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Abstract

Provable and Efficient Algorithms for Federated, Batch and Reinforcement Learning

by

Avishek Ghosh

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Co-chair

Professor Aditya Guntuboyina, Co-chair

We propose and analyze iterative algorithms that are computationally efficient, statistically sound
and adaptive (in some settings). We consider three different frameworks in which data is presented
to the learner. First, we consider the Federated (Distributed) Learning (FL) setup, where data is only
available at the edge, and a center machine learns various models via iteratively interacting with the
edge nodes. Second, we study the canonical setting of supervised batch learning, where all the data
and label pairs are available to the learner at the beginning. Third, we examine the framework of
online learning, where data is presented in a streaming fashion. In particular, we focus on specific
settings like Bandit and Reinforcement Learning (RL).

In the Federated Learning (FL) framework, we address the canonical problems of device heterogene-
ity, communication bottleneck and adversarial robustness for large scale high dimensional problems.
We propose efficient and provable first and second order algorithms, and use ideas like quantization
of information and apply several robust aggregation schemes to address the above-mentioned prob-
lems, while retaining the optimal statistical rates simultaneously. For the (supervised) batch learning
framework, we use an efficient and statistically sound algorithm, namely Alternating Minimization
(AM) and address the problem of max-affine regression; a non convex problem that generalizes the
classical phase retrieval and closely resembles convex regression. We give convergence guarantees
of AM, with near optimal statistical rate. Finally, in the online learning setup, we address the
problem of adaptation (model selection) for contextual bandits (linear and beyond) and later extend
these techniques to Reinforcement Learning (RL). Our algorithms here are efficient, provable and
more importantly adaptive to the problem complexity.
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Chapter 1

Introduction

In recent years, we are witnessing an unprecedented growth in the amount of high dimensional
data being sensed, collected and processed to drive modern applications across many domains.
This growth has challenged classical algorithms to scale up to big-data regimes. Furthermore,
in time sensitive applications such as control and decision-making, collaborative learning, and
medical imaging, efficient implementations of such scaled-up algorithms are necessary. Moreover,
in applications like personalized recommendation and advertisement placement, adapting to the
structure of the problem is of fundamental interest. This adaptation can reduce both the problem
complexity and compute time. In this thesis, we focus on three fundamental aspects of machine
learning: statistical guarantees, efficient implementations and adaptation to problem complexity.
We consider three different frameworks in which data is presented to the learner: (a) Federated
(Distributed) Learning (FL), (b) supervised batch learning and (c) online (streaming) setup with
Bandit/Reinforcement Learning (RL).

1.1 Algorithms for Federated (Distributed) Learning (FL)
In many real-world applications, the size of training datasets has grown significantly over the
years to the point that it is becoming crucial to implement learning algorithms in a distributed
fashion. A commonly used distributed learning framework is data parallelism, in which large-scale
datasets are distributed over multiple worker machines for parallel processing in order to speed up
computation. In many applications, data are stored in end users’ own devices such as mobile phones
and personal computers, and in these applications, fully utilizing the on-device machine intelligence
is an important direction for next-generation distributed learning. Federated Learning (FL) [1–3]
is a recently proposed distributed computing paradigm that is designed towards this goal, and has
received significant attention. Many statistical and computational challenges arise in Federated
Learning, due to the highly decentralized system architecture.

In a standard Federated (or distributed) learning framework, a set of worker machines store the
data, perform local computations, and communicate local updates (ex. gradients, hessians) to the
center machine (e.g., a parameter server). The center machine processes the results from workers
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to update the model parameters. Such distributed frameworks need to address the following three
fundamental challenges:

1. Data Heterogeneity: First, the heterogeneity of data across machines can often dampen the
learning rate. This is a major concern in Federated Learning, since the worker machines are
end users’ personal devices and the data across users are different (in distribution) from one
another.

2. Communication Cost: Second, the gains due to parallelization are often bottlenecked in
practice by heavy communication overheads between workers and the central machine. This
is especially the case for large clusters of worker machines or for modern deep learning
applications using models with millions of parameters (for example, NLP models, such as
BERT [4], may have well over 100 million parameters). Moreover, in Federated Learning,
communication from a user device to the central server is directly tied to the user’s upload
bandwidth costs. Therefore, it is of paramount importance to reduce communication overhead
in distributed learning algorithms.

3. Adversarial Robustness: Third, messages from workers are susceptible to errors due to
hardware faults or software bugs, stalled computations, data crashes, and unpredictable
communication channels. In scenarios such as Federated Learning, users may as well be
malicious and act adversarially. The inherent unpredictable (and potentially adversarial)
nature of compute units is typically modeled as Byzantine failures. Even if a single worker is
Byzantine, it can be fatal to most learning algorithms ([5]).

In Chapters 2-5, we address these fundamental issues and propose algorithms that are provable
and computation friendly. In Chapter 2, we propose an iterative clustering algorithm that partitions
the worker machines and learns the optimal model for each clusters simultaneously, yielding
an optimal statistical rate in certain settings. In Chapter 3 we propose first order optimization
algorithms to deal with communication efficiency and Byzantine attacks, and show the optimality
of our proposed scheme in certain parameter regime. Furthermore, in Chapters 4 and 5, we extend
this to second order and beyond second order algorithms.

1.1.1 Data Heterogeneity: Clustered FL
Exploiting data heterogeneity is particularly crucial in applications such as recommendation systems
and personalized advertisement placement, and it benefits both the users’ and the enterprises. For
example, mobile phone users who read news articles may be interested in different categories of
news like politics, sports or fashion; advertisement platforms might need to send different categories
of ads to different groups of customers. These indicate that leveraging the heterogeneity among the
users is of potential interest—on the one hand, each machine itself may not have enough data and
thus we need to better utilize the similarity among the users; on the other hand, if we treat the data
from all the users as i.i.d. samples, we may not be able to provide personalized predictions. This
problem has recently received much attention [6–8].
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Figure 1.1: An overview of IFCA with 2 clusters, orange and green: (a) The server broadcast
models. (b) Worker machines identify their cluster memberships and run local updates. (c) The
worker machines send back the local models to server. (d) Average the models within the same
estimated cluster Sj .

In Chapter 2, we study one of the formulations of FL with non-i.i.d. data, i.e., the clustered
Federated Learning [7, 9]. We assume that the users are partitioned into different clusters; for
example, the clusters may represent groups of users interested in politics, sports, etc, and our goal
is to train models for every cluster of users. We note that cluster structure is very common in
applications such as recommender systems [10, 11]. The main challenge of our problem is that
the cluster identities of the users are unknown, and we have to simultaneously solve two problems:
identifying the cluster membership of each user and optimizing each of the cluster models in a
distributed setting.

We assume that there are k different data distributions, D1, . . . ,Dk, and that the m machines
are partitioned into k disjoint clusters, S∗1 , . . . , S

∗
k . We assume no knowledge of the cluster identity

of each machine, i.e., the partition S∗1 , . . . , S
∗
k is not revealed to the learning algorithm. We assume

that every worker machine i ∈ S∗j contains n i.i.d. data points zi,1, . . . , zi,n drawn from Dj , where
each data point zi,j consists of a pair of feature and response denoted by zi,` = (xi,`, yi,`).

Let f(w; z) :W → R be the loss function associated with data point z, whereW ⊆ Rd is the
parameter space. We chooseW = Rd. Our goal is to minimize the population loss function

F j(w) := Ez∼Dj [f(w; z)]

for all j ∈ [k]. In particular, we try to find solutions {ŵj}kj=1 that are close tow∗j = argminw∈ΘF
j(w),

j ∈ [k].
In order to achieve this goal, we propose a framework and analyze a distributed method,

named the Iterative Federated Clustering Algorithm (IFCA) for clustered FL. The basic idea of
our algorithm is a strategy that alternates between estimating the cluster identities and minimizing
the loss functions, and thus can be seen as an Alternating Minimization algorithm in a distributed

Workers Server ----------, I 
I I DD D I ◄ I 

I I Cluster est imate 
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I I 

I D ■ W1 =-f-I wi I 
I ~ I 11 S1 I 
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(c) I • ■ Wz - ISz If, 2 1 

■ I (d) I 
I J 

W2 .... - - - - - - - - - -

(a) 

(b) Noisy estimates 
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setting. The details of the algorithm is given in Figure 1.1 for two clusters, green and orange. With
the broadcasted models, the workers perform an objective based clustering to estimate their cluster
identity, and correspondingly update the model by taking gradient steps. Furthermore, when the
cluster structure is ambiguous, we propose to leverage the weight sharing technique in multi-task
learning [12] and combine it with IFCA. More specifically, we learn the shared representation layers
using data from all the users, and use IFCA to train separate final layers for each individual cluster.

We further establish convergence rates of our algorithm, for strongly convex losses under the
assumption of good initialization. We prove exponential convergence speed, and for both settings,
we can obtain near optimal statistical error rates in certain regimes. With quadratic loss, we show

that the statistical error rate of our problem is Õ(
√

d
mn

+ minor-term), which is near optimal (see

[13]). For strongly convex loss, the error rate obtained is Õ(
√

d
mn

+ 1
n
), which is sub-optimal by a

factor of 1
n

. Furthermore, extensive experiments on MNIST, CIFAR-10 and Federated EMNIST
data-sets validate our theoretical findings.

1.1.2 Communication Efficiency and Byzantine Resilience
In Chapters 3-5, we address the challenges of communication efficiency and Byzantine resilience
(against adversarial machines) simultaneously. As mentioned earlier, Chapter 3 introduces first
order gradient based methods, and Chapters 4 and 5, extends those to second order and beyond
second order methods respectively.

Gradient Based (First Order) Methods

Both the challenges of communication efficiency and Byzantine-robustness, have recently attracted
significant research attention, albeit mostly separately. In particular, several recent works have
proposed various quantization or sparsification techniques to reduce the communication overhead
([14–16]). The goal of these quantization schemes is to compute an unbiased estimate of the gradient
with bounded second moment in order to achieve good convergence guarantees. The problem of
developing Byzantine-robust distributed algorithms has been considered in [17–19].

Once again, in Chapter 3, we consider m worker machines, each storing n data points. The data
points are generated from some unknown distribution D. The objective is to learn a parametric
model that minimizes a non-convex population loss function F :W → R, where F is defined as
an expectation over D, andW ⊆ Rd denotes the parameter space. For gradient compression at
workers, we consider the notion of a δ-approximate compressor from [20] defined below:

Definition 1 (δ-Approximate Compressor). An operatorQ(.) : Rd → Rd is defined as δ-approximate
compressor on a set S ⊆ Rd if, ∀x ∈ S,

‖Q(x)− x‖2 ≤ (1− δ)‖x‖2,

where δ ∈ (0, 1] is the compression factor.
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Examples of such compressors include sign-based compressors like QSGD ([21]), `1-QSGD
([20]) and top-k sparsification ([15]). Furthermore, for Byzantine robustness, we assume that
0 ≤ α < 1/2 fraction of the worker machines are Byzantine, and make no assumptions on the
behavior of the Byzantine workers. Byzantine workers can send any arbitrary values to the center
machine. In addition, they may completely know the learning algorithm and are allowed to collude
with each other. In contrast to blind multiplicative adversaries assumed in literature (see [22]), we
consider unrestricted adversaries.

We propose a communication-efficient and robust distributed gradient descent (GD) algorithm.
The algorithm takes as input the gradients compressed using a δ-approximate compressor along with
their norms, and performs a simple thresholding operation on based on gradient norms to discard
β > α fraction of workers with the largest norm values. We show that our algorithm achieves the
following statistical error rate1 for the regime δ > 4β + 4α− 8α2 + 4α3:

Õ
(
d2

[
α2

n
+

1− δ
n

+
1

mn

])
. (1.1)

We first note that when δ = 1 (uncompressed), the error rate is Õ(d2[α
2

n
+ 1

mn
]), which matches the

optimal rate of [23]. Furthermore, for a fixed d and the compression factor δ satisfying δ ≥ 1− α2,
the rate Õ(α

2

n
+ 1

mn
), is optimal and order-wise identical to the case of no compression [23]. In

other words, in this parameter regime, we get compression for free.
Furthermore, we strengthen our learning algorithm by using error feedback to correct the

direction of the local gradient (Algorithm 3). We show (both theoretically and via experiments) that
using error-feedback with a δ-approximate compressor indeed speeds up the convergence rate and
attains better (statistical) error rate.

Distributed Approximate Newton Method

An alternative way to reduce communication cost is to use second order optimization algorithms;
which are known to converge much faster than their first order counterparts. At the expense of
increasing computation cost at the worker machines (which is not an issue in applications like
Federated Learning; see [3]), the second order algorithms reduce the number of iterations between
the worker and center machines. Indeed, a handful of algorithms has been developed using this
philosophy, such as DANE [24], DISCO [25], GIANT [26] , DINGO [27], Newton-MR [28],
INEXACT DANE and AIDE [29].

One major drawback of the above-mentioned algorithms is that they are prone to adversarial or
Byzantine attacks. On the other hand, the Byzantine-robust distributed algorithms (see [18, 19, 23,
30–33] ) are all variants of first order gradient based optimization algorithm.

In Chapter 4, we propose COMRADE, a distributed approximate Newton-type algorithm that
communicates less and is resilient to Byzantine workers. Specifically, with m worker machines and
one center machine, we minimize a regularized convex loss f : Rd → R, which is additive over the
available data points. Furthermore, similar to previous chapters, we assume that α fraction of the

1Note that O(·) hides multiplicative constants, while Õ(·) further hides logarithmic factors.
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worker machines are Byzantine, where α ∈ [0, 1/2). To the best of our knowledge, this is the first
work that addresses the problem of Byzantine resilience in second order optimization.

In our proposed algorithm, the worker machines communicate only once per iteration with
the center machine. This is in sharp contrast with the state-of-the-art distributed second order
algorithms (like GIANT [26], DINGO [27], Determinantal Averaging [34]), which sequentially
estimates functions of local gradients and Hessians and communicate them with the center machine.
In this way, they end up communicating twice per iteration with the center machine. We show that
this sequential estimation is redundant. Instead, in COMRADE, the worker machines only send a d
dimensional vector, the product of the inverse of local Hessian and the local gradient. Hence, in
this way, we save O(d) bits of communication per iteration. Furthermore, in Section 4.5, we argue
that, in order to cut down further communication, the worker machines can even compress the local
Hessian inverse and gradient product, using a δ-approximate compressor.

For Byzantine resilience, COMRADE employs a simple thresholding policy on the norms of
the local Hessian inverse and local gradient product to discard β > α fraction of workers having
largest norm values. Since the norm of the Hessian-inverse and gradient product determines the
amount of movement for Newton-type algorithms, this norm corresponds to a natural metric for
identifying and filtering out Byzantine workers.

We prove the linear-quadratic rate of convergence of our proposed algorithm for strongly
convex loss functions. In particular, suppose each worker machines contain s data points; and let
∆t = wt − w∗, where wt is the t-th iterate of COMRADE, and w∗ is the optimal model we want to
estimate. In 4 (Theorem 2), we show that

‖∆t+1‖ ≤ max{Ψ(1)
t ‖∆t‖,Ψ(2)

t ‖∆t‖2}+ (Ψ
(3)
t + α)

√
1

s
,

where {Ψ(i)
t }3

i=1 are quantities dependent on several problem parameters. Notice that the above
implies a quadratic rate of convergence when ‖∆t‖ ≥ Ψ

(1)
t /Ψ

(2)
t . Subsequently, when ‖∆t‖

becomes sufficiently small, the above condition is violated and the convergence slows down to a
linear rate. The error-floor, which is O(1/

√
s) comes from the Byzantine resilience subroutine in

conjunction with the simultaneous estimation of Hessian and gradient.

Cubic Regularized Newton Method

In Chapter 5, we address the problem of saddle point avoidance in non-convex optimization in a
Federated Learning (FL) framework. In order to fit complex machine learning models, one often
requires to find local minima of a non-convex loss f(.), instead of critical points only, which may
include several saddle points. Training deep neural networks and other high-capacity learning
architectures [35, 36] are some of the examples where finding local minima is crucial. [36, 37]
shows that the stationary points of these problems are in fact saddle points and far away from any
local minimum, and hence designing efficient algorithm that escapes saddle points is of interest.
Moreover, in [38, 39], it is argued that saddle points can lead to highly sub-optimal solutions in
many problems of interest. This issue is amplified in high dimension as shown in [40], and becomes
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the main bottleneck in training deep neural nets. Furthermore, a line of recent work [39, 41, 42],
shows that for many non-convex problems, it is sufficient to find a local minimum.

The issue of saddle point avoidance becomes non-trivial in the presence of Byzantine workers.
Since we do not assume anything on the behavior of the Byzantine workers, it is certainly conceivable
that by appropriately modifying their messages to the center, they can create fake local minima that
are close to the saddle point of the loss function f(.), and these are far away from the true local
minima of f(.). This is popularly known as the saddle-point attack (see [31]), and it can arbitrarily
destroy the performance of any non-robust learning algorithm.

In Chapter 5, we propose a communication efficient distributed optimization algorithm that
escapes the saddle points as well as resists the Byzantine attacks simultaneously. In particular, we
consider a variation of the famous cubic-regularized Newton algorithm of Nesterov and Polyak [43].
Being a second order algorithm, it converges very fast compared to its first order counterparts (see
[43]). Also, in [43–45], it is shown that cubic-regularized Newton can efficiently escape the saddle
points of a non-convex function, by pushing the Hessian towards a positive semi-definite matrix.

A point w is said to satisfy the ε-second order stationary condition of the loss function f(.) if,

‖∇f(w)‖ ≤ ε λmin(∇2f(w)) ≥ −
√
ε.

∇f(w) denotes the gradient of the function and λmin(∇2f(w)) denotes the minimum eigenvalue
of the Hessian of the function. Hence, under the assumption (which is standard in the literature,
see [31, 46]) that all saddle points are strict (i.e., λmin(∇2f(ws)) < 0 for any saddle point ws), all
second order stationary points (with ε = 0) are local minima, and hence converging to a stationary
point is equivalent to converging to a local minima.

We consider a distributed variant of the cubic regularized Newton algorithm. In this scheme,
the center machine asks the workers to solve an auxiliary function and return the result. The center
machine aggregates the solution of the worker machines and takes a descent step. Furthermore,
we use a simple norm-based thresholding approach to robustify the distributed cubic-regularized
Newton method. We prove that the algorithm convergence at a rate of 1

T 2/3 , which is faster than the
first order methods (which converge at 1/

√
T rate, see [31]). Hence, the number of iterations (and

hence the communication cost) required to achieve a target accuracy is much fewer than the first
order methods. Experimental results on LIBSVM ([47]) datasets validate our theoretical findings.

1.2 Learning in Supervised Batch Setup
In the batch setup, the learner has data and labels to begin with (standard supervised learning
framework). Here, we work with a computationally efficient and statistically sound Alternating
Minimization (AM) algorithm, typically used to solve non-convex problems. In particular, we apply
AM to a non-convex problem, namely max-affine regression and obtain a near-optimal statistical
rate. Max-affine regression refers to a model where the unknown regression function is modeled as
a maximum of k unknown affine functions for a fixed k ≥ 1. This generalizes linear regression and
(real) phase retrieval, and is closely related to convex regression. Working within a non-asymptotic
framework, we study this problem in the high-dimensional setting assuming that k is a fixed constant,
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and focus on the estimation of the unknown coefficients of the affine functions underlying the model.
In Chapters 6 and 7, we analyze max-affine regression under 2 designs respectively: Gaussian and
Small-ball.

Formally, max-affine regression implies the following regression model:

Y = max
1≤j≤k

(
〈X, θ∗j 〉+ b∗j

)
+ ε (1.2)

where Y is a univariate response, X is a d-dimensional vector of covariates and ε models zero-mean
noise that is independent of X . We assume that k ≥ 1 is a known integer and study the problem
of estimating the unknown parameters θ∗1, . . . , θ

∗
k ∈ Rd and b∗1, . . . , b

∗
k ∈ R from independent

observations (x1, y1), . . . , (xn, yn) drawn according to the model (1.2).
Immediately, one may observe that when k = 1, equation (1.2) corresponds to the classical

linear regression model. Also, when k = 2, the intercepts b∗2 = b∗1 = 0, and θ∗2 = −θ∗1 = θ∗, we
have

Y = |〈X, θ∗〉|+ ε. (1.3)

The problem of recovering θ∗ from observations drawn according to the above model is known
as (real) phase retrieval—variants of which arise in a diverse array of science and engineering
applications [48–51]. Furthermore, since x 7→ max1≤j≤k(〈x, θ∗j 〉+ b∗j) is always a convex function,
the model (1.2) serves as a parametric approximation to the non-parametric convex regression
model

Y = φ∗(X) + ε, (1.4)

where φ∗ : Rd → R is an unknown convex function. It is well known that convex regression suffers
from the curse of dimensionality (see, e.g., [52–54]). Hence, one would need to work with more
structured sub-classes of convex functions. Since convex functions can be approximated to arbitrary
accuracy by maxima of affine functions, it is reasonable to enforce a regularization on the problem
by considering only those convex functions that can be written as a maximum of a fixed number of
affine functions.

With the augmented notation β∗j : = (θ∗j , b
∗
j) ∈ Rd+1 for j = 1, . . . , k and (ξi, yi) for i =

1, . . . , n, where ξi : = (xi, 1) ∈ Rd+1, we minimize the least squares objective

(β̂
(ls)
1 , . . . , β̂

(ls)
k ) ∈ argmin

β1,...,βk∈Rd+1

n∑
i=1

(
yi − max

1≤j≤k
〈ξi, βj〉

)2

. (1.5)

In order to do this, we use alternating minimization (AM) algorithm of [55], which is an iterative
algorithm for estimating the parameters β∗1 , . . . , β

∗
k . In the t-th iteration of the algorithm, the current

estimates β(t)
1 , . . . , β

(t)
k are used to partition the observation indices 1, . . . , n into k sets S(t)

1 , . . . , S
(t)
k

such that j ∈ argmaxu∈[k]〈ξi, β
(t)
u 〉 for every i ∈ S(t)

j . For each 1 ≤ j ≤ k, the next estimate β(t+1)
j

is then obtained by performing a least squares fit (or equivalently, linear regression) to the data
(ξi, yi), i ∈ S(t)

j . Figure 1.2 pictorially represents the working of the AM algorithm.
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Observations

Linear Regression Linear Regression Linear Regression 

Figure 1.2: Alternating Minimization in action: in the first phase, it disambiguates the max index
and partitions the observations in k buckets. Within each bucket, AM solves a linear regression
problem to obtain the next iterate.

We show (in Chapter 6) that for each ε > 0, the parameter estimates β(t)
1 , . . . , β

(t)
k returned by

the AM algorithm at iteration t satisfy, with high probability, the inequality

k∑
j=1

‖β(t)
j − β∗j ‖2 ≤ ε+ C(β∗1 , . . . , β

∗
k)
σ2kd

n
log(kd) log

( n
kd

)
(1.6)

for every t ≥ log4/3

(∑k
j=1 ‖β

(0)
j −β

∗
j ‖2

ε

)
, provided that the sample size n is sufficiently large and that

the initial estimates satisfy the condition

min
c>0

max
1≤j≤k

‖cβ(0)
j − β∗j ‖2 ≤ 1

k
c(β∗1 , . . . , β

∗
k). (1.7)

HereC(β∗1 , . . . , β
∗
k) and c(β∗1 , . . . , β

∗
k) are constants depending only on the true parameters β∗1 , . . . , β

∗
k .

In Chapter 7, we relax the assumption of Gaussian covariates and show that a similar phe-
nomenon occurs under significantly weaker statistical assumptions. In particular, we allow the
distribution of the covariates to come from the larger class of sub-Gaussian distributions that satisfy
a small-ball condition. In addition, we also consider the scenario of universal parameter estimation,
meaning that our guarantees hold uniformly over all β∗1 , . . . , β

∗
k . This allows the parameters to be

chosen with knowledge of the realized covariates, a robust setting that is commonly studied in signal
processing applications like phase retrieval [56]. Our covariate assumption relies on the following
definition.
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Definition 2. (Small-ball) A distribution PX satisfies a (ζ, cs)-small-ball property if, for X ∼ PX
and each δ > 0, we have

sup
u∈Sd−1, w∈R

Pr
{

(〈X, u〉+ w)2 ≤ δ
}
≤ (csδ)

ζ . (1.8)

The small-ball properties of various classes of distributions have been studied extensively in the
probability literature [57, 58], and many natural distributions possess this property provided they
are not too “peaky”. We now present our assumption on the covariate distribution;

Assumption 1. The covariates are drawn from a distribution, PX , which is isotropic, η-sub-
Gaussian, and satisfies a (ζ, cs) small-ball condition.

We now provide a few examples, where covariates satisfy the above assumption: (a) Unif[−
√

3,
√

3],
(b) the standard Gaussian and (c) any random variable with density f(x) ∝ e−‖x‖

c for a positive
constant c. In Chapter 7, we discuss these examples in detail and obtain the parameters (ζ, cs) and η.

Applying the same AM algorithm, we obtain guarantees similar to that of Chapter 6. As a
special instance, for phase retrieval problem, we obtain some new results. To the best of our
knowledge, all previous results on the AM algorithm for phase retrieval [59, 60] only held under the
assumptions of Gaussian covariates and noiseless observations, and/or required resampling of the
measurements [61]. Ours is thus the first work to handle non-Gaussian covariates in the presence of
noise, while also analyzing the algorithm without resampling.

1.3 Efficient and Adaptive Algorithms for Bandit and
Reinforcement Learning (RL)

In the online learning framework, data is presented to the user in a streaming fashion, and the job
of the learner is to balance between exploration and exploitation judiciously to enforce statistical
learning. In this part of the thesis (Chapters 8-9), we provide statistically tractable and efficient
algorithms for online learning. In particular, we are interested in the question of model selection
or adaptation in online learning. Model selection has been studied in supervised offline setup to
a great extent (via popular methods like k-fold cross validation, which has theoretical guarantees
as well as practical effectiveness). However, in online learning, the question of model selection
has received little interest. Our main contribution in this part of the thesis is to propose an efficient
and provable algorithm that adapts to the problem complexity automatically. We study the model
selection problem in 3 settings: stochastic linear bandits, contextual bandits (beyond linear structure)
and finally Reinforcement learning with linear structure.

In Chapter 8, we consider the standard setup of stochastic linear bandits, where, at each round,
having observed a context vector, the learner chooses an action and observes a noisy linearly
parameterized reward. We propose a provable, efficient algorithm that captures the complexity of
the problem and automatically adapts to it. Via regret analysis, we show optimality of our scheme,
showing that the cost of adaptation is a small additive constant. In Chapter 9, we extend these to the
problem of generic contextual bandit beyond linear structure.
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Model Selection

Model Selection for Bandits(or Reinforcement) Learning, refers to choosing the appropriate hy-
pothesis class, to model the mapping from arms (actions) to expected rewards. Model selection
plays an important role in applications such as personalized recommendations, (see the motivating
example in Chapter 8). Moreover, in Reinforcement Learning with huge state and action spaces, it
is empirically observed that exploring only a small subset of the state and action spaces are often
sufficient to obtain high rewards. Hence, in these applications one needs an adaptive algorithm that
identifies the implicit structure of the problem and explores or exploits judiciously.

Formally, a family of nested hypothesis classesHf , f ∈ F needs to be specified, where each
class posits a plausible model for mapping arms (or actions) to expected rewards. The true model is
assumed to be contained in the family F which is totally ordered, where if f1 ≤ f2, thenHf1 ⊆ Hf2 .
Model selection guarantees then refers to algorithms whose regret scales in the complexity of the
smallest hypothesis class containing the true model, even though the algorithm was not aware
apriori.

1.3.1 Adaptation in Stochastic Linear Bandits
We consider the problem of model selection for two popular stochastic linear bandit settings, and
propose algorithms that adapts to the unknown problem complexity. In the first setting, we consider
the K armed mixture bandits, where the mean reward of arm i ∈ [K]2, is

µi + 〈αi,t, θ∗〉

where αi,t ∈ Rd is the known context vector of arm i at time t, and µi ∈ R, θ∗ ∈ Rd are unknown
and needs to be estimated. This setting also contains the standard Multi-Armed Bandit (MAB)
problem [62, 63] when θ∗ = 0.

Popular linear bandit algorithms, like LinUCB, OFUL (see [64–66]) handle the case with no
bias (µi = 0), while OSOM [67], the recent improvement can handle arm-bias. Implicitly, all the
above algorithms assume an upper bound on the norm of ‖θ∗‖ ≤ L, which is supplied as an input.
Crucially however, the regret guarantees scale linearly in the upper bound L. In contrast, we choose
‖θ∗‖ as the problem complexity and consider a sequence of nested hypothesis classes, each positing
a different upper bound on ‖θ∗‖. We propose Adaptive Linear Bandit (ALB), a novel phase based
algorithm, that, without any upper bound on the norm ‖θ∗‖, adapts to the true complexity of the
problem instance, and achieves a regret scaling linearly in the true norm ‖θ∗‖. The details of this
algorithm is given in Figure 1.3. It consistently estimates upper-bounds on parameter norm over a
confidence ellipsoid given by [67], and we show that the size of this confidence set shrinks with
time and as a result, the norm estimates converge to the true norm estimates.

As a corollary, our algorithm’s performance matches the minimax regret of simple MAB when
θ∗ = 0, even though the algorithm did not apriori know that θ∗ = 0. Intuitively, if θ∗ is very
small, the contribution of the contextual term will be low, and on the other hand, a large non zero

2By [r], we denote the set of positive integers {1, 2, . . . , r}.



CHAPTER 1. INTRODUCTION 12

Figure 1.3: Model selection with norm refinement. At the end of each epoch, an over-estimate of
norm is computed, and with shrinking confidence set, these norm estimates converge to the true
norm of θ∗.

θ∗, the contextual part dominates. Hence, ‖θ∗‖ can be chosen as a natural complexity parameter.
In Chapter 8, we also provide motivations and examples behind the choice of ‖θ∗‖ as a problem
complexity parameter, as it balances between the standard MAB and the linear bandit problems.

We show that ALB achieves the regret

R(T ) = Õ(‖θ∗‖
√
T ),

where ‖θ∗‖ is apriori unknown, and T is the duration of the interaction between the player and
the environment, known as the horizon. As a corollary, when θ∗ = 0, ALB recovers the minimax
regret for the simple bandit algorithm without such knowledge of θ∗. ALB is the first algorithm that
uses parameter norm as model section criteria for linear bandits. Prior state of art algorithms [67]
achieve a regret of Õ(L

√
T ), where L is the upper bound on ‖θ∗‖, fed as an input to the problem.

In the second setting, we consider is the standard linear stochastic bandit [66] with possibly
an infinite number of arms, where the mean reward of any arm x ∈ Rd (arms are vectors in this
case) given by 〈x, θ∗〉, where θ∗ ∈ Rd is unknown. For this setting, we consider model selection
from among a total of d different hypothesis classes, with each class positing a different cardinality
for the support of θ∗. The sparsity of θ∗, denoted by d∗ ≤ d, is unknown to the algorithm, and we
define d∗ as the problem complexity We exhibit a novel algorithm, where the regret scales linearly
in the unknown cardinality of the support of θ∗. The regret scaling of our algorithm matches that of
an oracle that has knowledge of the optimal support cardinality [68],[69], thereby achieving model
selection guarantees. Our algorithm is the first known algorithm to obtain regret scaling matching
that of an oracle that has knowledge of the true support. This is in contrast to standard linear bandit
algorithms such as [66], where the regret scales linearly in d. We also extend this methodology to
the case when the number of arms is finite (see [70]) and obtain similar regret rates matching the
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oracle. We further verify through synthetic and real-data experiments that the performance gains
are fundamental and not artifacts of mathematical bounds. In particular, we show 1.5− 3x drop in
cumulative regret over non-adaptive algorithms.

1.3.2 Adaption for Contextual Bandits Beyond Linear Structure
Here, we focus on the main contribution of the paper—a provable model selection guarantee for
the (generic) stochastic contextual bandit problem. The interaction between the learner and the
environment can be modelled as following:

Let A be the set of K actions, and let X be the set of d dimensional contexts. At time t,
Nature picks (xt, rt) in an i.i.d fashion, where xt ∈ X and a context dependent rt ∈ [0, 1]K . Upon
observing the context, the learner takes action at ∈ A, and obtains the reward of rt(at). We restrict
to the class of realizable rewards defined as:

Assumption 2. (Realizibility:) There exists a predictor f ∗ ∈ F , such that E[rt(a)|x] = f ∗(x, a),
for all x and a.

Note that the realizibility assumption is standard in the literature ([70, 71].
In the contextual bandit literature ([71, 72]) it is generally assumed that the true regression

function f ∗ is unknown, but we know the function class F where it belongs. Hence, we pay some
price (denoted by the regret) for this. To set up notation, for any f ∈ F , we define a policy induced
by the function, πf (x) = argmina∈Af(x, a). So, we need to compete with the policy induced by
the true regressor πf∗ . We define the regret over T rounds as the following:

R(T ) =
T∑
t=1

[rt(πf∗(xt))− rt(at)].

However, in contrast to the standard setting, in the model selection framework does not assume
the knowledge of F . Instead, we are given a nested class of M function classes, F1 ⊂ F2 ⊂ . . . ⊂
FM . The smallest function class where the true regressor lies is denoted by Fd∗ , where d∗ ∈ [M ].
Hence, the regret of the contextual bandit algorithm should depend on Fd∗ (and not the largest class
FM). However, we do not know d∗, and our goal is to propose adaptive algorithms such that the
regret depends on the actual problem complexity Fd∗ .

In order to achieve this, we propose an algorithm, namely Adaptive Contextual Bandits
(ACB). Our algorithm selects the correct model via successive refinements over multiple (doubling)
epochs. We use the FALCON algorithm of [71], and add a model selection phase at the beginning
of each epoch. In other words, over multiple epochs, we successively refine our estimates of the
proper model class where the true regressor function f ∗ lies. We show that ACB selects the correct
model class with high probability and attains a regret of

R(T ) .
√
KT log(|Fd∗|T/δ) + minor-term,

where K is the number of actions, and |.| denotes the cardinality. Although the above expression
makes sense only with finite function classes, a simple extension (see Chapter 9) to infinite function
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classes is possible. Note that, this regret scaling is optimal (see [71]). The cost of model selection
therefore is a minor additive term in the regret expression.

1.3.3 Model Selection for Reinforcement Learning
We study the problem of model selection in Reinforcement Learning with function approximation.
We restrict our attention to the framework of model based episodic linear MDP. In particular, similar
to Chapter 8, we study both the norm and sparsity/dimension of the problem parameter as problem
complexity and obtain model selection guarantees, meaning that the performance (regret) of our
algorithm depends on the complexity of the problem instance, as compared to some predefined
upper-bound on the complexity parameters.

In this chapter, we consider an heterogeneous, episodic Markov decision process denoted by
a tuple M(S,A, H, {Ph}Hh=1, {rh}Hh=1), where S is the state space, A is the action space, H is the
length of each episode, Ph is the transition probability at step h such that Ph(·|s, a) is the distribution
over states provided action a is taken for state s at step h, and rh : S×A → [0, 1] is the deterministic
reward function at step h. A policy π is is collection of H functions {πh : S → A}h∈[H], where
each of them maps a state s to an action a.

The RL agent interacts with the environment for K episodes to learn the unknown transition
kernels {Ph} and hence to improve its policy. For each k ≥ 1, the environment picks a starting state
sk1, and the agent chooses a policy πk that will be followed through the whole k-th episode. The
objective is to design a learning algorithm that constructs a sequence {πk} that minimizes the total
regret

R(K) =
K∑
k=1

[
V ∗1 (sk1)− V πk

1 (sk1)
]
.

where V1(.) is the value function at the beginning of each episode, and V ∗1 (.) is the optimal
value function. In this chapter, we consider a special class of MDPs called linear kernel MDPs
(a.k.a., linear mixture MDPs) [73]. Roughly speaking, it means that the transition kernel {Ph} can
be represented as a linear function of a given feature map φ : S ×A× S → Rd. Formally, we have
the following definition.

Definition 3 (Linear kernel MDP). M
(
S,A, H, {Ph}Hh=1, {rh}Hh=1

)
is called an heterogeneous,

episodicB-bounded linear kernel MDP if there exists a known feature mapping φ : S×A×S → Rd

and an unknown vector θh ∈ Rd with ‖θh‖2 ≤ B such that
(i) For any state-action-state triplet (s, a, s′) ∈ S × A × S and step h ∈ [H], P(s′|s, a) =

〈φ(s′ | s, a), θh〉.
(ii) For any bounded function V : S → [0, 1] and any tuple (s, a) ∈ S × A, we have

‖φV (s, a)‖2 ≤ 1, where φV (s, a) :=
∑

s′∈S φ(s′|s, a)V (s′).

In the learning problem, the vectors {θ∗h}Hh=1 are unknown to the learner. The episodic MDP is
parameterized by Θ∗ = {θ∗h}Hh=1 and we denote the MDP by MΘ∗ . In what follows, we define two
natural complexity measure of MΘ∗: (a) ‖θ∗h‖ for all h ∈ [H], and (b) ‖θ∗h‖0 for all h ∈ [H].
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Similar to Chapter 8, we propose algorithms that use successive refinement strategy to estimate
the norm and sparsity of {θ∗h}Hh=1, and adapts to it. As a result, we obtain regret guarantees that
depend on the problem complexity parameter alone. We characterize the cost of model selection,
and in both cases we obtain a regret of

R(K) ≤ O(
√
K) + minor-term

with high probability. We observe that R(K) retains the
√
K regret, which is optimal (see [74]).

However, the cost of model selection is the minor term added to R(K). Note that this term is K
independent, and hence can be treated as constant. A notable related work, which considers similar
model selection problem is [75]. However, the paper obtains a sub-optimal rate of O(K2/3). Our
main contribution is keeping the optimal rate of O(

√
K), while pushing the cost of model selection

in an additive constant independent of K.



In this part of the thesis, we study some problems in Federated Learning (FL). In particular
we address (a) data heterogeneity, (b) communication bottleneck and (c) Byzantine
robustness.

• Chapter 2: We study the FL framework where users are partitioned into clusters, and
our proposed algorithm learn the cluster identities and the optimal model for each
cluster simultaneously.

• Chapter 3: We address the communication bottleneck and robustness issues via propos-
ing first order gradient based algorithms.

• Chapter 4: We propose a second order distributed Newton type algorithm to address
the communication bottleneck and furthermore, make it Byzantine resilient.

• Chapter 5: We target the saddle point avoidance problem in non-convex optimization
via proposing an efficient and robust cubic-regularized Newton method.

Part I

Learning in Federated Framework

16



17

Chapter 2

Clustered Federated Learning

We address the problem of Federated Learning (FL) where users are distributed and partitioned
into clusters. This setup captures settings where different groups of users have their own objectives
(learning tasks) but by aggregating their data with others in the same cluster (same learning task),
they can leverage the strength in numbers in order to perform more efficient Federated Learning.
We propose a new framework dubbed the Iterative Federated Clustering Algorithm (IFCA), which
alternately estimates the cluster identities of the users and optimizes model parameters for the user
clusters via gradient descent. We analyze the convergence rate of this algorithm first in a linear
model with squared loss and then for generic strongly convex and smooth loss functions. We show
that in both settings, with good initialization, IFCA converges at an exponential rate, and discuss
the optimality of the statistical error rate. When the clustering structure is ambiguous, we propose
to train the models by combining IFCA with the weight sharing technique in multi-task learning.
In the experiments, we show that our algorithm can succeed even if we relax the requirements
on initialization with random initialization and multiple restarts. We also present experimental
results showing that our algorithm is efficient in non-convex problems such as neural networks. We
demonstrate the benefits of IFCA over the baselines on several clustered FL benchmarks.

2.1 Introduction
In this chapter, we study one of the formulations of FL with non-i.i.d. data, i.e., the clustered
Federated Learning [7, 9]. We assume that the users are partitioned into different clusters; for
example, the clusters may represent groups of users interested in politics, sports, etc, and our goal
is to train models for every cluster of users. We note that cluster structure is very common in
applications such as recommender systems [10, 11]. The main challenge of our problem is that
the cluster identities of the users are unknown, and we have to simultaneously solve two problems:
identifying the cluster membership of each user and optimizing each of the cluster models in a
distributed setting. In order to achieve this goal, we propose a framework and analyze a distributed
method, named the Iterative Federated Clustering Algorithm (IFCA) for clustered FL. The basic
idea of our algorithm is a strategy that alternates between estimating the cluster identities and
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minimizing the loss functions, and thus can be seen as an Alternating Minimization algorithm in
a distributed setting. One of the major advantages of our algorithm is that it does not require a
centralized clustering algorithm, and thus significantly reduces the computational cost at the center
machine. When the cluster structure is ambiguous, we propose to leverage the weight sharing
technique in multi-task learning [12] and combine it with IFCA. More specifically, we learn the
shared representation layers using data from all the users, and use IFCA to train separate final layers
for each individual cluster.

We also present experimental evidence of its performance in practical settings: We show that
our algorithm can succeed even if we relax the initialization requirements with random initialization
and multiple restarts; and we also present results showing that our algorithm is efficient on neural
networks. We demonstrate the effectiveness of IFCA on two clustered FL benchmarks created based
on the MNIST and CIFAR-10 datasets, respectively, as well as the Federated EMNIST dataset [76]
which is a more realistic benchmark for FL and has ambiguous cluster structure.

Here, we emphasize that clustered Federated Learning is not the only approach to modeling
the non-i.i.d. nature of the problem, and different algorithms may be more suitable for different
application scenarios; see Section 2.2 for more discussions. That said, our approach to modeling
and the resulting IFCA framework is certainly an important and relatively unexplored direction in
Federated Learning. We would also like to note that our theoretical analysis makes contributions to
statistical estimation problems with latent variables in distributed settings. In fact, both mixture of
regressions [77] and mixture of classifiers [78] can be considered as special cases of our problem in
the centralized setting. We discuss more about these algorithms in Section 2.2.

Notation: We use [r] to denote the set of integers {1, 2, . . . , r}. We use ‖ · ‖ to denote the `2

norm of vectors. We use x & y if there exists a sufficiently large constant c > 0 such that x ≥ cy,
and define x . y similarly. We use poly(m) to denote a polynomial in m with arbitrarily large
constant degree.

2.2 Related work
During the development of our clustered FL framework, we became aware of a concurrent and
independent work by Mansour et al. [9], in which the authors propose clustered FL as one of
the formulations for personalization in Federated Learning. The algorithms proposed here and
by Mansour et al. are similar. However, we make an important contribution by establishing the
convergence rate of the population loss function under good initialization, which simultaneously
guarantees both convergence of the training loss and generalization to test data; whereas in [9], the
authors provided only generalization guarantees. We discuss other related work in the following.

Federated Learning and non-i.i.d. data: Learning with a distributed computing framework
has been studied extensively in various settings [79–81]. As mentioned in Section 2.1, Federated
Learning [1–3, 82] is one of the modern distributed learning frameworks that aims to better utilize
the data and computing power on edge devices. A central problem in FL is that the data on
the users’ personal devices are usually non-i.i.d. Several formulations and solutions have been
proposed to tackle this problem. A line of research focuses on learning a single global model from
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non-i.i.d. data [83–88]. Other lines of research focus more on learning personalized models [6, 7,
89]. In particular, the MOCHA algorithm [6] considers a multi-task learning setting and forms a
deterministic optimization problem with the correlation matrix of the users being a regularization
term. Our work differs from MOCHA since we consider a statistical setting with cluster structure.
Another approach is to formulate Federated Learning with non-i.i.d. data as a meta learning
problem [8, 89, 90]. In this setup, the objective is to first obtain a single global model, and then
each device fine-tunes the model using its local data. The underlying assumption of this formulation
is that the data distributions among different users are similar, and the global model can serve as a
good initialization. The formulation of clustered FL has been considered in two recent works [7,
32]. Both of the two works use centralized clustering algorithm such as K-means, in which the
center machine has to identify the cluster identities of all the users, leading to high computational
cost at the center. As a result, these algorithms may not be suitable for large models such as deep
neural networks or applications with a large number of users. In contrast, our algorithm uses a
decentralized approach to identify the cluster identities and thus is more suitable for large-scale
applications.

Latent variable problems: As mentioned in Section 2.1, our formulation can be considered
as a statistical estimation problem with latent variables in a distributed setting, and the latent
variables are the cluster identities. Latent variable problem is a classical topic in statistics and
non-convex optimization; examples include Gaussian mixture models (GMM) [91, 92], mixture of
linear regressions [77, 93, 94], and phase retrieval [95, 96]. Expectation Maximization (EM) and
Alternating Minimization (AM) are two popular approaches to solving these problems. Despite the
wide applications, their convergence analyses in the finite sample setting are known to be hard, due
to the non-convexity nature of their optimization landscape. In recent years, some progress has been
made towards understanding the convergence of EM and AM in the centralized setting [61, 97–100].
For example, if started from a suitable point, they have fast convergence rate, and occasionally
they enjoy super-linear speed of convergence [91, 101]. Here, we provide new insights to these
algorithms in the FL setting.

2.3 Problem formulation
We begin with a standard statistical learning setting of empirical risk minimization (ERM). Our
goal is to learn parametric models by minimizing some loss functions defined by the data. We
consider a distributed learning setting where we have one center machine and m worker machines
(i.e., each worker machine corresponds to a user in the Federated Learning framework). The
center machine and worker machines can communicate with each other using some predefined
communication protocol. We assume that there are k different data distributions, D1, . . . ,Dk, and
that the m machines are partitioned into k disjoint clusters, S∗1 , . . . , S

∗
k . We assume no knowledge

of the cluster identity of each machine, i.e., the partition S∗1 , . . . , S
∗
k is not revealed to the learning

algorithm. We assume that every worker machine i ∈ S∗j contains n i.i.d. data points zi,1, . . . , zi,n

drawn from Dj , where each data point zi,j consists of a pair of feature and response denoted by
zi,` = (xi,`, yi,`).
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Figure 2.1: An overview of IFCA (model averaging). (a) The server broadcast models. (b) Worker
machines identify their cluster memberships and run local updates. (c) The worker machines send
back the local models to server. (d) Average the models within the same estimated cluster Sj .

Let f(w; z) : W → R be the loss function associated with data point z, where W ⊆ Rd is
the parameter space. In this paper, we chooseW = Rd. Our goal is to minimize the population
loss function F j(w) := Ez∼Dj [f(w; z)] for all j ∈ [k]. For the purpose of theoretical analysis in
Section 2.5, we focus on the strongly convex losses, in which case we can prove guarantees for
estimating the unique solution that minimizes each population loss function. In particular, we try to
find solutions {ŵj}kj=1 that are close to w∗j = argminw∈ΘF

j(w), j ∈ [k]. In our problem, since we
only have access to finite data, we take advantage of the empirical loss functions. In particular, let
Z ⊆ {zi,1, . . . , zi,n} be a subset of the data points on the i-th machine. We define the empirical loss
associated with Z as Fi(w;Z) = 1

|Z|
∑

z∈Z f(w; z). When it is clear from the context, we may also
use the shorthand notation Fi(w) to denote an empirical loss associated with some (or all) data on
the i-th worker.

2.4 Algorithm
In this section, we provide details of our algorithm. We name this scheme Iterative Federated
Clustering Algorithm (IFCA). The main idea is to alternatively minimize the loss functions while
estimating the cluster identities. We discuss two variations of IFCA, namely gradient averaging and
model averaging. The algorithm is formally presented in Algorithm 1 and illustrated in Figure 2.1.

The algorithm starts with k initial model parameters w(0)
j , j ∈ [k]. In the t-th iteration of IFCA,

the center machine selects a random subset of worker machines, Mt ⊆ [m], and broadcasts the
current model parameters {w(t)

j }kj=1 to the worker machines in Mt. Here, we call Mt the set of
participating devices. Recall that each worker machine is equipped with local empirical loss function
Fi(·). Using the received parameter estimates and Fi, the i-th worker machine (i ∈Mt) estimates

Workers Server ----------, I 
I I DD D I ◄ I 

I I Cluster est imate 
I I = j = argmin{Fi(w1 ), Fi(wz } I I 
I ■ w- = w j - yVFi(wj I • J 
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Algorithm 1: Iterative Federated Clustering Algorithm (IFCA)

1: Input: number of clusters k, step size γ, j ∈ [k], initialization w(0)
j , j ∈ [k]

number of parallel iterations T , number of local gradient steps τ (for model averaging).
2: for t = 0, 1, . . . , T − 1 do
3: center machine: broadcast w(t)

j , j ∈ [k]
4: Mt ← random subset of worker machines (participating devices)
5: for worker machine i ∈Mt in parallel do
6: cluster identity estimate ĵ = argminj∈[k]Fi(w

(t)
j )

7: define one-hot encoding vector si = {si,j}kj=1 with si,j = 1{j = ĵ}
8: option I (gradient averaging):
9: compute (stochastic) gradient: gi = ∇̂Fi(w(t)

ĵ
), send back si, gi to the center machine

10: option II (model averaging):
11: w̃i = LocalUpdate(w

(t)

ĵ
, γ, τ), send back si, w̃i to the center machine

12: end for
13: center machine:
14: option I (gradient averaging): w(t+1)

j = w
(t)
j −

γ
m

∑
i∈Mt

si,jgi, ∀ j ∈ [k]

15: option II (model averaging): w(t+1)
j =

∑
i∈Mt

si,jw̃i/
∑

i∈Mt
si,j , ∀ j ∈ [k]

16: end for
17: return w(T )

j , j ∈ [k]

LocalUpdate(w̃(0), γ, τ) at the i-th worker machine
18: for q = 0, . . . , τ − 1 do
19: (stochastic) gradient descent w̃(q+1) = w̃(q) − γ∇̂Fi(w̃(q))
20: end for
21: return w̃(τ)

its cluster identity via finding the model parameter with lowest loss, i.e., ĵ = argminj∈[k]Fi(w
(t)
j )

(ties can be broken arbitrarily). If we choose the option of gradient averaging, the worker machine
then computes a (stochastic) gradient of the local empirical loss Fi at w(t)

ĵ
, and sends its cluster

identity estimate and gradient back to the center machine. After receiving the gradients and cluster
identity estimates from all the participating worker machines, the center machine then collects
all the gradient updates from worker machines whose cluster identity estimates are the same and
conducts gradient descent update on the model parameter of the corresponding cluster. If we choose
the option of model averaging (similar to the Federated Averaging algorithm [3]), each participating
device needs to run τ steps of local (stochastic) gradient descent updates, get the updated model,
and send the new model and its cluster identity estimate to the center machine. The center machine
then averages the new models from the worker machines whose cluster identity estimates are the
same.
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2.4.1 Practical implementation of IFCA
We clarify a few issues regarding the practical implementation of IFCA. In some real-world
problems, the cluster structure may be ambiguous, which means that although the distributions of
data from different clusters are different, there exists some common properties of the data from all
the users that the model should leverage. For these problems, we propose to use the weight sharing
technique in multi-task learning [12] and combine it with IFCA. More specifically, when we train
neural network models, we can share the weights for the first a few layers among all the clusters so
that we can learn a good representation using all the available data, and then run IFCA algorithm
only on the last (or last few) layers to address the different distributions among different clusters.
Using the notation in Algorithm 1, we run IFCA on a subset of the coordinates of w(t)

j , and run
vanilla gradient averaging or Federated Averaging on the remaining coordinates. Another benefit of
this implementation is that we can reduce the communication cost: Instead of sending k models to
all the worker machines, the center machine only needs to send k different versions of a subset of
all the weights, and one single copy of the shared layers.

Another technique to reduce communication cost is that when the center machine observes
that the cluster identities of all the worker machines are stable, i.e., the estimates of their cluster
identities do not change for several parallel iterations, then the center machine can stop sending k
models to each worker machine, and instead, it can simply send the model corresponding to each
worker machine’s cluster identity estimate.

2.5 Theoretical guarantees
In this section, we present convergence guarantees of IFCA. In order to streamline our theoretical
analysis, we make several simplifications: we consider the IFCA with gradient averaging, and
assume that all the worker machines participate in every rounds of IFCA, i.e., Mt = [m] for all t. In
addition, we also use the re-sampling technique for the purpose of theoretical analysis. In particular,
suppose that we run a total of T parallel iterations. We partition the n data points on each machine
into 2T disjoint subsets, each with n′ = n

2T
data points. For the i-th machine, we denote the subsets

as Ẑ(0)
i , . . . , Ẑ

(T−1)
i and Z(0)

i , . . . , Z
(T−1)
i . In the t-th iteration, we use Ẑ(t)

i to estimate the cluster
identity, and use Z(t)

i to conduct gradient descent. As we can see, we use fresh data samples for
each iteration of the algorithm. Furthermore, in each iteration, we use different set of data points
for obtaining the cluster estimate and computing the gradient. This is done in order to remove the
inter-dependence between the cluster estimation and the gradient computation, and ensure that in
each iteration, we use fresh i.i.d. data that are independent of the current model parameter. We
would like to emphasize that re-sampling is a standard tool used in statistics [61, 98, 101–103], and
that it is for theoretical tractability only and is not required in practice as we show in Section 2.6.

Under these conditions, the update rule for the parameter vector of the j-th cluster can be written
as

S
(t)
j = {i ∈ [m] : j = argminj′∈[k]Fi(w

(t)
j′ ; Ẑ

(t)
i )}, w

(t+1)
j = w

(t)
j −

γ

m

∑
i∈S(t)

j

∇Fi(w(t)
j ;Z

(t)
i ),
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where S(t)
j denotes the set of worker machines whose cluster identity estimate is j in the t-th

iteration. In the following, we discuss the convergence guarantee of IFCA under two models: in
Section 2.5.1, we analyze the algorithm under a linear model with Gaussian features and squared
loss, and in Section 2.5.2, we analyze the algorithm under a more general setting of strongly convex
loss functions.

2.5.1 Linear models with squared loss
In this section, we analyze our algorithm in a concrete linear model. This model can be seen as a
warm-up example for more general problems with strongly convex loss functions that we discuss in
Section 2.5.2, as well as a distributed formulation of the widely studied mixture of linear regression
problem [98, 103]. We assume that the data on the worker machines in the j-th cluster are generated
in the following way: for i ∈ S∗j , the feature-response pair of the i-th worker machine machine
satisfies

yi,` = 〈xi,`, w∗j 〉+ εi,`,

where xi,` ∼ N (0, Id) and the additive noise εi,` ∼ N (0, σ2) is independent of xi,`. Furthermore,
we use the squared loss function f(w;x, y) = (y − 〈x,w〉)2. As we can see, this model is the
mixture of linear regression model in the distributed setting. We observe that under the above
setting, the parameters {w∗j}kj=1 are the minimizers of the population loss function F j(·).

We proceed to analyze our algorithm. We define pj := |S∗j |/m as the fraction of worker
machines belonging to the j-th cluster, and let p := min{p1, p2, . . . , pk}. We also define the
minimum separation ∆ as ∆ := minj 6=j′ ‖w∗j − w∗j′‖, and ρ := ∆2

σ2 as the signal-to-noise ratio.
Before we establish our convergence result, we state a few assumptions. Here, recall that n′ denotes
the number of data that each worker uses in each step.

Assumption 3. The initialization of parameters w(0)
j satisfy ‖w(0)

j − w∗j‖ ≤ 1
4
∆, ∀ j ∈ [k].

Assumption 4. Without loss of generality, we assume that maxj∈[k] ‖w∗j‖ . 1, and that σ . 1.

We also assume that n′ & (ρ+1
ρ

)2 logm, d & logm, p & logm
m

, pmn′ & d, and ∆ & σ
p

√
d
mn′

+

exp(−c( ρ
ρ+1

)2n′) for some universal constant c.

In Assumption 3, we assume that the initialization is close enough to w∗j . We note that this is a
standard assumption in the convergence analysis of mixture models [99, 104], due to the non-convex
optimization landscape of mixture model problems. In Assumption 4, we put mild assumptions on
n′, m, p, and d. The condition that pmn′ & d simply assumes that the total number of data that we
use in each iteration for each cluster is at least as large as the dimension of the parameter space.

The condition that ∆ & σ
p

√
d
mn′

+ exp(−c( ρ
ρ+1

)2n′) ensures that the iterates stay close to w∗j .
We first provide a single step analysis of our algorithm. We assume that at a certain iteration,

we obtain parameter vectors wj that are close to the ground truth parameters w∗j , and show that wj
converges to w∗j at an exponential rate with an error floor.
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Theorem 1. Consider the linear model and assume that Assumptions 3 and 4 hold. Suppose that in
a certain iteration of the IFCA algorithm we obtain parameter vectors wj with ‖wj − w∗j‖ ≤ 1

4
∆.

Let w+
j be iterate after this iteration. Then there exist universal constants c1, c2, c3, c4 > 0 such that

when we choose step size γ = c1/p, with probability at least 1− 1/poly(m), we have for all j ∈ [k],

‖w+
j − w∗j‖ ≤

1

2
‖wj − w∗j‖+ c2

σ

p

√
d

mn′
+ c3 exp

(
−c4(

ρ

ρ+ 1
)2n′

)
.

We prove Theorem 1 in Appendix 2.8. Here, we briefly summarize the proof idea. Using the
initialization condition, we show that the set {Sj}kj=1 has a significant overlap with {S∗j }kj=1. In the
overlapped set, we then argue that the gradient step provides a contraction and error floor due to
the basic properties of linear regression. We then bound the gradient norm of the miss-classified
machines and add them to the error floor. We complete the proof by combining the contributions of
properly classified and miss-classified worker machines. We can then iteratively apply Theorem 1
and obtain accuracy of the final solution ŵj in the following corollary.

Corollary 1. Consider the linear model and assume that Assumptions 3 and 4 hold. By choosing
step size γ = c1/p, with probability at least 1− log(∆/4ε)

poly(m)
, after T = log ∆

4ε
parallel iterations, we

have for all j ∈ [k], ‖ŵj − w∗j‖ ≤ ε, where ε = c5
σ
p

√
d
mn′

+ c6 exp(−c4( ρ
ρ+1

)2n′).

Let us examine the final accuracy. Since the number of data points on each worker machine n =
2n′T = 2n′ log(∆/4ε), we know that for the smallest cluster, there are a total of 2pmn′ log(∆/4ε)
data points. According to the minimax estimation rate of linear regression [13], we know that
even if we know the ground truth cluster identities, we cannot obtain an error rate better than
O(σ

√
d

pmn′ log(∆/4ε)
). Comparing this rate with our statistical accuracy ε, we can see that the first

term σ
p

√
d
mn′

in ε is equivalent to the minimax rate up to a logarithmic factor and a dependency on
p, and the second term in ε decays exponentially fast in n′, and therefore, our final statistical error
rate is near optimal.

2.5.2 Strongly convex loss functions
In this section, we study a more general scenario where the population loss functions of the k
clusters are strongly convex and smooth. In contrast to the previous section, our analysis do not
rely on any specific statistical model, and thus can be applied to more general machine learning
problems. We start with reviewing the standard definitions of strongly convex and smooth functions
F : Rd 7→ R.

Definition 4. F is λ-strongly convex if ∀w,w′, F (w′) ≥ F (w) + 〈∇F (w), w′−w〉+ λ
2
‖w′−w‖2.

Definition 5. F is L-smooth if ∀w,w′, ‖∇F (w)−∇F (w′)‖ ≤ L‖w − w′‖.

In this section, we assume that the population loss functions F j(w) are strongly convex and
smooth.
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Assumption 5. The population loss function F j(w) is λ-strongly convex and L-smooth, ∀j ∈ [k].

We note that we do not make any convexity or smoothness assumptions on the individual
loss function f(w; z). Instead, we make the following distributional assumptions on f(w; z) and
∇f(w; z).

Assumption 6. For every w and every j ∈ [k], the variance of f(w; z) is upper bounded by η2,
when z is sampled according to Dj , i.e., Ez∼Dj [(f(w; z)− F j(w))2] ≤ η2

Assumption 7. For every w and every j ∈ [k], the variance of ∇f(w; z) is upper bounded by v2,
when z is sampled according to Dj , i.e., Ez∼Dj [‖∇f(w; z)−∇F j(w)‖2

2] ≤ v2

Bounded variance of gradient is very common in analyzing SGD [105]. In this paper we use
loss function value to determine cluster identity, so we also need to have a probabilistic assumption
on f(w; z). We note that bounded variance is a relatively weak assumption on the tail behavior of
probability distributions. In addition to the assumptions above, we still use some definitions from
Section 2.5.1, i.e., ∆ := minj 6=j′ ‖w∗j − w∗j′‖, and p = minj∈[k] pj with pj = |S∗j |/m. We make the
following assumptions on the initialization, n′, p, and ∆.

Assumption 8. Without loss of generality, we assume that maxj∈[k] ‖w∗j‖ . 1. We also assume that

‖w(0)
j −w∗j‖ ≤ 1

4

√
λ
L

∆, ∀j ∈ [k], n′ & kη2

λ2∆4 , p & log(mn′)
m

, and that ∆ ≥ Õ(max{(n′)−1/5,m−1/6(n′)−1/3}).

Here, for simplicity, the Õ notation omits any logarithmic factors and quantities that do not
depend on m and n′. As we can see, again we need to assume good initialization, due to the nature
of the mixture model, and the assumptions that we impose on n′, p, and ∆ are relatively mild; in
particular, the assumption on ∆ ensures that the iterates stay close to an `2 ball around w∗j .

Theorem 2. Suppose Assumptions 5-8 hold. Choose step size γ = 1/L. Then, with probability at
least 1− δ, after T = 8L

pλ
log
(

∆
2ε

)
parallel iterations, we have for all j ∈ [k], ‖ŵj −w∗j‖ ≤ ε, where

ε .
vkL log(mn′)

p5/2λ2δ
√
mn′

+
η2L2k log(mn′)

p2λ4δ∆4n′
+ Õ(

1

n′
√
m

).

We prove Theorem 2 in the Appendix 2.9. Similar to Section 2.5.1, to prove this result, we first
prove a per-iteration contraction

‖w+
j − w∗j‖ ≤ (1− pλ

8L
)‖wj − w∗j‖+ Õ(

1√
mn′

+
1

n′
+

1

n′
√
m

), ∀j ∈ [k],

and then derive the convergence rate. To better interpret the result, we focus on the dependency
on m and n and treat other quantities as constants. Then, since n = 2n′T , we know that n and
n′ are of the same scale up to a logarithmic factor. Therefore, the final statistical error rate that
we obtain is ε = Õ( 1√

mn
+ 1

n
). As discussed in Section 2.5.1, 1√

mn
is the optimal rate even if we

know the cluster identities; thus our statistical rate is near optimal in the regime where n & m. In
comparison with the statistical rate in linear models Õ( 1√

mn
+ exp(−n)), we note that the major

difference is in the second term. The additional terms of the linear model and the strongly convex
case are exp(−n) and 1

n
, respectively. We note that this is due to different statistical assumptions:

in for the linear model, we assume Gaussian noise whereas here we only assume bounded variance.
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2.6 Experiments
In this section, we present our experimental results, which not only validate the theoretical claims in
Section 2.5, but also demonstrate that our algorithm can be efficiently applied beyond the regime we
discussed in the theory. We emphasize that we do not re-sample fresh data points at each iteration.
Furthermore, the requirement on the initialization can be relaxed. More specifically, for linear
models, we observe that random initialization with a few restarts is sufficient to ensure convergence
of Algorithm 1. In our experiments, we also show that our algorithm works efficiently for problems
with non-convex loss functions such as neural networks.

2.6.1 Synthetic data
We begin with evaluation of Algorithm 1 with gradient averaging (option I) on linear models with
squared loss, as described in Section 2.5.1. For all j ∈ [k], we first generate w∗j ∼ Ber(0.5)
coordinate-wise, and then rescale their `2 norm to R. This ensures that the separation between the
w∗j ’s is proportional to R in expectation, and thus, in this experiment, we use R to represent the
separation between the ground truth parameter vectors. Moreover, we simulate the scenario where
all the worker machines participate in all iterations, and all the clusters contain same number of
worker machines. For each trial of the experiment, we first generate the parameter vectors w∗j ’s,
fix them, and then randomly initialize w(0)

j according to an independent coordinate-wise Bernoulli
distribution. We then run Algorithm 1 for 300 iterations, with a constant step size. For k = 2 and
k = 4, we choose the step size in {0.01, 0.1, 1}, {0.5, 1.0, 2.0}, respectively. In order to determine
whether we successfully learn the model or not, we sweep over the aforementioned step sizes and
define the following distance metric: dist = 1

k

∑k
j=1 ‖ŵj − w∗j‖, where {ŵj}kj=1 are the parameter

estimates obtained from Algorithm 1. A trial is dubbed successful if for a fixed set of w∗j , among 10

random initialization of w(0)
j , at least in one scenario, we obtain dist ≤ 0.6σ.

In Fig. 2.2 (a-b), we plot the empirical success probability over 40 trials, with respect to the
separation parameter R. We set the problem parameters as (a) (m,n, d) = (100, 100, 1000) with
k = 2, and (b) (m,n, d) = (400, 100, 1000) with k = 4. As we can see, when R becomes larger,
i.e., the separation between parameters increases, and the problem becomes easier to solve, yielding
in a higher success probability. This validates our theoretical result that higher signal-to-noise ratio
produces smaller error floor. In Fig. 2.2 (c-d), we characterize the dependence on m and n, with
fixing R and d with (R, d) = (0.1, 1000) for (c) and (R, d) = (0.5, 1000) for (d). We observe that
when we increase m and/or n, the success probability improves. This validates our theoretical
finding that more data and/or more worker machines help improve the performance of the algorithm.

2.6.2 Rotated MNIST and CIFAR
We also create clustered FL datasets based on the MNIST [106] and CIFAR-10 [107] datasets. In
order to simulate an environment where the data on different worker machines are generated from
different distributions, we augment the datasets using rotation, and create the Rotated MNIST [108]
and Rotated CIFAR datasets. For Rotated MNIST, recall that the MNIST dataset has 60000

-
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Figure 2.2: Success probability with respect to: (a), (b) the separation scale R and the scale of
additive noise σ; (c), (d) the number of worker machines m and the sample size on each machine n.
In (a) and (b), we see that the success probability gets better with increasing R, i.e., more separation
between ground truth parameter vectors, and in (c) and (d), we note that the success probability
improves with an increase of mn, i.e., more data on each machine and/or more machines.

training images and 10000 test images with 10 classes. We first augment the dataset by applying
0, 90, 180, 270 degrees of rotation to the images, resulting in k = 4 clusters. For given m and n
satisfying mn = 60000k, we randomly partition the images into m worker machines so that each
machine holds n images with the same rotation. We also split the test data into mtest = 10000k/n
worker machines in the same way. The Rotated CIFAR dataset is also created in a similar way as
Rotated MNIST, with the main difference being that we create k = 2 clusters with 0 and 180 degrees
of rotation. We note that creating different tasks by manipulating standard datasets such as MNIST
and CIFAR-10 has been widely adopted in the continual learning research community [108–110].
For clustered FL, creating datasets using rotation helps us simulate a federated learning setup with
clear cluster structure.

For our MNIST experiments, we use the fully connected neural network with ReLU activations,

I
- a 
-+- a 
-+- a 
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Table 2.1: Test accuracies(%) ± std on Rotated MNIST (k = 4) and Rotated CIFAR (k = 2)

Rotated MNIST Rotated CIFAR
m, n 4800, 50 2400, 100 1200, 200 200, 500

IFCA (ours) 94.20 ± 0.03 95.05 ± 0.02 95.25 ± 0.40 81.51 ± 1.37
global model 86.74 ± 0.04 88.65 ± 0.08 89.73 ± 0.13 77.87 ± 0.39
local model 63.32 ± 0.02 73.66 ± 0.04 80.05 ± 0.02 33.97 ± 1.19

with a single hidden layer of size 200; and for our CIFAR experiments, we use a convolution neural
network model which consists of 2 convolutional layers followed by 2 fully connected layers, and
the images are preprocessed by standard data augmentation such as flipping and random cropping.

We compare our IFCA algorithm with two baseline algorithms, i.e., the global model, and
local model schemes. For IFCA, we use model averaging (option II in Algorithm 1). For MNIST
experiments, we use full worker machines participation (Mt = [m] for all t). For LocalUpdate
step in Algorithm 1, we choose τ = 10 and step size γ = 0.1. For CIFAR experiments, we
choose |Mt| = 0.1m, and apply step size decay 0.99, and we also set τ = 5 and batch size 50 for
LocalUpdate process, following prior works [1]. In the global model scheme, the algorithm tries
to learn single global model that can make predictions from all the distributions. The algorithm
does not consider cluster identities, so model averaging step in Algorithm 1 becomes w(t+1) =∑

i∈Mt
w̃i/|Mt|, i.e. averaged over parameters from all the participating machines. In the local

model scheme, the model in each node performs gradient descent only on local data available, and
model averaging is not performed.

For IFCA and the global model scheme, we perform inference in the following way. For every
test worker machine, we run inference on all learned models (k models for IFCA and one model for
global model scheme), and calculate the accuracy from the model that produces the smallest loss
value. For testing the local model baselines, the models are tested by measuring the accuracy on
the test data with the same distribution (i.e. those have the same rotation). We report the accuracy
averaged over all the models in worker machines. For all algorithms, we run experiment with 5
different random seeds and report the average and standard deviation.

Our experimental results are shown in Table 2.1. We can observe that our algorithm performs
better than the two baselines. As we run the IFCA algorithm, we observe that we can gradually
find the underlying cluster identities of the worker machines, and after the correct cluster is found,
each model is trained and tested using data with the same distribution, resulting in better accuracy.
The global model baseline performs worse than ours since it tries to fit all the data from different
distributions, and cannot provide personalized predictions. The local model baseline algorithm
overfits to the local data easily, leading to worse performance than ours.

2.6.3 Federated EMNIST
We provide additional experimental results on the Federated EMNIST (FEMNIST) [76], which is a
realistic FL dataset where the data points on every worker machine are the handwritten digits or
letters from a specific writer. Although the data distribution among all the users are similar, there
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might be ambiguous cluster structure since the writing styles of different people may be clustered.
We use the weight sharing technique mentioned in Section 2.4.1. We use a neural network with
two convolutional layers, with a max pooling layer after each convolutional layer, followed by
two fully connected layers. We share the weights of all the layers, except the last layer which is
trained by IFCA. We treat the number of clusters k as a hyper parameter and run the experiments
with different values of k. We compare IFCA with the global model and local model approaches,
as well as the one-shot centralized clustering algorithm in [32]. The test accuracies are shown in
Table 2.2, with mean and standard deviation computed over 5 independent runs. As we can see,
IFCA shows clear advantage over the global model and local model approaches. The results of
IFCA and the one-shot algorithm are similar. However, as we emphasized in Section 2.2, IFCA
does not run a centralized clustering procedure, and thus reduces the computational cost at the
center machine. As a final note, we observe that IFCA is robust to the choice of the number of
clusters k. The results of the algorithm with k = 2 and k = 3 are similar, and we notice that when
k > 3, IFCA automatically identifies 3 clusters, and the remaining clusters are empty. This indicates
the applicability of IFCA in real-world problems where the cluster structure is ambiguous and the
number of clusters is unknown.

Table 2.2: Test accuracies (%) ± std on FEMNIST

IFCA (k = 2) IFCA (k = 3) one-shot (k = 2) one-shot (k = 3) global local
87.99 ± 0.35 87.89 ± 0.52 87.41 ± 0.39 87.38 ± 0.37 84.45 ± 0.51 75.85 ± 0.72

2.7 Conclusion and Open Problems
In this paper, we address the clustered FL problem. We propose an iterative algorithm and obtain
convergence guarantees for strongly convex and smooth functions. In experiments, we achieve this
via random initialization with multiple restarts, and we show that our algorithm works efficiently
beyond the convex regime. An immediate future work is to extend the analysis to weakly convex
and non-convex functions. Also, the convergence guarantees are local, i.e., a good initialization is
required. Obtaining a provable initialization for the clustered FL is an interesting future direction.

Our formulation is one of the problem setups for personalized Federated Learning. We expect
that, overall our framework will better protect the users’ privacy in a Federated Learning system
while still provide personalized predictions. The reason is that our algorithm does not require the
users to send any of their own personal data to the central server, and the users can still learn a
personalized model using their on-device computing power. One potential risk is that our algorithm
still requires the users to send the estimates of their cluster identities to the central server. Thus
there might still be privacy concerns in this step. We suggest that before applying our algorithm, or
generally any FL algorithms, in a real-world system, we should first request the users’ consent.
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Appendix
In our proofs, we use c, c1, c2, . . . to denote positive universal constants, the value of which may
differ across instances. For a matrix A, we write ‖A‖op and ‖A‖F as the operator norm and
Frobenius norm, respectively. For a set S, we use S to denote the complement of the set.

2.8 Proof of Theorem 1
Since we only analyze a single iteration, for simplicity we drop the superscript that indicates the
iteration counter. Suppose that at a particular iteration, we have model parameters wj , j ∈ [k], for
the k clusters. We denote the estimation of the set of worker machines that belongs to the j-th
cluster by Sj , and recall that the true clusters are denoted by S∗j , j ∈ [k].

Probability of erroneous cluster identity estimation We begin with the analysis of the prob-
ability of incorrect cluster identity estimation. Suppose that a worker machine i belongs to S∗j .
We define the event E j,j

′

i as the event when the i-th machine is classified to the j′-th cluster, i.e.,
i ∈ Sj′ . Thus the event that worker i is correctly classified is E j,ji , and we use the shorthand notation
Ei := E j,ji . We now provide the following lemma that bounds the probability of E j,j

′

i for j′ 6= j.

Lemma 1. Suppose that worker machine i ∈ S∗j . Let ρ := ∆2

σ2 . Then there exist universal constants
c1 and c2 such that for any j′ 6= j,

P(E j,j
′

i ) ≤ c1 exp

(
−c2n

′(
ρ

ρ+ 1
)2

)
,

and by union bound

P(Ei) ≤ c1k exp

(
−c2n

′(
ρ

ρ+ 1
)2

)
.

We prove Lemma 1 in Appendix 2.8.1.
Now we proceed to analyze the gradient descent step. Without loss of generality, we only

analyze the first cluster. The update rule of w1 in this iteration can be written as

w+
1 = w1 −

γ

m

∑
i∈S1

∇Fi(w1;Zi),

where Zi is the set of the n′ data points that we use to compute gradient in this iteration on a
particular worker machine.

We use the shorthand notation Fi(w) := Fi(w;Zi), and note that Fi(w) can be written in the
matrix form as

Fi(w) =
1

n′
‖Yi −Xiw‖2,

where we have the feature matrix Xi ∈ Rn′×d and response vector Yi = Xiw
∗
1 + εi. According to

our model, all the entries of Xi are i.i.d. sampled according to N (0, 1), and εi ∼ N (0, σ2I).
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We first notice that

‖w+
1 − w∗1‖ = ‖w1 − w∗1 −

γ

m

∑
i∈S1∩S∗1

∇Fi(θ1)

︸ ︷︷ ︸
T1

− γ

m

∑
i∈S1∩S∗1

∇Fi(θ1)

︸ ︷︷ ︸
T2

‖ ≤ ‖T1‖+ ‖T2‖.

We control the two terms separately. Let us first focus on ‖T1‖.

Bound ‖T1‖ To simplify notation, we concatenate all the feature matrices and response vectors
of all the worker machines in S1 ∩ S∗1 and get the new feature matrix X ∈ RN×d, Y ∈ RN with
Y = Xw∗1 + ε, where N := n′|S1 ∩ S∗1 |. It is then easy to verify that

T1 = (I − 2γ

mn′
X>X)(w1 − w∗1) +

2γ

mn′
X>ε

= (I − 2γ

mn′
E[X>X])(w1 − w∗1) +

2γ

mn′
(E[X>X]−X>X)(w1 − w∗1) +

2γ

mn′
X>ε

= (1− 2γN

mn′
)(w1 − w∗1) +

2γ

mn′
(E[X>X]−X>X)(w1 − w∗1) +

2γ

mn′
X>ε.

Therefore

‖T1‖ ≤ (1− 2γN

mn′
)‖w1 − w∗1‖+

2γ

mn′
‖X>X − E[X>X]‖op‖w1 − w∗1‖+

2γ

mn′
‖X>ε‖. (2.1)

Thus in order to bound ‖T1‖, we need to analyze two terms, ‖X>X − E[X>X]‖op and ‖X>ε‖.
To bound ‖X>X − E[X>X]‖op, we first provide an analysis of N showing that it is large enough.
Using Lemma 1 in conjunction with Assumption 4, we see that the probability of correctly classify-
ing any worker machine i, given by P(Ei), satisfies P(Ei) ≥ 1

2
. Hence, we obtain

E[|S1 ∩ S∗1 |] ≥ E[
1

2
|S∗1 |] =

1

2
p1m,

where we use the fact that |S∗1 | = p1m. Since |S1 ∩ S∗1 | is a sum of Bernoulli random variables with
success probability at least 1

2
, we obtain

P
(
|S1 ∩ S∗1 | ≤

1

4
p1m

)
≤ P

(∣∣∣∣|S1 ∩ S∗1 | − E[|S1 ∩ S∗1 |]
∣∣∣∣ ≥ 1

4
p1m

)
≤ 2 exp(−cpm),

where p = min{p1, p2, . . . , pk}, and the second step follows from Hoeffding’s inequality. Hence,
we obtain |S1 ∩ S∗1 | ≥ 1

4
p1m with high probability, which yields

P(N ≥ 1

4
p1mn

′) ≥ 1− 2 exp(−cpm). (2.2)

By combining this fact with our assumption that pmn′ & d, we know thatN & d. Then, according to
the concentration of the covariance of Gaussian random vectors [13], we know that with probability
at least 1− 2 exp(−1

2
d),

‖X>X − E[X>X]‖op ≤ 6
√
dN . N. (2.3)

We now proceed to bound ‖X>ε‖. In particular, we use the following lemma.
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Lemma 2. Consider a random matrix X ∈ RN×d with i.i.d. entries sampled according to N (0, 1),
and ε ∈ RN be a random vector sampled according to N (0, σ2I), independently of X . Then we
have with probability at least 1− 2 exp(−c1 max{d,N}),

‖X‖op ≤ cmax{
√
d,
√
N},

and with probability at least 1− c2 exp(−c3 min{d,N}),

‖X>ε‖ ≤ c4σ
√
dN.

We prove Lemma 2 in Appendix 2.8.2. Now we can combine (2.1), (2.3), (2.2), and Lemma 2
and obtain with probability at least 1− c1 exp(−c2pm)− c3 exp(−c4d),

‖T1‖ ≤ (1− c5γp)‖w1 − w∗1‖+ c6γσ

√
d

mn′
. (2.4)

Since we assume that p & logm
m

and d & logm, the success probability can be simplified as
1− 1/poly(m).

Bound ‖T2‖ We first condition on S1. We have the following:

∇Fi(w1) =
2

n′
X>i (Yi −Xiw1).

For i ∈ S1 ∩ S∗j , with j 6= 1, we have Yi = Xiw
∗
j + εi, and so we obtain

n′∇Fi(w1) = 2X>i Xi(w
∗
j − w1) + 2X>i εi,

which yields

n′‖∇Fi(w1)‖ . ‖Xi‖2
op + ‖X>i εi‖, (2.5)

where we use the fact that ‖w∗j − w1‖ ≤ ‖w∗j‖+ ‖w∗1‖+ ‖w∗1 − w1‖ . 1. Then, we combine (2.5)
and Lemma 2 and get with probability at least 1− c1 exp(−c2 min{d, n′}),

‖∇Fi(w1)‖ ≤ 1

n′
(c3 max{d, n′}+ c4σ

√
dn′) ≤ c5 max{1, d

n′
}, (2.6)

where we use our assumption that σ . 1. By union bound, we know that with probability at
least 1 − c1m exp(−c2 min{d, n′}), (2.6) holds for all j ∈ S∗1 . In addition, since we assume that
n′ & logm, d & logm, this probability can be lower bounded by 1− 1/poly(m). This implies that
conditioned on S1, with probability at least 1− 1/poly(m),

‖T2‖ ≤ c5
γ

m
|S1 ∩ S∗1 |max{1, d

n′
}. (2.7)



CHAPTER 2. CLUSTERED FEDERATED LEARNING 33

Since we choose γ = c
p
, we have γ

m
max{1, d

n′
} . 1, where we use our assumption that pmn′ & d.

This shows that with probability at least 1− 1/poly(m),

‖T2‖ ≤ c5|S1 ∩ S∗1 |. (2.8)

We then analyze |S1 ∩ S∗1 |. By Lemma 1, we have

E[|S1 ∩ S∗1 |] ≤ c6m exp(−c7(
ρ

ρ+ 1
)2n′). (2.9)

According to Assumption 4, we know that n′ ≥ c(ρ+1
ρ

)2 logm, for some constant c that is large
enough. Therefore, m ≤ exp(1

c
( ρ
ρ+1

)2n′), and thus, as long as c is large enough such that 1
c
< c7

where c7 is defined in (2.9), we have

E[|S1 ∩ S∗1 |] ≤ c6 exp(−c8(
ρ

ρ+ 1
)2n′). (2.10)

and then by Markov’s inequality, we have

P
(
|S1 ∩ S∗1 | ≤ c6 exp(−c8

2
(

ρ

ρ+ 1
)2n′)

)
≥ 1− exp(−c8

2
(

ρ

ρ+ 1
)2n′)) ≥ 1− poly(m). (2.11)

Combining (2.8) with (2.11), we know that with probability at least 1− 1/poly(m),

‖T2‖ ≤ c1 exp(−c2(
ρ

ρ+ 1
)2n′).

Using this fact and (2.4), we obtain that with probability at least 1− 1/poly(m),

‖w+
1 − w∗1‖ ≤ (1− c1γp)‖w1 − w∗1‖+ c2γσ

√
d

mn′
+ c3 exp(−c4(

ρ

ρ+ 1
)2n′).

Then we can complete the proof for the first cluster by choosing γ = 1
2c1p

. To complete the proof for
all the k clusters, we can use union bound, and the success probability is 1− k/poly(m). However,
since k ≤ m by definition, we still have success probability 1− 1/poly(m).

2.8.1 Proof of Lemma 1
Without loss of generality, we analyze E1,j

i for some j 6= 1. By definition, we have

E1,j
i = {Fi(wj; Ẑi) ≤ Fi(w1; Ẑi)},

where Ẑi is the set of n′ data points that we use to estimate the cluster identity in this iteration.
We write the data points in Ẑi in matrix form with feature matrix Xi ∈ Rn′×d and response vector
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Yi = Xiw
∗
1 + εi. According to our model, all the entries of Xi are i.i.d. sampled according to

N (0, 1), and εi ∼ N (0, σ2I). Then, we have

P{E1,j
i } = P

{
‖Xi(w

∗
1 − w1) + εi‖2 ≥ ‖Xi(w

∗
1 − wj) + εi‖2

}
.

Consider the random vector Xi(w
∗
1 − wj) + εi, and in particular consider the `-th coordinate of

it. Since Xi and εi are independent and we resample (Xi, Yi) at each iteration, the `-th coordinate
of Xi(w

∗
1 − wj) + εi is a Gaussian random variable with mean 0 and variance ‖wj − w∗1‖2 + σ2.

Since Xi and εi contain independent rows, the distribution of ‖Xi(w
∗
1 − wj) + εi‖2 is given by

(‖wj − w∗1‖2 + σ2)uj , where uj is a standard Chi-squared random variable n′ degrees of freedom.
We now calculate the an upper bound on the following probability:

P
{
‖Xi(w

∗
1 − w1) + εi‖2 ≥ ‖Xi(w

∗
1 − wj) + εi‖2

}
(i)
≤P
{
‖Xi(w

∗
1 − wj) + εi‖2 ≤ t

}
+ P

{
‖Xi(w

∗
1 − w1) + εi‖2 > t

}
≤P
{

(‖wj − w∗1‖2 + σ2)uj ≤ t
}

+ P
{

(‖w1 − w∗1‖2 + σ2)uj > t
}
, (2.12)

where (i) holds for all t ≥ 0. For the first term, we use the concentration property of Chi-squared
random variables. Using the fact that ‖wj − w∗1‖ ≥ ‖w∗j − w∗1‖ − ‖wj − w∗j‖ ≥ 3

4
∆, we have

P
{

(‖wj − w∗1‖2 + σ2)uj ≤ t
}
≤ P

{
(

9

16
∆2 + σ2)uj ≤ t

}
. (2.13)

Similarly, using the initialization condition, ‖w1 − w∗1‖ ≤ 1
4
∆, the second term of equation (2.12)

can be simplified as

P
{

(‖w1 − w∗1‖2 + σ2)uj > t
}
≤ P

{
(

1

16
∆2 + σ2)uj > t

}
. (2.14)

Based on the above observation, we now choose t = n′( 5
16

∆2 + σ2). Recall that ρ := ∆2

σ2 . Then the
inequlity (2.13) can be rewritten as

P
{

(‖wj − w∗1‖2 + σ2)uj ≤ t
}
≤ P

{
uj
n′
− 1 ≤ − 4ρ

9ρ+ 16

}
.

According to the concentration results for standard Chi-squared distribution [13], we know that
there exists universal constants c1 and c2 such that

P
{

(‖wj − w∗1‖2 + σ2)uj ≤ t
}
≤ c1 exp

(
−c2n

′(
ρ

ρ+ 1
)2

)
. (2.15)

Similarly, the inequality (2.14) can be rewritten as

P
{

(‖w1 − w∗1‖2 + σ2)uj > t
}
≤ P

{
uj
n′
− 1 >

4ρ

ρ+ 16
,

}
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and again according to the concentration of Chi-squared distribution, there exists universal constants
c3 and c4 such that

P
{

(‖w1 − w∗1‖2 + σ2)u1 > t
}
≤ c3 exp

(
−c4n

′(
ρ

ρ+ 1
)2

)
. (2.16)

The proof can be completed by combining (2.12), (2.15) and (2.16).

