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Abstract—Autonomous and semi-autonomous systems can en-
counter situations where timely attention of a human operator is
required to take over some aspect of decision making or control.
For certain human robot interaction (HRI) applications, like
Autonomous Vehicle (AV) operations, these decisions could be
both time-critical and safety-critical. Given this, it is important
to ensure that the human is brought into the decision making
loop in a manner that enables them to make a timely and correct
decision. In this paper, we consider one such application, which
we refer to as the perception hand-off problem, which brings the
driver into the loop when the perception module of an AV is
uncertain about the environment. We formalize the perception
hand-off problem using a Partially Observable Markov Decision
Process (POMDP) model with a problem specific structure. This
model captures the latent cognitive state of the driver which can
be influenced through a query-based Human-Machine Interface
(HMI). Through a human-study experiment on the perception
hand-off problem for object recognition, we learn such a model
and validate our hypotheses about the hand-off problem and
the impact of our query-based HMI. The results from this
study show that the state of attentiveness does indeed impact
the human performance, and our proposed active information
gathering (AIG) actions, or queries, result in 7% faster responses
from the human. We also use this experimental data to learn
the proposed POMDP model parameters. Simulations with this
identified model show that a policy for deploying the AIG actions
improves the percentage of correct responses from the human in
the perception hand-off by around 5.5%, outperforming other
baselines while also using fewer of these actions.

I. INTRODUCTION

The safe operation of autonomous and semi-autonomous
systems sometimes requires intervention from a human op-
erator. However, the human operator may not always be in
a state to make a correct and timely decision, leading to
safety violations with potentially fatal consequences [13]. In
recent years, issues with the perception module of autonomous
vehicles (AVs) have been a dominant cause for a human to
take over control of the vehicle [3]. In such takeovers or
hand-offs, the human operator needs to be attentive and have
spatial awareness once the AV asks them to take control, but
might not have as complete a picture as the AV does since
they are were not controlling the vehicle up until the hand-off
was initiated. We posit that in such scenarios, continued semi-
autonomous operation could be possible by handing off to the
human just the perception task that the AV cannot confidently
perform. This would allow the vehicle to operate under the
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Fig. 1: Illustration of our approach for the perception hand-off.

same (autonomous) control law and avoid sudden maneuvers
unless necessary. It would also enable gathering data on-
the-fly, which could be useful for improving the robustness
of the perception algorithms. We refer to this human-robot
interaction as the perception hand-off. This hand-off requires
a system to effectively alert the human and bring them into the
decision-making loop in a manner that ensures overall system
safety. In this paper, we present an approach to formally
model the Human-Robot interaction in the perception hand-off
problem and develop an active information gathering scheme
that enables us to leverage a query-based human machine
interface (HMI) to both estimate and influence the human state
to improve response time and correctness. Our framework can
be viewed as a formalization and automation of techniques
such as pointing-and-calling [1], a method used by train
operators in Japan wherein they points at signs and verbalizes
the command that they will execute, and which has been shown
to reduce operator error and improve response times [24].

We focus on applications in L3/L4 autonomous driving, as
defined in the SAE J3016 standard [2] for AVs, and develop a
framework for bringing the human in the decision-making loop
at a high attention level to safely execute a perception hand-off.
Here, the AV and the human interact through a HMI, through
which the AV can query the human for two purposes: a) the
AV is unsure of the environment and requires human input
in decision making, or b) a Human-Robot Interaction (HRI)
policy (designed for maximizing safety in a perception hand-
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off) wants to either infer the state of the human’s attentiveness
or influence it in preparation for an upcoming (potential)
perception hand-off. We refer to the latter as an active infor-
mation gathering action (AIGA) [18], and show the benefit of
these, especially in situations where the human driver’s state
of attentiveness during autonomous driving is also impacted
by non-driving related tasks (NDRTs) or distractor tasks.

Showing the potential applicability of our approach, in an
online survey that we hosted on Amazon mechanical turk
(mturk), 45 of 56 users preferred that their AV ask non-
critical questions if it can help them respond faster and more
accurately in a critical scenario. A majority (49 out of 56) also
preferred to be kept in the loop if the AV is uncertain about
the environment during autonomous operation. The following
example illustrates the perception hand-off.

Example 1 (Perception hand-off in autonomous driving). To
demonstrate how our system can be of use in a perception
hand-off scenario, consider the following example. The AV
is operating in an area that predominantly has stop signs
at intersections. As show in Figure 1, the AV approaches a
partially occluded stop sign. In such a setup, based on a system
that monitors the human (e.g. gaze tracking, pose detection,
or location of driver’s hands), the AV maintains a belief about
the human’s level of attentiveness and uses the responses from
the human in the cases below to update it:
Case 1: The AV has correctly identified the stop sign with
high confidence (Fig.1-2b). Subsequently, a human-robot in-
teraction policy determines (Fig.1-3b) if it needs to deploy an
AIGA (Fig.1-5b) that both alters the human’s attention state
and allows to further update the belief (Fig.1-7b).
Case 2: The AV is unable to identify the stop sign with high
confidence(Fig.1-2a), the human operator is asked to identify
it. Their response is then used by the AV to perform an
appropriate behavior, e.g. stop at the sign and then proceed.
We refer to this as a “perception hand-off” (Fig.1-3a).

A. Overview of our approach and outline of the paper

In section II, we cover some of the existing research that
is relevant in the context of this work. Section III states the
problem statements we aim to solve, and gives an outline of the
key components of our framework to do so. As a first step, we
study the perception hand-off through a human subject study
(section IV), deployed on Amazon’s Mechanical Turk (mturk)
platform1, where the human subject helps identify objects on
the road that the AV is unsure of, while also performing a
non-driving related task (NDRT) or distractor task. Data from
this experiment shows that the NDRT increases the human’s
response time and lowers accuracy of their responses. It also
shows that the proposed active information gathering (AIG)
mechanism results in faster responses from the human even

1Since in-lab studies were not possible during the pandemic, we designed
an experiment that could be deployed online to reach a wide user base

in the presence of NDRTs. We propose a Partially Observable
Markov Decision Process (POMDP) model to represent this
HRI (section V) to capture such behavior, and learn the
model parameters through the data gathered via the mturk
study. The structure of the model makes it well suited for
the perception hand-off, and also makes it amenable to learn
policies for influencing human behavior in this HRI (section
V-C). Simulation studies (Section VI) show the benefits of our
approach and its potential to improve the driver’s response
time and rate of making correct decisions.

B. Contributions

The main contributions of this paper are:
1) A model-based formalization of the perception hand-

off process for time-critical human operator decision-
making in autonomous/semi-autonomous systems;

2) A query-based active information gathering mechanism
to use the HMI to gauge and influence the attention of
the human operator in a closed-loop manner;

3) A human subject study to gather data on human operator
performance in a setting that simulates such a perception
hand-off process. This data is used to learn the proposed
POMDP model and validate hypotheses on the operator
behavior and the impact of the query-based AIG mech-
anism, in particular showing on average a 7% speed up
in response times when the human is distracted, and

4) A model-based policy that uses the query-based AIG
mechanism to influence the operator attention in order
improve their performance on these hand-off tasks.

We demonstrate that the rate of making correct decisions
improves by 5.5% using our approach via a simulation study,
which uses the learned model as a surrogate for the human.

