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Abstract

Explainable Classification of Nuclear Facility Operational State Using Node and Region
Importance for Sensor Networks

by

Jake Tibbetts

Master of Science in Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

Dr. Bethany Goldblum, Co-chair

Distributed multisensor networks record multiple data streams that can be used as inputs
to a machine learning model designed to classify proliferation-relevant operations at nuclear
reactors. This work proposes methods to assess the importance of each node (a single
multisensor) and region (a group of collocated multisensors) to model accuracy. This, in turn,
provides insight into model explainability, a critical requirement of data-driven applications
in nuclear security. To determine the importance of the various nodes and regions for a given
classification problem, traditional wrapper methods for feature importance were extended
to nodes and regions in a multisensor network. On a dataset collected at the High Flux
Isotope Reactor at Oak Ridge National Laboratory by a network of Merlyn multisensor
platforms, these methods were used to identify high value and confounding nodes and regions
for classifying nuclear reactor operational state. Specifically, the nodes near the facility’s
cooling tower were identified as high value sources. When applied in conjunction with black-
box classifiers such as neural networks, node and region importance can provide insight into
an otherwise opaque classification model in the nuclear security domain.
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Chapter 1

Introduction

Nuclear facility monitoring has been a critical aspect of the modern international nuclear
nonproliferation regime since the Treaty on Non-Proliferation of Nuclear Weapons came into
force in 1970 [36]. Recent advances over the last decade in sensor technology and data
science have created new opportunities to apply machine learning techniques to the problem
of real-time nuclear facility monitoring for the purposes of nuclear security [12, 33, 11].
Since nuclear security is a high stakes domain, data-driven applications in this area must be
both accurate and explainable so that analysts, policymakers, and decision makers trust the
validity of the models [20, 4].

As sensor technology continues to improve, nuclear facilities are being monitored using
networks of geographically distributed multisensors, also called nodes for shorthand, to record
various data streams measuring physical phenomena. Machine learning techniques could be
applied to these data streams to create models of proliferation-relevant signatures. Due to the
high stakes nature of nuclear security, it is critical to explain in a human-understandable way
how these models translate data streams into the desired proliferation-relevant signatures.
This provides end-users, such as analysts and policymakers, the ability to understand these
models’ strengths and limitations which engenders trust in and increases the usability of
these models in human decision-making processes [20]. One important aspect of model
explainability is an understanding of which nodes and regions, where a region is a group of
nearby collocated nodes, in a multisensor array are the most important for and have the
largest impact on making accurate predictions.

This question of node and region importance is broadly applicable to any predictive task
where sensor networks are being used to record data used as inputs to data-driven models.
For these predictive tasks, node and region importance can be used to eliminate noisy features
that reduce model performance which is a critical task for any machine learning application.
Node and region importance can also be combined with knowledge about the specific problem
context to make inferential hypotheses about the data and the classification models. For
example, if a node in an area associated with a certain sensing spectrum is identified as
having a strong positive impact on model accuracy and there is a domain-specific connection
between that sensing spectrum and the predicted label, one could hypothesize that there
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is a causal relationship between the label and the sensing spectrum which could be further
exploited in future modeling efforts.

The goals of this work are to: (1) create machine learning models trained on sensor net-
work data predicting nuclear reactor operational state, (2) apply node and region importance
methods to these models, and (3) use the results of node and region importance analysis in
conjunction with knowledge about the nuclear facility to improve model performance and
make inferential hypotheses about the nuclear facility and the classification models. These
goals were accomplished through the creation of a hidden Markov model (HMM) and a feed-
forward neural network1 predicting nuclear reactor operational state trained on data collected
by a network of 12 geographically distributed Merlyn multisensor platforms deployed at the
High Flux Isotope Reactor at Oak Ridge National Laboratory. These models were then
analyzed with feature importance and selection wrapper methods extended to nodes and
regions to assign importance scores to nodes and regions for each model. These importance
scores were then leveraged to improve model performance further through feature selection
and to make inferential hypotheses about the nuclear facility and the classification models
providing insight into model explainability.

