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Abstract

Deep Learning Applications in Computational MRI: A Thesis in Two Parts

by

Sukrit Arora

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Michael Lustig, Chair

Magnetic resonance imaging (MRI) is a powerful medical imaging modality that provides
diagnostic information without the use of harmful ionizing radiation. As with any imaging
modality, the raw acquired data must undergo a series of processing steps in order to produce
an image. During these steps, several problems may arise that impact the quality of the
final image. While traditional signal and image processing methods have been employed
with great success to address these issues, as the field of deep learning has grown, so too
has the research of these methods to address problems in MRI. This thesis, a thesis in
two parts, will discuss deep-learning approaches for addressing three common problems in
computational MRI: noise, reconstruction, and o↵-resonance blurring. The first part of the
thesis proposes the use of an untrained modified deep decoder network in order to denoise as
well as reconstruct MR images. The second part of the thesis investigates the generalizability
of a convolutional residual network in its ability to correct for blurring due to o↵-resonance.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a powerful medical imaging modality that provides
diagnostic information without the use of harmful ionizing radiation. During an MRI scan,
a constant, homogeneous main magnetic field aligns molecular spins in the body. Short ra-
diofrequency pulses then disrupt the alignment of H+ spins in water and generate a signal,
due to resonance of these spins at a frequency !0 proportional to the main magnetic field
strength [18]. This RF signal is received and demodulated at !0, and the subsequent base-
band signal corresponds to samples of the spatial frequency domain, known as k-space. An
image can be reconstructed by applying an inverse Fourier transform to the sampled k-space.

MRI is also an inherently multi-dimensional imaging modality. MRI data is generally
volumetric and/or multi-coil: most MRI machines have multiple RF receivers. In multichan-
nel MRI, each of the receiver coils only partially samples the k-space, thereby reducing scan
time. The image is reconstructed from all the k-space samples collected from all the coils
[32]. In the image domain, multiple coils can be thought of as di↵erent illuminations of the
same subject.

Problems in MRI

This thesis will discuss deep-learning approaches for addressing three common problems
in MRI: noise, reconstruction, and o↵-resonance blurring.

Noise is commonly attributed to the radio-frequency receiver in the MR imaging system,
and can arise from a variety of physical sources [23]. These noise sources are all expected to
have a “white” spectrum; that is, over the course of time, the mean-square voltage fluctua-
tions occur with equal amplitude across all frequencies detectable by the system [35]. It has
also been shown that a Gaussian model characterizes this systematic noise well [19].

Another complex problem in MRI is reconstruction; namely, reconstruction from incom-
plete k-space data. As briefly mentioned above, the baseband signal that the MRI machine
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receives corresponds to spatial frequency samples. In order to reconstruct an image from
these samples, an inverse Fourier transform must be taken. However, this is only possible
in the trivial case of a fully sampled k-space domain. Reconstructing MR images from sub-
sampled k-space data is appealing since it requires fewer measurements and therefore shorter
scan times. Reconstruction is also important in cases where fully sampled data is di�cult
or impossible to acquire [10].

A third problem encountered in MRI is blurring due to o↵-resonance. As previously
mentioned, our imaging signal model assumes that the nuclear spins resonate at the same
frequency of !0. However, in reality, not all spins in the body resonate exactly at !0, due
to either inhomogeneities in the main magnetic field or excitation of H+ in other complex
molecules, such as fat [37]. Spins actually resonate at a range of frequencies around !0,
which is known as o↵-resonance. O↵-resonance causes spatial blurring in the reconstructed
image, especially when k-space is sampled with non-Cartesian trajectories [33].

A more detailed description of these problems and this thesis’ solution to those problems
will be given under the relevant project descriptions.

Conventional Solutions

As electrical engineering and computer science have evolved, so too have the methods
used to address these problems in the field of MRI. Historically, these kinds of problems have
been solved using non-learning based, established methods from statistical signal processing
and image processing, such as di↵erent forms of filtering [2], compressed sensing [31], and
conjugate phase reconstruction [8]

The Deep Learning Boom, Applied to MRI

However, over the past decade, the development of novel deep learning methods like
CNNs, generative models, residual models, etc. [28, 17, 21] has created new solutions to a
wide variety of imaging problems, from image compression and denoising to inpainting and
superresolution [41, 5, 29], often outperforming methods based on classical image processing.

As these methods gain popularity in the overall imaging field, research on applying these
methods to MRI has grown immensely due to their applicability to the particular challenges
posed by MRI and medical imaging in general, such as limited data availability and unique
data acquisition. My thesis gives two examples of deep learning applications for MRI. Part
I discusses a project that uses an unsupervised generative CNN for the tasks of denoising
and reconstruction, and Part II covers a project that works on generalizing o↵-resonance
blurring correction using deep residual learning.
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Part I

Untrained Modified Deep Decoder for

Joint Denoising and Parallel Imaging

Reconstruction
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Chapter 2

MRI Denoising and Reconstruction

2.1 Abstract

An untrained deep learning model based on a Deep Decoder was used for image denois-
ing and parallel imaging reconstruction. The flexibility of the modified Deep Decoder to
output multiple images was exploited to jointly denoise images from adjacent slices and to
reconstruct multi-coil data without pre-determined coil sensitivity profiles. Higher PSNR
values were achieved compared to the traditional methods of denoising (BM3D) and image
reconstruction (Compressed Sensing). This untrained method is particularly attractive in
scenarios where access to training data is limited, and provides a possible alternative to
conventional sparsity-based image priors.