2.8.2 Proof of Lemma 2
According to Theorem 5.39 of [111], we have with probability at least 1− 2 exp(−c1 max{d,N}),

‖X‖op ≤ cmax{
√
d,
√
N},

where c and c1 are universal constants. As for ‖X>ε‖, we first condition on X . According to the
Hanson-Wright inequality [112], we obtain for every t ≥ 0

P
(∣∣‖X>ε‖ − σ‖X>‖F ∣∣ > t

)
≤ 2 exp

(
−c t2

σ2‖X>‖2
op

)
. (2.17)

Using Chi-squared concentration [13], we obtain with probability at least 1− 2 exp(−cdN),

‖X‖F ≤ c
√
dN.

Furthermore, using the fact that ‖X>‖op = ‖X‖op and substituting t = σ
√
dN in (2.17), we obtain

with probability at least 1− c2 exp(−c3 min{d,N}),

‖X>ε‖ ≤ c4σ
√
dN.

2.9 Proof of Theorem 2
The proof of this theorem is similar to that of the linear model. We begin with a single-step analysis.

2.9.1 Analysis for a single step
Suppose that at a certain step, we have model parameters wj , j ∈ [k] for the k clusters. Assume that

‖wj − w∗j‖ ≤ 1
4

√
λ
L

∆, for all j ∈ [k].

Probability of erroneous cluster identity estimation: We first calculate the probability of erro-
neous estimation of worker machines’ cluster identity. We define the events E j,j

′

i in the same way as
in Appendix 2.8, and have the following lemma.
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Lemma 3. Suppose that worker machine i ∈ S∗j . Then there exists a universal constants c1 such
that for any j′ 6= j,

P(E j,j
′

i ) ≤ c1
η2

λ2∆4n′
,

and by union bound

P(Ei) ≤ c1
kη2

λ2∆4n′
.

We prove Lemma 3 in Appendix 2.9.3. Now we proceed to analyze the gradient descent iteration.
Without loss of generality, we focus on w1. We have

‖w+
1 − w∗1‖ = ‖w1 − w∗1 −

γ

m

∑
i∈S1

∇Fi(θ1)‖,

where Fi(w) := Fi(w;Zi) with Zi being the set of data points on the i-th worker machine that we
use to compute the gradient, and S1 is the set of indices returned by Algorithm 1 corresponding to
the first cluster. Since

S1 = (S1 ∩ S∗1) ∪ (S1 ∩ S∗1)

and the sets are disjoint, we have

‖w+
1 − w∗1‖ = ‖w1 − w∗1 −

γ

m

∑
i∈S1∩S∗1

∇Fi(θ1)

︸ ︷︷ ︸
T1

− γ

m

∑
i∈S1∩S∗1

∇Fi(θ1)

︸ ︷︷ ︸
T2

‖.

Using triangle inequality, we obtain

‖w+
1 − w∗1‖ ≤ ‖T1‖+ ‖T2‖,

and we control both the terms separately. Let us first focus on ‖T1‖.

Bound ‖T1‖ We first split T1 in the following way:

T1 = w1 − w∗1 − γ̂∇F 1(w1)︸ ︷︷ ︸
T11

+γ̂
(
∇F 1(w1)− 1

|S1 ∩ S∗1 |
∑

i∈S1∩S∗1

∇Fi(w1)

︸ ︷︷ ︸
T12

)
, (2.18)

where γ̂ := γ
|S1∩S∗1 |
m

. Let us condition on S1. According to standard analysis technique for gradient
descent on strongly convex functions, we know that when γ̂ ≤ 1

L
,

‖T11‖ = ‖w1 − w∗1 − γ̂∇F 1(w1)‖ ≤ (1− γ̂λL

λ+ L
)‖w1 − w∗1‖. (2.19)
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Further, we have E[‖T12‖2] = v2

n′|S1∩S∗1 |
, which implies E[‖T12‖] ≤ v√

n′|S1∩S∗1 |
, and thus by Markov’s

inequality, for any δ0 > 0, with probability at least 1− δ0,

‖T12‖ ≤
v

δ0

√
n′|S1 ∩ S∗1 |

. (2.20)

We then analyze |S1 ∩ S∗1 |. Similar to the proof of Theorem 1, we can show that |S1 ∩ S∗1 | is large
enough. From Lemma 3 and using our assumption, we see that the probability of correctly classi-
fying any worker machine i, given by P(Ei), satisfies P(Ei) ≥ 1

2
. Recall p = min{p1, p2, . . . , pk},

and we obtain |S1 ∩ S∗1 | ≥ 1
4
p1m with probability at least 1− 2 exp(−cpm). Let us condition on

|S1 ∩ S∗1 | ≥ 1
4
p1m and choose γ = 1/L. Then γ̂ ≤ 1/L is satisfied, and on the other hand γ̂ ≥ p

4L
.

Plug this fact in (2.19), we obtain

‖T11‖ ≤ (1− pλ

8L
)‖w1 − w∗1‖. (2.21)

We then combine (2.20) and (2.21) and have with probability at least 1− δ0 − 2 exp(−cpm),

‖T1‖ ≤ (1− pλ

8L
)‖w1 − w∗1‖+

2v

δ0L
√
pmn′

. (2.22)

Bound ‖T2‖ Let us define T2j :=
∑

S1∩S∗j
∇Fi(w1), j ≥ 2. We have T2 = γ

m

∑k
j=2 T2j . We

condition on S1 and first analyze T2j . We have

T2j = |S1 ∩ S∗j |∇F j(w1) +
∑

i∈S1∩S∗j

(
∇Fi(w1)−∇F j(w1)

)
. (2.23)

Due to the smoothness of F j(w), we know that

‖∇F j(w1)‖ ≤ L‖w1 − w∗j‖ ≤ 3L, (2.24)

where we use the fact that ‖w1 − w∗j‖ ≤ ‖w∗j‖ + ‖w∗1‖ + ‖w1 − w∗1‖ ≤ 1 + 1 + 1
4

√
λ
L

∆ ≤ 3. In
addition, we have

E

∥∥∥∥∥∥
∑

i∈S1∩S∗j

∇Fi(w1)−∇F j(w1)

∥∥∥∥∥∥
2 = |S1 ∩ S∗j |

v2

n′
,

which implies

E

∥∥∥∥∥∥
∑

i∈S1∩S∗j

∇Fi(w1)−∇F j(w1)

∥∥∥∥∥∥
 ≤√|S1 ∩ S∗j |

v√
n′
,
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and then according to Markov’s inequality, for any δ1 ∈ (0, 1), with probability at least 1− δ1,∥∥∥∥∥∥
∑

i∈S1∩S∗j

∇Fi(w1)−∇F j(w1)

∥∥∥∥∥∥ ≤
√
|S1 ∩ S∗j |

v

δ1

√
n′
. (2.25)

Then, by combining (2.24) and (2.25), we know that with probability at least 1− δ1,

‖T2j‖ ≤ 3L|S1 ∩ S∗j |+
√
|S1 ∩ S∗j |

v

δ1

√
n′
. (2.26)

By union bound, we know that with probability at least 1− kδ1, (2.26) applies to all j 6= 1. Then,
we have with probability at least 1− kδ1,

‖T2‖ ≤
3γL

m
|S1 ∩ S∗1 |+

γv
√
k

δ1m
√
n′

√
|S1 ∩ S∗1 |. (2.27)

According to Lemma 3, we know that

E[|S1 ∩ S∗1 |] ≤ c1
η2m

λ2∆4n′
.

Then by Markov’s inequality, we know that with probability at least 1− δ2,

|S1 ∩ S∗1 | ≤ c1
η2m

δ2λ2∆4n′
. (2.28)

Now we combine (2.27) with (2.28) and obtain with probability at least 1− kδ1 − δ2,

‖T2‖ ≤ c1
η2

δ2λ2∆4n′
+ c2

vη
√
k

δ1

√
δ2λL∆2

√
mn′

. (2.29)

Combining (2.22) and (2.29), we know that with probability at least 1−δ0−kδ1−δ2−2 exp(−cpm),

‖w+
1 − w∗1‖ ≤ (1− pλ

8L
)‖w1 − w∗1‖+

2v

δ0L
√
pmn′

+ c1
η2

δ2λ2∆4n′
+ c2

vη
√
k

δ1

√
δ2λL∆2

√
mn′

.

(2.30)

In the following, we let δ3 := δ0 + kδ1 + δ2 + 2 exp(−cpm), and

ε0 =
2v

δ0L
√
pmn′

+ c1
η2

δ2λ2∆4n′
+ c2

vη
√
k

δ1

√
δ2λL∆2

√
mn′

.

Let us simplify this expression. We first choose δ ∈ (0, 1) as the failure probability of the entire
algorithm. Then, we choose

δ0 =
pλδ

CkL log(mn′)
, δ1 =

pλδ

Ck2L log(mn′)
, δ2 =

pλδ

CkL log(mn′)
,
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for some constant C > 0 that is large enough. In addition, since we assume that p & log(mn′)
m

, we
have exp(−cpm) ≤ 1/poly(mn′) . pλδ

kL log(mn′)
. Consider all these facts, we obtain

δ3 =
4pλδ

CkL log(mn′)
, (2.31)

ε0 .
vk log(mn′)

p3/2λδ
√
mn′

+
η2Lk log(mn′)

pλ3δ∆4n′
+
vηk3
√
L log3/2(mn′)

p3/2λ5/2δ3/2∆2
√
mn′

. (2.32)

In addition, by union bound, we know that with probability at least 1− kδ3, for all j ∈ [k],

‖w+
j − w∗j‖ ≤ (1− pλ

8L
)‖wj − w∗j‖+ ε0. (2.33)

2.9.2 Convergence of the algorithm
We now analyze the convergence of the entire algorithm. First, we can verify that as long as

ε0 ≤
p

32
(
λ

L
)3/2∆, (2.34)

we can guarantee that ‖w+
j − w∗j‖ ≤ 1

4

√
λ
L

∆. We can also verify that as long as there is

∆ ≥ Õ(max{(n′)−1/5,m−1/6(n′)−1/3}), (2.35)

using the definition of ε0 in (2.32), we know that (2.34) holds. Here, in the Õ notation, we omit the
logarithmic factors and quantities that does not depend on m and n′. In this case, we can iteratively
apply (2.33) for T iterations and obtain that with probability at least 1− kTδ3,

‖w(T )
j − w∗j‖ ≤ (1− pλ

8L
)T‖w(0)

j − w∗j‖+
8L

pλ
ε0.

Then, we know that when we choose

T =
8L

pλ
log

(
pλ∆

32ε0L

)
, (2.36)

we have

(1− pλ

8L
)T‖w(0)

j − w∗j‖ ≤ exp(−pλ
8L
T )

1

4

√
λ

L
∆ ≤ 8

p

√
L

λ
ε0,

which implies ‖w(T )
j − w∗j‖ ≤ 16L

pλ
ε0. Finally, we check the failure probability. The failure

probability is

kTδ3 ≤
8kL

pλ
log

(
pλ∆

32ε0L

)
4pλδ

CkL log(mn′)
=

32δ

C

log( pλ∆
32ε0L

)

log(mn′)
≤ δ

log( 1
ε0

)

log((mn′)C/32)
.
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On the other hand, according to (2.32), we know that

1

ε0

≤ Õ(max{
√
mn′, n′}),

then, as long as C is large enough, we can guarantee that (mn′)C/32 > 1
ε0

, which implies that the
failure probability is upper bounded by δ. Our final error floor can be obtained by redefining

ε :=
16L

pλ
ε0.

2.9.3 Proof of Lemma 3
Without loss of generality, we bound the probability of E1,j

i for some j 6= 1. We know that

E1,j
i =

{
Fi(w1; Ẑi) ≥ Fi(wj; Ẑi)

}
,

where Ẑi is the set of n′ data points that we use to estimate the cluster identity in this iteration. In
the following, we use the shorthand notation Fi(w) := Fi(w; Ẑi). We have

P(E1,j
i ) ≤ P (Fi(w1) > t) + P (Fi(wj) ≤ t)

for all t ≥ 0. We choose t = F 1(w1)+F 1(wj)
2

. With this choice, we obtain

P (Fi(w1) > t) = P
(
Fi(w1) >

F 1(w1) + F 1(wj)

2

)
(2.37)

= P
(
Fi(w1)− F 1(w1) >

F 1(wj)− F 1(w1)

2

)
. (2.38)

Similarly, for the second term, we have

P (Fi(wj) ≤ t) = P
(
Fi(wj)− F 1(wj) ≤ −F

1(wj)− F 1(w1)

2

)
. (2.39)

Based on our assumption, we know that ‖wj −w1‖ ≥ ∆− 1
4

√
λ
L

∆ ≥ 3
4
∆. According to the strong

convexity of F 1(·),

F 1(wj) ≥ F 1(w∗1) +
λ

2
‖wj − w∗1‖2 ≥ F 1(w∗1) +

9λ

32
∆2,

and according to the smoothness of F 1(·),

F 1(w1) ≤ F 1(w∗1) +
L

2
‖w1 − w∗1‖2 ≤ F 1(w∗1) +

L

2

λ

16L
∆2 = F 1(w∗1) +

λ

32
∆2.

Therefore, F 1(wj)− F 1(w1) ≥ λ
4
∆2. Then, according to Chebyshev’s inequality, we obtain that

P(Fi(w1) > t) ≤ 64η2

λ2∆4n′
and that P(Fi(wj) ≤ t) ≤ 64η2

λ2∆4n′
, which complete the proof.
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Chapter 3

Communication-Efficient and
Byzantine-Robust Distributed First Order
Learning

In this chapter, we develop a communication-efficient distributed learning algorithm that is robust
against Byzantine worker machines. We propose and analyze a distributed gradient-descent algo-
rithm that performs a simple thresholding based on gradient norms to mitigate Byzantine failures.
Furthermore, for communication efficiency, we consider a generic class of δ-approximate compres-
sors from Karimireddi et al. [20] that encompasses sign-based compressors and top-k sparsification.
Our algorithm uses compressed gradients and gradient norms for aggregation and Byzantine removal
respectively. We establish the statistical error rate for non-convex smooth loss functions. We show
that, in certain range of the compression factor δ, the (order-wise) rate of convergence is not affected
by the compression operation. Moreover, we analyze the compressed gradient descent algorithm
with error feedback (proposed in [20]) in a distributed setting and in the presence of Byzantine
worker machines. We show that exploiting error feedback improves the statistical error rate. Finally,
we experimentally validate our results and show good performance in convergence for convex
(least-square regression) and non-convex (neural network training) problems.

3.1 Introduction
We propose provable and efficient algorithms that address the issues of communication efficiency
and Byzantine robustness simultaneously. Note that, both these challenges, have recently attracted
significant research attention, albeit mostly separately. In particular, several recent works have
proposed various quantization or sparsification techniques to reduce the communication overhead
([14–16, 21, 113–116]). The goal of these quantization schemes is to compute an unbiased estimate
of the gradient with bounded second moment in order to achieve good convergence guarantees. The
problem of developing Byzantine-robust distributed algorithms has been considered in [17–19, 23,
30–33].
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A notable exception to considering communication overhead separately from Byzantine ro-
bustness is the recent work of [22]. In this work, a sign-based compression algorithm signSGD of
[117] is shown to be Byzantine fault-tolerant. The main idea of signSGD is to communicate the
coordinate-wise signs of the gradient vector to reduce communication and employ a majority vote
during the aggregation to mitigate the effect of Byzantine units. However, signSGD suffers from two
major drawbacks. First, sign-based algorithms do not converge in general ([20]). In particular, [20,
Section 3] presents several convex counter examples where signSGD fails to converge even though
[22, Theorem 2] shows convergence guarantee for non-convex objective under certain assumptions.
Second, signSGD can handle only a limited class of adversaries, namely blind multiplicative adver-
saries ([22]). Such an adversary manipulates the gradients of the worker machines by multiplying
it (element-wise) with a vector that can scale and randomize the sign of each coordinate of the
gradient. However, the vector must be chosen before observing the gradient (hence ‘blind’).

In this work, we develop communication-efficient and robust learning algorithms that overcome
both these drawbacks1. Specifically, we consider the following distributed learning setup. There
are m worker machines, each storing n data points. The data points are generated from some
unknown distribution D. The objective is to learn a parametric model that minimizes a population
loss function F : W → R, where F is defined as an expectation over D, andW ⊆ Rd denotes
the parameter space. We choose the loss function F to be non-convex. With the rapid rise of the
neural networks, the study of local minima in non-convex optimization framework has become
imperative [35, 36]. For gradient compression at workers, we consider the notion of a δ-approximate
compressor from [20] that encompasses sign-based compressors like QSGD ([21]), `1-QSGD ([20])
and top-k sparsification ([15]). We assume that 0 ≤ α < 1/2 fraction of the worker machines are
Byzantine. In contrast to blind multiplicative adversaries, we consider unrestricted adversaries.

Our key idea is to use a simple threshold (on local gradient norms) based Byzantine resilience
scheme in contrast with computationally complex robust aggregation methods such as coordinate
wise median or trimmed mean of [23]. Our main result is to show that, for a wide range of
compression factor δ, the statistical error rate of our proposed threshold-based scheme is (order-
wise) identical to the case of no compression considered in [23]. In fact, our algorithm achieves
order-wise optimal error-rate in parameters (α, n,m). Furthermore, to alleviate convergence issues
associated with sign-based compressors, we employ the technique of error-feedback from [20]. In
this setup, the worker machines store the difference between the actual and compressed gradient and
add it back to the next step so that the correct direction of the gradient is not forgotten. We show that
using error feedback with our threshold based Byzantine resilience scheme not only achieves better
statistical error rate but also improves the rate of convergence. We outline our specific contributions
in the following.

Our Contributions: We propose a communication-efficient and robust distributed gradient de-
scent (GD) algorithm. The algorithm takes as input the gradients compressed using a δ-approximate
compressor along with the norms2 (of either compressed or uncompressed gradients), and performs a
simple thresholding operation on based on gradient norms to discard β > α fraction of workers with

1We compare our algorithm with signSGD in Section 3.8.
2We can handle any convex norm.
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the largest norm values. We establish the statistical error rate of the algorithm for arbitrary smooth
population loss functions as a function of the number of worker machines m, the number of data
points on each machine n, dimension d, and the compression factor δ. In particular, we show that
our algorithm achieves the following statistical error rate3 for the regime δ > 4β + 4α− 8α2 + 4α3:

Õ
(
d2

[
α2

n
+

1− δ
n

+
1

mn

])
. (3.1)

We first note that when δ = 1 (uncompressed), the error rate is Õ(d2[α
2

n
+ 1

mn
]), which matches [23].

Notice that we use a simple threshold (on local gradient norms) based Byzantine resilience scheme
in contrast with the coordinate wise median or trimmed mean of [23]. We note that for a fixed d
and the compression factor δ satisfying δ ≥ 1− α2, the statistical error rate become Õ(α

2

n
+ 1

mn
),

which is order-wise identical to the case of no compression [23]. In other words, in this parameter
regime, the compression term does not contribute (order-wise) to the statistical error. Moreover, it
is shown in [23] that, for strongly-convex loss functions and a fixed d, no algorithm can achieve
an error lower than Ω̃(α

2

n
+ 1

mn
), implying that our algorithm is order-wise optimal in terms of the

statistical error rate in the parameters (α, n,m).
Furthermore, we strengthen our distributed learning algorithm by using error feedback to correct

the direction of the local gradient (Algorithm 3). We show (both theoretically and via experiments)
that using error-feedback with a δ-approximate compressor indeed speeds up the convergence rate
and attains better (statistical) error rate. Under the assumption that the gradient norm of the local
loss function is upper-bounded by σ, we obtain the following (statistical) error rate:

Õ
(
d2

[
α2

n
+

(1− δ)σ2

d2 δ
+

1

mn

])
provided a similar (δ, α) trade-off4. We note that in the no-compression setting (δ = 1), we recover
the Õ(α

2

n
+ 1

mn
) rate. Furthermore, in Section 3.7.2, we argue that, when δ = Θ(1), the error rate

of Algorithm 3 is strictly better than that of Algorithm 2. In experiments (Section 3.8), we also see
a reflection of this fact.

We experimentally evaluate our algorithm for convex and non-convex losses. For the convex case,
we choose the linear regression problem, and for the non-convex case, we train a ReLU activated
feed-forward fully connected neural net. We compare our algorithm with the non-Byzantine case
and signSGD with majority vote, and observe that our algorithm converges faster using the standard
MNIST dataset.

A major technical challenge is to handle compression and the Byzantine behavior of the worker
machines simultaneously. We build up on the techniques of [23] to control the Byzantine machines.
In particular, using certain distributional assumption on the partial derivative of the loss function
and exploiting uniform bounds via careful covering arguments, we show that the local gradient on a
non-Byzantine worker machine is close to the gradient of the population loss function.

3Throughout the paper O(·) hides multiplicative constants, while Õ(·) further hides logarithmic factors.
4See Theorem 5 for details.
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Note that in some settings, our results may not have an optimal dependence on dimension d.
This is due to the norm-based Byzantine removal schemes. Obtaining optimal dependence on d is
an interesting future direction.

Organization: We describe the problem formulation in Sec. 3.2, and give a brief overview of
δ-compressors in Sec. 3.3. Then, we present our proposed algorithm in Sec. 2.4. We analyze the
algorithm, first, for a restricted (as described next) adversarial model in Section 3.5, and in the
subsequent section, remove this restriction. In Section 3.5, we restrict our attention to an adversarial
model in which Byzantine workers can provide arbitrary values as an input to the compression
algorithm, but they correctly implement the same compression scheme as mandated. In Section 3.6,
we remove this restriction on the Byzantine machines. As a consequence, we observe (in Theorem 4)
that the modified algorithm works under a stricter assumption, and performs slightly worse than
the one in restricted adversary setting. In Section 3.7, we strengthen our algorithm by including
error-feedback at worker machines, and provide statistical guarantees for non-convex smooth loss
functions. We show that error-feedback indeed improves the performance of our optimization
algorithm in the presence of arbitrary adversaries.

3.1.1 Related Work
Gradient Compression: The foundation of gradient quantization was laid in [118] and [119].
In the work of [21, 114, 115] each co-ordinate of the gradient vector is represented with a small
number of bits. Using this, an unbiased estimate of the gradient is computed. In these works, the
communication cost is Ω(

√
d) bits. In [113], a quantization scheme was proposed for distributed

mean estimation. The tradeoff between communication and accuracy is studied in [120]. Variance
reduction in communication efficient stochastic distributed learning has been studied in [121].
Sparsification techniques are also used instead of quantization to reduce communication cost.
Gradient sparsification has beed studied in [14–16] with provable guarantees. The main idea is to
communicate top components of the d-dimensional local gradient to get good estimate of the true
global gradient.

Byzantine Robust Optimization: In the distributed learning context, a generic framework of one
shot median based robust learning has been proposed in [19]. In [30] the issue of byzantine failure
is tackled by grouping the servers in batches and computing the median of batched servers. Later in
[23, 31], co-ordinate wise median, trimmed mean and iterative filtering based algorithm have been
proposed and optimal statistical error rate is obtained. Also, [122, 123] considers adversaries may
steer convergence to bad local minimizers. In this work, we do not assume such adversaries.

Gradient compression and Byzantine robust optimization have simultaneously been addressed
in a recent paper [22]. Here, the authors use signSGD as compressor and majority voting as robust
aggregator. As explained in [20], signSGD can run into convergence issues. Also, [22] can handle
a restricted class of adversaries that are multiplicative (i.e., multiply each coordinate of gradient
by arbitrary scalar) and blind (i.e., determine how to corrupt the gradient before observing the true

-
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gradient). Here, for compression, we use a generic δ approximate compressor. Also, we can handle
arbitrary Byzantine worker machines.

Very recently, [20] uses error-feedback to remove some of the issues of sign based compression
schemes. In this work, we extend the framework to a distributed setting and prove theoretical
guarantees in the presence of Byzantine worker machines.

Notation: We assume C,C1, C2, .., c, c1, .. as positive universal constants, the value of which may
differ from instance to instance. [r] denotes the set of natural numbers {1, 2, .., r}. Also, ‖.‖ denotes
the `2 norm of a vector and the operator norm of a matrix unless otherwise specified.

3.2 Problem Formulation
In this section, we formally set up the problem. We consider a standard statistical problem of
risk minimization. In a distributed setting, suppose we have one central and m worker nodes and
the worker nodes communicate to the central node. Each worker node contains n data points.
We assume that the mn data points are sampled independently from some unknown distribution
D. Also, let f(w, z) be the non-convex loss function of a parameter vector w ∈ W ⊆ Rd

corresponding to data point z, whereW is the parameter space. Hence, the population loss function
is F (w) = Ez∼D[f(w, z)]. Our goal is to obtain the following:

w∗ = argminw∈WF (w),

where we assumeW to be a convex and compact subset of Rd with diameter D. In other words, we
have ‖w1 − w2‖ ≤ D for all w1, w2 ∈ W . Each worker node is associated with a local loss defined
as Fi(w) = 1

n

∑n
j=1 f(w, zi,j), where zi,j denotes the j-th data point in the i-th machine. This is

precisely the empirical risk function of the i-th worker node.
We assume a setup where worker i compresses the local gradient and sends to the central

machine. The central machine aggregates the compressed gradients, takes a gradient step to update
the model and broadcasts the updated model to be used in the subsequent iteration. Furthermore,
we assume that α fraction of the total workers nodes are Byzantine, for some α < 1/2. Byzantine
workers can send any arbitrary values to the central machine. In addition, Byzantine workers may
completely know the learning algorithm and are allowed to collude with each other.

Next, we define a few (standard) quantities that will be required in our analysis.

Definition 6. (Sub-exponential random variable) A zero mean random variable Y is called v-sub-
exponential if E[eλY ] ≤ e

1
2
λ2v2 , for all |λ| ≤ 1

v
.

Definition 7. (Smoothness) A function h(.) is LF -smooth if h(w) ≤ h(w′) + 〈∇h(w′), w − w′〉+
LF
2
‖w − w′‖2 ∀w, w′.

Definition 8. (Lipschitz) A function h(.) is L-Lipschitz if ‖h(w)− h(w′)‖ ≤ L‖w − w′‖ ∀w, w′.
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3.3 Compression At Worker Machines
In this section, we consider a generic class of compressors from [15] and [20] as described in the
following.

Definition 9 (δ-Approximate Compressor). An operatorQ(.) : Rd → Rd is defined as δ-approximate
compressor on a set S ⊆ Rd if, ∀x ∈ S,

‖Q(x)− x‖2 ≤ (1− δ)‖x‖2,

where δ ∈ (0, 1] is the compression factor.

Furthermore, a randomized operator Q(.) is δ-approximate compressor on a set S ⊆ Rd if,

E
(
‖Q(x)− x‖2

)
≤ (1− δ)‖x‖2

holds for all x ∈ S, where the expectation is taken with respect to the randomness of Q(.). For
the clarity of exposition, we consider the deterministic form of the compressor (as in Definition 9).
However, the results can be easily extended for randomized Q(.).

Notice that δ = 1 impliesQ(x) = x (no compression). We list a few examples of δ-approximate
compressors (including a few from [20]) here:

1. topk operator, which selects k coordinates with largest absolute value; for 1 ≤ k ≤ d,
(Q(x))i = (x)π(i) if i ≤ k, and 0 otherwise, where π is a permutation of [d] with (|x|)π(i) ≥
(|x|)π(i+1) for i ∈ [d− 1]. This is a k/d-approximate compressor.

2. k-PCA that uses top k eigenvectors to approximate a matrix X ([114]).

3. Quantized SGD (QSGD) [21], where Q(xi) = ‖x‖ · sgn(xi) · ξi(x), where sgn(xi) is the
coordinate-wise sign vector, and ξi(x) is defined as following: let 0 ≤ l ≤ s, be an integer
such that |xi|/‖x‖ ∈ [l/s, (l + 1)/s]. Then, ξi = l/s with probability 1 − |xi|

c‖x‖
√
d

+ l and

(l + 1)/s otherwise. [21] shows that it is a 1−min(d/s2,
√
d/s)-approximate compressor.

4. Quantized SGD with `1 norm [20],Q(x) = ‖x‖1
d

sgn(x), which is ‖x‖
2
1

d‖x‖2 -approximate compres-
sor. Here, we call this compression scheme as `1-QSGD.

Apart from these examples, several randomized compressors are also discussed in [15]. Also,
the signSGD compressor, Q(x) = sgn(x), where sgn(x) is the (coordinate-wise) sign operator,
was proposed in [22, 117]. Here the local machines send a d-dimensional vector containing
coordinate-wise sign of the gradients.
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Algorithm 2: Robust Compressed Gradient Descent
1: Input: Step size γ, Compressor Q(.), q > 1, β < 1. Also define,

C(x) =

{
{Q(x), ‖x‖q} ∀x ∈ Rd Option I
{Q(x), ‖Q(x)‖q} ∀x ∈ Rd Option II

2: Initialize: Initial iterate w0 ∈ W
3: for t = 0, 1, . . . , T − 1 do
4: Central machine: broadcasts wt

for i ∈ [m] do in parallel
5: i-th worker machine:

• Non-Byzantine:

– Computes∇Fi(wt); sends C(∇Fi(wt)) to the central machine,

• Byzantine:

– Generates ? (arbitrary), and sends C(?) to the central machine: Option I,

– Sends ? to the central machine: Option II,

end for
6: Central Machine:

• Sort the worker machines in a non decreasing order according to

– Local gradient norm: Option I,

– Compressed local gradient norm: Option II,

• Return the indices of the first 1− β, fraction of elements as Ut,

• Update model parameter: wt+1 = ΠW

(
wt − γ

|Ut|
∑

i∈Ut Q(∇Fi(wt))
)

.

7: end for

3.4 Robust Compressed Gradient Descent
In this section, we describe a communication-efficient and robust distributed gradient descent
algorithm for δ-approximate compressors. The optimization algorithm we use is formally given in
Algorithm 2. Note that the algorithm uses a compression scheme Q(.) to reduce communication
cost and a norm based thresholding to remove Byzantine worker nodes. As seen in Algorithm 2,
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robust compressed gradient descent operates under two different setting, namely Option I and
Option II.

Option I and II are analyzed in Sections 3.5 and 3.6 respectively. For Option I, we use a
δ-approximate compressor along with the norm information. In particular, we use: C(x) =
{‖x‖q,Q(x)} where q ≥ 1. C(x) is comprised of a scalar (norm of x) and a compressed vector
Q(x). For compressors such as QSGD ([21]) and `1-QSGD ([20]), the quantity Q(.) has the norm
information and hence sending the norm separately is not required.

As seen in Option I of Algorithm 2, worker node i compresses the local gradient ∇Fi(.) sends
C(∇Fi(.)) to the central machine. Adversary nodes can send arbitrary C(?) to the central machine.
The central machine aggregates the gradients, takes a gradient step and broadcasts the updated
model for next iteration.

For Option I, we restrict to the setting where the Byzantine worker machines can send arbitrary
values to the input of the compression algorithm, but they adhere to the compression algorithm.
In particular, Byzantine workers can provide arbitrary values, ? to the input of the compression
algorithm, Q(.) but they correctly implement the same compression algorithm, i.e., computes Q(?).

We now explain how Algorithm 2 tackles the Byzantine worker machines. The central machine
receives the compressed gradients comprising a scalar ( ||x||q, q ≥ 1) and a quantized vector (Q(x))
and outputs a set of indices U with |U| = (1− β)m. Here we employ a simple thresholding scheme
on the (local) gradient norm. Note that, if the Byzantine worker machines try to diverge the learning
algorithm by increasing the norm of the local gradients; Algorithm 2 can identify them as outliers.
Furthermore, when the Byzantine machines behave like inliers, they can not diverge the learning
algorithm since α < 1/2. In the subsequent sections, we show theoretical justification of this
argument.

With Option II, we remove this restriction on Byzantine machines at the cost of slightly
weakening the convergence guarantees. This is explained in Section 3.6. With Option II, the i-th
local machine sends C = {Q(∇Fi(wt)), ‖Q(∇Fi(wt))‖q} to the central machine, where q ≥ 1.
Effectively, the i-th local machine just sends Q(∇Fi(wt)) since its norm can be computed at the
central machine. Byzantine workers just send arbitrary (?) vector instead of compressed local
gradient. Note that the Byzantine workers here do not adhere to any compression rule.

The Byzantine resilience scheme with Option II is similar to Option I except the fact that the
central machine sorts the worker machines according to the norm of the compressed gradients rather
than the norm of the gradients.

3.5 Distributed Learning with Restricted Adversaries
In this section, we analyze the performance of Algorithm 4 with Option I. We restrict to an
adversarial model in which Byzantine workers can provide arbitrary values to the input of the
compression algorithm, but they adhere to the compression rule. Though this adversarial model
is restricted, we argue that it is well-suited for applications wherein compression happens outside
of worker machines. For example, Apache MXNet, a deep learning framework designed to be
distributed on cloud infrastructures, uses NVIDIA Collective Communication Library (NCCL) that
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employs gradient compression (see [124]). Also, in a Federated Learning setup the compression
can be part of the communication protocol. Furthermore, this can happen when worker machines
are divided into groups, and each group is associated with a compression unit. As an example,
cores in a multi-core processor ([125]) acting as a group of worker machines with the compression
carried out by a separate processor, or servers co-located on a rack ([126]) acting as a group with
the compression carried out by the top-of-the-rack switch.

3.5.1 Main Results
We analyze Algorithm 4 (with Option I) and obtain the rate of the convergence under non-convex
loss functions. We start with the following assumption.

Assumption 9. For all z, the partial derivative of the loss function f(., z) with respect to the k-th
coordinate (denoted as ∂kf(., z)) is Lk Lipschitz with respect to the first argument for each k ∈ [d],

and let L̂ =
√∑d

i=1 L
2
k. The population loss function F (.) is LF smooth.

We also make the following assumption on the tail behavior of the partial derivative of the loss
function.

Assumption 10. (Sub-exponential gradients) For all k ∈ [d] and z, the quantity ∂kf(w, z)) is v
sub-exponential for all w ∈ W .

The assumption implies that the moments of the partial derivatives are bounded. We like to
emphasize that the sub-exponential assumption on gradients is fairly common ([18, 23]). For
instance, [23, Proposotion 2] gives a concrete example of coordinate-wise sub-exponential gradients
in the context of a regression problem. Furthermore, in [31], the gradients are assumed to be
sub-gaussian, which is stronger than Assumption 10.

To simplify notation and for the clarity of exposition, we define the following three quantities
which will be used throughout the chapter.

ε1 = v
√
d
(

max
{d
n

log(1 + 2nDL̂d),

√
d

n
log(1 + 2nDL̂d)

})
+

1

n
, (3.2)

ε2 = v
√
d

(
max

{ d

(1− α)mn
log(1 + 2(1− α)mnDL̂d),

√
d

(1− α)mn
log(1 + 2(1− α)mnDL̂d)

})
,

(3.3)

ε = 2

(
1 +

1

λ0

)[(
1− α
1− β

)2

ε22 +

(√
1− δ + α + β

1− β

)2

ε21

]
. (3.4)

where λ0 is a positive constant. For intuition, one can think of ε1 = Õ( d√
n
) and ε2 = Õ( d√

mn
) as

small problem dependent quantities. Assuming β = cα for a universal constant c > 1, we have

ε = Õ
(
d2

[
α2

n
+

1− δ
n

+
1

mn

])
. (3.5)
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Assumption 11. (Size of parameter spaceW) Suppose that ‖∇F (w)‖ ≤ M for all w ∈ W . We
assume thatW contains the `2 ball {w : ‖w − w0‖ ≤ c[(2− c0

2
)M +

√
ε]F (w0)−F (w∗)

ε
}, where c0

is a constant, δ is the compression factor, w0 is the initial parameter vector and ε is defined in
equation (3.4).

We use the above assumption to ensure that the iterates of Algorithm 4 stays in W . We
emphasize that this is a standard assumption on the size ofW to control the iterates for non-convex
loss function. Note that, similar assumptions have been used in prior works [23, Assumption 5],
[31]. We point out that Assumption 11 is used for simplicity and is not a hard requirement. We
show (in the proof of Theorem 3) that the iterates of Algorithm 4 stay in a bounded set around
the initial iterate w0. Also, note that the dependence of M in the final statistical rate (implicit, via
diameter D) is logarithmic (weak dependence), as will be seen in Theorem 3.

We provide the following rate of convergence to a critical point of the (non-convex) population
loss function F (.).

Theorem 3. Suppose Assumptions 9, 10 and 11 hold, and α ≤ β < 1/2. For sufficiently small
constant c, we choose the step size γ = c

LF
. Then, running Algorithm 4 for T = C3

LF (F (w0)−F (w∗))
ε

iterations yields

min
t=0,...,T

‖∇F (wt)‖2 ≤ C ε,

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, provided the compression

factor satisfies δ > δ0 + 4α− 9α2 + 4α3, where δ0 =
(

1− (1−β)2

1+λ0

)
and λ0 is a (sufficiently small)

positive constant.

A few remarks are in order. In the following remarks, we fix the dimension d, and discuss the
dependence of ε on (α, δ, n,m).

Remark 1. We observe, from the definition of ε that the price for compression is Õ(1−δ
n

).

Remark 2. Substituting δ = 1 (no compression) in ε, we get ε = Õ(α
2

n
+ 1

mn
), which matches the

(statistical) rate of [23]. A simple norm based thresholding operation is computationally simple
and efficient in the high dimensional settings compared to the coordinate wise median and trimmed
mean to achieve robustness and obtain the the same statistical error and iteration complexity as [23]

Remark 3. When the compression factor δ is large enough, satisfying δ ≥ 1 − α2, we obtain
ε = Õ(α

2

n
+ 1

mn
). In this regime, the iteration complexity and the final statistical error of Algorithm 4

is order-wise identical to the setting with no compression [23]. We emphasize here that a reasonable
high δ is often observed in practical applications like training of neural nets [20, Figure 2].

Remark 4. (Optimality) For a distributed mean estimation problem, Observation 1 in [23] implies
that any algorithm will yield an (statistical) error of Ω(α

2

n
+ d

mn
). Hence, in the regime where

δ ≥ 1− α2, our error-rate is optimal.
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Remark 5. For the convergence of Algorithm 4, we require δ > δ0 + 4α − 9α2 + 4α3, implying
that our analysis will not work if δ is very close to 0. Note that a very small δ does not give good
accuracy in practical applications [20, Figure 2]. Also, note that, from the definition of δ0, we
can choose λ0 sufficiently small at the expense of increasing the multiplicative constant in ε by a
factor of 1/λ0. Since the error-rate considers asymptotic in m and n, increasing a constant factor
is insignificant. A sufficiently small λ0 implies δ0 = O(2β), and hence we require δ > 4α + 2β
(ignoring the higher order dependence).

Remark 6. The requirement δ > 4α + 2β can be seen as a trade-off between the amount of
compression and the fraction of adversaries in the system. As α increases, the amount of (tolerable)
compression decreases and vice versa.

Remark 7. (Rate of Convergence) Algorithm 4 with T iterations yields

min
t=0,.,T

‖∇F (wt)‖2 ≤ C1LF (F (w0)− F (w∗))

T + 1
+ C2ε

with high probability. We see that Algorithm 4 converges at a rate ofO(1/T ), and finally plateaus at
an error floor of ε. Note that the rate of convergence is same as [23]. Hence, even with compression,
the (order-wise) convergence rate is unaffected.

3.6 Distributed Optimization with Arbitrary Adversaries
In this section we remove the assumption of restricted adversary (as in Section 3.5) and make the
learning algorithm robust to the adversarial effects of both the computation and compression unit.
In particular, here we consider Algorithm 4 with Option II. Hence, the Byzantine machines do
not need to adhere to the mandated compression algorithm. However, in this setting, the statistical
error-rate of our proposed algorithm is slightly weaker than that of Theorem 3. Furthermore, the
(δ, α) trade-off is stricter compared to Theorem 3.

3.6.1 Main Results
We continue to assume that the population loss function F (.) is smooth and non-convex and analyze
Algorithm 4 with Option II. We have the following result. For the clarity of exposition, we define
the following quantity which will be used in the results of this section:

ε̃ = 2(1 +
1

λ0

)

((
(1 + β)

√
1− δ + α + β

1− β

)2

ε21 + (
1− α
1− β

)2ε22

)
.

Comparing ε̃ with ε, we observe that ε̃ > ε. Also, note that,

ε̃ = Õ
(
d2

[
α2

n
+

1− δ
n

+
1

mn

])
, (3.6)

which suggests that ε̃ and ε are order-wise similar. We have the following assumption, which
parallels Assumption 11, with ε replaced by ε̃.
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Assumption 12. (Size of parameter spaceW) Suppose that ‖∇F (w)‖ ≤ M for all w ∈ W . We
assume thatW contains the `2 ball {w : ‖w−w0‖ ≤ c[(2− c0

2
)M +

√
ε̃]F (w0)−F (w∗)

ε̃
}, where c0 is

a constant, δ is the compression factor and ε̃ is defined in equation (3.6).

Theorem 4. Suppose Assumptions 9,10 and 12 hold, and α ≤ β < 1/2. For sufficiently small
constant c, we choose the step size γ = c

LF
. Then, running Algorithm 4 for T = C3

LF (F (w0)−F (w∗))
ε̃

iterations yields

min
t=0,...,T

‖∇F (wt)‖2 ≤ C ε̃,

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, provided the compression

factor satisfies δ > δ̃0 + 4α− 8α2 + 4α3, where δ̃0 =
(

1− (1−β)2

(1+β)2(1+λ0)

)
and λ0 is a (sufficiently

small) positive constant.

Remark 8. The above result and their consequences resemble that of Theorem 3. Since ε̃ > ε, the
statistical error-rate in Theorem 4 is strictly worse than that of Theorem 3 (although order-wise they
are same).

Remark 9. Note that the definition of δ0 is different than in Theorem 3. For a sufficiently small
λ0, we see δ̃0 = O(4β), which implies we require δ > 4β + 4α for the convergence of Theorem 4.
Note that this is a slightly strict requirement compared to Theorem 3. In particular, for a given δ,
Algorithm 4 with Option II can tolerate less number of Byzantine machines compared to Option I.

Remark 10. The result in Theorem 4 is applicable for arbitrary adversaries, whereas Theorem 3
relies on the adversary being restrictive. Hence, we can view the limitation of Theorem 4 (such
as worse statistical error-rate and stricter (δ, α) trade-off) as a price of accommodating arbitrary
adversaries.

3.7 Byzantine Robust Distributed Learning with Error
Feedback

We now investigate the role of error feedback [20] in distributed learning with Byzantine worker
machines. We stick to the formulation of Section 3.1.

In order to address the issues of convergence for sign based algorithms (like signSGD), [20]
proposes a class of optimization algorithms that uses error feedback. In this setting, the worker
machine locally stores the error between the actual local gradient and its compressed counterpart.
Using this as feedback, the worker machine adds this error term to the compressed gradient in the
subsequent iteration. Intuitively, this accounts for correcting the the direction of the local gradient.
The error-feedback has its roots in some of the classical communication system like “delta-sigma”
modulator and adaptive modulator ([127]).

We analyze the distributed error feedback algorithm in the presence of Byzantine machines. The
algorithm is presented in Algorithm 3. We observe that here the central machine sorts the worker
machines according to the norm of the compressed local gradients, and ignore the largest β fraction.
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Algorithm 3: Distributed Compressed Gradient Descent with Error Feedback
1: Input: Step size γ, Compressor Q(.), parameter β(> α).
2: Initialize: Initial iterate w0, ei(0) = 0 ∀ i ∈ [m]
3: for t = 0, 1, . . . , T − 1 do
4: Central machine: sends wt to all worker

for i ∈ [m] do in parallel
5: i-th non-Byzantine worker machine:

• computes pi(wt) = γ∇Fi(wt) + ei(t)

• sends Q(pi(wt)) to the central machine

• computes ei(t+ 1) = pi(wt)−Q(pi(wt))

6: Byzantine worker machine:

• sends ? to the central machine.

7: At Central machine:

• sorts the worker machines in non-decreasing order according to ‖Q(pi(wt))‖.

• returns the indices of the first 1− β fraction of elements as Ut.

• wt+1 = ΠW

(
wt − γ

|Ut|
∑

i∈Ut Q(pi(wt))
)

8: end for

Note that, similar to Section 3.6, we handle arbitrary adversaries. In the subsequent section, we
show (both theoretically and experimentally) that the statistical error rate of Algorithm 3 is smaller
than Algorithm 4.

3.7.1 Main Results
In this section we analyze Algorithm 3 and obtain the rate of the convergence under non-convex
smooth loss functions. Throughout the section, we select γ as the step size and assume that
Algorithm 3 is run for T iterations. We start with the following assumption.

Assumption 13. For all non-Byzantine worker machine i, the local loss functions Fi(.) satisfy
‖∇Fi(x)‖2 ≤ σ2, where x ∈ {wj}Tj=0, and {w0, . . . , wT} are the iterates of Algorithm 3.

Note that since Fi(.) can be written as loss over data points of machine i, we observe that the
bounded gradient condition is equivalent to the bounded second moment condition for SGD, and
have featured in several previous works, see, e.g., [128], [129]. Here, we are using all the data
points and (hence no randomness over the choice of data points) perform gradient descent instead
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of SGD. Also, note that Assumption 13 is weaker than the bounded second moment condition since
we do not require ‖∇Fi(x)‖2 to be bounded for all x; just when x ∈ {wj}Tj=0.

We also require the following assumption on the size of the parameter spaceW , which parallels
Assumption 11 and 12.

Assumption 14. (Size of parameter spaceW) Suppose that ‖∇F (w)‖ ≤ M for all w ∈ W . We
assume thatW contains the `2 ball {w : ‖w − w0‖ ≤ γr∗T}, where

r∗ = ε2 +M +
6β(1 +

√
1− δ)

(1− β)

(
ε1 +M +

√
3(1− δ)

δ
σ

)
+

√
12(1− δ)

δ
σ,

and (ε1, ε2) are defined in equations (3.2) and (3.3) respectively.

Similar to Assumption 11 and 12, we use the above assumption to ensure that the iterates of
Algorithm 3 stays inW , and we emphasize that this is a standard assumption to control the iterates
for non-convex loss function (see [23, 31]).

To simplify notation and for the clarity of exposition, we define the following quantities which
will be used in the main results of this section.

∆1 =
9(1 +

√
1− δ)2

2c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
+

50

c
ε22, (3.7)

∆2 =
L2

2

3(1− δ)σ2

cδ
+

2Lε22
c

+

(
1

2
+ L

)
9(1 +

√
1− δ)2

c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
,

(3.8)

∆3 = (
L2

100
+ 25L2)

3(1− δ)σ2

cδ
, (3.9)

where c is a universal constant.
We show the following rate of convergence to a critical point of the population loss function

F (.).

Theorem 5. Suppose Assumptions 9, 10, 13 and 14 hold, and α ≤ β < 1/2. Then, running
Algorithm 4 for T iterations with step size γ yields

min
t=0,...,T

‖∇F (wt)‖2 ≤ F (w0)− F ∗

cγ(T + 1)
+ ∆1 + γ∆2 + γ2∆3,

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, provided the compression

factor satisfies (1+
√

1−δ)2
(1−β)2

[α2 + β2 + (β − α)2] < 0.107. Here ∆1,∆2 and ∆3 are defined in
equations (3.7),(3.8) and (3.9) respectively.
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Remark 11. (Choice of Step Size γ) Substituting γ = 1√
T+1

, we obtain

min
t=0,...,T

‖∇F (wt)‖2 ≤ F (w0)− F ∗

c
√
T + 1

+ ∆1 +
∆2√
T + 1

+
∆3

T + 1
,

with high probability. Hence, we observe that the quantity associated with ∆3 goes down at a
considerably faster rate (O(1/T )) than the other terms and hence can be ignored, when T is large.

Remark 12. Note that when no Byzantine worker machines are present, i.e., α = β = 0, we obtain

∆1 =
50

c
ε22, ∆2 =

L2

2

3(1− δ)σ2

cδ
+

2Lε22
c

, ∆3 = (
L2

100
+ 25L2)

3(1− δ)σ2

cδ
.

Additionally, if δ = Θ(1) (this is quite common in applications like training of neural nets, as
mentioned earlier), we obtain ∆2 = C(L2σ2 + Lε22), and ∆3 = C1L

2. Substituting ε2 = O( d√
mn

)
and for a fixed d, the upper bound in the above theorem is order-wise identical to that of standard
SGD in a population loss minimization problem under similar setting.

Remark 13. (No compression setting) In the setting, where δ = 1 (no compression), we obtain

∆1 = O
[
d2

(
α2

n
+

1

mn

)]
,

and

∆2 = O
[
d2L

(
α2

n
+

1

mn

)]
,

and ∆3 = 0. The statistical rate (obtained by making T sufficiently large) of the problem is ∆1,
and this rate matches exactly to that of [23]. Hence, we could recover the optimal rate without
compression. Furthermore, this rate is optimal in (α,m, n) as shown in [23].

Remark 14. In the next section, we show that when α 6= 0 and δ = Θ(1), the statistical error rate of
Algorithm 3 is order-wise identical to the no-compression setting. Hence, we get the compression
for free. Furthermore, we argue that error feedback improves the statistical (error) rate.

3.7.2 Comparison with Algorithm 4
We now compare the statistical rate of Algorithm 3 with Algorithm 4, where no feedback is used.
Recall from Sections 3.5 and 3.6 that the statistical error rate of is given by,

∆no−feedback = O
(
d2

[
α2

n
+

1− δ
n

+
1

mn

])
.

Let us compare it with the statistical rate of our algorithm, given by

∆1 = O
(
α2d2

n
+
α2(1− δ)σ2

δ
+

d2

mn

)
.
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(a) Deterministic shift (b) Random Labeling

Figure 3.1: Training (cross entropy) loss for MNIST image. Different types of attack (a) labels with
deterministic shift (9− label) (b) random labels. Plots show theresholding scheme with different
type of byzantine attacks achieve similar convergence as ‘no byzantine’ setup.

Observe that in the setting with error feedback, we have an additional problem parameter σ2.
Hence, for the purpose of comparison, we first argue what the scaling of σ2 should be. Since,
‖∇Fi(wt)‖2 ≤ 2‖∇Fi(wt) − ∇F (wt)‖2 + 2‖∇F (wt)‖2, using Lemma 6 of Appendix 3.10, we
have

‖∇Fi(wt)‖2 ≤ 2
d2

n
+ 2‖∇F (wt)‖2,

with high probability. Since from Assumption 13, we obtain mint=0,...,T ‖∇Fi(wt)‖2 ≤ σ2, we
obtain

σ2 = Θ

(
2d2

n
+ 2 min

t=0,...,T
‖∇F (wt)‖2

)
.

As seen by [20], δ = Θ(1) is a reasonable and practical parameter regime, and in this setting, with
the above σ2, we observe that

∆1 < ∆no−feedback.

provided α2 ≤ c, for a constant c. Note that this condition is equivalent to the trade-off between
the amount of compression and the fraction of Byzantine worker machines, featured in Theorem 5,
which was required to show convergence of Algorithm 3. Hence, in the above mentioned parameter
regime, the error rate with error feedback is strictly better than no-feedback setting.

In numerical experiments, we observe that the convergence of Algorithm 3 with error feedback
is faster than Algorithm 4, which is intuitive since error feedback helps in correcting the direction
of the local gradient. We now have a theoretical justification for this fact.
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(a) Regression Problem (b) Training loss for ReLU net

Figure 3.2: Convergence for (a) regression problem (b) training (cross entropy) loss for MNIST
image. Plots show convergence beyond the theoretical bound on the number of byzantine machine.

(a) Regression Problem (b) Training loss for ReLU net

Figure 3.3: Convergence for (a) regression problem (b) training (cross entropy) loss for MNIST
image. Plots show convergence with a natural Byzantine attack of −ε times the local gradient with
high number of byzantine machines for ε = 0.9.

3.8 Experiments
In this section we validate the correctness of our proposed algorithms for linear regression problem
and training ReLU network. In all the experiments, we choose the following compression scheme:
given any x ∈ Rd, we report C(x) = {‖x‖1

d
, sgn(x)} where sgn(x) serves as the quantized vector

and ‖x‖1
d

is the scaling factor. All the reported results are averaged over 20 different runs.
First we consider a least square regression problemw∗ = argminw ‖Aw−b‖2. For the regression

problem we generate matrix A ∈ RN×d, vector w∗ ∈ Rd by sampling each item independently
from standard normal distribution and set b = Aw∗. Here we choose N = 4000 and consider
d = 1000. We partition the data set equally into m = 200 servers. We randomly choose αm
(= 10, 20) workers to be Byzantine and apply norm based thresholding operation with parameter
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(a) Number of Byzantine nodes=10 (b) Number of Byzantine nodes=20

Figure 3.4: Comparison of Robust Compressed Gradient Descent with and without thresholding
scheme in a regression problem. The plots show better convergence with thersholding.

(a) Number of Byzantine nodes=10 (b) Number of Byzantine nodes=20

Figure 3.5: Comparison of Robust Compressed Gradient Descent with majority vote based signSGD
[22] in regression Problem. The plots show better convergence with thresholding in comparison to
the majority vote based robustness of [22]

βm (= 12, 22) respectively. We simulate the Byzantine workers by adding i.i.d N (0, 10Id) entries
to the gradient. In our experiments the gradient is the most pertinent information of the the worker
server. So we choose to add noise to the gradient to make it a Byzantine worker. However, later
on, we consider several kinds of attack models. We choose ‖wt − w∗‖ as the error metric for this
problem.

Effectiveness of thresholding: We compare Algorithm 4 with compressed gradient descent (with
vanilla aggregation). Our method is equipped with Byzantine tolerance steps and the vanilla
compressed gradient just computes the average of the compressed gradient sent by the workers.
From Figure 3.4 it is evident that the the application of norm based thresholding scheme provides
better convergence result compared to the compressed gradient method without it.
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Comparison with signSGD with majority vote: In [22], a communication efficient byzantine
tolerant algorithm is proposed where communication efficiency is achieved by communicating sign
of the gradient and robustness is attained by taking co-ordinate wise majority vote. The robustness
in our algorithm comes from thresholding operation on the scaling factor. We show a comparison of
both method in Figure 3.5 in the regression setup depicted above. Our method shows a better trend
in convergence.

Error-feedback with thresholding scheme: We demonstrate the effectiveness of Byzantine
resilience with error-feedback scheme as described in Algorithm 3. We compare our scheme with
Algorithm 4 (which does not use error feedback) in Figure 3.6.

Feed-forward Neural Net with ReLU activation: Next, we show the effectiveness of our
method in training a fully connected feed forward neural net. We implement the neural net
in pytorch and use the digit recognition dataset MNIST ([106]). We partition 60, 000 training data
into 200 different worker nodes. The neural net is equipped with 1000 node hidden layer with
ReLU activation function and we choose cross-entropy-loss as the loss function. We simulate the
Byzantine workers by adding i.i.d N (0, 10Id) entries to the gradient. In Figure 3.7 we compare our
robust compressed gradeint descent scheme with the trimmed mean scheme of [23] and majority
vote based signSGD scheme of [22]. Compared to the majority vote based scheme, our scheme
converges faster. Further, our method shows as good as performance of trimmed mean despite the
fact the robust scheme of [23] is an uncompressed scheme and uses a more complicated aggregation
rules.

Different Types of Attacks: In the previous paragraph we compared our scheme with existing
scheme with additive Gaussian noise as a form of byzantine attack. We also show convergence
results with the following type of attacks, which are quite common ([23]) in neural net training
with digit recognition dataset [106]. (a) Random label: the byzantine worker machines randomly
replaces the labels of the data, and (b) Deterministic Shift: byzantine workers in a deterministic
manner replace the labels y with 9 − y (0 becomes 9 , 9 becomes 0). In Figure 3.1 we show the
convergence results with different numbers of byzantine worker nodes.

Large Number of Byzantine Workers: In Figures 3.2 and 3.3, we show the convergence results
that holds beyond the theoretical limit (as shown in Theorem 3 and 4) of the number of Byzantine
servers in the regression problem and neural net training. In Figure 3.2, for the regression problem,
the Byzantine attack is additive Gaussian noise as described before and our algorithm is robust
up to 40%(α = .4) of the workers being Byzantine. While training of the feed-forward neural
network, we apply a deterministic shift as the Byzantine attack, and the algorithm converges even
for 40%(α = .4) Byzantine workers.

Note that our robust algorithm is in essence a stochastic gradient descent algorithm. Thus, a
‘natural’ Byzantine attack would be when a Byzantine worker sends −εg where 0 ≤ ε ≤ 1 and g is
the local gradient making the algorithm ‘ascent’ type. We choose ε = 0.9 and show convergence
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(a) Number of Byzantine nodes=10 (b) Number of Byzantine nodes=20

Figure 3.6: Comparison of norm based thresholding with and without error feedback. The plots
show that error feedback based scheme offers better convergence.

(a) (b)

Figure 3.7: Training (cross entropy) loss for MNIST image. Comparison with (a) Uncompressed
Trimmed mean [23] (b) majority based signSGD of [22]. In plot (a) show that Robust Gradient
descent matches the convergence of the uncompressed trimmed mean [23]. Plot (b) show a faster
convergence compared to the algorithm of [22].

for the regression problem for up to 40% byzantine workers, and for the neural network training for
up to 33% Byzantine workers in Figure 3.3.

3.9 Conclusion and Open Problems
We address the problem of robust distributed optimization where the worker machines send the
compressed gradient (as opposed to the full gradient) to the central machine. We propose a first
order optimization algorithm and provide theoretical guarantees and experimental validation under
different setup. In some settings, we assume a restricted adversary (that adheres to the compression
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algorithm). An immediate future work would be to remove such assumption and obtain a learning
algorithm with arbitrary adversaries uniformly for all δ-approximate compressors. It might also be
interesting to study a second order distributed optimization algorithm with compressed gradients
and Hessians.

Appendix

3.10 Analysis of Algorithm 4
In this section, we provide analysis of the Lemmas required for the proof of Theorem 3 and
Theorem 4.

Notation: Let M and B denote the set of non-Byzantine and Byzantine worker machines.
Furthermore, Ut and Tt denote untrimmed and trimmed worker machines. So evidently,

|M|+ |B| = |Ut|+ |Tt| = m.

3.10.1 Proof of Theorem 3
Let g(wt) = 1

|Ut|
∑

i∈Ut Q(∇Fi(wt)) and ∆ = g(wt)−∇F (wt). We have the following Lemma to
control of ‖∆‖2.

Lemma 4. For any λ > 0, we have,

‖∆‖2 ≤ (1 + λ)

(√
1− δ + 2α

1− β

)2

‖∇F (wt)‖2 + ε̃(λ)

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, where

ε̃(λ) = 2(1 +
1

λ
)

[(√
1− δ + α + β

1− β

)2

ε21 +

(
1− α
1− β

)2

ε22

]
.

with ε1 and ε2 as defined in equation (3.2) and (3.3) respectively.

The proof of the lemma is deferred to Section 3.10.3. We prove the theorem using the above
lemma.

We first show that with Assumption 11 and with the choice of step size γ, we always stay in
W without projection. Recall that g(wt) = 1

|Ut|
∑

i∈Ut Q(∇Fi(wt)) and ∆ = g(wt)−∇F (wt). We
have

‖wt+1 − w∗‖ ≤ ‖wt − w∗‖+ γ(‖∇F (wt)‖+ ‖g(wt)−∇F (wt)‖)

≤ ‖wt − w∗‖+
c

LF
(‖∇F (wt)‖+ ‖∆‖)
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We use Lemma 4 with λ = λ0 for a sufficiently small positive constant λ0. Define δ0 =(
1− (1−β)2

1+λ0

)
. A little algebra shows that provided δ > δ0 + 4α− 9α2 + 4α3, we obtain

‖∆‖2 ≤ (1− c0)‖∇F (wt)‖2 + ε

with probability greater than or equal to 1 − c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, where c0 is a positive

constant and ε is defined in equation (3.4). Substituting, we obtain

‖wt+1 − w∗‖ ≤ ‖wt − w∗‖+
c1

LF

(
(1 +

√
1− c0)‖∇F (wt)‖+

√
ε
)

≤ ‖wt − w∗‖+
c1

LF

(
(2− c0

2
)‖∇F (wt)‖+

√
ε
)
.

where we use the fact that
√

1− c0 ≤ 1− c0/2. Now, running T = C LF (F (w0)−F (w∗))
ε

iterations, we
see that Assumption 11 ensures that the iterations of Algorithm 4 is always inW . Hence, let us now
analyze the algorithm without the projection step.

Using the smoothness of F (.), we have

F (wt+1) ≤ F (wt) + 〈∇F (wt), wt+1 − wt〉+
LF
2
‖wt+1 − wt‖2.

Using the iteration of Algorithm 4, we obtain

F (wt+1) ≤ F (wt)− γ〈∇F (wt),∇F (wt) + ∆〉+
γ2LF

2
‖∇F (wt) + ∆‖2

≤ F (wt)− γ‖∇F (wt)‖2 − γ〈∇F (wt),∆〉+
γ2LF

2
‖∇F (wt)‖2

+
γ2LF

2
‖∆‖2 + γ2LF 〈∇F (wt),∆〉

≤ F (wt)− (γ − γ2LF
2

)‖∇F (wt)‖2 + (γ + γ2LF )

(
ρ

2
‖∇F (wt)‖2 +

1

2ρ
‖∆‖2

)
+
γ2LF

2
‖∆‖2,

where ρ > 0 and the last inequality follows from Young’s inequality. Substituting ρ = 1, we obtain

(γ/2− γ2LF )‖∇F (wt)‖2 ≤ F (wt)− F (wt+1) + (γ/2 + γ2LF )‖∆‖2.

We now use Lemma 4 to obtain

(
γ

2
− γ2LF )‖∇F (wt)‖2 ≤ F (wt)− F (wt+1)

+ (γ/2 + γ2LF )

(
(1 + λ)

(√
1− δ + 2α

1− β

)2

‖∇F (wt)‖2 + ε̃(λ)

)
.
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with high probability. Upon further simplification, we have(
γ

2
− γ

2
(1 + λ)

(√
1− δ + 2α

1− β

)2

− (1 + λ)

(√
1− δ + 2α

1− β

)2

γ2LF − γ2LF

)
‖∇F (wt)‖2

≤ F (wt)− F (wt+1) + (γ/2 + γ2LF )ε̃(λ).

We now substitute γ = c
LF

, for a small enough constant c, so that we can ignore the contributions of
the terms with quadratic dependence on γ. We substitute λ = λ0 for a sufficiently small positive

constant λ0. Provided δ > δ0 + 4α− 9α2 + 4α3, where δ0 =
(

1− (1−β)2

1+λ0

)2

, we have(
γ

2
− γ

2
(1 + λ)

(√
1− δ + 2α

1− β

)2

− (1 + λ)

(√
1− δ + 2α

1− β

)2

γ2LF − γ2LF

)
=

c1

LF
,

where c1 is a constant. With this choice, we obtain

1

T + 1

T∑
t=0

‖∇F (wt)‖2 ≤ C1
LF (F (w0)− F (w∗))

T + 1
+ C2ε

where the first term is obtained from a telescopic sum and ε is defined in equation (3.4). Finally, we
obtain

min
t=0,...,T

‖∇F (wt)‖2 ≤ C1
LF (F (w0)− F (w∗))

T + 1
+ C2ε

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, proving Theorem 3.

3.10.2 Proof of Theorem 4
The proof of convergence for Theorem 4 follows the same steps as Theorem 3. Recall that the
quantity of interest is

∆̃ = g(wt)−∇F (wt)

for which we prove bound in the following lemma.

Lemma 5. For any λ > 0, we have,

‖∆̃‖2 ≤ ((1 + λ)

(
(1 + β)

√
1− δ + 2α

1− β

)2

||∇F (wt)||2 + ε̃(λ)

with probability greater than or equal to 1− c1(1−α)md

(1+nL̂D)d
− c2d

(1+(1−α)mnL̂D)d
, where

ε̃(λ) = 2(1 +
1

λ
)

((
(1 + β)

√
1− δ + α + β

1− β

)2

ε21 + (
1− α
1− β

)2ε22

)
.

with ε1 and ε2 as defined in equation (3.2) and (3.3) respectively.
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Taking the above lemma for granted, we proceed to prove Theorem 4. The proof of Lemma 5 is
deferred to Section 3.10.6.

The proof parallels the proof of 3, except the fact that we use Lemma 5 to upper bound
‖∆̃‖2. Correspondingly, a little algebra shows that we require δ > δ̃0 + 4α − 8α2 + 4α3, where
δ̃0 =

(
1− (1−β)2

(1+β)2(1+λ0)

)
, where λ0 is a sufficiently small positive constant. With the above

requirement, the proof follows the same steps as Theorem 3 and hence we omit the details here.

3.10.3 Proof of Lemma 4:
We require the following result to prove Lemma 4. In the following result, we show that for
non-Byzantine worker machine i, the local gradient ∇Fi(wt) is concentrated around the global
gradient∇F (wt).

Lemma 6. We have

max
i∈M
‖∇Fi(wt)−∇F (wt)‖ ≤ ε1

with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
, where ε1 is defined in equation (3.2).

Furthermore, we have the following Lemma which implies that the average of local gradients
∇Fi(wt) over non-Byzantine worker machines is close to its expectation ∇F (wt).

Lemma 7. We have

‖ 1

|M|
∑
i∈M

∇Fi(wt)−∇F (wt)‖ ≤ ε2.

with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
− 2d

(1+(1−α)mnL̂D)d
, where ε2 is defined in equation (3.3).

Recall the definition of ∆. Using triangle inequality, we obtain

‖∆‖ ≤ ‖ 1

|Ut|
∑
i∈Ut

Q(∇Fi(wt))−
1

|Ut|
∑
i∈Ut

∇Fi(wt)‖︸ ︷︷ ︸
T1

+ ‖ 1

|Ut|
∑
i∈Ut

∇Fi(wt)−∇F (wt)‖︸ ︷︷ ︸
T2

We first control T1. Using the compression scheme (Definition 9), we obtain

T1 =‖ 1

|Ut|
∑
i∈Ut

Q(∇Fi(wt))−
1

|Ut|
∑
i∈Ut

∇Fi(wt)‖ ≤
√

1− δ
|Ut|

∑
i∈Ut

‖∇Fi(wt)‖

≤
√

1− δ
|Ut|

[∑
i∈M

‖∇Fi(wt)‖ −
∑

i∈M∩Tt

‖∇Fi(wt)‖+
∑

i∈B∩Ut

‖∇Fi(wt)‖

]

≤
√

1− δ
|Ut|

[∑
i∈M

‖∇Fi(wt)‖+
∑

i∈B∩Ut

‖∇Fi(wt)‖

]
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Since β ≥ α, we ensure thatM∩ Tt 6= ∅. We have,

T1 ≤
√

1− δ
|Ut|

[∑
i∈M

‖∇Fi(wt)‖+ αmmax
i∈M
‖∇Fi(wt)‖

]

≤
√

1− δ
|Ut|

[∑
i∈M

‖∇Fi(wt)−∇F (wt)‖+
∑
i∈M

‖∇F (wt)‖

]
︸ ︷︷ ︸

T3

+
αm
√

1− δ
|Ut|

max
i∈M

[‖∇Fi(wt)−∇F (wt)‖+ ‖∇F (wt)‖]︸ ︷︷ ︸
T4

We now upper-bound T3. We have

T3 ≤
√

1− δ|M|
|Ut|

max
i∈M
‖∇Fi(wt)−∇F (wt)‖+

√
1− δ|M|
|Ut|

‖∇F (wt)‖

≤
√

1− δ(1− α)

(1− β)
max
i∈M
‖∇Fi(wt)−∇F (wt)‖+

√
1− δ(1− α)

(1− β)
‖∇F (wt)‖

≤
√

1− δ(1− α)

(1− β)
ε1 +

√
1− δ(1− α)

(1− β)
‖∇F (wt)‖

with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
, where we use Lemma 6. Similarly, for T4, we have

T4 ≤
√

1− δα
1− β

ε1 +

√
1− δα
1− β

‖∇F (wt)‖.

We now control the terms in T2. We obtain the following:

T2 ≤
1

|Ut|
‖
∑
i∈Ut

∇Fi(wt)−∇F (wt)‖

≤ 1

|Ut|
‖
∑
i∈M

(∇Fi(wt)−∇F (wt))−
∑

i∈M∩Tt

(∇Fi(wt)−∇F (wt)) +
∑
i∈B∩Tt

(∇Fi(wt)−∇F (wt))‖

≤ 1

|Ut|
‖
∑
i∈M

(∇Fi(wt)−∇F (wt))‖+
1

|Ut|
‖
∑

i∈M∩Tt

(∇Fi(wt)−∇F (wt))‖

+
1

|Ut|
‖
∑
i∈B∩Tt

(∇Fi(wt)−∇F (wt))‖.

Using Lemma 7, we have

1

|Ut|
‖
∑
i∈M

(∇Fi(wt)−∇F (wt))‖ ≤
1− α
1− β

ε2.
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with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
− 2d

(1+(1−α)mnL̂D)d
. Also, we obtain

1

|Ut|
‖
∑

i∈M∩Tt

(∇Fi(wt)−∇F (wt))‖ ≤
β

1− α
max
i∈M
‖∇Fi(wt)−∇F (wt)‖ ≤

β

1− α
ε1,

with probability at least 1− 2(1−α)md

(1+nL̂D)d
, where the last inequality is derived from Lemma 6. Finally,

for the Byzantine term, we have

1

|Ut|
‖
∑
i∈B∩Tt

(∇Fi(wt)−∇F (wt))‖ ≤
α

1− β
max
i∈B∩Tt

‖∇Fi(wt)‖+
α

1− β
‖∇F (wt)‖

≤ α

1− β
max
i∈M
‖∇Fi(wt)‖+

α

1− β
‖∇F (wt)‖

≤ α

1− β
max
i∈M
‖∇Fi(wt)−∇F (wt)‖+

2α

1− β
‖∇F (wt)‖

≤ α

1− β
ε1 +

2α

1− β
‖∇F (wt)‖,

with high probability, where the last inequality follows from Lemma 6.
Combining all the terms of T1 and T2, we obtain,

‖∆‖ ≤
√

1− δ + 2α

1− β
‖∇F (wt)‖+

√
1− δ + α + β

1− β
ε1 +

1− α
1− β

ε2.

Now, using Young’s inequality, for any λ > 0, we obtain

‖∆‖2 ≤ (1 + λ)

(√
1− δ + 2α

1− β

)2

‖∇F (wt)‖2 + ε̃(λ)

where

ε̃(λ) = 2(1 +
1

λ
)

[(√
1− δ + α + β

1− β

)2

ε21 +

(
1− α
1− β

)2
]
ε22.

3.10.4 Proof of Lemma 6:
For a fixed i ∈ M, we first analyze the quantity ‖∇Fi(wt) − ∇F (wt)‖. Notice that i is non-
Byzantine. Recall that machine i has n independent data points. We use the sub-exponential
concentration to control this term. Let us rewrite the concentration inequality.

Univariate sub-exponential concentration: Suppose Y is univariate random variable with
EY = µ and y1, . . . , yn are i.i.d draws of Y . Also, Y is v sub-exponential. From sub-exponential
concentration (Hoeffding’s inequality), we obtain

P

(
| 1
n

n∑
i=1

yi − µ| > t

)
≤ 2 exp{−nmin(

t

v
,
t2

v2
)}.
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We directly use this to the k-th partial derivative of Fi. Let ∂kf(wt, z
i,j) be the partial derivative

of the loss function with respect to k-th coordinate on i-th machine with j-th data point. From
Assumption 10, we obtain

P

(
| 1
n

n∑
j=1

∂kf(wt, z
i,j)− ∂kF (wt)| ≥ t

)
≤ 2 exp{−nmin

(
t

v
,
t2

v2

)
}.

Since∇Fi(wt) = 1
n

∑n
j=1∇f(wt, z

i,j), denoting∇F (k)
i (wt) as the k-th coordinate of∇Fi(wt),

we have

|∇F (k)
i (wt)− ∂kF (wt)| ≤ t

with probability at least 1− 2 exp{−nmin( t
v
, t

2

v2
)}.

This result holds for a particular wt. To extend this for all w ∈ W , we exploit the covering net
argument and the Lipschitz continuity of the partial derivative of the loss function (Assumption 9).
Let {w1, . . . , wN} be a δ covering of W . Since W has diameter D, from Vershynin, we obtain
N ≤ (1 + D

δ
)d. Hence with probability at least

1− 2Nd exp{−nmin

(
t

v
,
t2

v2

)
},

we have

|∇F (k)
i (w)− ∂kF (w)| ≤ t

for all w ∈ {w1, . . . , wN} and k ∈ [d]. This implies

‖∇Fi(wt)−∇F (wt)‖ ≤ t
√
d,

with probability greater than or equal to 1− 2Nd exp{−nmin( t
v
, t

2

v2
)}.

We now reason about w ∈ W \ {w1, . . . , wN} via Lipschitzness (Assumption 9). From the
definition of δ cover, for anyw ∈ W , there existsw`, an element of the cover such that ‖w−w`‖ ≤ δ.
Hence, we obtain

|∇F (k)
i (w)− ∂kF (w)| ≤ t+ 2Lkδ

for all w ∈ W and consequently

‖∇Fi(wt)−∇F (wt)‖ ≤
√
d t+ 2δL̂

with probability at least 1− 2Nd exp{−nmin( t
v
, t

2

v2
)}, where L̂ =

√∑d
k=1 L

2
k.

Choosing δ = 1

2nL̂
and

t = vmax{d
n

log(1 + 2nL̂d),

√
d

n
log(1 + 2nL̂d)},
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we obtain

‖∇Fi(wt)−∇F (wt)‖ ≤ v
√
d

(
max{d

n
log(1 + 2nL̂d),

√
d

n
log(1 + 2nL̂d)}

)
+

1

n
= ε1,

(3.10)

with probability greater than 1 − d

(1+nL̂D)d
. Taking union bound on all non-Byzantine machines

yields the theorem.

3.10.5 Proof of Lemma 7
We need to upper bound the following quantity:

‖ 1

|M|
∑
i∈M

(∇Fi(wt)−∇F (wt))‖

We now use similar argument (sub-exponential concentration) like Lemma 6. The only difference
is that in this case, we also consider averaging over worker nodes. We obtain the following:

‖ 1

|M|
∑
i∈M

(∇Fi(wt)−∇F (wt))‖ ≤ ε2

where

ε2 = v
√
d

(
max{ d

(1− α)mn
log(1 + 2(1− α)mnL̂d),

√
d

(1− α)mn
log(1 + 2(1− α)mnL̂d)}

)
,

with probability 1− 2d

(1+(1−α)mnL̂D)d
.

3.10.6 Proof of Lemma 5
Here we prove an upper bound on the norm of

∆̃ = g(wt)−∇F (wt)

where g(wt) = 1
|Ut|
∑

i∈Ut Q(∇Fi(wt)).
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We have

||∆̃|| =|| 1

|Ut|
∑
i∈Ut

Q(∇Fi(wt))−∇F (wt)||

=
1

|Ut|
||
∑
i∈M

[Q(∇Fi(wt))−∇F (wt)]−
∑

i∈(M∩Tt)

[Q(∇Fi(wt))−∇F (wt)]

+
∑

i∈(B∩Ut)

[Q(∇Fi(wt))−∇F (wt)]||

≤ 1

|Ut|

(
||
∑
i∈M

Q(∇Fi(wt))−∇F (wt)||︸ ︷︷ ︸
T1

+ ||
∑

i∈(M∩Tt)

Q(∇Fi(wt))−∇F (wt)||︸ ︷︷ ︸
T2

+ ||
∑

i∈(B∩Ut)

Q(∇Fi(wt))−∇F (wt)||︸ ︷︷ ︸
T3

)

Now we bound each term separately. For the first term, we have

1

|Ut|
T1 =

1

|Ut|
||
∑
i∈M

Q(∇Fi(wt))−∇F (wt)||

=
1

|Ut|
||
∑
i∈M

Q(∇Fi(wt))−∇Fi(wt)||+
1

|Ut|
||
∑
i∈M

∇Fi(wt)−∇F (wt)||

≤ 1

|Ut|
∑
i∈M

(
||Q(∇Fi(wt))−∇Fi(wt)||

)
+

1− α
1− β

ε2

≤ 1

|Ut|
∑
i∈M

(√
1− δ||∇Fi(wt)||

)
+

1− α
1− β

ε2

≤
√

1− δ
|Ut|

∑
i∈M

(
||∇F (wt)||+ ||∇Fi(wt)−∇F (wt)||

)
+

1− α
1− β

ε2

≤
√

1− δ(1− α)

1− β
||∇F (wt)||+

√
1− δ(1− α)

1− β
ε1 +

1− α
1− β

ε2

where we use the definition of a δ-approximate compressor, Lemma 6 and Lemma 7. Similarly, we
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can bound T2 as

T2 ≤
∑

i∈(M∩Tt)

||Q(∇Fi(wt))−∇F (wt)||

≤ βmmax
i∈M
||Q(∇Fi(wt))−∇F (wt)||

≤ βmmax
i∈M

(√
1− δ||∇Fi(wt))||+ ||∇Fi(wt)−∇F (wt)||

)
≤ βmmax

i∈M

(√
1− δ||∇F (wt))||+ (1 +

√
1− δ)||∇Fi(wt)−∇F (wt)||

)
where we use the definition of δ-approximate compressor. Hence invoking Lemma 6, we obtain

1

|Ut|
T2 ≤

β
√

1− δ
1− β

||∇F (wt))||+
β(1 +

√
1− δ)

1− β
ε1

Also, owing to the trimming with β > α, we have at least one good machine in the set Tt for all t.
Now each term in the set B ∩ Ut, we have

T3 =
∑

i∈(B∩Ut)

||Q(∇Fi(wt))−∇F (wt)||

≤ αm(max
i∈M
||Q(∇Fi(wt))||+ ||∇F (wt)||)

≤ αm(max
i∈M

√
1− δ||∇Fi(wt)||+ ||∇Fi(wt)||+ ||∇F (wt)||)

≤ αm

(
(1 +

√
1− δ)ε1 + (2 +

√
1− δ)||∇F (wt)||

)
1

|Ut|
T3 ≤

α(2 +
√

1− δ)
1− β

||∇F (wt)||+
α(1 +

√
1− δ)

1− β
ε1

where we use Lemma 6. Putting T1, T2, T3 we get

||∆̃|| ≤
(√

1− δ(1− α)

1− β
+
β
√

1− δ
1− β

+
α(2 +

√
1− δ)

1− β

)
||∇F (wt)||

+

(√
1− δ(1− α)

1− β
+
β(1 +

√
1− δ)

1− β
+
α(1 +

√
1− δ)

1− β

)
ε1 +

1− α
1− β

ε2

=

(
(1 + β)

√
1− δ + 2α

1− β

)
||∇F (wt)||+

(
(1 + β)

√
1− δ + α + β

1− β

)
ε1 +

1− α
1− β

ε2

||∆̃||2 ≤ (1 + λ)

(
(1 + β)

√
1− δ + 2α

1− β

)2

||∇F (wt)||2 + ε̃(λ)

where ε̃(λ) = 2(1 + 1
λ
)

((
(1+β)

√
1−δ+α+β

1−β

)2

ε21 + (1−α
1−β )2ε22

)
. Hence, the lemma follows.
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3.11 Proof of Theorem 5
We first define an auxiliary sequence defined as:

w̃t = wt −
1

|M|
∑
i∈M

ei(t)

Hence, we obtain

w̃t+1 = wt+1 −
1

|M|
∑
i∈M

ei(t+ 1).

For notational simplicity, let us drop the subscript t from Ut and Tt and denote them as U and T .
Since (we will ensure that the iterates remain in the parameter space and hence we can ignore

the projection step),

wt+1 = wt −
1

|U|
∑
i∈U

pi(wt),

we get

w̃t+1 = wt −
1

|U|
∑
i∈U

C(pi(wt))−
1

|M|
∑
i∈M

ei(t+ 1)

= wt −
1

|U|

(∑
i∈M

C(pi(wt)) +
∑
i∈B∩U

C(pi(wt))−
∑

i∈M∩T

C(pi(wt))

)
− 1

|M|
∑
i∈M

ei(t+ 1)

= wt −
(

1− α
1− β

)
1

|M|
∑
i∈M

C(pi(wt))−
1

|M|
∑
i∈M

ei(t+ 1)

− 1

|U|
∑
i∈B∩U

C(pi(wt)) +
1

|U|
∑

i∈M∩T

C(pi(wt))

Since C(pi(wt)) + ei(t+ 1) = pi(wt) for all i ∈M, we obtain(
1− α
1− β

)
1

|M|
∑
i∈M

C(pi(wt)) +
1

|M|
∑
i∈M

ei(t+ 1) =
1

|M|
∑
i∈M

pi(wt) +
β − α
1− β

1

|M|
∑
i∈M

C(pi(wt))

Let us denote T1 = 1
|U|
∑

i∈B∩U C(pi(wt)), T2 = 1
|U|
∑

i∈M∩T C(pi(wt)) and T3 = β−α
1−β

1
|M|
∑

i∈M C(pi(wt)).
With this, we obtain

w̃t+1 = wt −
1

|M|
pi(wt)− T1 + T2 − T3

= w̃t +
1

|M|
∑
i∈M

ei(t)−
1

|M|
∑
i∈M

pi(wt)− T̃

= w̃t − γ
1

|M|
∑
i∈M

∇Fi(wt)− T̃
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where T̃ = T1− T2 + T3. Observe that the auxiliary sequence looks similar to a distributed gradient
step with a presence of T̃ . For the convergence analysis, we will use this relation along with an
upper bound on ‖T̃‖.

Using this auxiliary sequence, we first ensure that the iterates of our algorithm remains close to
one another. To that end, we have

wt+1 − wt = w̃t+1 − w̃t +
1

|M|
ei(t+ 1)− 1

|M|
ei(t)

= −γ 1

|M|
∑
i∈M

∇Fi(wt)− T̃ +
1

|M|
ei(t+ 1)− 1

|M|
ei(t).

Hence, we obtain

‖wt+1 − wt‖ ≤ ‖γ
1

|M|
∑
i∈M

∇Fi(wt)‖+ ‖T̃‖+ ‖ 1

|M|
ei(t+ 1)‖+ ‖ 1

|M|
ei(t)‖

≤ γ‖ 1

|M|
∑
i∈M

∇Fi(wt)−∇F (wt)‖+ γ‖∇F (wt)‖+ ‖T̃‖+ ‖ 1

|M|
ei(t+ 1)‖

+ ‖ 1

|M|
ei(t)‖

≤ γε2 + γ‖∇F (wt)‖+ ‖T̃‖+ ‖ 1

|M|
ei(t+ 1)‖+ ‖ 1

|M|
ei(t)‖.

Now, using Lemma 8 and Lemma 9 in conjunction with Assumption 11 ensures the iterates of
Algorithm 3 stays in the parameter spaceW .
We assume that the global loss function F (.) is LF smooth. We get

F (w̃t+1) ≤ F (w̃t) + 〈∇F (w̃t), w̃t+1 − w̃t〉+
LF
2
‖w̃t+1 − w̃t‖2.

Now, we use the above recursive equation

w̃t+1 = w̃t − γ
1

|M|
∑
i∈M

∇Fi(wt)− T̃ .

Substituting, we obtain

F (w̃t+1) ≤ F (w̃t)− γ〈∇F (w̃t),
1

|M|
∑
i∈M

∇Fi(wt)〉 − 〈∇F (w̃t), T̃ 〉

+
LF
2
‖ γ

|M|
∑
i∈M

∇Fi(wt) + T̃‖2

≤ F (w̃t)− γ〈∇F (w̃t),
1

|M|
∑
i∈M

∇Fi(wt)〉 − 〈∇F (w̃t), T̃ 〉

+ LFγ
2‖ 1

|M|
∑
i∈M

∇Fi(wt)‖2 + LF‖T̃‖2 (3.11)
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In the subsequent calculation, we use the following definition of smoothness:

‖∇F (y1)−∇F (y2)‖ ≤ LF‖y1 − y2‖

for all y1 and y2 ∈ Rd.
Rewriting the right hand side (R.H.S) of equation (3.11), we obtain

R.H.S = F (w̃t)− γ〈∇F (w̃t),∇F (wt)〉︸ ︷︷ ︸
Term−I

+ γ〈∇F (w̃t),∇F (wt)−
1

|M|
∑
i∈M

∇Fi(wt)〉︸ ︷︷ ︸
Term−II

+ 〈∇F (wt),−T̃ 〉+ 〈∇F (w̃t)−∇F (wt),−T̃ 〉︸ ︷︷ ︸
Term−III

+ 2LFγ
2‖ 1

|M|
∑
i∈M

∇Fi(wt)−∇F (wt)‖2 + 2LFγ
2‖∇F (wt)‖2 + LF‖T̃‖2

︸ ︷︷ ︸
Term−IV

.

We now control the 4 terms separately. We start with Term-I.

Control of Term-I: We obtain

Term-I = F (w̃t)− γ〈∇F (wt),∇F (wt)〉 − γ〈∇F (w̃t)−∇F (wt),∇F (wt)〉

≤ F (w̃t)− γ‖∇F (wt)‖2 + 25γ‖∇F (w̃t)−∇F (wt)‖2 +
γ

100
‖∇F (wt)‖2,

where we use Young’s inequality (〈a, b〉 ≤ ρ
2
‖a‖2 + 1

2ρ
‖b‖2 with ρ = 50) in the last inequality.