The accuracy of the HMM was increased from 0.583 to 0.839 through feature selection
informed by node and region importance. Similarly the accuracy of the feed-forward neural
network was increased from 0.811±0.005 to 0.884±0.004 through feature selection where the
error bars are representative of a 95% confidence interval produced by training and evaluating
a feed-forward neural network for 50 trials with different randomized initial weights and
averaging the results. Additionally, node and region importance found evidence for a causal
relationship between reactor operational state and the cooling tower at the facility. Node and
region importance also found that the HMM was potentially sensitive to noise in the data
produced by high foot and vehicle traffic which reduced model performance. Similarly, node
and region importance found that the feed-forward neural network was sensitive to a sensor
outage caused by a sensor component failure that reduced model performance. Node and
region importance both informed the improvement of model performance through feature
selection and provided insight into the resulting models and problem context improving
overall explainability.

1Random forests were also examined. However the results were strictly worse than the feed-forward
neural network performance and therefore were not reported.
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Chapter 2

Dataset and Models

An HMM and a feed-forward neural network were trained on data collected by a network
of 12 Merlyn multisensor platforms to predict binary nuclear reactor power state (off/on) at
the High Flux Isotope Reactor at Oak Ridge National Laboratory.

2.1 High Flux Isotope Reactor

The High Flux Isotope Reactor (HFIR) [9] at Oak Ridge National Laboratory is an 85 MW
research reactor used to study a variety of research questions in nuclear physics and engi-
neering. Twelve multisensors were deployed at various locations (Fig. 2.1) around the facility
which have been collecting data since April 2019. This work examines data collected over
a time period of slightly less than 40 weeks. This 40-week period covers approximately six
reactor power cycles which consist of a start-up, power generation at steady state for a period
of time spanning approximately one to three weeks, and a shutdown.

There are a few relevant points of interest at the facility visible in Fig. 2.1. The main re-
actor building is at the center of the facility between Nodes 5, 6, and 8. The reactor’s cooling
tower is to the immediate right of Node 9. The target processing facility (the Radiochemical
Engineering Development Center [10]) is between Nodes 4, 5, and 10, where targets placed
inside of the reactor are prepared and disposed of after use. There are some liquid storage
tanks immediately above Node 8. The main entrance to the facility is along the road where
Nodes 1, 2, and 12 are deployed.

2.2 Merlyn Multisensor Platform

The Merlyn multisensor platform was designed by Special Technologies Laboratory, an or-
ganization within the Nevada National Security Site complex of facilities. A mockup of the
Merlyn is shown in Fig. 2.2 and a picture of a deployed Merlyn at HFIR is shown in Fig. 2.3.

The platform was built with a BeagleBone Black mainboard [8], an ATmega328P-based
Arduino UNO breakout board [1], a ROHM SensorShield EVK-003 sensor package [32], and
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Figure 2.1: Overhead View of the High Flux Isotope Reactor With Labeled Node Locations

Figure 2.2: CAD mockup of a Merlyn
inside a weather enclosure

Figure 2.3: Merlyn Deployed at
HFIR

supporting hardware related to power and data distribution. The sensors in each Merlyn
used in this work are listed in Table 2.1. Each sensor samples at a rate of 16 Hz.

