6 km
case, to 429.0 nm in the 2 km case. Test results are shown in Fig. 5.7. We observe that the
mean RMS errors between the measured and prescribed shapes are 1.44 nm after 1 step and
1.51 nm after 10 steps.
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5.5 Summary

In this section, we discussed our experimental implementation of the characterization and
control of an adaptive x-ray mirror. We provided a description of the mirror used in our
experiments and the imaging system used to perform rapid interferometric surface metrology.
We then outlined our data acquisition procedure for the training of our data-driven neural
network model for the system dynamics, and presented an investigation of the trained model’s
accuracy for both single and multiple time-step predictions. We then outlined our procedure
for control over a 10-step horizon and presented the results of both random and simulated
use-case (tunable focal length) experiments.
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Chapter 6

Conclusions and future work

In this chapter, we will present concluding remarks for each of the two main projects: aber-
ration measurement in EUV systems, and aberration compensation using adaptive x-ray
optics. We will also point out some avenues for further exploration.

6.1 Aberration measurement

We have demonstrated the recovery of imaging system aberrations using an in-situ speckle
imaging technique. By relying on a stationary random surface, the technique does not suffer
from manufacturing tolerances and uncertainties associated with known test targets. The
sample is also an unbiased probe of the system aberrations, which is not the case in joint
(pupil and sample) optimization techniques. We verified the accuracy of our reconstructions
of system in aberrations both in simulations and in visible-light experiments.

We are able to reconstruct the field-dependent aberrations of a full-field EUV microscope
using the atomic-scale roughness of photomask blanks and no additional hardware. Our
results demonstrate that SHARP achieves diffraction-limited performance, with wavefront
errors below λ/21 averaged over the center 5 µm × 5 µm region of the total captured
field-of-view. We also demonstrated a measurement accuracy better than 4.0% (λ/181).
This analysis was performed using only images acquired under standard operation of the
microscope, and is useful when invasive techniques are difficult or impossible to implement,
as is often the case for systems in ultra-high vacuum.

This work demonstrates that our technique is suitable for evaluating the performance
of the next generation of industrial-grade microscopes that will be used in semiconductor
manufacturing. In addition, as x-ray light source facilities progress towards diffraction-
limited storage rings and free electron lasers, with high brightness, this versatile, in-situ
technique will prove increasingly valuable in the characterization of coherent sources and
beamline optical systems.
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Future work

A major question that merits further exploration is the extent of information contained
in images of speckle. We showed that the Zernike polynomials that comprise field-varying
aberrations could be recovered from speckle images. Further analysis of those coefficients
could then be performed to estimate more tangible properties of the imaging system, such
as field curvature (field varying defocus).

Additionally, our low-order speckle calibration method may be performed at various
positions across the field of view to determine field variation of surface roughness character-
istics. For example, if the sample is known to be stationary but speckle analysis reveals field
variation in estimated speckle size, this indicates that the imaging system has measurable
distortion.

While the primary conclusions of our work resulted in an efficient and robust method for
aberration measurement, we gained additional insights into the ”illumination wavefront” via
alternate image processing techniques. The basis for obtaining this information is shown in
Fig. 6.1.

Moving left to right through the windowed sub-regions of the speckle image (see Fig. 6.1a)
and observing their corresponding Fourier transforms, we see a counter-clockwise rotation
in the orientation of the two shifted pupil circles. This may indicate that the local angle
of illumination is changing across the imaging field of view. This suggests the possibility
of a wavefront sensing technique based on speckle data. Such a technique would infer local
angles of incident illumination from the Fourier transforms of speckle, and the wavefront
would be reconstructed in a manner similar to that of a Shack-Hartmann sensor. However, a
speckle image could be freely processed with nonuniform or adaptive sampling to retrieve the
wavefront, rather than the uniformly spaced grid of measurements enforced by the Shack-
Hartmann hardware.

However, a major complication to the proposal above is the fact that the direct rela-
tionship between speckle spectra across the field and local illumination angle is only true in
a telecentric imaging system. In the case of SHARP - a single lens imaging system - this
relationship is further complicated by non-telecentricity. Considering these effects, we expect
to see quadratic variation of these ”illumination angles” derived from pupil circle positions
across the field. This can be fitted and removed from measurements, and the residuals may
be interpreted as the true illumination incident on the sample. The results of applying this
procedure are shown in Fig. 6.2 Upon removal of a strong quadratic component, the recov-
ered incident wavefront is roughly flat. In addition, the fitted quadratic component may
reveal information about the transverse alignment of the lens.

