
Simultaneous Localization and Mapping: A

Rapprochement of Filtering and Optimization-Based

Approaches

Chih-Yuan Chiu
S. Shankar Sastry

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-76

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-76.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I thank my advisor, Professor Shankar Sastry, and Professor Yi Ma for their
guidance and feedback on this project. I would also like to thank my
collaborator Amay Saxena for his excellent work on designing simulations
to support the theoretical results in this work.

Simultaneous Localization and Mapping: A Rapprochement of Filtering and
Optimization-Based Approaches

by

Chih-Yuan Chiu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor S. Shankar Sastry, Chair
Professor Yi Ma

Spring 2021

1

Abstract

Simultaneous Localization and Mapping: A Rapprochement of Filtering and
Optimization-Based Approaches

by

Chih-Yuan Chiu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Simultaneous Localization and Mapping (SLAM) algorithms perform visual-inertial esti-
mation via filtering or batch optimization methods [17]. Empirical evidence suggests that
filtering algorithms are computationally more efficient, while optimization methods are more
accurate [17, 24]. This paper presents an optimization-based framework that unifies these
approaches, and allows the flexible implementation of different design choices, e.g., selecting
the number and types of variables maintained in the algorithm at each time. We mathemat-
ically prove that filtering methods, e.g., EKF SLAM and MSCKF, correspond to specific
design choices in our generalized framework. Finally, we reformulate the MSCKF using our
framework, implement the reformulation on challenging image sequences in a baseline SLAM
dataset in simulation, and use the proposed re-interpretation to contrast the performance
characteristics of the two classes of algorithms. Finally, we describe future extensions of our
work to the dynamic SLAM problem and multi-agent planning problems.

i

Contents

Contents i

1 Introduction 1

2 SLAM: Setup and Formulation 4
2.1 SLAM: Formulation on Euclidean Spaces . 4
2.2 SLAM: Formulation on Manifolds . 6

3 SLAM: A Generalized Optimization Framework 11
3.1 Algorithm Overview . 11
3.2 Gauss-Newton Descent . 15
3.3 Marginalization of States . 16
3.4 Main Algorithm on Manifolds . 18

4 Filtering as Nonlinear Optimization 20
4.1 Extended Kalman Filter (EKF) . 21
4.2 Multi-State Constrained Kalman Filter . 24
4.3 State-of-the-Art SLAM Algorithms . 27
4.4 A Generalized Sliding Window SLAM Algorithm 28

5 Implementation and Experimental Results 31
5.1 Simulation Settings . 31
5.2 Results and Discussion . 33

6 Conclusion and Future Work 37

Bibliography 39

7 Appendix 42
7.1 Appendix for Chapter 2 . 42
7.2 Appendix for Chapter 3 . 44
7.3 Appendix for Chapter 4 . 45

1

Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) concerns a robotic agent in an uncharted
or highly dynamic environment that seeks to compose a map of its surroundings while si-
multaneously locating itself within the constructed map. This fundamental problem appears
in a myriad of applications, such as map construction in civilian and military applications,
or search-and-rescue missions [5, 3, 6, 7]. To solve a landmark-based SLAM problem, one
begins by locating identifiable landmarks, and extracting features to construct a map of the
environment. The robotic agent then uses its dynamics model, in conjunction with these
feature measurements, to pinpoint the position and orientation (pose) of the robotic agent
relative to the map. Measurements of new features from newly identified landmarks, and
new measurements of old features, can be used to iteratively update the SLAM states—that
is, landmark positions and estimates of the robot’s pose. This reduces errors in original
estimates of landmark positions and the robot pose, due to either measurement noise or
fluctuations in the environment.

A typical SLAM algorithm is composed of two components—the front end and the back
end. The front end processes raw sensor data into information that facilitates mapping and
localization. In particular, the front end performs feature extraction, data association, and
outlier rejection, to match features across feature data, filter out spurious feature matches
(outliers), process IMU data, and associate all of this information with relevant SLAM states.
The processed data values are then supplied to the SLAM back end, which searches for a lo-
cally optimal state estimate that best agrees with the processed data. Back end algorithms
are typically categorized into two groups—filtering and batch optimization. In filtering
methods, propagation and update equations are iteratively applied to refine the probability
distributions of a sliding window of recent poses, based on associated measurements [24, 18].
By contrast, batch optimization methods present the optimal pose estimate as the solution
to a nonlinear least squares problem, formed by summing the squares of IMU measure-
ment residuals and reproduction error terms. The problem is then solved via linearization
techniques, such as Gauss-Newton or Levenberg-Marquardt methods. Empirically, both fil-
tering and batch optimization algorithms have attained state-of-the-art performance, though
optimization-based methods often attain higher accuracy at the cost of higher computation