Using the smoothness of F (.), we obtain

Term-I ≤ F (w̃t)− γ‖∇F (wt)‖2 +
γ

100
‖∇F (wt)‖2 + 25γL2

F‖
1

|M|
∑
i∈M

ei(t)‖2. (3.12)

Control of Term-II: Similarly, for Term-II, we have

Term-II = γ〈∇F (w̃t),∇F (wt)−
1

|M|
∑
i∈M

∇Fi(wt)〉 ≤ 50γε22 +
γ

200
‖∇F (w̃t)‖2

≤ 50γε22 +
γ

100
‖∇F (wt)‖2 +

γL2
F

100
‖ 1

|M|
∑
i∈M

ei(t)‖2. (3.13)

Control of Term-III: We obtain

Term-III = 〈∇F (wt),−T̃ 〉+ 〈∇F (w̃t)−∇F (wt),−T̃ 〉

≤ γ

2
‖∇F (wt)‖2 +

1

2γ
‖T̃‖2 +

L2
F

2
‖ 1

|M|
∑
i∈M

ei(t)‖2 +
1

2
‖T̃‖2. (3.14)
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Control of Term-IV:

Term-IV = 2LFγ
2‖ 1

|M|
∑
i∈M

∇Fi(wt)−∇F (wt)‖2 + 2LFγ
2‖∇F (wt)‖2 + LF‖T̃‖2

≤ 2LFγ
2ε22 + 2LFγ

2‖∇F (wt)‖2 + LF‖T̃‖2 (3.15)

Combining all 4 terms, we obtain

F (w̃t+1) ≤ F (w̃t)−
(γ

2
− γ

50
− 2LFγ

2
)
‖∇F (wt)‖2 +

(
25γL2

F +
γL2

F

100
+
L2
F

2

)
‖ 1

|M|
∑
i∈M

ei(t)‖2

+ 50γε22 + 2LFγ
2ε22 +

(
1

2γ
+

1

2
+ LF

)
‖T̃‖2 (3.16)

We now control the error sequence and ‖T̃‖2. These will be separate lemmas, but here we write is
as a whole.

Control of error sequence:

Lemma 8. For all i ∈M, we have

‖ei(t)‖2 ≤ 3(1− δ)
δ

γ2σ2

for all t ≥ 0.

Proof. For machine i ∈M, we have

‖ei(t+ 1)‖2 = ‖C(pi(wt))− pi(wt)‖2 ≤ (1− δ)‖pi(wt)‖2 = (1− δ)‖γ∇Fi(wt) + ei(t)‖2

Using technique similar to the proof of [20, Lemma 3] and using ‖∇Fi(wt)‖2 ≤ σ2, we obtain

‖ei(t+ 1)‖2 ≤ 2(1− δ)(1 + 1/η)

δ
γ2σ2

where η > 0. Substituting η = 2 implies

‖ei(t+ 1)‖2 ≤ 3(1− δ)
δ

γ2σ2 (3.17)

for all i ∈M. This also implies

max
i∈M
‖ei(t+ 1)‖2 ≤ 3(1− δ)

δ
γ2σ2.

□ 
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Control of ‖T̃‖2:

Lemma 9. We obtain

‖T̃‖2 ≤ 9(1 +
√

1− δ)2γ2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
with probability exceeding 1− 2(1−α)md

(1+nL̂D)d
.

Proof. We have

‖T̃‖ = ‖T1 − T2 + T3‖ ≤ ‖T1‖+ ‖T2‖+ ‖T3‖.

We control these 3 terms separately. We obtain

‖T1‖ = ‖ 1

|U|
∑
i∈B∩U

C(pi(wt))‖ ≤
1

(1− β)m

∑
i∈B∩U

‖C(pi(wt))‖.

Since the worker machines are sorted according to ‖C(pi(wt))‖ (the central machine only gets to
see C(pi(wt)), and so the most natural metric to sort is ‖C(pi(wt))‖), we obtain

‖T1‖ ≤
αm

(1− β)m
max
i∈M
‖C(pi(wt))‖

≤ (1 +
√

1− δ) αm

(1− β)m
max
i∈M
‖pi(wt)‖

≤ (1 +
√

1− δ) αm

(1− β)m
max
i∈M
‖γ∇Fi(wt) + ei(t)‖

≤ (1 +
√

1− δ) α

(1− β)
γmax
i∈M
‖∇Fi(wt)−∇F (wt)‖+ (1 +

√
1− δ) α

(1− β)
γ‖∇F (wt)‖

+ (1 +
√

1− δ) α

(1− β)
max
i∈M
‖ei(t)‖

≤ (1 +
√

1− δ) αγε1
(1− β)

+ (1 +
√

1− δ) αγ

(1− β)
‖∇F (wt)‖

+ (1 +
√

1− δ) αγσ

(1− β)

√
3(1− δ)

δ
.

Hence,

‖T1‖2 ≤ 3
(1 +

√
1− δ)2

(1− β)2
α2γ2

(
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
.

Similarly, we obtain,

‖T2‖2 ≤ 3
(1 +

√
1− δ)2

(1− β)2
β2γ2

(
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
.
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For T3, we have

‖T3‖ =
β − α
1− β

‖ 1

|M|
∑
i∈M

C(pi(wt))‖ ≤
β − α
1− β

1

|M|
∑
i∈M

(1 +
√

1− δ)‖pi(wt)‖

≤ (1 +
√

1− δ)β − α
1− β

max
i∈M
‖pi(wt)‖

Using the previous calculation, we obtain

‖T3‖ ≤ (1 +
√

1− δ)(β − α)γε1
(1− β)

+ (1 +
√

1− δ)(β − α)γ

(1− β)
‖∇F (wt)‖

+ (1 +
√

1− δ)(β − α)γσ

(1− β)

√
3(1− δ)

δ
,

and as a result,

‖T3‖2 ≤ 3
(1 +

√
1− δ)2

(1− β)2
(β − α)2γ2

(
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
.

Combining the above 3 terms, we obtain

‖T̃‖2 ≤ 3‖T1‖2 + 3‖T2‖2 + 3‖T3‖2

≤ 9(1 +
√

1− δ)2γ2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
.

Back to the convergence of F (.): We use the above bound on ‖T̃‖2 and Lemma 8 to conclude
the proof of the main convergence result. Recall equation (3.16):

F (w̃t+1) ≤ F (w̃t)−
(γ

2
− γ

50
− 2LFγ

2
)
‖∇F (wt)‖2 +

(
25γL2

F +
γL2

F

100
+
L2
F

2

)
‖ 1

|M|
∑
i∈M

ei(t)‖2

+ 50γε22 + 2LFγ
2ε22 +

(
1

2γ
+

1

2
+ LF

)
‖T̃‖2

First, let us compute the term associated with the error sequence. Note that (from Cauchy-Schwartz
inequality)

‖ 1

|M|
∑
i∈M

ei(t)‖2 ≤ 1

|M|
∑
i∈M

‖ei(t)‖2,

and from equation (3.17), we obtain

‖ 1

|M|
∑
i∈M

ei(t)‖2 ≤ 3(1− δ)
δ

γ2σ2,

□ 
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and so the error term is upper bounded by(
γ2L2

F

2
+
γ3L2

F

100
+ 25γ3L2

F

)
3(1− δ)σ2

δ
.

We now substitute the expression for ‖T̃‖2. We obtain(
1

2γ
+

1

2
+ LF

)
‖T̃‖2 =

1

2γ
‖T̃‖2 +

(
1

2
+ LF

)
‖T̃‖2.

The first term in the above equation is

1

2γ
‖T̃‖2 ≤ 9γ(1 +

√
1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
≤ 9γ(1 +

√
1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

]
‖∇F (wt)‖2

+
9γ(1 +

√
1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
,

and the second term is(
1

2
+ LF

)
‖T̃‖2 ≤

(
1

2
+ LF

)
9γ2(1 +

√
1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

]
×
(
ε21 + ‖∇F (wt)‖2 +

3(1− δ)
δ

σ2

)
≤
(

1

2
+ LF

)
9γ2(1 +

√
1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

]
‖∇F (wt)‖2

+

(
1

2
+ LF

)
9γ2(1 +

√
1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
Collecting all the above terms, the coefficient of −γ‖∇F (wt)‖2 is given by

1

2
− 1

50
− 2LFγ −

9(1 +
√

1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

]
− (

1

2
+ LF )

9γ(1 +
√

1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

]
.

Provided we select a sufficiently small γ, a little algebra shows that if

9(1 +
√

1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

]
<

(
1

2
− 1

50

)
,
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the coefficient of ‖∇F (wt)‖2 becomes −cγ, where c > 0 is a universal constant. Considering the
other terms and rewriting equation (3.16), we obtain

F (w̃t+1) ≤ F (w̃t)− cγ‖∇F (wt)‖2 +

(
γ2L2

F

2
+
γ3L2

F

100
+ 25γ3L2

F

)
3(1− δ)σ2

δ
+ 50γε22

+ 2LFγ
2ε22 +

9γ(1 +
√

1− δ)2

2(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
+

(
1

2
+ LF

)
9γ2(1 +

√
1− δ)2

(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
.

Continuing, we get

1

T + 1

T∑
t=0

‖∇F (wt)‖2 ≤ 1

cγ(T + 1)

T∑
t=0

(F (w̃t)− F (w̃t+1))

+

(
γL2

F

2
+
γ2L2

F

100
+ 25γ2L2

F

)
3(1− δ)σ2

cδ
+

50

c
ε22

+
2LFγε

2
2

c
+

9(1 +
√

1− δ)2

2c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
+

(
1

2
+ LF

)
9γ(1 +

√
1− δ)2

c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
.

Using the telescoping sum, we obtain

min
t=0,...,T

‖∇F (wt)‖2 ≤ F (w0)− F ∗

cγ(T + 1)

+

[
9(1 +

√
1− δ)2

2c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
+

50

c
ε22

]
+ γ[

L2
F

2

3(1− δ)σ2

cδ
+

2LF ε
2
2

c

+

(
1

2
+ LF

)
9(1 +

√
1− δ)2

c(1− β)2

[
α2 + β2 + (β − α)2

](
ε21 +

3(1− δ)
δ

σ2

)
]

+ γ2

[
(
L2
F

100
+ 25L2

F )
3(1− δ)σ2

cδ

]
Simplifying the above expression, we write

min
t=0,...,T

‖∇F (wt)‖2 ≤ F (w0)− F ∗

cγ(T + 1)
+ ∆1 + γ∆2 + γ2∆3,

where the definition of ∆1,∆2 and ∆3 are immediate from the above expression.
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Chapter 4

Efficient and Robust FL with Newton
Algorithm

We develop a distributed second order optimization algorithm that is communication-efficient
as well as robust against Byzantine failures of the worker machines. We propose COMRADE
(COMunication-efficient and Robust Approximate Distributed nEwton), an iterative second order
algorithm, where the worker machines communicate only once per iteration with the center machine.
This is in sharp contrast with the state-of-the-art distributed second order algorithms like GIANT
[26] and DINGO[27], where the worker machines send (functions of) local gradient and Hessian
sequentially; thus ending up communicating twice with the center machine per iteration. Moreover,
we show that the worker machines can further compress the local information before sending it to
the center. In addition, we employ a simple norm based thresholding rule to filter-out the Byzantine
worker machines. We establish the linear-quadratic rate of convergence of COMRADE and establish
that the communication savings and Byzantine resilience result in only a small statistical error
rate for arbitrary convex loss functions. To the best of our knowledge, this is the first work that
addresses the issue of Byzantine resilience in second order distributed optimization. Furthermore,
we validate our theoretical results with extensive experiments on synthetic and benchmark LIBSVM
[47] data-sets and demonstrate convergence guarantees.

4.1 Introduction
In this chapter, we propose COMRADE, a distributed approximate Newton-type algorithm that
communicates less and is resilient to Byzantine workers. Specifically, we consider a distributed
setup with m worker machines and one center machine. The goal is to minimize a regularized
convex loss f : Rd → R, which is additive over the available data points. Furthermore, we assume
that α fraction of the worker machines are Byzantine, where α ∈ [0, 1/2). We assume that Byzantine
workers can send any arbitrary values to the center machine. In addition, they may completely know
the learning algorithm and are allowed to collude with each other. To the best of our knowledge, this
is the first work that addresses the problem of Byzantine resilience in second order optimization.
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In our proposed algorithm, the worker machines communicate only once per iteration with
the center machine. This is in sharp contrast with the state-of-the-art distributed second order
algorithms (like GIANT [26], DINGO [27], Determinantal Averaging [34]), which sequentially
estimates functions of local gradients and Hessians and communicate them with the center machine.
In this way, they end up communicating twice per iteration with the center machine. We show
that this sequential estimation is redundant. Instead, in COMRADE, the worker machines only
send a d dimensional vector, the product of the inverse of local Hessian and the local gradient. Via
sketching arguments, we show that the empirical mean of the product of local Hessian inverse and
local gradient is close to the global Hessian inverse and gradient product, and thus just sending the
above-mentioned product is sufficient to ensure convergence. Hence, in this way, we save O(d)
bits of communication per iteration. Furthermore, in Section 4.5, we argue that, in order to cut
down further communication, the worker machines can even compress the local Hessian inverse
and gradient product. Specifically, we use a (generic) δ-approximate compressor ([20]) for this, that
encompasses sign-based compressors like QSGD [21] and topk sparsification [15].

For Byzantine resilience, COMRADE employs a simple thresholding policy on the norms
of the local Hessian inverse and local gradient product. Note that norm-based thresholding is
computationally much simpler in comparison to existing co-ordinate wise median or trimmed mean
([23]) algorithms. Since the norm of the Hessian-inverse and gradient product determines the
amount of movement for Newton-type algorithms, this norm corresponds to a natural metric for
identifying and filtering out Byzantine workers.

Our Contributions: We propose a communication efficient Newton-type algorithm that is robust
to Byzantine worker machines. Our proposed algorithm, COMRADE takes as input the local
Hessian inverse and gradient product (or a compressed version of it) from the worker machines, and
performs a simple thresholding operation on the norm of the said vector to discard β > α fraction
of workers having largest norm values. We prove the linear-quadratic rate of convergence of our
proposed algorithm for strongly convex loss functions. In particular, suppose there are m worker
machines, each containing s data points; and let ∆t = wt − w∗, where wt is the t-th iterate of
COMRADE, and w∗ is the optimal model we want to estimate. In Theorem 2, we show that

‖∆t+1‖ ≤ max{Ψ(1)
t ‖∆t‖,Ψ(2)

t ‖∆t‖2}+ (Ψ
(3)
t + α)

√
1

s
,

where {Ψ(i)
t }3

i=1 are quantities dependent on several problem parameters. Notice that the above
implies a quadratic rate of convergence when ‖∆t‖ ≥ Ψ

(1)
t /Ψ

(2)
t . Subsequently, when ‖∆t‖

becomes sufficiently small, the above condition is violated and the convergence slows down to a
linear rate. The error-floor, which is O(1/

√
s) comes from the Byzantine resilience subroutine in

conjunction with the simultaneous estimation of Hessian and gradient. Furthermore, in Section 4.5,
we consider worker machines compressing the local Hessian inverse and gradient product via a δ-
approximate compressor [20], and show that the (order-wise) rate of convergence remain unchanged,
and the compression factor, δ affects the constants only.
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We experimentally validate our proposed algorithm, COMRADE, with several benchmark
data-sets. We consider several types of Byzantine attacks and observe that COMRADE is robust
against Byzantine worker machines, yielding better classification accuracy compared to the existing
state-of-the-art second order algorithms.

A major technical challenge of this work is to approximate local gradient and Hessian simultane-
ously in the presence of Byzantine workers. We use sketching, similar to [26], along with the norm
based Byzantine resilience technique. Using incoherence (defined shortly) of the local Hessian
along with concentration results originating from uniform sampling, we obtain the simultaneous
gradient and Hessian approximation. Furthermore, ensuring at least one non-Byzantine machine
gets trimmed at every iteration of COMRADE, we control the influence of Byzantine workers.

Related Work: Second order optimization has received a lot of attention in the recent years in
the distributed setting owing to its attractive convergence speed. The fundamentals of second order
optimization is laid out in [24], and an extension with better convergence rates is presented in
[29]. Recently, in GIANT [26] algorithm, each worker machine computes an approximate Newton
direction in each iteration and the center machine averages them to obtain a globally improved
approximate Newton direction. Furthermore, DINGO [27] generalizes second order optimization
beyond convex functions by extending the Newton-MR [28] algorithm in a distributed setting. Very
recently, [34] proposes Determinantal averaging to correct the inversion bias of the second order
optimization. A slightly different line of work ([130], [131], [132]) uses Hessian sketching to solve
a large-scale distributed learning problems.

Furthermore, as mentioned in Chapter 3, Byzantine robust optimization has also received
significant interest over the years, in papers like [19, 30]. Later in [23, 31], co-ordinate wise median,
trimmed mean and iterative filtering based algorithm have been proposed and optimal statistical
error rate is obtained. Also, [122, 123] consider adversaries may steer convergence to bad local
minimizers for non-convex optimization problems.

Organization: In Section 4.3, we first analyze COMRADE with one round of communication per
iteration. We assume α = 0, and focus on the communication efficiency aspect only. Subsequently,
in Section 4.4, we make α 6= 0, thereby addressing communication efficiency and Byzantine
resilience simultaneously. Further, in Section 4.5 we augment a compression scheme along with the
setting of Section 4.4. Finally, in Section 4.6, we validate our theoretical findings with experiments.
Proofs of all theoretical results can be found in the supplementary material.

Notation: For a positive integer r, [r] denotes the set {1, 2, . . . , r}. For a vector v, we use
‖v‖ to denote the `2 norm unless otherwise specified. For a matrix X , we denote ‖X‖2 denotes
the operator norm, σmax(X) and σmin(X) denote the maximum and minimum singular value.
Throughout the chapter, we use C,C1, c, c1 to denote positive universal constants, whose value
changes with instances.
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4.2 Problem Formulation
We begin with the standard statistical learning framework for empirical risk minimization, where
the objective is to minimize the following loss function:

f(w) =
1

n

n∑
j=1

`j(w
Txj) +

λ

2
‖w‖2, (4.1)

where, the loss functions `j : R → R, j ∈ [n] are convex, twice differentiable and smooth.
Moreover, x1,x2, . . . ,xn ∈ Rd denote the input feature vectors and y1, y2, . . . , yn ∈ R denote the
corresponding responses. Furthermore, we assume that the function f is strongly convex, implying
the existence of a unique minimizer of (4.1). We denote this minimizer by w∗. Note that the
response {yj}nj=1 is captured by the corresponding loss function {`j}nj=1. Some examples of `j are

logistic loss: `j(zj) = log(1− exp(−zjyj)), squared loss: `j(zj) =
1

2
(zj − yj)2

We consider the framework of distributed optimization with m worker machines, where the feature
vectors and the loss functions (x1, `1), . . . , (xn, `n) are partitioned homogeneously among them.
Furthermore, we assume that α fraction of the worker machines are Byzantine for some α < 1

2
. The

Byzantine machines, by nature, may send any arbitrary values to the center machine. Moreover,
they can even collude with each other and plan malicious attacks with complete information of the
learning algorithm.

4.3 COMRADE Can Communicate Less
We first present the Newton-type learning algorithm, namely COMRADE without any Byzantine
workers, i.e., α = 0. It is formally given in Algorithm 4 (with β = 0). In each iteration of our
algorithm, every worker machine computes the local Hessian and local gradient and sends the local
second order update (which is the product of the inverse of the local Hessian and local gradient)
to the center machine. The center machine aggregates the updates from the worker machines
by averaging them and updates the model parameter w. Later the center machine broadcast the
parameter w to all the worker machines.

In any iteration t, a standard Newton algorithm requires the computation of exact Hessian (Ht)
and gradient (gt) of the loss function which can be written as

gt =
1

n

n∑
i=1

`′j(w
>
t xi)xi + λwt, Ht =

1

n

n∑
i=1

`
′′

j (w
>
t xi)xix

>
i + λI. (4.2)

In a distributed set up, the exact Hessian (Ht) and gradient (gt) can be computed in parallel in the
following manner. In each iteration, the center machine ‘broadcasts’ the model parameter wt to the
worker machines and each worker machine computes its own local gradient and Hessian. Then the
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center machine can compute the exact gradient and exact Hessian by averaging the the local gradient
vectors and local Hessian matrices. But for each worker machine the per iteration communication
complexity is O(d) for the gradient computation and O(d2) for the Hessian computation. Using
Algorithm 4, we reduce the communication cost to only O(d) per iteration, which is the same as the
first order methods.

Each worker machine possess s samples drawn uniformly from {(x1, `1), (x2, `2), . . . , (xn, `n)}.
By Si, we denote the indices of the samples held by worker machine i. At any iteration t, the worker
machine computes the local Hessian Hi,t and local gradient gi,t as

gi,t =
1

s

∑
i∈Si

`′j(w
>
t xi)xi + λwt, Hi,t =

1

s

∑
i∈Si

`
′′

j (w
>
t xi)xix

>
i + λI. (4.3)

It is evident from the uniform sampling that E[gi,t] = gt and E[Hi,t] = Ht. The update direction
from the worker machine is defined as p̂i,t = (Hi,t)

−1gi,t. Each worker machine requires O(sd2)
operations to compute the Hessian matrix Hi,t and O(d3) operations to invert the matrix. In practice,
the computational cost can be reduced by employing conjugate gradient method. The center machine
computes the parameter update direction p̂t = 1

m

∑m
i=1 p̂i,t.

We show that given large enough sample in each worker machine (s is large) and with incoherent
data points (the information is spread out and not concentrated to a small number of sample data
points), the local Hessian Hi,t is close to the global Hessian Ht in spectral norm, and the local
gradient gi,t is close to the global gradient gt. Subsequently, we prove that the empirical average of
the local updates acts as a good proxy for the global Newton update and achieves good convergence
guarantee.

4.3.1 Theoretical Guarantee
We define the matrix A>t = [a>1 , . . . , a

>
n ] ∈ Rd×n where aj =

√
`′′j (w

>xj) xj . So the exact

Hessian in equation (4.2) is Ht = 1
n
A>t At + λI. Also we define Bt = [b1, . . . ,bn] ∈ Rd×n where

bi = `′i(w
Txi)xi. So the exact gradient in equation (4.2) is gt = 1

n
Bt1 + λwt

Definition 10 (Coherence of a Matrix). Let A ∈ Rn×d be any matrix with U ∈ Rn×d being its
orthonormal basis (the left singular vectors). The row coherence of the matrix A is defined as
µ(A) = n

d
maxi ‖ui‖2 ∈

[
1, n

d

]
, where ui is the ith row of U.

Remark 15. If the coherence of At is small, it can be shown that the Hessian matrix can be
approximated well via selecting a subset of rows. Note that this is a fairly common to use coherence
condition as an approximation tool (see [133–135])

In the following, we assume that the Hessian matrix is L-Lipschitz (see definition below),
which is a standard assumption for the analysis of the second order method for general smooth loss
function (as seen in [26],[34]).

Assumption 15. The Hessian matrix of the loss function f is L-Lipschitz continuous i.e.,∥∥∇2f(w)−∇2f(w′)
∥∥

2
≤ L ‖w − w′‖ .
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Algorithm 4: COMmunication-efficient and Robust Approximate Distributed nEwton
(COMRADE)

1: Input: Step size γ, parameter β ≥ 0
2: Initialize: Initial iterate w0 ∈ Rd

3: for t = 0, 1, . . . , T − 1 do
4: Central machine: broadcasts wt

for i ∈ [m] do in parallel
5: i-th worker machine:

• Non-Byzantine: Computes local gradient gi,t and local Hessian Hi,t; sends
p̂i,t = (Hi,t)

−1gi,t to the central machine,

• Byzantine: Generates ? (arbitrary), and sends it to the center machine

end for
6: Center Machine:

• Sort the worker machines in a non decreasing order according to norm of updates
{p̂i,t}mi=1 from the local machines

• Return the indices of the first 1− β fraction of machines as Ut,

• Approximate Newton Update direction : p̂t = 1
|Ut|
∑

i∈Ut p̂i,t

• Update model parameter: wt+1 = wt − γp̂t.

7: end for

In the following theorem, we provide the convergence rate of COMRADE (with α = β = 0) in
the terms of ∆t = wt − w∗. Also, we define κt = σmax(Ht)/σmin(Ht) as the condition number of
Ht, and hence κt ≥ 1.

Theorem 6. Let µ ∈
[
1, n

d

]
be the coherence of At . Suppose γ = 1 and s ≥ 3µd

η2
log md

ρ
for some

η, ρ ∈ (0, 1). Under Assumption 15 , with probability exceeding 1− ρ, we obtain

‖∆t+1‖ ≤ max{

√
κt(

ζ2

1− ζ2
)‖∆t‖,

L

σmin(Ht)
‖∆t‖2}+

2ε√
σmin(Ht)

,

where ζ = ν( η√
m

+ η2

1−η ), ν = σmax(A>A)
σmax(A>A)+nλ

≤ 1, and

ε =
1

1− η
1√

σmin(Ht)
(1 +

√
2 ln(

m

ρ
))

√
1

s
max
i
‖bi‖. (4.4)

Remark 16. It is well known that a distributed Newton method has linear-quadratic convergence
rate. In Theorem 6 the quadratic term comes from the standard analysis of Newton method. The
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linear term (which is small) arises owing to Hessian approximation. It gets smaller with better
Hessian approximation (smaller η), and thus the above rate becomes quadratic one. The small error
floor arises due to the gradient approximation in the worker machines, which is essential for the one
round of communication per iteration. The error floor is ∝ 1√

s
where s is the number of samples in

each worker machine. So for a sufficiently large s, the error floor becomes negligible.

Remark 17. The sample size in each worker machine is dependent on the coherence of the matrix
At and the dimension d of the problem. Theoretically, the analysis is feasible for the case of s ≥ d
(since we work with H−1

i,t ). However, when s < d, one can replace the inverse by a pseudo-inverse
(modulo some changes in convergence rate).

4.4 COMRADE Can Resist Byzantine Workers
In this section, we analyze COMRADE with Byzantine workers. We assume that α(< 1/2) fraction
of worker machines are Byzantine. We define the set of Byzantine worker machines by B and the
set of the good (non-Byzantine) machines byM. COMRADE employs a ‘norm based thresholding’
scheme on the local Hessian inverse and gradient product to tackle the Byzantine workers.

In the t-th iteration, the center machine outputs a set Ut with |Ut| = (1− β)m, consisting the
indices of the worker machines with smallest norm. Hence, we ‘trim’ the worker machines that may
try to diverge the learning algorithm. We denote the set of trimmed machines as Tt. Moreover, we
take β > α to ensure at least one good machine falls in Tt. This condition helps us to control the
Byzantine worker machines. Finally, the update is given by p̂t = 1

|Ut|
∑

i∈Ut p̂i,t. We define:

ε2byz = [3(
1− α
1− β

)2 + 4κt(
α

1− β
)2]ε2, (4.5)

ζ2
byz = 2(

1− α
1− β

)2(
ν

1− η
)2 + ν2(

1− α
1− β

)2(
η√

(1− α)m
+

η2

1− η
)2 + 4κt(

α

1− β
)2[2 + (

ν

1− η
)2]. (4.6)

ε is defined in (4.4), ν = σmax(ATA)
σmax(ATA)+nλ

and κt is the condition number of the exact Hessian Ht.

Theorem 7. Let µ ∈
[
1, n

d

]
be the coherence of At . Suppose γ = 1 and s ≥ 3µd

η2
log md

ρ
for some

η, ρ ∈ (0, 1). For 0 ≤ α < β < 1/2 , under Assumption 15 , with probability exceeding 1 − ρ,
Algorithm 4 yields

‖∆t+1‖ ≤ max{

√
κt(

ζ2
byz

1− ζ2
byz

)‖∆t‖,
L

σmin(Ht)
‖∆t‖2}+

2εbyz√
σmin(Ht)

,

where ζbyz and εbyz are defined in equations (4.5) and (4.6) respectively.

The remarks of Section 4.3 is also applicable here. On top of that, we have the following
remarks:

Remark 18. Compared to the convergence rate of Theorem 6, the rate here remains order-wise same
even with Byzantine robustness. The coefficient of the quadratic term remains unchanged but the
linear rate and the error floor suffers a little bit (by a small constant factor).
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Remark 19. Note that for Theorem 7 to hold, we require α ∼ 1/
√
κt for all t. In cases where κt is

large, this can impose a stricter condition on α. However, we conjecture that this dependence can
be improved via applying a more intricate (and perhaps computation heavy) Byzantine resilience
algorithm. In this work, we kept the Byzantine resilience scheme simple at the expense of this
condition on α.

4.5 COMRADE Can Communicate Even Less and Resist
Byzantine Workers

In Section 4.3 we analyze COMRADE with an additional feature. We let the worker machines
further reduce the communication cost by applying a generic class of δ-approximate compressor
[20] on the parameter update of Algorithm 4. We first define the class of δ-approximate compressor:

Definition 11. An operator Q : Rd → Rd is defined as δ-approximate compressor on a set S ⊂ Rd

if, ∀x ∈ S, ‖Q(x)− x‖2 ≤ (1− δ) ‖x‖2, where δ ∈ [0, 1] is the compression factor.

The above definition can be extended for any randomized operatorQ satisfying E(‖Q(x)− x‖2) ≤
(1− δ) ‖x‖2, for all ∀x ∈ S. The expectation is taken over the randomization of the operator. Notice
that δ = 1 implies that Q(x) = x (no compression). Examples of δ-approximate compressor
include QSGD [21], `1-QSGD [20], topk sparsification and randk [15].

Worker machine i computes the product of local Hessian inverse inverse and local gradient
and then apply δ-approximate compressor to obtain Q(H−1

i,t gi,t); and finally sends this compressed
vector to the center. The Byzantine resilience subroutine remains the same–except, instead of
sorting with respect to ‖H−1

i,t gi,t‖, the center machine now sorts according to ‖Q(H−1
i,t gi,t)‖. The

center machine aggregates the compressed updates by averaging Q(p̂) = 1
|Ut|
∑

i∈Ut Q(p̂i,t), and
take the next step as wt+1 = wt − γQ(p̂).

Recall the definition of ε from (4.4). We also use the following notation : ζ2
M = ν( η√

(1−α)m
+

η2

1−η ), ζ1 = ν
1−η and ν = σmax(ATA)

σmax(ATA)+nλ
. Furthermore, we define the following:

ε2comp,byz = [3(
1− α
1− β

)2 + 4κt(
α

1− β
)2](1 + κ(1− δ))ε2 (4.7)

ζ2
comp,byz = 2(

1− α
1− β

)2(ζ2
1 + κt(1− ρ)((1 + ζ2

1 )) + (
1− α
1− β

)2(ζ2
M + κt(1− δ)((1 + ζ2

1 ))

+ 4κt(
α

1− β
)2(2 + (ζ2

1 + κt(1− δ)((1 + ζ2
1 ))) (4.8)

Theorem 8. Let µ ∈
[
1, n

d

]
be the coherence of At . Let γ = 1 and s ≥ 3µd

η2
log md

ρ
for some

η, ρ ∈ (0, 1). For 0 ≤ α < β < 1/2, under Assumption 15 and with Q being the δ-approximate
compressor, with probability exceeding 1− ρ, we obtain

‖∆t+1‖ ≤ max{

√
κt(

ζ2
comp,byz

1− ζ2
comp,byz

)‖∆t‖,
L

σmin(Ht)
‖∆t‖2}+

εcomp,byz√
σmin(Ht)
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(a) w5a (b) a9a (c) Epsilon (d) covtype

(e) GIANT ‘flipped’ at-
tack

(f) GIANT ‘negative’ at-
tack

(g) Robust GIANT (h) Robust GIANT

Figure 4.1: (First row) Comparison of training accuracy between COMRADE(Algorithm 4) and
GIANT [26] with (a) w5a (b) a9a (c) Epsilon (d) Covtype dataset. (Second row) Training accuracy
of (e) GIANT for ‘flipped label’ and (f) ‘negative update’ attack; and comparison of Robust GIANT
and COMRADE with a9a dataset for (g) ‘flipped label’ and (h) ‘negative update’ attack.

where εcomp,byz and ζcomp,byz are given in equations (4.7) and (4.8) respectively.

Remark 20. With no compression (δ = 1) we get back the convergence guarantee of Theorem 7.

Remark 21. Note that even with compression, we retain the linear-quadratic rate of convergence of
COMRADE. The constants are affected by a δ-dependent term.

4.6 Experimental Results
In this section we validate our algorithm, COMRADE in Byzantine and non-Byzantine setup on
synthetically generated and benchmark LIBSVM [47] data-set. The experiments focus on the
standard logistic regression problem. The logistic regression objective is defined as

1

n

n∑
i=1

log
(
1 + exp(−yix>i w)

)
+

λ

2n
‖w‖2,

where w ∈ Rd is the parameter, {xi}ni=1 ∈ Rd are the feature data and {yi}ni=1 ∈ {0, 1} are
the corresponding labels. We use ‘mpi4py’ package for distributed framework (swarm2) at the
University of Massachusetts Amherst [136] using mpi4py Python package. We choose ‘a9a’ (d =
123, n ≈ 32K), ‘w5a’ (d = 300, n ≈ 10k), ‘Epsilon’ (d = 2000, n = 0.4M) and ‘covtype.binary’
(d = 54, n ≈ 0.5M) classification datasets and partition the data in 20 different worker machines.
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In the experiments, we choose two types of Byzantine attacks : (1). ‘flipped label’-attack where
(for binary classification) the Byzantine worker machines flip the labels of the data, thus making
the model learn with wrong labels, and (2). ‘negative update attack’ where the Byzantine worker
machines compute the local update (p̂i) and communicate −c × p̂i with c ∈ (0, 1) making the
updates to be opposite of actual direction. We choose β = α + 2

m
. We choose the regularization

parameter λ = 1 and fixed step size. We ran the algorithms sufficient number of steps to ensure
convergence.

In Figure 4.1(first row) we compare COMRADE in non-Byzantine setup (α = β = 0) with
the state-of the art algorithm GIANT [26]. It is evident from the plot that despite the fact that
COMRADE requires less communication, the algorithm is able to achieve similar accuracy. Also,
we show the ineffectiveness of GIANT in the presence of Byzantine attacks. In Figure 4.2((e),(f))
we show the accuracy for flipped label and negative update attacks. These plots are an indicator of
the requirement of robustness in the learning algorithm. So we device ‘Robust GIANT’, which is
GIANT algorithm with added ‘norm based thresholding’ for robustness. In particular, we trim the
worker machines based on the local gradient norm in the first round of communication of GIANT.
Subsequently, in the second round of communication, the non-trimmed worker machines send the
updates (product of local Hessian inverse and the local gradient) to the center machine. We compare
COMRADE with ‘Robust GIANT’ in Figure 4.1((g),(h)) with 10% Byzantine worker machines for
‘a9a’ dataset. It is evident plot that COMRADE performs better than the ‘Robust GIANT’.

Next we show the accuracy of COMRADE with different numbers of Byzantine worker ma-
chines. Here we choose c = 0.9. We show the accuracy for ’negetive update ’ attack in Fig-
ure 4.2(first row) and ’flipped label’ attack in Figure 4.2 (second row). Furthermore, we show
that COMRADE works even when δ-approximate compressor is applied to the updates. In Figure
4.2(Third row) we plot the tranning accuracies. For compression we apply the scheme known as
QSGD [21]. Further experiments can be found in the supplementary material.

4.7 Conclusion
In this paper, we address the issue of communication efficiency and Byzantine robustness via second
order optimization and norm based thresholding respectively for strongly convex loss. Extending
our setting to handle weakly convex and non-convex loss is of immediate interest. We would also
like to exploit local averaging with second order optimization. Moreover, an import aspect, privacy,
is not addressed in this work. We keep this as our future research direction.

Appendix

4.8 Analysis of Section 4.3
Matrix Sketching
Here we briefly discuss the matrix sketching that is broadly used in the context of randomized

-
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(a) w5a (b) a9a (c) Epsilon (d) covtype

(e) w5a (f) a9a (g) Epsilon (h) covtype

(i) w5a ‘flipped’ (j) w5q ‘negative’ (k) a9a ‘flipped’ (l) a9a ‘negative’

Figure 4.2: (First row) Accuracy of COMRADE with 10%, 15%, 20% Byzantine workers with
‘negative update’ attack for (a). w5a (b). a9a (c). covtype (d). Epsilon. (Second row) COMRADE
accuracy with 10%, 15%, 20% Byzantine workers with ‘flipped label’ attack for (e) w5a (f) a9a
(g) covtype (h) Epsilon. (Third row) Accuracy of COMRADE with ρ-approximate compressor
(Section 4.5) with 10%, 15%, 20% Byzantine workers; (i) ‘flipped label’ attack for w5a (j) ‘negative
update’ attack for w5a. (k) ‘flipped label’ attack for a9a . (l) ‘negative update’ attack for a9a dataset.

linear algebra. For any matrix A ∈ Rn×d the sketched matrix Z ∈ Rs×d is defined as STA where
S ∈ Rn×s is the sketching matrix (typically s < n). Based on the scope and basis of the application,
the sketched matrix is constructed by taking linear combination of the rows of matrix which is
known as random projection or by sampling and scaling a subset of the rows of the matrix which is
known as random sampling. The sketching is done to get a smaller representation of the original
matrix to reduce computational cost.

Here we consider a uniform row sampling scheme. The matrix Z is formed by sampling and
scaling rows of the matrix A. Each row of the matrix A is sampled with probability p = 1

n
and
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scaled by multiplying with 1√
sp

.

P
(

zi =
aj√
sp

)
= p,

where zi is the i-th row matrix Z and aj is the j th row of the matrix A. Consequently the sketching
matrix S has one non-zero entry in each column.

We define the matrix A>t = [a>1 , . . . , a
>
n ] ∈ Rd×n where aj =

√
`′′j (w

>xj) xj . So the exact

Hessian in equation (4.2) is Ht = 1
n
A>t At + λI. Assume that Si is the set of features that are held

by the ith worker machine. So the local Hessian is

Hi,t =
1

s

∑
j∈Si

`′′j (w
>xj)xjx

>
j + λI =

1

s
A>i,tAi,t + λI,

where Ai,t ∈ Rs×d and the row of the matrix Ai,t is indexed by Si. Also we define Bt =
[b1, . . . ,bn] ∈ Rd×n where bi = `′i(w

>xi)xi. So the exact gradient in equation (4.2) is gt =
1
n
Bt1 + λwt and the local gradient is

gi,t =
1

s

∑
i∈Si

`′j(w
>
t xi)xi + λwt =

1

s
Bi,t1 + λwt,

where Bi,t is the matrix with column indexed by Si. If {Si}mi=1 are the sketching matrices then the
local Hessian and gradient can be expressed as

Hi,t = A>t SiS
>
i A>t + λI gi,t =

1

n
BSiS

>
i 1 + λw. (4.9)

With the help of sketching idea later we show that the local hessian and gradient are close to the
exact hessian and gradient.

The Quadratic function For the purpose of analysis we define an auxiliary quadratic function

φ(p) =
1

2
p>Htp− g>t p =

1

2
p>(A>t At + λI)p− g>t p. (4.10)

The optimal solution to the above function is

p∗ = arg minφ(p) = H−1
t gt = (A>t At + λI)−1gt,

which is also the optimal direction of the global Newton update. In this work we consider the local
and global (approximate ) Newton direction to be

p̂i,t = (A>SiS
>
i A + λI)−1gi,t, p̂t =

1

m

m∑
i=1

p̂i,t.
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respectively. And it can be easily verified that each local update p̂i,t is optimal solution to the
following quadratic function

φ̂i,t(p) =
1

2
p>(A>SiS

>
i A + λI)p− g>i p. (4.11)

In our convergence analysis we show that value of the quadratic function in (4.10) with value p̂t is
close to the optimal value.

Singular Value Decomposition (SVD) For any matrix A ∈ Rn×d with rank r, the singular
value decomposition is defined as A = UΣV> where U,V are n× r and d× r column orthogonal
matrices respectively and Σ is a r × r diagonal matrix with diagonal entries {σ1, . . . σr}. If A is a
symmetric positive semi-definite matrix then U = V.

4.8.1 Analysis
Lemma 10 (McDiarmid’s Inequality). Let X = X1, . . . , Xm be m independent random variables
taking values from some set A, and assume that f : Am → R satisfies the following condition
(bounded differences ):

sup
x1,...,xm,x̂i

|f(xi, . . . , xi, . . . , xm)− f(xi, . . . , x̂i, . . . , xm)| ≤ ci,

for all i ∈ {1, . . . ,m}. Then for any ε > 0 we have

P [f(X1, . . . , Xm)− E[f(X1, . . . , Xm)] ≥ ε] ≤ exp

(
− 2ε2∑m

i=1 c
2
i

)
.

The property described in the following Lemma 11 is a very useful result for uniform row
sampling sketching matrix.

Lemma 11 (Lemma 8 [26]). Let η, ρ ∈ (0, 1) be a fixed parameter and r = rank(At) and
U ∈ Rn×r be the orthonormal bases of the matrix At. Let {Si}mi=1 be sketching matrices and
S = 1√

m
[S1, . . .Sm] ∈ Rn×ms. With probability 1− ρ the following holds∥∥U>SiS

>
i U− I

∥∥
2
≤ η ∀i ∈ [m] and

∥∥U>SS>U− I
∥∥

2
≤ η√

m
.

Lemma 12. Let S ∈ Rn×s be any uniform sampling sketching matrix, then for any matrix B =
[b1, . . . ,bn] ∈ Rd×n with probability 1− ρ for any ρ > 0 we have,

‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

1

ρ
))

√
1

s
max
i
‖bi‖,

where 1 is all ones vector.
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Proof. The vector B1 is the sum of column of the matrix B and BSS>1 is the sum of uniformly
sampled and scaled column of the matrix B where the scaling factor is 1√

sp
with p = 1

n
. If (i1, . . . , is)

is the set of sampled indices then BSS>1 =
∑

k∈(i1,...,is)
1
sp

bk.
Define the function f(i1, . . . , is) = ‖ 1

n
BSS>1− 1

n
B1‖. Now consider a sampled set

(i1, . . . , ij′ , . . . , is) with only one item (column) replaced then the bounded difference is

∆ = |f(i1, . . . , ij, . . . , is)− f(i1, . . . , ij′ , . . . , is)|

= | 1
n
‖ 1

sp
bi′j −

1

sp
bij‖| ≤

2

s
max
i
‖bi‖.

Now we have the expectation

E[‖ 1

n
BSS>1− 1

n
B1‖2] ≤ n

sn2

n∑
i=1

‖bi‖2 =
1

s
max
i
‖bi‖2

⇒ E[‖ 1

n
BSS>1− 1

n
B1‖] ≤

√
1

s
max
i
‖bi‖.

Using McDiarmid inequality (Lemma 10) we have

P [

∥∥∥∥∥ 1

n
BSS>1− 1

n
B1‖ ≥

√
1

s
max
i
‖bi‖+ t

]
≤ exp

(
− 2t2

s∆2

)
.

Equating the probability with ρ we have

exp(− 2t2

s∆2
) = ρ

⇒t = ∆

√
s

2
ln(

1

ρ
) = max

i
‖bi‖

√
2

s
ln(

1

ρ
).

Finally we have with probability 1− ρ

‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

1

ρ
))

√
1

s
max
i
‖bi‖.

Remark 22. For m sketching matrix {Si}mi=1, the bound in the Lemma 12 is

‖ 1

n
BSiS

>
i 1− 1

n
B1‖ ≤ (1 +

√
2 ln(

m

ρ
))

√
1

s
max
i
‖bi‖,

with probability 1− ρ for any ρ > 0 for all i ∈ {1, 2, . . . ,m}. In the case that each worker machine
holds data based on the uniform sketching matrix the local gradient is close to the exact gradient.
Thus the local second order update acts as a good approximate to the exact Netwon update.

□ 
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Now we consider the update rule of GIANT [26] where the update is done in two rounds
in each iteration. In the first round each worker machine computes and send the local gradient
and the center machine computes the exact gradient gt in iteration t. Next the center machine
broadcasts the exact gradient and each worker machine computes the local Hessian and send
p̃i,t = (Hi,t)

−1gt to the center machine and the center machine computes the approximate Newton
direction p̃t = 1

m

∑m
i=1 p̃i,t. Now based on this we restate the following lemma (Lemma 6 [26]).

Lemma 13. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 11. Let φt be defined in
(4.10) and p̃t be the update. It holds that

min
p
φt(p) ≤ φt(p̃t) ≤ (1− ζ2) min

p
φt(p),

where ζ = ν( η√
m

+ η2

1−η ) and ν = σmax(A>A)
σmax(A>A)+nλ

≤ 1.

Now we prove similar guarantee for the update according to COMRADE in Algorithm 4.

Lemma 14. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 11. Let φt be defined in
(4.10) and p̂t be defined in Algorithm 4(β = 0)

min
p
φt(p) ≤ φt(p̂t) ≤ ε2 + (1− ζ2) min

p
φt(p),

where ε = 1
1−η

1√
σmin(Ht)

(1+
√

2 ln(m
ρ

))
√

1
s

maxi ‖bi‖ and ζ = ν( η√
m

+ η2

1−η ) and ν = σmax(A>A)
σmax(A>A)+nλ

.

Proof. First consider the quadratic function (4.10)

φt(p̂t)− φt(p∗) =
1

2
‖H

1
2
t (p̂t − p∗)‖2

≤ (‖H
1
2
t (p̂t − p̃t)‖2︸ ︷︷ ︸
Term1

+ ‖H
1
2
t (p̃t − p∗)‖)2︸ ︷︷ ︸

Term2

, (4.12)

where p̃t = 1
m

∑m
i=1(Hi,t)

−1gt. First we bound the Term 2 of (4.12) using the quadratic function
and Lemma 13

1

2

∥∥∥H 1
2
t (p̃t − p∗)

∥∥∥)2 ≤ ζ2
∥∥∥H 1

2
t p∗
∥∥∥2

(Using Lemma 13 )

= −ζ2φt(p
∗). (4.13)

The step in equation (4.13) is from the definition of the function φt and p∗. It can be shown that

φt(p
∗) = −

∥∥∥H 1
2
t p∗
∥∥∥2

.
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Now we bound the Term 1 in (4.12). By Lemma 11, we have (1 − η)A>t At � A>t SiS
>
i At �

(1 + η)A>t At. Following we have (1 − η)Ht � Hi,t � (1 + η)Ht. Thus there exists matrix ξi
satisfying

H
1
2
t H−1

i,t H
1
2
t = I + ξi and − η

1 + η
� ξi �

η

1− η
,

So we have, ∥∥∥H 1
2
t H−1

i,t H
1
2
t

∥∥∥ ≤ 1 +
η

1− η
=

1

1− η
. (4.14)

Now we have ∥∥∥H 1
2
t (p̂t − p̃t)

∥∥∥ =

∥∥∥∥∥H 1
2
t

1

m

m∑
i=1

(p̂i,t − p̃i,t)

∥∥∥∥∥
≤ 1

m

m∑
i=1

∥∥∥H 1
2
t (p̂i,t − p̃i,t)

∥∥∥
=

1

m

m∑
i=1

∥∥∥H 1
2
t H−1

i,t (gi,t − gt)
∥∥∥

=
1

m

m∑
i=1

∥∥∥H 1
2
t H−1

i,t H
1
2
t H

− 1
2

t (gi,t − gt)
∥∥∥

≤ 1

m

m∑
i=1

∥∥∥H 1
2
t H−1

i,t H
1
2
t

∥∥∥∥∥∥H− 1
2

t (gi,t − gt)
∥∥∥

≤ 1

1− η
1

m

m∑
i=1

∥∥∥H− 1
2

t (gi,t − gt)
∥∥∥ ( Using (4.14))

≤ 1

1− η
1√

σmin(Ht)

1

m

m∑
i=1

‖(gi,t − gt)‖ . (4.15)

Now we bound ‖(gi,t − gt)‖ using Lemma 12,

‖(gi,t − gt)‖ = ‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

m

ρ
))

√
1

s
max
i
‖bi‖.

Plugging it into equation (4.15) we get,∥∥∥H 1
2
t (p̂t − p̃t)

∥∥∥ ≤ 1

1− η
1√

σmin(Ht)

1

m

m∑
i=1

‖(gi,t − gt)‖

≤ 1

1− η
1√

σmin(Ht)
(1 +

√
2 ln(

m

ρ
))

√
1

s
max
i
‖bi‖. (4.16)
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Now collecting the terms of (4.16) and (4.13) and plugging them into (4.12) we have

φt(p̂t)− φt(p∗) ≤ ε2 − ζ2φt(p
∗)

⇒ φt(p̂t) ≤ ε2 + (1− ζ2)φt(p
∗),

where ε is as defined in (4.4).

Lemma 15. Let ζ ∈ (0, 1), ε be any fixed parameter. And p̂t satisfies φt(p̂t) ≤ ε2 + (1 −
ζ2) minp φt(p). Under the Assumption 15(Hessian L-Lipschitz) and ∆t = wt − w∗ satisfies

∆>t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +
ζ2

1− ζ2
∆>t Ht∆t + 2ε2.

Proof. We have wt+1 = wt − p̂t,∆t = wt − w∗ and ∆t+1 = wt+1 − w∗. Also p̂t = wt − wt+1 =
∆t −∆t+1. From the definition of φ we have,

φt(p̂t) =
1

2
(∆t −∆t+1)>Ht(∆t −∆t+1)− (∆t −∆t+1)) gt,

(1− ζ2)φt(
1

(1− ζ2)
∆t) =

1

2(1− ζ2)
∆>t Ht∆t −∆>t gt.

From the above two equation we have

φt(p̂t)− (1− ζ2)φt(
1

(1− ζ2)
∆t)

=
1

2
∆>t+1Ht∆t+1 −

1

2
∆>t Ht∆t+1 +

1

2
∆>t+1gt −

ζ2

2(1− ζ2)
∆>t Ht∆t.

From Lemma 14 the following holds

φt(p̂t) ≤ ε2 + (1− ζ2) min
p
φt(p)

≤ ε2 + (1− ζ2)φt(
1

(1− ζ2)
∆t).

So we have

1

2
∆>t+1Ht∆t+1 −∆>t Ht∆t+1 + ∆>t+1gt −

ζ2

2(1− ζ2)
∆>t Ht∆t ≤ ε2. (4.17)

Consider gt = g(wt)

g(wt) = g(w∗) +

(∫ 1

0

∇2f(w∗ + z(wt − w∗))dz
)

(wt − w∗)

=

(∫ 1

0

∇2f(w∗ + z(wt − w∗))dz
)

∆t (as g(w∗) = 0).

□ 
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Now we bound the following

‖Ht∆t − g(wt)‖ ≤ ‖∆t‖
∥∥∥∥∫ 1

0

[∇2f(wt)−∇2f(w∗ + z(wt − w∗))]dz
∥∥∥∥

≤ ‖∆t‖
∫ 1

0

∥∥[∇2f(wt)−∇2f(w∗ + z(wt − w∗))]
∥∥ dz (By Jensen’s Inequality)

≤ ‖∆t‖
∫ 1

0

(1− z)L ‖wt − w∗‖ dz (by L-Lipschitz assumption)

=
L

2
‖∆t‖2 .

Plugging it into (4.17) we have

∆>t+1Ht∆t+1 ≤ 2∆>t+1 (Ht∆t − gt) +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ 2 ‖∆t+1‖ ‖Ht∆t − gt‖+
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ L ‖∆t+1‖ ‖∆t‖2 +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2.

Proof of Theorem 6

Proof. From the Lemma 15 with probability 1− ρ

∆>t+1Ht∆t+1 ≤ L ‖∆t+1‖ ‖∆t‖2 +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ L‖∆t+1‖‖∆t‖2 + (
ζ2

1− ζ2
σmax(Ht))‖∆t‖2 + 2ε2.

So we have,

‖∆t+1‖ ≤ max{

√
σmax(Ht)

σmin(Ht)
(

ζ2

1− ζ2
)‖∆t‖,

L

σmin(Ht)
‖∆t‖2}+

2ε√
σmin(Ht)

.

4.9 Analysis of Section 4.4
In this section we provide the theoretical analysis of the Byzantine robust method explained in
Section 4.4 and prove the statistical guarantee. In any iteration t the following holds

|Ut| = |(Ut ∩Mt)|+ |(Ut ∩ Bt)|
|Mt| = |(Ut ∩Mt)|+ |(Mt ∩ Tt)|.

□ 

□ 
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Combining both we have

|Ut| = |Mt| − |(Mt ∩ Tt)|+ |(Ut ∩ Bt)|.

Lemma 16. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 11. Let φt be defined in
(4.10) and p̂t be defined in Algorithm 4. It holds that

min
p
φt(p) ≤ φt(p̂t) ≤ ε2byz + (1− ζ2

byz)φ(p∗),

where εbyz and ζbyz is defined in (4.5) and (4.6) respectively.

Proof. In the following analysis we omit the subscript ’t’. From the definition of the quadratic
function (4.10) we know that

φ(p̂)− φ(p∗) =
1

2
‖H

1
2 (p̂− p∗)‖2.

Now we consider

1

2
‖H

1
2 (p̂− p∗)‖2 =

1

2
‖H

1
2 (

1

|U|
∑
i∈U

p̂i − p∗)‖2

=
1

2
‖H

1
2

1

|U|
(
∑
i∈M

(p̂i − p∗)−
∑

i∈(M∩T )

(p̂i − p∗) +
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ ‖H
1
2

1

|U|
(
∑
i∈M

(p̂i − p∗)‖2

︸ ︷︷ ︸
Term1

+ 2‖H
1
2

1

|U|
∑

i∈(M∩T )

(p̂i − p∗)‖2

︸ ︷︷ ︸
Term2

+ 2‖H
1
2

1

|U|
∑

i∈(U∩B)

(p̂i − p∗))‖2

︸ ︷︷ ︸
Term3

.

Now we bound each term separately and use the result of the Lemma 14 to bound each term.

Term1 = ‖H
1
2

1

|U|
(
∑
i∈M

(p̂i − p∗)‖2

= (
1− α
1− β

)2‖H
1
2

1

|M|
(
∑
i∈M

(p̂i − p∗)‖2

≤ (
1− α
1− β

)2[ε2 + ζ2
M‖H

1
2 p∗‖2],

where ζM = ν( η√
|M|

+ η2

1−η ) = ν( η√
(1−α)m

+ η2

1−η ).
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Similarly the Term 2 can be bonded as it is a bound on good machines

Term2 = 2‖H
1
2

1

|U|
∑

i∈(M∩T )

(p̂i − p∗)‖2

= 2(
1− α
1− β

)2‖H
1
2

1

|M ∩ T |
∑

i∈(M∩T )

(p̂i − p∗)‖2

≤ 2(
1− α
1− β

)2[ε2 + ζ2
M∩T ‖H

1
2 p∗‖2],

where ζM∩T = ν( η√
|M∩T |

+ η2

1−η ) ≤ ν( η√
(1−β)m

+ η2

1−η ).

For the Term 3 we know that β > α so all the untrimmed worker norm is bounded by a good
machine as at least one good machine gets trimmed.

Term3 = 2‖H
1
2

1

|U|
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2‖ 1

|U ∩ B|
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2 1

|U ∩ B|
∑

i∈(U∩B)

‖(p̂i − p∗))‖2

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 1

|U ∩ B|
∑

i∈(U∩B)

(‖p̂i‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖p̂i‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖p̂i − p∗‖2 + 2‖p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2 max
i∈M

(‖H
1
2 (p̂i − p∗)‖2 + 2‖H

1
2 p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2(ε2 + (2 + ζ2
1 )‖H

1
2 p∗‖2)

≤ 4κ(
α

1− β
)2(ε2 + (2 + ζ2

1 )‖H
1
2 p∗‖2),

where ζ1 = ν(η + η2

1−η ) = ν
1−η and κ = σmax(H)

σmin(H)
.

Combining all the bounds on Term1 , Term2 and Term3 we have

1

2
‖H

1
2 (p̂− p∗)‖2 ≤ ε2byz + ζ2

byz‖H
1
2 p∗‖2,
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where

ε2byz =

(
3

(
1− α
1− β

)2

+ 4κ

(
α

1− β

)2
)
ε2,

ζ2
byz = 2

(
1− α
1− β

)2

ζ2
M∩T +

(
1− α
1− β

)2

ζ2
M + 4κ

(
α

1− β

)2

(2 + ζ2
1 ).

Finally we have

φ(p̂)− φ(p∗) ≤ ε2byz − ζ2
byzφ(p∗)

⇒ φ(p̂) ≤ ε2byz + (1− ζ2
byz)φ(p∗).

Lemma 17. Let ζbyz ∈ (0, 1), εbyz be any fixed parameter. And p̂t satisfies φt(p̂t) ≤ ε2byz + (1 −
ζ2
byz) minp φt(p). Under the Assumption 15(Hessian L-Lipschitz) and ∆t = wt − w∗ satisfies

∆T
t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +

ζ2
byz

1− ζ2
byz

∆T
t Ht∆t + 2ε2byz.

Proof. We choose ζ = ζbyz and ε = εbyz from the Lemma 16 and follow the proof of Lemma 15 to
obtain the desired bound.

Proof of Theorem 7

Proof. We get the desired bound by developing from the result of the Lemma 17 and following the
proof of Theorem 6

4.10 Auxiliary Lemmas
Lemma 18. Let {Si}mi=1 ∈ Rn×s be sketching matrices satisfies the Lemma 11. Let φt be defined in
(4.10) and p̂t be defined in Algorithm 4. It holds that

min
p
φt(p) ≤ φt(p̂t) ≤ ε2byz + (1− α2

byz)φ(p∗)

where

Proof. In the following analysis we omit the subscript ’t’. From the definition of the quadratic
function (4.10) we know that

φ(Q(p̂))− φ(p∗) =
1

2
‖H

1
2 (Q(p̂)− p∗)‖2

≤ ‖H
1
2 (Q(p̂)− p̂)‖2︸ ︷︷ ︸

Term1

+ ‖H
1
2 (p̂− p∗)‖2︸ ︷︷ ︸
Term2

□ 

□ 

□ 
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First we bound the Term 1.

‖H
1
2 (Q(p̂)− p̂)‖2 ≤ σmax(Ht)(1− ρ)‖p̂‖2

≤ σmax(Ht)(1− ρ)[‖p̂− p∗‖2 + ‖p∗‖2]

≤ σmax(Ht)

σmin(Ht)
(1− ρ)[‖H

1
2 (p̂− p∗)‖2 + ‖H

1
2 p∗‖2]

= κ(1− ρ)[‖H
1
2 (p̂− p∗)‖2 + ‖H

1
2 p∗‖2]

Now plugging back the bound of Term 1, we get

φ(Q(p̂))− φ(p∗) ≤ κ(1− ρ)[‖H
1
2 (p̂− p∗)‖2 + ‖H

1
2 p∗‖2] + ‖H

1
2 (p̂− p∗)‖2

= (1 + κ(1− ρ))[‖H
1
2 (p̂− p∗)‖2] + κ(1− ρ)‖H

1
2 p∗‖2

Now we use Lemma 14 to bound the term |H 1
2 (p̂− p∗)‖2 and we get,

φ(Q(p̂))− φ(p∗) ≤ (1 + κ(1− ρ))(ε2 + α2‖H
1
2 p∗‖2) + κ(1− ρ)‖H

1
2 p∗‖2

= (1 + κ(1− ρ))ε2 + [(1 + κ(1− ρ))α2 + κ(1− ρ)]‖H
1
2 p∗‖2

⇒ φ(Q(p̂)) ≤ (1 + κ(1− ρ))ε2 + (1− [(1 + κ(1− ρ))α2 + κ(1− ρ)])φ(p∗)

= ε2b + (1− α2
b)φ(p∗)

where

ε2b = (1 + κ(1− ρ))ε2

α2
b = (1 + κ(1− ρ))α2 + κ(1− ρ)]

Lemma 19. ∆t = wt − w∗ satisfies

∆T
t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +

α2
b

1− α2
b

∆T
t Ht∆t + 2ε2b

Theorem 9. Let µt ∈
[
1, n

d

]
be the coherence of At and m be the number of partitions. For some

η, ρ ∈ (0, 1),with probability 1− ρ

‖∆t+1‖ ≤ max{

√
σmax(Ht)

σmin(Ht)
(

α2
b

1− α2
b

‖∆t‖,
L

σmin(Ht)
‖∆t‖2}+

εb√
σmin(Ht)

□ 
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4.11 Analysis of Section 4.5
First we prove the following lemma that will be useful in our subsequent calculations. Consider
that Q(p̂) = 1

|B|
∑

i∈BQ(p̂i). And also we use the following notation ζB = ν( η√
|B|

+ η2

1−η ),

ν = σmax(A>A)
σmax(A>A)+nλ

≤ 1.

Lemma 20. If Q(p̂i) is the local update direction and p∗ is the optimal solution to the quadratic
function φ then∥∥∥H 1

2 (Q(p̂i)− p∗)
∥∥∥2

≤ 1 + κ(1− δ))ε2 + (ζ2
B + κ(1− δ)((1 + ζ2

1 ))
∥∥∥H 1

2 p∗
∥∥∥2

,

where H is the exact Hessian and

ε1 =
√

(1 + κ(1− δ))ε,
ζ2
comp,B = (ζ2

B + κ(1− δ)((1 + ζ2
1 )).

ε is defined in equation (4.4) and

Proof. ∥∥∥H 1
2 (Q(p̂)− p∗)

∥∥∥2

=
∥∥∥H 1

2 (Q(p̂)− p̂ + p̂− p∗)
∥∥∥2

≤ 2

∥∥∥H 1
2 (Q(p̂)− p̂)

∥∥∥2

︸ ︷︷ ︸
Term1

+
∥∥∥H 1

2 (p̂− p∗)
∥∥∥2

︸ ︷︷ ︸
Term2

 . (4.18)

Following the proof of Lemma 14 we get∥∥∥H 1
2 (p̂i − p∗)

∥∥∥2

≤ ε2 + ζ1

∥∥∥H 1
2 p∗
∥∥∥2

, (4.19)

where ε is as defined in (4.4).Now we consider the term∥∥∥H 1
2 (Q(p̂i)− p̂i

∥∥∥2

≤ σmax(H)(1− δ) ‖p̂i‖2

≤ σmax(H)(1− δ)
(
‖p̂i − p∗‖2 + ‖p∗‖2)

≤ σmax
σmin

(1− δ)
(∥∥∥H 1

2 (p̂i − p∗)
∥∥∥2

+
∥∥∥H 1

2 p∗
∥∥∥2
)

= κ(1− δ)
(∥∥∥H 1

2 (p̂i − p∗)
∥∥∥2

+
∥∥∥H 1

2 p∗
∥∥∥2
)

≤ κ(1− δ)
(
ε2 + (1 + ζ2

1 )
∥∥∥H 1

2 p∗
∥∥∥2
)

Using (4.19).
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Now we use the above calculation and bound Term1∥∥∥H 1
2 (Q(p̂)− p̂)

∥∥∥2

≤ 1

|B|
∑
i∈B

∥∥∥H 1
2 (Q(p̂i)− p̂i

∥∥∥2

≤ κ(1− δ)
(
ε2 + (1 + ζ2

1 )
∥∥∥H 1

2 p∗
∥∥∥2
)
. (4.20)

We can bound the Term2 directly using the proof of Lemma 14∥∥∥H 1
2 (p̂− p∗)

∥∥∥2

≤ ε2 + ζ2
B

∥∥∥H 1
2 p∗
∥∥∥2

. (4.21)

Now we use (4.20) and (4.21) and plug them in (4.18)∥∥∥H 1
2 (Q(p̂)− p∗)

∥∥∥2

≤ (1 + κ(1− δ))ε2 + (ζ2
B + κ(1− δ)((1 + ζ2

1 ))
∥∥∥H 1

2 p∗
∥∥∥2

.

Now we define

ε1 =
√

(1 + κ(1− δ))ε
ζ2
comp,B = (ζ2

B + κ(1− δ)((1 + ζ2
1 )).

Now we have the robust update in iteration t to be Q(p̂) = 1
|Ut|
∑

i∈Ut Q(p̂i,t).

Lemma 21. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 11. Let φt be defined in
(4.10) and Q(p̂t) be the update with Q being δ-approximate compressor. It holds that

min
p
φt(p) ≤ φt(Q(p̂t)) ≤ ε2comp,byz + (1− ζ2

comp,byz)φt(p
∗),

where εcomp,byz and ζ2
comp,byz is as defined in (4.7) and (4.8) respectively.

Proof. In the following analysis we omit the subscript ’t’. From the definition of the quadratic
function (4.10) we know that

φ(Q(p̂))− φ(p∗) =
1

2
‖H

1
2 (Q(p̂)− p∗)‖2.

□ 
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Now we consider

1

2
‖H

1
2 (Q(p̂)− p∗)‖2 =

1

2
‖H

1
2 (

1

|U|
∑
i∈U

Q(p̂i)− p∗)‖2

=
1

2
‖H

1
2

1

|U|
(
∑
i∈M

(Q(p̂i)− p∗)−
∑

i∈(M∩T )

(Q(p̂i)− p∗)

+
∑

i∈(U∩B)

(Q(p̂i)− p∗))‖2

≤ ‖H
1
2

1

|U|
(
∑
i∈M

(Q(p̂i)− p∗)‖2

︸ ︷︷ ︸
Term1

+ 2‖H
1
2

1

|U|
∑

i∈(M∩T )

(Q(p̂i)− p∗)‖2

︸ ︷︷ ︸
Term2

+ 2‖H
1
2

1

|U|
∑

i∈(U∩B)

(Q(p̂i)− p∗))‖2

︸ ︷︷ ︸
Term3

.

Now we bound each term separately and use the Lemma 20

Term1 = ‖H
1
2

1

|U|
(
∑
i∈M

(Q(p̂i)− p∗)‖2

= (
1− α
1− β

)2‖H
1
2

1

|M|
(
∑
i∈M

(Q(p̂i)− p∗)‖2

≤ (
1− α
1− β

)2[ε21 + ζ2
comp,M‖H

1
2 p∗‖2],

where ζ2
comp,M = (ζ2

M + κ(1− δ)((1 + ζ2
1 ). Similarly the Term 2 can be bonded as it is a bound on

good machines

Term2 = 2‖H
1
2

1

|U|
∑

i∈(M∩T )

(Q(p̂i)− p∗)‖2

= 2(
1− α
1− β

)2‖H
1
2

1

|M ∩ T |
∑

i∈(M∩T )

(Q(p̂i)− p∗)‖2

≤ 2(
1− α
1− β

)2[ε21 + ζ2
comp,M∩T ‖H

1
2 p∗‖2].

For the Term 3 we know that β > α so all the untrimmed worker norm is bounded by a good
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machine as at least one good machine gets trimmed.

Term3 = 2‖H
1
2

1

|U|
∑

i∈(U∩B)

(Q(p̂i)− p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2‖ 1

|U ∩ B|
∑

i∈(U∩B)

(Q(p̂i)− p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2 1

|U ∩ B|
∑

i∈(U∩B)

‖(Q(p̂i)− p∗))‖2

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 1

|U ∩ B|
∑

i∈(U∩B)

(‖Q(p̂i)‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖Q(p̂i)‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖Q(p̂i)− p∗‖2 + 2‖p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2 max
i∈M

(‖H
1
2 (Q(p̂i)− p∗)‖2 + 2‖H

1
2 p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2(ε21 + (2 + ζ2
1 )‖H

1
2 p∗‖2)

≤ 4κ(
α

1− β
)2(ε21 + (2 + ζ2

1 )‖H
1
2 p∗‖2).

Combining all the bounds on Term1 , Term2 and Term3 we have

1

2
‖H

1
2 (p̂− p∗)‖2 ≤ ε2byz + ζ2

byz‖H
1
2 p∗‖2,

where

ε2comp,byz =

(
3

(
1− α
1− β

)2

+ 4κ

(
α

1− β

)2
)
ε21

ζ2
comp,byz = 2

(
1− α
1− β

)2

ζ2
comp,M∩T +

(
1− α
1− β

)2

ζ2
comp,M + 4κ

(
α

1− β

)2

(2 + ζ2
comp,1).

Finally we have

φ(p̂)− φ(p∗) ≤ ε2comp,byz − ζ2
comp,byzφ(p∗)

⇒ φ(p̂) ≤ ε2comp,byz + (1− ζ2
comp,byz)φ(p∗).

□ 
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Lemma 22. Let ζcomp,byz ∈ (0, 1), εcomp,byz be any fixed parameter. AndQ(p̂t) satisfies φt(Q(p̂t)) ≤
ε2byz + (1− ζ2

byz) minp φt(p). Under the Assumption 15(Hessian L-Lipschitz) and ∆t = wt − w∗
satisfies

∆T
t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +

ζ2
comp,byz

1− ζ2
comp,byz

∆T
t Ht∆t + 2ε2comp,byz.

Proof. We choose ζ = ζcomp,byz and ε = εcomp,byz from the Lemma 21 and follow the proof of
Lemma 15 to obtain the desired bound.

Proof of Theorem 8

Proof. We get the desired bound by developing from the result of the Lemma 22 and following the
proof of Theorem 6

Additional Experiment
In addition to the experimental results in Section 4.6, we provide some more experiments supporting
the robustness of the COMRADE in two different types of attacks : 1. ‘Gaussian attack’: where
the Byzantine workers add Gaussian Noise (N (µ, σ2)) to the update and 2. ‘random label attack’:
where the Byzantine worker machines learns based on random labels instead of proper labels.

□ 

□ 
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(a) w5a ‘Gauss’ (b) a9a ‘Gauss’ (c) w5a ‘random’ (d) a9a ‘random’

(e) w5a ‘Gauss’ (f) a9a ‘Gauss’ (g) w5a ‘random’ (h) a9a ‘random’

Figure 4.3: (First row) Accuracy of COMRADE with 10%, 15%, 20% Byzantine workers with
‘Gaussian ’ attack for (a). w5a (b). a9a and ‘random label’ attack for (c). w5a (d).a9a. (Second
row) Accuracy of COMRADE with ρ-approximate compressor (Section 4.5) with 10%, 15%, 20%
Byzantine workers with ‘Gaussian ’ attack for (a). w5a (b). a9a and ‘random label’ attack for (c).
w5a (d).a9a.
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Chapter 5

Escaping Saddle Points in FL: Distributed
Cubic Regularized Newton Method

We study the problem of optimizing a non-convex loss function (with saddle points) in a Federated
Learning framework in the presence of Byzantine machines. Our proposed algorithm is a variant of
the celebrated cubic-regularized Newton method of Nesterov and Polyak [43], which avoids saddle
points efficiently and converges to local minima. Furthermore, our algorithm resists the presence of
Byzantine machines, which may create fake local minima near the saddle points of the loss function,
also known as saddle-point attack. We robustify the cubic-regularized Newton algorithm such that
it avoids the saddle points and the fake local minimas efficiently. Furthermore, being a second
order algorithm, the iteration complexity is much lower than its first order counterparts, and thus
our algorithm communicates little with the parameter server. We obtain theoretical guarantees for
our proposed scheme under several settings including approximate (sub-sampled) gradients and
Hessians. Moreover, we validate our theoretical findings with experiments using standard datasets
and several types of Byzantine attacks.

5.1 Introduction
In this chapter we propose provable and efficient algorithms for distributed learning that are
communication efficient and Byzantine resilient. In particular, we focus on optimizing a non-convex
loss function f(.) in a distributed optimization framework. We have m worker machines, out of
which α fraction may behave in a Byzantine fashion, where α < 1

2
. Optimizing a loss function in a

distributed setup has gained a lot of attention in recent years [17, 19, 30, 33]. However, most of
these approaches either work when f(.) is convex, or provide weak guarantees in the non-convex
case (ex: zero gradient points, maybe a saddle point).

On the other hand, in order to fit complex machine learning models, one often requires to find
local minima of a non-convex loss f(.), instead of critical points only, which may include several
saddle points. Training deep neural networks and other high-capacity learning architectures [35, 36]
are some of the examples where finding local minima is crucial. [36, 37] shows that the stationary

-
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points of these problems are in fact saddle points and far away from any local minimum, and hence
designing efficient algorithm that escapes saddle points is of interest. Moreover, in [38, 39], it is
argued that saddle points can lead to highly sub-optimal solutions in many problems of interest.
This issue is amplified in high dimension as shown in [40], and becomes the main bottleneck in
training deep neural nets.

Furthermore, a line of recent work [39, 41, 42], shows that for many non-convex problems, it is
sufficient to find a local minimum. In fact, in many problems of interest, all local minima are global
minima (e.g., dictionary learning [42], phase retrieval [39], matrix sensing and completion [36, 41],
and some of neural nets [37]). Also, in [137], it is argued that for more general neural nets, the local
minima are as good as global minima.

The issue of saddle point avoidance becomes non-trivial in the presence of Byzantine workers.
Since we do not assume anything on the behavior of the Byzantine workers, it is certainly conceivable
that by appropriately modifying their messages to the center, they can create fake local minima that
are close to the saddle point of the loss function f(.), and these are far away from the true local
minima of f(.). This is popularly known as the saddle-point attack (see [31]), and it can arbitrarily
destroy the performance of any non-robust learning algorithm. Hence, our goal is to design an
algorithm that escapes saddle points of f(.) in an efficient manner as well as resists the saddle-point
attack simultaneously. The complexity of such an algorithm emerges from the the interplay between
non-convexity of the loss function and the behavior of the Byzantine machines.

The problem of saddle point avoidance in the context of non-convex optimization has received
considerable attention in the past few years. In the seminal paper of Jin et al. [46], a gradient
descent based approach is proposed. By defining a certain perturbation condition and adding
Gaussian noise to the iterates of gradient descent, the algorithm of [46] provably escapes the
saddle points of the non-convex loss function. A few papers [138, 139] following the above use
various modifications to obtain saddle point avoidance guarantees. However, these algorithms are
non-robust. A Byzantine robust saddle point avoidance algorithm is proposed by Yin et al. [31],
and probably is the closest to this work. In [31], the authors propose a repeated check-and-escape
type of first order gradient descent based algorithm. First of all, being a first order algorithm, the
convergence rate is quite slow (the rate for gradient decay is 1/

√
T , where T is the number of

iterations). Moreover, implementation-wise, the algorithm presented in [31] is computation heavy,
and takes potentially many iterations between the center and the worker machines. Hence, this
algorithm is not efficient in terms of the communication cost.

In this work, we consider a variation of the famous cubic-regularized Newton algorithm of
Nesterov and Polyak [43]. It is theoretically proved in [43] that a cubic-regularized Newton method
with proper choice of parameters like step size always outperforms the gradient based first order
schemes (like [31]) in all situations under consideration. Indeed, in Theorem 10, we observe that the
rate of gradient decay is 1

T 2/3 , which is strictly better than the first order gradient based methods. In
Section 5.6, we experimentally show that our scheme outperforms that of [31], in terms of iteration
complexity and hence communication cost. Also, our algorithm is easy to implement whereas
a range of hyper-parameter choice and tuning makes the implementation of ByzantinePGD [31]
difficult.

In [43–45], it is shown that cubic-regularized Newton can efficiently escape the saddle points
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of a non-convex function. Assuming the loss function has a Lipschitz continuous Hessian (see
Assumption 19), the cubic-regularized Newton optimizes an auxiliary function (detailed in Sec-
tion 5.3), which is an upper second order approximation of the original loss function. It is shown in
[43] that the cubic regularized term in the auxiliary function pushes the Hessian towards a positive
semi-definite matrix.

A point w is said to satisfy the ε-second order stationary condition of the loss function f(.) if,

‖∇f(w)‖ ≤ ε λmin(∇2f(w)) ≥ −
√
ε.

∇f(w) denotes the gradient of the function and λmin(∇2f(w)) denotes the minimum eigenvalue
of the Hessian of the function. Hence, under the assumption (which is standard in the literature,
see [31, 46]) that all saddle points are strict (i.e., λmin(∇2f(ws)) < 0 for any saddle point ws), all
second order stationary points (with ε = 0) are local minima, and hence converging to a stationary
point is equivalent to converging to a local minima.

We consider a distributed variant of the cubic regularized Newton algorithm. In this scheme, the
center machine asks the workers to solve an auxiliary function and return the result. Note that the
complexity of the problem is partially transferred to the worker machines. It is worth mentioning
that in most distributed optimization paradigm, including Federated Learning, the workers posses
sufficient compute power to handle this partial transfer of compute load, and in most cases, this
is desirable [3]. The center machine aggregates the solution of the worker machines and takes a
descent step. Note that, unlike gradient aggregation, the aggregation of the solutions of the local
optimization problems is a highly non-linear operation. Hence, it is quite non-trivial to extend the
centralized cubic regularized algorithm to a distributed one. The solution to the cubic regularization
even lacks a closed form solution unlike the second order Hessian based update or the first order
gradient based update. The analysis is carried out by leveraging the first order and second order
stationary conditions of the auxiliary function solved in each worker machines.

In addition to this, we use a simple norm-based thresholding approach to robustify the distributed
cubic-regularized Newton method. In [31], the authors use computation-heavy schemes like
coordinate-wise median, trimmed mean and iterative filtering. In contrast to these approaches, our
scheme is computationally efficient. Norm based thresholding is a standard trick for Byzantine
resilience as featured in [140, 141]. However, since the local optimization problem lacks a closed
form solution, using norm-based trimming is also technical challenging in this case. Handling the
Byzantine worker machines becomes a bit more complicated as those stationary conditions of the
good machines (non-Byzantine machine) do not hold for the Byzantine worker machines.

5.1.1 Our Contributions
1. We propose a novel distributed and robust cubic regularized Newton algorithm, that escapes

saddle point efficiently. We prove that the algorithm convergence at a rate of 1
T 2/3 , which

is faster than the first order methods (which converge at 1/
√
T rate, see [31]). Hence, the

number of iterations (and hence the communication cost) required to achieve a target accuracy
is much fewer than the first order methods. A simple simulation in Section 5.6, shows that
the algorithm of [31] requires 36x more steps than ours, showing a huge communication gain.
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2. The computation complexity of our algorithm is also much less than the existing schemes [31].
Part of computation is deferred to the worker machines, which is desirable in paradigm like
Federated Learning.

3. We use norm-based thresholding to resist Byzantine workers. In previous works, computation
heavy techniques like coordinate-wise median, coordinate-wise trimmed mean and spectral
filtering are used to resist Byzantine workers. In contrast, our norm based thresholding in
computation friendly.

4. We work with inexact gradients and Hessians, which is quite common in distributed setup
like Federated Learning.

5. In Section 5.6, we verify our theoretical findings via experiments. We use benchmark
LIBSVM ([47]) datasets for logistic regression and non-convex robust regression and show
convergence results for both non-Byzantine and several different Byzantine attacks.

5.2 Related Work
In the recent years, there are handful first order algorithms [142–144] that focus on the escaping
saddle points and convergence to local minima. The critical algorithmic aspect is running gradient
based algorithm and adding perturbation to the iterates when the gradient is small. ByzantinePGD
[31], PGD [46], Neon+GD[138], Neon2+GD [139] are examples of such algorithms. For faster
convergence rate, second order Hessian based algorithms are developed for saddle point avoidance.
The work of Nesterov and Polyak [43] first proposes the cubic regularized Newton method and
provides analysis for the second order stationary condition. An algorithm called Adaptive Regular-
ization with Cubics (ARC) was developed by [145, 146] where cubic regularized Newton method
with access to inexact Hessian was studied. The inexactness of Hessians for the ARC algorithm
is adaptive over iterations. Cubic regularization with both the gradient and Hessian being inexact
was studied in [147]. In [44], a cubic regularized Newton with sub-sampled Hessian and gradient
was proposed, but for analysis, the batch size of the sample changes in adaptive manner to provide
guarantees for the inexactness of the Hessian and gradient. In this work, we also take a similar
approach as [44], but we relax the adaptive nature of the sample size. Momentum based cubic
regularized algorithm was studied in [45]. A variance reduced cubic regularized algorithm was
proposed in [148, 149]. In terms of solving the cubic sub-problem, [150] proposes a gradient based
algorithm and [151] provides a Hessian-vector product technique.

Furthermore, as mentioned in Chapters 3,4, the Byzantine resilience algorithms in FL have
received significant interest (see [19, 22, 23, 30, 140]. Also, in Chapters 3 and 4, a norm based
thresholding approach for Byzantine resilience for distributed first and second order algorithms
respectively was proposed. However, none of these works provide saddle point avoidance guarantees
(they only show convergence to a small gradient point). The work [31] is the only one that provides
second order guarantee (Hessian positive semi-definite) under Byzantine attack, and we compare
our algorithm with that of [31].
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5.3 Problem Formulation
In this section, we formally set up the problem. Similar to Chapter 4, we minimize a loss function
additive over losses of worker machines. The loss function takes the following form:

f(w) =
1

m

m∑
i=1

fi(w), (5.1)

where the function f : Rd → R is twice differentiable and non-convex. Continuing with the
notation from the previous chapters, we consider distributed optimization framework with m worker
machines and one center machine where the worker machines communicate to the center machine.
Each worker machine is associated with a local loss function fi minimized over i.i.d. data points
drawn form some unknown distribution. In addition to that, we also consider the case where α
fraction of the worker machines are Byzantine for some α < 1

2
. The Byzantine machines can send

arbitrary updates to the central machine which can disrupt the learning. Furthermore, the Byzantine
machines can collude with each other, create fake local minima or attack maliciously by gaining
information about the learning algorithm and other workers.

In the rest of the chapter, the norm ‖ · ‖ will refer to `2 norm or spectral norm when the argument
is a vector or a matrix respectively.

Algorithm 5: Byzantine Robust Distributed Cubic Regularized Newton Algorithm
1: Input: Step size ηk, parameter β ≥ 0, γ > 0,M > 0
2: Initialize: Initial iterate w0 ∈ Rd

3: for k = 0, 1, . . . , T − 1 do
4: Central machine: broadcasts wk

for i ∈ [m] do in parallel
5: i-th worker machine:

• Non-Byzantine: Computes local gradient gi,k and local Hessian Hi,k; locally solves
the problem described in equation (5.2) and sends si,k+1 to the central machine,

• Byzantine: Generates ? (arbitrary), and sends it to the center machine

end for
6: Center Machine:

• Sort the worker machines in a non decreasing order according to norm of updates
{si,k+1}mi=1 from the local machines

• Return the indices of the first 1− β fraction of machines as Ut,

• Update parameter: wk+1 = wk + ηk
1
|Ut|
∑

i∈Ut si,k+1

7: end for
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5.4 Distributed Cubic Regularized Newton
We first focus on the non-Byzantine setup (α = 0; β = 0 in Algorithm 5) of distributed cubic regu-
larized Newton algorithm. Byzantine resilience attribute of Algorithm 5 is deferred to Section 5.5.
As mentioned before, the data is drawn independently across worker machines from some unknown
distribution. The local data at the ith machine is denoted by Si. Starting with initialization w0, the
central machine broadcasts the parameter to the worker machines. At k-th iteration, the i-th worker
machine solves a cubic-regularized auxiliary loss function based on its local data:

si,k+1 = argmin
s

gTi,ks+
γ

2
sTHi,ks +

M

6
γ2‖s‖3, (5.2)

where M > 0, γ > 0 are parameter and gi,t,Hi,t are the gradient and Hessian of the local loss
function fi computed on the independently sampled data (Si) stored in the worker machine.

gi,k = ∇fi(wk) =
1

|Si|
∑
zi∈Si

∇fi(wk, zi),

Hi,k = ∇2fi(wk) =
1

|Si|
∑
zi∈Si

∇2fi(wk, zi).

After receiving the update si,k+1, the central machine updates the parameter in the following way

sk+1 = sk +
ηk
m

m∑
i=1

si,k+1, (5.3)

where ηk is the step-size.

Remark 23. Note that, we introduce the parameter γ in the cubic regularized sub-problem. The
parameter γ emphasizes the effect of the second and third order terms in the sub-problem. The
choice of γ plays an important role in our analysis in handling the non-linear update from different
worker machines. Such non-linearity vanishes if we choose γ = 0 and the distributed cubic Newton
becomes distributed gradient descent algorithm.

5.4.1 Theoretical Guarantees
We have the following standard assumptions:

Assumption 16. The non-convex loss function f(.) is twice continuously-differentiable and bounded
below, i.e., f ∗ = infw∈Rd f(x) > −∞.

Assumption 17. The loss f(.) is L-Lipschitz continuous (∀z,y, |f(z)− f(y)| ≤ L‖z− y‖), has
L1-Lipschitz gradients (‖∇f(z)−∇f(y)‖ ≤ L1‖z− y‖) and L2-Lipschitz Hessian
(‖∇2f(z)−∇2f(y)‖ ≤ L2‖z− y‖).
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The above assumption states that the loss and the gradient and Hessian of the loss do not
drastically change in the local neighborhood. These assumptions are standard in the analysis of the
saddle point escape for cubic regularization (see [44, 147]).

In this work, each worker machine solves the cubic sub-problem as described in the equation
(5.2). The gradient and Hessian used in the equation are inexact in nature as they are computed
using the sub-sampled data.

Assumption 18. For a given εg > 0 and for all k, i,

‖∇f(wk)− gi,k‖ ≤ εg. (5.4)

Assumption 19. For a given εH > 0 and for all k, i,

‖∇2f(wk)−Hi,k‖ ≤ εH . (5.5)

In the following section, we provide an exact characterization of εg and εH to justify the
assumptions.

5.4.2 Inexact Gradient and Hessian
In this work, we assume that each worker machine solve the sub-problem described in equation
(5.2) with the data sampled independently from some unknown distribution. So, in each iteration,
the gradient and Hessian computed by each worker machine are actually sub-sampled gradient and
Hessian of the objective function f and inexact in nature. In the following lemmas, we described the
deviation conditions given the size of the sampled data and provide probabilistic deviation bound
that ensure the deviation defined in Assumption 18 and 19.

Lemma 23. (Gradient deviation bound) Given S iid data sample, under the Assumption 17, we

have ‖gi −∇f‖ ≤ c

(
L
√

log(2d/δ)√
|S|

)
, with probability exceeding 1− δ, where c is a constant and gi

is the gradient computed in i-th worker machine.

Lemma 24. (Hessian deviation bound) Given S iid data sample, under the Assumption 17, we

have ‖Hi −∇2f‖ ≤ c1

(
L1

√
log(2d/δ)√
|S|

)
, with probability at least 1− δ, where c1 is a constant and

Hi is the Hessian computed in i-th worker machine.

Remark 24. In the Assumptions 18 and 19, the deviation bounds are in `2 norm for the gradient and
in spectral norm for the Hessian. In the previous works, in centralized model, [44, 45, 147] study
cubic regularization with sub-sampled and inexact gradient and Hessian. In the central model, the
motivation of the sub-sampled Hessian and gradient is for the ease of the computation. Here, we
use the deviation bounds as each of the worker machine only have access to a fraction of the data.