2.3 Data Products

To create the data products used for modeling, a series of preprocessing transformations
were applied to the raw data streams. First, each data stream was interpolated using linear
interpolation so that data streams from different sensors used aligned timestamps. Since the
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Table 2.1: Merlyn Sensors Used for Modeling

Modality Sensor

Acceleration (3-axis) Kionix KX-224-1053 [2]
Ambient Light ROHM RPR-0521RS [27]
Magnetic Field (3-axis) ROHM 1422AGMV [24]
Pressure (Barometric) ROHM BM1383AGLV [28]
Temperature ROHM BD1020HFV [35]

data were recorded at 16 Hz and reactor operational state changes at a relatively slow rate,
linear interpolation is a reasonable approximation for the actual physical value. After this,
the temperature and pressure data streams were background corrected using weather data
collected from a nearby National Oceanic and Atmospheric Administration (NOAA) [26] fa-
cility by subtracting the ambient weather value from the value recorded by the sensor. This
mitigated potential confounding trends in the pressure and temperature features related to
weather. Then significant outliers were removed from each data stream by eliminating data
points larger than four mean average deviations. This was done to eliminate obvious mea-
surement errors (such as an unrealistic measurement of 1000°C by the temperature sensor)
which occasionally occur in the data. After this, the x, y, and z components of the magne-
tometer and accelerometer for each multisensor were combined into a single data stream by
taking the L2-norm of the individual coordinate components to get the magnitudes. Then
the mean and variance over 10-minute time windows were taken over each data stream. This
was a feature engineering step which increased the set of features to include both the average
of and variability in the measured data for each sensing modality. Finally, the means and
variances were standardized by taking the z-scores of each data point. This transformation
was applied so that features with different units of measurement were all put on the same
scale. This resulted in 120 features consisting of 60 means and 60 variances from 12 Merlyns
over five sensing modalities and 39,745 total samples over the 40-week time-series.

Additionally, the sensors experienced occasional periods of outage due to maintenance,
power failures, and faulty components. These outages were treated as data that were missing
completely at random [30] for preprocessing purposes. Missing data were filled in with the
mean over the entire data stream time-series and an additional feature in the form of a
missing flag for each data point set as 1 if the data were missing and 0 otherwise. This
resulted in 132 total features consisting of 120 means and variances and 12 missing flags.

Information about nuclear reactor operational state was provided in the form of reactor
operator logs. These raw values were used to interpolate reactor power state for each 10-
minute window corresponding to the samples on a fill-forward basis. That is, for any given
10-minute window, the interpolated power state is the most recently recorded power state.
Since the reactor transitions states rarely over the 40-week time-series as can be seen in
Fig. 2.4, fill-forward interpolation best models the true reactor operational state for a given
10-minute window.
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Figure 2.4: Reactor Power State Over the 40-week Time-Series

Given the time-dependent nature of the data, an assumption of independence between
samples is incorrect and therefore partitioning the data set into training and testing sets
cannot be done with simple random sampling without introducing bias produced by temporal
autocorrelation. Instead the method of nested cross-validation [37] was used. In nested cross-
validation, the time series is first partitioned into n time segments. These segments are then
organized into n−1 train/test splits by assigning the ith split to have the 0, ..., i−1 segments
as the train data and the ith segment as the test data set. The training and testing scores
for a given model are taken as averages over the n− 1 splits. A variant of this method used
in this work also inserts a buffer between the training and testing partitions to eliminate any
bias introduced by temporal autocorrelation across the train and test partitions [29]. While
this choice of data partitioning is non-random and can therefore introduce bias in estimating
the true training and testing scores, the averages over each split produces estimates which
mitigate bias as much as possible [37].

The 40-week time series was split into four approximately equal-sized segments of 10,000
contiguous samples (the 4th segment contains 9,745 samples) which correspond to approx-
imately 10-weeks each. This size was chosen so each train and test partition in each split
contained one or more transitions between nuclear reactor power state while keeping the
segments similarly sized. Hyperparameter optimization, which would reduce the number
of test partitions from three to two for nested cross-validation and therefore increase bias
in the estimates of the test scores, was not done. A buffer of one week was put between
each train and test partition to mitigate bias introduced by temporal autocorrelation. The
approximate partitions for each of the three train/test splits are shown in the illustration in
Fig. 2.5. The scores reported in the following sections are averaged over the three splits.
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Figure 2.5: Nested Train-Test Split over 40-week Time Series

