
Reliable Prediction and Decision-Making in Sequential

Environments

Paria Rashidinejad

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2022-114

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-114.html

May 13, 2022

Copyright © 2022, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Reliable Prediction and Decision-Making in Sequential Environments

by

Paria Rashidinejad

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Stuart Russell, Chair
Professor Jiantao Jiao

Professor Sergey Levine
Professor Paul Grigas

Spring 2022

Reliable Prediction and Decision-Making in Sequential Environments

Copyright 2022
by

Paria Rashidinejad

1

Abstract

Reliable Prediction and Decision-Making in Sequential Environments

by

Paria Rashidinejad

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Stuart Russell, Chair

Building autonomous agents that learn to make predictions and take actions in sequential
environments is a central problem in artificial intelligence, with applications as diverse as
personalized medicine, self-driving cars, finance, and scientific discovery. Despite impressive
success in certain areas such as natural language, games, and robotic demonstrations, se-
quential prediction and decision-making remains challenging in the absence of known models,
accurate environment simulators, short-range dependencies, and large and diverse datasets.

In this thesis, we formulate problems to capture challenging yet prevalent settings encoun-
tered in the real-world. Given the formulations, we then design reliable and efficient learning
algorithms, leveraging recent advances in statistics and optimization. In the first part of
the thesis, we consider the problem of learning to make predictions in unknown and only
partially observed linear dynamical systems. Contrary to prior predictive models which fail
in the presence of long-range dependencies, we design an algorithm that provably returns
near-optimal predictions regardless of the system’s degree of stability and forecast memory.

In the second part, we shift our attention to reinforcement learning (RL), the problem of
learning to make decisions in an unknown sequential environment. We start by focusing on
the offline setting, where the agent is only provided with a previously-collected dataset of in-
teractions and does not have further access to the environment. We propose a new framework
to study offline learning problems given datasets of any composition, ranging from expert-
only to uniform coverage, and thus unifying two main offline learning paradigms: imitation
learning and vanilla offline RL. Equipped with this framework, we design an algorithm based
on pessimism in the face of uncertainty and prove that it is nearly optimal for any, possibly
unknown dataset composition.

We then turn to the online setting, where the agent learns while interacting with the environ-
ment. In this setting, the agent faces a dilemma in each step: whether it should exploit the
current knowledge and select a seemingly optimal action or it should explore and visit differ-

2

ent regions of the environment. We propose a framework that unifies common exploration
methods by adding an adaptive regularizer to the standard RL objective. We show that
a particular regularizer design yields a simple optimistic exploration strategy that enjoys
fast optimization and efficient exploration, achieving state-of-the-art performance in several
locomotion and navigation tasks when combined with deep neural networks.

i

To Mom, Dad, Maryam, and Amin

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Learning to make predictions . 4
1.2 Learning to make decisions . 8

2 Learning to Predict under Long-term Dependencies 18
2.1 Related work . 21
2.2 Preliminaries and problem formulation . 22
2.3 SLIP: Spectral LDS improper predictor . 24
2.4 Approximation error: Generalized Kolmogorov width 27
2.5 Regret analysis sketch . 31
2.6 Experiments . 34
2.7 Discussion . 36
2.8 Proofs . 36

3 Learning to Make Decisions from a Dataset 66
3.1 Background and problem formulation . 72
3.2 A warm-up: LCB in multi-armed bandits . 74
3.3 LCB in contextual bandits . 79
3.4 LCB in Markov decision processes . 84
3.5 Related work . 90
3.6 Discussion . 92
3.7 Proofs for multi-armed bandits . 92
3.8 Proofs for contextual bandits . 99
3.9 Proofs for MDPs . 111
3.10 LCB in episodic Markov decision processes 134
3.11 Auxiliary lemmas . 150

iii

4 Learning to Make Decisions During Interactions 153
4.1 Background . 155
4.2 Adaptive regularization of the RL objective 156
4.3 A tabular study . 159
4.4 Experiments on MiniGrid and DeepMind Control Suite 162
4.5 Related work . 166
4.6 Discussion . 168
4.7 Convergence analysis of MADE algorithm 168
4.8 Experimental details . 171
4.9 Gradient computations . 175

5 Concluding Remarks 177
5.1 Foundations . 177
5.2 Generalization . 179

Bibliography 182

iv

List of Figures

1.1 Block-diagram of the SLIP algorithm. First, given a horizon T , a set of k spec-
tral filters are computed via the spectral decomposition of a particular Hankel
matrix. Then, at every step, a feature vector is constructed by stacking quanti-
ties obtained by convolving previous observations and inputs with each spectral
filter. The predictions are computed by multiplying the feature vector with a
parameter matrix. Upon receiving the observations, the parameters are updated
by minimizing a regularized least squares loss. 6

1.2 Left (expert data): Penalty in LCB eliminates sub-optimal arms with no samples
and thus LCB acts similar to imitation learning. Right (uniform coverage data):
Best empirical arm and LCB differ by a constant, therefore LCB acts similar to
vanilla offline bandits. Middle (mixed data): LCB works well in the middle region
while imitation learning and best empirical arm can fail. 11

1.3 Summary of offline learning results in the MAB setting. While LCB achieves a
decaying rate for all C⋆, the rate matches the information-theoretic lower bound
for C⋆ ≥ 2. The case of C⋆ ∈ [1, 2) corresponds to µ(a⋆) > 1/2, i.e. the
optimal arm has more than 50% probability in data distribution. If such knowl-
edge is provided, one can choose the most played arm, which nearly achieves the
information-theoretic limit with the rate exp(−N). This is in contrast to the
LCB that has a performance lower bound that is only polynomial in N 12

1.4 Summary of offline learning results in the CB setting. The LCB algorithm
achieves adaptive optimal rates (up to logarithmic factors) in CB with at least
two contexts. 12

1.5 Summary of offline learning results in the MDP setting. The VI-LCB algorithm
nearly achieves adaptive optimal rates. 14

1.6 LCB analysis techniques. A reward or values guarantee can give the slow rate of
1/
√
N whereas a policy-based guarantee can give rates faster than 1/

√
N 14

2.1 Approximating W , a 3D ellipsoid, by a 2D plane U(u1, u2) among U2, the set of
all planes. In this example, U has the smallest worst-case projection error that
is equal to the 2-width of W denoted by d2(W). 29

v

2.2 Performance of our algorithm compared with wave filtering and truncated filter-
ing. System 1 is an scalar LDS with A = B = D = 1, C = Q = R = 0.001,
and xt ∼ N (0, 2). System 2 is a multi-dimensional LDS with no inputs and
A = diag[−1, 1], C = [0.1, 0.5], R = 0.5, and Q = [4, 6; 6, 10] × 10−3. Sys-
tem 3 is another multi-dimensional LDS with non-symmetric A = [1, 0; 0.1, 1],
xi ∼ U(−0.01, 0.01), Q = 10−3I, R = I, C = [0, 0.1; 0.1, 1], and B,D are matri-
ces of all ones. 34

2.3 Left: Performance of our algorithm compared with wave filtering, truncated fil-
tering, and expectation maximization in a scalar system with parameters A =
B = C = D = 1, noise covariance matrices Q = R = 0.001, inputs xt ∼ N (0, 2),
and horizon T = 200. Right: Hyperparameter sensitivity of our algorithm in the
same systems with inputs xt ∼ N (0, 0.5) and horizon T = 10000. 35

3.1 Dataset composition range for offline RL problems. On one end, we have expert
data for which imitation learning algorithms are well-suited. On the other end,
we have uniform exploratory data for which vanilla offline RL algorithms can be
used. 67

3.2 The sub-optimality upper bounds and information-theoretic lower bounds for the
LCB-based algorithms in MAB, CB with at least two contexts, and MDP settings.
In all setting, it is assumed that the knowledge of C⋆ is not available to the LCB
algorithm. 70

3.3 Decomposition of the sub-optimality of the policy π̂ returned by Algorithm 3. . 82
3.4 An episodic MDP with H = 3, two states per level, and two actions A = {1, 2}

available from every state. The rewards are assumed to be deterministic and
bounded. Action 1 is assumed to be optimal in all states and that µ(s, 1) ≥ 9µ(s, 2). 90

3.5 Illustration of one replica in the hard MDPh. The left plot shows the transition
probabilities from (sj1, a1) and the right plot shows them from (sj1, a2). 123

3.6 The hard MDP instance for the case C⋆ = 1. Upon playing the optimal (blue)
action at any state except b, the learner returns to a new state according to
initial distribution ρ = {ζ, · · ·, ζ, 1−(S−2)ζ, 0} where ζ= 1

N+1
. Any other choice

of action (red) deterministically transitions the state to b. 130

4.1 Normalized samples use of different methods with respect to MADE (smaller val-
ues are better). MADE consistency achieves a better sample efficiency compared
to all other baselines. Infinity means the method fails to achieve maximum reward
in given steps. 154

4.2 A stochastic bidirectional lock. In this environment, the agent starts at s0 and
enters one of the chains based on the selected action. Each chain has a positive
reward at the end, H good states, and H dead states. Both actions available to
the agent lead it to the dead state, one with probability one and the other with
probability p < 1. 159

vi

4.3 Performance of different count-based methods in the stochastic bidirectional lock
environment. MADE performs better than the Hoeffding bonus and is comparable
to the Bernstein bonus. 160

4.4 Values of Hoeffding, Bernstein, and MADE exploration bonus for all states and
action 1 over environment steps in the bidirectional lock MDP. MADE bonus
values closely follows Bernstein bonus values. 160

4.5 Heatmap of visitation counts in the bidirectional lock, plotted every 200 itera-
tions. The exploration strategy of MADE appears to be closet to the Bernstein
bonus. 161

4.6 A deterministic chain MDP that suffers from vanishing gradients (Agarwal et al.,
2019b). We consider a constrained tabular policy parameterization with π(a|s) =
θs,a and

∑
a θs,a = 1. The agent always starts from s0 and the only non-zero

reward is r(sH+1, a1) = 1. 161
4.7 Results for various hard exploration tasks from MiniGrid. MADE successfully

solves all the environments while other algorithms (except for BeBold) fail to
solve several environments. MADE finds the optimal solution with 2-5 times
fewer samples, yielding a much better sample efficiency. 164

4.8 Results for several DeepMind control suite locomotion tasks. Comparing to all
baselines, the performance of MADE is consistently better. Sometimes baseline
methods even fail to solve the task. 165

4.9 Ablation study on buffer size in MADE. The optimal buffer size varies in different
tasks. We found buffer size of 10000 empirically works consistently reasonable. . 165

4.10 Results for DeepMind control suite locomotion tasks in model-based RL setting.
Comparing to all baselines, the performance of MADE is consistently better.
Some baseline methods even fail to solve the task. 166

4.11 Visualization of various tasks in DeepMind Control Suite. DeepMind Control Suite
includes image-based control tasks with physics simulation. We mainly experiment on
locomotion tasks in this environment. 173

vii

List of Tables

3.1 A summary of our theoretical results with all the log factors ignored. 69

viii

Acknowledgments

I owe this thesis to many, whose support, guidance, and friendship have been crucial in
its materialization.

I am forever indebted to my advisor Stuart Russell, who welcomed me into his research
group Russell’s Unusual Group of Students (RUGS) and set me on the path to a career
in artificial intelligence. All throughout, he has been incredibly supportive, has given me
freedom to explore, encouraged me to keep an eye on the big problems, and inspired me to
invest in clear communication of ideas. I am grateful for his valuable insight and feedback
and for making me a better researcher. He will always remain an inspiration to me.

I am equally grateful to my co-advisor Jiantao Jiao, with whom I started working later
in my PhD journey. He has been incredibly generous with his time, giving valuable advice
about anything and whenever I needed it. He has taught me a lot, from asking interesting
questions and capturing the essence of a complex problem through simplification to writing
and presenting my research. I am grateful for his confidence in what I could accomplish.

I have also had the pleasure of collaborating with Xiao Hu on projects related to physio-
logical monitoring. Though the results of our collaboration are not included in this thesis, his
guidance has enriched my perspective on challenges AI faces in applications like healthcare.
He is a generous and caring mentor and I am grateful for his continued support.

In my time at Berkeley, I have had several other incredible mentors and collaborators.
I thank Yusuf Bugra Erol, Karthika Mohan, and Dave Moore for giving valuable advice
in earlier years of my PhD. I greatly enjoyed working with Cong Ma and Banghua Zhu
on our “tale of pessimism” for offline RL and Tianjun Zhang on our online RL project. I
was fortunate to have received mentorship from Yuandong Tian and I deeply appreciate his
support of my career.

I would like to express my gratitude to EECS faculty and many colleagues, particularly in
BAIR Lab, BLISS, and CHAI, for always being happy to help and for creating a collaborative
and friendly environment. I am especially thankful to Sergey Levine, Paul Grigas, and Moritz
Hardt for serving on my committees and Tom Courtade and Bora Nikolic for facilitating my
arrival at Berkeley and providing guidance during my first year. I would also like to thank
the EECS staff. In particular, I am extremely thankful to Shirley Salanio for always being
so kind and helpful and for cheering me on all these years.

I am grateful for the time I spent as an intern at Systems Research Group at Oracle
Labs. I would like to thank Vincent Lee for introducing me to the group, and my mentors
Arun Raghavan, Navaneeth Jamadagni, and Suwen Yang for introducing me to questions
around datacenter reliability. I am also thankful to Vincent Lee for his support during my
internship and Shu Guanghua, Onur Kocberber, and Craig Schelp for helpful discussions.

Finally, I am incredibly thankful to my partner Amin for constant support, understand-
ing, and all the words of encouragement. I am forever grateful to my parents Mitra and
Hamidreza and my sister Maryam for their unwavering encouragement and unconditional
love throughout my life. Thank you all for being there for me in smiles or tears, success or
failure. This thesis is dedicated to you.

1

Chapter 1

Introduction

One of the central expressions of intelligence is the ability to complete tasks in the pursuit of
certain goals in an environment, perceived through measurements. This thesis is concerned
with designing artificially intelligent agents that reliably complete tasks in environments of
sequential nature. This specification involves three components: a sequential environment
or a dynamical system evolving over a dimension (often time), a task specifying the type of
goal being pursued, and a criteria evaluating the goodness of an executed solution.

Consider for instance a sequential environment evolving over time. One example of
the above specification is the task of making predictions about future observations given all
available measurements with the criteria of achieving minimal regret, which compares agent’s
performance to that of an idealized benchmark. Another example is the task of learning a
policy for manipulating the environment through a set of actions so as to maximize a notion
of expected return.

When the mathematical laws governing the evolution of the environmental variables and
their connections to the measurements are known, finding the best solution to complete the
task becomes a purely computational problem. The optimal solution depends on all available
measurements and yields the highest goodness, based on a scalar criteria. In the majority of
cases, however, some aspects of environment evolution are unknown. For instance, unknown
perturbations might be affecting the measurements and parameters describing the evolution
or even the mathematical laws of evolution themselves might be unknown. This is where
learning comes into the picture.

Learning refers to the process of building one or more mathematical models from available
measurements. In sequential tasks, while model learning is most commonly referred to
estimating the environment dynamics, learning in principle can be used to build other task-
relevant models such as predictive models or policies.

Different modeling and learning algorithms may be designed to solve similar tasks. One
central aspect that differentiate learning algorithms is their sample complexity, which refers
to the number of samples required for a specific algorithm to reach a desired level of perfor-
mance. Empirical evaluations on a set of tasks can be used to assess the sample complexity
of algorithms. While such evaluations are flexible, comparing learning algorithms solely

CHAPTER 1. INTRODUCTION 2

based on the them and on limited sets of tasks have drawbacks. For example, recent studies
suggest that the performance of many algorithms are not robust to the changes in their im-
plementation, hyperparameters, or random seeds (Islam et al., 2017; Fortunato et al., 2018;
Ilyas et al., 2019). On the flip side, theoretical finite-sample complexity alleviate such issues
and deliver insights into the performance and reliability of learning algorithms, often by pro-
viding upper and lower bounds on the number of samples required to reach a performance
guarantee.

Recent years have observed machine learning algorithms achieving impressive perfor-
mance in certain domains. Examples include OpenAI’s GPT-3, a language model that
produces human-like text, and DeepMind’s AlphaGo, a reinforcement learning agent that
has beat the world’s champion in the game of Go. These success stories, however, often rely
on access to enormous and diverse datasets, expert demonstrations, or accurate simulators
of the environment. Such requirements and lack of theoretical foundations for algorithms are
among the reasons that preclude reliable integration of AI into many important applications.

Take AI for physiological monitoring as an example. The sequential environment of hu-
man physiology does not satisfy common statistical assumptions, exhibiting non-stationarity
and long-term dependencies (Ghassemi et al., 2015; Alaa et al., 2017; Wiens et al., 2019;
Rashidinejad et al., 2020a). Healthcare data are often small and sporadic due to the costs of
expert labels, scarcity of certain physiological conditions, and irregular measurement times.
These datasets are also relatively narrow, as data are collected by specific policies, and
further data collection, for instance by exploring various treatment options, is heavily re-
stricted. Furthermore, AI for physiological monitoring needs to be reliable, safe, explainable,
and personalizable.

In the quest to build AI that can be integrated into the real world, in this thesis we
formulate problems and design algorithms towards reliable prediction and decision-making
in sequential environments.

Thesis roadmap

This thesis is based on three of the author’s publications on prediction and decision-making
in sequential environments. The rest of this chapter is dedicated to an overview of notations
and a synopsis of technical contributions and results.

Section 1.1 of this introduction summarizes the problem formulation, techniques, and
results of the work Rashidinejad et al. (2020c) on learning to make predictions in an unknown
and partially-observed linear dynamical system (LDS), one of the most commonly used
sequential models. The main contribution of this work is presenting the first provably sample-
efficient prediction algorithm, whose regret is independent of both system’s degree of stability
and forecast memory. A detailed discussion of the algorithm and technical contributions are
deferred to Chapter 2.

Section 1.2 outlines contributions on learning to make decisions in an unknown Markov
decision process (MDP), a commonly used sequential model in reinforcement learning (RL).
Policy learning is considered under two settings. The first setting is offline RL, in which

CHAPTER 1. INTRODUCTION 3

learning is based on access to only a previously-collected dataset of interactions. A new
framework is proposed for studying offline learning problems which admit datasets with any
composition, ranging from expert-collected to uniform coverage. Given this framework, we
propose a new algorithm and conduct an extensive study of finite-sample properties of the
algorithm as well as information-theoretic limits under a variety of settings. A more in-depth
discussion of the offline setting is presented in Chapter 3, which is a lightly edited version of
the publication Rashidinejad et al. (2021).

Online RL is the second setting considered, in which learning occurs while interacting with
the environment. The online setting brings about a key question on the trade-off between
exploring the environment and exploiting the already acquired knowledge. As detailed in
Chapter 4, we frame this trade-off as adding a regularizer to the standard RL objective
and proposing a new exploration algorithm that enjoys convergence guarantees and sample
efficient exploration on a variety of navigation and locomotion tasks. This chapter is based
on the publication Zhang et al. (2021b).

We conclude the thesis by reviewing open challenges and discussing promising avenues
for future work in Chapter 5.

Notation

We denote the space of reals by R, the space of n-dimensional real vectors by Rn, and the
space of n×m-dimensional real matrices by Rn×m. We use calligraphy letters to denote sets
and given a set S, we write |S| to represent the cardinality of S. The probability simplex
over a set S is denoted by ∆(S).

Vectors are denoted by small letters and are assumed to be column vectors except for
the probability and measure vectors. We denote by ∥.∥2, the Euclidean norm of vectors. For
two n-dimensional vectors x and y, we use x · y = x⊤y = ⟨x, y⟩ to denote their inner product
and x ≤ y to denote the element-wise inequality xi ≤ yi for all i ∈ {1, . . . , n}. The vertical
concatenation of x1, . . . , xt ∈ Rn is written as x1:t ∈ Rnt. We use xt(i) to refer to the i-th
element of the vector xt = [xt(1), . . . , xt(n)]

⊤.
Throughout this text, matrices may be denoted by capital, small, or calligraphy letters.

The spectral radius of a square matrix A is denoted by ρ(A). We denote by ∥A∥2, the
operator two norm of the matrix A. The eigenpairs of an n × n matrix are written as
{(σj, ϕj)}nj=1 where σ1 ≥ . . . ≥ σn are the eigenvalues and {ϕj}kj=1 are the top k eigenvectors.
The horizontal concatenation of matrices A1, . . . , An with appropriate dimensions, is denoted
by [Ai]

n
i=1 = [A1|. . . |An]. The Kronecker product of matrices A and B is denoted by A⊗B.

Identity matrix of dimension n is represented by In.
We write x ≲ y when there exists a constant c > 0 such that x ≤ cy and we write

x ≲b y when c is a constant that only depends on b. We use the notation x ≍ y if constants
c1, c2 > 0 exist such that c1|x|≤ |y|≤ c2|x| and write x ≍b y if c1, c2 > 0 only depend on b.
We write x∨ y to denote the supremum of x and y. We write f(x) = O(g(x)) if there exists
some positive real number M and some x0 such that |f(x)|≤ Mg(x) for all x ≥ x0. We use

CHAPTER 1. INTRODUCTION 4

Õ(·) to be the big-O notation ignoring logarithmic factors. We write f(x) = Ω(g(x)) if there
exists some positive real number M and some x0 such that |f(x)|≥Mg(x) for all x ≥ x0.

x := y is used when quantity x is taken to be equal to quantity y by definition. Given a
probability distribution p, we write x1, . . . , xn ∼ p if random variables x1, . . . , xn are drawn
independently and identically distributed from distribution p. E[X] and V[X] respectively
denote the expected value and variance of random variable X.

1.1 Learning to make predictions
Chapter 2 considers partially-observed linear dynamical system (LDS), one of the most
popular sequential environments, whose evolution is described as:

ht+1 = Aht +Bxt + ηt,

yt = Cht +Dxt + ζt.
(1.1)

Here, ht is the latent (hidden) state, xt is the control input, yt is the observation, and ηt and
ζt respectively denote the process and measurement noise vectors with covariance matrices
Q and R. Matrix A is the transition matrix and controls how fast the process mixes—i.e.,
how fast the marginal distribution of yt becomes independent of y1. Furthermore, matrix
A determines whether the above LDS is stable ρ(A) < 1, marginally stable ρ(A) = 1, or
unstable ρ(A) > 1, with ρ(A) determining the system’s degree of stability. At any step, our
goal is to make reliable predictions about observation yt+1 given system input xt+1 and the
causal history, i.e. all past observations y1, . . . , yt and inputs x1, . . . xt.

If the system parameters, which are matrices A,B,C,D and noise covariance matrices Q
and R, are known, the optimal linear1 predictions are given by the celebrated Kalman filter.
The recursive representation of the (stationary) Kalman predictive model also obeys a linear
law

ht+1|t = Ght|t−1 +Kyt + (B −KD)xt,

yt+1|t = Cht+1|t +Dxt+1,
(1.2)

where ht+1|t and yt+1|t denote the optimal state and observation predictions, respectively.
Here, matrix K is called the (predictive) Kalman gain and matrix G := A−KC is called the
closed-loop matrix, known to be marginally stable ρ(G) ≤ 1. Notice that for the LDS that
describes the Kalman predictive model, G determines the forecast memory of the system,
i.e. how many past data points are ought to be considered to make a sound prediction.

If the system parameters are unknown, a common approach is to first estimate system
parameters from data, which is referred to as system identification, and then make predictions
using the Kalman formula. Direct identification of system (1.1), however, requires solving a

1For Gaussian process and measurement noise, Kalman predictive model returns optimal predictions,
minimizing the conditional mean squared loss.

CHAPTER 1. INTRODUCTION 5

non-convex optimization problem via classical algorithms such as expectation maximization
(EM), for which finite-sample guarantees are difficult.

Recently, several algorithms are developed that enjoy theoretical guarantees, yet these
predictors either do not converge to the optimal predictions of a Kalman model in hindsight
or their prediction error increases with system’s degree of stability ρ(A) and/or forecast
memory ρ(G). Indeed, the majority of popular prediction algorithms, such as the ones
based on recurrent networks, effectively predict based on a finite lookback window only
(Miller and Hardt, 2018), despite the ubiquity of long-range dependencies in many areas
such as econometrics, linguistics, medicine, and climate sciences (Doukhan et al., 2002;
Beran, 2017).

As laid out in detail in Chapter 2, we are interested in developing a reliable prediction
algorithm even with the existence of long-range dependencies. More formally, we want
the cumulative performance of the algorithm’s predictions ŷt|t−1 compared to the Kalman
predictions in hindsight yt|t−1 defined as

Regret(T) :=
T∑

t=1

∥yt − m̂t∥22−∥yt −mt∥22, (1.3)

to be sublinear in T with high probability.
We introduce the prediction algorithm illustrated in Figure 1.1, named SLIP (spectral

LDS improper predictor), which relies on two key observations described below.

Bypassing system identification. Since our goal is to design a predictor, we bypass the
difficult system identification step and instead learn a computational process that directly
approximates the Kalman predictor. To achieve this, we take a look at the expansion of the
recursive formula for the Kalman predictor:

yt|t−1 =
t−1∑

i=1

CGt−i−1Kyi +
t−1∑

i=1

CGt−i−1(B −KD)xi +Dxt. (1.4)

From expansion above, it is apparent that first, the least-squares objective is non-convex
in the predictor parameters C,G,K,B,D, and second, the optimal predictions are linear in
current input xt and causal history y1:t−1, x1:t−1.

Convex relaxation. Proper learning is learning from the original hypothesis class H. In
the case of linear dynamical systems, original hypothesis class refers to the system param-
eters H = {A,B,C,D,Q,R} and identifying these parameters is a non-convex problem as
discussed earlier. On the other hand, in improper learning paradigm, one may reparameter-
ize the hypothesized model class by an alternative class H̃, which is often a relaxation that
results in an easier optimization problem or improved computational efficiency. To meet our
goal on theoretical guarantees, we resort to improper learning by slightly overparameterizing
the Kalman predictive model and conducting a convex relaxation.

CHAPTER 1. INTRODUCTION 6

Figure 1.1: Block-diagram of the SLIP algorithm. First, given a horizon T , a set of k spectral
filters are computed via the spectral decomposition of a particular Hankel matrix. Then,
at every step, a feature vector is constructed by stacking quantities obtained by convolving
previous observations and inputs with each spectral filter. The predictions are computed by
multiplying the feature vector with a parameter matrix. Upon receiving the observations,
the parameters are updated by minimizing a regularized least squares loss.

To ensure a good performance, the overparameterization for convex relaxation should
first, be accurate and approximate the Kalman predictive model closely, and second, be
tight and avoid introducing too many parameters. Accomplishing both of these goals at
once may not always be possible and the two goals may even be at odds, resulting in a
form of bias-variance tradeoff. We investigate the possibility of a tight convex relaxation by
analyzing a generalized version of Kolmogorov k-width of the Kalman predictor coefficient
set. The Kolmogorov k-width measures how well a set can be approximated by a low-
dimensional linear subspace (Pinkus, 2012). Unlike other complexity notions, Kolmogorov
width measures the approximation error in terms of the worst-case error, which provides a
uniform upper bound on the convex relaxation error regardless of the ground truth values of
the LDS parameters in a particular instance.

Our first result regarding the feasibility of conducting a tight convex relaxation is pre-
sented below.

Theorem 1.1 (Kalman predictor k-Width, Informal). The following statements hold for the
stationary Kalman predictor in (1.2) with ρ(A) ≤ 1:

1. For a general closed-loop matrix G with ρ(G) ≤ 1, linear subspaces cannot be exploited
to efficiently approximate the Kalman predictions.

CHAPTER 1. INTRODUCTION 7

2. Restricting G to be diagonalizable with real eignevalues, the Kalman predictor can be
approximated efficiently via fixed known filters.

The above theorem states that a tight convex relaxation of the Kalman predictive model,
uniformly for any LDS with ρ(A) ≤ 1 and ρ(G) ≤ 1, is possible provided that the closed-
loop matrix G is diagonalizable with real eigenvalues. Although a tight convex relaxation is
necessary, it is not sufficient to ensure accurate learning and sublinear regret.

Analyzing the regret of the SLIP algorithm relies on understanding the finite sample
properties of regularized least-squares in the presence of non-independent sequential data
potentially generated by a system that is only marginally stable. Colloquially speaking,
unlike the common assumptions of bounded feature norms, in marginally stable systems
the feature norm can grow (polynomially) over time. This precludes using a mixing time
argument, which is one of the most established techniques in statistics for handling non-
independent sequential processes (Yu, 1994).

Informally, the mixing time of a sequence refers to the smallest window τ such that the
elements that are at least as far apart as τ become “almost statistically independent”. For the
predictor in (1.4) with ρ(G) < 1, mixing time is related to the spectral norm of G according
to 1/(1− ρ(G)). This is due to the fact the definition of spectral norm ensures ∥Gi∥≈ ρ(G)i

and thus at any step t one can neglect the data received much earlier than t− 1/(1− ρ(G)).
The mixing time technique argues that subsequences separated by τ are nearly statistically
independent and thereby the estimation rates becomes analogous to those in i.i.d. systems,
multiplied by a factor proportional to the mixing time. Hence, if a predictor has a uniform
regret guarantee independent of the mixing time, the analysis must exploit arguments other
than mixing time to establish the regret bound.

We obtain a uniform regret guarantee for the SLIP algorithm by decomposing the regret
into several interpretable terms and bounding them separately. The key techniques that we
use in our analysis are: (1) self-normalizing martingale properties and concentration results
such as the ones given in Abbasi-Yadkori et al. (2011), and (2) block martingale small-ball
condition which we establish for the feature process. The second technique is inspired by
recent works of Mendelson (2014); Simchowitz et al. (2018), in which conditions other than
concentration are shown that can also facilitate efficient learning. The following theorem
gives an informal statement of the regret guarantee for the SLIP algorithm.

Theorem 1.2 (SLIP regret, Informal). Assume G is diagonalizable with real eignevalues
and set the number of filters to k ≍ log2 T . Under mild assumptions,

Regret(T) :=
T∑

t=1

∥yt − m̂t∥22−∥yt −mt∥22≲ polylog(T)

with high probability, uniformly for all ρ(A) ≤ and ρ(G) ≤ 1.

In addition to theoretical results, we present empirical evaluations in Chapter 2 showing
that SLIP significantly improves prediction accuracy compared to state-of-the-art methods.

CHAPTER 1. INTRODUCTION 8

1.2 Learning to make decisions
In this section, we consider decision-making in sequential environments. One of the primary
frameworks to study sequential decision-making is reinforcement learning, whose goal is
maximize a cumulative reward objective. RL is closely related to the field of optimal control,
which is concerned with setting control inputs to satisfy a scalar objective. Furthermore, a
large part of neuroscience is devoted to understanding how the brain makes decisions which
is related to the neurotransmitter dopamine and its role resembles that of the reward in RL.
The RL framework is very general and can capture many problems arises in practice; to the
extent that a recent paper by Silver et al. (2021) hypothesizes that the reward maximization
objective alone contains many or possibly even all the goals of intelligence.

What differentiates reinforcement learning from supervised learning is that the only su-
pervision in RL is a reward signal, which provides a partial feedback and causes a credit
assignment problem. The partial (or bandit) feedback refers to the fact that the agent only
observes the reward signal on the actions it takes and not on other possible actions that it
could have chosen. The credit assignment problem refers to the fact that earlier decisions
may have delayed consequences, affecting the future states, available choices, and rewards.

These aspects alongside difficulties of data collection (exploration) and insufficient data
coverage, makes the RL setting significantly more challenging than supervised learning. In-
deed, the current successful RL-based programs are heavily restricted. For example, Al-
phaGo, the first program that has defeated the Go world champion, leverages known envi-
ronment dynamics and finds a policy based on over 10 million self-plays. Other examples
such as AlphaStar for Start Craft II or OpenAI Five for Dota 2 are trained over 10,000 years
of the AI playing the game with itself. Despite the capacity that RL offers, obtaining such
large amounts of data in many real applications is completely prohibitive, which motivates
this thesis to investigate the challenges RL faces in practice.

We study RL in fully-observed Markov decision processes (MDPs), one of the most
commonly-used sequential environments. In MDPs, upon taking an action a from an (ob-
servable) state s, the agent receives a (possibly random) reward r and transitions to the next
state s′. Over time, this procedure generates a sequence {st, at, rt}t≥0. A policy π specifies
which actions should be taken at any state. We write a deterministic policy as a = π(s),
which is a map from states to actions, and a stochastic policy as a ∼ π(· | s), which defines
a distribution over actions in each state. We consider the discounted infinite horizon setting,
where a policy is ran for an infinite horizon and future rewards are discounted by a factor
of γ ∈ [0, 1) per time step. Any policy π induces a discounted occupancy or visitation dis-
tribution dπ(s, a), which roughly characterizes the probability (density) (s, a) is occupied by
π. We refer the reader to Section 3.1.1 for more formal definitions.

The RL objective (also called the return) is to find a policy that maximizes the expected
cumulative discounted reward specified below:

J(π) := E

[
∞∑

t=0

γtrt

∣∣∣∣∣π
]
=

1

1− γ Es,a∼dπ(·,·)[r(s, a)]. (1.5)

CHAPTER 1. INTRODUCTION 9

In the equation above, the second inequality gives an equivalent characterization of the RL
objective—the reward averaged over the policy occupancy distribution and multiplied by
the total amount of time spent in the environment, i.e. the effective horizon 1/(1− γ). We
denote the optimal policy by π⋆ ∈ argmax J(π). Given any target policy2 π, the expected
sub-optimality of a learned policy π̂ with respect to (or competing with) π is

E[J(π)− J(π̂)], (1.6)

where the expectation is taken with respect to all the randomness, namely in the data
generation procedure or the algorithm.

In what follows, we describe challenges faced by RL in two learning modes of sequen-
tial decision-making: learning from a fixed dataset of prior interactions and learning while
interacting with the environment.

1.2.1 Decision-making from a dataset

In this section, we study RL in the offline or batch setting, where the agent’s goal is to achieve
competence in a task using only a previously-collected dataset of interactions without further
access to the environment. We denote this dataset by D = {(s, a, r, s′)} which consists of N
tuples of state, action, reward, and next state. As discussed earlier, RL in the current stage
has a high data demand and thus, offline RL plays a critical role for exploiting previously-
collected data. Furthermore, offline RL avoids interactive exploration which can be costly,
dangerous, or even impossible in many real applications (Levine et al., 2020).

One the main challenges in learning from offline data is handling different types of
datasets. There are two main categories of methods that are applied based on the com-
position of the offline dataset. The first one is imitation learning or behavioral cloning,
which is suitable for data collected by an expert and is a supervised learning method. In
theory, imitation learning achieves a sub-optimality that decays according to 1/N , with N
being the number of samples, and in practice, it is observed to succeed with relatively few
samples (Vinyals et al., 2019; Salimans and Chen, 2018). The second category is vanilla
offline RL which requires the dataset to cover states and actions uniformly, both from theo-
retical and practical standpoints. In practice, generic offline RL algorithms are observed to
perform poorly for narrower datasets, such as the ones that include human demonstrations
or are collected by handcrafted policies (Levine et al., 2020).

Yet, real datasets often deviate from the two extremes of expert-only and uniform cover-
age and the exact composition of the dataset can be unknown apriori. To bridge this gap, we
present a new offline RL framework that smoothly interpolates between the two extremes of
data composition, hence unifying imitation learning and vanilla offline RL. The new frame-
work is centered around a weak version of the concentrability coefficient that measures the
deviation of the behavior policy to the expert policy alone. Specifically, denoting by µ the

2Target policy can be viewed as an arbitrary policy against which the algorithm performance is measured.

CHAPTER 1. INTRODUCTION 10

distribution over state-action pairs in the data, we define the single policy concentrability
coefficient Cπ for policy π as

max
s,a

dπ(s, a)

µ(s, a)
≤ Cπ. (1.7)

For an expert policy π, Cπ = 1 denotes an expert-only dataset whereas Cπ > 1 indicates
that the dataset includes spurious samples. For an optimal policy π⋆, finite C⋆ := Cπ⋆

is the weakest concentrability requirement, that has only appeared in characterizing the
sample complexity of online RL algorithms (Scherrer, 2010). Prior to this, offline RL algo-
rithms required “uniform” coverage such as by assuming a uniform concentrability coefficient
maxπ C

π ≤ C (Chen and Jiang, 2019) or uniformly lower bounded data distribution (Sidford
et al., 2018a; Agarwal et al., 2019a).

Under this new framework, we further investigate the question on algorithm design: can
one develop an algorithm that achieves a minimax optimal rate and also adapts to unknown
data composition? We make progress in answering this question by analyzing an offline
learning algorithm based on pessimism in the face of uncertainty developed by constructing
lower confidence bound (LCB) in the tabular setting. We study finite-sample properties
of LCB as well as information-theoretic limits in multi-armed bandits (MAB), contextual
bandits (CB), and Markov decision processes (MDPs), with an overview of results presented
below.

Multi-armed bandits We start by studying offline learning in the MAB setting, in which
we are provided with a dataset of arms and sampled random rewards {(ai, ri)} and our goal
is to find an arm â so as to minimize the suboptimality.

A natural option would be to compute the empirical average reward r̂(a) for each arm
and then choose the arm with the maximum average reward: â ∈ argmaxa r̂(a). Intuitively,
however, the empirical average reward can be inaccurate for the arms with a small number
of samples, which may result in suboptimal arms getting picked despite having a smaller
true mean reward. We confirm this intuition by proving the following theorem.

Theorem 1.3 (Best empirical arm fails, Informal). There exist bandit problems where the
best empirical arm fails to achieve a sub-optimality that decays with sample size N .

Building on our intuition, we can take a different approach and instead be pessimistic
about the rewards of the arms with fewer samples in the dataset. We apply pessimism by
penalizing the empirical reward according to the confidence bound, i.e. constructing a lower
confidence bound (LCB), and then choose the arm that maximizes the LCB. We pick the
following specific LCB construction which is based on Hoeffding’s inequality:

â ∈ argmax r̂(a)− L√
N(a) ∨ 1

, (1.8)

where L is a constant affecting the degree of penalty. We show that, unlike the best empirical
arm, the LCB approach of (1.8) is convergent for all data compositions.

CHAPTER 1. INTRODUCTION 11

Figure 1.2: Left (expert data): Penalty in LCB eliminates sub-optimal arms with no samples
and thus LCB acts similar to imitation learning. Right (uniform coverage data): Best
empirical arm and LCB differ by a constant, therefore LCB acts similar to vanilla offline
bandits. Middle (mixed data): LCB works well in the middle region while imitation learning
and best empirical arm can fail.

Theorem 1.4 (LCB in MAB converges for any data composition, Informal). For all C⋆ ≥ 1,
the suboptimality of the LCB algorithm is Õ

(√
C⋆

N

)
.

Figure 1.2 provides further intuition on how the LCB approach works across the dataset
composition. We further analyze the information theoretic limits of offline learning in MAB,
with an schematic representation of the results provided in Figure 1.3. In summary, we find
that while the LCB algorithm works well across the data composition, it cannot achieve the
information theoretic limit in the MAB setting, regardless of how one sets the parameter L.

Contextual bandits. Contextual bandits (CB) comprise of S separate MAB problems
with an offline dataset of the form {(si, ai, ri)}. To extend the LCB algorithm to the CB
setting, we simply select the arm with maximum LCB in each state (context):

π̂(a) = argmax r̂(s, a)− L√
N(s, a) ∨ 1

. (1.9)

We analyze the LCB performance upper bound and the information-theoretic limit of offline
learning in CB and prove the following theorem.

Theorem 1.5 (LCB is adaptively optimal in CB, Informal). For all C⋆ ≥ 1 and provided that

S > 1, the suboptimality of the LCB algorithm for contextual bandits is Õ
(√

S(C⋆−1)
N

+ S
N

)
,

which matches the information-theoretic lower bound up to logarithmic factors.

CHAPTER 1. INTRODUCTION 12

Figure 1.3: Summary of offline learning results in the MAB setting. While LCB achieves a
decaying rate for all C⋆, the rate matches the information-theoretic lower bound for C⋆ ≥ 2.
The case of C⋆ ∈ [1, 2) corresponds to µ(a⋆) > 1/2, i.e. the optimal arm has more than 50%
probability in data distribution. If such knowledge is provided, one can choose the most
played arm, which nearly achieves the information-theoretic limit with the rate exp(−N).
This is in contrast to the LCB that has a performance lower bound that is only polynomial
in N .

The above theorem shows that going beyond the single state case of MAB, the LCB
algorithm becomes adaptively optimal. This is due to the fact that the information-theoretic
lower bound of offline learning in CB no longer has an exponential convergence rate in the
sample size. Figure 1.4 gives a schematic representation of this result. In addition, the LCB
performance rate in Theorem 1.6 reveals that as C⋆ increases from 1, the sub-optimality rate
smoothly transitions from 1/N , akin to rates in imitation learning, to 1/

√
N , akin to rates

in vanilla offline RL.

Figure 1.4: Summary of offline learning results in the CB setting. The LCB algorithm
achieves adaptive optimal rates (up to logarithmic factors) in CB with at least two contexts.

CHAPTER 1. INTRODUCTION 13

Infinite-horizon MDPs. For the MDP setting, we incorporate LCB with the vanilla value
iteration algorithm (Sutton and Barto, 2018). Let V : S → Vmax and Q : S×A → Vmax define
scalar functions, called value function and Q-function, respectively, with Vmax := 1/(1 − γ)
denoting the effective horizon. The vanilla value iteration algorithm repeats the following
update until convergence:

Q(s, a)← r(s, a) + γ Es′∼P (·|s,a)[V (s′)],

V (s)← max
a
Q(s, a).

The induced greedy policy from the Q-function, i.e. π(s) = argmaxaQ(s, a) is then returned
by the algorithm. We modify the above update by first swapping the unknown rewards and
expectation over next states with their empirical counterparts and and then subtracting
a penalty from the Q-function to account for the statistical fluctuations of the empirical
estimate:

Q(s, a)← r̂(s, a) + γÊs′∼P (·|s,a)[V (s′)]− LVmax√
m(s, a) ∨ 1

,

V (s)← max
a
Q(s, a).

Here, m(s, a) is the number of samples on state-action pair (s, a). We also add two more
tricks to the algorithm, namely data splitting and monotonic update, which gives the full
value iteration with lower confidence bound (VI-LCB). Similar to the offline bandits, we
analyze both the LCB upper bound and information-theoretic lower bounds in the offline
RL setting as stated below.

Theorem 1.6 (VI-LCB is almost adaptively optimal, Informal). For all C⋆ ≥ 1 the sub-
optimality of any offline RL algorithm is

≳ min

(
1

1− γ ,
√
S(C⋆ − 1)

(1− γ)3N +
S

(1− γ)N

)
,

and VI-LCB nearly achieves the above rate.

Figure 1.5 summarizes our findings for the offline RL setting. As the figure shows, VI-
LCB algorithm achieves adaptive optimal rates for C⋆ ≈ 1 and C⋆ = 1 + Ω(1). We have a
gap in the middling region between the LCB upper bound and information-theoretic lower
bound. However, we conjecture that this gap is due to our upper bound analysis and the
VI-LCB algorithm enjoys adaptive optimality. We verify the conjecture in a simple example
and discuss challenges faced in the analysis and potential methods to address the difficulty.

Figure 1.6 provides intuition on the type of analysis required for showing the fast rates
and adaptive optimality of LCB. Consider the offline learning problem in the MAB setting
with the true rewards plotted in blue in Figure 1.6. If one ensures that the empirical rewards
closely estimate the true rewards, then the algorithm is likely to return the optimal arm, as

CHAPTER 1. INTRODUCTION 14

Figure 1.5: Summary of offline learning results in the MDP setting. The VI-LCB algorithm
nearly achieves adaptive optimal rates.

is the case in Figure 1.6(a). However, this requirement is rather stringent and our analysis
reveals that this requirement yields the slow rate of 1/

√
N . It is possible for the pessimistic

reward estimates to not be accurate but be accurate enough so that the algorithm picks the
optimal arm. An example of this case is shown in Figure 1.6(b), which is the basis of our
analysis in the CB setting for establishing the adaptive optimality of LCB (Section 3.8).
Lastly, the case where the algorithm returns a slightly sub-optimal arm within the error
tolerance is also acceptable. Accounting for this case yields an even tighter rate, which is
the basis of the analysis of the example in which we verify the conjecture (Section 3.10.6).

Figure 1.6: LCB analysis techniques. A reward or values guarantee can give the slow rate
of 1/

√
N whereas a policy-based guarantee can give rates faster than 1/

√
N .

1.2.2 Decision-making during interactions

The interactive mode, often called online RL, is considered the classical setting in reinforce-
ment learning, where the agent aims at learning a policy with maximum cumulative reward

CHAPTER 1. INTRODUCTION 15

while interacting with the environment. During interactions, the agents needs to balance
between exploring the environment further (to discover strategies with higher reward) and
exploiting its current knowledge of the environment.3 Effective exploration remains chal-
lenging, particularly in high dimensional environments that provide little feedback. In such
cases, successful exploration methods often rely on manually designing dense rewards which
are reliant on the problem-specific domain knowledge (Brockman et al., 2016).

A common strategy to conduct exploration is based on intrinsic motivation. Literature
provide justifications for using intrinsic motivation from different angles, often related to
novelty seeking. One angle is inspired by an analogy with neuroscience studies (Chentanez
et al., 2004) showing that dopamine, a neuromodulator related to reward learning, plays a
key role for intrinsic motivational behavior control associated with novelty and exploration
(Dayan and Balleine, 2002; Kakade and Dayan, 2002). Another angle is the optimism in the
face of uncertainty which is based on by statistical learning (Yang et al., 2020b; Azar et al.,
2017). Other angles include curiosity (Pathak et al., 2017), gaining information (Russo and
Van Roy, 2014; Nikolov et al., 2018), and empowerment (Klyubin et al., 2005a,b).

Intrinsic motivation is often done by adding an intrinsic reward (bonus) is added to
the extrinsic reward from the environment to guide exploration. Provable methods of this
category are usually based on constructing upper confidence bounds via concentration in-
equalities such as Hoeffding or Bernstein inequalities. However, it remains unclear how to
construct confidence bounds for nonlinear function approximators such as neural network.
Furthermore, Bernstein-based bonus achieves near-optimal performance in tabular setting
by exploiting value function variance information and problem structure (Zanette and Brun-
skill, 2019) but, computing variance of the value function is difficult for nonlinear function.
Exploration methods that can be combined with nonlinear function approximation such as
random network distillation (Burda et al., 2018b), pseudo-counts (Bellemare et al., 2016),
and curiosity (Pathak et al., 2017) are still sample inefficient and can suffer from issues such
as “noisy TV”, in which the agent is distracted by aleatoric uncertainty, forgetting, or getting
stuck in locally optimal policies (Agarwal et al., 2020a).

Adaptive regularization to guide exploration. In the work (Zhang et al., 2021b),
we pose the exploration and exploitation dilemma by adding an adaptive regularizer to the
standard RL objective to guide exploration. In particular, viewing that the second objective
in (1.5) as a function of dπ, we define the new regularized objective as

max
dπ∈K

Lk(d
π) = max

dπ∈K

1

1− γ Es,a∼dπ [r(s, a)]

︸ ︷︷ ︸
exploitation

+τk R(d
π; {dπi}ki=1)︸ ︷︷ ︸
exploration

. (1.10)

3Exploration-exploitation tradeoff appears when one is concerned with a cumulative performance. This
is different from modalities of interactive RL such as explore-then-commit, in which the goal is to move
quickly towards the best policy, and pure exploration, in which the goal is to fully explore the environment
so as to later obtain good policies given any reward function without acquiring additional samples.

CHAPTER 1. INTRODUCTION 16

Here, dπ is the occupancy of the current policy, belonging to a set K of all valid policy
occupancies in the environment, and dπ1 , . . . , dπk are occupancies are previous policies. The
above framework admits many popular exploration methods such as the ones that depend
on prior visitation counts (Bellemare et al., 2016; Zhang et al., 2020d) or intrinsic rewards
that originate from entropy-based exploration (Zhang et al., 2021a).

We next propose a particular regularizer to conduct exploration. Define policy cover
ρkcov(s, a) to be an average of previous policy occupancies, capturing the already explored
regions. Then, we design our regularizer to maximize deviation (MADE) from policy cover:

R(dπ; {dπi}ki=1)︸ ︷︷ ︸
exploration

:=
∑

s,a

√
dπ(s, a)

ρkcov(s, a)
. (1.11)

The specific regularizer above has several favorable properties: (1) it is concave in dπ, (2)
its optimum has the form dπ(s, a) = 1

ρkcov(s,a)
, thus the next policy occupies the less explored

regions, and (3) applying the Frank Wolfe algorithm to solve the constrained optimization
problem (1.11) implies the following intrinsic reward:

τk√
dπmix,k(s, a)ρkcov(s, a)

, (1.12)

where dπmix,k is roughly an average of prior policy occupancies with geometrically distributed
weights and ρkcov(s, a) is prior policy occupancy average. For a practical implementation, we
substitute dπmix,k and ρkcov(s, a) with their empirical estimates.

Taking a closer look in the special case of tabular parameterization, we have ρ̂kcov(s, a)
proportional to the prior visitation count Nk(s, a). Thus, the the intrinsic reward (1.12)
applies a simple modification to the count-based methods:

∝ 1√
dπmix,k(s, a)︸ ︷︷ ︸

correction term

τk√
Nk(s, a)︸ ︷︷ ︸

count-based bonus

(1.13)

To combine the intrinsic reward (1.12) with deep neural network parameterization, one can
use any method used for approximating the count-based bonus such as RND (Burda et al.,
2018b) and multiply it by the correction term. In our experiments, we approximate dπmix,k

using a variational autoencoder trained over a fixed-length dataset of prior interactions, often
referred to as the replay buffer (Zhang and Sutton, 2017; Lillicrap et al., 2015; Andrychowicz
et al., 2017).

Empirical findings. We conduct experiments both in tabular setting and online RL
benchmark tasks to evaluate the performance of the MADE exploration method. A summary
of our findings is presented below.

CHAPTER 1. INTRODUCTION 17

• MADE exploration improves over count-only exploration (Hoeffding bonus) in tabular
setting, acting similar to the information-theoretically optimal Bernstein bonus without
requiring value function variance estimation. We observe this performance regardless
of the type of RL algorithm combined with MADE exploration.

• The regularization in MADE objective seems to offer improvements on optimization
landscape, increasing the rate of convergence to the optimum. We observe this phe-
nomenon in the tabular chain MDP of Agarwal et al. (2019b), where the optimization
rate of policy gradient method is improved exponentially over the vanilla version with-
out regularization.

• Implemented with deep neural networks, MADE exploration method beats state-of-the-
art methods by a large margin in a variety of locomotion and navigation benchmark
tasks, both when paired with model-free or model-based RL algorithms.

18

Chapter 2

Learning to Predict under Long-term
Dependencies

In this chapter, we take a look at the prediction problem in a popular sequential environ-
ment called linear dynamical systems (LDS). Predictive models based on LDS have been
successfully used in a wide range of applications with a history of more than half a cen-
tury. Example applications in AI-related areas range from control systems and robotics
(Durrant-Whyte and Bailey, 2006) to natural language processing (Belanger and Kakade,
2015), healthcare (Parker et al., 1999), and computer vision (Chen, 2011; Coskun et al.,
2017). Other applications are found throughout the physical, biological, and social sciences
in areas such as econometrics, ecology, and climate science.

Recall that the evolution of a discrete-time LDS is described by the following state-space
model with t ≥ 1:

ht+1 = Aht +Bxt + ηt,

yt = Cht +Dxt + ζt,

where ht are the latent states, xt are the inputs, yt are the observations, and ηt and ζt are
process and measurement noise, respectively.

When the system parameters are known, the optimal linear predictor is the Kalman fil-
ter. When they are unknown, a common approach for prediction is to first estimate the
parameters of a Kalman filter and then use them to predict system evolution. Direct pa-
rameter estimation usually involves solving a non-convex optimization problem, such as in
the expectation maximization (EM) algorithm, whose theoretical guarantees may be difficult
(Yu et al., 2018). Several recent works have studied finite-sample theoretical properties of
LDS identification. For fully observed LDS, it has been shown that system identification is
possible without a strict stability (ρ(A) < 1) assumption, where ρ(A) is the spectral radius of
A (Simchowitz et al., 2018; Sarkar and Rakhlin, 2018; Faradonbeh et al., 2018). For partially
observed LDS, methods such as gradient descent (Hardt et al., 2018) and subspace identifi-
cation (Tsiamis and Pappas, 2019) are developed, whose performances degrade polynomially
when ρ(A) is close to one.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 19

We focus on constructing predictors of an LDS without identifying the parameters. In
the case of a stochastic LDS, the recent work of Tsiamis and Pappas (2020) is most related to
our question. Their method performs linear regression over a fixed-length lookback window
to predict the next observation yt given its causal history. Without using a mixing-time
argument, Tsiamis and Pappas (2020) showed logarithmic regret with respect to the Kalman
filter in hindsight even when the system is marginally stable (ρ(A) ≤ 1). However, the
prediction performance deteriorates if the true Kalman filter exhibits long-term forecast
memory.

To illustrate the notion of forecast memory, we recall the recursive form of the (stationary)
Kalman filter for 1 ≤ t ≤ T , where T is the final horizon (Kailath et al., 2000, chap. 9):

ĥt+1|t = Aĥt|t−1 +Bxt +K(yt − Cĥt|t−1 −Dxt) (2.1)

= (A−KC)ĥt|t−1 +Kyt + (B −KD)xt, (2.2)

where ĥt|t−1 denotes the optimal linear predictor of ht given all the observations y1, y2, . . . , yt−1

and inputs x1, x2, . . . , xt−1. The matrix K is called the (predictive) Kalman gain.1 The
Kalman predictor of yt given y1, y2, . . . , yt−1 and x1, x2, . . . , xt, denoted by ŷt|t−1, is Cĥt|t−1+

Dxt. Assume that ĥ1|0 = 0. By expanding Equation (2.2), we obtain

mt ≜ ŷt|t−1 =
t−1∑

i=1

CGt−i−1Kyi +
t−1∑

i=1

CGt−i−1(B −KD)xi +Dxt, (2.3)

where G = A − KC. In an LDS, the transition matrix A controls how fast the process
mixes—i.e., how fast the marginal distribution of yt becomes independent of y1. However, it
is G that controls how long the forecast memory is. Indeed, it was shown in Kailath et al.
(2000, chap. 14) that if the spectral radius ρ(G) is close to one, then the performance of a
linear predictor that uses only yt−k to yt−1 for fixed k in predicting yt would be substantially
worse than that of a predictor that uses all information y1 up to yt−1 as t→∞. Conceivably,
the sample size required by the algorithm of Tsiamis and Pappas (2020) explodes to infinity
as ρ(G) → 1, since the predictor uses a fixed-length lookback window to conduct linear
regression.

The primary reason to focus on long-term forecast memory is the ubiquity of long-term
dependence in real applications, where it is often the case that not all state variables change
according to a similar timescale2 (Chatterjee and Russell, 2010). For example, in a temporal
model of the cardiovascular system, arterial elasticity changes on a timescale of years, while
the contraction state of the heart muscles changes on a timescale of milliseconds.

1One can interpret the Kalman filter Equation (2.1) as linear combinations of optimal predictor given
existing data Aĥt|t−1, known drift Bxt, and amplified innovation K(yt − Cĥt|t−1 − Dxt), where the term
yt−Cĥt|t−1−Dxt, called the innovation of process yt, measures how much additional information yt brings
compared to the known information of observations up to yt−1.

2Indeed, a common practice is to set the timescale to be small enough to handle the fastest-changing
variables.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 20

Designing provably computationally and statistically efficient algorithms in the presence
of long-term forecast memory is challenging, and in some cases, impossible. A related prob-
lem studied in the literature is the prediction of auto-regressive model with order infinity:
AR(∞). Without imposing structural assumptions on the coefficients of an AR(∞) model,
there is no hope to guarantee vanishing prediction error. One common approach to obtain
a smaller representation is to make an exponential forgetting assumption to justify finite-
memory truncation. This approach has been used in approximating AR(∞) with decaying
coefficients (Goldenshluger and Zeevi, 2001), LDS identification (Hardt et al., 2018), and
designing predictive models for LDS (Tsiamis and Pappas, 2020; Kozdoba et al., 2019). In-
evitably, the performance of these methods degrade by either losing long-term dependence
information or requiring very large sample complexity as ρ(G) (and sometimes, ρ(A)) gets
closer to one.

However, the Kalman predictor in (2.3) does seem to have a structure and in particular,
the coefficients are geometric in G, which gives us hope to exploit it. Our main contributions
are the following:

1. Generalized Kolmogorov width and spectral methods: We analyze the gen-
eralized Kolmogorov width, defined in Section 2.4.1, of the Kalman filter coefficient set. In
Theorem 2.2, we show that when the matrix G is diagonalizable with real eigenvalues, the
Kalman filter coefficients can be approximated by a linear combination of polylog (T) fixed
known filters with 1/poly (T) error. It then motivates the algorithm design of linear regres-
sion based on the transformed features, where we first transform the observations y1:t and
inputs x1:t for 1 ≤ t ≤ T via these fixed filters. In some sense, we use the transformed
features to achieve a good bias-variance trade-off: the small number of features guarantees
small variance and the generalized Kolmogorov width bound guarantees small bias. We show
that the fixed known filters can be computed efficiently via spectral methods. Hence, we
choose spectral LDS improper predictor (SLIP) as the name for our algorithm.

2. Difficulty of going beyond real eigenvalues: We show in Theorem 2.2 that if the
dimension of matrix G in (2.3) is at least 2, then without assuming real eigenvalues one has
to use at least Ω(T) filters to approximate an arbitrary Kalman filter. In other words, the
Kalman filter coefficient set is very difficult to approximate via linear subspaces in general.
This suggests some inherent difficulty of constructing provable algorithms for prediction in
an arbitrary LDS.

3. Logarithmic regret uniformly for ρ(G) ≤ 1, ρ(A) ≤ 1: When ρ(A) or ρ(G)
is equal to one the process does not mix and common assumptions regarding boundedness,
concentration, or stationarity do not hold. Recently, Mendelson (2014) showed that such
assumptions are not required and learning is possible under a milder assumption referred to
as the small-ball condition. In Theorem 2.1, we leverage this idea as well as results on self-
normalizing martingales and show a logarithmic regret bound for our algorithm uniformly
for ρ(G) ≤ 1 and ρ(A) ≤ 1. A roadmap to our regret analysis method is provided in Section
2.5.

4. Experimental results: We demonstrate in simulations that our algorithm performs
better than the state-of-the-art in LDS prediction algorithms. In Section 2.6, we compare the

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 21

performance of our algorithm to wave filtering (Hazan et al., 2017) and truncated filtering
(Tsiamis and Pappas, 2020).

2.1 Related work
Adaptive filtering algorithms are classical methods for predicting observations without the
intermediate step of system identification (Ljung, 1978; Fuller and Hasza, 1980, 1981; Wei,
1987; Lai and Ying, 1991; Lorentz et al., 1996). However, finite-sample performance and re-
gret analysis with respect to optimal filters are typically not studied in the classical literature.
From a machine learning perspective, finite-sample guarantees are critical for comparing the
accuracy and sample efficiency of different algorithms. In designing algorithms and analyses
for learning from sequential data, it is common to use mixing-time arguments (Yu, 1994).
These arguments justify finite-memory truncation (Hardt et al., 2018; Goldenshluger and
Zeevi, 2001) and support generalization bounds analogous to those in i.i.d. data (Mohri and
Rostamizadeh, 2009; Kuznetsov and Mohri, 2017). An obvious drawback of mixing-time
arguments is that the error bounds degrade with increasing mixing time. Several recent
works established that identification is possible for systems that do not mix (Simchowitz
et al., 2018; Faradonbeh et al., 2018; Simchowitz et al., 2019). For the problem of the linear
quadratic regulator, where the state is fully observed, several results provided finite-sample
regret bounds (Faradonbeh et al., 2017; Ouyang et al., 2017; Dean et al., 2018; Abeille and
Lazaric, 2018; Mania et al., 2019; Simchowitz and Foster, 2020).