Also, in contrast to the sub-sampled analysis of [44], we choose the deviation of both the
gradient and Hessian in the Assumptions 18 and 19 to be independent of the update s which is the
solution of the sub-problem (5.2).
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The analysis of the deviation bounds follows form the vector and matrix Bernstein inequalities.
The assumption of the independent data in each worker can be relaxed. The analysis can be easily
extended for data partition (non iid data), following an analysis of [141] the bound of

√
1
|S| holds.

Theorem 10. Under the Assumptions 16,17,18, 19, and α = 0, after T iterations, the sequence
{wi}Ti=1 generated by the Algorithm 5 with β = 0, contains a point w̃ such that

‖∇f(w̃)‖ ≤ Ψ1

T
2
3

+
Ψ2

T
+ (εg + εH),

λmin

(
∇2f(x̃)

)
≥ −Ψ3

T
1
3

− εH , (5.6)

where, λmin(.) denotes the minimum eigenvalue and

Ψ1 =

(
L2

2
+
M

2

)
Ψ2,Ψ2 = εHΨ3,Ψ3 =

(
M

2
+ L2

)
Ψ

Ψ =

[
f(w0)− f ∗

λ
+

∑T−1
k=0 η

2
k

2m2λ
((m− 1)L1 + εH) +

∑T−1
k=0 ηkεg
mλ

] 1
3

λ =

(
M

4m
− L2

6
− 1

2ηkm
((m− 1)L1 + εH)− εg

η2
k

)
Remark 25. We choose the step sizes {ηk}T−1

k=0 such way that
∑T

i=0 ηk and
∑T

i=0 η
2
k is bounded. For

the ease of choice, we can choose ηk = c
T

, for some constant c > 0. Also, we choose ηk = γ.

Remark 26. Both the gradient and the minimum eigenvalue of the Hessian in the Theorem 10 have
two parts. The first part decreases with the number iterations T . The gradient and the minimum
eigenvalue of the Hessian have the rate of O

(
1

T
2
3

)
and O

(
1

T
1
3

)
, respectively. Both of these rates

match the rates of the centralized version of the cubic regularized Newton. In the second parts of
the gradient bound and the minimum eigenvalue of the Hessian have the error floor of εg + εH and
εH , respectively. Both the terms εg and εH decrease at the rate of 1√

|S|
, where |S| is the number of

data in each of the worker machines.

Remark 27 (Two rounds of communication εg = 0). We can improve the bound in the Theorem 10,
with the calculation of the actual gradient which requires one more round of communication in each
iteration. In the first iteration, all the worker machines compute the gradient based on the stored
data and send it to the center machine. The center machine averages them and then broadcast the
global gradient ∇f(wk) = 1

m

∑m
i=1 gi,k at iteration k. In this manner, the worker machines solve

the sub-problem (5.2) with the actual gradient. The analysis follows same as that of the Theorem 10
with εg = 0. This improves the gradient bound while the communication remains O(d) in each
iteration.
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5.4.3 Solving cubic sub-problem
We use a gradient based approach for solving the cubic sub-problem (5.2) in each worker machines
(see [147]). The worker machines computes the gradient and Hessian based on the local data stored
in the machines and perform the following gradient descent algorithm to yields a solution withing
certain tolerance.

Algorithm 6: Gradient based Cubic solver
1: Input: Step size ξ, local gradient g and Hessian H and tolerance τ > 0 and M,γ.
2: Initialize: s← 0;G← g
3: While ‖G‖ > τ ;

• s← s− ξG
• G = g + γHs + Mγ2

2
‖s‖s

4: Return s

5.5 Byzantine Resilience
In this section, we analyze our algorithm’s resilience against Byzantine workers. We consider that
α(< 1

2
) fraction of the worker machines are Byzantine in nature. We denote the set of Byzantine

worker machines by B and the set of the rest of the good machines asM. In each iteration, the
good machines send the solution of the sub-cubic problem described in equation (5.2) and the
Byzantine machines can send any arbitrary values or intentionally disrupt the learning algorithm
with malicious updates. Moreover, in the non-convex optimization problems, one of the more
complicated and important issue is to avoid saddle points which can yield highly sub-optimal results.
In the presence of Byzantine worker machines, they can be in cohort to create a fake local minima
and drive the algorithm into sub-optimal region. Lack of any robust measure towards these type of
intentional and unintentional attacks can be catastrophic to the learning procedure as the learning
algorithm can get stuck in such sub-optimal point. To tackle such Byzantine worker machines, we
employ a simple process called norm based thresholding.

After receiving all the updates from the worker machines, the central machine outputs a set U
which consists of the indexes of the worker machines with smallest norm. We choose the size of the
set U to be (1− β)m. Hence, we ‘trim’ β fraction of the worker machine so that we can control
the iterated update by not letting the worker machines with large norm participate and diverge the
learning process. We denote the set of trimmed machine as T . We choose β > α so that at least
one of the good machines gets trimmed. In this way, the norm of the all the updates in the set U is
bounded by at least the largest norm of the good machines.
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Theorem 11. For 0 ≤ α ≤ β ≤ 1
2

and under the Assumptions 16,17,18, 19, after T iterations, the
sequence {wi}Ti=1 generated by the Algorithm 5 contains a point w̃ such that

‖∇f(w̃)‖ ≤ Ψ1,byz

T
2
3

+
Ψ2,byz

T
+ εg +

(1− α)

(1− β)
(1 + αm)εH

λmin
(
∇2f(w̃)

)
≥ −Ψ3,byz

T
1
3

− εH where, (5.7)

Ψ1,byz =

(
L2(1 + αm)(1− α)

2(1− β)
+
M(1 + αm)2

2

(
(1− α)2

(1− β)

))
Ψ2
byz

Ψ2,byz =
(1− α)

(1− β)
(1 + αm)εHΨ3

byz

Ψ3,byz =

(
M(1− α)

2(1− β)
(1 + αm) + L2

(1 + αm)(1− α)

(1− β)

)
Ψbyz

Ψbyz =

[
f(w0)− f ∗

λbyz
+

∑T−1
k=0 λfloor
λbyz

] 1
3

λbyz =
Mγ(1− α)

4ηk(1− β)2m
− (L(1 + αm) + εg)(1− α)

η2
k(1− β)

− (1− α)αmL2

6(1− β)

− (1− α)

2ηk(1− β)2m
(1− β)mL1 + α(1− β)m2 + εH)

λfloor =
ηkεg(1− α)

(1− β)
+

ηkL

(1− β)
+

η2
k

2(1− β)2m2
×[

(2(1− β)m+ 1)L1 + εH)(1− α)m+ α(1− β)m2L1

]
Remark 28. Compared to the non-Byzantine part described in Theorem 10, the rate of remains
same except for the error floor of the gradient bound suffering a small constant factor.

Remark 29. The condition for the step-size ηk remains same as described in the Remark 26 and we
choose γ = ηk(1−α)

(1−β)
(1 + αm).

Remark 30. In the previous work, [31] first provides a perturbed gradient based algorithm to
escape the saddle point in non-convex optimization in the presence of Byzantine worker machines.
Also, in that paper, the Byzantine resilience is achieved using techniques such as trimmed mean,
median and collaborative filtering. These methods require additional assumptions (coordinate of the
gradient being sub-exponential etc.) for the purpose of analysis. In this work, we perform a simple
norm based thresholding that provides robustness towards any sorts of adversarial attacks. Also the
perturbed gradient descent (PGD) actually requires multiple rounds of communications between
the central machine and the worker machines whenever the norm of the gradient is small as this is
an indication of either a local minima or a saddle point. In contrast to that, our method does not
require any additional communication for escaping the saddle points. Our method provides such
ability by virtue of cubic regularization.
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Remark 31. Since our algorithm is second order in nature, it requires less number of iterations
compared to the first order gradient based algorithms. Our algorithm achieves a superior rate
of O

(
1

T
2
3

)
compared to the gradient based approach of rate O

(
1√
T

)
. Our algorithm dominates

ByzantinePGD [23] in terms of convergence, communication rounds and simplicity and efficiency
of Byzantine resilience.

5.6 Experimental Results
In this section, we validate our algorithm in both Byzantine and non-Byzantine setup on benchmark
LIBSVM ([47]) dataset in both convex and non-convex problems. We choose the following problems
for our experiment.

1. Logistic regression:

min
w∈Rd

1

n

∑
i

log
(
1 + exp(−yixTi w)

)
+

λ

2n
‖w‖2. (5.8)

2. Non-convex robust linear regression:

min
w∈Rd

1

n

∑
i

log

(
(yi − wTxi)

2

2
+ 1

)
, (5.9)

where w ∈ Rd is the parameter, {xi}ni=1 ∈ Rd are the feature vectors and {yi}ni=1 ∈ {0, 1}
are the corresponding labels. We choose ‘a9a’(d = 123, n ≈ 32K, we split the data into 70/30
and use as training/testing purpose) and ‘w8a’(training data d = 300, n ≈ 50K and testing data
d = 300, n ≈ 15K ) classification datasets and partition the data in 20 different worker machines.

In Figure 5.3, we show the performance of our algorithm in non-Byzantine setup (α = β = 0).
In the top row of Figure 5.3, we plot the classification accuracy on test data of both ‘a9a’ and ‘w8a’
datasets for logistic regression problem and in the bottom row of Figure 5.3, we plot the function
value of the non-convex robust linear regression problem defined in equation (5.9) for training
data of ‘a9a’ and ‘w8a’ datasets. We choose the learning rate ηk = 1 and the parameter λ = 1 and
M = {10, 15, 20}.

Next, we show the effectiveness of our algorithm in Byzantine setup. In this work, we consider
the following four Byzantine attacks: (1) ‘Gaussian Noise attack’: where the Byzantine worker
machines add Gaussian noise to the update. (2) ‘Random label attack’: where the Byzantine worker
machines train and learn based on random labels instead of the proper labels. (3) ‘Flipped label
attack’: where (for Binary classification) the Byzantine worker machines flip the labels of the
data and learn based on wrong labels. (4) ‘Negative update attack’: where the Byzantine workers
computes the update s (here solves the sub-problem in Eq. (5.2)) and communicates −c ∗ s with
c ∈ (0, 1) making the direction of the update opposite of the actual one.
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(a) Flipped label (b) Negative update (c) Gaussian noise (d) Random label

(e) Flipped label (f) Negative update (g) Gaussian noise (h) Random label

Figure 5.1: Function loss of the training data ‘a9a’ dataset (first row) and ‘w8a’ dataset (second
row) with 10%, 15%, 20% Byzantine worker machines for (a,e). Flipped label attack.(b,f). Negative
Update attack (c,g). Gaussian noise attack and (d,h). Random label attack for non-convex robust
linear regression problem.

We show the classification accuracy on testing data of ‘a9a’ and ‘w8a’ dataset for logistic
regression problem in Figure 5.2 and training function loss of ‘a9a’ and ‘w8a’ dataset for robust
linear regression problem in the Figure 5.1. It is evident from the plots that a simple norm based
thresholding makes the learning algorithm robust. We choose the parameters λ = 1,M = 10,
learning rate ηk = 1, fraction of the Byzantine machines α = {.1, .15, .2} and β = α + 2

m
.

We also compare our algorithm with ByzantinePGD [23]. For both the algorithms, we choose `2

norm of the gradient as a stopping criteria and compute the number of times the worker machines
communicate with the center machine as a measure of communication cost and convergence rate.
We choose R = 10, r = 5, Q = 10, Tth = 10 and ‘co-ordinate wise Trimmed mean ’ for Byzantine
resilience (see the algorithm in [23]). For our algorithm, we choose M = 10, λ = 1 in the non-
Byzantine setup. The ByzantinePGD algorithm requires 257 rounds of communications (157 rounds
for reaching the stopping criteria and 100 rounds for the ‘Escape’ sub-routine to check whether
it is a ‘saddle point’) where our algorithm requires only 7 rounds of communication. We choose
‘w8a’ dataset for non-convex robust linear regression problem. Eventhough ByzantinePGD does not
require the computation of Hessian and cubic sub-problem solving, our algorithm outperforms by
a lot (36x) in terms of communication rounds. In the Appendix, we provide results in Byzantine
settings.
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(a) Flipped label (b) Negative update (c) Gaussian noise (d) Random label

(e) Flipped label (f) Negative update (g) Gaussian noise (h) Random label

Figure 5.2: Classification accuracy of the testing data ‘a9a’ dataset (first row) and ‘w8a’ dataset
(second row) with 10%, 15%, 20% Byzantine worker machines for (a,e). Flipped label attack.(b,f).
Negative Update attack (c,g). Gaussian noise attack and (d,h). Random label attack for logistic
regression problem.

(a) a9a (b) w8a

(c) a9a (d) w8a

Figure 5.3: (First row) Accuracy of the algorithm for logistic regression on test data of (a). a9a and
(b). w8a dataset. (Second row). Function value of the non-convex robust linear regression on the
training data of (a). a9a and (b). w8a dataset.

I~ 
i 
I 

j 
I 

i 
i 
i 
i 
i 

76 j 
.; 

- ·- ·- 10% Byzantine I 
- ·- ·- 15% Byzantine 

- ·- ·- 20% Byzantine 

40 60 

iterations 

- - - 10% Byzantine I 
- - - 15% Byzantine 

- - - 20% Byzantine 

7.5 10.0 12 .5 

iterations 

10% Byzantine 

15% Byzantine 

20% Byzantine 

40 60 

iterations 

- - - 10% Byzantine I 
- - - 15% Byzantine 

- - - 20% Byzantine 

7.5 10.0 12 .5 

iterations 

40 60 

iterations 

4 

iterations 

--- M=lO I 
--- M=l5 

--- M=20 

M=l0 

M=l5 

M=20 

,r 
I 
I 

BO I 
I 

! 
I 
r 
i 

76 j 
.; 

10% Byzantine 

15% Byzantine 

20% Byzantine 

40 60 

iterations 

( ,,.. ... , .. ,,.,:::,:::•""""­

' i 
i 
i 
i 
i 
i 
i 10% Byzantine 

,i 15% Byzantine 

/ 20% Byzantine 

7.5 10.0 12 .5 

iterations 

7.5 10.0 12 .5 

iterations 

4 

iterations 

M=l0 

M=l5 

M=20 

M=lO I 
M=l5 

M=20 

I 
76 j .. 

10% Byzantine 

15% Byzantine 

20% Byzantine 

40 60 

iterations 

- - - 10% Byzantine I 
- - - 15% Byzantine 

- - - 20% Byzantine 

7.5 10.0 12 .5 

iterations 



CHAPTER 5. ESCAPING SADDLE POINTS IN FL: DISTRIBUTED CUBIC REGULARIZED
NEWTON METHOD 120

5.7 Proofs
In this part, first, we establish some useful facts and lemmas. Next, we provide the missing proofs
and analysis of Theorems 10 and 11 and additional experiments comparing ByzantinePGD [31] in
Byzantine setup.

5.7.1 Some useful facts
For the purpose of analysis we use the following sets of inequalities.

Fact 1. For a1, . . . , an we have the following inequality

‖

(
n∑
i=1

ai

)
‖3 ≤

(
n∑
i=1

‖ai‖

)3

≤ n2

n∑
i=1

‖ai‖3 (5.10)

‖

(
n∑
i=1

ai

)
‖2 ≤

(
n∑
i=1

‖ai‖

)2

≤ n
n∑
i=1

‖ai‖2 (5.11)

Fact 2. For a1, . . . , an > 0 and r < s(
1

n

n∑
i=1

ari

)1/r

≤

(
1

n

n∑
i=1

asi

)1/s

(5.12)

Lemma 25 ([43]). Under Assumption 17, i.e., the Hessian of the function isL2-Lipschitz continuous,
for any w,y ∈ Rd, we have

‖∇f(w)−∇f(y)−∇2f(w)(y − w)‖ ≤ L2

2
‖y − w‖2 (5.13)∣∣∣∣f(y)− f(w)−∇f(w)T (y − w)− 1

2
(y − w)T∇2f(w)(y − w)

∣∣∣∣ ≤ L2

6
‖y − w‖2 (5.14)

Next, we establish the following Lemma that provides some nice properties of the cubic sub-
problem.

Lemma 26. Let M > 0, γ > 0,g ∈ Rd,H ∈ Rd×d, and

s = argmin
w

gTw +
γ

2
wTHw +

Mγ2

6
‖w‖3. (5.15)

The following holds

g + γHs +
Mγ2

2
‖s‖s = 0, (5.16)

H +
Mγ

2
‖s‖I � 0, (5.17)

gT s +
γ

2
sTHs ≤ −M

4
γ2‖s‖3. (5.18)
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Proof. The equations (5.16) and (5.17) are from the first and second order optimal condition. We
proof (5.18), by using the conditions of (5.16) and (5.17).

gT s +
γ

2
γsTHs = −

(
γHs +

M

2
γ2‖s‖s

)T
s +

γ

2
γsTHs (5.19)

= −γsTHs− M

2
γ2‖s‖3 +

γ

2
γsTHs

≤ M

4
γ2‖s‖3 − M

2
γ2‖s‖3 (5.20)

= −M
4
γ2‖s‖3.

In (5.19), we substitute the expression g from the equation (5.16). In (5.20), we use the fact that
sTHs + Mγ

2
‖s‖3 > 0 from the equation (5.17).

5.7.2 Proof of Theorem 10
First we state the results of Lemma 26 for each worker node in iteration k,

gi,k + γHi,ksi,k+1 +
M

2
γ2‖si,k+1‖si,k+1 = 0 (5.21)

γHi,k +
M

2
γ2‖si,k+1‖I � 0 (5.22)

gTi,ksi,k+1 +
γ

2
sTi,k+1Hi,ksi,k+1 ≤ −

M

4
γ2‖si,k+1‖3 (5.23)

□ 
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At iteration k, we have,

f(wk+1)− f(wk)

≤ ∇f(wk)
T (wk+1 − wk) +

1

2
(wk+1 − wk)T∇2f(wk)(wk+1 − wk) +

L2

6
‖wk+1 − wk‖3

≤ ηk∇f(wk)
T sk+1 + η2

k

1

2
sTk+1∇2f(wk)sk+1 +

L2

6
‖ηksk+1‖3

=
ηk
m
∇f(wk)

T (
∑
i

si,k+1) +
η2
k

2
(

1

m

∑
i

si,k+1)T∇2f(wk)(
1

m

∑
i

si,k+1) +
L2η

3
k

6
‖sk+1‖3 (5.24)

≤ ηk
m

(∑
i

∇f(wk)
T si,k+1

)
+

η2
k

2m2

(∑
i

sTi,k+1∇2f(wk)si,k+1 +
∑
i6=j

sTi,k+1∇2f(wk)sj,k+1

)

+
L2η

3
k

6m

∑
i

‖si,k+1‖3

≤ ηk
m

∑
i

(
gTi,ksi,k+1 +

γ

2
sTi,k+1Hi,ksi,k+1

)
+
ηk
m

(∑
i

(∇f(wk)− gi,k+1)T si,k+1

)
− ηkγ

2m

∑
i

sTi,k+1Hi,ksi,k+1

+
η2
k

2m2

(∑
i

sTi,k+1∇2f(wk)si,k+1 +
∑
i6=j

sTi,k+1∇2f(wk)sj,k+1

)
+
L2η

3
k

6m

∑
i

‖si,k+1‖3

≤ ηk
m

∑
i

−M
4
γ2‖si,k+1‖3 +

ηk
m

(∑
i

εg‖si,k+1‖

)
−
(
ηkγ

2m
− η2

k

2m2

)∑
i

sTi,k+1Hi,ksi,k+1

+
η2
k

2m2

[∑
i

sTi,k+1

(
∇2f(wk)−Hi,k

)
si,k+1 +

∑
i6=j

sTi,k+1∇2f(wk)sj,k+1

]
+
L2η

3
k

6m

∑
i

‖si,k+1‖3

(5.25)

≤
(
−Mγ2ηk

4m
+
L2η

3
k

6m

)∑
i

‖si,k+1‖3 +
ηkεg
m

(∑
i

‖si,k+1‖

)

+

(
ηkγ

2m
− η2

k

2m2

)∑
i

M

2
γ‖si,k+1‖3

+
η2
k

2m2

[
εH
∑
i

‖si,k+1‖2 + L1

∑
i6=j

‖si,k+1‖‖sj,k+1‖

]
(5.26)

=

(
−Mγ2ηk

4m2
+
L2η

3
k

6m

)∑
i

‖si,k+1‖3 +
ηkεg
m

(∑
i

‖si,k+1‖

)
︸ ︷︷ ︸

Term1

+
η2
k

2m2

[
εH
∑
i

‖si,k+1‖2 + L1

∑
i6=j

‖si,k+1‖‖sj,k+1‖

]
︸ ︷︷ ︸

Term2

(5.27)
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In (5.24), we apply the inequality (5.20) on ‖ 1
m

∑
i si,k+1‖3. In line (5.25), we use the gradient

approximation from the Assumption 18. In line (5.25), we apply the fact that sTi,k+1Hi,ksi,k+1 +
Mγ

2
‖si,k+1‖3 > 0 from the equation (5.22) and assume that γ > ηk

m
. In line (5.26), we use the

Assumption 19 and the fact that the Hessian of the objective function is bounded as the gradient is
L1-Lipschitz continuous.

Now we bound the Term 1 and Term 2 in equation (5.27).

Term 1 ≤ ηkεg
m

∑
i

‖si,k+1‖ ≤
ηkεg
m

∑
i

(1 + ‖si,k+1‖3) (5.28)

In line (5.28), we use the fact a2b ≤ a3 + b3 where a, b > 0. We choose a = 1 and b = ‖si,k+1‖.

Term2 ≤ η2
k

2m2

[
εH
∑
i

‖si,k+1‖2 + L1

(
‖
∑
i

si,k+1‖2 −
∑
i

‖si,k+1‖2

)]

≤ η2
k

2m2
((m− 1)L1 + εH)

∑
i

‖si,k+1‖2 (5.29)

≤ η2
k

2m2
((m− 1)L1 + εH)

∑
i

(
‖si,k+1‖3 + 1

)
(5.30)

In line (5.29), we use the inequality (5.11) to bound ‖
∑

i si,k+1‖2 and in line (5.30), we choose
a = ‖si,k+1‖2 and b = 1 and use a2b ≤ a3 + b3.

Combining the result of (5.28) and (5.30) in equation (5.27), we have

f(wk+1)− f(wk) ≤
[
−Mγ2ηk

4m2
+
L2η

3
k

6m
+
ηkεg
m

+
η2
k

2m2
((m− 1)L1 + εH)

]∑
i

‖si,k+1‖3

+

[
ηkεg
m

+
η2
k

2m2
((m− 1)L1 + εH)

]
Now we consider that λ =

(
Mγ

4ηkm
− L2

6
− 1

2ηkm
((m− 1)L1 + εH)− εg

η2k

)
. We can assure λ > 0

by choosing M ≥ 4ηkm
γ

(
L2

6
+ 1

2ηkm
((m− 1)L1 + εH) + εg

η2k

)
.

Now we have

1

m

∑
i

‖ηksi,k+1‖3 ≤ 1

λ

[
f(wk)− f(wk+1) +

ηkεg
m

+
η2
k

2m2
((m− 1)L1 + εH)

]
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Now we consider the step k0, where k0 = arg min0≤k≤T−1 ‖wk+1−wk‖ = argmin0≤k≤T−1 ‖ηksk+1‖.

min
0≤k≤T

‖wk+1 − wk‖3 = min
0≤k≤T

‖ηksk+1‖3

≤ 1

m

m∑
i=1

‖ηk0si,k0+1‖3

≤ 1

T

T−1∑
k=0

1

m

m∑
i=1

‖ηksi,k+1‖3

≤ 1

T

T−1∑
k=0

1

λ

[
f(wk)− f(wk+1) +

η2
k

2m
((m− 1)L1 + εH) +

ηkεg
m

]

=
1

T

[
f(w0)− f(wT )

λ
+

∑T−1
k=0 η

2
k

2mλ
((m− 1)L1 + εH) +

∑T−1
k=0 ηkεg
mλ

]

≤ 1

T

[
f(w0)− f ∗

λ
+

∑T−1
k=0 η

2
k

2m2λ
((m− 1)L1 + εH) +

∑T−1
k=0 ηkεg
mλ

]

Based on the calculation above, we have

‖wk0+1 − wk0‖ ≤

(
1

m

m∑
i=1

‖ηk0si,k0+1‖3

) 1
3

≤ 1

T
1
3

[
f(w0)− f ∗

λ
+

∑T−1
k=0 η

2
k

2m2λ
((m− 1)L1 + εH) +

∑T−1
k=0 ηkεg
mλ

] 1
3

With the proper choice step-size ηk, we choose

Ψ =
[
f(w0)−f∗

λ
+
∑T−1
k=0 η

2
k

2m2λ
((m− 1)L1 + εH) +

∑T−1
k=0 ηkεg
mλ

] 1
3

and have

‖wk0+1 − wk0‖ ≤

(
1

m

m∑
i=1

‖ηk0si,k0+1‖3

) 1
3

≤ Ψ

T
1
3

(5.31)
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Now the gradient condition

‖∇f(wk+1)‖ =

∥∥∥∥∥∇f(wk+1)− 1

m

m∑
i=1

gi,k −
1

m

m∑
i=1

(γHi,k+1si,k+1 −
Mγ2

2
‖si,k+1‖si,k+1)

∥∥∥∥∥
(5.32)

≤
∥∥∇f(wk+1)−∇f(wk)−∇2f(wk)(xk+1 − xk)

∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

(gi,k −∇f(wk))

∥∥∥∥∥
+

∥∥∥∥∥∇2f(wk)(xk+1 − xk)− γ
1

m

m∑
i=1

Hi,ksi,k+1

∥∥∥∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

Mγ2

2
‖si,k+1‖si,k+1

∥∥∥∥∥
≤L2

2
‖ηksk+1‖2 +

∥∥∥∥∥ηkm
m∑
i=1

∇2f(wk)si,k+1 −
γ

m

m∑
i=1

Hi,ksi,k+1

∥∥∥∥∥+
Mγ2

2m

∑
i

‖si,k+1‖2 + εg

(5.33)

≤
(
L2η

2
k

2m
+
Mγ2

2m

)∑
i

‖si,k+1‖2 +

∥∥∥∥∥ηkm
m∑
i=1

∇2f(wk)si,k+1 −
γ

m

m∑
i=1

∇2f(wk)si,k+1

∥∥∥∥∥
+

∥∥∥∥∥ γm
m∑
i=1

∇2f(wk)si,k+1 −
γ

m

m∑
i=1

Hi,ksi,k+1

∥∥∥∥∥+ εg

≤
(
L2η

2
k

2m
+
Mγ2

2m

)∑
i

‖si,k+1‖2 +
(ηk − γ)L1

m

∑
i

‖si,k+1‖+
γεH
m

∑
i

‖si,k+1‖+ εg

(5.34)

≤
(
L2η

2
k

2
+
Mγ2

2

)
1

m

∑
i

‖si,k+1‖2 + (|ηk − γ|L1 + γεH)
1

m

∑
i

‖si,k+1‖+ εg

≤
(
L2

2
+
Mγ2

2η2
k

)
1

m

∑
i

‖ηksi,k+1‖2 +

(
|1− γ

ηk
|L1 +

γ

ηk
εH

)
1

m

∑
i

‖ηksi,k+1‖+ εg

≤
(
L2

2
+
Mγ2

2η2
k

)
1

m

∑
i

‖ηksi,k+1‖2 +

(
|1− γ

ηk
|L1 +

γ

ηk
εH

)
1

m

∑
i

‖ηksi,k+1‖3

(5.35)

+

(
εg +

(
|1− γ

ηk
|L1 +

γ

ηk
εH

))

≤
(
L2

2
+
Mγ2

2η2
k

)[
1

m

∑
i

‖ηksi,k+1‖3

] 2
3

+

(
|1− γ

ηk
|L1 +

γ

ηk
εH

)
1

m

∑
i

‖ηksi,k+1‖3

(5.36)

+

(
εg +

(
|1− γ

ηk
|L1 +

γ

ηk
εH

))
(5.37)

In line (5.32), we use first order condition described in equation (5.21). In line (5.33), we apply
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the result (5.13) from Lemma 25 and the approximate gradient condition from Assumption 18.
In line (5.34), we apply the approximate Hessian condition from Assumption 19. We apply the
inequality of (5.12) in line (5.37). At step k0, by choosing ηk = γ, we have

‖∇f(wk0+1)‖ ≤
(
L2

2
+
M

2

)
Ψ2

T
2
3

+ εH
Ψ3

T
+ (εg + εH)

=
Ψ1

T
2
3

+
Ψ2

T
+ (εg + εH) (5.38)

where, Ψ1 =
(
L2

2
+ M

2

)
Ψ2 and Ψ2 = εHΨ3. The Hessian bound

λmin(∇2f(wk+1)) =
1

m

m∑
i=1

λmin

[
∇2f(wk+1)

]
=

1

m

m∑
i=1

λmin

[
Hi,k − (Hi,k −∇2f(wk+1))

]
≥ 1

m

m∑
i=1

[
λmin(Hi,k)− ‖Hi,k −∇2f(wk+1)‖

]
≥ 1

m

m∑
i=1

λmin(Hi,k)−
1

m

m∑
i=1

‖Hi,k −∇2f(wk+1)‖ (5.39)

≥ 1

m

m∑
i=1

−Mγ

2
‖si,k+1‖ −

1

m

m∑
i=1

‖Hi,k −∇2f(wk)‖

− 1

m

m∑
i=1

‖∇2f(wk)−∇2f(wk+1)‖

≥ 1

m

m∑
i=1

−Mγ

2
‖si,k+1‖ − εH −

1

m

m∑
i=1

‖∇2f(wk)−∇2f(wk+1)‖ (5.40)

≥ 1

m

m∑
i=1

−Mγ

2
‖si,k+1‖ − εH −

1

m

m∑
i=1

L2‖wk − wk+1‖

≥
(
−Mγ

2ηk
− L2

)
1

m

m∑
i=1

‖ηksi,k+1‖ − εH

≥ −
(
Mγ

2ηk
+ L2

)(
1

m

m∑
i=1

‖ηksi,k+1‖3

)1/3

− εH (5.41)

Equation (5.39) follows from Weyl’s inequality. We apply the Hessian approximation from the
Assumption 19 in equation (5.40). In equation (5.41), we apply the result described in (5.12).
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At step k0, by choosing ηk = γ, we have

λmin(∇2f(wk0+1)) ≤ −
(
M

2
+ L2

)
Ψ

T
1
3

− εH

= −Ψ3

T
1
3

− εH (5.42)

where, Ψ3 =
(
M
2

+ L2

)
Ψ.

5.7.3 Proof of Theorem 11
We consider the following

f(wk+1)− f(wk)

≤∇f(wk)
T (wk+1 − wk) +

1

2
(wk+1 − wk)T∇2f(wk)(wk+1 − wk) +

L2

6
‖wk+1 − wk‖3

=
ηk
|U|
∇f(wk)

T
∑
i∈U

si,k+1︸ ︷︷ ︸
Term1

+
η2
k

2|U|2

(∑
i∈U

si,k+1

)T

∇2f(wk)

(∑
i∈U

si,k+1

)
︸ ︷︷ ︸

Term2

+
L2

6

∥∥∥∥∥ ηk|U|∑
i∈U

si,k+1

∥∥∥∥∥
3

︸ ︷︷ ︸
Term3

(5.43)

In line (5.43), we expand the update wk+1 − wk = ηk
|U|
∑

i∈U si,k+1. Also we use the following fact.

|U| = |U ∩M|+ |U ∩ B| (5.44)
|M| = |U ∩M|+ |T ∩M| (5.45)

Combining both the equations (5.44) and (5.45), we have

|U| = |M| − |T ∩M|+ |U ∩ B| (5.46)
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We use the fact of (5.46) to bound each term in equation (5.43). First, consider the Term 1,

ηk
|U|
∇f(wk)

T
∑
i∈U

si,k+1

=
ηk

(1− β)m
∇f(wk)

T

[∑
i∈M

si,k+1 −
∑

i∈M∩T

si,k+1 +
∑
i∈U∩B

si,k+1

]
=

ηk
(1− β)m

[
∑
i∈M

gTi,ksi,k+1 −
∑

i∈M∩T

∇f(wk)
T si,k+1 +

∑
i∈U∩B

∇f(wk)
T si,k+1 +

γ

2

∑
i∈M

sTi,k+1Hi,ksi,k+1]

− ηkγ

2(1− β)m

∑
i∈M

sTi,k+1Hi,ksi,k+1 +
ηk

(1− β)m

∑
i∈M

(∇f(wk)− gi,k)
T si,k+1 (5.47)

≤− Mγ2ηk
4(1− β)m

[∑
i∈M

‖si,k+1‖3

]
+

ηkεg
(1− β)m

∑
i∈M

‖si,k+1‖ −
ηkγ

2(1− β)m

∑
i∈M

sTi,k+1Hi,ksi,k+1

+
ηkL

(1− β)m

( ∑
i∈M∩T

‖si,k+1‖+
∑
i∈U∩B

‖si,k+1‖

)
(5.48)

We use the following facts in (5.48).

• gTi,ksi,k+1 + γ
2
sTi,k+1Hi,ksi,k+1 ≤ −M

4
γ2‖si,k+1‖3 and sum over the setM.

• The gradient approximation described in Assumption 18.

• As the function f is L- Lipschitz, the gradient is bounded.

Now we bound Term 3 as follows,

L2

6

∥∥∥∥∥ ηk|U|∑
i∈U

si,k+1

∥∥∥∥∥
3

≤ L2η
3
k

6(1− β)m

∑
i∈U

‖si,k+1‖3 (5.49)

≤ L2η
3
k

6(1− β)m

[∑
i∈M

‖si,k+1‖3 −
∑

i∈M∩T

‖si,k+1‖3 +
∑
i∈U∩B

‖si,k+1‖3

]
(5.50)

In line (5.49), we use the inequality describde in (5.10) and in line (5.50), we split the sum using
(5.46).



CHAPTER 5. ESCAPING SADDLE POINTS IN FL: DISTRIBUTED CUBIC REGULARIZED
NEWTON METHOD 129

Finally, we bound Term 2

η2
k

2|U|2

(∑
i∈U

si,k+1

)T

∇2f(wk)

(∑
i∈U

si,k+1

)

=
η2
k

2(1− β)2m2
(
∑
i∈U

sTi,k+1∇f(wk)si,k+1 +
∑
i6=j∈U

sTi,k+1∇f(wk)sj,k+1)

=
η2
k

2(1− β)2m2
(
∑
i∈M

sTi,k+1(∇2f(wk)−Hi,k)si,k+1 −
∑

i∈M∩T

sTi,k+1∇2f(wk)si,k+1

+
∑
i∈U∩B

sTi,k+1∇2f(wk)si,k+1)

+
η2
k

2(1− β)2m2

∑
i6=j∈U

sTi,k+1∇2f(wk)sj,k+1 +
η2
k

2(1− β)2m2

∑
i∈M

sTi,k+1Hi,ksi,k+1 (5.51)

≤ η2
k

2(1− β)2m2

[
εH
∑
i∈M

‖si,k+1‖2 + L1

∑
i∈M∩T

‖si,k+1‖2 + L1

∑
i∈U∩B

‖si,k+1‖2

]

+
η2
k

2(1− β)2m2

[
L1‖

∑
i∈U

si,k+1‖2 − L1

∑
i∈U

‖si,k+1‖2

]
+

η2
k

2(1− β)2m2

∑
i∈M

sTi,k+1Hi,ksi,k+1

(5.52)

≤ η2
k

2(1− β)2m2
[((1− β)m− 1)L1 + εH)

∑
i∈M

‖si,k+1‖2 + (1− β)m+ 2)L1

∑
i∈M∩T

‖si,k+1‖2

+ (1− β)mL1

∑
i∈U∩B

‖si,k+1‖2] +
η2
k

2(1− β)2m2

∑
i∈M

sTi,k+1Hi,ksi,k+1 (5.53)

Now we collect the terms from equations (5.48), (5.50) and (5.53). First we focus on the terms
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that are summed over the setM.

(− Mγ2ηk
4(1− β)m

+
L2η

3
k

6(1− β)m
)[
∑
i∈M

‖si,k+1‖3]− ηkγ

2(1− β)m
(γ − ηk

(1− β)m
)
∑
i∈M

sTi,k+1Hi,ksi,k+1

+
ηkεg

(1− β)m

∑
i∈M

‖si,k+1‖+
η2
k

2(1− β)2m2
((1− β)m− 1)L1 + εH)

∑
i∈M

‖si,k+1‖2

≤
(
− Mγ2ηk

4(1− β)m
+

L2η
3
k

6(1− β)m

)[∑
i∈M

‖si,k+1‖3

]

+

[
ηkεg

(1− β)m
+

η2
k

2(1− β)2m2
((1− β)m− 1)L1 + εH)

]∑
i∈M

(
‖si,k+1‖3 + 1

)
(5.54)

=

(
− Mγ2ηk

4(1− β)m
+

L2η
3
k

6(1− β)m
+

ηkεg
(1− β)m

+
η2
k

2(1− β)2m2
((1− β)m− 1)L1 + εH)

)
×

[∑
i∈M

‖si,k+1‖3

]
+
ηkεg(1− α)

(1− β)
+

η2
k

2(1− β)2m
((1− β)m− 1)L1 + εH)(1− α) (5.55)

In line (5.54), we use the fact of 5.22 and ‖si,k+1‖ ≤ ‖si,k+1‖3 + 1 and ‖si,k+1‖2 ≤ ‖si,k+1‖3 + 1
following the inequality ab ≤ a3 + b3. Also, we use the fact that |M| ≤ (1− α)m.

Now we consider the terms with the setM∩ T and U ∩ B.

ηkL

(1− β)m
(
∑

i∈M∩T

‖si,k+1‖+
∑
i∈U∩B

‖si,k+1‖) +
L2η

3
k

6(1− β)m
[−

∑
i∈M∩T

‖si,k+1‖3 +
∑
i∈U∩B

‖si,k+1‖3]

+
η2
k

2(1− β)2m2

[
(1− β)m+ 2)L1

∑
i∈M∩T

‖si,k+1‖2 + (1− β)mL1

∑
i∈U∩B

‖si,k+1‖2

]

≤
(

ηkL

(1− β)m
− L2η

3
k

6(1− β)m
+

η2
k

2(1− β)2m2
((1− β)m+ 2)L1

) ∑
i∈M∩T

‖si,k+1‖3

+

(
ηkL

(1− β)m
+

L2η
3
k

6(1− β)m
+

η2
k

2(1− β)2m2
(1− β)mL1

) ∑
i∈U∩B

‖si,k+1‖3

+
ηkL

(1− β)m
+

η2
k

2(1− β)2m
[(1− β)m+ 2(1− α))L1] (5.56)

Now as β > α, at least one good machine is trimmed. So the norm of all the machine update in the
set U is upper bounded by the maximum norm of the good machine. We upper bound the terms as
follows, ∑

i∈U∩B

‖si,k+1‖3 ≤ αmmax
i∈M
‖si,k+1‖3 ≤ αm

∑
i∈M

‖si,k+1‖3

and
∑

i∈M∩T

‖si,k+1‖3 ≤
∑
i∈M

‖si,k+1‖3
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We have(
ηkL(1 + αm)

(1− β)m
+

(αm− 1)L2η
3
k

6(1− β)m
+ +

η2
k

2(1− β)2m2
((1− β)m+ α(1− β)m2 + 2)L1

)
×
∑
i∈M

‖si,k+1‖3 +
ηkL

(1− β)m
+

η2
k

2(1− β)2m
[(1− β)m+ 2(1− α))L1] (5.57)

We combine the results (5.57) and (5.55). We have

f(wk+1)− f(wk) ≤ −λbyz
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖3 + λfloor (5.58)

where

λbyz = [
Mγ

4ηk(1− β)2m2
− (L(1 + αm) + εg)

η2
k(1− β)m

− αmL2

6(1− β)m
− 1

2ηk(1− β)2m2
(1− β)mL1

+ α(1− β)m2 + εH)](1− α)m

λfloor =
ηkεg(1− α)

(1− β)
+

ηkL

(1− β)

+
η2
k

2(1− β)2m2

[
(2(1− β)m+ 1)L1 + εH)(1− α)m+ α(1− β)m2L1

]
We maintain λbyz > 0 by choosing

M >
4ηk(1− β)m

γ
[
(L(1 + αm) + εg)

η2
k

+
αmL2

6

+
1

2ηk(1− β)m
((1− β)mL1 + α(1− β)m2 + εH)]

Now we can have the following results from the proof of Theorem 10 for step
k0 = arg min0≤k≤T−1 ‖wk+1 − wk‖

‖wk0+1 − wk0‖ ≤

[
1

(1− α)m

∑
i∈M

‖ηk0si,k0+1‖3

] 1
3

≤ 1

T
1
3

[
f(w0)− f ∗

λbyz
+

∑T−1
k=0 λfloor
λbyz

] 1
3

(5.59)

=
Ψbyz

T
1
3

(5.60)

where, Ψbyz =
[
f(w0)−f∗
λbyz

+
∑T−1
k=0 λfloor
λbyz

] 1
3

.
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The gradient condition

‖∇f(wk+1)‖ =

∥∥∥∥∥∇f(wk+1)− 1

|M|
∑
i∈M

gi,k −
1

|M|
∑
i∈M

γHi,k+1si,k+1 −
Mγ2

2
‖si,k+1‖si,k+1

∥∥∥∥∥
(5.61)

≤
∥∥∇f(wk+1)−∇f(wk)−∇2f(wk)(xk+1 − xk)

∥∥+

∥∥∥∥∥ 1

|M|
∑
i∈M

(gi,k −∇f(wk))

∥∥∥∥∥
+

∥∥∥∥∥∇2f(wk)(xk+1 − xk)− γ
1

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥+

∥∥∥∥∥ 1

|M|
∑
i∈M

Mγ2

2
‖si,k+1‖si,k+1

∥∥∥∥∥
≤ L2η

2
k

2

∥∥∥∥∥ 1

|U|
∑
i∈U

si,k+1

∥∥∥∥∥
2

+ εg +
Mγ2

2

1

|M|
∑
i∈M

‖si,k+1‖2

+

∥∥∥∥∥ ηk|U|∑
i∈U

∇2f(wk)si,k+1 −
γ

|M|
∑
i∈M

∇2f(wk)si,k+1

∥∥∥∥∥
+

∥∥∥∥∥ γ

|M|
∑
i∈M

∇2f(wk)si,k+1 −
γ

|M|
∑
i∈M

Hi,ksi,k+1

∥∥∥∥∥ (5.62)

In line (5.61), we use the fact the first order optimal condition (5.21) holds for the good machines
in the setM. And in (5.62), we use the in exact gradient condition from Assumption 18 and the
condition (5.23). Consider the term∥∥∥∥∥ ηk|U|∑

i∈U

∇2f(wk)si,k+1 −
γ

|M|
∑
i∈M

∇2f(wk)si,k+1

∥∥∥∥∥
=‖ ηk

(1− β)m

[∑
i∈M

∇2f(wk)si,k+1 −
∑

i∈M∩T

∇2f(wk)si,k+1 +
∑
i∈B∩U

∇2f(wk)si,k+1

]
− γ

(1− α)m

∑
i∈M

∇2f(wk)si,k+1‖

≤

∥∥∥∥∥
(
ηk(1 + αm)

(1− β)m
− γ

(1− α)m

)∑
i∈M

∇2f(wk)si,k+1

∥∥∥∥∥
≤
(
ηk(1 + αm)

(1− β)m
− γ

(1− α)m

)
L1

∑
i∈M

∇2‖si,k+1‖ (5.63)

We choose γ = ηk(1−α)
(1−β)

(1 + αm) making the term in equation (5.63) equals to 0. Now we have,

L2η
2
k

2

∥∥∥∥∥ 1

|U|
∑
i∈U

si,k+1

∥∥∥∥∥
2

≤ L2η
2
k

2(1− β)m

∑
i∈U

‖si,k+1‖2 ≤ L2(1 + αm)η2
k

2(1− β)m

∑
i∈M

‖si,k+1‖2 (5.64)
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Putting the calculation of (5.63) and (5.64), in (5.62), we have,

‖∇f(wk+1)‖ ≤
(
L2(1 + αm)η2

k

2(1− β)m
+

Mγ2

2(1− α)m

)∑
i∈M

‖si,k+1‖2 + εg +
γεH

(1− α)m

∑
i∈M

‖si,k+1‖

(5.65)

≤
(
L2(1 + αm)(1− α)

2(1− β)
+
Mγ2

2η2
k

)
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖2 + εg

+
γεH
ηk

1

(1− α)m

∑
i∈M

‖ηksi,k+1‖

≤
(
L2(1 + αm)(1− α)

2(1− β)
+
M(1 + αm)2

2

(
(1− α)2

(1− β)

))[
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖3

] 2
3

+
(1− α)

(1− β)
(1 + αm)εH

[
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖3

]
+ εg +

(1− α)

(1− β)
(1 + αm)εH

(5.66)

We use the power mean inequality described in (5.12) in line (5.66). Then at step k0, we have,

‖∇f(wk0+1)‖ ≤ Ψ1,byz

T
2
3

+
Ψ2,byz

T
+ εg +

(1− α)

(1− β)
(1 + αm)εH , (5.67)

where

Ψ1,byz =

(
L2(1 + αm)(1− α)

2(1− β)
+
M(1 + αm)2

2

(
(1− α)2

(1− β)

))
Ψ2
byz

Ψ2,byz =
(1− α)

(1− β)
(1 + αm)εHΨ3

byz
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The Hessian bound is

λmin(∇2f(wk+1))

=
1

(1− α)m

∑
i∈M

λmin

[
∇2f(wk+1)

]
=

1

(1− α)m

∑
i∈M

λmin

[
Hi,k − (Hi,k −∇2f(wk+1))

]
≥ 1

(1− α)m

∑
i∈M

[
λmin(Hi,k)− ‖Hi,k −∇2f(wk+1)‖

]
(5.68)

≥ 1

(1− α)m

∑
i∈M

λmin(Hi,k)−
1

(1− α)m

∑
i∈M

‖Hi,k −∇2f(wk+1)‖

≥ 1

(1− α)m

∑
i∈M

−Mγ

2
‖si,k+1‖ −

1

(1− α)m

∑
i∈M

‖Hi,k −∇2f(wk)‖

− 1

(1− α)m

∑
i∈M

‖∇2f(wk)−∇2f(wk+1)‖ (5.69)

≥ 1

(1− α)m

∑
i∈M

−Mγ

2
‖si,k+1‖ − εH −

1

(1− α)m

∑
i∈M

L2‖wk − wk+1‖ (5.70)

≥ − Mγ

2(1− α)m

∑
i∈M

‖si,k+1‖ − εH − L2‖
ηk

(1− β)m

∑
i∈U

si,k+1‖

≥ − Mγ

2(1− α)m

∑
i∈M

‖si,k+1‖ − εH − L2
1

(1− β)m

∑
i∈U

‖ηksi,k+1‖

≥ − Mγ

2(1− α)m

∑
i∈M

‖si,k+1‖ − εH − L2
(1 + αm)

(1− β)m

∑
i∈M

‖ηksi,k+1‖

≥ −
(

Mγ

2ηk(1− α)m
+ L2

(1 + αm)

(1− β)m

)∑
i∈M

‖ηksi,k+1‖ − εH

≥ −
(
Mγ

2ηk
+ L2

(1 + αm)(1− α)

(1− β)

)[
1

(1− α)m

∑
i∈M

‖ηksi,k+1‖3

] 1
3

− εH (5.71)

In (5.68), we use the Weyl’s inequality. In (5.70), we use the fact that Hessian is Lipschitz
continuous. In (5.71), we use the power mean inequality described in (5.12) At step k0, we have

λmin(∇2f(wk0+1)) ≥ −Ψ3,byz

T
1
3

− εH (5.72)

where

Ψ3,byz =

(
M(1− α)

2(1− β)
(1 + αm) + L2

(1 + αm)(1− α)

(1− β)

)
Ψbyz
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5.7.4 Additional Experiments
Here we compare our algorithm with the ByzantinePGD [31] in the byzantine setup. In the Table
5.1, we show the number iterations that is required by each algorithm to reach the stopping criteria
based on the gradient norm. We choose the four adversarial attacks and the experimental setup that
are described in Section 5.6.

Gaussian Noise Flipped Label
10% 15% 20% 10% 15% 20%

[31] 199.2 198.3 211.2 199.7 198.6 211.6
Our method 2.0 10.1 13.5 10.3 14.1 16.0

Table 5.1: Number of iterations required by ByzantinePGD [23] and our method when 10%, 15%,
and 20% of the worker machines are Byzantine in nature.

Negative Update Random Label
10% 15% 20% 10% 15% 20%

[31] 200.7 197.6 210.5 199.9 198 209.7
Our method 8.7 10.1 13.5 8.8 10.0 10.7

Table 5.2: Number of iterations required by ByzantinePGD [23] and our method when 10%, 15%,
and 20% of the worker machines are Byzantine in nature.

I I I I I I 

I I I I I I I 



In this part of the thesis, we study some statistical and algorithmic aspects of non-convex
optimization in the standard supervised batch setting. In particular we study max-affine
regression, which is a generalization of several classical non-convex problems including
the real phase retrieval.

• Chapter 6: We study the max affine regression with Gaussian covariates

• Chapter 7: We study the max-affine regression problem for small-ball covariate design.
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Chapter 6

Max Affine Regression with Gaussian
Design

Max-affine regression refers to a model where the unknown regression function is modeled as a
maximum of k unknown affine functions for a fixed k ≥ 1. This generalizes linear regression and
(real) phase retrieval, and is closely related to convex regression. Working within a non-asymptotic
framework, we study this problem in the high-dimensional setting assuming that k is a fixed constant,
and focus on the estimation of the unknown coefficients of the affine functions underlying the model.
We analyze a natural alternating minimization (AM) algorithm for the non-convex least squares
objective when the design is Gaussian. We show that the AM algorithm, when initialized suitably,
converges with high probability and at a geometric rate to a small ball around the optimal coefficients.
In order to initialize the algorithm, we propose and analyze a combination of a spectral method and
a random search algorithm in a low-dimensional space, which may be of independent interest. The
final rate that we obtain is near-parametric and minimax optimal (up to a polylogarithmic factor) as
a function of the dimension, sample size, and noise variance. In that sense, our approach should
be viewed as a direct and implementable method of enforcing regularization to alleviate the curse
of dimensionality in problems of the convex regression type. Numerical experiments illustrate the
sharpness of our bounds in the various problem parameters.

6.1 Introduction
Max-affine regression refers to the regression model

Y = max
1≤j≤k

(
〈X, θ∗j 〉+ b∗j

)
+ ε (6.1)

where Y is a univariate response, X is a d-dimensional vector of covariates and ε models zero-
mean noise that is independent of X . We assume that k ≥ 1 is a known integer and study
the problem of estimating the unknown parameters θ∗1, . . . , θ

∗
k ∈ Rd and b∗1, . . . , b

∗
k ∈ R from

independent observations (x1, y1), . . . , (xn, yn) drawn according to the model (6.1). Furthermore,
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we assume for concreteness1 in this chapter that the covariate distribution is standard Gaussian, with
xi

i.i.d.∼ N (0, Id).
Let us provide some motivation for studying the model (6.1). When k = 1, equation (6.1)

corresponds to the classical linear regression model. When k = 2, the intercepts b∗2 = b∗1 = 0, and
θ∗2 = −θ∗1 = θ∗, the model (6.1) reduces to

Y = |〈X, θ∗〉|+ ε. (6.2)

The problem of recovering θ∗ from observations drawn according to the above model is known
as (real) phase retrieval—variants of which arise in a diverse array of science and engineering
applications [48–51]—and has associated with it an extensive statistical and algorithmic literature.

To motivate the model (6.1) for general k, note that the function x 7→ max1≤j≤k(〈x, θ∗j 〉+ b∗j)
is always a convex function and, thus, estimation under the model (6.1) can be used to fit convex
functions to the observed data. Indeed, the model (6.1) serves as a parametric approximation to the
non-parametric convex regression model

Y = φ∗(X) + ε, (6.3)

where φ∗ : Rd → R is an unknown convex function. It is well-known that convex regression suffers
from the curse of dimensionality unless d is small, which is basically a consequence of the fact that
the metric entropy of natural totally bounded sub-classes of convex functions grows exponentially
in d (see, e.g., [52–54]). To overcome this curse of dimensionality, one would need to work with
more structured sub-classes of convex functions. Since convex functions can be approximated to
arbitrary accuracy by maxima of affine functions, it is reasonable to regularize the problem by
considering only those convex functions that can be written as a maximum of a fixed number of
affine functions. Constraining the number of affine pieces in the function therefore presents a simple
method to enforce structure, and such function classes have been introduced and studied in the
convex regression literature (see e.g., [152]). This assumption directly leads to our model (6.1),
and it has been argued by [55, 153, 154] that the parametric model (6.1) is a tractable alternative to
the full non-parametric convex regression model (6.3) in common applications of convex regression
to data arising in economics, finance and operations research where d is often moderate to large.

Another motivation for the model (6.1) comes from the problem of estimating convex sets
from support function measurements. The support function of a compact convex set K ⊆ Rd is
defined by hK(x) : = supu∈K〈x, u〉 for d-dimensional unit vectors x. The problem of estimating an
unknown compact, convex set K∗ from noisy measurements of hK∗(·) arises in certain engineering
applications such as robotic tactile sensing and projection magnetic resonance imaging (see, e.g.,
[155–157]). Specifically, the model considered here is

Y = hK∗(X) + ε,

and the goal is to estimate the set K∗ ⊆ Rd. As in convex regression, this problem suffers from a
curse of dimensionality unless d is small, as is evident from known minimax lower bounds [158].

1In Chapter 7 weakens distributional assumptions on the covariates, but this requires significantly more technical
effort.
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To alleviate this curse, it is natural to restrict K∗ to the class of all polytopes with at most k extreme
points for a fixed k; such a restriction has been studied as a special case of enforcing structure
in these problems by Soh and Chandrasekharan [159]. Under this restriction, one is led to the
model (6.1) with b∗1 = · · · = b∗k = 0, since if K∗ is the polytope given by the convex hull of
θ∗1, . . . , θ

∗
k ∈ Rd, then its support function is equal to x 7→ max1≤j≤k〈x, θ∗j 〉.

Equipped with these motivating examples, our goal is to study a computationally efficient
estimation methodology for the unknown parameters of the model (6.1) from i.i.d observations
(xi, yi)

n
i=1. Before presenting our contributions, let us first rewrite the observation model (6.1) by

using more convenient notation, and use it to describe existing estimation procedures for this model.
Denote the unknown parameters by β∗j : = (θ∗j , b

∗
j) ∈ Rd+1 for j = 1, . . . , k and the observations by

(ξi, yi) for i = 1, . . . , n, where ξi : = (xi, 1) ∈ Rd+1. In this notation, the observation model takes
the form

yi = max
1≤j≤k

〈ξi, β∗j 〉+ εi, for i = 1, 2, . . . , n. (6.4)

We assume that in addition to the covariates being i.i.d. standard Gaussian, the noise variables
ε1, . . . , εn are independent random variables drawn from a (univariate) distribution that is zero-mean
and sub-Gaussian, with unknown sub-Gaussian parameter σ.

Let us now describe existing estimation procedures for max-affine regression. The most obvious
approach is the global least squares estimator, defined as any minimizer of the least squares criterion

(β̂
(ls)
1 , . . . , β̂

(ls)
k ) ∈ argmin

β1,...,βk∈Rd+1

n∑
i=1

(
yi − max

1≤j≤k
〈ξi, βj〉

)2

. (6.5)

It is easy to see (see Lemma 27 to follow) that a global minimizer of the least squares criterion
above always exists but it will not—at least in general—be unique, since any relabeling of the
indices of a minimizer will also be a minimizer. While the least squares estimator has appealing
statistical properties (see, e.g. [158–160]), the optimization problem (6.5) is non-convex and, in
general, NP-hard [103, 161] without further assumptions on the covariate matrix and response
vector.2

It is interesting to compare (6.5) to the optimization problem used to compute the least squares
estimator in the more general convex regression model (6.3), given by

φ̂(ls) ∈ argmin
φ

n∑
i=1

(yi − φ(xi))
2 , (6.6)

where the minimization is over all convex functions φ. In sharp contrast to the problem (6.5), the
optimization problem (6.6) is convex [162, 163] and can be solved efficiently for fairly large values
of the pair (d, n) [164]. Unfortunately however, the utility of φ̂(ls) in estimating the parameters
of the max-affine model is debatable, as it is unclear how one may obtain estimates of the true
parameters β∗1 , . . . , β

∗
k from φ̂(ls), which typically will not be a maximum of only k affine functions.

2We provide a proof of this in Appendix 6.9.14 for completeness.
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Three heuristic techniques for solving the non-convex optimization problem (6.5) were empiri-
cally evaluated by Balázs [154, Chapters 6 and 7], who compared running times and performance
of these techniques on a wide variety of real and synthetic datasets for convex regression. The first
technique is the alternating minimization algorithm of Magnani and Boyd [55], the second technique
is the convex adaptive partitioning (or CAP) algorithm of Hannah and Dunson [153], and the third is
the adaptive max-affine partitioning algorithm proposed by Balázs himself [154]. The simplest and
most intuitive of these three methods is the first alternating minimization (AM) algorithm, which is
an iterative algorithm for estimating the parameters β∗1 , . . . , β

∗
k and forms the focus of our study.

In the t-th iteration of the algorithm, the current estimates β(t)
1 , . . . , β

(t)
k are used to partition the

observation indices 1, . . . , n into k sets S(t)
1 , . . . , S

(t)
k such that j ∈ argmaxu∈[k]〈ξi, β

(t)
u 〉 for every

i ∈ S(t)
j . For each 1 ≤ j ≤ k, the next estimate β(t+1)

j is then obtained by performing a least squares
fit (or equivalently, linear regression) to the data (ξi, yi), i ∈ S

(t)
j . More intuition and a formal

description of the algorithm are provided in Section 6.2. Balázs found that when this algorithm was
run on a variety of datasets with multiple random initializations, it compared favorably with the
state of the art in terms of its final predictive performance—see, for example, Figures 7.4 and 7.5 in
the thesis [154], which show encouraging results when the algorithm is used to fit convex functions
to datasets of average wages and aircraft profile drag data, respectively. In the context of fitting
convex sets to support function measurements, Soh and Chandrasekaran [159] recently proposed
and empirically evaluated a similar algorithm in the case of isotropic covariates. However, to the
best of our knowledge, no theoretical results exist to support the performance of such a technique.

In this chapter, we present a theoretical analysis of the AM algorithm for recovering the
parameters of the max-affine regression model when the covariate distribution is Gaussian. This
assumption forms a natural starting point for the study of many iterative algorithms in related
problems [59–61, 99], and is also quite standard in theoretical investigations of multidimensional
regression problems. Note that the AM algorithm described above can be seen as a generalization of
classical AM algorithms for (real) phase retrieval [95, 165], which have recently been theoretically
analyzed in a series of papers [59–61] for Gaussian designs. The AM—and the closely related
expectation maximization3, or EM—methodology is widely used for parameter estimation in
missing data problems [166, 167] and mixture models [91], including those with covariates such as
mixtures-of-experts [168] and mixtures-of-regressions [169] models. Theoretical guarantees for
such algorithms have been established in multiple statistical contexts [99, 170–172]; in the case
when the likelihood is not unimodal, these are typically of the local convergence type. In particular,
algorithms of the EM type return, for many such latent variable models, minimax-optimal parameter
estimates when initialized in a neighborhood of the optimal solution (e.g., [169, 173, 174]);
conversely, these algorithms can get stuck at spurious fixed points when initialized at random [175].
In some specific applications of EM to mixtures of two Gaussians [176, 177] and mixtures of two
regressions [178], however, it has been shown that randomly initializing the EM algorithm suffices in
order to obtain consistent parameter estimates. Here, we establish guarantees on the AM algorithm
for max-affine regression that are of the former type: we prove local geometric convergence of the

3Indeed, for many problems, the EM algorithm reduces to AM in the noiseless limit, and AM should thus be viewed
as a variant of EM that uses hard-thresholding to determine values of the latent variables.
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AM iterates when initialized in a neighborhood of the optimal solution. We analyze the practical
variant of the algorithm in which the steps are performed without sample-splitting. As in the case of
mixture models [169, 179], we use spectral methods to obtain such an initialization.

Contributions Let us now describe our results in more detail. To simplify the exposition, we
state simplified corollaries of our theorems; for precise statements, see Section 6.3. We prove in
Theorem 12 that for each ε > 0, the parameter estimates β(t)

1 , . . . , β
(t)
k returned by the AM algorithm

at iteration t satisfy, with high probability, the inequality

k∑
j=1

‖β(t)
j − β∗j ‖2 ≤ ε+ C(β∗1 , . . . , β

∗
k)
σ2kd

n
log(kd) log

( n
kd

)
(6.7)

for every t ≥ log4/3

(∑k
j=1 ‖β

(0)
j −β

∗
j ‖2

ε

)
, provided that the sample size n is sufficiently large and that

the initial estimates satisfy the condition

min
c>0

max
1≤j≤k

‖cβ(0)
j − β∗j ‖2 ≤ 1

k
c(β∗1 , . . . , β

∗
k). (6.8)

HereC(β∗1 , . . . , β
∗
k) and c(β∗1 , . . . , β

∗
k) are constants depending only on the true parameters β∗1 , . . . , β

∗
k ,

and their explicit values are given in Theorem 12. The constant c in equation (6.8) endows the
initialization with a scale-invariance property: indeed, scaling all parameters β(0)

1 , . . . , β
(0)
k by the

same positive constant c produces the same initial partition of subsets S(0)
1 , . . . , S

(0)
k , from which

the algorithm proceeds identically.
Treating k as a fixed constant, inequality (6.7) implies, under the initialization condition (6.8),

that the parameter estimates returned by AM converge geometrically to within a small ball of the
true parameters, and that this error term is nearly the parametric risk σ2d

n
up to a logarithmic factor.

The initialization condition (6.8) requires the distance between the initial estimates and the true
parameters to be at most a specific (k-dependent) constant. It has been empirically observed that
there exist bad initializations under which the AM algorithm behaves poorly (see, e.g., [55, 154])
and assumption (6.8) is one way to rule these out.

A natural question based on our Theorem 12 is whether it is possible to produce preliminary
estimates β(0)

1 , . . . , β
(0)
k satisfying the initialization condition (6.8). Indeed, one such method

is to repeatedly initialize parameters (uniformly) at random within the unit ball Bd+1; Balázs
empirically observed in a close relative of such a scheme (see Figure 6.6 in his thesis [154]) that
increasing the number of random initializations is often sufficient to get the AM algorithm to
succeed. However, reasoning heuristically, the number of repetitions required to ensure that one
such random initialization generates parameters that satisfy condition (6.8) increases exponentially
in the ambient dimension d, and so it is reasonable to ask if, in large dimensions, there is some
natural form of dimensionality reduction that allows us to perform this step in a lower-dimensional
space.
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When4 k < d, we show that a natural spectral method (described formally in Algorithm 8) is
able to reduce the dimensionality of our problem from d to k. In particular, this method returns
an orthonormal basis of vectors Û1, . . . , Ûk such that the k-dimensional linear subspace spanned
by these vectors accurately estimates the subspace spanned by the vectors θ∗1, . . . , θ

∗
k. We form the

matrix Û : = [Û1 : · · · : Ûk] by collecting these vectors as its columns, and in order to account

for the intercepts, further append such a matrix to form the matrix V̂ : =

[
Û 0
0 1

]
∈ R(d+1)×(k+1).

We then choose M random initializations in (k + 1) dimensions—the `-th such initialization is
given by a set of vectors ν`1, . . . , ν

`
k ∈ Rk+1 each chosen uniformly at random from the (k + 1)-

dimensional unit ball—so that the collection of k vectors {V̂ ν`j}kj=1 serves as our `-th guess of the
true parameters. In order to decide which of these random points to choose, we evaluate (on an
independent set of samples) the goodness-of-fit statistic minc≥0

∑
i(yi − cmax1≤j≤k 〈ξi, V̂ ν`j〉)2

for each 1 ≤ ` ≤M , where the minimization over the constant c accounts for the scale-invariance
property alluded to above. Letting `∗ denote the index with the smallest loss, we then return the
initialization β(0)

j = V̂ ν`
∗
j for j = 1, . . . , k.

Our algorithm can thus be viewed as a variant of the repeated random initialization evaluated by
Balázs [154], but incurs significantly smaller computational cost, since we only run the full-blown
iterative AM algorithm once. Note that our algorithm treats the number of initializations M as a
tuning parameter to be chosen by the statistician, similar to Balázs [154], but we show a concrete
upper bound on M that is sufficient to guarantee convergence. In particular, we show that in order
to produce an initialization satisfying condition (6.8) with high probability, it suffices to choose M
as a function only of the number of affine pieces k and other geometric parameters of the problem
(and independently of the sample size n and ambient dimension d).

To produce our overall guarantee, we combine the initialization with the AM algorithm in Corol-
lary 2, showing that provided the sample size scales linearly in the dimension (with a multiplicative
pre-factor that depends polynomially on k and other problem-dependent parameters), we obtain
estimates that are accurate up to the parametric risk. Our algorithm is also computationally efficient
when k is treated as a fixed constant.

From a technical standpoint, our results for the AM algorithm are significantly more challenging
to establish than related results in the literature [59, 99, 180, 181]. First, it is technically very
challenging to compute the population operator [99]—corresponding to running the AM update in
the infinite sample limit—in this setting, since the max function introduces intricate geometry in
the problem that is difficult to reason about in closed form. Second, we are interested in analyzing
the AM update without sample-splitting, and so cannot assume that the iterates are independent of
the covariates; the latter assumption has been used fruitfully in the literature to simplify analyses
of such algorithms [60, 61, 180]. Third, and unlike algorithms for phase retrieval [59, 181],
our algorithm performs least squares using sub-matrices of the covariate matrix that are chosen
depending on our random iterates. Accordingly, a key technical difficulty of the proof, which may
be of independent interest, is to control the spectrum of these random matrices, rows of which are

4If k ≥ d, then this dimensionality reduction step can be done away with and one can implement the random search
routine directly.
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drawn from (randomly) truncated variants of the Gaussian distribution.
Our spectral initialization algorithm is also a natural estimator based on the method-of-moments,

and has been used in a variety of non-convex problems [169, 173, 174]. However, our guarantees
for this step are once again non-trivial to establish. In particular, the eigengap of the population
moment (on which the rates of the estimator depend) is difficult to compute in our case since the
max function is not differentiable, and so it is not clear that higher order moments return reasonable
estimates even in the infinite sample limit (see Section 6.2). However, since we operate exclusively
with Gaussian covariates, we are able to use some classical moment calculations for truncated
Gaussian distributions [182] in order to bound the eigengap. Translating these calculations into an
eigengap is quite technical, and involves the isolation of many properties of the population moments
that may be of independent interest.

Finally, it is important to note that owing to the scale invariance of our initialization condi-
tion (6.8) and goodness-of-fit statistic, our random search scheme does not require a bound on the
size of the parameters; it suffices to initialize parameters uniformly within the unit ball. This is in
contrast to other search procedures employed for similar problems [103, 183], which are based on
covering arguments and require a bound on the maximum norm of the unknown parameters.

Notation For a positive integer n, let [n] : = {1, 2, . . . , n}. For a finite set S, we use |S| to denote
its cardinality. All logarithms are to the natural base unless otherwise mentioned. For two sequences
{an}∞n=1 and {bn}∞n=1, we write an . bn if there is a universal constant C such that an ≤ Cbn for
all n ≥ 1. The relation an & bn is defined analogously, and we use an ∼ bn to indicate that both
an & bn and an . bn hold simultaneously. We use c, C, c1, c2, . . . to denote universal constants
that may change from line to line. For a pair of vectors (u, v), we let u⊗ v : = uv> denote their
outer product. We use ‖·‖ to denote the `2 norm unless otherwise stated. Denote by Id the d× d
identity matrix. We let 1 {E} denote the indicator of an event E . Let sgn(t) denote the sign of a
scalar t, with the convention that sgn(0) = 1. Let λi(Γ) denote the i-th largest eigenvalue of a
symmetric matrix Γ. Let Sd−1 : =

{
v ∈ Rd : ‖v‖ = 1

}
denote the unit sphere in d-dimensions, and

use Bd : =
{
v ∈ Rd : ‖v‖ ≤ 1

}
to denote the d-dimensional unit ball.

6.2 Background and problem formulation
In this section, we formally introduce the geometric parameters underlying the max-affine regression
model, as well as the methodology we use to perform parameter estimation.

6.2.1 Model and Geometric Parameters
We work throughout with the observation model defined in equation (6.4); recall that our covariates
are drawn i.i.d. from a standard Gaussian distribution, and that our noise is σ-sub-Gaussian. We let
X ∈ Rn×d denote the covariate matrix with row i given by the vector xi, and collect the responses
in a vector y ∈ Rn.
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Recall that ξi = (xi, 1) ∈ Rd+1 for each i ∈ [n]; the matrix of appended covariates Ξ ∈
Rn×(d+1) is defined by appending a vector of ones to the right of the matrix X . Our primary goal
is to use the data (X, y)—or equivalently, the pair (Ξ, y)—to estimate the underlying parameters
{β∗j }kj=1.

An important consideration in achieving such a goal is the “effective” sample size with which
we observe the parameter β∗j . Toward that end, for X ∼ N (0, Id), let

πj(β
∗
1 , . . . , β

∗
k) : = Pr

{
〈X, θ∗j 〉+ b∗j = max

j′∈[k]

(
〈X, θ∗j′〉+ b∗j′

)}
(6.9)

denote the probability with which the j-th parameter β∗j = (θ∗j b∗j) attains the maximum. Note that
the event on which more than one of the parameters attains the maximum has measure zero, except
in the case where β∗i = β∗j for some i 6= j. We explicitly disallow this case and assume that the
parameters β∗1 , . . . , β

∗
k are distinct. Let

πmin(β∗1 , . . . , β
∗
k) : = min

j∈[k]
πj(β

∗
1 , . . . , β

∗
k), (6.10)

and assume that we have πmin(β∗1 , . . . , β
∗
k) > 0; in other words, we ignore vacuous cases in

which some parameter is never observed. Roughly speaking, the sample size of the parameter
that is observed most rarely is given by minj∈[k] πjn ∼ n · πmin(β∗1 , . . . , β

∗
k), and so the error in

estimating this parameter should naturally depend on πmin(β∗1 , . . . , β
∗
k). By definition, we always

have πmin(β∗1 , . . . , β
∗
k) ≤ 1/k.

Since we are interested in performing parameter estimation under the max-affine regression
model, a few geometric quantities also appear in our bounds, and serve as natural notions of “signal
strength” and “condition number” of the estimation problem. The signal strength is given by the
minimum separation

∆(β∗1 , . . . , β
∗
k) = min

j,j′:j 6=j′

∥∥θ∗j − θ∗j′∥∥2
;

we also assume that ∆ is strictly positive, since otherwise, a particular parameter is never observed.
To denote a natural form of conditioning, define the quantities

κj(β
∗
1 , . . . , β

∗
k) =

maxj′ 6=j
∥∥θ∗j − θ∗j′∥∥2

minj′ 6=j
∥∥θ∗j − θ∗j′∥∥2 , with κ(β∗1 , . . . , β

∗
k) = max

j∈[k]
κj(β

∗
1 , . . . , β

∗
k).

Finally, let Bmax(β
∗
1 , . . . , β

∗
k) : = maxj∈[k] ‖β∗j ‖ denote the maximum norm of any unknown param-

eter. We often use the shorthand

πmin = πmin(β∗1 , . . . , β
∗
k), ∆ = ∆(β∗1 , . . . , β

∗
k),

κ = κ(β∗1 , . . . , β
∗
k), and Bmax = Bmax(β

∗
1 , . . . , β

∗
k)

when the true parameters β∗1 , . . . , β
∗
k are clear from context.
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6.2.2 Methodology
As discussed in the introduction, the most natural estimation procedure from i.i.d. samples (ξi, yi)

n
i=1

of the model (6.4) is the least squares estimator (6.5). The following lemma (which does not seem
to have been explicitly stated previously in the literature, except in the case k = 2 [160, 184]) proves
that the least squares estimator (β̂

(ls)
1 , . . . , β̂

(ls)
k ) always exists. Note, however, that it will not be

unique in general since any relabeling of a minimizer is also a minimizer.

Lemma 27. The least squares estimator
(
β̂

(ls)
1 , . . . , β̂

(ls)
k

)
exists for every dataset (Ξ, y).

We postpone the proof of Lemma 27 to Appendix 6.5.1. In spite of the fact that the least squares
estimator always exists, the problem (6.5) is non-convex and NP-hard in general. The AM algorithm
presents a tractable approach towards solving it in the statistical setting that we consider.

Alternating Minimization

We now formally describe the AM algorithm proposed by Magnani and Boyd [55]. For each
β1, . . . , βk, define the sets

Sj(β1, . . . , βk) :=

{
i ∈ [n] : j = min argmax

1≤u≤k
(〈ξi, βu〉)

}
(6.11)

for j = 1, . . . , k. In words, the set Sj(β1, . . . , βk) contains the indices of samples on which
parameter βj attains the maximum; in the case of a tie, samples having multiple parameters attaining
the maximum are assigned to the set with the smallest corresponding index (i.e., ties are broken
in the lexicographic order5). Thus, the sets {Sj(β1, . . . , βk)}kj=1 define a partition of [n]. The AM

algorithm employs an iterative scheme where one first constructs the partition Sj
(
β

(t)
1 , . . . , β

(t)
k

)
based on the current iterates β(t)

1 , . . . , β
(t)
k and then calculates the next parameter estimate β(t+1)

j

by a least squares fit to the dataset {(ξi, yi), i ∈ Sj(β(t)
1 , . . . , β

(t)
k )}. The algorithm (also described

below as Algorithm 7) is, clearly, quite intuitive and presents a natural approach to solving (6.5).
As a sanity check, Lemma 28 (stated and proved in Appendix 6.5.1) shows that the global least

squares estimator (6.5) is a fixed-point of this iterative scheme under a mild technical assumption.
We also note that the AM algorithm was proposed by Soh [185] in the context of estimating

structured convex sets from support function measurements. It should be viewed as a generalization
of a classical algorithm for (real) phase retrieval due to Fienup [95], which has been more recently
analyzed in a series of papers [59, 61] for Gaussian designs. While some analyses of AM algorithms
assume sample-splitting across iterations (e.g. [60, 61, 180]), we consider the more practical variant
of AM run without sample-splitting, since the update (6.12a)-(6.12b) is run on the full data (Ξ, y)
in every iteration.

5In principle, it is sufficient to define the sets Sj(β1, . . . , βk), j ∈ [k] as any partition of [n] having the property
that 〈ξi, βj〉 = maxu∈[k]〈ξi, βu〉 for every j ∈ [k] and i ∈ Sj(β1, . . . , βk); here “any” means that ties can be broken
according to an arbitrary rule, and we have chosen this rule to be the lexicographic order in equation (6.11).
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Algorithm 7: Alternating minimization for estimating maximum of k affine functions

Input: Data {ξi, yi}ni=1; initial parameter estimates β(0)
1 , . . . , β

(0)
k ; number of iterations T .

Output: Final estimator of parameters β̂1, . . . , β̂k.
22 Initialize t← 0.
3 repeat
55 Compute maximizing index sets

S
(t)
j = Sj(β

(t)
1 , . . . , β

(t)
k ), (6.12a)

for each j ∈ [k], according to equation (6.11).
77 Update

β
(t+1)
j ∈ argmin

β∈Rd+1

∑
i∈S(t)j

(yi − 〈ξi, β〉)2 , (6.12b)

for each j ∈ [k].
8 until t = T ;

1010 Return β̂j = β
(T )
j for each j ∈ [k].

Initialization

The alternating minimization algorithm described above requires an initialization. While the
algorithm was proposed to be run from a random initialization with restarts [55, 159], we propose to
initialize the algorithm from parameter estimates that are sufficiently close to the optimal parameters.
This is similar to multiple procedures to solve non-convex optimization problems in statistical
settings (e.g., [99, 186]), that are based on iterative algorithms that exhibit local convergence to the
unknown parameters. Such algorithms are typically initialized by using a moment method, which
(under various covariate assumptions) returns useful parameter estimates.

Our approach to the initialization problem is similar, in that we combine a moment method with
random search in a lower-dimensional space. For convenience of analysis, we split the n samples
into two equal parts—assume that n is even without loss of generality—and perform each of the
above steps on different samples so as to maintain independence between the two steps. The formal
algorithm is presented in two parts as Algorithms 8 and 9.

In related problems [98, 169, 173, 187], a combination of a second order and third order method
(involving tensor decomposition) is employed to obtain parameter estimates in one shot. Take
the problem of learning generalized linear models [187] as an example; here, the analysis of the
moment method relies on the link function being (at least) three times differentiable so that the
population moment quantities can be explicitly computed. After showing that these expectations are
closed form functions of the unknown parameters, matrix/tensor perturbation tools are then applied
to show that the empirical moments concentrate about their population counterparts. However, in
our setting, the max function is not differentiable, and so it is not clear that higher order moments
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Algorithm 8: PCA for k-dimensional subspace initialization
Input: Data {ξi, yi}ni=1.
Output: Matrix Û ∈ Rd×k having orthonormal columns that (approximately) span the k

dimensional subspace spanned by the vectors θ∗1, . . . , θ
∗
k.

22 Compute the quantities

M̂1 =
2

n

n/2∑
i=1

yixi and M̂2 =
2

n

n/2∑
i=1

yi
(
xix
>
i − Id

)
, (6.13)

and let M̂ = M̂1 ⊗ M̂1 + M̂2; here, Id denotes the d× d identity matrix and ⊗ denotes the
outer product.

44 Perform the eigendecomposition M̂ = P̂ Λ̂P̂>, and use the first k columns of P̂
(corresponding to the k largest eigenvalues) to form the matrix Û ∈ Rd×k. Return Û .

return reasonable estimates even in expectation since Stein’s lemma (on which many of these results
rely) is not applicable6 in this setting. Nevertheless, we show that the second order moment returns
a k-dimensional subspace that is close to the true span of the parameters {θ∗j}kj=1; the degree of
closeness depends only on the geometric properties of these parameters.

Let us also briefly discuss Algorithm 9, which corresponds to performing random search
in (k + 1) · k dimensional space to obtain the final initialization. In addition to the random
initialization employed in step 1 of this algorithm, we also use the mean squared error on a holdout
set (corresponding to samples n/2+1 through n) to select the final parameter estimates. In particular,
we evaluate the error in a scale-invariant fashion; the computation of the optimal constant c in step 2
of the algorithm can be performed in closed form for each fixed index `, since for a pair of vectors
(u, v) having equal dimension, we have

argmin
c≥0

‖u− cv‖2 = max

{
〈u, v〉
‖v‖2

, 0

}
.

A key parameter that governs the performance of our search procedure is the number of initializations
M ; we show in the sequel that it suffices to take M to be a quantity that depends only on the number
of affine pieces k, and on other geometric parameters in the problem.

Our overall algorithm should be viewed as a slight variation of the AM algorithm with random
restarts. It inherits similar empirical performance (see panel (b) of Figure 6.2 to follow), while
significantly reducing the computational cost, since operations are now performed in ambient
dimension k + 1, and the iterative AM algorithm is run only once overall. It also produces provable
parameter estimates, and as we show in the sequel, the number of random initializations M can
be set independently of the pair (n, d). Having stated the necessary background and described our
methodology, we now proceed to statements and discussions of our main results.

6A natural workaround is to use Stein’s lemma on the infinitely differentiable “softmax” surrogate function, but our
approach to this involved balancing the estimation error (which, in turn, involves derivatives of the softmax function)
and approximation error terms, and led to suboptimal dependence on the dimension.
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Algorithm 9: Low-dimensional random search

Input: Data {ξi, yi}ni=1, subspace estimate Û ∈ Rd×k having orthonormal columns that
(approximately) span the k dimensional subspace spanned by the vectors θ∗1, . . . , θ

∗
k,

and number of random initializations M ∈ N.
Output: Initial estimator of parameters β(0)

1 , . . . , β
(0)
k .

22 Choose M · k random points ν`j i.i.d. for ` ∈ [M ] and j ∈ [k], each uniformly from the
(k + 1)-dimensional unit ball Bk+1. Let

V̂ =

[
Û 0
0 1

]
be a matrix in R(d+1)×(k+1) having orthonormal columns.

44 Compute the index

`∗ ∈ argmin
`∈[M ]

2

n

min
c≥0

n∑
i=n/2+1

(
yi − cmax

j∈[k]
〈ξi, V̂ ν`j〉

)2

 .

66 Return the (d+ 1)-dimensional parameters

β
(0)
j = V̂ ν`

∗

j for each j ∈ [k].

6.3 Main results
In this section, we present our main theoretical results for the methodology introduced in Section 6.2.

6.3.1 Local geometric convergence of alternating minimization
We now establish local convergence results for the AM algorithm. Recall the definition of the
parameters (πmin,∆, κ) introduced in Section 6.2, and the assumption that the covariates {xi}ni=1

are drawn i.i.d. from the standard Gaussian distributionN (0, Id). Throughout the paper, we assume
that the true parameters β∗1 , . . . , β

∗
k are fixed.

Theorem 12. There exists a tuple of universal constants (c1, c2) such that if the sample size satisfies
the bound

n ≥ c1 max {d, 10 log n}max

{
kκ

π3
min

, σ2 k
5κ2

∆π15
min

}
,
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then for all initializations β(0)
1 , . . . , β

(0)
k satisfying the bound

min
c>0

max
1≤j 6=j′≤k

∥∥∥c(β(0)
j − β

(0)
j′

)
−
(
β∗j − β∗j′

)∥∥∥
‖θ∗j − θ∗j′‖

≤ c2
π6

min

k2κ
log−3/2

(
k2κ

π6
min

)
, (6.14a)

the estimation error at all iterations t ≥ 1 is simultaneously bounded as

k∑
j=1

‖β(t)
j − β∗j ‖2 ≤

(
3

4

)t( k∑
j=1

‖c∗β(0)
j − β∗j ‖2

)
+ c1σ

2 kd

π3
minn

log(kd) log(n/kd) (6.14b)

with probability exceeding 1− c2

(
k exp

(
−c1n

π6
min

k2

)
+ k2

n7

)
. Here, the positive scalar c∗ minimizes

the LHS of inequality (6.14a).

See Appendix 6.6 for a concise mathematical statement of the probability bound.
Let us interpret the various facets of Theorem 12. As mentioned before, it is a local con-

vergence result, which requires the initialization β
(0)
1 , . . . , β

(0)
k to satisfy condition (6.14a). In

the well-balanced case (with πmin ∼ 1/k) and treating k as a fixed constant, the initialization
condition (6.14a) posits that the parameters are a constant “distance” from the true parameters. No-
tably, closeness is measured in a relative sense, and between pairwise differences of the parameter
estimates as opposed to the parameters themselves; the intuition for this is that the initializa-
tion β(0)

1 , . . . , β
(0)
k induces the initial partition of samples S1(β

(0)
1 , . . . , β

(0)
k ), . . . , S1(β

(0)
1 , . . . , β

(0)
k ),

whose closeness to the true partition depends only on the relative pairwise differences between
parameters, and is also invariant to a global scaling of the parameters. It is also worth noting that
local geometric convergence of the AM algorithm is guaranteed uniformly from all initializations
satisfying condition (6.14a). In particular, the initialization parameters are not additionally required
to be independent of the covariates or noise, and this allows us to use the same n samples for
initialization of the parameters.

Let us now turn our attention to the bound (6.14b), which consists of two terms. In the limit
t→∞, the final parameters provide an estimate of the true parameters that is accurate to within the
second term of the bound (6.14b). Up to a constant, this is the statistical error term

δn,σ(d, k, πmin) = σ2 kd

π3
minn

log(kd) log(n/kd) (6.15)

that converges to 0 as n → ∞, thereby providing a consistent estimate in the large sample limit.
Notice that the dependence of δn,σ(d, k, πmin) on the tuple (σ, d, n) is minimax-optimal up to the
logarithmic factor log(n/d), since a matching lower bound can be proved for the linear regression
problem when k = 1. In Proposition 16, (see Appendix 6.9.1) we also show a parametric lower
bound on the minimax estimation error for general k, of the order σ2kd/n. Panel (c) of Figure 6.1
verifies in a simulation that the statistical error depends linearly on d/n. The dependence of the
statistical error on the pair (k, πmin) is more involved, and we do not yet know if these are optimal.
As discussed before, a linear dependence of πmin is immediate from a sample-size argument; the
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Figure 6.1: Convergence of the AM with Gaussian covariates— in panel (a), we plot the noiseless
sample complexity of AM; we fix ‖β∗i ‖ = 1 for all i ∈ [k], σ = 0 and πmin = 1/k. We say β∗i is
recovered if

∥∥∥β(t)
i − β∗i

∥∥∥ ≤ 0.01. For a fixed dimension d, we run a linear search on the number
of samples n, such that the empirical probability of success over 100 trials is more than 0.95, and
output the least such n. In panel (b), we plot the optimization error (in blue)

∑k
j=1 ‖β

(t)
j − β

(T )
j ‖2

and the deviation from the true parameters (in red)
∑k

j=1

∥∥∥β(t)
j − β∗j

∥∥∥2

/σ2 over iterations t for
different σ (0.15, 0.25, 0.4, 0.5), with k = 5, d = 100, T = 50 and n = 5d, and averaged over 50
trials. Panel (c) shows that the estimation error at T = 50 scales at the parametric rate d/n, where
we have chosen a fixed k = 5 and σ = 0.25. Panel (d) shows the variation of this error as a function
of πmin where we fix k = 3, d = 2, n = 103, σ = 0.4.

cubic dependence arises because the sub-matrices of Ξ chosen over the course of the algorithm are
not always well-conditioned, and their condition number scales (at most) as π2

min. In Appendix 6.9.3,
we show a low-dimensional example (with d = 2 and k = 3) in which the least squares estimator
incurs a parameter estimation error of the order 1

π3
minn

even when provided with the true partition
of covariates {Sj(β∗1 , . . . , β∗k)}3

j=1. While this does not constitute an information theoretic lower
bound, it provides strong evidence to suggest that our dependence on πmin is optimal at least when
viewed in isolation. We verify this intuition via simulation: in panel (d) of Figure 6.1, we observe
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that on this example, the error of the final AM iterate varies linearly with the quantity 1/π3
min.