II. RELATED WORK

In this paper, we study the problem of safe interaction be-
tween a human operator and an autonomous/semi-autonomous
vehicle. In this section, we cover some of the relevant work
in this context from across different research areas.
Model-based Human-Robot Interaction: In [23], measure-
ments of the pose of the human driver of a semi-autonomous
vehicle are used to correct the human input to the vehicle.
Models with hidden latent states, usually POMDP-based, have
been used to generate robot policies [9] or predict human intent
[26] in collaborative human-robot tasks. These works however
do not consider the case where the robot can actively gather
information, i.e. take actions to estimate or influence the latent
(human) state. The work in [18] takes a step in this direction,
where an autonomous vehicle takes actions to actively estimate
whether the driver of a nearby human operated vehicle is
attentive or inattentive. However, the human latent state is
assumed to be time invariant. In this work, we consider the
problem of active information gathering to both estimate and
influence the mental state of the human operator, which is time
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varying. A monitoring-based approach to alert the driver for
a takeover is presented in [7]. The space of states and actions
there is similar to ours, but unlike our approach, they assume
full state observability. They also assume a priori knowledge
of a transition model, while one of our main contributions is
designing an experiment to gather data to learn such a model.
Finally, in the context of HRI in autonomous driving, there
has been extensive research into the problem of AV control in
the presence of human driven vehicles [11, 19, 25].

Dual-task driving studies: In situations where the safe op-
eration of an AV requires the assistance of a human operator,
the human’s behavior is not guaranteed to be timely, or even
correct. This can mostly be attributed to human operators of
vehicles performing non-driving related tasks [13]. Dual-task
experiments [4, 14, 5, 12] have been designed to study driver
behavior in the presence of non-driving, or distractor tasks.
The findings in these state that the presence of a distractor
task impairs the driver’s performance on driving-related tasks
and increases their response times. As will be seen later in
the paper, similar to these driving simulator-based studies, the
web-based experiment we use for data gathering and model
learning also exhibits these trends.

Cognitive models of humans in autonomous driving: Sem-
inal work by Card et. al [8] proposed the Model Human
Processor (MHP), that explicitly modeled the human as a set
of computer memories (such as long-term memory, working
memory) and processors bound by certain “principles of
operation”. It characterized attributes such as decay time and
access time of information stored in them. Using these, one
can empirically estimate time taken by a user to complete
a task, as the time for human brain to process and act on
different types of input stimuli. Similar techniques have been
used in other cognitive models such as GOMS and KLM [8].
A major drawback is that, these require a prior knowledge of
the specific task(s) to estimate human performance on them.
But, for a human in a self-driving car, the distractor task
that they perform varies and, is unknown ahead of time. This
necessitates a data-driven and real-time adaptive approach.

The human cognitive process when an AV requests the
driver to take over control has been studied in [21, 22, 20].
Unlike these works that aim to model the underlying cognitive
processes step-by-step, we aim to develop a computational
latent state model that can be influenced by an external
process, i.e. the Human-Machine Interface (HMI). Also, in
our version of the takeover or hand-off process, the human
does not take over full control of the vehicle, but is tasked with
recognizing an object on the road when the AV cannot. In other
applications, time constrained decision making of humans has
been studied in puzzle solving [16] and gambling [15].
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Fig. 2: An overview of the human-AV interaction in the hand-
off process. The AV, through a human-machine interface (HMI),
can query the human driver when its perception module requires
help in decision making, or to gauge/influence the human’s state of
attentiveness. Further influencing the human state is a NDRT.

III. FORMALIZING THE AUTONOMY-TO-HUMAN

PERCEPTION HAND-OFF

We develop a model-based framework to represent and
influence the human behavior during the perception hand-off
HRI process, an overview of which is shown in Figure 2. First,
we address the need for developing a latent variable model of
the hand-off HRI that is suited for closed loop control and can
be interpreted for online monitoring of the human operator’s
attentiveness. We also propose the use of query-based active
information gathering actions that enable us to do so.

A. Modeling the human response

The first step in our framework is to develop a model for
the hand-off HRI that can be used for closed-loop and online
interaction between the AV and the human operator.

Problem 1 (Modeling). Develop a model for the human
operator’s response (timing and correctness) to perception-
hand-off queries from the autonomous system, that can account
for the (latent) human attentiveness levels, transitions between
them, and the impact of queries on them.

In this work, we propose a Partially Observable Markov
Decision Process with a specific structure to represent this
HRI. Section V covers the details regarding the states, actions,
observations and the transition structure in this model. Our
model allows for the latent state of the human to change
over time, and be influenced by the AIGAs, distinguishing
our approach from other works like [18].

B. The human-AV interface: Querying the driver for hand-off

Next, we also discuss the interface between the human
operator and the AV. In the version of the perception hand-off
problem considered here, the AV occasionally requires human
intervention in decision making, e.g. identifying an object on
the road. In our framework, this is posed to the human as
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queries, which must be answered within a given deadline. The
queries are displayed to the human via a HMI2, which also
registers the response from the human, as shown in figure
2. This response would be used by the AV to decide which
behavioral action (e.g. lane change or emergency braking) to
execute, that however is beyond the scope of the current work.

A query displayed via the HMI could be of two types:

1) From the perception module, or environment query:
These are asked when the AV’s perception module is
unsure how to interpret the environment and requires
the human to make a decision. We refer to these as
environment queries as they are triggered by factors
external to the AV.

2) Active information gathering action, or attention query:
Here, the AV does not actually require human interven-
tion, but nevertheless relies on a policy to query the
driver to either influence or better estimate a latent state.

Assumption 1 (Precedence of Environment queries). An at-
tention query can be only be displayed via the HMI if there is
no environment query actively displayed. An attention query
can also be preempted by an environment query.

This assumption is formalized in section V. Note that, an
environment query is due to factors external to the AV (which
cannot be directly controlled). This can be interpreted as a
second player’s actions (environment) in a two player game,
where the first player (the AV’s HRI policy) takes actions in
the form of attention queries.

Next, we consider the problem of developing a policy for
scheduling attention queries to increase the human’s attentive-
ness towards driving related tasks.

Problem 2 (Policy for the hand-off HRI). Develop a policy for
deploying the AIGAs (attention queries) in order to improve
the human response to subsequent environment queries, i.e.
the rate of correct responses and reduce response time.

The overall architecture for this hand-off HRI is shown in
Figure 2. In order to study human behavior to this setup, and to
gather data to learn the proposed model, we developed a proof-
of-concept user study that simulates this hand-off process.

IV. DUAL-TASK WEB EXPERIMENT FOR THE PERCEPTION

HAND-OFF PROCESS

For the study, we developed a web-based game that simu-
lated the perception hand-off process as in the previous sec-
tion. We used it to study the impact of human attention levels
and the HMI on the timing and accuracy of decision making in
hand-off situations, we developed a dual-task human subject
experiment in the form of a game where the human can interact
with an AV. The dual-task here refers to the fact that the

2The formal design of such an interface is beyond the scope of this paper,
however we consider a graphical interface (see Section IV) that allows us to
study and collect data for the perception hand-off HRI.
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Fig. 3: The human subject experiment design for studying the hand-
off process. Note: UI Text emphasized for clarity. An example of an
experimental trial can be seen at https://youtu.be/LZRemqFBILA.

human subject performs both a driving related task and a
distractor or non-driving related task (NDRT). The experiment
was conducted on the Amazon mechanical turk platform, and
we had 40 users who took part in it.

Figure 3 shows the UI that the subject of the experiment
interacts with. The main components of this, as shown clock-
wise from the left, are as follows. See Appendix A for details.

1) Driving related (primary) task: Figure 3d shows the
setup for the driving task. The user has a top-down view
of an AV (Figure 3f) driving on a straight one-way road
with objects on it. Only one object is present on the road
at a time; a new one is spawned every 10s. For some of
these objects, the AV requires user input (via keyboard),
within a deadline of 4s, to label them correctly (using
legend in 3b) within a fixed amount of time.

2) Distractor task: For the NDRT (Figure 3c), the user has
to solve basic arithmetic questions within a given time.
They have exactly 5 seconds to answer each question,
and the task display is toggled on/off every 150s.

3) Human-Machine Interface: This displays: a) The
queries to the human to identify an object on the road,
and b) The information regarding which key corresponds
to the different classes among which the human must
choose to associate the object with.

Note that in order to simulate an AV and to deal with the
constraints of designing and deploying the experiment, the
subject cannot directly control the car in the driving related
task. For objects that the AV can identify on its own, it
performs an appropriate behavior to either avoid or collect
the objects. In cases where it requires the user to identify an
object, the car takes an action only after receiving user input.
The full experiment takes 10 minutes.