2.2 Background

The Imaging Forward Model

In order to discuss the tasks of denoising and reconstruction, we must first develop a
mathematical model for the MR imaging system. For an MR image x 2 C, we can model
our measurements of x as y = Ax + ⌘, where A is a known encoding, or measurement,
matrix and ⌘ is noise, modeled by a white gaussian process [19]. In the case of denoising,
A = I and y is the noisy MR image. In the case of reconstruction, y is a set of noisy k-space
measurements, and A = PkF , where F is the Fourier matrix, and Pk is a sampling mask
that picks rows of the Fourier matrix. In both cases, we aim to find an x that minimizes
||Ax� y||2.

This problem requires regularization for several reasons. In the denoising case, we only
have access to a noisy image and want to prevent any solver from overfitting to the noise. In
the reconstruction case, because the goal of MRI reconstruction is to reduce the number of
measurements needed to produce an image, we have fewer measurements than unknowns, and
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the resultant encoding matrix A is underdetermined. So, in order to solve these problems,
we need some kind of regularization that serves as a prior. Only then do we have hope of
recovering a good approximation of the true x.

Traditional methods have leveraged the idea that MR images are inherently sparse in
some transform domain. These methods incorporate this prior by solving

min
x

||Ax� y||22 + �R(x)

where R(x) is the regularization that incorporates the sparsity prior. Classical choices for
this regularization include using the norm of the wavelet coe�cients of x [31][15], or the total
variation or discrete gradient of x [24].

Deep Learning Regularization

With the rise in the popularity of deep learning, there have also been several methods,
such as MoDL [1] and variational networks [20], that suggest using some form of a deep
convolutional neural network (CNN) as a prior. Since CNNs are non-linear and more ex-
pressive, they may learn prior image statistics that can aid in denoising and reconstruction,
potentially generating better results than traditional linear methods.

While these methods perform well, with comparable and usually improved results over
established methods, they are dependent on two key things: access to a large training dataset
and ground truth data. While this access is readily available for most classes of images due
to open source datasets such as ImageNet, Places2, Cifar, etc. [39, 50, 27], the same kind
of accessibility usually does not exist for MR images. This is both because ground truth
scans require fully sampled data (which is rarely done clinically due to length of scans), and
because there is a higher barrier of access to data due to privacy and data sensitivity. For
these reasons, computational MRI data is not available on the same scale as other image
data. This is what makes untrained or unsupervised methods so appealing for these tasks:
they can leverage the complexity of these models without needing large datasets for training.

The first work that explored the idea of using untrained networks for solving these kinds
of image inverse problems was Deep Image Prior (DIP) [42]. In this work, they show that
a great deal of the image statistics that are essential to solving certain image restoration
problems are captured by the structure of generator ConvNets, independent of learning.
Heckel later expanded on the idea of an untrained network as a prior, presenting a simpler
yet improved network architecture called a Deep Decoder (DD) [22]. Unlike DIP, which
uses an overparameterized U-Net, the DD uses an underparameterized decoder network.
This enables it to draw strong comparisons to classical image representations such as sparse
wavelet representations, which made it appealing to use in an MRI context.

In this work, we modify the DD to create the mDD and investigate its use to perform two
di↵erent tasks without training: multi-slice denoising and parallel imaging reconstruction.



CHAPTER 2. MRI DENOISING AND RECONSTRUCTION 7

2.3 Methods

The deep decoder network is a generative decoder model that starts with a fixed, ran-
domly initialized tensor z, and generates an output image through pixel-wise linear combi-
nations of channels, ReLU non-linearities, channel normalizations, and bilinear interpolation
upsampling. Specifically, at every layer, the network performs the following operation:

Tl+1 = Ulcn(relu(TlCl)) 8l 2 {0, . . . , d� 1}

where Tl is the tensor at layer l and Cl 2 Rk⇥k are the weights of the network at layer l.
The expression TlCl is a linear combination of Tl across the channels, done in a way that is
consistent across all pixels.

Finally, the output of the network Gw(z) is formed by Gw(z) = TdCd, where Cd 2 Rk⇥kout

(Figure 2.1).

The original DD network is modified in three ways: First, non-integer upsampling factors
between layers were implemented to enable arbitrary output dimensions; second, the sigmoid
in the final layer was removed to support an unconstrained output range; and third, the
output channels of the network were identified with either multiple slices (denoising) or
multiple channels (image reconstruction).

This modified DD (mDD) is then used to solve inverse problems by minimizing the
objective function:

f(w) = ||AGw(z)� y||22
with respect to the weights w for an observation y and a given forward model A. As
aforementioned, for denoising, we set A = I and identify the network output channels with
the set of slices to be jointly denoised. For multi-coil image reconstruction, we set A = PkF ,
where Pk is the k-space subsampling mask and F is the Fourier Transform. Here, we identify
the network output channels with the individual coil images. In either case, the network
never sees any ground truth data — only the noisy images(s) or the subsampled k-space.