CHAPTER 1. INTRODUCTION 2

cost [3, 17].
This thesis presents a unified optimization-based framework for the SLAM back end,

to facilitate the design of new algorithms whose computational speed and performance can
flexibly interpolate between those of existing, state-of-the-art algorithms. Although sim-
ilar results exist in the optimization literature, they do not analyze algorithmic submod-
ules unique to SLAM, e.g., feature incorporation and discarding [1]. First, we illustrate
that these algorithms all perform the same three key steps—linearization, optimization, and
marginalization—and that mathematically, their only differences lie in the frequency with
which each step is performed. From the perspective of our algorithm, filtering approaches are
simply nonlinear optimization methods that iteratively optimize recent robot poses, while
periodically marginalizing away past features and poses to reduce computational complexity.
For example, the Extended Kalman Filter and iterated Extended Kalman Filter aggressively
marginalize out all past poses, except the current pose, while retaining all features in the
optimization window. [34]. Meanwhile, the Multi-State Constrained Kalman Filter and
Fixed Lag Smoother retain a sliding window of recent poses, but marginalize out features
no longer observed by the current pose. On the other hand, nonlinear optimization methods
may retain a subset of the poses arbitrarily separated across time while marginalizing out all
other poses; this is demonstrated by keyframe based methods presented in [25, 17], Alter-
natively, other batch optimization methods, such as bundle adjustment, graph SLAM, and
pose-graph SLAM, opt to maintain and repeatedly re-estimate all poses and feature posi-
tions from the past, for increased accuracy. As expected, performing more linearization and
optimization steps correspond to higher accuracy at the cost of higher computation time,
while marginalizing more often reduces computational cost while sacrificing accuracy.

More concretely:

1. Our primary contribution is the reformulation of state-of-the-art SLAM filtering algo-
rithms in the context of our unified optimization-based framework. In particular, we
present the Extended Kalman Filter (EKF) and the Multi-State Constrained Kalman
Filter (MSCKF) in terms of our algorithmic structure.

2. Our second contribution is to empirically study the performance of filtering-based
and batch optimization-based algorithms on benchmark SLAM datasets in simulation
environments. We illustrate the usefulness of this perspective by testing state-of-the-
art algorithms, such as MSCKF and sliding window filters, on different datasets.

The remaining chapters are structured as follows. In Chapter 2.1, we formulate the SLAM
problem for robotic agents on Euclidean spaces, by presenting the dynamic states and as-
sociated dynamics and measurement maps of these systems, as well as the residual costs
maintained in the problem. As an example, we pose the states, dynamics, and measurement
functions of the Extended Kalman Filter (EKF) within our framework. In Chapter 2.2, we
generalize the above results to scenarios where the dynamic states of interest are overparam-
eterized, and constrained to lie on a smooth manifold. As examples, we examine the setup

CHAPTER 1. INTRODUCTION 3

for the Multi-State Constrained Kalman Filter (MSCKF) and Open Keyframe-Based Visual-
Inertial SLAM (OK-Vis) algorithms. Next, in Chapter 3, we present the three key steps of
our main algorithm—Optimization via Gauss-Newton descent, linear approximation, and
marginalization of states. For simplicity, we will first formulate these steps for the Euclidean
space formulation of the SLAM problem, before addressing their generalization to the over-
parameterized case. We formulate the EKF, MSCKF, and OK-Vis algorithms within our
framework in Chapter 4, by illustrating that the steps of these algorithms represent iterations
of our three key steps at different frequencies. Chapter 5 demonstrates the experimental use
of our novel framework. Here, we interpolate the frequency at which these three key steps
are taken in state-of-the-art SLAM algorithms to formulate novel SLAM algorithms. We
then test these novel SLAM algorithms on simulated datasets, to characterize the tradeoff
between estimation accuracy and computational efficiency as a direct consequence of varying
the relative frequency at which these three steps are taken. Finally, Chapter 6 summarizes
our work and discusses directions for future work.