2.4 Baseline Modeling Efforts

An HMM and a feed-forward neural network were trained and evaluated on the full feature
set to get the baseline performances for each model. The HMM used two hidden states to
represent the off and on reactor power states and assumes a multivariate Gaussian distri-
bution to model the emissions from each hidden state. The particular implementation of
this model comes from the hmmlearn package [19]. The feed-forward neural network had
an architecture of six hidden layers with 250, 150, 90, 50, 30, 20 units each with ReLU
activation, used the Adam optimizer with an initial learning rate of 0.0001, implemented an
L1 regularization parameter of 0.001, and ran for 100 epochs. The implementation of this
model was done in the tensorflow package [3].

The HMM trained on all the features achieved an accuracy of 0.583. The feed-forward
neural network trained on all the features achieved an accuracy of 0.811± 0.005 (ci = 0.95)
averaged over 50 runs with randomized initial weights. Plots of the predicted classes versus
the actual classes over the three test partitions are shown for the HMM in Fig. 2.6 and for
a random chosen run of the feed-forward neural network in Fig. 2.7.
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Figure 2.6: Predicted and Actual Reactor Operational State for the baseline HMM

Figure 2.7: Predicted and Actual Reactor Operational State for the baseline Feed-Forward
Neural Network Model
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Chapter 3

Feature Importance and Wrapper
Methods

This work next addresses the question of which nodes and regions at the nuclear facility are
the most important for enabling the accurate prediction of nuclear reactor operational state.

3.1 Feature Importance

Node and region importance are closely related to feature importance. Feature importance
is the measurement of how much individual features contribute to the overall performance
of a model. Feature importance can provide insight into model explainability and help with
feature selection by distinguishing between features which do and do not contribute to in-
creased model performance [13]. Feature importance has been used in many studies applying
machine learning techniques to data collected by sensors to gain insight into explainability
and feature selection. For example, permutation feature importance was used to measure
sensor importance in a study classifying sitting posture with sensors to choose a high per-
forming subset of features for a random forest model [39]. Gini importance and backward
selection on a k-nearest neighbors model were used to eliminate irrelevant sensors in a study
classifying the quality of a laser weld using features derived from sensor data [21]. Permu-
tation feature importance was used to find the optimal placement of sensors on a device
[31]. Mutual information-based feature selection and genetic algorithm linear discriminant
analysis feature selection were used to determine the most important features derived from
sensor data for model-assisted fault detection [17]. From this, it can be seen that measuring
the importance of sensors in studies applying machine learning techniques to sensor data is
a problem encountered in a wide variety of applications.
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3.2 Wrapper Methods

While there are many feature importance methods designed for specific models such as out-
of-bag permutation feature importance for random forests [6], SVM-RFE for support vector
machines [16], and integrated gradients for neural networks [34], this work focuses on a class
of feature importance methods called wrapper methods [22] which ‘wrap‘ around the model
to measure the importance of individual features. The key benefit of wrapper methods is that
they can be applied to any model in any context to measure feature importance. The specific
wrapper methods considered here are Leave One Covariate Out (LOCO) [23] and Forward
Feature Selection (FFS) [15]. In LOCO, shown in Algorithm 1, the feature importance of
the ith feature is measured as the accuracy difference between a model trained on a full
set of features and a model trained on all the features except for the ith feature. In FFS,
shown in Algorithm 2, candidate features are iteratively added to a working set of features
by greedily adding the candidate feature achieving the highest accuracy to the working set at
each iteration. The order in which features are added to the working set provides a ranking
of features.