The key innovation of the mDD is the ability to have a variable number of output chan-
nels, which are then used to jointly denoise or reconstruct. This enables us to leverage the
multidimensionality of MRI data in order to improve the performance of the network. In the
case of denoising, we take advantage of the volumetric nature of MRI data and denoise mul-
tiple successive slices of the same subject simultaneously: because these slices are adjacent,
they have a strong correlation, which the network can leverage to improve denoising perfor-
mance compared to its results for individual slices. Similarly, in the reconstruction case, the
mDD simultaneously learns multiple coil images, taking advantage of common information
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Figure 2.1: (Top) Deep Decoder network architecture visualized. (Bottom) Activation maps
for network visualized for a Shepp-Logan phantom with k = 64 and kout = 1. Selected
channels illustrate data flow.

between images. A further advantage to this method is that, unlike some other multi-coil
reconstruction methods, there is no need for predetermined coil sensitivity estimates.

2.4 Results

Figure 2.2 shows the e↵ect of jointly denoising 10 adjacent slices of a synthetic data set
(BrainWeb) [9]. White Gaussian noise was added to the dataset, and then denoised using
BM3D [12], individual mDD (denoising slices separately using the mDD), and joint mDD
(denoising slices simultaneously using the mDD). Joint denoising outperforms both BM3D
denoising and single-slice mDD denoising, and results in a maximal pSNR improvement of
1.54 dB. BM3D leaves some blocky artifacts, giving a pixelated appearance, while the single-
slice mDD instead blurs some of the details. Joint denoising preserves structure better while
reducing artifacts.
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Figure 2.2: Selected 3 out of 10 adjacent slices denoised using BM3D, single-slice denoising
(k = 64, kout = 1) mDD, and joint denoising (k = 64, kout = 10) mDD where the network
denoises all 10 slices simultaneously.

Figure 2.3 shows a 4x and 8x accelerated parallel imaging reconstruction of acquired 15
channel knee data from the FastMRI NYU dataset [46]. The results of the mDD recon-
struction are compared to a Zero Filled inverse FFT (ZF) and Parallel Imaging Compressed
Sensing (PICS) [31]. Similar to its denoising performance, the mDD performs better than
PICS with a maximal pSNR improvement of 1.39 dB in the 4x case and 2.58 dB in the 8x
case.

2.5 Discussion

Our results show that joint denoising preserves structure better and reduces the artifact
level compared to individually optimizing with the mDD. For multi-coil reconstruction, the
mDD generates images with a reduced level of aliasing artifacts. We hypothesize that the
network output is biased toward smooth, unaliased images. This is because the network,
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Figure 2.3: Reconstruction of subsampled k-space data with acceleration factors of 4 and 8
respectively. For each acceleration factor, the reconstructions are (from left to right) 1. Zero
Filled (ZF), 2. Parallel Imaging Compressed Sensing (PICS), and 3. mDD, with k = 256
and kout = 30 (complex data). Center row is a zoomed-in region. The bottom row shows
the subsampling mask and error maps.

acting as a prior, is unable to express images that are “unnatural,” i.e. images that have
aliasing or very high frequency content.

While this method is appealing because it does not require large training datasets, which
are harder to find in computational MRI than in computer vision, it does have several
drawbacks. The first is the inference time. In most deep learning methods, training the
network on a large dataset takes a long time; but, after training, inference is very fast.
In contrast, because the mDD performs inference via training, it needs to re-train for each
instance of a particular task, so there is no post-training speedup as in traditional supervised
learning methods. Once the network is trained for a particular reconstruction task, it has
only solved the reconstruction problem for that instance of data—given another instance,
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the network would have to train from scratch to perform the new reconstruction.

Additionally, while the performance does beat traditional methods, it does not do as well
as other supervised methods. Winning results from the FastMRI competition, in which re-
construction was performed on the same dataset, outperformed the mDD by using supervised
methods. However, those methods also su↵ered from over-smoothing, and in some cases in-
troduced hallucinations of anatomy not present in the ground truth data [36]. Although the
supervised methods quantitatively outperform the mDD, their potential to be biased by the
training data and subsequently hallucinate nonexistent anatomy is further motivation to use
an untrained method like the mDD.

Another limitation of the mDD is its limited ability to express high frequency information,
which is addressed in the next section.

2.6 MDD Extension and Limitations

While the method is fairly successful in denoising, it seems limited in its ability to recon-
struct and express high frequency content, as demonstrated by the loss of fine anatomical
details in mDD reconstruction. Further research was done to increase the network’s ability
to express high frequency content.

A recent work by Tanick et al. investigated the use of “Fourier features” to learn high-
frequency functions in low-dimensional problem domains [40]. This work showed that, when
mapping from coordinates to a functional representation at those coordinates using a mul-
tilayer perceptron (MLP), lifting the coordinates to a Fourier feature space before inputting
them into the MLP improved the MLP’s ability to express high frequency content. This idea
is akin to the positional encoding technique that enabled the success of transformer networks
in translation [43].