4

Chapter 2

SLAM: Setup and Formulation

This chapter describes the mathematical formulation of the SLAM problem from the per-
spective of nonlinear optimization. The objective of SLAM is to estimate state and feature
positions that best enforce constraints posed by the given dynamics and measurement mod-
els, as well as noisy state and feature measurements collected over time. This is formally
posed as the unconstrained minimization of a sum of a collection of weighted cost terms,
which represent constraints imposed by the dynamics and measurement maps. First, in
Section 2.1, we describe this approach in detail for scenarios in which all states evolve on
Euclidean spaces, e.g., for a robot constrained to move on a 2D plane. Then, in Section
2.2, we generalize this formulation to the case where the optimization variables in SLAM
lie on a smooth manifold, whose geometric properties may differ significantly from those of
Euclidean spaces. To do so, we introduce the boxplus and boxminus operators on arbitrary
smooth manifolds, which are commonly used in the SLAM literature to define cost functions
for states defined on smooth manifolds. We also note that, when the manifold in question
is a Lie group, the boxplus and boxminus operators become much more straightforward to
characterize.

2.1 SLAM: Formulation on Euclidean Spaces

In SLAM, two types of variables are estimated: states and features. The state at each time
t, denoted xt ∈ Rdx , encapsulates information describing the robot, e.g., camera positions
and orientations (poses). The feature positions available at time t in a global frame, denoted
{ft,j|j = 1, · · · , p} ⊂ Rdf , can be obtained by analyzing information from image measure-
ments {zt,j|j = 1, · · · , p} ⊂ Rdz and state estimates; these provide information regarding
the relative position of the robot in its environment. States and features are described by
a smooth (i.e., infinitely continuously differentiable) dynamics map g : Rdx → Rdx and a
smooth measurement map h : Rdx × Rdf → Rdz , via additive noise models:

xt+1 = g(xt) + wt, wt ∼ N (0,Σw), (2.1)

zt,j = h(xt, ft,j) + vt,j, vt,j ∼ N (0,Σv, (2.2)

CHAPTER 2. SLAM: SETUP AND FORMULATION 5

where Σw ∈ Rdx×dx ,Σw � 0 and Σv ∈ Rdz×dz ,Σv � 0.
To perform localization and mapping, SLAM algorithms maintain a full state (vector)

xt ∈ Rd, in which a number of past states and feature positions are concatenated. The
exact number and time stamps of these states and features vary with the design choice
of each SLAM algorithm. For example, sliding-window filters define the full state xt :=
(xt−n+1, · · · , xt, ft,p−q+1, · · · , ft,p) ∈ Rd, with d := dxn + dfq, to be a sliding window of the
most recent n states, consisting of one pose each, and the most recent estimates, at time t,
of a collection of q features. Batch optimization problems, on the other hand, maintain all
states and features ever encountered in the problem up to the current time.

The dynamics and measurement maps above do not involve overparameterized state
variables, e.g., quaternion representations for poses. Such discussions are deferred to Section
2.2.

SLAM as an Optimization Problem on Euclidean Spaces

The objective of SLAM is to estimate state and feature positions that best enforce con-
straints posed by the given dynamics and measurement models, as well as noisy state and
feature measurements collected over time. This can be formulated as the optimization prob-
lem of minimizing the sum of a collection of weighted residual terms, which represent con-
straints generated by the dynamics and measurement maps. For example, weighted resid-
uals associated with the prior distribution over xt ∈ Rd, the dynamics constraints between
states xi, xi+1 ∈ Rdx , and the reprojection error of feature fj ∈ Rdf corresponding to the

state xi ∈ Rdx and image measurement zt,j ∈ Rdz , may be given by Σ
−1/2
0 (xt − µ0) ∈ Rd,

Σ
−1/2
w

(
xi+1−g(xi)

)
∈ Rdx , and Σ

−1/2
v

(
zi,j−h(xi, ft,j)

)
∈ Rdz , respectively (here, 1 ≤ i ≤ n−1

and 1 ≤ j ≤ q). We can then define the running cost, c : Rdxn+df q → R, as the sum
of weighted norm squares of these residuals. For example, for a sliding-window filtering
algorithm for SLAM, we may have:

c(xt) := ‖xt − µ0)‖2
Σ−1

0
+

t−1∑
i=t−n+1

‖xi+1 − g(xi)‖2
Σ−1

w
(2.3)