We emphasize that the analysis of illumination angles for wavefront information is entirely
separate from the determination of aberrations from the interference patterns in the pupil
circle overlap. While a non-planar wavefront can influence the positions of pupil circles in
speckle image spectra across the field, this does not change the underlying polynomial that
determines the interference pattern within their overlap.

Further exploration into speckle-based metrology could yield interesting and practical
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techniques for short-wavelength systems, especially where the only viable alternative to com-
putational techniques is the use of highly specialized or invasive optical components.

An additional avenue for future work is the application of imaging system information
derived from our speckle technique to the correction of aberrated images acquired by the
microscope. This is particularly useful for computational imaging techniques, such as Fourier
ptychography, where the image of the sample is reconstructed from both measurements and
prior information. The results of calibrating system aberrations and using this information
for image recovery has been simulated [44], showing improvements in the magnitude of
tolerated aberrations in image reconstruction compared to joint recovery techniques [57].
Using calibrated field-varying aberrations as a prior in image reconstruction could enable
diffraction-limited imaging performance over a much larger field of view than is currently
usable in SHARP, thus greatly increasing throughput.

6.2 Aberration correction

We have shown that the combination of a data-driven model for piezo-bimorph adaptive mir-
ror shape dynamics and an optimization-based control strategy were able to reduce residual
mirror figure errors below 2 nm RMS, outperforming linear models and achieving the shape-
control accuracy required to achieve diffraction-limited performance in the x-ray regime.

Our method effectively accounts for creep and hysteresis, nonlinear properties that cur-
rently limit the performance of such devices in open-loop operation. Accurate predictive
modeling to achieve stable, arbitrary surface shapes is essential for effective deployment on
high-coherent-flux x-ray beamlines where continuous feedback may be difficult to implement.

This calibration method is simple to implement and easily automated, requiring only a
sequence of random shape commands and surface profile measurements. The data can be
collected ex-situ, as presented in this paper, or even in-situ with a wavefront sensor, where
the phase of the beam can be mapped back into the mirror shape if required. The method is
also robust, providing accurate predictions and control across the full range of operation of
the mirror. Other types of adaptive mirrors, such as resistive-element mirrors [13] can also
be characterized with this technique.

The number of shape measurements required to build the training dataset is larger than
what is required to acquire the characteristic functions in the linear model, but the training
data can gathered during routine operation, over time. There is some flexiblity around the
structure of the neural network itself (hyperparameters such as number of inputs, layers),
but the performance level we found is very close to the noise level of our sensor, and needed
no further refinement despite being rather economical.

Future work

Several aspects of our data-driven control technique can be further investigated for poten-
tial improvements in performance, both accuracy and speed. The structure of the learned
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model (currently a fully-connected neural network) may be refined and its relevant hyper-
parameters may be adjusted. Additional data may be collected and used to train the model.
In particular, this data may be acquired to describe the mirror over a greater range of oper-
ation than ±100V, or it may be acquired to track convergence behavior over longer periods.
Since the current input model uses 3 consecutive state (shape) measurements at fixed time
intervals, one strategy to account for more diverse input conditions could be to add some
delay between the application of an input and the series of measurements. Without applying
new inputs and by varying the measurement delay, this could be used to capture conver-
gence behavior in the neighborhood of the steady state surface profile, rather than the initial
surface. Inclusion of this additional data would likely improve predictive performance of the
model.

It would additionally be useful to study the feasibility of this data-driven control tech-
nique for a larger variety of experimental conditions to ensure that mirror states can be
achieved without feedback. For example, an experiment may require that a series of mea-
surements be taken with varying mirror surface curvature. It would be useful to determine
the performance and limitations of planning multi-step trajectories.

Finally, we may also consider alternate methods of mirror surface metrology that may
be simpler to integrate into practical systems. For example, at-wavelength Talbot inter-
ferometry can be used to reconstruct the mirror shape without the aperture limitations of
our current visible-light Fizeau interferometry setup. However, this suffers from a spatial
resolution that varies with the curvature of the surface, and backpropagation to an effective
mirror plane introduces additional sources of error. It would be useful to determine whether
this data may be used similarly to train a predictive model, and how the control performance
compares. Along these lines, we may also consider “lossy” observation models, where we do
not have direct access to the mirror surface shape. Effectively controlling the the system to
an improved beam profile with limited state space information is another interesting research
direction and highly useful for beamline operation.
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