While it seemed like incorporating these Fourier features into the mDD model could help
improve the quality of the reconstruction, it was not immediately clear how to do so: all
other works using positional encoding techniques had coordinates as input to the model,
while the mDD did not. However, Liu et al. introduced the idea of replacing Conv2D layers
with a CoordConv layer, which augments the input to the Conv2D layer by concatenating
it with coordinates, showing improved results in a variety of di↵erent learning tasks [30].
So, we modified the mDD, replacing Conv2D layers with CoordConv layers. But, instead of
appending coordinates to the input of every conv, Fourier lifted coordinates were appended.
Specifically, for each coordinate p, the Fourier feature lift can be described as

�(p) =
✓
sin

✓
2⇡

L
kp

◆
, cos

✓
2⇡

L
kp

◆◆

where k = 0, 1, · · · , L � 1. Additionally, in order to prevent the network from producing
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arbitrary frequencies in regions of k-space for which there is no data (the unsampled re-
gions), a multi-scale loss was introduced. This loss was the same metric as the original, but
it was evaluated at di↵erent scales of output, i.e. the output of every layer of the genera-
tive model had a loss associated with it. The network was then optimized over a sum of
these losses, weighted to account for the di↵erent di↵erent scales of the di↵erent resolutions.
Figure 2.4 shows the updated network architecture, and Figure 2.5 shows the new network
reconstruction results.

Figure 2.4: The updated high frequency mDD network architecture, with LiftedCoordConv
layers instead of Conv2D layers, as well as a multi-scale output and loss.

As we can see, the updated network has an increased ability to express high spatial
frequency content. However, increasing the expressivity of the network detracts from the
regularization provided by the network structure. And, because in this case the network
structure is the only thing regularizing our inverse problem, this method produces a re-
construction that is not “natural.” In summary, further modification of the mDD to try
to improve its expressivity of high spatial frequencies was successful, but perhaps counter-
intuitively results in a less successful reconstruction. Further work could explore adding
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Figure 2.5: 4x Accelerated Reconstruction results with the high frequency mDD. PICS and
original mDD reconstruction results and PSNR present for comparison. We see that the net-
work better expresses high frequency textures but performs worse overall in reconstruction.

additional regularization to this new network, but that further complexity might detract
from what made this method appealing in the first place.

2.7 Conclusion

The results show that the Modified Deep Decoder architecture allows a concise repre-
sentation of MR images. The flexibility of this generative image model was successfully
leveraged to jointly denoise adjacent slices in 3D MR images and to reconstruct multi-coil
data without explicit estimation of coil sensitivities. While the method outperforms tradi-
tional methods, it does have some limitations in its ability to express high spatial frequency
content when compared to supervised learning methods. This untrained method is partic-
ularly attractive in scenarios when access to training data or fully-sampled data is limited,
and provides a possible alternative to conventional sparsity-based image priors.
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Chapter 3

O↵-Resonance De-Blurring

3.1 Abstract

A convolutional residual network was used to correct for blurring due to o↵-resonance, an
artifact common in non-cartesian trajectories. The model was tested in a variety of di↵erent
experiments in order to evaluate its power and generalizability. Our results indicate that
this deep learning method is quite powerful as it shows good results both qualitatively and
quantitatively (PSNR, SSIM, NRMSE) across experiments. This method is appealing be-
cause robust and generalizable o↵-resonance correction enables the use of spiral trajectoires,
which allows for the rapid imaging necessary for a variety of MRI subfields, such as fMRI,
Cardiac Cine MRI, etc.

3.2 Background

In MR imaging, samples from the spatial frequency domain known as k-space are used
to reconstruct images. The way in which k-space is sampled is known as a “trajectory,” and
there is a wealth of research analyzing the benefits and drawbacks of using di↵erent types
of trajectories [6, 38, 48]. While the most commonly used trajectory is a cartesian sampling
pattern, where k-space is sampled row by row, an alternative and commonly researched
trajectory is the spiral trajectory, in which k-space is sampled in spirals that start in the
center of k-space and spiral outward.

The spiral trajectory is particularly attractive for a few reasons. The first is that each
spiral starts by sampling the center of k-space, which is the region of k-space that has the
highest signal to noise ratio. Additionally, the acquisition time is shorter on average than
a comparable cartesian trajectory [4], and the spiral trajectory is less sensitive to motion
artifacts. [45]. This makes spiral trajectories favorable for scans that rely on time series
data, such as fMRI or cardiac scanning [16].
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However, the MRI signal model relies on the assumption that the resonance of nuclear
spins in the magnet is uniform, i.e. that all spins resonate at a frequency !0 proportional
to the main magnetic field strength [18]. However, in reality, not all spins in the body
resonate exactly at !0, either due to inhomogeneities in the main magnetic field or due to
excitation of H+ in other complex molecules, such as fat [37]. Spins actually resonate at a
range of frequencies around !0, which is known as o↵-resonance. O↵-resonance causes spatial
blurring in the reconstructed image, especially when k-space is sampled with non-Cartesian
trajectories, such as spiral trajectories [33] (Figure 3.1).