+

p∑
j=p−q+1

t∑
i=t−n+1

‖zi,j − h(xi, ft,j)‖2
Σ−1

v
,

where we have defined ‖v‖2
A := v>Av for any real vector v and real matrix A of compatible

dimension.
To formulate SLAM as a nonlinear least-squares problem, we stack all residual terms into

a single residual vector C(xt). For example, for the sliding-window filter above, we have:

C(xt) :=
[(

Σ
−1/2
0 (x̃t − µ0)

)>(
Σ−1/2
w (xt−n+1 − g(xt−n))

)> · · · (Σ−1/2
w (xt − g(xt−1))

)>

CHAPTER 2. SLAM: SETUP AND FORMULATION 6

(
Σ−1/2
v (zt−n+1,p−q+1 − h(xt−n+1, ft,p−q+1))

)> · · ·(
Σ−1/2
v (zt−n+1,p − h(xt−n+1, ft,p))

)> · · ·(
Σ−1/2
v (zt,p−q+1 − h(xt, ft,p−q+1))

)> · · ·(
Σ−1/2
v (zt,p − h(xt, ft,p))

)>]>
∈ R(2n−1)dx+pdf+nqdz .

As a result, c(xt) = C(xt)
>C(xt), and the SLAM problem is now reduced to the following

nonlinear least squares problem:

min
xt

.c(xt) = min
xt

.C(xt)
>C(xt) (2.4)

Section 3 introduces the main algorithmic submodules used to find an approximate solution
to (2.4).

2.2 SLAM: Formulation on Manifolds

In this section, we generalize the SLAM problem formulation presented in Section 2.1 to
situations where the dynamical states under study are defined on smooth manifolds, rather
than on Euclidean spaces. This is necessary, since SLAM problems often involve the orien-
tations of rigid bodies, which evolve on a smooth manifold embedded in an ambient space,
e.g., rotation matrices expressed as unit quaternions. In such situations, we define boxplus
(�) and boxminus (�) operators, to perform composition and difference operations in the
iterative SLAM algorithm presented in Section 3, while enforcing constraints imposed by
the manifold’s geometric structure. The following subsections define � and � on general
manifolds, and on specific types of manifolds relevant to the SLAM problem.

Box Operators on Manifolds

Suppose the full state x ∈ M evolves on an n dimensional smooth manifold M. For
each x ∈ M, let πx : Ux → Vx a homeomorphic chart from an open neighborhood Ux of
x ∈ M to an open neighborhood Vx ⊂ Rn of 0 in Rn. Without loss of generality, suppose
πx(x) = 0. The operators � : Ux × Vx → Ux and � : Ux × Ux → Vx are defined as follows:

x� δ = π−1
x (δ) (2.5)

y � x = πx(y) (2.6)

In essence, � adds a perturbation δ ∈ Rn, in local coordinates, to a state x ∈ M , while �
extracts the perturbation δ ∈ Rn, in local coordinates, between states x, x′ ∈ M covered by
the same chart. In subsequent sections, δ often describes an error or increment to a nominal
state on the manifold.

CHAPTER 2. SLAM: SETUP AND FORMULATION 7

The SLAM problem on manifolds concerns the minimization of a smooth function f :
M→ R via iterative descent, starting from an initial state x0 ∈M. Let xk ∈M denote the
candidate solution at iteration k, and define f̂xk := f ◦ π−1

xk
: Rn → R to be the coordinate

representation of f w.r.t the coordinate map πxk . Since f̂xk is smooth function between

Euclidean spaces, we can compute a direction δ ∈ Rn along which f̂xk locally decreases the
most. The update law is then:

xk+1 ← xk � δ (2.7)

In words, the iterative algorithm finds a direction around xk along which f̂xk locally decreases
the most, moves along it in local coordinates, and projects the result back onto M.

WhenM is a Lie Group, only the coordinate chart π0 :M→ Rn on the identity element
I ∈ M needs to be specified. This chart provides a natural choice for any other chart
πx :M→ Rn, by using the group multiplication operator ◦ :M×M→M:

πx(δ) = π0(x−1 ◦ δ), ∀x ∈M, δ ∈ Rn, (2.8)

π−1
x (δ) = x ◦ π−1

0 (δ), ∀x ∈M, δ ∈ Rn. (2.9)

On Lie groups, � and � can then be defined by:

x� δ = x ◦ π−1
0 (δ), ∀x ∈M, δ ∈ Rn, (2.10)

y � x = π0(x−1 ◦ y), ∀x ∈M, δ ∈ Rn. (2.11)

defined in terms of the single map π0. Lie groups, e.g., SO(3), occur commonly in the study
of SLAM.