The first term of the bound (6.14b) is an optimization error that is best interpreted in the noiseless
case σ = 0, wherein the parameters β(t)

1 , . . . , β
(t)
k converge at a geometric rate to the true parameters

β∗1 , . . . , β
∗
k , as verified in panel (a) of Figure 6.1. In particular, in the noiseless case, we obtain

exact recovery of the parameters provided n ≥ C kd
π3
min

log(n/d). Thus, the “sample complexity”
of parameter recovery is linear in the dimension d, which is optimal (panel (a) verifies this fact).
In the well-balanced case, the dependence on k is quartic, but lower bounds based on parameter
counting suggest that the true dependence ought to be linear. Again, we are not aware of whether
the dependence on πmin in the noiseless case is optimal; our simulations shown in panel (a) suggests
that the sample complexity depends inversely on πmin, and so closing this gap is an interesting open
problem. When σ > 0, we have an overall sample size requirement

n ≥ cmax {d, 10 log n} ·max

{
kκ

π3
min

, σ2 k
5κ2

∆π15
min

}
: = nAM(c). (6.16)

As a final remark, note that Theorem 12 holds under Gaussian covariates and when the true
parameters β∗1 , . . . , β

∗
k are fixed independently of the covariates. In Chapter 7, it is shown that both

of these features of the result can be relaxed, i.e., AM converges geometrically even under a milder
covariate assumption, and this convergence occurs for all true parameters that are geometrically
similar.

6.3.2 Initialization
In this section, we provide guarantees on the initialization method described in Algorithms 8 and 9
in Theorems 13 and 14, respectively.

Consider the matrices Û and M̂ defined in Algorithm 8. Algorithm 8 is a moment method: we
extract the top k principal components of a carefully chosen moment statistic of the data to obtain a
subspace estimate Û . Spectral algorithms such as these have been used to obtain initializations in a
wide variety of non-convex problems [56, 98, 188] to obtain an accurate estimate of the subspace
spanned by the unknown parameters. It is well-known that the performance of the algorithm in
recovering a k-dimensional subspace depends on λk(E[M̂ ]), which is the k-th largest eigenvalue of
the population moment E[M̂ ]. We show in the proof (see the discussion following Lemma 33) that
there is a strictly positive scalar γ such that

λk(E[M̂ ]) ≥ γ. (6.17)

It should be stressed that we obtain an explicit expression for γ as a function of the various
problem parameters (in equation (6.48) of the proof) that is, a priori7, independent of the ambient
dimension d.

7While this may seem surprising—after all, the unknown parameters θ∗1 , . . . , θ
∗
k live in dimension d—all the

interesting action is confined to the k dimensional subspace spanned by these parameters and γ is a function of the
geometry induced by the parameters on this subspace.
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This characterization is the main novelty of our contribution, and allows us to establish the
following guarantee on the PCA algorithm. We let U∗ ∈ Rd×k denote a matrix whose orthonormal
columns span the linear subspace spanned by the vectors θ∗1, . . . , θ

∗
k, and define the quantity

ς : = max
j∈[k]

{
‖θ∗j‖1 + b∗j

}
. (6.18)

Theorem 13. There is a universal constant C such that Û satisfies the bound

|||Û Û> − U∗(U∗)>|||2F ≤ C

(
σ2 + ς2

γ2

)
kd log3(nk)

n

with probability greater than 1− Cn−10.

The proof of Theorem 13 is provided in Appendix 6.7. We have thus shown that the projection
matrix U∗(U∗)> onto the true subspace spanned by the vectors θ∗1, . . . , θ

∗
k can be estimated at the

parametric rate via our PCA procedure. This guarantee is illustrated via simulation in panel (a) of
Figure 6.2.

Let us now turn to establishing a guarantee on Algorithm 9 when it is given a (generic) subspace
estimate Û as input. Since the model (6.1) is only identifiable up to a relabeling of the individual
parameters, we can only hope to show that a suitably permuted set of the initial parameters is close
to the true parameters. Toward that end, let Pk denote the set of all permutations from [k]→ [k],
and let

dist

({
β

(0)
j

}k
j=1

,
{
β∗j
}k
j=1

)
: = min

P∈Pk

k∑
j=1

‖β(0)
P (j) − β

∗
j ‖2 (6.19)

denote the minimum distance attainable via a relabeling of the parameters. With this notation in
place, we are now ready to state our result for parameter initialization. In it, we assume that the
input matrix Û is fixed independently of the samples used to carry out the random search.

Theorem 14. Let δ ∈ (0, 1) and 0 ≤ r ≤ ∆π
5/2
min log−1/2(k/πmin)

8k3
denote two positive scalars. Further

suppose that

|||Û Û> − U∗(U∗)>|||op ≤
∆π

3/2
min

8Bmaxk2
, and that M ≥

(
1 +

Bmax

r

)k2
log(1/δ).

Then there is a tuple of universal constants (c1, c2) such that if

n ≥ c1 max

{
d
k3

π3
min

log2(πmin/k), σ2 k3

π3
min∆2

logM

}
,

then

min
c>0

dist

({
cβ

(0)
j

}k
j=1

,
{
β∗j
}k
j=1

)
≤ c1

(
k

πmin

)3{
4k
(
r2 + B2

max|||Û Û> − U∗(U∗)>|||2op

)
+
σ2 logM

n

}
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Figure 6.2: Simulation of the PCA and overall guarantees. We assume that the true parameter matrix
Θ∗ = A∗(U∗)> for a Rd×k matrix U∗ and an invertible A∗ ∈ Rk×k, and that Algorithm 8 returns a
subspace estimate Û . Panel (a) reveals the subspace estimation error as a function of d/n, which is
corroborated by Theorem 13. In panel (b), we compare the performance of our overall algorithm (in
red) with that of AM with repeated random initialization [154] (in blue) averaged over 50 trials. We
fix k = 3, d = 50, n = 35kd and σ = 0.1. For a sufficiently large M , both schemes perform in a
similar fashion.

with probability exceeding 1− δ − c1kM exp
(
−c2n

π4
min

k4 log2(k/πmin)

)
.

We prove Theorem 14 in Appendix 6.8. Combining Theorems 13 and 14 with some algebra
then allows us to prove a guarantee for the initialization procedure that combines Algorithms 8
and 9 in sequence. In particular, fix a pair of positive scalars ε ≤ ∆ and δ ∈ (0, 1). Then combining
the theorems shows that if (for an appropriately large universal constant c), we have

M ≥
(

1 + cBmaxk3 log1/2(k/πmin)

επ
5/2
min

)k2
log(1/δ), and the sample size n is greater than

ninit(ε,M, c) : = cmax

{
d
k

πmin

, σ2 k5

π5
minε

2
log(k/πmin) log(M/δ), d log3(nk) log(k/πmin)

k7B2
max

γ2π5
minε

2
(σ2 + ς2)

}
,

(6.20)

then minc>0 dist

({
cβ

(0)
j

}k
j=1

,
{
β∗j
}k
j=1

)
≤ ε2 with probability greater than 1 − δ − cn−10.

Equipped with this guarantee on our initialization step, we are now in a position to state an
end-to-end guarantee on our overall methodology in the next section.

6.3.3 Overall algorithmic guarantee
Assume without loss of generality that the identity permutation minimizes the distance measure
dist, so that β(0)

j is the estimate of the parameter β∗j for each j ∈ [k]. Recall the statistical error
δn,σ(d, k, πmin) defined in equation (6.15), which is, up to a constant factor, the final (squared)
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radius of the ball to which the AM update converges when initialized suitably, and the notation
nAM(c) and ninit(ε,M, c) from equations (6.16) and (6.20), respectively. We now state a guarantee
for our overall procedure that runs Algorithms 8, 9, and 7 in that sequence; we omit the proof since
it follows by simply putting together the pieces from Theorem 12 and the discussion above.

Corollary 2. There exist universal constants c1 and c2 such that for each δ ∈ (0, 1), if

M ≥

(
1 + c1

Bmaxk
4 log1/2(k/πmin)

π
11/2
min

)k2

log(1/δ), n ≥ max

{
ninit

(
c2
π6

min

k2
, c1,M

)
, nAM(c1)

}
and T0 = c1 log

(
1

δn,σ(d, k, πmin)

)
,

then the combined algorithm satisfies, simultaneously for all T ≥ T0, the bound

Pr

{
k∑
j=1

‖β(T )
j − β∗j ‖2 ≥ c1δn,σ(d, k, πmin)

}
≤ δ + c1

(
n−10 + k exp

(
−c2n

π6
min

k2

)
+
k2

n7

)
.

We thus obtain, an algorithm that when given a number of samples that is near-linear in the
ambient dimension, achieves the rate δn,σ(d, k, πmin) = σ2kd

π3
minn

log(kd) log(n/kd) of estimation of
all kd parameters in squared `2 norm. This convergence is illustrated in simulation in Figure 6.2, in
which we choose k = 3, d = 50 and n = 35kd. Interestingly, panel (b) of this figure shows that our
provable multi-step algorithm has performance similar to the algorithm that runs AM with repeated
random initializations.

The computational complexity of our overall algorithm (with exact matrix inversions) is given
by O

(
knd2 log

(
1

δn,σ(d,k,πmin

)
+Mnd

)
, where we also assume that the k top eigenvectors of the

matrix M̂ are computed exactly in Algorithm 8. This guarantee can also be extended to the case
where the linear system is solved up to some numerical precision by (say) a conjugate gradient
method and the eigenvectors of M̂ are computed using the power method, thereby reducing the
computational complexity. Such an extension is standard and we do not detail it here.

6.3.4 Proof sketch and technical challenges
Let us first sketch, at a high level, the ideas required to establish guarantees on the AM algorithm.
We need to control the iterates of the AM algorithm without sample-splitting across iterations, and
so the iterates themselves are random and depend on the sequence of random variables (ξi, εi)

n
i=1. A

popular and recent approach to handling this issue in related iterative algorithms (e.g., [99]) goes
through two steps: first, the population update, corresponding to running (6.12a)-(6.12b) in the case
n→∞, is analyzed, after which the random iterates in the finite-sample case are shown to be close
to their (non-random) population counterparts by using concentration bounds for the associated
empirical process. The main challenge in our setting is that the population update is quite non-trivial
to write down since it involves a delicate understanding of the geometry of the covariate distribution
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induced by the maxima of affine functions. We thus resort to handling the random iterates directly,
thereby sidestepping the calculation of the population operator entirely.

In order to convey the principal difficulties associated with our approach, let us present a
bound on the error obtained after running a single step of the algorithm, starting at the parameters
β1, . . . , βk and obtaining, as a result of one step of the algorithm, the parameters β+

1 , . . . , β
+
k . We

use the shorthand notation Sj : = Sj(β1, . . . , βk), and let PΞj(β1,...,βk) denote the projection matrix
onto the range of the matrix ΞSj .

Let y∗ denote the vector with entry i given by max`∈[k] 〈ξi, β∗` 〉. We have

‖ΞSj(β
+
j − β∗j )‖2 = ‖PΞj(β1,...,βk)ySj − ΞSjβ

∗
j ‖2

= ‖PΞj(β1,...,βk)y
∗
Sj

+ PΞj(β1,...,βk)εSj − ΞSjβ
∗
j ‖2

≤ 2‖PΞj(β1,...,βk)(y
∗
Sj
− ΞSjβ

∗
j )‖2 + 2‖PΞj(β1,...,βk)εSj‖2

≤ 2‖y∗Sj − ΞSjβ
∗
j ‖2 + 2‖PΞj(β1,...,βk)εSj‖2, (6.21)

where we have used the fact that the projection operator is non-expansive on a convex set.
Let

{〈ξi, β`〉 = max} : =

{
〈ξi, β`〉 = max

u∈[k]
〈ξi, βu〉

}
, for each i ∈ [n], ` ∈ [k]

denote a convenient shorthand for these events. The first term on the RHS of inequality (6.21) can
be written as∑

i∈Sj

(y∗i − 〈ξi, β∗j 〉)2 ≤
n∑
i=1

∑
j′:j′ 6=j

1
{
〈ξi, βj〉 = max and 〈ξi, β∗j′〉 = max

}
〈ξi, β∗j′ − β∗j 〉2,

where the inequality accounts for ties. Each indicator random variable is bounded, in turn, as

1
{
〈ξi, βj〉 = max and 〈ξi, β∗j′〉 = max

}
≤ 1

{
〈ξi, βj〉 ≥ 〈ξi, βj′〉 and 〈ξi, β∗j′〉 ≥ 〈ξi, β∗j 〉

}
= 1

{
〈ξi, βj − βj′〉 · 〈ξi, β∗j − β∗j′〉 ≤ 0

}
.

Switching the order of summation yields the bound

∑
i∈Sj

(y∗i − 〈ξi, β∗j 〉)2 ≤
∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, βj − βj′〉 · 〈ξi, β∗j − β∗j′〉 ≤ 0

}
〈ξi, β∗j − β∗j′〉2.

Recalling our notation for the minimum eigenvalue of a symmetric matrix, the LHS of inequal-
ity (6.21) can be bounded as

‖ΞSj(β
+
j − β∗j )‖2 ≥ λmin

(
Ξ>SjΞSj

)
· ‖β+

j − β∗j ‖2.
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Putting together the pieces yields, for each j ∈ [k], the pointwise bound

1

2
λmin

(
Ξ>SjΞSj

)
· ‖β+

j − β∗j ‖2

≤
∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, βj − βj′〉 · 〈ξi, β∗j − β∗j′〉 ≤ 0

}
〈ξi, β∗j − β∗j′〉2 + ‖PΞj(β1,...,βk)εSj‖2.

(6.22)

Up to this point, note that all steps of the proof were deterministic. Observe from equation (6.22) that
in order to obtain an error bound on the next parameter, we need to control three distinct quantities:
(a) the noise term ‖PΞj(β1,...,βk)εSj‖2, (b) the prediction error of the noiseless problem, given by a
pairwise sum of terms of the form 1

{
〈ξi, βj − βj′〉 · 〈ξi, β∗j − β∗j′〉 ≤ 0

}
〈ξi, β∗j −β∗j′〉2, and (c) the

minimum eigen value of the covariate matrix restricted to the set Sj , denoted by λmin

(
Ξ>SjΞSj

)
.

Since the set Sj is in itself random and depends on the pair (Ξ, ε) (since the current parameters were
obtained over the course of running the algorithm), obtaining such a bound is especially challenging.

For step (a)—handled by Lemma 29—we apply standard concentration bounds for quadratic
forms of sub-Gaussian random variables in conjunction with bounds on the growth functions of
multi-class classifiers [189]. Crucially, this affords a uniform bound on the noise irrespective of
which iterate the alternating minimization update is run from. To show step (b)—in Lemma 30—we
generalize a result of Waldspurger [59]. Finally, the key difficulty in step (c) is to control the
spectrum of random matrices, rows of which are drawn from (randomly) truncated variants of the
Gaussian distribution. The expectation of such a random matrix can be characterized by appealing
to tail bounds on the non-central χ2 distribution, and the Gaussian covariate assumption additionally
allows us to show that an analogous result holds for the random matrix with high probability (see
Lemma 31). Here, our initialization condition is crucial: the aforementioned singular value control
suffices for the sub-matrices formed by the true parameters, and we translate these bounds to the
sub-matrices generated by random parameters by appealing to the fact that the initialization is
sufficiently close to the truth.

Having discussed our proof of the AM update in some detail, let us now turn to a brief discussion
of the techniques used to prove Theorems 13 and 14. As mentioned before, our proof of Theorem 13
relies on a lower bound on the eigengap of the population moment. We obtain such a lower bound
by appealing to classical moment calculations for suitably truncated Gaussian distributions [182].
Translating these calculations into an eigengap is quite technical, and involves the isolation of many
properties of the population moments that may be of independent interest. As briefly alluded to
in Section 6.2, the heart of the technical difficulty is due to the fact that that max function is not
differentiable, and so moments cannot be calculated by repeated applications of Stein’s lemma like
in related problems [98, 188, 190].

In order to establish Theorem 14, we crucially use the scale-invariance property of the initializa-
tion along with some arguments involving empirical process theory to show that the goodness-of-fit
statistic employed in the algorithm is able to isolate a good initialization. Establishing these bounds
requires us to relate the prediction and estimation errors in the problem (in Lemma 43), which may
be of independent interest.

-
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6.4 Discussion
We conclude with short discussions of prediction error guarantees, a comparison with adaptivity in
convex regression, related models, and future directions.

6.4.1 Guarantees on prediction error
While our principal focus in this paper was on estimation of the unknown parameters {θ∗j , b∗j}kj=1, the
complementary question of prediction error is also interesting and important. In particular, suppose
that we produce the max-affine function estimate φ̂(MA) given by φ̂(MA)(x) : = maxj∈[k] (〈x, θ̂j〉+b̂j)
for each x ∈ Rd, and measure its performance via the prediction error

1

n

n∑
i=1

(φ̂(ls)(xi)− φ∗(xi))2, (6.23)

where φ∗(x) = maxj∈[k] (〈x, θ∗j 〉 + b∗j) denotes the “true” function. When φ∗ belongs to the sub-
class of k-piece affine functions induced by parameters in the set Bvol(πmin,∆, κ) and the covariates
are drawn from a Gaussian distribution, our results imply (via Theorem 12, and by using Lemma 43
to translate our estimation error guarantee into a prediction error guarantee) the rate

1

n

n∑
i=1

(φ̂(MA)(xi)− φ∗(xi))2 ≤ C(πmin,∆, κ)
kd

n
log(kd) log(n/kd). (6.24)

At least in principle, an explicit dependence on πmin should not be expected in the prediction
error, since if a particular pair of parameters (θ, b) attains the maximum extremely rarely (resulting
in a small value of πmin), then we may simply drop these parameters from the estimate (and estimate
the function with the maximum of the remaining k− 1 pieces) without affecting the prediction error
significantly. Indeed the minimax risk of prediction (without any requirements of computational
efficiency) is known to be independent of the geometry of the problem instance (see, e.g., [158]).

We also note that polynomial-time algorithms with small prediction error are known, without
any dependence on πmin. In particular, [191, Theorem 1.8] shows that the sample complexity for
obtaining ε-accurate estimates in prediction error is bounded by n ≤ exp

{
c1(k/ε)log k

}
dc2 for

absolute constants c1 and c2. While the dependence on both ε and d can likely be improved8, these
results provide additional evidence that the prediction error is much less sensitive to the geometry
of the instance than the estimation error considered in this paper.

6.4.2 Comparison with algorithms for convex regression
As mentioned earlier, the most standard estimator in convex regression is the convex least squares
estimator φ̂(ls) defined as in (6.6) which can be computed efficiently as shown in [162, 164]. The

8Note that unlike our paper, this work makes only boundedness assumptions on the covariates, and their focus is
not on achieving the optimal dimension/sanoke size dependence.
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performance of φ̂(ls) in the max-affine regression model (6.1) has been the subject of some interest
in the literature on adaptivity of shape-constrained estimators (see [192] for an overview of results
of this type). These results mainly focus on the prediction error:

1

n

n∑
i=1

(φ̂(ls)(xi)− φ∗(xi))2

as opposed to estimation of the parameters θ∗j , b
∗
j , j = 1, . . . , k which is our main focus. There

is actually no natural way of obtaining parameter estimates from φ̂(ls) as φ̂(ls) will typically be a
maximum of a strictly larger than k number of affine functions. Let us now compare our results
with the existing results on the prediction error of the convex least squares estimator. When d = 1,
it has been showed by [193, 194] that

1

n

n∑
i=1

(φ̂(ls)(xi)− φ∗(xi))2 ≤ k log n

n

with high probability assuming that {xi}ni=1 are uniformly spaced on the interval [0, 1]. For d ≥ 2,
Han and Wellner [152] studied the adaptivity properties of φ̂(bls) which is the least squares estimator
over the class of bounded convex functions which is different from φ̂(ls) and computationally tricky
to compute. However, [152] showed that unless d ≤ 4,

1

n

n∑
i=1

(φ̂(bls)(xi)− φ∗(xi))2 ≤ Cmn
−4/d(log n)d+4

with high probability assuming that the covariates are drawn from a distribution supported on a
convex polytope with m simplices (the constant pre-factor Cm depends on m). Comparing these
two results with our result on the prediction error (6.24), we see that when d = 1, our results in the
prediction error are strictly weaker than those of prior work [193, 194], but as soon as d ≥ 2, they
are significantly stronger than existing adaptivity results [152], at least for a sub-class of k-affine
functions. We emphasize once again that the focus of the body of work differs from ours, and so the
comparison presented above is necessarily incomplete.

A parallel line of work (including our own) eschews the c-LSE (and its variants) entirely and
pursues a different avenue to alleviate the curse of dimensionality9, by directly fitting convex
functions consisting of a certain number of affine pieces [55], or more broadly, by treating the
number of affine functions as a tuning parameter to be chosen in a data-dependent fashion via
cross-validation [153]. Hannah and Dunson [153] showed that performing estimation under a
carefully chosen sequence of models of the form (6.1) via their “convex adaptive partitioning”, or
CAP estimator is able to obtain consistent prediction rates for general convex regression problems.
However, it is unclear if the CAP estimator is able to avoid the curse of dimensionality in the special
case when the true function is k-piece affine.

9Note that setting k ∼ nd/(4+d), we can (essentially) recover the entire class of convex functions from the maxima
of k affine functions (see, e.g., Balázs [154]), so interesting parametric structure is only expected to emerge when k is
essentially constant, or grows very slowly with n.
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6.4.3 Related models
Models closely related to (6.1) also appear in second price auctions, where an item having d features
is bid on and sold to the highest bidder at the second highest bid [195, 196]. Assuming that each of
k user groups bids on an item and that each bid is a linear function of the features, one can use a
variant of the model (6.1) with the max function replaced by the second order statistic to estimate
the individual bids of the user groups based on historical data. Another related problem is that of
multi-class classification [189], in which one of k labels is assigned to each sample based on the
argmax function, i.e., for a class of functions F , we have the model Y = argmax1≤j≤k fj(X) for j
distinct functions f1, . . . , fk ∈ F . When F is the class of linear functions based on d features, this
can be viewed as the “classification” variant of our regression problem.

The model (6.1) can also be seen as a special case of multi-index models [197, 198] as well as
mixture-of-experts models [199, 200]. Multi-index models are of the form
Y = g(〈θ∗1, X〉, . . . , 〈θ∗k, X〉) + ε for an unknown function g and this function g is taken to be
the max(·) function in the model (6.1). In the mixture-of-experts model, the covariate space is
partitioned into k regions via certain gating functions, and the observation model is given by k
distinct regression functions: one on each region. The model (6.1) is clearly a member of this class,
since the max(·) function implicitly defines a partition of Rd depending on which of the k linear
functions of X attains the maximum, and on each of these partitions, the regression function is
linear in X .

6.4.4 Open Problems
In this paper, we analyzed a natural alternating minimization algorithm for estimating the maximum
of unknown affine functions, and established that it enjoys local linear convergence to a ball around
the optimal parameters. We also proposed an initialization based on PCA followed by random
search in a lower-dimensional space. An interesting open question is if there are other efficient
methods besides random search that work just as well post dimensionality reduction. Another
interesting question has to do with the necessity of dimensionality reduction: in simulations (see,
e.g., Figure 6.2), we have observed that if the AM algorithm is repeatedly initialized in (d + 1)-
dimensional space without dimensionality reduction, then the number of repetitions required to
obtain an initialization from which it succeeds (with high probability) is similar to the number of
repetitions required after dimensionality reduction. This suggests that our (sufficient) initialization
condition (6.14a) may be too stringent, and that the necessary conditions on the initialization to
ensure convergence of the AM algorithm are actually much weaker. We leave such a characterization
for future work, but note that some such conditions must exist: the AM algorithm when run from a
single random initialization, for instance, fails with constant probability when k ≥ 3. Understanding
the behavior of the randomly initialized AM algorithm is also an open problem in the context of
phase retrieval [59, 201].

We note that once again that the Gaussian assumption made in this paper for convenience of
analysis can be relaxed to allow (for instance) log-concave covariate distributions, which includes
the uniform distribution on [−1, 1]d common in nonparametric statistics. Such an extension requires
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significant technical effort and the structure of the proof also changes slightly; simultaneously, the
dependence of the eventual error bounds on the parameter πmin is also different in the more general
setting. In particular, Lemmas 30-32 in the current paper must be extended, and this requires, among
other things, an analysis of random matrices whose rows are drawn from a (truncated) small-ball
distribution. Our companion paper [202] is also concerned with the universal setting in which
guarantees are proved uniformly over all choices of parameters once the covariates have been drawn,
in contrast to the setting of the current paper in which parameters are fixed in advance. Universal
guarantees are commonly sought out in statistical signal processing applications, including phase
retrieval [56].

In the broader context of max-affine estimation, it is also interesting to analyze other non-convex
procedures (e.g. gradient descent) to obtain conditions under which they obtain accurate parameter
estimates. The CAP estimator of Hannah and Dunson [153] and the adaptive max-affine partitioning
algorithm of Balázs [154] are also interesting procedures for estimation under these models, and
it would be interesting to analyze their performance when the number of affine pieces k is fixed
and known. For applications in which the dimension d is very large, it is also interesting to study
the model with additional restrictions of sparsity on the unknown parameters—such problems
are known to exhibit interesting statistical-computational gaps even in the special case of sparse
phase retrieval (see, e.g., Cai et al. [203]). We also note that in practice, and especially for convex
regression, the parameter k would be unknown and must be estimated (say) via cross-validation.
Understanding the behavior of such a two-stage estimator is an important direction of future work.

Appendix
We now present proofs of our main results. We assume throughout that the sample size n is
larger than some universal constant. Values of constants c, c1, c

′, . . . may change from line to line.
Statements of our theorems, for instance, minimize the number of constants by typically using one
of these to denote a large enough constant, and another to denote a small enough constant.

6.5 Proofs

6.5.1 Technical results concerning the global LSE
In this section, we provide a proof of the existence of the global least squares estimator that was
stated in the main text. We also state and prove a lemma that shows that the global LSE is a fixed
point of the AM update under a mild technical condition.
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6.5.2 Proof of Lemma 27
Fix data (x1, y1), . . . , (xn, yn) and let

L(γ1, . . . , γk) :=
n∑
i=1

(
yi −max

j∈[k]
〈ξi, γj〉

)2

denote the objective function in (6.5) with ξi := (xi, 1). The goal is to show that a global minimizer
of L(γ1, . . . , γk) over γ1, . . . , γk ∈ Rd+1 exists. For γ1, . . . , γk ∈ Rd+1, let Sγ1 , . . . , S

γ
k denote a

fixed partition of [n] having the property that

〈ξi, γj〉 = max
u∈[k]
〈ξi, γu〉 for every j ∈ [k] and i ∈ Sγj .

Also, let β̂γ1 , . . . , β̂
γ
k denote the solution to the following constrained least squares problem:

minimize
β1,...,βk

k∑
j=1

∑
i∈Sγj

(yi − 〈ξi, βj〉)2

subject to 〈ξi, βj〉 ≥ 〈ξi, βu〉, u, j ∈ [k], i ∈ Sγj .

Note that the above quadratic problem is feasible as γ1, . . . , γk satisfies the constraint and, conse-
quently, β̂γ1 , . . . , β̂

γ
k exists uniquely for every γ1, . . . , γk ∈ Rd+1. Note further that, by construction,

L
(
β̂γ1 , . . . , β̂

γ
k

)
≤ L(γ1, . . . , γk).

and that the set
∆ :=

{
(β̂γ1 , . . . , β̂

γ
k ) : γ1, . . . , γk ∈ Rd+1

}
is finite because β̂γ1 , . . . , β̂

γ
k depends on γ1, . . . , γk only through the partition Sγ1 , . . . , S

γ
k and the

number of possible such partitions of [n] is obviously finite. Finally, it is evident that

(β̂
(ls)
1 , . . . , β̂

(ls)
k ) = argmin

(β1,...,βk)∈∆

L(β1, . . . , βk)

is a global minimizer of L(γ1, . . . , γk) as

L
(
β̂

(ls)
1 , . . . , β̂

(ls)
k

)
≤ L

(
β̂γ1 , . . . , β̂

γ
k

)
≤ L(γ1, . . . , γk)

for every γ1, . . . , γk. This concludes the proof of Lemma 27.
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6.5.3 Fixed point of AM update
The following lemma establishes that the global LSE is a fixed point of the AM update under a mild
technical condition.

Lemma 28. Consider the global least squares estimator (6.5). Suppose that the k values 〈ξi, β̂ ls
j 〉

for j = 1, . . . , k are distinct for each i ∈ [n]. Then

β̂
(ls)
j ∈ argmin

β∈Rd+1

∑
i∈Sj(β̂

(ls)
1 ,...,β̂

(ls)
k )

(yi − 〈ξi, β〉)2 for every j ∈ [k]. (6.25)

Proof. It is clearly enough to prove (6.25) for j = 1. Suppose that β̂(ls)
1 does not minimize the least

squares criterion over S1(β̂
(ls)
1 , . . . , β̂

(ls)
k ). Let

γ̂
(ls)
1 ∈ argmin

β∈Rd+1

∑
i∈S1(β̂

(ls)
1 ,...,β̂

(ls)
k )

(yi − 〈ξi, β〉)2

be any other least squares minimizer over S1(β̂
(ls)
1 , . . . , β̂

(ls)
k ) and let, for ε > 0,

β̃1 := β̂
(ls)
1 + ε

(
γ̂

(ls)
1 − β̂(ls)

1

)
.

When ε > 0 is sufficiently small, we have

Sj(β̃1, β̂
(ls)
2 . . . , β̂

(ls)
k ) = Sj(β̂

(ls)
1 , . . . , β̂

(ls)
k ) for every j ∈ [k]

due to the no ties assumption and the fact that β̃1 and β̂(ls)
1 can be made arbitrarily close as ε becomes

small. Thus, if

U(β1, . . . , βk) :=
n∑
i=1

(
yi −max

j∈[k]
〈ξi, βj〉

)2

=
∑
j∈[k]

∑
i∈Sj(β1,...,βk)

(yi − 〈ξi, βj〉)2 ,

then

U(β̃1, β̂
(ls)
2 . . . , β̂

(ls)
k ) =

∑
i∈S1(β̃1,β̂

(ls)
2 ...,β̂

(ls)
k )

(
yi − 〈ξi, β̃1〉

)2

+
∑
j≥2

∑
i∈Sj(β̃1,β̂

(ls)
2 ...,β̂

(ls)
k )

(
yi − 〈ξi, β̂(ls)

j 〉
)2

=
∑

i∈S1(β̂
(ls)
1 ,β̂

(ls)
2 ...,β̂

(ls)
k )

(
yi − 〈ξi, β̃1〉

)2

+
∑
j≥2

∑
i∈Sj(β̂

(ls)
1 ,β̂

(ls)
2 ...,β̂

(ls)
k )

(
yi − 〈ξi, β̂(ls)

j 〉
)2

<
∑

i∈S1(β̂
(ls)
1 ,β̂

(ls)
2 ...,β̂

(ls)
k )

(
yi − 〈ξi, β̂(ls)

1 〉
)2

+
∑
j≥2

∑
i∈Sj(β̂

(ls)
1 ,β̂

(ls)
2 ...,β̂

(ls)
k )

(
yi − 〈ξi, β̂(ls)

j 〉
)2

= U(β̂
(ls)
1 , β̂

(ls)
2 . . . , β̂

(ls)
k )

where the strict inequality above comes from the fact that β̃1 is closer to the least squares solution
γ̂

(ls)
1 compared to β̂(ls)

1 . This leads to a contradiction as the criterion function is smaller than its value
at a global minimizer, thereby concluding the proof. □ 
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6.6 Proof of Theorem 12
Let us begin by introducing some shorthand notation, and providing a formal statement of the
probability bound guaranteed by the theorem. For a scalarw∗, vectors u∗ ∈ Rd and v∗ = (u∗, w∗) ∈
Rd+1, and a positive scalar r, let Bv∗(r) =

{
v ∈ Rd+1 : ‖v−v

∗‖
‖u∗‖ ≤ r

}
, and let

I
(
r;
{
β∗j
}k
j=1

)
=
{
β1, . . . βk ∈ Rd+1 : ∃c > 0 : c(βi − βj) ∈ Bβ∗i −β∗j (r) for all 1 ≤ i 6= j ≤ k

}
.

Also, use the shorthand

ϑt

(
r;
{
β∗j
}k
j=1

)
: = sup

β
(0)
1 ,...,β

(0)
k ∈I(r)

k∑
j=1

‖β(t)
j − β∗j ‖2 −

(
3

4

)t( k∑
j=1

‖c∗β(0)
j − β∗j ‖2

)
, and

δNn,σ(d, k, πmin) : = σ2 kd

π3
minn

log(kd) log(n/kd)

to denote the error tracked over iterations (with c∗ denoting the smallest c > 0 such that c(βi−βj) ∈
Bβ∗i −β∗j (r) for all 1 ≤ i 6= j ≤ k), and a proxy for the final statistical rate, respectively.

Theorem 12 states that there are universal constants c1 and c2 such that if the sample size obeys
the condition n ≥ nAM(c1), then we have

Pr

{
max
t≥1

ϑt

(
c2
π6

min

k2κ
;
{
β∗j
}k
j=1

)
≥ c1δ

N
n,σ(d, k, πmin)

}
≤ c2

(
k exp

(
−c1n

π6
min

k2

)
+
k2

n7

)
.

(6.26)

Let us assume, without loss of generality, that the scalar c∗ above is equal to 1. It is convenient
to state and prove another result that guarantees a one-step contraction, from which Theorem 12
follows as a corollary. In order to state this result, we assume that one step of the alternating
minimization update (6.12a)-(6.12b) is run starting from the parameters {βj}kj=1 to produce the

next iterate
{
β+
j

}k
j=1

. We use the shorthand

v∗i,j = β∗i − β∗j ,
vi,j = βi − βj, and
v+
i,j = β+

i − β+
j .

Also recall the definitions of the geometric quantities (∆, κ). The following proposition guarantees
the one step contraction bound.

Proposition 15. There exist universal constants c1 and c2 such that
(a) If the sample size satisfies the bound n ≥ c1 max

{
dk
π3
min
, log n · k2

π6
min

}
, then for all parameters

{βj}kj=1 satisfying

max
1≤j 6=j′≤k

∥∥vj,j′ − v∗j,j′∥∥
‖θ∗j − θ∗j′‖

log3/2

(
‖θ∗j − θ∗j′‖∥∥vj,j′ − v∗j,j′∥∥

)
≤ c2

π6
min

k2κ
, (6.27a)
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we have, simultaneously for all pairs 1 ≤ j 6= ` ≤ k, the bound∥∥v+
j,` − v∗j,`

∥∥2

‖θ∗j − θ∗`‖2
≤ max

{
dκ

π3
minn

,
1

4k

}( k∑
j′=1

∥∥vj,j′ − v∗j,j′∥∥2

‖θ∗j − θ∗j′‖2
+

∥∥v`,j′ − v∗`,j′∥∥2

‖θ∗` − θ∗j′‖2

)
+ c1

σ2

∆

kd

π3
minn

log(n/d)

(6.27b)

with probability exceeding 1− c1

(
k exp

(
−c2n

k2

π6
min

)
+ k2

n7

)
.

(b) If the sample size satisfies the bound n ≥ c1 max
{

dk
π3
min
, log n · k2

π6
min

}
, then for all parameters

{βj}kj=1 satisfying

max
1≤j 6=j′≤k

∥∥vj,j′ − v∗j,j′∥∥
‖θ∗j − θ∗j′‖

log3/2

(
‖θ∗j − θ∗j′‖∥∥vj,j′ − v∗j,j′∥∥

)
≤ c2

π6
min

k2
, (6.28a)

we have the overall estimation error bound
k∑
i=1

‖β+
j − β∗j ‖2 ≤ 3

4
·

(
k∑
i=1

‖βj − β∗j ‖2

)
+ c1σ

2 kd

π3
minn

log(k) log(n/dk) (6.28b)

with probability exceeding 1− c1

(
k exp

(
−c2n

k2

π6
min

)
+ k2

n7

)
.

Let us briefly comment on why Proposition 15 implies Theorem 12 as a corollary. Clearly,
equations (6.28a) and (6.28b) in conjunction show that the estimation error decays geometrically
after running one step of the algorithm. The only remaining detail to be verified is that the next
iterates

{
β+
j

}k
j=1

also satisfy condition (6.27a) provided the sample size is large enough; in that case,
the one step estimation bound (6.28b) can be applied recursively to obtain the final bound (6.14b).

With the constant c2 from the proposition, let rb be the largest value in the interval [0, e−3/2]

such that rb log3/2(1/rb) ≤ c2
π6
min

k2
. Similarly, let ra be the largest value in the interval [0, e−3/2]

such that ra log3/2(1/ra) ≤ c2
π6
min

k2κ
. Bounds on both of these values will be used repeatedly later on.

Assume that the current parameters satisfy the bound (6.27a). Choosing n ≥ 4κd/π3
min and

applying inequality (6.27b), we have, for each pair 1 ≤ j 6= ` ≤ k, the bound∥∥v+
j,` − v∗j,`

∥∥2

‖θ∗j − θ∗`‖2
≤ 1

4k

(
k∑

j′=1

∥∥vj,j′ − v∗j,j′∥∥2

‖θ∗j − θ∗j′‖2
+

∥∥v`,j′ − v∗`,j′∥∥2

‖θ∗` − θ∗j′‖2

)
+ c1

σ2

∆
σ2 kd

π3
minn

log(n/d)

≤ 1

2
r2
a + c1

σ2

∆

kd

π3
minn

log(n/d).

Further, if n ≥ Cσ2 kd
π3
min∆r2a

for a sufficiently large constant C, we have∥∥v+
j,` − v∗j,`

∥∥2

‖θ∗j − θ∗`‖2
≤ r2

a.
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Thus, the parameters
{
β+
j

}k
j=1

satisfy inequality (6.27a) for the sample size choice required by
Theorem 12. Finally, noting, for a pair of small enough scalars (a, b), the implication

a ≤ b

2
log−3/2(1/b) =⇒ a log3/2(1/a) ≤ b,

and adjusting the constants appropriately to simplify the probability statement completes the proof
of the theorem. It now remains to establish Proposition 15.

6.6.1 Proof of Proposition 15
Recall that we denote by

Sj(β1, . . . , βk) :=

{
1 ≤ i ≤ n : 〈ξi, βj〉 = max

1≤u≤k
(〈ξi, βu〉)

}
,

the indices of the rows for which βj attains the maximum, and we additionally keep this sets disjoint
by breaking ties lexicographically. To lighten notation, we use the shorthand

Ξj(β1, . . . , βk) : = ΞSj(β1,...,βk).

Recall the notation

Bv∗(r) =

{
v ∈ Rd+1 :

‖v − v∗‖
‖u∗‖

≤ r

}
introduced before, and the definitions of the pair of scalars (ra, rb). To be agnostic to the scale
invariance of the problem, we set c∗ = 1 and define the set of parameters

I(r) =
{
β1, . . . , βk : vi,j ∈ Bv∗i,j(r) for all 1 ≤ i 6= j ≤ k

}
,

and use the shorthand Ia : = I(ra) and Ib : = I(rb), to denote the set of parameters satisfying
conditions (6.27a) and (6.28a), respectively,

Finally, recall the deterministic bound (6.22) established in Section 6.3.4, restated below for
convenience.

1

2
λmin

(
Ξ>SjΞSj

)
· ‖β+

j − β∗j ‖2 ≤
∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
〈ξi, v∗j,j′〉2 + ‖PΞj(β1,...,βk)εSj‖2.

It suffices to show high probability bounds on the various quantities appearing in this bound. First,
we claim that the noise terms are uniformly bounded as

Pr

{
sup

β1,...,βk∈Rd+1

k∑
j=1

‖PΞj(β1,...,βk)εSj(β1,...,βk)‖2 ≥ 2σ2k(d+ 1) log(kd) log(n/kd)

}
≤
(
n

kd

)−1

, and

(6.29a.I)

Pr

{
sup

β1,...,βk∈Rd+1

‖PΞj(β1,...,βk)εSj(β1,...,βk)‖2 ≥ 2σ2k(d+ 1) log(n/d)

}
≤
(
n

d

)−1

for each j ∈ [k].

(6.29a.II)
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Second, we show that the indicator quantities are simultaneously bounded for all j, j′ pairs. In
particular, we claim that there exists a tuple of universal constants (C, c1, c2, c

′) such that for each
positive scalar r ≤ 1/24, we have

Pr
{
∃1 ≤ j 6= j′ ≤ k, vj,j′ ∈ Bv∗

j,j′
(r) :

∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
〈ξi, v∗j,j′〉2

≥ C max{d, nr log3/2(1/r)}
∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2
}
≤ c1

(
k

2

){
ne−c2n + e−c

′max{d,10 logn}
}
.

(6.29b)

Finally, we show a bound on the LHS of the bound (6.22) by handling the singular values of
(random) sub-matrices of Ξ with a uniform bound. In particular, we claim that there are universal
constants (C, c, c′) such that if n ≥ C max

{
dk
π3
min
, log n · k2

π6
min

}
, then for each j ∈ [k], we have

Pr

{
inf

β1,...,βk∈Ib
λmin

(
Ξj(β1, . . . , βk)

> · Ξj(β1, . . . , βk)
)
≤ Cπ3

minn

}
≤ c exp

(
−cnπ

6
min

k2

)
+ c′n−10.

(6.29c)

Notice that claim (6.29a.I) implicitly defines a high probability event E (a.I), claim (6.29a.II)
defines high probability events E (a.II)

j , claim (6.29b) defines a high probability event E (b)(r), and
claim (6.29c) defines high probability events E (c)

j . Define the intersection of these events as

E(r) : = E (a.I)
⋂⋂

j∈[k]

E (a.II)
j

⋂ E (b)(r)
⋂⋂

j∈[k]

E (c)
j

 ,

and note that the claims in conjunction with the union bound guarantee that if the condition on the
sample size n ≥ c1 max

{
dk
π3
min
, log n · k2

π6
min

}
holds, then for all r ≤ rb, we have

Pr {E(r)} ≥ 1− c1

(
k exp

(
−c2n

π6
min

k2

)
+
k2

n7

)
,

where we have adjusted constants appropriately in stating the bound. We are now ready to prove the
two parts of the proposition.

Proof of part (a): Work on the event E(ra). Normalizing inequality (6.22) by n and using
claims (6.29a.II). (6.29b), and (6.29c) with r = ra then yields, simultaneously for all j ∈ [k], the
bound

‖β+
j − β∗j ‖2 ≤ C max

{
d

π3
minn

,
ra
π3

min

log3/2(1/ra)

} ∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2 + C ′σ2 kd

π3
minn

log(n/d)

(i)
≤ max

{
Cd

π3
minn

,
1

4kκ

} ∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2 + C ′σ2 kd

π3
minn

log(n/d),
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where in step (i), we have used the definition of the quantity ra. Using this bound for the indices
j, ` in conjunction with the definition of the quantity κ proves inequality (6.27b).

Proof of part (b): We now work on the event E(rb) and proceed again (see equation (6.22)) from
the bound

‖β+
j − β∗j ‖2 ≤ C max

{
d

π3
minn

,
rb
π3

min

log3/2(1/rb)

} ∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2 +
C

π3
minn
‖PΞj(β1,...,βk)εSj‖2.

Summing over j ∈ [k] and using the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, we obtain

k∑
j=1

‖β+
j − β∗j ‖2 ≤ C max

{
kd

π3
minn

,
krb
π3

min

log3/2(1/rb)

}( k∑
j=1

‖βj − β∗j ‖2

)

+
C

π3
minn

∑
j∈[k]

‖PΞj(β1,...,βk)εSj‖2

(ii)
≤ 3

4

(
k∑
j=1

‖βj − β∗j ‖2

)
+ C ′σ2 kd

π3
minn

log(k) log(n/kd),

where in step (ii), we have used the definition of the quantity rb, the bound n ≥ Ckd/π3
min, and

claim (6.29a.I). This completes the proof.
We now prove each of the claims in turn. This constitutes the technical meat of our proof, and
involves multiple technical lemmas whose proofs are postponed to the end of the section.

Proof of claims (6.29a.I) and (6.29a.II): We begin by stating a general lemma about concentration
properties of the noise.

Lemma 29. Consider a random variable z ∈ Rn with i.i.d. σ-sub-Gaussian entries, and a fixed
matrix Ξ ∈ Rn×(d+1). Then, we have

sup
β1,...,βk∈Rd+1

k∑
j=1

‖PΞj(β1,...,βk)z‖2 ≤ 2σ2k(d+ 1) log(kd) log(n/kd) (6.30a)

with probability greater than 1−
(
n
kd

)−1 and

sup
β1,...,βk∈Rd+1

max
j∈[k]

‖PΞj(β1,...,βk)zSj(β1,...,βk)‖2 ≤ 2σ2k(d+ 1) log(n/d) (6.30b)

with probability greater than 1−
(
n
d

)−1.

The proof of the claims follows directly from Lemma 29, since the noise vector ε is independent
of the matrix Ξ, and Ib ⊆

(
Rd+1

)⊗k.

□ 

□ 

□ 
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Proof of claim (6.29b): We now state a lemma that directly handles indicator functions as they
appear in the claim.

Lemma 30. Let u∗ ∈ Rd and w∗ ∈ R, and consider a fixed parameter v∗ = (u∗, w∗) ∈ Rd+1.
Then there are universal constants (c1, c2, c3, c4) such that for all positive scalars r ≤ 1/24, we
have

sup
v∈Bv∗ (r)

(
1

n

n∑
i=1

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2
)
/‖v − v∗‖2 ≤ c1 ·max

{
d

n
, r log3/2

(
1

r

)}
with probability exceeding 1− c1e

−c2 max{d,10 logn} − c3ne
−c4n. Here, we adopt the convention that

0/0 = 0.

Applying Lemma 30 with v = vj,j′ and v∗ = v∗j,j′ for all pairs (j, j′) and using a union bound
directly yields the claim.

Proof of claim (6.29c): For this claim, we state three technical lemmas pertaining to the singular
values of random matrices whose rows are formed by truncated Gaussian random vectors. We
let vol(K) denote the volume of a set K ⊆ Rd with respect to d-dimensional standard Gaussian
measure, i.e., with vol(K) = Pr{Z ∈ K} for Z ∼ N (0, Id).

Lemma 31. Suppose n vectors {xi}ni=1 are drawn i.i.d. from N (0, Id), and K ⊆ Rd is a fixed
convex set. Then there exists a tuple of universal constants (c1, c2) such that if vol3(K)n ≥
c1d log2 (1/ vol(K)), then

λmin

( ∑
i:xi∈K

ξiξ
>
i

)
≥ c2 vol

3(K) · n

with probability greater than 1− c1 exp
(
−c2n

vol4(K)

log2(1/ vol(K))

)
− c1 exp(−c2n · vol(K)).

For a pair of scalars (w,w′) and d-dimensional vectors (u, u′), define the wedge formed by the
d+ 1-dimensional vectors v = (u, w) and v′ = (u′, w′) as the region

W (v, v′) = {x ∈ Rd : (〈x, u〉+ w) · (〈x, u′〉+ w′) ≤ 0},

and letWδ = {W = W (v, v′) : vol(W ) ≤ δ} denote the set of all wedges with Gaussian volume
less than δ. The next lemma bounds the maximum singular value of a sub-matrix formed by any
such wedge.

Lemma 32. There is a tuple of universal constants (c1, c2) such that if n ≥ c1 max
{
d, logn

δ2

}
, then

sup
W∈Wδ

λmax

( ∑
i:xi∈W

ξiξ
>
i

)
≤ c1n

√
δ

with probability greater than 1− exp(−c2nδ
2)− n−10.

□ 
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We are now ready to proceed to a proof of claim (6.29c). For convenience, introduce the
shorthand notation

S∗j : = Sj (β∗1 , . . . , β
∗
k)

to denote the set of indices corresponding to observations generated by the true parameter β∗j .
Letting A∆B : = (A \B)

⋃
(B \ A) denote the symmetric difference between two sets A and B,

we have

λmin

(
Ξ>SjΞSj

)
≥ λmin

(
Ξ>S∗j ΞS∗j

)
− λmax

(
Ξ>S∗j∆Sj

ΞS∗j∆Sj

)
.

Recall that by definition, we have

S∗j∆Sj = {i : 〈ξi, β∗j 〉} = max and 〈ξi, βj〉 6= max}
⋃
{i : 〈ξi, β∗j 〉 6= max and 〈ξi, βj〉 = max}

⊆
⋃

j′∈[k]\j

{i : 〈ξi, v∗j,j′〉 · 〈ξi, vj,j′〉 < 0}

=
⋃

j′∈[k]\j

{i : xi ∈ W
(
v∗j,j′ , vj,j′

)
}. (6.31)

Putting together the pieces, we have

λmin

(
Ξ>SjΞSj

)
≥ λmin

(
Ξ>S∗j ΞS∗j

)
−
∑
j′ 6=j

λmax

 ∑
i:xi∈W

(
v∗
j,j′ ,vj,j′

) ξiξ>i
 . (6.32)

Now by Lemma 36, the definition of the set Ib, and the definition of rb, we have

vol
(
W
(
v∗j,j′ , vj,j′

))
≤ nrb log1/2(1/rb) ≤ C

π6
min

k2
.

Owing to the sample size assumption n ≥ C max
{
d, k2 logn

π6
min

}
, the conditions of Lemma 32 are

satisfied, and applying it yields

sup
vj,j′∈Bv∗

j,j′
(ra)

λmax

 ∑
i:xi∈W

(
v∗
j,j′ ,vj,j′

) ξiξ>i
 ≤ nC

π3
min

k

with probability exceeding 1−n−10− exp
(
−cnπ

6
min

k2

)
. Moreover, Lemma 31 guarantees the bound

λmin

(
Ξ>S∗j ΞS∗j

)
≥ c2n · π3

min, so that putting together the pieces, we have

inf
β1,...,βk∈Ib

λmin

(
Ξ>SjΞSj

)
≥ c2nπ

3
min − Cnk

π3
min

k

≥ Cπ3
minn, (6.33)
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with probability greater than 1− c exp
(
−cnπ

6
min

k2

)
− n−10. These assertions hold provided

n ≥ C max

{
d · k

π3
min

,
k2 log n

π6
min

}
,

and this completes the proof.
Having proved the claims, we turn to proofs of our technical lemmas.

Proof of Lemma 29

In this proof, we assume that σ = 1; our bounds can finally be scaled by σ2.
It is natural to prove the bound (6.30b) first followed by bound (6.30a). First, consider a fixed

set of parameters {β1, . . . , βk}. Then, we have∥∥PΞj(β1,...,βk)zSj
∥∥2

=
∥∥UU>zSj∥∥2

,

whereU ∈ R|Ξj |×(d+1) denotes a matrix with orthonormal columns that span the range of Ξj(β1, . . . , βk).
Applying the Hanson-Wright inequality for independent sub-Gaussians (see [112, Theorem

2.1]) and noting that |||UU>|||F ≤
√
d+ 1 we obtain

Pr
{∥∥UU>zSj∥∥2 ≥ (d+ 1) + t

}
≤ e−ct,

for each t ≥ 0. In particular, this implies that the random variable
∥∥UU>zSj∥∥2 is sub-exponential.

This tail bound holds for a fixed partition of the rows of Ξ; we now take a union bound over all
possible partitions. Toward that end, define the sets

Sj =
{
Sj(β1, . . . , βk) : β1, . . . , βk ∈ Rd+1

}
, for each j ∈ [k].

From Lemma 38, we have the bound |Sj| ≤ 2ckd log(en/d). Thus, applying the union bound, we
obtain

Pr

{
sup

β1,...,βk∈Rd+1

∥∥PΞj(β1,...,βk)zSj
∥∥2 ≥ (d+ 1) + t

}
≤ |Sj|e−ct,

and substituting t = ck(d+ 1) log(n/d) and performing some algebra establishes bound (6.30b).
In order to establish bound (6.30a), we once again consider the random variable∑k
j=1

∥∥PΞj(β1,...,βk)zSj
∥∥2 for a fixed set of parameters {β1, . . . , βk}. Note that this is the sum of k

independent sub-exponential random variables and can be thought of as a quadratic form of the
entire vector z. So once again from the Hanson-Wright inequality, we have

Pr

{
sup

β1,...,βk∈Rd+1

k∑
j=1

∥∥PΞj(β1,...,βk)zSj
∥∥2 ≥ k(d+ 1) + t

}
≤ e−ct/k

□ 



CHAPTER 6. MAX AFFINE REGRESSION WITH GAUSSIAN DESIGN 171

for all t ≥ 0.
Also define the set of all possible partitions of the n points via the max-affine function; we have

the set

S =
{
S1(β1, . . . , βk), . . . , Sk(β1, . . . , βk) : β1, . . . , βk ∈ Rd+1

}
.

Lemma 39 yields the bound |S| ≤ 2ckd log(kd) log(n/kd), and combining a union bound with the high
probability bound above establishes bound (6.30a) after some algebraic manipulation.

Proof of Lemma 30

Let γv = v − v∗; we have

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2 ≤ 1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, γv〉2

≤ 1
{
〈ξi, γv〉2 ≥ 〈ξi, v∗〉2

}
〈ξi, γv〉2.

Define the (random) set Kv = {i : 〈ξi, γv〉2 > 〈ξi, v∗〉2}; we have the bound

1

n

n∑
i=1

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2 ≤
1

n
‖ΞKvγv‖2.

We now show that the quantity ‖ΞKvγv‖2 is bounded uniformly for all v ∈ Bv∗(r) for small enough
r. Recall that u∗ is the “linear” portion of v∗, and let m = max{d, 10 log n, n · (16r ·

√
log(1/r)}

(note that m depends implicitly on r). We claim that for all r ∈ (0, 1/24], we have

Pr

{
sup

v∈Bv∗ (r)

|Kv| > m

}
≤ 4e−cmax{d,10 logn} + cne−c

′n, and

(6.34a)

Pr


⋃

T⊆[n]:
|T |≤m

sup
ω∈Rd+1

ω 6=0

‖ΞTω‖2

‖ω‖2
≥ (2d+ 20m log(n/m))

 ≤ e−cmax{d,10 logn}. (6.34b)

Taking these claims as given, the proof of the lemma is immediate, since n
m
≤ 1

16r log(1/r)
, so that

log(n/m) ≤ C log(1/r).

□ 
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Proof of claim (6.34a): By definition of the set Kv, we have

Pr{ sup
v∈Bv∗ (r)

|Kv| > m} ≤
∑
T⊆[n]:
|T |>m

Pr
{
∃v ∈ Bv∗(r) : ‖ΞTγv‖2 ≥ ‖ΞTv

∗‖2
}

=
∑
T⊆[n]:
|T |>m

Pr

{
∃v ∈ Bv∗(r) :

‖γv‖2

‖u∗‖2

‖ΞTγv‖2

‖γv‖2
≥ ‖ΞTv

∗‖2

‖u∗‖2

}

≤
∑
T⊆[n]:
|T |>m

Pr

{
∃v ∈ Bv∗(r) : r2‖ΞTγv‖2

‖γv‖2
≥ ‖ΞTv

∗‖2

‖u∗‖2

}

≤
∑
T⊆[n]:
|T |>m

(
Pr

{
∃v ∈ Bv∗(r) :

‖ΞTγv‖2

‖γv‖2
≥ (
√
d+

√
|T |+ tT )2

}

+ Pr

{
‖ΞTv

∗‖2

‖u∗‖2
≤ r2(

√
d+

√
|T |+ tT )2

})
,

where the final step follows by the union bound and holds for all positive scalars {tT}T⊆[n]. For
some fixed subset T of size `, we have the tail bounds

Pr

 sup
ω∈Rd+1

ω 6=0

‖ΞTω‖2

‖ω‖2
≥ (
√
d+
√
`+ t)2

 (i)
≤ 2e−t

2/2, for all t ≥ 0, and (6.35a)

Pr

{
‖ΞTv

∗‖2

‖u∗‖2
≤ δ`

}
(ii)
≤ (eδ)`/2 for all δ ≥ 0, (6.35b)

where step (i) follows from the sub-Gaussianity of the covariate matrix (see Lemma 40), and step
(ii) from a tail bound for the non-central χ2 distribution (see Lemma 41).

Substituting these bounds yields

Pr{ sup
v∈Bv∗ (r)

|Kv| > m} ≤
n∑

`=m+1

(
n

`

)2e−t
2
`/2 +

(
er2 · (

√
d+
√
`+ t`)

2

`

)`/2


≤
n∑

`=m+1

(
n

`

)2e−t
2
`/2 +

(
2r ·
√
d+
√
`+ t`√
`

)`
 .

Recall that t` was a free (non-negative) variable to be chosen. We now split the proof into two cases
and choose this parameter differently for the two cases.
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Case 1, m ≤ ` < n/e: Substituting the choice t` = 4
√
` log(n/`), we obtain

(
n

`

)2e−t
2
`/2 +

(
2r ·
√
d+
√
`+ t`√
`

)`
 ≤ (n

`

)−c`
+

(
n

`

)
·

(
2r ·
√
d+ 5

√
` log(n/`)√
`

)`

(i)
≤
(n
`

)−c`
+

(
n

`

)
·
(

2r · (1 + 5
√

log(n/`))
)`

(ii)
≤
(n
`

)−c`
+

(
n

`

)
·
(

12r ·
√

log(n/`)
)`

≤
(n
`

)−c`
+
(

12
(en
`

)
r ·
√

log(n/`)
)`
,

where step (i) follows from the bound m ≥ d, and step (ii) from the bound ` ≤ n/e.
Now note that the second term is only problematic for small `. For all ` ≥ m = n · (16r ·√

log(1/r)), we have (
12
(en
`

)
r ·
√

log(n/`)
)`
≤ (3/4)` .

The first term, on the other hand, satisfies the bound
(
n
`

)−c` ≤ (3/4)` for sufficiently large n.

Case 2, ` ≥ n/e: In this case, setting t` = 2
√
n for each ` yields the bound

(
n

`

)2e−t
2
`/2 +

(
2r ·
√
d+
√
`+ t`√
`

)`
 ≤ 2

(
n

n/2

)
e−2n + (12r)`

≤ ce−c
′n,

where we have used the fact that d ≤ n/2 and r ≤ 1/24.

Putting together the pieces from both cases, we have shown that for all r ∈ (0, 1/24], we have

Pr{ sup
v∈Bv∗ (r)

|Kv| > m} ≤ cne−c
′n +

n/e∑
`=m+1

(3/4)`

≤ cne−c
′n + 4(3/4)max{d,10 logn},

thus completing the proof of the claim.
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Proof of claim (6.34b): The proof of this claim follows immediately from the steps used to
establish the previous claim. In particular, writing

Pr


⋃

T⊆[n]:
|T |≤m

⋃
ω:‖ω‖=1

‖ΞTω‖2 ≥ 2d+ 20m log(n/m)


≤ Pr


⋃

T⊆[n]:
|T |≤m

⋃
ω:‖ω‖=1

‖ΞTω‖2 ≥
(√

d+
√
m+

√
4m log(n/m)

)2


≤

m∑
`=1

Pr


⋃

T⊆[n]:
|T |=`

⋃
ω:‖ω‖=1

‖ΞTω‖2 ≥
(√

d+
√
m+

√
4m log(n/m)

)2


(iv)

≤ 2
m∑
`=1

(
n

`

)
exp{−2m log(n/m)}

≤ 2
( n
m

)−cm
≤ 2e−cmax{d,10 logn},

where step (iv) follows from the tail bound (6.35a).

Proof of Lemma 31

The lemma follows from some structural results on the truncated Gaussian distribution. Using
the shorthand vol : = vol(K) and letting ψ denote the d-dimensional Gaussian density, consider a
random vector τ drawn from the distribution having density h(y) = 1

vol
ψ(y)1 {y ∈ K}, and denote

its mean and second moment matrix by µτ and Στ , respectively. Also denote the recentered random
variable by τ̃ = τ − µτ . We claim that

‖µτ‖2 ≤ C log (1/ vol) , (6.36a)

C vol2 ·I �Στ � (1 + C log(1/ vol)) I, and (6.36b)
τ̃ is c-sub-Gaussian for a universal constant c. (6.36c)

Taking these claims as given for the moment, let us prove the lemma.
The claims (6.36a) and (6.36c) taken together imply that the random variable τ is sub-Gaussian

with parameter ζ2 ≤ 2c2 + 2C log (1/ vol). Now consider m i.i.d. draws of τ given by {τi}mi=1;
standard results (see, e.g., Vershynin [111, Remark 5.40], or Wainwright [13, Theorem 6.2]) yield
the bound

Pr

{
||| 1
m

m∑
i=1

τiτ
>
i − Στ |||op ≥ ζ2

(
d

m
+

√
d

m
+ δ

)}
≤ 2 exp

(
−cnmin{δ, δ2}

)
.

□ 
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Using this bound along with claim (6.36b) and Weyl’s inequality yields

λmin

(
1

m

m∑
i=1

τiτ
>
i

)
≥ C vol2−ζ2

(
d

m
+

√
d

m
+ δ

)
(6.37)

with probability greater than 1− 2 exp (−cnmin{δ, δ2}).
Furthermore, when n samples are drawn from a standard Gaussian distribution, the number m

of them that fall in the set K satisfies m ≥ 1
2
n · vol with high probability. In particular, this follows

from a straightforward binomial tail bound, which yields

Pr

{
m ≤ n · vol

2

}
≤ exp(−cn · vol). (6.38)

Recall our choice n ≥ Cd log2(1/ vol)

vol3
, which in conjunction with the bound (6.38) ensures that

C vol2 ≥ 1
8
σ2
√

d
m

with high probability. Setting δ = C vol2 /σ2 in inequality (6.37), we have

λmin

(
1

m

m∑
i=1

τiτ
>
i

)
≥ C

2
vol2

with probability greater than 1− 2 exp
(
−cn vol4 /σ4

)
. Putting together the pieces thus proves the

lemma. It remains to show the various claims.

Proof of claim (6.36a) Let τA denote a random variable formed as a result of truncating the
Gaussian distribution to a (general) set A with volume vol. Letting µA denote its mean, the dual
norm definition of the `2 norm yields

‖µA‖ = sup
v∈Sd−1

〈v, µA〉

≤ sup
v∈Sd−1

E|〈v, τA〉|.

Let us now evaluate an upper bound on the quantity E|〈v, τA〉|. In the calculation, for any d-
dimensional vector y, we use the shorthand yv : = v>y and y\v : = U>\vy for a matrix U\v ∈ Rd×(d−1)

having orthonormal columns that span the subspace orthogonal to v. Letting Av ⊆ R denote the
projection of A onto the direction v, define the set A\v(w) ⊆ Rd−1 via

A\v(w) = {y\v ∈ Rd−1 : y ∈ A and yv = w}.

□ 
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Letting ψd denote the d-dimensional standard Gaussian pdf, we have

E|〈v, τA〉| =
1

vol

∫
y∈A
|y>v|ψd(y)dy

=
1

vol

∫
y∈A
|yv|ψ(yv)ψd−1(y\v)dy

=
1

vol

∫
yv∈Av

|yv|ψ(yv)

(∫
y\v∈A\v(yv)

ψd−1(y\v ∈ A\v(yv))dy\v

)
︸ ︷︷ ︸

f(yv)

dyv

(i)
≤ 1

vol

∫
yv∈Av

|yv|ψ(yv)dyv, (6.39)

where step (i) follows since f(yv) ≤ 1 point-wise. On the other hand, we have

vol =

∫
yv∈Av

ψ(yv)

(∫
y\v∈A\v(yv)

ψd−1dy\v

)
dyv ≤

∫
yv∈Av

ψ(yv)dyv. (6.40)

Combining inequalities (6.39) and (6.40) and letting w = yv, an upper bound on ‖µτ‖ can be
obtained by solving the one-dimensional problem given by

‖µτ‖ ≤ sup
S⊆R

1

vol

∫
w∈S
|w|ψ(w)dw

s.t.
∫
w∈S

ψ(w)dw ≥ vol .

It can be verified that the optimal solution to the problem above is given by choosing the truncation
set S = (∞,−β)∪ [β,∞) for some threshold β > 0. With this choice, the constraint can be written
as

vol ≤
∫
|w|≥β

ψ(w)dw ≤ 2

√
2

π

1

β
e−β

2/2,

where we have used a standard Gaussian tail bound. Simplifying yields the bound

β ≤ 2
√

log(C/ vol).

Furthermore, we have

1

vol

∫
|w|≥β

|w|ψ(w)dw =
C

vol
e−β

2/2

(ii)
.

β3

β2 − 1

≤ c
√

log(1/ vol),
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where step (ii) follows from the bound Pr{Z ≥ z} ≥ ψ(z)
(

1
z
− 1

z3

)
valid for a standard Gaussian

variate Z. Putting together the pieces, we have

‖µτ‖2 ≤ c log(1/ vol).

Proof of claim (6.36b) Let us first show the upper bound. Writing cov(τ) for the covariance
matrix, we have

|||Στ |||op ≤ ||| cov(τ)|||op + ‖µτ‖2

(iii)
≤ |||I|||op + C log(1/ vol),

where step (iii) follows from the fact that cov(τ) � cov(Z), since truncating a Gaussian to a convex
set reduces its variance along all directions [204, 205].

We now proceed to the lower bound. Let PK denote the Gaussian distribution truncated to the
set K. Recall that we denoted the probability that a Gaussian random variable falls in the set K by
vol(K); use the shorthand vol = vol(K). Define the polynomial

pu(x) = 〈x− EX∼PK [X], u〉2;

note that we are interested in a lower bound on infu∈Sd−1 EX∼PK [pu(X)].
For δ > 0, define the set

Sδ : = {x ∈ Rd : pu(x) ≤ δ} ⊆ Rd.

Letting Z denote a d-dimensional standard Gaussian random vector and using the shorthand
α : = EX∼PK [X], we have

Pr{Z ∈ Sδ} = Pr
{
〈Z − α, u〉2 ≤ δ

}
(6.41)

= Pr
{
〈α, u〉 −

√
δ ≤ 〈Z, u〉 ≤ 〈α, u〉+

√
δ
}

(6.42)

=

∫ 〈α, u〉+√δ
〈α, u〉−

√
δ

ψ(x)dx ≤
√

2

π
δ, (6.43)

where in the final step, we have used the fact that ψ(x) ≤ 1/
√

2π for all x ∈ R.

□ 
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Consequently, we have

EX∼PK [pu(X)] =
1

vol
EZ [pu(Z)1 {Z ∈ K}]

≥ 1

vol
EZ [pu(Z)1 {Z ∈ K ∩ Scδ}]

(iv)

≥ 1

vol
EZ [δ1 {Z ∈ K ∩ Scδ}]

=
δ

vol
Pr{Z ∈ K ∩ Scδ}

(v)

≥ δ
vol−

√
2
π
δ

vol
.

Here, step (iv) follows from the definition of the set Sδ, which ensures that pu(x) ≥ δ for all x ∈ Scδ .
Step (v) follows as a consequence of equation (6.43), since

Pr{Z ∈ K ∩ Scδ} = Pr{Z ∈ K} − Pr{Z ∈ Sδ} ≥ vol−
√

2

π
δ.

Finally, choosing δ = c vol2 for a suitably small constant c, we have EX∼PK [pu(X)] ≥ C vol2 for a
fixed u ∈ Sd−1. Since u was chosen arbitrarily, this proves the claim.

Proof of claim (6.36c) Since the random variable ξ is obtained by truncating a Gaussian random
variable to a convex set, it is 1-strongly log-concave. Thus, standard results [206, Theorem 2.15]
show that the random variable ξ̃ is c-sub-Gaussian.

Proof of Lemma 32

For a pair of d+ 1-dimensional vectors (v, v′), denote by

nW (v,v′) = #{i : xi ∈ W (v, v′)} (6.44)

the random variable that counts the number of points that fall within the wedge W (v, v′); recall our
notation Wδ for the set of all wedges with Gaussian volume less than δ. Since each wedge is formed
by the intersection of two hyperplanes, applying Lemmas 37 and 38 in conjunction yields that there
are universal constants (c, c′, C) such that

sup
W∈Wδ

nW ≤ cδn (6.45)

with probability exceeding 1− exp(−c′nδ2), provided n ≥ C
δ2

. In words, the maximum number of
points that fall in any wedge of volume δ is linear in δn with high probability.

□ 

□ 
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It thus suffices to bound, simultaneously, the maximum singular value of every sub-matrix of Ξ
having (at most) cδn rows. Applying [181, Theorem 5.7] yields the bound10

Pr

{
max

S:|S|≤cδn
λmax

(∑
i∈S

ξiξ
>
i

)
≥ c1n

√
δ

}
≤ n−10,

where we have used the lower bound n ≥ cmax{d, log n/δ} on the sample size.
Putting together the pieces, we have that if n ≥ cmax

{
d, logn

δ2

}
, then

sup
W∈Wδ

λmax

( ∑
i:xi∈W

ξiξ
>
i

)
≤ c1n

√
δ

with probability exceeding 1− n−10 − exp(−c′nδ2).

6.7 Proof of Theorem 13
We dedicate the first portion of the proof to a precise definition of the quantity γ.

Let Θ∗ ∈ Rk×d denote a matrix with rows (θ∗j )
T , j = 1, . . . , k and let Σ = Θ∗(Θ∗)> ∈ Rk×k.

We employ the decomposition Θ∗ = A∗(U∗)>, where A∗ ∈ Rk×k is the invertible matrix of
coefficients and U∗ ∈ Rd×k is a matrix of orthonormal columns. Note that for X ∼ N(0, Id), the
vector in Rk with j-th component 〈X, θ∗j 〉+ b∗j is distributed as Z + b∗ where Z ∼ N(0,Σ) and the

vector b∗ ∈ Rk collects the scalars
{
b∗j
}k
j=1

in its entries. For Z ∼ N (0,Σ), let

ρ =
E
[
max(Z + b∗)Z>Σ−11

]√
E [(max(Z + b∗))2] · E [(Z>Σ−11)2]

(6.46)

denote the correlation coefficient between the maximum and a particular linear combination of a
multivariate Gaussian distribution. Variants of such quantities have been studied extensively in the
statistical literature (see, e.g., James [207]). For our purposes, the fact that max(Z + b∗)Z 6= 0 for
any finite b∗, coupled with a full-rank Σ, ensure that ρ 6= 0 for any fixed k. Also define the positive
scalar % : =

√
E[(max(Z + b∗))2], which tracks the average size of our observations. Also recall

the quantity ς defined in the main section.
For each j ∈ [k] consider the zero-mean Gaussian random vector with covariance (1 · e>j −

I)A∗(A∗)>(1 · e>j − I)>. This is effectively a Gaussian that lives in k − 1 dimensions, with density
that we denote by ψ̃j(x1, x2, . . . , xj−1, 0, xj+1, . . . xk) at point (x1, x2, . . . , xj−1, 0, xj+1, . . . xk) (the

10Strictly speaking, [181, Theorem 5.7] applies to Gaussian random matrices, i.e., without the appended column of
ones. By multiplying each row of Ξ with an independent Rademacher RV (see the proof of Lemma 40) to obtain a
sub-Gaussian random matrix with the same singular values, and noting also that the proof technique of [181, Theorem
5.7] relies on chaining and holds for a sub-Gaussian random matrix, one can show that the same result also holds for
the matrix Ξ.

□ 
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density is not defined elsewhere). Truncate this random vector to the region {xi ≥ b∗i − b∗j : i ∈ [k]};
this results in the truncated Gaussian density ψj(x1, x2, . . . , xj−1, 0, xj+1, . . . xk) for each j ∈ [k].

For any x ∈ Rk such that xj = 0, define

F j
i (x) =

∫ ∞
b∗1−b∗j

..

∫ ∞
b∗i−1−b∗j

∫ ∞
b∗i+1−b∗j

..

∫ ∞
b∗k−b

∗
j

ψj(x1, ., xi−1, x, xi+1, ., xk)dxk.dxi+1dxi−1.dx1

(6.47)

to be the i-th marginal density of this truncated Gaussian evaluated at the point x, with the convention
that F j

j (·) = 0 everywhere. Also define the vector F j by setting its i-th entry to (F j)i = F j
i (b∗i −b∗j).

Now let P denote the matrix with entries

Pi,j =

{
(F j)i/

∑
k 6=j(F

j)k if i 6= j

0 otherwise.

Note that the matrix P is the transition matrix of an irreducible, aperiodic Markov chain, with one
eigenvalue equal to 1. Consequently, the matrix I − P is rank k − 1. With this setup in place, let

γ : = min

{
ρ2%2,min

j∈k

(∑
k 6=j

(F j)k

)
λk(Σ) ·

√
λk−1 ((I − P>)(I − P ))

}
(6.48)

denote a positive scalar that will serve as a bound on our eigengap.
Let M1 = E [max(Θ∗X + b∗)X] and M2 = E

[
max(Θ∗X + b∗)(XX> − Id)

]
denote the ex-

pectations of the first and second moment estimators, respectively.
For a random variable W ∼ N (b∗,Σ), we often use the shorthand

{Wj = max} : = {Wj ≥ Wi for all 1 ≤ i ≤ k}.

Finally, collect the probabilities {πj}kj=1 defined in equation (6.9) in a vector π ∈ Rk. We use 1 to
denote the all-ones vector in k dimensions.

We are ready to state our two main lemmas.

Lemma 33. (a) The first moment satisfies

M1 = (Θ∗)>π and 〈M1, (Θ∗)>Σ−11〉 = ρ%
∥∥(Θ∗)>Σ−11

∥∥ .
(b) The second moment satisfies

M2 � 0, M2(Θ∗)>Σ−11 = 0, rank(M2) = k − 1 and

λk−1(M2) ≥ min
j∈k

(∑
k 6=j

(F j)k

)
λk(Σ) ·

√
λk−1 ((I − P>)(I − P )).
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We combine this lemma with a result that shows that the empirical moments concentrate about
their expectations.

Lemma 34. For an absolute constant C, we have

Pr

{∥∥∥M̂1 −M1

∥∥∥2

≥ C1

(
σ2 + ς2

) d log2(nk)

n

}
≤ 5dn−12, and (6.49a)

Pr

{
|||M̂2 −M2|||2op ≥ C

(
σ2 + ς2

) d log3(nk)

n

}
≤ 5dn−12. (6.49b)

Lemma 33 is proved at the end of this section, and Lemma 34 is proved in Appendix 6.9.10. For
now, we take both lemmas as given and proceed to a proof of Theorem 13.

Recall the matrix M̂ = M̂1 ⊗ M̂1 + M̂2 and let M = M1 ⊗M1 + M2. By Lemma 33, the
matrix M is positive semidefinite with k non-zero eigenvalues. In particular, using the shorthand
θ̄ : = (Θ∗)>Σ−11, we have θ̄ ∈ nullspace(M2), and so

θ̄>Mθ̄ = 〈θ̄, M1〉2 = ρ2%2‖θ̄‖2,

where the final inequality follows by part (a) of Lemma 33.
Thus, there is a k-dimensional subspace orthogonal to the nullspace of M (and so the range of

M is k dimensional). For any unit vector v in this subspace, we have

v>Mv ≥ min{ρ2%2, λk−1(M2)}.

Thus, the kth eigenvalue of M satisfies

λk(M) ≥ min

{
ρ2%2,min

j∈k

(∑
k 6=j

(F j)k

)
λk(Σ) ·

√
λk−1 ((I − P>)(I − P ))

}
= γ,

where the equality follows by definition (6.48). By Lemma 34, we have

|||M̂ −M |||2op ≤ 2|||M̂2 −M2|||2op + 2|||M̂1 ⊗ M̂1 −M1 ⊗M1|||2op

≤ 2C
(
σ2 + ς2 log2(nk)

) d log(nk)

n
+ 16

∥∥∥M̂1 −M1

∥∥∥2

‖M1‖2 + 4
∥∥∥M̂1 −M1

∥∥∥4

≤ C ′
(
σ2 + ς2 log2(nk)

) d log(nk)

n
,

where the last two inequalities each hold with probability greater than 1− 2n−10.
We denote the estimated and true eigenspaces by Û and U∗, respectively. Applying [208,

Theorem 2] yields the bound

|||U∗(U∗)> − Û Û>|||2F ≤ C

(
σ2 + ς2

γ2

)
kd log3(nk)

n
,

thereby proving the required result.
We now proceed to a proof of Lemma 33.

□ 
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6.7.1 Proof of Lemma 33
Recall our decomposition Θ∗ = A∗(U∗)>, where U∗ ∈ Rd×k is a matrix of orthonormal columns,
and A∗ ∈ Rk×k is an invertible matrix of coefficients. Since we are always concerned with random
variables of the form Θ∗X with X Gaussian, we may assume without loss of generality by the
rotation invariance of the Gaussian distribution that U∗ = [ed1 e

d
2 . . . e

d
k], where edi denotes the ith

standard basis vector in Rd.
We let Xj

i = (Xi, Xi+1, . . . , Xj) denote a sub-vector of the random vector X , so that by the
above argument, we have Θ∗X

d
= A∗Xk

1 .

Calculating M1: Using the shorthand Z = A∗Xk
1 , we have

M1 = E[max(Θ∗X + b∗)X]

= U∗E[max(A∗Xk
1 + b∗)X]

= U∗(A∗)−1E[max(Z + b∗)Z].

Now using Stein’s lemma11, by a calculation similar to the one performed also in Seigel [209] and
Liu [210], we have

E[max(Z + b∗)Z] = Σπ,

where π ∈ Rk is the vector of probabilities, the j-th of which is given by equation (6.9), and we
have used Σ = A∗(A∗)> = (Θ∗)(Θ∗)> to denote the covariance matrix of Z.

Therefore, we have the first moment

M1 = U∗(A∗)−1A∗(A∗)>π = (Θ∗)>π.

Correlation bound: By computation, we have

〈M1, (Θ∗)>Σ−11〉 = E
[
max(Z + b∗)〈Z, Σ−11〉

] (i)
= ρ ·

√
E [(max(Z + b∗))2] · E [〈Z, Σ−11〉2]

(ii)
= ρ% ·

∥∥(Θ∗)>Σ−11
∥∥ ,

where step (i) follows from the definition (6.46) of the quantity ρ, and step (ii) from explicitly
calculating the expectation and recalling the definition of %.

Positive semidefiniteness of M2: For some u ∈ Rd, let f(X) = max(Θ∗X + b) and gu(X) =
〈u, X〉2. Since gu is an even function, we have E[gu(X)X] = 0. Furthermore, since both f and gu
are convex, applying Lemma 42 (see Appendix 6.9.9) yields the bound

E[f(X)gu(X)] ≥ E[f(X)]E[gu(X)],

11One can also derive M1 = (Θ∗)>π directly applying Stein’s lemma EXf(X) = E∇f(X) to f(x) :=
max(Θ∗X + b∗) so that∇f(x) equals θ∗j whenever x belongs to the region when j is maximized.
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so that substituting yields the bound

u>E[max(Θ∗X + b)XX>]u ≥ u>E[max(Θ∗X + b)I]u.

Since this holds for all u ∈ Rd, we have shown that the matrix E[max(Θ∗X + b)(XX> − I)] is
positive semidefinite.

Calculating M2: We now use Stein’s lemma to compute an explicit expression for the moment
M2. By the preceding substitution, we have

M2 = E

[
max(A∗Xk

1 + b∗)

[
Xk

1 (Xk
1 )> − Ik Xk

1 (Xd
k+1)>

Xd
k+1(Xk

1 )> Xd
k+1(Xd

k+1)> − Id−k

]]

=

[
E
[
max(A∗Xk

1 + b∗)(Xk
1 (Xk

1 )> − Ik)
]

0
0 0

]
Once again using the substitution Z = A∗Xk

1 and Σ = A∗(A∗)>, we have

M2 = U∗(A∗)−1E
[
max(Z + b∗)(ZZ> − Σ)

]
(A∗)−>(U∗)>,

and applying Stein’s lemma yields

E
[
max(Z + b∗)(ZZ> − Σ)

]
= ΣΠ> = ΠΣ,

where Π ∈ Rk×k denotes a matrix with entry i, j given by Πi,j = E[Zi1
{
Zj + b∗j = max

}
], and

the final equality follows by symmetry of the matrix.
Simplifying further, we have

M2 = U∗(A∗)−1ΠA∗(U∗)>.

Nullspace of M2: Notice that Π1 = E[Z] = 0, so that

M2(Θ∗)>Σ−11 = U∗(A∗)−1ΠA∗(U∗)>U∗(A∗)>Σ−11 = 0.

Rank of M2 and bound on λk−1(M2): By the previous claim, we have rank(M2) ≤ k − 1.
Furthermore, the matrix M2 has d− k eigenvalues equal to zero, and the other k of its eigenvalues
equal to those of Π, all of which are positive (by the PSD property of M2), and at least one of which
is zero. Thus, it suffices to work with the eigenvalues of Π; in particular, a lower bound on λk−1(Π)
directly implies a lower bound on λk−1(M2).

Let us first show that λk−1(Π) > 0. Since we know that a zero-eigenvector of Π is the all-ones
vector 1, it suffices to show that x>Πx 6= 0 when 〈x, 1〉 = 0. We use the shorthand x ⊥ 1 to denote
any such vector.
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We now explicitly evaluate the entries of the matrix Π. We denote the jth column of this matrix
by Πj . We have

Πj = E[Z1
{
Zj + b∗j = max

}
]

= E[1 · Zj1
{
Zj + b∗j = max

}
]− E[(1 · Zj − Z)1

{
Zj + b∗j = max

}
]

= 1 · E[Zj1
{
Zj + b∗j = max

}
]− E[(1 · Zj − Z)1

{
Zj + b∗j = max

}
]. (6.50)

For any x ⊥ 1, we have x>1E[Z1 {Z + b∗ = max}]>1 = 0, so that in order to show that x>Πx 6= 0,
it suffices to consider just the second term in the expression (6.50).

In order to focus on this term, consider the matrix Φ with column j given by

Φj = E[(1 · Zj − Z)1
{
Zj − Z ≥ b∗ − b∗j

}
].

where the indicator random variable above is computed element-wise. We are interested in evaluating
the eigenvalues of the matrix −Φ.

The quantity Φj can be viewed as the first moment of a (lower) truncated, multivariate Gaussian
with (original) covariance matrix

κj = (1 · e>j − I)A∗(A∗)>(1 · e>j − I)>.

Recalling the column vectors F j defined (in equation (6.47)) for each j ∈ [k] and applying [211,
(11)] (see also Tallis [182] for a similar classical result), we may explicitly evaluate the vector Φj , as

Φj = κjF
j

(iii)
= (1 · e>j − I)A∗(A∗)>Gj

where in step (iii), we have let Gj denote a vector in Rk with entry i given by

(Gj)i =

{
−(F j)i if j 6= i∑

k 6=j(F
j)k otherwise.

Letting G ∈ Rk×k denote the matrix with Gj as its jth column, and for x ⊥ 1, we have

x>(−Φ)x = x>ΣGx,

since once again, for each x ⊥ 1, we have x>1 · e>j A∗(A∗)>(1 · e>j − I)>x = 0.
Now consider the matrix ΣG. In order to show the claimed bound, it suffices to show that

x>ΣGx 6= 0 if x ⊥ 1. We show this by combining two claims:
Claim 1: The nullspace of G is one-dimensional.
Claim 2: Both the left and right eigenvectors of ΣG that correspond to this nullspace are not
orthogonal to the 1 vector.

We show both claims concurrently. The nullspace ofG is clearly non-trivial, since 1>G = 0. Let
us first show, by contradiction, that the left eigenvector corresponding to this nullspace dimension is
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not orthogonal to the all-ones vector. Toward that x` denote the aforementioned left eigenvector
which also satisfies 〈x`, 1〉 = 0. By virtue of being a left eigenvector, x` satisfies Σx` = 1, or
in other words, x` = Σ−11. Since x` ⊥ 1, we have 1>Σ1 = 0, but this contradicts the positive
definiteness of Σ.

It remains to establish that the null-space of G is in fact only one-dimensional, and that its right
eigenvector is not orthogonal to the all-ones vector. Notice that we may write the matrix as

G = (I − P>) diag(G),

where we recall that the matrix P is defined with entries

Pi,j =

{
(F j)i/

∑
k 6=j(F

j)k if i 6= j

0 otherwise.

Since all of the entries of P are positive and sum to 1 along the rows, the matrix P matrix can
be viewed as the transition matrix of a Markov chain. Furthermore, since this Markov chain
communicates, it is irreducible and aperiodic, with only one eigenvalue equal to 1. Thus, the matrix
I − P> is rank k− 1, thereby establishing that the nullspace of G is one-dimensional. Furthermore,
the right eigenvector xr of G is a non-negative vector by the Perron-Frobenius theorem, so that it
cannot satisfy 〈xr, 1〉 = 0.

We have thus established both claims, which together show that λk−1(M2) 6= 0. Further noting
that the matrix M2 is positive semi-definite, we have

λk−1(M2) ≥ min
j∈[k]

Gj,j · λmin(Σ)
√
λk−1[(I − P>)(I − P )],

and this completes the proof of the claim, and consequently, the lemma.

6.8 Proof of Theorem 14
Recall the matrix V̂ formed by appending a standard basis vector to Û . First, we show that there is
a point among the randomly chosen initializations that is sufficiently close to the true parameters.
Toward that end, let c0 : = r + Bmax and define β`j = V̂ ν`j for each j ∈ [k] and ` ∈ [M ]. Let

`# : = argmin
`∈[M ]

{
max
j∈[k]
‖c0β

`
j − β∗j ‖

}
,

and define the event

E1(M, r) : =

{
max
j∈[k]
‖c0β

`#

j − β∗j ‖ ≥ r + Bmax|||Û Û> − U∗(U∗)>|||op

}
;

in words E1(M, r) is the event that none of the randomly initialized points (when scaled by a fixed
constant c0) is close to the true parameters. The following lemma bounds the probability of such an
event provided M is sufficiently large.