A. Interleaving of attention and environment queries

While each of attention queries and environment queries
by themselves are identical, the primary difference between

https://youtu.be/LZRemqFBILA
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the two types is the order in which they are deployed. AV
encounters only one object at a time, and the time difference
between the objects in 10s. Every set of three objects forms a
condition for Hypotheses 2A-5B, and takes 30s. More details
on orders can be found in Appendix C.

B. Summary of data and hypotheses on human performance

1. Are the distractor tasks effective? First, we ensure that
the deployed distractor task was effective in distracting the
users from the primary task of identifying objects. To do that,
we tested the performance of the users on two key metrics: a)
Average Response time of answering driving-related queries,
RT ; b) Fraction of primary queries answered correctly, f , and
formulated the following hypothesis.

Hyp. 1A. The average response time (RT ) of driving-related
queries in the presence of a distractor task will be greater
than when distractor task is absent

Hyp. 1B. The fraction correctly answered (f ) of driving-
related queries in the presence of a distractor task will be
lower than when distractor task is absent

We carried out paired-sample t-tests and observed a statis-
tically significant difference in both average response times
and fraction of queries answered correctly. In the presence of
distractor tasks, RT was significantly higher (M = 2171ms,
SD=520ms) than in its absence (M = 1807ms, SD = 449ms);
t(39) = 7.82, p < 0.05, Cohen’s D = 0.72. In case of f , it
was significantly lower in the presence of distractor task (M =
0.894, SD = 0.13) when compared to its absence (M = 0.966,
SD = 0.063); t(39) = 3.907, p < 0.05, Cohen’s D = 0.67.

Discussion: These results suggest that the distractor task
indeed distracts the user from the driving task, both by
increasing the time for task completion, and reducing their
correctness. This ensures that the users, in the presence of
distractor tasks, are operating in dual-task setting.

2. Effect of attention queries: We proceed to study the effect
of attention queries on the user’s performance on environment
queries. We expect that the presence of attention queries on
objects increases user awareness of the driving task. Hence,
they might perform better on a succeeding query(s).

To test this, we formulated hypotheses (Hyp. 4A, 4B, 5A,
5B), and tested them. However, we were unable to reject the
null hypotheses at a significance level of p < 0.05. Overall,
no significant effect of attention queries were found on the
environment queries across the entire experiment. These are
reported in the Appendix D for reference.

3. Effect of attention queries in a dual-task setting: Subse-
quently, we continued to study the effect of attention queries
on the user’s performance on environment queries, but now
specifically in a dual-task setting, in which the distractor task
(NDRT) was present. We formulated the following hypotheses:
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Fig. 4: Average Response Times (RT ) and Fraction of queries
correctly answered (f ) for different conditions employed in
Hyp. 2A, 2B, 3A and 3B

Hyp. 2A. In a dual-task setting, the RT of environment
queries such that there is an attention query on the preceding
object (Experimental Condition - Order-1) will be less than
the RT of env. queries where there is no att. query on at least
two objects before it (Control Condition - Orderφ).

Hyp. 2B. In a dual-task setting, the f of environment queries
such that there is an attention query on the preceding object
(Experimental Condition - Order-1) will be greater than the
f of env. queries where there is no att. query on at least two
objects before it (Control Condition - Orderφ).

Hyp. 3A. In a dual-task setting, the RT of env. queries such
that there is an att. query on the second object preceding it
(Experimental Condition - Order-2), will be less than the RT
of env. queries where there is no att. query on at least two
objects before it (Control Condition - Orderφ).

Hyp. 3B. In a dual-task setting, the f of env. queries such
that there is an att. query on the second object preceding it
(Experimental Condition - Order-2), will be greater than the
f of env. queries where there is no att. query on at least two
objects before it (Control Condition - Orderφ).

We carried out paired-sample t-tests for these and observed
a statistically significant difference in results of Hyp. 2A. The
average response times (in the presence of distractor task)
of Control Condition (Orderφ): M=2172ms and SD=533ms;
For the Experimental condition (Order-1): M=2018ms and
SD=555ms; t(39) = 3.24, p < 0.05, Cohen’s D = 0.27 (Small
effect size). Hence we accept Hypothesis 2A.

We did not find statistically significant differences when
testing for Hypotheses 2B, 3A and 3B. These are visualized
in Figure 4. and reported in the Appendix D for reference.

Discussion: In Hyp. 3A, we do not see any statistically
significant difference in performance of an environment query
when an attention query was asked on the second object
preceding it (20s before). However, when the time difference
between attention query and the environment query was re-
duced (to 10s), as in Hyp. 2A, we observed that the reduction
in response time (of around 150ms, or by 7%) caused by the
presence of attention query was statistically significant.

The presence of an attention query on an object had a
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minimal effect on the correctness (f ) of response to a query
on a subsequent object. This could be because the primary
task was easy enough that it was answered correctly in most
cases, or due to the high time difference between attention
and environment queries. This needs to be explored in a future
study with a harder primary task, and where we can deploy
the queries on a finer time scale. However, attention queries
can increase the user’s general awareness of the primary task,
thereby reducing their average response time.

V. FINITE STATE POMDP MODEL FOR THE HUMAN-AV
INTERACTION IN THE HAND-OFF PROCESS

In this section, we develop a Partially Observable Markov
Decision Process (POMDP) to represent the HRI for the
perception hand-off and model the impact of the active infor-
mation gathering actions (problem 1). The partial observability
is over the internal level of human attention, which we allow to
be time varying and which has a direct impact on the human’s
behavior in a perception hand-off, e.g. due to the NDRT as
seen in section IV. Outside of a controlled environment, such
external factors cannot be measured directly; therefore, we
assume probabilistic transitions between attention levels. This
allows the AV to maintain a belief over the human’s attention.

Definition 1 (Human attentiveness level). First, we hypothe-
size that relevant to the perception hand-off, the human has
L = {l1, . . . , lN} levels of attention. At a discrete time step
k, the human attentiveness state can take a single value in L.
The attention levels are ordered li+1 � li, with � denoting a
total order, such that higher levels imply higher attention.

We are interesting in developing a discrete time model,
where time step k corresponds to time kdt. Here, dt is the
sampling time. The queries to the human have an associated
deadline of Tmax = Ddt seconds, or D time steps. The queries
from the HMI act as actions, or inputs to the human, and the
response to those queries is the output, or observation from
the human (Figure 2). Associated with whether the actions are
active information gathering queries or from the perception
module, there is a counter that keeps track of how many time
steps have elapsed since the query was asked.

Definition 2 (Query model). A query has states T ∈
{−D, . . . ,−1, 0, 1, . . . , D}. For an active information gath-
ering query, the state of the query increments from 1 to D in
steps of 1 at each discrete time step if the human does not
respond to the query. If the human does not respond by the
query deadline, or Dth state, then the query times out and
the state resets to 0. If there is a response at the tth query
state (1 ≤ t ≤ D), the query state again resets to 0. In the
case when the query is from the perception module, e.g. an
environment query as in the experiment of section IV, the query
state decrements from −1 to −D and resets based on whether
the human responds within the query deadline or not. In the

absence of any active queries3, the query state is 0.

We now define the POMDP obtained by considering a
probabilistic model for transitions of the human attentiveness
states and combining this with the query model.

Definition 3 (Perception hand-off model). The perception
hand-off process is then modeled by a POMDP, which is a
tuple (S,A,O,R,T,O, γ), where:

• S = L × T is the state space. Here, each state s =

{li, t} ∈ S represents the internal attention level of the
human and the (time) state of the query model.

• A = {aφ, aAIGA1 , . . . , aAIGAm , aPER1 , . . . , aPERm } is the
action space. aφ corresponds to no action, or no query
displayed on the HMI. aAIGAj or aPERj refer to the
ith type of active information gathering actions (e.g.
attention query) or ith type of query from the perception
module (e.g. environment query) respectively. Also let the
set of AIGA be AAIGA, and the queries from the percep-
tion module be APER, s.t. A = AAIGA ∪APER ∪ aφ.