Algorithm 1 Leave One Covariate Out (LOCO)

Ensure: length(features) > 0
1: importances← {}
2: base score← train and eval(features)
3: i← 0
4: while i < length(features) do
5: ith feature← features[i]
6: features except ith← features \ {ith feature}
7: ith score← train and eval(features except ith)
8: ith importance← base score− ith score
9: importances[ith feature]← ith importance
10: i← i + 1
11: end while
12: return importances

3.3 Node and Region Importance

Node and region importance extend feature importance by directly measuring how much a
group of features derived from a node or region, considered together as a group, contribute to
the overall performance of a model. While one can measure node and region importance by
measuring the importances of their individual constituent features and adding them together,
it has been rigorously proven in theory and demonstrated in practice that the importance of a
group of features is often different than the sum of the importances of its individual parts [14].
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Algorithm 2 Forward Feature Selection (FFS)

Ensure: length(features) > 0
1: selected← []
2: candidates← features
3: i← 0
4: while i < length(features) do
5: candidate scores← {}
6: j ← 0
7: while j < length(candidates) do
8: candidate← candidates[j]
9: feature subset← selected ∪ {candidate}
10: score← train and eval(feature subset)
11: candidate scores[candidate]← score
12: j ← j + 1
13: end while
14: best candidate← argmax(candidate scores)
15: selected← selected + [best candidate]
16: candidates← candidates \ {best candidate}
17: i← i + 1
18: end while
19: return selected

In fact, the importance of a group of features is the sum of the importances of its individual
parts only if the features are uncorrelated which is unrealistic for many practical settings.
This problem of correlation is especially relevant for data collected by sensor networks where
there are many sources of correlation. For example, there is correlation between different,
but related sensing modalities on a single node and between the same sensing modality across
two different, nearby nodes. Because of this result, node and region importance provides
strong advantages over measuring the importances of individual features and considering the
individual importances in a group when evaluating the impact of a given node or region on
a classification problem.

While initial efforts in measuring the importance of a group of features have been made
for individual models such as random forests [14], multilayer perceptrons [7], support vector
machines [40], and least squares regression [38], more generic methods of measuring node and
region importance are desirable so they can be applied to any model. This work proposes
extending LOCO and FFS, wrapper methods for feature importance, to wrapper methods
for node and region importance by grouping features derived from single nodes and spatially
collocated sets of nodes. More specifically, LOCO is easily extended to Leave One Node Out
(LONO) by measuring the importance of the ith node as the accuracy difference between
a model trained on the full set of features derived from the full set of nodes and a model
trained on the full set of features except for features derived from the ith node. Leave One



CHAPTER 3. FEATURE IMPORTANCE AND WRAPPER METHODS 12

Region Out (LORO), Forward Node Selection (FNS), and Forward Region Selection (FRS)
are similarly defined.
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Chapter 4

Analysis and Results

Using LONO, FNS, LORO, and FRS analysis, nodes and regions can be categorized into three
types: high value, inconsequential, and confounding. High value nodes and regions are found
to have an overall positive impact on model accuracy. Inconsequential nodes and regions are
found to have no significant positive or negative impact on model accuracy. Confounding
nodes and regions are found to have an overall negative impact on model accuracy.

For LONO and LORO analysis the ith node or region is defined as high value if the accu-
racy of a model trained on all the features minus the accuracy of a model trained on all the
features except for those derived from the ith node or region is greater than 0.02. Similarly
the ith node or region is defined as confounding if the accuracy difference is less than −0.02.
The ith node or region is defined as inconsequential in any other case. For FNS and FRS
analysis, the high value nodes and regions are defined as all the nodes or regions selected into
the working set before the first decrease in model accuracy. Similarly the confounding nodes
and regions are defined as all the nodes selected into the working set after the last increase in
model accuracy. All other nodes are regions are defined as inconsequential. While these are
arbitrary choices, these definitions of high value, inconsequential, and confounding create a
valid mapping between the quantitative values found in each analysis to the qualitative cat-
egories. Moreover, the most relevant nodes and regions for further analysis are those which
clearly fall into one of the categories rather than those which fall on the edge between high
value and inconsequential or inconsequential and confounding. Because of this, the choice
of mapping does not matter significantly as long as it is internally consistent and sensible.