For prediction without LDS identification, Hazan et al. (2017, 2018) have proposed al-
gorithms for the case of bounded adversarial noise. Similar to our work, they use spectral
methods for deriving features. However, the spectral method is applied on a different set
and connections with k-width and difficulty of approximation for the non-diagonalizable case
are not studied. Moreover, the regret bounds are computed with respect to a certain fixed
family of filters and competing with the Kalman filter is left as an open problem. Indeed,
the predictor for general LDS proposed by Hazan et al. (2018) without the real eigenvalue
assumption only uses a fixed lookback window. Furthermore, the feature norms are of order
poly (T) in our formulation, which makes a naive application of online convex optimization
theorems (Hazan, 2019) fail to achieve a sublinear regret.

We focus on a more challenging problem of learning to predict in the presence of un-
bounded stochastic noise and long-term memory, where the observation norm grows over
time. The most related to our work are the recent works of Tsiamis and Pappas (2020)
and Ghai et al. (2020), where the performance of an algorithm based on a finite lookback
window is shown to achieve logarithmic regret with respect to the Kalman filter. However,
the performance of this algorithm degrades as the forecast memory increases. In fact, this
algorithm can be viewed as a special case of our algorithm where the fixed filters are chosen
to be standard basis vectors.

We investigate the possibility of conducting tight convex relaxation of the Kalman pre-
dictive model by defining a notion that generalizes Kolmogorov width. The Kolmogorov

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 22

width is a notion from approximation theory that measures how well a set can be approx-
imated by a low-dimensional linear subspace (Pinkus, 2012). Kolmogorov width has been
used in a variety of problems such as minimax risk bounds for truncated series estimators
(Donoho et al., 1990; Javanmard and Zhang, 2012), minimax rates for matrix estimation
(Ma and Wu, 2015), density estimation (Hasminskii et al., 1990), hypothesis testing (Wei
and Wainwright, 2020; Wei et al., 2020), and compressed sensing (Donoho, 2006). In Section
2.4, we present a generalization of Kolmogorov width, which facilitates measuring the convex
relaxation approximation error.

2.2 Preliminaries and problem formulation

2.2.1 Problem statement

We consider the problem of predicting observations generated by the following linear dy-
namical system with inputs xt ∈ Rn, observations yt ∈ Rm, and latent states ht ∈ Rd:

ht+1 = Aht +Bxt + ηt,

yt = Cht +Dxt + ζt,
(2.4)

where A,B,C, andD are matrices of appropriate dimensions. The sequences ηt ∈ Rd (process
noise) and ζt ∈ Rm (measurement noise) are assumed to be zero-mean, i.i.d. random vectors
with covariance matrices Q and R, respectively. For presentation simplicity, we assume that
ηt and ζt are Gaussian; extension of our regret analysis to sub-Gaussian and hypercontractive
noise is straightforward. We assume that the discrete Riccati equation of the Kalman filter for
the state covariance has a solution P and the initial state starts at this stationary covariance.
This assumption ensures the existence of the stationary Kalman filter with stationary gain
K; see Kailath et al. (2000) for details.

Define the observation matrix Ot and the control matrix Ct of a stationary Kalman filter
as

Ot =
[
CGt−1K CGt−3K . . . CK

]
,

Ct =
[
CGt−1(B −KD) CGt−3(B −KD) . . . C(B −KD)

]
.

(2.5)

where G = A − KC is called the closed-loop matrix. The Kalman predictor (2.3) can be
written as

mt+1 = Oty1:t + Ctx1:t +Dxt+1, (2.6)

The prediction error et = yt−mt, also called the innovation, is zero-mean with a stationary
covariance V . Our goal is to design an algorithm m̂t(y1:t−1, x1:t) such that the following
regret

Regret(T) ≜
T∑

t=1

∥yt − m̂t∥22−∥yt −mt∥22 (2.7)

is bounded by polylog(T) with high probability.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 23

2.2.2 Improper learning

Most existing algorithms for LDS prediction include a preliminary system identification step,
in which system parameters are first estimated from data, followed by the Kalman filter.
However, the loss function (such as squared loss) over system parameters is non-convex, for
which methods based on heuristics such as EM and subspace identification are commonly
used. Instead, we aspire to an algorithm that optimizes a convex loss function for which
theoretical guarantees of convergence and sample complexity analysis are possible. This
motivates developing an algorithm based on improper learning.

Instead of directly learning the model parameters in a hypothesis classH, improper learn-
ing methods reparameterize and learn over a different class H̃. For example in system (2.4),
proper learning hypothesis class H contains possible values for parameters A,B,C,D,Q and
R. Improper learning is used for statistical or computational considerations when the orig-
inal hypothesis class is difficult to learn. The class H̃ is often a relaxation: it is chosen in
a way that is easier to optimize and more computationally efficient while being close to the
original hypothesis class. Improper learning has been used to circumvent the proper learning
lower bounds (Foster et al., 2018).

In this paper, we use improper learning to conduct a tight convex relaxation, i.e. we
slightly overparameterize the LDS predictive model in such a way that the resulting loss
function is convex. Designing an overparameterized improper learning class requires care
as using a small number of parameters may result in a large bias whereas using too many
parameters may result in high variance. Section 2.4.3 presents our overparameterization
approach based on spectral methods that enjoys a small approximation error with relatively
few parameters.

2.2.3 Additional Notation

We define M = (RΘ,m, γ, κ, β, γ, δ) to be a shorthand for the PAC bound parameters
(defined in Theorem 2.1). Given a function f : N→ R, we write x ≲M f(T), x ≍M f(T) to
specify the dependency only on the horizon T .

2.2.4 Systems with long forecast memory

As discussed before, system (2.4) exhibits long forecast memory when ρ(G) is close to one.
The closed-loop matrix G itself is related to parameters A,C,Q, and R. In the following
example, we discuss when long forecast memory is instantiated in a scalar dynamical system.

Example 1. Consider system (2.4) with d = m = 1. The following holds for a stationary
Kalman filter

KC =
AC2P+

C2P+ +R
⇒ 0 ≤ KC ≤ A for d = m = 1,

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 24

where P+ is the variance of state predictions ĥt|t−1 (Kailath et al., 2000). The above con-
straint yields G = A−KC ≤ A, which implies that the forecast memory can only be long in
systems that mix slowly. We write

G = A
(
1− C2P+

C2P+ +R

)
, for d = m = 1.

The above equation suggests if R≫ C2P+, then G is close to A. In words, linear dynamical
systems with small observed signal to noise ratio C/

√
R have long forecast memory, provided

that they mix slowly.
Another parameter that affects the forecast memory of a system is the process noise

variance Q. When Q is small and A is close to one, latent state ht is almost constant. In
this setting, the observations in the distant past are informative on ht and therefore should
be considered when making predictions.

In multi-dimensional systems, the chance of encountering a system with long forecast
memory is much higher as it suffices for only one variable or direction to exhibit long forecast
memory. Systems represented in the discrete-time form of Equation (2.4) are often obtained
by discretizing differential equations and continuous dynamical systems, for which choosing
a small time step results in a better approximation. However, reducing the time step directly
increases the forecast memory. These types of issues has motivated a large body of research
on alternative methods such as continuous models (Nodelman et al., 2002) and adaptive time
steps (Aleks et al., 2009). It is therefore desirable to have algorithms whose performance is
not affected by the choice of time step, which is one of our goals in this paper.

2.3 SLIP: Spectral LDS improper predictor
In this section, we present the SLIP algorithm and the main regret theorem. The derivation
of the algorithm and the sketch for regret analysis are respectively provided in Section 2.4
and Section 2.5.

Algorithm 1 presents a pseudocode for the SLIP algorithm. Our algorithm is based
on an online regularized least squares and a linear predictor m̂t = Θ̂(t)ft, where ft is an
l-dimensional vector of features and Θ̂(t) ∈ Rm×l is a parameter matrix. The features are
constructed from past observations and inputs using eigenvectors of a particular T×T Hankel
matrix with entries

Hij =
1 + (−1)i+j

2(i+ j − 1)
, 1 ≤ i, j ≤ T. (2.8)

Let ϕ1, . . . , ϕk for k ≤ T be the top k eigenvectors of matrix H, to which we refer as spectral
filters. At every time step, we obtain our feature vector by concatenating the current input
xt to k output features based on y1:t−1 and k input features based on x1:t−1. More specifically,
we have

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 25

ỹt−1(j) ≜ (ϕ⊤
j (t− 1 : 1)⊗ Im)y1:t−1 = ϕj(1)yt−1 + · · ·+ ϕj(t− 1)y1 (output features),

x̃t−1(j) ≜ (ϕ⊤
j (t− 1 : 1)⊗ In)x1:t−1 = ϕj(1)xt−1 + · · ·+ ϕj(t− 1)x1 (input features),

(2.9)

for j ∈ {1, . . . , k}, resulting in a feature vector ft with dimension l = mk + nk + n. Upon
receiving a new observation, the parameter matrix is updated by minimizing the regularized
loss

t∑

i=1

∥Θ̂ft − yt∥2+α∥Θ̂∥22,

for α > 0, which yields the following update rule

Θ̂(t+1) =
(t∑

i=1

yif
⊤
i

)(t∑

i=1

fif
⊤
i + αIl

)−1
. (2.10)

Algorithm 1 SLIP: Spectral LDS Improper Predictor
Inputs: Time horizon T , number of filters k, regularization parameter α, input dimension
n,

observation dimension m.
Output: One-step-ahead predictions m̂t(x1:t, y1:t−1).

Compute the top k eigenvectors {ϕj}kj=1 of matrix H with elements

Hij =
(−1)i+j + 1

2(i+ j − 1)
, 1 ≤ i, j ≤ T.

Set vectors ψi = [ϕ1(i), . . . , ϕk(i)]
⊤ for i ∈ {1, . . . , T}, where ϕj(i) is the i-th element of

ϕj.
Initialize Θ̂(1) ∈ Rm×l with l = (n+m)k + n.
for t = 1, . . . , T do

Set Ψt−1 = [ψt−1, . . . , ψ1], where Ψ0 = 0k.
Set x1:t−1 = [x⊤1 , . . . , x

⊤
t−1]

⊤, y1:t−1 = [y⊤1 , . . . , y
⊤
t−1]

⊤, x1:0 = 0n, y1:0 ≜ 0m.
Compute l-dimensional feature vector ft:

ft =

ỹt−1

x̃t−1

xt

 =

(Ψt−1 ⊗ Im)y1:t−1

(Ψt−1 ⊗ In)x1:t−1

xt

 .

Predict m̂t = Θ̂(t)ft.
Observe yt and update parameters Θ̂(t+1) =

(∑t
i=1 yif

⊤
i

)(∑t
i=1 fif

⊤
i + αIl

)−1.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 26

Importantly, Algorithm 1 requires no knowledge of the system parameters, noise covari-
ance, or state dimension and the predictive model is learned online only through sequences of
inputs and observations. Note that the spectral filters are computed by conducting a single
eigendecomposition and are fixed throughout the algorithm; matrix Ψt merely selects certain
elements of spectral filters used for constructing features. Computing eigenvectors when T is
large is possible by solving the corresponding second-order Sturm-Liouville equation, which
allows using efficient ordinary differential equation solvers; see Hazan et al. (2017) for details.

The next theorem analyzes the regret achieved by the SLIP algorithm. A proof sketch
of the theorem is provided in Section 2.5 and a complete proof is deferred to Section 2.8.8.

Theorem 2.1. (Regret of the SLIP algorithm) Consider system (2.4) without inputs
with initial state covariance equal to the stationary covariance P . Let mt be the predictions
made by the best linear predictor (Kalman filter) and m̂t be the predictions made by Algorithm
1. Fix the failure probability δ > 0 and make the following assumptions:

(i) There exists a finite RΘ that ∥C∥2, ∥P∥2, ∥Q∥2, ∥R∥2, ∥V ∥2≤ RΘ and ∥Ot∥2≤ RΘt
β for

a bounded constant β ≥ 0. Let κ be the maximum condition number of R and Q.

(ii) The system is marginally stable with ρ(A) ≤ 1 and ∥At∥2≤ γtlog(γ) for a bounded
constant γ ≥ 1. Furthermore, the closed-loop matrix G is diagonalizable with real
eigenvalues.

(iii) The regularization parameter α and the number of filters k satisfy the following

k ≍ log2(T) polylog(m, γ,RΘ,
1

δ
), α ≍ 1

RΘkT β
.

(iv) There exists s ≲RΘ,m,γ,β,δ t/(k log k) and t0 such that for all t ≥ t0

tΩs/2(A;ψ)− Ωt+1(A;ψ) ⪰ 0. (2.11)

Ωt(A;ψ) is called the filter quadratic function of ψ with respect to A defined as

Ωt(A;ψ) = (ψ
(d)
1)(ψ

(d)
1)⊤ + (ψ

(d)
2 + ψ

(d)
1 A)(ψ

(d)
2 + ψ

(d)
1 A)⊤ + . . .

+ (ψ
(d)
t−1 + · · ·+ ψ

(d)
1 At−2)(ψ

(d)
t−1 + · · ·+ ψ

(d)
1 At−2)⊤

where ψ(d)
i = [ϕ1(i), . . . , ϕk(i)]

⊤ ⊗ Id.
Then, for all T ≥ max{10, t0}, the following holds with probability at least 1− δ,

Regret(T) ≤ polylog(T, γ,
1

δ
)κ poly(RΘ, β,m).

Theorem 2.1 states that if G is diagonalizable with real eigenvalues, provided that the
number of filters k ≍M log2(T), the regret is polylog(T) with high probability and the regret
bound is independent of both transition matrix spectral radius ρ(A) (related to mixing rate)
and closed-loop matrix spectral radius ρ(G) (related to forecast memory).

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 27

Remark 2.1. Note that for any matrix A, there exists a constant γ ≥ 1 such that ∥At∥2≤
γtlog(γ) (Kozyakin, 2009). We justify our assumption on diagonalizable G with real eigenval-
ues in the following section. The filter quadratic condition is easily verified for s > 2(k + 1)
and t0 ≳RΘ,m,γ,β,δ k

2 log(k) for all A with ρ(A) ≤ 1 for the filters corresponding to trun-
cated observations (a.k.a. basis vectors) such as in Tsiamis and Pappas (2020). When A is
symmetric, this condition can be further simplified to tΩs/2(D;ψ) − Ωt+1(D;ψ) ⪰ 0 for all
diagonal matrices D with |Dii|≤ 1.

2.4 Approximation error: Generalized Kolmogorov
width

2.4.1 Width of a subset

The SLIP algorithm is based on approximating the Kalman predictive model. In this sec-
tion, we start by introducing a generalization of Kolmogorov k-width of a subset, which is
a criterion to assess the quality of a function approximation method. We then present our
approximation technique which gives the SLIP algorithm.

Definition 2.1. (Generalized Kolmogorov k-width) Let W be a subset in a normed linear
space with norm ∥.∥ whose elements are d×n matrices. Given d×n matrices u1, . . . , uk for
k ≥ 1, let

U(u1, . . . , uk) ≜
{
y
∣∣∣ y =

k∑

i=1

aiui, ∀ai ∈ Rd×d
}

be the subset constructed by linear combinations of u1, . . . , uk with coefficient matrices
a1, . . . , ak. For a fixed k ≥ 1, denote by Uk the set of U(u1, . . . , uk) for all possible choices of
u1, . . . , uk:

Uk ≜
{
U(u1, . . . , uk)

∣∣ ∀ui ∈ Rd×n
}
.

The generalized k-width of W is defined as

dk(W) ≜ inf
U∈Uk

sup
x∈W

dist(x;U) = inf
U∈Uk

sup
x∈W

inf
y∈U
∥x− y∥,

where dist(x;U) is the distance of x to subset U and the first infimum is taken over all subsets
U ∈ Uk.

Here, we are interested in approximating W with the “best” subset in the set Uk: the
subset that would minimize the worst case projection error of x ∈ W among all subsets in
Uk. This minimal error is given by the generalized k-width of W . Figure 2.1 illustrates an
example in which W is an ellipsoid in R3 and we are interested in approximating it with a

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 28

2-dimensional plane (k = 2). In this example, U2 is the set of all planes and plane U offers
the smallest worst-case projection error d2(W) for approximating W .

Definition 2.1 generalizes the original Kolmogorov k-width definition in two ways. First,
in our definition W is allowed to be a subset of matrices whereas in the original Kolmgorov
width, W is a subset of vectors. This generalization is necessary as we wish to approximate
the coefficient set of the Kalman predictive model whose elements Ot and Ct are matrices.
Second, we allow the coefficients ai to be matrices, generalizing over the scalar coefficients
used in the original definition of Kolmogorov width. When constructing a reparameteriza-
tion, a linear predictive model yields a convex objective regardless of whether the coefficients
are matrices or scalars. Allowing coefficients to be matrices as opposed to restricting them
to be scalars gives flexibility to find a reparameterization with small approximation error, as
demonstrated in Theorem 2.2.

2.4.2 From a small width to an efficient convex relaxation

Before stating our approximation technique, we briefly describe how a small generalized k-
width allows for an efficient convex relaxation. The ideas presented in this section will be
made more concrete in subsequent sections.

To understand the main idea, consider system (2.4) with no inputs whose predictive model
can be written as mt+1 = Oty1:t. Matrix Ot belongs to a subset in Rm×mt restricted by the
constraints on system parameters. A naive approach for a convex relaxation is learning Ot

in the linear predictive model Oty1:t directly. However in this approach, the total number of
parameters is m2t, which hinders achieving sub-linear regret.

Now suppose that there exists k ≪ t for which the generalized k-width is small, i.e. there
exist fixed known matrices u1, . . . , uk ∈ Rm×mt that approximate any Ot with a small error
Ot ≈

∑k
i=1 aiui, where a1, . . . , ak ∈ Rm×m are coefficient matrices. The predictive model can

be approximated by

mt+1 ≈
k∑

i=1

aiuiy1:t,

provided that norm of y1:t (compared to the approximation error of Ot) is controlled with
high probability. Since ui and y1:t are known, we only need to learn coefficients a1, . . . , ak
resulting in a total of m2k parameters which is much smaller than the naive approach with
m2t parameters.

2.4.3 Filter approximation

Consider the matrix

µ(G) ≜ [I,G,G2, . . . , GT−1],

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 29

Figure 2.1: Approximating W , a 3D ellipsoid, by a 2D plane U(u1, u2) among U2, the set of
all planes. In this example, U has the smallest worst-case projection error that is equal to
the 2-width of W denoted by d2(W).

where G ∈ Rd×d is a real square matrix with spectral radius ρ(G) ≤ 1. We seek to approx-
imate µ(G) ≈ µ̃(G) =

∑k
i=1 aiui by a linear combination of k matrices u1, . . . , uk ∈ Rd×Td

and coefficient matrices {a1, . . . , ak} ∈ Rd×d. We evaluate the quality of approximation in
operator 2-norm ∥µ(G)− µ̃(G)∥2 by studying the generalized k-width of µ(G).

We demonstrate a sharp phase transition. Precisely, we show that when G is diagonal-
izable with real eigenvalues, the width dk(W) decays exponentially fast with k, but for a
general G with d ≥ 2 it decays only polynomially fast. In other words, when d ≥ 2 the
inherent structure of the set W is not easily exploited by linear subspaces.

Theorem 2.2. (Kalman filter k-width) Let

W ≜
{
µ(G) = [I,G,G2, . . . , GT−1]

∣∣∣ G ∈ Rd×d, ρ(G) ≤ 1
}

and endow the space of W with the 2-norm. The following bounds hold on the generalized
k-width of the set W .

1. If d ≥ 2, then for 1 ≤ k ≤ T ,

dk(W) ≥
√
T − k.

2. Restrict G to be diagonalizable with real eigenvalues. If T ≥ 10, then for any d ≥ 1

dk(W) ≤ C0d
√
T (log T)1/4c−k/log T ,

where c = exp(π2/16) and C0 =
√
43. Moreover, there exists an efficient spectral method

to compute a k-dimensional subspace that satisfies this upper bound.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 30

Proof. Here, we only provide a proof sketch; see Section 2.8.4 for a complete proof.
Let λ1, . . . λd ∈ [−1, 1] be the eigenvalues of G. Let vi be the right eigenvectors of G and

w⊤
i be the left eigenvectors of G and write

µ(G) =
d∑

i=1

viw
⊤
i ([1, λi, . . . , λ

T−1
i]⊗ Id) =

d∑

i=1

viw
⊤
i (µ(λi)⊗ Id).

We approximate the row vector µ(λ) for any λ ∈ [−1, 1] using principal component
analysis (PCA). The covariance matrix of µ(λ) with respect to a uniform measure is given
by

H =

∫ 1

λ=−1

1

2
µ(λ)⊤µ(λ)dλ ⇒ Hij =

∫ 1

−1

1

2
λi−1λj−1dλ =

(−1)i+j + 1

2(i+ j − 1)
.

Let {ϕj}kj=1 be the top k eigenvectors of H. We approximate µ(λ) by µ̃(λ) =∑k
j=1⟨µ⊤(λ), ϕj⟩ϕ⊤

j and thus obtain

µ(G) ≈ µ̃(G) =
k∑

j=1

[d∑

i=1

⟨µ⊤(λi), ϕj⟩viw⊤
i

]
(ϕ⊤

j ⊗ Id) =
k∑

j=1

ajuj.

We show a uniform bound on ∥µ(G)− µ̃(G)∥ by first analyzing the PCA approximation
error which depends on the spectrum of matrix H. Matrix H is a positive semi-definite
Hankel matrix, a square matrix whose ij-th entry only depends on the sum i + j. We
leverage a recent result by Beckermann and Townsend (2017) who proved that the spectrum
of positive semi-definite Hankel matrices decays exponentially fast.

This result, however, only guarantees a small average error but we need to prove that the
maximum error is small to ensure a uniform bound on regret. Observe that the PCA error
r(λ) = µ(λ) − µ̃(λ) is defined over a finite interval [−1, 1] with a small average. Thus, by
computing the Lipschitz constant of r(λ), we show that the maximum approximation error
is small, resulting in an upper bound on dk(W).

For the first claim, we lower bound the generalized k-width ofW by relaxing the sup-norm
by a weighted average, resulting in a weighted version of generalized k-width. We observe
that the weighted k-width can be computed using PCA. We compute the approximation
error of PCA showing that this error is large.

The approximation technique used in the above theorem can readily be applied to ap-
proximate the coefficients of the Kalman predictive model by

Õt =
k∑

j=1

[d∑

i=1

⟨µ(λi)⊤, ϕj⟩Cviw⊤
i K
]
(ϕ⊤

j (t : 1)⊗ Im),

C̃t =
k∑

j=1

[d∑

i=1

⟨µ(λi)⊤, ϕj⟩Cviw⊤
i (B −KD)

]
(ϕ⊤

j (t : 1)⊗ In),

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 31

where we used the fact that [λt−1
i , . . . , λi, 1] can be approximated by truncated eigenvectors

{ϕj(t : 1)}kj=1. The relaxed model m̃t ≜ Õty1:t−1 + C̃tx1:t−1 +Dxt can be written in the form
m̃t = Θ̃ft. The feature vector ft is defined in (2.9) and the parameter matrix Θ̃ is obtained
by concatenating the corresponding coefficient matrices as described below

Θ̃ =

[[d∑

i=1

⟨µ(λi)⊤, ϕj⟩Cviw⊤
i K
]k
j=1

︸ ︷︷ ︸
∈Rm×mk

for output features

∣∣∣∣∣
[d∑

i=1

⟨µ(λi)⊤, ϕj⟩Cviw⊤
i (B −KD)

]k
j=1

︸ ︷︷ ︸
∈Rm×nk

for input features

∣∣∣∣∣ D

︸︷︷︸
∈Rm×n

for xt

]

m×l

(2.12)

A complete derivation of convex relaxation along with an approximation error analysis is
provided in Section 2.8.6.

2.5 Regret analysis sketch
In this section we present a proof sketch for Theorem 2.1; the complete proof is deferred
to Section 2.8.7 and Section 2.8.8. Let et = yt − mt denote the innovation process and
bt = m̃t −mt denote the bias due to convex relaxation. Define

L(T) ≜
T∑

t=1

∥m̂t −mt∥22. (2.13)

L(T) measures the difference between Algorithm 1 predictions and the Kalman predictions
in hindsight. Regret defined in (2.7) can be written as

Regret(T) =
T∑

t=1

∥m̂t −mt∥22−
T∑

t=1

2e⊤t (m̂t −mt) = L(T)−
T∑

t=1

2e⊤t (m̂t −mt). (2.14)

Using an argument based on self-normalizing martingales, the second term is shown to be
of order

√
L(T) and thus, it suffices to establish a bound on L(T). Define

Zt ≜ αI +
t∑

i=1

fif
⊤
i , Et ≜

t∑

i=1

eif
⊤
i , Bt ≜

t∑

i=1

bif
⊤
i . (2.15)

A straighforward decomposition of loss gives

L(T) ≤ 3
T∑

i=1

∥Et−1Z
−1
t−1ft∥22

︸ ︷︷ ︸
least squares error

+3
T∑

i=1

∥Bt−1Z
−1
t−1ft + bt∥22

︸ ︷︷ ︸
improper learning bias

+3
T∑

i=1

∥αΘ̃Z−1
t−1ft∥22

︸ ︷︷ ︸
regularization error

. (2.16)

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 32

2.5.1 Least squares error

Among all, it is most difficult to establish a bound on the least squares error. Consider the
following upper bound

T∑

t=1

∥Et−1Z
−1
t−1ft∥2≤ max

1≤t≤T
∥Et−1Z

−1/2
t−1 ∥2

T∑

t=1

∥Z−1/2
t−1 ft∥2.

We show the first term is bounded by polylog(T) for any δ ≥ 0. In particular,

max
1≤t≤T

∥Et−1Z
−1/2
t−1 ∥2 ≲RΘ,m,γ,β,δ max

1≤t≤T
log
(det(Zt) det(αI)

−1

δ

)
≲RΘ,m,γ,β,δ k log(T).

Our argument is based on vector self-normalizing martingales, a similar technique used by
Abbasi-Yadkori et al. (2011); Sarkar and Rakhlin (2018); Tsiamis and Pappas (2020). det(Zt)
is bounded by poly(T) for two reasons. First, the feature dimension, which is linear in the
number of filters k, is polylog(T) on account of Theorem 2.2. Second, the marginal stability
assumption (ρ(A) ≤ 1) ensures that features and thus Zt grow at most polynomially in t.

It remains to prove that the summation
∑T

t=1∥Z
−1/2
t−1 ft∥22 is bounded by polylog(T) with

high probability. We use an argument inspired by Lemma 2 of Lai et al. (1982) and Schur
complement lemma (Zhang, 2006) to conclude that

T∑

t=1

∥Z−1/2
t−1 ft∥22≍M polylog(T) ⇔ Zt−1 −

1

cT
ftf

⊤
t ⪰ 0 for cT ≍M polylog(T).

Therefore, it suffices to prove the right-hand side. We show a high probability Löwner upper
bound on ftf

⊤
t based on the feature covariance cov(ft) using sub-Gaussian quadratic tail

bounds (Vershynin, 2018). To capture the excitation behavior of features, we establish a
Löwner lower bound on Zt by proving that the process {ft}t≥1 satisfies a martingale small-ball
condition (Mendelson, 2014; Simchowitz et al., 2018). We leverage the small-ball condition
lower tail bounds and prove the following lemma.

Lemma 2.1. (Martingale small-ball condition) Let ϕ1, . . . , ϕk ∈ RT be orthonormal and fix
δ > 0. Given system (2.4), let Ft = σ{η0, . . . , ηt−1, ζ1, . . . , ζt} be a filteration and for all
t ≥ 1 define

ft = ψ1 ⊗ yt−1 + · · ·+ ψt−1 ⊗ y1, where ψi = [ϕ1(i), . . . , ϕk(i)]
⊤.

Let Γi = cov(ft+i|Ft).

1. For any 1 ≤ s ≤ T , the process {ft}t≥1 satisfies a (s,Γs/2, p = 3/20)-block martingale
small-ball (BMSB) condition, i.e. for any t ≥ 0 and any fixed ω in unit sphere S l−1

1

s

s∑

i=1

P
(
|ω⊤ft+i|≥

√
ω⊤Γs/2ω | Ft

)
≥ p.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 33

2. Under the assumptions of Theorem 2.1, the following holds with probability at least 1− δ
T∑

t=1

∥Z−1/2
t−1 ft∥22≤ κk2 log(T) poly(RΘ, β,m, log(γ), log

(1
δ

)
).

Provided that the number of filters is polylog(T), the above lemma ensures that∑T
t=1∥Z

−1/2
t−1 ft∥22 is also polylog(T), which is the desired result.

2.5.2 Improper learning bias

We characterize the improper learning bias term in (2.16) by first showing a uniform high
probability bound on the convex relaxation error stated in the theorem below. The proof
can be found in Section 2.8.6.

Theorem 2.3. (Convex relaxation error bound, informal) Consider system (2.4) with
bounded inputs ∥xt∥2≤ Rx and assume conditions (i)-(ii) of Theorem 2.1 holds. Then for
any ϵ, γ ≥ 0, if the number of filters k satisfies k ≳M log(T) log(T/ϵ), then the following
holds for Θ̃ as defined in (2.12)

P
[
∥Θ̃ft −mt∥22≥ ϵ

]
≤ δ.

In Section 2.8.8, the result of the above theorem is followed by an application of a vector
self-normalizing martingale theorem to prove a polylog(T) bound on the improper learning
bias.

Remark 2.2. While the algorithm derivation, convex relaxation approximation error, and
most of the regret analysis consider a system with control inputs, the excitation result of
Lemma 2.1 is given without inputs. We believe that extending our analysis for LDS with
inputs is possible by characterizing input features and in light of the experiments. However,
such an extension requires some care. For instance, one needs to characterize the covariance
between features constructed from observations and features constructed from inputs to
demonstrate a small-ball condition.

2.5.3 Regularization error

Lastly, we demonstrate an upper bound on the regularization error in (2.16). We write the
following bound

T∑

t=1

∥αΘ̃Z−1
t−1ft∥22≤ α2 1

α
∥Θ̃∥22

T∑

t=1

∥Z−1/2
t−1 ft∥22≤

T∑

t=1

∥Z−1/2
t−1 ft∥22.

The first inequality is based on Zt ⪰ αI and the submultiplicative property of norm. The
second inequality uses the fact that ∥Θ̃∥22≤ 1/α for α ≍M (RΘkT

β)−1 as shown in Section
2.8.8. The last term is bounded as result of Lemma 2.1.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 34

2.6 Experiments
We carry out experiments to evaluate the empirical performance of our provable method
in three dynamical systems with long-term memory. We compare our results against those
yielded by the wave filtering algorithm (Hazan et al., 2017) implemented with follow the
regularized leader and the truncated filtering algorithm (Tsiamis and Pappas, 2020). We
consider ∥m̂t−mt∥2, the squared error between algorithms predictions and predictions by a
Kalman filtering algorithm that knows system parameters, as a performance measure. For
all algorithms, we use k = 20 filters and run each experiment independently 100 times and
present the average error with 99% confidence intervals.

0 5000 10000
t

10−6

10−4

10−2

||m
t
−
m̂
t||

2 2

System 1: A = 1

0 5000 10000
t

10−2

100

||m
t
−
m̂
t||

2 2

System 2: A = diag[1,−1]

0 5000 10000
t

10−1

||m
t
−
m̂
t||

2 2

System 3: A = [1, 0; 0.1, 1]

Wave filtering (Hazan et al., 2017) Truncated filtering (Tsiamis and Papas, 2020) SLIP (ours)

Figure 2.2: Performance of our algorithm compared with wave filtering and truncated filter-
ing. System 1 is an scalar LDS with A = B = D = 1, C = Q = R = 0.001, and xt ∼ N (0, 2).
System 2 is a multi-dimensional LDS with no inputs and A = diag[−1, 1], C = [0.1, 0.5],
R = 0.5, and Q = [4, 6; 6, 10] × 10−3. System 3 is another multi-dimensional LDS with
non-symmetric A = [1, 0; 0.1, 1], xi ∼ U(−0.01, 0.01), Q = 10−3I, R = I, C = [0, 0.1; 0.1, 1],
and B,D are matrices of all ones.

In the first example (Figure 2.2, left), we consider a scalar marginally stable system with
A = 1 and Gaussian inputs. This system exhibits long forecast memory with G ≈ 0.999.
Observe that the truncated filter suffers from a large error which is due to ignoring long-term
dependencies. The wave filter predictions also deviates from optimal predictions as it only
considers yt−1, x1:t for predicting yt. The middle plot in Figure 2.2 presents the results for a
multi-dimensional system with A = diag[−1, 1] and no inputs. This system also has a long
forecast memory (G has eigenvalues ≈ {0.991,−0.932}), resulting in poor performance of the
truncated filter. The wave filter also performs poorly in this system as it is only driven by
stochastic noise. For the last example, we consider another multi-dimensional system where
A is a lower triangular matrix (Figure 2.2, right). This is a difficult example where ρ(A) = 1
but ∥A∥2> 1, resulting in a polynomial growth of the observations over time. The results
show that our algorithm outperforms both the wave filter, which requires a symmetric A,
and the truncated filter in the case of fast-growing observations.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 35

Comparison with the EM algorithm. We conduct an experiment in a scalar LDS to
compare the performance of our algorithm with the EM algorithm that estimates system
parameters (Figure 2.3, left). The parameters estimated by the EM algorithm are later used
by the Kalman filter for predictions. In this experiment, we set the horizon T = 200 due to
the large computation time required by the EM algorithm. The number of filters k is set to
5 for all other three algorithms. The experiment was simulated 100 independent times and
the average error together with the 99% confidence intervals are presented.

0 50 100 150
t

10−4

10−2

100

102

||m
t
−
m̂
t||

2 2

Comparison with EM

10 20 30
k

10−4

10−3

1 N

∑
2N t=
N

+
1
||m

t
−
m̂
t||

2 2

Hyperparameter sensitivity

Expectation maximization (EM)
Wave filtering (Hazan et al., 2017)

Truncated filtering (Tsiamis and Papas, 2020)
SLIP (ours)

Figure 2.3: Left: Performance of our algorithm compared with wave filtering, truncated
filtering, and expectation maximization in a scalar system with parameters A = B = C =
D = 1, noise covariance matrices Q = R = 0.001, inputs xt ∼ N (0, 2), and horizon T = 200.
Right: Hyperparameter sensitivity of our algorithm in the same systems with inputs xt ∼
N (0, 0.5) and horizon T = 10000.

For the system considered in this experiment, EM performs poorly. System-identification-
based methods such as EM, besides being significantly slower, do not have regret guarantees
and they can fail in some examples; a similar observation was made by Hazan et al. (2017).

Hyperparameter sensitivity. The SLIP algorithm has two hyperparameters: the num-
ber of filters k and the regularization parameter α. In the experiments, we set α > 0 only
when the empirical feature covariance matrix is singular, which we observe only happens
in the first two time steps. For the number of filters k, Theorem 2.1 provides a guideline
of choosing k of order log2(T). The right plot in Figure 2.3 demonstrates the sensitivity of
the SLIP algorithm with respect to the number of filters k. The system considered for this
experiment is scalar with Gaussian inputs and the horizon is set to 10000. As before, the
experiment was simulated 100 independent times. We vary k from 5 to 35 and measure the
average prediction error from 5000 to 10000 (N = 5000 in the plot). We observe that the
SLIP algorithm is robust with respect to parameter k.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 36

2.7 Discussion
We presented the SLIP algorithm, an efficient algorithm for learning a predictive model of an
unknown LDS. Our algorithm provably and empirically converges to the optimal predictions
of the Kalman filter given the true system parameters, even in the presence of long fore-
cast memory. We analyzed the generalized k-width of the Kalman filter coefficient set with
closed-loop matrix G and obtained a low-dimensional linear approximation of the Kalman
filter when G is diagonalizable with real eigenvalues. We proved that without assuming
real eigenvalues, the Kalman filter coefficient set is difficult to approximate by linear sub-
spaces. Our approach of studying k-width as a measure for the possibility of an efficient
convex relaxation may be of independent interest. Important future directions are designing
efficient algorithms that handle arbitrary G, providing theoretically guaranteed uncertainty
estimation for prediction, extending the ideas for prediction in the presence of long-term
memory to non-linear systems and predictors, and investigating the efficacy of such predic-
tors in applications such as device failure prediction for the analysis of datacenter reliability
(Rashidinejad et al., 2020b).

2.8 Proofs

2.8.1 Organization

The rest of this chapter includes the omitted proofs in the prior sections. We start by
giving a matrix representation of system (2.4) in Section 2.8.2 that describes aggregated
observations y1:t in terms of past inputs and noise. We also restate our matrix representation
of the Kalman predictive model. In Section 2.8.3, we provide upper bounds on the matrix
coefficients used in the aggregated system representation as well as a high probability upper
bound on the norm of observations ∥y1:t∥2. We also discuss our assumption on the 2-norm of
the Kalman coefficient matrices (control matrix Ct and observation matrix Ot) and present
two examples providing bounds on the 2-norm of these coefficients.

In Section 2.8.4, we first analyze the error of approximating µ(λ) by spectral methods,
considering the spectrum of the Hankel covariance matrix and give a proof for Theorem 2.2.
We then analyze convex relaxation approximation error in Section 2.8.6 and show that the
convex relaxation bias is small with high probability, provided that the number of filters
k ≳M log2(T).

We begin our analysis of regret in Section 2.8.7, in which we write a bound on regret
decomposed into least squares error, improper learning bias, regularization error, and inno-
vation error. We further extract the term ∥Z−1/2

t−1 ft∥22 making the bound ready for analysis
in subsequent sections. We then complete our regret analysis in Section 2.8.8. We start
by giving a high probability bound on det(Zt) that appears multiple times throughout our
analysis. We derive a result on self-normalizing vector martingales that assists bounding
several terms. and provide a bound on ∥Z−1/2

t−1 ft∥22 using sub-Gaussian tail properties, a

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 37

block-martingale small-ball condition, and a filter quadratic function condition. The proof
of Lemma 2.1, analysis of the regularization term, and innovation error are subsequently
provided. The section is concluded by the proof of the main regret bound. A few technical
lemmas are presented in Section 2.8.9.

.

2.8.2 Aggregated representations

We start by introducing an aggregated notation for representing linear dynamical systems
and the Kalman predictive model.

Linear dynamical systems

For the linear dynamical system of (2.4), define the following matrices

Tt =

C 0 0 . . . 0

CA C 0 . . . 0

CA2 CA C . . . 0
...

...
...

CAt−1 CAt−2 CAt−3 . . . C

AP 1/2 0 0 . . . 0

0 Q1/2 0 . . . 0

0 0 Q1/2 . . . 0
...

...
...

0 0 0 . . . Q1/2

,

It =

D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...
...

CAt−2B CAt−3B CAt−4B . . . D

,

Rt =

R1/2 0 0 . . . 0

0 R1/2 0 . . . 0

0 0 R1/2 . . . 0
...

...
...

0 0 0 . . . R1/2

.

(2.17)

Let KtK⊤
t = TtT ⊤

t +RtR⊤
t , where Kt is the unique solution to Cholesky decomposition. The

system observations y1:t can be written as

y1:t = Ktξ1:t + Itx1:t, (2.18)

where ξi ∈ Rm is a Gaussian random vector with covariance Im.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 38

Kalman filter

For convenience, we restate our notation of the Kalman predictive model from Section 2.2.1.
Define the following matrices

Ot =
[
CGt−1K CGt−3K . . . CK

]
,

Ct =
[
CGt−1(B −KD) CGt−2(B −KD) . . . C(B −KD)

]
.

(2.19)

We refer to Ot and Ct as observation matrix and control matrix, respectively. Using the
above notation, the Kalman prediction mt+1 is given by

mt+1 = Oty1:t + Ctx1:t +Dxt+1.

2.8.3 Norm bounds

As a preliminary step, we compute a few bounds that will be used later in the regret analysis
of the SLIP algorithm. In particular, we compute upper bounds on the norms of parameter
matrices defined in (2.17) and discuss upper bounds on the norms of observation and control
matrix of the Kalman predictive model. Further, we derive a high probability upper bound
on the observation norm.

Bounds on parameters

The following lemma provides upper bounds on the norm of matrices that describe a linear
dynamic system.

Lemma 2.8.1. (LDS parameter bounds) Consider system (4). Let RP =
max{∥B∥2, ∥C∥2, ∥D∥2} and RC = max{∥P∥2, ∥Q∥2, ∥R∥2}. Suppose that ∥At∥2≤ γtlog(γ)

for a bounded constant γ ≥ 1. For Tt, It, and Kt defined in (2.17), the following operator
norm bounds hold:

(i) ∥Tt∥2≤ R
1/2
C RPγ(1 + γ)tlog(γ)+1,

(ii) ∥It∥2≤ RP [1 + tγtlog(γ)],

(iii) ∥Kt∥2≤
√
RC +RCR2

P (1 + γ)4t2 log(γ)+2.

Proof. By Lemma 2.8.19,

∥Tt∥2≤ (∥A∥2+1)R
1/2
C ∥C∥2

t∑

i=1

∥Ai∥2≤ R
1/2
C RPγ(1 + γ)tlog(γ)+1.

Similarly,

∥It∥2≤ ∥D∥2+∥C∥2∥B∥2
t∑

i=1

∥Ai∥2≤ RP +R2
Pγt

log(γ)+1.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 39

It follows by the sub-additive property of matrix operator norm that

∥KtK⊤
t ∥2= ∥Kt∥22≤ ∥Tt∥22+∥Rt∥22 ⇒ ∥Kt∥2≤

√
RC +RCR2

P (1 + γ)4t2 log(γ)+2.

In the regret analysis, we assume that ∥Ot∥2≤ ROt
β for a finite β ≥ 0. We justify this

assumption in the examples below. The following example shows that β = 0 when the
system is single-input single-output (SISO).

Example 2.8.1. (Observation matrix norm bound in SISO systems) For a SISO linear dy-
namical system, the following equation holds

KC =
AΣ+C2

Σ+C2 +R
⇒ 0 ≤ KC ≤ A.

We have G = A−KC. Applying the above constraint gives

G ≤ A

The squared norm of vector Ot is given by

∥Ot∥22=
t−1∑

i=0

(KCGi)2 =
t−1∑

i=0

(A−G)2G2i.

Under the constraint G ≤ A ≤ 1, the maximum of ∥Ot∥22 is 1 obtained when G = 0 and
A = 1.

In the following example, we compute a loose upper bound on ∥Ot∥2.

Example 2.8.2. (Observation matrix norm bound in MIMO systems with d = m) We begin
by computing an upper bound on the norm of the Kalman gain. Let K = AK ′. By the
recursive updates of a stationary Kalman gain, we write

CK ′ = CΣ+C⊤[CΣ+C⊤ +Q]−1 ⪯ I ⇒ ∥CK ′∥2≤ 1.

Lower bounding ∥CK∥2 yields

∥K ′∥2σmin(C) ≤ ∥CK ′∥2≤ 1⇒ ∥K ′∥2≤
1

σmin(C)
.

Let κC = σmax(C)/σmin(C) to be the condition number of C. Assume ∥Gt∥2≤ γgt
log(γg). We

have

∥Ot∥2≤
t∑

i=1

∥C∥2∥Gi∥2∥K ′∥2≤ κCγgt
log(γg)+1.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 40

Bound on observation norm

One of the quantities that appear in the regret analysis of our algorithm is the squared norm
of y1:t. The following lemma provides a high probability upper bound for ∥y1:t∥22.

Lemma 2.8.2. (Observation norm bound) Consider system (4). Let RP =
max{∥B∥2, ∥C∥2, ∥D∥2}, RC = max{∥P∥2, ∥Q∥2, ∥R∥2}, and ∥xt∥2≤ Rx. Suppose that
∥At∥2≤ γtlog(γ) for a bounded constant γ ≥ 1. For any δ > 0 and all t ≥ 0,

P
[
∥y1:t∥22≥ 6(R2

P + 1)(R2
x +RC)(1 + γ)4(mt+ δ)t2+2 log(γ)

]
≤ e−δ.

Proof. From (2.18), we see that

∥y1:t∥22≤ 2∥It∥22∥x1:t∥22+2∥Kt∥22∥ξ1:t∥22

Using Gaussian upper tail bounds (Hsu et al., 2012), we have

P
[
∥ξ1:t∥22> 2mt+ 3δ

]
≤ P

[
∥ξ1:t∥22> mt+ 2

√
mtδ + 2δ

]
≤ e−δ.

Using the bounds computed in Lemma 2.8.1, the following holds with probability at least
1− e−δ

∥y1:t∥22≤2∥It∥22∥x1:t∥22+2∥Kt∥22∥ξ1:t∥22
≤6(R2

P + 1)(R2
x +RC)(1 + γ)4(mt+ δ)t2+2 log(γ).

(2.20)

2.8.4 Filter approximation and width analysis

In this section we first provide a series of lemmas characterizing the reconstruction error of
applying PCA to approximate the vector function µ(λ) = [1, λ, . . . , λT−1]. These lemmas are
later used to prove Theorem 2.2.

Bounds on PCA approximation error

The goal of this section is to establish a uniform bound on the norm of the reconstruction
error of approximating µ(λ) with µ̃(λ). The following lemma states a standard result on the
average PCA reconstruction error, presented here for completeness.

Lemma 2.8.3. (Average reconstruction error bound) Let µ(λ) ∈ RT be a vector function
parameterized by λ ∈ A. Define the following matrix with respect to probability measure p

Z =

∫

A
µ(λ)µ⊤(λ)p(dλ).

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 41

Let {(σj, ϕj)}Tj=1 be the eigenpairs of Z. Let µ̃(λ) be the projection of µ(λ) to the linear
subspace spanned by {ϕ1, . . . , ϕk}. Then,

∫

A
∥µ(λ)− µ̃(λ)∥22p(dλ) =

T∑

j=k+1

σj.

Proof. Define Uk to be a T × k matrix with columns ϕ1, . . . ϕk, the eigenvectors of matrix Z.
The reconstruction error can be written as

r(λ) = µ(λ)− UkU
⊤
k µ(λ) = (I − UkU

⊤
k)µ(λ) = Πkµ(λ).

The average squared norm of reconstruction error is given by
∫

A
∥r(λ)∥22p(dλ) =

∫

A
tr[r(λ)r(λ)⊤]p(dλ) =

∫

A
tr[Πkµ(λ)µ(λ)

⊤Π⊤
k]p(dλ)

= tr[Πk

∫

A
µ(λ)µ(λ)⊤p(dλ)Π⊤

k] = tr[ΠkZΠ
⊤
k] =

T∑

j=k+1

σj.

We then use Lipschitz continuity of µ(λ) over the interval [−1, 1] to establish a uniform
bound on the reconstruction error.

Lemma 2.8.4. Let µ(λ) = [1, λ, λ2, . . . , λT−1]⊤ for λ ∈ [−1, 1] and define

H =

∫ 1

−1

1

2
µ(λ)µ(λ)⊤dλ.

Let {(σj, ϕj)}Tj=1 be the eigenpairs of H, where σj are in decreasing order. Let µ̃(λ) be the
projection of µ(λ) to the linear subspace spanned by {ϕ1, . . . , ϕk}. Then, for any λ ∈ [−1, 1]
and T ≥ 1,

∥µ(λ)− µ̃(λ)∥22≤ T

√√√√2
T∑

j=k+1

σj.

Proof. Let us first compute an upper bound on the Lipschitz constant of µ(λ) over λ ∈
[−1, 1]. The Lipschitz constant of µ(λ) is bounded by the norm of Jacobian J(µ(λ)) =
[0, 1, 2λ, . . . , (T − 1)λT−2]. Thus,

∥µ(λ2)− µ(λ1)∥2
|λ2 − λ1|

≤ ∥J(µ(λ))∥2≤

√√√√
T−1∑

t=1

t2 ≤
√
T 3/3.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 42

Define Uk to be a matrix with columns ϕ1, . . . ϕk. The reconstruction error can be written
as r(λ) = (I − UkU

⊤
k)µ(λ) = Πkµ(λ). A Lipschitz constant for reconstruction error norm is

given by

∥r(λ2)∥2−∥r(λ1)∥2 ≤ ∥r(λ2)− r(λ1)∥2 (inverse triangle inequality)
= ∥Πk(µ(λ2)− µ(λ1))∥2
≤ ∥Πk∥2∥(µ(λ2)− µ(λ1))∥2 (multiplicative property of norm)
≤ ∥(µ(λ2)− µ(λ1))∥2 (Πk is contractive)

≤
√
T 3/3|λ2 − λ1| (Lipschitz continuity of µ(λ))

Thus, an upper bound on the Lipschitz constant of ∥r(λ)∥22 can be computed

∥r(λ2)∥22−∥r(λ1)∥22 = (∥r(λ2)∥2−∥r(λ1)∥2)(∥r(λ2)∥2+∥r(λ1)∥2)
≤
(√

T 3/3|λ2 − λ1|
)(
2max

λ
∥r(λ)∥2

)

≤ 2
√
T 3/3∥Πk∥2max

λ
∥µ(λ)∥2|λ2 − λ1|

≤ 2T 2|λ2 − λ1|.

Let Rr = max
λ
∥r(λ)∥22. On the account of Lemma 2.8.3, ∥r(λ)∥22 has a bounded average over

the interval [−1, 1]. A bounded and (2T 2)-Lipschitz function that achieves the maximum Rr

has a triangular shape. It follows that

R2
r

2T 2
≥

T∑

j=k+1

σj ⇒ ∥r(λ)∥22≤ Rr ≤ T

√√√√2
T∑

j=k+1

σj.

In the following lemma, we prove that the PCA reconstruction error is small due to the
exponential decay of the spectrum of the Hankel covariance matrix H.

Lemma 2.8.5. (Uniform bound on reconstruction error) Under the assumptions of Lemma
2.8.4 and for any T ≥ 10

∥µ(λ)− µ̃(λ)∥22≤ C0T
√

log Tc−k/log T ,

where c = exp(π2/8) and C0 = 43.

Proof. We appeal to the following, which appears as Corollary 5.4 in Beckermann and
Townsend (2017).

Lemma 2.8.6. Let Hn ∈ Rn×n be a positive semi-definite Hankel matrix. Then,

σj+2k ≤ 16
[
exp

(π2

4 log(8⌊n/2⌋/π)
)]−2k+2

σj(Hn), for 1 ≤ j + 2k ≤ n. (2.21)

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 43

Setting j = 1 in (2.21) with the assumption T ≥ 10 yields

σ2+2k ≤ σ1+2k ≤ 16σ1 exp
(π2

4 log T

)−2k+2

≤ 1168σ1 exp
(π2

4 log T

)−2k

.

Let c = exp(π2/8). It follows that

σj ≤ 1168σ1c
−2(j−2)
log T ≤ 10512σ1c

−2j
log T .

The largest singular value of Hankel matrix H is bounded by

σ1 ≤ tr(H) ≤
T∑

k=1

1

2k + 1
≤

T∑

k=1

1

k
− 1 ≤ log T,

where the last inequality is due to a classic bound on the T -th harmonic number. We
conclude from Lemma 2.8.4 that

∥µ(λ)− µ̃(λ)∥22 ≤ T

√√√√21024σ1

T∑

j=k+1

c−2j/log T

≤ T

√
21024 log T

c−2k/log T

c2 − 1
≤ 43T

√
log Tc−k/log T .

2.8.5 Generalized Kolmogorov width analysis: Proof of Theorem
2.2

Proof of Theorem 2.2. We first prove the second claim. Let λ1, . . . λd ∈ [−1, 1] denote the
eigenvalues of G. Let vi be the right eigenvectors of G and w⊤

i be the left eigenvectors
of G. Eigendecomposition of Gt implies Gt =

∑d
i=1 viw

⊤
i λi. Therefore, matrix µ(G) =

[I,G, . . . , GT−1] can be written as

µ(G) =
d∑

i=1

viw
⊤
i ([1, λi, . . . , λ

T−1
i]⊗ Id) =

d∑

i=1

viw
⊤
i (µ(λi)⊗ Id),

where µ(λi) = [1, λi, . . . , λ
T−1
i] is a row vector. We approximate µ(λ) for any λ ∈ [−1, 1]

using principal component analysis (PCA). The covariance matrix of µ(λ) with respect to a
uniform measure is given by

H =

∫ 1

λ=−1

1

2
µ(λ)⊤µ(λ)dλ ⇒ Hij =

∫ 1

−1

1

2
λi−1λj−1dλ =

(−1)i+j + 1

2(i+ j − 1)
.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 44

Let {ϕj}kj=1 be the top k eigenvectors of H. We approximate µ(λ) by µ̃(λ) =∑k
j=1⟨µ⊤(λ), ϕj⟩ϕ⊤

j :

µ(G) ≈ µ̃(G) =
d∑

i=1

viw
⊤
i (

k∑

j=1

⟨µ⊤(λ), ϕj⟩ϕ⊤
j ⊗ Id)

=
k∑

j=1

[d∑

i=1

⟨µ⊤(λi), ϕj⟩viw⊤
i

]
(ϕ⊤

j ⊗ Id) =
k∑

j=1

ajuj.

Check that a1, . . . , ak ∈ Rd×d and u1, . . . , uk ∈ Rd×dT . We have

dk(W) = ∥µ(G)− µ̃(G)∥2 = ∥
d∑

i=1

viw
⊤
i (µ(λi)− µ̃(λi))⊗ Id∥2

≤
d∑

i=1

∥µ(λi)− µ̃(λi)∥2

≤ d sup
λ
∥µ(λ)− µ̃(λ)∥2.

The first inequality uses subadditive and submultiplicative properties of norm and that
∥viw⊤

i ∥2≤ 1, ∥Id∥2= 1. By Lemma 2.8.5,

dk(W) ≤ d
√
43T (log T)1/4

(
exp(π2/16)

)−k/log T

.

Now we prove the first claim by showing that the lower bound is realized for a particular
set W . Since the case of d = 2 can be embedded as a subset for general d ≥ 2 as the left
top block, it suffices to show it for d = 2. We further constrain the set W and only consider
those G with representation

G =

[
a b

−b a

]
,

where a, b ∈ R. The eigenvalues of this matrix are complex numbers a− jb and a+ jb, which
satisfy ρ(G) ≤ 1 if a2 + b2 ≤ 1, where ρ(G) is the spectral radius of G. The nice property of
this type of matrices is that there exists an explicit expression of Gi for integer i ≥ 2. Define
complex number z = a+ jb, then for integer i ≥ 0:

Gi =

[
ℜ(zi) ℑ(zi)
−ℑ(zi) ℜ(zi)

]
,

where ℜ(z) represents the real part of complex number z, and ℑ(z) represents the imaginary
part of z.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 45

We want to approximate µ(G) ∈ R2×2T by
∑k

i=1 aiui, where ai ∈ R2×2 and ui ∈ R2×2T .
Let W1 be the subset of row vectors realized by the first row of µ(G) for all G ∈ R2×2 with
ρ(G) ≤ 1. We use the following property: the 2-norm of a matrix is lower bounded by the
2-norm of one of its rows. Based on this property, the 2-norm of error in approximating µ(G)
is lower bounded by the 2-norm of error in approximating only one row of µ(G). Therefore,
the generalized k-width of approximating µ(G) in 2-norm is lower bounded by the error of
approximating the first row of µ(G) by a linear combination of 2k row vectors with dimension
2T . In other words,

d2k(W1) ≤ dk(W). (2.22)

To see this, denote by ui(1), ui(2) ∈ R2T the first and second row of matrix ui, respectively.
The first row of µ(G) can be written as

∑k
i=1 ai(1, 1)ui(1)+ai(1, 2)ui(2), a linear comibination

of 2k row vectors, where ai(1, 1), ai(1, 2) are the elements of the first row of matrix ai.
To lower bound the generalized Kolmogorov width of the constrained set W1, we consider

a relaxed weighted version of the width. Precisely, let p be a probability measure on the set
W1, then the weighted squared deviation of W1 from U under weight p is defined as

d22k(W1; p) ≜ inf
U∈U2k

Ex∼p inf
y∈U
∥x− y∥2≤ inf

U∈U2k

sup
x∈W1

inf
y∈U
∥x− y∥2= d22k(W1). (2.23)

We observe that d22k(W1; p) in general can be computed using spectral methods. Indeed, for
the subset U , the y that achieves infy∈U∥x − y∥2 can be computed via a projection matrix
ŷ = U2kU

⊤
2kx, where U2k consists of 2k columns of orthonormal vectors. We now have

Ex∼p inf
y∈Q
∥x− y∥2 = Ex∼p∥x− U2kU

⊤
2kx∥2

= Ex∼p[x
⊤x− x⊤U2kU

⊤
2kx]

= tr((I − U2kU
⊤
2k)Ex∼p[xx

⊤]).

The minimizer U2k of tr((I − U2kU
⊤
2k)Ex∼p[xx

⊤]) is the same as the maximizer of
tr(U2kU

⊤
2kEx∼p[xx

⊤]), which is given by the first 2k eigenvectors of Ex∼p[xx
⊤], and the value of

the weighted squared generalized k-width is given by the sum of all eigenvalues of Ex∼p[xx
⊤]

except for the first largest 2k eigenvalues (Lemma 2.8.3).
We compute the weighted squared generalized k-width of the constrained set W1, and it

would serve as a lower bound of the squared generalized k-width. We choose the probability
measure of (a, b)⊤ ∈ R2 as the uniform measure on the unit circle. We compute the matrix
Ex∼p[xx

⊤], which is E[µ1(G)
⊤µ1(G)], where µ1(G) is the first row of µ(G). Concretely, we

write µ1(G) = [ν0; ν1; . . . ; νT−1] for νl ∈ R2 and equal to

νl = [ℜ(zl),ℑ(zl)],

where z = a+ jb and for all l ∈ {0, 1, . . . , T − 1}.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 46

We claim that E[νlν⊤m] = 0 whenever l ̸= m. Indeed, when l ̸= m, each of the 4 entries of
matrix E[νlν⊤m] are of the form either ℜ(zl)ℜ(zm),ℑ(zl)ℑ(zm), or ℜ(zl)ℑ(zm) for some l ̸= m.
For the complex number z = rejθ, we know zl = rlejlθ which implies that ℜ(zl) = rl cos(lθ)
and ℑ(zl) = rl sin(lθ). We now compute E[rl cos(lθ)rm sin(mθ)] for l ̸= m, l ≥ 0,m ≥ 0 and
other cases can be computed analogously. Since we are considering a uniform distribution
on the unit circle, r ≡ 1. We have

∫

θ∈[0,2π]
cos(kθ) sin(mθ)

1

2π
dθ

=
1

2π

∫ 2π

0

1

2
(sin((k +m)θ) + sin((k −m)θ))dθ

= 0.

Hence, it suffices to only compute E[νlν⊤l]

E[νlν
⊤
l] =

1

2

[
1 0

0 1

]
. (2.24)

Therefore, E[µ1(G)
⊤µ1(G)] = 0.5I2T . Using Lemma 2.8.3 d22k(W1; p = U) is equal to the sum

of bottom 2T −2k eigenvalues: d22k(W1; p = U) = (2T −2k)/2 = T −k. By (2.22) and (2.23)

dk(W) ≥ d2k(W1) ≥ d2k(W1; p = U) =
√
T − k.

□

2.8.6 Convex relaxation analysis: Proof of Theorem 2.3

Recall matrix Θ̃ defined in (2.12). The following theorem is a formal restatement of Theorem
2.3 that analyzes the approximation error due to convex relaxation.