Figure 3.1: Left: A spiral trajectory overlayed on k-space data — Middle: Reconstruction
of k-space data with o↵-resonance blur — Right: Reconstruction of k-space data without
o↵-resonance blur

Several traditional, analytical methods have been proposed for o↵-resonance correction
in the past [37, 33, 34]; however, these methods are not very accurate and can be computa-
tionally slow. Recently, Zeng et al. proposed a deep learning based approach to correct for
o↵-resonance blur in 3D Cone trajectories that achieved great success. This work aims to
reproduce Zeng’s results using 2D spiral trajectories (rather than the 3D cone trajectories
used in Zeng et al.) and investigate the generalizability of this deep learning model. This is
done by evaluating network performance agnostic to anatomy and image statistics, as well
as between di↵erent datasets.
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3.3 Theory

The typical MR signal model is s(t) =
R
r M(r)e�j2⇡r·kr(t)dr, but the o↵-resonance signal

equation (ignoring relaxation) can be expressed as

s(t) =
Z

r
M(r)e�j2⇡r·kr(t)e�j!rtdr

The di↵erence between these two equations is the introduction of the e�j!rt term in the
second signal model, known as the o↵-resonance term. The o↵-resonance term multiplies the
Fourier imaging term, and therefore has a convolutional e↵ect in the image domain. The
degree of o↵-resonance artifact present in the image depends on the o↵-resonance frequency
!r, as well as the length of the readout duration t. This artifact manifests as a phase er-
ror in k-space, or, equivalently, blurring in the image domain. Additionally, o↵-resonance
varies spatially, which means that the o↵-resonance convolutional kernel is di↵erent depend-
ing on its location in the image. We can therefore model the e↵ect of o↵-resonance as a
nonstationary convolution.

When framed as such, we can think of correcting o↵-resonance artifacts as solving for a
nonstationary deconvolutional (deblurring) operator. This problem naturally lends itself to
a deep learning solution. Firstly, the learned weights of the convolutional neural network
can be thought of as learned deconvolutional weights of the forward o↵-resonance blurring
model. Secondly, the nonlinearities present in the network can address the nonstationarity
of the blurring by adjusting the deconvolutional weights depending on the spatial location.
Additionally, because o↵-resonance can be thought of as a convolution, we know that the
original information is present but locally distributed, which again lends itself well to the
convolutional kernels typical in CNNs. Finally, because the blurring kernel is only a function
of the o↵-resonance and not the image amplitude, each pixel in the training set can be
considered a training example in a fully convolutional neural network [47].

3.4 Methods

CNN Architecture

The CNN architecture used in this work is 2D adaptation of the network used in Zeng et
al. The network is a convolutional residual network with 3 residual layers, each consisting
of two 5x5 Conv2D layers and ReLU activations. Each of the residual layers has a filter
depth of 128, and both the input and outputs of the network are images with 2 channels,
corresponding to real and imaginary components. The network is designed to correct for
o↵-resonance, and is trained by mapping blurred images to clean ones (Figure 3.2). The
network is designed to be smaller with less capacity in order to promote learning o↵-resonance
correction and prevent overfitting through memorization of anatomy. Additionally, we know
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that o↵-resonance blurring kernels are low rank [34, 37], so a relatively small network should
be able to e↵ectively learn the deblurring. The network was trained using the L1 loss metric
because it has been shown to produce better objective and perceptual results [49]. The
network was built and trained in PyTorch, optimized with Adam over 8 epochs with a
learning rate of 10�4 and a batch size of 15 [25].

Figure 3.2: Visualization of the network architecture that maps o↵-resonance blurred images
to clean images

Experiments

2D Reproduction

Several experiments were done in order to reproduce and test the generalizability of this
method. The first goal was to replicate the work in Zeng et al. in a 2D spiral trajectory
setting. The data for this experiment came from the Human Connectome Project [13]. The
data consists of 3D T2-SPACE scans of 32 patients with a TR of 3200 ms, a TE of 561 ms,
a voxel size of 0.7 mm isotropic, and each subject volume of dimensions 320 ⇥ 320 ⇥ 256.
The central 50 axial slices for each subject were then used to generate the training and test
datasets. Each 320⇥ 256 slice was a magnitude image.

In order to simulate a spiral trajectory and o↵-resonance artifacts, each image underwent
a density compensated NUFFT [14] with a spiral k-space trajectory; then, o↵-resonance was
simulated by by multiplying the k-space with a complex exponential at a constant frequency
(as described in the Theory section); and finally, an inverse density compensated NUFFT was
taken to get the resulting image. For each slice, 20 artifact images were created by following
the procedure described above for o↵-resonance frequencies !r ranging from -100 Hz to 100
Hz in steps of 10 Hz. The image corresponding to !r = 0 was then considered to be the
ground truth, because it was simulated with a spiral trajectory but with no introduced o↵-
resonance blur. The goal of the network was then to learn a many-to-one mapping between
the 20 artifact images and the one ground truth, for each slice and subject.
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The data (32,000 artifact images and 1600 ground truth images) were split in a 30%-70%
train-test split across subjects, resulting in 9000 training images and 23,000 test images.
Although this split is unconventional, we and Zeng et al. were able to achieve good results
with a small training set for several reasons.

First, the network was deliberately chosen to be shallow to reduce the number of training
parameters. Second, the network was fully convolutional, such that it could be interpreted
that each pixel was a training example for this regression problem. Additionally, each pixel
was augmented with 20 simulated o↵-resonant frequencies. Third, and perhaps most im-
portantly, we have posed o↵-resonance correction as a nonstationary deconvolution problem;
under this problem structure, the network can be considered to learn generalizable kernels as
a function of not only the data model, but also the physical model. This paradigm is similar
to the one presented in previous works such as AUTOMAP [51], and provides a powerful
theoretical framework to operate within. [47].