Manifold Examples

This subsection gives examples of the �, � and π operators for manifolds that occur widely
in SLAM: the space of unit quaternions, Hu, and the space of rotation matrices, SO(3).

1. Unit Quaternions: Each q ∈ Hu is expressed as q = (qu, ~qv) where qu ∈ R and
~qv ∈ R3 denote the scalar part and the vector (imaginary) part, respectively, with
‖q‖ =

√
q2
u + ‖~qv‖2 = 1 (JPL convention). Here, the coordinate map π : Hu → R3

is defined as the Log map on Hu, and its inverse π−1 is defined as the Exp map.
Specifically, we first rewrite each q ∈ Hu as q = (cos(θ/2), sin(θ/2)~ω) for some θ ∈
[0, π], ~ω ∈ R3 with ‖~ω‖ = 1, i.e., the quaternion q implements a rotation about the
unit axis ~ω by θ radians counter-clockwise. Then, π : Hu → R3, and its inverse
π−1 : Bπ(0)→ Hu are defined as follows. (Here, Bπ(0) := {x ∈ R3 : ‖x‖2 < π} denotes
the image of the map π.)

π(q) = Log(q) = θ~ω,

π−1(θ~ω) = Exp(θ~ω) = (cos(θ/2), sin(θ/2)~ω). (2.12)

CHAPTER 2. SLAM: SETUP AND FORMULATION 8

The � and � maps are then implemented via the standard quaternion product ? :
Hu ×Hu → Hu:

qa � ~ω = qa ∗ Exp(~ω) (2.13)

qa � qb = Log(q−1
b ∗ qa) (2.14)

2. The Rotation Group SO(3): Definitions of � and � for SO(3) parallel those for
quaternions, i.e., the coordinate map π : SO(3) → R3 is defined as the Log operator
on SO(3), with output restricted to Bπ(0). Define:

Ra � ~ω = Ra ∗ Exp(~ω) (2.15)

Ra �Rb = Log(RT
b Ra) (2.16)

3. Cartesian Products of Manifolds: Often, the full state maintained in the SLAM
algorithm is defined on the Cartesian product of a finite collection of manifolds, since
it contains poses and features which exist and evolve on their own manifolds. For
a product manifold M = M1 ×M2, with projection, increment, and difference maps
already defined on M1 and M2, we can define � and � on M by:

(g1, g2) � (ξ1, ξ2) = (g1 � ξ1, g2 � ξ2) (2.17)

(g1, g2) � (h1, h2) = (g1 � h1, g2 � h2) (2.18)

SLAM on Manifolds: Dynamics and Measurement Maps

To formulate SLAM on a manifold, we must alter our definitions of the state variables, fea-
tures, image positions, dynamics map, and measurement map. Let X be a smooth manifold
of dimension dx, on which the system state are defined. Similarly, let F be a smooth man-
ifold of dimension df , on which features are defined, and let Z be the smooth manifold of
dimension dz, on which image measurements are defined (Often, F = Rdf and Z ∈ Rdz , e.g.,
with df = 3 and dz = 2). We then have:

xt+1 = g(xt) � wt, wt ∼ N (0,Σw),

zt,j = h(xt, ft,j) � vt,j, vt,j ∼ N (0,Σv).

where xt ∈ X denotes the state at time t, g : X → X denotes the discrete-time dynamics
map, and wt ∈ Rdx denotes the dynamics noise, with covariance Σw ∈ Rdx×dx , Σw � 0.
Moreover, ft,j ∈ F denotes feature position j estimated at the camera pose at time t,
zt,j ∈ Z denotes the image measurement of feature j measured from the camera pose at time
t, h : X × F → Z denotes the measurement map, and vt ∈ Rdz denotes the measurement
noise, with covariance Σv ∈ Rdz×dz , Σv � 0.

As before, SLAM concerns an optimization problem over a collection of poses and fea-
tures, e.g., a sliding window of the most recent poses in the states {xi ∈ X |i = t−n+1, · · · , t}
and features {ft,j ∈ F|j = p− q + 1, · · · , p}:

xt := (xt−n+1, · · · , xt, fp−q+1, · · · , fp)

CHAPTER 2. SLAM: SETUP AND FORMULATION 9

∈ X n ×F q.