Theorem 2.3. (Convex relaxation error bound) Denote by mt, the one-step-ahead pre-
dictions made by the best linear predictor (Kalman filter) for system (4). Let RP =
max{∥B∥2, ∥C∥2, ∥D∥2}, RC = max{∥P∥2, ∥Q∥2, ∥R∥2, ∥K∥2}, and ∥xt∥2≤ Rx. Suppose
that ∥At∥2≤ γtlog(γ) for a bounded constant γ ≥ 1. Let C0 = 43, C1 = 520. For any ϵ, δ > 0,
if the number of filters k satisfies

k ≥ π2

8
log(T) log

(12C0d
2(1 +R2

P)
3(2R2

x +RC)(1 +R2
C)(1 + γ)4(mT + log(1/δ))T 3+2 log(γ)

ϵ

)
,

then the following holds for Θ̃

P
[
∥Θ̃ft −mt∥22≥ ϵ

]
≤ δ. (2.25)

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 47

Proof. Denote by G = UΛU−1 the eigendecomposition of matrix G, where Λ =
diag(λ1, . . . λd) are eigenvalues of G. Let vl be the columns of U and w⊤

l be rows of U−1.
Write

mt =
t−1∑

i=1

CGt−i−1Kyi +
t−1∑

i=1

CGt−i−1(B −KD)xi +Dxt

=
t−1∑

i=1

CUΛt−i−1U−1Kyi +
t−1∑

i=1

CUΛt−i−1U−1(B −KD)xi +Dxt

=
t−1∑

i=1

CU
[d∑

l=1

(λt−i−1
l)el ⊗ el

]
U−1Kyi +

t−1∑

i=1

CU
[d∑

l=1

(λt−i−1
l)el ⊗ el

]
U−1(B −KD)xi +Dxt

=
d∑

l=1

CUel ⊗ elU−1K
t−1∑

i=1

λt−i−1
l yi +

d∑

l=1

CUel ⊗ elU−1(B −KD)
t−1∑

i=1

λt−i−1
l xi +Dxt

=
d∑

l=1

Cvlw
⊤
l K

t−1∑

i=1

λt−i−1
l yi +

d∑

l=1

Cvlw
⊤
l (B −KD)

t−1∑

i=1

λt−i−1
l xi +Dxt.

Let Yt = [y1, . . . , yt] ∈ Rm×t and Xt = [x1, . . . , xt] ∈ Rn×t. We can write mt and m̃t as

mt =
d∑

l=1

Cvlw
⊤
l KYt−1µt−1:1(λl) +

d∑

l=1

Cvlw
⊤
l (B −KD)Xt−1µt−1:1(λl) +Dxt,

m̃t =
d∑

l=1

Cvlw
⊤
l KYt−1µ̃t−1:1(λl) +

d∑

l=1

Cvlw
⊤
l (B −KD)Xt−1µ̃t−1:1(λl) +Dxt.

We write bt = mt − m̃t using the PCA reconstruction error rt = µt − µ̃t

bt = mt − m̃t =
d∑

i=1

Cviw
⊤
i KYt−1rt−1:1(λi) + Cviw

⊤
i (B −KD)Xt−1rt−1:1(λi).

The Euclidean norm of bias is bounded by

∥bt∥2 ≤
(d∑

i=1

∥C∥2∥viw⊤
i ∥2∥K∥2∥Yt−1∥2+∥C∥2∥viw⊤

i ∥2(∥B∥2+∥K∥2∥D∥2)∥Xt−1∥2
)
sup
λ
∥r(λ)∥2

≤
(
dRPRC∥Yt−1∥2+dR2

P (1 +RC)∥Xt−1∥2
)
sup
λ
∥r(λ)∥2

≤
(
dRPRC∥Yt−1∥2+dR2

P (1 +RC)
√
tRx

)(
C0T

√
log Tc−k/log T

)1/2
.

The first inequality uses simple properties such as sub-multiplicative and sub-additive prop-
erties of norm. The second inequality uses the upper bound assumptions on parameters.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 48

The third inequality is due to Lemma 2.8.5 where c = exp(π2/8) and C0 = 43. The squared
approximation error is given by

∥bt∥22≤ 2d2(1 +R2
C)(1 +R2

P)
2
(
∥Yt−1∥22+tR2

x

)
C0T

√
log Tc−k/log T .

Observe that ∥Y1:t∥22≤ ∥Y1:t∥2F= ∥y1:t∥22. By (2.20), the following holds with probability
greater than 1− δ
∥bt∥22≤ 12d2(1 +R2

P)
3(2R2

x +RC)(1 +R2
C)(1 + γ)4(mT + log(1/δ))T 3+2 log(γ)c−k/log T .

We finish the proof by setting the number of filters k such that the error is smaller than ϵ,
i.e.

k ≥ log T

log c
log
(12C0d

2(1 +R2
P)

3(2R2
x +RC)(1 +R2

C)(1 + γ)4(mT + log(1/δ))T 3+2 log(γ)

ϵ

)
.

Informally, the above theorem states that choosing k ≍M log(T) log(T/ϵ) is sufficient to
ensure an approximation error smaller than ϵ.

2.8.7 Regret decomposition

Recall the definitions of innovation et and model bias bt

et = yt − E[yt|y1:t−1, x1:t] = yt −mt and bt = Θ̃ft −mt = m̃t −mt, (2.26)

where mt is the predictions made by the Kalman filter in hindsight and Θ̃ is defined in (2.12).
Let m̂t be the predictions made by the algorithm. Regret can be written as

Regret(T) =
T∑

t=1

∥yt − m̂t∥22−∥yt −mt∥22

=
T∑

t=1

∥mt + et − m̂t∥22−∥et∥22

=
T∑

t=1

∥m̂t −mt∥22−
T∑

t=1

2e⊤t (m̂t −mt)

= L(T)−
T∑

t=1

2e⊤t (m̂t −mt),

where L(T) is the squared error between the Kalman filter predictions and algorithm pre-
dictions defined in (2.13). Recall the following notation

Zt ≜ αI +
t∑

i=1

fif
⊤
i , Et ≜

t∑

i=1

eif
⊤
i , Bt ≜

t∑

i=1

bif
⊤
i .

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 49

The error between the predictions made by our algorithm and Kalman filter can be written
as

m̂t −mt = Θ̂(t)ft − Θ̃ft + bt =
(t−1∑

i=1

yif
⊤
i

)
Z−1

t−1ft − Θ̃ft + bt,

The second equation uses the update rule of Θ̂(t) given in (2.10). Simple algebraic manipu-
lations give

(t−1∑

i=1

yif
⊤
i

)
Z−1

t−1ft − Θ̃ft + bt

=
(t−1∑

i=1

[Θ̃fi + bi + ei]f
⊤
i

)
Z−1

t−1ft − Θ̃ft + bt

=
(t−1∑

i=1

[Θ̃fif
⊤
i + bif

⊤
i + eif

⊤
i]
)
Z−1

t−1ft − Θ̃ft + bt

=
(t−1∑

i=1

[Θ̃(fif
⊤
i +

α

t− 1
I − α

t− 1
I) + bif

⊤
i + eif

⊤
i]
)
Z−1

t−1ft − Θ̃ft + bt

= Θ̃
(
αI +

t−1∑

i=1

fif
⊤
i

)
Z−1

t−1ft − αΘ̃Z−1
t−1ft +

(t−1∑

i=1

bif
⊤
i

)
Z−1

t−1ft +
(t−1∑

i=1

eif
⊤
i

)
Z−1

t−1ft − Θ̃ft + bt

= Θ̃Zt−1Z
−1
t−1ft − αΘ̃Z−1

t−1ft +Bt−1Z
−1
t−1ft + Et−1Z

−1
t−1ft − Θ̃ft + bt

= Et−1Z
−1
t−1ft +Bt−1Z

−1
t−1ft + bt − αΘ̃Z−1

t−1ft.

We apply the RMS-AM inequality to obtain an upper bound on L(T)

L(T) =
T∑

t=1

∥m̂t −mt∥22

=
T∑

t=1

∥Et−1Z
−1
t−1ft +Bt−1Z

−1
t−1ft + bt − αΘ̃Z−1

t−1ft∥22

≤
T∑

t=1

3∥Et−1Z
−1
t−1ft∥22+3∥Bt−1Z

−1
t−1ft + bt∥22+3∥αΘ̃Z−1

t−1ft∥22.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 50

Regret can thus be decomposed to the following terms

Regret(T) ≤
T∑

t=1

3∥Et−1Z
−1
t−1ft∥22 (least squares error)

+
T∑

t=1

3∥Bt−1Z
−1
t−1ft + bt∥22 (improper learning bias)

+
T∑

t=1

3∥αΘ̃Z−1
t−1ft∥22 (regularization error)

−
T∑

t=1

2e⊤t (m̂t −mt) (innovation error)

We bound each of the first three terms by extracting a ∥Z−1/2
t−1 ft∥22, i.e. we write

∥Et−1Z
−1
t−1ft∥22 ≤ sup

1≤t≤T
∥Et−1Z

−1/2
t−1 ∥22

T∑

t=1

∥Z−1/2
t−1 ft∥22,

∥Bt−1Z
−1
t−1ft + bt∥22 ≤ sup

1≤t≤T
∥Bt−1Z

−1/2
t−1 ∥22

T∑

t=1

∥Z−1/2
t−1 ft∥22+

T∑

t=1

∥bt∥22,

∥αΘ̃Z−1
t−1ft∥22 ≤ sup

1≤t≤T
∥αΘ̃Z−1/2

t−1 ∥22
T∑

t=1

∥Z−1/2
t−1 ft∥22.

In subsequent sections, we compute a high probability upper bound on
∑T

t=1∥Z
−1/2
t−1 ft∥22 as

well as the specific terms in the above decomposition that affect least squares error, improper
learning bias, regularization error, and innovation error, proving that regret is bounded by
polylog(T).

2.8.8 Regret analysis

High probability bound on det(Zt)

We start by deriving an upper bound on log(det(Zt)) as this quantity appears multiple times
when analyzing regret. The following lemma provides a high probability bound on det(Zt)
for features defined in (2.9).

Lemma 2.8.7. (High probability upper bounds on det(Zt)) Assume as in Lemma 2.8.2 and
let Zt = αI +

∑t
i=1 ftf

⊤
t . Then, for any δ ≥ 0

P
(
log(det(Zt)) ≥ l log

[
α2 + 8k(R2

P + 1)(R2
x +RC)(1 + γ)4(mt+ log

(1
δ

)
))t3+2 log(γ)

])
≤ δ.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 51

Proof. Let l be the feature vector dimension. We have

Zt = αI +
t∑

i=1

ftf
⊤
t ⪯ αI +

t∑

i=1

(f⊤
i fi)I ⇒ det(Zt) ≤

(
α2 +

t∑

i=1

∥fi∥22
)l
.

Recall the definition Ψt = [ψt, . . . , ψ1] from Algorithm 1 and the compact representation
for input features x̃t = (Ψt ⊗ In)x1:t and output features ỹt = (Ψt ⊗ In)y1:t. Observe that
∥Ψt∥2≤ 1 since Ψt is a block of eigenvector matrix of hankel matrix H. Thus the feature
norm is bounded by

∥ft∥22 = ∥ỹt−1∥22+∥x̃t−1∥22+∥xt∥22
≤ k∥y1:t−1∥22+k∥x1:t−1∥22+R2

x

≤ k∥y1:t∥22+2ktR2
x.

From Lemma 2.8.2, with probability at least 1− δ

∥ft∥22 ≤ 6k(R2
P + 1)(R2

x +RC)(1 + γ)4(mt+ log
(1
δ

)
)t2+2 log(γ) + 2ktR2

x

≤ 8k(R2
P + 1)(R2

x +RC)(1 + γ)4(mt+ log
(1
δ

)
)t2+2 log(γ).

The above bound is increasing in t, therefore

P
(
det(Zt) ≥

[
α2 + 8k(R2

P + 1)(R2
x +RC)(1 + γ)4(mt+ log

(1
δ

)
)t3+2 log(γ)

]l)
≤ δ.

Given the PAC bound parametersM , if k ≍M polylog(T) (and hence l = (m+n)k+n ≍M

polylog(T)), then the above lemma states that log(det(Zt)) ≲M polylog(T).

Self-normalizing vector martingales

We now prove a key result on vector self-normalizing martingales that is used multiple times
throughout our regret analysis. The result is inspired by Theorem 1 of Abbasi-Yadkori et al.
(2011), which provides a bound for self-normalizing martingales with scalar sub-Gaussian
noise, and extend it to vector-valued sub-Gaussian noise with arbitrary covariance.

Theorem 2.8.1. (Bound on self-normalized vector martingale) Let {Ft}∞t=0 be a filtration.
Let et ∈ Rm be Ft measurable and et|Ft−1 to be conditionally RV -sub-Gaussian. In other
words, for all t ≥ 0 and ω ∈ Rm

E[exp(ω⊤et) | Ft−1] ≤ exp(R2
V ∥ω∥22/2).

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 52

Let ft ∈ Rl be an Ft−1-measurable stochastic process. Assume that Z is an l × l positive
definite matrix. For any t ≥ 0, define

Zt = Z0 +
t∑

i=1

ftf
⊤
t and Et =

t∑

i=1

eif
⊤
i .

Then, for any δ > 0 and for all t ≥ 0

P
[
∥EtZ

−1/2
t ∥2≤ 8R2

Vm+ 4R2
V log

(det(Zt)
1/2 det(Z0)

−1/2

δ

)]
≥ 1− δ.

Proof. We use an ϵ-net argument. First, we establish control over ∥ω⊺EtZ
−1/2
t ∥2 for all

vectors ω in unit sphere Sm−1. We will discretize the sphere using a net and finish by taking
a union bound over all ω in the net.

Let N be an ϵ-net of unit sphere Sm−1 and set ϵ = 1/2. Corollary 4.2.13 in Vershynin
(2018) states that the covering number for unit sphere Sm−1 is given by

|N |≤
(2
ϵ
+ 1
)m

= 5m.

ω⊤ei is RV -sub-Gaussian for any ω ∈ N . Therefore, for any ω ∈ N and any u ≥ 0, Theorem
1 in Abbasi-Yadkori et al. (2011) yields

P
[
∥ω⊤EtZ

−1/2
t ∥2≥ u

]
≤ det(Zt)

1/2 det(Z0)
−1/2 exp

(
− u

2R2
V

)
.

Using Lemma 4.4.1 in Vershynin (2018), we have

∥EtZ
−1/2
t ∥2≤ 2 sup

ω∈N
∥ω⊤EtZ

−1/2
t ∥2.

Taking a union bound over N , we conclude that

P
[
∥EtZ

−1/2
t ∥2≥ u

]
≤ P

[
sup
ω∈N
∥ω⊤EtZ

−1/2
t ∥2≥

u

2

]

≤
∑

ω∈N

P
[
∥ω⊤EtZ

−1/2
t ∥2≥

u

2

]

≤ det(Zt)
1/2 det(Z0)

−1/2 exp
(
2m− u

4R2
V

)
.

The above theorem combined with the result of Lemma 2.8.7 immediately implies that
for k ≍M polylog(T), we have ∥EtZ

−1/2
t ∥2≲M polylog(T) and ∥BtZ

−1/2
t ∥2≲M polylog(T)

with high probability.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 53

High probability bound on ∥Z−1/2
t−1 ft∥22

In this section, we show that
∑T

t=1∥Z
−1/2
t−1 ft∥22≲M polylog(T). The proof steps are summarized

below.

Step 1. We show a high probability Löwner upper bound on ftf⊤
t in terms of α0I +E[ftf⊤

t].

Step 2. We state the block-martingale small-ball condition and show that the process {ft}
satisfies this condition. We prove a high probability lower bound on Zt in terms of
the conditional covariance cov(fs+i | Fi) for large enough s.

Step 3. We define a filter quadratic function condition and prove that under this condition,
there exists cT ≍M polylog(T) such that Zt− 1

cT
ft+1f

⊤
t+1 ⪰ 0. By Schur complement

lemma, this is equivalent to ∥Z−1/2
t ft+1∥2≤ cT ≍M polylog(T).

Step 1. The following lemma establishes a high probability upper bound on ftf
⊤
t based

on the covariance of feature vector ft.

Lemma 2.8.8. (High probability upper bound on ftf
⊤
t) Let ft be a zero-mean Gaussian

random vector in Rl and let Σt = α0I + E[ftf⊤
t] for a real α0 > 0. Then, for any δ > 0 and

α0 > 0

P
(
ftf

⊤
t ⪯ [2l + 4 log(1/δ)]Σt

)
≥ 1− δ,

and if Σt is invertible, the results holds for α0 = 0.

Proof. Consider the random vector Σ
−1/2
t ft. Jensen’s inequality gives

E∥Σ−1/2
t ft∥2≤

√
E[f⊤

t Σ
−1
t ft] =

√
tr(Σ−1

t E[ftf⊤
t]) ≤

√
l.

By standard bounds on tails of sub-gaussian random variables (for example, see Exercise
6.3.5 in Vershynin (2018)), for any δ > 0

P
(
∥Σ−1/2

t ft∥2>
√
l +

√
2 log

1

δ

)
≤ δ

Let c = 2l + 4 log 1
δ
. Then, the above bound implies

P(f⊤
t Σ

−1
t ft ≤ c) ≥ 1− δ.

Using Schur complement method, c − f⊤
t Σ

−1
t ft ≥ 0 if and only if the following matrix is

positive semi-definite
[
Σt ft

f⊤
t c

]
⪰ 0.

Using the other Schur complement, this is only true if and only if Σt − 1
c
ftf

⊤
t ⪰ 0, which

concludes the proof.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 54

Step 2. To capture the excitation behavior of features, we use the martingale small-ball
condition (Mendelson, 2014; Simchowitz et al., 2018).

Definition 2.2. (Martingale small-ball) Let {ft}t≥1 be an Ft-adapted random processes tak-
ing values in Rl. We say that {ft}t≥1 satisfies the (s,Γsb, p)-block martingale small-ball
(BMSB) condition for Γsb ≻ 0 if for any t ≥ 1 and for any fixed ω in unit sphere S l−1

1

s

s∑

i=1

P(|w⊤ft+i|≥
√
w⊤Γsbw | Ft) ≥ p.

To show the process {ft}t≥1 satisfy a BMSB condition, we first show that the conditional
covariance of features is increasing in the positive semi-definite cone.

Lemma 2.8.9. (Monotonicity of conditional covariance of features) Let ϕ1, . . . , ϕk for k ≤
T be a set of T -dimensional orthogonal vectors and let ψi = [ϕ1(i), . . . , ϕk(i)]

⊤ be a k-
dimensional vector. Consider system (4) and define the following for all t ≥ 2

ft = ψ1 ⊗ yt−1 + · · ·+ ψt−1 ⊗ y1. (2.27)

Let Ft = σ{η0, . . . , ηt−1, ζ1, . . . , ζt}. Then, cov(ft+i|Ft) is independent of t and increases with
i in the positive semi-definite cone.

Proof. Expanding yi in definition of ft in (2.27) based on system (2.4), we have

ft+i − E[ft+i | Ft] = (ψ1 ⊗ C)ηt+i−2

+ (ψ2 ⊗ C + ψ1 ⊗ CA)ηt+i−3

+ . . .

+ (ψi−1 ⊗ C + · · ·+ ψ1 ⊗ CAi−2)ηt

+ ψ1 ⊗ ζt+i−1 + · · ·+ ψi−1 ⊗ ζt+1

Recall that E[ηtη⊤t] = Q,E[ζtζ⊤t] = R and that the process noise and the observation noise
are i.i.d. Therefore,

cov(ft+i|Ft) = (ψ1 ⊗ C)Q(ψ1 ⊗ C)⊤

+ (ψ2 ⊗ C + ψ1 ⊗ CA)Q(ψ2 ⊗ C + ψ1 ⊗ CA)⊤
+ . . .

+ (ψi−1 ⊗ C + · · ·+ ψ1 ⊗ CAi−2)Q(ψi−1 ⊗ C + · · ·+ ψ1 ⊗ CAi−2)⊤

+ ψ1 ⊗Rψ⊤
1 ⊗ Im + · · ·+ ψi−1 ⊗Rψ⊤

i−1 ⊗ Im.

(2.28)

Observe that the conditional covariance is independent of t. Furthermore, all terms in the
above sum are positive semi-definite; increasing i only adds two additional positive semi-
definite terms. It follows that

cov(ft+i+1|Ft) ⪰ cov(ft+i|Ft).

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 55

Equipped with the result of the above lemma, we now show that {ft}t≥1 satisfy a BMSB
condition.

Lemma 2.8.10. (BMSB condition) Consider the process {ft}t≥1 defined in Lemma 2.8.9 and
let Γi = cov(ft+i|Ft). For any 1 ≤ s ≤ T , the process {ft}t≥1 satisfies the (s,Γs/2, 3/20)-
BMSB condition.

Proof. Note that ω⊤ft+i | Ft has a Gaussian distribution with variance
√
ω⊤Γiω. By an

application of Paley-Zygmund inequality, one has

P(|w⊤ft+i|≥
√
w⊤Γiw | Ft) ≥ P(|w⊤ft+i − E[w⊤ft+i | Ft]|≥

√
w⊤Γiw | Ft) ≥

3

10

Let 1 ≤ s′ ≤ s. By Lemma 2.8.9, Γi is increasing in i. Therefore,

1

s

s∑

i=1

P(|w⊤ft+i|≥
√
w⊤Γs′w|Ft) ≥

1

s

s∑

i=s′

P(|w⊤ft+i|≥
√
w⊤Γs′w|Ft)

≥ 1

s

s∑

i=s′

P(|w⊤ft+i|≥
√
w⊤Γiw|Ft) (Γi increasing)

≥ 3

10

s− s′ + 1

s
. (Paley-Zygmund)

Choosing s′ = s/2 shows that ft satisfies (s,Γs/2, 3/20) small-ball condition.

The small-ball condition can be used to establish high probability lower bound on
σmin(Zt), as shown by the following lemma.

Lemma 2.8.11. (Lower bound on Zt) Consider the process {ft}t≥1 defined in Lemma 2.8.9
and let Zt = αI +

∑t
i=1 fif

⊤
i for regularization parameter α > 0. For δ, α0 > 0 let

Γi = cov(ft+i|Fi), Γmax = t[2l + 4 log(2/δ)][α0I + Γt].

For any δ > 0 if s satisfies the following

s ≤ tp2/10

log det(Γmax)− l log(α)− log(2/δ)
,

then

P
(
Zt ⪰

α

2
I +

s⌊t/s⌋p2Γs/2

16

)
≥ 1− δ.

Proof. According to Lemma 2.8.10, {ft}t≥1 satisfies the (s,Γs/2, p = 3/20)-BMSB condition.
The following lemma from Simchowitz et al. (2018) gives tail probabilities for real-valued
processes that satisfy a small-ball condition. Note that our notation for small ball condition
in real-valued processes slightly differs from Simchowitz et al. (2018) which results in a slight
difference in the statement of the lemma below.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 56

Lemma 2.8.12. (Tail bounds for small-ball processes) If a real-valued process {zt}t≥1 satisfies
the (s, σ, p)-BMSB condition, then

P(
t∑

i=1

z2i ≤
p2σ

8
s⌊t/s⌋) ≤ exp

(
− ⌊t/s⌋p

2

8

)
.

For a fixed ω ∈ S l−1, the process {ω⊤ft}t≥1 satisfies (s, ω⊤Γs/2ω, p). Using the above
lemma, we have

P
(
ω⊤(

t∑

i=1

fif
⊤
i

)
ω ≤ p2ω⊤Γs/2ω

8
s⌊t/s⌋

)
≤ exp

(
− ⌊t/s⌋p

2

8

)
.

For large enough t, we can convert this high probability bound to obtain a uniform Löwner
lower bound on Zt by a discretization argument.

Given a regularization parameter α > 0, define

Γmin = αI +
s⌊t/s⌋p2Γs/2

8

Define the following events

E1 =
{
Zt ⪰

Γmin

2

}
and E2 =

{
Zt ⪯ Γmax

}
.

We have P(Ec1) ≤ P(Ec1 ∩ E2) + P(Ec2), where P(Ec2) is bounded by δ/2 according to Lemma
2.8.8. Let SΓsb = {ω : ω⊤Γsbω = 1} and let T be a 1/4-net of SΓsb in the norm ∥Γ1/2

max(.)∥2.
By Lemma 4.1 and Lemma D.1 in Simchowitz et al. (2018), we can write

P(Ec1 ∩ E2) = P
({
Zt ⪰̸

Γmin

2

}
∩
{
Zt ⪯ Γmax

})

≤ P
({
∃ω ∈ T : ∥Ztω∥2< ω⊤Γminω

}
∩
{
Zt ⪯ Γmax

})

≤ exp
(
− ⌊t/s⌋p

2

8
+ log det(ΓmaxΓ

−1
min)

)

≤ exp
(
− tp2

10s
+ log

det(Γmax)

αl

)

Setting s such that the above probability is bounded by δ/2

s ≤ tp2/10

log det(Γmax)− l log(α) + log(2/δ)
,

we conclude that P(Ec1) ≤ δ/2 + δ/2 = δ.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 57

Step 3. So far we have computed a lower bound on Zt and an upper bound on ftf
⊤
t and

our goal is to show that there exists cT ≍M polylog(T) such that Zt − 1
cT
ftf

⊤
t ⪰ 0. This

inequality, however, does not hold for any set of orthonormal filters ϕ1, . . . , ϕk. We identify
an assumption connecting filters with transition matrix A that ensures Zt − 1

cT
ftf

⊤
t ⪰ 0.

This assumption is based on a filter quadratic function, which we restate below.

Definition 2.3. (Filter quadratic function) Let ϕ1, . . . , ϕk for k ≤ T be a set of T -
dimensional vectors, let ψi = [ϕ1(i), . . . , ϕk(i)]

⊤ be a k-dimensional vector, and let ψ(d)
i =

ψi ⊗ Id, for any d ≥ 1. For any matrix A ∈ Rd×d, the following matrix is called the filter
quadratic function of ψ with respect to A

Ωt(A;ψ) = (ψ
(d)
1)(ψ

(d)
1)⊤ + (ψ

(d)
2 + ψ

(d)
1 A)(ψ

(d)
2 + ψ

(d)
1 A)⊤ + . . .

+ (ψ
(d)
t−1 + · · ·+ ψ

(d)
1 At−2)(ψ

(d)
t−1 + · · ·+ ψ

(d)
1 At−2)⊤.

In the following lemma, we show that a condition on filter quadratic function implies
tΓs/2 − Γt+1/c0 ⪰ 0 for a constant c0.

Lemma 2.8.13. (Filter quadratic condition) Assume as in Lemma 2.8.9 and let κ be the
maximum condition number of Q and R. For any A, if there exists t0 ≥ 1 for which there
exists s such that

tΩs/2(A;ψ)− Ωt+1(A;ψ) ⪰ 0, ∀t ≥ t0,

then tΓs/2 − Γt+1/c0 ⪰ 0, where c0 ≥ κ.

Proof. Let ψ(m)
i = ψi⊗ Im. Recall the expression of the conditional covariance of ft given in

(2.28):

Γt = (ψ
(m)
1 C)Q(ψ

(m)
1 C)⊤

+ (ψ
(m)
2 C + ψ

(m)
1 CA)Q(ψ

(m)
2 C + ψ

(m)
1 CA)⊤

+ . . .

+ (ψ
(m)
t−1C + · · ·+ ψ

(m)
1 CAt−2)Q(ψ

(m)
t−1C + · · ·+ ψ

(m)
1 CAt−2)⊤

+ ψ
(m)
1 R(ψ

(m)
1)⊤ + · · ·+ ψ

(m)
t−1R(ψ

(m)
t−1)

⊤

Define the following terms

Γ
(Q)
t ≜ (ψ

(m)
1 C)Q(ψ

(m)
1 C)⊤ + · · ·+ (ψ

(m)
t−1C + · · ·+ ψ

(m)
1 CAt−2)Q(ψ

(m)
t−1C + · · ·+ ψ

(m)
1 CAt−2)⊤,

Γ
(R)
t ≜ ψ

(m)
1 R(ψ

(m)
1)⊤ + · · ·+ ψ

(m)
t−1R(ψ

(m)
t−1)

⊤,

where Γt = Γ
(Q)
t + Γ

(R)
t . In order to show tΓs/2 − Γt+1/c0 ⪰ 0, it is sufficient to show

tΓ
(Q)
s/2 −

1

c0
Γ
(Q)
t+1 ⪰ 0 and tΓ

(R)
s/2 −

1

c0
Γ
(R)
t+1 ⪰ 0.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 58

Let RC = max{∥R∥2, ∥Q∥2} and σr = min{σmin(Q), σmin(R)}. For tΓ(R)
s/2 − 1

c0
Γ
(R)
t+1, we have

σr[ψ
(m)
1 (ψ

(m)
1)⊤ + · · ·+ ψ

(m)
t (ψ

(m)
t)⊤]

⪯ψ(m)
1 R(ψ

(m)
1)⊤ + · · ·+ ψ

(m)
t R(ψ

(m)
t)⊤

⪯RC [ψ
(m)
1 (ψ

(m)
1)⊤ + · · ·+ ψ

(m)
t (ψ

(m)
t)⊤].

Setting c0 = RC/σr, gives

tΓ
(R)
s/2 −

1

c0
Γ
(R)
t+1

⪰σrt[ψ(m)
1 (ψ

(m)
1)⊤ + · · ·+ ψ

(m)
s/2−1(ψ

(m)
s/2−1)

⊤]− σr[ψ(m)
1 (ψ

(m)
1)⊤ + · · ·+ ψ

(m)
t (ψ

(m)
t)⊤] ⪰ 0.

The last matrix is positive semi-definite based on assumption (2.29) when A = 0. For
tΓ

(Q)
s/2 − 1

c0
Γ
(Q)
t+1, write

ψ
(m)
i C =

ϕ1
iC

ϕ2
iC
...

ϕk
iC

km×d

=

C 0 . . . 0

0 C . . . 0
...
0 0 . . . C

km×kd

ϕ1
i Id

ϕ2
i Id
...

ϕk
i Id

kd×d

= Cψ
(d)
i .

We have

Γ
(Q)
t+1 = C

[
ψ

(d)
1 Q(ψ

(d)
1)⊤ + · · ·+ (ψ

(d)
t + · · ·+ ψ

(d)
1 At−1)Q(ψ

(d)
t + · · ·+ ψ

(d)
1 At−1)⊤

]
C⊤

By a similar argument and given assumption (2.29), we have tΓ(Q)
s/2 − 1

c0
Γ
(Q)
t+1 ⪰ 0.

Remark 2.3. When A is symmetric (A = UDU⊤), the positive semi-definite condition filter
quadratic function can be further simplified to tΩs/2(D;ψ)−Ωt+1(D;ψ) ⪰ 0 for all diagonal
matrices D with |Dii|≤ 1.

In the following lemma, we show a high probability upper bound on ∥Z−1/2
t ft+1∥2.

Lemma 2.8.14. (∥Z−1/2
t ft+1∥2 upper bound) Assume as in Lemma 2.8.9 and let κ be the

maximum condition number of Q and R. Define the following for all t ≥ 1, regularization
parameter α > 0, p = 3/20, and fix 0 < α0 ≤ 200α and δ > 0

Zt = αI +
t∑

i=1

fif
⊤
i , Γmax = t[2km+ 4 log(4/δ)][α0I + Γt], Γmin = αI +

s⌊t/s⌋p2Γs/2

8

For any A, suppose that there exists t0 ≥ 1 for which there exists s such that

s ≤ tp2/10

log det(Γmax)− l log(α) + log(4/δ)
, tΩs/2(A;ψ)− Ωt+1(A;ψ) ⪰ 0. (2.29)

Then, for all t ≥ t0 with probability at least 1− δ
∥Z−1/2

t−1 ft∥22≤10κ(2mk + 4 log(2/δ))/p2.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 59

Proof. Let cT = 10κ(2mk + 4 log(2/δ))/p2. With probability at least 1− δ, we lower bound∑t
i=1 fif

⊤
i by Lemma 2.8.11 and upper bound 1

cT
ft+1f

⊤
t+1 by Lemma 2.8.8

Zt −
1

cT
ft+1f

⊤
t+1 = αI +

t∑

i=1

fif
⊤
i −

1

c
ft+1f

⊤
t+1

⪰ α

2
I +

p2

10
tΓs/2 −

p2

10
α0I −

p2

10

1

c0
Γt+1

(1)

⪰ +
p2

10
tΓs/2 −

p2

10

1

c0
Γt+1

(2)

⪰ 0

where inequality (1) is due to the assumption α0 ≤ 200α and (2) uses the result of Lemma
2.8.13.

Using Schur complement lemma, Zt − 1
cT
ft+1f

⊤
t+1 is positive semi-definite if and only if

the following matrix is positive semi-definite
[
Zt ft+1

f⊤
t+1 cT .

]
.

Using the other Schur complement, this is true if and only if cT−f⊤
t+1Z

−1
t ft ≥ 0. Equivalently,

Zt −
1

cT
ft+1f

⊤
t+1 ⪰ 0 ⇔ ∥Z−1/2

t ft+1∥2≤ cT ,

which concludes the proof.

The above lemma states that if k ≍M polylog(T) then ∥Z−1/2
t−1 ft∥22≲M polylog(T) with

high probability.

Proof of Lemma 2.1

We now prove that ∥Z−1/2
t−1 ft∥22≲M polylog(T) implies

∑T
t=1∥Z

−1/2
t−1 ft∥22≲M polylog(T). We

first present a lemma inspired by Lemma 2 of Lai et al. (1982).

Lemma 2.8.15. (Upper bound on
∑t

i=1∥Z
−1/2
i fi∥22) Let f1, . . . , ft be l-dimensional vectors

and Z0 an l × l positive definite matrix. Define Zt = Z0 +
∑t

i=1 fif
⊤
i . Then,

t∑

i=1

f⊤
i Z

−1
i fi ≤ log

(det(Zt)

det(Z0)

)
.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 60

Proof. First, note that Zt is positive definite and has a positive determinant for all t ≥ 1.
Using matrix determinant lemma, we have

det(Zt−1) = det(Zt − ftf⊤
t) = det(Zt)(1− f⊤

t Z
−1
t ft)⇒ f⊤

t Z
−1
t ft =

det(Zt)− det(Zt−1)

det(Zt)

Since Zi ⪰ Zi−1, we have det(Zi) ≥ det(Zi−1). We write

t∑

i=1

f⊤
i Z

−1
i fi =

t∑

i=1

1− det(Zi−1)

det(Zi)
≤

t∑

i=1

log
(det(Zi)

det(Zi−1)

)
= log

(det(Zt)

det(Z0)

)
,

where we used the fact that 1− x ≤ log(1/x) for x ≤ 1.

We are now ready to prove Lemma 2.1.
Proof of Lemma 2.1. The first claim is already proved in Lemma 2.8.10. We focus on

proving the second claim. Recall the result of Lemma 2.8.15, which states that

T∑

t=1

f⊤
t Z

−1
t ft ≤ log

(det(ZT)

det(αI)

)
.

Using matrix determinant lemma, the above is equivalent to

T∑

t=1

f⊤
t Z

−1
t−1ft

1 + f⊤
t Z

−1
t−1ft

≤ log
(det(ZT)

det(αI)

)
.

By Lemma 2.8.7, log det(Zt) is bounded by polylog(T) with high probability since k ≍M

polylog(T). Furthermore, by Lemma 2.8.14, ∥Z−1/2
t−1 ft∥22≲M polylog(T) with high probability.

Concretely,

P(∥Z−1/2
t−1 ft∥22≤ 10κ(2mk + 4 log(2/δ))/p2) ≥ 1− δ,

P
(
log(det(Zt)) ≤ mk log

[
α2 + 8k(R2

P + 1)(R2
x +RC)(1 + γ)4(mt− log(δ))t3+2 log(γ)

])
≥ 1− δ.

Therefore, we can apply Lemma 2.8.20 by combining the two bounds and taking a union
bound

RZ(T) ≜ mk log
[
α2 + 8k(R2

P + 1)(R2
x +RC)(1 + γ)4(mT − log(δ))T 3+2 log(γ)

]
,

P
{ T∑

t=1

∥Z−1/2
t−1 ft∥22≤

(
1 +

10κ(2mk + 4 log(4/δ)

p2

)(
RZ(T)−mk log(α)

)}
≥ 1− δ.

□

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 61

Regularization term

The following lemma computes an upper bound on the 2-norm of the relaxed model param-
eters Θ̃.

Lemma 2.8.16. (Model parameter bound) Consider system (2.4) and let k be the number of
spectral filters and Θ̃ be the parameters defined in (2.12). If ∥Ot∥2, ∥Ct∥2≤ RK and ∥D∥2≤
RP then,

∥Θ̃∥2≤ 2kRK +RP .

Proof. Parameter matrix Θ̃ is the concatenation of coefficients of features ỹt−1, x̃t−1, xt. By
matrix norm properties,

∥Θ̃∥2≤ ∥D∥2+
k∑

j=1

∥
d∑

i=1

Cviw
⊤
i K⟨µ(λi), ϕj⟩∥2+∥

d∑

i=1

Cviw
⊤
i (B −KD)⟨µ(λi), ϕj⟩∥2.

Recall that {λi}ki=1, {vi}ki=1, and {w⊤
i }ki=1 are the top k eigenvalues, right eigenvectors,

and left eigenvectors of G, respectively. Write

∥
d∑

i=1

Cviw
⊤
i K⟨µ(λi), ϕj⟩∥2= ∥

T∑

t=1

CGT−tKϕj(t)∥2= ∥OTϕj∥2≤ RK ,

and similarly,

∥
d∑

i=1

Cviw
⊤
i (B −KD)⟨µ(λi), ϕj⟩∥2= ∥CTϕj∥2≤ RK .

Summing all terms gives the final bound.

Lemma 2.8.17. (Regularization term bound) Assume as in Lemma 2.8.16 and let Zt =

αI + ftf
⊤
t . If α ≤ 1/∥Θ̃∥22, then

∥αΘ̃Z−1/2
t−1 ∥22≤ 1.

Proof. The regularization term implies Zt ⪰ αI and thus ∥Z−1/2
t ∥22≤ 1/α. By norm proper-

ties

∥αΘ̃Z−1/2
t−1 ∥22≤ α2∥Θ̃∥22∥Z−1/2

t−1 ∥22≤ 1.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 62

Innovation error

The following lemma, based on the analysis given by Tsiamis and Pappas (2020), shows that
the innovation error is bounded by

√
L(T) (defined in (2.13)).

Lemma 2.8.18. (Innovation error bound) Let L(T) =∑T
t=1∥m̂t−mt∥22 be the squared error

between Kalman predictions in hindsight and predictions by Algorithm 1. Assume that the
innovation covariance matrix has a bounded norm ∥V ∥2≤ RV . For all δ > 0, the following
holds with probability greater than 1− δ:

T∑

t=1

2e⊤t (m̂t −mt) ≤ 8R2
V

(
L(T) + 1

)1/2[
2 + log

(L(T) + 1

δ

)]
.

Proof. Write

T∑

t=1

e⊤t (m̂t −mt) =
T∑

t=1

m∑

i=1

et,i(m̂t,i −mt,i).

Let s = m⌊s/m⌋+ r and define the following filtration

Fs = {e1,1, . . . , e⌊s/m⌋,r}.

A scalar version of Theorem 2.8.1 states that the following holds with probability at least
1− δ
(T∑

t=1

∥m̂t −mt∥22+1
)−1/2

T∑

t=1

e⊤t (m̂t −mt) ≤ 4R2
V

[
2 + log

(1
δ

)
+ log

(T∑

t=1

∥m̂t −mt∥22+1
)]
.

Therefore, with probability at least 1− δ
T∑

t=1

2e⊤t (m̂t −mt) ≤ 8R2
V

(
L(T) + 1

)1/2[
2 + log

(L(T) + 1

δ

)]
.

Proof of Theorem 1

Proof of Theorem 2.1. Recall the regret decomposition given in Section 2.8.7:

Regret(T) ≤ sup
1≤t≤T

(
∥Et−1Z

−1/2
t−1 ∥22+∥Bt−1Z

−1/2
t−1 ∥22+∥αΘ̃Z−1/2

t−1 ∥22
)(T∑

t=1

∥Z−1/2
t−1 ft∥22

)

+ T sup
1≤t≤T

∥bt∥22−
T∑

t=1

2e⊤t (m̂t −mt).

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 63

Let δ1 = δ/8. We describe bounds on each term in the above regret bound. All lemmas
and theorems used in this proof contain explicit dependencies on horizon T as well as PAC
bound parameters. While one can combine these results to write a regret bound with ex-
plicit dependencies on all parameters, we refrain from writing in such detail here for a clear
presentation.

Bounding ∥Et−1Z
−1/2
t−1 ∥22. According to Theorem 2.8.1, with probability at least 1 − δ1,

the term ∥Et−1Z
−1/2
t−1 ∥22 is bounded by

∥Et−1Z
−1/2
t−1 ∥2≲ poly(RΘ,m)

[
log(1/δ1) + log(det(Zt))− l log(α)

]
,

l = (m+n)k+n is the feature vector dimension. We substitute the regularization parameter
α and the number of filters k according to Theorem 2.1 assumption (iii). Given the values
for k, α and by Lemma 2.8.7, with probability at least 1− δ1 we have

log(det(Zt)) ≲ poly(RΘ,m, β) polylog(γ,
1

δ1
) log3(T).

Taking a union bound gives

P
[
∥Et−1Z

−1/2
t−1 ∥22≲ poly(RΘ,m, β) polylog(γ,

1

δ1
) log6(T)

]
≥ 1− 2δ1. (2.30)

Bounding ∥Bt−1Z
−1/2
t−1 ∥22. Recall the definitions Bt =

∑t
i=1 bif

⊤
i from (2.15) and bi =

Θ̃ft − mt from (2.26). We choose the number of filters k to satisfy (2.25) with failure
probability δ1 > 0 and ϵ = 1/T ,3 which results in k ≳M log2(T) satisfied by assumption (iii).
Therefore, we can apply Theorem 2.3 which states that ∥bt∥22≤ 1/T with probability at least
1− δ1. Combining this result with the result of Theorem 2.8.1 with a union bound yields

P
[
∥
(t−1∑

i=1

bif
⊤
i

)
Z

−1/2
t−1 ∥2≤

4

T
(2m+ log

(det(Zt)
1/2 det(αIl)

−1/2

δ1

)
)
]
≥ 1− 2δ1.

With a similar argument used in bounding ∥Et−1Z
−1/2
t−1 ∥22, we have

P
[
∥Bt−1Z

−1/2
t−1 ∥22≲ poly(RΘ,m, β) polylog(γ,

1

δ1
)
log6(T)

T

]
≥ 1− 3δ1. (2.31)

Bounding ∥ffΘ̃Z
−1/2
t−1 ∥22. By assumption (iii) and as a result of Lemma 2.8.17, we have

∥αΘ̃Z−1/2
t−1 ∥22≲ 1.

3Setting ϵ = 1/T is later used for a uniform bound on ∥bt∥22 and is not critical in this part of the proof.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 64

Bounding
∑T

t=1∥Z
−1/2
t−1 ft∥22. Lemma 2.1 provides the following bound on the excitation

term

P
[T∑

t=1

∥Z−1/2
t−1 ft∥22≲ κ poly(RΘ,m, β) polylog(γ,

1

δ1
) log5(T)

]
≥ 1− δ1, (2.32)

where the number filters k is substituted by assumption (iii).

Bounding T sup1≤t≤T∥bt∥22. Applying Theorem 2.3 with parameters δ1 > 0, ϵ = 1/T , we
have

P
[
T sup

1≤t≤T
∥bt∥22≤ Tϵ ≤ 1

]
≥ 1− δ1. (2.33)

Recall from Section 2.8.7 that L(T) is bounded by

L(T) ≤ sup
1≤t≤T

(
∥Et−1Z

−1/2
t−1 ∥22+∥Bt−1Z

−1/2
t−1 ∥22+∥αΘ̃Z−1/2

t−1 ∥22
)(T∑

t=1

∥Z−1/2
t−1 ft∥22

)
+ T sup

1≤t≤T
∥bt∥22.

Lemma 2.8.18 with δ1 states that

P
[T∑

t=1

e⊤t (m̂t −mt) ≲ poly(RΘ) polylog
(1

δ1

)√
L(T) + 1

]
≥ 1− δ1. (2.34)

Combining the bounds given in (2.30), (2.31), (2.32), (2.33), (2.34), taking a union prob-
ability bound, and setting δ = 8δ1 gives

P
[
Regret(T) ≤ κ log11(T) poly(RΘ, β,m) polylog(γ,

1

δ
)
]
≥ 1− δ.

□

2.8.9 Auxiliary lemmas

In this section, we present a few lemmas that we use throughout the theoretical analysis of
our algorithm, presented here for completeness.

The following lemma provides an upper bound on the norm of block Toeplitz matrices
(Tsiamis and Pappas, 2019).

Lemma 2.8.19. (Triangular Block Toeplitz Norm) Let Ti ∈ Rm1,m2 for i = 1, 2, . . . , n. Define
the following triangular block Toeplitz matrix

T =

T1 T2 T3 . . . Tn−1 Tn
0 T1 T2 . . . Tn−2 Tn−1

...
0 0 0 . . . T1 T2
0 0 0 . . . 0 T1

.

CHAPTER 2. LEARNING TO PREDICT UNDER LONG-TERM DEPENDENCIES 65

Then,

∥T ∥2≤
n∑

i=1

∥Ti∥2.

The following is a simple result for upper bounding a series.

Lemma 2.8.20. Let t ∈ N and let zt to be a non-negative sequence bounded by a non-
decreasing poly-logarithmic function g(t). Suppose that the following sum

T∑

t=1

zt
1 + zt

is bounded by h(T), a non-decreasing poly-logarithmic function of T . Then,
∑T

t=1 zt is
bounded by a non-decreasing function poly-logarithmic in T .

Proof. Let zm = max
t∈{1,...,T}

zi. We have zm ≤ g(m) ≤ g(T). Therefore,

T∑

t=1

zt ≤
T∑

t=1

1 + zm
1 + zt

zt ≤ (1 + g(T))
T∑

t=1

zt
1 + zt

≤ (1 + g(T))h(T), (2.35)

which is the desired conclusion.

66

Chapter 3

Learning to Make Decisions from a
Dataset

In this chapter we shift our focus to the problem of decision-making in sequential envi-
ronments. Reinforcement learning (RL) is a popular learning framework for sequential
decision-making that have recently achieved tremendous empirical success including beating
Go champions (Silver et al., 2016, 2017) and surpassing professionals in Atari games (Mnih
et al., 2013, 2015), to name a few. Most success stories, however, are in the realm of online
RL in which active data collection is necessary. This online paradigm falls short of leveraging
previously-collected datasets and dealing with scenarios where online exploration is not pos-
sible (Fu et al., 2020). To tackle these issues, offline (or batch) reinforcement learning (Lange
et al., 2012; Levine et al., 2020) arises in which the agent aims at achieving competence by
exploiting a batch dataset without access to online exploration. This paradigm is useful in a
diverse array of application domains such as healthcare (Wang et al., 2018; Gottesman et al.,
2019; Nie et al., 2020), autonomous driving (Yurtsever et al., 2020; Bojarski et al., 2016; Pan
et al., 2017), and recommendation systems (Strehl et al., 2010; Garcin et al., 2014; Thomas
et al., 2017).

The key component of offline RL is a pre-collected dataset from an unknown stochastic
environment. Broadly speaking, there exist two types of data composition for which offline
RL algorithms have shown promising empirical and theoretical success; see Figure 3.1 for an
illustration.

• Expert data. One end of the spectrum includes datasets collected by following
an expert policy. For such datasets, imitation learning algorithms (e.g., behavior
cloning (Ross and Bagnell, 2010)) are shown to be effective in achieving a small sub-
optimality competing with the expert policy. In particular, it is recently shown in the
work Rajaraman et al. (2020) that the behavior cloning algorithm achieves the min-
imal sub-optimality 1/N in episodic Markov decision processes, where N is the total
number of samples in the expert dataset.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 67

dataset composition

expert data

imitation learning

uniform coverage data

vanilla offline RL

Figure 3.1: Dataset composition range for offline RL problems. On one end, we have expert
data for which imitation learning algorithms are well-suited. On the other end, we have
uniform exploratory data for which vanilla offline RL algorithms can be used.

• Uniform coverage data. On the other end of the spectrum lies the datasets with
uniform coverage. More specifically, such datasets are collected with an aim to cover
all states and actions, even the states never visited or actions never taken by satis-
factory policies. Most vanilla offline RL algorithms are only suited in this region and
are shown to diverge for narrower datasets (Fu et al., 2020; Koh et al., 2020), such as
those collected via human demonstrations or hand-crafted policies, both empirically
(Fujimoto et al., 2019b; Kumar et al., 2019) and theoretically (Agarwal et al., 2020d;
Du et al., 2020). In this regime, a widely-adopted requirement is the uniformly bounded
concentrability coefficient which assumes that the ratio of the state-action occupancy
density induced by any policy and the data distribution is bounded uniformly over all
states and actions (Munos, 2007; Farahmand et al., 2010; Chen and Jiang, 2019; Xie
and Jiang, 2020). Another common assumption is uniformly lower bounded data dis-
tribution on all states and actions (Sidford et al., 2018a; Agarwal et al., 2020c), which
ensures all states and actions are visited with sufficient probabilities. Algorithms de-
veloped for this regime are demonstrated to achieve a 1/

√
N sub-optimality competing

with the optimal policy; see for example the papers Yin et al. (2020); Hao et al. (2020);
Uehara et al. (2021a).

3.0.1 Motivating questions

Clearly, both of these two extremes impose strong assumptions on the dataset: at one
extreme, we hope for a solely expert-driven dataset; at the other extreme, we require the
dataset to cover every, even sub-optimal, actions. In practice, there are numerous scenarios
where the dataset deviates from these two extremes, which has motivated the development
of new offline RL benchmark datasets with different data compositions (Fu et al., 2020; Koh
et al., 2020). With this need in mind, the first and foremost question is regarding offline RL
formulations:

Question 1 (Formulation). Can we propose an offline RL framework that accommodates
the entire data composition range?

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 68

We answer this question affirmatively by proposing a new formulation for offline RL that
smoothly interpolates between two regimes: expert data and data with uniform coverage.
More specifically, we characterize the data composition in terms of the ratio between the
state-action occupancy density of an optimal policy1 and that of the behavior distribution
which we denote by C⋆; see Definition 3.1 for a precise formulation. In words, C⋆ can be
viewed as a measure of the deviation between the behavior distribution and the distribution
induced by the optimal policy. The case with C⋆ = 1 recovers the setting with expert
data since, by the definition of C⋆, the behavior policy is identical to the optimal policy.
In contrast, when C⋆ > 1, the dataset is no longer purely expert-driven: it could contain
“spurious” samples—states and actions that are not visited by the optimal policy. As a
further example, when the dataset has uniform coverage, say the behavior probability is
lower bounded by µmin over all states and actions, it is straightforward to check that the new
concentrability coefficient is also upper bounded by µ−1

min.
Assuming a finite C⋆ is the weakest concentrability requirement (Scherrer, 2014; Geist

et al., 2017; Xie and Jiang, 2020) that is currently enjoyed only by some online algorithms
such as CPI (Kakade and Langford, 2002). C⋆ imposes a much weaker assumption in contrast
to other concentrability requirements which involve taking a maximum over all policies; see
Scherrer (2014) for a hierarchy of different concentrability definitions. We would like to
immediately point out that existing works on offline RL either do not specify the dependency
of sub-optimality on data coverage (Jin et al., 2020c; Yu et al., 2020), or do not have a batch
data coverage assumption that accommodates the entire data spectrum including the expert
datasets (Yin et al., 2021; Kidambi et al., 2020).

With this formulation in mind, a natural next step is designing offline RL algorithms
that handle various data compositions, i.e., for all C⋆ ≥ 1. Recently, efforts have been made
toward reducing the offline dataset requirements based on a shared intuition: the agent
should act conservatively and avoid states and actions less covered in the offline dataset.
Based on this intuition, a variety of offline RL algorithms are proposed that achieve promising
empirical results. Examples include model-based methods that learn pessimistic MDPs (Yu
et al., 2020; Kidambi et al., 2020; Yu et al., 2021), model-free methods that reduce the Q-
functions on unseen state-action pairs (Liu et al., 2020; Kumar et al., 2020; Agarwal et al.,
2020e), and policy-based methods that minimize the divergence between the learned policy
and the behavior policy (Kumar et al., 2019; Nachum and Dai, 2020; Fujimoto et al., 2019b;
Nadjahi et al., 2019; Laroche et al., 2019; Peng et al., 2019; Siegel et al., 2020; Ghasemipour
et al., 2020).

However, it is observed empirically that existing policy-based methods perform bet-
ter when the dataset is nearly expert-driven (toward the left of data spectrum in Fig-
ure 3.1) whereas existing model-based methods perform better when the dataset is randomly-
collected (toward the right of data spectrum in Figure 3.1) (Yu et al., 2020; Buckman et al.,
2020). It remains unclear whether a single algorithm exists that performs well regardless of

1In fact, our developments can accommodate arbitrary competing policies, however, we restrict ourselves
to the optimal policy for ease of presentation.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 69

data composition—an important challenge from a practical perspective (Kumar and Levine,
2020; Fu et al., 2020; Koh et al., 2020). More importantly, the knowledge of the dataset
composition may not be available a priori to assist in selecting the right algorithm. This
motivates the second question on the algorithm design:

Question 2 (Adaptive algorithm design). Can we design algorithms that can achieve
minimal sub-optimality when facing different dataset compositions (i.e., different C⋆)? Fur-
thermore, can this be achieved in an adaptive manner, i.e., without knowing C⋆ beforehand?

To answer the second question, we analyze a pessimistic variant of a value-based method
in which we first form a lower confidence bound (LCB) for the value function of a policy
using the batch data and then seek to find a policy that maximizes the LCB. A similar
algorithm design has appeared in the recent work Jin et al. (2020c). It turns out that such a
simple algorithm—fully agnostic to the data composition—is able to achieve almost optimal
performance in multi-armed bandits and Markov decision processes, and optimally solve the
offline learning problem in contextual bandits. See the section below for a summary of our
theoretical results.

Table 3.1: A summary of our theoretical results with all the log factors ignored.

Multi-armed bandits C⋆ ∈ [1, 2) C⋆ ∈ [2,∞)

Algorithm 2 (MAB-LCB) sub-optimality √
C⋆

N

√
C⋆

N(Theorem 3.1)
Information-theoretic lower bound

exp
(
−(2− C⋆) · log

(
2

C⋆−1

)
·N
) √

C⋆

N(Theorem 3.2)
Most played arm

exp
(
−N · KL

(
Bern

(
1
2

)
∥Bern

(
1
C⋆

)))
N/A

(Proposition 3.2)
Contextual bandits C⋆ ∈ [1,∞)

Algorithm 3 (CB-LCB) sub-optimality √
S(C⋆−1)

N
+ S

N(Theorem 3.4)
Information-theoretic lower bound √

S(C⋆−1)
N

+ S
N(Theorem 3.5)

Markov decision processes C⋆ ∈ [1, 1 + 1/N) C⋆ ∈ [1 + 1/N,∞)

Algorithm 4 (VI-LCB) sub-optimality S
(1−γ)4N

√
SC⋆

(1−γ)5N(Theorem 3.6)
Information-theoretic lower bound √

S(C⋆−1)
(1−γ)3N

+ S
(1−γ)2N

√
S(C⋆−1)
(1−γ)3N

+ S
(1−γ)2N(Theorem 3.7)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 70

MAB

C⋆

su
b-

op
ti

m
al

it
y

exp(−N)

√
C⋆

N

1 1+Ω(1)

√
C⋆

N

2

CB

C⋆
su

b-
op

ti
m

al
it
y

1 1 +O(1
N
) 1 + Ω(1)

√
C⋆−1

N√
C⋆−1

N

1
N

MDP

1 C⋆

su
b-

op
ti

m
al

it
y √

C⋆

N√
C⋆

N√
C⋆−1

N1
N

1 + Ω(1)1 +O(1
N
)

LCB upper bound Information-theoretic lower bound LCB conjecture

Figure 3.2: The sub-optimality upper bounds and information-theoretic lower bounds for
the LCB-based algorithms in MAB, CB with at least two contexts, and MDP settings. In
all setting, it is assumed that the knowledge of C⋆ is not available to the LCB algorithm.

3.0.2 Main results

In this subsection, we give a preview of our theoretical results; see Table 3.1 for a summary.
Under the new framework defined via C⋆, we instantiate the LCB approach to three different
decision-making problems with increasing complexity: (1) multi-armed bandits, (2) contex-
tual bandits, and (3) infinite-horizon discounted Markov decision processes. We will divide
our discussions on the main results accordingly. Throughout the discussion, N denotes the
number of samples in the batch data, S denotes the number of states, and we ignore the log
factors.

Multi-armed bandits. To address the offline learning problem in multi-armed bandits,
LCB starts by forming a lower confidence bound—using the batch data—on the mean reward
associated with each action and proceeds to select the one with the largest LCB. We show
in Theorem 3.1 that LCB achieves a

√
C⋆/N sub-optimality competing with the optimal

action for all C⋆ ≥ 1. It turns out that LCB is adaptively optimal in the regime C⋆ ∈ [2,∞)
in the sense that it achieves the minimal sub-optimality

√
C⋆/N without the knowledge of

the C⋆; see Theorem 3.2. We then turn to the case with C⋆ ∈ [1, 2), in which the optimal
action is pulled with more than probability 1/2. In this regime, it is discovered that the
optimal rate has an exponential dependence on N , i.e., e−N , and is achieved by the naive
algorithm of selecting the most played arm (cf. Theorem 3.2). To complete the picture, we
also prove in Theorem 3.3 that LCB cannot be adaptively optimal for all ranges of C⋆ ≥ 1
if the knowledge of C⋆ range is not available.

At first glance, it may seem that LCB for offline RL mirrors upper confidence bound
(UCB) for online RL by simply flipping the sign of the bonus. However, our results reveal
that the story in the offline setting is much more subtle than that in the online case. Contrary

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 71

to UCB that achieves optimal regret in multi-armed bandits (Bubeck et al., 2011), LCB is
provably not adaptively optimal for solving offline bandit problems under the C⋆ framework.

Contextual bandits. The LCB algorithm for contextual bandits shares a similar design
to that for multi-armed bandits. However, the performance upper and lower bounds are
more intricate and interesting when we consider contextual bandits with at least two states.
With regards to the upper bound, we show in Theorem 3.4 that LCB exhibits two different
behaviors depending on the data composition C⋆. When C⋆ ≥ 1 + S/N , LCB enjoys a√
S(C⋆ − 1)/N sub-optimality, whereas when C⋆ ∈ [1, 1 + S/N), LCB achieves a sub-

optimality with the rate S/N ; see Figure 3.2(b) for an illustration. The latter regime (C⋆ ≈
1) is akin to the imitation learning case where the batch data is close to the expert data.
LCB matches the performance of behavior cloning for the extreme case C⋆ = 1. In addition,
in the former regime (C⋆ ≥ 1 + S/N), the performance upper bound depends on the data
composition through C⋆−1, instead of C⋆. This allows the rate of sub-optimality to smoothly
transition from 1/N to 1/

√
N as C⋆ increases. More importantly, both rates are shown to

be minimax optimal in Theorem 3.3, hence confirming the adaptive optimality of LCB for
solving offline contextual bandits—in stark contrast to the bandit case. On the other hand,
this showcases the advantage of the C⋆ framework as it provably interpolates the imitation
learning regime and the (non-expert) offline RL regime.

On a technical front, to achieve a tight dependency on C⋆−1, a careful decomposition of
the sub-optimality is necessary. In Section 3.3.3, we present the four levels of decomposition
of the sub-optimality of LCB that allow us to accomplish the goal. The key message is this:
the sub-optimality is incurred by both the value difference and the probability of choosing
a sub-optimal action. A purely value-based analysis falls short of capturing the probability
of selecting the wrong arm and yields a 1/

√
N rate regardless of C⋆. In contrast, the

decomposition laid out in Section 3.3.3 delineates the cases in which the value difference (or
the probability of choosing wrong actions) plays a bigger role.