While the preparation of data described here indicates that the synthetic o↵-resonance
artifacts introduced are not spatially varying, this technique is similar to that of Zeng et al.,
which demonstrated that this data model is su�cient to learn the deconvolutional deblurring
operation.

Noise Data

The next experiment seeks to investigate the generalizability of the method; in order to
learn a generalized kernel which is only a function of the physical model (and not the data
model), theoretically, the network should not need to see anatomy in order to correct for
o↵-resonance blur.

We do this by replicating the setup of the first experiment, but for pure noise images
instead of anatomy; the data was generated in the same way as in the first experiment, but
instead of adding an o↵-resonance artifact to an axial slice of a brain volume, we introduce the
o↵-resonance artifact to a known, fixed noise image. The (train, ground_truth) pairs thus
become (noise+off-res, noise), and the goal of the network—to correct for the introduced
o↵-resonance artifact—is the same. We want to see if the network can still produce a general
deblurring operation and correct for o↵-resonance in anatomy images when trained on images
that have the o↵-resonance artifact, but lack any image anatomy or statistics to learn from.

Additionally, it has been shown that deep convolutional networks can generalize poorly
to small image transformations, and that typical data augmentations such as crops and
rotations are insu�cient in compensating for these transformations [3]. By learning o↵-
resonance correction from white noise images, we hope that the network will not be biased
by any specific training dataset, making the network more robust and generalizable under a
variety of di↵erent dataset sources and conditions.
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Inter-Dataset Generalization

Next, we sought to evaluate the model’s performance when correcting more realistic,
spatially-varying o↵-resonance blur after training on synthetic spatially-uniform o↵-resonance
artifact images. However, this requires the dataset to include fieldmaps, which describe the
o↵-resonance frequency at each voxel. For this purpose, we used the NIFD dataset [11],
which is a series of 2D gradient echo scans for each subject, with a TR of 667 ms, a TE
of 7.65 ms, a voxel size of 1.0 mm isotropic, and each subject slice of dimensions 106x106.
There were 11 subjects in the dataset, each with 60 slices acquired. Unlike the HCP dataset,
the NIFD also included fieldmap data for each slice. The training data was generated as in
the first experiment, but with a lower resolution k-space spiral trajectory to account for the
di↵erence in resolution.

However, the NIFD dataset did not have a su�cient amount of data to e↵ectively train
the network. So, we trained on a modified HCP dataset (HCP data with the new k-space
trajectory) and tested on the NIFD dataset to see if it was able to correct for the o↵-resonance
artifact despite the scans being from di↵erent data sources.

Fieldmap Data

Once the network was trained on the modified HCP dataset and tested on the NIFD
dataset, we could evaluate its performance on more realistic, spatially-varying o↵-resonance
artifact images. Instead of simulating o↵-resonance at a constant frequency as was done in the
previous experiments, we use the fieldmap given in the NIFD dataset to introduce spatially-
varying o↵-resonance. This is performed similarly to the artifact simulation discussed in
section 3.4-Experiments-2D Reproduction. We again take a density-compensated NUFFT
using a spiral k-space trajectory; but, instead of multiplying the entirety of k-space with a
complex exponential with a constant !r, we use the fieldmap, which dictates how certain
positions are going to accrue phase, to set !r. We use that fieldmap data in an Inverse
Nonuniform Discrete Fourier Transform to produce an image with spatially varying o↵-
resonance artifacts.

Figure 3.3 demonstrates a practical issue in using fieldmap data: because the fieldmap
data is noisy, using the fieldmap without any processing results in additional noise artifacts
that the network has not seen before. In order to use the fieldmap without introducing these
noisy artifacts, we first denoise the fieldmap. We use a Total Variation denoiser [7], and then
use the denoised fieldmap to introduce the spatially-varying o↵-resonance. We then take the
network from the inter-dataset experiment, trained on synthetic-artifact HCP data, and test
it on fieldmap-artifact NIFD data.

This experiment evaluates the network’s performance in correcting fieldmap artifacts for
two training cases simultaneously: (1) training on synthetic-artifact data and (2) training
on data from a di↵erent source.
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Figure 3.3: Visualization of the fieldmap and denoised fieldmap and their corresponding
artifact images. The top row shows how the unprocessed fieldmap results in an artifact
image with both blur and noise. The bottom row shows how, after denoising the fieldmap,
the artifact image contains a spatially varying blur and not spurious noise artifacts.

In Vivo Data

The method was then evaluated on In Vivo data acquired on a 3T GE scanner, with
a TE of 1 ms, a TR of 1 s, and a slice thickness of 5 mm, using the same low-res k-space
trajectory that the network trained on in the previous experiment. Ground truth data was
not available for comparison, so an alternative no-reference image quality metric (IQA) [26]
was used to compare the performance of this method to the baseline, autofocus method.

3.5 Results

All of these experiments were evaluated using three di↵erent metrics: Peak Signal to
Noise Ratio (PSNR), Structural Similarity (SSIM) [44], and Normalized Mean Squared Error
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(NRMSE). All the summary figures include the performance of the autofocus method [37]
on the same dataset, which is a traditional method of correcting for o↵-resonance blur and
serves as a baseline.