Regions were chosen based upon their relationship to particular points of interest at the
nuclear facility and their relative distance to other nodes. General descriptions of the defined
regions are shown in Table 4.1. The bounding boxes in Fig. 4.1 provide approximate visual
cues for each region and should not be interpreted as indicators of the sensing range of the
Merlyn multisensors.
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Figure 4.1: Overhead Image of the HFIR Facility With Labeled Nodes And Regions

Table 4.1: Region Descriptions

Region Nodes Description

A 6, 7, 9 Reactor Building and Cooling Tower
B 8 Liquid Storage Tanks
C 4, 5 Offices near the REDC Facility
D 3, 10, 11 Target Processing Facility
E 1, 2, 12 Main Entrance to Complex

4.1 Hidden Markov Model

Fig. 4.2 is a plot of the accuracy differences obtained through LONO analysis applied to the
HMM. The accuracy differences between the model trained on the full set of features and
the model trained on all the features except for those derived from the ith node are ordered
from top to bottom in order of highest positive accuracy difference (i.e., most important)
to largest negative accuracy difference (i.e., most confounding). From this plot, Node 9 was
identified as a high value node due to its strong positive impact on model accuracy. Nodes
2, 5, 7, 4, 1, and 12 were identified as confounding given their strong negative impacts on
model accuracy. Node 2 was identified as significantly more confounding than the other
confounding nodes.

Fig. 4.3 is a plot of the accuracy differences obtained through LORO analysis applied to
the HMM. From this plot, Region A was identified as high value due to its strong positive
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Figure 4.2: LONO Analysis Applied to the HMM

Figure 4.3: LORO Analysis Applied to the HMM

impact on model accuracy. Regions E and C were identified as confounding given their
strong negative impacts on model accuracy. Region E was identified as significantly more
confounding than Region C.

Figure 4.4: FNS Analysis Applied to the HMM
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Fig. 4.4 is a plot of the accuracy obtained after adding each node to the working set of
nodes during FNS analysis applied to the HMM. The nodes are ordered by importance as
determined based on node selection into the working set during the execution of the algorithm
(i.e., the node that provides the highest accuracy is selected at each iteration). From this
plot, Nodes 6, 9, and 1 were identified as high value nodes due to the accuracy increases
after the selection of these nodes into the working set. Nodes 5, 4, and 2 were identified as
confounding nodes due to the significant accuracy decreases following the addition of these
nodes to the working set.

Figure 4.5: FRS Analysis Applied to the HMM

Fig. 4.5 is a plot of the accuracy obtained after adding each region to the working set of
regions during FRS analysis applied to the HMM. From this plot, Regions A, D, and B were
identified as high value regions due to the significant accuracy increases after the selection of
these regions into the working set. Regions C and E were identified as confounding regions
due to the significant accuracy decreases following the addition of these nodes to the working
set.

These analyses offer valuable insight into inferential hypotheses that could be postulated
about HFIR and the HMM produced from the data collected by the sensor network. For
example, Nodes 6 and 9 as well as Region A were identified as high value and the correspond-
ing area contains the reactor cooling tower. This points to a potential causal relationship
between the cooling tower and reactor operational state. This result is consistent with basic
nuclear engineering principles. Nuclear power generation on a MW scale, which is done at
HFIR, requires operation of a significant cooling system for the conveyance and removal of
heat [18]. The pumps which run this cooling system produce local magnetic fields that may
be recorded by the magnetometer and vibrations that may be detected by the accelerometer.
The heat rejection into the environment also produces local temperature perturbations that
may be sensed by the thermometer. In short, node and region importance analysis combined
with knowledge of the HFIR facility and nuclear reactor operations provide justification for
a causal relationship between the cooling tower and nuclear reactor operational state.