Markov decision processes. We combine the LCB approach with the traditional value
iteration algorithm to solve the offline Markov decision processes. Ignore the dependence on
the effective horizon 1/(1−γ) for a moment. Similar behaviors to contextual bandits emerge:
when C⋆ ∈ [1, 1+1/N), LCB achieves an S/N sub-optimality, and when (say) C⋆ ≥ 1.1, LCB
enjoys a

√
SC⋆/N rate; see Theorem 3.6. Both are shown in Theorem 3.7 to be minimax

optimal in their respective regimes of C⋆, up to a 1/(1−γ)2 factor in sample complexity. And
this leaves us with an interesting middle ground, i.e., the case when C⋆ ∈ (1 + 1/N, 1.1).
Our lower bound still has a dependence C⋆ − 1 as opposed to C⋆ in this regime, and we
conjecture that LCB is able to close the gap in this regime.

Conjecture 1 (Adaptive optimality of LCB, Informal). The LCB approach, together with
value iteration is adaptively optimal for solving offline MDPs for all ranges of C⋆.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 72

We discuss the conjecture in detail in Section 3.4.4, where we present an example showing
that a variant of value iteration with LCB in the episodic case is able to achieve the optimal
dependency on C⋆ and hence closing the gap between the upper and the lower bounds. A
complete analysis of the LCB algorithm in the episodic MDP setting is presented in Section
3.10.

3.1 Background and problem formulation
We begin with reviewing some core concepts in Markov decision processes in Section 3.1.1.
Then we introduce the data collection model and the learning objective for offline RL in
Section 3.1.2. In the end, Section 3.1.3 is devoted to the formalization and discussions of
the weaker concentrability coefficient assumption that notably allows us to bridge offline RL
with imitation learning.

3.1.1 Markov decision processes

Infinite-horizon discounted Markov decision processes. We consider an infinite-
horizon discounted Markov decision process (MDP) described by a tuple M =
(S,A, P, R, ρ, γ), where S = {1, . . . , S} is a finite state space, A = {1, . . . , |A|} is a finite
action space, P : S × A 7→ ∆(S) is a probability transition matrix, R : S × A 7→ ∆([0, 1])
encodes a family of reward distributions with r : S × A 7→ [0, 1] as the expected reward
function, ρ : S 7→ ∆(S) is the initial state distribution, and γ ∈ [0, 1) is a discount factor.
Upon executing action a from state s, the agent receives a (random) reward distributed
according to R(s, a) and transits to the next state s′ with probability P (s′|s, a).

Policies and value functions. A stationary deterministic policy π : S 7→ A is a function
that maps a state to an action. Correspondingly, the value function V π : S 7→ R of the policy
π is defined as the expected sum of discounted rewards starting at state s and following policy
π. More precisely, we have

V π(s) := E

[
∞∑

t=0

γtrt

∣∣∣∣∣ s0 = s, at = π(st) for all t ≥ 0

]
, ∀s ∈ S, (3.1)

where the expectation is taken over the trajectory generated according to the transition kernel
st+1 ∼ P (· | st, at) and reward distribution rt ∼ R(· | st, at). Similarly, the quality function
(Q-function or action-value function) Qπ : S ×A → R of policy π is defined analogously:

Qπ(s, a) := E

[
∞∑

t=0

γtrt

∣∣∣∣∣ s0 = s, a0 = a, at = π(st) for all t ≥ 1

]
∀s ∈ S, a ∈ A. (3.2)

Denote
Vmax := (1− γ)−1. (3.3)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 73

It is easily seen that for any (s, a), one has 0 ≤ V π(s) ≤ Vmax and 0 ≤ Qπ(s, a) ≤ Vmax.
Oftentimes, it is convenient to define a scalar summary of the performance of a policy π.

This can be achieved by defining the expected value of a policy π:

J(π) := Es∼ρ[V
π(s)] =

∑

s∈S

ρ(s)V π(s). (3.4)

It is well known that there exists a stationary deterministic policy π⋆ that simultaneously
maximizes V π(s) for all s ∈ S, and hence maximizing the expected value J(π); see e.g.,
Puterman (1990, Chapter 6.2.4). We use shorthands V ⋆ := V π⋆ and Q⋆ := Qπ⋆ to denote
the optimal value function and the optimal Q-function.

Discounted occupancy measures. The (normalized) state discounted occupancy mea-
sures dπ : S 7→ [0, 1] and state-action discounted occupancy measures dπ : S ×A 7→ [0, 1] are
respectively defined as

dπ(s) := (1− γ)
∞∑

t=0

γt Pt(st = s; π), ∀s ∈ S, (3.5a)

dπ(s, a) := (1− γ)
∞∑

t=0

γt Pt(st = s, at = a; π), ∀s ∈ S, a ∈ A, (3.5b)

where we overload notation and write Pt(st = s; π) to denote the probability of visiting state
st = s (and similarly st = s, at = a) at step t after executing policy π and starting from
s0 ∼ ρ(·).

3.1.2 Offline data and offline RL

Batch dataset. The current paper focuses on offline RL, where the agent cannot interact
with the MDP and instead is given a batch dataset D consisting of tuples (s, a, r, s′), where
r ∼ R(s, a) and s′ ∼ P (· | s, a). For simplicity, we assume (s, a) pairs are generated
i.i.d. according to a data distribution µ over the state-action space S ×A, which is unknown
to the agent.2 Throughout the paper, we denote by N(s, a) ≥ 0 the number of times a pair
(s, a) is observed in D and by N = |D| the total number of samples.

The learning objective of offline RL. The goal of offline RL is to find a policy π̂ —
based on the batch data set D— so as to minimize the expected sub-optimality with respect
to the optimal policy π⋆:

ED [J(π⋆)− J(π̂)] = ED
[
Es∼ρ[V

⋆(s)− V π̂(s)]
]
.

Here, the expectation is taken with respect to the randomness in the batch data.
2The i.i.d. assumption is motivated by the data randomization performed in experience replay (Mnih

et al., 2015).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 74

3.1.3 Assumptions on the dataset coverage

Definition 3.1 (Single policy concentrability). Given a policy π, define Cπ to be the smallest
constant that satisfies

dπ(s, a)

µ(s, a)
≤ Cπ, ∀s ∈ S, a ∈ A. (3.6)

In words, Cπ characterizes the distribution shift between the normalized occupancy mea-
sure induced by π and data distribution µ. For a stationary deterministic3 optimal policy,
C⋆ := Cπ⋆ is the “best” concentrability coefficient definition which is often much smaller than
the widely-used uniform concentrability coefficient C := maxπ C

π which takes the maximum
over all policies π. A small Cπ implies that data distribution covers (s, a) pairs visited by
policy π, whereas a small C requires the coverage of (s, a) visited by all policies. Further
discussion on different assumptions imposed on batch datasets in prior works is postponed
to Section 4.5.

3.2 A warm-up: LCB in multi-armed bandits
In this section, we focus on the simplest example of an MDP, the multi-armed bandit model
(MAB), to motivate and explain the LCB approach. More specifically, the multi-armed
bandit model is a special case of the MDP described in Section 3.1.1 with S = 1 and γ = 0.

In the MAB setting, the offline dataset D is a set of tuples {(ai, ri)}Ni=1 sampled indepen-
dently from some joint distribution. Denote the marginal distribution of action ai as µ. Let
r(a) := E[ri | ai = a] be the expectation of the reward distribution for action a. Competing
with the optimal policy that chooses action a⋆, the data coverage assumption simplifies to

1

µ(a⋆)
≤ C⋆. (3.7)

The goal of offline learning in MAB is to select an arm â that minimizes the expected
sub-optimality

ED[J(π
⋆)− J(π̂)] = ED[r(a

⋆)− r(â)].

3.2.1 Why does the empirical best arm fail?

A natural choice for identifying the optimal action is to select the arm with the highest
empirical mean reward. Mathematically, for all a ∈ A, let N(a) :=

∑N
i=1 1{ai = a} and

r̂(a) :=

0, if N(a) = 0,

1

N(a)

N∑

i=1

ri 1{ai = a}, otherwise.

3Throughout the paper, when we talk about optimal policies, we restrict ourselves to deterministic
stationary policies.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 75

The empirical best arm is then given by â := argmaxa r̂(a).
Though intuitive, the empirical best arm is quite sensitive to the arms which have small

observation counts N(a): a less-explored sub-optimal arm might have high empirical mean
just by chance (due to large variance) and overwhelm the true optimal arm. To see this, let
us consider the following scenario.

A failure instance for the empirical best arm. Let a⋆ = 1 be the optimal arm with a
deterministic reward 1/2. For the remaining sub-optimal arms, we set the reward distribution
to be a Bernoulli distributions on {0, 1} with mean 1/4. Consider even the benign case in
which the optimal arm is drawn with dominant probability while the sub-optimal ones are
sparsely drawn. Under such circumstances, there is a decent chance that one of the sub-
optimal arms (say a = 2) is drawn for very few times (say just one time) and unfortunately
the observed reward is 1, which renders a = 2 the empirical best arm. This clearly fails to
achieve a low sub-optimality.

Indeed, this intuition about the failure of the empirical best arm can be formalized in
the following proposition.

Proposition 3.1 (Failure of the empirical best arm). For any ϵ < 0.05, N ≥ 500, there
exists a bandit problem with two arms such that for â = argmaxa r̂(a), one has

ED[r(a
⋆)− r(â)] ≥ ϵ.

It is worth pointing out that the above lower bound holds for any 1
µ(a⋆)

≤ C⋆ with C⋆ − 1
being a constant. See Section 3.7.1 for the proof of Proposition 3.1.

Proposition 3.1 reveals that even in the favorable case when C⋆ ≈ 1, returning the best
empirical arm will have a constant error due to the high sensitivity to the less-explored sub-
optimal arms. In contrast, the LCB approach, which we will introduce momentarily, will
secure a sub-optimality of Õ(

√
1/N) in this regime, hence reaching a drastic improvement

over the vanilla empirical best arm approach.

3.2.2 LCB: The benefit of pessimism

Revisiting the failure instance for the best empirical arm approach, one soon realizes that
it is not sensible to put every action on an equal footing: for the arms that are pulled less
often, one should tune down the belief on its empirical mean and be pessimistic on its true
reward. Strategically, this principle of pessimism can be deployed with the help of a penalty
function b(a) that shrinks as the number of counts N(a) increases. Instead of returning
an arm maximizing the empirical reward, the pessimism principle leads us to the following
approach: return

â ∈ argmax
a

r̂(a)− b(a).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 76

Algorithm 2 LCB for multi-armed bandits
1: Input: Batch dataset D = {(ai, ri)}Ni=1, and a confidence level δ ∈ (0, 1).
2: Set N(a) =

∑N
i=1 1{ai = a} for all a ∈ A.

3: for a ∈ A do
4: if N(a) = 0 then
5: Set the empirical mean reward r̂(a)←[0.
6: Set the penalty b(a)←[1.
7: else
8: Compute the empirical mean reward r̂(a)←[1

N(a)

∑N
i=1 ri 1{ai = a}.

9: Compute the penalty b(a)←[
√

log(2|A|/δ)
2N(a)

.

10: Return: â = argmaxa r̂(a)− b(a).

Intuitively, one could view the right hand side r̂(a)−b(a) as a lower confidence bound (LCB)
on the true mean reward r(a). This LCB approach stands on the conservative side and seeks
to find an arm with the largest lower confidence bound.

Algorithm 2 shows one instance of the LCB approach for MAB, in which the penalty func-
tion originiates from Hoeffding’s inequality. We have the following performance guarantee
for the LCB approach of Algorithm 2, whose proof can be found in Section 3.7.2.

Theorem 3.1 (LCB sub-optimality, MAB). Consider a multi-armed bandit and assume that
1

µ(a⋆)
≤ C⋆,

for some C⋆ ≥ 1. Suppose that the sample size obeys N ≥ 8C⋆ logN . Setting δ = 1/N , then
action â returned by Algorithm 2 obeys

ED[r(a
⋆)− r(â)] ≲ min

(
1,

√
C⋆ log(2N |A|)

N

)
. (3.8)

Applying the performance guarantee (3.8) of LCB on the failure instance used in Propo-
sition 3.1, one sees that LCB achieves a sub-optimality on the order of

√
(logN)/N , which

clearly beats the best empirical arm. This demonstrates the benefit of pessimism over the
vanilla approach. Intuitively, the LCB approach applies larger penalties to the actions that
are observed only a few times. Even if we have actions with huge fluctuations in their re-
spective empirical rewards due to a small number of samples, the penalty term helps to rule
them out.

In fact, our proof yields a stronger high probability performance bound for â returned
by Algorithm 2: for any δ ∈ (0, 1), as long as N ≥ 8C⋆ log(1/δ), we have with probability
at least 1− 2δ that

r(a⋆)− r(â) ≤ min

(
1, 2

√
C⋆ log(2|A|/δ)

N

)
. (3.9)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 77

Furthermore, for policy π that selects a fixed action a, if 1
µ(a)
≤ Cπ for some Cπ, the same

analysis gives the following guarantee:

ED[max{0, r(a)− r(â)}] ≲ min

(
1,

√
Cπ log(2N |A|)

N

)
.

This result shows that the LCB algorithm can compete with any covered target policy that
is not necessarily optimal, i.e., the output policy of the LCB algorithm performs nearly as
well as the covered target policy.

3.2.3 Is LCB optimal for solving offline multi-armed bandits?

Given the performance upper bound (3.8) of the LCB approach, it is a natural to ask whether
LCB is optimal for solving the bandit problem using offline data. To address this question,
we resort to the usual minimax criterion. Since we are dealing with lower bounds, without
loss of generality, we assume that the expert always takes the optimal action. Consequently,
we can define the following family of multi-armed bandits:

MAB(C⋆) = {(µ,R) | 1

µ(a⋆)
≤ C⋆}. (3.10)

MAB(C⋆) includes all possible pairs of behavior distribution µ and reward distribution R
such that the data coverage assumption 1/µ(a⋆) ≤ C⋆ holds. It is worth noting that the
optimal action a⋆ implicitly depends on the reward distribution R. With this definition in
place, we define the worst-case risk of any estimator â to be

sup
(µ,R)∈MAB(C⋆)

ED[r(a
⋆)− r(â)]. (3.11)

Here an estimator â is simply a measureable function of the data {(ai, ri)}Ni=1 collected under
the MAB instance µ and R.

It turns out that LCB is optimal up to a logarithmic factor when C⋆ ≥ 2, as shown in
the following theorem.

Theorem 3.2 (Information-theoretic limit, MAB). For C⋆ ≥ 2, one has

inf
â

sup
(µ,R)∈MAB(C⋆)

ED[r(a
⋆)− r(â)] ≳ min

(
1,

√
C⋆

N

)
. (3.12)

For C⋆ ∈ (1, 2), one has

inf
â

sup
(µ,R)∈MAB(C⋆)

ED[r(a
⋆)− r(â)] ≳ exp

(
−(2− C⋆) · log

(
2

C⋆ − 1

)
·N
)
.

See Section 3.7.3 for the proof.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 78

3.2.4 Imitation learning in bandit: The most played arm achieves
a better rate

From the above analysis, we know that when C⋆ ≥ 2, the best possible expected sub-
optimality is

√
C⋆/N , which is achieved by LCB. On the other hand, if we know that

1/µ(a⋆) ≤ C⋆ where C⋆ ∈ [1, 2), we can use imitation learning to further improve the rate.
The algorithm for bandit is straightforward: pick the arm most frequently selected in dataset,
i.e., â = argmaxaN(a). The performance guarantee of the most played arm is stated in the
following proposition.

Proposition 3.2 (Sub-optimality of the most played arm). Assume that 1
µ(a⋆)

≤ C⋆ for
some C⋆ ∈ [1, 2). For â = argmaxaN(a), we have

ED[r(a
⋆)− r(â)] ≤ exp

(
−N · KL

(
Bern

(
1

2

) ∥∥∥ Bern

(
1

C⋆

)))
. (3.13)

The proof is deferred to Section 3.7.4.

When C⋆ ∈ [1, 2), one can see that the rate for the most played arm achieves an expo-
nential dependence on N , whereas the upper bound for LCB is only 1/

√
N . On the other

hand, the most played arm algorithm completely fails when C⋆ > 2, while LCB still keeps
the rate 1/

√
N .

In terms of the dependence on C⋆, the KL divergence above evaluates to log(C⋆/2) +
log(1/(C⋆ − 1))/2 when the expert policy is optimal. One can see that as C⋆ → 1, the rate
increases to the order of 1/(C⋆ − 1)N , which matches the lower bound in Theorem 3.2 in
terms of the dependence on C⋆ − 1.

3.2.5 Non-adaptivity of LCB

One may ask whether LCB can achieve optimal rate under both cases of C⋆ ∈ [1, 2) and
C⋆ ≥ 2. Unfortunately, we show in the following theorem that no matter how we set the
parameter δ in Algorithm 2, LCB cannot be optimally adaptive in both regimes.

Theorem 3.3 (Non-adaptivity of LCB, MAB). Let C⋆ = 1.5. There exists a two-armed
bandit instance (µ0, R0) ∈ MAB(C⋆) such that Algorithm 2 with L :=

√
log(2|A|/δ)/2 satis-

fies

ED[r(a
⋆)− r(â)] ≳ min

(√
L

N
,

1√
N

)
· exp(−32L).

On the other hand, when C⋆ = 6, there exists (µ1, R1) ∈ MAB(C⋆) such that

ED[r(a
⋆)− r(â)] ≳ min

(
1,

√
L

N

)
.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 79

The proof is deferred to Section 3.7.5.

The theorem above can be understood in the following way: intuitively, a larger L means
that we put higher weight on the penalty of the arm instead of the empirical average of
the arm. As L→∞, the LCB algorithm recovers the most played arm algorithm; while as
L→ 0, the LCB algorithm recovers the empirical best arm algorithm.

When C⋆ ∈ (1, 2), we know from Theorem 3.2 that the most played arm achieves an
exponential rate in N . In order to match the rate, we need to select δ such that L ≳ Nα

for some α > 0. However, under this choice of L, the algorithm fails to achieve 1/
√
N rate

when C⋆ ≥ 6, which can be done by setting δ = 1/N (and thus L = log(2|A|N)) according
to Theorem 3.1. This shows that it is impossible for LCB to achieve optimal rate under both
cases of C⋆ ∈ (1, 2) and C⋆ ≥ 2 simultaneously.

3.3 LCB in contextual bandits
In this section, we take the analysis one step further by studying offline learning in contextual
bandits (CB). As we will see shortly, simply going beyond one state turns the tables in favor
of the minimax optimality of LCB.

Formally, contextual bandits can be viewed as a special case of MDP described in Section
3.1.1 with γ = 0. In CB setting, the batch dataset D is a set of tuples {(si, ai, ri)}Ni=1 sampled
independently according to (si, ai) ∼ µ, and ri ∼ R(· | si, ai). Competing with an optimal
policy, the data coverage assumption in the CB case simplifies to

max
s

ρ(s)

µ(s, π⋆(s))
≤ C⋆.

The offline learning objective in CB turns into finding a policy π̂ based on the batch
dataset that minimizes the expected sub-optimality

ED[J(π
⋆)− J(π̂)] = ED,ρ [r(s, π

⋆(s))− r(s, π̂(s))] .

3.3.1 Algorithm and its performance guarantee

The pessimism principle introduced in the MAB setting can be naturally extended to CB.
First, the empirical expected reward is computed for all state-action pairs (s, a) ∈ S × A
according to

r̂(s, a) :=

0, if N(s, a) = 0,

1

N(s, a)

N∑

i=1

ri 1{(si, ai) = (s, a)}, otherwise.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 80

Algorithm 3 LCB for contextual bandits
1: Input: Batch dataset D = {(si, ai, ri)}Ni=1, and confidence level δ.
2: Set N(s, a) =

∑N
i=1 1{(si, ai) = (s, a)} for all a ∈ A, s ∈ S.

3: for s ∈ S, a ∈ A do
4: if N(s, a) = 0 then
5: Compute the empirical reward r̂(s, a)←[0.
6: Compute the penalty b(s, a) = 1.
7: else
8: Compute the empirical reward r̂(s, a)←[1

N(s,a)

∑N
i=1 ri 1{(si, ai) = (s, a)}.

9: Compute the penalty b(s, a) =
√

2000 log(2S|A|/δ)
N(s,a)

.

10: Return: π̂(s) ∈ argmaxa r̂(s, a)− b(s, a) for each s ∈ S.

Pessimism is then applied through a penalty function b(s, a) and for every state s the algo-
rithm returns

π̂(s) ∈ argmax
a

r̂(s, a)− b(s, a).

Algorithm 3 generalizes the LCB instance given in Algorithm 2 to the CB setting.
The following theorem establishes an upper bound on the expected sub-optimality of the

policy returned by Algorithm 3; see Section 3.8.1 for a complete proof.

Theorem 3.4 (LCB sub-optimality, CB). Consider a contextual bandit with S ≥ 2 and
assume that

max
s

ρ(s)

µ(s, π⋆(s))
≤ C⋆,

for some C⋆ ≥ 1. Setting δ = 1/N , the policy π̂ returned by Algorithm 3 obeys

ED[J(π
⋆)− J(π̂)] ≲ min

(
1, Õ

(√
S(C⋆ − 1)

N
+
S

N

))
.

It is interesting to note that the sub-optimality bound in Theorem 3.4 consists of two
terms. The first term is the usual statistical estimation rate of 1/

√
N . The second term

is due to missing mass, which captures the suboptimality incurred in states for which an
optimal arm is never observed in the batch dataset. More importantly, the dependency of the
first term on data composition is C⋆−1 instead of C⋆. When C⋆ is close to one, LCB enjoys
a faster rate of 1/N , reminiscent of the rates achieved by behavioral cloning in imitation
learning, without the knowledge of C⋆ or the behavior policy. Furthermore, the convergence
rate smoothly transitions from 1/N to 1/

√
N as C⋆ increases.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 81

3.3.2 Optimality of LCB for solving offline contextual bandits

In this section, we establish an information-theoretic lower bound for the contextual bandit
setup described above. Define the following family of contextual bandits problems

CB(C⋆) := {(ρ, µ,R) | max
s

ρ(s)

µ(s, π⋆(s))
≤ C⋆}.

Note that the optimal policy π⋆ implicitly depends on the reward distribution R.
Let π̂ : S 7→ A be an arbitrary estimator of the best arm π(s) for any state s, which is a

measurable function of the data {(si, ai, ri)}Ni=1. The worst-case risk of π̂ is defined as

sup
(ρ,µ,R)∈CB(C⋆)

ED[J(π
⋆)− J(π̂)].

We have the following minimax lower bound for offline learning in contextual bandits with
S ≥ 2; see Section 3.8.2 for a proof. Note that the case of S = 1 is already addressed in
Theorem 3.2.

Theorem 3.5 (Information-theoretic limit, CB). Assume that S ≥ 2. For any C⋆ ≥ 1, one
has

inf
π̂

sup
(ρ,µ,R)∈CB(C⋆)

ED[J(π
⋆)− J(π̂)] ≳ min

(
1,

√
S(C⋆ − 1)

N
+
S

N

)
.

Comparing Theorem 3.5 with Theorem 3.4, one readily sees that the LCB approach enjoys
a near-optimal rate in contextual bandits with S ≥ 2, regardless of the data composition
parameter C⋆. This is in stark contrast to the MAB case.

On a closer inspection, in the C⋆ ∈ [1, 2) regime, there is a clear separation between the
information-theoretic difficulties of offline learning in MAB, which has an exponential rate in
N , and CB with at least 2 states, which has a 1/N rate. The reason behind this separation
is the possibility of missing mass when S ≥ 2. Informally, when there is only one state, the
probability that an optimal action is never observed in the dataset decays exponentially. On
the other hand, when there are more than one states, the probability that an optimal action
is never observed for at least one state decays with the rate of 1/N .

Assume hypothetically that we are provided with the knowledge that C⋆ ∈ (1, 2). Recall
that with such a knowledge, the most played arm achieves a faster rate in the MAB setting.
Under this circumstance, one might wonder whether simply picking the most played arm in
every state also achieves a fast rate in the CB setting. Strikingly, the answer is negative as
the following proposition shows that the most played arm fails to achieve a vanishing rate
when C⋆ ∈ (1, 2). The proof of this theorem is deferred to Section 3.8.3.

Proposition 3.3 (Failure of the most played arm, CB). For any C⋆ ∈ (1, 2), there
exists a contextual bandit problem (ρ, µ,R) ∈ CB(C⋆) such that for the policy π̂(s) =
argmaxaN(s, a),

lim
N→∞

ED[J(π
⋆)− J(π̂)] ≥ C⋆ − 1.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 82

Figure 3.3: Decomposition of the sub-optimality of the policy π̂ returned by Algorithm 3.

We briefly describe the intuition here. Under concentrability assumption, we can move at
most C⋆ − 1 mass from d⋆ to sub-optimal actions. Thus we can design a specific contextual
bandit instance such that a C⋆ − 1 fraction of the states pick wrong actions by choosing
the most played arm instead. This shows that even when C⋆ ∈ (1, 2), the most played arm
approach for CB does not have a decaying rate in N , whereas in the MAB case it converges
exponentially fast.

3.3.3 Architecture of the proof

We pause to lay out the main steps to prove the upper bound in Theorem 3.4. It is worth
pointing out that following the MAB sub-optimality analysis as detailed in Section 3.7.2 only
yields a crude upper bound of

√
C⋆S/N + S/N on the sub-optimality of π̂. When C⋆ is

close to one, i.e., when we have access to a nearly-expert dataset, such analysis only gives a√
S/N rate. This rate is clearly worse than the rate S/N achieved by the imitation learning

algorithms. Therefore, special considerations are required for analyzing the sub-optimality
of LCB in contextual bandits in order to establish the tight dependence of

√
(C⋆ − 1)S/N +

S/N instead of
√
C⋆S/N .

We achieve this goal by directly analyzing the policy sub-optimality via a gradual de-
composition of the sub-optimality of π̂ as illustrated in Figure 3.3. The decomposition steps
are described below.

First level of decomposition. In the first level of decomposition, we separate the error
based on whether N(s, π⋆(s)) is zero for a certain state s. When N(s, π⋆(s)) = 0, there is
absolutely no basis for the LCB approach to figure out the correct action π⋆(s). Fortunately,
this type of error, incurred by missing mass, can be bounded by

T1 ≲
C⋆S

N
. (3.14)

From now on, we focus on the case in which the expert action π⋆(s) is seen for every state s.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 83

Second level of decomposition. The second level of decomposition hinges on the fol-
lowing clean/good event:

E := {∀s, a : |r(s, a)− r̂(s, a)|≤ b(s, a)}. (3.15)

In words, the event E captures the scenario in which the penalty function provides valid
confidence bounds for every state-action pair. Standard concentration arguments tell us
that E takes place with high probability, i.e., the term T2 in the figure is no larger than δ.
By setting δ small, say 1/N , we are allowed to concentrate on the case when E holds.

Third level of decomposition. The third level of decomposition relies on the observation
that states with small weights (i.e., ρ(s) is small) have negligible effects on the sub-optimality
J(π⋆)− J(π̂). More specifically, the aggregated contribution T3 from the states with ρ(s) ≲
C⋆L
N

is upper bounded by

T3 ≲
C⋆SL

N
. (3.16)

This allows us to focus on the states with large weights. We record an immediate consequence
of large ρ(s) and the data coverage assumption, that is µ(s, π⋆(s)) ≥ ρ(s)/C⋆ ≍ L/N .

Fourth level of decomposition. Now comes the most important part of the error de-
composition, which is not present in the MAB analysis. We decompose the error based on
whether the optimal action has a higher data probability µ(s, π⋆(s)) than the total probabil-
ity of sub-optimal actions µ(s) :=

∑
a̸=π⋆(s) µ(s, a). In particular, when µ(s, π⋆(s)) < 10µ(s),

we can repeat the analysis of MAB and show that

T4 ≲

√
S(C⋆ − 1)L

N
.

Here, the appearance of C⋆−1, as opposed to C⋆ is due to the restriction µ(s, π⋆(s)) < 10µ(s).
One can verify that µ(s, π⋆(s)) < 10µ(s) together with the data coverage assumption ensures
that ∑

s:ρ(s)≥2C⋆L/N,µ(s,π⋆(s))<10µ(s)

ρ(s) ≲ C⋆ − 1.

On the other hand, when µ(s, π⋆(s)) ≥ 10µ(s), i.e., when the optimal action is more likely
to be seen in the dataset, the penalty function b(s, π⋆(s)) associated with the optimal action
would be much smaller than those of the sub-optimal actions. Thanks to the LCB approach,
the optimal action will be chosen with high probability, i.e., T5 ≲ 1/N10.

Putting the pieces together, we arrive at the desired rate O(
√

S(C⋆−1)
N

+ S
N
).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 84

3.4 LCB in Markov decision processes
Now we are ready to instantiate the LCB principle to the full-fledged Markov decision process.
We propose a variant of value iteration with LCB (VI-LCB) in Section 3.4.1 and present
its performance guarantee in Section 3.4.2. Section 3.4.3 is devoted to the information-
theoretic lower bound for offline learning in MDPs, which leaves us with a regime in which it
is currently unclear whether LCB for MDP is optimal or not. However, we conjecture that
VI-LCB is optimal for all ranges of C⋆. We conclude our discussion in Section 3.4.4 with
an explanation about the technical difficulty of closing the gap and a preview to a simple
episodic example where we manage to prove the optimality of LCB with a rather intricate
analysis.

Additional notation. We present the algorithm and results in this section with the help
of some matrix notation for MDPs. For a function f : X 7→ R, we overload the notation
and write f ∈ R|S| to denote a vector with elements f(x), e.g., V,Q, and r. We write
P ∈ RS|A|×S to represent the probability transition matrix whose (s, a)-th row denoted by Ps,a

is a probability vector representing P (· | s, a). We use P π ∈ RS|A|×S|A| to denote a transtion
matrix induced by policy π whose (s, a) × (s′, a′) element is equal to P (s′|s, a)π(a′|s′). We
write ρπ ∈ RS|A| to denote the initial distribution induced by policy π whose (s, a) element
is equal to ρ(s)π(a|s).

3.4.1 Offline value iteration with LCB

Our algorithm design builds upon the classic value iteration algorithm. In essence, value
iteration updates the value function V ∈ RS using

Q(s, a)←[r(s, a) + γPs,a · V, for all (s, a),
V (s)←[max

a
Q(s, a), for all s.

Note, however, with offline data, we do not have access to the expected reward r(s, a)
and the true transition dynamics Ps,a. One can naturally replace them with the empirical
counterparts r̂(s, a) and P̂s,a estimated from offline data D, and arrive at the empirical value
iteration:

Q(s, a)←[r̂(s, a) + γP̂s,a · V, for all (s, a),
V (s)←[max

a
Q(s, a), for all s.

Mimicking the algorithmic design for MABs and CBs, we can subtract a penalty function
b(s, a) from the Q update as the finishing touch, which yields the value iteration algorithm
with LCB:

Q(s, a)←[r̂(s, a)− b(s, a) + γP̂s,a · V, for all (s, a), (3.17)
V (s)←[max

a
Q(s, a), for all s. (3.18)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 85

Algorithm 4 Offline value iteration with LCB (VI-LCB)
1: Inputs: Batch dataset D, discount factor γ, and confidence level δ.
2: Set T := logN

1−γ
.

3: Randomly split D into T + 1 sets Dt = {(si, ai, ri, s′i)}mi=1 for t ∈ {0, 1, . . . , T} with
m := N/(T + 1).

4: Set m0(s, a) :=
∑m

i=1 1{(si, ai) = (s, a)} based on dataset D0.
5: For all a ∈ A and s ∈ S, initialize Q0(s, a) = 0, V0(s) = 0 and set π0(s) =

argmaxam0(s, a).
6: for t = 1, . . . , T do
7: Initialize rt(s, a) = 0 and set P t

s,a to be a random probability vector.
8: Set mt(s, a) :=

∑m
i=1 1{(si, ai) = (s, a)} based on dataset Dt.

9: Compute penalty bt(s, a) for L = 2000 log(2(T + 1)S|A|/δ)

bt(s, a) := Vmax ·
√

L

mt(s, a) ∨ 1
. (3.19)

10: for (s, a) ∈ (S,A) do
11: if mt(s, a) ≥ 1 then
12: Set P t

s,a to be empirical transitions and rt(s, a) be empirical average of rewards.

13: Set Qt(s, a)←[rt(s, a)− bt(s, a) + γP t
s,a · Vt−1.

14: Compute V mid
t ← maxaQt(s, a) and πmid

t (s) ∈ argmaxaQt(s, a).
15: for s ∈ S do
16: if V mid

t (s) ≤ Vt−1(s) then Vt(s)← Vt−1(s) and πt(s)← πt−1(s).
17: else Vt(s)← V mid

t (s) and πt(s)← πmid
t (s).

18: Return π̂ := πT .

Algorithm 4 uses the update rule (3.17) as its key component as well as a few other tricks:

• Data splitting: Instead of using the full offline data D = {(si, ai, ri, s′i)}Ni=1 to form
the empirical estimates r̂(s, a) and P̂s,a, Algorithm 4 deploys data splitting where each
iteration (3.17) uses different samples to perform the update. This procedure is not
needed in practice, however it is helpful in alleviating the dependency issues in the
analysis, resulting in the removal of an extra factor of S in the sample complexity.

• Monotonic update: Unlike traditional value iteration methods, Algorithm 4 involves
a monotonic improvement step, in which the value function V and the policy π are
updated only when the corresponding value function is larger than that in the previous
iteration. This extra step was first proposed in the work Sidford et al. (2018a) for
reinforcement learning with access to a generative model. In a nutshell, the key benefit
of the monotonic update is to shave a 1/(1−γ) factor in the sample complexity; we refer

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 86

the interested reader to the original work Sidford et al. (2018a) for further discussions
on this step.

3.4.2 Performance guarantees of VI-LCB

Now we turn to the performance guarantee for the VI-LCB algorithm (cf. Algorithm 4).

Theorem 3.6 (LCB sub-optimality, MDP). Consider a Markov decision process and assume
that

max
s,a

d⋆(s, a)

µ(s, a)
≤ C⋆.

Then, for all C⋆ ≥ 1, policy π̂ returned by Algorithm 4 with δ = 1/N achieves

ED [J(π⋆)− J(π̂)] ≲ min

(
1

1− γ ,
√

SC⋆

(1− γ)5N

)
. (3.20)

In addition, if 1 ≤ C⋆ ≤ 1 + L log(N)
200(1−γ)N

, we have a tighter performance upper bound

ED [J(π⋆)− J(π̂)] ≲ min

(
1

1− γ ,
S

(1− γ)4N

)
. (3.21)

We will shortly provide a proof sketch of Theorem 3.6; a complete proof is deferred to
Section 3.9.5. The upper bound shows that for all regime of C⋆ ≥ 1, we can guarantee
a rate of Õ(

√
SC⋆/((1− γ)5N)), which is similar to the rate of contextual bandit when

the C⋆ = 1 + Ω(1) by taking γ = 0. When C = 1 + O(log(N)/N), we can show a rate
S/((1 − γ4)N), which also recovers the result in contextual bandit case. However, in the
regime of C⋆ ∈ [1 + Ω(log(N)/N), 1 +O(1)], contextual bandit gives

√
S(C⋆ − 1)/N , while

we fail to give the same dependence on C⋆ in this case. We defer the further discussion on
the sub-optimality of this regime to Section 3.4.4.

Remark 3.1. Relaxation of the concentrability assumption is possible by allowing the ratio to
hold only for a subset C of state-action pairs and characterizing the sub-optimality incurred by
(s, a) ∈ C via a missing mass analysis dependent on a constant ξ such that

∑
(s,a)̸∈C d

⋆(s, a) ≤
ξ.

Proof sketch for Theorem 3.6. For the general case of C⋆ ≥ 1, we first define the clean
event of interest as below.

EMDP :=
{
∀s, a, t :

∣∣r(s, a)− rt(s, a) + γ
(
Ps,a − P t

s,a

)
· Vt−1

∣∣≤ bt(s, a)
}
. (3.22)

In words, on the event EMDP, the penalty function bt(s, a) well captures the statistical fluc-
tuations of the Q-function estimate rt(s, a) + γP t

s,a · Vt−1. The following lemma shows that
this event happens with high probability. The proof is postponed to Section 3.9.2.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 87

Lemma 3.1 (Clean event probability, MDP). One has P(EMDP) ≥ 1− δ.

In the above lemma, concentration of Vt is only needed instead of any value function V
such as required in the work Yu et al. (2020). For the latter to hold, one needs to introduce
another factor of

√
S by taking a union bound. We avoid a union bound by exploiting the

independence of P t
s,a and Vt obtained by randomly splitting the dataset. This is key to

obtaining an optimal dependency on the state size S.
Under the clean event, we can show that the monotonically increasing value function

Vt always lower bounds the value of the corresponding policy πt, along with a recursive
inequality on the sub-optimality of Qt+1 w.r.t. Q⋆ to penalty and sub-optimality of the
previous step.

Proposition 3.4 (Contraction properties of Algorithm 4). Let π be an arbitrary policy. On
the event EMDP , one has for all s ∈ S, a ∈ A, and t ∈ {1, . . . , T}:

Vt−1 ≤ Vt ≤ V πt ≤ V ⋆, Qt ≤ r + γPVt−1, and Qπ −Qt ≤ γP π(Qπ −Qt−1) + 2bt.

By recursively applying the last inequality, we can derive a value difference lemma. The
following lemma relates the sub-optimality to the penalty term bt, of which we have good
control:

Lemma 3.2 (Value difference for Algorithm 4). Let π be an arbitrary policy. On the event
EMDP, one has for all t ∈ {1, . . . , T}

J(π)− J(πt) ≤
γt

1− γ + 2
t∑

i=1

Eνπt−i
[bi(s, a)].

Here, νπk := γkρπ(P π)k for k ≥ 0.

The proof is provided in Section 3.9.4. The value difference bound has two terms: the
first term is due to convergence error of value iteration and the second term is the error
caused by subtracting penalties bi(s, a) in each iteration i from the rewards. By plugging in
bi and choosing t appropriately we can get the desired performance guarantee.

For the case of 1 ≤ C⋆ ≤ 1+ L log(N)
200(1−γ)N

, we adopt a similar decomposition as the contextual
bandit analysis sketched in Section 3.3.3. The only difference is that since C⋆ is small enough,
we know that all the sub-optimal actions have very small mass in the µ. Thus LCB enjoys
a rate of 1/N as the imitation learning case.

3.4.3 Information-theoretic lower bound for offline RL in MDPs

In this section, we focus on the statistical limits of offline learning in MDPs.
Define the following family of MDPs

MDP(C⋆) = {(ρ, µ, P,R) | max
s,a

d⋆(s, a)

µ(s, a)
≤ C⋆}.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 88

Note that here the normalized discounted occupancy measure d⋆ depends implicitly on the
specification of the MDP, i.e., ρ, P , and R.

We have the following minimax lower bound for offline policy learning in MDPs, with
the proof deferred to Section 3.9.6.

Theorem 3.7 (Information-theoretic limit, MDP). For any C⋆ ≥ 1, γ ≥ 0.5, one has

inf
π̂

sup
(ρ,µ,P,R)∈MDP(C⋆)

ED[J(π
⋆)− J(π̂)] ≳ min

(
1

1− γ ,
S

(1− γ)2N +

√
S(C⋆ − 1)

(1− γ)3N

)
.

Several remarks are in order.

Imitation learning and offline learning. It is interesting to note that similar to the
lower bound for contextual bandits, the statistical limit involves two separate terms S

(1−γ)2N

and
√

S(C⋆−1)
(1−γ)3N

. The first term captures the imitation learning regime under which a fast rate
1/N is expected, while the second term deals with the large C⋆ regime with a parametric rate
1/
√
N . More interestingly, the dependence on C⋆ appears to be C⋆ − 1, which is different

from the performance upper bound of VI-LCB in Theorem 3.6. We will comment more on
this in the coming section.

Dependence on the effective horizon 1/(1−γ). Comparing the upper bound in Theo-
rem 3.6 with the lower bound in Theorem 3.7, one sees that the sample complexity of VI-LCB
for all regimes of Cπ is loose by an extra 1/(1−γ)2 factor in sample complexity. The horizon
dependency has been addressed by modifications to the VI-LCB algorithm in follow-up works
by Xie et al. (2021) and Kumar et al. (2022). The first work uses Bernstein-based penalty
and variance reduction similar to the technique used in the work Sidford et al. (2018a).
The second work shows that the vanilla version of VI-LCB without data splitting improves
horizon dependency using an s-absorbing MDP construction similar to the work (Agarwal
et al., 2020c).

3.4.4 What happens when C⋆ ∈ [1 + Ω(1/N), 1 +O(1)]?

Now we return to the discussion on the dependency on C⋆. Ignore the dependency on 1/(1−γ)
for the moment. By comparing Theorems 3.6 and 3.7, one realizes that VI-LCB is optimal
both when C⋆ ≥ 1 + Θ(1) and when C⋆ ≤ 1 + Θ(1/N). However, in the middling regime
when C⋆ ∈ [1 + Ω(1/N), 1 + O(1)], the upper and lower bounds differ in their dependency
on C⋆. More specifically, the upper bound presented in Theorem 3.6 is

√
SC⋆/N , while the

lower bound in Theorem 3.7 is S/N +
√
S(C⋆ − 1)/N .

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 89

Technical hurdle. We conjecture that VI-LCB is optimal even this regime and the current
gap is an artifact of our analysis. However, we would like to point out that, although we
manage to close the gap in contextual bandits, the case with MDPs is significantly more
challenging due to error propagation. Naively applying the decomposition in the contextual
bandit case fails to achieve the C⋆ − 1 dependence in this regime. Take the term T5 in
Figure 3.3 as an example. For contextual bandits, given the selection rule is

π̂(s)←[argmax
a

r̂(s, a)−
√

L

N(s, a)
, (3.23)

it is straightforward to check that as long as the optimal action is taken with much higher
probability than the sub-optimal ones, i.e., µ(s, π⋆(s))≫∑

a̸=π⋆(s) µ(s, a), the LCB approach
will pick the right action regardless of the value gap r(s, π⋆(s))− r(s, a). In contrast, due to
the recursive update Q(s, a)←[rt(s, a)−

√
L

Nt(s,a)
+ γP t

s,a · Vt−1, LCB picks the right action
if

rt(s, π
⋆(s))−

√
L

Nt(s, π⋆(s))
+ γP t

s,π⋆(s) · Vt−1 > rt(s, a)−
√

L

Nt(s, a)
+ γP t

s,a · Vt−1,

for all a ̸= π⋆(s). The presence of the value estimate from the previous step, i.e., Vt−1

(which is absent in CBs) drastically changes the picture: even if we know that µ(s, π⋆(s))≫∑
a̸=π⋆(s) µ(s, a) and hence Nt(s, π

⋆(s)) ≫ Nt(s, a), the current analysis does not guarantee
the above inequality to hold. It is likely that for the value gap Q⋆(s, π⋆(s)) − Q⋆(s, a) to
affect whether the LCB algorithm chooses the optimal action. How to study the interplay
between the value gap and the policy chosen by LCB forms the main obstacle to obtaining
tight performance guarantees when C⋆ ∈ [1 + Ω(1/N), 1 +O(1)].

A confirmation from an episodic MDP. In Section 3.10.6 we present an episodic
example with the intention to demonstrate that (1) a variant of VI-LCB in the episodic case
is able to achieve the optimal dependency on C⋆ and hence closing the gap between the upper
and the lower bounds, and (2) the tight analysis of the sub-optimality is rather intricate and
depends on a delicate decomposition based on the value gap Q⋆(s, π⋆(s))−Q⋆(s, a).

As a preview, we illustrate the episodic MDP with H = 3 in Figure 3.4. It turns out
that when tackling the term similar to T5 in Figure 3.3, a further decomposition based on
the value gap is needed. In a nutshell, we decompose the error into two cases: (1) when
Q⋆(s, 1)−Q⋆(s, 2) is large, and (2) when Q⋆(s, 1)−Q⋆(s, 2) is small. Intuitively, in the latter
case, the contribution to the sub-optimality is well controlled, and in the former one, we
manage to show that VI-LCB selects the right action with high probability. What is more
interesting and suprising is that the right threshold for value gap is given by

√
(C⋆ − 1)/N .

Ultimately, this allows us to achieve the optimal dependency on C⋆.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 90

1

2

3

4

5

6

Figure 3.4: An episodic MDP with H = 3, two states per level, and two actions A = {1, 2}
available from every state. The rewards are assumed to be deterministic and bounded.
Action 1 is assumed to be optimal in all states and that µ(s, 1) ≥ 9µ(s, 2).

3.5 Related work
In this section we review additional related works. In Section 3.5.1, we discuss various
assumptions on the batch dataset that have been proposed in the literature. In Section 3.5.2,
we review conservative methods in offline RL. We conclude this section by comparing existing
lower bounds with the ones presented in this paper.

3.5.1 Assumptions on batch dataset

One of the main challenges in offline RL is the insufficient coverage of the dataset caused
by lack of online exploration (Wang et al., 2020a; Zanette, 2020; Szepesvári, 2010) and
in particular the distribution shift in which the occupancy density of the behavior policy
and the one induced by the learned policy are different. This effect can be characterized
using concentrability coefficients (Munos, 2007) which impose bounds on the density ratio
(importance weights).

Most concentrability requirements imposed in existing offline RL involve taking a supre-
mum of the density ratio over all state-action pairs and all policies, i.e., maxπ C

π (Scherrer,
2014; Chen and Jiang, 2019; Jiang, 2019; Wang et al., 2019a; Liao et al., 2020; Liu et al.,
2019; Zhang et al., 2020a) and some definitions are more complex and stronger assuming
a bounded ratio per time step (Szepesvári and Munos, 2005; Munos, 2007; Antos et al.,
2008; Farahmand et al., 2010; Antos et al., 2007). A more stringent definition originally
proposed by Munos (2003) also imposes exploratoriness on state marginals. This definition
is recently used by Xie and Jiang (2020) to develop an efficient offline RL algorithm with
general function approximation and only realizability. The MABO algorithm proposed by
Xie and Jiang (2020) and the related algorithms by Feng et al. (2019) and Uehara et al.
(2020) use a milder definition based on a weighted norm of density ratios as opposed to the
infinity norm. In contrast, to compete with an optimal policy, we only require coverage over
states and actions visited by that policy, which is referred to as the “best” concentrability
coefficient (Scherrer, 2014; Geist et al., 2017; Agarwal et al., 2020d; Xie and Jiang, 2020).

Another related assumption is the uniformly lower bounded data distribution. For ex-
ample, some works consider access to a generative model with an equal number of samples
on all state-action pairs (Sidford et al., 2018a,b; Agarwal et al., 2020c; Li et al., 2020). As

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 91

discussed before, this assumption is significantly stronger than assuming C⋆ is bounded.
Furthermore, one can modify the analysis of the LCB algorithm to show optimal data com-
position dependency in this case as well.

3.5.2 Conservatism in offline RL

In practice, such high coverage assumptions on batch dataset also known as data diversity
(Levine et al., 2020) often fail to hold (Gulcehre et al., 2020; Agarwal et al., 2020e; Fu et al.,
2020). Several methods have recently emerged to address such strong data requirements.
The first category involves policy regularizers or constraints to ensure closeness between the
learned policy and the behavior policy (Fujimoto et al., 2019b; Wu et al., 2019; Jaques et al.,
2019; Peng et al., 2019; Siegel et al., 2020; Wang et al., 2020c; Kumar et al., 2019; Fujimoto
et al., 2019a; Ghasemipour et al., 2020; Nachum et al., 2019b; Zhang et al., 2020b; Nachum
et al., 2019a; Zhang et al., 2020c). These methods are most suited when the batch dataset
is nearly-expert (Wu et al., 2019; Fu et al., 2020) and sometimes require the knowledge of
the behavior policy.

Another category includes the value-based methods. Kumar et al. (2020) propose con-
servative Q-learning through value regularization and demonstrate empirical success. Liu
et al. (2020) propose a variant of fitted Q-iteration with a conservative update called MSB-
QI. This algorithm effectively requires the data distribution to be uniformly lower bounded
on the state-action pairs visited by any competing policy. Moreover, the sub-optimality of
MSB-QI has a 1/(1− γ)4 horizon dependency compared to ours which is 1/(1− γ)2.5.

The last category involves learning pessimistic models such as Kidambi et al. (2020),
Yu et al. (2020) and Yu et al. (2021) all of which demonstrate empirical success. From a
theoretical perspective, the recent work Jin et al. (2020c) studies pessimism in offline RL in
episodic MDPs and function approximation setting. The authors present upper and lower
bounds for linear MDPs with a suboptimality gap of dH, where d is the feature dimension
and H is the horizon. Specialized to the tabular case, this gap is equal to SAH, compared
to ours which is only H. Furthermore, this work does not study the adaptivity of pessimism
to data composition.

Another recent work by Yin et al. (2021) studies pessimism in tabular MDP setting and
proves matching upper and lower bounds. However, their approach requires a uniform lower
bound on the data distribution that traces an optimal policy. This assumption is stronger
than ours; for example, it requires optimal actions to be included in the states not visited
by an optimal policy. Furthermore, this characterization of data coverage does not recover
the imitation learning setting: if the behavior policy is exactly equal to the optimal policy,
data distribution lower bound can still be small.

3.5.3 Information-theoretic lower bounds

There exists a large body of literature providing information-theoretic lower bounds for RL
under different settings; see e.g., Dann and Brunskill (2015); Krishnamurthy et al. (2016);

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 92

Jiang et al. (2017); Jin et al. (2018); Azar et al. (2013); Ma et al. (2021); Lattimore and
Hutter (2012); Domingues et al. (2020); Duan et al. (2020); Zanette (2020); Wang et al.
(2020a). In the generative model setting with uniform samples, Azar et al. (2013) proves
a lower bound on value sub-optimality which is later extended to policy sub-optimality by
Sidford et al. (2018a). For the offline RL setting, Kidambi et al. (2020) prove a lower bound
only considering the data and policy occupancy support mismatch without dependency on
sample size. Jin et al. (2020c) gives a lower bound for linear MDP setting but which does
not give a tight dependency on parameters when specialized to the tabular setting. In Yin
et al. (2020, 2021), a hard MDP is constructed with a dependency on the data distribution
lower bound. In contrast, our lower bounds depend on C⋆, which has not been studied in the
past, and holds for the entire data spectrum. In the imitation learning setting, (Xu et al.,
2020) considers discounted MDP setting and shows a lower bound on the performance of the
behavior cloning algorithm. We instead present an information-theoretic lower bound for
any algorithm for C⋆ = 1 which is based on adapting the construction of Rajaraman et al.
(2020) to the discounted case.

3.6 Discussion
In this paper, we propose a new batch RL framework based on the single policy concentra-
bility coefficient (e.g., C⋆) that smoothly interpolates the two extremes of data composition
encountered in practice, namely the expert data and uniform coverage data. Under this new
framework, we pursue the statistically optimal algorithms that can even be implemented
without the knowledge of the exact data composition. More specifically, focusing on the
lower confidence bound (LCB) approach inspired by the principle of pessimism, we find that
LCB is adaptively minimax optimal for addressing the offline contextual bandit problems
and the optimal rate naturally bridges the 1/N rate when data is close to following the
expert policy and the 1/

√
N rate in the typical offline RL case. Here N denotes the number

of samples in the batch dataset. We also investigate the LCB approach in the offline multi-
armed bandit problems and Markov decision processes. The message is somewhat mixed.
For bandits, LCB is shown to be optimal for a wide range of data compositions, however,
LCB without the knowledge of data composition, is provably non-adaptive in the near-expert
data regime. When it comes to MDPs, we show that LCB is adaptively rate-optimal when
C⋆ is extremely close to 1, and when C⋆ ≥ 1+ constant. Contrary to bandits, we conjecture
that LCB is optimal across the spectrum of data composition, which is left for future work.

3.7 Proofs for multi-armed bandits
In Section 3.7.1, we prove Proposition 3.1 that demonstrates the failure of the best empirical
arm when solving offline MABs. Section 3.7.2 is devoted to the proof of Theorem 3.1,
which supplies the performance upper bound of the LCB approach. This upper bound is

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 93

accompanied by a minimax lower bound given in Section 3.7.3. In the end, we provably show
the lack of adaptivity of the LCB approach in Section 3.7.4.

3.7.1 Proof of Proposition 3.1

We start by introducing the bandit instance under consideration. Set |A|= 2, a⋆ = 1,
µ(1) = (N − 1)/N , and µ(2) = 1/N . As for the reward distributions, for the optimal arm
a⋆ = 1, we let R(1) = 2ϵ almost surely. In contrast, for arm 2 we set

R(2) =

{
2.1ϵ, w.p. 0.5,

0, w.p. 0.5.

It is easy to check that indeed a⋆ = 1 is the optimal arm to choose. Our goal is to show that
for this particular bandit problem, given N offline data from µ and R, the empirical best
arm â will perform poorly with high probability.

To see this, consider the following event

E1 := {N(2) = 1}.

We have

P(E1) = N · µ(1)N−1 · µ(2) = (1− 1/N)N−1 .

As long as N is sufficiently large (say N ≥ 500), we have P(E1) ≥ 0.36 for any 0 ≤ n ≤ N ,
and thus P(E1) ≥ 0.36.

Now we are in position to develop a performance lower bound for the empirical best arm
â. By construction, we have r(1)− r(2) = 0.95ϵ. Therefore the sub-optimality is given by

ED[r(a
⋆)− r(â)] = 0.95ϵ · P(â ̸= a⋆)

≥ 0.95ϵ · P(E1 ∩ r̂(2) = 2.1ϵ)

≥ 0.95ϵ · 0.18 > 0.1ϵ.

Rescaling the value of ϵ finishes the proof.

3.7.2 Proof of Theorem 3.1

Before embarking on the main proof, we record two useful lemmas. The first lemma sand-
wiches the true mean reward by the empirical one and the penalty function, which directly
follows from Hoeffding’s inequality and a union bound. For completeness, we provide the
proof at the end of this subsection.

Lemma 3.3. With probability at least 1− δ, we have

r̂(a)− b(a) ≤ r(a) ≤ r̂(a) + b(a), for all 1 ≤ a ≤ |A|. (3.24)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 94

The second one is a simple consequence of the Chernoff bound for binomial random
variables.

Lemma 3.4. With probability at least 1− exp(−Nµ(a⋆)/8), one has

N(a⋆) ≥ 1

2
Nµ(a⋆). (3.25)

Denote by E the event that both relations (3.24) and (3.25) hold. Conditioned on E , one
has

r(a⋆) ≤ r̂(a⋆) + b(a⋆) = r̂(a⋆)− b(a⋆) + 2b(a⋆).

In view of the definition of â, we have r̂(a⋆)− b(a⋆) ≤ r̂(â)− b(â), and hence

r(a⋆) ≤ r̂(â)− b(â) + 2b(a⋆) ≤ r(â) + 2b(a⋆),

where the last inequality holds under the event E (in particular the bound (3.24) on â). Now
we are left with the term b(a⋆). It suffices to lower bound N(a⋆). Note that the event E
(cf. the lower bound (3.25)) ensures that

N(a⋆) ≥ 1

2
Nµ(a⋆) ≥ N

2C⋆
> 0.

As a result, we conclude

b(a⋆) =

√
log(2|A|/δ)
2N(a⋆)

≤
√

log(2|A|/δ)
Nµ(a⋆)

,

which further implies

r(a⋆) ≤ r(â) + 2

√
log(2|A|/δ)
Nµ(a⋆)

(3.26)

whenever the event E holds. It is easy to check that under the assumption N ≥ 8C⋆ log(1/δ),
we have P(E) ≥ 1− 2δ. This finishes the proof of the high probability claim.

In the end, we can compute the expected sub-optimality as

ED[r(a
⋆)− r(â)] = ED[(r(a

⋆)− r(â)) 1{E}] + ED[(r(a
⋆)− r(â)) 1{Ec}]

≤ 2

√
log(2|A|/δ)
Nµ(a⋆)

P(E) + P(Ec).

Here the inequality uses the bound (3.26) and the fact that r(a⋆) − r(â) ≤ 1. We continue
bounding the sub-optimality by

ED[r(a
⋆)− r(â)] ≤ 2

√
log(2|A|/δ)
Nµ(a⋆)

+ 2δ ≤ 2

√
C⋆ log(2|A|/δ)

N
+ 2δ.

Here the last relation uses µ(a⋆) ≥ 1/C⋆. Taking δ = 1/N completes the proof.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 95

Proof of Lemma 3.3. Consider a fixed action a. If N(a) = 0, one trivially has r̂(a)− b(a) =
−1 ≤ r(a) ≤ r̂(a)+ b(a) = 1. When N(a) > 0, applying Hoeffding’s inequality, one sees that

P

(
|r̂(a)− r(a)| ≥

√
log(2|A|/δ)

2N(a)
| N(a)

)
≤ δ

|A| .

Since this claim holds for all possible N(a), we have for any fixed action a

P (|r̂(a)− r(a)| ≥ b(a)) ≤ δ

|A| .

A further union bound over the action space yields the advertised claim.

3.7.3 Proof of Theorem 3.2

We separate the proof into two cases: C⋆ ≥ 2 and C⋆ ∈ (1, 2). For both cases, our lower
bound proof relies on the classic Le Cam’s two-point method (Yu, 1997; Le Cam, 2012).
In essence, we construct two MAB instances in the family MAB(C⋆) with different optimal
rewards that are difficult to distinguish given the offline dataset.

The case of C⋆ ≥ 2. We consider a simple two-armed bandit. For the behavior policy,
we set µ(2) = 1/C⋆ and µ(1) = 1− 1/C⋆. Since we are constructing lower bound instances,
it suffices to consider Bernoulli distributions supported on {0, 1}. In particular, we consider
the following two possible sets for the Bernoulli means

f1 = (
1

2
,
1

2
− δ); f2 = (

1

2
,
1

2
+ δ),

with δ ∈ [0, 1/4]. Indeed, (µ, f1), (µ, f2) ∈ MAB(C⋆) with the proviso that C⋆ ≥ 2. Denote
the loss/sub-optimality of an estimator â to be

L(â; f) := r(a⋆)− r(â), (3.27)

where the optimal action a⋆ implicitly depends on the reward distribution f . Clearly, for
any estimator â, we have

L(â; f1) + L(â; f2) ≥ δ.

Therefore Le Cam’s method tells us that

inf
â

sup
(µ,R)∈MAB(C⋆)

ED[r(a
⋆)− r(â)] ≥ inf

â
sup

f∈f1,f2
ED[L(â; f)] ≥

δ

4
· exp(−KL(Pµ⊗f1∥Pµ⊗f2)).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 96

Here KL(Pµ⊗f1∥Pµ⊗f2) denotes the KL divergence between the two MAB instances with N
samples. Direct calculations yield

KL(Pµ⊗f1∥Pµ⊗f2) ≤
NKL(Pf1∥Pf2)

C⋆
≤ N(2δ)2

C⋆(1/4− δ2) ≤ 200Nδ2/C⋆.

Here we use the fact that for two Bernoulli distribution, KL(Bern(p)∥Bern(q)) ≤ (p −
q)2/[q(1− q)] and that δ ∈ [0, 1/4]. Taking

δ = min

{
1

4
,

√
C⋆

N

}

yields the desired lower bound for C⋆ ≥ 2.

The case of C⋆ ∈ (1, 2). Recall that when C⋆ ≥ 2, we construct the same behavior
distribution µ for two different reward distributions f1, f2. In contrast, in the case of C⋆ ∈
[1, 2), we construct instances that are different in both the reward distributions as well as the
behavior distribution. More specifically, let µ1(1) = 1/C⋆, µ1(2) = 1− 1/C⋆, f1 = (1

2
+ δ, 1

2
)

for some δ > 0 which will be specified later. Similarly, we let µ2(1) = 1−1/C⋆, µ2(2) = 1/C⋆,
f2 = (1

2
, 1
2
+ δ). It is straightforward to check that (µ1, f1), (µ2, f2) ∈ MAB(C⋆). Clearly, for

any estimator â, we have

L(â; f1) + L(â; f2) ≥ δ.