• O = {Oφ, O1, . . . , OP } is the observation space, which
consists of responses from the human to the query or
other auxiliary measurements on the human, e.g. from
driver gaze tracking or pose detection. Here Oφ corre-
sponds to no response, and O1, . . . , OP are the possible
responses to the displayed query.

• R : S × A × O → R is a reward function that captures
the utility of the human’s response to a query.

• T : S × A × O → S is the state transition func-
tion which contains conditional probabilities of the form
T(s′|s, a, o). Here s′ refers to the state of the model at a
time step k+1, and s, a, o refer to the state ,action and
observation (respectively) at time step k4.

• O : S × A → O, the observation function O contains
conditional probabilities of the form O(o|s, a) and rep-
resents the probability of the human giving a particular
response to a query based on the attentiveness level and
time steps elapsed in the query.

• γ ∈ (0, 1) is a discount factor.

Here, actions a ∈ aφ ∪ AAIGA are controllable in the
sense that they can be deployed through a policy (see figure
2) in order to monitor or influence the human’s attentiveness
level l. The actions from the perception module a ∈ APER
are triggered when the perception module needs to actually
perform a perception hand-off. In order to ensure that the HMI
is not displaying an AIGA when a perception hand-off needs to
happen, we impose the following assumption on the structure:

Assumption 2 (Precedence of a ∈ APER over a ∈ AAIGA).
If a policy wants to deploy an AIGA at the same time that the

3Queries that have not timed out and for which the HMI has not yet received
a response from the human.

4Unlike a standard POMDP, the state transitions are conditioned on the
output due to the counters of the query state as in definition 2.
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Attention QueryEnvironment Query
No Query

Query expires or response on last step Query expires or response on last step

Fig. 5: The state-space for the proposed POMDP model for the AV-
human decision making hand-off.

perception module requires a perception hand-off, the HMI
will override the policy and perform the perception hand-off,
i.e. a ∈ APER has precedence over a ∈ AAIGA.

A. The problem specific structure of the model

Here, we define some elements of structure of the POMDP
developed above that make it specifically suited for modeling
the perception hand-off process. Let St ⊂ S represent the set
of states s = {., t} where the query state is t ∈ T . The state
space S and these subsets are shown in figure 5.

1) Absence of an active query: At a time step k, when there
is no active query on the HMI, the state takes a value s[k] ∈
S0. If there is no new query at time step k, i.e. a[k] = aφ,
then s[k+ 1] ∈ S0. Note, only states in S0 can self transition
in the absence of an active query.

2) Active information gathering action: Assume that s[k] ∈
S0. If a[k] ∈ AAIGA, then s[k+1] ∈ S1, the further evolution
of states is covered in the cases below:
Case 1: No response at time step k+1. If o[k+1] = oφ, then
the query remains active and the next state s[k+ 2] ∈ S2 and
so on until either a response is reached or the query times out.
Case 2: Response from human at time step k+1. If o[k+1] 6=
oφ, then the query is now inactive and the query state resets
s.t. s[k + 2] ∈ S0.
Case 3: Query time out. If there is no human response until
the point s[k + D] ∈ SD, and the human does not respond
on the last time step of the query, i.e. o[k + D] = oφ, then
the query times out and is inactive, and the state resets s.t.
s[k +D + 1] ∈ S0.

3) Actions from the perception module: For actions from
the perception module a[k] ∈ APER, the state transitions and
observations have a similar structure as for the AIGAs. We
use a notation here that the counter for states when a[k] ∈
APER decrements (see the query model, definition 2) s.t. for
no response from the human at a state s[k] ∈ S−i, the next
state is s[k + 1] ∈ S−i−1, ∀i ∈ {D − 1, . . . , 0}.

The above structural constraints are visualized in Figure 5.
4) Precedence of actions from the perception module:

Finally, another structural constraint is imposed by assumption

2. This implies that if s[k] ∈ Si, i ∈ {0, . . . , D} and
a[k] ∈ APER, then s[k + 1] ∈ S−1.

The modeling choices highlighted above introduces struc-
tural constraints, and sparsity on the state transition function T
and capture the relevant behaviors for the time-sensitive HRI
that is the perception hand-off. The following example covers
an instance of the model that is specific to this work.

Example 2 (A POMDP for the Handoff Experiment). We
model the perception hand-off experiment in section IV
through the following modeling choices: 1a) The human has
two attentiveness levels L = {l1, l2}, where the two levels l1
and l2 correspond the human being inattentive or attentive
respectively, 1b) The 4s deadline for answering queries is
discretized into D ≥ 1 time buckets, 2) The action space is
A = {aφ, aAIGA, aPER}, where aAIGA is the attention query
and the environment query is aPER, 3) The observation space
is O = {oφ, oC , oI} where oφ is no response to a query, oC
is a correct and oI is an incorrect response.

Figure 8 in the Appendix shows the structure of such a
model, and we discuss how insights from the hypothesis
tests in section IV inform the model’s state transition and
observation probabilities in Appendix E.

B. Learning the Model from experimental data

In order to learn a model similar to the one proposed
above in example 2 from the dual-task experiment data, we
use the Baum-Welch algorithm [10], that aims to find the
POMDP state transition (T) and observation (O) parameters
that maximize the likelihood maxT,OP (o|a;T,O) via Expec-
tation Maximization (EM). Here, o = o[1], . . . , o[kmax] and
a = a[1], . . . , a[kmax] are the discretized time series of ob-
servations and actions collected via the dual-task experiment.
Note, unlike in a standard POMDP where the state transition
probabilities are conditioned only on the current state and
action, our model has state transition probabilities that are
additionally also conditioned on the current observation (see
definition 3). Appendix F briefs how we adapt our model to be
able to use the Baum-Welch algorithm to learn it from data.

C. Learning a policy for the HMI

With a model of the perception hand-off HRI and a method
to learn it from data, we next want to exploit the model’s
suitability for control by developing a policy to use the
AIGAs and influence the human to make better decisions in
perception hand-offs (Problem 1). Given the model structure
and assumptions in Section V, this policy is dependent on
the perception module’s behavior (Figure 2). To take this into
account, we make the following simplifying assumption.

Assumption 3 (Probability of Environment queries). Envi-
ronment queries are deployed at random with a constant
probability p, i.e. at any time step k, P (a[k] = aPER) = p.
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TABLE I: Ratio of likelihoods (over data for 250 time steps) of the
learned POMDP model versus POMDPs with the same structure but
randomly generated parameters. The evaluation is done over models
with varying number of time steps per query D, i.e. discretizing the
4s until the query deadline into bins with different sampling times
dt. We compare the likelihoods to the average likelihood from 10

random models (Ratioavg) and to the random model with the highest
likelihood (Ratiobest). A ratio ≤ 1 implies the random model fits
the data as well or better than the learned model, while ratios > 1

imply that the learned model better represents the data.

Query deadline D = 1 D = 2 D = 3 D = 4
Ratioavg 52.6 10.0 11.32 17.9
Ratiobest 34.4 4.1 4.6 6.5

This assumption allows us to develop a model where we
can marginalize out the impact of the environment queries on
the dynamics and have a transition function dependent only
on the AIGA (the attention query). Appendix G1 covers the
details of this. Given a learned POMDP and assumption 3,
we use an off-the-shelf approach (Appendix G) to obtain a
policy for using the attention queries to maximize a reward
(3) that encourages correct and faster responses from states
s s.t.s = {., t}, t ∈ {−D, . . . ,−1}.

VI. CASE STUDY: LEARNING A MODEL AND A POLICY FOR

THE HUMAN-AV PERCEPTION HAND-OFF PROCESS

In this section, we first show the ability of the proposed
model to represent the perception hand-off data gathered via
the experiment in section IV, which gives us time series data
for 40 human subjects performing a trial of 10 minutes each.
Next, we show that the model is suited to control, or influence,
the human’s attentiveness levels.