Additionally, Nodes 2, 12, 4, and 5 and Region C, an area with office buildings, and
Region E, the main entrance to the facility, were identified as confounding. These are areas
of high foot and vehicle traffic suggesting that foot and vehicle traffic may produce noise
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that reduces the accuracy of the HMM. Foot and vehicle traffic produce vibrations that may
be recorded by the accelerometer and distortions to the local magnetic field that may be
detected by the magnetometer. There is no clear relationship between foot and vehicle traffic
and nuclear reactor operational state at HFIR in these areas. This suggests that foot and
vehicle traffic may negatively affect the performance of the HMM in its ability to predict
nuclear reactor operational state.

These analyses also offer valuable insight relevant to feature selection. The FNS analysis
demonstrates that model performance can be increased by only training on features derived
from Nodes 6, 9, and 1. An HMM trained only on this subset of nodes resulted in a test
accuracy of 0.839 which is a significant improvement over the baseline accuracy (0.583).
Plots of the predicted classes versus the actual classes over the three test data partitions for
the improved HMM are shown in Fig. 4.6.

An alternative explanation to the foot and vehicle traffic hypothesis comes from the
differences in predictions on the test partitions between the baseline and improved HMM.
The baseline model transitioned between states (except when it only predicted one class)
much more often than the improved model transitioned between states. It is possible that
the class conditional probability values p = P (observation|reactor state) overwhelmed the
values contributed by the transition matrix when calculating the predicted state in the
baseline HMM. This result is consistent with results found in naive Bayes classifiers [5]
trained on high dimensional data. Because this issue is mitigated as the dimensionality
of the data decreases, this is also supported by the result that the removal of some nodes
significantly reduced the rate of transitions and increased overall accuracy in the improved
HMM. It is also possible that both foot and vehicle traffic and the high dimensionality of
the data causing frequent state transitions reduced the performance of the baseline HMM.

Figure 4.6: Predicted and Actual Reactor Operational State for the Improved HMM



CHAPTER 4. ANALYSIS AND RESULTS 18

4.2 Feed-Forward Neural Network

Figure 4.7: LONO Analysis Applied to the Feed-Forward Neural Network

Fig. 4.7 is a plot of the accuracy differences obtained through LONO analysis applied to
the feed-forward neural network. For both the baseline full feature set and the feature set
with all the features expect for those derived from the ith node, the process of training and
evaluating a model was repeated for 50 trials to determine the statistical uncertainty in the
assessment. A 95% confidence interval for the accuracy differences for each excluded node
was determined. From this plot, Nodes 6, 9, 8, 2, and 5 were identified as high value due
to their positive impacts on model accuracy. Nodes 6 and 9 were identified as notably more
high value than the other high value nodes. The 95% confidence intervals for nodes 2, 5,
and 10 include 0.02 which is the edge between high value and inconsequential. Node 7 was
identified as confounding given its strong negative impact on model accuracy.

Figure 4.8: LORO Analysis Applied to the Feed-Forward Neural Network
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Fig. 4.8 is a plot of the accuracy differences obtained through LORO analysis applied to
the feed-forward neural network. From this plot, Regions A, D, B, and C were identified
as high value due to their positive impacts on model accuracy. Region A was identified
as significantly more high value than the other high value regions. Additionally, the confi-
dence intervals for regions C and E include 0.02 which is the edge between high value and
inconsequential. No regions were identified as confounding.

Figure 4.9: FNS Analysis Applied to the Feed-Forward Neural Network

Fig. 4.9 is a plot of the accuracy obtained after adding each node to the working set of
nodes during FNS analysis applied to the feed-forward neural network. The performance
of a candidate node is taken as the average over 50 trials with randomized initial weights.
Additionally, the node selected into the working set is the candidate node with the highest
average performance over the 50 trials. The 95% confidence intervals for each selected
candidate node are shown in the plot. From this analysis, Nodes 6, 10, 1, 8, 4, 5, and 12
were identified as high value nodes due to the accuracy increases after the selection of these
nodes into the working set. Nodes 6, 10, and 1 were identified as significantly more high value
than the other high value nodes due to their earlier selection and higher accuracy increases
after their addition into the working set. Additionally, the 95% confidence interval for Node
8 includes a decrease in accuracy after adding the node into the working set. Because of
this, Nodes 8, 4, 5, and 12 are on the edge between high value and inconsequential. Nodes
2 and 7 were identified as a confounding nodes due to the accuracy decreases following their
addition into the working set. Node 7 is significantly more confounding due to the high
accuracy decrease after its addition into the working set.