Again, applying Le Cam’s method, we have

inf
â

sup
(µ,R)∈MAB(C⋆)

ED[r(a
⋆)− r(â)] ≥ δ

4
· exp(−KL(Pµ1⊗f1∥Pµ2⊗f2)). (3.28)

Note that

KL(Pµ1⊗f1∥Pµ2⊗f2) ≤ N ·
(1

2
+ δ

C⋆
log(

1 + 2δ

C⋆ − 1
) +

1
2
− δ
C⋆

log(
1− 2δ

C⋆ − 1
)

+
1− 1

C⋆

2
log(

C⋆ − 1

1 + 2δ
) +

1− 1
C⋆

2
log(

C⋆ − 1

1− 2δ
)
)

= N ·
((

1 + δ

C⋆
− 1

2

)
log

(
1 + 2δ

C⋆ − 1

)
+

(
1− δ
C⋆
− 1

2

)
log

(
1− 2δ

C⋆ − 1

))
.

Taking δ = 2−C⋆

2
, we get KL(Pµ1⊗f1∥Pµ2⊗f2) ≤ N · 2−C⋆

C⋆ · log
(

2
C⋆−1

)
. Thus we know that

inf
â

sup
(µ,R)∈MAB(C⋆)

ED[r(a
⋆)− r(â)] ≳ exp

(
−(2− C⋆) · log

(
2

C⋆ − 1

)
·N
)
. (3.29)

This finishes the proof of the lower bound for C⋆ ∈ (1, 2).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 97

3.7.4 Proof of Proposition 3.2

To begin with, we have E[r(a⋆) − r(â)] ≤ P(â ̸= a⋆), where we have used the fact that the
rewards are bounded between 0 and 1. Thus it is sufficient to control P(â ̸= a⋆), which obeys

P(â ̸= a⋆) = P(∃a ̸= a⋆, N(a) ≥ N(a⋆)) ≤ P(N −N(a⋆) ≥ N(a⋆)) = P(N(a⋆) ≤ N

2
).

Applying the Chernoff bound for binomial random variables yields

P(N(a⋆) ≤ N

2
) ≤ exp

(
−N · KL

(
Bern

(
1

2

) ∥∥∥ Bern

(
1

C⋆

)))
.

Taking the previous steps collectively to arrive at the desired conclusion.

3.7.5 Proof of Theorem 3.3

We prove the case when C⋆ = 1.5 and when C⋆ = 6 separately.

The case when C⋆ = 1.5. We begin by introducing the MAB problem.

The bandit instance. Consider a two-armed bandit problem with the optimal arm
denoted by a⋆ and the sub-optimal arm a. We set µ(a⋆) = 1/C⋆, and µ(a) = 1 − 1/C⋆ in
accordance with the requirement 1/µ(a⋆) ≤ C⋆. We consider the following reward distribu-
tions: the optimal arm a⋆ has a deterministic reward equal to 1/2 whereas the sub-optimal
arm has a reward distribution of Bern(1/2− g) for some g ∈ (0, 1/3), which will be specified
momentarily. It is straightforward to check that the arm a⋆ is indeed optimal and the MAB
problem (µ,R) belongs to MAB(C⋆).

Lower bounding the performance of LCB. For the two-armed bandit problem
introduced above, we have

ED[r(a
⋆)− r(â)] = g · P(LCB chooses arm a)

= g
N∑

k=0

P(LCB chooses arm a | N(a) = k)P(N(a) = k)

≥ g

2Nµ(a)∑

k=Nµ(a)/2

P(LCB chooses arm a | N(a) = k)P(N(a) = k), (3.30)

where we restrict ourselves to the event

E := {1
2
Nµ(a) ≤ N(a) ≤ 2Nµ(a)}.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 98

It turns out that when 1 ≤ k ≤ 2Nµ(a), one has

P(LCB chooses arm a | N(a) = k) ≥ 1√
4Nµ(a)

· exp
(
−(g

√
2Nµ(a) +

√
L)2

1
4
− g2

)
. (3.31)

Combine inequalities (3.30) and (3.31) to obtain

ED[r(a
⋆)− r(â)] ≥ g

1√
4Nµ(a)

· exp
(
−(g

√
2Nµ(a) +

√
L)2

1
4
− g2

)
P(E).

Setting g = min{1/3,
√
L/(2Nµ(a))} yields

ED[r(a
⋆)− r(â)] ≥

min
(√

L/(2Nµ(a)), 1
3

)

√
4Nµ(a)

· exp (−32L)P(E)

≥ min

(√
L

8Nµ(a)
,

1

12
√
Nµ(a)

)
· exp (−32L) ,

where the last inequality uses Chernoff’s bound, i.e., P(E) ≥ 1 − 2 exp(−Nµ(a)/8) ≥ 1
2
.

Substituting the definition of L and µ(a) completes the proof.

Proof of the lower bound (3.31). By the definition of LCB, we have

P(LCB chooses arm a | N(a) = k) = P
(
1/2−

√
L/N(a⋆) ≤ r̂(a)−

√
L/N(a) | N(a) = k

)

≥ P
(
r̂(a) ≥ 1/2 +

√
L/N(a) | N(a) = k

)

≥ 1√
2k
· exp

(
−k · KL

(
1

2
−
√
L

k

∥∥∥1
2
+ g

))

≥ 1√
2k
· exp

−

k(g +
√

L
k
)2

1
4
− g2

 .

Here, the penultimate inequality comes from a lower bound for Binomial tails (Robert,
1990) and the last inequality uses the elementary fact that KL(p∥q) ≤ (p − q)2/q(1 − q).
One can easily see that the probability lower bound is decreasing in k and hence when
N(a) = k ≤ 2Nµ(a), we have

P(LCB chooses the arm a | N(a) = k) ≥ 1√
4Nµ(a)

· exp
(
−(g

√
2Nµ(a) +

√
L)2

1
4
− g2

)
.

This completes the proof.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 99

The case when C⋆ = 6. We now prove the lower bound for the case of C⋆ = 6.

The bandit instance. Consider a two-armed bandit problem with µ(a⋆) = 1
C⋆ for the

optimal arm and µ(a) = 1− 1
C⋆ for the sub-optimal arm, which satisfies the concentrability

requirement. We set the following reward distributions: the optimal arm a⋆ is distributed
according to Bern(1/2) and the sub-optimal arm has a deterministic reward equal to 1/2− g
for some g ∈ (0, 1/2), which will be specified momentarily. It is immediate that a⋆ is optimal
in this construction and that the MAB problem (µ,R) belongs to MAB(C⋆).

Lower bounding the performance of LCB. Similar arguments as before give

ED[r(a
⋆)− r(â)] ≥ g

2Nµ(a⋆)∑

k=Nµ(a⋆)/2

P(LCB chooses arm a | N(a⋆) = k)P(N(a⋆) = k), (3.32)

where we restrict ourselves to the event (with abuse of notation)

E := {1
2
Nµ(a⋆) ≤ N(a⋆) ≤ 2Nµ(a⋆)}.

By the definition of LCB, when C⋆ = 6 and 1
2
Nµ(a⋆) ≤ k ≤ 2Nµ(a⋆) ≤ 1

3
N , one has

P(LCB chooses arm a | N(a⋆) = k) = P

(
r̂(a⋆)−

√
L/N(a⋆) ≤ 1

2
− g −

√
L/N(a) | N(a⋆) = k

)

= P
(
r̂(a⋆) ≤ 1/2− g +

√
L/k −

√
L/(N − k) | N(a⋆) = k

)

≥ P
(
r̂(a⋆) ≤ 1/2− g +

√
3L/N −

√
3L/(2N) | N(a⋆) = k

)

> P

(
r̂(a⋆) ≤ 1/2− g +

√
L

4N
| N(a⋆) = k

)
.

We set g = min{
√
L/(4N), 1/2}. Under this choice of g, we always have

P(LCB chooses arm a | N(a⋆) = k) ≥ 1

2
. (3.33)

Combine the inequalities (3.32) and (3.33) to obtain

ED[r(a
⋆)− r(â)] ≥ g · 1

2
· P(E) ≥ min(1,

√
L/N)

8
.

3.8 Proofs for contextual bandits
In Section 3.8.1, we prove the sub-optimality guarantee of the LCB approach for contextual
bandits stated in Theorem 3.4. In Section 3.8.2 we prove Theorem 3.5—a minimax lower
bound for contextual bandits. In the end, we prove the failure of the most played arm
approach in Section 3.8.3.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 100

3.8.1 Proof of Theorem 3.4

We prove a stronger version of Theorem 3.4: Fix a deterministic expert policy π that is not
necessarily optimal. We assume that

max
s

ρ(s)

µ(s, π(s))
≤ Cπ.

Setting δ = 1/N , the policy π̂ returned by Algorithm 3 obeys

ED[J(π)− J(π̂)] ≲ min

(
1, Õ

(√
S(Cπ − 1)

N
+
S

N

))
.

The statement in Theorem 3.4 can be recovered when we take π = π⋆.
We begin with defining a good event

E := {∀s, a : |r(s, a)− r̂(s, a)|≤ b(s, a)}, (3.34)

on which the penalty function b(s, a) provides a valid upper bound on the reward estimation
error r(s, a) − r̂(s, a). With this definition in place, we state a key decomposition of the
sub-optimality of the LCB method:

ED

[∑

s

ρ(s) [r(s, π(s))− r(s, π̂(s))]
]

= ED

[∑

s

ρ(s) [r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) = 0}
]
=: T1

+ ED

[∑

s

ρ(s) [r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) ≥ 1}1{E}
]
:= T2

+ ED

[∑

s

ρ(s) [r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) ≥ 1}1{Ec}
]
:= T3.

In words, the term T1 corresponds to the error induced by missing mass, i.e., when the
expert action π(s) is not seen in the data D. The second term T2 denotes the error when
the good event E takes place. The last term T3 denotes the sub-optimality incurred under
the complement event Ec.

To avoid cluttered notation, we denote L := 2000
√

2 log(S|A|N) such that b(s, a) =√
L/N(s, a) when N(s, a) ≥ 1. These three error terms obey the following upper bounds,

whose proofs are provided in subsequent subsections:

T1 ≤
4SCπ

9N
; (3.35a)

T2 ≲
SCπ

N
L+

√
S(Cπ − 1)

N
L+

1

N9
; (3.35b)

T3 ≤
1

N
. (3.35c)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 101

Combining the above three bounds together with the fact that ED[J(π) − J(π̂)] ≤ 1 yields
that

ED[J(π)− J(π̂)] ≲ min

(
1, Õ

(√
S(Cπ − 1)

N
+
SCπ

N

))
.

Note that if Cπ ≥ 2, the first term
√

S(Cπ−1)
N

always dominates. Conversely, if Cπ < 2, we
can omit the extra Cπ in the second term SCπ

N
. This gives the desired claim in Theorem 3.4.

Proof of the bound (3.35a) on T1

Since r(s, π(s))− r(s, π̂(s)) ≤ 1 for any π̂(s), one has

T1 ≤ ED

[∑

s

ρ(s)1{N(s, π(s)) = 0}
]
=
∑

s

ρ(s)P(N(s, π(s)) = 0)

=
∑

s

ρ(s)(1− µ(s, π(s)))N .

Recall the assumption that maxs
ρ(s)

µ(s,π(s))
≤ Cπ. We can continue the upper bound of T1 to

obtain
T1 ≤

∑

s

Cπµ(s, π(s))(1− µ(s, π(s)))N ≤
∑

s

Cπ 4

9N
=

4

9N
SCπ.

Here, the last inequality holds since maxx∈[0,1] x(1− x)N ≤ 4/(9N).

Proof of the bound (3.35b) on T2

For any state s ∈ S, define the total mass on sub-optimal actions to be

µ̄(s) :=
∑

a:a̸=π(s)

µ(s, a).

We can then partition the state space into the following three disjoint sets:

S1 :=
{
s | ρ(s) < 2CπL

N

}
, (3.36a)

S2 :=
{
s | ρ(s) ≥ 2CπL

N
, µ(s, π(s)) ≥ 10µ̄(s)

}
, (3.36b)

S3 :=
{
s | ρ(s) ≥ 2CπL

N
, µ(s, π(s)) < 10µ̄(s)

}
. (3.36c)

The set S1 includes the states that are “less important” in evaluating the performance of LCB.
The set S2 captures the states for which the expert action π(s) is drawn more frequently
under the behavior distribution µ.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 102

With this partition at hand, we can decompose the term T2 accordingly:

T2 =
∑

s∈S1

ρ(s)ED [[r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) ≥ 1}1{E}] =: T2,1

+
∑

s∈S2

ρ(s)ED [[r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) ≥ 1}1{E}] =: T2,2

+
∑

s∈S3

ρ(s)ED [[r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) ≥ 1}1{E}] =: T2,3.

The proof is completed by observing the following three upper bounds:

T2,1 ≤
2SCπL

N
; T2,2 ≲

1

N9
; T2,3 ≲

√
CπSL

N
min{1, 10(Cπ − 1)} ≲

√
(Cπ − 1)SL

N
.

Proof of the bound on T2,1. We again use the basic fact that

[r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) ≥ 1}1{E} ≤ 1

to reach
T2,1 ≤

∑

s∈S1

ρ(s) ≤ 2SCπL

N
,

where the last inequality hinges on the definition (3.36a) of S1, namely for any s ∈ S1, one
has ρ(s) < 2CπL

N
.

Proof of the bound on T2,2. Fix a state s ∈ S2, we define the following two sets of
actions:

A1(s) := {a | r(s, a) < r(s, π(s)), µ(s, a) ≤ L/(200N)},
A2(s) := {a | r(s, a) < r(s, π(s)), µ(s, a) > L/(200N)}.

Further define A(s, a) to be the event that r̂(s, π(s))− b(s, π(s)) < r̂(s, a)− b(s, a). Clearly
one has r(s, π(s)) − r(s, π̂(s)) ≤ 1{∪a∈A1(s)∪A2(s)A(s, a)}. Consequently, we can write the
following decomposition:

ED [[r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) ≥ 1}1{E}]
≤ P(∃a, r(s, a) < r(s, π(s)), A(s, a), N(s, π(s)) ≥ 1)

≤ P(∃a ∈ A1(s), A(s, a), N(s, π(s)) ≥ 1) =: p1(s)

+ P(∃a ∈ A2(s), A(s, a), N(s, π(s)) ≥ 1) =: p2(s).

As a result, T2,2 obeys

T2,2 ≤
∑

s∈S2

ρ(s)p1(s) +
∑

s∈S2

ρ(s)p2(s), (3.37)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 103

which satisfy the bounds

∑

s∈S2

ρ(s)p1(s) ≲
1

N10
, and

∑

s∈S2

ρ(s)p2(s) ≲
1

N9
.

Taking these two bounds collectively leads us to the desired conclusion. In what follows, we
focus on the proving the aforementioned two bounds.

Proof of the bound on
∑

s∈S2
ρ(s)p1(s). Fix a state s ∈ S2. In view of the data

coverage assumption, one has

µ(s, π(s)) ≥ ρ(s)

Cπ
≥ 2L

N
. (3.38)

In contrast, for any a ∈ A1(s), we have

µ(s, a) ≤ L

200N
. (3.39)

Therefore one has µ(s, π(s))≫ µ(s, a) for any non-expert action a. As a result, the optimal
action is selected more frequently than the sub-optimal ones. It turns out that under such
circumstances, the LCB algorithm picks the right action with high probability. We make
this intuition precise below.

The bounds (3.38) and (3.39) together with Chernoff’s bound give

P

(
N(s, a) ≤ 5L

200

)
≥ 1− exp

(
− L

200

)
;

P (N(s, π(s)) > L) ≥ 1− exp

(
−L
4

)
.

These allow us to obtain an upper bound for the function r̂ − b evaluated at sub-optimal
actions and a lower bound on r̂(s, π(s))− b(s, π(s)). More precisely, if N(s, a) = 0, we know
that r̂(s, a) = −1; when 1 ≤ N(s, a) ≤ 5L

200
, we have

r̂(s, a)− b(s, a) ≤ 1−
√

L

5L/200
≤ −5.

Now we turn to lower bounding the function r̂ − b evaluated at the optimal action. When
N(s, π(s)) > L, one has

r̂(s, π(s))− b(s, π(s)) > −
√

L

N(s, π(s))
= −1.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 104

To conclude, if both N(s, a) ≤ 5L
200

and N(s, π(s)) ≥ L hold, we must have r̂(s, a) −
b(s, a) < r̂(s, π(s))− b(s, π(s)). Therefore we can deduce that

∑

s∈S2

ρ(s)p1(s) =
∑

s∈S2

ρ(s)P(∃a ∈ A1(s), A(s, a), N(s, π(s)) ≥ 1)

≤ (|A|−1) exp
(
− L

200

)
+ exp

(
−1

4
L

)

≤ |A|exp
(
− L

200

)

≲
1

N10
.

The last inequality comes from the choice of L = 2000 log(2S|A|N).

Proof of the bound on
∑

s∈S2
ρ(s)p2(s). Before embarking on the proof of∑

s∈S2
ρ(s)p2(s) ≲≲ 1

N9 , it is helpful to pause and gather a few useful properties of (s, a)
with s ∈ S2, a ∈ A2(s):

1. ρ(s) ≥ 2CπL
N

and hence µ(s, π(s)) ≥ 2L
N

by the definition of Cπ;

2. L
200N

≤ µ(s, a) ≤ 1
10
µ(s, π(s));

3.
∑

a∈A2
µ(s, a) ≤ 1

10
µ(s, π(s));

4. |A2(s)|≤ 200N/L.

In addition, we define a high probability event on which the sample sizes N(s, a) concentrate
around their respective means Nµ(s, a):

E2(s) :=
{
1

2
Nµ(s, π(s)) ≤ N(s, π(s)) ≤ 2Nµ(s, π(s)),

∀a ∈ A2(s),
1

2
Nµ(s, a) ≤ N(s, a) ≤ 2Nµ(s, a)

}
,

which—in view of the Chernoff bound and the union bound—obeys

P(E2(s)) ≥ 1− 1/N9. (3.40)

With these preparations in place, we can derive

p2(s) = P(∃a ∈ A2, A(s, a), N(s, π(s)) ≥ 1)

≤ P(Ec2(s)) + P(∃a ∈ A2, A(s, a), N(s, π(s)) ≥ 1, E2(s))
≤ P(Ec2(s)) +

∑

a∈A2

P(A(s, a), N(s, π(s)) ≥ 1, E2(s))

≲
1

N9
+
|A2|
N10

≲
1

N9
,

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 105

where the last line arises from the bound

P(A(s, a), N(s, π(s)) ≥ 1, E2(s)) ≲
1

N10
, (3.41)

and the cardinality upper bound |A2(s)|≲ N . This completes the bound on
∑

s∈S2
p(s).

Proof of the bound (3.41). On the event E2(s), one must have N(s, a) ≥ 1 and N(s, π(s)) ≥
1. Therefore, we can define

ϵ :=

√
L

N(s, a)
−
√

L

N(s, π(s))
and ∆ = r(s, π(s))− r(s, a),

and obtain the following bound on the conditional probability

P

(
r̂(s, a)−

√
L

N(s, a)
≥ r̂(s, π(s))−

√
L

N(s, π(s))

∣∣∣∣∣ N(s, π(s)), N(s, a), E2
)

≤ exp

(
−2N(s, a)N(s, π(s))(ϵ+∆)2

N(s, a) +N(s, π(s))

∣∣∣∣ N(s, π(s)), N(s, a), E2
)
,

where the inequality arises from Lemma 3.13. Note that under event E2(s) and the property
µ(s, a) ≤ 1

10
µ(s, π(s)), we have N(s, π(s)) ≥ 4N(s, a) and thus ϵ ≥ 1

2

√
L

N(s,a)
. This allows us

to further upper bound the probability as

P

(
r̂(s, a)−

√
L

N(s, a)
≥ r̂(s, π(s))−

√
L

N(s, π(s))

∣∣∣∣∣ N(s, π(s)), N(s, a), E2
)

≤ exp
(
−N(s, a)(ϵ+∆)2

)

≤ exp

(
−
(
1

2

√
L+

√
N(s, a)∆

)2
)

≤ exp

(
−1

4
L

)
≲

1

N10
,

under the choice of L = 2000 log(2S|A|N). Since this upper bound holds for any configura-
tion of N(s, a) and N(s, π(s)), one has the desired claim.

Proof of the bound on T2,3. On the good event E , we know that

r(s, π(s))− r(s, π̂(s)) ≤ r(s, π(s))− [r̂(s, π̂(s))− b(s, π̂(s))]
≤ r(s, π(s))− [r̂(s, π(s))− b(s, π(s))]
≤ 2b(s, π(s)).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 106

Here the middle line arises from the definition of the LCB algorithm, i.e., π̂(s) ∈
argmaxa r̂(s, a)− b(s, a) for each s. Substitute this upper bound into the definition of T2 to
obtain

T2,3 ≤ 2
∑

s∈S3

ρ(s)ED [b(s, π(s))1{N(s, π(s)) ≥ 1}1{E}]

= 2
∑

s∈S3

ρ(s)ED

[√
L

N(s, π(s))
1{N(s, π(s)) ≥ 1}1{E}

]

≤ 2
√
L
∑

s∈S3

ρ(s)ED

[√
1

N(s, π(s)) ∨ 1
1{N(s, π(s)) ≥ 1}

]
,

where we have used the definition of b(s, a). Lemma 3.14 tells us that there exists a universal
constant c > 0 such that

ED

[√
1

N(s, π(s)) ∨ 1
1{N(s, π(s)) ≥ 1}

]
≤ c√

Nµ(s, π(s))
.

As a result, we reach the conclusion that

T2,3 ≤ 2
√
L
∑

s∈S3

ρ(s)
c√

Nµ(s, π(s))
.

In view of the assumption maxs ρ(s)/µ(s, π(s)) ≤ Cπ, one further has

T2,3 ≤ 2c

√
CπL

N

∑

s∈S3

√
ρ(s) ≤ 2c

√
CπL

N

√
S

√∑

s∈S3

ρ(s),

with the last inequality arising from Cauchy-Schwarz’s inequality. The desired bound on T2,3
follows from the following simple fact regarding

∑
s∈S3

ρ(s):
∑

s∈S3

ρ(s) ≤ min {1, 10(Cπ − 1)} . (3.42)

Proof of the inequality (3.42). The upper bound 1 is trivial to see. To achieve the other
upper bound, we first use the assumption maxs ρ(s)/µ(s, π(s)) ≤ Cπ to see

∑

s∈S3

ρ(s) ≤
∑

s∈S3

Cπµ(s, π(s)) ≤ 10Cπ
∑

s∈S3

µ̄(s).

Here the last relation follows from the definition of S3. Note that
∑

s∈S3

µ̄(s) ≤
∑

s

µ̄(s) = 1−
∑

s

µ(s, π(s)) ≤ 1− 1

Cπ
,

where we have reused the assumption maxs ρ(s)/µ(s, π(s)) ≤ Cπ. Taking the previous two
inequalities collectively yields the final claim.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 107

Proof of the bound (3.35c) on T3

It is not hard to see that
∑

s

ρ(s) [r(s, π(s))− r(s, π̂(s))]1{N(s, π(s)) ≥ 1} ≤ 1,

which further implies

T3 ≤ ED [1{Ec}] = P(Ec).
It then boils down to upper bounding the probability P(Ec). The proof is similar in spirit to
that of Lemma 3.3.

Fix a state-action pair (s, a). If N(s, a) = 0, one clearly has −1 = r̂(s, a) − b(s, a) ≤
r(s, a) ≤ r̂(s, a)+b(s, a) = 1. Therefore we concentrate on the case when N(s, a) ≥ 1. Apply
the Hoeffding’s inequality to see that for any δ1 ∈ (0, 1), one has

P

(
|r̂(s, a)− r(s, a)| ≥

√
log(2/δ1)

2N(s, a)
| N(s, a)

)
≤ δ1.

In particular, setting δ1 = δ/(S|A|) yields

P

(
|r̂(s, a)− r(s, a)| ≥

√
log(2S|A|/δ)
2N(s, a)

| N(s, a)

)
≤ δ

S|A| , (3.43)

Recall that b(s, a) is defined such that when N(s, a) ≥ 1,

b(s, a) =

√
2000 log(2S|A|/δ)

N(s, a)
.

Since the inequality (3.43) holds for any N(s, a), we have for any fixed (s, a),

P (|r̂(s, a)− r(s, a)| ≥ b(s, a)) ≤ δ

S|A| .

Taking a union bound over S ×A leads to the conclusion that P(Ec) ≤ δ, and hence T3 ≤ δ.
Taking δ = 1/N gives the advertised result.

3.8.2 Proof of Theorem 3.5

We prove the lower bound differently for the following regimes: C⋆ = 1, C⋆ ≥ 2, and
C⋆ ∈ (1, 2). When C⋆ = 1, the offline RL problem reduces to the imitation learning problem
in contextual bandits, whose lower bound has been shown in the paper Rajaraman et al.
(2020). When C⋆ ∈ (1, 2) or C⋆ ≥ 2, we generalize the lower bound given for the multi-
armed bandits with different choices of initial distributions. In what follows, we detail the
proofs for each regime.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 108

The case when C⋆ = 1. When C⋆ = 1, one has d⋆(s, a) = µ(s, a) for any (s, a) pair.
This recovers the imitation learning problem, where the rewards are also included in the
dataset. Thus the lower bound proved in Lemma 3.6 is applicable, which comes from a
modified version of Theorem 6 in the paper Rajaraman et al. (2020):

inf
π̂

sup
(ρ,µ,R)∈CB(1)

ED[J(π
⋆)− J(π̂)] ≳ min

(
1,
S

N

)
. (3.44)

The case when C⋆ ≥ 2. Fix a contextual bandit instance (ρ, µ,R), define the loss/sub-
optimality of an estimated policy π to be

L(π; (ρ, µ,R)) := J(π⋆)− J(π̂).

We intend to show that when C⋆ ≥ 2,

inf
π̂

sup
(ρ,µ,R)∈CB(C⋆)

Eµ⊗R[L(π; (ρ, µ,R))] ≳ min

(
1,

√
SC⋆

N

)
. (3.45)

Our proof follows the standard recipe of proving minimax lower bounds, namely, we first
construct a family of hard contextual bandit instances, and then apply Fano’s inequality to
obtain the desired lower bound.

Construction of hard instances. Consider a CB with state space S := {1, 2, . . . , S}.
Set the initial distribution ρ0(s) = 1/S for any s ∈ S. Each state s ∈ S is associated with
two actions a1 and a2. The behavior distribution for each s, a is specified below

µ0(s, a1) =
1

S
− 1

SC⋆
and µ0(s, a2) =

1

SC⋆
.

It is easy to check that for any reward distribution R, one has (ρ0, µ0, R) ∈ CB(C⋆). It
remains to construct a set of reward distributions that are nearly indistinguishable from the
data. To achieve this goal, we leverage the Gilbert-Varshamov lemma (cf. Lemma 3.15) to
obtain a set V ⊆ {−1, 1}S that obeys (1) |V|≥ exp(S/8) and (2) ∥v1 − v2∥1≥ S/2 for any
v1v2 ∈ V with v1 ̸= v2. With this set V in place, we can continue to construct the following
set of Bernoulli reward distributions

R :=

{{
Bern

(
1

2

)
,Bern

(
1

2
+ vsδ

)}

s∈S
| v ∈ V

}
.

Here δ ∈ (0, 1/3) is a parameter that will be specified later. Each element v ∈ V is mapped
to a reward distribution such that for the state s, the reward distribution associated with
(s, a2) is Bern(1

2
+ vsδ). In view of the second property of the set V , one has for any policy

π and any two different reward distributions R1, R2 ∈ R,

L(π; (ρ0, µ0, R1)) + L(π; (ρ0, µ0, R2)) ≥
δ

4
.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 109

Application of Fano’s inequality. Now we are ready to apply Fano’s inequality,
that is

inf
π̂

sup
(ρ0,µ0,R)|R∈R

Eµ0⊗R[L(π; (ρ0, µ0, R))] ≥
δ

8

(
1− N maxi̸=j KL (µ⊗Ri∥µ⊗Rj) + log 2

log|R|

)
.

It then remains to control maxi̸=j KL (µ⊗Ri∥µ⊗Rj) and log|R|. For the latter quantity,
we have

log|R|= log|V|≥ S/8,

where the inequality comes from the first property of the set V . With regards to the KL
divergence, one has

max
i̸=j

KL (µ⊗Ri∥µ⊗Rj) ≤ S · 1

SC⋆
· 16δ2 = 16δ2

C⋆
.

As a result, we conclude that as long as

200Nδ2

SC⋆
≤ 1,

one has
inf
π̂

sup
(ρ0,µ0,R)|R∈R

L(π; (ρ0, µ0, R)) ≳ δ.

To finish the proof, we can set δ =
√

SC⋆

200N
when

√
SC⋆

200N
< 1

3
, and δ = 1

3
otherwise. This

yields the desired lower bound (3.45).

The case when C⋆ ∈ (1, 2). We intend to show that

inf
π̂

sup
(ρ,µ,R)∈CB(C⋆)

E[L(π; (ρ, µ,R))] ≳ min

(
C⋆ − 1,

√
S(C⋆ − 1)

N

)
. (3.46)

The proof is similar to that of the previous case, with the difference lying in the construction
of ρ0 and µ0.

Construction of hard instances. Consider a CB with state space S :=
{0, 1, 2, . . . , S} and action space A := {a1, a2}. Set the initial distribution ρ0(s) = (C⋆−1)/S
for any 1 ≤ s ≤ S and ρ0(0) = 2− C⋆. Each state 1 ≤ s ≤ S is associated with two actions
a1 and a2 such that

µ0(s, a1) = µ0(s, a2) =
C⋆ − 1

SC⋆
.

In contrast, for s = 0, one has a single action a1 with µ0(0, a1) =
2−C⋆

C⋆ . Similar to the above
case, we have for any reward distribution R, that (ρ0, µ0, R) ∈ CB(C⋆).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 110

We deploy essentially the same family R of reward distributions as before with an addi-
tional reward of R(0, a1) ≡ 0 on state s = 0. As a result, one can show that for any policy
π and any two different reward distributions R1, R2 ∈ R,

L(π; (ρ0, µ0, R1)) + L(π; (ρ0, µ0, R2)) ≥
δ

4
(C⋆ − 1).

Application of Fano’s inequality. Fano’s inequality tells us that

inf
π̂

sup
(ρ0,µ0,R)|R∈R

E[L(π; (ρ0, µ0, R))] ≥
δ

8

(
1− N maxi̸=j KL (µ⊗Ri∥µ⊗Rj) + log 2

S/8

)
.

In the current case, we have

max
i̸=j

KL (µ⊗Ri∥µ⊗Rj) ≤ S · C
⋆ − 1

SC⋆
· 16δ2 = 16(C⋆ − 1)

C⋆
δ2.

As before, setting

δ = min

(√
SC⋆

200(C⋆ − 1)N
,
1

3

)

yields the lower bound

inf
π̂

sup
(ρ0,µ0,R)|R∈R

E[L(π; (ρ0, µ0, R))] ≳ min

(
C⋆ − 1,

√
SC⋆(C⋆ − 1)

N

)
≳ min

(
C⋆ − 1,

√
S(C⋆ − 1)

N

)
.

Putting the pieces together. We are now in position to summarize and simplify the
three established lower bounds (3.44), (3.45), and (3.46).

When C⋆ = 1, the claim in Theorem 3.5 is identical to the bound (3.44).
When C⋆ ≥ 2, we have from the bound (3.45) that

inf
π̂

sup
(ρ,µ,R)∈CB(C⋆)

E[L(π; (ρ, µ,R))] ≳ min

(
1,

√
SC⋆

N

)
≍ min

(
1,

√
S(C⋆ − 1)

N

)
.

Further notice that √
S(C⋆ − 1)

N
≥
√
S

N
≥ min

(
1,
S

N

)
.

The claimed lower bound in Theorem 3.5 arises.
In the end, when C⋆ ∈ (1, 2), we know from the bounds (3.44) and (3.46) that

inf
π̂

sup
(ρ,µ,R)∈CB(C⋆)

E[L(π; (ρ, µ,R))] ≳ max

{
min

(
1,
S

N

)
,min

(
C⋆ − 1,

√
S(C⋆ − 1)

N

)}
.

Elementary calculations reveal that

max

{
min

(
1,
S

N

)
,min

(
C⋆ − 1,

√
S(C⋆ − 1)

N

)}
≍ min

(
1,

√
S(C⋆ − 1)

N
+
S

N

)
,

which completes the proof.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 111

3.8.3 Proof of Proposition 3.3

We design the hard instance with state space {s0, s1} and action space {a0, a1}. Only under
state (s0, a0) we can possibly get non-zero reward, and all other state-action pairs give 0
rewards. We set d⋆(s0) = d⋆(s0, a0) = C⋆ − 1 − ϵ, d⋆(s1) = 2 − C⋆ + ϵ for some small
ϵ > 0. The constraints introduced by concentrability are µ(s0, a0) ≥ (C⋆ − 1 − ϵ)/C⋆,
µ(s1) ≥ (2− C⋆ + ϵ)/C⋆.

We set µ(s0, a0) = (C⋆−1−ϵ)/C⋆, µ(s0, a1) = (C⋆−1)/C⋆, µ(s1) = (2−C⋆+ϵ)/C⋆. One
can verify that d⋆, µ are valid probability distributions and the concentrability assumption
still holds.

In this case, since µ(s0, a0) < µ(s0, a1), the algorithm fails to identify the optimal arm a0
as N →∞. This incurs the following expected sub-optimality

lim
N→∞

ED[J(π
⋆)− J(π̂)] = d⋆(s0) ≥ C⋆ − 1− ϵ.

Setting ϵ→ 0 gives us the conclusion.

3.9 Proofs for MDPs
We begin by presenting several Bellman equations for discounted MDPs, which is followed
by the proof of Lemma 3.1. We then prove general properties of Algorithm 4 under the clean
event (3.22). These include the contraction properties given in Proposition 3.4 as well as the
value difference lemma (cf. Lemma 3.2). Next, we prove the LCB sub-optimality Theorem
3.6. In the end, we prove the minimax lower bound followed by an analysis of imitation
learning with an alternative data coverage assumption.

3.9.1 Bellman and Bellman-like equations

Given a discounted MDP, the Bellman value operator Tπ associated with a policy π is defined
as

TπV := rπ + γPπV. (3.47)

It is well-known that V π is the unique solution to TπV = V , which is known as the Bellman
equation.

In addition to V π, other quantities in an MDP also follow a Bellman-like equation, which
we briefly review here. For discounted occupancy measures, simple algebra gives

dπ = (1− γ)ρ+ γdπPπ ⇒ dπ = (1− γ)ρ(I − γPπ)
−1, (3.48)

dπ = (1− γ)ρπ + γdπP π ⇒ dπ = (1− γ)ρπ(I − γP π)−1. (3.49)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 112

3.9.2 Proof of Lemma 3.1

The proof is similar to that of Lemma 3.3. For completeness, we include it here.
From the algorithmic design, it is clear (in particular the Q update and the monotonic

improvement step) that

Vt(s) ∈ [0, Vmax], for all s ∈ S and t ≥ 0.

As a result, for a fixed tuple (s, a, t), if mt(s, a) = 0, one has
∣∣r(s, a) + γPs,a · Vt − rt(s, a)− γP t

s,a · Vt−1

∣∣ ≤ 1 + γVmax = Vmax ≤ bt(s, a).

When mt(s, a) ≥ 1, exploiting the independence between Vt and P t
s,a and using Hoeffding’s

inequality to obtain

P
(∣∣r(s, a) + γPs,a · Vt − rt(s, a)− γP t

s,a · Vt−1

∣∣ ≥ Vmax

√
L/mt(s, a) | mt(s, a)

)
≤ 2 exp (−2L) .

Since the above inequality holds for any mt(s, a), one necessarily has

P
(∣∣r(s, a) + γPs,a · Vt − rt(s, a)− γP t

s,a · Vt−1

∣∣ ≥ bt(s, a)
)
≤ 2 exp (−2L) .

Taking a union bound over s, a and t ∈ {0, . . . , T} and setting δ1 = δ
2S|A|(T+1)

finishes the
proof.

3.9.3 Proof of Proposition 3.4

We prove the claims one by one.

Proof of Vt−1 ≤ Vt. The first claim Vt−1 ≤ Vt is directly implied by line 15 of Algorithm
4.

Proof of Vt ≤ V πt. For the second claim Vt ≤ V πt , it suffices to prove that Vt ≤ TπtVt.
Indeed, Vt ≤ TπtVt together with the monotonicity of the Bellman’s operator yield the
conclusion Vt ≤ V πt . In what follows, we prove Vt ≤ TπtVt via induction.

The base case V0 ≤ Tπ0V0 holds due to zero initialization. Hence from now on, we assume
Vk ≤ Tπk

Vk for 0 ≤ k ≤ t − 1 and intend to prove Vt ≤ TπtVt. We split the proof into two
cases.

• If Vt−1(s) ≥ maxa{rt−1(s, a) − bt−1(s, a) + γP t−1
s,a · Vt−1}, the algorithm sets Vt(s) =

Vt−1(s) and πt(s) = πt−1(s). Consequently, we have

Vt(s) = Vt−1(s) ≤ (Tπt−1Vt−1)(s) ≤ (TπtVt)(s),

where the first inequality arises from the induction hypothesis and the last one holds
since Vt−1 ≤ Vt and πt(s) = πt−1(s).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 113

• If instead, the algorithm sets Qt(s, a) = rt(s, a) − bt(s, a) + γP t
s,a · Vt−1 with πt(s) =

argmaxaQt(s, a) and Vt(s) = Qt(s, πt(s)), then we have

(TπtVt)(s) =r(s, πt(s)) + γPs,πt(s) · Vt
≥r(s, πt(s)) + γPs,πt(s) · Vt−1

=rt(s, πt(s))− bt(s, πt(s)) + γP t
s,πt(s) · Vt−1

+ bt(s, πt(s)) + r(s, πt(s))− rt(s, πt(s)) + γ(Ps,πt(s) − P t
s,πt(s)) · Vt−1

=Vt(s) + bt(s, πt(s)) + r(s, πt(s))− rt(s, πt(s)) + γ(Ps,πt(s) − P t
s,πt(s)) · Vt−1

≥Vt(s),

where the first inequality is due to Vt−1 ≤ Vt and the last inequality holds under the
clean event EMDP.

This finishes the proof of Vt ≤ TπtVt and hence Vt ≤ V πt . The claim V πt ≤ V ⋆ is trivial to
see.

Proof of Qt ≤ r + γPVt−1 ≤ r + γPVt. Since Vt ≥ Vt−1, we have

r(s, a) + γPs,a · Vt ≥ r(s, a) + γPs,a · Vt−1

= rt(s, a)− bt(s, a) + γP t
s,a · Vt−1

+ bt(s, a) + r(s, a)− rt(s, a) + γ(Ps,a − P t
s,a) · Vt−1

≥ Qt(s, a),

where the last inequality holds under EMDP.

Proof of Qπ − Qt ≤ γP π(Qπ − Qt−1) + 2bt. Let Q(:, π) ∈ RS be a vector with elements
Qπ(s, π(s)). By definition, one has

Qπ(s, a)−Qt(s, a)

= r(s, a) + γPs,a · V π − rt(s, a) + bt(s, a)− γP t
s,a · Vt−1

= γPs,a · V π − γPs,a · Vt−1 + bt(s, a) + r(s, a)− rt(s, a) + γ(Ps,a − P t
s,a) · Vt−1

≤ γPs,a · (Qπ(:, π)−Qt−1(:, π)) + bt(s, a) + r(s, a)− rt(s, a) + γ(Ps,a − P t
s,a) · Vt−1

≤ γPs,a · (Qπ(:, π)−Qt−1(:, π)) + 2bt(s, a).

Here, the first inequality comes from the fact that Vt−1 ≥ maxaQt−1(:, a) ≥ Qt(:, π) and the
last inequality again holds under EMDP.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 114

3.9.4 Proof of Lemma 3.2

In view of Proposition 3.4, one has Vt ≤ V πt . Therefore we obtain

Eρ [V
π(s)− V πt(s)] ≤ Eρ [V

π(s)− Vt(s)] ≤ Eρ

[
V π(s)− V mid

t (s)}
]
,

where the last inequality arises from the monotonicity imposed by Algorithm 4. Note that
V mid
t (s) = Qt(s, π

mid
t) and that πmid

t is greedy with respect to Qt. We can continue the upper
bound as

Eρ [V
π(s)− V πt(s)] ≤ Eρ

[
Qπ(s, π(s))−Qt(s, π

mid
t)}

]
≤ Eρ [Q

π(s, π(s))−Qt(s, π(s))] .

Rewriting using the matrix notation gives

Eρ [V
π(s)− V πt(s)] ≤ Eρ [Q

π(s, π(s))−Qt(s, π(s))] = ρπ(Qπ −Qt). (3.50)

Now we are ready to apply the third claim in Proposition 3.4 to deduce that on the event
EMDP:

Qπ −Qt ≤ γP π(Qπ −Qt−1) + 2bt ≤ γP π [γP π(Qπ −Qt−2) + 2bt−1] + 2bt

≤ · · ·

≤ γt(P π)t(Qπ −Q0) + 2
t∑

j=1

(γP π)t−jbj

≤ γt

1− γ1+ 2
t∑

j=1

(γP π)t−jbj.

Here 1 denotes the all-one vector with dimension S|A|, and the last inequality arises from
the fact that Qπ −Q0 = Qπ ≤ (1− γ)−11. Multiplying both sides the of the equation above
by ρπ, we conclude that

ρπ(Qπ −Qt) ≤
γt

1− γ + 2
t∑

j=1

ρπ(γP π)t−jbj =
γt

1− γ + 2
t∑

j=1

vπt−jbj, (3.51)

where we use the definition of vπk = ρπ(γP π)k. Combine the inequalities (3.50) and (3.51) to
reach the desired result.

3.9.5 Proof of Theorem 3.6

Similar to the proof given for contextual bandits, we prove a stronger result than Theo-
rem 3.6. Fix any deterministic expert policy π. Assume that the data coverage assumption
holds, that is

max
s,a

dπ(s, a)

µ(s, a)
≤ Cπ.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 115

Then for all Cπ ≥ 1, Algorithm 4 with δ = 1/N achieves

ED [J(π)− J(π̂)] ≲ min

(
1

1− γ ,
√

SCπ

(1− γ)5N

)
. (3.52)

In addition, if 1 ≤ Cπ ≤ 1 + L log(N)
200(1−γ)N

, then we have a tighter performance upper bound

ED [J(π)− J(π̂)] ≲ min

(
1

1− γ ,
S

(1− γ)4N

)
. (3.53)

The result in Theorem 3.6 can be recovered by taking π = π⋆.
We split the proof into two cases: (1) the general case when Cπ ≥ 1 and (2) the regime

where Cπ ≤ 1 + L/(200m).

The general case when Cπ ≥ 1. The proof of the general case follows similar steps as
those in the proof of Theorem 3.4. We first decompose the expected sub-optimality into
three terms:

ED

[∑

s

ρ(s)[V π(s)− V πT (s)]

]

= ED

[∑

s

ρ(s)[V π(s)− V πT (s)]1{∃t ≤ T,mt(s, π(s)) = 0}
]
=: T1

+ ED

[∑

s

ρ(s)[V π(s)− V πT (s)]1{∀t ≤ T,mt(s, π(s)) ≥ 1}1{EMDP}
]
=: T2

+ ED

[∑

s

ρ(s)[V π(s)− V πT (s)]1{∀t ≤ T,mt(s, π(s)) ≥ 1}1{EcMDP}
]
=: T3.

Similar to before, the first term T1 captures the sub-optimality incurred by the missing mass
on the expert action π(s). The second term T2 is the sub-optimality under the clean event
EMDP, while the last one T3 denotes the sub-optimality suffered under the complement event
EcMDP, on which the empirical average of Q-function falls outside the constructed confidence
interval.

As we will show in subsequent sections, these error terms satisfy the following upper
bounds:

T1 ≤
4SCπ(T + 1)2

9(1− γ)2N ; (3.54a)

T2 ≤
γT

1− γ + 32
1

(1− γ)2

√
LSCπ(T + 1)

N
; (3.54b)

T3 ≤ Vmaxδ. (3.54c)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 116

Setting δ = 1/N , T = logN/(1− γ) and noting that γT ≤ 1/N yield that

ED [J(π)− J(π̂)] ≲
(√

SCπ

(1− γ)5N +
SCπ

(1− γ)4N

)
.

Note that we always have ED [J(π)− J(π̂)] ≤ 1
1−γ

. In the interesting regime of SCπ

(1−γ)3N
≤ 1,

the first term above always dominates. This gives the desired claim (3.52).

The case when Cπ ≤ 1+L/(200m). Under this circumstance, the following lemma proves
useful.

Lemma 3.5. For any deterministic policy π̂, one has

J(π)− J(π̂) ≤ V 2
maxEs∼dπ [1 {π̂(s) ̸= π(s)}] . (3.55)

Proof. In view of the performance difference lemma in Kakade and Langford (2002, Lemma
6.1), one has

J(π)− J(π̂) = 1

1− γEs∼dπ

[
Qπ̂(s, π(s))−Qπ̂(s, π̂(s))

]

=
1

1− γEs∼dπ

[[
Qπ̂(s, π(s))−Qπ̂(s, π̂(s))

]
1 {π̂(s) ̸= π(s)}

]

≤ V 2
maxEs∼dπ [1 {π̂(s) ̸= π(s)}] .

Here the last line uses the fact that Qπ̂(s, π(s))−Qπ̂(s, π̂(s)) ≤ Vmax.

Lemma 3.5 links the sub-optimality of a policy to its disagreement with the optimal policy.
With Lemma 3.5 at hand, we can continue to decompose the expected sub-optimality into:

ED

[∑

s

ρ(s)[V π(s)− V πT (s)]

]

≤ V 2
max ED[Es∼dπ [1{πT (s) ̸= π(s)}]]

= V 2
max ED[Es∼dπ [[1{πT (s) ̸= π(s)}1{∃t ≤ T,mt(s, π(s)) = 0}]] =: T ′

1

+ V 2
max ED[Es∼dπ [[1{πT (s) ̸= π(s)}1{∀t ≤ T,mt(s, π(s)) ≥ 1}]] =: T ′

2

We bound each term according to

T ′
1 ≤

4SCπ(T + 1)2

9(1− γ)2N ; (3.56a)

T ′
2 ≲

SCπLT

(1− γ)2N +
ST 10

(1− γ)2N9
. (3.56b)

The claimed bound (3.53) follows by taking δ = 1/N and T = logN/(1− γ).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 117

Proof of the bound (3.54a) on T1 and the bound (3.56a) on T ′
1

Since for any s ∈ S, V π(s)− V πT (s) ≤ Vmax one has

T1 ≤ Vmax ED

[∑

s

ρ(s)1{∃t ≤ T,mt(s, π(s)) = 0}
]
= Vmax

∑

s

ρ(s)P (∃t ≤ T,mt(s, π(s)) = 0) .

The definition of the normalized occupancy measure (3.5b) entails ρ(s) ≤ dπ(s, π(s)) and
thus

ρ(s)

µ(s, π(s))
≤ 1

1− γ ·
dπ(s, π(s))

µ(s, π(s))
≤ Cπ

1− γ .

Here the last relation follows from the data coverage assumption. Combine the above two
inequalities to see that

T1 ≤ Vmax

∑

s

Cπ

1− γµ(s, π(s))P (∃t ≤ T,mt(s, π(s)) = 0)

=
Cπ

(1− γ)2
∑

s

µ(s, π(s))P (∃t ≤ T,mt(s, π(s)) = 0)

≤ Cπ

(1− γ)2
T∑

t=0

∑

s

µ(s, π(s))P (mt(s, π(s)) = 0) ,

where in the penultimate line, we identify Vmax with 1/(1 − γ), and the last relation is by
the union bound. Direct calculations yield

P (mt(s, π(s)) = 0) = (1− µ(s, π(s)))m,

which further implies

T1 ≤
Cπ(T + 1)

(1− γ)2
∑

s

µ(s, π(s))(1− µ(s, π(s)))m ≤ 4CπS(T + 1)

9(1− γ)2m =
4CπS(T + 1)2

9(1− γ)2N .

Here, we have used maxx∈[0,1] x(1− x)m ≤ 4/(9m) and the fact that m = N/(T + 1).
The bound (3.56a) on T ′

1 follows from exactly the same argument as above, except that
we replace ρ with dπ.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 118

Proof of the bound (3.54b) on T2

Lemma 3.2 asserts that on the clean event EMDP, one has

T2 ≤
γT

1− γ + 2
T∑

t=1

ED,νπT−t
[bt(s, π(s))1{mt(s, π(s)) ≥ 1}]

=
γT

1− γ + 2
T∑

t=1

ED,νπT−t

[
Vmax

√
L

mt(s, π(s))
1{mt(s, π(s)) ≥ 1}

]

≤ γT

1− γ + 2
T∑

t=1

EνπT−t

[
16Vmax

√
L

mµ(s, π(s))

]
. (3.57)

Here, we substitute in the definition of bt(s, a) in the middle line and the last inequality
arises from Lemma 3.14 with c1/2 ≤ 16.

By definition of νπk = ρπ(γP π)k, we have
∑∞

k=0 ν
π
k = dπ/(1− γ). Therefore, one has

T∑

t=1

EνπT−t

[
1√

µ(s, π(s))

]
=

T∑

t=1

∑

s

νπT−t(s, π(s))
1√

µ(s, π(s))

=
∑

s

[
T∑

t=1

νπT−t(s, π(s))

]
1√

µ(s, π(s))

≤
∑

s

dπ(s, π(s))

1− γ
1√

µ(s, π(s))
.

We then apply the concentrability assumption and the Cauchy–Schwarz inequality to de-
duce that

T∑

t=1

EνπT−t

[
1√

µ(s, π(s))

]
≤
√

Cπ

(1− γ)2
∑

s

√
dπ(s, π(s))

≤
√

Cπ

(1− γ)2
√
S

√∑

s

dπ(s, π(s))

=

√
SCπ

1− γ .

Substitute the above bound into the inequality (3.57) to arrive at the conclusion

T2 ≤
γT

1− γ + 32
1

(1− γ)2

√
LSCπ

m
.

The proof is completed by noting that m = N/(T + 1).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 119

Proof of the bound (3.54c) on T3

It is easy to see that
∑

s

ρ(s)[V π(s)− V πT (s)]1{∀s, t,mt(s, π(s)) ≥ 1} ≤ Vmax,

which further implies

T3 ≤ Vmax ED[1{EcMDP}] = Vmax P(EcMDP) ≤ Vmaxδ.

Here, the last bound relies on Lemma 3.1.

Proof of the bound (3.56b) on T ′
2

Partition the state space into the following two disjoint sets:

S1 :=
{
s | dπ(s) <

2CπL

m

}
, (3.58a)

S2 :=
{
s | dπ(s) ≥

2CπL

m

}
, (3.58b)

In words, the set S1 includes the states that are less important in evaluating the performance
of LCB. We can then decompose the term T ′

2 accordingly:

T ′
2 = V 2

max

∑

s∈S1

dπ(s)ED[1{πT (s) ̸= π(s)}1{∀t,mt(s, π(s)) ≥ 1}] =: T2,1

+ V 2
max

∑

s∈S2

dπ(s)ED[1{πT (s) ̸= π(s)}1{∀t,mt(s, π(s)) ≥ 1}] =: T2,2.

The proof is completed by observing the following two upper bounds:

T2,1 ≤
2SCπLT

(1− γ)2N , and T2,2 ≲
S

(1− γ)2
(
T

N

)9

.

Proof of the bound on T2,1. We again use the basic fact that

ED[1{πT (s) ̸= π(s)}1{∀s, t,mt(s, π(s)) ≥ 1}] ≤ 1

to reach
T2,1 ≤ V 2

max

∑

s∈S1

dπ(s) ≤
2SCπL

(1− γ)2m,

where the last inequality hinges on the definition of S1 given in (3.58a), namely for any
s ∈ S1, one has dπ(s) < 2CπL

m
. Identifying m with N/(T + 1) concludes the proof.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 120

Proof of the bound on T2,2. Equivalently, we can write T2,2 as

T2,2 = V 2
max

∑

s∈S2

dπ(s)P (πT (s) ̸= π(s), mt(s, π(s)) ≥ 1 ∀t) .

By inspecting Algorithm 4, one can realize the following inclusion

{πT (s) ̸= π(s)} ⊆ {π0(s) ̸= π(s)}∪{∃0 ≤ t ≤ T−1 and ∃a ̸= π(s), Qt+1(s, a) ≥ Qt+1(s, π(s))}.

Indeed, if π0(s) = π(s) and for all t, Qt+1(s, π(s)) > maxa̸=π(s)Qt+1(s, a), LCB would select
the expert action in the end, i.e., πT (s) = π(s). Therefore, we can upper bound T2,2 as

T2,2 ≤ V 2
max

∑

s∈S2

dπ(s)P (π0(s) ̸= π(s),mt(s, π(s)) ≥ 1 ∀t) =: β1

+ V 2
max

∑

s∈S2

dπ(s)P (∃t ≤ T − 1,∃a ̸= π(s), Qt+1(s, a) ≥ Qt+1(s, π(s)),mt(s, π(s)) ≥ 1 ∀t) =: β2.

In the sequel, we bound β1 and β2 in the reverse order.

Bounding β2. Fix a state s ∈ S2. In view of the data coverage assumption, one has

µ(s, π(s)) ≥ 1

Cπ
dπ(s) ≥

1

Cπ

2CπL

m
=

2L

m
. (3.59)

In contrast, for any a ̸= π(s), since Cπ ≤ 1 + L
200m

, we have

µ(s, a) ≤
∑

a̸=π(s)

µ(s, a) ≤ 1− 1

Cπ
≤ L

200m
, (3.60)

where the middle inequality reuses the concentrability assumption. One has µ(s, π(s)) ≫
µ(s, a) for any non-expert action a. As a result, the expert action is pulled more frequently
than the others. It turns out that under such circumstances, the LCB algorithm picks the
expert action with high probability. We shall make this intuition precise below.

The bounds (3.59) and (3.60) together with Chernoff’s bound give

P

(
mt(s, a) ≤

5L

200

)
≥ 1− exp

(
− L

200

)
;

P (mt(s, π(s)) ≥ L) ≥ 1− exp

(
−L
4

)
.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 121

These allow us to obtain an upper bound for the function Qt+1 evaluated at non-expert
actions and a lower bound on Qt+1(s, π(s)). More precisely, when mt(s, a) ≤ 5L

200
, we have

Qt(s, a) = rt(s, a)− bt(s, a) + γP t
s,a · Vt−1

= rt(s, a)− Vmax

√
L

mt(s, a) ∨ 1
+ γP t

s,a · Vt−1

≤ 1− Vmax

√
L

5L/200
+ γVmax

≤ −5Vmax.

Here we used the fact that L ≥ 70. Now we turn to lower bounding the function Qt evaluated
at the optimal action. When mt(s, π(s)) ≥ L, one has

Qt(s, π(s)) = rt(s, π(s))− Vmax

√
L

mt(s, π(s))
+ γP t

s,π(s) · Vt−1 ≥ −Vmax.

To conclude, if both mt(s, a) ≤ 5L
200

and mt(s, π(s)) ≥ L hold, we must have Qt(s, a) <
Qt(s, π(s)). Therefore we can deduce that

P (∃0 ≤ t ≤ T and ∃a ̸= π(s), Qt(s, a) ≥ Qt(s, π(s)),mt(s, π(s)) ≥ 1 ∀t)
≤
∑

0≤t≤T

P (∃a ̸= π(s), Qt(s, a) ≥ Qt(s, π(s)),mt(s, π(s)) ≥ 1 ∀t)

≤
∑

0≤t≤T−1

{
(|A|−1) exp

(
− L

200

)
+ exp

(
−1

4
L

)}

≤ T |A|exp
(
− L

200

)
,

which further implies

β2 ≤ V 2
max

∑

s∈S2

dπ(s)T |A|exp
(
− L

200

)

≤ TVmax|A|·
1

1− γ exp

(
− L

200

)

≲ Tm−9.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 122

Bounding β1. In fact, the analysis of β2 has revealed that with high probability, π(s)
is the most played arm among all actions. More precisely, we have

β1 ≤ V 2
max

∑

s∈S2

dπ(s)P (π0(s) ̸= π(s))

≤ V 2
max

∑

s∈S2

dπ(s)

{
P

(
max

a
m0(s, a) ≥

5L

200

)
+ P (m0(s, π(s)) ≤ L)

}

≤ V 2
max|A|exp

(
− L

200

)
≲

1

(1− γ)2m−9
.

Combine the bounds on β1 and β2 to arrive at the claim on T2,2.

3.9.6 Proof of Theorem 3.7

Similar to the proof of the lower bound for contextual bandits, we split the proof into three
cases: (1) C⋆ = 1, (2) C⋆ ≥ 2, and (3) C⋆ ∈ (1, 2). For C⋆ = 1, we adapt the lower bound
from episodic imitation learning (Rajaraman et al., 2020) to the discounted case. For both
C⋆ ∈ (1, 2) and C⋆ ≥ 2, we rely on the construction of the MDP in the paper Lattimore and
Hutter (2012), which reduces the policy learning problem in MDP to a bandit problem. The
key difference is that in our construction, we need to carefully design the initial distribution
ρ to incorporate the effect of C⋆ in the lower bound.

The case when C⋆ = 1. In this case we have µ(s, a) = d⋆(s, a) for all (s, a) pairs, which is
the imitation learning setting. We adapt the lower bound given in Rajaraman et al. (2020)
for episodic imitation learning to the discounted case and obtain the following lemma:

Lemma 3.6. When C⋆ = 1, one has

inf
π̂

sup
(ρ,µ,P,R)∈MDP(1)

ED[J(π
⋆)− J(π̂)] ≳ min

{
1

1− γ ,
S

(1− γ)2N

}
. (3.61)

We defer the proof to Section 3.9.6, which follows exactly the analysis by Rajaraman et al.
(2020) except for changing the setting from episodic to discounted.

The case when C⋆ ≥ 2. When C⋆ ≥ 2, we intend to show that

inf
π̂

sup
(ρ,µ,P,R)∈MDP(C⋆)

ED[J(π
⋆)− J(π̂)] ≳ min

(
1

1− γ ,
√

SC⋆

(1− γ)3N

)
. (3.62)

We adopt the following construction of the hard MDP instance from the work Lattimore
and Hutter (2012).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 123

Figure 3.5: Illustration of one replica in the hard MDPh. The left plot shows the transition
probabilities from (sj1, a1) and the right plot shows them from (sj1, a2).

Construction of hard instances. Consider the MDP which consists of S/4 replicas
of MDPs in Figure 3.5 and an extra state s−1. The total number of states is S+1. For each
replica, we have four states s0, s1, s⊕, s⊖. There is only one action, say a1, in all the states
except s1, which has two actions a1, a2. The rewards are all deterministic. In addition, the
transitions for states s0, s⊕, s⊖ are shown in the diagram. More specifically, we have P(sj⊕ |
sj1, a1) = P(sj⊖ | sj1, a1) = 1/2 and P(sj⊕ | sj1, a2) = 1/2 + vjδ, and P(sj⊖ | sj1, a2) = 1/2− vjδ.
Here vj ∈ {−1,+1} is the design choice associated with the j-th replica and δ ∈ [0, 1/4] will
be specified later. Clearly, if vj = 1, the optimal action at sj1 is a2, otherwise, the optimal
one is a1. Under the extra state s−1, there is only one action with reward 0 which transits
to itself with probability 1. We use sji to denote state i in j-th replica, where j ∈ [S/4].
Based on the description above, the only parameter in this MDP is the transition dynamics
associated with the state sj1. We will later specify how to set these for each sj1. The single
replica has the following important properties:

1. The probabilities p, q are designed such that the three states s0, s⊖, s⊕ are mostly
absorbing, while any action in s1 will lead to immediate transition to s⊕ or s⊖.