A. Learning a model from data

As outlined in Section V-B, we can learn the state transition
and observation probabilities of our model from collected data.
We use a subset of the collected data (over multiple human
subjects in the experiment) to learn a model with different
sampling times dt and associated number of time steps in a
query before it expires, D. Section E1 discusses some of the
choices and insights from the dual-task experiment used in
learning the model. Figure 9 shows the learned observation
probabilities for states with low and high attention levels for
each time step in the query for D = 3.

Next, we evaluate the likelihood of the action-observation
sequence (see Section V-B) over a smaller subset of the data,
and compare it to the likelihood of obtaining this sequence
from models with a similar structure but randomly generated
state and observation transition probabilities. Table I shows
how the learned models (for different values of D) are a much
better fit than the random models. In addition to the specific
structure of our model, this can also be partly attributed to the
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Fig. 6: Averages for 100 simulations runs (of 100 time steps, for each
policy) of the percentage of environment queries answered correctly,
time steps taken for a response, and number of attention queries asked
per environment query. The learned policy results in a higher average
of environment queries with correct responses, as well as uses less
attention queries per environment query asked. Also see table II.

modeling insights (Section E) used to initialize the Baum-
Welch algorithm. The model with D = 1 has the highest
(absolute and relative) likelihood over the experimental data.
This model lumps all responses and response times into a
single time step in the query, and this results in a simpler
model working on a coarse time scale (dt = 4s sampling
time) that can represent the aggregate data better. Due to the
coarse timescale however, this model is not well suited to
closed loop applications. Models with D > 1 also fit the
data well, while allowing for more fine grained (in time)
HRI. The likelihoods are in general small (of the order of
10−2 forD = 1, and 10−3 for D ≥ 2) since we compute them
over sequences of hundreds of time steps.

B. AIGA policy for perception hand-off

From the learned model (we pick the setting of D = 3),
we can also learn a policy as in Section V-C to deploy the
AIGA (attention queries) to maximize a reward function that
corresponds to valuing correct and early responses from the
human to actions from the perception module, or the actual
perception hand-off (environment) queries. We also compare
this learned policy to three baselines: a) a random policy that
asks an attention query with probability of 0.5 at any time
step, b) a no AIGA policy that does not ask any attention
queries, and c) a belief-based heuristic that deploys attention
queries when the belief over states with a low attention level
is sufficiently high, see section G3 for details. Table II shows
how the learned policy results in a higher reward, and also
shows the other quantities relevant to the perception hand-off.
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C. Summary

In addition to being able to model the experimental data
gathered for the perception hand-off as gathered by the web
experiment, the proposed POMDP is also suitable for learning
a policy to interact with the human during such hand-offs as
shown in Table II. The table presents the averages and standard
deviations, over 100 runs, with random initial state s[0] ∈ S0,
of 100 time steps each, of the following quantities:
Accumulated reward: The learned policy (see Section V-C)
results in a higher accumulated reward than the baseline
policies. Notably, this also shows how deploying the AIGA in
a systematic manner can show improvements over not using
the AIGA or deploying it randomly.
Percentage of environment queries correctly responded to:
For the chosen parameters for the reward function (3) (see
section H2), the learned policy also results in the highest per-
centage f ∗100 of environment queries with correct responses.
Time to respond to environment queries: In terms of number
of time steps for a response, the belief-based policy results in
fastest responses on average. This is possibly due to the higher
number attention queries deployed by this policy, as opposed
to the learned policy or even the random policy.
Number of AIG actions taken per perception hand-off
(environment) query: The learned policy again results in the
least number of attention queries per environment query asked.
This due to the reward function that penalizes asking attention
queries, which would in practice be to avoid causing a fatigue
to the driver by querying them too frequently.

Figure 6 shows the averages of these quantities for each of
the 100 runs for all the policies. Note, even though the belief-
based policy asks the most number of attention queries per
environment queries, the learned policy results in a higher f ,
showing the benefit of using the AIGA in a systematic manner.
Additional details about the implementation and simulation
results are in Appendix H.

VII. DISCUSSION

Summary: In this paper we present a model-based formaliza-
tion of the perception hand-off, or the problem of bringing the
human in the decision making loop when the perception model

TABLE II: Performance of policies on learned model with D =

3. The table shows the means ± standard deviations across 100
simulation runs of 100 time steps each. Here, f ∗ 100 represents
the percentage of environment queries (aPER) that were correctly
responsed too, Tresp is the number of time steps taken on average
for a response, #aAIGA : #aPER is the averaged ratio of attention
queries asked for one environment query. Finally, R is the average
accumulated reward for each policy.

Policy Reward (R) Tresp f ∗ 100 #aAIGA : #aPER

Learned 15.52 ± 5.27 1.56 ± 0.05 98.2± 2.8 0.83 ± 0.12
No AIGA 11.29 ± 5.55 1.57 ± 0.07 92.8± 3.9 0
Random 11.78± 6.42 1.55 ± 0.04 95.4 ± 3.1 1.48 ± 0.14
Belief 13.83 ± 4.39 1.54 ± 0.03 95.9 ± 2.8 2.9 ± 0.11

of an autonomous system is uncertain about the environment.
We collect data on such a Human-Robot Interaction via a
web-based human study, and use it to learn parameters for
the proposed model and to also explore the use of an active
information gathering (AIG) mechanism (attention queries) to
influence the human attentiveness level. We also learn a policy
for leveraging the AIG mechanism and show the benefit of our
approach through the experimental data and simulations.

Limitations and future work: Our work is limited in many
ways. First, the human subject experiment for the perception
hand-off was conducted via a web experiment in a game-
like environment. Here, we lacked many of the signals that
could otherwise be collected in an in person study simulating
autonomous driving, e.g. gaze tracking, pose detection etc.
The experiment design in its current form also restricted
the use of AIG actions to once every 10s. While this still
resulted in a statistically significant speed up in the response
time of the human, the lack of fine grained control resulted
in an insignificant increase in the correctness of the human
responses when the AIG mechanism was used. Apart from
the limitations of the experimental setup, the proposed model
for this perception hand-off interaction lacks the ability to
capture the alarm fatigue that would be created by too many
attention queries. This both makes the problem of reward
engineering to penalize these queries to limit too many queries
at the cost of overall performance hard, and also would also
imply that policies that simply deploys attention queries as
often as possible result in the faster responses, as seen in
section VI-C. Finally, the policy learning was done with a
simplifying assumption on the environment queries, which
would not necessarily hold in a realistic setting.

Future work will focus on validating the results regarding
the impact of the policy via another human subject web
experiment with the learned (and baseline) policies operating
in the loop. This experiment would allow for the AIG actions
to be deployed on a finer time scale than the one in this
paper. Next, we will study the perception hand-off via an in-
lab virtual reality-based study. This would necessitate the use
of more expressive human machine interfaces (HMIs) with
AIG actions that are not just visual. Additional continuous-
time signals collected from this experiment (e.g. gaze tracking,
galvanic skin resistance) would require us to develop a hybrid
model that can account for both continuous and discrete
observations. The policy design problem will also be done
with more realistic assumptions on the perception hand-offs.

Conclusion: This work represents a first effort at model-
based use a HMI for influencing human behavior during a
perception hand-off. The experimental and simulation results
are encouraging and show the potential of further developing
such an approach for a real world autonomous driving setting.



Model-based Formalization of the Autonomy-to-Human Perception Hand-off Draft, March 2021

ACKNOWLEDGMENT

The authors thank Steven Le, the creator of the driving
game getaway (https://github.com/le-s/getaway), for allowing
us to use the source code of the game as a starting point
for our experiment. We would also like to thank everyone
who participated in the experiment on mturk. This work was
supported in part by NSF CPS Frontier project VeHICaL
(CNS-1545126), by Toyota under the iCyPhy center, and by
Berkeley Deep Drive.