Fig. 4.10 is a plot of the accuracy obtained after adding each region to the working set of
regions during FRS analysis applied to the feed-forward neural network. From this analysis,
Regions A and D were identified as high value regions due to the accuracy increases after
the selection of these regions into the working set. Additionally, an analysis of the first
iteration whose scores are shown in Table 4.2 shows that Region A is significantly more high
value than Region D. Since the addition of the last region, Region E, resulted in an accuracy
increase, Regions C, B, and E were all identified as inconsequential.

Most of these analyses identify Nodes 6 and 9 as well as Region A as high value which
is more evidence for a causal relationship between the reactor cooling tower and reactor
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Figure 4.10: FRS Analysis Applied to the Feed-Forward Neural Network

Table 4.2: First Iteration Scores of FRS Analysis

Region Score

A 0.795± 0.002
B 0.556± 0.007
C 0.500± 0.002
D 0.478± 0.002
E 0.586± 0.006

operational state. Both LONO and FNS analysis identified Node 7 as the only highly
confounding node. This could be due to a component failure on Node 7 which caused a
long outage period starting around the 22nd week which extended until the end of the
40-week time-series. In the same way that it has been shown that perturbations in test
data sets can dramatically change predictions in adversarial scenarios for neural networks
[25], the sensor outage on Node 7 during the evaluation of the 2nd and 3rd test set which
affected a significant number of features could have dramatically changed the performance
of the model. While this is a limitation of the feed-forward neural network trained on this
data, it does nonetheless improve the explainability and interpretability of this model for
the purposes of human decision-making.

The FNS analysis demonstrates that model performance can be increased by only training
on features derived from Nodes 6, 10, 1, 8, 4, 5, and 12. A feed-forward neural network
trained 50 times with different randomized initial weights on this subset of nodes resulted in
an average test accuracy of 0.884± 0.004 which is an improvement over the baseline average
test accuracy (0.811 ± 0.005). Plots of the predicted classes versus the actual classes over
the three test data partitions for the improved feed-forward neural network are shown in
Fig. 4.11.
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Figure 4.11: Predicted and Actual Reactor Operational State for the Improved Feed-Forward
Neural Network
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Chapter 5

Conclusion

Node and region importance methods were demonstrated on a problem predicting nuclear
reactor operational state using a hidden Markov model and a feed-forward neural network.
First, base models were created, then these models were analyzed using node and region
importance, and finally the models were improved with feature selection. This allowed for
improved understanding of the problem context and predictive models through the postula-
tion of inferential hypotheses about the nuclear facility and resulting models.

The node and region importance methods outlined herein can be applied in any context
where sensors are deployed over a spatial area to record data streams used to build predic-
tive machine learning models. Since they are extensions of wrapper methods, they can be
applied to any machine learning model whether it be for classification or regression without
loss of generality. These methods can be used to identify high value, inconsequential, and
confounding nodes and regions which can be used to better understand the problem context,
better understand the models generated from the data collected by a sensor network, and
improve model performance through feature selection.

Node and region importance helps nontechnical users such as policymakers and analysts
better trust the predictions and understand the limitations of an otherwise opaque model
applied to sensor network data by providing insight into which nodes and regions drive model
performance. It also helps technical practitioners create more accurate models through
feature selection. Node and region importance combined with domain knowledge improve
the application of machine learning techniques to data collected by sensor networks.
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