2. The state s⊕ is the only state that gives reward 1, which helps reduce the MDP problem
to a bandit one: the MDP only depends on the choice of transition probabilities at
state sj1; once a policy reaches state s1 it should choose the action most likely to lead
to state ⊕ whereupon it will either be rewarded or punished (visit state ⊕ or ⊖).
Eventually, it will return to state 1 where the whole process repeats.

We also need to specify the initial distribution ρ0 and the behavior distribution µ0. When

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 124

C⋆ ≥ 2, we set the initial distribution ρ0 to be uniformly distributed on the state s0 in all
the S/4 replicas, i.e., ∀j ∈ [S/4], ρ0(s

j
0) = 4/S. From d⋆ = (1 − γ)ρ(I − γP π⋆

)−1 we can
derive d⋆ as follows:

d⋆(sj0) =
8

(2 + γ)S
, d⋆(sj1) =

8γ(1− γ)
(2− γ)(2 + γ)S

∈
[
1− γ
S

,
4(1− γ)

S

]
,

d⋆(sj⊕) =
γ(1

2
1{vj = −1}+ (1

2
+ δ)1{vj = 1})

2(1− γ) · d⋆(sj1),

d⋆(sj⊖) =
γ(1

2
1{vj = 1}+ (1

2
− δ)1{vj = −1})

2(1− γ) · d⋆(sj1), d⋆(s−1) = 0.

This allows us to construct the behavior distribution µ0 as follows:

µ0(s
j
0) =

d⋆(sj0)

C⋆
, µ0(s

j
1, a2) =

d⋆(sj1)

C⋆
, µ0(s

j
1, a1) = d⋆(sj1) ·

(
1− 1

C⋆

)

µ0(s
j
⊕) =

3

4
· γ

2(1− γ)C⋆
· d⋆(sj1), µ0(s

j
⊖) =

1

2
· γ

2(1− γ)c⋆ · d
⋆(sj1),

µ0(s−1) = 1−
∑

j

(µ0(s
j
0) + µ0(s

j
1) + µ0(s

j
⊕) + µ0(s

j
⊖))

It is easy to check that for any vj ∈ {−1, 1}, δ ∈ [0, 1/4], one has µ0(s−1) > 0, and more
importantly

(ρ0, µ0, P, R) ∈ MDP(C⋆).

Since in this construction of MDP, the reward distribution is deterministic and fixed, and
we only need to change the transition dynamics P , which is governed by the choice of δ and
vj1≤k≤S/4. Hence we write the loss/sub-optimality of a policy π w.r.t. a particular design of
P as

L(π;P) = JP (π
⋆)− JP (π).

Our target then becomes

inf
π̂

sup
(ρ0,µ0,P,R)∈MDP(C⋆)

E[L(π̂;P)] ≳ min

(
1

1− γ ,
√

SC⋆

(1− γ)3N

)
.

It remains to construct a set of transition probabilities (determined by δ and v) that are
nearly indistinguishable given the data. Similar to the construction in the lower bound for
contextual bandits, we leverage the Gilbert-Varshamov lemma (cf. Lemma 3.15) to obtain a
set V ⊆ {−1, 1}S/4 that obeys (1) |V|≥ exp(S/32) and (2) ∥v1−v2∥1≥ S/8 for any v1,v2 ∈ V
with v1 ̸= v2. Each element v ∈ V is mapped to a transition probability at sj1 such that the
probability of transiting to sj⊕ associated with (sj1, a2) is 1

2
+ vjδ. We denote the resulting

set of transition probabilities as P . We record a useful characteristic of this family P of
transition dynamics below, which results from the second property of the set V .

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 125

Lemma 3.7. For any policy π and any two different transition probabilities P1, P2 ∈ P, the
following holds:

L(π;P1) + L(π;P2) ≥
δ

32(1− γ) .

Application of Fano’s inequality. We are now ready to apply Fano’s inequality,
that is

inf
π̂

sup
P∈P

E[L(π̂;P)] ≥ δ

64(1− γ)

(
1− N maxi̸=j KL (µ0 ⊗ Pi∥µ0 ⊗ Pj) + log 2

log|P|

)
.

It remains to controlling maxi̸=j KL (µ0 ⊗ Pi∥µ0 ⊗ Pj) and log|P|. For the latter quantity,
we have

log|P|= log|V|≥ S/32,

where the inequality comes from the first property of the set V . With regards to the KL
divergence, one has

max
i̸=j

KL (µ0 ⊗ Pi∥µ0 ⊗ Pj) ≤
4(1− γ)
SC⋆

· S
4
· 16δ2 = 16(1− γ)δ2

C⋆
,

since µ0(s
j
1, a2) ∈ [1−γ

SC⋆ ,
4(1−γ)
SC⋆]. As a result, we conclude that as long as

c3(1− γ)Nδ2
SC⋆

≤ 1

for some universal constant c3, one has

inf
π̂
sup
P

E[[L(π̂;P)] ≳ δ

1− γ .

To finish the proof, we can set δ =
√

SC⋆

c3(1−γ)N
when

√
SC⋆

c3(1−γ)N
< 1

4
and δ = 1

4
otherwise.

This yields the desired lower bound (3.62).

The case when C⋆ ∈ (1, 2). We intend to show that when C⋆ ∈ (1, 2),

inf
π̂

sup
(ρ,µ,P,R)∈MDP(C⋆)

ED[J(π
⋆)− J(π̂)] ≳ min

(
C⋆ − 1

1− γ ,

√
S(C⋆ − 1)

(1− γ)3N

)
. (3.63)

The proof is similar to that of the previous case but with a different construction for ρ0
and µ0.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 126

Construction of the hard instance. Let ρ0(sj0) = 4(C⋆ − 1)/S, ρ0(s−1) = 2 − C⋆.
From d⋆ = (1− γ)ρ(I − γP π⋆

)−1 we can derive d⋆ as follows.

d⋆(sj0) =
8(C⋆ − 1)

(2 + γ)S
, d⋆(sj1) =

8γ(1− γ)(C⋆ − 1)

(2− γ)(2 + γ)S
∈
[
(1− γ)(C⋆ − 1)

S
,
4(1− γ)(C⋆ − 1)

S

]
,

d⋆(sj⊕) =
γ(1

2
1{vj = −1}+ (1

2
+ δ)1{vj = 1})

2(1− γ) · d⋆(sj1),

d⋆(sj⊖) =
γ(1

2
1{vj = 1}+ (1

2
− δ)1{vj = −1})

2(1− γ) · d⋆(sj1), d⋆(s−1) = 2− C⋆.

This allows us to construct the behavior distribution µ0 as follows

µ0(s
j
0) =

d⋆(sj0)

C⋆
, µ0(s

j
1, a1) = µ0(s

j
1, a2) =

d⋆(sj1)

C⋆

µ0(s
j
⊕) =

3

4
· γ

2(1− γ) · d
⋆(sj1), µ0(s

j
⊖) =

1

2
· γ

2(1− γ) · d
⋆(sj1),

µ0(s−1) = 1−
∑

j

(µ0(s
j
0) + µ0(s

j
1) + µ0(s

j
⊕) + µ0(s

j
⊖))

Again, one can check that for any vj ∈ {−1, 1} and δ ∈ [0, 1/4], we have µ0(s−1) > 0 and

(ρ0, µ0, P, R) ∈ MDP(C⋆).

We use the same family P of transition probabilities as before. Following the same proof
as Lemma 3.7 and noting that the initial distribution is multiplied by an extra C⋆−1 factor,
we know that for any policy π, and any two different distributions P1, P2 ∈ P ,

L(π;P1) + L(π;P2) ≥
(C⋆ − 1)δ

32(1− γ) .

Application of Fano’s inequality. Now we are ready to apply Fano’s inequality,
that is

inf
π̂

sup
P∈P

E[L(π̂;P)] ≥ δ

64(1− γ)

(
1− N maxi̸=j KL (µ0 ⊗ Pi∥µ0 ⊗ Pj) + log 2

log|P|

)
.

Now the KL divergence satisfies

KL(µ0 ⊗ Pi∥µ0 ⊗ Pj) ≤
4(1− γ)(C⋆ − 1)

SC⋆
· S
4
· 16δ2 = 16(1− γ)(C⋆ − 1)δ2

C⋆
.

Here the first inequality comes from that µ0(s
j
1) =

c2(1−γ)(C⋆−1)
SC⋆ for some constant c2 ∈ [1, 4].

As a result, we conclude that as long as

c3(1− γ)(C⋆ − 1)Nδ2

SC⋆
≤ 1

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 127

for some universal constant c3, one has

inf
π̂

sup
P∈P

E[L(π;P)] ≳ (C⋆ − 1)δ

1− γ .

To finish the proof, we can set δ =
√

SC⋆

c3(1−γ)(C⋆−1)N
when

√
SC⋆

c3(1−γ)(C⋆−1)N
< 1

4
, and δ = 1

4

otherwise. This yields the desired lower bound (3.63).

Putting the pieces together. Now we are in position to summarize and simplify the
three established lower bounds (3.61), (3.62), and (3.63).

When C⋆ = 1, the claim in Theorem 3.7 is identical to the bound (3.61).
When C⋆ ≥ 2, we have from the bound (3.62) that

inf
π̂
sup
P

E[L(π̂;P)] ≳ min

(
1

1− γ ,
√

SC⋆

(1− γ)3N

)
≍ min

(
1

1− γ ,
√
S(C⋆ − 1)

(1− γ)3N

)
.

Further notice that
√
S(C⋆ − 1)

(1− γ)3N ≥
√

S

(1− γ)4N ≥ min

(
1

1− γ ,
S

(1− γ)2N

)
.

The claimed lower bound in Theorem 3.7 arises.
In the end, when C⋆ ∈ (1, 2), we know from the bounds (3.61) and (3.63) that

inf
π̂
sup
P

E[L(π̂;P)] ≳ max

{
min

(
1

1− γ ,
S

(1− γ)2N

)
,min

(
C⋆ − 1

1− γ ,

√
S(C⋆ − 1)

(1− γ)3N

)}

≍ min

(
1

1− γ ,
S

(1− γ)2N +

√
S(C⋆ − 1)

(1− γ)3N

)
,

which completes the proof.

Proof of Lemma 3.7

By definition, one has

L(π;P1) + L(π;P2) = JP1(π
⋆)− JP1(π) + JP2(π

⋆)− JP2(π)

=

S/4∑

j=1

ρ0(s
j
0)
(
V ⋆
P1
(sj0)− V π

P1
(sj0) + V ⋆

P2
(sj0)− V π

P2
(sj0)

)
,

where we have ignored the state s−1 since it has zero rewards. Our proof consists of three
steps. We first connect the value difference V ⋆

P1
(sj0)−V π

P1
(sj0) at sj0 to that V ⋆

P1
(sj1)−V π

P1
(sj1) at

sj1. Then, we further link the value difference at sj1 to the difference in transition probabilities,
i.e., δ in our design. In the end, we use the property of the set V to conclude the lower bound.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 128

Step 1. Since at state sj0, we only have one action a1 with r(sj0, a1) = 0, from the definition
of value function one has

V π
P1
(sj0) =

∞∑

i=0

γi+1(1− p)piV π
P1
(sj1),

for any policy π. Thus we have

V ⋆
P1
(sj0)− V π

P1
(sj0) =

∞∑

i=0

γi+1(1− p)pi
(
V ⋆
P1
(sj1)− V π

P1
(sj1)

)
>

1

4

(
V ⋆
P1
(sj1)− V π

P1
(sj1)

)
,

where we have used the fact that (assuming γ ≥ 1/2)
∞∑

i=0

γi+1(1− p)pi = 1

2
γ ≥ 1

4
.

The same conclusion holds for P2. Therefore we can obtain the following lower bound

L(π;P1) + L(π;P2) ≥
1

S

S/4∑

j=1

(
V ⋆
P1
(sj1)− V π

P1
(sj1) + V ⋆

P2
(sj1)− V π

P2
(sj1)

)
.

Step 2. Without loss of generality, we assume that under P1, P(sj⊕ | sj1, a2) = 1
2
+ δ, i.e.,

vj = +1. Clearly, in this case, a2 is the optimal action at sj1. If the policy π chooses the
sub-optimal action (i.e., a1) at sj1, then we have

V ⋆
P1
(sj1)− V π

P1
(sj1) = γ

((
1

2
+ δ

)
V ⋆
P1

(
sj⊕
)
+

(
1

2
− δ
)
V ⋆
P1

(
sj⊖
)
− 1

2
V π
P1

(
sj⊕
)
− 1

2
V π
P1

(
sj⊖
))

≥ γδ
(
V ⋆
P1

(
sj⊕
)
− V ⋆

P1

(
sj⊖
))

≥ γδ

∞∑

i=0

γiqi =
γδ

1− γq =
γδ

2(1− γ) .

On the other hand, if π(sj1) is not the optimal action (a1 in this case), we have the trivial
lower bound V ⋆

P1
(sj1)− V π

P1
(sj1) ≥ 0. As a result, we obtain

V ⋆
P1
(sj1)− V π

P1
(sj1) ≥

γδ

2(1− γ)1
{
π(sj1) ̸= π⋆

P1
(sj1)

}
,

which implies

L(π;P1) + L(π;P2) ≥
1

S
· γδ

2(1− γ)

S/4∑

j=1

(
1
{
π(sj1) ̸= π⋆

P1
(sj1)

}
+ 1

{
π(sj1) ̸= π⋆

P2
(sj1)

})

≥ 1

S
· γδ

2(1− γ)

S/4∑

j=1

1
{
π⋆
P1
(sj1) ̸= π⋆

P2
(sj1)

}
.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 129

Step 3. In the end, we use the second property of the set V , namely for any vi ̸= vj in V ,
one has ∥vi − vj∥1≥ S/8. An immediate consequence is that

S/4∑

j=1

1
{
π⋆
P1
(sj1) ̸= π⋆

P2
(sj1)

}
= ∥vP1 − vP2∥1≥

S

8
.

Taking the previous three steps collectively completes the proof.

Proof of Lemma 3.6

In the case of C⋆ = 1, we have d⋆ = µ which is the imitation learning setting. We adapt
the information-theoretic lower bound for the episodic MDPs given in the work Rajaraman
et al. (2020, Theorem 6) to the discounted setting.

Notations and Setup: Let S(D) be the set of all states that are observed in dataset D.
When C⋆ = 1, we know the optimal policy π⋆(s) at all states s ∈ S(D) visited in the dataset
D. We define Πmimic(D) as the family of deterministic policies which always take the optimal
action on each state visited in D, namely,

Πmimic(D) :=
{
∀s ∈ S(D), π(s) = π⋆(s)

}
, (3.64)

Informally, Πmimic(D) is the family of policies which are “compatible” with the dataset col-
lected by the learner.

Define MS,A as the family of MDPs over state space S and action space A. We proceed
by by lower bounding the Bayes expected suboptimality. That is, we aim at finding a
distribution P over MDPs supported on MS,A such that,

EMDP∼P

[
J(π⋆)− ED [J(π̂)]

]
≳ min

{
1

1− γ ,
S

(1− γ)2N

}
,

where π̂ is a function of dataset D.

Construction of the distribution P: We first determine the distribution of the optimal
policy, and then we design P such that conditioned on the optimal policy, the distribution is
deterministic. We let the distribution of the optimal policy be uniform over all deterministic
policies. That is, for each s ∈ S, π⋆(s) ∼ Unif(A). For every π⋆, we construct an MDP
instance in in Figure 3.6. Hence the distribution over MDPs comes from the randomness in
π.

For a fixed optimal policy π⋆, the MDP instance MDP[π⋆] is determined as follows:
we initialize with a fixed initial distribution over states ρ = {ζ, · · · , ζ, 1−(S−2)ζ, 0} where
ζ = 1

N+1
. Let the last state be a special state b which we refer to as the “bad state”. At each

state s ∈ S\{b}, choosing the optimal action renews the state in the initial distribution ρ and

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 130

1 2 S − 1. . . b

∼ ρ ∼ ρ ∼ ρ

π⋆(1) π⋆(2) π⋆(S − 1)

Figure 3.6: The hard MDP instance for the case C⋆ = 1. Upon playing the optimal (blue)
action at any state except b, the learner returns to a new state according to initial distribution
ρ = {ζ, · · ·, ζ, 1−(S−2)ζ, 0} where ζ= 1

N+1
. Any other choice of action (red) deterministically

transitions the state to b.

gives a reward of 1, while any other choice of action deterministically induces a transition to
the bad state b and offers zero reward. In addition, the bad state is absorbing and dispenses
no reward regardless of the choice of action. That is,

P (· | s, a) =
{
ρ, s ∈ S \ {b}, a = π⋆(s)

δb, otherwise,
(3.65)

and the reward function of the MDP is given by

r(s, a) =

{
1, s ∈ S \ {b}, a = π⋆(s),

0, otherwise.
(3.66)

Under this construction, it is easy to see that JMDP(π
⋆(MDP)) = 1/(1 − γ) since the

optimal action always acquires reward 1 throughout the trajectory. Thus the Bayes risk can
be written as

EMDP∼P

[1

1− γ − E
[
JMDP(π̂(D))

]]
. (3.67)

Understanding the conditional distribution. Now we study the conditional distribu-
tion of the MDP given the observed dataset D. We start from the conditional distribution
of the optimal policy. We present the following lemma without proof.

Lemma 3.8 (Rajaraman et al. (2020, Lemma A.14)). Conditioned on the dataset D collected
by the learner, the optimal policy π⋆ is distributed ∼ Unif(Πmimic(D)). In other words, at
each state visited in the dataset, the optimal action is fixed. At the remaining states, the
optimal action is sampled uniformly from A.

Now we define the conditional distribution of the MDPs given the dataset D collected
by the learner as below.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 131

Definition 3.2. Define P(D) as the distribution of MDP conditioned on the observed dataset
D. In particular, π⋆ ∼ Unif(Πmimic(D)) and MDP = MDP[π⋆].

From Lemma 3.8 and the definition of P(D) in Definition 3.2, applying Fubini’s theorem
gives

EMDP∼P

[1

1− γ − ED [J(π̂)]
]
= ED

[
EMDP∼P

[
1

1− γ − J(π̂)
]]
. (3.68)

Lower bounding the Bayes Risk. Next we relate the Bayes risk to the first time the
learner visits a state unobserved in D.

Lemma 3.9. In the trajectory induced by the infinite-horizon MDP and policy, define the
stopping time τ as the first time that the learner encounters a state s ̸= b that has not been
visited in D at time t. That is,

τ =

{
inf{t : st ̸∈ S(D) ∪ {b}} ∃t : st ̸∈ S(D) ∪ {b}
+∞ otherwise.

(3.69)

Then, conditioned on the dataset D collected by the learner,

EMDP∼P(D)

[
J(π⋆)− E [J(π̂)]

]
≥
(
1− 1

|A|

)
EMDP∼P(D)

[
Eπ̂(D)

[
γτ

1− γ

]]
(3.70)

We defer the proof to the end of this section.

Plugging the result of Lemma 3.9 into equality (3.68), we obtain

EMDP∼P

[
J(π⋆)− E [J(π̂)]

]
≥
(
1− 1

|A|

)
ED

[
EMDP∼P(D)

[
Eπ̂(D)

[
γτ

1− γ

]]]
,

(i)

≥
(
1− 1

|A|

)
1

2(1− γ)ED

[
EMDP∼P(D)

[
Prπ̂(D)

[
τ ≤ ⌊ 1

log(1/γ)
⌋
]]]

,

=

(
1− 1

|A|

)
1

2(1− γ)EMDP∼P

[
ED

[
Prπ̂(D)

[
τ ≤ ⌊ 1

log(1/γ)
⌋
]]]

,

where (i) uses Markov’s inequality. Lastly we bound the probability that we visit a state
unobserved in the dataset before time ⌊ 1

log(1/γ)
⌋. For any policy π̂, from a similar proof

as Rajaraman et al. (2020, Lemma A.16) we have

EMDP∼P

[
ED

[
Prπ̂

[
τ ≤ ⌊ 1

log(1/γ)
⌋
]]]

≳ min

{
1,

S

log(1/γ)N

}
. (3.71)

Therefore,

EMDP∼P

[
J(π⋆)− E [J(π̂)]

]
≳

(
1− 1

|A|

)
1

log(1/γ)
min

{
1,

S

(1− γ)N

}

≥
(
1− 1

|A|

)
γ

1− γ min

{
1,

S

(1− γ)N

}

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 132

Here we use the fact that log(x) ≤ x − 1. Since 1 − 1
|A| ≥ 1/2 for |A|≥ 2, the final result

follows.

Proof of Lemma 3.9. To facilitate the analysis, we define an auxiliary random variable
τb to be the first time the learner encounters the state b. If no such state is encountered, τb
is defined as +∞. Formally,

τb =

{
inf{t : st = b}, ∃t : st = b,

+∞, otherwise.

Conditioned on the observed dataset D, we have

1

1− γ − EMDP∼P(D) [J(π̂)] =
1

1− γ − EMDP∼P(D)

[
Eπ̂

[∑∞

t=0
γtr(st, at)

]]
(3.72)

≥ EMDP∼P(D)

[
Eπ̂

[
γτb−1

1− γ

]]
(3.73)

where the last inequality follows from the fact that r is bounded in [0, 1], and the state b is
absorbing and always offers 0 reward. Fixing the dataset D and the optimal policy π⋆ (which
determines the MDP MDP[π⋆]), we study Eπ̂(D)

[
γτb−1

1−γ

]
and try to relate it to Eπ̂(D)

[
γτ

1−γ

]
.

Note that for any t and state s ∈ S,

Prπ̂ [τb = t+ 1, τ = t, st = s] = Prπ̂ [τb = t+ 1 | τ = t, st = s] Prπ̂ [τ = t, st = s]

=
(
1− 1{π̂(s) = π⋆(s)}

)
Prπ̂ [τ = t, st = s] .

In the last equation, we use the fact that the learner must play an action other than π⋆(st) to
visit b at time t+1. Next we take an expectation with respect to the randomness of π⋆ which
conditioned on D is drawn from Unif(Πmimic(D)). Note that MDP[π⋆] is also determined
conditioning on π⋆. Observe that the dependence of the second term Prπ̂ [τ = t, st = s] on
π⋆ comes from the probability computed with the underlying MDP chosen as MDP[π⋆].
However it only depends on the characteristics of MDP[π⋆] on the observed states in D. On
the other hand, the first term (1− 1{π̂(s) = π⋆(s)}) depends only on π⋆(s), where s is an
unobserved state. Thus the two terms are independent. By taking expectation with respect
to the randomness of π⋆ ∼ Unif(Πmimic(D)) and MDP = MDP[π⋆], we have

EMDP∼P(D)

[
Prπ̂(D) [τb = t+ 1, τ = t, st = s]

]

= EMDP∼P(D)

[
1− 1{π̂(s) = π⋆(s)}

]
EMDP∼P(D)

[
Prπ̂ [τ = t, st = s]

]

=

(
1− 1

|A|

)
EMDP∼P(D)

[
Prπ̂ [τ = t, st = s]

]

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 133

where in the last equation, we use the fact that conditioned on D either (i) s = b, in
which case τ ̸= t and both sides are 0, or (ii) if s ̸= b, then τ = t implies that the state
s visited at time t must not be observed in D, so π⋆(s) ∼ Unif(A). Using the fact that
Prπ̂ [τb = t+ 1, τ = t, st = s] ≤ Prπ̂ [τb = t+ 1, st = s] and summing over s ∈ S results in the
inequality,

EMDP∼P(D)

[
Prπ̂ [τb = t+ 1]

]
≥
(
1− 1

|A|

)
EMDP∼P(D)

[
Prπ̂ [τ = t]

]
.

Multiplying both sides by γt

1−γ
and summing over t = 1, · · · ,∞,

EMDP∼P(D)

[
Eπ̂

[
γτb−1

1− γ

]]
≥
(
1− 1

|A|

)
EMDP∼P(D)

[
Eπ̂

[
γτ

1− γ

]]
.

here we use the fact that the initial distribution ρ places no mass on the bad state b. There-
fore, Prπ̂(D) [τb = 1] = ρ(b) = 0. This equation in conjunction with (3.73) completes the
proof.

3.9.7 Imitation learning in discounted MDPs

In Theorem 3.3, we have shown that imitation learning has a worse rate than LCB even in
the contextual bandit case when C⋆ ∈ (1, 2). In this section, we show that if we change the
concentrability assumption from density ratio to conditional density ratio, behavior cloning
continues to work in certain regime. This also shows that behavior cloning works when
C⋆ = 1 in the discounted MDP case.

Theorem 3.8. Assume the expert policy π⋆ is deterministic and that max (1−γ)d∗(a|s)
µ(a|s) ≤ C⋆

for some C⋆ ∈ [1, 2). We consider a variant of behavior cloning policy:

Πmimic = {π ∈ Πdet : ∀s ∈ D, π(· | s) = argmax
a

N(s, a)}. (3.74)

Here π ∈ Πdet refers to the set of all deterministic policies. Then for any π̂ ∈ Πmimic, we
have

ED[J(π
∗)− J(π̂)] ≲ S

C0N(1− γ)2 ,

where C0 = 1− exp
(
−KL

(
1
2
∥ 1
C⋆

))
.

Proof. Define the following population loss:

L(π̂, π∗) = ED[Es∼d⋆ [1{π̂(s) ̸= π∗(s)}]]. (3.75)

From Lemma 3.5, we know that it suffices to control the population loss L(π̂, π⋆). From a
similar argument as in Rajaraman et al. (2020), we know that when C⋆ = 1, the expected
suboptimality of π̂ is upper bounded by min(1

1−γ
, S
(1−γ)2N

).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 134

When C⋆ ∈ (1, 2), the contribution to the indicator loss can be decomposed into two
parts: (1) the loss incurred due to the states not included in D whose expected value is upper
bounded by S/N ; (2) the loss incurred due to states the states for which the optimal action is
not the most frequent in D. Conditioned on N(s) and from µ(π⋆(s)|s) ≥ d⋆(π⋆(s)|s)/C⋆ =
1/C⋆ the probability of not picking the optimal action is upper bounded by exp(−N(s) ·
KL
(
Bern

(
1
2

)
∥Bern

(
1
C⋆

))
) using Chernoff’s inequality. We have

E[L(π̂, π⋆)] (3.76)
= Es∼d⋆,D[1{π̂(s) ̸= π⋆(s)}]
≤ Es∼d⋆,D[P(N(s) = 0)] + Es∼d⋆ ED[P(π̂(s) ̸= π⋆(s)) | N(s) ≥ 1]

≲
S

N
+ Es∼d⋆ ED

[
exp

(
−N(s) · KL

(
Bern

(
1

2

)
∥Bern

(
1

C⋆

)))
| N(s) ≥ 1)

]

≲
S

N
+
∑

s

p(s)
N∑

n=1

(
N

n

)
exp

(
−n · KL

(
Bern

(
1

2

)
∥Bern

(
1

C⋆

)))
p(s)n(1− p(s))N−n

≤ S

N
+
∑

s

p(s)

(
1− p(s)

(
1− exp

(
−KL

(
Bern

(
1

2

)
∥Bern

(
1

C⋆

)))))N

. (3.77)

Denote C0 = 1 − exp
(
−KL

(
Bern

(
1
2

)
∥Bern

(
1
C⋆

)))
. Note that maxx∈[0,1] x(1 − C0x)

N ≤
1

C0(N+1)
(1 − 1

N+1
)N ≤ 4

9C0N
. Thus we have E[L(π̂, π⋆)] ≤ 4S

9C0N
. We then use Lemma 3.5 to

conclude that the final sub-optimality is upper bounded by S
C0N(1−γ)2

.

3.10 LCB in episodic Markov decision processes
The aim of this section is to illustrate the validity of Conjecture 1 in episodic MDPs. In
Section 3.10.1, we give a brief review of episodic MDPs, describing the batch dataset and
offline RL objective in this setting, and introducing additional notation. We then present
a variant of the VI-LCB algorithm (Algorithm 5) for episodic MDPs and state its sub-
optimality guarantees in Section 3.10.2. In Section 3.10.3, we show that the proposed penalty
captures a confidence interval and prove a value difference lemma for Algorithm 5. Section
3.10.4 is devoted to the proof of the sub-optimality upper bound. In Section 3.10.5, we give
an alternative sub-optimality decomposition as an attempt to obtain a tight dependency on
C⋆ in the regime C⋆ ∈ [1, 2). We analyze the sub-optimality in this regime in a special
example provided in Section 3.10.6.

3.10.1 Model and notation

Episodic MDP. We consider an episodic MDP described by a tuple (S,A,P ,R, ρ,H),
where S = {Sh}Hh=1 is the state space, A is the action space, P = {Ph}Hh=1 is the set
of transition kernels with Ph : Sh × A 7→ ∆(Sh+1), R = {Rh}Hh=1 is the set of reward

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 135

distributions Rh : Sh × A → ∆([0, 1]) with r : S × A 7→ [0, 1] as the expected reward
function, ρ : S1 → ∆(S1) is the initial distribution, and H is the horizon. To streamline our
analysis, we assume that {Sh}Hh=1 partition the state space S and are disjoint.

Policy and value functions. Similar to the discounted case, we consider deterministic
policies π : S 7→ A that map each state to an action. For any h ∈ {1, . . . , H}, s ∈ Sh, and
a ∈ Ah, the value function V π

h : S 7→ R and Q-function Qπ
h : S × A 7→ R are respectively

defined as

V π
h (s) := E

[
H∑

i=h

ri

∣∣∣∣∣sh = s, ai = π(si) for i ≥ h

]
,

Qπ
h(s, a) := E

[
H∑

i=h

ri

∣∣∣∣∣sh = s, ah = a, ai = π(si) for i ≥ h+ 1

]
.

Since we assume that the set of state in different levels are disjoint, we drop the subscript h
when it is it clear from the context. The expected value of a policy π is defined analogously
to the discounted case:

J(π) := Es∼ρ[V
π
1 (s)].

It is well-known that a deterministic policy π⋆ exists that maximizes the value function from
any state.

Episodic occupancy measures. We define the (normalized) state occupancy measure
dπ : S 7→ [0, H] and state-action occupancy measure dπ : S ×A 7→ [0, H] as

dπ(s) :=
1

H

H∑

h=1

Ph(sh = s; π), and dπ(s, a) :=
1

H

H∑

h=1

Ph(sh = s, ah = a; π), (3.78)

where we overload notation and write Ph(sh = s; π) to denote the probability of visiting
state sh = s (and similarly sh = s, ah = a) at level h after executing policy π and starting
from s1 ∼ ρ(·).

Batch dataset. The batch dataset D consists of tuples (s, a, r, s′), where r = r(s, a) and
s′ ∼ P (· | s, a). As in the discounted case, we assume that (s, a) pairs are generated
i.i.d. according to a data distribution µ, unknown to the agent. We denote by N(s, a) ≥ 0
the number of times a pair (s, a) is observed in D and by N = |D| the total number of
samples.

The learning objective. Fix a deterministic policy π. The expected sub-optimality of
policy π̂ computed based on dataset D competing with policy π is defined as

ED [J(π)− J(π̂)] . (3.79)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 136

Algorithm 5 Episodic value iteration with LCB
1: Inputs: Batch dataset D.
2: V̂H+1 ←[0.
3: for h = H − 1, . . . , 1 do
4: for s ∈ Sh, a ∈ A do
5: if N(s, a) = 0 then
6: Set r(s, a) = 0.
7: Set the empirical transition vector P̂s,a randomly.
8: Set the penalty b(s, a) = H

√
L.

9: else
10: Set r(s, a) according to dataset.
11: Compute the empirical transition vector P̂s,a according to dataset.
12: Set the penalty b(s, a) = H

√
L/N(s, a), where L = 2000 log(2S|A|/δ).

13: Compute Q̂h(s, a)←[r(s, a)− b(s, a) + P̂s,a · V̂h+1.
14: Compute V̂h(s)←[maxa Q̂h(s, a) and π̂(s) ∈ argmaxa Q̂h(s, a).
15: Return: π̂.

Assumption on dataset coverage. Equipped with the definitions for occupancy densi-
ties in episodic MDPs, we define the concentrability coefficient in the episodic case analo-
gously: given a deterministic policy π, Cπ is the smallest constant satisfying

dπ(s, a)

µ(s, a)
≤ Cπ ∀s ∈ S, a ∈ A. (3.80)

Matrix notation. We adopt a matrix notation similar to the one described in Section 3.4.

Bellman equations. Given any value function V : Sh+1 7→ R, the Bellman value operator
at each level h ∈ {1, . . . , H}

ThV = rh + PhV. (3.81)

We write (ThV)(s, a) = rh(s, a) + (PhV)(s, a) for S ∈ Sh, a ∈ A.

3.10.2 Episodic value iteration with LCB

Algorithm 5 presents a pseudocode for value iteration with LCB in the episodic setting. As
in the classic value iteration in episodic MDPs, this algorithm computes values and policy
through a backward recursion starting at h = H with the distinction of subtracting penalties
when computing the Q-function. This algorithm can be viewed as an instance of Algorithm
5 of Jin et al. (2020c).

In the following theorem, we provide an upper bound on the expected sub-optimality of
the policy returned by Algorithm 5. The proof is presented in Section 3.10.4.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 137

Theorem 3.9 (LCB sub-optimality, episodic MDP). Consider an episodic MDP and assume
that

dπ(s, a)

µ(s, a)
≤ Cπ ∀s ∈ S, a ∈ A

holds for an arbitrary deterministic policy π. Set δ = 1/N in Algorithm 5. Then, for all
Cπ ≥ 1, one has

ED[J(π)− J(π̂)] ≲ min

{
H, Õ

(
H2

√
SCπ

N

)}
.

In addition, if 1 ≤ Cπ ≤ 1 + L/(200N), then we have a tighter performance guarantee

ED[J(π)− J(π̂)] ≲ min

{
H, Õ

(
H2 S

N

)}
.

We make the following conjecture that the sub-optimality rate smoothly transitions from
1/N to 1/

√
N as Cπ increases from 1 to 2.

Conjecture 2. Assume as in Theorem 3.9. If 1 ≤ Cπ ≤ 2, then policy π̂ returned by
Algorithm 5 obeys

ED[J(π)− J(π̂)] ≲ min

{
H, Õ

(
H2

√
S(Cπ − 1)

N

)}
.

We present our attempt in proving the above conjecture in part in Section 3.10.5 followed
by an example in Section 3.10.6.

3.10.3 Properties of Algorithm 5

In this section, we prove two properties of Algorithm 5. We first prove that the penalty
captures the Q-function lower confidence bound. Then, we prove a value difference lemma.

Clean event in episodic MDPs. Define the following clean event

EEMDP :=
{
∀h,∀s ∈ Sh,∀a :

∣∣∣r(s, a) + Ps,a · V̂h+1 − r̂(s, a)− P̂s,a · V̂h+1

∣∣∣≤ bh(s, a)
}
, (3.82)

where V̂H+1 = 0. In the following lemma, we show that the penalty used in Algorithm 5
captures the confidence interval of the empirical expectation of the Q-function.

Lemma 3.10 (Clean event probability, episodic MDP). One has P(EEMDP) ≥ 1− δ.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 138

Proof. The proof is analogous to the proof of Lemma 3.1. Fix a tuple (s, a, h). If N(s, a) = 0,
it is immediate that

|r(s, a) + Ps,a · V̂h+1 − r̂(s, a)− P̂s,a · V̂h+1|≤ H
√
L.

When N(s, a) ≥ 1, we exploit the independence of V̂h+1 and P̂s,a (thanks to the disjoint state
space at each step h) and conclude by Hoeffding’s inequality that for any δ1 ∈ (0, 1)

P

(
|r(s, a) + Ps,a · V̂h+1 − r̂(s, a) + Ps,a · V̂h+1|≥ H

√
2 log(2/δ1)

N(s, a)

)
≤ δ1.

The claim follows by taking a union bound over s ∈ Sh, a ∈ A, h ∈ [H] and setting δ1 =
δ/(S|A|).

Value difference lemma. The following lemma bounds the sub-optimality of Algorithm
5 by expected bonus. This result is similar to Theorem 4.2 in Jin et al. (2020c). We present
the proof for completeness.

Lemma 3.11 (Value difference for Algorithm 5). Let π be an arbitrary policy. On the event
EEMDP, the policy π̂ returned by Algorithm 5 satisfies

J(π)− J(π̂) ≤ 2H Edπ [b(s, a)] .

Proof. Define the following self-consistency error

ιh(s, a) = ThV̂h+1(s, a)− Q̂h(s, a),

where Th is the Bellman value operator defined in (3.81). Let π′ be an arbitrary policy. By
Jin et al. (2020c, Lemma A.1), one has

V̂1(s)− V π′

1 (s) =
H∑

h=1

E[Q̂h(sh, π̂(sh))− Q̂h(sh, π
′(sh)) | s1 = s]

−
H∑

h=1

E[ιh(sh, π
′(sh)) | s1 = s]

(3.83)

Setting π′ ←[π in (3.83) gives

V π
1 (s)− V̂1(s) =

H∑

h=1

E[ιh(sh, π(sh)) | s1 = s]−
H∑

h=1

E[Q̂h(sh, π̂(sh))− Q̂h(sh, π(sh)) | s1 = s]

≤
H∑

h=1

E[ιh(sh, π(sh)) | s1 = s], (3.84)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 139

where the last line uses the fact that π̂(s) maximizes Q̂h(s, a).
We apply (3.83) once more, this time setting π′ ←[π̂:

V̂1(s)− V π̂
1 (s) =

H∑

h=1

E[Q̂h(sh, π̂(sh))− Q̂h(sh, π̂(sh)) | s1 = s]−
H∑

h=1

E[ιh(sh, π̂(sh)) | s1 = s]

≤ −
H∑

h=1

E[ιh(sh, π
′(sh)) | s1 = s]. (3.85)

Adding (3.84) and (3.85), we have

V π
1 (s)− V π̂

1 (s) = V π
1 (s)− V̂1(s) + V̂1(s)− V π̂

1 (s)

≤
H∑

h=1

E[ιh(sh, π(sh)) | s1 = s]−
H∑

h=1

E[ιh(sh, π
′(sh)) | s1 = s]. (3.86)

By Jin et al. (2020c, Lemma 5.1), conditioned on EEMDP, we have

0 ≤ ιh(s, a) ≤ 2bh(s, a) ∀s, a, h.

The proof is completed by applying the above bound in (3.86) and taking an expectation
with respect to ρ

Eρ[V
π
1 (s)− V π̂

1 (s)] ≤ 2
H∑

h=1

E[bh(sh, π(sh))]

= 2
H∑

h=1

Ph(sh; π)bh(sh, π(sh)) = 2H Edπ [b(s, a)],

where the last equation hinges on the definition of occupancy measure for episodic MDPs
given in (3.78).

3.10.4 Proof of Theorem 3.9

The proof follows a similar decomposition argument as in Theorem 3.6. Nonetheless, we
present a complete proof for the reader’s convenience.

We divide the proof into two parts and separately analyze the general case Cπ ≥ 1 and
C⋆ ≤ 1 + L/(200N) since the techniques used in the proof of these two claims are rather
distinct.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 140

The general case when Cπ ≥ 1. We decompose the expected sub-optimality into two
terms

ED

[∑

s

ρ(s)[V π
1 (s)− V π̂

1 (s)]

]
= ED

[∑

s

ρ(s)[V π
1 (s)− V π̂

1 (s)]1{EEMDP}
]
=: T1

+ ED

[∑

s

ρ(s)[V π
1 (s)− V π̂

1 (s)]1{EcEMDP}
]
=: T2.

(3.87)

The first term T1 captures the sub-optimality under the clean event EEMDP whereas T2 rep-
resents the sub-optimality suffered when the constructed confidence interval via the penalty
function falls short of containing the empirical Q-function estimate. We will prove in subse-
quent sections that T1 and T2 are bounded according to:

T1 ≤ 32H2

√
SCπL

N
(3.88a)

T2 ≤ Hδ. (3.88b)

Taking the above bounds as given for the moment and setting δ = 1/N , we conclude that

ED[J(π)− J(π̂)] ≲ min

(
H, 32H2

√
SCπL

N

)
.

The case when Cπ ≤ 1 + L/(200N). To obtain faster rates in this regime, we resort to
directly analyzing the policy sub-optimality instead of bounding the value sub-optimality
(such as by Lemma 3.11). It is useful to connect the sub-optimality of a policy to whether
it disagrees with the optimal policy at each state. The following lemma due to Ross and
Bagnell (2010, Theorem 2.1) provides such a connection.

Lemma 3.12. For any deterministic policies π, π̂, one has

J(π)− J(π̂) ≤ H2 Es∼dπ [1{π(s) ̸= π̂(s)}].

We apply Lemma 3.12 to bound the sub-optimality and further decompose it based on
whether any samples are observed on each state s.

ED[ρ(s)[V
π
1 (s)− V π̂

1 (s)]]

≤ H2 ED Edπ [1{π(s) ̸= π̂(s)}]
= H2 ED Edπ [1{π(s) ̸= π̂(s)}1{N(s, π(s)) = 0}] =: T ′

1

+H2 ED Edπ [1{π(s) ̸= π̂(s)}1{N(s, π(s)) ≥ 1}] =: T ′
2.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 141

In a similar manner to the proof of Theorem 3.6, we prove the following bounds on T ′
1 and

T ′
2:

T ′
1 ≤ H24C

π

N
; (3.89a)

T ′
2 ≲

2SCπH2L

N
+H2 |A|

N9
. (3.89b)

Proof the bound (3.88a) on T1

By the value difference Lemma 3.11, one has

ED[
∑

s

ρ(s)[V π(s)− V π̂(s)]1{EEMDP}] ≤ 2H
∑

s,a

dπ(s, a)ED[b(s, a)]

≤ 2H
∑

s,a

dπ(s, a)H ED

[√
L

N(s, a) ∨ 1

]

≤ 32H2
∑

s,a

dπ(s, a)

[√
L

Nµ(s, a)

]
,

where the last inequality uses the bound on inverse moments of binomial random variables
given in 3.14 with c1/2 ≤ 16. We then apply the concentrability assumption and the Cauchy-
Schwarz inequality to conclude that

T1 ≤ 32H2
∑

s,a

√
dπ(s, a)

√
HCπµ(s, a)

[√
L

Nµ(s, a)

]

≤ 32H2

√
CπLH

N

∑

s

√
dπ(s, π(s)) ≤ 32H2

√
SCπL

N
.

Proof of the bound (3.88b) on T2

We use a argument similar to that in the proof of (3.54c). First, observe that
∑

s ρ(s)[V
π
1 (s)−

V π̂(s)] ≤ H. Consequently, in light of Lemma 3.10 one can conclude

T3 ≤ H ED[1{EcEMDP}] = H P(EcEMDP) ≤ Hδ.

Proof of the bound (3.89a) on T ′
1

We have

T ′
1 ≤ H2 Edπ ED[1{N(s, π(s)) = 0}] ≤ H2 Edπ P(N(s, π(s)) = 0).

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 142

It follows from the concentrability assumption dπ(s, π(s))/µ(s, π(s)) ≤ Cπ that

T1 ≤ H2
∑

s

Cπµ(s, π(s))P(N(s, π(s)) = 0) = H2Cπ
∑

s

µ(s, π(s))(1− µ(s, π(s))N .

Note that maxx∈[0,1] x(1− x)N ≤ 4/(9N). We thus conclude that

T1 ≤ H2Cπ
∑

s

µ(s, π(s))(1− µ(s, π(s))N ≤ H24C
π

9N
.

Proof of the bound (3.89b) on T ′
2

We prove the bound on T ′
2 by partitioning the states based on how much they are occupied

under the target policy. Define the following set:

O1 :=

{
s | dπ(s) <

2CπL

N

}
. (3.90)

We can then decompose T ′
2 according to whether state s belongs to O1:

T ′
2 = H2

∑

s∈O1

dπ(s)ED[1{π̂(s) ̸= π(s)}1{N(s, π(s)) ≥ 1}] =: T2,1

+H2
∑

s̸∈O1

dπ(s)ED[1{π̂(s) ̸= π(s)}1{N(s, π(s)) ≥ 1}] =: T2,2.

Here, T2,1 captures the sub-optimality due to the less important states under the target
policy. We will shortly prove the following bounds on these two terms:

T2,1 ≤
2SCπH2L

N
and T2,2 ≲ H2 |A|

N9
.

Proof of the bound on T2,1. Since ED[1{π̂(s) ̸= π(s)}1{N(s, π(s)) ≥ 1}] ≤ 1, it follows
immediately that

T2,1 ≤ H2
∑

s∈S1

dπ(s) ≤
2SCπH2L

N
,

where the last inequality relies on the definition of O1 provided in (3.90).

Proof of the bound on T2,2. The term T2,2 is equal to

T2,2 = H2
∑

s̸∈O1

dπ(s)P (π̂(s) ̸= π(s), N(s, π(s)) ≥ 1) .

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 143

We subsequently show that the probability P (π̂(s) ̸= π(s), N(s, π(s)) ≥ 1) is small. Fix a
state s ̸∈ O1 and let h be the level to which s belongs. The concentrability assumption along
with the constraint on dπ(s) implies the following lower bound on µ(s, π(s)):

µ(s, π(s)) ≥ 1

Cπ
dπ(s) ≥

1

Cπ

2CπL

N
=

2L

N
. (3.91)

On the other hand, by the concentrability assumption and using Cπ ≤ 1+ L
200N

, the following
upper bound holds for µ(s, a ̸= π(s)):

µ(s, a) ≤
∑

a̸=π(s)

µ(s, a) ≤ 1− 1

Cπ
≤ L

200N
, (3.92)

The above bounds suggest that the target action is likely to be included in the dataset more
frequently than the rest of the actions for s ̸∈ O1. We will see shortly that in this scenario, the
LCB algorithm picks the target action with high probability. The bounds (3.91) and (3.92)
together with Chernoff’s bound give

P

(
N(s, a ̸= π(s)) ≤ 5L

200

)
≥ 1− exp

(
− L

200

)
;

P (N(s, π(s)) ≥ L) ≥ 1− exp

(
−L
4

)
.

We can thereby write an upper bound Q̂h(s, a ̸= π(s)) and a lower bound on Q̂h(s, π(s)). In
particular, when N(s, a) ≤ 5L

200
, one has

Q̂h(s, a) = rh(s, a)− bh(s, a) + P̂s,a · V̂h+1

= rh(s, a)−H
√

L

N(s, a) ∨ 1
+ P̂s,a · V̂h+1

≤ 1−H
√

L

5L/200
+H ≤ −4H,

where we used the fact that L ≥ 70. When N(s, π(s)) ≥ L, one has

Q̂h(s, π(s)) = rh(s, π(s))−H
√

L

N(s, π(s))
+ P̂s,π(s) · Vh+1 ≥ −H.

Note that if both N(s, a ̸= π(s)) ≤ 5L
200

and N(s, π(s)) ≥ L hold, we must have Q̂h(s, a ̸=
π(s)) < Q̂h(s, π(s)). Therefore, we deduce that

P (π̂(s) ̸= π(s), N(s, π(s)) ≥ 1) ≤ (|A|−1) exp
(
− L

200

)
+ exp

(
−1

4
L

)
≤ |A|exp

(
− L

200

)
,

which further implies

T2,2 ≤ H2
∑

s̸∈O1

dπ(s)|A|exp
(
− L

200

)
≤ H2|A|exp

(
− L

200

)
≲ H2|A|N−9.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 144

3.10.5 The case of Cπ ∈ [1, 2)

In this section, we present an attempt in obtaining tight bounds on the LCB algorithm for
episodic MDPs in the regime Cπ ∈ [1, 2). We start with a decomposition similar to the one
given in (3.87).

ED

[∑

s

ρ(s)[V π
1 (s)− V π̂(s)]

]
= ED

[∑

s

ρ(s)[V π
1 (s)− V π̂(s)]1{EEMDP}

]
=: T1

+ ED

[∑

s

ρ(s)[V π
1 (s)− V π̂(s)]1{EcEMDP}

]
=: T2.

An upper bound on the term T2 is already proven in (3.88b). We follow a different route for
bounding the term T1. For any state s ∈ S, define

µ̄(s) :=
∑

a̸=π(s)

µ(s, a) (3.93)

to be the total mass on actions not equal to the target policy π(s). Consider the following
set:

B := {s | µ(s, π(s)) ≤ 9µ̄(s)}. (3.94)

The set B includes the states for which the expert action is drawn more frequently under
the data distribution. We then decompose T1 based on whether state s belongs to B

T2 = ED

[∑

s∈B

ρ(s)[V π
1 (s)− V π̂(s)]1{EEMDP}

]
=: β1 (3.95)

+ ED

[∑

s̸∈B

ρ(s)[V π
1 (s)− V π̂(s)]1{EEMDP}

]
=: β2. (3.96)

We prove the following bound on β1:

β1 ≤ 136H2

√
S(Cπ − 1)L

N
. (3.97)

We conjecture that β2 is bounded similarly:

β2 ≲ H2

√
S(Cπ − 1)L

N
. (3.98)

We demonstrate our conjecture on β2 in a special episodic MDP case with H = 3, |Sh|= 2,
and |A|= 2 in Section 3.10.6.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 145

Proof of the bound (3.97) on β1. By Lemma 3.10, it follows that

β1 = ED[
∑

s∈B

ρ(s)[V π(s)− V π̂(s)]1{EEMDP}]

≤ 2H
∑

s∈B

dπ(s, π(s))ED[b(s, π(s))]

≤ 2H
∑

s∈B

dπ(s, π(s))H ED

[√
L

N(s, π(s)) ∨ 1

]

≤ 32H2
∑

s∈B

dπ(s, π(s))

[√
L

Nµ(s, π(s))

]

In the first inequality, we substituted the definition of penalty and the second inequality
arises from Lemma 3.14 with c1/2 ≤ 16. We then apply the concentrability assumption to
bound dπ(s, π(s)) ≤ Cπµ(s, π(s)) and thereby conclude

β1 ≤ 32H2
∑

s∈B

Cπµ(s, π(s))

[√
L

Nµ(s, π(s))

]

= 32CπH2

√
L

N

∑

s∈B

√
µ(s, π(s))

≤ 32CπH2

√
LS

N

√∑

s∈B

µ(s, π(s)),

where the last line is due to Cauchy-Schwarz inequality. We continue the bound relying on
the definition of B

β1 ≤ 32CπH2

√
LS

N

√∑

s

µ(s, π(s))1{µ(s, π(s)) ≤ 9µ̄(s)} ≤ 32CπH2

√
LS

N

√∑

s

9µ̄(s).

(3.99)

It is easy to check that the concentrability assumption implies the following bound on the
total mass over the actions not equal to π(s)

∑

s

µ̄ ≤ Cπ − 1

Cπ
.

Substituting the above bound to (3.99) and bounding Cπ ≤ 2 yields

β1 ≤ 136H2

√
S(Cπ − 1)L

N
.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 146

3.10.6 Analysis of LCB for a simple episodic MDP

We consider an episodic MDP with H = 3, S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6}, and
A = {1, 2}, where we assume without loss of generality that action 1 is optimal in all states.
We are interested in bounding the β2 term defined in (3.96) when Cπ ∈ [1, 2):

β2 = ED

 ∑

s:µ(s,π⋆(s))≥9µ̄(s)

ρ(s)[V π
1 (s)− V π̂

1 (s)]1{EEMDP}

 . (3.100)

Note that β2 captures sub-optimality in states for which µ(s, π(s)) > 9µ̄(s). To illustrate
the key ideas and avoid clutter, we consider the following setting:

1. Competing with the optimal policy π(s) = π⋆(s) = 1 and thus the concentrability
assumption d⋆(s, a) ≤ C⋆µ(s, a) for all s ∈ S, a ∈ A;

2. µ(s, 1) ≥ 9µ(s, 2) for all s ∈ S;

3. N(s, a) = Nµ(s, a) ≥ 1 for all s ∈ S, a ∈ A.

4. We assume that the rewards are deterministic and consider an implementation of Al-
gorithm 5 with deterministic rewards. In particular, at level H this implementation of
VI-LCB sets Q̂H according to

Q̂H(s, a) =

{
0 N(s, a) = 0;

r(s, a) N(s, a) ≥ 1.

Outline of the proof. Let us first give an outline for the sub-optimality analysis of the
episodic VI-LCB Algorithm 5 in this example. We begin by showing that the concentrability
assumption in conjunction with µ(s, 1) ≥ 9µ(s, 2) dictates certain bounds on the penalties.
Afterward, we argue that the episodic VI-LCB algorithm finds the optimal policy at levels 2
and 3 with high probability. This result allows writing the sub-optimality as an expectation
over the product of the gap g1(s) = Q⋆

1(s, 1) − Q⋆
1(s, 2) and the probability that the agent

chooses the wrong action, i.e., P(π̂(s) ̸= 1). Consequently, if for state s the gap g1(s) is
small, the sub-optimality incurred by that state is also small. On the other hand, when the
gap is large, we prove via Hoeffding’s inequality that P(π̂(s) ̸= 1) is negligible.

Bounds on penalties. The setting introduced above dictates the following bounds on
penalties

bh(s, 2)− bh(s, 1) ≥
1

3
bh(s, 2) + bh(s, 1), (3.101a)

3

√
LC⋆

N(d̄(s, 1) + C⋆ − 1)
≤ bh(s, 1) ≤ 3

√
LC⋆

Nd̄⋆(s, 1)
, (3.101b)

whose proofs can be found at the end of this subsection.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 147

VI-LCB policy in each level. The main idea for a tight sub-optimality bound is to
directly compare Q̂h(s, 1) to Q̂h(s, 2) at every level. Specifically, we first determine the
conditions under which E[Q̂h(s, 1) − Q̂h(s, 2)] > 0 and then show Q̂h(s, 1) > Q̂h(s, 2) with
high probability via a concentration argument. It turns out that these conditions depend on
the value of the sub-optimality gap associated with a state defined as

gh(s) := Q⋆
h(s, 1)−Q⋆

h(s, 2) ≥ 0 ∀s ∈ S, ∀h ∈ {1, 2, 3}. (3.102)

We start the analysis at level 3 going backwards to level 1.

• Level 3. Since N(s, a) ≥ 1 and the rewards are deterministic, the value function
computed by VI-LCB algorithm is equal to V ⋆

3 and action 1 is selected for both states
5 and 6, i.e.,

V̂3 = V ⋆
3 . (3.103)

• Level 2. We first show that Q̂2(s, 1) is greater than Q̂2(s, 2) in expectation

E[Q̂2(s, 1)− Q̂2(s, 2)] =E[r(s, 1)− b2(s, 1) + P̂s,1 · V ⋆
3 − r(s, 2) + b2(s, 2)− P̂s,2 · V ⋆

3]

=b2(s, 2)− b2(s, 1) + g2(s)

≥1

3
b2(s, 2) + b2(s, 1) + g2(s) ≥

1

3
b2(s, 2) ≥ 0, (3.104)

where we used the bound on b2(s, 2)− b2(s, 1) given in (3.101a). By the concentration
inequality in Lemma 3.13 we then show Q̂2(s, 1) ≥ Q̂2(s, 2) with high probability:

P(Q̂2(s, 2)− Q̂2(s, 1) ≥ 0) ≤ exp

(
−6N(s, 1)N(s, 2)E2[Q̂2(s, 1)− Q̂2(s, 2)]

N(s, 1) +N(s, 2)

)

≤ exp

(
−1.8N(s, 2)

(
1

3

)2

b22(s, 2)

)

= exp

(
−0.8N(s, 2)

L

N(s, 2)

)
≲

1

N160
, (3.105)

where in the second inequality we used N(s, 2) ≤ 1/9N(s, 1) as well as the bound given
in (3.104) and the last inequality holds for c1 ≥ 1 and δ = 1/N .

• Level 1. Define the following event

Eo = {π̂(s) = 1, ∀s ∈ S2}, (3.106)

which refers to the event that action 1 is chosen for all states at level 2. Conditioned
on Eo, the Q-function computed by VI-LCB in level 1 is given by

Q̂1(s, a) = r(s, a)− b1(s, a) + P̂ (3 | s, a)[r(3, 1)− b2(3, 1) + P̂3,1V
⋆
3]

+ P̂ (4 | s, a)[r(4, 1)− b2(4, 1) + P̂4,1V
⋆
3].

∀s ∈ S1, a ∈ A.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 148

Taking the expectation with respect to the data randomness, one has for any s ∈ B
that

E[Q̂1(s, 1)− Q̂1(s, 2)]

= [b1(s, 2)− b1(s, 1)] + [P (3|s, 2)− P (3|s, 1)]b2(3, 1)
+ [P (4|s, 2)− P (4|s, 1)]b2(4, 1) + g1(s)

= [b1(s, 2)− b1(s, 1)] + [P (3|s, 1)− P (3|s, 2)][b2(4, 1)− b2(3, 1)] + g1(s),

where the last equation uses P (3 | s, a) = 1 − P (4 | s, a). We continue the analysis
assuming that p := P (3 | s, 1)− P (3 | s, 2) ≥ 0; the other case can be shown similarly.
Using p ≥ 0 and b2(4, 1) ≥ 0 together with the penalty bound of (3.101a), we see that

E[Q̂1(s, 1)− Q̂1(s, 2)] ≥
1

3
b1(s, 2) + b1(s, 1)− pb2(3, 1) + g1(s).

We proceed by applying (3.101b) on b1(s, 1) and b1(3, 1)

E[Q̂1(s, 1)− Q̂1(s, 2)] ≥
1

3
b1(s, 2) + 3

√
LC⋆

N(d⋆(s, 1) + C⋆ − 1)
− 3p

√
LC⋆

Nd⋆(3, 1)
+ g1(s).

(3.107)

Note that d⋆(s, 1) = ρ(s)/3 and 3d⋆(3, 1) = ρ(s)P (3|s, 1) + ρ(2)P (3|s, 2) ≥
ρ(s)P (3|s, 1) ≥ ρ(s)p. Substituting these quantities into (3.107), we obtain

E[Q̂1(s, 1)− Q̂1(s, 2)] ≥
1

3
b1(s, 2) + 3

√
LC⋆

N(ρ(s)/3 + C⋆ − 1)
− 3p

√
LC⋆

Nρ(s)p/3
+ g1(s)

≥ 1

3
b1(s, 2) + 3

√
LC⋆

N(ρ(s)/3 + C⋆ − 1)
− 3

√
LC⋆

Nρ(s)/3
+ g1(s),

where the last inequality uses p ≤ 1. Observe that

1√
ρ(s)/3

− 1√
ρ(s)/3 + C⋆ − 1

=

√
ρ/3 + C⋆ − 1−

√
ρ/3√

ρ(s)/3(ρ(s)/3 + C⋆ − 1)
≤ 3

√
C⋆ − 1

ρ(s)
.

This implies

ρ(s)g1(s) ≥ 9

√
2(C⋆ − 1)L

N
⇒ E[Q̂1(s, 1)− Q̂1(s, 2)] ≥

1

3
b1(s, 2). (3.108)

Then, a similar argument to (3.105) proves that Q̂(s, 1) > Q̂(s, 2) with high probability:

P(Q̂1(s, 2)− Q̂1(s, 1) ≥ 0) ≲
1

N160
. (3.109)

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 149

Sub-optimality bound. We are now ready to compute the sub-optimality. Decompose
the sub-optimality based on whether event Eo defined in (3.106) has occurred and use the
fact that we assumed µ(s, 1) ≥ 9µ(s, 2) for all s ∈ S

β2 = ED

 ∑

s:µ(s,π⋆(s))≥9µ̄(s)

ρ(s)[V π
1 (s)− V π̂

1 (s)]1{EEMDP}

≤ ED,ρ

[
[V ⋆(s)− V π̂(s)]1{Eo}

]
+ ED,ρ

[
[V ⋆(s)− V π̂(s)]1{Eco}

]

≲ ED,ρ

[
[V ⋆(s)− V π̂(s)]1{Eo}

]
+

3

N160
.

Here, the second line is by 1{EEMDP} ≤ 1 and the last line follows from V ⋆(s)− V π̂(s) ≤ 3
and the probability of the complement event Eco given in (3.105).