REFERENCES

[1] Why Japans Rail Workers Cant Stop Pointing at
Things. https://www.atlasobscura.com/articles/
pointing-and-calling-japan-trains, 2017. Accessed:
02-08-2021.

[2] SAE Standards News: J3016 automated-driving
graphic update. https://www.sae.org/news/2019/01/
sae-updates-j3016-automated-driving-graphic, 2019.
Accessed: 02-08-2021.

[3] STOP THE TROLLEY! California Autonomous Driv-
ing Test Statistics 2019. http://keerthanapg.com/
stop-the-trolley/, 2020. Accessed: 02-25-2021.

[4] Sinan E. Arkonac, Duncan P. Brumby, Tim Smith, and
Harsha Vardhan Ramesh Babu. In-car distractions and
automated driving: A preliminary simulator study. In
Proceedings of the 11th International Conference on
Automotive User Interfaces and Interactive Vehicular
Applications: Adjunct Proceedings, AutomotiveUI ’19,
page 346351, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450369206. doi:
10.1145/3349263.3351505. URL https://doi.org/10.1145/
3349263.3351505.

[5] Gisa Aschersleben and Jochen Müsseler. Dual-task
performance while driving a car: Age-related differences
in critical situations. In Proceedings of the 8th annual
conference of the cognitive science society of Germany.
Saarbrücken, 2008.

[6] Richard Bellman. A markovian decision process. Indiana
Univ. Math. J., 6:679–684, 1957. ISSN 0022-2518.

[7] Radu Calinescu, Naif Alasmari, and Mario Gleirscher.
Maintaining driver attentiveness in shared-control au-
tonomous driving. arXiv preprint arXiv:2102.03298,
2021.

[8] Stuart K. Card, Thomas P. Moran, and Allen Newell.
The model human processor- an engineering model of
human performance. Handbook of perception and human
performance., 2(45–1), 1986.

[9] Nakul Gopalan and Stefanie Tellex. Modeling and
solving human-robot collaborative tasks using pomdps.
In RSS Workshop on Model Learning for Human-Robot
Communication, volume 32, pages 590–628, 2015.

[10] S. Koenig and R. G. Simmons. Unsupervised learning of
probabilistic models for robot navigation. In Proceedings

of IEEE International Conference on Robotics and Au-
tomation, volume 3, pages 2301–2308 vol.3, 1996. doi:
10.1109/ROBOT.1996.506507.

[11] Minae Kwon, Erdem Biyik, Aditi Talati, Karan Bhasin,
Dylan P. Losey, and Dorsa Sadigh. When humans aren’t
optimal: Robots that collaborate with risk-aware humans.
In ACM/IEEE International Conference on Human-Robot
Interaction (HRI), March 2020. doi: 10.1145/3319502.
3374832.

[12] Hye-In Lee, Seungha Park, Jongil Lim, Seung Ho Chang,
Jung-Hyun Ji, Seungmin Lee, Jihye Lee, et al. Influence
of drivers career and secondary cognitive task on visual
search behavior in driving: a dual-task paradigm. Ad-
vances in Physical Education, 5(04):245, 2015.

[13] National Transportation Safety Board (NTSB). High-
way Accident Report: Collision Between Vehicle Con-
trolled by Developmental Automated Driving System
and Pedestrian. https://www.ntsb.gov/investigations/
AccidentReports/Reports/HAR1903.pdf, 2019. Ac-
cessed: 02-08-2021.

[14] Frederik Naujoks, Dennis Befelein, Katharina Wiede-
mann, and Alexandra Neukum. A review of non-driving-
related tasks used in studies on automated driving. In
International Conference on Applied Human Factors and
Ergonomics, pages 525–537. Springer, 2017.

[15] Lisa Ordez and Lehman Benson. Decisions under
time pressure: How time constraint affects risky de-
cision making. Organizational Behavior and Hu-
man Decision Processes, 71(2):121–140, 1997. ISSN
0749-5978. doi: https://doi.org/10.1006/obhd.1997.
2717. URL https://www.sciencedirect.com/science/
article/pii/S0749597897927175.

[16] Pedro Ortega and Alan Stocker. Human decision-making
under limited time. In Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[17] Sirisha Rambhatla, Xingguo Li, and Jarvis Haupt. Prov-
able online cp/parafac decomposition of a structured
tensor via dictionary learning. Advances in Neural
Information Processing Systems, 33, 2020.

[18] Dorsa Sadigh, S. Shankar Sastry, Sanjit A. Seshia, and
Anca Dragan. Information gathering actions over hu-
man internal state. In Proceedings of the IEEE, /RSJ,
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 66–73. IEEE, October 2016. doi:
10.1109/IROS.2016.7759036.

[19] Dorsa Sadigh, S. Sankar Sastry, and Sanjit A. Seshia.
Verifying robustness of human-aware autonomous cars.
In Proceedings of the 2nd IFAC, Conference on Cyber-
Physical and Human Systems, December 2018. doi: 10.
1016/j.ifacol.2019.01.055.

[20] Dario D. Salvucci, Mark Zuber, Ekaterina Beregovaia,
and Daniel Markley. Distract-r: Rapid prototyping and
evaluation of in-vehicle interfaces. In Proceedings of the

https://github.com/le-s/getaway
https://www.atlasobscura.com/articles/pointing-and-calling-japan-trains
https://www.atlasobscura.com/articles/pointing-and-calling-japan-trains
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
http://keerthanapg.com/stop-the-trolley/
http://keerthanapg.com/stop-the-trolley/
https://doi.org/10.1145/3349263.3351505
https://doi.org/10.1145/3349263.3351505
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1903.pdf
https://www.sciencedirect.com/science/article/pii/S0749597897927175
https://www.sciencedirect.com/science/article/pii/S0749597897927175


Model-based Formalization of the Autonomy-to-Human Perception Hand-off Draft, March 2021

SIGCHI Conference on Human Factors in Computing
Systems, CHI ’05, page 581589, New York, NY, USA,
2005. Association for Computing Machinery. ISBN
1581139985. doi: 10.1145/1054972.1055052. URL
https://doi.org/10.1145/1054972.1055052.

[21] Lara Scatturin, Rainer Erbach, and Martin Baumann.
Cognitive psychological approach for unraveling the
take-over process during automated driving. In Pro-
ceedings of the 11th International Conference on Auto-
motive User Interfaces and Interactive Vehicular Appli-
cations: Adjunct Proceedings, AutomotiveUI ’19, page
215220, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450369206. doi:
10.1145/3349263.3351501.

[22] Marlene Scharfe and Nele Russwinkel. A cognitive
model for understanding the takeover in highly auto-
mated driving depending on the objective complexity of
non-driving related tasks and the traffic environment. In
CogSci, pages 2734–2740, 2019.

[23] Victor A Shia, Yiqi Gao, Ramanarayan Vasudevan,
Katherine Driggs Campbell, Theresa Lin, Francesco
Borrelli, and Ruzena Bajcsy. Semiautonomous vehic-
ular control using driver modeling. IEEE Transactions
on Intelligent Transportation Systems, 15(6):2696–2709,
2014.

[24] Kazumitsu Shinohara, Hiroshi Naito, Yuko Matsui,
and Masaru Hikono. The effects of finger point-
ing and calling on cognitive control processes in the
task-switching paradigm. International Journal of
Industrial Ergonomics, 43(2):129–136, 2013. ISSN
0169-8141. doi: https://doi.org/10.1016/j.ergon.2012.08.
004. URL https://www.sciencedirect.com/science/article/
pii/S0169814112000728.

[25] Weilong Song, Guangming Xiong, and Huiyan Chen.
Intention-aware autonomous driving decision-making in
an uncontrolled intersection. Mathematical Problems in
Engineering, 2016, 2016.

[26] W. Zheng, B. Wu, and H. Lin. Pomdp model learning
for human robot collaboration. In 2018 IEEE Conference
on Decision and Control (CDC), pages 1156–1161, 2018.
doi: 10.1109/CDC.2018.8618904.