□ 
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Lemma 35. If M ≥
(
1 + Bmax

r

)k2
log(1/δ), then Pr {E1(M, r)} ≤ δ.

Taking the lemma as given, let us now proceed to the proof of the theorem. Define the shorthand

P(β1, . . . , βk) : =
2

n

n∑
i=n/2+1

(
max
j∈[k]
〈ξi, βj〉 −max

j∈[k]
〈ξi, β∗j 〉

)2

for each set of parameters β1, . . . , βk ∈ Rd+1.
For each ` ∈ [M ], let

c` : = argmin
c≥0

2

n

n∑
i=n/2+1

(
yi − cmax

j∈[k]
〈ξi, β`j〉

)2

,

and recall that `∗ is the index returned by the algorithm. Also note that trivially, we have c`∗ > 0
with probability tending to 1 exponentially in n, so that this pathological case in which the initial
partition is random can be ignored.

Due to sample splitting, the parameters β`j are independent of the noise sequence {εi}ni=n/2+1.
Thus, applying Lemma 44 from Appendix 6.9.13 yields the bound

Pr

P(c`∗β
`∗

1 , . . . , c`∗β
`∗

k ) ≥ c1

min
c≥0
`∈[M ]

P(cβ`1, . . . , cβ
`
k) +

σ2t(
√

logM + c1)

n


 ≤ e−c2nt(

√
logM+c1),

valid for all t ≥
√

logM + c1 and suitable universal constants c1 and c2. Setting t =
√

logM + c1

and on this event, we have

P(c`∗β
`∗

1 , . . . , c`∗β
`∗

k ) ≤ c1P(c0β
`#

1 , . . . , c0β
`#

k ) + c1
σ2 logM

n

with probability greater than 1− e−c2n.

To complete the proof, let C(πmin, k) : = c2

(
k

πmin

)3

for a suitable constant c2 and apply

Lemma 43 twice (note that here we use the assumption n ≥ Cd k3

π3
min

log2(k/πmin)) in order to obtain∑
j∈[k]

min
j′∈[k]
‖β∗j − c`∗β`

∗

j′ ‖2 ≤ C(πmin, k) · P(c`∗β
`∗

1 , . . . , β
`∗

k )

≤ c1 · C(πmin, k) ·
{
P(c0β

`#

1 , . . . , c0β
`#

k ) +
σ2 logM

n

}
≤ c1 · C(πmin, k) ·

{
2

k∑
j=1

‖c0β
`#

j − β∗j ‖2 +
σ2 logM

n

}

≤ c1 · C(πmin, k) ·
{

2kmax
j∈[k]
‖c0β

`#

j − β∗j ‖2 +
σ2 logM

n

}
(ii)
≤ c1 · C(πmin, k)

{
4k
(
r2 + B2

max|||Û Û> − U∗(U∗)>|||2op

)
+
σ2 logM

n

}
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on an event of suitably high probability, where step (ii) follows from Lemma 35 and on the
event Ec1(M, r). Note that implicitly, we have also used a union bound over all M choices of our
parameters, which leads to the overall probability bound of 1− c1kM exp

(
−c2

π4
min

k4 log2(k/πmin)

)
.

Finally, note that provided the RHS above is less than ∆2/4, each minimum on the LHS is
attained for a unique index j′. This condition is ensured by the sample size assumption of the
theorem; thus, we have

min
c>0

dist

({
cβ

(0)
j

}k
j=1

,
{
β∗j
}k
j=1

)
≤ c1 · C(πmin, k)

×
{

4k
(
r2 + B2

max|||Û Û> − U∗(U∗)>|||2op

)
+
σ2 logM

n

}
.

Combining the various probability bounds then completes the proof.

6.8.1 Proof of Lemma 35
Recall that U∗ is a matrix of orthonormal columns spanning the k-dimensional subspace spanned
by the vectors {θ∗1, . . . , θ∗k}. Define the matrix

V ∗ =

[
U∗ 0
0 1

]
;

for each j ∈ [k], we have β∗j = V ∗ν∗j for some vector ν∗j ∈ Rk+1. Also define the rotation matrix

O =

[
Û>U∗ 0

0 1

]
,

so that V̂ O − V ∗ =

[
Û Û>U∗ − U∗ 0

0 0

]
and we have ‖V̂ O − V ∗‖ = ‖Û Û> − U∗(U∗)>‖ for any

unitarily invariant norm ‖ · ‖.
Now for each j ∈ [k] and ` ∈ [M ], applying the triangle inequality yields

‖c0β
`
j − β∗j ‖ ≤ ‖c0V̂ Oν

`
j − V̂ Oν∗j ‖+ ‖V̂ Oν∗j − V ∗ν∗j ‖

≤ ‖c0ν
`
j − ν∗j ‖+ ‖ν∗j ‖|||V̂ O − V ∗|||op

≤ ‖c0ν
`
j − ν∗j ‖+ Bmax|||Û Û> − U∗(U∗)>|||op.

For each pair (`, j), define the event

E `j (r) : =
{
‖c0ν

`
j − ν`j‖ ≤ r

}
.

We claim that if M ≥
(
1 + Bmax

r

)k2
log(1/δ), we have

Pr
{
∪`∈[M ] ∩j∈[k] E `j (r)

}
≥ 1− δ. (6.51)

□ 
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Indeed, such a claim suffices, since it implies that

min
`∈[M ]

max
j∈[k]
‖c0β

`
j − β∗j ‖ ≤ r + Bmax|||Û Û> − U∗(U∗)>|||op

with probability exceeding 1− δ, thereby proving the theorem. It remains to establish claim (6.51).
Denote by p the probability with which for a fixed pair (`, j), we have ‖c0ν

`
j − ν`j‖ ≤ r. This

is the ratio of the volume of the `2-ball of radius r and the `2-ball of radius c0, and so we have

p =
(

r
r+Bmax

)k
. Thus, we have

Pr
{
∩`∈[M ]

(
∩j∈[k]E `j (r)

)c} ≤ (1− pk)M

≤ e−p
kM

(i)
≤ δ,

where step (i) holds provided M ≥ 1
pk

log(1/δ). Putting together the pieces completes the proof.

6.9 Technical Lemmas and Background

6.9.1 Fundamental limits
In this section, we present two lower bounds: one on the minimax risk of parameter estimation, and
another on the risk of the least squares estimator with side-information.

6.9.2 Minimax lower bounds
Recall our notation Θ∗ for the matrix whose columns consist of the parameters θ∗1, . . . , θ

∗
k. Assume

that the intercepts b∗1, . . . , b
∗
k are identically zero, so that ξi = xi and Ξ = X . For a fixed matrix X ,

consider the observation model

y = max (XΘ∗) + ε, (6.52)

where y ∈ Rn, the noise ε ∼ N (0, σ2In) is chosen independently of X , and the max function is
computed row-wise.

Proposition 16. There is an absolute constant C such that the minimax risk of estimation satisfies

inf
Θ̂

sup
Θ∗∈Rk×d

E
[

1

n
|||X(Θ̂−Θ∗)|||2F

]
≥ C

σ2kd

n
.

Here, the expectation is taken over the noise ε, and infimum is over all measurable functions of
the observations (X, y). Indeed, when X is a random Gaussian matrix, it is well conditioned and

□ 
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has singular values of the order
√
n, so that this bound immediately yields

inf
Θ̂

sup
Θ∗∈Rk×d

E
[

1

n
|||Θ̂−Θ∗|||2F

]
≥ C

σ2kd

n
.

Let us now provide a proof of the proposition.

Proof. The proof is based on a standard application of Fano’s inequality (see, e.g., Wainwright [13,
Chapter 15] and Tsybakov [212, Chapter 2]). For a tolerance level δ > 0 to be chosen, we choose
the local set

F =

{
XΘ ∈ Rn×k

∣∣∣∣ |||XΘ>|||F ≤ 4δ
√
kn

}
and let

{
XΘ1, . . . , XΘM

}
be a 2δ

√
kn-packing of the set in the Frobenius norm. This can be

achieved by packing the j-th column Qj :=
{
Xθj | ‖Xθj‖2 ≤ 4δ

√
n
}

at level 2δ
√
n in `2 norm

for all j ∈ [k]. Standard results yield the bound logM ≥ C1 · kd log 2.
For each i 6= j, we have

2δ
√
k ≤ |||X(Θi −Θj)|||F√

n
≤ 8δ

√
k. (6.53)

Let Pj = N (max(X(Θj)), σ2In) denote the distribution of the observation vector y when the true
parameter is Θj . We thus obtain

DKL(Pj ‖ Pi) =
1

2σ2

∥∥max(X(Θj))−max(X(Θi))
∥∥2

2
≤ 1

2σ2
|||X(Θj −Θi)|||2F,

where the inequality follows since the max function is 1-Lipschitz in `2 norm. Putting together the
pieces yields

DKL(Pj ‖ Pi) ≤
32kδ2n

σ2
,

so that the condition

1
M2

∑
i,j DKL(PΘj ‖ PΘk) + log 2

logM
≤ 1

2

is satisfied with the choice δ2 = C σ2d
n

. Finally, applying Fano’s inequality (see, e.g., [13, Proposition
15.2]) yields the minimax lower bound

inf
Θ̂

sup
Θ∗

E
[

1

n
|||X(Θ̂−Θ∗)|||2F

]
≥ C

σ2kd

n
. (6.54)

□ 
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6.9.3 Performance of unconstrained least squares with side-information
In this section, we perform an explicit computation when k = 3 and d = 2 to illustrate the cubic
πmin dependence of the error incurred by the unconstrained least squares estimator, even when
provided access to the true partition {Sj(β∗1 , . . . , β∗3)}3

j=1.
We begin by defining our unknown parameters. For a scalar α ∈ (0, π/4), let

θ∗1 = sin(α) · e1, θ∗2 = cos(α) · e2, and θ∗3 = − cos(α) · e2,

and set b∗j = 0 for j = 1, 2, 3.
Now an explicit computation yields that the cone on which θ∗1 attains the maximum is given by

C1 : =

{
x ∈ R2 : 〈x, θ∗1〉 ≥ max

j∈[k]
〈x, θ∗j 〉

}
=
{
x ∈ R2 : x1 ≥ 0, |x2| ≤ x1 tan(α)

}
.

Now consider a Gaussian random vector in R2 truncated to that cone. In particular, consider a
two-dimensional random variable W with density ψ(x)1 {x ∈ C1}/ vol(C1), where ψ is the two-
dimensional standard Gaussian density and vol(S) denotes the Gaussian volume of a set S. Note
that we have vol(C1) = α/π by construction.

Let us now compute the second order statistics of W , using polar coordinates with R2 denoting
a χ2

2 random variable. The individual second moments take the form

E[W 2
1 ] =

π

α
E[R2]

(
1

2π

∫ α

−α
cos2 φdφ

)
= 1,

and

E[W 2
2 ] =

π

α
E[R2]

(
1

2π

∫ α

−α
sin2 φdφ

)
=

1

α
(α− sin(2α)/2) ∼ α2.

On the other hand, the cross terms are given by

E[W1W2] =
π

α
E[R2]

(
1

2π

∫ α

−α
sin(φ) cos(φ)dφ

)
= 0.

Thus, it can be verified that for all α ∈ [0, π/4], the second moment matrix of W has a tuple of
singular values (1, cα2) for an absolute constant c.

Let us now use this calculation to reason about the least squares estimator. Drawing n samples
from the Gaussian distribution on R2, we expect n1 ∼ α

π
n of them to fall in the set C1 with high

probability. Collect these samples as rows of a matrix X1. When n is large enough, i.e., on the
order of α−3, standard bounds (as in Section 6.6.1) can be applied to explicitly evaluate the singular
values of the matrix 1

n1
X>1 X1. In particular, we have

λ1

(
1

n1

X>1 X1

)
= c′ and λ2

(
1

n1

X>1 X1

)
= cα2.
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We now provide the n1 × 2 matrix X1 as side information to a procedure whose goal is to estimate
the unknown parameters. Clearly, given this matrix, a natural procedure to run in order to estimate
θ∗1 is the (unconstrained) least squares estimator on these samples, which we denote by θ̂1. As is
well known, the rate obtained (in the fixed design setting) by this estimator with σ-sub-Gaussian
noise is given by

E
[
‖θ̂1 − θ∗1‖2

]
= σ2 tr(X>1 X1)−1

= σ2 1

n1

(
cα−2 + c′

)
∼ σ2 1

α3n
,

where the last two relations hold with exponentially high probability in n. We have thus shown that
the unconstrained least squares estimator (even when provided with additional side information)
attains an error having cubic dependence on α ∼ πmin. While this does not constitute an information
theoretic lower bound, our calculation provides some evidence for the fact that, at least when viewed
in isolation, the dependence of our statistical error bound (6.15) on πmin is optimal for Gaussian
covariates.

6.9.4 Background and technical lemmas used in the proof of Theorem 12
In this section, we collect statements and proofs of some technical lemmas used in the proofs of our
results concerning the AM algorithm.

6.9.5 Bounds on the “volumes” of wedges in Rd

For a pair of scalars (w,w′) and d-dimensional vectors (u, u′), recall that we define the wedge
formed by the d+ 1-dimensional vectors v = (u, w) and v′ = (u′, w′) as the region

W (v, v′) = {x ∈ Rd : (〈x, u〉+ w) · (〈x, u′〉+ w′) ≤ 0}.

Note that the wedge is a purely geometric object.
For any set C ⊆ Rd, let

vol(C) = Pr
X∼N (0,Id)

{X ∈ C}

denote the volume of the set under the measure corresponding to the covariate distribution.
We now bound the volume of a wedge for the Gaussian distribution.

Lemma 36. Suppose that for a pair of scalars (w,w′), d-dimensional vectors (u, u′), and v =

(u, w) and v′ = (u′, w′), we have ‖v−v
′‖

‖u‖ < 1/2. Then, there is a positive constant C such that

vol(W (v, v′)) ≤ C
‖v − v′‖
‖u‖

log1/2

(
2‖u‖
‖v − v′‖

)
.
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Proof of Lemma 36

Using the notation ξ = (x, 1) ∈ Rd+1 to denote the appended covariate, we have

vol(W (v, v′)) = Pr {〈ξ, v〉 · 〈ξ, v′〉 ≤ 0} ,

where the probability is computed with respect to Gaussian measure.
In order to prove a bound on this probability, we begin by bounding the associated indicator

random variable as

1 {〈ξ, v〉 · 〈ξ, v′〉 ≤ 0} ≤ 1
{
〈ξ, v′ − v〉2 ≥ 〈ξ, v〉2

}
≤ 1

{
〈ξ, v′ − v〉2 ≥ t

}
+ 1

{
〈ξ, v〉2 ≤ t

}
, (6.55)

where inequality (6.55) holds for all t ≥ 0. In order to bound the expectation of the second term,
we write

Pr
{
〈ξ, v〉2 ≤ t

}
= Pr

{
‖u‖2 χ2

nc ≤ t
}

(i)
≤
(

et

‖u‖2

)1/2

where χ2
nc is a non-central chi-square random variable centered at w

‖u‖ , and step (i) follows from
standard χ2 tail bounds (see Lemma 41).

It remains to control the expectation of the first term on the RHS of inequality (6.55). We have

Pr
{
〈ξ, v′ − v〉2 ≥ t

}
≤ Pr

{
2〈x, u′ − u〉2 + 2(w′ − w)2 ≥ t

}
≤ Pr

{
‖u− u′‖2

χ2 ≥ t

2
− ‖v − v′‖2

}
.

Now, invoking a standard sub-exponential tail bound on the upper tail of a χ2 random variable
yields

Pr
{
〈ξ, v′ − v〉2 ≥ t

}
≤ c1 exp

(
− c2

‖u− u′‖2

{
t

2
− ‖v − v′‖2

})
≤ c1 exp

(
− c2

‖v − v′‖2

{
t

2
− ‖v − v′‖2

})
.

Putting all the pieces together, we obtain

vol(W (v, v′)) ≤ c1 exp

(
− c2

‖v − v′‖2

{
t

2
− ‖v − v′‖2

})
+

(
et

‖u‖2

)1/2

.

Substituting t = 2c ‖v − v′‖2 log(2‖u‖/‖v − v′‖), which is a valid choice provided ‖v−v
′‖

‖u‖ < 1/2,
yields the desired result. □ 



CHAPTER 6. MAX AFFINE REGRESSION WITH GAUSSIAN DESIGN 193

6.9.6 Growth Functions and Uniform Empirical Concentration
We now briefly introduce growth functions and uniform laws derived from them, and refer the
interested reader to Mohri et al. [213] for a more in-depth exposition on these topics.

We define growth functions in the general multi-class setting [189]. Let X denote a set, and let
F denote a family of functions mapping X 7→ {0, 1, . . . , k− 1}. The growth function ΠF : N→ R
of F is defined via

ΠF(n) := max
x1,...,xn∈X

abs {{f(x1), f(x2), . . . , f(xn)} : f ∈ F}.

In words, it is the cardinality of all possible labelings of n points in the set X by functions in the
family F .

A widely studied special case arises in the case k = 2, with the class of binary functions. In
this case, a natural function class F is formed by defining C to be a family of subsets of X , and
identifying each set C ∈ C with its indicator function fC : = 1C : X → {0, 1}. In this case, define
FC = {fC : C ∈ C}. A bound on the growth function for such binary function provides following
guarantee for the uniform convergence for the empirical measures of sets belonging to C.

Lemma 37 (Theorem 2 in [214]). Let C be a family of subsets of a set X . Let µ be a probability
measure on X , and let µ̂m := 1

m

∑m
i=1 δXi be the empirical measure obtained from m independent

copies of a random variable X with distribution µ. For every u such that m ≥ 2/u2, we have

Pr

{
sup
C∈C

abs µ̂m(C)− σ(C) ≥ u

}
≤ 4ΠFC(2m) exp(−mu2/16). (6.56)

We conclude this section by collecting some results on the growth functions of various function
classes. For our development, it will be specialized to the case X = Rd.

Define the class of binary functions FH as the set of all functions of the form

fθ,b(x) : =
sgn(〈x, θ〉+ b) + 1

2
;

specifically, let FH : =
{
fθ,b : θ ∈ Rd, b ∈ R

}
. In particular, these are all functions that can be

formed by a d-dimensional hyperplane.
Using the shorthand Bk

1 = {B1, . . . , Bk}, define the binary function

gθk1 ,bk1 (x) : =
k∏
i=1

fθi,bi(x),

and the binary function class corresponding to the intersection of k hyperplanes

GHk : =
{
gθk1 ,bk1 : θ1, . . . , θk ∈ Rd , b1, . . . , bk ∈ R

}
.
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Finally, we are interested in the argmax function over hyperplanes. Here, define the function

mθk1 ,b
k
1
(x) : = argmax

j∈[k]

(〈θj, x〉+ bj)− 1,

mapping Rd 7→ {0, . . . , k − 1}. The function class that collects all such functions is given by

Mk : =
{
mθk1 ,b

k
1

: θ1, . . . , θk ∈ Rd , b1, . . . , bk ∈ R
}
.

The following results bound the growth functions of each of these function classes. We first
consider the function classes FH and GHk , for which bounds on the VC dimension directly yield
bounds on the growth function.

Lemma 38 (Sauer-Shelah (e.g. Section 3 of Mohri et al. [213])). We have

ΠFH(n) ≤
(

en

d+ 1

)d+1

, and (6.57)

ΠGHk (n) ≤
(

en

d+ 1

)k(d+1)

. (6.58)

The second bound can be improved (see, e.g. [215]), but we state the version obtained by a
trivial composition of individual halfspaces.

The following bound on the growth function of the classMk is also known.

Lemma 39 (Theorem 3.1 of Daniely et al. [189]). For an absolute constant C, we have

ΠMk
(n) ≤

(
en

Ck(d+ 1) log(kd)

)Ck(d+1) log(kd)

.

6.9.7 Singular value bound
We now state and prove a technical lemma that bound the maximum singular value of a matrix
whose rows are drawn from a sub-Gaussian distribution.

Lemma 40. Suppose that the covariates are drawn i.i.d. from a η-sub-Gaussian distribution. Then
for a fixed subset S ∈ [n] of size ` and each t ≥ 0, we have

Pr
{
λmax

(
Ξ>SΞS

)
≥ `+ η̃2(

√
`d+ d+ `t)

}
≤ 2e−`min{t,t2},

where η̃ = max {η, 1}.
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Proof of Lemma 40

Let {zi}`i=1 denote i.i.d. Rademacher variables, and collect these in an `-dimensional vector z. Let
D = diag(z) denote a diagonal matrix, and note that by unitary invariance of the singular values,
the singular values of the matrix Ξ̃S = DΞS are the same as those of ΞS .

By construction, the matrix Ξ̃S has i.i.d. rows, and the i-th row is given by zi(xi, 1). For a d+ 1

dimensional vector λ̃ = (λ, w) with λ ∈ Rd and w ∈ R, we have

E
[
exp(〈λ̃, zi(xi, 1)〉)

]
=
ew

2
· E [exp(〈λ, xi〉)] +

e−w

2
· E [exp(−〈λ, xi〉)]

= exp(‖λ‖2η2/2) · 1

2

(
ew + e−w

)
≤ exp(‖λ‖2η2/2) · exp(w2/2) ≤ exp(‖λ̃‖2η̃2/2).

where we have used the fact that xi is zero-mean and η sub-Gaussian.
Since the rows of Ξ̃S are i.i.d., zero-mean, and η̃-sub-Gaussian, applying [13, Theorem 6.2]

immediately yields the lemma.

6.9.8 Anti-concentration of χ2 random variable
The following lemma shows the anti-concentration of the central and non-central χ2 random
variable.

Lemma 41. Let Z` and Z ′` denote central and non-central χ2 random variables with ` degrees of
freedom, respectively. Then for all p ∈ [0, `], we have

Pr{Z ′` ≤ p} ≤ Pr{Z` ≤ p} ≤
(p
`

exp
(

1− p

`

))`/2
= exp

(
− `

2

[
log

`

p
+
p

`
− 1

])
(6.59)

Proof of Lemma 41

The fact that Z ′`
st.

≤ Z` follows from standard results that guarantee that central χ2 random variables
stochastically dominate their non-central counterparts.

The tail bound is a simple consequence of the Chernoff bound. In particular, we have for all
λ > 0 that

Pr{Z` ≤ p} = Pr{exp(−λZ`) ≥ exp(−λp)}
≤ exp(λp)E [exp(−λZ`)]

= exp(λp)(1 + 2λ)−
`
2 . (6.60)

where in the last step, we have used E [exp(−λZ`)] = (1 + 2λ)−
`
2 , which is valid for all λ > −1/2.

Minimizing the last expression over λ > 0 then yields the choice λ∗ = 1
2

(
`
p
− 1
)

, which is greater
than 0 for all 0 ≤ p ≤ `. Substituting this choice back into equation (6.60) proves the lemma.

□ 

□ 
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6.9.9 Background and technical lemmas used in the proof of Theorem 13
We begin by stating a result of Harge [216, Theorem 1.2] (see also Hu [217]) that guarantees that
convex functions of a Gaussian random vector are positively correlated. We state it below in the
notation of the current paper.

Lemma 42 ([216]). Let f and g be two convex functions on Rd, and let X be a standard d-
dimensional Gaussian vector. Then

E[f(X)g(X)] ≥ (1 + 〈m(g), m(f)〉)E[f(X)]E[g(X)], (6.61)

where for any d-variate function h, we have m(h) = E[Xh(X)]
E[h(X)]

.

We also prove Lemma 34, which was used in the proof of Theorem 13.

6.9.10 Proof of Lemma 34
We prove each bound separately. First, by the rotation invariance of the Gaussian distribution, we
may assume that U∗ = [ed1 . . . edk], so that the max is computed as a function of the k coordinates
X1, . . . Xk.

We also define some events that we make use of repeatedly in the proofs. For each i ∈ [n],
define the events

Ei = {|xi,j| ≤ 5
√

log(2nk) for all 1 ≤ j ≤ k}, and

Fi = {|εi| ≤ 5σ
√

log(2n)}.

Note that by standard sub-Gaussian tail bounds, we have Pr{Eci } ≤ 2n−12 and Pr{F ci } ≤ 2n−12 for
each i ∈ [n]. For notational convenience, define for each i the modified covariate zi = xi · 1 {Ei}.

We have

|max(Θ∗zi + b∗)| ≤ C max
j∈[k]
‖θ∗j‖1

√
log(nk) + |b∗j | ≤

(
C
√

log(nk)
)
ς

almost surely, where in the second bound, we have used the shorthand ς = maxj
(
‖θ∗j‖1 + ‖b∗j‖1

)
as defined in equation (6.18). With this setup in place, we are now ready to prove both deviation
bounds.

Proof of bound (6.49a)

Let us first bound the deviation of the first moment. We work with the decomposition

M̂1 −M1 =
2

n

n/2∑
i=1

max(Θ∗xi + b∗)xi − E[max(Θ∗X + b∗)X]︸ ︷︷ ︸
T 1
i

+
2

n

n/2∑
i=1

εixi︸︷︷︸
T 2
i

.
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By triangle inequality, it suffices to bound the norms of each of the two sums separately. We now
use the further decomposition

T 1
i = max(Θ∗xi + b∗)xi −max(Θ∗zi + b∗)zi︸ ︷︷ ︸

Pi

+ max(Θ∗zi + b∗)zi − E[max(Θ∗zi + b∗)zi]︸ ︷︷ ︸
Qi

+ E[max(Θ∗zi + b∗)zi]− E[max(Θ∗xi + b∗)xi]︸ ︷︷ ︸
Ri

.

Since zi = xi with probability greater than 1− 2n−12, the term Pi = 0 on this event.
Also, for each fixed j ∈ [k], applying the Hoeffding inequality yields the bound

Pr


∣∣∣∣∣∣ 2n

n/2∑
i=1

Qi,j

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

{
− nt2

8C2ς2(log(nk))2

}
.

On the other hand, for j ∈ [d] \ [k], we have∣∣∣∣∣∣ 2n
n/2∑
i=1

Qi,j

∣∣∣∣∣∣ ≤ ς
2

n

n/2∑
i=1

zi,j

= ς

∣∣∣∣∣∣ 2n
n/2∑
i=1

xi,j

∣∣∣∣∣∣ .
Standard Gaussian tail bounds then yield

Pr


∣∣∣∣∣∣ 2n

n/2∑
i=1

Qi,j

∣∣∣∣∣∣ ≥ ςt
√

log(nk)

 ≤ 2 exp

{
−nt

2

8

}

for each t ≥ 0. Putting together the pieces with a union bound and choosing constants appropriately,
we then have

Pr


∥∥∥∥∥∥ 2

n

n/2∑
i=1

Qi

∥∥∥∥∥∥
2

≥ 1

n
· Ckς2(log(nk))2 +

1

n
· C ′(d− k)ς2 log(nk)

 ≤ 2dn−12.

It remains to handle the final terms {Ri}ni=1. Note that when j /∈ [k], we have Ri,j = 0. It
therefore suffices to bound the various Ri,j terms when j ∈ [k]. We have

|Ri,j| = |E[max(Θ∗zi + b∗)zi,j]− E[max(Θ∗xi + b∗)xi,j1 {Ei}]− E[max(Θ∗xi + b∗)xi,j1 {Eci }]|
= |E[max(Θ∗xi + b∗)xi,j1 {Eci }]|
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Expanding this further, we have

|Ri,j| ≤ E[max
`∈[k]

(|〈θ∗` , xi〉|+ |b∗` |)|xi,j|1 {Eci }]

≤ E [|xi,j|‖xi‖∞(‖Θ∗‖1,∞ + ‖b∗‖∞)1 {Eci }]
= ςE [|xi,j|‖xi‖∞1 {Eci }]

≤ ς
k∑
`=1

E [|xi,j||xi,`|1 {Eci }] .

Note that for a pair (X1, X2) of i.i.d. random variables, Jensen’s inequality yields the bounds

E[|X1X2|1 {X1, X2 ≥ λ}] ≤ E[X2
11 {|X1| ≥ λ}] for all λ ≥ 0, and

E[|X1|1 {|X1| ≥ λ}] ≤ E[X2
11 {|X1| ≥ λ}] for all λ ≥ 1.

Furthermore, if X is a standard Gaussian random variable, then a simple calculation (see also
Burkardt [218]) yields the bound

E[X2 | |X| ≥ λ] ≤ 1

2
√

2π
λe−λ

2/2, for all λ ≥
√

2.

Putting together the pieces with with λ = 5
√

log(2nk), we have

|Ri,j|2 ≤ Ck2ς2 log(nk)(nk)−24,

and summing over j ∈ [k] yields the bound∥∥∥∥∥∥ 2

n

n/2∑
i=1

Ri

∥∥∥∥∥∥
2

≤ Ck2ς2 log(nk)(nk)−24.

Finally, putting together the pieces with a union bound yields the desired bound on the random
variable

∥∥∥ 2
n

∑n/2
i=1 T

1
i

∥∥∥.
The second term can be bounded more easily; in particular, on the intersection of the events

{Fi}ni=1, we have∥∥∥∥∥∥ 2

n

n/2∑
i=1

T 2
i

∥∥∥∥∥∥
2

≤ Cσ2 log n

∥∥∥∥∥∥ 2

n

n/2∑
i=1

xi

∥∥∥∥∥∥
2

≤ Cσ2 (d+ log n) log n

n
,

where the final bound holds with probability greater than 1− cn−10. Finally, putting the bounds
together yields the result.
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Proof of bound (6.49b)

Once again, we decompose the required term as

M̂2 −M2 =
2

n

n/2∑
i=1

max(Θ∗xi + b∗)
(
xix
>
i − Id

)︸ ︷︷ ︸
τ1i

+
2

n

n/2∑
i=1

εi
(
xix
>
i − Id

)︸ ︷︷ ︸
τ2i

.

We use the further decomposition

τ 1
i = max(Θ∗xi + b∗)

(
xix
>
i − Id

)
−max(Θ∗zi + b∗)

(
ziz
>
i − Id

)︸ ︷︷ ︸
φi

+ max(Θ∗zi + b∗)
(
ziz
>
i − Id

)
− E[max(Θ∗zi + b∗)

(
ziz
>
i − Id

)
]︸ ︷︷ ︸

κi

+ E[max(Θ∗zi + b∗)
(
ziz
>
i − Id

)
]− E[max(Θ∗xi + b∗)

(
xix
>
i − Id

)
]︸ ︷︷ ︸

ρi

.

As before, since zi = xi with probability greater than 1− 2n−12, the term φi = 0 on this event.
Let us further decompose κi as

κi =
(

max(Θ∗zi + b∗) + ς
√

log(nk)
)
ziz
>
i − E

[(
max(Θ∗zi + b∗) + ς

√
log(nk)

)
ziz
>
i

]
︸ ︷︷ ︸

κ
(1)
i

+ ς
√

log(nk)E
[
ziz
>
i

]
− Id︸ ︷︷ ︸

κ
(2)
i

+Id · (E[max(Θ∗zi + b∗)−max(Θ∗zi + b∗))︸ ︷︷ ︸
κ
(3)
i

,

so that

||| 2
n

n∑
i=1

κi|||op ≤ |||
2

n

n∑
i=1

κ
(1)
i |||op + ||| 2

n

n∑
i=1

κ
(2)
i |||op +

∣∣∣∣∣∣ 2n
n/2∑
i=1

κ
(3)
i

∣∣∣∣∣∣ .
Since |max(Θ∗zi + b∗)| ≤ Cς

√
log(nk), the random vector

√
max(Θ∗zi + b∗) + Cς

√
log(nk)zi

is well-defined and bounded; sub-Gaussian concentration bounds [13] can therefore be applied to
obtain

P
[
||| 1
n

n∑
i=1

κ
(1)
i |||op ≥ c1ς

2(log(nk))2

{√
d

n
+
d

n
+ δ

}]
≤ c2 exp

(
−nmin(δ, δ2)

)
where ς1 log(nk) = max(Θ∗zi + b∗) + ς

√
log(nk) ≤ 2ς log(nk). Reasoning similarly for the

second term, we have

P
[
||| 1
n

n∑
i=1

κ
(2)
i |||op ≥ c1ς

2(log(nk))2

{√
d

n
+
d

n
+ δ

}]
≤ c2 exp

(
−nmin(δ, δ2)

)
.
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Combining these bounds setting δ = c1

√
d
n

, we have

||| 2
n

n∑
i=1

κ
(1)
i |||op + ||| 2

n

n∑
i=1

κ
(2)
i |||op ≤ Cς2(log(nk))2

{√
d

n
+
d

n

}

with probability at least 1− c exp (−c′d).
The term κ

(3)
i , on the other hand, can be controlled directly via Hoeffding’s inequality. Since

max(Θ∗zi + b∗) is Cς
√

log(nk) sub-Gaussian, we obtain

P

∣∣∣∣∣∣ 2n
n/2∑
i=1

κ
(3)
i

∣∣∣∣∣∣ ≥ ς
√

log(nk)t

 ≤ 2 exp

{
−nt

2

32

}
.

Choosing t = c
√

d+logn
n

and putting together all the pieces, we obtain

||| 2
n

n∑
i=1

κi|||op ≤ Cς2(log(nk))2

{√
d+ log n

n
+
d+ log n

n

}
+ cς

√
log(nk)

√
d

n

with probability at least 1− cn−12.
It remains to handle the terms {ρi}n/2i=1, and to do so, we use a similar argument to before. We

first bound the absolute value of the (p, q)th entry of each matrix as

|ρi(p, q)| = |E[max(Θ∗zi + b∗)ziz
>
i (p, q)]− E[max(Θ∗xi + b∗)xix

>
i (p, q)1 {Ei}]

+ E[max(Θ∗xi + b∗)xix
>
i (p, q)1 {Eci }]| = |E[max(Θ∗xi + b∗)xix

>
i (p, q)1 {Eci }]|

Expanding this further, we have

|ρi(p, q)| ≤ E[max
`∈[k]

(|〈θ∗` , xi〉|+ |b∗` |)|xi,pxi,q|1 {Eci }]

≤ ςE [|xi,pxi,q|‖xi‖∞1 {Eci }]

≤ E

|xi,pxi,q|∑
`∈[k]

|xi,`|1 {Eci }

 .
Also note that ρp,q = 0 unless p ∈ [k], q ∈ [k]. Hence we finally need to control the terms of

the form E [|X|31 {|X| ≥ λ}] for a standard Gaussian X . Substituting λ = 5
√

log(nk), a simple
calculation of truncated third moment of standard Gaussian ([218]) yields

|ρi(p, q)| ≤ ς log2(nk)(nk)−10,

and proceeding as before provides a strictly lower order bound on |||ρi|||op than the remaining terms.
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The term τ 2
i can be bounded more easily. Specifically, on the intersection of the events {Fi}n/2i=1,

applying [13, Lemma 6.2], we have

||| 2
n

n/2∑
i=1

τ 2
i |||2op ≤ Cσ2 log n||| 2

n

n/2∑
i=1

xix
>
i − I|||2op ≤ Cσ2 log n

{
d+ log n

n
+

(d+ log n)2

n2

}
where the final bound holds with probability greater than 1− cn−12. Finally combining all the terms
yield the desired result.

6.9.11 Background and technical lemmas used in the proof of Theorem 14
In this section, we collect two technical lemmas that were used to prove Theorem 14.

6.9.12 Prediction and estimation error
Here, we connect the prediction error to the estimation error, which may be of independent interest.
Recall our notation dist for the minimum distance between parameters obtainable after relabeling.

Lemma 43. There exists a tuple of universal constants (c1, c2) such that for each set of parameters
β1, . . . , βk ∈ Rd+1:

1. If n ≥ c1d, then we have

1

n

n∑
i=1

(
max
j∈[k]
〈ξi, βj〉 −max

j∈[k]
〈ξi, β∗j 〉

)2

≤ c1dist({βj}kj=1 , {β
∗}kj=1)

with probability exceeding 1− c1 exp(−c2n).

2. If n ≥ c1d
k3

π3
min

log2(k/πmin), then we have

c2

(πmin

k

)3 ∑
j∈[k]

min
j′∈[k]

‖β∗j − βj′‖2 ≤ 1

n

n∑
i=1

(
max
j∈[k]
〈ξi, βj〉 −max

j∈[k]
〈ξi, β∗j 〉

)2

with probability exceeding 1− c1k exp
(
−c2n

π4
min

k4 log2(k/πmin)

)
.

Proof. To prove the part 1 of the lemma, we leverage the fact that the max function is 1-Lipschitz
with respect to the `2-norm. Consequently, we obtain

1

n

n∑
i=1

(
max
j∈[k]
〈ξi, βj〉 −max

j∈[k]
〈ξi, β∗j 〉

)2

≤ 1

n

n∑
i=1

k∑
j=1

(
ξ>i (βj − β∗j )

)2
,

□ 
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where we have ordered the parameters such that dist
(
{βj}kj=1 ,

{
β∗j
}k
j=1

)
is minimized. We now

use the fact that the rows of Ξ are 1-sub-Gaussian (this is restatement of the conclusion of Lemma 40)
to complete the proof.

We now proceed to a proof of part 2 of the lemma. Recall the setup of Appendix 6.7 along with
notation ({xi}ni=1,Θ

∗, b∗, β∗, ). Specifically, we have β∗j =
(
θ∗j , b

∗
j

)
and (Θ∗)> = [θ∗1 θ

∗
2 . . . θ

∗
k].

Similarly let βj = (θj, bj) ∈ Rd+1 and Θ> = [θ1 θ2 . . . θk]. In the notation of Section 6.6, we
define for each pair (Θ, b), the sets

Sj(Θ, b) =

{
i ∈ [n] : 〈xi, θj〉+ bj = max

j′∈[k]
(〈xi, θj′〉+ bj′)

}
, j ∈ [k].

We use the shorthand S∗j = Sj(Θ
∗, b∗) and Ŝj = Sj(Θ, b) for the rest of the proof. By definition,

we have

1

n

n∑
i=1

(max(Θxi + b)−max(Θ∗xi + b∗))2 =
1

n

∑
`∈[k]
m∈[k]

∑
i∈S∗`∩Ŝm

(
(〈θ∗` , xi〉+ b∗l )− (〈θm, xi〉+ bm)

)2

=
1

n

∑
`∈[k]
m∈[k]

∑
i∈S∗`∩Ŝm

(
〈β∗` , ξi〉 − 〈βm, ξi〉

)2

=
1

n

∑
`∈[k]
m∈[k]

‖Ξ̃`,m(β∗` − βm)‖2,

where we have let Ξ̃`,m denote the sub-matrix of Ξ with rows indexed by the set S∗` ∩ Ŝm. It is also
useful to define the convex sets

K∗` : =

{
x ∈ Rd : 〈x, θ∗` 〉+ b∗` = max

j′∈[k]
(〈x, θ∗j′〉+ b∗j′)

}
, and

Km : =

{
x : 〈x, θm〉+ bm = max

j′∈[k]
(〈x, θj′〉+ bj′)

}
for each pair (`,m) ∈ k × k. By definition, for each ` ∈ [k], there exists a corresponding index m`

such that vol(K∗` ∩Km`) ≥
πmin

k
. Proceeding from above, we have

1

n

n∑
i=1

(max(Θxi + b)−max(Θ∗xi + b∗))2 ≥ 1

n

∑
`∈[k]

∥∥∥Ξ̃`,m`(β
∗
` − βm`)

∥∥∥2

≥ 1

n

∑
`∈[k]

λmin

(
Ξ̃>`,m`Ξ̃`,m`

)
‖β∗` − βm`‖

2 .
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Finally, applying Lemma 31 in conjunction with the bound vol(K∗` ∩Km`) ≥
πmin

k
, we obtain that

provided n ≥ c1d · k3

π3
min

log2(k/πmin), we have

λmin

(
Ξ̃>`,m`Ξ̃`,m`

)
≥
(πmin

k

)3

· n

with probability exceeding 1− c1 exp
(
−c2n

π4
min

k4 log2(k/πmin)

)
for each index ` ∈ [k]. Taking a union

bound over the k indices and combining the pieces completes the proof.

6.9.13 Projection onto a finite collection of rays
Consider a vector θ∗ ∈ Rn observed via the observation model

y = θ∗ + ε,

where ε has independent, zero-mean, σ-sub-Gaussian entries. For a fixed set of M vectors
{θ1, . . . , θM}, denote by C : = {cθ` : c ≥ 0, ` ∈ [M ]} the set of all one-sided rays obtainable with
these vectors.

Now consider the projection estimate

PC(y) = argmin
θ∈C

‖y − θ‖2,

which exists since the projection onto each ray exists. The following lemma proves an oracle
inequality on the error of such an estimate.

Lemma 44. There are universal constants c, C, c1 and c2 such that

Pr

{
‖PC(y)− θ∗‖2 ≥ c

(
min
θ∈C
‖θ − θ∗‖2 + σ2t(logM + c1)

)}
≤ c2e

−nt(
√

logM+c1),

for all t ≥ Cσ(
√

logM + c1).

Proof. We follow the standard technique for bounding the error for non-parametric least squares
estimators. From the definition, we have

PC(y) = argmin
θ∈C

‖y − θ‖2 .

We substitute the expression for y and obtain

PC(y) = argmax
θ∈C

[
2〈ε, θ − θ∗〉 − ‖θ − θ∗‖2] .

To obtain an upper bound on ‖PC(y)− θ∗‖2, it is sufficient to control the following quantity (e.g.
see [219, Chapter 3], [13, Chapter 13]):

E

[
sup

θ∈C:‖θ−θ∗‖≤δ
〈ε, θ − θ∗〉

]

□ 
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for some δ > 0 to be chosen later. Since ε is σ-sub-Gaussian, we use Dudley’s entropy integral to
control the term above. We obtain

E

[
sup

θ∈C:‖θ−θ∗‖≤δ
〈ε, θ − θ∗〉

]
≤ Cσ

∫ δ

0

√
logN (ε, {θ ∈ C, ‖θ − θ∗‖ ≤ δ}, `2)dε,

where N(ε, S, `2) is the ε-covering number of a compact set S in `2 norm. Note that C contains
scaled versions of M fixed vectors {θ1, . . . , θM}. For a fixed θi, with i ∈ [M ], the covering number
N (ε, {cθi : c ∈ R, ‖θi − θ∗‖ ≤ δ}, `2) is equivalent to the covering number of a bounded interval
(in 1 dimension). Using [220], this is (1 + 2δ

ε
). Since there are M such fixed vectors, we obtain

N (ε, {θ ∈ C, ‖θ − θ∗‖ ≤ δ}, `2) ≤ C1M(1 +
δ

ε
).

Substituting, we obtain

E

[
sup

θ∈C:‖θ−θ∗‖≤δ
〈ε, θ − θ∗〉

]
≤ Cσ

(
δ
√

logM + C1δ
)
.

Now, the critical inequality ([13, Chapter 13]) takes the form

δσ(
√

logM + C1) . δ2.

Hence we can choose δ = C2σ(
√

logM + C1). Now, for any t ≥ δ, invoking [13, Theorem 13.2]
yields the oracle inequality

‖PC(y)− θ∗‖2 ≤ c
(
‖θ∗ − PC(θ∗)‖2 + σ2t(logM + c1)

)
= c

(
min
θ∈C
‖θ − θ∗‖2 + σ2t(logM + c1)

)
,

with probability exceeding 1− c2e
−nt(

√
logM+c1), which proves the lemma.

6.9.14 NP-hardness of real phase retrieval
Our discussion borrows from a similar proof established in [mixture˙two] for mixtures of linear
regressions. Recall that with n i.i.d observations {(xi, yi)}ni=1, the max-affine model takes the form

yi = max
1≤j≤k

(〈xi, θ∗j 〉+ b∗j) + εi,

where {εi}ni=1 is a sequence of i.i.d zero mean sub-Gaussian noise.
We now consider a special case, where k = 2, b∗1 = b∗2 = 0, and θ∗1 = −θ∗2, corresponding to

the real phase retrieval problem. Furthermore, we consider the noiseless case ε = 0. Our covariate
matrix is given by X ∈ Rn×d and the response vector by y ∈ Rn. We now show that even in this
special case, there is family of instances (X, y) such that solving the least squares problem (6.5) is
NP-hard. In particular, we say that a “solution” to the noiseless phase retrieval problem exists on an
instance (X, y) if the least squares objective in equation (6.5) has minimum value zero.

□ 
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Proposition 17. Deciding whether a problem instance (X, y) has a solution to the noiseless phase
retrieval problem is NP-hard.

Proof. The proof follows from a reduction to the subset-sum problem, the decision version of which
is stated as follows: given p numbers a1, . . . , ap ∈ R, we must decide if there exists a partition
S ⊆ [p] such that ∑

i∈S

ai =
∑
j∈Sc

aj.

For each p-dimensional vector a, we design a problem instance (X, y) such that solving the noiseless
(real) phase retrieval problem on (X, y) implies deciding on the subset sum problem specified by a.

To accomplish this, take n = 2p+ 1 and d = p, and define the instance

X =

 Ip
Ip

1 . . . 1

 and y =

 a
−a
0

 ,
where Ip denotes the p× p identity matrix. By construction, finding a solution to the noiseless (real)
phase retrieval problem on this instance corresponds to finding a subset S ⊆ [2p + 1] and a pair
of vectors (θ∗1, θ

∗
2) with θ∗1 = −θ∗2, such that XSθ

∗
1 = yS , and XScθ

∗
2 = ySc . Here XS and yS are

the sub-matrix and sub-vector of X and y respectively restricted to the set S. Note that in general,
the set S cannot contain the index i and p + i, since they correspond to two mutually exclusive
equations. From this observation, we have θ∗1(i) = {ai,−ai}, and θ∗1(i) = −θ∗2(i), where θ∗1(i) and
θ∗2(i) denote the i-th coordinate of θ∗1 and θ∗2, respectively.

As a consequence, if θ∗1 (and θ∗2 = −θ∗1) satisfies the first 2p equations in this system, then the
final equation demands that ∑

i∈S

θ∗1(i) = 0 =
∑
j∈Sc

θ∗2(j).

By construction, note that this is accomplished if and only if∑
i∈S

ai =
∑
j∈Sc

aj,

and so a solution to the noiseless (real) phase retrieval problem on (X, y) yields a solution to the
subset-sum problem, as desired. □ 
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Chapter 7

Max-affine Regression Beyond Gaussian
Design–Small Ball covariates

In this chapter, we show that the Alternating Minimization (AM) algorithm is significantly robust.
In particular, it converges locally under a weaker, “small-ball” design assumption (accommodating,
for instance, and bounded log-concave distribution), and even when the underlying parameters
are chosen with knowledge of the realized covariates. Once again, the final rate obtained by the
procedure is near-parametric and minimax optimal (up to a polylogarithmic factor) as a function
of the dimension, sample size, and noise variance. As a by-product of our analysis, we obtain
convergence guarantees on a classical algorithm for the (real) phase retrieval problem in the presence
of noise, and under considerably weaker assumptions on the design distribution than was previously
known.

7.1 Introduction
Similar to Chapter 6, we show that AM converges under significantly weaker statistical assumptions.
In particular, we allow the distribution of the covariates to come from the larger class of sub-
Gaussian distributions that satisfy a small-ball condition. In addition, we also consider the scenario
of universal parameter estimation, meaning that our guarantees hold uniformly over all β∗1 , . . . , β

∗
k .

This allows the parameters to be chosen with knowledge of the realized covariates, a robust setting
that is commonly studied in signal processing applications like phase retrieval [56]. In contrast, our
prior work [221] only handled the case where the parameters are fixed.

More precisely, our covariate assumption relies on the following definition.

Definition 12. (Small-ball) A distribution PX satisfies a (ζ, cs)-small-ball property if, for X ∼ PX
and each δ > 0, we have

sup
u∈Sd−1, w∈R

Pr
{

(〈X, u〉+ w)2 ≤ δ
}
≤ (csδ)

ζ . (7.1)
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The small-ball properties of various classes of distributions have been studied extensively in
the probability literature [57, 58], and many natural distributions possess this property provided
they are not too “peaky”. For instance, a simple calculation yields that provided the density of
〈X, u〉 is bounded by

√
c for each u ∈ Sd−1, the distribution PX satisfies the (1/2, c)-small ball

property. We now present our assumption on the covariate distribution; recall that X ∈ Rd is said to
be η-sub-Gaussian if

sup
u∈Sd−1

E[exp(λ〈X, u〉)] ≤ exp

(
λ2η2

2

)
for each λ ∈ R.

Assumption 20. The distribution PX is isotropic, η-sub-Gaussian, and satisfies a (ζ, cs) small-ball
condition.

Let us briefly state a few examples where Assumption 20 is satisfied with particular values
of the tuple (η, ζ, cs). The first is the class of compactly supported log-concave random vectors,
which satisfy the the small ball conditions with (ζ, cs) = (1/2, C) for an absolute constant C
(see [222, Appendix G.1]). Boundedness further implies sub-Gaussianity. As a specific example,
consider X with each entry drawn i.i.d. according to the distribution Unif[−

√
3,
√

3], which is
commonly used as a random design in investigations of non-parametric regression problems [223].
The associated distribution PX is isotropic by definition, and has (η, ζ, cs) = (12, 1/2, C). Similarly,
any other uniform distribution on a bounded, isotropic convex set would also satisfy Assumption 20.
The second (canonical) example for which Assumption 20 is satisfied is the standard Gaussian
distribution. As we verify in Appendix 7.6.1 with χ2 tail bounds, the standard Gaussian satisfies
(η, ζ, cs) = (1, 1/2, e). Also, while we have only presented examples in which ζ = 1/2, there are
distributions that satisfy the small ball condition for other values of ζ: for example, any random
variable with density f(x) ∝ e−‖x‖

c for a positive constant c.
In order to make our guarantees on universal parameter estimation more clear, let us define a

few geometric quantities induced by the max affine regression model (6.1). For X ∼ PX , let

πj(β
∗
1 , ., β

∗
k) : = Pr{〈X, θ∗j 〉+ b∗j = max

j′∈[k]
(〈X, θ∗j′〉+ b∗j′)},

and define

πmin(β∗1 , . . . , β
∗
k) : = min

j∈[k]
πj(β

∗
1 , . . . , β

∗
k).

For a fixed set of true parameters, the quantity πmin(β∗1 , . . . , β
∗
k) · n is the expected number of

samples that are noisy linear combinations of one of these parameters. Thus, even if the underlying
parameters are fixed, we can only hope to estimate these parameters when πmin(β∗1 , . . . , β

∗
k) is

sufficiently large.
The signal strength of the problem is the minimum separation

∆(β∗1 , . . . , β
∗
k) = min

j,j′:j 6=j′

∥∥θ∗j − θ∗j′∥∥2
.
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We also define a notion of condition number, given by

κ(β∗1 , . . . , β
∗
k) = max

j∈[k]

maxj′ 6=j
∥∥θ∗j − θ∗j′∥∥2

minj′ 6=j
∥∥θ∗j − θ∗j′∥∥2 .

We often use the shorthand

πmin = πmin(β∗1 , . . . , β
∗
k), ∆ = ∆(β∗1 , . . . ., β

∗
k), and κ = κ(β∗1 , . . . , β

∗
k).

when the true parameters β∗1 , . . . , β
∗
k are clear from context.

Recall that our goal was to prove a result that holds uniformly for all true parameters {β∗j }kj=1.
However, this is clearly impossible in a general sense, since we cannot hope to obtain consistent
estimates if some parameters are never observed in the sample. A workaround is to hold certain
geometric quantities fixed while sweeping over all possible allowable parameters β∗j , j = 1, . . . , k.
Accordingly, for each triple of positive scalars (π,∆, κ), we define the set of “admissible” true
parameters as

Bvol(π,∆, κ) = {β1, . . . , βk : πmin(β1, . . . , βk) ≥ π ,∆(β1, . . . , βk) ≥ ∆, κ(β1, . . . , βk) ≤ κ}.

We let the true parameters β∗1 , . . . , β
∗
k take values in the set Bvol(π,∆, κ), and prove guarantees

uniformly over all such β∗1 , . . . , β
∗
k .

With these definitions at hand, we are now ready to discuss our contributions.

Contributions: Suppose Assumption 20 holds, and {β(t)
j }kj=1 are the parameter estimates returned

by the AM algorithm at the t-th iteration. In Theorem 18, we show that for any ε > 0, there is a
sufficiently large iteration t such that

k∑
i=1

‖β(t)
i − β∗i ‖2 ≤ ε+ C

(1)
η,ζ,cs

σ2kd

nπ1+2ζ−1

min

log(kd) log
( n
kd

)
.

Such a result holds simultaneously for all (β∗1 , . . . , β
∗
k) ∈ Bvol(πmin,∆, κ) with high probability

provided the sample size is large enough and the initialization is chosen close enough to the true
parameters. All of these aspects of the result are quantitative, and clarified in the statements of the
formal theorems to follow.

In Corollary 3, we specialize Theorem 18 to the phase retrieval problem, showing that a
slight variant of the same AM algorithm [95] exhibits linear convergence provided the covariates
(called “measurements” in the signal processing literature) satisfy Assumption 20. Since our
result holds for universal parameter estimation, we allow the underlying “signal” to be chosen
adversarially, with knowledge of the measurements. Such a robust setting is common for phase
retrieval problems. However, to the best of our knowledge, all previous results on the AM algorithm
for phase retrieval [59, 60] only held under the assumptions of Gaussian covariates and noiseless
observations, and/or required resampling of the measurements [61]. Ours is thus the first work to
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handle non-Gaussian covariates in the presence of noise, while also analyzing the algorithm without
resampling.

In Section 6.3, we validate the local convergence of AM with Unif[−
√

3,
√

3]⊗d covariates.
We observe that, when σ = 0, AM recovers the true parameters {β∗i }ki=1 within 4 − 5 iterations.
Furthermore, when σ 6= 0, the iterates of AM plateaus at the statistical error of the problem, which
has a linear dependence on d/n. Moreover, in Section 7.2.4, we empirically show the performance
of two initialization techniques; (a) random initialization with multiple restarts and (b) heuristic
Principal Component Analysis (PCA) based initialization. For (a), we randomly initialize AM with
multiple seeds, and observe that around 80− 100 restarts is sufficient for a moderate dimensional
problem. Furthermore, for (b), we use an appropriately defined second moment matrix (a function
of {yi, xi}ni=1), and running PCA in conjunction with a random search method (Algorithm 3 of
[221]), we obtain the initialization required for AM. Hence, the requirement of ‘good’ initialization
is not a deterrent in the practical usage of AM.

7.2 Main results
Let us now state and discuss our results in precise terms.

7.2.1 Local geometric convergence of alternating minimization

For each pair 1 ≤ i 6= j ≤ k and t ≥ 0, we use the shorthand v∗i,j = β∗i − β∗j and v(t)
i,j = β

(t)
i − β

(t)
j

to denote the pairwise differences between parameters.

Theorem 18. Suppose that Assumption 20 holds. Then there exists a pair of universal positive
constants (c1, c2) and positive constants (C

(1)
η,ζ,cs

, C
(2)
η,ζ,cs

) depending only on the triple (η, ζ, cs) such
that if the sample size satisfies the bound

n ≥ C
(1)
η,ζ,cs

max {d, 10 log n}

×max

{
kκ

π1+2ζ−1

min

log(n/d), σ2 k1+2ζ−1

∆ζ−1π
(1+2ζ−1)2

min

log2+2ζ−1

(
k

π1+2ζ−1

min

)
log(kd)

}
(7.2)

then simultaneously for all true parameters β∗1 , . . . , β
∗
k ∈ Bvol(πmin,∆, κ) and all initializations

satisfying

min
c>0

max
1≤j 6=j′≤k

∥∥∥cv(0)
j,j′ − v∗j,j′

∥∥∥
‖θ∗j − θ∗j′‖

≤ C
(2)
η,ζ,cs

(
π1+2ζ−1

min

kκ
)ζ
−1

[
log−(1+ζ−1)(

kκ

π1+2ζ−1

min

)

]
, (7.3a)

the estimation error at all iterations t ≥ 1 satisfies
k∑
j=1

‖β(t)
j − β∗j ‖2 ≤

(
3

4

)t
(
k∑
j=1

‖c∗β(0)
j − β∗j ‖2) + C

(1)
η,ζ,cs
· σ2 kd

nπ1+2ζ−1

min

log(kd) log(n/kd)

(7.3b)
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with probability exceeding 1 − c1

{
k2

n7 + exp (−c2nπ
2
min)

}
. Here, c∗(> 0) minimizes the LHS of

inequality (7.3a).

Let us discuss the initialization conditions of the theorem in more detail. We require the initial-
ization β(0)

1 , . . . , β
(0)
k to satisfy condition (7.3a). In the well-balanced case (with πmin ∼ 1/k) and

treating k as constant, the initialization condition (7.3a) posits that the parameters are a constant
“distance” from the true parameters. Closeness here is measured in a relative sense, i.e., between pair-
wise differences of the parameter estimates as opposed to the parameters themselves. The intuition
for this is that β(0)

1 , . . . , β
(0)
k induces a partition of samples S1(β

(0)
1 , . . . , β

(0)
k ), . . . , S1(β

(0)
1 , . . . , β

(0)
k ),

and the closeness to this to the true partition depends only on the relative pairwise differences
between parameters. Furthermore, the initialization condition is also invariant to a global scaling
of the parameters, since scaling does not change the initial partition of samples. Also note that
the geometric convergence guarantee (7.3b) holds uniformly for all initializations satisfying condi-
tion (7.3a). Hence, the initialization parameters are not additionally required to be independent of
the covariates or noise.

Let us now turn our attention to the bound (7.3b), which consists of two terms. When t→∞,
the second term of the bound (7.3b) provides an estimate of the closeness of the final parameters to
the true parameters. Up to a constant, this is the statistical error term

δsbn,σ(d, k, πmin) = σ2 kd

π1+2ζ−1

min n
log(kd) log(n/kd) (7.4)

that converges to 0 as n → ∞, thereby providing a consistent estimate in the large sample limit.
The dependence on πmin is discussed shortly.

The first term of (7.3b) is an optimization error that is best interpreted in the noiseless case
σ = 0, wherein the parameters β(t)

1 , . . . , β
(t)
k converge at a geometric rate to the true parameters

β∗1 , . . . , β
∗
k . In the noiseless case, we obtain exact recovery of the parameters provided

n ≥ C
kd

π1+2ζ−1

min

log(n/d).

Thus, the “sample complexity” of parameter recovery is linear in the dimension d, which is optimal.
In the well-balanced case, we require n ∼ k2+2ζ−1

d, but lower bounds based on parameter counting
suggest that the true dependence ought to be linear. We are not aware of whether the dependence on
πmin in the noiseless case is optimal; our simulations in panel (a) suggest that the sample complexity
depends inversely on πmin, and so closing this gap is an interesting open problem.

In Figure 7.1, we verify that for independent, isotropic covariates chosen uniformly from a
symmetric interval1, initializing the AM algorithm in a neighborhood of the true parameters suffices
to ensure that it converges to the true parameters. Furthermore, both the sample size requirement
and final error of the algorithm exhibit the behaviors predicted by Theorem 18.

We now compare Theorem 18 with Chapter 6 (Theorem 1) for the special case of Gaussian
covariates, where η = 1 and ζ = 1/2. In this case, all terms of the form π3

min in [221, Theorem 1]
1Such a distribution is compactly supported and log-concave, and therefore satisfies Assumption 20.
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Figure 7.1: Convergence of AM when the covariates are drawn i.i.d. from the distribution
Unif[−

√
3,
√

3]⊗d. In panel (a), we plot the noiseless sample complexity of AM; we fix ‖β∗i ‖ = 1

for all i ∈ [k], σ = 0 and πmin = 1/k. We say β∗i is recovered if
∥∥∥β(t)

i − β∗i
∥∥∥ ≤ 0.01. For a fixed

dimension d, we run a linear search on the number of samples n, such that the empirical probability
of success over 100 trials is more than 0.95, and output the least such n. In panel (b), we plot the
optimization error (in blue)

∑k
j=1 ‖β

(t)
j − β

(T )
j ‖2 and the deviation from the true parameters (in red)∑k

j=1

∥∥∥β(t)
j − β∗j

∥∥∥2

/σ2 over iterations t for various values of σ in the tuple (0.15, 0.25, 0.4, 0.5),
with k = 5, d = 100, T = 50 and n = 5d. the resulting error curves are averaged over 50 trials.
Panel (c) shows that the estimation error at T = 50 scales at the parametric rate d/n, where we have
chosen a fixed k = 5 and σ = 0.25.

are replaced by terms of the form π5
min. In particular, we see that the initialization condition (7.3a)

is more stringent and the final statistical rate of the estimate (corresponding to the limit t → ∞)
now attains an estimation error that is a factor π−2

min higher than the corresponding rate of Chapter 6
(Theorem 1). The sample size requirement is similarly affected. On the other hand, the geometric
convergence result (7.3b) now holds uniformly for all true parameters β∗1 , . . . , β

∗
k ∈ Bvol(πmin,∆, κ),

as opposed to Chapter 6 (Theorem 1), which holds only when the true parameters are held fixed.
The more stringent initialization condition and sample size requirements can be viewed as the price

---B---

--+--
----B----

----A----
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Algorithm 10: Alternating minimization for real phase retrieval
Input: Data {xi, yi}ni=1; initial parameter estimate θ(0) ∈ Rd; number of iterations T .
Output: Final estimator θ̂.

22 Initialize t← 0.
3 repeat
55 Compute sign vector s(t) with i-th entry as

s
(t)
i = sgn(〈xi, θ(t)〉) for each i ∈ [n]. (7.5a)

6 Update

θ(t+1) = arg min
θ∈Rd

n∑
i=1

(yi − s(t)
i 〈xi, θ〉)2. (7.5b)

7 until t = T ;
99 Return θ̂ = θ(T ).

to pay for the more robust convergence of the AM algorithm. Notably, the dependence on σ, k, n, d
remains unchanged.

7.2.2 Consequences for phase retrieval
A notable consequence of Theorem 18 is that it can be applied to the phase retrieval model—in which
results are usually proved uniformly over all true parameters [56, 224]—to yield a convergence result
under general distributional assumptions on the covariates. In particular, setting πmin = 1/2 and
k = 2 yields a local linear convergence result for the AM algorithm of the Gershberg-Saxton-Fienup
type (presented for completeness as Algorithm 10) uniformly for all θ∗ provided the covariates
satisfy a small-ball condition. We note that other algorithms for phase retrieval have also been
shown to succeed under such small-ball assumptions [225, 226].

Corollary 3. Suppose that Assumption 20 holds, and that θ(t) is the t-th iterate of Algorithm 10.
There exists a universal positive constant c1 and a pair of constants (C

(1)
η,ζ,cs

, C
(2)
η,ζ,cs

) depending only
on (η, ζ, cs) such that if

n ≥ C
(1)
η,ζ,cs

max {d, 10 log n} log(n/d),

then simultaneously for all true parameters θ∗ ∈ Rd and all initializations θ(0) satisfying

min
c>0

min
s∈{−1,1}

∥∥cθ(0) − sθ∗
∥∥

‖θ∗‖
≤ C

(2)
η,ζ,cs

, (7.6a)
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the estimation error for all t ≥ 1 satisfies

min
s∈{−1,1}

‖θ(t) − sθ∗j‖2 ≤
(

3

4

)t
min

s∈{−1,1}
‖θ(0) − sθ∗‖2 +

c1σ
2d log(n/d)

n

with probability exceeding 1− c1n
−7.

Let us now compare this with the sharpest existing local convergence result of AM for phase
retrieval due to Waldspurger [59], which holds for Gaussian covariates and in the noiseless setting2.
Specializing Corollary 3 to the noiseless setting, we observe that provided the ratio n/d is larger
than a fixed constant (that depends only on (η, ζ, cs)), we obtain exact recovery of the underlying
parameter with high probability, up to a global sign, provided the measurement vectors are sub-
Gaussian and satisfy a small-ball condition. To the best of our knowledge, prior work on the
AM algorithm had not established provable guarantees for non-Gaussian covariates even in the
noiseless setting. In the noisy case, Corollary 3 guarantees convergence of the iterates to a small
neighborhood around either θ∗ or −θ∗, and the size of this neighborhood is within a logarithmic
factor of being minimax optimal [56, 184]. Once again, to the best of our knowledge, guarantees
for the AM algorithm as applied to noisy phase retrieval did not exist in the literature.

7.2.3 Proof ideas and technical challenges
We now sketch the high level proof ideas required to establish guarantees on the AM algorithm.
Some parts of the proof here is similar to that of Chapter 6. For example, Similar to Chapter 6, here
also, the proof consists of 3 steps: (a) controlling the behavior of noise, (b) analyzing the prediction
error of the noiseless problem and (c) translating the prediction error to estimation error by inverting
a specifically chosen sub-matrix of the covariate matrix. The analysis of (a) parallels to that of
Chapter 6. However, for part (b) and (c), the weakened assumption on covariates poses non-trivial
technical difficulties.

In order to control the prediction error of the noiseless problem, we crucially use the anti
concentration property of the small-ball distribution. Using the good initialization condition in
conjunction with the above mentioned lemmas, we upper-bound the noiseless prediction error of
the AM iterates. Finally, in order to translate our bounds on the prediction error into bounds on
parameter estimation, we invert specifically chosen sub-matrices of the covariate matrix over the
course of the algorithm. Our bounds naturally depend on how these sub-matrices are conditioned.
A key technical difficulty of the proof is to control the spectrum of these random matrices, rows of
which are drawn from (randomly) truncated variants of the covariate distribution. Our techniques
for controlling the spectrum of these matrices is more broadly applicable, and we expect this result
to be of broader interest.

The technical meat of the paper crucially depends on the two technical lemmas we obtain
that bound the maximum and minimum singular values of a matrix whose rows are drawn from a

2Waldspurger [59] deals with the complex phase retrieval, whose analysis is significantly more complicated than
real phase retrieval considered here.
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Figure 7.2: Initialization and overall guarantee with bounded uniform covariates drawn according
to the distribution Unif[−

√
3,
√

3]⊗d. In panel (a) we fix k = 3, d = 10, n = 30kd, σ = 0.1 and
πmin = 1/3. We evaluate the performance of AM with repeated random initialization [154] and plot
the estimation error with M , the number of restarts. In panel (b), we run Algorithm 2 from our
companion paper [221] in order to initialize the AM algorithm. We fix k = 3, d = 50, n = 30kd
σ = 0.1 and πmin = 1/3. All the data points are obtained as a result of averaging 25 trials of the
experiment.

sub-Gaussian distribution obeying the small-ball property. Note that these results hold uniformly
for any matrix that has sufficiently many rows. Our results on the minimum singular value are
similar in spirit to those of Rudelson and Vershynin [58], but proved under a slightly different set of
assumptions. We apply these results on carefully chosen sub-matrices of the covariate matrix Ξ.

7.2.4 Initialization and overall guarantee
We conclude our discussion of the main results with some simulations demonstrating that the
‘good’ initialization condition required in Theorem 18 for the convergence of the AM algorithm
is indeed achievable in practice. In particular, we consider two approaches. We first evaluate the
random initialization scheme with multiple restarts proposed by Balasz [154]. We also simulate the
PCA-based approach proposed in Chapter 6 for Gaussian covariates, wherein we use a moment
method to convert the regression problem in d-dimensions into one in k+1 dimensions, followed by
a random initialization scheme. This method is particularly useful in the high dimensional regime
d� k, and is described formally in Chapter 6 (Algorithms 2 and 3).

In Figure 7.2 (a), we initialize AM randomly, with multiple restarts, following [154]. We observe
that with sufficiently many restarts, AM converges. Hence, the requirement of ‘good’ initialization
can be replaced by random initialization with multiple restarts. This is how AM is used in practice
as seen in [154]. However, we observe that with increasing dimension, the number of restarts M
increases rapidly, and hence we get hit by the ‘curse of dimensionality’. For this reason, we consider
a low dimensional setting with d = 10 and observe that around 110 restarts suffices. Understanding
this repeated random initialization algorithm and obtaining explicit dependence on the number of
restarts (as a function of dimension d, and the number of affine pieces k) is an interesting open

: 1--B--
- - - - - ~ - - - - ~ - - - - - ~ - -
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problem.
We attempt to resolve the curse of dimensionality via a heuristic PCA algorithm. Our algorithm

matches exactly Algorithm 2 of Chapter 6, expect the definition of M̂2 (the second moment used
in the spectral method, see [221] for details). We define M̂2 = 2

n

∑n/2
i=1(y2

i /2)
(
xix
>
i − Id

)
. After

obtaining the subspace spanned the true parameters, we run the random search method (Algorithm
3 of Chapter 6) to obtain the initialization, and finally run AM with it. We consider a moderate
dimensional problem (d = 50), and show (in Figure 7.2(b)) that 100 restarts are sufficient. Note that
as expected, this algorithm can handle a high dimensional problem; thanks to the PCA algorithm.
This implies that, with a slight variation in the definition of M̂2, the PCA algorithm is indeed robust
with respect to the covariate distribution: it works (at least empirically) even when the covariates
are sub-Gaussian satisfying a small-ball condition. Obtaining provable guarantees for PCA with
non-Gaussian covariates is kept as an interesting future work.

7.3 Discussion and Open Problems
We analyze a natural alternating minimization algorithm for estimating the maximum of unknown
affine functions, when the covariates come from sub-Gaussian distribution with small-ball condition.
Additionally, we also consider the setting of universal parameter estimation, meaning that our results
hold uniformly for all true parameters. In particular, this also allows the parameters be chosen with
the knowledge of the covariates. We establish that AM enjoys local linear convergence to a ball
around the optimal parameters. We characterize the statistical error of AM, and empirically verify
the dependence on problem parameters like d and n. As a corollary, specializing to the (real) phase
retrieval setting, we obtain several new results; in particular we obtain provable guarantees for the
phase retrieval problem with non-Gaussian covariates and in the presence of noise.

Moreover, we experimentally show two techniques for the initializing AM using random
initialization (with restarts) and PCA. However, we do not have a provable initialization guarantee.
An immediate future work would to obtain a provable initialization. An important question that
remains to be addressed is whether the heuristic of random initialization with multiple restarts, that
has been employed both by us and in prior work can be shown to provably converge with an explicit
bound on the number of repetitions. Understanding the behavior of the randomly initialized AM
algorithm is also an open problem in the context of phase retrieval [59, 201].

Also, it would be interesting to study this problem in very large dimension with a sparsity
assumption on the true parameters. Furthermore, another interesting problem is to obtain a minimax
lower bound on estimation error in order to understand the (actual) dependence on several problem
parameters. We keep these as our future endeavors.

Appendix
We now present proofs of our main results. We assume throughout that the sample size n is larger
than some universal constant. Also, we assume that the values of constants c, c1, c

′, . . . may change

-
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from line to line.

7.4 Proof of Theorem 18
Throughout the proof, we make references to the proof of [221, Theorem 1]. Recall our observation
model (6.1). We use the notation Ξ ∈ Rn×(d+1) for the covariate matrix, y ∈ Rn for the response
vector. Recall that the noise is σ sub-Gaussian. Let us begin by introducing some shorthand
notation. For a scalar w∗, vectors u∗ ∈ Rd and v∗ = (u∗, w∗) ∈ Rd+1, and a positive scalar r, let
Bv∗(r) =

{
v ∈ Rd+1 : ‖v−v

∗‖
‖u∗‖ ≤ r

}
. Define the set

I
(
r;
{
β∗j
}k
j=1

)
=
{
β1, . . . βk ∈ Rd+1 : ∃c > 0 : c(βi − βj) ∈ Bβ∗i −β∗j (r) for all 1 ≤ i 6= j ≤ k

}
.

Also, use

ϑt

(
r;
{
β∗j
}k
j=1

)
: = sup

β
(0)
1 ,...,β

(0)
k ∈I(r)

k∑
j=1

‖β(t)
j − β∗j ‖2 −

(
3

4

)t( k∑
j=1

‖c∗β(0)
j − β∗j ‖2

)
to denote the error tracked over iterations (with c∗ denoting the smallest c > 0 such that c(βi−βj) ∈
Bβ∗i −β∗j (r) for all 1 ≤ i 6= j ≤ k). Finally, we use the shorthand

δsbn,σ(d, k, πmin) : = σ2 kd

nπ1+2ζ−1

min

log(kd) log(n/kd).

to denote the final statistical rate. With the rest of the notation remaining the same as before, the
theorem claims that there exist constants such that if condition (7.2) is satisfied, then we have

Pr

max
t≥1

sup
β∗1 ,...,β

∗
k∈Bvol(πmin,∆,κ)

ϑt

C(2)
η,ζ,cs

(
π1+2ζ−1

min

κk

)ζ−1

;
{
β∗j
}k
j=1

 ≥ C
(1)
η,ζ,cs

δsbn,σ(d, k, πmin)


≤ 1− c1

{
k2

n7
+ exp

(
−c2nπ

2
min

)}
(7.7)

We dedicate the rest of the proof to establishing (7.7). Without loss of generality, we assume that
the scalar c∗ is equal to 1. It is convenient to state and prove another result that guarantees a one-step
contraction, from which Theorem 18 follows as a corollary. In order to state this result, we assume
that one step of the alternating minimization update is run starting from the parameters {βj}kj=1 to

produce the next iterate
{
β+
j

}k
j=1

. In the statement of the proposition, we use the shorthand

v∗i,j = β∗i − β∗j ,
vi,j = βi − βj, and
v+
i,j = β+

i − β+
j .

Also recall the definitions of the geometric quantities (∆, κ). The following proposition guarantees
the one step contraction bound.
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Proposition 19. Suppose that Assumption 20 holds. Then there exists a tuple of universal constants
(c1, c2) and another tuple of constants (C

(1)
η,ζ,cs

, C
(2)
η,ζ,cs

) depending only on the tuple (η, ζ, cs) such
that

(a) If the sample size satisfies the bound n ≥ c1 max {d, 10 log n}max
{

1+ζ−1

πmin
, k
π2
min

log(n/d)
}

,

then for any set of parameters
{
β∗j
}k
j=1
∈ Bvol(πmin,∆, κ) and {βj}kj=1 satisfying

max
1≤j 6=j′≤k

(∥∥vj,j′ − v∗j,j′∥∥
‖θ∗j − θ∗j′‖

)ζ

log1+ζ

(
‖θ∗j − θ∗j′‖∥∥vj,j′ − v∗j,j′∥∥

)
≤ C

(2)
η,ζ,cs

(
π1+2ζ−1

min

kκ

)
, (7.8a)

we have, simultaneously for all pairs 1 ≤ j 6= ` ≤ k, the bound∥∥v+
j,` − v∗j,`

∥∥2

‖θ∗j − θ∗`‖2
≤ C

(1)
η,ζ,cs

max

{
dζκ

π1+2ζ−1

min n
,

1

4k

}(
k∑

j′=1

∥∥vj,j′ − v∗j,j′∥∥2

‖θ∗j − θ∗j′‖2
+

∥∥v`,j′ − v∗`,j′∥∥2

‖θ∗` − θ∗j′‖2

)

+ C
(1)
η,ζ,cs

σ2 kd

π1+2ζ−1

min n
log(n/d) (7.8b)

with probability exceeding 1− c1

{
k2

n7 + exp (−c2nπ
2
min)

}
.

(b) If the sample size satisfies the bound

n ≥ c1 max

{
max {d, 10 log n}max

{
1 + ζ−1

πmin

,
k

π2
min

log(n/d)

}
, C

(1)
η,ζ,cs

kd

π1+2ζ−1

min

}
,

then for any set of parameters
{
β∗j
}k
j=1
∈ Bvol(πmin,∆, κ) and {βj}kj=1 satisfying

max
1≤j 6=j′≤k

(∥∥vj,j′ − v∗j,j′∥∥
‖θ∗j − θ∗j′‖

)ζ

log1+ζ

(
‖θ∗j − θ∗j′‖∥∥vj,j′ − v∗j,j′∥∥

)
≤ C

(2)
η,ζ,cs

(
π1+2ζ−1

min

k

)
, (7.9a)

we have the overall estimation error bound

k∑
i=1

‖β+
j − β∗j ‖2 ≤ 3

4
·

(
k∑
i=1

‖βj − β∗j ‖2

)
+ C

(1)
η,ζ,cs

σ2 kd

π1+2ζ−1

min n
log(kd) log(n/kd) (7.9b)

with probability exceeding 1− c1

{
k2

n7 + exp (−c2nπ
2
min)

}
.

Let us briefly comment on how Theorem 18 follows from Proposition 19. Note that the
equations (7.9a) and (7.9b) in conjunction clearly show that geometric decay of the estimation error
after running one step of the algorithm. We only need to verify that the next iterates

{
β+
j

}k
j=1

also
satisfy condition (7.8a) provided the sample size n is large enough. Hence, the one step estimation
bound (7.9b) can be applied recursively to obtain the final bound (7.3b).
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For the constant C(2)
η,ζ,cs

in the proposition, let ra be the largest scalar in the interval [0, e−(1+ζ−1)]

such that rζa log1+ζ(1/ra) ≤ C
(2)
η,ζ,cs

(
π1+2ζ−1

min

kκ

)
, and let rb be the largest scalar in the interval

[0, e−(1+ζ−1)] with rζb log1+ζ(1/rb) ≤ C
(2)
η,ζ,cs

(
π1+2ζ−1

min

k

)
.

Assume that the current parameters satisfy the bound (7.8a). Choosing n ≥ 4κζd/π
(1+2ζ−1)ζ

−1

min

and applying inequality (7.8b), we have, for each pair 1 ≤ j 6= ` ≤ k, the bound∥∥v+
j,` − v∗j,`

∥∥2

‖θ∗j − θ∗`‖2
≤ C

(1)
η,ζ,cs

1

4k

(
k∑

j′=1

∥∥vj,j′ − v∗j,j′∥∥2

‖θ∗j − θ∗j′‖2
+

∥∥v`,j′ − v∗`,j′∥∥2

‖θ∗` − θ∗j′‖2

)

+ C
(2)
η,ζ,cs

σ2 kd

π1+2ζ−1

min n
log(n/d)

≤ 1

2
r2
a + C

(2)
η,ζ,cs

σ2 kd

π1+2ζ−1

min n
log(n/d)

Further, if

n ≥ Cσ2 k1+2ζ−1

r2
a∆

ζ−1π
(1+2ζ−1)2

min

log2+2ζ−1

(
k

π1+2ζ−1

min

)
log(kd),

for a sufficiently large constant C, we have∥∥v+
j,` − v∗j,`

∥∥2

‖θ∗j − θ∗`‖2
≤ r2

a.

Thus, the parameters
{
β+
j

}k
j=1

satisfy inequality (7.8a) for the sample size choice required by
Theorem 18. Finally, adjusting constants and simplifying the probability statement completes the
proof of the theorem.

7.4.1 Proof of Proposition 19
We use the shorthand notation Sj : = Sj(β1, . . . , βk), and let PSj denote the projection matrix onto
the range of the matrix ΞSj . Recall our notation for the difference vectors.

Let y∗ denote the vector with entry i given by max`∈[k] 〈ξi, β∗` 〉. We have

‖ΞSj(β
+
j − β∗j )‖2 = ‖PSjySj − ΞSjβ

∗
j ‖2

= ‖PSjy∗Sj + PSjεSj − ΞSjβ
∗
j ‖2

≤ 2‖PSj(y∗Sj − ΞSjβ
∗
j )‖2 + 2‖PSjεSj‖2

≤ 2‖y∗Sj − ΞSjβ
∗
j ‖2 + 2‖PSjεSj‖2, (7.10)
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where we have used the fact that the projection operator is non-expansive on a convex set.
Let

{〈ξi, β`〉 = max} : =

{
〈ξi, β`〉 = max

u∈[k]
〈ξi, βu〉

}
, for each i ∈ [n], ` ∈ [k]

denote a convenient shorthand for these events. The first term on the RHS of inequality (7.10) can
be written as∑

i∈Sj

(y∗i − 〈ξi, β∗j 〉)2 ≤
n∑
i=1

∑
j′:j′ 6=j

1
{
〈ξi, βj〉 = max and 〈ξi, β∗j′〉 = max

}
〈ξi, β∗j′ − β∗j 〉2,

where the inequality accounts for ties. Each indicator random variable is bounded, in turn, as

1
{
〈ξi, βj〉 = max and 〈ξi, β∗j′〉 = max

}
≤ 1

{
〈ξi, βj〉 ≥ 〈ξi, βj′〉 and 〈ξi, β∗j′〉 ≥ 〈ξi, β∗j 〉

}
= 1

{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
.

Switching the order of summation yields the bound

∑
i∈Sj

(y∗i − 〈ξi, β∗j 〉)2 ≤
∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
〈ξi, v∗j,j′〉2.

Recalling our notation for the minimum eigenvalue of a symmetric matrix, the LHS of inequal-
ity (7.10) can be bounded as

‖ΞSj(β
+
j − β∗j )‖2 ≥ λmin

(
Ξ>SjΞSj

)
· ‖β+

j − β∗j ‖2.

Hence, we arrive at the bound

λmin

(
Ξ>SjΞSj

)
· ‖β+

j − β∗j ‖2 .
∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
〈ξi, v∗j,j′〉2 + ‖PSjεSj‖2.

For the second term (noise) on the RHS, we apply [221, Lemma 3]. We obtain

sup
β1,...,βk∈Rd+1

max
j∈[k]

‖PSjεSj‖2 ≤ 2σ2k(d+ 1) log(n/d)

with probability greater than 1−
(
n
d

)−1.
We now make two claims to bound the remaining two terms in the bound. Recall that As-

sumption 20 holds, and use the shorthand η̃ : = max {1, η}. Our first claim bounds the indicator
quantities under this assumption. In particular, we claim that there exists a tuple of universal
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constants (C, c1, C
′, c′) such that for any r ≤ 1/24, we have

Pr
{
∃β∗1 , . . . , β∗k ∈ Rd+1 and β1, . . . , βk such that vj,j′ ∈ Bv∗(r) for all 1 ≤ j 6= j′ ≤ k :∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
〈xi, v∗j,j′〉2

≥ Cη̃2
∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2 max
{

(1 + ζ−1)d, n · (1 + ζ)
{

(η̃r)ζ logζ+1(1/η̃r)
}}}

≤ c1

(
k

2

){
ne−C

′n + ce−c
′max{d,10 logn}

}
. (7.11a)

The singular values of sub-matrices of Ξ are then handled by the following claim: that there exist
universal constants (C, c, c′) and a constant C ′η,ζ,cs that depends only the tuple (η, ζ, cs), such that if

n ≥ Cdmax
{

1+ζ−1

πmin
, k
π2
min

log(n/kd)
}

, then

Pr{ inf
β∗1 ,...,β

∗
k∈Bvol(πmin,∆,κ)

inf
β1,...,βk∈Rd+1:
vj,j′∈Bv∗

j,j′
(rb)

min
j∈[k]

λmin

(
Ξj(β1, . . . , βk)

> · Ξj(β1, . . . , βk)
)

≤ C ′η,ζ,csπ
1+2ζ−1

min n} ≤ c exp(−c′n · π2
min). (7.11b)

The proof of the proposition follows directly from these claims.
We now prove both the given claims in turn.

Proof of claim (7.11a): The proof of the claim hinges on the following lemma.

Lemma 45. Suppose that Assumption 20 holds. Then, there exist universal constants (C, c1, c2)
such for all positive scalars r ≤ 1/24, we have

sup
v∗∈Rd+1

v∈Bv∗ (r)

(
1

n

n∑
i=1

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2
)/

‖v − v∗‖2

≤ Cη̃2 ·max

{
(1 + ζ−1)

max {d, 10 log n}
n

, (1 + ζ) (η̃r)ζ · logζ+1

(
1

η̃r

)}
with probability exceeding 1− c1n

−8, where again, we adopt the convention that 0/0 = 0.

This lemma immediately establishes the claim in conjunction with a union bound over all
(
k
2

)
pairs of parameters.

Proof of claim (7.11b): For this claim, we require a uniform bound on singular values uniformly
over all choices of the true parameters {β∗}kj=1 ∈ Bvol(πmin,∆, κ). We proceed by bounding
the minimum singular values of all sub-matrices of Ξ of a certain size, and then show that each
sub-matrix Ξj encountered over the course of the algorithm has a certain size with high probability.

In the following lemma, we use the shorthand Cη,ζ,cs : = 4c2
s max {9(η̃)2ζ, 1}.

□ 

□ 



CHAPTER 7. MAX-AFFINE REGRESSION BEYOND GAUSSIAN DESIGN–SMALL BALL
COVARIATES 221

Lemma 46. Suppose that Assumption 20 holds, and that for a scalar α ∈ (0, 1), the sample size
obeys the lower bound n ≥ α−1 max

{
4d, d+1

ζ

}
. Then we have

min
S:|S|=αn

λmin

(
Ξ>SΞS

)
≥ 1

Cη,ζ,cs logCη,ζ,cs + 2Cζ−1 log(e2/α)

( α
e2

)2/ζ

· αn

with probability greater than 1− 3 exp (−αn).

We combine this lemma with a lower bound on the size of each subset.

Lemma 47. Suppose that n ≥ 4 kd
π2
min

log(n/kd). Then we have

inf
β∗1 ,...,β

∗
k∈Bvol(πmin,∆,κ)

inf
β1,...,βk∈Rd+1:
vj,j′∈Bv∗

j,j′
(rb)

min
j∈[k]

|Sj(β1, . . . , βk)| ≥ n · πmin

4

with probability exceeding 1− 2 exp(−cnπ2
min).

We are now ready to proceed to a proof of claim (7.11b). Note that the condition of the theorem
guarantees that we have n ≥ max

{
4α−1d, α−1 d+1

ζ
, 4 kd

π2
min

log(n/kd)
}

provided α ≥ cπ2
min.