2D Reproduction

Figure 3.4 and 3.5 show deblurring examples from the 2D reproduction experiment on
the HCP dataset. Figure 3.6 shows the summary statistics (mean and standard deviation)
for the entire test dataset.

Figure 3.4: Example results of the 2D reproduction experiment. The network corrects for
varying degrees of simulated o↵-resonance (10 Hz, 30 Hz, 60 Hz, 100 Hz). The region in
the red box on the left is magnified on the right to show detail. Each artifact image and
its corrected image have PSNR and SSIM metrics shown below the magnified region on the
right.
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Figure 3.5: Example results of the 2D reproduction experiment. The network corrects for
varying degrees of simulated o↵-resonance (10 Hz, 30 Hz, 60 Hz, 100 Hz). The region in
the red box on the left is magnified on the right to show detail. Each artifact image and
its corrected image have PSNR and SSIM metrics shown below the magnified region on the
right.
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Figure 3.6: Summary statistics of the average PSNR, SSIM, and NRMSE of the artifact
correction performance of the 2D reproduction experiment on the test set. The bars show
the 1� standard deviation in performance.
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In the summary statistics, we see that across the metrics and the di↵erent degrees of
o↵-resonance, the network does a great job of correcting for o↵ resonance blur, beating the
autofocus method in terms of SSIM and NRMSE by a slight amount and by a large amount
in the PSNR metric. The example images show high fidelity to the anatomy present in
the image, and the only errors seen are on the boundary of the anatomy and don’t have
any structure present. This is fairly impressive considering these results are all on the test
dataset, i.e. the network has not seen these images before, only images from other subjects
in this study.

Noise Data

Figure 3.7 and 3.8 show deblurring examples of the HCP test dataset when trained on
the noise dataset, and Figure 3.9 shows its summary statistics.
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Figure 3.7: Example results of the noise data experiment. The network corrects for varying
degrees of simulated o↵-resonance (10 Hz, 30 Hz, 60 Hz, 100 Hz). The region in the red box
on the left is magnified on the right to show detail. Each artifact image and its corrected
image have PSNR and SSIM metrics shown below the magnified region on the right.
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Figure 3.8: Example results of the noise data experiment. The network corrects for varying
degrees of simulated o↵-resonance (10 Hz, 30 Hz, 60 Hz, 100 Hz). The region in the red box
on the left is magnified on the right to show detail. Each artifact image and its corrected
image have PSNR and SSIM metrics shown below the magnified region on the right.
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Figure 3.9: Summary statistics of the average PSNR, SSIM, and NRMSE of the artifact
correction performance when trained on noise data and tested on the HCP dataset. The
bars show the 1� standard deviation in performance.
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Here we see that the model still performs fairly well, albeit not as well as when it is both
trained and tested on the HCP dataset. However, despite the fact that the network did not
learn any image anatomy or statistics, it is still able to correct for o↵-resonance in anatomy
data fairly well. Again, we that it outperforms autofocus across our metrics, although now
with a reduced margin of improvement.

For low levels of o↵-resonance, the network does not correct well when applied to the
HCP dataset. This makes sense, as the network has not been exposed to anatomy before.
So, when it sees an image with little o↵-resonance artifact, the most we can hope for is for it
to not corrupt the image, which seems to be the case as the PSNR values essentially overlap
for the -10 and 10 Hz cases.

In the image examples, we see that the error is much higher, and there is no some
structure to the error when compared to the 2D reproduction, but the network’s ability to
deblur for high levels of o↵-resonance without ever learning image anatomy or statistics is
impressive.

Inter-Dataset Generalization

Figure 3.10 shows the summary statistics of training on the low-resolution trajectory of
the HCP data and testing on the HCP and NIFD data respectively. Figures 3.11 and 3.12
show examples of deblurring the NIFD data when trained on HCP data.
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Figure 3.10: Summary statistics of the average PSNR, SSIM, and NRMSE of the artifact
correction performance when trained on low resolution HCP data and tested on the low-
res test HCP dataset (top) and NIFD dataset (bottom). The bars show the 1� standard
deviation in performance.
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Figure 3.11: Example results of the inter-dataset generalization experiment. The network,
trained on low-res HCP data, corrects for varying degrees of simulated o↵-resonance (10 Hz,
30 Hz, 60 Hz, 100 Hz shown) in the NIFD dataset. The region in the red box on the left
is magnified on the right to show detail. Each artifact image and its corrected image have
PSNR and SSIM metrics shown below the magnified region on the right.
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Figure 3.12: Example results of the inter-dataset generalization experiment. The network,
trained on low-res HCP data, corrects for varying degrees of simulated o↵-resonance (10 Hz,
30 Hz, 60 Hz, 100 Hz shown) in the NIFD dataset. The region in the red box on the left
is magnified on the right to show detail. Each artifact image and its corrected image have
PSNR and SSIM metrics shown below the magnified region on the right.
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We again see that the method performs better when trained and tested on the same
dataset than when trained on one and tested on the other. However, it still performs quite
well in both cases, especially for high levels of o↵-resonance. And, in both cases, outperforms
the autofocus method.

In the deblurring examples, we see results similar to the 2D reproduction experiment
in that the error is low overall but highest at the image boundary. Additionally, the error
appears unstructured.