Conditioned on the event Eo, LCB-VI algorithm chooses the optimal action from every
state at levels 2 and 3 and hence V π̂

2 = V ⋆
2 and we get

ED,ρ

[
[V ⋆(s)− V π̂(s)]1{Eo}

]

=
∑

s

ρ(s)ED[[Q
⋆(s, 1)−Qπ̂(s, π̂(s))]1{Eo}]

=
∑

s

ρ(s)ED[r(s, 1) + Ps,1 · V ⋆
2 − r(s, π̂(s))− Ps,π̂(s) · V ⋆

2]

=
∑

s

ρ(s)ED[(r(s, 1) + Ps,1 · V ⋆
2 − r(s, 2)− Ps,2 · V ⋆

2)1{π̂(s) ̸= 1}].

By definition, we have g1(s) = r(s, 1) + Ps,1 · V ⋆
2 − r(s, 2)− Ps,2 · V ⋆

2 . Therefore,

ED,ρ

[
V ⋆(s)− V π̂(s)1{Eo}

]
≤
∑

s

ρ(s)g(s)ED[1{π̂(s) ̸= 1}]

=
∑

s

ρ(s)g(s)P(Q̂(s, 2)− Q̂(s, 1) ≥ 0).

We decompose the sub-optimality based on whether ρ(s)g1(s) is large

ED[J(π
⋆)− J(π̂)] ≤

∑

s

ρ(s)g(s)P(Q̂(s, 2)− Q̂(s, 1) ≥ 0)1

{
ρ(s)g(s) ≤ 9

√
2(C⋆ − 1)L

N

}
=: τ1

+
∑

s

ρ(s)g1(s)P(Q̂(s, 2)− Q̂(s, 1) ≥ 0)1

{
ρ(s)g1(s) > 9

√
2(C⋆ − 1)L

N

}
=: τ2

+
3

N160
.

The first term is bounded by

τ1 ≤
∑

s

9

√
2(C⋆ − 1)L

N
= 18

√
2(C⋆ − 1)L

N
.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 150

The second term is bounded using (3.109)

τ2 ≲
3

N160
.

Combining the bounds yields the following sub-optimality bound

β2 ≲

√
(C⋆ − 1)L

N
+

1

N160
.

Proof of inequality (3.101a). From µ(s, 1) ≥ 9µ(s, 2), one has N(s, 1) ≥ 9N(s, 2) imply-
ing bh(s, 2) ≥ 3bh(s, 1). Therefore, we conclude that

bh(s, 2)− bh(s, 1) =
1

2
(bh(s, 2)− bh(s, 1)) +

1

2
(bh(s, 2)− bh(s, 1)) ≥

1

3
bh(s, 2) + bh(s, 1).

Proof of inequality (3.101b). The concentrability assumption implies the following bound
on µ(s, 1)

d̄(s, 1)

C⋆
≤ µ(s, 1) ≤ d̄(s, 1)

C⋆
+ 1− 1

C⋆
,

The upper bound is based on the fact that the probability mass of at least 1/C⋆ is distributed
on the optimal actions with a remaining mass of 1 − 1/C⋆. Applying the above bounds to
bh(s, 1), gives

3

√
LC⋆

N(d̄(s, 1) + C⋆ − 1)
≤ bh(s, 1) = 3

√
L

Nµ(s, 1)
≤ 3

√
LC⋆

Nd̄⋆(s, 1)
.

3.11 Auxiliary lemmas
This section collects a few auxiliary lemmas that are useful in the analysis of LCB.

We begin with a simple extension of the conventional Hoeffding bound to the two-sample
case.

Lemma 3.13. Let X1, . . . , Xn be i.i.d. in range [0, 1] with average E[X] and Y1, . . . , Ym be
i.i.d. in range [0, 1] with average E[Y]. Further assume that {Xi} and {Yj} are independent.
Then for any ϵ such that ϵ+ E[Y]− E[X] ≥ 0, we have

P

(
1

n

∑

i

Xi −
1

m

∑

j

Yj > ϵ

)
≤ exp

(
−2(mn)(ϵ+ E[Y]− E[X])2

m+ n

)
.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 151

Proof. It is easily seen that

P

(
n∑

i=1

mXi −
m∑

j=1

nYj > mnϵ

)

=P

(
n∑

i=1

(mXi −mE[X])−
m∑

j=1

(nYj − E[Y]) > mn(ϵ+ E[Y]− E[X])

)

≤ exp

(
−2(mn)

2(ϵ+ E[Y]− E[X])2

nm(m+ n)

)

=exp

(
−2(mn)(ϵ+ E[Y]− E[X])2

m+ n

)
,

where the inequality is based on Hoeffding’s inequality on independent random variables.

The next lemma provides useful bounds for the inverse moments of a binomial random
variable.

Lemma 3.14 (Bound on binomial inverse moments). Let n ∼ Binomial(N, p). For any
k ≥ 0, there exists a constant ck depending only on k such that

E
[1

(n ∨ 1)k

]
≤ ck

(Np)k
,

where ck = 1 + k2k+1 + kk+1 + k
(

16(k+1)
e

)k+1

.

Proof. The proof is adapted from that of Lemma 21 in Jiao et al. (2018).
To begin with, when p ≤ 1/N , the statement is clearly true for ck = 1. Hence we focus

on the case when p > 1/N . We define a useful helper function gN(p) to be

gN(p) :=

{
1
pk
, p ≥ 1

N
,

Nk − kNk+1(p− 1
N
), 0 ≤ p < 1

N
.

Further denote p̂ := n/N . The proof relies heavily on the following decomposition, which is
an direct application of the triangle inequality:

E
[Nk

(n ∨ 1)k

]
≤
∣∣∣E
[Nk

(n ∨ 1)k
− gN(p̂)

]∣∣∣+ |E[gN(p)− gN(p̂)]|+gN(p). (3.110)

This motivates us to take a closer look at the helper function gN(p). Simple algebra reveals
that

gN(p) ≤
1

pk
and gN(p̂)−

Nk

(n ∨ 1)k
= kNk

1{p̂ = 0}.

CHAPTER 3. LEARNING TO MAKE DECISIONS FROM A DATASET 152

Substitute these two facts back into the decomposition (3.110) to reach

E
[Nk

(n ∨ 1)k

]
≤ kNk(1− p)N +

1

pk
+ |E[gN(p)− gN(p̂)]|.

It remains to bound the term |E[(gN(p)− gN(p̂))2]|. To this goal, one has

|E[(gN(p)− gN(p̂))2]| ≤ |E[(gN(p)− gN(p̂))21{p̂ ≥ p/2}]|+|E[(gN(p)− gN(p̂))21{p̂ ≥ p/2}]|
(i)

≤ sup
ξ≥p/2

|g′N(ξ)|2E[(p− p̂)2] + sup
ξ>0
|g′N(ξ)|2p2 P(p̂ ≤ p/2)

(ii)

≤ k2

(p/2)2k+2

p(1− p)
N

+ k2N2k+2p2e−Np/8.

Here the inequality (i) follows from the mean value theorem, and the last one (ii) uses
the derivative calculation as well as the tail bound for binomial random variables; see e.g.,
Exercise 4.7 in Mitzenmacher and Upfal (2017). As a result, we conclude that

E
[Nk

(n ∨ 1)k

]
≤ kNk(1− p)N +

1

pk
+
√

E[(gN(p)− gN(p̂))2]

≤ kNk(1− p)N +
1

pk
+

k

(p/2)k+1

√
p(1− p)

N
+ kNk+1pe−Np/16

≤ kNk(1− p)N +
1

pk
+
k2k+1

pk
+ kNk+1pe−Np/16,

where the last inequality holds since p ≥ 1/N . Consequently, we have

E
[(Np)k

(n ∨ 1)k

]
≤ 1 + k2k+1 + k(Np)k(1− p)N + k(Np)k+1e−Np/16.

Note that the following two bounds hold:

max
p
k(Np)k(1− p)N ≤ k

(
N

k

N + k

)k(
1− k

k +N

)N
≤ kk+1,

(Np)ke−Np/16 ≤
(16k
e

)k
.

The proof is now completed.

The last lemma, due to Gilbert and Varshamov (Gilbert, 1952; Varshamov, 1957), is
useful for constructing hard instances in various minimax lower bounds.

Lemma 3.15. There exists a subset V of {−1, 1}S such that (1) |V|≥ exp(S/8) and (2) for
any vi, vj ∈ V, vi ̸= vj, one has ∥vi − vj∥1≥ S

2
.

153

Chapter 4

Learning to Make Decisions During
Interactions

In this chapter, we focus on the sequential-decision making problem in the more classical
setting of online RL in which the agent learns a policy while interacting with the environment
and collecting data. Online RL is a useful tool for an agent to learn how to perform tasks,
particularly when expert demonstrations are unavailable and reward information needs to be
used instead (Sutton and Barto, 2018). To learn a satisfactory policy, an RL agent needs to
effectively balance between exploration and exploitation, which remains a central question
in RL (Ecoffet et al., 2019; Burda et al., 2018b). Exploration is particularly challenging in
environments with sparse rewards. One popular approach to exploration is based on intrinsic
motivation, often applied by adding an intrinsic reward (or bonus) to the extrinsic reward
provided by the environment.

In provable exploration methods, bonus often captures the value estimate uncertainty
and the agent takes an action that maximizes the upper confidence bound (UCB) (Agrawal
and Jia, 2017; Azar et al., 2017; Jaksch et al., 2010; Kakade et al., 2018; Jin et al., 2018).
In tabular setting, UCB bonuses are often constructed based on either Hoeffding’s inequal-
ity, which only uses visitation counts, or Bernstein’s inequality, which uses value function
variance in addition to visitation counts. The latter is proved to be minimax near-optimal
in environments with bounded rewards (Jin et al., 2018; Menard et al., 2021) as well as
bounded total reward (Zhang et al., 2020e) and reward-free settings (Ménard et al., 2020;
Kaufmann et al., 2021; Jin et al., 2020a; Zhang et al., 2020f). It remains an open question
how one can efficiently compute confidence bounds to construct UCB bonus in non-linear
function approximation. Furthermore, Bernstein-style bonuses are often hard to compute in
practice beyond tabular setting, due to difficulties in computing value function variance.

In practice, various approaches are proposed to design intrinsic rewards: visita-
tion pseudo-count bonuses estimate count-based UCB bonuses using function approxima-
tion (Bellemare et al., 2016; Burda et al., 2018b), curiosity-based bonuses seek states where
model prediction error is high, uncertainty-based bonuses (Pathak et al., 2019; Shyam et al.,
2019) adopt ensembles of networks for estimating variance of the Q-function, empowerment-

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 154

Figure 4.1: Normalized samples use of different methods with respect to MADE (smaller
values are better). MADE consistency achieves a better sample efficiency compared to all
other baselines. Infinity means the method fails to achieve maximum reward in given steps.

based approaches (Klyubin et al., 2005a; Gregor et al., 2016; Salge et al., 2014; Mohamed and
Rezende, 2015) lead the agent to states over which the agent has control, and information
gain bonuses (Kim et al., 2018) reward the agent based on the information gain between
state-action pairs and next states.

Although the performance of practical intrinsic rewards is good in certain domains, em-
pirically they are observed to suffer from issues such as detachment, derailment, and catas-
trophic forgetting (Agarwal et al., 2020a; Ecoffet et al., 2019). Moreover, these methods
usually lack a clear objective and can get stuck in local optimum (Agarwal et al., 2020a).
Indeed, the impressive performance currently achieved by some deep RL algorithms often
revolves around manually designing dense rewards (Brockman et al., 2016), complicated ex-
ploration strategies utilizing a significant amount of domain knowledge (Ecoffet et al., 2019),
or operating in the known environment regime (Silver et al., 2017; Moravčík et al., 2017).

Motivated by current practical challenges and the gap between theory and practice, we
propose a new algorithm for exploration by maximizing deviation from explored regions.
This yields a practical algorithm with strong empirical performance. To be specific, we
make the following contributions:

1. Exploration via maximizing deviation Our approach is based on modifying the
standard RL objective (i.e. the cumulative reward) by adding a regularizer that adaptively
changes across iterations. The regularizer can be a general function depending on the state-
action visitation density and previous state-action coverage. We then choose a particular
regularizer that MAximizes the DEviation (MADE) of the next policy visitation dπ from
the regions covered by prior policies ρkcov:

Lk(d
π) = J(dπ) + τk

∑

s,a

√
dπ(s, a)

ρkcov(s, a)
. (4.1)

Here, k is the iteration number, J(dπ) is the standard RL objective, and the regularizer
encourages dπ(s, a) to be large when ρkcov(s, a) is small. We give an algorithm for solving

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 155

the regularized objective and prove that with access to an approximate planning oracle, it
converges to the global optimum. We show that objective (4.1) results in an intrinsic reward
that can be easily added to any RL algorithm to improve performance, as suggested by our
empirical studies. Furthermore, the intrinsic reward applies a simple modification to the
UCB-style bonus that considers prior visitation counts. This simple modification can also
be added to existing bonuses in practice.

2. Tabular studies In the special case of tabular parameterization, we show that MADE
only applies some simple adjustments to the Hoeffding-style count-based bonus. We com-
pare the performance of MADE to Hoeffding and Bernstein bonuses in three different RL
algorithms, for the exploration task in the stochastic diabolical bidirectional lock (Agarwal
et al., 2020a; Misra et al., 2020), which has sparse rewards and local optima. Our results show
that MADE robustly improves over the Hoeffding bonus and is competitive to the Bernstein
bonus, across all three RL algorithms. Interestingly, MADE bonus and exploration strategy
appear to be very close to the Bernstein bonus, without computing or estimating variance,
suggesting that MADE potentially captures some environmental structures. Additionally,
we empirically show that MADE regularizer can improve the optimization rate in policy
gradient methods.

3. Experiments on MiniGrid and DeepMind Control Suite We empirically show
that MADE works well when combined with model-free (IMAPLA (Espeholt et al., 2018),
RAD (Laskin et al., 2020)) and model-based (Dreamer (Hafner et al., 2019)) RL algo-
rithms, greatly improving the sample efficiency over existing baselines. When tested in
the procedurally-generated MiniGrid environments, MADE manages to converge with two
to five times fewer samples compared to state-of-the-art method BeBold (Zhang et al.,
2020d). In DeepMind Control Suite (Tassa et al., 2020), we build upon the model-free
method RAD (Laskin et al., 2020) and the model-based method Dreamer (Hafner et al.,
2019), improving the return up to 150 in 500K steps compared to baselines. Figure 4.1
shows normalized sample size to achieve maximum reward with respect to our algorithm.

4.1 Background
As in Chapter 3, we consider the infinite-horizon discounted MDP, but we do not restrict the
MDP to the tabular case and consider stationary (stochastic) policies π ∈ ∆(A | S) instead of
deterministic. Below, we review some definitions useful for the method and results presented
in this chapter.

Policy mixture. For a sequence of policies Ck = (π1, . . . , πk) with corresponding mix-
ture distribution wk ∈ ∆k−1, the policy mixture πmix,k = (Ck, wk) is obtained by first
sampling a policy from wk and then following that policy over subsequent steps (Hazan
et al., 2019). The mixture policy induces a state-action visitation density according to

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 156

dπmix(s, a) =
∑k

i=1w
k
i d

πi(s, a). While the πmix may not be stationary in general, there exists
a stationary policy π′ such that dπ′

= dπmix ; see Puterman (1990) for details.

Online reinforcement learning. Online RL is the problem of finding a policy with a
maximum value from an unknown MDP, using samples collected during exploration. Often-
times, the following objective is considered, which is a scalar summary of the performance
of policy π:

JM(π) := Es∼ρ[V
π(s)] = (1− γ)−1 E(s,a)∼dπρ (·,·)[r(s, a)]. (4.2)

We drop index M when it is clear from context. We denote an optimal policy by π⋆ ∈
argmaxπ J(π) and use the shorthand V ⋆ := V π⋆ to denote the optimal value function. It
is straightforward to check that J(π) can equivalently be represented by the expectation of
the reward over the visitation measure of π. We slightly abuse the notation and sometimes
write J(dπ) to denote the RL objective.

4.2 Adaptive regularization of the RL objective

4.2.1 Regularization to guide exploration

In online RL, the agent faces a dilemma in each state: whether it should select a seemingly
optimal policy (exploit) or it should explore different regions of the MDP. To allow flexibil-
ity in this choice and trade-off between exploration and exploitation, we propose to add a
regularizer to the standard RL objective that changes throughout iterations of an online RL
algorithm:

Lk(d
π) = J(dπ)︸ ︷︷ ︸

exploitation

+τk R(d
π; {dπi}ki=1)︸ ︷︷ ︸
exploration

. (4.3)

Here, R(dπ; {dπi}ki=1) is a function of state-action visitation of π as well as the visitation
of prior policies π1, . . . , πk. The temperature parameter τk determines the strength of reg-
ularization. Objective (4.3) is a population objective in the sense that it does not involve
empirical estimations affected by the randomness in sample collection. In the following
section, we give our particular choice of regularizer and discuss how this objective can de-
scribe some popular exploration bonuses. We then provide a convergence guarantee for the
regularized objective in Section 4.2.2.

4.2.2 Exploration via maximizing deviation from policy cover

We develop our exploration strategy MADE based on a simple intuition: maximizing the
deviation from the explored regions, i.e. all states and actions visited by prior policies.
We define policy cover at iteration k to be the density over regions explored by policies

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 157

π1, . . . , πk, i.e. ρkcov(s, a) :=
1
k

∑k
i=1 d

πi(s, a). We then design our regularizer to encourage dπ
to be different from ρkcov:

Rk(d
π; {dπi}ki=1) =

∑

s,a

√
dπ(s, a)

ρkcov(s, a)
. (4.4)

It is easy to check that the maximizer of above function is dπ(s, a) ∝ 1
ρkcov(s,a)

. Our motivation
behind this particular deviation is that it results in a simple modification of UCB bonus in
tabular case.

We now compute the reward yielded by the new objective. First, define a policy mix-
ture πmix,k with policy sequence (π1, . . . , πk) and weights ((1 − η)k−1, (1 − η)k−2η, (1 −
η)k−3η, , . . . , η) for η > 0. Let dπmix,k be the visitation density of πmix,k. We compute the
total reward at iteration k by taking the gradient of the new objective with respect to dπ at
dπmix,k :

rk(s, a) = (1− γ)∇dLk(d)
∣∣
d=d

πmix,k = r(s, a) + (1− γ)τk∇dRk(d; {dπi}ki=1)
∣∣
d=d

πmix,k , (4.5)

which gives the following reward

rk(s, a) = r(s, a) +
(1− γ)τk/2√

dπmix,k(s, a)ρkcov(s, a)
. (4.6)

The intrinsic reward above is constructed based on two densities: ρkcov a uniform combination
of past visitation densities and d̂πmix,k a (almost) geometric mixture of the past visitation
densities. As we will discuss shortly, policy cover ρkcov(s, a) is related to the visitation count of
(s, a) pair in previous iterations and resembles count-based bonuses (Bellemare et al., 2016;
Jin et al., 2018) or their approximates such as RND (Burda et al., 2018b). Therefore, for
an appropriate choice of τk, MADE intrinsic reward decreases as the number of visitations
increases.

MADE intrinsic reward is also proportional to 1/
√
dπmix,k(s, a), which can be viewed as a

correction applied to the count-based bonus. In effect, due to the decay of weights in πmix,k,
the above construction gives a higher reward to (s, a) pairs visited earlier. Experimental
results suggest that this correction may alleviate major difficulties in sparse reward explo-
ration, namely detachment and catastrophic forgetting, by encouraging the agent to revisit
forgotten states and actions.

Empirically, MADE’s intrinsic reward is computed based on estimates d̂πmix,k and ρ̂kcov
from data collected by iteration k. Furthermore, practically we consider a smoothed version
of the above regularizer by adding λ > 0 to both numerator and denominator; see Equation
(4.7).

MADE intrinsic reward in tabular case. In tabular setting, the empirical estimation of
policy cover is simply ρ̂kcov(s, a) = Nk(s, a)/Nk, where Nk(s, a) is the visitation count of (s, a)

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 158

Algorithm 6 Policy computation for adaptively regularized objective
1: Inputs: Iteration count K, planning error ϵp, visitation density error ϵd.
2: Initialize policy mixture πmix,1 = with C1 = (π1) and w1 = (1)
3: for k = 1, . . . , K do
4: Estimate the visitation density d̂πmix,k of πmix,k via a visitation density oracle.
5: Compute reward rk(s, a) = r(s, a) + (1− γ)τk∇dRk(d; {πi}ki=1)

∣∣
d=d̂

πmix,k .
6: Run approximate planning on modified MDP Mk = (S,A, P, rk, γ) and return πk+1.
7: Update policy mixture Ck+1 = (Ck, πk+1) and wk+1 = ((1− η)wk, η).
8: Return: πmix,K = (Ck, wk).

pair and Nk is the total count by iteration k. Thus, MADE simply modifies the Hoeffding-

type bonus via the mixture density and has the following form: ∝ 1/

√
d̂πmix,k(s, a)Nk(s, a).

Bernstein bonus is another tabular UCB bonus that modifies Hoeffding bonus via an
empirical estimate of the value function variance. Bernstein bonus is shown to improve
over Hoeffding count-only bonus by exploiting additional environment structure (Zanette
and Brunskill, 2019) and close the gap between algorithmic upper bounds and information-
theoretic limits up to logarithmic factors (Zhang et al., 2020e,f). However, a practical and
efficient implementation of a bonus that exploits variance information in non-linear function
approximation parameterization still remains an open question; see Section 4.5 for further
discussion. On the other hand, our proposed modification based on the mixture density can
be easily and efficiently incorporated with non-linear parameterization.

Deriving some popular bonuses from regularization. We now discuss how the reg-
ularization in (4.3) can describe some popular bonuses. Exploration bonuses that only
depend on state-action visitation counts can be expressed in the form (4.3) by setting the
regularizer a linear function of dπ and the exploration bonus ri(s, a), i.e., Rk(d

π; {dπi}ki=1) =∑
s,a d

π(s, a)ri(s, a). It is easy to check that taking the gradient of the regularizer with
respect to dπ recovers ri(s, a). As another example, one can set the regularizer to Shan-
non entropy Rk(d

π; {dπi}ki=1) = −
∑

s,a d
π(s, a) log dπ(s, a), which gives the intrinsic reward

− log dπ(s, a) (up to an additive constant) and recovers the result in the work Zhang et al.
(2021a).

4.2.3 Solving the regularized objective

We pair MADE objective with the algorithm proposed by Hazan et al. (2019) extended to
the adaptive objective. We provide convergence guarantees for Algorithm 6 in the following
theorem whose proof is given in Appendix 4.7.1.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 159

Theorem 4.1. Consider the following regularizer for (4.3) with λ > 0 and a valid visitation
density d

Rλ(d; {dπi}ki=1) =
∑

s,a

√
d(s, a) + λ

ρkcov(s, a) + λ
, (4.7)

Set τk = τ/kc, where 0 < τ < 1 and c > 0. For any ϵ > 0, there exists η, ϵp, ϵd, c, B
such that πmix,K returned by Algorithm 6 after K ≥ η−1 log(10Bϵ−1) iterations satisfies
Lk(d

πmix,K) ≥ maxπ Lk(d
π)− ϵ.

Remark 4.1. One does not need to maintain the functional forms of past policies to estimate
d̂πmix,k . Practically, one may truncate the dataset to a (prioritized) buffer and estimate the
density over that buffer.

4.3 A tabular study
We first study the performance of MADE in tabular toy examples. In the Bidirectional Lock
experiment, we compare MADE to theoretically guaranteed Hoeffding-style and Bernstein-
style bonuses in a sparse reward exploration task. In the Chain MDP, we investigate whether
MADE’s regularizer (4.4) provides any benefits in improving optimization rate in policy
gradient methods.

4.3.1 Exploration in bidirectional lock

We consider a stochastic version of the bidirectional diabolical combination lock (Figure 4.3),
which is considered a particularly difficult exploration task in tabular setting (Misra et al.,
2020; Agarwal et al., 2020a). This environment is challenging because: (1) positive rewards
are sparse, (2) a small negative reward is given when transiting to a good state and thus,

s0

1

0.1

Figure 4.2: A stochastic bidirectional lock. In this environment, the agent starts at s0 and
enters one of the chains based on the selected action. Each chain has a positive reward at
the end, H good states, and H dead states. Both actions available to the agent lead it to
the dead state, one with probability one and the other with probability p < 1.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 160

0 2 4
environment step ×103

0.0

0.1

0.2

J
(π̂

)

value iteration

0.00 0.25 0.50 0.75 1.00
environment step ×104

0.0

0.1

0.2

J
(π̂

)

PPO

0 2 4
environment step ×103

0.0

0.1

0.2

J
(π̂

)

Q-learning

Hoeffding Bernstein MADE (ours)

Figure 4.3: Performance of different count-based methods in the stochastic bidirectional lock
environment. MADE performs better than the Hoeffding bonus and is comparable to the
Bernstein bonus.

moving to a dead state is locally optimal, and (3) the agent may forget to explore one chain
and get stuck in local minima upon receiving an end reward in one lock (Agarwal et al.,
2020a).

RL algorithms and exploration strategies. We compare the performance of Hoeffding
and Bernstein bonuses (Jin et al., 2018) to MADE in three different RL algorithms. To
implement MADE in tabular setting, we simply use two buffers: one that stores all past
state-action pairs to estimate ρcov and another one that only maintains the most recent B
pairs to estimate dπµ. We use empirical counts to estimate both densities, which give a bonus
∝ 1/

√
Nk(s, a)Bk(s, a), where Nk(s, a) is the total count and Bk(s, a) is the recent buffer

count of (s, a) pair. We combine three bonuses with three RL algorithms: (1) value iteration
with bonus (He et al., 2020), (2) proximal policy optimization (PPO) with a model (Cai
et al., 2020), and (3) Q-learning with bonus (Jin et al., 2018).

environment steps

dead statesgood states

b
on

u
s

Hoeffding

Bernstein

MADE (ours)

Figure 4.4: Values of Hoeffding, Bernstein, and MADE exploration bonus for all states and
action 1 over environment steps in the bidirectional lock MDP. MADE bonus values closely
follows Bernstein bonus values.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 161

Figure 4.5: Heatmap of visitation counts in the bidirectional lock, plotted every 200 itera-
tions. The exploration strategy of MADE appears to be closet to the Bernstein bonus.

Results. Figure 4.3 summarizes our results showing MADE improves over the Hoeffding
bonus and is competitive to the Bernstein bonus in all three algorithms. Unlike Bernstein
bonus that is hard to compute beyond tabular setting, MADE bonus design is simple and
can be effectively combined with any deep RL algorithm. The experimental results suggest
several interesting properties for MADE. First, MADE applies a simple modification to
the Hoeffding bonus which improves the performance. Second, as illustrated in Figures
4.4 and 4.5, bonus values and exploration pattern of MADE is somewhat similar to the
Bernstein bonus. This suggests that MADE may capture some structural information of the
environment, similar to Bernstein bonus, which captures certain environmental properties
such as the degree of stochasticity (Zanette and Brunskill, 2019).

4.3.2 Policy gradient in a chain MDP

We consider the chain MDP (Figure 4.6) presented in Agarwal et al. (2019b), which suffers
from vanishing gradients with policy gradient approach (Sutton et al., 1999) as a positive
reward is only achieved if the agent always takes action a1. This leads to an exponential
iteration complexity lower bound on the convergence of vanilla policy gradient approach

s0 s1 . . . sH sH+1

a1

a2
a3a4

a1

a2
a3a4

a1 a1

0.0 0.5 1.0 1.5 2.0

iterations ×104

0

1

2

3

J
(π̂

)

J(π?)

Policy gradient on chain MDP

PG PG+RE PG+E PG+MADE

Figure 4.6: A deterministic chain MDP that suffers from vanishing gradients (Agarwal et al.,
2019b). We consider a constrained tabular policy parameterization with π(a|s) = θs,a and∑

a θs,a = 1. The agent always starts from s0 and the only non-zero reward is r(sH+1, a1) =
1.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 162

even with access to exact gradients (Agarwal et al., 2019b). In this environment the agent
always starts at state s0 and recent guarantees on the global convergence of exact policy
gradients are vacuous (Bhandari and Russo, 2019; Agarwal et al., 2019b; Mei et al., 2020).
This is because the rates depend on the ratio between the optimal and learned visitation
densities, known as concentrability coefficient (Kakade and Langford, 2002; Scherrer, 2014;
Geist et al., 2017; Rashidinejad et al., 2021), or the ratio between the optimal visitation
density and initial distribution (Agarwal et al., 2019b).

RL algorithms. Since our goal in this experiment is to investigate the optimization ef-
fects and not exploration, we assume access to exact gradients. In this setting, we consider
MADE regularizer with the form

∑
s,a

√
dπ(s, a). Note that policy gradients take gradient

of the objective with respect to the policy parameters θ and not dπ. We compare optimiz-
ing the policy gradient objective with four methods: vanilla version PG (e.g. uses policy
gradient theorem (Williams, 1992; Sutton et al., 1999; Konda and Tsitsiklis, 2000)), relative
policy entropy regularization PG+RE (Agarwal et al., 2019b), policy entropy regularization
PG+E (Mnih et al., 2016; Mei et al., 2020), and MADE regularization.

Results. Figure 4.6 illustrates our results on policy gradient methods. As expected (Agar-
wal et al., 2019b), the vanilla version has a very slow convergence rate. Both entropy and
relative entropy regularization methods are proved to achieve a linear convergence rate of
exp(−t) in the iteration count t (Mei et al., 2020; Agarwal et al., 2019b). Interestingly,
MADE seems to outperforms the policy entropy regularizers, quickly converging to a glob-
ally optimal policy.

4.4 Experiments on MiniGrid and DeepMind Control
Suite

In addition to the tabular setting, MADE can also be integrated with various model-free
and model-based deep RL algorithms such as IMPALA (Espeholt et al., 2018), RAD (Lee
et al., 2019a), and Dreamer (Hafner et al., 2019). As we will see shortly, MADE exploration
strategy on MiniGrid (Chevalier-Boisvert et al., 2018) and DeepMind Control Suite (Tassa
et al., 2020) tasks achieves state-of-the-art sample efficiency.

For a practical estimation of ρkcov and dπmix,k , we adopt the two buffer idea described in the
tabular setting. However, since now the state space is high-dimensional, we use RND (Burda
et al., 2018b) to estimate Nk(s, a) (and thus ρkcov) and use a variational auto-encoder (VAE)
to estimate dπmix,k . Specifically, for RND, we minimize the difference between a predictor
network ϕ′(s, a) and a randomly initialized target network ϕ(s, a) and train it in an online
manner as the agent collects data. We sample data from the recent buffer B to train a VAE.
The length of B is a design choice for which we do an ablation study. Thus, the intrinsic

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 163

reward in deep RL setting takes the following form

(1− γ)τk
∥ϕ(s, a)− ϕ′(s, a)∥√

dπmix,k(s, a)
.

Model-free RL baselines. We consider several baselines in MiniGrid: IMPALA (Es-
peholt et al., 2018) is a variant of policy gradient algorithms which we use as the training
baseline; ICM (Pathak et al., 2017) learns a forward and reverse model for predicting state
transition and uses the forward model prediction error as intrinsic reward; RND (Burda
et al., 2018b) trains a predictor network to mimic a randomly initialized target network as
discussed above; RIDE (Raileanu and Rocktäschel, 2020) learns a representation similar
to ICM and uses the difference of learned representations along a trajectory as intrinsic
reward; AMIGo (Campero et al., 2020) learns a teacher agent to assign intrinsic reward;
BeBold (Zhang et al., 2020d) adopts a regulated difference of novelty measure using RND.
In DeepMind Control Suite, we consider RE3 (Seo et al., 2021) as a baseline which uses a
random encoder for state embedding followed by a k-nearest neighbour bonus for a maximum
state coverage objective.

Model-based RL baselines. MADE can be combined with model-based RL algorithms
to improve sample efficiency. For baselines, we consider Dreamer, which is a well-known
model-based RL algorithm for DeepMind Control Suite, as well as Dreamer+RE3, which
includes RE3 bonus on top of Dreamer.

MADE achieves state-of-the-art results on both navigation and locomotion tasks by a
substantial margin, greatly improving the sample efficiency of the RL exploration in both
model-free and model-based methods. Further details on experiments and exact hyperpa-
rameters are provided in Appendix 4.8.

4.4.1 Model-free RL on MiniGrid

MiniGrid (Chevalier-Boisvert et al., 2018) is a widely used benchmark for exploration in
RL. Despite having symbolic states and a discrete action space, MiniGrid tasks are quite
challenging. The easiest task is MultiRoom (MR) in which the agent needs to navigate to
the goal by going to different rooms connected by the doors. In KeyCorridor (KC), the
agent needs to search around different rooms to find the key and then use it to open the door.
ObstructedMaze (OM) is a harder version of KC where the key is hidden in a box and
sometimes the door is blocked by an obstruct. In addition to that, the entire environment
is procedurally-generated. This adds another layer of difficulty to the problem.

From Figure 4.7 we can see that MADE manages to solve all the challenging tasks within
90M steps while all other baselines (except BeBold) only solve up to 50% of them. Compared
to BeBold, MADE uses significantly (2-5 times) fewer samples.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 164

0.00 0.25 0.50 0.75 1.00
1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

MultiRoom-N6

0.00 0.25 0.50 0.75 1.00
1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

MultiRoom-N12-S10

0 1 2 3 4
1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

KeyCorridorS3R3

0 1 2 3 4
1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

KeyCorridorS4R3

0 1 2 3 4
1e7

0.00

0.25

0.50

0.75

1.00
Av

er
ag

e
Re

tu
rn

KeyCorridorS5R3

0 1 2 3 4
1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

KeyCorridorS6R3

0 1 2 3 4
1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

ObstructedMaze-2Dlh

0 1 2 3 4
Environment Steps 1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

ObstructedMaze-2Dlhb

0 1 2 3 4
Environment Steps 1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

ObstructedMaze-1Q

0 2 4 6
Environment Steps 1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

ObstructedMaze-2Q

0 2 4 6 8
Environment Steps 1e7

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

Re
tu

rn

ObstructedMaze-Full

MADE IMPALA ICM RND RIDE AMIGO BeBold

Figure 4.7: Results for various hard exploration tasks from MiniGrid. MADE successfully
solves all the environments while other algorithms (except for BeBold) fail to solve several
environments. MADE finds the optimal solution with 2-5 times fewer samples, yielding a
much better sample efficiency.

4.4.2 Model-free RL on DeepMind Control

We also test MADE on image-based continuous control tasks of DeepMind Control
Suite (Tassa et al., 2020), which is a collection of diverse control tasks such as Pendulum,
Hopper, and Acrobot with realistic simulations. Compared to MiniGrid, these tasks are
more realistic and complex as they involve stochastic transitions, high-dimensional states,
and continuous actions. For baselines, we build our algorithm on top of RAD (Lee et al.,
2019a), a strong model-free RL algorithm with a competitive sample efficiency. We com-
pare our approach with ICM, RND, as well as RE3, which is the SOTA algorithm.1 Note
that we compare MADE to very strong baselines. Other algorithms such as DrQ (Kostrikov
et al., 2020), CURL (Srinivas et al., 2020), ProtoRL (Yarats et al., 2021), SAC+AE (Yarats
et al., 2019)) perform worse based on the results reported in the original papers. MADE
show consistent improvement in sample efficiency: 2.6 times over RAD+RE3, 3.3 times over
RAD+RND, 19.7 times over CURL, 15.0 times over DrQ and 3.8 times over RAD.

From Figure 4.8, we can see that MADE consistently improves sample efficiency com-
pared to all baselines. For these tasks, RND and ICM do not perform well and even fail

1As we were not provided with the source code, we implemented ICM and RND ourselves. The perfor-
mance for ICM is slightly worse than what the author reported, but the performance of RND and RE3 is
similar.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 165

0 1 2 3 4 5
1e5

0

250

500

750

Av
er

ag
e

Re
tu

rn

cartpole_swingup_sparse

0 1 2 3 4 5
1e5

0

200

400

600

Av
er

ag
e

Re
tu

rn

cheetah_run_sparse

0 1 2 3 4 5
1e5

0

100

200

300

Av
er

ag
e

Re
tu

rn

hopper_hop

0 1 2 3 4 5
Environment Steps 1e5

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

pendulum_swingup

0 1 2 3 4 5
Environment Steps 1e5

0

200

400

Av
er

ag
e

Re
tu

rn

quadruped_run

0 1 2 3 4 5
Environment Steps 1e5

0

200

400

Av
er

ag
e

Re
tu

rn

walker_run_sparse

RAD+MADE RAD RAD+RE3 RAD+RND RAD+ICM

Figure 4.8: Results for several DeepMind control suite locomotion tasks. Comparing to all
baselines, the performance of MADE is consistently better. Sometimes baseline methods
even fail to solve the task.

0 1 2 3 4 5
Environment Steps 1e5

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

cartpole_swingup_sparse

0 1 2 3 4 5
Environment Steps 1e5

0

200

400

600

Av
er

ag
e

Re
tu

rn

cheetah_run_sparse

0 1 2 3 4 5
Environment Steps 1e5

0

100

200

300

400

Av
er

ag
e

Re
tu

rn

hopper_hop
RAD+MADE Buf=100 RAD+MADE Buf=1000 RAD+MADE Buf=10000 RAD+MADE Buf=100000

Figure 4.9: Ablation study on buffer size in MADE. The optimal buffer size varies in different
tasks. We found buffer size of 10000 empirically works consistently reasonable.

on Cartpole-Swingup. RE3 achieves a comparable performance in two tasks, however, its
performance on Pendulum-Swingup, Quadruped-Run, Hopper-Hop and Walker-Run is signif-
icantly worse than MADE. For example, in Pendulum-Swingup, MADE achieves a reward of
around 800 in only 30K steps while RE3 requires 300k samples. In Quadruped-Run, there is
a 150 reward gap between MADE and RE3, which seems to be still enlarging. These tasks
show the strong performance of MADE in model-free RL.

Ablation study. We study how the buffer length affects the performance of our algorithm
in some DeepMind Control tasks. Results illustrated in Figure 4.9 show that for different
tasks the optimal buffer length is slightly different. We empirically found that using a buffer
length of 1000 consistently works well across different tasks.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 166

0 1 2 3 4 5
1e5

0

200

400

600

800

Av
er

ag
e

Re
tu

rn

cartpole_swingup_sparse

0 1 2 3 4 5
1e5

0

200

400

600

800

Av
er

ag
e

Re
tu

rn

cheetah_run_sparse

0 1 2 3 4 5
1e5

0

100

200

300

400

Av
er

ag
e

Re
tu

rn

hopper_hop

0 1 2 3 4 5
Environment Steps 1e5

0

250

500

750

1000

Av
er

ag
e

Re
tu

rn

pendulum_swingup

0 1 2 3 4 5
Environment Steps 1e5

0

200

400

600

Av
er

ag
e

Re
tu

rn

quadruped_run

0 1 2 3 4 5
Environment Steps 1e5

0

200

400

600

Av
er

ag
e

Re
tu

rn

walker_run_sparse

Dreamer+MADE Dreamer Dreamer+RE3

Figure 4.10: Results for DeepMind control suite locomotion tasks in model-based RL setting.
Comparing to all baselines, the performance of MADE is consistently better. Some baseline
methods even fail to solve the task.

4.4.3 Model-based RL on DeepMind Control

We also empirically verify the performance of MADE combined with the SOTA model-based
RL algorithm Dreamer (Hafner et al., 2019). We compare MADE with Dreamer and Dreamer
combined with RE3 in Figure 4.10. Results show that MADE has great sample efficiency in
Cheetah-Run-Sparse, Hopper-Hop and Pendulum-Swingup environments. For example, in
Hopper-Hop, MADE achieves more than 100 higher return than RE3 and 250 higher return
than Dreamer, achieving a new SOTA result.

4.5 Related work
Provable optimistic exploration. Most provable exploration strategies are based on
optimism in the face of uncertainty (OFU) principle. In tabular setting, model-based explo-
ration algorithms include variants of UCB (Kearns and Singh, 2002; Brafman and Tennen-
holtz, 2002), UCRL (Lattimore and Hutter, 2012; Jaksch et al., 2010; Zanette and Brunskill,
2019; Kaufmann et al., 2021; Ménard et al., 2020), and Thompson sampling (Xiong et al.,
2021; Agrawal and Jia, 2017; Russo, 2019) and value-based methods include optimistic Q-
learning (Jin et al., 2018; Wang et al., 2019c; Strehl et al., 2006; Liu and Su, 2020; Menard
et al., 2021) and value-iteration with UCB (Azar et al., 2017; Zhang et al., 2020e,f; Jin et al.,
2020a). These methods are recently extended to linear MDP setting leading to a variety of
model-based (Zhou et al., 2020a; Ayoub et al., 2020; Jia et al., 2020; Zhou et al., 2020b),
value-based (Wang et al., 2019b; Jin et al., 2020b), and policy-based algorithms (Cai et al.,
2020; Zanette et al., 2021; Agarwal et al., 2020a). Going beyond linear function approx-
imation, systematic exploration strategies are developed based on structural assumptions

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 167

on MDP such as low Bellman rank (Jiang et al., 2017) and block MDP (Du et al., 2019a).
These methods are either computationally intractable (Jiang et al., 2017; Sun et al., 2019;
Ayoub et al., 2020; Zanette et al., 2020; Yang et al., 2020a; Dong et al., 2021; Wang et al.,
2020b) or are only oracle efficient (Feng et al., 2020; Agarwal et al., 2020b). The recent work
Feng et al. (2021) provides a sample efficient approach with non-linear policies, however, the
algorithm requires maintaining the functional form of all prior policies.

Practical exploration via intrinsic reward. Apart from previously-discussed methods,
other works give intrinsic reward based on the difference in (abstraction of) consecutive
states (Zhang et al., 2019; Marino et al., 2019; Raileanu and Rocktäschel, 2020). However,
this approach is inconsistent: the intrinsic reward does not converge to zero and thus, even
with infinite samples, the final policy does not maximize the RL objective. Other intrinsic
rewards try to estimate pseudo-counts (Bellemare et al., 2016; Tang et al., 2017; Burda
et al., 2018b,a; Ostrovski et al., 2017; Badia et al., 2020), inspired by count-only UCB bonus.
Though favoring novel states, practically these methods might suffer from detachment and
derailment (Ecoffet et al., 2019, 2020), and forgetting (Agarwal et al., 2020a). More recent
works propose a combination of different criteria. RIDE (Raileanu and Rocktäschel, 2020)
learns a representation via a curiosity criterion and uses the difference of consecutive states
along the trajectory as the bonus. AMIGo (Campero et al., 2020) learns a teacher agent
for assigning rewards for exploration. Go-Explore (Ecoffet et al., 2019) explicitly decouples
the exploration and exploitation stages, yielding a more sophisticated algorithm with many
hand-tuned hyperparameters.

Maximum entropy exploration. Another line of work encourages exploration via max-
imizing some type of entropy. One category maximizes policy entropy (Mnih et al., 2016) or
relative entropy (Agarwal et al., 2019b) in addition to the RL objective. The work of Flet-
Berliac et al. (2021) modifies the RL objective by introducing an adversarial policy which
results in the next policy to move away from prior policies while staying close to the current
policy. In contrast, our approach focuses on the regions explored by prior policies as opposed
to the prior policies themselves. Recently, effects of policy entropy regularization have been
studied theoretically (Neu et al., 2017; Geist et al., 2019). In policy gradient methods with
access to exact gradients, policy entropy regularization results in faster convergence by im-
proving the optimization landscape (Mei et al., 2020, 2021; Ahmed et al., 2019; Cen et al.,
2020). Another category considers maximizing the entropy of state or state-action visitation
densities such as Shannon entropy (Hazan et al., 2019; Islam et al., 2019; Lee et al., 2019b;
Seo et al., 2021) or Rényi entropy (Zhang et al., 2021a). Empirically, our approach achieves
better performance over entropy-based methods.

Other exploration strategies. Besides intrinsic motivation, other strategies are also
fruitful in encouraging the RL agent to visit a wide range of states. One example is ex-
ploration by injecting noise to the action action space (Lillicrap et al., 2015; Osband et al.,

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 168

2016; Hessel et al., 2017; Osband et al., 2019) or parameter space (Fortunato et al., 2018;
Plappert et al., 2018). Another example is the reward-shaping category, in which diverse
goals are set to guide exploration (Colas et al., 2019; Florensa et al., 2018; Nair et al., 2018;
Pong et al., 2020).

4.6 Discussion
We introduce a new exploration strategy MADE based on maximizing deviation from ex-
plored regions. We show that by simply adding a regularizer to the original RL objective, we
get an easy-to-implement intrinsic reward which can be incorporated with any RL algorithm.
We provide a policy computation algorithm for this objective and prove that it converges to a
global optimum, provided that we have access to an approximate planner. In tabular setting,
MADE consistently improves over the Hoeffding bonus and shows competitive performance
to the Bernstein bonus, while the latter is impractical to compute beyond tabular. We con-
duct extensive experiments on MiniGrid, showing a significant (over 5 times) reduction of the
required sample size. MADE also performs well in DeepMind Control Suite when combined
with both model-free and model-based RL algorithms, achieving SOTA sample efficiency
results. One limitation of the current work is that it only uses the naive representations of
states (e.g., one-hot representation in tabular case). In fact, exploration could be conducted
much more efficiently if MADE is implemented with a more compact representation of states.
We leave this direction to future work.

4.7 Convergence analysis of MADE algorithm
In this section, we provide a convergence rate analysis for Algorithm 6. Similar to Hazan
et al. (2019), Algorithm 6 has access to an approximate density oracle and an approximate
planner defined below:

• Visitation density oracle: We assume access to an approximate density estimator that
takes in a policy π and a density approximation error ϵd ≥ 0 as inputs and returns d̂π
such that ∥dπ − d̂π∥∞≤ ϵd.

• Approximate planning oracle: We assume access to an approximate planner that,
given any MDP M and error tolerance ϵp ≥ 0, returns a policy π such that
JM(π) ≥ maxπ JM(π)− ϵp.

4.7.1 Proof of Theorem 4.1

We first give the following proposition that captures certain properties of the proposed
objective. The proof is postponed to the end of this section.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 169

Proposition 4.1. Consider the following regularization for λ > 0

Rλ(d; {dπi}ki=1) =
∑

s,a

√
d(s, a) + λ

ρcov(s, a) + λ
,

with τk = τ/kc where τ < 1, c > 0. There exist constants β,B, and ξ that only depend on
MDP parameters and λ such that Lk(d) := J(d) + τkRλ(d; {dπi}ki=1) satisfies the following
regularity conditions for all k ≥ 1, an appropriate choice of c, and valid visitation densities
d and d′:

(i) Lk(d) is concave in d;

(ii) Lk(d) is β-smooth: ∥∇Lk(d)−∇Lk(d
′)∥∞≤ β∥d− d′∥∞, −βI ⪯ ∇2Lk(d) ⪯ βI;

(iii) Lk(d) is B-bounded: Lk(d) ≤ B, ∥∇Lk(d)∥∞≤ B;

(iv) There exists δk such that maxd Lk+1(d)−Lk(d) ≤ δk and we have
∑k

i=0(1−η)iδk−i ≤ τξ.

Taking the above proposition as given for the moment, we prove Theorem 4.1 following
steps similar to those of Hazan et al. (2019, Theorem 4.1). By construction of the mixture
density dπmix,k , we have

dπmix,k = (1− η)dπmix,k−1 + ηdπk .

Combining the above equation with the β-smoothness of Lk(d) yields

Lk(d
πmix,k) = Lk((1− η)dπmix,k−1 + ηdπk)

≥ Lk(d
πmix,k−1) + η⟨dπk − dπmix,k−1 ,∇Lk(d

πmix,k−1)⟩ − η2β∥dπk − dπmix,k−1∥22
≥ Lk(d

πmix,k−1) + η⟨dπk − dπmix,k−1 ,∇Lk(d
πmix,k−1)⟩ − 4η2β. (4.8)

Here the last inequality uses ∥dπk − dπmix,k−1∥2≤ 2. By property (ii), we bound
⟨dπk ,∇Lk(d

πmix,k−1)⟩ according to

⟨dπk ,∇Lk(d
πmix,k−1)⟩ ≥ ⟨dπk ,∇Lk(d̂

πmix,k−1)⟩ − β∥dπmix,k−1 − d̂πmix,k−1∥∞
≥ ⟨dπk ,∇Lk(d̂

πmix,k−1)⟩ − βϵd, (4.9)

where in the last step we used the density oracle approximation error. Recall that we defined
rk = (1 − γ)∇Lk(d̂

πmix,k−1). Since πk returned by the approximate planning oracle is an ϵp-
optimal policy in Mk, we have (1 − γ)−1⟨dπk , rk⟩ ≥ (1 − γ)−1⟨dπ, rk⟩ − ϵp for any policy π,
including π⋆. Therefore,

⟨dπk ,∇Lk(d
πmix,k−1)⟩ ≥ ⟨dπ⋆

,∇Lk(d̂
πmix,k−1)⟩ − ϵp − βϵd

≥ ⟨dπ⋆

,∇Lk(d
πmix,k−1)⟩ − ϵp − 2βϵd, (4.10)

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 170

where we used the density oracle approximation error once more in the second step. Going
back to inequality (4.8), we further bound Lk(d

πmix,k) by

Lk(d
πmix,k) ≥ Lk(d

πmix,k−1) + η⟨dπk − dπmix,k−1 ,∇Lk(d
πmix,k−1)⟩ − 4η2β

≥ Lk(d
πmix,k−1) + η⟨dπ⋆ − dπmix,k−1 ,∇Lk(d

πmix,k−1)⟩ − ηϵp − 2ηβϵd − 4η2β

≥ (1− η)Lk(d
πmix,k−1) + ηLk(d

π⋆

)− 4η2β − ηϵp − 2ηβϵd,

where the last inequality is by concavity of Lk(d). Therefore,

Lk(d
π⋆

)− Lk(d
πmix,k) ≤ (1− η)[Lk(d

π⋆

)− Lk(d
πmix,k−1)] + 2ηβϵd + ηϵp + 4η2β.

By assumption (iv), we write

LK+1(d
π⋆

)− LK+1(d
πmix,K) ≤ LK(d

π⋆

)− LK(d
πmix,K) + 2δK

≤ (1− η)[LK(d
π⋆

)− LK(d
πmix,K−1)] + 2δK + 2ηβϵd + ηϵp + 4η2β

≤ Be−ηK + 2βϵd + ϵp + 4ηβ + 2
K∑

i=0

(1− η)iδK−i

≤ Be−ηK + 2βϵd + ϵp + 4ηβ + 2τξ.

It is straightforward to check that setting η ≤ 0.1ϵβ−1, ϵp ≤ 0.1ϵ, ϵd ≤ 0.1ϵβ−1, τ ≤ 0.1ϵ, and
the number of iterations K ≥ η−1 log(10Bϵ−1) yields the claim of Theorem 4.1.

Remark 4.2. Since the temperature parameter τk in Proposition 4.1 goes to zero as k in-
creases, one can show that the expected value of policy returned by Algorithm 6 converges to
the maximum performance J(π⋆).

Proof of Proposition 4.1. For claim (ii), observe that ∇2Lk(d) is a diagonal matrix whose
(s, a) diagonal term is given by

(∇2Lk(d))s,a =
−τ
4kc
× 1

(d(s, a) + λ)3/2(ρcov(s, a) + λ)1/2
.

The diagonal elements are bounded by −1/(4λ2) ≤ (∇2Lk(d))s,a ≤ 1
4λ2 =: β. Furthermore,

by Taylor’s theorem, one has

∥∇Lk(d)−∇Lk(d
′)∥∞≤ max

(s,a),α∈[0,1]
(∇2Lk(αd+ (1− α)d′))∥d− d′∥∞≤ β∥d− d′∥∞.

Claim (i) is immediate from the above calculation as the Hessian∇2Lk(d) is negative definite.
Claim (iii) may be verified by explicit calculation:

∑

s,a

d(s, a)r(s, a) +
τ

kc

∑

s,a

√
d(s, a) + λ

ρcov(s, a) + λ
≤ SA

(
1 +

√
1 + λ

λ

)
=: B.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 171

For claim (iv), we have

Lk+1(d)− Lk(d) ≤
∑

s,a

τ

(k + 1)c

√
d(s, a) + λ

ρcov(s, a) + λ
≤ SAτ

(k + 1)c

√
1 + λ

λ
=: δk

We have
k∑

i=0

(1− η)iδk−i = τSA

√
1 + λ

λ

k∑

i=0

(1− η)i
(k − i+ 1)c

.

For example, for c = 2, the above sum is bounded by
∑∞

n=1 1/n
2 = π2/6. Thus, one can set

ξ := π2SA
6

√
1+λ
λ

.

4.8 Experimental details
Source code is included in the supplemental material.

4.8.1 Bidirectional lock

Environment. For the bidirectional lock environment, one of the locks (randomly chosen)
gives a larger reward of 1 and the other lock gives a reward of 0.1. Further details on this
environment can be found in the work Agarwal et al. (2020a).

Exploration bonuses. We consider three exploration bonuses:

• Hoeffding-style bonus is equal to
Vmax√
Nk(s, a)

,

for every s ∈ S, a ∈ A, where Vmax is the maximum possible value in an environment
which we set to 1 for bidirectional lock.

• We use a Bernstein-style bonus
√

Vars′∼Pk(·|s,a)Vk(s
′)

Nk(s, a)
+

1

Nk(s, a)

based on the bonus proposed by He et al. (2020). Pk denotes an empirical estimation
of transitions Pk(s

′|s, a) = Nk(s, a, s
′)/Nk(s, a), where Nk(s, a, s

′) is the number of
samples on transiting to s′ starting from state s and taking action a.

• MADE’s bonus is set to the following in tabular setting:
1√

Nk(s, a)Bk(s, a)
.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 172

Algorithms. Below, we describe details on each tabular algorithm.

• Value iteration. We implement discounted value iteration given in (He et al., 2020)
with all three bonuses.

• PPO. We implement a tabular version of the algorithm in (Cai et al., 2020), which
is based on PPO with bonus. Specifically, the algorithm has the following steps: (1)
sampling a new trajectory by running the stochastic policy πk, (2) updating the em-
pirical transition estimate Pk and exploration bonus, (3) computing Q-function Qk of
πk over an MDP Mk with empirical transitions Pk and total reward rk which is a sum
of extrinsic reward and exploration bonus, and (4) updating the policy according to
πk+1(a|s) ∝ πk(a|s) exp(αkQk(s, a)), where αk =

√
2 log(A)/HK based on Cai et al.

(2020, Theorem 13.1).

• Q-learning. We implement Q-learning with bonus based on the algorithms given by
Jin et al. (2018).

4.8.2 Chain MDP

For the chain MDP described in Section 4.3.2, we use H = 8 and discount factor γ = H/(H+
1). We run policy gradient for a tabular softmax policy parameterization π(s|a) = θs,a with
the following RL objectives. Since we use a simplex parameterization, we run projected
gradient ascent.

• Vanilla PG. The vanilla version simply considers the standard RL objective J(πθ).
For the gradient ∇θJ(πθ), see e.g. Agarwal et al. (2019b, Equation (32)).

• PG with relative policy entropy regularization. We use the objective (with the
additive constant dropped) given in Agarwal et al. (2019b, Equation (12)):

L(πθ) := J(πθ) + τk
∑

s,a

log πθ(a|s).

Here, index k denotes the policy gradient step. This form of regularization is more
aggressive than the policy entropy regularized objective discussed next. Partial deriva-
tives of the above objective are simply

∂L(πθ)

∂θs,a
=
∂J(πθ)

∂θs,a
+ τk

1

θs,a
,

where the first term is analogous to the vanilla policy gradient.

• PG with policy entropy regularization. Policy entropy regularized objective
(Williams and Peng, 1991; Mnih et al., 2016; Nachum et al., 2017; Mei et al., 2020) is

L(πθ) := J(πθ)− τk(1− γ)−1 E(s,a)∼d
πθ
ρ (·,·)[log πθ(a|s)].

The gradient of the regularizer of the above objective is given in Lemma 4.1.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 173

• PG with MADE’s regularization. For MADE, we use the following objective

L(πθ) := J(πθ)− τk
∑

s,a

√
dπ(s, a).

The gradient of MADE’s regularizer is computed in Lemma 4.2.

For all regularized objectives, we set τk = 0.1/
√
k.

4.8.3 MiniGrid

We follow RIDE (Campero et al., 2020) and use the same hyperparameters for all the base-
lines. For ICM, RND, IMPALA, RIDE, BeBold and MADE, we use the learning rate 10−4,
batch size 32, unroll length 100, RMSProp optimizer with ϵ = 0.01 and momentum 0. For
entropy cost hyperparameters, we use 0.0005 for all the baselines except AMIGo. We provide
the entropy cost for AMIGo below. We also test different values {0.01, 0.02, 0.05, 0.1, 0.5}
for the temperature hyperparameter in MADE. The best hyperparameters we found for each
method are as follows. For Bebold, RND, and MADE we use intrinsic reward scaling
factor of 0.1 for all environments. For ICM we use intrinsic reward scaling factor of 0.1 for
KeyCorridor environments and 0.5 for the others. Hyperparameters in RIDE are exactly
the same as ICM. For AMIGo, we use an entropy cost of 0.0005 for the student agent, and
an entropy cost of 0.01 for the teacher agent.

4.8.4 DeepMind Control Suite

Environment. We use the publicly available environment DeepMind Control Suite (Tassa
et al., 2020) without any modification (Figure 4.11). Following the task design of RE3 (Seo
et al., 2021), we use Cheetah_Run_Sparse and Walker_Run_Sparse.

Cheetah Hopper Walker Pendulum CartPole

Figure 4.11: Visualization of various tasks in DeepMind Control Suite. DeepMind Control Suite
includes image-based control tasks with physics simulation. We mainly experiment on locomotion
tasks in this environment.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 174

Model-free RL implementations. For the experiments, we use the baselines of
RAD (Laskin et al., 2020), and we conduct a hyperparameter search over certain factors:

• RND. We search for the temperature parameter τk over
{0.001, 0.01, 0.05, 0.1, 0.5, 10.0} and choose the best for each task. Specifically
we use τk = 0.1 for Pendulum_Swingup and
Cheetah_Run_Sparse, τk = 10 for Cartpole_Swingup_Sparse, and τk = 0.05 for
others.

• ICM. We search for the temperature parameter τk over {0.001, 0.01, 0.05, 0.1, 0.5, 1.0}
and choose the best for each task. Specifically we select τk = 1.0 for
Cheetah_Run_Sparse and τk = 0.1 for the others. For the total loss used in train-
ing the networks, to balance the coefficient between forward loss and inverse loss, we
follow the convention and use Lall = 0.2 · Lforward + 0.8 · Linverse, where Lforward is the
loss of predicting the next state given current state-action pair and Linverse is the loss
for predicting the action given the current state and the next state.

• RE3. We use an initial scaling factor τ0 = 0.05 (the scaling factor of τk at step 0) and
decay it afterwards in each step. Note that we use the number of clusters M = 3 with
a decaying factor on the reward ρ = {0.00001, 0.000025}. Therefore, the final intrinsic
reward scaling factor becomes: τk = τ0e

−ρk.

• MADE. We search for the temperature parameter τk over {0.001, 0.01, 0.05, 0.1, 0.5}
and choose the best for each task. Specifically we select τk = 0.05 for
Cartpole_Swingup_Sparse,
Walker_Run_Sparse and Cheetah_Run_Sparse, τk = 0.5 for Hopper_Hop and
Pendulum_Swingup, and τk = 0.001 for Quadruped_Run.

We use the same network architecture for all the algorithms. Specifically, the encoder
consists of 4 convolution layers with ReLU activations. There are kernels of size 3 × 3 with
32 channels for all layers, and stride 1 except for the first layer which has stride 2. The
embedding is then followed by a LayerNorm.

Model-based Rl implementation Here we provide implementation details for the
model-based RL experiments. We adopt Dreamer as a baseline and build all the algorithms
on top of that.

• RE3. For RE3, we follow the hyperparameters given in the original paper. We use an
initial scaling factor τ0 = 0.1 without decaying τk afterwards. The number of clusters
is set to M = 50. We use a decaying factor on the reward ρ = 0.