Choosing α = πmin/4 and conditioning on the intersection of the pair of events guaranteed by
Lemmas 46 and 47, we have

inf
β∗1 ,...,β

∗
k∈Bvol(πmin,∆,κ)

inf
β1,...,βk∈Rd+1:
vj,j′∈Bv∗

j,j′
(rb)

min
j∈[k]

λmin

(
Ξj(β1, . . . , βk)

>Ξj(β1, . . . , βk)
)

≥ 1

Cη,ζ,cs logCη,ζ,cs + 2Cζ−1 log(4e2/πmin)

(πmin

4e2

)2/ζ

· πminn

4
.

Combining this bound with the various high probability statements completes the proof of the
claim.
Having proved the claims, we turn to proofs of the three technical lemmas.

Proof of Lemma 45

Consider a fixed pair (v, v∗), and as before, let γv = v − v∗; we have

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2 ≤ 1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, γv〉2

≤ 1
{
〈ξi, γv〉2 ≥ 〈ξi, v∗〉2

}
〈ξi, γv〉2.

Define the (random) set Kv = {i : 〈ξi, γ〉2 ≥ 〈ξi, v∗〉2}, and note that this quantity implicitly
depends on v∗ as well. We have the bound

1

n

n∑
i=1

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2 ≤
1

n
‖ΞKvγv‖2.

□ 
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We now show that the quantity ‖ΞKγv‖2 is bounded as desired for all pairs (v∗, v) such that
v ∈ Bv∗(r). Recall that v∗ = (u∗w∗), and let

m = max

{
4d, (d+ 1)/ζ, C(1 + ζ−1) log n, n

(
Crη̃ · log

(
1

rη̃

))ζ}
,

which implicitly depends on r. We claim that for all 0 ≤ r ≤ 1/24, we have

Pr

 sup
v∗∈Rd+1

v∈Bv∗ (r)

|Kv| > m

 ≤ 3

1− (3/4)ζ
(3/4)max{d,10 logn} + cne−c

′n, and

(7.12a)

Pr


⋃

T⊆[n]:
|T |≤m

sup
ω∈Rd+1

‖ΞTω‖2

‖ω‖2
≥ d+ 4mη̃2 log(n/m)

 ≤
(
n

m

)−1

. (7.12b)

Taking these claims as given, the proof of the lemma is immediate, since n
m
≤ (Cr log(1/rη̃))−ζ ,

so that log(en/m) ≤ C(1 + ζ) log(1/r).
We now proceed to the proofs of the two claims, (7.12a) and (7.12b). The proof of claim (7.12b)

follows from claim (7.12a) by using Lemma 40 in Appendix 6.9.5, so we dedicate the rest of the
proof to establishing claim (7.12a).

Proof of claim (7.12a): By definition of the set Kv, we have

Pr

 sup
v∗∈Rd+1

v∈Bv∗ (r)

|Kv| > m

 ≤
∑
T⊆[n]:
|T |>m

Pr
{
∃v∗ ∈ Rd+1, v ∈ Bv∗(r) : ‖ΞTγv‖2 ≥ ‖ΞTv

∗‖2
}

=
∑
T⊆[n]:
|T |>m

Pr

{
∃v∗ ∈ Rd+1, v ∈ Bv∗(r) :

‖γv‖2

‖u∗‖2

‖ΞTγv‖2

‖γv‖2
≥ ‖ΞTv

∗‖2

‖u∗‖2

}

≤
∑
T⊆[n]:
|T |>m

Pr

{
∃v∗ ∈ Rd+1, v ∈ Bv∗(r) : r2‖ΞTγv‖2

‖γv‖2
≥ ‖ΞTv

∗‖2

‖u∗‖2

}

≤
∑
T⊆[n]:
|T |>m

(
Pr

{
∃v∗ ∈ Rd+1, v ∈ Bv∗(r) :

‖ΞTγv‖2

‖γv‖2
≥ |T |+ η̃2(

√
d|T |+ d+ |T |tT )

}

+ Pr

{
‖ΞTv

∗‖2

‖u∗‖2
≤ r2

{
|T |+ η̃2(

√
d|T |+ d+ |T |tT )

}})
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where the final step follows from the union bound and holds for all positive scalars {tT}T⊆n. For a
fixed subset T of size ` ≥ m, we have the tail bounds

Pr

{
sup

ω∈Rd+1

‖ΞTω‖2

‖ω‖2
≥ `+ η̃2(

√
`d+ d+ `t)

}
≤ 2e−`min{t,t2}, and (7.13a)

Pr

{
inf

v∗∈Rd+1

‖ΞTv
∗‖2

‖u∗‖2
≤ δ`

}
≤ 3

(
4c2

s max
{

9(η̃)2ζ, 1
}
δ log(1/δ)

)`ζ/2
,

(7.13b)

where inequality (7.13a) follows from Lemma 40, and inequality (7.13b) from Lemma 53 since we
have m ≥ max

{
d+1
ζ
, 4d
}

.

Now use the shorthand Cη,ζ,cs : = 4c2
s max {9(η̃)2ζ, 1} as before. Substituting these bounds and

letting t` ≥ 1 be a parameter to be chosen, we have

Pr{|Kv| > m}

≤
n∑

`=m+1

(
n

`

)
[2e−`t` + 3(Cη,ζ,csr

2 · `+ η̃2(
√
`d+ d+ `t`)

`
log(

`

r2`+ r2η̃2(
√
`d+ d+ `t`)

))ζ`/2].

We now split the proof into two cases and choose t` differently for the two cases.

Case 1, m ≤ ` < n/e: Substituting the choice t` = 4 log(n/`), we obtain(
`+ η̃2(

√
`d+ d+ `t`)

`

)1/2

≤

√
`+ 5η̃

(√
` log(n/`) +

√
d
)

√
`

(i)
≤ 1 + 6η̃

√
log(n/`)

(ii)
≤ 7η̃ ·

√
log(n/`).

where step (i) follows from the bound m ≥ d, and step (ii) from the bound η̃ ≥ 1. Putting together
the pieces and noting that the map x 7→ x log(1/x) is an increasing on the interval (0, e−1), we
have, for each ` in this set, the bound

Pr{|Kv| = `} ≤ 2
(en
`

)−c`
+ 3

(
n

`

)(
14C

1/2
η,ζ,cs

rη̃

√
log(n/`) · log

1

7rη̃
√

log(n/`)

)ζ`

.

For a sufficiently large constant C, and ` ≥ n(Crη̃ log(1/rη̃))ζ , the second term is bounded by
3 (3/4)ζ`.
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Case 2, ` ≥ n/e: The argument for this case is identical to before (with the choice t` = 2n/`).
Setting C ′η,ζ,cs to be a sufficiently small η-dependent constant we obtain, for each ` in this range and
for all r ≤ C ′η,ζ,cs , (

3Cη,ζ,csr
2 `+ η̃2(

√
`d+ d+ `t`)

`

)
≤ 1/3,

where we also use the fact that d ≤ n/2. Once again, using the non-decreasing nature of the map
x 7→ x log(1/x) on the interval (0, e−1), we have(
n

`

)2e−`t` + 3

(
Cη,ζ,csr

2 · `+ η̃2(
√
`d+ d+ `t`)

`
log

(
`

r2`+ r2η̃2(
√
`d+ d+ `t`)

))ζ`/2


≤ 2e−cn + 3

(√
1

3

)ζ`

.

Putting together the pieces from both cases, we have shown that for all r ≤ C ′η,ζ,cs , we obtain

Pr{|Kv| > m} ≤ 2ne−cn + 3
n∑

`=m+1

(3/4)ζ`

≤ 2ne−cn + np10ζ−1 logn,

where p = (3/4)ζ . This completes the proof of the claim.

Proof of Lemma 46

The proof of this lemma follows from Lemma 53 in Appendix 6.9.5 in conjunction with the union
bound. In particular, we have

Pr

{
min

S:|S|=αn
λmin

(
Ξ>SΞS

)
≤ ψα · n

}
≤ 3

(
n

αn

)
(Cη,ζ,csψ log(1/ψ))ζαn

≤ 3

(
e

(Cη,ζ,csψ log(1/ψ))ζ

α

)αn

.

Finally, setting ψ = 1
Cη,ζ,cs logCη,ζ,cs+2Cζ−1 log(e/α)

(
α
e2

)2/ζ and performing some algebraic manip-
ulation yields the claimed bound.

Proof of Lemma 47

Note that we have n ≥ 4 kd
π2
min

log(n/kd). Noting that the Sj can be thought of as the indicator vector
corresponding to the intersection of k halfspaces, applying [221, Lemmas 11 and 12] in conjunction

□ 

□ 
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yields the bound

inf
β∗1 ,...,β

∗
k∈Bvol(πmin,∆,κ)

|Sj(β∗1 , . . . , β∗k)| ≥ n · πmin

2

with probability exceeding 1− ce−c′nπ2
min . Furthermore, we have

|Sj(β1, . . . , βk)| ≥ |Sj(β∗1 , . . . , β∗k)| − |Sj(β∗1 , . . . , β∗k)∆Sj(β1, . . . , βk)|.

Using the notation W for a wedge and the notation nW for the number of points in the wedge W ,
we have

|Sj(β∗1 , . . . , β∗k)∆Sj(β1, . . . , βk)|
(i)
≤

k∑
j′=1

nW (vj,j′ ,v
∗
j,j′ )

(ii)
≤ 2

k∑
j′=1

n vol(W (vj,j′ , v
∗
j,j′)),

where step (i) follows from [221, equation (33)], and step (ii) follows once again from [221, Lemma
11]. The volume of a wedge under a distribution satisfying Assumption 20 is upper bounded in
Appendix 6.9.5. Applying Lemma 51, we have

|Sj(β1, . . . , βk)| ≥ n · πmin

2
−

k∑
j′=1

C ′′η,ζ,cs
(∥∥vj,j′ − v∗j,j′∥∥∥∥θ∗j − θ∗j′∥∥

)2

log

( ∥∥θ∗j − θ∗j′∥∥∥∥vj,j′ − v∗j,j′∥∥
)ζ

(iii)
≥ n · πmin

2
− k · nπmin

4k

≥ πminn

4
,

where in step (iii), we have used condition (7.9a) satisfied by all the parameters vj,j′ , by which we
have ∥∥vj,j′ − v∗j,j′∥∥

‖θ∗j − θ∗j′‖
log

(
‖θ∗j − θ∗j′‖∥∥vj,j′ − v∗j,j′∥∥

)
≤ C

(1)
η,ζ,cs

(
π1+2ζ−1

min

k

)ζ−1

.

This further implies, for a sufficiently small constant C(1)
η,ζ,cs

, that∥∥vj,j′ − v∗j,j′∥∥
‖θ∗j − θ∗j′‖

log1/2

(
‖θ∗j − θ∗j′‖∥∥vj,j′ − v∗j,j′∥∥

)
≤
(πmin

4k

)ζ−1/2

.

Since these steps held for an arbitrary index j, the proof of the lemma is complete. □ 
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7.5 Proof of Corollary 3
Since the proof is more or less subsumed by Theorem 18, we only sketch the details. Let θ denote
the current iterate and θ+ denote the next iterate. Proceeding as before, we have the deterministic
bound

‖X(θ+ − θ∗)‖2 .
n∑
i=1

1 {〈xi, θ〉〈xi, θ∗〉 ≤ 0}〈xi, θ∗〉2 + ‖PXε‖2,

and so this case is even simpler than the max-affine setting, since we no longer select specific
sub-matrices of X on which to invert a linear system. Standard bounds on sub-Gaussian random
matrices yield

Pr
{
|||X>X − n|||op ≥ η2(d+ 4

√
log n)

}
≤ 2n−8. (7.14)

By assumption, we have n/η2 ≥ 2(d+4
√

log n). Thus, applying Lemmas 45 and 3 (of [221]) along
with the bound (7.14) to obtain that simultaneously for all pairs (θ∗, θ) satisfying ‖θ − θ∗‖/‖θ∗‖ ≤
r ≤ 1/24 , we have

‖θ+ − θ∗‖2 ≤ c1‖θ − θ∗‖2

{
η2 ·max

{
(1 + ζ−1)

max {d, 10 log n}
n

, (1 + ζ) (ηr)ζ · logζ+1

(
1

ηr

)}}
+ c1σ

2 d

n
log
(n
d

)
,

with probability exceeding 1− c1n
−7. Choosing a small enough scalar r (depending on the tuple

(η, ζ, cs)) and a large enough n to make the quantity within the braces less than 3/4 completes the
proof.

7.6 Technical Lemmas and Background

7.6.1 Small ball properties and examples
We begin with a technical lemma taken from Rudelson and Vershynin [58, Corollary 1.4] that shows
that product measures of small-ball distributions also satisfy the small-ball condition.

Lemma 48 ([58]). For PX satisfying the (ζ, cs)-small-ball property (7.1) and x1, . . . xm
i.i.d.∼ PX ,

there is a universal constant C such that we have

sup
u∈Sd−1

w∈R

Pr

{
m∑
i=1

(〈xi, u〉+ w)2 ≤ δm

}
≤ (C · csδ)mζ for all δ > 0. (7.15)

We also verify that log-concave distributions and the standard Gaussian distribution satisfy the
small-ball condition (7.1).
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7.6.2 Log-concave distribution
The following result, taken from Carbery and Wright [227, Theorem 8], provides a small-ball bound
for log-concave distributions almost directly.

Lemma 49 ([227]). Let p : Rd 7→ R denote polynomial of degree (at most) `, let X denote a
d-dimensional random vector drawn from a log-concave distribution, and let Sδ = {x ∈ Rd :
|p(x)| ≤ δ} for each δ > 0. Then for each q > 0, we have

Pr{X ∈ Sδ} ·
(
EX
[
|p(X)|q/`

])1/q ≤ Cqδ1/`.

For a unit norm vector u ∈ Sd−1, setting p(x) = (〈x, u〉+ w)2 and q = 2, we obtain

Pr
(
|〈X, u〉+ w|2 ≤ δ

)
≤ C

1

1 + w2
δ1/2 ≤ Cδ1/2,

where we have used the fact that E[〈X, u〉2] = 1 since PX is isotropic. Since this holds for each pair
(u,w) ∈ Sd−1 × R, we have verified that X satisfies small ball condition with (ζ, cs) = (1/2, C2).

7.6.3 Standard Gaussian distribution
This is the canonical example of a sub-Gaussian distribution satisfying a small-ball condition.
Suppose X is a standard Gaussian random variable. For a unit vector u ∈ Sd−1, this implies that
〈X, u〉2 + w is a central χ2 random variable with 1 degree of freedom.

Lemma 50. Let Z` and Z ′` denote central and non-central χ2 random variables with ` degrees of
freedom, respectively. Then for all p ∈ [0, `], we have

Pr{Z ′` ≤ p} ≤ Pr{Z` ≤ p} ≤
(p
`

exp
(

1− p

`

))`/2
= exp

(
− `

2

[
log

`

p
+
p

`
− 1

])
(7.16)

Applying the above lemma for ` = 1 and t = δ, we obtain

Pr
{
|〈X, u〉+ w|2 ≤ δ

}
≤ (eδ)1/2 .

Hence the standard Gaussian satisfies the small-ball condition with (ζ, cs) = (1/2, e).
For completeness, we provide a proof of Lemma 50 below.

Proof of Lemma 50

The fact that Z ′`
st.

≤ Z` follows from standard results that guarantee that central χ2 random variables
stochastically dominate their non-central counterparts.
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The tail bound is a simple consequence of the Chernoff bound. In particular, we have for all
λ > 0 that

Pr{Z` ≤ p} = Pr{exp(−λZ`) ≥ exp(−λp)}
≤ exp(λp)E [exp(−λZ`)]

= exp(λp)(1 + 2λ)−
`
2 . (7.17)

where in the last step, we have used E [exp(−λZ`)] = (1 + 2λ)−
`
2 , which is valid for all λ > −1/2.

Minimizing the last expression over λ > 0 then yields the choice λ∗ = 1
2

(
`
p
− 1
)

, which is greater
than 0 for all 0 ≤ p ≤ `. Substituting this choice back into equation (7.17) proves the lemma.

7.6.4 Background and technical lemmas used in the proofs of Theorem 18
In this section, we collect statements and proofs of some technical lemmas used in the proofs of our
results concerning the AM algorithm.

7.6.5 Bounds on the “volumes” of wedges in Rd

For a pair of scalars (w,w′) and d-dimensional vectors (u, u′), recall that we define the wedge
formed by the d+ 1-dimensional vectors v = (u, w) and v′ = (u′, w′) as the region

W (v, v′) = {x ∈ Rd : (〈x, u〉+ w) · (〈x, u′〉+ w′) ≤ 0}.

Note that the wedge is a purely geometric object.
For any set C ⊆ Rd, let

volPX (C) = Pr
X∼PX

{X ∈ C}

denote the volume of the set under the measure corresponding to the covariate distribution.
We now bound the volume of a wedge for distributions satisfying the small-ball condition.

When the distribution PX is η sub-Gaussian and satisfies a (ζ, cs)-small-ball condition, we have the
following result.

Lemma 51. Suppose that Assumption 20 holds, and that for a pair of scalars (w,w′), d-dimensional
vectors (u, u′), and v = (u, w) and v′ = (u′, w′), we have ‖v−v

′‖
‖u‖ < 1/2. Then, there is a positive

constant C such that

volPX (W (v, v′)) ≤ C

(
C ′η,ζ,cs

‖v − v′‖2

‖u‖2
log

(
‖u‖
‖v − v′‖

))ζ
,

where C ′η,ζ,cs is a constant that depends only on the tuple (η, ζ, cs).

□ 
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Proof of Lemma 51

Using the notation ξ = (x, 1) ∈ Rd+1 to denote the appended covariate, we have

vol(W (v, v′)) = Pr {〈ξ, v〉 · 〈ξ, v′〉 ≤ 0} ,

where the probability is computed with respect to Gaussian measure.
In order to prove a bound on this probability, we begin by bounding the associated indicator

random variable as

1 {〈ξ, v〉 · 〈ξ, v′〉 ≤ 0} = 1
{
〈ξ, v′ − v〉2 ≥ 〈ξ, v〉2

}
≤ 1

{
〈ξ, v′ − v〉2 ≥ t

}
+ 1

{
〈ξ, v〉2 ≤ t

}
, (7.18)

where inequality (7.18) holds for all t ≥ 0.
We now have

Pr
{
〈ξ, v〉2 ≤ t

}
≤
(
cst

‖u‖2

)ζ
,

since PX satisfies a small-ball condition.
Furthermore, the sub-Gaussianity of the covariate distribution yields the upper tail bound

Pr
{
〈ξ, v′ − v〉2 ≥ t

}
≤ c1 exp

(
− c2

η2. ‖u− u′‖2

{
t

2
− ‖v − v′‖2

})
≤ c1 exp

(
− c2

η2. ‖v − v′‖2

{
t

2
− ‖v − v′‖2

})
.

Putting all the pieces together, we obtain

volPX (W (v, v′)) ≤ c1 exp

(
− c2

η2. ‖v − v′‖2

{
t

2
− ‖v − v′‖2

})
+

(
cst

‖u‖2

)ζ
.

Substituting t = 2cζη2 ‖v − v′‖2 (log(‖u‖/‖v − v′‖)) yields the desired result.

7.6.6 Uniform bounds on singular values of (sub-)matrices
We now state and prove two technical lemmas that bound the maximum and minimum singular
values of a matrix whose rows are drawn from a sub-Gaussian distribution obeying the small-ball
property. Our results on the minimum singular value are similar in spirit to those of Rudelson and
Vershynin [228], but proved under a slightly different set of assumptions.

Lemma 52. Suppose that the covariates are drawn i.i.d. from a η-sub-Gaussian distribution. Then
for a fixed subset S ∈ [n] of size ` and each t ≥ 0, we have

Pr
{
λmax

(
Ξ>SΞS

)
≥ `+ η̃2(

√
`d+ d+ `t)

}
≤ 2e−`min{t,t2},

where η̃ = max {η, 1}.

□ 
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The second lemma controls the minimum singular value of any sub-matrix of Ξ that has
sufficiently many rows. Recall that distribution PX is isotropic and η-sub-Gaussian, and satisfies
the (ζ, cs) small-ball condition (7.1).

Lemma 53. Suppose that Assumption 20 holds, and that ` ≥ max
{

4d, d+1
ζ

}
. Let η̃ = max{η, 1}.

Then for a fixed subset S ∈ [n] of size ` and for each positive ε < min{(η̃)2ζ, e−4/ζ}, we have

Pr
{
λmin

(
Ξ>SΞS

)
≤ `ε

}
≤ 3

(
4c2

s max
{

9η̃2ζ, 1
}
ε log(1/ε)

)`ζ/2
.

Proof of Lemma 52

Let {zi}`i=1 denote i.i.d. Rademacher variables, and collect these in an `-dimensional vector z. Let
D = diag(z) denote a diagonal matrix, and note that by unitary invariance of the singular values,
the singular values of the matrix Ξ̃S = DΞS are the same as those of ΞS .

By construction, the matrix Ξ̃S has i.i.d. rows, and the i-th row is given by zi(xi, 1). For a d+ 1

dimensional vector λ̃ = (λ, w) with λ ∈ Rd and w ∈ R, we have

E
[
exp(〈λ̃, zi(xi, 1)〉)

]
=
ew

2
· E [exp(〈λ, xi〉)] +

e−w

2
· E [exp(−〈λ, xi〉)]

= exp(‖λ‖2η2/2) · 1

2

(
ew + e−w

)
≤ exp(‖λ‖2η2/2) · exp(w2/2) ≤ exp(‖λ̃‖2η̃2/2).

where we have used the fact that xi is zero-mean and η sub-Gaussian.
Since the rows of Ξ̃S are i.i.d., zero-mean, and η̃-sub-Gaussian, applying [13, Theorem 6.2]

immediately yields the lemma.

Proof of Lemma 53

We let M denote the `× (d + 1) matrix ΞS . By the variational characterization of the minimum
eigenvalue, we have

λmin

(
M>M

)
= inf

v∈Sd
‖Mv‖2 =

(
inf
v∈Sd
‖Mv‖

)2

.

Let Zv = ‖Mv‖ denote a random process indexed by v, and let Z = infv∈Sd Zv; we are interested
bounding the lower tail of Z. Consider a ρ-covering

{
v1, . . . , vN

}
of the set Sd in `2 norm, with

N ≤ (1 + 2/ρ)d+1. Letting vj be the closest element of the cover to v, we have

Zv ≥ Zvj − |Zv − Zvj | ≥ Zvj − |||M |||op · ρ,

so that we have the bound Z ≥ minj∈[N ] Zvj − |||M |||op · ρ. We have thus reduced the infimum over
the unit shell to a finite minimum.

□ 
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We thus have

Pr
{
λmin

(
M>M

)
≤ `ε

}
= Pr

{
Z2 ≤ `ε

}
= Pr

{
Z ≤

√
`ε
}

≤ Pr

{
min
j∈[N ]

Zvj ≤ 2
√
`ε

}
+ Pr

{
|||M |||opρ ≥

√
`ε
}

≤ N Pr
{
Zvj ≤ 2

√
`ε
}

+ Pr
{
|||M |||op ≥

√
`ε/ρ

}
,

where we have used the union bound in each of the last two steps.
Now note that for each j ∈ [N ], the small ball condition yields the bound

Pr
{
Zvj ≤ 2

√
`ε
}

= Pr
{
‖Mvj‖2 ≤ 2`ε

}
≤ (2Ccsε)

`ζ ,

where we have used Lemma 48 to reason about the product measure of small-ball distributions.
Furthermore, since M has η̃ sub-Gaussian rows, we may apply Lemma 52 to obtain

Pr
{
|||M |||op ≥

√
`ε/ρ

}
≤ 2 exp

(
−`

{
ε

ρ2η̃2
− η̃−2 − d+

√
`d

`

})
,

which holds provided
{

ε
ρ2η̃2
− η̃−2 − d+

√
`d

`

}
≥ 1. When ε ≤ e−4/ζ , the choice ρ = ρ0 : =√

ε
ζη̃2

log−1(1/ε) ensures that

ε

ρ2
0η̃

2
− η̃−2 − d+

√
`d

`

(i)
≥ ζ log(1/ε)− 2 ≥ ζ

2
log(1/ε),

where in step (i) we have used the properties η̃ ≥ 1 and ` ≥ 4d. This yields the bound

Pr
{
|||M |||op ≥

√
`ε/ρ

}
≤ 2ε`ζ/2,

and putting together the pieces by substituting N =
(

1 + 2
ρ0

)d+1

, we have

Pr
{
λmin

(
M>M

)
≤ `ε

}
≤
(

1 +
2

ρ0

)d+1

(2csε)
`ζ + 2ε`ζ/2.

Now note that we have ε < min{1, η̃2ζ}, so that ρ0 ≤ 1, so that 1 + 2/ρ0 ≤ 3/ρ0. Therefore, we
have

Pr
{
λmin

(
M>M

)
≤ `ε

}
≤ (9η̃2ζ)(d+1)/2(2cs)

`ζε`ζ−(d+1)/2 logd+1(1/ε) + 2ε`ζ/2

≤ 3
(
4c2

s max
{

9η̃2ζ, 1
}
ε log(1/ε)

)`ζ/2
,

where we have used the fact that `ζ ≥ d+ 1. This completes the proof. □ 
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In this part of the thesis, we study the problem of adaptation (or model selection) in bandit
and Reinforcement Learning framework.

• Chapter 8: We study the problem of adaptation/model selection for classical stochastic
linear bandits.

• Chapter 9: We extend our study of model selection to generic contextual bandits
beyond linear structure.

• Chapter 10: We study the problem of model selection for Reinforcement Learning
with function approximation.

Part III

Learning and Adaptation in Bandit and RL
Framework
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Chapter 8

Problem-Complexity Adaptive Model
Selection for Stochastic Linear Bandits

We consider the problem of model selection for two popular stochastic linear bandit settings, and
propose algorithms that adapts to the unknown problem complexity. In the first setting, we consider
the K armed mixture bandits, where the mean reward of arm i ∈ [K], is µi + 〈αi,t, θ∗〉, with
αi,t ∈ Rd being the known context vector and µi ∈ [−1, 1] and θ∗ are unknown parameters. We
define ‖θ∗‖ as the problem complexity and we propose Adaptive Linear Bandit (ALB), a novel
phase based algorithm that adapts to the true problem complexity, ‖θ∗‖. and achieves regret of
Õ(‖θ∗‖

√
T ), where ‖θ∗‖ is apriori unknown. In the second setting, we consider the standard linear

bandit problem (with possibly an infinite number of arms) where the sparsity of θ∗, denoted by
d∗ ≤ d, is unknown to the algorithm. Defining d∗ as the problem complexity (similar to [70]), we
show that ALB achieves Õ(d∗

√
T ) regret, matching that of an oracle who knew the true sparsity

level. This methodology is then extended to the case of finitely many arms and similar results are
proven. We further verify through synthetic and real-data experiments that the performance gains
are fundamental and not artifacts of mathematical bounds. In particular, we show 1.5− 3x drop in
cumulative regret over non-adaptive algorithms.

8.1 Introduction
We consider two canonical settings for the stochastic MAB problem. The first is the K armed
mixture MAB setting, in which the mean reward from any arm i ∈ [K] is given by µi + 〈θ∗, αi,t〉,
where αi,t ∈ Rd is the known context vector of arm i at time t, and µi ∈ R, θ∗ ∈ Rd are unknown
and needs to be estimated. This setting also contains the standard MAB [62, 63] when θ∗ = 0.
Popular linear bandit algorithms, like LinUCB, OFUL (see [64–66]) handle the case with no bias
(µi = 0), while OSOM [67], the recent improvement can handle arm-bias. Implicitly, all the
above algorithms assume an upper bound on the norm of ‖θ∗‖ ≤ L, which is supplied as an input.
Crucially however, the regret guarantees scale linearly in the upper bound L. In contrast, we choose
‖θ∗‖ as the problem complexity, and provide a novel phase based algorithm, that, without any upper



CHAPTER 8. PROBLEM-COMPLEXITY ADAPTIVE MODEL SELECTION FOR
STOCHASTIC LINEAR BANDITS 235

bound on the norm ‖θ∗‖, adapts to the true complexity of the problem instance, and achieves a
regret scaling linearly in the true norm ‖θ∗‖. As a corollary, our algorithm’s performance matches
the minimax regret of simple MAB when θ∗ = 0, even though the algorithm did not apriori know
that θ∗ = 0. Formally, we consider a continuum of hypothesis classes, with each class positing
a different upper bound on the norm ‖θ∗‖, where the complexity of a class is the upper bound
posited. As our regret bound scales linearly in ‖θ∗‖ (the complexity of the smallest hypothesis
class containing the instance) as opposed to an upper bound on ‖θ∗‖, our algorithm achieves model
selection guarantees.

The second setting we consider is the standard linear stochastic bandit [66] with possibly an
infinite number of arms, where the mean reward of any arm x ∈ Rd (arms are vectors in this case)
given by 〈x, θ∗〉, where θ∗ ∈ Rd is unknown. For this setting, we consider model selection from
among a total of d different hypothesis classes, with each class positing a different cardinality for
the support of θ∗. We exhibit a novel algorithm, where the regret scales linearly in the unknown
cardinality of the support of θ∗. The regret scaling of our algorithm matches that of an oracle that
has knowledge of the optimal support cardinality [68],[69], thereby achieving model selection
guarantees. Our algorithm is the first known algorithm to obtain regret scaling matching that of
an oracle that has knowledge of the true support. This is in contrast to standard linear bandit
algorithms such as [66], where the regret scales linearly in d. We also extend this methodology
to the case when the number of arms is finite and obtain similar regret rates matching the oracle.
Model selection with dimension as a measure of complexity was also recently studied by [70], in
which the classical contextual bandit [64] with a finite number of arms was considered. We clarify
here that although our results for the finite arm setting yields a better (optimal) regret scaling with
respect to the time horizon T and the support of θ∗ (denoted by d∗), our guarantee depends on a
problem dependent parameter and thus not uniform over all instances. In contrast, the results of
[70], although sub-optimal in d∗ and T , is uniform over all problem instances. Closing this gap is
an interesting future direction.

8.1.1 Our Contributions
1. Successive Refinement Algorithms for Stochastic Linear Bandit - We present two novel
epoch based algorithms, ALB (Adaptive Linear Bandit) - Norm and ALB - Dim,
that achieve model selection guarantees for both families of hypothesis respectively. For the K
armed mixture MAB setting, ALB-Norm, at the beginning of each phase, estimates an upper bound
on the norm of ‖θ∗‖. Subsequently, the algorithm assumes this bound to be true during the phase,
and the upper bound is re-estimated at the end of a phase. Similarly for the linear bandit setting,
ALB-Dim estimates the support of θ∗ at the beginning of each phase and subsequently only plays
from this estimated support during the phase. In both settings, we show the estimates converge to
the true underlying value —in the first case, the estimate of norm ||θ∗|| converges to the true norm,
and in the second case, for all time after a random time with finite expectation, the estimated support
equals the true support. Our algorithms are reminiscent of successive rejects algorithm [229] for
standard MAB, with the crucial difference being that our algorithm is non-monotone. Once rejected,
an arm is never pulled in the classical successive rejects. In contrast, our algorithm is successive
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refinement and is not necessarily monotone —a hypothesis class discarded earlier can be considered
at a later point of time.

2. Regret depending on the Complexity of the smallest Hypothesis Class - In the K armed
mixture MAB setting, ALB-Norm’s regret scale as Õ(‖θ∗‖

√
T ), which is superior compared to

state of art algorithms such as OSOM [67], whose regret scales as Õ(L
√
T ), where L is an upper

bound on ‖θ∗‖ that is supplied as an input. As a corollary, we get the ‘best of both worlds’ guarantee
of [67], where if θ∗ = 0, our regret bound recovers known minimax regret guarantee of simple
MAB. Similarly, for the linear bandit setting with unknown support, ALB-Dim achieves a regret
of Õ(d∗

√
T ), where d∗ ≤ d is the true sparsity of θ∗. This matches the regret obtained by oracle

algorithms that know of the true sparsity d∗ [68, 69]. We also apply our methodology to the case
when there is a finite number of arms and obtain similar regret scaling as the oracle. ALB-Dim is
the first algorithm to obtain such model selection guarantees. Prior state of art algorithm ModCB for
model selection with dimension as a measure of complexity was proposed in [70], with a finite set
of arms, where the regret guarantee was sub-optimal compared to the oracle. However, our regret
bounds for dimension, though matches the oracle, depends on the minimum non-zero coordinate
value and is thus not uniform over θ∗. Obtaining regret rates in this case that matches the oracle and
is uniform over all θ∗ is an interesting future work.

3. Empirical Validation - We conduct synthetic and real data experiments that demonstrate
superior performance of ALB compared to state of art methods such as OSOM [67] in the mixture
K armed MAB setting and OFUL [66] in the linear bandit setting. We further observe, that the
performance of ALB is close to that of the oracle algorithms that know the true complexity. This
indicates that the performance gains from ALB is fundamental, and not artifacts of mathematical
bounds.

Motivating Example: Our model selection framework is applicable to personalized news recom-
mendation platforms, that recommend one of K news outlets, to each of its users. The recommen-
dation decisions to any fixed user, can be modeled as an instance of a MAB; the arms are the K
different news outlets, and the platforms recommendation decision (to this user) on day t is the
arm played at time t. On each day t, each news outlet i reports a story, that can be modeled by the
vectors αi,t, which can be obtained by embedding the stories into a fixed dimension vector space by
some common embedding schemes. The reward obtained by the platform in recommending news
outlet i to this user on day t can be modeled as µi + 〈αi,t, θ∗〉, where µi captures the preference of
this user to news outlet i and the vector θ∗ captures the “interest” of the user. Thus, if a channel
i on day t, publishes a news article αi,t, that this user “likes”, then most likely the content αi,t is
“aligned” to θ∗ and have a large inner product 〈αi,t, θ∗〉. Different users on the platform however
may have different biases and θ∗. Some users have strong preference towards certain topics and will
read content written by any outlet on this topic (these users will have a large value of ‖θ∗‖). Other
users may be agnostic to topics, but may prefer a particular news outlet a lot (for ex. some users like
fox news exclusively or CNN exclusively, regardless of the topic). These users will have low ‖θ∗‖.

In such a multi-user recommendation application, we show that our algorithm ALB-Norm that
tailors the model class for each user separately is more effective (lesser regret), than to, employ
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a (non-adaptive) linear bandit algorithm for each user. We further show that our algorithms are
also more effective than state of art model selection algorithms such as OSOM [67], which posits
a ‘binary’ model - users either assign a 0 weight to topic or assign a potentially large weight
to topic. Furthermore the heterogeneous complexity in this application can also be captured by
the cardinality of the support of θ∗; different people are interested in different sub-vectors of θ∗

which the recommendation platform is not aware of apriori. In this context, our adaptive algorithm
ALB-Dim that tailors to the interest of the individual user achieves better performance compared to
non-adaptive linear bandit algorithms.

8.2 Related Work
Model selection for MAB are only recently being studied [230, 231], with [67], [70] being the
closest to our work. OSOM was proposed in [67] for model selection in the K armed mixture MAB
from two hypothesis classes —a “simple model” where ‖θ∗‖ = 0, or a “complex model”, where
0 < ‖θ∗‖ ≤ L. OSOM was shown to obtain a regret guarantee of O(log(T )) when the instance
is simple and Õ(L

√
T ) otherwise. We refine this to consider a continuum of hypothesis classes

and propose ALB-Norm, which achieves regret Õ(‖θ∗‖
√
T ), a superior guarantee (which we also

empirically verify) compared to OSOM. Model selection with dimension as a measure of complexity
was recently initiated in [70], where an algorithm ModCB was proposed. The setup considered in
[70] was that of contextual bandits [64] with a fixed and finite number of arms. ModCB in this
setting was shown to achieve a regret scaling that is sub-optimal compared to the oracle. In contrast,
we consider the linear bandit setting with a continuum of arms [66], and ALB-Dim achieves a regret
scaling matching that of an oracle. The continuum of arms allows ALB-Dim a finer exploration of
arms, that enables it to learn the support of θ∗ reliably and thus obtain regret matching that of the
oracle. However, our regret bounds depend on the magnitude of the minimum non-zero value of θ∗

and is thus not uniform over all β∗. Obtaining regret rates matching the oracle that holds uniformly
over all θ∗ is an interesting future work.

Corral was proposed in [230], by casting the optimal algorithm for each hypothesis class as
an expert, with the forecaster’s performance having low regret with respect to the best expert (best
model class). However, Corral can only handle finitely many hypothesis classes and is not suited
to our setting with continuum hypothesis classes.

Adaptive algorithms for linear bandits have also been studied in different contexts from ours.
The papers of [232, 233] consider problems where the arms have an unknown structure, and propose
algorithms adapting to this structure to yield low regret. The paper [234] proposes an algorithm in
the adversarial bandit setup that adapt to an unknown structure in the adversary’s loss sequence, to
obtain low regret. The paper of [235] consider adaptive algorithms, when the distribution changes
over time. In the context of online learning with full feedback, there have been several works
addressing model selection [236–239]. In the context of statistical learning, model selection has a
long line of work (for eg. [240], [241], [242], [243], [244] [245]). However, the bandit feedback in
our setups is much more challenging and a straightforward adaptation of algorithms developed for
either statistical learning or full information to the setting with bandit feedback is not feasible.
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8.3 Norm as a measure of Complexity

8.3.1 Problem Formulation
In this section, we formally define the problem. At each round t ∈ [T ], the player chooses one of
the K available arms. Each arm has a context {αi,t ∈ Rd}Ki=1 that changes over time t. Similar to
the standard stochastic contextual bandit framework, the context vectors for each arm is chosen
independently of all other arms and of the past time instances.

We assume that there exists an underlying parameter θ∗ ∈ Rd and biases {µ1, . . . , µK} each
taking value in [−1, 1] such that the mean reward of an arm is a linear function of the context of the
arm. The reward for playing arm i at time t is given by, gi,t = µi + 〈αi,t, θ∗〉+ ηi,t,, where {ηi,t}Tt=1

are i.i.d zero mean and σ sub-Gaussian noise. The context vector satisfies

E[αi,t|{αj,s, ηj,s}j∈[K],s∈[t−1]}] = 0,

and
E[αi,tα

>
i,t|{αj,s, ηj,s}j∈[K],s∈[t−1]}] < ρmin I.

The above setting is popularly known as stochastic contextual bandit [67]. In the special case of
θ∗ = 0, the above model reduces to gi,t = µi + ηi,t. Note that in this setting, the mean reward of
arms are fixed, and not dependent on the context. Hence, this corresponds to a simple multi-armed
bandit setup and standard algorithms (like UCB [63]) can be used as a learning rule. At round t,
we define i∗t = argmaxi∈[K] [µi + 〈θ∗, αi,t〉] as the best arm. Also let an algorithm play arm At at
round t. The regret of the algorithm upto time T is given by,

R(T ) =
T∑
s=1

[
µi∗s + 〈θ∗, αi∗s ,s〉 − µAs − 〈θ

∗, αAs,s〉
]
.

Throughout the paper, we use C,C1, .., c, c1, .. to denote positive universal constants, the value of
which may differ in different instances.

We define a new notion of complexity for stochastic linear bandits; and propose an algorithm that
adapts to it. We define ‖θ∗‖ as the problem complexity for the linear bandit instance. Note that if
‖θ∗‖ = 0, the linear bandit model reduces to the simple multi-armed bandit setting. Furthermore, the
cumulative regret R(T ) of linear bandit algorithms (like OFUL [66] and OSOM [67]) scales linearly
with ‖θ∗‖ ([67]). Hence, ‖θ∗‖ constitutes a natural notion of model complexity. In Algorithm 11,
we propose an adaptive scheme which adapts to the true complexity of the problem, ‖θ∗‖. Instead
of assuming an upper-bound on ‖θ∗‖, we use an initial exploration phase to obtain a rough estimate
of ‖θ∗‖ and then successively refine it over multiple epochs. The cumulative regret of our proposed
algorithm actually scales linearly with ‖θ∗‖.

8.3.2 Adaptive Linear Bandit (norm)—(ALB-Norm algorithm)
We present the adaptive scheme in Algorithm 11. Note that Algorithm 11 depends on the subroutine
OFUL+. Observe that at each iteration, we estimate the bias {µ1, . . . , µK} and θ∗ separately. The



CHAPTER 8. PROBLEM-COMPLEXITY ADAPTIVE MODEL SELECTION FOR
STOCHASTIC LINEAR BANDITS 239

Algorithm 11: Adaptive Linear Bandit (Norm)
1: Input: Initial exploration period τ , the phase length T1, δ1 > 0, δs > 0.
2: Select an arm at random, sample rewards 2τ times
3: Obtain initial estimate (b1) of ‖θ∗‖ according to Section 8.3.3
4: for t = 1, 2, . . . , K do
5: Play arm t, receive reward gt,t
6: end for
7: Define S = {gi,i}Ki=1

8: for epochs i = 1, 2 . . . , N do
9: Use S as pure-exploration reward

10: Play OFUL+
δi

(bi) until the end of epoch i (denoted by Ei)
11: At t = Ei, refine estimate of ‖θ∗‖ as, bi+1 = maxθ∈CEi ‖θ‖
12: Set Ti+1 = 2Ti, δi+1 = δi

2
.

13: end for
14: OFUL+

δ (b):

15: Input: Parameters b, δ > 0, number of rounds T̃
16: for t = 1, 2, . . . , T̃ do
17: Select the best arm estimate as jt = argmaxi∈[K]

[
maxθ∈Ct−1{µ̃i,t−1 + 〈αi,t, θ〉}

]
,

where µ̃i,t and Ct are given in Section 8.3.2.
18: Play arm jt, and update {µ̃i,t}Ki=1 and Ct
19: end for

estimation of the bias involves a simple sample mean estimate with upper confidence level, and the
estimation of θ∗ involves building a confidence set that shrinks over time.

In order to estimate θ∗, we use a variant of the popular OFUL [66] algorithm with arm bias.
We refer to the algorithm as OFUL+. Algorithm 11 is epoch based, and over multiple epochs, we
successively refine the estimate of ‖θ∗‖. We start with a rough over-estimate of ‖θ∗‖ (obtained from
a pure exploration phase), and based on the confidence set constructed at the end of the epoch, we
update the estimate of ‖θ∗‖. We argue that this approach indeed correctly estimates ‖θ∗‖ with high
probability over a sufficiently large time horizon T .

We now discuss the algorithm OFUL+. A variation of this was proposed in [67] in the context
of model selection between linear and standard multi-armed bandits. We use µ̃i,t to address the bias
term, which we define shortly. The parameters b and δ are used in the construction of the confidence
set Ct. Suppose OFUL+ is run for a total of T̃ rounds and plays arm As at time s. Let Ti(t) be the
number of times OFUL+ plays arm i until time t. Also, let b be the current estimate of ‖θ∗‖. We
define,

ḡi,t =
1

Ti(t)

t∑
s=1

gi,s1 {As = t}.
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With this, we have 1

µ̃i,t = ḡi,t + c(σ + b)

√
d

Ti(t)
log

(
1

δ

)
.

The confidence interval Ct, is defined as

Ct = {θ ∈ Rd : ‖θ − θ̂t‖ ≤ Kδ(b, t, T̃ )},

where θ̂t is the least squares estimate defined as

θ̂t =
(
α>K+1:tαK+1:t + I

)−1
α>K+1:tGK+1:t

with αK+1:t as a matrix having rows α>AK+1,K+1, . . . , α
>
At,t

and
GK+1:t = [gAK+1,K+1 − µ̃AK+1,K+1, . . . , gAt,t − µ̃At,t]

>. The radius of Ct is given by (see Ap-
pendix 8.8.1 for complete expression),

Kδ(b, t, T̃ ) = c
(σ
√
d+ b)

ρmin

√
t

√
log(KT̃/δ).

Lemma 2 of [67] shows that θ∗ ∈ Ct with probability 2 at least 1− 4δ.

8.3.3 Construction of initial estimate b1

We select an arm at random (without loss of generality, assume that this is arm 1), and sample
rewards (in an i.i.d fashion) for 2τ times, where τ > 0 is a parameter to be fed to the Algorithm 11.
In order to kill the bias of arm 1, we take pairwise differences and form: y(1) = g1,1− g1,2, y(2) =
g1,3 − g1,4 and so on. Augmenting y(.), we obtain: Y = X̃θ∗ + η̃, where the i-th row of X̃ is
(α1,2i+1 − α1,2i+2)>, the i-th element of η̃ is η1,2i+1 − η1,2i+2. Hence, the least squares estimate,

θ̂(`s) satisfies ‖θ̂(`s) − θ∗‖ ≤
√

2σ
√

d
τ

log(1/δs), with probability exceeding 1− δs ([13]). We set
the initial estimate

b1 = max{‖θ̂(`s)‖+
√

2σ

√
d

τ
log(1/δs), 1}

and this satisfies b1 ≥ ‖θ∗‖ and b1 ≥ 1 with probability at least 1− δs.

8.3.4 Regret Guarantee of Algorithm 11
We now obtain an upper bound on the cumulative R(T ) with Algorithm 11 with high probability.
For theoretical tractability, we assume that OFUL+ restarts at the start of each epoch. We have the
following lemma regarding the sequence {bi}∞i=1 of estimates of ‖θ∗‖:

1For complete expression, see Appendix 8.8.1
2There is a typo in the proof of regret in [67]. We correct the typo, and modify the definition of µ̃i,t and Kδ(b, t, T̃ ).

As a consequence, the high probability bounds change a little.
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Lemma 54. With probability exceeding 1− 8δ1 − δs, the sequence {bi}∞i=1 converges to ‖θ∗‖ at a
rate O( i

2i
), and we obtain bi ≤ (c1‖θ∗‖+ c2) for all i, provided T1 ≥ C1 (max{p, q} b1)2 d, where

C1 > 9, and p = [
14 log(

2KT1
δ1

)
√
ρmin

], q = [
2Cσ log(

2KT1
δ1

)
√
ρmin

].

Hence, the sequence converges to ‖θ∗‖ at an exponential rate. We have the following guarantee
on the cumulative regret R(T ):

Theorem 20. Suppose T1 > max{Tmin(δ, T ), C1 (max{p, q} b1)2 d}, whereC1 > 9 and Tmin(δ, T ) =
( 16
ρ2min

+ 8
3ρmin

) log(2dT
δ

). Then, with probability at least 1− 18δ1 − δs, we have

R(T ) ≤ C1(2τ +K)‖θ∗‖+ C(‖θ∗‖+ 1)(
√
K +

√
d)
√
T log(KT1/δ1) log(T/T1).

Remark 32. Note that the regret bound depends on the problem complexity ‖θ∗‖, and we prove
that Algorithm 11 adapts to this complexity. Ignoring the log factors, Algorithm 11 has a regret of
Õ((1 + ‖θ∗‖)(

√
K +

√
d)
√
T ) with high probability.

Remark 33. (Matches Linear Bandit algorithm) Note that the above bound matches the regret
guarantee of the linear bandit algorithm with bias as presented in [67].

Remark 34. (Matches UCB when θ∗ = 0) When θ∗ = 0 (the simplest model, without any contextual
information), Algorithm 1 recovers the minimax regret of UCB algorithm. Indeed, substituting
‖θ∗‖ = 0 in the above regret bound yields R(T ) = O(

√
KT ), with high probability, provided

K > d. Hence, we obtain the “best of both worlds” results with simple model (θ∗ = 0) and
contextual bandit model (θ∗ 6= 0).

8.4 Dimension as a Measure of Complexity - Continuum
Armed Setting

In this section, we consider the standard stochastic linear bandit model in d dimensions [66], with
the dimension as a measure of complexity. The setup in this section is almost identical to that
in Section 8.3.1, with the 0 arm biases and a continuum collection of arms denoted by the set
A := {x ∈ Rd : ‖x‖ ≤ 1}3 Thus, the mean reward from any arm x ∈ A is 〈x, θ∗〉, where ‖θ∗‖ ≤ 1.
We assume that θ∗ is d∗ ≤ d sparse, where d∗ is apriori unknown to the algorithm. Thus, unlike in
Section 8.3, there is no i.i.d. context sampling in this section. We consider a sequence of d nested
hypothesis classes, where each hypothesis class i ≤ d, models θ∗ as a i sparse vector. The goal of
the forecaster is to minimize the regret, namely R(T ) :=

∑T
t=1 [〈x∗t − xt, θ∗〉], where at any time

t, xt is the action recommended by an algorithm and x∗t = argmaxx∈A〈x, θ∗〉. The regret R(T )
measures the loss in reward of the forecaster with that of an oracle that knows θ∗ and thus can
compute x∗t at each time.

3Our algorithm can be applied to any compact set A ⊂ Rd, including the finite set as shown in Appendix 8.8.6.
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Algorithm 12: Adaptive Linear Bandit (Dimension)
1: Input: Initial Phase length T0 and slack δ > 0.
2: θ̂0 = 1, T−1 = 0
3: for Each epoch i ∈ {0, 1, 2, · · · } do
4: Ti = 25iT0, εi ← 1

2i
, δi ← δ

2i

5: Di := {i : |θ̂i| ≥ εi
2
}

6: for Times t ∈ {Ti−1 + 1, · · · , Ti} do
7: Play OFUL(1, δi) only restricted to coordinates in Di. Here δi is the probability slack

parameter and 1 represents ‖θ∗‖ ≤ 1.
8: end for
9: for Times t ∈ {Ti + 1, · · · , Ti + 5i

√
T0} do

10: Play an arm from the action set A chosen uniformly and independently at random.
11: end for
12: αi ∈ RSi×d with each row being the arm played during all random explorations in the past.
13: yi ∈ RSi with i-th entry being the observed reward at the i-th random exploration in the past
14: θ̂i+1 ← (αTi αi)

−1αiyi, is a d dimensional vector
15: end for

8.4.1 ALB-Dim Algorithm
The algorithm is parametrized by T0 ∈ N, which is given in Equation (8.1) in the sequel and slack
δ ∈ (0, 1). As in the previous case, ALB-Dim proceeds in phases numbered 0, 1, · · · which are
non-decreasing with time. At the beginning of each phase, ALB-Dim makes an estimate of the set
of non-zero coordinates of θ∗, which is kept fixed throughout the phase. Concretely, each phase i
is divided into two blocks - (i) a regret minimization block lasting 25iT0 time slots, (ii) followed
by a random exploration phase lasting 5id

√
T0e time slots. Thus, each phase i lasts for a total of

25iT0 + 5id
√
T0e time slots. At the beginning of each phase i ≥ 0, Di ⊆ [d] denotes the set of

‘active coordinates’, namely the estimate of the non-zero coordinates of θ∗. Subsequently, in the
regret minimization block of phase i, a fresh instance of OFUL [66] is spawned, with the dimensions
restricted only to the set Di and probability parameter δi := δ

2i
. In the random exploration phase, at

each time, one of the possible arms from the set A is played chosen uniformly and independently at
random. At the end of each phase i ≥ 0, ALB-Dim forms an estimate θ̂i+1 of θ∗, by solving a least
squares problem using all the random exploration samples collected till the end of phase i. The
active coordinate set Di+1, is then the coordinates of θ̂i+1 with magnitude exceeding 2−(i+1). The
pseudo-code is provided in Algorithm 12, where, ∀i ≥ 0, Si in lines 15 and 16 is the total number
of random-exploration samples in all phases upto and including i.

8.4.2 Main Result
We first specify, how to set the input parameter T0, as function of δ. For any N ≥ d, denote by AN
to be the N × d random matrix with each row being a vector sampled uniformly and independently
from the unit sphere in d dimensions. Denote by MN := 1

N
E[ATNAN ], and by λ

(N)
max, λ

(N)
min, to



CHAPTER 8. PROBLEM-COMPLEXITY ADAPTIVE MODEL SELECTION FOR
STOCHASTIC LINEAR BANDITS 243

be the largest and smallest eigenvalues of MN . Observe that as MN is positive semi-definite
(0 ≤ λ

(N)
min ≤ λ

(N)
max) and almost-surely full rank, i.e., P[λ

(N)
min > 0] = 1. The constant T0 is the

smallest integer such that

√
T0 ≥ max

(
32σ2

(λ
(d
√
T0e)

min )2
ln(2d/δ),

4

3

(6λ
(d
√
T0e)

max + λ
(d
√
T0e)

min )(d+ λ
(d
√
T0e)

max )

(λ
(d
√
T0e)

min )2
ln(2d/δ)

)
(8.1)

Remark 35. T0 in Equation (8.1) is chosen such that, at the end of phase 0, P[||θ̂0−θ∗||∞ ≥ 1/2] ≤ δ.

A formal statement of the Remark is provided in Lemma 55 in Appendix 8.8.2.

Theorem 21. Suppose Algorithm 12 is run with input parameters δ ∈ (0, 1), and T0 as given in
Equation (8.1), then with probability at-least 1− δ, the regret after a total of T arm-pulls satisfies

RT ≤
50

γ4.65
T0 + 25

√
T [1 + 4

√
d∗ ln(1 +

25T

d∗
)(1 + σ

√
2 ln(

T

T0δ
) + d∗ ln(1 +

25T

d∗
))].

The parameter γ > 0 is the minimum magnitude of the non-zero coordinate of θ∗, i.e., γ = min{|θ∗i | :
θ∗i 6= 0} and d∗ the sparsity of θ∗, i.e., d∗ = |{i : θ∗i 6= 0}|.

In order to parse this result, we give the following corollary.

Corollary 4. Suppose Algorithm 12 is run with input parameters δ ∈ (0, 1), and T0 = Õ
(
d2 ln2

(
1
δ

))
given in Equation (8.1), then with probability at-least 1− δ, the regret after T times satisfies

RT ≤ O(
d2

γ4.65
ln2(d/δ)) + Õ(d∗

√
T ).

Remark 36. The constants in the Theorem are not optimized. In particular, the exponent of γ can be
made arbitrarily close to 4, by setting εi = C−i in Line 4 of Algorithm 12, for some appropriately
large constant C > 1, and increasing Ti = (C ′)iT0, for appropriately large C ′ (C ′ ≈ C4).

Discussion - The regret of an oracle algorithm that knows the true complexity d∗ scales as Õ(d∗
√
T )

[68, 69], matching ALB-Dim’s regret, upto an additive constant independent of time. ALB-Dim is
the first algorithm to achieve such model selection guarantees. On the other hand, standard linear
bandit algorithms such as OFUL achieve a regret scaling Õ(d

√
T ), which is much larger compared

to that of ALB-Dim, especially when d∗ << d, and γ is a constant. Numerical simulations further
confirms this deduction, thereby indicating that our improvements are fundamental and not from
mathematical bounds. Corollary 4 also indicates that ALB-Dim has higher regret if γ is lower. A
small value of γ makes it harder to distinguish a non-zero coordinate from a zero coordinate, which
is reflected in the regret scaling. Nevertheless, this only affects the second order term as a constant,
and the dominant scaling term only depends on the true complexity d∗, and not on the underlying
dimension d. However, the regret guarantee is not uniform over all θ∗ as it depends on γ. Obtaining
regret rates matching the oracles and that hold uniformly over all θ∗ is an interesting avenue of
future work.
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8.5 Dimension as a Measure of Complexity - Finite Armed
Setting

8.5.1 Problem Setup
In this section, we consider the model selection problem for the setting with finitely many arms in the
framework studied in [70]. At each time t ∈ [T ], the forecaster is shown a context Xt ∈ X , where
X is some arbitrary ‘feature space’. The set of contexts (Xt)

T
t=1 are i.i.d. with Xt ∼ D, a probability

distribution over X that is known to the forecaster. Subsequently, the forecaster chooses an action
At ∈ A, where the set A := {1, · · · , K} are the K possible actions chosen by the forecaster. The
forecaster then receives a reward Yt := 〈θ∗, φM(Xt, At)〉+ηt. Here (ηt)

T
t=1 is an i.i.d. sequence of 0

mean sub-gaussian random variables with sub-gaussian parameter σ2 that is known to the forecaster.
The function4 φM : X ×A → Rd is a known feature map, and θ∗ ∈ Rd is an unknown vector. The
goal of the forecaster is to minimize its regret, namely R(T ) :=

∑T
t=1 E [〈A∗t − At, θ∗〉], where at

any time t, conditional on the context Xt, A∗t ∈ argmaxa∈A〈θ∗, φM(Xt, a)〉. Thus, A∗t is a random
variable as Xt is random.

To describe the model selection, we consider a sequence of M dimensions 1 ≤ d1 < d2, · · · <
dM := d and an associated set of feature maps (φm)Mm=1, where for any m ∈ [M ], φm(·, ·) :
X × A → Rdm , is a feature map embedding into dm dimensions. Moreover, these feature maps
are nested, namely, for all m ∈ [M − 1], for all x ∈ X and a ∈ A, the first dm coordinates of
φm+1(x, a) equals φm(x, a). The forecaster is assumed to have knowledge of these feature maps.
The unknown vector θ∗ is such that its first dm∗ coordinates are non-zero, while the rest are 0. The
forecaster does not know the true dimension dm∗ . If this were known, than standard contextual
bandit algorithms such as LinUCB [64] can guarantee a regret scaling as Õ(

√
dm∗T ). In this section,

we provide an algorithm in which, even when the forecaster is unaware of dm∗ , the regret scales
as Õ(

√
dm∗T ). However, this result is non uniform over all θ∗ as, we will show, depends on the

minimum non-zero coordinate value in θ∗.

Model Assumptions We will require some assumptions identical to the ones stated in [70]. Let
‖θ∗‖2 ≤ 1, which is known to the forecaster. The distribution D is assumed to be known to the
forecaster. Associated with the distribution D is a matrix ΣM := 1

K

∑
a∈A E

[
φM(x, a)φM(x, a)T

]
(where x ∼ D), where we assume its minimum eigen value λmin(ΣM) > 0 is strictly positive.
Further, we assume that, for all a ∈ A, the random variable φM(x, a) (where x ∼ D is random) is a
sub-gaussian random variable with (known) parameter τ 2.

8.5.2 ALB-Dim Algorithm
The algorithm in this case is identical to that of Algorithm 12, except with the difference that in
place of OFUL, we use SupLinRel of [246] as the black-box. The full details of the Algorithm
are provided in Appendix 8.8.6.

4Superscript M will become clear shortly



CHAPTER 8. PROBLEM-COMPLEXITY ADAPTIVE MODEL SELECTION FOR
STOCHASTIC LINEAR BANDITS 245

8.5.3 Main Result
For brevity, we only state the Corollary of our main Theorem (Theorem 22) which is stated in
Appendix 8.8.6.

Corollary 5. Suppose Algorithm 13 is run with input parameters δ ∈ (0, 1), and T0 = Õ
(
d2 ln2

(
1
δ

))
given in Equation (8.15) , then with probability at-least 1− δ, the regret after T times satisfies

RT ≤ O

(
d2

γ4.65
ln2(d/δ)τ 2 ln

(
TK

δ

))
+ Õ(

√
Td∗m),

where γ = min{|θ∗i | : θ∗i 6= 0} and d∗ the sparsity of θ∗.

Discussion - Our regret scaling (in time) matches that of an oracle that knows the true problem
complexity and thus obtains a regret scaling of Õ(

√
dm∗T ). This, thus improves on the rate

compared to that obtained in [70], whose regret scaling is sub-optimal compared to the oracle. On
the other hand however, our regret bound depends on γ and is thus not uniform over all θ∗, unlike
the bound in [70] that is uniform over θ∗. Thus, in general, our results are not directly comparable
to that of [70]. It is an interesting future work to close the gap and in particular, obtain the regret
matching that of an oracle to hold uniformly over all θ∗.

8.6 Simulations
Synthetic Experiments We compare ALB-Norm with the (non-adaptive) OFUL+ and an oracle
that knows the problem complexity apriori. The oracle just runs OFUL+ with the known problem
complexity. We choose the bias ∼ U [−1, 1], and the additive noise to be zero-mean Gaussian
random variable with variance 0.5. At each round of the learning algorithm, we sample the context
vectors from a d-dimensional standard Gaussian, N (0, Id). We select d = 50, the number of arms,
K = 75, and the initial epoch length as 100. In particular, we generate the true θ∗ in 2 different
ways: (i) ‖θ∗‖ = 0.1, but the initial estimate b1 = 10, and (ii) ‖θ∗‖ = 1, with the initial estimate
b1 = 10.

In panel (a) and (b) of Figure 8.1, we observe that, in setting (i), OFUL+ performs poorly owing
to the gap between ‖θ∗‖ and b1. On the other hand, ALB-Norm is sandwiched between the OFUL+

and the oracle. Similar things happen in setting (ii). In panel (c), we show that the norm estimates
of ALB-Norm improves over epochs, and converges to the true norm very quickly.

In panel (d)-(f) of Figure 8.1, we compare the performance of ALB-Dim with the OFUL ([66])
algorithm and an oracle who knows the true support of θ∗ apriori. For computational ease, we set
εi = 2−i in simulations. We select θ∗ to be d∗ = 20-sparse, with the smallest non-zero component,
γ = 0.12. We have 2 settings: (i) d = 500 and (ii) d = 200. In panel (d) and (e), we observe a
huge gap in cumulative regret between ALB-Dim and OFUL, thus showing the effectiveness of
dimension adaptation. In panel (f), we plot the successive dimension refinement over epochs. We
observe that within 4− 5 epochs, ALB-Dim finds the sparsity of θ∗.
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Figure 8.1: Synthetic and real-data experiments, validating the effectiveness of Algorithm 1 and 12.
All the results are averaged over 25 trials.

Real-data experiment Here, we evaluate the performance of ALB-Norm on Yahoo! ‘Learning
to Rank Challenge’ dataset ([247]). In particular, we use the file set2.test.txt, which consists
of 103174 rows and 702 columns. The first column denotes the rating, {0, 1, ., 4} given by the
user (which is taken as reward); the second column denotes the user id, and the rest 700 columns
denote the context of the user. After selecting 20, 000 rows and 50 columns at random (several
other random selections yield similar results), we cluster the data by running k means algorithm
with k = 500. We treat each cluster as a bandit arm with mean reward as the empirical mean of the
individual rating in the cluster, and the context as the centroid of the cluster. This way, we obtain a
bandit setting with K = 500 and d = 50.

Assuming (reward, context) coming from a linear model (with bias, see Section 6.2), we use
ALB-Norm to estimate the bias and θ∗ simultaneously. In panel (g), we plot the cumulative reward
accumulated over time. We observe that the reward is accumulated over time in an almost linear
fashion. We also plot the norm estimate, ‖θ∗‖ over epochs in panel (h), starting with an initial
estimate of 25. We observe that within 6 epochs the estimate stabilizes to a value of 11.1. This
shows that ALB-Norm adapts to the actual ‖θ∗‖.

Comparison of ALB (dim): When θ∗ is sparse, we compare ALB-Dim with 3 baselines: (i) the
ModCB algorithm of [70] (ii) the Stochastic Corral algorithm of [248] and (iii) an oracle which
knows the support of θ∗. We select θ∗ to be d∗ = 20 sparse, with dimension d = 200 and d = 500.
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Figure 8.2: Comparison with Stochastic Corral and ModCB

The smallest non-zero component of θ∗ is 0.12. For ModCB, we use ILOVETOCONBANDITS
algorithm, similar to [70]. We select the cardinality of action set as 2 and select the sub-Gaussian
parameter of the embedding as unity. In Figure 8.2, we observe that, the regret of ALB (dim) is better
than ModCB and Stochastic Corral. The theoretical regret bound for ModCB scales as O(T 2/3)
(which is much larger than the ALB-Dim algorithm we propose), and Figure 1(c), validates this.
The Stochastic Corral algorithm treats the base algorithms as bandit arms (with bandit feedback), as
opposed to ALB-Dim which, at each arm-pull, updates the information about all the base algorithms.
Thus, (Figs 1(d), 1(e)), ALB-Dim has a superior performance compared to Stochastic Corral.

8.7 Conclusion
In this paper, we considered refined model selection for linear bandits, by defining new notions of
complexity. We gave two novel algorithms ALB-Norm and ALB-Dim that successively refines the
hypothesis class and achieves model selection guarantees; regret scaling in the complexity of the
smallest class containing the true model. This is the first such algorithm to achieve regret scaling
similar to an oracle that knew the problem complexity. An interesting direction of future work
is to derive regret bounds for the case when the dimension is a measure of complexity, that hold
uniformly over all θ∗, i.e., have no explicit dependence on γ.

8.8 Proofs

8.8.1 Detailed Description of OFUL+

We now discuss the algorithm OFUL+. A variation of this was proposed in [67] in the context
of model selection between linear and standard multi-armed bandits. As seen in the OFUL+ sub-
routine of Algorithm 11, we use µ̃i,t to address the bias term in the observation, which we define
shortly. The parameters b and δ appears in the construction of the confidence set and the regret
guarantee. Furthermore, assume that the algorithm OFUL+ is run for T̃ rounds.
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Let As be the arm index played at time instant s and Ti(t) be the number of times we play arm
i until time t. Hence Ti(t) =

∑t
s=1 1 {As = i}. Also, let b be the current estimate of ‖θ∗‖. Also

define,

ḡi,t =
1

Ti(t)

t∑
s=1

gi,s1 {As = t}.

With this, we have

µ̃i,t = ḡi,t + σ

[
1 + Ti(t)

T 2
i (t)

(
1 + 2 log

(
K(1 + Ti(t))

1/2

δ

))]1/2

+ b

√
2d

Ti(t)
log

(
1

δ

)
(8.2)

In order to specify the confidence interval Ct, we first talk about the least squares estimate θ̂ first.
Using the notation of [67], we define

θ̂t =
(
α>K+1:tαK+1:t + I

)−1
α>K+1:tGK+1:t

where αK+1:t is a matrix with rows α>AK+1,K+1, . . . , α
>
At,t

and
GK+1:t = [gAK+1,K+1− µ̃AK+1,K+1, . . . , gAt,t− µ̃At,t]>. With this, the confidence interval is defined
as

Ct =
{
θ ∈ Rd : ‖θ − θ̂t‖ ≤ Kδ(b, t, T̃ )

}
, (8.3)

and Lemma 2 of [67] shows that θ∗ ∈ Ct with probability at least 1− 4δ.
We now define the quantity Kδ(b, t, T̃ ). Note that we track the dependence on the complexity

parameter ‖θ∗‖. We have

Tmin(δ, T̃ ) =

(
16

ρ2
min

+
8

3ρmin

)
log

(
2dT̃

δ

)
,

Mδ(b, t) = b+

√
2σ2

(
d

2
log

(
1 +

t

d

)
+ log

(
1

δ

))
, (8.4)

Υδ(b, t, T̃ ) =
10

3

b+ 2 + σ

√√√√1 + 2 log

(
2KT̃

δ

)
×

log

(
2KT̃

δ

)
+

√√√√t log

(
2KT̃

δ

)
+ log2

(
2KT̃

δ

) , (8.5)

Kδ(b, t, T̃ ) =

Mδ(b, t) + Υδ(b, t, T̃ ) if 1 < t < Tmin,
Mδ(b,t)√
1+ρmin t/2

+ Υδ(b,t,T̃ )
1+ρmin t/2

if t > Tmin.
(8.6)
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8.8.2 Proofs of the main results
In this section, we collect the proof of our main results. We start with the norm-based complexity
measure.

8.8.3 Proof of Theorem 20
We first take Lemma 54 for granted and conclude the proof of Theorem 20 using the lemma.
Suppose we play Algorithm 11 for N epochs. The cumulative regret is given by

R(T ) ≤ C1(2τ +K)‖θ∗‖+
N∑
i=1

R(δi, bi)(Ti),

where R(δi, bi)(Ti) is the cumulative regret of the OFUL+
δi

(bi) in the i-th epoch. As seen (by
tracking the dependence on ‖θ∗‖) in [67], the cumulative regret of OFUL+

δi
(bi) scales linearly with

bi. Hence, we obtain

R(T ) ≤
N∑
i=1

biR(δi, 1)(Ti).

Using Lemma 1, we obtain, with probability at least 1− 8δ1,

R(T ) ≤ C1(2τ +K)‖θ∗‖+ (c1‖θ∗‖+ c2)
N∑
i=1

R(δi, 1)(Ti)

Theorem 3 of [67] gives,

R(δi, 1)(Ti) ≤ C(
√
K +

√
d)
√
Ti log

(
KTi
δi

)
(8.7)

with probability exceeding 1− 5δi. With the doubling trick, we have

Ti = 2i−1T1, δi =
δ1

2i−1
.

Substituting, we obtain

R(δi, 1)(Ti) ≤ C1(
√
K +

√
d)
√
Ti log

(
KTi
δi

)[
(2i− 2) log

(
KT1

δ1

)]
with probability at least 1− 5δi.

Using the above expression, we obtain

R(T ) ≤ C1(2τ +K)‖θ∗‖+ (C2‖θ∗‖+ C3)
N∑
i=1

(
√
K +

√
d)
√
Ti

[
(2i− 2) log

(
KT1

δ1

)]
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with probability

≥ 1− 8δ1 − 5δ1

(
1 +

1

2
+ ..N -th term

)
≥ 1− 8δ1 − 5δ1

(
1 +

1

2
+ ...

)
= 1− 8δ1 − 10δ1

= 1− 18δ1,

where the term 8δ1 comes from Lemma 54. Also, from the doubling principle, we obtain

N∑
i=1

2i−1T1 = T ⇒ N = log2

(
1 +

T

T1

)
.

Using the above expression, we obtain

R(T ) ≤ C1(2τ +K)‖θ∗‖+ (C2‖θ∗‖+ C3)
N∑
i=1

(
√
K +

√
d)
√
Ti

[
(2i− 2) log

(
KT1

δ1

)]

≤ C1(2τ +K)‖θ∗‖+ 2(C2‖θ∗‖+ C3)(
√
K +

√
d) log

(
KT1

δ1

) N∑
i=1

i
√
Ti

≤ C1(2τ +K)‖θ∗‖+ 2(C2‖θ∗‖+ C3)(
√
K +

√
d) log

(
KT1

δ1

)
N

N∑
i=1

√
Ti

≤ C1(2τ +K)‖θ∗‖+ 2(C2‖θ∗‖+ C3)(
√
K +

√
d) log

(
KT1

δ1

)
log

(
T

T1

) N∑
i=1

√
Ti

≤ C1(2τ +K)‖θ∗‖+ C(‖θ∗‖+ 1)(
√
K +

√
d) log

(
KT1

δ1

)
log

(
T

T1

)√
T ,

where the last inequality follows from the fact that

N∑
i=1

√
Ti =

√
TN

(
1 +

1√
2

+
1

2
+ ..N -th term

)
≤
√
TN

(
1 +

1√
2

+
1

2
+ ...

)
=

√
2√

2− 1

√
TN

≤
√

2√
2− 1

√
T .

The above regret bound holds with probability at least 1− 18δ1.
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8.8.4 Proof of Lemma 54
Let us consider the i-th epoch, and let θ̂Ei be the least square estimate of θ∗ at the end of epoch i.
From the above section, the confidence interval at the end of epoch i, is given by

CEi =
{
θ ∈ Rd : ‖θ − θ̂Ei‖ ≤ Kδi(bi, Ti, Ti)

}
where we play OFUL+

δi
(bi) during the i-th epoch, and Ti is the number of total rounds in the i-th

epoch. By choosing T1 > Tmin(δ, T ), we ensure that Ti ≥ Tmin(δ, Ti). From equation (8.6), and
ignoring the non-dominant terms, we obtain

Kδi(bi, Ti, Ti) =
Mδi(bi, Ti)√
1 + ρmin Ti/2

+
Υδi(bi, Ti, Ti)

1 + ρmin Ti/2
,

with

Mδi(bi, Ti) ≤ bi + c1σ
√
d log

(
Ti
dδi

)
and

Υδi(bi, Ti, Ti) = 4bi
√
Ti log

(
2KTi
δi

)
+ c2σ

√
Ti log

(
2KTi
δi

)
Substituting the values, considering the dominating terms, and for a sufficiently large Ti, we obtain

Kδi(bi, Ti, Ti) ≤
7bi log

(
2KTi
δi

)
√
ρmin Ti

+ C
σ
√
d√

ρmin Ti
log

(
2KTi
δi

)

≤
7bi log

(
2KT
δi

)
√
ρmin Ti

+ C
σ
√
d√

ρmin Ti
log

(
2KTi
δi

)
where C is an universal constant. From Lemma 2 of [67], we know that θ∗ ∈ CEi with probability at
least 1− 4δi. Hence, we obtain

‖θ̂Ei‖ ≤ ‖θ∗‖+ 2Kδi(bi, Ti, Ti) ≤ ‖θ∗‖+
14bi log

(
2KTi
δi

)
√
ρmin Ti

+ 2C
σ
√
d√

ρmin Ti
log

(
2KTi
δi

)
Recall from Algorithm 11 that at the end of the i-th epoch, we set the length Ti+1 = 2Ti, and the
estimate of ‖θ∗‖ is set to

bi+1 = max
θ∈CEi

‖θ‖.
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From the definition of CEi , we obtain

bi+1 = ‖θ̂Ei‖+Kδi(bi, Ti, Ti) ≤
7bi log

(
2KTi
δi

)
√
ρmin Ti

+ C
σ
√
d√

ρmin Ti
log

(
2KTi
δi

)
.

Re-writing the above expression, with probability at least 1− 4δi, we obtain

bi+1 ≤ ‖θ∗‖+

7 log
(

2KTi
δi

)
√
ρmin

 bi√
Ti

+

Cσ log
(

2KTi
δi

)
√
ρmin

 √d√
Ti

≤ ‖θ∗‖+ ip
bi√
Ti

+ iq

√
d√
Ti

≤ ‖θ∗‖+ ip
bi

2
i−1
2

√
T1

+ iq

√
d

2
i−1
2

√
T1

(8.8)

where we use the fact that δi = δ1
2i−1 and Ti = 2

i−1
2 T1, and we have

p =

14 log
(

2KT1
δ1

)
√
ρmin


and

q =

2Cσ log
(

2KT1
δ1

)
√
ρmin

 .

Hence, we obtain

bi+1 − bi ≤ ‖θ∗‖+ iq

√
d

2
i−1
2

√
T1

−
(

1− ip 1

2
i−1
2

√
T1

)
bi.

From the construction of bi, we have −bi ≤ −‖θ∗‖. Hence provided

T1 ≥
i2p2

2i−1
,

which is equivalent to the condition T1 ≥ 3p2 (using the fact that i2

2i−1 ≤ 3 for i ≥ 1), we obtain

bi+1 − bi ≤
(
ip

1

2
i−1
2

√
T1

)
‖θ∗‖+ iq

√
d

2
i−1
2

√
T1

.

From the above expression, we obtain

sup
i
bi <∞.
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with probability

≥ 1− 4δ1

(
1 +

1

2
+

1

4
+ ...

)
= 1− 8δ1.

Invoking Equation (8.8) and using the above fact in conjunction yield (with probability at least
1− 8δ1)

lim
i→∞

bi ≤ ‖θ∗‖.

However, from construction bi ≥ ‖θ∗‖. Using this, along with the above equation, we obtain

lim
i→∞

bi = ‖θ∗‖.

with probability exceeding 1 − 8δ1. So, the sequence {b0, b1, ...} converges to ‖θ∗‖ with high
probability, and hence our successive refinement algorithm is consistent.

Rate of Convergence: Since

bi − bi−1 = Õ
(
i

2i

)
, (8.9)

with probability greater than 1− 4δi, the rate of convergence of the sequence {bi}∞i=0 is exponential
in the number of epochs.

Uniform upper bound on bi for all i: We now compute a uniform upper bound on bi for all i.

Consider the sequence

{
i

2
i−1
2

}∞
i=1

, and let tj denote the j-th term of the sequence. It is easy to

check that supi ti = 1.5, and that the sequence {ti}∞i=1 is convergent. With this new notation, we
have

b2 ≤ ‖θ∗‖+ t1
pb1√
T1

+ t1
q
√
d√
T1

.

with probability exceeding 1− 4δ1. Similarly, for b3, we have

b3 ≤ ‖θ∗‖+ t2
pb1√
T1

+ t2
q
√
d√
T1

≤
(

1 + t2
p√
T1

)
‖θ∗‖+

(
t1t2

p√
T1

p√
T1

b1

)
+

(
t1t2

p√
T1

q
√
d√
T1

+ t2
q
√
d√
T1

)
.
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with probability at least 1− 4δ1− 4δ2 = 1− 6δ1. Similarly, we write expressions for b4, b5, .... Now,
provided T1 ≥ C1 (max{p, q} b1)2 d, where C1 > 9 is a sufficiently large constant, the expression
for bi can be upper-bounded as

bi ≤ (c1‖θ∗‖+ c2) , (8.10)

with probability

≥ 1− 4δ1

(
1 +

1

2
+

1

4
+ ...upto i-th term

)
≥ 1− 4δ1

(
1 +

1

2
+

1

4
+ ...

)
= 1− 8δ1.

Here c1 and c2 are constants, and are obtained from summing an infinite geometric series with
decaying step size. We also use the fact that b1 ≥ 1, and the fact that δi = δ1

2i−1 .

8.8.5 Proof of Theorem 21
We shall need the following lemma from [249], on the behaviour of linear regression estimates.

Lemma 55. If M ≥ d and satisfies M = O
((

1
ε2

+ d
)

ln
(

1
δ

))
, and θ̂(M) is the least-squares

estimate of θ∗, using the M random samples for feature, where each feature is chosen uniformly
and independently on the unit sphere in d dimensions, then with probability 1, θ̂ is well defined (the
least squares regression has an unique solution). Furthermore,

P[||θ̂(M) − θ∗||∞ ≥ ε] ≤ δ.

We shall now apply the theorem as follows. Denote by θ̂i to be the estimate of θ∗ at the beginning
of any phase i, using all the samples from random explorations in all phases less than or equal to
i− 1.

Remark 37. The choice T0 := O
(
d2 ln2

(
1
δ

))
in Equation (8.1) is chosen such that from Lemma 56,

we have that

P
[
||θ̂(d

√
T0e) − θ∗||∞ ≥

1

2

]
≤ δ

Lemma 56. Suppose T0 = O
(
d2 ln2

(
1
δ

))
is set according to Equation (8.1). Then, for all phases

i ≥ 4,

P
[
||θ̂i − θ∗||∞ ≥ 2−i

]
≤ δ

2i
, (8.11)
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where θ̂i is the estimate of θ∗ obtained by solving the least squares estimate using all random
exploration samples until the beginning of phase i.

Proof. The above lemma follows directly from Lemma 55. Lemma 55 gives that if θ̂i is formed
by solving the least squares estimate with at-least Mi := O

(
(4i + d) ln

(
2i

δ

))
samples, then the

guarantee in Equation (8.11) holds. However, as T0 = O
(
(d+ 1) ln

(
2
δ

))
, we have naturally that

Mi ≤ 4ii
√
T0. The proof is concluded if we show that at the beginning of phase i ≥ 4, the total

number of random explorations performed by the algorithm exceeds i4id
√
T0e. Notice that at the

beginning of any phase i ≥ 4, the total number of random explorations that have been performed is

i−1∑
j=0

5id
√
T0e = d

√
T0e

5i − 1

4
,

≥ i4id
√
T0e,

where the last inequality holds for all i ≥ 4.

The following corollary follows from a straightforward union bound.

Corollary 6.

P

[⋂
i≥4

||
{
θ̂i − θ∗||∞ ≤ 2−i

}]
≥ 1− δ.

Proof. This follows from a simple union bound as follows.

P

[⋂
i≥4

{
||θ̂i − θ∗||∞ ≤ 2−i

}]
= 1− P

[⋃
i≥4

{
||θ̂i − θ∗||∞ ≥ 2−i

}]
,

≥ 1−
∑
i≥4

P
[
||θ̂i − θ∗||∞ ≥ 2−i

]
,

≥ 1−
∑
i≥4

δ

2i
,

≥ 1−
∑
i≥2

δ

2i
,

= 1− δ

2
.

We are now ready to conclude the proof of Theorem 21.

□ 

□ 
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Proof of Theorem 21. We know from Corollary 6, that with probability at-least 1 − δ, for all
phases i ≥ 4, we have ||θ̂i − θ∗||∞ ≤ 2−i. Call this event E . Now, consider the phase i(γ) :=

max
(

4, log2

(
1
γ

))
. Now, when event E holds, then for all phases i ≥ i(γ), Di is the correct set of

d∗ non-zero coordinates of θ∗. Thus, with probability at-least 1− δ, the total regret upto time T can
be upper bounded as follows

RT ≤
i(γ)−1∑
j=0

(
25iT0 + 5id

√
T0e
)

+

⌈
log25

(
T
T0

)⌉
∑
j≥i(γ)

Regret(OFUL(1, δi; 25iT0)

+

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

5jd
√
T0e. (8.12)

The term Regret(OFUL(L, δ, T ) denotes the regret of the OFUL algorithm [66], when run with
parameters L ∈ R+, such that ‖θ∗‖ ≤ L, and δ ∈ (0, 1) denotes the probability slack and T is the

time horizon. Equation (8.12) follows, since the total number of phases is at-most
⌈

log25

(
T
T0

)⌉
.

Standard result from [66] give us that, with probability at-least 1− δ, we have

Regret(OFUL(1, δ;T ) ≤ 4

√
Td∗ ln

(
1 +

T

d∗

)(
1 + σ

√
2 ln

(
1

δ

)
+ d∗ ln

(
1 +

T

d

))
.

Thus, we know that with probability at-least 1−
∑

i≥4 δi ≥ 1− δ
2
, for all phases i ≥ i(γ), the regret

in the exploration phase satisfies

Regret(OFUL(1, δi; 25iT0) ≤ 4

√
d∗25iT0 ln

(
1 +

25iT0

d∗

)

×

(
1 + σ

√
2 ln

(
2i

δ

)
+ d∗ ln

(
1 +

25iT0

d∗

))
. (8.13)

In particular, for all phases i ∈ [i(γ), dlog25

(
T
T0

)
], with probability at-least 1− δ

2
, we have

Regret(OFUL(1, δi; 25iT0) ≤ 4

√
d∗25iT0 ln

(
1 +

25T

d∗

)

×

(
1 + σ

√
2 ln

(
T

T0δ

)
+ d∗ ln

(
1 +

25T

d∗

))
,

= C(T, δ, d∗)
√

25iT0, (8.14)
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where the constant captures all the terms that only depend on T , δ and d∗. We can write that constant
as

C(T, δ, d∗) = 4

√
d∗ ln

(
1 +

25T

d∗

)(
1 + σ

√
2 ln

(
T

T0δ

)
+ d∗ ln

(
1 +

25T

d∗

))
.

Equation (8.14) follows, by substituting i ≤ log25

(
T
T0

)
in all terms except the first 25i term in

Equation (8.13). As Equations (8.14) and (8.12) each hold with probability at-least 1− δ
2
, we can

combine them to get that with probability at-least 1− δ,

RT ≤ 2T025i(γ) +

log25

(
T
T0

)
+1∑

j=0

C(T, δ, d∗)
√

25jT0 + 25d
√
T0e5

log25

(
T
T0

)
,

≤ 2T025i(γ) + 25
√
T + C(T, δ, d∗)

log25

(
T
T0

)
+1∑

j=0

√
25jT0,

(a)

≤ 50T0
2

γ4.65
+ 25
√
T + 25

√
TC(T, δ, d∗),

= O

(
d2

γ4.65
ln2

(
1

δ

))
+ Õ

(
d∗

√
T ln

(
1

δ

))
.

Step (a) follows from 25 ≤ 24.65.

8.8.6 ALB-Dim for Stochastic Contextual Bandits with Finite Arms

8.8.7 ALB-Dim Algorithm for the Finite Armed Case
The algorithm given in Algorithm 13 is identical to the earlier Algorithm 12, except in Line 8, this
algorithm uses SupLinRel [246] as opposed to OFUL used in the previous algorithm. In practice,
one could also use LinUCB [64] in place of SupLinRel. However, we choose to present the
theoretical argument using SupLinRel, as unlike LinUCB, has an explicit closed form regret
bound [246]. The pseudocode is provided in Algorithm 13.

In phase i ∈ N, the SupLinRel algorithm is instantiated with input parameter 25iT0 denoting
the time horizon, slack parameter δi ∈ (0, 1), dimension dMi

and feature scaling b(δ). We explain
the role of these input parameters. The dimension ensures that SupLinRel plays from the restricted
dimension dMi

. The feature scaling implies that when a context x ∈ X is presented to the algorithm,

the set of K feature vectors, each of which is dMi
dimensional are φ

dMi (x,1)
b(δ)

, · · · , φ
dMi (x,K)
b(δ)

. The

□ 
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Algorithm 13: Adaptive Linear Bandit (Dimension) with Finitely Many arms
1: Input: Initial Phase length T0 and slack δ > 0.
2: β̂0 = 1, T−1 = 0
3: for Each epoch i ∈ {0, 1, 2, · · · } do
4: Ti = 25iT0, εi ← 1

2i
, δi ← δ

2i

5: Di := {i : |β̂i| ≥ εi
2
}

6: Mi := inf{m : dm ≥ maxDi}.
7: for Times t ∈ {Ti−1 + 1, · · · , Ti} do
8: Play according to SupLinRel of [246] with time horizon of 25iT0 with parameters

δi ∈ (0, 1), dimension dMi
and feature scaling b(δ) := O

(
τ
√

log
(
TK
δ

))
.

9: end for
10: for Times t ∈ {Ti + 1, · · · , Ti + 5i

√
T0} do

11: Play an arm from the action set A chosen uniformly and independently at random.
12: end for
13: αi ∈ RSi×d with each row being the arm played during all random explorations in the past.
14: yi ∈ RSi with i-th entry being the observed reward at the i-th random exploration in the past
15: β̂i+1 ← (αTi αi)

−1αiyi, is a d dimensional vector
16: end for

constant b(δ) := O
(
τ
√

log
(
TK
δ

))
is chosen such that

P

[
sup

t∈[0,T ],a∈A
‖φM(xt, a)‖2 ≥ b(δ)

]
≤ δ

4
.

Such a constant exists since (xt)t∈[0,T ] are i.i.d. and φM(x, a) is a sub-gaussian random variable
with parameter 4τ 2, for all a ∈ A. Similar idea was used in [70].