Fieldmap Data

Figure 3.13 shows the results of training on the HCP low-resolution data and testing
on the NIFD fieldmap-artifact (spatially varying) data. Figure 3.14 shows the summary
statistics for the fieldmap artifact correction.
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Figure 3.13: Example results of the fieldmap data experiment. The network, trained on
low-res HCP data, corrects for spatially varying o↵-resonance in the NIFD dataset. The
region in the red box on the left is magnified on the right to show detail. Each artifact image
and its corrected image have PSNR and SSIM metrics shown below the magnified region on
the right.
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Figure 3.14: Summary statistics of the average PSNR, SSIM, and NRMSE of the artifact
correction performance when trained on low-res HCP data and tested on spatially-varying
fieldmap o↵-resonance NIFD data. The bars show the 1� standard deviation in performance.
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We see that again, across all our metrics, the deep learning model corrects the o↵-
resonance artifacts very well, outperforming autofocus. Even in this case, where we train on
a di↵erent dataset and test on a more realistic o↵-resonance artifact, the network corrects
the images across all metrics. In the examples, we see that the error is high mainly on the
boundary of the anatomy. An interesting note is that the third image in Figure 3.13 is of
anatomy that the network is unfamiliar with, as only the center slices of the HCP dataset
were used to train; this might explain why it performs the worst of the examples shown.

In Vivo Data

Figure 3.15 shows the results of applying the same network in the previous experiment,
that was trained on the HCP low-resolution data, to in vivo data.
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Figure 3.15: Three brain slices of In-Vivo data with o↵-resonance artifacts shown, alongside
their corrected versions using the 2D O↵-ResNet and Autofocus methods respectively. Image
Quality Assessment (IQA) metrics, normalized between 0 and 1, are also shown.
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We see that, overall the network does correct some of the o↵-resonance and ringing in the
images, especially in the regions highlighted with the red boxes. We also see that, according
the Image Quality Assessment (IQA) metric scores that have been normalized to be between
0 and 1, that the network outperforms the Autofocus method.

However, while the network outperforms the autofocus method, the o↵-resonance correc-
tion on the in vivo data is not as good overall as the correction on the simulated data in
previous experiments. We hypothesize that this is the case for the following reason. The net-
work that trains and works well with high levels of spatially-uniform o↵-resonance also works
well with low levels of spatially-varying o↵-resonance (fieldmaps). However, the in vivo data
seems to have a high level of spatially-varying o↵-resonance, which the network may not be
as well equipped to handle. This issue, however, is probably more indicative of the training
data than of the model itself. If the network is trained on spatially-varying o↵-resonance,
then the method would likely work better with in vivo data. However, generating a su�cient
amount of spatially-varying o↵-resonance training data is a time intensive process, and is
why spatially-uniform o↵-resonance was used in the experiments in this thesis.

3.6 Discussion

Having shown that the method performs well in a variety of cases, we can say with some
certainty that framing this problem as solving for a nonstationary deconvolutional operator
(and using a convolutional residual network to do so) is valid, which is highly convenient
since this problem structure lends itself naturally to deep learning solutions. Further deep
learning solutions experimenting with di↵erent network architectures and loss functions can
thus be explored.

Because we are working with lower-resolution 2D data and 2D spiral trajectories rather
than 3D cones, this method demands significantly less training time that of Zeng et al: these
results all took about 3-4 hours to train, whereas Zeng et al. took 32 days to train.

In certain cases, the method does not work as well for very low levels of o↵-resonance.
This is particularly true for the noise data experiment, and likely occurs because the network
has no information about the image statistics or expected anatomy. An additional note is
that, for low levels of simulated o↵-resonance, the autofocus method performs worse than if
the image is left uncorrected. However, we see in Figure 3.14 that autofocus always improves
the quality of the image when it has spatially-varying o↵-resonance. This is probably due
to the fact that autofocus was designed to correct for spatially-varying o↵-resonance. So, it
can not perform as well on the synthetic o↵-resonance datasets as the network that trains
on that kind of data.

It would be interesting to do further research to see how well the method performs when
trained on spatially-varying o↵-resonance, or on multiple di↵erent data sources, and whether
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that could help improve the generalizability and robustness of the method. Training on
multiple di↵erent sources simultaneously could also improve the network’s correction when
little artifact is present in the image. It could also be interesting to see how the method
performs when trained on a traditional computer vision dataset like ImageNet with added
o↵-resonance: would it still do a good job of correcting for o↵-resonance when then tested
using MRI data?

3.7 Conclusion

This work aimed to investigate the generalizability of using a convolutional residual
network to correct for blurring due to o↵-resonance. This was done with a 2D spiral trajectory
through several experiments using a variety of data sources. These experiments have shown
that the residual model is able to correct o↵-resonance when trained on noise data with
no typical image statistics or anatomy, when trained and tested on di↵erent datasets from
di↵erent sources, and when trained on synthetic, spatially uniform o↵-resonance and tested
on more realistic, spatially varying o↵-resonance. Establishing a robust, general, and e�cient
method of correcting for o↵-resonance from 2D spiral trajectories is important, as it would
enable the use of these trajectories in rapid imaging scenarios, such as fMRI and Cardiac
Cine MRI, without the concern of blurring artifacts.
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