• MADE. We search for the temperature parameter τk over {0.0005, 0.01, 0.05, 0.1, 0.5}
and choose the best for each map. Specifically we use 0.5 for
Cartpole_Swingup_Sparse, Cheetah_Run_Sparse and Hopper_Hop, 0.01 for
Walker_Run_Sparse and Pendulum_Swingup and 0.0005 for Quadruped_Run.

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 175

4.9 Gradient computations
In this section we compute the gradients for policy entropy and MADE regularizers used in
the chain MDP experiment. Before presenting the lemmas, we define two other visitation
densities. The state visitation density dπ : S → [0, 1] is defined as

dπ(s) := (1− γ)
∞∑

t=0

γt Pt(st = s; π),

where Pt(st = s; π) denotes the probability of visiting s at step t starting at s0 ∼ ρ(·)
following policy π. The state-action visitation density starting at (s′, a′) is denoted by

dπs′,a′(s, a) := (1− γ)
∞∑

t=0

γt Pt(st = s, at = a; π, s0 = s′, a0 = a′).

The following lemma computes the gradient of policy entropy with respect to policy param-
eters.

Lemma 4.1. For a policy π parameterized by θ, the gradient of the policy entropy

R(πθ) := −E(s,a)∼d
πθ
ρ (·,·)[log πθ(a|s)],

with respect to θ is given by

∇θR(πθ) = E(s,a)∼d
πθ
ρ (·,·)

[
∇θ log π(a|s)

(
1

1− γ ⟨d
π
s,a,− log π⟩

)
− log π(a|s)

]
.

Proof. By chain rule, we write

∇θR(πθ) = −
∑

s,a

∇θd
π(s, a) log π(a|s) +

∑

s,a

dπ(s, a)∇θ log π(a|s) = −
∑

s,a

∇θd
π(s, a) log π(a|s).

The second equation uses the fact that Ex∼p(·)[∇θ log p(x)] = 0 for any density p and that
dπ(s, a) = dπ(s)π(a|s) as laid out below:

∑

s,a

dπ(s, a)∇θ log π(a|s) =
∑

s

dπ(s)
∑

a

π(a|s)∇θ log π(a|s) = 0.

By another application of chain rule, one can write

∇θd
π(s, a) = ∇θ[d

π(s)π(a|s)] = ∇θd
π(s)π(a|s) + dπ(s, a)∇θ log π(a|s).

We further simplify ∇θR(πθ) according to

∇θR(πθ) = −
∑

s,a

∇θd
π(s, a) log π(a|s)

= −
∑

s,a

∇θd
π(s)π(a|s) log π(a|s)−

∑

s,a

dπ(s, a)∇θ log π(a|s) log π(a|s).

CHAPTER 4. LEARNING TO MAKE DECISIONS DURING INTERACTIONS 176

We substitute ∇θd
π(s) based on Zhang et al. (2021a, Lemma D.1):

∇θR(πθ) =−
1

1− γ
∑

s′,a′

dπ(s′, a′)∇θ log(a
′|s′)

∑

s,a

ds′,a′(s, a) log π(a|s)

−
∑

s,a

dπ(s, a)∇θ log π(a|s) log π(a|s)

=E(s,a)∼d
πθ
ρ (·,·)

[
∇θ log π(a|s)

(
1

1− γ ⟨d
π
s,a,− log π⟩

)
− log π(a|s)

]
,

where ⟨dπs,a,− log π⟩ denotes the inner product between vectors dπs,a and − log π. This com-
pletes the proof.

The following lemma computes the gradient of MADE regularizer with respect to policy
parameters.

Lemma 4.2. For a policy π parameterized by θ, the gradient of the regularizer

R(πθ) :=
∑

s,a

√
dπ(s, a),

with respect to θ is given by

∇θR(πθ) =
1

2
E(s,a)∼dπ(·,·)

[
∇θ log π(a|s)

(
1

1− γ ⟨d
π
s,a,

1√
dπ
⟩+ 1√

dπ(s, a)

)]
.

Proof. The proof is similar to that of Zhang et al. (2021a, Lemma D.3). We write
∇θd

π(s, a) = ∇θd
π(s)π(a|s)+dπ(s, a)∇θ log π(a|s) and conclude based on Zhang et al. (2021a,

Lemma D.1) that

∇θR(πθ) =
1

2

∑

s,a

∇θd
π(s, a)√
dπ(s, a)

=
1

2(1− γ)
∑

s′,a′

dπ(s′, a′)∇θ log π(a
′|s′)

∑

s,a

dπs′,a′(s, a)
1√

dπ(s, a)

+
1

2

∑

s,a

dπ(s, a)∇θ log π(a|s)
1√

dπ(s, a)

=
1

2
E(s,a)∼dπ(·,·)

[
∇θ log π(a|s)

(
1

1− γ ⟨d
π
s,a,

1√
dπ
⟩+ 1√

dπ(s, a)

)]
.

177

Chapter 5

Concluding Remarks

Throughout this thesis, we presented formulations for capturing a few of the challenges that
AI faces in practice and proposed algorithmic solutions towards addressing these challenges.
In addition to some specific future directions pointed out throughout the thesis, in this
chapter we review a few important future directions for sequential decision-making and RL,
from the author’s perspective.

5.1 Foundations
Over the past few years, important progress has been made in theoretical foundations for
RL. Foundations can elucidate the data requirements and failure modes of RL, complement
empirical evaluations, and inspire new algorithm designs. For instance, hardness results such
as sample complexity lower bounds exponential in horizon or feature dimensions have been
established (Weisz et al., 2021; Du et al., 2019b; Wang et al., 2021; Foster et al., 2021).
These results may explain why RL is significantly more challenging in practice compared
to supervised learning and the error compounding observed in some applications such as
robotics. Despite the progress, the gap between theory and practice of RL is unresolved. In
the rest of this section, we take a look at several major open questions in RL foundations.

5.1.1 Optimism and pessimism with nonlinear function
approximation

While information-theoretically near-optimal algorithms for optimism and pessimism prin-
ciples for online and offline RL are recently proposed in tabular and linear function approx-
imation settings, combining these principles with nonlinear function approximation remains
challenging. Several works have considered optimism and pessimism with general function
classes (Wang et al., 2020b; Uehara and Sun, 2021), however, the proposed algorithms are
often computationally intractable or impractical.

CHAPTER 5. CONCLUDING REMARKS 178

One challenging aspect is the difficulty of constructing accurate confidence bounds, used
in the upper and lower confidence bound methods, for nonlinear function classes and simple
methods such as ensembles do not offer a competitive performance. This is also a major
problem in practice. For instance, Rashid et al. (2020) shows empirical evidence that even
with optimistic initialization, Q-functions parameterized by neural networks tend to quickly
become “overconfident” about unseen regions, not correctly reflecting the true uncertainty.
To alleviate this challenge, one direction is to pursue theoretically-grounded methods for
accurate confidence estimation for nonlinear functions. Along these lines, a recent work
by Tennenholtz et al. (2021) exploits recent advances in Riemannian geometry and builds
confidence intervals over feature space, taking geodesic distance instead of Euclidean distance
as a metric.

Another direction is to search for alternatives to confidence bound methods for applying
optimism and pessimism principles. In online RL, alternatives to UCB include random-
ized exploration (Ishfaq et al., 2021), posterior sampling (Osband and Van Roy, 2017), and
information-directed exploration (Russo and Van Roy, 2014). In offline RL, recent works
Cheng et al. (2022); Zhan et al. (2022) provide promising initial results on alternatives to
LCB methods, leaving optimal convergence rates and further empirical evaluations for future
work.

5.1.2 Statistical and computational limits

Inspired by the empirical success of RL in large state spaces, a growing body of literature in
RL theory has focused on identifying necessary and sufficient conditions on function classes
and environment characteristics that admit statistically efficient RL.1 Such conditions include
linear MDPs (Yang and Wang, 2019; Jin et al., 2020b), linear Bellman complete (Zanette
et al., 2020), block MDPs (Du et al., 2019a), bounded Eluder dimension (Russo and Van Roy,
2013), Bellman rank (Jiang et al., 2017), Witness rank (Sun et al., 2019), bilinear classes (Du
et al., 2021), and Bellman Eluder dimension (Jin et al., 2021). However, computationally
efficient algorithms do not exist for the majority of the mentioned settings.

In many of statistical learning problems, the information-theoretic statistical sample
complexity is inherently lower than the sample size required by computationally efficient
algorithms, which is referred to as the statistical-computational gap (Valiant, 1984; Decatur
et al., 2000). This phenomena has been observed in a variety of high-dimensional problems
such as sparse PCA (Wang et al., 2016), matrix completion (Chen, 2015), and learning neural
networks (Mondelli and Montanari, 2019). A series of recent works have theoretically verified
that some of the observed gaps are inherent. These works either prove failure of classes of
efficient algorithms (Zdeborová and Krzakala, 2016; Barak et al., 2019; Kunisky et al., 2019)

1In the context of RL, statistically efficient algorithms are often required a sample size that is indepen-
dent of state size, polynomial in the horizon, number of actions, and problem complexity measures, and
polylogarithmic in number of hypotheses in (or the covering number of) the class (Jiang et al., 2017; Chen
and Jiang, 2019)

CHAPTER 5. CONCLUDING REMARKS 179

or give reduction-based arguments relating statistical-computational gaps of problems to one
another (Berthet and Rigollet, 2013; Gao et al., 2017).

Statistical-computational gap and computational efficiency limits in RL are major open
problems, with the very recent work of Kane et al. (2022) making progress by proving the first
computational lower bound for RL with linear function approximation. Further investigation
of computational limits alongside statistical limits is an important question to pursue in the
future.

5.1.3 Beyond worst-case optimality

Hardness results in RL theory involves constructing worst-case scenarios within a specific set
of problems. Closely evaluating the information-theoretically hard examples, the examples
appear to be “artificial” and far from real environments. Many RL algorithms tend to
perform better in practice compared to what theory suggests and even work in settings that
are prohibitive in theory. This gap indicates that the real environments may have more
structure and may be in a sense easier than the worst-case scenarios.

An important direction towards theoretical foundations more aligned with practice is
conducting problem-dependent analysis. This involves defining interesting measures that
capture the complexity of RL problem instances and brings about further questions regard-
ing fast rates and adaptive optimality of algorithms. In Chapter 3, we have presented one
such measure for offline RL, the single-policy concentrability coefficient, that in a sense cap-
tures the offline dataset quality. Other problem-dependent measures appeared in literature
include maximum conditional variance (Zanette and Brunskill, 2019) and sub-optimality gap
(Simchowitz and Jamieson, 2019; Khamaru et al., 2021). Instance-dependent analysis pro-
vide tighter rates and differentiate problems in terms of complexity. Further research in this
direction can help narrowing the gap between theory and practice of RL.

5.2 Generalization
Generalization refers to knowing what to do when faced with novel situations, relying on
already learned abilities and understanding similarities. The ability to generalize is a core
problem in intelligent systems. For the AI to be deployed in the “always changing” real
world, it needs to be robust to variations in the environment and able to transfer skills and
adapt to unseen environments.

In the context of supervised learning (SL), generalization is fairly understood. In prac-
tice, supervised learning achieves decent levels of generalization as demonstrated in the fields
of computer vision and natural language processing. Supervised learning, particularly given
i.i.d. samples, has a unified theory and provable guarantees which relies on classical com-
plexity notions such as the VC dimension or Rademacher complexity.

Compared to supervised learning, generalization in reinforcement learning is more com-
plex. A clear separation between SL and RL is due to the inability of data reuse in RL, with

CHAPTER 5. CONCLUDING REMARKS 180

an exp(H) sample size requirement for RL given a hypothesis policy class shown by Kearns
et al. (1999). Generalization in RL can take on many forms including generalizing to new
observations, new reward functions, new dynamics, and new tasks. Despite progress in the-
ory and practice of RL, many open problems remain in RL generalization. In what follows,
we describe a few generalization methods in RL and discuss under-explored directions; for
further discussion of open challenges on deep RL generalization, see Kirk et al. (2021).

Representation learning. A key to generalization is obtaining abstractions that extract
relevant and meaningful patterns in the complex observational data. While in some cases,
a low dimensional feature representation might be known in advance, in the majority of
real scenarios such features are unknown. Extracting low-dimensional features can be done
via several methods. A common approach is using powerful function approximators such
as deep neural networks, in end-to-end training which results in an implicit form of feature
learning. Generic deep RL methods exploit this implicit representation learning to obtain a
good performance.

Another possibility is conducting dimensionality reduction using an unsupervised pre-
training step to explicitly represent complex data with low-dimensional features. In Chapter
2, we constructed features using linear dimensionality reduction. Nonlinear dimensional-
ity reduction methods can further exploit the topological structure of data manifold (Van
Der Maaten et al., 2009) and have been effective in many applications. Some examples of
successful implementations include EEG classification (Krivov and Belyaev, 2016), source
localization in wireless sensor networks (Ghafourian et al., 2020) and single-cell data visu-
alization (Becht et al., 2019). Self-supervised pretraining is another powerful method that
offers performance improvements across several modalities such as image, audio, and text
(Baevski et al., 2022; Misra and Maaten, 2020; Zbontar et al., 2021; Grill et al., 2020) and
also have been recently applied in reinforcement learning (Anand et al., 2019; Srinivas et al.,
2020; Touati and Ollivier, 2021; Jiang et al., 2021; Yang and Nachum, 2021).

Despite improving RL performance, most of the current methods are the direct applica-
tion of unsupervised and self-supervised representation learning framework from conventional
vision and language tasks to RL. Designing RL-specific representation learning methods
that possibly account for the Bellman equation and controllability constraints as well as
understand what objective characterizes good representations in RL remain underexplored.
Furthermore, the interplay between representation learning and exploration in online RL or
partial dataset coverage in offline RL (Uehara et al., 2021b) are important directions for
further research.

Learning world models. There is a significant gap between the generalization power
of humans and current state of the artificially intelligent systems. Research in cognitive
neuroscience suggests that humans build an abstract model of the world including relevant
concepts and relationships (Forrester, 1971; Quiroga et al., 2005; Chang and Tsao, 2017),
which can at least partially explain our generalization ability. Building such models gives

CHAPTER 5. CONCLUDING REMARKS 181

predictive ability which in turn affects our perception of the environment, actions, and
decisions in different situations (Nortmann et al., 2015; Maus et al., 2013).

Learning world models is a promising method towards more sample-efficient and gen-
eralizable RL (Ha and Schmidhuber, 2018) that is currently underexplored compared to
model-free algorithms (Kirk et al., 2021). Initial theoretical results have demonstrated com-
plexity gaps between model-based and model-free methods in factored MDPs (Koller and
Parr, 1999), linear quadratic regulators (Tu and Recht, 2019), online RL (Sun et al., 2019),
and continuous control tasks (Dong et al., 2020). Recent empirical works such as Seo et al.
(2020); Anand et al. (2021) suggest that learning a model allows for better generalization of
learned abilities to new rewards, observations, and even changing dynamics.

Of course, learning a complete model of the environment can be demanding, especially
when dealing with complex sensory inputs such as images. However, such observations from
a real environment often contain complex yet irrelevant details. In the RL setting, the cu-
mulative reward objective provides a signal to the agent about parts of the observations that
are task-irrelevant and approaches such as value-aware (Farahmand et al., 2017) and policy-
aware (Abachi, 2020) model learning aim at learning such partial models of the environment.

Learning abstract and partial models brings about a question: what are considered good
abstractions and useful inductive biases to be incoprorated in models? Along these lines,
popular topics such as disentangled representations (Bengio et al., 2019; Higgins et al., 2017;
Locatello et al., 2019; Chen et al., 2018) and causal learning (Ke et al., 2022; Schölkopf et al.,
2021) as well as some less-explored directions such as relational learning (Koller et al., 2007)
and (statistical) predicate invention (Kok and Domingos, 2007) (which is the discovery of
new concepts and relations from data) are interesting directions for further research.

182

Bibliography

Romina Abachi. Policy-aware model learning for policy gradient methods. PhD thesis, Uni-
versity of Toronto (Canada), 2020.

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–
2320, 2011.

Marc Abeille and Alessandro Lazaric. Improved regret bounds for Thompson sampling in
linear quadratic control problems. In International Conference on Machine Learning,
pages 1–9, 2018.

Alekh Agarwal, Nan Jiang, and Sham M Kakade. Reinforcement learning: Theory and algo-
rithms. Technical report, Technical Report, Department of Computer Science, University
of Washington, 2019a.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of
policy gradient methods: Optimality, approximation, and distribution shift. arXiv preprint
arXiv:1908.00261, 2019b.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. PC-PG: Policy cover directed
exploration for provable policy gradient learning. arXiv preprint arXiv:2007.08459, 2020a.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Struc-
tural complexity and representation learning of low rank MDPs. arXiv preprint
arXiv:2006.10814, 2020b.

Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with
a generative model is minimax optimal. In Conference on Learning Theory, pages 67–83.
PMLR, 2020c.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and
approximation with policy gradient methods in Markov decision processes. In Conference
on Learning Theory, pages 64–66. PMLR, 2020d.

BIBLIOGRAPHY 183

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning. In International Conference on Machine Learning, pages
104–114. PMLR, 2020e.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning:
Worst-case regret bounds. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 1184–1194, 2017.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understand-
ing the impact of entropy on policy optimization. In International Conference on Machine
Learning, pages 151–160. PMLR, 2019.

Ahmed M Alaa, Scott Hu, and Mihaela Schaar. Learning from clinical judgments: Semi-
Markov-modulated marked Hawkes processes for risk prognosis. In International Confer-
ence on Machine Learning, pages 60–69. PMLR, 2017.

Norm Aleks, Stuart J Russell, Michael G Madden, Diane Morabito, Kristan Staudenmayer,
Mitchell Cohen, and Geoffrey T Manley. Probabilistic detection of short events, with
application to critical care monitoring. In Advances in Neural Information Processing
Systems, pages 49–56, 2009.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and
R Devon Hjelm. Unsupervised state representation learning in Atari. arXiv preprint
arXiv:1906.08226, 2019.

Ankesh Anand, Jacob Walker, Yazhe Li, Eszter Vértes, Julian Schrittwieser, Sherjil Ozair,
Théophane Weber, and Jessica B Hamrick. Procedural generalization by planning with
self-supervised world models. arXiv preprint arXiv:2111.01587, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. In Advances in neural information processing systems, pages 5048–
5058, 2017.

Andras Antos, Rémi Munos, and Csaba Szepesvari. Fitted Q-iteration in continuous action-
space mdps. In Neural Information Processing Systems, 2007.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with
Bellman-residual minimization based fitted policy iteration and a single sample path.
Machine Learning, 71(1):89–129, 2008.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based rein-
forcement learning with value-targeted regression. In International Conference on Machine
Learning, pages 463–474. PMLR, 2020.

BIBLIOGRAPHY 184

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds
on the sample complexity of reinforcement learning with a generative model. Machine
learning, 91(3):325–349, 2013.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International Conference on Machine Learning, pages 263–272.
PMLR, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot,
Steven Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew
Bolt, et al. Never give up: Learning directed exploration strategies. arXiv preprint
arXiv:2002.06038, 2020.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli.
Data2vec: A general framework for self-supervised learning in speech, vision and language.
arXiv preprint arXiv:2202.03555, 2022.

Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and
Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem.
SIAM Journal on Computing, 48(2):687–735, 2019.

Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel WH
Kwok, Lai Guan Ng, Florent Ginhoux, and Evan W Newell. Dimensionality reduction
for visualizing single-cell data using UMAP. Nature biotechnology, 37(1):38–44, 2019.

Bernhard Beckermann and Alex Townsend. On the singular values of matrices with displace-
ment structure. SIAM Journal on Matrix Analysis and Applications, 38(4):1227–1248,
2017.

David Belanger and Sham Kakade. A linear dynamical system model for text. In Interna-
tional Conference on Machine Learning, pages 833–842, 2015.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in neural
information processing systems, pages 1471–1479, 2016.

Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa
Bilaniuk, Anirudh Goyal, and Christopher Pal. A meta-transfer objective for learning to
disentangle causal mechanisms. arXiv preprint arXiv:1901.10912, 2019.

Jan Beran. Statistics for Long-memory Processes. Routledge, 2017.

Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse prin-
cipal component detection. In Conference on learning theory, pages 1046–1066. PMLR,
2013.

BIBLIOGRAPHY 185

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods.
arXiv preprint arXiv:1906.01786, 2019.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Ronen I Brafman and Moshe Tennenholtz. R-max: A general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):
213–231, 2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-armed and
continuous-armed bandits. Theoretical Computer Science, 412(19):1832–1852, 2011.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in
fixed-dataset policy optimization. arXiv preprint arXiv:2009.06799, 2020.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A
Efros. Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355,
2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018b.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy
optimization. In International Conference on Machine Learning, pages 1283–1294. PMLR,
2020.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rock-
täschel, and Edward Grefenstette. Learning with AMIGo: Adversarially motivated intrin-
sic goals. arXiv preprint arXiv:2006.12122, 2020.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global con-
vergence of natural policy gradient methods with entropy regularization. arXiv preprint
arXiv:2007.06558, 2020.

Le Chang and Doris Y Tsao. The code for facial identity in the primate brain. Cell, 169(6):
1013–1028, 2017.

Shaunak Chatterjee and Stuart Russell. Why are DBNs sparse? In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, pages 81–88,
2010.

BIBLIOGRAPHY 186

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement
learning. arXiv preprint arXiv:1905.00360, 2019.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
disentanglement in variational autoencoders. Advances in neural information processing
systems, 31, 2018.

SY Chen. Kalman filter for robot vision: A survey. IEEE Transactions on Industrial Elec-
tronics, 59(11):4409–4420, 2011.

Yudong Chen. Incoherence-optimal matrix completion. IEEE Transactions on Information
Theory, 61(5):2909–2923, 2015.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor
critic for offline reinforcement learning. arXiv preprint arXiv:2202.02446, 2022.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforce-
ment learning. Advances in neural information processing systems, 17, 2004.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld envi-
ronment for OpenAI Gym. https://github.com/maximecb/gym-minigrid, 2018.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves
Oudeyer. CURIOUS: Intrinsically motivated modular multi-goal reinforcement learning.
In International conference on machine learning, pages 1331–1340. PMLR, 2019.

Huseyin Coskun, Felix Achilles, Robert DiPietro, Nassir Navab, and Federico Tombari. Long
short-term memory Kalman filters: Recurrent neural estimators for pose regularization. In
Proceedings of the IEEE International Conference on Computer Vision, pages 5524–5532,
2017.

Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforce-
ment learning. In Proceedings of the 28th International Conference on Neural Information
Processing Systems-Volume 2, pages 2818–2826, 2015.

Peter Dayan and Bernard W Balleine. Reward, motivation, and reinforcement learning.
Neuron, 36(2):285–298, 2002.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds
for robust adaptive control of the linear quadratic regulator. In Advances in Neural Infor-
mation Processing Systems, pages 4188–4197, 2018.

Scott E Decatur, Oded Goldreich, and Dana Ron. Computational sample complexity. SIAM
Journal on Computing, 29(3):854–879, 2000.

https://github.com/maximecb/gym-minigrid

BIBLIOGRAPHY 187

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic
reinforcement learning in finite MDPs: Minimax lower bounds revisited. arXiv preprint
arXiv:2010.03531, 2020.

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the expressivity of
neural networks for deep reinforcement learning. In International Conference on Machine
Learning, pages 2627–2637. PMLR, 2020.

Kefan Dong, Jiaqi Yang, and Tengyu Ma. Provable model-based nonlinear bandit and
reinforcement learning: Shelve optimism, embrace virtual curvature. arXiv preprint
arXiv:2102.04168, 2021.

David L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):
1289–1306, 2006.

David L Donoho, Richard C Liu, and Brenda MacGibbon. Minimax risk over hyperrectan-
gles, and implications. The Annals of Statistics, pages 1416–1437, 1990.

Paul Doukhan, George Oppenheim, and Murad Taqqu. Theory and Applications of Long-
range Dependence. Springer Science & Business Media, 2002.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John
Langford. Provably efficient RL with rich observations via latent state decoding. In
International Conference on Machine Learning, pages 1665–1674. PMLR, 2019a.

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and
Ruosong Wang. Bilinear classes: A structural framework for provable generalization in
RL. In International Conference on Machine Learning, pages 2826–2836. PMLR, 2021.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation
sufficient for sample efficient reinforcement learning? In International Conference on
Learning Representations, 2019b.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation
sufficient for sample efficient reinforcement learning? In International Conference on
Learning Representations, 2020.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear
function approximation. In International Conference on Machine Learning, pages 2701–
2709. PMLR, 2020.

Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: Part I. IEEE
robotics & automation magazine, 13(2):99–110, 2006.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-
explore: A new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995,
2019.

BIBLIOGRAPHY 188

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First
return then explore. arXiv preprint arXiv:2004.12919, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable dis-
tributed deep-RL with importance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561, 2018.

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Optimism-
based adaptive regulation of linear-quadratic systems. arXiv preprint arXiv:1711.07230,
2017.

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Finite time
identification in unstable linear systems. Automatica, 96:342–353, 2018.

Amir Massoud Farahmand, Rémi Munos, and Csaba Szepesvári. Error propagation for
approximate policy and value iteration. In Advances in Neural Information Processing
Systems, 2010.

Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss function
for model-based reinforcement learning. In Artificial Intelligence and Statistics, pages
1486–1494. PMLR, 2017.

Fei Feng, Ruosong Wang, Wotao Yin, Simon S Du, and Lin Yang. Provably efficient ex-
ploration for reinforcement learning using unsupervised learning. Advances in Neural
Information Processing Systems, 33, 2020.

Fei Feng, Wotao Yin, Alekh Agarwal, and Lin F Yang. Provably correct optimization and
exploration with non-linear policies. arXiv preprint arXiv:2103.11559, 2021.

Yihao Feng, Lihong Li, and Qiang Liu. A kernel loss for solving the Bellman equation. arXiv
preprint arXiv:1905.10506, 2019.

Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu Geist. Ad-
versarially guided actor-critic. In International Conference on Learning Representations,
2021.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation
for reinforcement learning agents. In International conference on machine learning, pages
1515–1528. PMLR, 2018.

Jay W Forrester. Counterintuitive behavior of social systems. Theory and decision, 2(2):
109–140, 1971.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks
for exploration. International Conference on Learning Representations, 2018.

BIBLIOGRAPHY 189

Dylan J Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik Sridharan. Logistic
regression: The importance of being improper. arXiv preprint arXiv:1803.09349, 2018.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical com-
plexity of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets
for deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmark-
ing batch deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019b.

Wayne A Fuller and David P Hasza. Predictors for the first-order autoregressive process.
Journal of Econometrics, 13(2):139–157, 1980.

Wayne A Fuller and David P Hasza. Properties of predictors for autoregressive time series.
Journal of the American Statistical Association, 76(373):155–161, 1981.

Chao Gao, Zongming Ma, and Harrison H Zhou. Sparse CCA: Adaptive estimation and
computational barriers. The Annals of Statistics, 45(5):2074–2101, 2017.

Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin, and Amr
Huber. Offline and online evaluation of news recommender systems at swissinfo.ch. In
Proceedings of the 8th ACM Conference on Recommender systems, pages 169–176, 2014.

Matthieu Geist, Bilal Piot, and Olivier Pietquin. Is the Bellman residual a bad proxy?
In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 3208–3217, 2017.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov
decision processes. In International Conference on Machine Learning, pages 2160–2169.
PMLR, 2019.

Amin Ghafourian, Orestis Georgiou, Edmund Barter, and Thilo Gross. Wireless localization
with diffusion maps. Scientific Reports, 10(1):1–10, 2020.

Udaya Ghai, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. No-regret prediction in
marginally stable systems. arXiv preprint arXiv:2002.02064, 2020.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. EMaQ:
Expected-max Q-learning operator for simple yet effective offline and online RL. arXiv
preprint arXiv:2007.11091, 2020.

BIBLIOGRAPHY 190

Marzyeh Ghassemi, Marco Pimentel, Tristan Naumann, Thomas Brennan, David Clifton,
Peter Szolovits, and Mengling Feng. A multivariate timeseries modeling approach to
severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical
data. In Proceedings of the AAAI conference on artificial intelligence, volume 29, 2015.

Edgar N Gilbert. A comparison of signalling alphabets. The Bell system technical journal,
31(3):504–522, 1952.

Alexander Goldenshluger and Assaf Zeevi. Nonasymptotic bounds for autoregressive time
series modeling. Annals of Statistics, pages 417–444, 2001.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Fi-
nale Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in health-
care. Nature medicine, 25(1):16–18, 2019.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control.
arXiv preprint arXiv:1611.07507, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning.
Advances in Neural Information Processing Systems, 33:21271–21284, 2020.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru,
et al. RL unplugged: Benchmarks for offline reinforcement learning. arXiv preprint
arXiv:2006.13888, 2020.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Botao Hao, Yaqi Duan, Tor Lattimore, Csaba Szepesvári, and Mengdi Wang. Sparse fea-
ture selection makes batch reinforcement learning more sample efficient. arXiv preprint
arXiv:2011.04019, 2020.

Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical
systems. The Journal of Machine Learning Research, 19(1):1025–1068, 2018.

Rafael Hasminskii, Ildar Ibragimov, et al. On density estimation in the view of Kolmogorov’s
ideas in approximation theory. The Annals of Statistics, 18(3):999–1010, 1990.

Elad Hazan. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207,
2019.

BIBLIOGRAPHY 191

Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical systems via spectral
filtering. In Advances in Neural Information Processing Systems, pages 6702–6712, 2017.

Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for
general linear dynamical systems. In Advances in Neural Information Processing Systems,
pages 4634–4643, 2018.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration. In International Conference on Machine Learning, pages 2681–2691,
2019.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement learn-
ing for discounted MDPs. arXiv preprint arXiv:2010.00587, 2020.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improving zero-
shot transfer in reinforcement learning. In International Conference on Machine Learning,
pages 1480–1490. PMLR, 2017.

Daniel Hsu, Sham Kakade, Tong Zhang, et al. A tail inequality for quadratic forms of
subgaussian random vectors. Electronic Communications in Probability, 17, 2012.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In International
Conference on Learning Representations, 2019.

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina
Precup, and Lin Yang. Randomized exploration in reinforcement learning with general
value function approximation. In International Conference on Machine Learning, pages
4607–4616. PMLR, 2021.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility
of benchmarked deep reinforcement learning tasks for continuous control. International
Conference on Learning Representations, 2017.

Riashat Islam, Zafarali Ahmed, and Doina Precup. Marginalized state distribution entropy
regularization in policy optimization. arXiv preprint arXiv:1912.05128, 2019.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforce-
ment learning. Journal of Machine Learning Research, 11(4), 2010.

BIBLIOGRAPHY 192

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata
Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch
deep reinforcement learning of implicit human preferences in dialog. arXiv preprint
arXiv:1907.00456, 2019.

Adel Javanmard and Li Zhang. The minimax risk of truncated series estimators for sym-
metric convex polytopes. In 2012 IEEE International Symposium on Information Theory
Proceedings, pages 1633–1637. IEEE, 2012.

Zeyu Jia, Lin Yang, Csaba Szepesvari, and Mengdi Wang. Model-based reinforcement learn-
ing with value-targeted regression. In Learning for Dynamics and Control, pages 666–686.
PMLR, 2020.

Haoming Jiang, Bo Dai, Mengjiao Yang, Tuo Zhao, and Wei Wei. Towards automatic
evaluation of dialog systems: A model-free off-policy evaluation approach. arXiv preprint
arXiv:2102.10242, 2021.

Nan Jiang. On value functions and the agent-environment boundary. arXiv preprint
arXiv:1905.13341, 2019.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
Contextual decision processes with low Bellman rank are PAC-learnable. In International
Conference on Machine Learning, pages 1704–1713. PMLR, 2017.

Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the ℓ1 distance.
IEEE Transactions on Information Theory, 64(10):6672–6706, 2018.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably
efficient? In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pages 4868–4878, 2018.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free explo-
ration for reinforcement learning. In International Conference on Machine Learning, pages
4870–4879. PMLR, 2020a.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforce-
ment learning with linear function approximation. In Conference on Learning Theory,
pages 2137–2143. PMLR, 2020b.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman Eluder dimension: New rich classes of
RL problems, and sample-efficient algorithms. Advances in Neural Information Processing
Systems, 34, 2021.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL?
arXiv preprint arXiv:2012.15085, 2020c.

BIBLIOGRAPHY 193

Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear Estimation. Number BOOK.
Prentice Hall, 2000.

Sham Kakade and Peter Dayan. Dopamine: generalization and bonuses. Neural Networks,
15(4-6):549–559, 2002.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learn-
ing. In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

Sham Kakade, Mengdi Wang, and Lin F Yang. Variance reduction methods for sublinear
reinforcement learning. arXiv preprint arXiv:1802.09184, 2018.

Daniel Kane, Sihan Liu, Shachar Lovett, and Gaurav Mahajan. Computational-statistical
gaps in reinforcement learning. arXiv preprint arXiv:2202.05444, 2022.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard
Leurent, and Michal Valko. Adaptive reward-free exploration. In Algorithmic Learning
Theory, pages 865–891. PMLR, 2021.

Nan Rosemary Ke, Silvia Chiappa, Jane Wang, Jorg Bornschein, Theophane Weber, Anirudh
Goyal, Matthew Botvinic, Michael Mozer, and Danilo Jimenez Rezende. Learning to
induce causal structure. arXiv preprint arXiv:2204.04875, 2022.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2):209–232, 2002.

Michael Kearns, Yishay Mansour, and Andrew Ng. Approximate planning in large POMDPs
via reusable trajectories. Advances in Neural Information Processing Systems, 12, 1999.

Koulik Khamaru, Ashwin Pananjady, Feng Ruan, Martin J Wainwright, and Michael I Jor-
dan. Is temporal difference learning optimal? An instance-dependent analysis. SIAM
Journal on Mathematics of Data Science, 3(4):1013–1040, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL:
Model-based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi:
Exploration with mutual information. arXiv preprint arXiv:1810.01176, 2018.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of general-
isation in deep reinforcement learning. arXiv preprint arXiv:2111.09794, 2021.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being equal be
empowered. In European Conference on Artificial Life, pages 744–753. Springer, 2005a.

BIBLIOGRAPHY 194

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A univer-
sal agent-centric measure of control. In 2005 IEEE Congress on Evolutionary Computation,
volume 1, pages 128–135. IEEE, 2005b.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Sara Beery, et al.
WILDS: A benchmark of in-the-wild distribution shifts. arXiv preprint arXiv:2012.07421,
2020.

Stanley Kok and Pedro Domingos. Statistical predicate invention. In Proceedings of the 24th
international conference on Machine learning, pages 433–440, 2007.

Daphne Koller and Ronald Parr. Computing factored value functions for policies in struc-
tured MDPs. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 1332–1339, 1999.

Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew McCallum, Avi Pf-
effer, Pieter Abbeel, Ming-Fai Wong, Chris Meek, Jennifer Neville, et al. Introduction to
statistical relational learning. MIT press, 2007.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural infor-
mation processing systems, pages 1008–1014. Citeseer, 2000.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Mark Kozdoba, Jakub Marecek, Tigran Tchrakian, and Shie Mannor. Online learning of
linear dynamical systems: Exponential forgetting in Kalman filters. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 4098–4105, 2019.

Victor Kozyakin. On accuracy of approximation of the spectral radius by the Gelfand for-
mula. Linear Algebra and its Applications, 431(11):2134–2141, 2009.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning
with rich observations. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 1848–1856, 2016.

Egor Krivov and Mikhail Belyaev. Dimensionality reduction with isomap algorithm for EEG
covariance matrices. In 2016 4th International Winter Conference on Brain-Computer
Interface (BCI), pages 1–4. IEEE, 2016.

Aviral Kumar and Sergey Levine. Offline reinforcement learning: From algorithms to prac-
tical challenges. https://sites.google.com/view/offlinerltutorial-neurips2020/
home, 2020.

https://sites.google.com/view/offlinerltutorial-neurips2020/home
https://sites.google.com/view/offlinerltutorial-neurips2020/home

BIBLIOGRAPHY 195

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy Q-learning
via bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational
hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. arXiv
preprint arXiv:1907.11636, 2019.

Vitaly Kuznetsov and Mehryar Mohri. Generalization bounds for non-stationary mixing
processes. Machine Learning, 106(1):93–117, 2017.

Tze Leung Lai and Zhiliang Ying. Recursive identification and adaptive prediction in linear
stochastic systems. SIAM Journal on Control and Optimization, 29(5):1061–1090, 1991.

Tze Leung Lai, Ching Zong Wei, et al. Least squares estimates in stochastic regression
models with applications to identification and control of dynamic systems. The Annals of
Statistics, 10(1):154–166, 1982.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In
Reinforcement learning, pages 45–73. Springer, 2012.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement
with baseline bootstrapping. In International Conference on Machine Learning, pages
3652–3661. PMLR, 2019.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

Tor Lattimore and Marcus Hutter. PAC bounds for discounted MDPs. In International
Conference on Algorithmic Learning Theory, pages 320–334. Springer, 2012.

Lucien Le Cam. Asymptotic Methods in Statistical Decision Theory. Springer Science &
Business Media, 2012.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A
simple technique for generalization in deep reinforcement learning. arXiv preprint
arXiv:1910.05396, 2019a.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Rus-
lan Salakhutdinov. Efficient exploration via state marginal matching. arXiv preprint
arXiv:1906.05274, 2019b.

BIBLIOGRAPHY 196

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643,
2020.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Breaking the sample size
barrier in model-based reinforcement learning with a generative model. arXiv preprint
arXiv:2005.12900, 2020.

Peng Liao, Zhengling Qi, and Susan Murphy. Batch policy learning in average reward Markov
decision processes. arXiv preprint arXiv:2007.11771, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural trust region/proximal policy
optimization attains globally optimal policy. In Neural Information Processing Systems,
2019.

Shuang Liu and Hao Su. Regret bounds for discounted MDPs. arXiv preprint
arXiv:2002.05138, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch
reinforcement learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

Lennart Ljung. Convergence of an adaptive filter algorithm. International Journal of Control,
27(5):673–693, 1978.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised
learning of disentangled representations. In international conference on machine learning,
pages 4114–4124. PMLR, 2019.

George G Lorentz, Manfred von Golitschek, and Yuly Makovoz. Constructive Approximation:
Advanced Problems, volume 304. Springer, 1996.

Cong Ma, Banghua Zhu, Jiantao Jiao, and Martin J Wainwright. Minimax off-policy evalu-
ation for multi-armed bandits. arXiv preprint arXiv:2101.07781, 2021.

Zongming Ma and Yihong Wu. Volume ratio, sparsity, and minimaxity under unitarily
invariant norms. IEEE Transactions on Information Theory, 61(12):6939–6956, 2015.

Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalent control of LQR is
efficient. arXiv preprint arXiv:1902.07826, 2019.

BIBLIOGRAPHY 197

Kenneth Marino, Abhinav Gupta, Rob Fergus, and Arthur Szlam. Hierarchical RL using
an ensemble of proprioceptive periodic policies. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=SJz1x20cFQ.

Gerrit W Maus, Jason Fischer, and David Whitney. Motion-dependent representation of
space in area MT+. Neuron, 78(3):554–562, 2013.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global conver-
gence rates of softmax policy gradient methods. In International Conference on Machine
Learning, pages 6820–6829. PMLR, 2020.

Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvari, and Dale Schuurmans. Leveraging non-
uniformity in first-order non-convex optimization. arXiv preprint arXiv:2105.06072, 2021.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard
Leurent, and Michal Valko. Fast active learning for pure exploration in reinforcement
learning. arXiv preprint arXiv:2007.13442, 2020.

Pierre Menard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. UCB
momentum Q-learning: Correcting the bias without forgetting. arXiv preprint
arXiv:2103.01312, 2021.

Shahar Mendelson. Learning without concentration. In Conference on Learning Theory,
pages 25–39, 2014.

John Miller and Moritz Hardt. Stable recurrent models. arXiv preprint arXiv:1805.10369,
2018.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state
abstraction and provably efficient rich-observation reinforcement learning. In International
conference on machine learning, pages 6961–6971. PMLR, 2020.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant repre-
sentations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6707–6717, 2020.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and prob-
abilistic techniques in algorithms and data analysis. Cambridge university press, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533,
2015.

https://openreview.net/forum?id=SJz1x20cFQ

BIBLIOGRAPHY 198

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928–1937,
2016.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for in-
trinsically motivated reinforcement learning. In Advances in neural information processing
systems, pages 2125–2133, 2015.

Mehryar Mohri and Afshin Rostamizadeh. Rademacher complexity bounds for non-iid pro-
cesses. In Advances in Neural Information Processing Systems, pages 1097–1104, 2009.

Marco Mondelli and Andrea Montanari. On the connection between learning two-layer neural
networks and tensor decomposition. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1051–1060. PMLR, 2019.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Rémi Munos. Error bounds for approximate policy iteration. In Proceedings of the Twentieth
International Conference on International Conference on Machine Learning, pages 560–
567, 2003.

Rémi Munos. Performance bounds in ℓp-norm for approximate value iteration. SIAM journal
on control and optimization, 46(2):541–561, 2007.

Ofir Nachum and Bo Dai. Reinforcement learning via Fenchel-Rockafellar duality. arXiv
preprint arXiv:2001.01866, 2020.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap
between value and policy based reinforcement learning. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, pages 2772–2782, 2017.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estima-
tion of discounted stationary distribution corrections. In Advances in Neural Information
Processing Systems, pages 2315–2325, 2019a.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans.
AlgaeDICE: Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074,
2019b.

Kimia Nadjahi, Romain Laroche, and Rémi Tachet des Combes. Safe policy improvement
with soft baseline bootstrapping. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 53–68. Springer, 2019.

BIBLIOGRAPHY 199

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine.
Visual reinforcement learning with imagined goals. Advances in Neural Information Pro-
cessing Systems, 31:9191–9200, 2018.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized
Markov decision processes. arXiv preprint arXiv:1705.07798, 2017.

Xinkun Nie, Emma Brunskill, and Stefan Wager. Learning when-to-treat policies. Journal
of the American Statistical Association, pages 1–18, 2020.

Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-
directed exploration for deep reinforcement learning. arXiv preprint arXiv:1812.07544,
2018.

Uri Nodelman, Christian R Shelton, and Daphne Koller. Continuous time Bayesian networks.
In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pages
378–387, 2002.

Nora Nortmann, Sascha Rekauzke, Selim Onat, Peter König, and Dirk Jancke. Primary
visual cortex represents the difference between past and present. Cerebral Cortex, 25(6):
1427–1440, 2015.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for
reinforcement learning? In International conference on machine learning, pages 2701–
2710. PMLR, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped DQN. In Advances in neural information processing systems, pages
4026–4034, 2016.

Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via
randomized value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based
exploration with neural density models. arXiv preprint arXiv:1703.01310, 2017.

Yi Ouyang, Mukul Gagrani, and Rahul Jain. Learning-based control of unknown linear
systems with Thompson sampling. arXiv preprint arXiv:1709.04047, 2017.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos
Theodorou, and Byron Boots. Agile autonomous driving using end-to-end deep imita-
tion learning. arXiv preprint arXiv:1709.07174, 2017.

Robert S Parker, Francis J Doyle, and Nicholas A Peppas. A model-based algorithm for blood
glucose control in type I diabetic patients. IEEE Transactions on biomedical engineering,
46(2):148–157, 1999.

BIBLIOGRAPHY 200

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 16–17, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via dis-
agreement. arXiv preprint arXiv:1906.04161, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted
regression: Simple and scalable off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Allan Pinkus. N-widths in Approximation Theory, volume 7. Springer Science & Business
Media, 2012.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen,
Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space
noise for exploration. International Conference on Learning Representations, 2018.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine.
Skew-Fit: State-covering self-supervised reinforcement learning. In International Confer-
ence on Machine Learning, pages 7783–7792. PMLR, 2020.

Martin L Puterman. Markov decision processes. Handbooks in operations research and
management science, 2:331–434, 1990.

R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried. Invariant
visual representation by single neurons in the human brain. Nature, 435(7045):1102–1107,
2005.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. arXiv preprint arXiv:2002.12292, 2020.

Nived Rajaraman, Lin F Yang, Jiantao Jiao, and Kannan Ramachandran. Toward the
fundamental limits of imitation learning. arXiv preprint arXiv:2009.05990, 2020.

Tabish Rashid, Bei Peng, Wendelin Boehmer, and Shimon Whiteson. Optimistic exploration
even with a pessimistic initialisation. arXiv preprint arXiv:2002.12174, 2020.

Paria Rashidinejad, Xiao Hu, and Stuart Russell. Patient-adaptable intracranial pressure
morphology analysis using a probabilistic model-based approach. Physiological Measure-
ment, 41(10):104003, 2020a.

Paria Rashidinejad, Navaneeth Jamadagni, Arun Raghavan, Craig Schelp, and Charles Gor-
don. Techniques for accurately estimating the reliability of storage systems, November 26
2020b. US Patent App. 15/930,779.

BIBLIOGRAPHY 201

Paria Rashidinejad, Jiantao Jiao, and Stuart Russell. SLIP: Learning to predict in unknown
dynamical systems with long-term memory. Advances in Neural Information Processing
Systems, 33:5716–5728, 2020c.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging
offline reinforcement learning and imitation learning: A tale of pessimism. Advances in
Neural Information Processing Systems, 34, 2021.

B Ash. Robert. Information theory, 1990.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings
of the thirteenth international conference on artificial intelligence and statistics, pages
661–668, 2010.

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions.
arXiv preprint arXiv:1906.02870, 2019.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of
optimistic exploration. Advances in Neural Information Processing Systems, 26, 2013.

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sam-
pling. Advances in Neural Information Processing Systems, 27, 2014.

Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment: An introduction. In
Guided Self-Organization: Inception, pages 67–114. Springer, 2014.

Tim Salimans and Richard Chen. Learning Montezuma’s revenge from a single demonstra-
tion. arXiv preprint arXiv:1812.03381, 2018.

Tuhin Sarkar and Alexander Rakhlin. Near optimal finite time identification of arbitrary
linear dynamical systems. arXiv preprint arXiv:1812.01251, 2018.

Bruno Scherrer. Should one compute the temporal difference fix point or minimize the
bellman residual? The unified oblique projection view. arXiv preprint arXiv:1011.4362,
2010.

Bruno Scherrer. Approximate policy iteration schemes: A comparison. In International
Conference on Machine Learning, pages 1314–1322. PMLR, 2014.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbren-
ner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceed-
ings of the IEEE, 109(5):612–634, 2021.

Younggyo Seo, Kimin Lee, Ignasi Clavera Gilaberte, Thanard Kurutach, Jinwoo Shin, and
Pieter Abbeel. Trajectory-wise multiple choice learning for dynamics generalization in
reinforcement learning. Advances in Neural Information Processing Systems, 33:12968–
12979, 2020.

BIBLIOGRAPHY 202

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State
entropy maximization with random encoders for efficient exploration. arXiv preprint
arXiv:2102.09430, 2021.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration.
In International Conference on Machine Learning, pages 5779–5788, 2019.

Aaron Sidford, Mengdi Wang, Xian Wu, Lin F Yang, and Yinyu Ye. Near-optimal time
and sample complexities for solving discounted Markov decision process with a generative
model. arXiv preprint arXiv:1806.01492, 2018a.

Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and
faster algorithms for solving Markov decision processes. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770–787. SIAM, 2018b.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what
worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of Go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the
game of Go without human knowledge. nature, 550(7676):354–359, 2017.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough.
Artificial Intelligence, 299:103535, 2021.

Max Simchowitz and Dylan J Foster. Naive exploration is optimal for online LQR. arXiv
preprint arXiv:2001.09576, 2020.

Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for
tabular MDPs. Advances in Neural Information Processing Systems, 32, 2019.

Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning
without mixing: towards a sharp analysis of linear system identification. Proceedings of
Machine Learning Research, 75:1–35, 2018.

Max Simchowitz, Ross Boczar, and Benjamin Recht. Learning linear dynamical systems
with semi-parametric least squares. arXiv preprint arXiv:1902.00768, 2019.

BIBLIOGRAPHY 203

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. CURL: Contrastive unsupervised
representations for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Alex Strehl, John Langford, Sham Kakade, and Lihong Li. Learning from logged implicit
exploration data. arXiv preprint arXiv:1003.0120, 2010.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC
model-free reinforcement learning. In Proceedings of the 23rd international conference on
Machine learning, pages 881–888, 2006.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-
based RL in contextual decision processes: PAC bounds and exponential improvements
over model-free approaches. In Conference on Learning Theory, pages 2898–2933. PMLR,
2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Proceedings of the
12th International Conference on Neural Information Processing Systems, pages 1057–
1063, 1999.

Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial
intelligence and machine learning, 4(1):1–103, 2010.

Csaba Szepesvári and Rémi Munos. Finite time bounds for sampling based fitted value
iteration. In Proceedings of the 22nd international conference on Machine learning, pages
880–887, 2005.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan,
John Schulman, Filip DeTurck, and Pieter Abbeel. #Exploration: A study of count-based
exploration for deep reinforcement learning. In Advances in neural information processing
systems, pages 2753–2762, 2017.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Piotr Trochim, Siqi
Liu, Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, et al. dm_control: Software
and tasks for continuous control. arXiv preprint arXiv:2006.12983, 2020.

Guy Tennenholtz, Nir Baram, and Shie Mannor. Latent geodesics of model dynamics for
offline reinforcement learning. In Deep RL Workshop NeurIPS 2021, 2021.

Philip S Thomas, Georgios Theocharous, Mohammad Ghavamzadeh, Ishan Durugkar, and
Emma Brunskill. Predictive off-policy policy evaluation for nonstationary decision prob-
lems, with applications to digital marketing. In AAAI, pages 4740–4745, 2017.

BIBLIOGRAPHY 204

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. arXiv
preprint arXiv:2103.07945, 2021.

Anastasios Tsiamis and George Pappas. Online learning of the Kalman filter with logarithmic
regret. arXiv preprint arXiv:2002.05141, 2020.

Anastasios Tsiamis and George J Pappas. Finite sample analysis of stochastic system iden-
tification. arXiv preprint arXiv:1903.09122, 2019.

Stephen Tu and Benjamin Recht. The gap between model-based and model-free methods
on the linear quadratic regulator: An asymptotic viewpoint. In Conference on Learning
Theory, pages 3036–3083. PMLR, 2019.

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning
under partial coverage. arXiv preprint arXiv:2107.06226, 2021.

Masatoshi Uehara, Jiawei Huang, and Nan Jiang. Minimax weight and Q-function learning
for off-policy evaluation. In International Conference on Machine Learning, pages 9659–
9668. PMLR, 2020.

Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan Kallus, Wen Sun, and Tengyang
Xie. Finite sample analysis of minimax offline reinforcement learning: Completeness, fast
rates and first-order efficiency. arXiv preprint arXiv:2102.02981, 2021a.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and
offline RL in low-rank MDPs. arXiv preprint arXiv:2110.04652, 2021b.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. Dimensionality reduction:
A comparative. J Mach Learn Res, 10(66-71):13, 2009.

Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk, SSSR, 117:739–741, 1957.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science, volume 47. Cambridge University Press, 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al.
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods:
Global optimality and rates of convergence. In International Conference on Learning
Representations, 2019a.

BIBLIOGRAPHY 205

Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan Zha. Supervised reinforcement learning
with recurrent neural network for dynamic treatment recommendation. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 2447–2456, 2018.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of
offline rl with linear function approximation? arXiv preprint arXiv:2010.11895, 2020a.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general
value function approximation: Provably efficient approach via bounded Eluder dimension.
Advances in Neural Information Processing Systems, 33, 2020b.

Tengyao Wang, Quentin Berthet, and Richard J Samworth. Statistical and computational
trade-offs in estimation of sparse principal components. The Annals of Statistics, 44(5):
1896–1930, 2016.

Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy. Optimism in
reinforcement learning with generalized linear function approximation. arXiv preprint
arXiv:1912.04136, 2019b.

Yuanhao Wang, Kefan Dong, Xiaoyu Chen, and Liwei Wang. Q-learning with UCB ex-
ploration is sample efficient for infinite-horizon MDP. In International Conference on
Learning Representations, 2019c.

Yuanhao Wang, Ruosong Wang, and Sham Kakade. An exponential lower bound for lin-
early realizable mdp with constant suboptimality gap. Advances in Neural Information
Processing Systems, 34, 2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg,
Scott E Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic
regularized regression. Advances in Neural Information Processing Systems, 33, 2020c.

CZ Wei. Adaptive prediction by least squares predictors in stochastic regression models with
applications to time series. The Annals of Statistics, pages 1667–1682, 1987.

Yuting Wei and Martin J Wainwright. The local geometry of testing in ellipses: Tight control
via localized Kolmogorov widths. IEEE Transactions on Information Theory, 2020.

Yuting Wei, Billy Fang, Martin J Wainwright, et al. From Gauss to Kolmogorov: Localized
measures of complexity for ellipses. Electronic Journal of Statistics, 14(2):2988–3031, 2020.

Gellért Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning
in MDPs with linearly-realizable optimal action-value functions. In Algorithmic Learning
Theory, pages 1237–1264. PMLR, 2021.

BIBLIOGRAPHY 206

Jenna Wiens, Suchi Saria, Mark Sendak, Marzyeh Ghassemi, Vincent X Liu, Finale Doshi-
Velez, Kenneth Jung, Katherine Heller, David Kale, Mohammed Saeed, et al. Do no
harm: A roadmap for responsible machine learning for health care. Nature medicine, 25
(9):1337–1340, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3(3):241–268, 1991.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability.
arXiv preprint arXiv:2008.04990, 2020.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning:
Bridging sample-efficient offline and online reinforcement learning. Advances in neural
information processing systems, 34, 2021.

Zhihan Xiong, Ruoqi Shen, and Simon S Du. Randomized exploration is near-optimal for
tabular MDP. arXiv preprint arXiv:2102.09703, 2021.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments.
Advances in Neural Information Processing Systems, 33, 2020.

Lin Yang and Mengdi Wang. Sample-optimal parametric Q-learning using linearly additive
features. In International Conference on Machine Learning, pages 6995–7004. PMLR,
2019.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential
decision making. arXiv preprint arXiv:2102.05815, 2021.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. Bridging ex-
ploration and general function approximation in reinforcement learning: Provably efficient
kernel and neural value iterations. arXiv preprint arXiv:2011.04622, 2020a.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. On function
approximation in reinforcement learning: Optimism in the face of large state spaces. arXiv
preprint arXiv:2011.04622, 2020b.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fer-
gus. Improving sample efficiency in model-free reinforcement learning from images. arXiv
preprint arXiv:1910.01741, 2019.

BIBLIOGRAPHY 207

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning
with prototypical representations. arXiv preprint arXiv:2102.11271, 2021.

Ming Yin, Yu Bai, and Yu-Xiang Wang. Near optimal provable uniform convergence in
off-policy evaluation for reinforcement learning. arXiv preprint arXiv:2007.03760, 2020.

Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal offline reinforcement learning via
double variance reduction. arXiv preprint arXiv:2102.01748, 2021.

Bin Yu. Rates of convergence for empirical processes of stationary mixing sequences. The
Annals of Probability, pages 94–116, 1994.

Bin Yu. Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, pages 423–435.
Springer, 1997.

Chengpu Yu, Lennart Ljung, and Michel Verhaegen. Identification of structured state-space
models. Automatica, 90:54–61, 2018.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. COMBO: Conservative offline model-based policy optimization. arXiv preprint
arXiv:2102.08363, 2021.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of
autonomous driving: Common practices and emerging technologies. IEEE Access, 8:
58443–58469, 2020.

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch RL can
be exponentially harder than online RL. arXiv preprint arXiv:2012.08005, 2020.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforce-
ment learning without domain knowledge using value function bounds. In International
Conference on Machine Learning, pages 7304–7312. PMLR, 2019.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning
near optimal policies with low inherent Bellman error. In International Conference on
Machine Learning, pages 10978–10989. PMLR, 2020.

Andrea Zanette, Ching-An Cheng, and Alekh Agarwal. Cautiously optimistic pol-
icy optimization and exploration with linear function approximation. arXiv preprint
arXiv:2103.12923, 2021.

BIBLIOGRAPHY 208

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In International Conference on Machine
Learning, pages 12310–12320. PMLR, 2021.

Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: Thresholds and
algorithms. Advances in Physics, 65(5):453–552, 2016.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason D Lee. Offline re-
inforcement learning with realizability and single-policy concentrability. arXiv preprint
arXiv:2202.04634, 2022.

Chuheng Zhang, Yuanying Cai, and Longbo Huang Jian Li. Exploration by maximizing
Rényi entropy for reward-free RL framework. Proceedings of the AAAI Conference on
Artificial Intelligence, 2021a.

Fuzhen Zhang. The Schur complement and its applications, volume 4. Springer Science &
Business Media, 2006.

Jingwei Zhang, Niklas Wetzel, Nicolai Dorka, Joschka Boedecker, and Wolfram Burgard.
Scheduled intrinsic drive: A hierarchical take on intrinsically motivated exploration. arXiv
preprint arXiv:1903.07400, 2019.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Vari-
ational policy gradient method for reinforcement learning with general utilities. arXiv
preprint arXiv:2007.02151, 2020a.

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. GenDICE: Generalized offline
estimation of stationary values. In International Conference on Learning Representations,
2020b.

Shangtong Zhang and Richard S Sutton. A deeper look at experience replay. arXiv preprint
arXiv:1712.01275, 2017.

Shantong Zhang, Bo Liu, and Shimon Whiteson. GradientDICE: Rethinking generalized
offline estimation of stationary values. arXiv preprint arXiv:2001.11113, 2020c.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and
Yuandong Tian. BeBold: Exploration beyond the boundary of explored regions. arXiv
preprint arXiv:2012.08621, 2020d.

Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E Gonzalez, and
Stuart Russell. MADE: Exploration via maximizing deviation from explored regions.
Advances in Neural Information Processing Systems, 34, 2021b.

Zihan Zhang, Xiangyang Ji, and Simon S Du. Is reinforcement learning more difficult
than bandits? A near-optimal algorithm escaping the curse of horizon. arXiv preprint
arXiv:2009.13503, 2020e.

BIBLIOGRAPHY 209

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learn-
ing via reference-advantage decomposition. Advances in Neural Information Processing
Systems, 33, 2020f.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement
learning for linear mixture Markov decision processes. arXiv preprint arXiv:2012.08507,
2020a.

Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably efficient reinforcement learning for
discounted MDPs with feature mapping. arXiv preprint arXiv:2006.13165, 2020b.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Learning to make predictions
	1.2 Learning to make decisions

	2 Learning to Predict under Long-term Dependencies
	2.1 Related work
	2.2 Preliminaries and problem formulation
	2.3 SLIP: Spectral LDS improper predictor
	2.4 Approximation error: Generalized Kolmogorov width
	2.5 Regret analysis sketch
	2.6 Experiments
	2.7 Discussion
	2.8 Proofs

	3 Learning to Make Decisions from a Dataset
	3.1 Background and problem formulation
	3.2 A warm-up: LCB in multi-armed bandits
	3.3 LCB in contextual bandits
	3.4 LCB in Markov decision processes
	3.5 Related work
	3.6 Discussion
	3.7 Proofs for multi-armed bandits
	3.8 Proofs for contextual bandits
	3.9 Proofs for MDPs
	3.10 LCB in episodic Markov decision processes
	3.11 Auxiliary lemmas

	4 Learning to Make Decisions During Interactions
	4.1 Background
	4.2 Adaptive regularization of the RL objective
	4.3 A tabular study
	4.4 Experiments on MiniGrid and DeepMind Control Suite
	4.5 Related work
	4.6 Discussion
	4.7 Convergence analysis of MADE algorithm
	4.8 Experimental details
	4.9 Gradient computations

	5 Concluding Remarks
	5.1 Foundations
	5.2 Generalization

	Bibliography