APPENDIX

A. Details on each component of the web experiment

1) Driving related task: The AV encounters objects from 3

different classes, at any instant in time, there is no more than
one object on the road. For some instances of these objects,
the AV is unsure about which class the object is from, and
requires input from the user. For these objects, a flashing blue
box appears on top of them, and the HMI displays a query
that the user should respond to, before it is too late for AV
to perform an appropriate behavior (4s in our experiment). A

correct (incorrect) response results in the blue box changing
its color to flashing green (red).

2) Distractor task: The distractor task is a series of ran-
domly generated arithmetic questions involving subtraction of
(upto) 2 digit numbers. All answers are a single digit. The
user has exactly 5 seconds to answer and is then informed
whether or not their submitted answer is correct or incorrect.
The presence of the distractor task toggles every 150s.

3) HMI for querying the user: The primary task of the
experiment is object identification. A new object appears
on the road every 10 seconds. Some objects will require a
response from the user, others do not. When prompted for a
response, users have four seconds to identify the object from
three options. They are notified whether or not they answered
a query correctly (through flashing colored borders around the
full panel as well as the object).

B. Crowd-sourcing deployment

The game was hosted on Heroku, utilizing the psiturk
library for ease of implementation in mturk. Before beginning
the experiment, the users watched a four-minute instructional
video on youtube. Data is logged throughout gameplay, in-
cluding timestamps and sent to a secure database following
the conclusion of the game. Following the completion of
the game, users took a survey embedded in the web app.
Following that, they were given the option of completing a
bonus questionnaire. The data was cleaned and parsed using
the pandas python library. We then performed data validation
manually removing participant data where the data showed that
they were not focusing. We ensured this by checking the user’s
browser behavior throughout the experiment, seeing when they
navigated away from the page, minimized it, or switched tabs.

C. Interleaving of attention and environment queries

Every three objects can be considered to form a set. The AV
came across these objects as sets, one after the other. Every
third object in a set, has an environment query asked over it.
An attention query is asked on either the first or the second
object of this set. A set can have one of three following orders:
• Order-1 : Attention query is asked on the object, imme-

diately before the one with environment query. (also, the
2nd object in the set)

• Order-2 : Attention query is asked on the object, that is
two before the one with environment query.
(also, the 1st object in the set)

• Orderφ : No attention query is asked on the set
The order in these sets is varied across the span of the

experiment. At the end of every set, the order for the next set
is determined with an equal probability (0.33).

D. Hypotheses testing from the experimental data
In this subsection, we report the results of experiments to

study the effect of attention queries on the users performance
on environment queries. We expected that the presence of

https://doi.org/10.1145/1054972.1055052
https://www.sciencedirect.com/science/article/pii/S0169814112000728
https://www.sciencedirect.com/science/article/pii/S0169814112000728
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Fig. 7: Different Types Orders possible in deployment of attention
and Environment queries on objects encountered by the AV

TABLE III: List of all hypotheses tested in the dual-task web
experiment

Hypothesis Brief Description
1A RT with distractor greater than without
1B f with distractor lower than without
2A RT of Order-1 less than Orderφ (distractor present)
2B f of Order-1 greater than Orderφ (distractor present)
3A RT of Order-2 less than Orderφ (distractor present)
3B f of Order-2 greater than Orderφ (distractor present)
4A RT of Order-1 less than Orderφ
4B f of Order-1 greater than Orderφ
5A RT of Order-2 less than Orderφ
5B f of Order-2 greater than Orderφ

attention queries on objects would increase user awareness of
the driving task. This might lead them to perform better on a
succeeding query(s). We formulated the following Hypotheses
and tested them using a paired-sample t-test.

Hyp. 4A. Across conditions, the RT of an environment query
such that there is an attention query on the preceding object
(Experimental Condition - Order-1) will be less than ones
where there is no such attention query on at least two objects
before it (Control Condition - Orderφ).

Hyp. 4B. Across conditions, the f of an environment query
such that there is an attention query on the preceding object
(Experimental Condition - Order-1) will be greater than ones
where there is no such attention query on at least two objects
before it (Control Condition - Orderφ).

Hyp. 5A. Across conditions, the RT of an environment query
such that there is an attention query on the second object
preceding it (Experimental Condition - Order-2), will be less
than ones where there is no such attention query on at least
two objects before it (Control Condition - Orderφ).

Hyp. 5B. Across conditions, the f of an environment query
such that there is an attention query on the second object
preceding it (Experimental Condition - Order-2), will be
greater than ones where there is no such attention query on

at least two objects before it (Control Condition - Orderφ).

We were unable to reject the null hypotheses at a signif-
icance level of p < 0.05. No significant effect of attention
queries were found on the environment queries across the
conditions (distractor tasks present or absent). We report the
hypothesis-wise results below, for reference.

Hyp. 4A: For Experimental Condition (Order-1), Mean RT
= 1937ms, SD = 506ms; For Control Condition (Orderφ),
Mean RT = 1926ms, SD = 525ms

Hyp. 4B: For Experimental Condition (Order-1), Mean f

= 0.949, SD = 0.106; For Control Condition (Orderφ), Mean
f = 0.952, SD = 0.107

Hyp. 5A: For Experimental Condition (Order-2), Mean RT
= 2001ms, SD = 529ms; For Control Condition (Orderφ),
Mean RT = 1922ms, SD = 531ms

Hyp. 5B: For Experimental Condition (Order-2), Mean f

= 0.946, SD = 0.103; For Control Condition (Orderφ), Mean
f = 0.951, SD = 0.108

We did not find a statistically significant effect of attention
queries on the performance of environment queries.

However, when this is studied specifically across a dual-
task setting, where the distractor task is present, we ob-
served a statistically significant reduction in response time,
in case of Order-1 when compared to Orderφ. We report the
hypotheses-wise results of Hyp.2A-3B below, for reference.
Hyp. 2A: For Experimental Condition (Order-1), Mean RT

= 2018ms, SD = 555ms; For Control Condition (Orderφ),
Mean RT = 2172ms, SD = 533ms; Statistically significant
with t(39) = 3.24, p < 0.05, Cohen’s D = 0.27
Hyp. 2B: For Experimental Condition (Order-1), Mean f =
0.940, SD = 0.124; For Control Condition (Orderφ), Mean f
= 0.932, SD = 0.173

Note, this slight average increase in response accuracy due
to attention queries was not statistically significant.
Hyp. 3A: For Experimental Condition (Order-2), Mean RT =
2178ms, SD = 647ms; For Control Condition (Orderφ), Mean
RT = 2169ms, SD = 539ms
Hyp. 3B: For Experimental Condition (Order-2), Mean f =
0.933, SD = 0.156; For Control Condition (Orderφ), Mean f
= 0.930, SD = 0.175

These are discussed in section IV-B. Additionally, Table III
provides a summary of all the hypotheses that we tested.

E. Model structure for the hand-off experiment

As described in example 2, we can model the perception
hand-off studied in the dual-task web experiment (section IV)
as a Partially Observable Markov Decision Process of the form
in Definition 3. Figure 8 shows a simplified version of this
model, with D = 1 or the entire 4s duration to respond to a
query discretized into a single time step

1) Connecting the model structure to the dual-task experi-
ment: Some notable features connecting the model to insights
from the dual-task experiment data are:
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Environment Query

No Query

Attention Query

Fig. 8: The state space for the POMDP model formalizing the
perception hand-off experiment studied in section IV. Shown here
are the possible 1-step state transitions when starting in states l1, 0
or l2, 0 and under the different possible actions. Also see example 2.