8.8.8 Regret Guarantee for Algorithm 13
In order to specify a regret guarantee, we will need to specify the value of T0. We do so as before.
For anyN , denote by λ(N)

max and λ(N)
min to be the maximum and minimum eigen values of the following

matrix: ΣN := E
[

1
K

∑K
j=1

∑N
t=1 φ

M(xt, j)φ
M(xt, j)

T
]
, where the expectation is with respect to

(xt)t∈[T ] which is an i.i.d. sequence with distribution D. First, given the distribution of x ∼ D, one
can (in principle) compute λ(N)

max and λ(N)
min for any N ≥ 1. Furthermore, from the assumption on D,

λ
(N)
min = Õ

(
1√
d

)
> 0 for all N ≥ 1. Choose T0 ∈ N to be the smallest integer such that

√
T0 ≥ b(δ) max

(
32σ2

(λ
(d
√
T0e)

min )2
ln(2d/δ),

4

3

(6λ
(d
√
T0e)

max + λ
(d
√
T0e)

min )(d+ λ
(d
√
T0e)

max )

(λ
(d
√
T0e)

min )2
ln(2d/δ)

)
.

(8.15)
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As before, it is easy to see that

T0 = O

(
d2 ln2

(
1

δ

)
τ 2 ln

(
TK

δ

))
.

Furthermore, following the same reasoning as in Lemmas 56 and 55, one can verify that for all
i ≥ 4, P

[
‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

2i
.

Theorem 22. Suppose Algorithm 13 is run with input parameters δ ∈ (0, 1), and T0 as given in
Equation (8.15), then with probability at-least 1− δ, the regret after a total of T arm-pulls satisfies

RT ≤ 2T0 max

(
254,

2

γ4.65

)
+ 308(1 + ln(2KT lnT ))3/2

√
Tdm∗ + 100

√
T .

The parameter γ > 0 is the minimum magnitude of the non-zero coordinate of β∗, i.e., γ =
min{|β∗i | : β∗i 6= 0}.

In order to parse the above theorem, the following corollary is presented.

Corollary 7. Suppose Algorithm 13 is run with input parameters δ ∈ (0, 1), and T0 = Õ
(
d2 ln2

(
1
δ

))
given in Equation (8.15) , then with probability at-least 1− δ, the regret after T times satisfies

RT ≤ O

(
d2

γ4.65
ln2(d/δ)τ 2 ln

(
TK

δ

))
+ Õ(

√
Td∗m).

Proof of Theorem 22. The proof proceeds identical to that of Theorem 21. Observe from Lemmas
55 and 56, that the choice of T0 is such that for all phases i ≥ 1, the estimate P

[
‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤

δ
2i

. Thus, from an union bound, we can conclude that

P
[
∪i≥4‖β̂i−1 − β∗‖∞ ≥ 2−i

]
≤ δ

4
.

Thus at this stage, with probability at-least 1− δ
2
, the following events holds.

• supt∈[0,T ],a∈A ‖φM(xt, a)‖2 ≤ b(δ)

• ‖β̂i−1 − β∗‖∞ ≤ 2−i, for all i ≥ 4.

Call these events as E . As before, let γ > 0 be the smallest value of the non-zero coordinate of β∗.
Denote by the phase i(γ) := max

(
4, log2

(
2
γ

))
. Thus, under the event E , for all phases i ≥ i(γ),

the dimension dMi
= d∗m, i.e., the SupLinRel is run with the correct set of dimensions.
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It thus remains to bound the error by summing over the phases, which is done identical to that
in Theorem 21. With probability, at-least 1− δ

2
−
∑

i≥4 δi ≥ 1− δ,

RT ≤
i(γ)−1∑
j=0

(
25jT0 + 5j

√
T0

)
+

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

Regret(SupLinRel)(25iT0, δi, dMi,b(δ))

+

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

5j
√
T0,

where Regret(SupLinRel)(25iT0, δi, dMi,b(δ)) ≤ 44(1 + ln(2K25iT0 ln 25iT0))3/2
√

25iT0dMi
+

2
√

25iT0. This expression follows from Theorem 6 in [246]. We now use this to bound each of
the three terms in the display above. Notice from straightforward calculations that the first term is

bounded by 2T025i(γ) and the last term is bounded above by 25d
√
T0e5

log25

(
T
T0

)
respectively. We

now bound the middle term as⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

Reg(SupLinRel)(25jT0, δi, d
∗
m, b(δ))

≤ b(δ)



⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

44(1 + ln(2K25iT0 ln 25iT0))3/2
√

25iT0dMi
+ 2
√

25iT0

 .

The first summation can be bounded as⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

44(1 + ln(2K25iT0 ln 25iT0))3/2
√

25iT0dMi

≤

⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

44(1 + ln(2KT lnT ))3/2
√

25iT0d∗m,

≤ 44(1 + ln(2KT lnT ))3/275
log25

(
T
T0

)√
T0d∗m,

= 308(1 + ln(2KT lnT ))3/2
√
Td∗m,
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and the second by ⌈
log25

(
T
T0

)⌉
∑
j=i(γ)

2
√

25iT0 ≤ 50
√
T .

Thus, with probability at-least 1− δ, the regret of Algorithm 13 satisfies

RT ≤ 2T025i(γ) + 308(1 + ln(2KT lnT ))3/2
√
Td∗m + 100

√
T ,

where i(γ) := max
(

4, log2

(
2
γ

))
. Thus,

RT ≤ 2T0 max

(
254,

2

γ4.65

)
+ 308(1 + ln(2KT lnT ))3/2

√
Td∗m + 100

√
T ,

as 25 ≤ 24.65

□ 
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Chapter 9

Model Selection for Contextual Bandits
Beyond Linear Structure

In this chapter, we focus on a provable model selection guarantee for the (generic) stochastic
contextual bandit problem. The results of Chapter 8 holds only for linear contextual bandits. The
linear parameterization is quite restrictive. here, we remove the linear assumption and solve a
non parametric problem. In particular we assume that we are given a set of M nested function
classes and the reward function lies in one of them. Via careful exploration, we show that with high
probability the correct model class identification is possible with minimal cost 9an additive constant
in the regret term). We first discuss the contextual model selection problem.

9.1 Problem formulation
LetA be the set of K actions, and let X be the set of d dimensional contexts. At time t, Nature picks
(xt, rt) in an i.i.d fashion, where xt ∈ X and a context dependent rt ∈ [0, 1]K . Upon observing
the context, the agent takes action at ∈ A, and obtains the reward of rt(at). Note that, the reward
rt(at) depends on the context xt and the action at. Furthermore, we have the following realizibility
assumption:

Assumption 21. (Realizibility:) There exists a predictor f ∗ ∈ F , such that E[rt(a)|x] = f ∗(x, a),
for all x and a.

Note that the realizibility assumption is standard in the literature ([70, 71]. Also, in the
contextual bandit literature ([71, 72]) it is assumed that the true regression function f ∗ is unknown,
but we know the function class F where it belongs. Hence, we pay some price (denoted by the
regret) for this. To set up notation, for any f ∈ F , we define a policy induced by the function,
πf (x) = argmina∈Af(x, a). So, we need to compete with the policy induced by the true regressor
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πf∗ . We define the regret over T rounds as the following:

R(T ) =
T∑
t=1

[rt(πf∗(xt))− rt(at)].

[71] proposed and analyzed a contextual bandit algorithm, namely FALCON (stands for 1 FAst Least-
squares-regression-oracle CONtextual bandits), which gives provable guarantees for contextual
bandits beyond linear structure. FALCON is an epoch based algorithm, and depends only on an
offline regression oracle, which outputs an estimate f̂ of the regression function f ∗ at the beginning
of each epoch. Using a randomization scheme, that depends on the inverse gap with respect to the
estimate of the best action, it is showed that under the realizibility assumption, with probability
1− δ, FALCON yields a regret of

R(T ) ≤ O(
√
KT log(|F|T/δ).

Although the above result makes sense only for the finite F , an extension to the infinite F is possible
and was addressed in the same paper (see [71]).

We study the problem of model selection for contextual bandits. Hence, in contrast to the
standard setting we do not know F . Instead, we are given a nested class of M function classes,
F1 ⊂ F2 ⊂ . . . ⊂ FM . The smallest function class where the true regressor lies is denoted by
Fd∗ , where d∗ ∈ [M ]. Hence, the regret of the contextual bandit algorithm should depend on Fd∗ .
However, we do not know d∗, and our goal is to propose adaptive algorithms such that the regret
depends on the actual problem complexity Fd∗ . First, let us rewrite the realizibility assumption
with the nested hypothesis class feature.

Assumption 22. There exists a predictor f ∗d∗ ∈ Fd∗ , such that E[rt(a)|x] = f ∗d∗(x, a), for all x and
a. Furthermore, the conditional variance of rt(.) is bounded, i.e., given x ∈ X ,

E[rt(a)− f ∗d∗(x, a)]2 = σ2 <∞.

for all a ∈ A.

Note that, the bounded second moment is also quite mild and is equivalent conditions appear in
the stochastic optimization (SGD) literature.

We also have a separability condition as given in the following assumption. As we will see
subsequently (in Section 9.4.1, this is equivalent to the condition on the minimum non-zero value of
the optimal parameter in the linear contextual bandit setting.

Assumption 23. For any f ∈ Fd∗−1, we have

inf
f
Ex,a[f(x, a)− f ∗d∗(x, a)]2 ≥ ∆,

for all pairs (x, a) ∈ X ×A, where ∆ > 0 is the minimum separation across the function classes.

Note that separability condition is quite standard in statistics, specially in the area of clustering
and latent variable modelling (see [99, 250]). Model selection without separability condition is kept
as an interesting future work.
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Algorithm 14: Adaptive Conextual Bandits (ACB)
1: Input: epochs 0 = τ0 < τ1 < τ2 < . . ., confidence parameter δ, Function classes
F1 ⊂ F2 ⊂ . . . ⊂ FM , threshold γ

2: for epoch m = 1, 2, . . . , do
3: δm = δ/2m

4: for function classes j = 1, 2, . . . ,M do
5: Compute f̂mj = argminf∈Fj

∑τm−1/2
t=τm−2+1(f(xt, at)− rt(at))2 via offline regression oracle

6: Construct Tmj = 1
2m−2

∑τm−1

t=τm−1/2+1(f̂mj (xt, at)− rt(at))2

7: end for
8: Model Selection: Find the minimum index ` ∈ [M ] such that Tmj ≤ γ. Let this class be

denoted by F`
9: Set learning rate ρm = (1/30)

√
Kτm−1 log(|F`|(τm−1 − τm−2)/δm)

10: for round t = τm−1 + 1, . . . , τm do
11: Observe context xt ∈ X
12: Compute f̂m` (a) for all action a ∈ A, set ât = argmaxa∈Af̂

m
` (a)

13: Define pt(a) = 1

K+ρm(f̂m` (xt,ât)−f̂m` (xt,a)
∀a 6= ât, pt(ât) = 1−

∑
a6=ât pt(a).

14: Sample at ∼ pt(.) and observe reward rt(at).
15: end for
16: end for

9.2 Algorithm—Adaptive Contextual Bandits (ACB)
In this section, we provide a novel model selection algorithm that use successive refinements over
epochs. We use the FALCON algorithm of [71], and add a model selection phase at the beginning of
each epoch. In other words, over multiple epochs, we successively refine our estimates of the proper
model class where the true regressor function f ∗ lies. The details are provided in Algorithm 14.

We assume that epochs have doubling epoch length. Let τ0, τ1, . . . be epoch instances, with
τ0 = 0, and τm = 2m. Before the beginning of the m-th epoch, using all the data of the m− 1-th
epoch, we add a model selection module, as shown in Algorithm 14.

Note that we feed the samples of the m− 1-th epoch to the offline regression oracle. Moreover,
we split the samples in 2 equal halves. We use the first half to compute the regression estimate
{f̂mj }Mj=1, and then use the rest to construct Tmj . We do not use the same set of samples to remove
any dependence issues with f̂mj and the samples {xt, at, rt(at)}τm−1

t=τm−1/2+1.
We compare Tmj to a pre-calculated threshold, and pick the model class where Tmj falls below

such threshold (with smallest j, see Algorithm 23). After selecting the regressor function, the ran-
domization follows exactly that of FALCON, i.e., we follow the inverse gap probability distribution
pt(.), and sample action at ∼ pt(.) and henceforth observe reward rt(at).
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9.2.1 Regret Guarantee
We now analyze the performance of the model selection procedure of Algorithm 14. We have the
doubling epochs,i.e., τm = 2m. Without loss of generality, we simply assume τ1 = 2. Also, assume
that we are at the beginning of epoch m, and hence we have the samples from epoch m− 1. So, we
have total of 2m−1 samples, out of which, we use 2m−2 to construct the regression functions and the
rest 2m−2 to obtain the testing function Tmj . Furthermore, we want the model selection procedure to
succeed with probability at least 1− δ/2m, since the we want a guarantee that holds for all m, and a
simple application of the union bound yields that. We have the following Lemma.

Lemma 57. Suppose we run Algorithm 14 with the threshold γ = σ2 + c0, where c0 is a universal
(small) constant. Then, provided

2m & max{ log(1/δ)

(∆− c0)2
,

1

c2
0

max{log(|FM |/δ), log(1/δ)}},

and ∆ > c0, Algorithm 14 identifies the correct model class Fd∗ , with probability exceeding

1−M
∞∑
m=1

3δ/2m ≥ 1− 6Mδ.

With the above lemma, we obtain the following regret bound for Algorithm 14.

Theorem 23. Suppose Assumptions 2 and 3 hold and ∆ > c0. Then with probability at least
1− 6Mδ − δ, running Algorithm 14 for T iterations yield

R(T ) ≤ C max{ log(1/δ)

(∆− c0)2
,

1

c2
0

max{log(|FM |/δ), log(1/δ)}}+O(
√
KT log(|Fd∗|T/δ).

Remark 38. The first term of the regret does not scale with T . Hence, the regret scaling (with
respect to T ) isO(

√
KT log(|Fd∗|T/δ), with high probability, which is exactly the model selection

guarantee.

Remark 39. The first term can be interpreted as the cost of model selection. Hence, the model
selection procedure only adds an additive constant to the regret performance of FALCON.

Remark 40. Note that the first term is a problem dependent quantity and implies the complexity of
the problem. If ∆ is small, the model selection problem is hard, and the regret will be worse. Note
that this is reflected via ∼ 1/∆2 dependence.

Remark 41. Note that the constant c0 in the threshold can be chosen as a small enough constant,
and so the condition on the gap, given by ∆ > c0 is a mild condition. Since we do not know the
gap ∆, from an implementation point of view, the value of c0 should be kept sufficiently small. Of
course, this results in a cost of O(1/c2

0) in the constant (independent of T ) term in the regret.

Remark 42. Note that if an oracle provides an estimate of the gap ∆, one can avoid the condition
∆ > c0 by choosing the threshold γ as a function of ∆.
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Algorithm 15: ETC for Model Selection for Contextual Bandits
1: Input: Action set A, Function classes F1 ⊂ F2 ⊂ . . . ⊂ FM , time horizon T , confidence

parameter δ, threshold γ
2: Explore:
3: for t = 1, 2, . . . , C

√
T do

4: Observe context reward pair (xt, rt)
5: Select action at uniformly at random from A, independent of xt
6: Observe reward rt(at)
7: end for
8: Compute regression estimator f̂j = argminf∈Fj

1
C
√
T

∑C
√
T

t=1 [f(xt, at)− rt(at)]2 (via offline
regression oracle) for all j ∈ [M ]

9: Model Selection test:
10: Obtain another set of C

√
T fresh samples of (xt, rt, at) via pure exploration (similar to line 4-6

)
11: Construct the test statistic Tj = 1

C
√
T

∑C
√
T

t=1 (f̂j(xt, at)− rt(at))2 for all j ∈ [M ]

12: Thresholding: Find the minimum index ` ∈ [M ] such that Tj ≤ γ. We obtain the regressor
f̂` ∈ F`

13: Commit:
14: for t = 2C

√
T + 1, . . . , T do

15: Observe context reward pair (xt, rt)
16: Select action at according to FALCON algorithm of [71] with the function class F`
17: Observe reward rt(at)
18: end for

9.3 Explore-then-Commit algorithm for model selection
In the previous section, we analyze FALCON with model selection, and obtain high probability
regret bounds. Here, instead, we use a simple explore-then-commit (ETC) algorithm for selecting
the correct model, and then commit to it during the exploitation phase. After a round of exploration,
we do a (one-time) threshold based testing to estimate the function class, and after that, exploit the
estimated function class for the rest of the iterations. We show that this simple strategy finds the
optimal function class Fd∗ with high probability. The details are given in Algorithm 15. We now
explain the exploration and exploitation phases of this algorithm.

Exploration: Let the time horizon be T . For now, we assume that we know the value of T . We
keep 2C

√
T time for exploration, where C is a universal constant. The exploration works in 2

phases.

Collect samples For 2C
√
T time epochs, we sample from the Nature randomly. Precisely, the

context-reward pair (xt, rt) is being sampled by Nature in an i.i.d fashion, and the action the agent
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takes is chosen uniformly at random from the action set A. In particular, the action is chose
independent of the context xt. Hence, this is a pure exploration strategy.

Obtain regression estimate Based on the samples of the first C
√
T rounds, we estimate the

regression function f̂ for all the (hypothesis) function classes F1, . . . ,FM . More precisely, we call
the offline regression oracle (as mentioned in [71]) and compute the following function estimate:

f̂j = argminf∈Fj(
C
√
T∑

t=1

f(xt, at)− rt(at))2

for all j ∈ [M ].

Testing on fresh samples To remove dependence issues, we use the remaining C
√
T samples

obtained form the sampling phase. Here we actually compute the following test statistic for all
hypothesis classes:

Tj =
1

C
√
T

C
√
T∑

t=1

(f̂j(xt, at)− rt(at))2

for all j ∈ [M ]. The idea is to perform a thresholding on {Tj}Mj=1. Intuitively, since the (conditional)
expectation of r(a) is f ∗d∗(x, a), we can expect Tj to be small for hypothesis classes that contain f ∗d∗ .
Otherwise, thanks to the separation condition, we expect Tj to be large. So, a simple thresholding
on Tj is sufficient to identify the smallest hypothesis class where f ∗d∗ lies and we show that this
procedure succeeds with high probability.

As mentioned earlier, we provide guarantees with ETC under 2 settings—(a) gap constrained
and (b) long horizon.

ETC with (large) Gap constraint

Recall from Assumption 23 that, ∆ is the minimum separation across the function classes. Here,
we analyze Algorithm 15 with the following assumption on the gap ∆.

Assumption 24. We assume that gap satisfies

∆ ≥ σ2 + C
(
T−1/2 log(|FM |/δ) + T−1/4

√
log(1/δ)

)
where T is the time horizon, δ ∈ (0, 1) and C is a universal constant.

Note that the above assumption suggests that for large T , the gap satisfies ∆ ≥ σ2 + small-term.
Armed with the above assumption, we have the following result:
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Lemma 58. Suppose we set the threshold in Algorithm 15 as

γ = σ2 + C ′
(
T−1/2 log(|FM |/δ) + T−1/4

√
log(1/δ)

)
,

for a universal constant C ′. Then, with probability at least 1− 2Mδ, Algorithm 15 identifies the
correct model class Fd∗ .

Regret Guarantee We now analyze the regret performance of Algorithm 15. The regret R(T ) is
comprised of 2 stages; (a) exploration and (b) commit (exploitation). We have the following result.

Theorem 24. Suppose Assumptions 2 and 3 hold. Then with probability at least 1− (2M + 1)δ,
running Algorithm 15 for T iterations yield

R(T ) ≤ O(
√
KT log(|Fd∗|T/δ).

ETC with long horizon

One of the potential issues of the previous section is the assumption on the gap. In this section,
we remove this restriction. In other words, we trade off the requirement on the gap with the time
horizon T . We show that for any gap ∆ (as long as ∆ > c0 for some small constant c0), our
proposed model selection procedure succeeds provided T & 1/∆4.

Guarantee We have the following result.

Theorem 25. Suppose we choose the threshold γ = σ2 + c0 in Algorithm 15. The model selection
procedure succeeds with probability exceeding 1− 2(M + 1)δ provided,

T ≥ C max{ log2(1/δ)

(∆− c0)4
,

1

c4
0

log2(|FM |/δ), log2(1/δ)},

and running Algorithm 15 for T iterations yield

R(T ) ≤ O(
√
KT log(|Fd∗|T/δ).

Remark 43. Note that if the separation ∆ & σ2 (high SNR regime), the first condition is equivalent
to T & Õ(1), and we get the setting with large gap.

Remark 44. Note that the we still require a gap constraint, ∆ > c0. But this is a mild condition
compared to Assumption 24, as one can choose c0 sufficiently small constant.
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9.4 Model Selection with infinite function classes
The results in Section 9 holds for finite function classes, since the regret bound depends on the
cardinality of the function class. However, as shown in [71], it can be easily extended to the infinite
function class setting. Exploiting the notion of the complexity of infinite function classes, the
reduction is done.

Like before, we consider a nested sequence of M function classes F1 ⊂ . . . ⊂ FM . The
reward is sampled from an unknown function f ∗d∗ lying in the (smallest) function class indexed by
d∗ ∈ [M ], which is unknown. Given the function classes, our job is to find the function class Fd∗ ,
and subsequently exploit the class to obtain sub-linear regret. Let us first rewrite the separability
assumption.

We assume that the function classes F1 ⊂ . . . ⊂ FM are compact. This, in conjunction with the
extreme value theorem ensures the existence of the following minimizers: for j < d∗, we define

f̄j = arginff∈FjEx,a[f(x, a)− f ∗d∗(x, a)]2 (9.1)

for all pairs (x, a). For j ≥ d∗, we know that this minimizer is indeed f ∗d∗ . This comes directly
from the realizibility assumption. Note that we require the existence of the minimizer (regression
function) in order to use it for selecting actions in the contextual bandit framework (see [71])

Having defined the minimizers, we have the following separability assumption.

Assumption 25. For any f̄j , where j < d∗, we have

Ex,a[f̄j(x, a)− f ∗d∗(x, a)]2 ≥ ∆,

for all pairs (x, a) ∈ X × A. Here we interpret ∆ as the minimum separation across function
classes.

Similar to [71], here, we are not worried about the explicit form of the regression functions
f̄j . Rather, we assume the following performance guarantee of the offline regressor. For j ≥ d∗

(meaning, the class containing the true regressor f ∗d∗), we have the following assumption.

Assumption 26. Given n i.i.d data samples (x1, a1, r1(a1)), (x2, a2, r2(a2)), . . . , (xn, an, rn(an)),
the offline regression oracle returns a function f̂j , such that for δ > 0, with probability at least
1− δ,

Ex,a[f̂j(x, a)− f ∗d∗(x, a)] ≤ ξFj ,δ(n)

This assumption is taken from [71], and it is used to obtain the regret guarantee of the FALCON
algorithm. As discussed in the above-mentioned paper, the quantity ξ(.)(n) is a decreasing function
of n, e.g., ξ(,)(n) = Õ(1/n). As an instance, consider the class of all linear regressors in Rd. In that
case, ξ(.)(n) ∼ Õ(d/n). For function classes with finite VC dimension (or related quantities like
VC-sub graph or fat-shattering dimension; pseudo dimension in general, denoted by d̃), we have
ξ(.)(n) ∼ Õ(d̃/n).

Here, to avoid repetition, we do not present all our previous results in the infinite function class
setting. We consider two instances:
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1. The ETC algorithm with large gap condition

2. The adaptive contextual bandit (ACB) algorithm

The model-selection algorithm remains more-or-less the same overall. For Option I, we explore
for the first 2C

√
T rounds. The first C

√
T rounds are used to collect samples (xt, rt, at) via pure

exploration. Feeding this samples to the offline regression oracle, and focusing on the individual
function classes {Fj}Mj=1 separately, we obtain (f̂j, ξFj ,δ(C

√
T )) for all j ∈ [M ]. Thereafter, we

perform another round of pure exploration, and obtain C
√
T fresh samples. Like in the finite case,

we construct statistic Tj for all j ∈ [M ].
For Option II, we collect all the samples from the previous epoch of the FALCON algorithm,

split the samples, to obtain the regression estimate f̂mj and similarly construct test statistic Tmj for
all j ∈ [M ].

Similar to Algorithm 15 and 14, we choose the correct model based on a threshold on the test
statistic Tj (for Option II, it is Tmj ). Let us assume that the threshold is γ. We show that for all
j ≥ d∗, Tj ≤ γ, and for all j < d∗, Tj > γ with high probability. We also obtain an explicit form of
γ. Once this is shown, the model selection procedure follows exactly as Algorithm 15, i.e., we find
the smallest index ` ∈ [M ], for which T` ≤ γ. With high probability, we show that ` = d∗.

Regret Guarantee We first show the guarantee for Option I, and then Option II.

Theorem 26. (ETC) Suppose Assumptions 2, 6 and 5 hold and the gap satisfies

∆ ≥ σ2 + C1

(
ξFM ,δ(C

√
T ) + T−1/4

√
log(1/δ)

)
.

Then running Algorithm 15 for T iterations with threshold

γ = σ2 + C ′
(
ξFM ,δ(C

√
T ) + T−1/4

√
log(1/δ)

)
,

yields, with probability at least 1− (2M + 1)δ, the regret

R(T ) ≤ O
(√

KξFd∗ ,δ/2T (T )T
)
.

Theorem 27. (ACB) Suppose Assumptions 2 and 3 hold, and ∆ > c0. Then with probability at least
1− 6Mδ − δ, running Algorithm 14 for T iterations yield

R(T ) ≤ C max{ log(1/δ)

(∆− c0)2
,

1

c2
0

max{log(|FM |/δ), log(1/δ)}}+O
(√

KξFd∗ ,δ/2T (T )T
)
.

Remark 45. The proof of these theorems parallels exactly similar to the finite function class setting.
The only difference is that instead of upper-bounding the prediction error using [72], we use the the
definition of ξ(.) to accomplish this.
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9.4.1 Special Case—Stochastic Linear Bandits
Here we consider the specific instance of the above-discussed generic contextual bandits—the linear
setup. We see that order-wise, the generic Algorithm 14 recovers the regret guarantees of the linear
bandit setup (with finite number of arms).

Recall the problem setup of Chapter 8 for finite set of actions. Furthermore, assume that the
context embeddings φj(x, a) is a unit dj dimensional Gaussian random variable. Note that this is
stronger than the sub-Gaussian assumption.

Rewriting the nested hypothesis class, this corresponds to setting the function classes Fj to be
the linear class as the following:

Fj = {(x, a) 7→ 〈θj, φj(x, a)〉|θj ∈ Rdj , ‖θ‖ ≤ 1}.

Also, m∗ is the smallest index such that the optimal regressor is realized, i.e.,

f ∗m∗(x, a) = 〈θ∗, φm∗(x, a)〉.

So, this can be cast-ed as a model selection problem in our framework.
Let us look at the separability assumption of 23. For j < m∗, we first compute

f̄j = arginff∈FjEx,a[f(x, a)− f ∗m∗(x, a)]2,

and then compute the quantity

Ex,a[f̄j(x, a)− f ∗m∗(x, a)]2.

Substituting f ∗m∗(x, a) = 〈θ∗, φm∗(x, a)〉 and optimizing over θj , we obtain

Ex,a[f̄j(x, a)− f ∗m∗(x, a)]2 ≥ Υ2(dm∗ − j) ≥ Υ2,

where Υ is the minimum magnitude of the non-zero coordinate of θ∗, i.e., Υ = min{|θ∗i | : θ∗i 6= 0}.
Note that we exploit the Gaussian distribution of φ(.) to obtain the above calculation.

Hence for linear stochastic bandits, one may take

∆ = Υ2,

where Υ is the minimum magnitude of the non-zero coordinate of θ∗, i.e., Υ = min{|θ∗i | : θ∗i 6= 0}.
Substituting in the regret expression of Theorem 27, with ξFdm∗ ,.(T ) = Õ(dm∗/T ) (linear class of
dm∗ dimensional functions, VC-dimension is dm∗ + 1), we obtain

Rlin(T ) ≤ Õ(
d

Υ4
+
√
KTdm∗).

with high probability. Several remarks are in order:

Remark 46. If the number of actions K = O(1), the above regret scaling matches to that of
Theorem 22. Hence, in this setting we recover the performance of Algorithm 13.
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Remark 47. Note that in general, the performance of Algorithm 14 specialized to the linear setting
is worse than Theorem 22. In particular, there is no K dependence in Theorem 22, but we have a√
K term in the leading factor here. This matches our intuition. Algorithm 14 is applicable for any

generic contextual bandit problem, whereas Algorithm 13 is specialized to the linear case only. The
price in regret can be viewed as the cost of generalization.

Remark 48. Let us now focus on the additive (minor) term with no T dependence. It scales as 1/Υ4

here, whereas in Theorem 22 it scales as 1/Υ4.65. Note that, we remarked (after Theorem 13) that
via carefully choosing the problem constants, the dependence in Theorem 22 can be made arbitrarily
close to 1/Υ4. So, we have the same dependence on Υ in both the settings.

Remark 49. Finally, note that the additive term is linearly dependent (d) here, whereas it has a
quadratic dependence (d2) in Theorem 22. We believe this stems from the analysis of Algorithm 13.
In Algorithm 13, we are successively estimating the support of the underlying true parameter, and it
is not clear whether support recovery is indeed required to ensure low regret.

9.5 Proofs

9.5.1 Proof of Lemma 57
Let us first show that Tj concentrates around its expectation. We show it via a simple application of
the Hoeffdings inequality.

Fix a particular m and j ∈ [M ]. Note that f̂mj is computed based on 2m−2 samples. Also, in
the testing phase, we use a fresh set of 2m−2 samples, and so f̂mj is independent of the second
set of samples, used in constructing Tj . Since we have r(.) ∈ [0, 1]. Furthermore, we have
f̂mj (.) ∈ [0, 1]. Note that this assumption is justified since our goal is obtain an estimate of the
reward function via regression function, and this assumption also features in [71]. So the random
variable (f̂mj (xt, at) − rt(at))2 is upper-bounded by 4, and hence sub-Gaussian with a constant
parameter.

Note that we are using only the samples from the previous epoch. In the, FALCON algorithm,
the regression estimate actually remains fixed over an entire epoch. Hence, conditioning on the
filtration consisting of (context, action, reward) triplet upto the end of the m − 2-th epoch, the
random variables {(f̂j(xt, at) − rt(at))

2}τm−1

t=τm−1/2+1 (a total of 2m−2 samples) are independent.
Note that similar argument is given in [71, Section 4.1] (the FALCON+ algorithm) to argue the
independence of the (context, action, reward) triplet, accumulated over just the previous epoch.

Hence using Hoeffdings inequality for sub-Gaussian random variables, we have

P (Tj − ETj ≥ `) ≤ exp(−n`2/32).

Let us look at the expression ETj .

-
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Realizable classes: Fix m and consider j ∈ [M ] such that j ≥ d∗. So, for this realizable setting,
we obtain the excess risk as:

Ex,r,a[f̂mj (x, a)− r(a)]2 − inf
f∈Fj

Ex,r,a[f(x, a)− r(a)]2

= Ex,r,a[f̂mj (x, a)− r(a)]2 − Ex,r,a[f ∗d∗(x, a)− r(a)]2

= Ex,a[f̂mj (x, a)− f ∗d∗(x, a)]2.

So, we have, for the realizable function class,

ETmj =
1

2m−2
Ext,rt,at

2m−2∑
t=1

[f̂mj (xt, at)− rt(at)]2

=
1

2m−2

2m−2∑
t=1

Ext,rt,at [f ∗d∗(xt, at)− rt(at)]2 +
1

2m−2

2m−2∑
t=1

Ext,at [f̂mj (x, a)− f ∗d∗(x, a)]2

≤ σ2 + C1 log(2m|Fj|/δ)/(2m−2),

with probability at least 1− δ/2m. Here, the first term comes from the second moment bound of
σ2, and the second term comes from [72, Lemma 4.1]. So, by applying Hoeffding’s inequaity, we
finally have.

Tmj ≤ σ2 + C
log(|Fj|/δ)

2m
+ C1

m

2m
+ C3

√
log(1/δ)

2m/2
+ C4

√
m

2m/2

with probability at least 1− 2δ/2m. Note that, provided

2m &
1

c2
0

max{log(|FM |/δ), log(1/δ)}, (9.2)

with carefully chosen constants, we have

Tmj ≤ σ2 + c0

with probability at least 1− 2δ/2m, where c0 is a small universal constant.

Non-Realizable classes: For the non realizable classes, we have the following calculation. For
any f ∈ Fj , where j < d∗, we have

Ex,r,a[f(x, a)− r(a)]2 − Ex,r,a[r(a)− f ∗d∗(x, a)]2

= Ex,a,r[(f(x, a)− f ∗d∗(x, a))(f(x, a) + f ∗d∗(x, a)− 2r(a)]

= Ex,aEr|x[(f(x, a)− f ∗d∗(x, a))(f(x, a) + f ∗d∗(x, a)− 2r(a)]

= Ex,a[(f(x, a)− f ∗d∗(x, a))(f(x, a) + f ∗d∗(x, a)− 2Er|xr(a)]

= Ex,a[f(x, a)− f ∗d∗(x, a)]2,



CHAPTER 9. MODEL SELECTION FOR CONTEXTUAL BANDITS BEYOND LINEAR
STRUCTURE 274

where the third inequality follows from the fact that given context x, the distribution of r in
independent of a (see [72, Lemma 4.1]).

So, we have

Ex,r,a[f(x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f ∗d∗(x, a)]2 + Ex,a[f(x, a)− f ∗d∗(x, a)]2

≥ ∆ + σ2,

where the last inequality comes from the separability assumption along with the assumption on the
second moment. Since the regressor f̂mj ∈ Fj , we have

Ex,r,a[f̂mj (x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f ∗d∗(x, a)]2 + Ex,a[f(x, a)− f ∗d∗(x, a)]2

≥ ∆ + σ2.

Now, using 2m−2 samples, we obtain

Tmj ≥ ∆ + σ2 − C3

√
log(1/δ)

2m/2
− C4

√
m

2m/2

with probability at least 1− δ/2m. Now, suppose m is such that√
log(1/δ)

2m/2
+

√
m

2m/2
. ∆− c0.

where c0 is a small universal constant (see equation (9.2)) such that ∆ > c0. Observe that, provided

2m &
log(1/δ)

(∆− c0)2
.

and with appropriately chosen constants, we have

Tmj ≥ σ2 + c0.

with probability at least 1− δ/2m.
Based on the above calculation, we choose the threshold γ = σ2 + c0. Finally, we say that

provided

2m & max{ log(1/δ)

(∆− c0)2
,

1

c2
0

max{log(|FM |/δ), log(1/δ)}},

the model selection procedure succeeds with probability exceeding

1−
∞∑
m=1

3δ/2m ≥ 1− 6δ.
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9.5.2 Proof of Theorem 23
The above calculation shows that as soon as

2m & max{ log(1/δ)

(∆− c0)2
,

1

c2
0

max{log(|FM |/δ), log(1/δ)}},

the model selection procedure will succeed with high probability. Until the above condition is
satisfied, we do not have any handle on the regret and hence the regret in that phase will be linear.
This corresponds the first term in the regret expression. After the condition is satisfied, the regret is
given by (see [71])∑

m

O
(√

K(τm − τm−1) log(|Fd∗|(τm − τm−1)/δ
)
≤ O

(√
KT log(|Fd∗|T/δ

)
,

with probability exceeding 1− δ. Finally, a union bound on the error probability yields the theorem.

9.5.3 Proof of Lemma 58
Since, we have samples from pure exploration, let us first show that Tj concentrates around its
expectation. We show it via a simple application of the Hoeffdings inequality.

Fix a particular j ∈ [M ]. Note that f̂j is computed based on the first set of C
√
T samples. Also,

in the testing phase, we again sample C
√
T samples, and so f̂ is independent of the second set

of C
√
T samples, used in constructing Tj . Note that we have r(.) ∈ [0, 1]. Furthermore, we have

f̂(.) ∈ [0, 1]. Note that this assumption is justified since our goal is obtain an estimate of the reward
function via regression function. This assumption also features in [71]. So the random variable
(f̂j(xt, at) − rt(at))2 is upper-bounded by 4, and hence sub-Gaussian with a constant parameter.
Also, note that since we are choosing an action independent of the context, the random variables
{(f̂j(xt, at)− rt(at))2}C

√
T

t=1 are independent. Hence using Hoeffdings inequality for sub-Gaussian
random variables, we have

P (Tj − ETj ≥ `) ≤ exp(−n`2/32).

Re-writing the above, we obtain

Tj − ETj ≤

√
32 log(1/δ)

C
√
T

with probability at least 1− δ. Let us look at the expression ETj .

ETj = E

 1

C
√
T

C
√
T∑

t=1

(f̂j(xt, at)− rt(at))2

 .



CHAPTER 9. MODEL SELECTION FOR CONTEXTUAL BANDITS BEYOND LINEAR
STRUCTURE 276

Case I: Realizable Class First consider the case that j ≥ d∗, meaning that f ∗d∗ ∈ Fj . So, for this
realizable setting, we obtain the excess risk as (using [72])

Ex,r,a[f̂j(x, a)− r(a)]2 − inf
f∈Fj

Ex,r,a[f(x, a)− r(a)]2

= Ex,r,a[f̂j(x, a)− r(a)]2 − Ex,r,a[f ∗d∗(x, a)− r(a)]2

= Ex,a[f̂j(x, a)− f ∗d∗(x, a)]2.

So, we have, for the realizable function class,

ETj =
1

C
√
T
Ext,rt,at

C
√
T∑

t=1

[f̂j(xt, at)− rt(at)]2

=
1

C
√
T

C
√
T∑

t=1

Ext,rt,at [f ∗d∗(xt, at)− rt(at)]2 +
1

C
√
T

C
√
T∑

t=1

Ext,at [f̂(x, a)− f ∗d∗(x, a)]2

≤ σ2 + C1 log(|Fj|/δ)/(C
√
T ),

with probability at least 1− δ, where C1 is a known universal constant. Here, we also use the fact
that the second moment bound is σ2. So, we finally have.

Tj ≤ σ2 + C2T
−1/2 log(|Fj|/δ) + C3T

−1/4
√

log(1/δ)

with probability at least 1− 2δ.

Case II: Non-realizable class We now consider the case when j < d∗, meaning that f ∗d∗ does not
lie in Fj . We have

Ex,r,a[f̂j(x, a)− r(a)]2 − inf
f∈Fj

Ex,r,a[f(x, a)− r(a)]2 ≥ 0.

Continuing, we obtain

ETj =
1

C
√
T
Ext,rt,at

C
√
T∑

t=1

[f̂j(xt, at)− rt(at)]2

≥ inf
f∈Fj

Ex,a[f(x, a)− f ∗d∗(x, a)]2,

≥ ∆.

So, in this setting,

Tj ≥ ETj −

√
32 log(1/δ)

C
√
T

≥ ∆−

√
32 log(1/δ)

C
√
T

.

with probability at least 1− δ.
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Choice of threshold If we can ensure the lower bound (on Tj) in the non-realizable setting is
larger than the upper bound in the realizable case, we can ensure identifiability. Based on the above
calculation, we fix the following threshold on the test statistic Tj ,

σ2 + C ′
(
T−1/2 log(|Fj|/δ) + T−1/4

√
log(1/δ)

)
≤ σ2 + C ′

(
T−1/2 log(|FM |/δ) + T−1/4

√
log(1/δ)

)
= γ

For all j ∈ [M ], we compare Tj with this threshold γ. From the above calculation, it is clear that

Tj ≤ γ

with high probability for all j ≤ d∗. Furthermore, recall that from Assumption 24). For sufficiently
large T , it is ensured that

Tj > γ

for all j < d∗ (with high probability). This implies that we can identify whether a function class is
realizable or not simply based on the threshold γ. Finally, a simple union bound yields the result.

9.5.4 Proof of Theorem 24
The regret R(T ) can be decomposed in 2 stages, namely exploration and exploitation.

R(T ) = Rexplore +Rexploit

Since we spend 2C
√
T time steps in exploration, and rt(.) ∈ [0, 1], the regret incurred in this stage

Rexplore ≤ C1

√
T .

Now, at the end of the explore stage, provided Assumptions 2 and 3, we know, with probability at
least 1− 2δ, we obtain the true function class Fd∗ . The threshold is set in such a way that we obtain
the above result. Now, we would just commit to the function class and use the contextual bandit
algorithm, namely FALCON. From [71], the regret guarantee of FALCON is

Rexploit ≤ O
(√

K(T − 2C
√
T ) log(|Fd∗|(T − 2C

√
T )/δ

)
≤ O

(√
KT log(|Fd∗|T/δ

)
,

with probability exceeding 1− δ. Combining the above expressions yield the result.

9.5.5 Proof of Lemma 25
As usual, we consider 2 cases:
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Relizable class: The calculation here remains the same as before,

Tj ≤ σ2 + C2T
−1/2 log(|Fj|/δ) + C3T

−1/4
√

log(1/δ)

with probability at least 1− 2δ. We now choose T such that

C2T
−1/2 log(|Fj|/δ) + C3T

−1/4
√

log(1/δ) ≤ c0

⇒ T &
1

c4
0

max{log2(|FM |/δ), log2(1/δ)},

for appropriate choice of constants. Using this, we get

Tj ≤ σ2 + c0

with probability at least 1− 2δ.

Non-realizable class For any f ∈ Fj , where j < d∗, we have

Ex,r,a[f(x, a)− r(a)]2 − Ex,r,a[r(a)− f ∗d∗(x, a)]2

= Ex,a,r[(f(x, a)− f ∗d∗(x, a))(f(x, a) + f ∗d∗(x, a)− 2r(a)]

= Ex,aEr|x[(f(x, a)− f ∗d∗(x, a))(f(x, a) + f ∗d∗(x, a)− 2r(a)]

= Ex,a[(f(x, a)− f ∗d∗(x, a))(f(x, a) + f ∗d∗(x, a)− 2Er|xr(a)]

= Ex,a[f(x, a)− f ∗d∗(x, a)]2,

where the third inequality follows from the fact that given context x, the distribution of r in
independent of a. This comes from the basic model of contextual bandits.

So, we have

Ex,r,a[f(x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f ∗d∗(x, a)]2 + Ex,a[f(x, a)− f ∗d∗(x, a)]2

≥ ∆ + σ2,

where the last inequality comes from the separability assumption along with the assumption on the
variance. Since the regressor f̂j ∈ Fj , we have

Ex,r,a[f̂j(x, a)− r(a)]2 ≥ Ex,r,a[r(a)− f ∗d∗(x, a)]2 + Ex,a[f(x, a)− f ∗d∗(x, a)]2

≥ ∆ + σ2.

Now, using C
√
T samples, we obtain

Tj ≥ ∆ + σ2 − C3T
−1/4

√
log(1/δ)

with high probability. Note that, provided ∆ > c0 and

T > C
log2(1/δ)

(∆− c0)4
,
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for a sufficiently large constant C, we have

Tj ≥ σ2 + c0,

So we have

Tj > σ2 + c0

with high probability.

Choice of threshold: Based on the above calculation, we choose the threshold γ = σ2 + c0.
Finally we can say that out model selection procedure succeeds with high probability provided,

T ≥ C max{ log2(1/δ)

(∆− c0)4
,

1

c4
0

log2(|FM |/δ), log2(1/δ)}.

9.5.6 Proof of Theorem 26
Case I: Realizable Class Consider j ≥ d∗. Using calculations similar to the finite cardinality
setting, we obtain

ETj ≤ σ2 + ξFj ,δ(C
√
T ).

Hence, invoking Hoeffding’s inequality, we obtain

Tj ≤ σ2 + ξFj ,δ(C
√
T ) + C1T

−1/4
√

log(1/δ)

with probability at least 1− 2δ.

Case II: Non-realizable Class We now consider the setting where j < d∗, meaning that f ∗d∗ does
not lie in Fj . In this case, we have

Ex,r,a[f̂j(x, a)− r(a)]2 − inf
f∈Fj

Ex,r,a[f(x, a)− r(a)]2 ≥ 0.

Continuing, we obtain

ETj =
1

C
√
T
Ext,rt,at

C
√
T∑

t=1

[f̂j(xt, at)− rt(at)]2

≥ inf
f∈Fj

Ex,a[f(x, a)− f ∗d∗(x, a)]2,

≥ ∆,

and hence

Tj ≥ ETj −

√
32 log(1/δ)

C
√
T

≥ ∆−

√
32 log(1/δ)

C
√
T

.
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Fixing a Threshold: Based on the above calculation, if we select the threshold

γ = σ2 + ξFM ,δ(C
√
T ) + 2C1T

−1/4
√

log(1/δ).

With the gap condition

∆ ≥ σ2 + C1

(
ξFM ,δ(C

√
T ) + T−1/4

√
log(1/δ)

)
,

we are guaranteed that Tj > γ for the non realizable classes and Tj ≤ γ for the realizable classes
with high probability. Hence exploiting the nested hypothesis class structure, the smallest index
where Tj ≤ γ corresponds to selecting the correct model with high probability.

After obtaining the correct model class, the regret expression comes directly from [71] in the
infinite function class setting.

9.5.7 Proof of Theorem 27
The proof directly follows by combining the proof of Theorem 23 and 26, and hence omitted.
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Chapter 10

Model Selection for Reinforcement
Learning with Function Approximation

We study the problem of model selection in Reinforcement Learning with function approximation.
We restrict our attention to the framework of model based episodic linear MDP. In particular, similar
to Chapter 8, we study both the norm and sparsity/dimension of the problem parameter as problem
complexity and obtain model selection guarantees, meaning that the performance (regret) of our
algorithm depends on the complexity of the problem instance, as compared to some predefined
upper-bound on the complexity parameters. We first set the problem up, in the next section, and in
the subsequent sections, take norm and sparsity as complexity measures and propose algorithms
with regret guarantee.

10.1 Formulation and Linear Model
In this chapter, we consider an heterogeneous, episodic Markov decision process denoted by a tuple
M(S,A, H, {Ph}Hh=1, {rh}Hh=1), where S is the state space, A is the action space, H is the length
of each episode, Ph is the transition probability at step h such that Ph(·|s, a) is the distribution over
states provided action a is taken for state s at step h, and rh : S ×A → [0, 1] is the deterministic
reward function at step h. A policy π is is collection of H functions {πh : S → A}h∈[H], where
each of them maps a state s to an action a.

In each episode, an initial state s1 is first picked by the environment. Then, at each step
h ∈ [H], the agent observes the state sh, picks an action ah according a certain policy π, receives a
reward rh(sh, ah), and then transitions to the next state sh+1, which is drawn from the distribution
Ph(· | sh, ah). The episode ends when xH+1 is reached. For each (s, a) ∈ S ×A, we define action
values Qπ

h(s, a) and and state values V π
h (s) as

Qπ
h(s, a) := rh(s, a) + E

[
H∑

h′=h+1

rh′(sh′ , πh′(sh′)) | sh = s, ah = a

]
V π
h (s) := Qπ

h(s, πh(s))
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with V π
H+1(s) = 0. The optimal value function V ∗h (·) and the optimal action-value function

Q∗h(·, ·) are given by V ∗h (s) = supπ V
π
h (s) and Q∗h(s, a) = suphQ

π
h(s, a). For brevity, we denote

[PhVh+1](s, a) := Es′∼P(·|s,a)Vh+1(s′). With this notation, Bellman equations for policy π can be
written as

Qπ
h(s, a) =

(
rh + PhV π

h+1

)
(s, a)

and the Bellman optimality equation is given by

Q∗h(s, a) =
(
rh + PhV ∗h+1

)
(s, a)

In the online learning setting, the agent interacts with the environment forK episodes to learn the
unknown transition kernels {Ph} and hence to improve its policy. For each k ≥ 1, the environment
picks a starting state sk1, and the agent chooses a policy πk that will be followed through the whole
k-th episode. The objective is to design a learning algorithm that constructs a sequence {πk} that
minimizes the total regret

R(K) =
K∑
k=1

[
V ∗1 (sk1)− V πk

1 (sk1)
]
.

In this chapter, we consider a special class of MDPs called linear kernel MDPs (a.k.a., linear
mixture MDPs) [73]. Roughly speaking, it means that the transition kernel {Ph} can be represented
as a linear function of a given feature map φ : S ×A× S → Rd. Formally, we have the following
definition.

Definition 13 (Linear kernel MDP). M
(
S,A, H, {Ph}Hh=1, {rh}Hh=1

)
is called an heterogeneous,

episodicB-bounded linear kernel MDP if there exists a known feature mapping φ : S×A×S → Rd

and an unknown vector θh ∈ Rd with ‖θh‖2 ≤ B such that
(i) For any state-action-state triplet (s, a, s′) ∈ S × A × S and step h ∈ [H], P(s′|s, a) =

〈φ(s′ | s, a), θh〉.
(ii) For any bounded function V : S → [0, 1] and any tuple (s, a) ∈ S × A, we have

‖φV (s, a)‖2 ≤ 1, where φV (s, a) :=
∑

s′∈S φ(s′|s, a)V (s′).

In the learning problem, the vectors {θ∗h}Hh=1 are unknown to the learner. The episodic MDP is
parameterized by Θ∗ = {θ∗h}Hh=1 and we denote the MDP by MΘ∗ . In what follows, we define two
natural complexity measure of MΘ∗: (a) ‖θ∗h‖ for all h ∈ [H], and (b) ‖θ∗h‖0 for all h ∈ [H].

Notation We keep the notation consistent with the previous chapters. For positive integer r, by
[r], we denote the set of integers {1, 2, . . . , r}. Also ‖.‖ denotes `2 norm unless otherwise specified.
Moreover, γmin(A) denotes the minimum eigenvalue of the matrix A.
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Algorithm 16: Adaptive Reinforcement Learning (norm)–ARL-Norm
1: Input: Over estimate of norm B, the initial phase length K1, Slack δ1 = δ > 0

2: Initial estimates: b(1)
h = max{B, 1}, for all h ∈ [H].

3: for epochs i = 1, 2 . . . , N do
4: Play UCRL-VTR+ with norm estimates {b(i)

h }Hh=1, until the end of epoch i (denoted by Ei)
5: At k = Ei, refine estimate of ‖θ∗h‖ as, b(i+1)

h = maxθ∈ĈEi ,h
‖θ‖

6: Set Ki+1 = 2Ki, δi+1 = δi
2

.
7: end for

10.2 Norm as Complexity measure
In this section, we define {‖θ∗h‖}Hh=1 as a natural measure of complexity of the problem. Recall that
the transition kernel is parameterized by θ∗h, i.e., P(s′|s, a) = 〈φ(s′ | s, a), θ∗h〉. Hence, if θ∗h is close
to 0 (hence ‖θ∗h‖ is very small), the set of states s′ for the next step will have a small cardinality.
Similarly, when θ∗h is high (with ‖θ∗h‖ is large), the above-mentioned cardinality will be quite large.
We mention here that, via the same set of arguments the sparsity (number of non-zero coordinates)
of θ∗h also serves a natural measure of complexity. We consider this in the subsequent section.

Here, we propose and analyze an algorithm, that adapts to the problem complexity ‖θ∗h‖, and
as a result, the regret obtained will dependent on ‖θ∗h‖. In prior works, usually it is assumed that
{θ∗h}Hh=1 lies in a norm ball with known radius, i.e., ‖θ∗h‖ ≤ B (see [73]). This is a non-adaptive
algorithm and the algorithm uses B as a proxy for the problem complexity, which can be a huge
over-estimate. In sharp contrast, we start with this over estimate of ‖θ∗h‖, and successively refine this
estimate over multiple epochs. We show that this refinement strategy yields a consistent sequence
of estimates of ‖θ∗h‖, and as a consequence, our regret bound depends on ‖θ∗h‖, not B.

Our idea: We take the UCRL-VTR+ of [74] as a blackbox, and successively refine the estimates
of {θ∗h}Hh=1 over epochs. Note that we take UCRL-VTR+ as our baseline algorithm since the regret
of the same is near optimal. In particular UCRL-VTR+ tracks the variance of the value function
(via updating a parameter σ̄k,h) along with a careful estimation of covariance matrix corresponding
to the embeddings φ(.).

We now proceed for the successive model refinement based model selection algorithm. The
details are given in Algorithm 16. In particular we choose the doubling epoch. As mentioned, we
use the model based RL algorithm of [74], namely UCRL-VTR+. We begin with some over estimate
of {θ∗h}Hh=1 (in particular, we assume ‖θ∗h‖ ≤ B for all h ∈ [H]), and over epochs, we refine this
estimate. In particular, as seen in Algorithm 16, at the end of the epoch, based on the confidence set
built, we choose the new estimate of {θ∗h}Hh=1. We argue that this sequence of estimates is indeed
consistent, and as a result, the regret depends on {θ∗h}Hh=1.

Let us have a look how UCRL-VTR+ constructs the confidence ellipsoid Ĉk,h for episode k.
From [74], we obtain the following

Ĉk,h =
{
θ : ‖θ − θ̂k,h‖Σ̂k,h

≤ β̂k,h

}
,
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where θ̂k,h is an estimate of θ∗ (a regularized least square estimator with adjusted variance) computed
by UCRL-VTR+, and

β̂k,h = 8
√
d log(1 + k/λ) log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λ bh,

where bh is the current estimate of ‖θ∗h‖ and λ is the regularization in the least squares problem.
Also, we have

Σ̂k,h = λ I +
k∑
t=1

σ̄−2
t,h φVt,h+1

(sth, a
t
h)φ
>
Vt,h+1

(sth, a
t
h)

Then, [74] shows that

P
(
θ∗h ∈ Ĉk,h

)
≥ 1− 3δ.

Now, let us present the main result of this section. We show that the sequence of estimators
build via Algorithm 16 actually converges to the true norm estimates. We first make the following
assumption on the embeddings:

Assumption 27. We have, for all h ∈ [H],

Ek−1

[
σ̄−2
k,h φVk,h+1

(skh, a
k
h)φ
>
Vk,h+1

(skh, a
k
h)
]

= Σc < ρmin I,

where, ρmin > 0, and Ek−1[.] is a conditional expectation, conditioned on the observation upto
episode k − 1.

We emphasize that similar assumptions have featured in existing literature, e.g., see [67, 70].
Note that we had similar assumptions in Chapter 8. In fact removing such spectral assumption is
an interesting open problem (see COLT open problem, [251]). Model selection without the above
assumption is an interesting future direction.

Armed with the above assumption, we obtain the following result, which is crucial in under-
standing the rate at which the confidence ellipsoid of {θ∗h}Hh=1 shrinks.

Lemma 59. Consider the matrix Mk,h = λI +
∑k

t=1 σ̄
−2
t,h φVt,h+1

(sth, a
t
h)φVt,h+1

(sth, a
t
h)
>. For all

k ∈ {τmin(δ), . . . , K} and all h ∈ [H], we have

γmin(Mk,h) = λI +

(
k∑
t=1

σ̄−2
t,h φVt,h+1

(sth, a
t
h)φVt,h+1

(sth, a
t
h)
>

)
≥ λ+ ρmink/2,

with probability at least 1− δ, where

τmin(δ) =

(
16d

ρ2
minH

2
+

8
√
d

3Hρmin

)
log(2dK/δ).
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We now show that the norm estimates produced by ARL-norm indeed converges to the true
norm {θ∗h‖}Hh=1 at an exponential rate with high probability.

Lemma 60. With probability exceeding 1 − 8Hδ, the sequence {b(i)
h }∞i=1 converges to ‖θ∗h‖ at a

rate O( i
2i

), and we obtain b(i)
h ≤ (c1‖θ∗‖+ c2) for all i, provided the length of the initial episode

K1 satisfies the following

K1 ≥ max{τmin(δ) log2(1 +
K

K1

), C1

(
max{p, q} b(1)

h

)2

d}

where C1, and p = 3
√

λ
ρmin

and q = C√
ρmin

(√
log(K1/λ) log(K1H/δ1) + log(K1H/δ1)

)
Hence, the sequence converges to ‖θ∗‖ at an exponential rate. Armed with the above lemma,

we finally focus on the regret of ARL (norm). We have the following:

Theorem 28. Suppose the initial epoch length K1 satisfies,

K1 > max{τmin(δ) log2(1 +
K

K1

), C1

(
max{p, q} b(1)

h

)2

d}

Then, with probability exceeding 1− 8Hδ − 2δ, we have

R(K) ≤ (c1

√
‖θ̄∗‖+ c2)Õ

(√
(d2H3 + dH4)λ1/2 polylog(K1/δ)

)
polylog(

K

K1

)
√
K,

where ‖θ̄∗‖ = maxh∈[H] ‖θ∗h‖.

Remark 50. If the algorithm is run for T rounds, with T = KH , we have

R(T ) ≤ Õ
(√
‖θ̄∗‖

√
(d2H2 + dH3)λ1/2 polylog(K1/δ)polylog(

K

K1

)
√
T

)
with probability at least 1− 8Hδ − 2δ.

Remark 51. The regret depends on {‖θ∗h‖}Hh=1, instead of an upper-bound on the norm. Hence, our
algorithm adapts to the problem complexity.

Remark 52. (Cost of model selection) Note that the regret bound here matches to that of the
near-optimal regret of UCRL-VTR+, and so the model selection is (order-wise) free, in terms of
regret.

10.3 Dimension as complexity measure
In this section, we consider the linear MDP, with dimension as a measure of complexity. We propose
and analyze an adaptive algorithm that tailors to the sparsity of {θ∗h}Hh=1. We denote the sparsity of
the parameters as {d∗h}Hh=1, and define d̄∗ = maxh d

∗
h. In what follows, we consider estimating the
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Algorithm 17: Adaptive Reinforcement Learning (dim)–ARL-Dim
1: Input: Initial Phase length k0, slack δ > 0.
2: θ̂0 = 1, T−1 = 0
3: for epochs i = 0, 1, 2 . . . do
4: ki = 4ik0, δi ← δ

2i

5: Di := {i : |θ̂i| ≥ (0.9)i+1}
6: for times t ∈ {ki−1 + 1, . . . , ki} do
7: Play UCRL-VTR+(1, δ/2i) only restricted to (Dih)h∈[H] co-ordinates. Here, δ/2i is the

slack parameter and 1 represents ‖θ∗h‖ ≤ 1 for all h ∈ [H].
8: end for
9: for times t ∈ {ki + 1, . . . , ki + 2i

√
k0} do

10: Play UCRL-VTR+(1, δ/2i) starting from where we left of in epoch i− 1.
11: end for
12: end for

sparsity parameter, d∗h of the h-th parameter θ∗h. For notational convenience, we drop the subscript h
from d∗h and θ∗h.

As seen in Algorithm 17, our proposed scheme works over multiple epochs, and we use
diminishing thresholds to estimate the support of θ∗. The algorithm is parameterized by k0, and
the slack δ ∈ (0, 1). ARL-Dim proceeds in phases numbered 0, 1, · · · , increasing with time. Each
phase starts with a support estimation routine of θ∗, and is kept fixed throughout the phase.

Each phase i is divided into two blocks - (i) a regret minimization block lasting 4ik0 time slots,
(ii) followed by a support estimation phase lasting 2id

√
k0e time slots. Thus, each phase i lasts for a

total of 4ik0 + 2id
√
k0e time slots.

At the beginning of phase i ≥ 0, Di ⊆ [d] denotes the set of ‘active coordinates’, namely the
estimate of the non-zero coordinates of θ∗, and by notation, D0 = [d]. In the regret minimization
block of phase i, a fresh instance of UCRL-VTR+ is spawned, with the dimensions restricted only
to the set Di and probability parameter δi := δ

2i
.

On the other hand, in the support estimation phase, we continue running the UCRL-VTR+

algorithm in full d dimension, from the point where we left of in epoch i − 1. Concretely, one
should think of the support estimation phases over epochs as a single run of UCRL-VTR+ in the
full d dimension. We choose the support estimation phases length in such a way that this does not
affect the final regret of ARL-Dim. Furthermore, choosing the error (slack) probability halving
over epochs, we ensure that final regret bound holds with high probability. At the end of each
phase i ≥ 0, ARL-Dim forms an estimate θ̂i+1 of θ∗. The active coordinate set Di+1, is then the
coordinates of θ̂i+1 with magnitude exceeding (0.9)(i+1). The pseudo-code is provided in Algorithm
17. By this careful choice of exploration periods and thresholds, we show that the estimated support
of θ∗ is equal to the true support, for all but finitely many phases. Thus after a finite number of
epochs, the true support of θ∗ locks-in, and thereafter the agent incurs the optimal regret that an
oracle knowing the true support would incur. Hence, the extra regret we incur with respect to an the
oracle (which knows the support of θ∗) is the additive constant independent of time (depending on
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the smallest non-zero value of θ∗).

10.3.1 Regret Guarantee
Suppose we choose the parameter

k0 = 2τ 2
min(δ) +O

(
d2 log4(K2H/δ)

ρ2
min(0.9)4

)
.

This ensures that the estimate of θ∗ after the 0-th epoch, θ̂1 satisfy

P
[
||θ̂1 − θ∗||∞ ≥ (0.9)

]
≤ 2δ

Furthermore, for all epochs i ≥ 2, we have

P
[
||θ̂i − θ∗||∞ ≥ (0.9)i

]
≤ 2δ

2i
,

where θ̂i is the estimate of θ∗ obtained by collecting all samples of the support estimation phase of
UCRL-VTR+ algorithm until the beginning of phase i. A formal statement of the above is deferred
to the proof section.

We are now ready to present the main theorem of this section. Recall that d̄∗ = maxh d
∗
h.

Theorem 29. Suppose Algorithm 17 is run with parameter k0 chosen above and with slack δ > 0
for K episodes. Then, with probability at least 1− 3δ, the regret upper bound is given by

R(K) ≤ 1

γ̄16

(
τ 2

min(δ) +
d2 log4(K2H/δ)

ρ2
min(0.9)4

)
+

(√
(d̄∗)2H3 + d̄∗H4polylog(d(K

k0

)e) polylog(K/δ)

) √
K

where γ̄ = minh∈[H]

{
min{|θ∗h(j)| : θ∗h(j) 6= 0}

}
, where θ∗h(j) denotes the j-th coordinate of θ∗h.

Remark 53. Note that we maintain a
√
K regret dependence, which is near optimal (see [74]).

However, the regret depends on γ̄, and hence it is a problem instance dependent bound.

Remark 54. (Dependence on γ̄:) In the above regret bound, we haven’t optimized over the de-
pendence on γ̄. Note that the 1/γ̄16 dependence can be improved significantly by choosing an
aggressive growing epoch length. For example, if we choose the support estimation period as
6id
√
k0e, the regret minimization period as 36ik0 and the threshold as (0.5)i, the dependence on γ̄

can be significantly reduced to 1/γ̄5.12. The support estimation period, regret minimization period
and threshold selection may be kept as tuning parameters.

Remark 55. (Cost of model selection:) Note that the cost of model selection is the first term in the
regret expression, which is independent of K, and hence a constant term.
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10.4 Conclusion
We address the model selection problem for episodic MDP with linear function approximation. In
particular, similar to the contextual bandits, we take norm and dimension as complexity parameter
and propose algorithms that adapts to these. An immediate future work is to relax the linearity
structure for RL, and obtain model selection for classes beyond linearity.

10.5 Proofs

10.5.1 Proof of Lemma 59
We use matrix Freedman inequality, and we critically use the bounded ness of φVt,h+1

(sth, a
t
h). Note

that a similar proof technique is used in [67] in the problem of contextual linear bandits.
For notational simplicity, we denote φVt,h+1

(sth, a
t
h) by φVt . In particular we have the bound

‖φVt‖ ≤ 1 for all t, and from construction σ̄t,h ≥ H√
d

for all t and h. With this, similar to [67], we
construct the following matrix martingale,

Zk =
k∑
t=1

σ̄−2
t,h φVtφ

>
Vt − kΣc,

with Z0 = 0, and consider the martingale difference sequence, Yk = Zk−Zk−1. Since, ‖σ̄−1
t,hφVt‖ ≤√

d
H

, we have

‖Σc‖op = ‖Ek−1σ̄
−2
k,hφVkφ

>
Vk
‖ ≤
√
d

H
,

and as a result

‖Yk‖op ≤
√
d

H
+

√
d

H
≤ 2

√
d

H
.

Furthermore, a simple calculation yields

‖Ek−1[YkY
>
k ]‖op = ‖Ek−1[Y >k Yk]‖op ≤ 2

d

H2
.

Now, applying matrix Freedman inequality (Theorem 13 of [67]) with R = 2
√
d/H, ω2 =

2td/H2, u = ρmint/2, we obtain

P
(
‖Zk‖ ≥

ρmink

2

)
≤ δ

k
,

for all k satisfying k ≥
(

16d
ρ2minH

2 + 8
√
d

3Hρmin

)
log(2dK/δ). Finally, using Weyl’s inequality, we obtain

the result.
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10.5.2 Proof of Lemma 60
We consider doubling epochs, with initial epoch length K1 and Ki = 2i−1K1 for i ∈ {1, . . . , N}.
The number of epochs is N .

Let us consider the i-th epoch, and let θ̂Ei,h be the least square estimate of θ∗h at the end of epoch
i. The confidence interval at the end of epoch i, is given by

CEi,h =
{
θ ∈ Rd : ‖θ − θ̂Ei,h‖Σ̂Ei,h

≤ β̂Ei,h

}
.

Using Lemma 59, one can rewrite CEi,h as

CEi,h =

{
θ ∈ Rd : ‖θ − θ̂Ei,h‖ ≤

β̂Ei,h√
1 + ρminKi/2

}
,

with probability at least 1−δi = 1−δ/2i−1. Here we use the fact that γmin(MKi , h) ≥ 1+ρminKi/2,
provided Ki ≥ τmin(δ/2i). To ensure this condition, we take (the sufficient condition) K1 ≥
τmin(δ)N , where N is the number of epochs. Also, from the doubling principle, we obtain

N∑
i=1

2i−1K1 = K ⇒ N = log2

(
1 +

K

K1

)
.

Hence, with K1 satisfying K1 ≥ τmin(δ) log2

(
1 + K

K1

)
, we ensure that γmin(MKi , h) ≥ 1 +

ρminKi/2.
Also, we know that θ∗h ∈ CEi,h with probability at least 1− 3δi. Hence, we obtain

‖θ̂Ei,h‖ ≤ ‖θ∗h‖+ 2
β̂Ei,h√

1 + ρminKi/2

with probability at least 1− 4δi. Recall from Algorithm 16 that at the end of the i-th epoch, we set
the length Ki+1 = 2Ki, and the estimate of ‖θ∗‖ is set to

b
(i+1)
h = max

θ∈CEi,h
‖θ‖.

From the definition of CEi,h, we obtain

b
(i+1)
h = ‖θ̂Ei,h‖+

β̂Ei,h√
1 + ρminKi/2

≤ ‖θ∗h‖+ 3
β̂Ei,h√

1 + ρminKi/2
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with probability exceeding 1− 4δi. Let us look at

β̂Ei,h = 8
√
d log(1 +Ki/λ) log(4K2

iH/δi) + 4
√
d log(4K2

iH/δi) +
√
λ b

(i)
h ,

We now substitute Ki = 2i−1K1 and δi = δ
2i−1 . We obtain√

1 + ρminKi/2 ≥ 2
i−2
2

√
ρminK1,

and

β̂Ei,h√
1 + ρminKi/2

≤
√
λb

(i)
h

2
i−2
2

√
ρminK1

+ C
i

2
i−2
2

√
ρminK1

(√
d log(K1/λ) log(K1H/δ1) +

√
d log(K1H/δ1)

)
.

Using this, we obtain

b
(i+1)
h ≤ ‖θ∗h‖+ 3

√
λb

(i)
h

2
i−2
2

√
ρminK1

+ C
i

2
i−2
2

√
ρminK1

(√
d log(K1/λ) log(K1H/δ1) +

√
d log(K1H/δ1)

)
= ‖θ∗h‖+ b

(i)
h

p

2
i−2
2

√
1

K1

+
iq

2
i−2
2

√
d

K1

,

with probability at least 1− 4δi, where

p = 3

√
λ

ρmin

and q =
C
√
ρmin

(√
log(K1/λ) log(K1H/δ1) + log(K1H/δ1)

)
.

Hence, we obtain,

b
(i+1)
h − b(i)

h ≤ ‖θ
∗
h‖+ (1− p

2
i−2
2

√
1

K1

)b
(i)
h +

iq

2
i−2
2

√
d

K1

By construction, b(i)
h ≥ ‖θ∗h‖. Hence, provided K1 >

4p2

2i
> 2p2, we have

b
(i+1)
h − b(i)

h ≤
p

2
i−2
2

√
1

K1

‖θ∗h‖+
iq

2
i−2
2

√
d

K1

From the above expression,

sup
i
b

(i)
h <∞
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with probability greater than or equal to

1−
∑
i

4δi = 1−
∑
i

4δ/2i−1 ≥ 1− 8δ.

. From the expression of b(i)
h and using the above fact in conjunction yield

lim
i→∞

b
(i)
h ≤ ‖θ

∗
h‖.

However, from construction b(i)
h ≥ ‖θ∗h‖. Using this, along with the above equation, we obtain

lim
i→∞

b
(i)
h = ‖θ∗h‖.

with probability exceeding 1−8δ. So, the sequence {b(1)
h , b

(2)
h , ...} converges to ‖θ∗h‖with probability

at least 1− 8Hδ for all h ∈ [H], and hence our successive refinement algorithm is consistent.

Rate of Convergence: Since

b
(i)
h − b

(i−1)
h = Õ

(
i

2i

)
, (10.1)

with high probability, the rate of convergence of the sequence {b(i)
h }∞i=1 is exponential in the number

of epochs.

Uniform upper bound on b(i)
h for all i: We now compute a uniform upper bound on b(i)

h for all i.

Consider the sequences

{
i

2
i−2
2

}∞
i=1

and

{
1

2
i−2
2

}∞
i=1

, and let tj and uj denote the j-th term of the

sequences respectively. It is easy to check that supi ti =
√

2 and supi ui = 2, and that the sequences
{ti}∞i=1 and {ui}∞i=1 are convergent. With this new notation, we have

b
(2)
h ≤ ‖θ

∗‖+ u1
pb

(1)
h√
K1

+ t1
q
√
d√
K1

.

with probability exceeding 1− 4δ. Similarly, for b(3)
h , we have

b
(3)
h ≤ ‖θ

∗‖+ u2
pb

(2)
h√
K1

+ t2
q
√
d√
K1

≤
(

1 + u2
p√
K1

)
‖θ∗h‖+

(
u1u2

p√
K1

p√
K1

b
(1)
h

)
+

(
t1u2

p√
K1

q
√
d√
K1

+ t2
q
√
d√
K1

)
.
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with probability at least 1− 4δ− 2δ = 1− 6δ. Similarly, we write expressions for b(4)
h , b

(5)
h , .... Now,

provided K1 ≥ C1

(
max{p, q} b(1)

h

)2

d, where C1 is a sufficiently large constant, the expression

for b(i)
h can be upper-bounded as

bi ≤ (c1‖θ∗h‖+ c2) , (10.2)

with probability

≥ 1− 4δ

(
1 +

1

2
+

1

4
+ ...upto i-th term

)
≥ 1− 4δ

(
1 +

1

2
+

1

4
+ ...

)
= 1− 8δ.

Here c1 and c2 are constants, and are obtained from summing an infinite geometric series with
decaying step size. We also use the fact that b1 ≥ 1, and the fact that δi = δ1

2i−1 .

10.5.3 Proof of Theorem 28
Suppose we play Algorithm 16 for N epochs. The cumulative regret is given by

R(T ) ≤
N∑
i=1

R(δi, b̄
(i))(Ki),

where R(δi, b̄
(i))(Ki) is the cumulative regret of the UCRL-VTR+ in the i-th epoch. As seen (by

tracking the dependence on {‖θ∗h‖}Hh=1) in UCRL-VTR+, the cumulative regret of UCRL-VTR+ is
given by

R(δi, b̄
(i))(Ki) = Õ

(√
(d2H3 + dH4)λ1/2b̄(i)

√
Ki polylog(Ki/δi)

)
with probability at least 1− δi, where b̄(i) = maxh∈[H] b

(i)
h . Hence, we have

R(T ) ≤
N∑
i=1

√
b̄(i) R(δi, 1)(Ki).

Using Lemma 60, we obtain, with probability at least 1− 8Hδ,

R(T ) ≤ (c1

√
‖θ̄∗‖+ c2)

N∑
i=1

R(δi, 1)(Ki),
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where ‖θ̄∗‖ = maxh∈[H] ‖θ∗h‖With the doubling trick, we have

Ki = 2i−1K1, δi =
δ

2i−1
.

Substituting, we obtain

R(δi, 1)(Ki) ≤ Õ
(√

(d2H2 + dH3)λ1/2
√
Ki poly(i) polylog(K1/δ)

)
with probability greater than 1− δi.

Using the above expression, we obtain

R(K) ≤ (c1

√
‖θ̄∗‖+ c2)

N∑
i=1

Õ
(√

(d2H2 + dH3)λ1/2
√
Ki poly(i) polylog(K1/δ)

)
with probability at least 1− 8Hδ − 2δ.

Also, from the doubling principle, we obtain

N∑
i=1

2i−1K1 = K ⇒ N = log2

(
1 +

K

K1

)
.

Using the above expression, we obtain

R(K) ≤ (c1

√
‖θ̄∗‖+ c2)

N∑
i=1

Õ
(√

(d2H3 + dH4)λ1/2
√
Ki poly(i) polylog(K1/δ)

)
≤ (c1

√
‖θ̄∗‖+ c2)Õ

(√
(d2H3 + dH4)λ1/2 polylog(K1/δ)

)
poly(i)

√
Ki

≤ (c1

√
‖θ̄∗‖+ c2)Õ

(√
(d2H3 + dH4)λ1/2 polylog(K1/δ)

)
poly(N)

N∑
i=1

√
Ki

≤ (c1

√
‖θ̄∗‖+ c2)Õ

(√
(d2H3 + dH4)λ1/2 polylog(K1/δ)

)
polylog(

K

K1

)
N∑
i=1

√
Ki

≤ (c1

√
‖θ̄∗‖+ c2)Õ

(√
(d2H3 + dH4)λ1/2 polylog(K1/δ)

)
polylog(

K

K1

)
√
K,
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where the last inequality follows from the fact that

N∑
i=1

√
Ki =

√
KN

(
1 +

1√
2

+
1

2
+ ..N -th term

)
≤
√
KN

(
1 +

1√
2

+
1

2
+ ...

)
=

√
2√

2− 1

√
KN

≤
√

2√
2− 1

√
K.

The above regret bound holds with probability greater than or equal to 1− 8Hδ − 2δ.

10.5.4 Proof of Theorem 29
First, we need the following set of results. Throughout the calculation, we take λ = Θ(1).

Lemma 61. Suppose UCRL-VTR+ is run for M episodes, where τmin(δ) ≤ M < K. If M =

O
(
d log2(K2H/δ)

ρminε2

)
, and θ̂(M) is the estimate of θ∗, then we have

P[||θ̂(M) − θ∗||∞ ≥ ε] ≤ 2δ.

Proof. The proof of this comes from the analysis of UCRL-VTR+. Note that with Assumption 27
(and effectively Lemma 1), if we let UCRL-VTR+ run for M episodes, we obtain∥∥∥θ̂(M) − θ∗

∥∥∥
∞
≤
∥∥∥θ̂(M) − θ∗

∥∥∥ ≤ 8
√
d log(1 +M/λ) log(4K2H/δ) + 4

√
d log(4K2H/δ) +

√
λ√

λ+ ρminM/2
(10.3)

with probability at least 1− 2δ. Here τmin(δ) =
(

16d
ρ2minH

2 + 8
√
d

3Hρmin

)
log(2dK/δ). Hence, with the

choice of M , and using the fact that M < K, we get the lemma.

We shall now apply the lemma as follows. Denote by θ̂i to be the estimate of θ∗ at the beginning
of any phase i, using all the samples from random explorations in all phases less than or equal to
i− 1.

Remark 56. The choice
√
k0 = τmin(δ) +O

(
d log2(K2H/δ)
ρmin(0.9)2

)
(we have added the τmin(δ) to make the

calculations easier), ensures that

P
[
||θ̂(d

√
k0e) − θ∗||∞ ≥ 0.9

]
≤ 2δ

□ 



CHAPTER 10. MODEL SELECTION FOR REINFORCEMENT LEARNING WITH
FUNCTION APPROXIMATION 295

Lemma 62. Suppose k0 = 2τ 2
min(δ) +O

(
d2 log4(K2H/δ)

ρ2min(0.9)4

)
. Then, for all phases i ≥ 2,

P
[
||θ̂i − θ∗||∞ ≥ (0.9)i

]
≤ 2δ

2i
, (10.4)

where θ̂i is the estimate of θ∗ obtained by collecting all samples of the support estimation phase of
UCRL-VTR+ algorithm until the beginning of phase i.

Proof. The above lemma follows directly from Lemma 61. Lemma 61 gives that if θ̂i is computed
by considering the samples of UCRL-VTR+ over at least Mi episodes, where τmin(δ) ≤ Mi ≤
O
(
d log2(K2H2i/δ)
ρmin(0.9)2i

)
episodes, then we have equation 10.4. However, note that

√
k0 = τmin(δ) +

O
(
d log2(K2H/δ)
ρmin(0.9)2

)
, and that we require Mi ≤ i(1.2)i

√
k0. The proof is concluded if we show that at

the beginning of phase i ≥ 2, the total number of support estimation episodes performed by the
algorithm exceeds i(1.2)id

√
k0e. Notice that at the beginning of any phase i ≥ 2, the total number

of support estimation episodes
i−1∑
j=0

2jd
√
k0e = d

√
k0e(2i − 1),

≥ i(1.2)id
√
k0e,

where the last inequality holds for all i ≥ 2.

We now calculate the probability of the following event, which follows from a straightforward
union bound.

Corollary 8.

P

[⋂
i≥2

{
‖θ̂i − θ∗||∞ ≤ (0.9)i

}]
≥ 1− δ.

Proof. This follows from a simple union bound as follows.

P

[⋂
i≥2

{
||θ̂i − θ∗||∞ ≤ (0.9)i

}]
= 1− P

[⋃
i≥2

{
||θ̂i − θ∗||∞ ≥ (0.9)i

}]
,

≥ 1−
∑
i≥2

P
[
||θ̂i − θ∗||∞ ≥ (0.9)i

]
,

≥ 1−
∑
i≥2

2δ

2i
,

≥ 1−
∑
i≥2

δ

2i
,

= 1− δ.

□ 
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Proof of Theorem 29. We know from Corollary 8, that with probability at-least 1− δ, for all phases
i ≥ 2, we have ||θ̂i − θ∗||∞ ≤ (0.9)i. Call this event E . Now, consider the phase i(γ) :=

max
(

2, log(1/0.9)

(
1
γ

))
. Now, when event E holds, then for all phases i ≥ i(γ), Di is the correct

set of d∗ non-zero coordinates of θ∗. Thus, with probability at-least 1− δ, the total regret upto time
K episodes can be upper bounded as follows

R(K) ≤
i(γ)−1∑
j=0

(
4ik0 + 2id

√
k0e
)

+

⌈
log4

(
K
k0

)⌉
∑
j=i(γ)

Regret(UCRL-VTR+(1, δi; 4ik0))

+

⌈
log4

(
K
k0

)⌉
∑
j=i(γ)

Regret(UCRL-VTR+(1, δi; 2jd
√
k0e)). (10.5)

The term Regret(UCRL-VTR+(1, δ, T )) denotes the regret of the UCRL-VTR+ algorithm, when
run with ‖θ∗‖ ≤ L, and δ ∈ (0, 1) denotes the probability slack and K is the time horizon. Equation

(10.5) follows, since the total number of phases is at-most O
(⌈

log4

(
K
k0

)⌉)
. Also, note that the

third term in Equation (10.5) is dominated by the second term, and hence handling the first two
terms is sufficient.

We now use the near optimal regret bound of [74] to upper bound the second term of Equation
(10.5). In particular, for all phases i ∈ [i(γ), dlog4

(
K
k0

)
], we have, with probability at-least 1− δ,

Regret(UCRL-VTR+(1, δ,K)) ≤ Õ
(√

(d∗)2H3 + d∗H4 polylog(K/δ)
√
K
)
.

Thus, we know that with probability at-least 1−
∑

i≥2 δi ≥ 1− δ, for all phases i ≥ i(γ), the regret
in the exploration phase satisfies

Regret(UCRL-VTR+(1, δi, 4
ik0)) ≤ Õ

(√
(d∗)2H3 + d∗H4

√
4ik0 poly(i) polylog(K/δ)

)
≤ Õ

(√
(d∗)2H3 + d∗H4

√
4ik0 poly(dlog4(

K

k0

)e) polylog(K/δ)

)
≤ C(H,K, δ, d∗)

√
4ik0 (10.6)

C(H,K, δ, d∗) = Õ

(√
(d∗)2H3 + d∗H4 poly(dlog4(

K

k0

)e) polylog(K/δ)

)
= Õ

(√
(d∗)2H3 + d∗H4 polylog(d(K

k0

)e) polylog(K/δ)

)

□ 
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Equation the above follows, by substituting i ≤ O(log4

(
K
k0

)
). We have with high probability,

the (order-wise) regret is

R(K) ≤ 2k04i(γ) + 2

log4

(
K
k0

)
+1∑

j=0

C(H,K, δ, d∗)
√

4jk0,

≤ 2k04i(γ) + C(H,K, δ, d∗)
log4

(
K
k0

)
+1∑

j=0

√
4jk0,

(a)

≤ 2k0
1

γ16
+ 4
√
K + 4

√
K C(H,K, δ, d∗),

≤ 1

γ16

(
τ 2

min(δ) +
d2 log4(K2H/δ)

ρ2
min(0.9)4

)
+ C(H,K, δ, d∗)

√
K

≤ 1

γ16

(
τ 2

min(δ) +
d2 log4(K2H/δ)

ρ2
min(0.9)4

)
+

(√
(d∗)2H3 + d∗H4 polylog(d(K

k0

)e) polylog(K/δ)

) √
K

Step (a) follows from 4 ≤ 1.116.
Let us now compute the probability with which the above holds. Note that the support estimation

procedure succeeds with probability at least 1 − δ. Furthermore, we have 2 parallel runs of
UCRL-VTR+, each of which succeeds with probability at least 1−

∑
i≥2 δi ≥ 1− δ. Hence, with

probability at least 1− 3δ, the above regret bound holds.
□ 
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[2] Jakub Konečny et al. “Federated optimization: distributed machine learning for on-device
intelligence”. In: arXiv preprint arXiv:1610.02527 (2016).

[3] Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative Machine
Learning without Centralized Training Data. https://research.googleblog.
com/2017/04/federated-learning-collaborative.html. 2017.

[4] Jacob Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[5] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals Problem”.
In: ACM Trans. Program. Lang. Syst. 4.3 (July 1982), pp. 382–401.

[6] Virginia Smith et al. “Federated multi-task learning”. In: Advances in Neural Information
Processing Systems. 2017, pp. 4424–4434.

[7] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. “Clustered Federated Learning:
Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints”. In: arXiv
preprint arXiv:1910.01991 (2019).

[8] Yihan Jiang et al. “Improving federated learning personalization via model agnostic meta
learning”. In: arXiv preprint arXiv:1909.12488 (2019).

[9] Yishay Mansour et al. “Three approaches for personalization with applications to federated
learning”. In: arXiv preprint arXiv:2002.10619 (2020).

[10] Badrul M Sarwar et al. “Recommender systems for large-scale e-commerce: Scalable neigh-
borhood formation using clustering”. In: Proceedings of the fifth international conference
on computer and information technology. Vol. 1. 2002, pp. 291–324.

[11] Qing Li and Byeong Man Kim. “Clustering approach for hybrid recommender system”. In:
Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003). IEEE.
2003, pp. 33–38.

[12] Rich Caruana. “Multitask learning”. In: Machine learning 28.1 (1997), pp. 41–75.

[13] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48.
Cambridge University Press, 2019.

https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://research.googleblog.com/2017/04/federated-learning-collaborative.html


BIBLIOGRAPHY 299

[14] Dan Alistarh et al. “The convergence of sparsified gradient methods”. In: Advances in
Neural Information Processing Systems. 2018, pp. 5973–5983.

[15] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. “Sparsified sgd with mem-
ory”. In: Advances in Neural Information Processing Systems. 2018, pp. 4447–4458.

[16] Nikita Ivkin et al. “Communication-efficient distributed SGD with Sketching”. In: arXiv
preprint arXiv:1903.04488 (2019).

[17] Dan Alistarh et al. “Communication-efficient stochastic gradient descent, with applications
to neural networks”. In: (2017).

[18] Lili Su and Nitin H Vaidya. “Fault-tolerant multi-agent optimization: optimal iterative
distributed algorithms”. In: Proceedings of the 2016 ACM symposium on principles of
distributed computing. ACM. 2016, pp. 425–434.

[19] Jiashi Feng, Huan Xu, and Shie Mannor. “Distributed robust learning”. In: arXiv preprint
arXiv:1409.5937 (2014).

[20] Sai Praneeth Karimireddy et al. “Error feedback fixes signsgd and other gradient compres-
sion schemes”. In: International Conference on Machine Learning. PMLR. 2019, pp. 3252–
3261.

[21] Dan Alistarh et al. “QSGD: Communication-efficient SGD via gradient quantization and
encoding”. In: Advances in Neural Information Processing Systems. 2017, pp. 1709–1720.

[22] Jeremy Bernstein et al. “signsgd with majority vote is communication efficient and Byzan-
tine fault tolerant”. In: arXiv preprint arXiv:1810.05291 (2018).

[23] Dong Yin et al. “Byzantine-Robust Distributed Learning: Towards Optimal Statistical
Rates”. In: Proceedings of the 35th International Conference on Machine Learning. Ed. by
Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research.
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[216] Gilles Hargé. “A convex/log-concave correlation inequality for Gaussian measure and an
application to abstract Wiener spaces”. In: Probability theory and related fields 130.3 (2004),
pp. 415–440.
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