• Human responses when inattentive: As seen in hypothe-
ses 1A and 1B, when the human subject is distracted,
they are slower to answer queries, and also get them
wrong more often. This is captured in the model as
O(oI |s = {l1, .} > O(oI |s = {l2, .}, i.e. probability of
incorrect response is higher when the attention level is
low. Also, O(oφ|s = {l1, t} > O(oφ|s = {l1, t}, t ∈ T
(see definition 2), i.e. the probability of the human
not responding at a time step in the query is higher
if they are at a lower attention level. Figure 9 shows
the learned observation probabilities for a model with
D = 3 time steps in a query. Note how the probability of
getting a correct response at a high attention level state
s = {l2, .} is higher than that at low attention level states
s = {l1, .}. Also notable from the figure is the probability
of getting no response at the first time step in the query
(corresponding to the time interval [0s, 1.33s] since query
was asked) is much higher in the low attention level state.

• Impact of AIGA/attention queries: Hypothesis 2A shows
the impact of well timed attention queries. The model
captures this behavior by increasing the probability of
switching to a state with a higher attention level once
a query has been asked, i.e. T(s = {l2, t + 1}|s =

{l1, t}, a 6= aφ, .) > T(s = {l1, t + 1}|s = {l1, t}, a 6=
aφ, .). As show in Figure 8, this implies that the probabil-
ity of transitioning from {l1, 0} to {l2, 1} (or {l2,−1}) is
higher than that of transitioning to {l1, 1} (or {l1,−1}).

To learn such a POMDP model from data, we use these in-
sights in creating the initial POMDP transition and observation
functions which are then iterated upon by the Baum-Welch
algorithm [10] (also see section V-B).

2) Belief updates: From the model in Definition 3, we can
monitor the human attention levels by using the Bayesian
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Fig. 9: Learned observation probabilities for all time steps in a query
with D = 3. In our model since the attention and environment queries
are displayed in an identical manner, we assume that the observation
probabilities are the same for getting responses for both types of
queries. The learned probabilities suggest that the human is more
likely to answer queries correctly and earlier in the high attention
level state s = {l2, .} than in the low attention level state s = {l1, .}.

belief update below:

bs′ [k + 1] = η−1O(o|s′, a)
∑
s∈S

T(s′|s, a, o)bs[k],where,

η =
∑
s′∈S

O(o′|s′, a)
∑
s∈S

T(s′|s, a, o)bs[k]
(1)

Here bs[k] represents the belief (or probability) that the
actual state is s at time step k. Also, o′ represents the
observation at time k + 1, a the action at time step k and
o the observation at time k. Note,

∑
s∈S bs[k] = 1∀k.

F. Transforming the POMDP for model learning

As explained in Section V, the state transition probabilities
of the perception hand-off POMDP are conditioned on the
previous state, action and observation. To use the Baum-Welch
algorithm to learn this POMDP from data (section V-B), we
need to transform it into a standard POMDP where state
transitions are conditioned only on the state and action. To
do so, we lift the state, and define a new state:

ŝ[k] =

[
s[k]

o[k − 1]

]
∈ Ŝ = S ×O

The state transition function for the next lifted state ŝ′ is now
given by conditional probabilities of the form, T̂(ŝ′|ŝ, a) This
is now dependent only on the previous lifted state ŝ and the
action a. The corresponding observation function is simply:
Ô(o|ŝ, a) = O(o|s, a). Note, the lifted state transition function
is related to T and O as:

T̂([s′, o′] | [s, o], a) = T(s′ | s, a, o′)O(o′|s, a)

The state transition matrix for this lifted state for a given a,
o′ can be computed by the Kronecker product of the associated
matrices T(.|., a, o′ and O(o′|., a). The resultant transition
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probability matrices (T̂) and observation probability matrices
(Ô) for the lifted state can be learned from the experimental
data via the Baum-Welch algorithm [10]. The parameters T
and O for the original model of Definition 3 can be recovered
using a structured Kronecker product recovery method [17].

G. Learning a policy for the POMDP model

1) Marginalizing the actions from the perception module:
The perception hand-off POMDP in Definition 3 has two types
of actions, the set of controllable active information gathering
actions (AIGAs) AAIGA (and the no query action aφ) and
the set of actions from the perception module APER. In
section V-C, we aim to learn a policy to use the AIGA to
maximize a reward (3) over human responses to the queries
from the perception module. Since the actions in APER are
not controllable, we need to account for their impact before
we can learn such a model. For the sake of simplicity, we
explain this process through the POMDP for the perception
hand-off as outlined in example 2. Assumption 3 states that
the environment queries (aPER) are deployed at any time
step with a constant probability p. Using this, we can now
marginalize out this action from the POMDP (aPER), and
obtain a transition function Tp over only the AIGA/attention
queries (aAIGA) as follows:

Tp(s′|s, a ∈ {aAIGA, aφ}, o) =
pT(s′|s, aPER, o) + (1− p)T(s′|s, a ∈ {aAIGA, aφ}, o)

(2)

The resulting POMDP is then used to learn a policy to
deploy the AIGA, as is explained next.

2) Value iteration-based learned policy: Given that solu-
tions for POMDP policy learning are not exact and are often
difficult to interpret, we used the Value Iteration algorithm
[6] to derive an interpretable exact policy with respect to the
POMDP in (2), and then compute the optimal action to take
based on our belief of the POMDP at a given point in time.
Results of policy performance were generated by deploying
each policy in an environment based on the learned model, and
recording the actions and rewards earned by the policy (which
did not have access to the underlying state of the environment).
The policy aims to maximize the following reward:

R =
∞∑
k=0

γkr[k], (3)

where, γ ∈ (0, 1] and

r[k] =



−C1, if a[k] = aAIGA

C2, if o[k] = oC , s[k] ∈ Si, i ∈ {1, . . . , D}
C3λ

|−i|, if o[k] = oC , s[k] ∈ Si, i ∈ {−1, . . . ,−D}
−C4, if o[k] = oI , s[k] ∈ Si, i ∈ {−1, . . . ,−D}
0, otherwise.
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Fig. 10: Ratio of accumulated rewards for a policy learned assuming
p = 0.3 versus a policy learned with the actual environment query
probability p∗, averaged over 100 runs of 100 time steps each.

This reward function penalizes (C1 ≥ 0) AIGA actions to
avoid asking too many attention queries to the human, but
also rewards correct responses to attention queries C2 ≥ 0.
For environment queries, it rewards correct responses earlier
in the query λkC3 ≥ 0, where λ ∈ (0, 1] is a factor that lowers
the reward for responses later on. Finally, we also penalize
incorrect responses to environment queries C4 ≥ 0, i.e. the
human making a wrong decision in the perception hand-off.

3) Baselines for comparison: We compare the learned pol-
icy that maximizes the reward defined above to three baselines:
• Belief-based: This policy uses the belief over the states

of the model at each time (1) to deploy attention queries
if the sum of belief over states with the lower attention
level i.e. over s′ s.t., s′ = {l1, .} is greater than the sum
of belief over states with the higher attention level:

a[k] =

{
aAIGA, if

∑
s′={l1,.} bs′ [k]−

∑
s′=(l2,.)

bs′ [k] ≥ ε

aφ, otherwise.

• Random: This policy randomly deploys attention queries
s.t P (a[k] = aAIGA) = 0.5. Note, these actions are still
subject to assumption 2.

• No AIGA: Here, we don’t use the AIGA. This baselines
corresponds to the perception hand-off happening without
any human monitoring or HMI policy in place.

H. Additional simulation results

1) Implementation details: The Baum-Welch algorithm of
[10] for learning the model was implemented Python 3.7, as
was the value-iteration algorithm for learning a policy. Sim-
ulation evaluations of the policy interacting with the learned
model were done via an implementation using the openAI gym
environment. For the reward function (3), we use the following
parameters γ = 0.99, λ = 0.95, C1 = C2 = 0.01, C3 =

1, C4 = −2. For the belief-based baseline, we used ε = 0.1.
2) Robustness of learned policy: We also evaluate the

robustness of the learned policy to perturbations in the en-
vironment queries probability action p (see assumption 3).
Figure 10 shows the impact of learning a policy assuming
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a probability of = 0.3p, but evaluating it for a model with
probability p∗ ∈ [0.1, 0.5]. As seen in the figure, there is a
graceful degradation in the accumulated rewards when there
is a mismatch in p and p∗.
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