We assume that xt is associated with a prior distribution with mean µ0 ∈ X n × F q and
covariance Σ0 ∈ R(ndx+qdf)×(ndx+qdf).

SLAM as an Optimization Problem on Manifolds

In this subsection, we interpret the SLAM problem on manifolds as the optimization of a
cost function c : X n×F q → R, constructed from residual terms of the same dimension of the
minimal coordinates of xt, xt and zt. In particular, we must generalize (2.3) to the case where
the states, dynamics and measurement maps are defined on and between manifolds. This
involves replacing + and - operators with � and � operators, when necessary. For example,
the sliding-window filter window presented in Section 2.1, would be associated with the cost
c : X n ×F q → R, given by:

c(xt) = ‖xt � µ0‖2
Σ−1

0

+
t−1∑

i=t−n+1

‖xi+1 � g(xi)‖2
Σ−1

w
(xi+1 � g(xi))

+

p∑
j=p−q+1

t∑
i=t−n+1

‖zij � h(xi, ft,j)‖2
Σ−1

v

Similar to Section 2.1, we stack all residual terms into a single residual vector C(xt). For
example, for the sliding-window filter above, we have:

C(xt) :=
[(

Σ
−1/2
0 (x̃t � µ0)

)>(
Σ−1/2
w (xt−n+1 � g(xt−n))

)> · · · (Σ−1/2
w (xt � g(xt−1))

)>(
Σ−1/2
v (zt−n+1,p−q+1 � h(xt−n+1, ft,p−q+1))

)> · · ·(
Σ−1/2
v (zt−n+1,p � h(xt−n+1, ft,p))

)> · · ·(
Σ−1/2
v (zt,p−q+1 � h(xt, ft,p−q+1))

)> · · ·(
Σ−1/2
v (zt,p � h(xt, ft,p))

)>]>
∈ R(2n−1)dx+pdf+nqdz .

As a result, c(xt) = C(xt)
>C(xt), and the SLAM problem is now reduced to the following

nonlinear least squares problem:

min
xt

.c(xt) = min
xt

.C(xt)
>C(xt) (2.19)

Section 3.4 introduces the main algorithmic submodules used to find an approximate solution
to (2.19).

CHAPTER 2. SLAM: SETUP AND FORMULATION 10

To formulate optimization-based SLAM algorithms on manifolds in later sections, it is
necessary to compute the derivatives (Jacobians) of smooth functions on manifolds. This is
discussed in Section 2.2.

11

Chapter 3

SLAM: A Generalized Optimization
Framework

This chapter introduces a straightforward optimization-based algorithm for solving the least-
squares minimization of the SLAM cost-function introduced in Sections 2.1 and 2.2. In
particular, we formulate the two key submodules of our generalized SLAM algorithm—
Gauss-Newton steps and Marginalization steps—both of which are widely used to solve the
SLAM backend inference problem in real time. Since the cost function is highly nonlinear, we
initialize the algorithm with a state estimate, typically produced by the SLAM front end [3].
Gauss-Newton steps are then applied to iteratively refine this estimate, until convergence to a
local minimum is attained. To ensure real-time operation, we periodically eliminate variables
from the cost function, and thus from the optimization problem, using the Marginalization
submodule. Finally, we generalize the above algorithmic submodules to the case where the
state space is a smooth manifold, but not necessarily an Euclidean space. In Chapter 5, we
will present an example of such a system, when we describe our implementation and present
simulation results on real data.

3.1 Algorithm Overview

In this section, we describe in detail the submodules of a straightforward, general SLAM
algorithm, using the state variables and cost terms defined in Sections 2.1 and 2.2. As
before, we first focus on the case where the state space is Euclidean. As before, denote
the state and concatenated cost vector by xt ∈ Rd and C : Rd → RdC , respectively. (e.g.,
the sliding window filter in Section 2.1 would correspond to d = dxn + dfq and dC =
(2n− 1)dx + qdf + nqdz). Recall from Chapter 2.1 that the SLAM problem is equivalent to
solving the nonlinear least-squares problem (2.4), reproduced below:

min
xt

.c(xt) = min
xt

.‖C(xt)‖2
2.

CHAPTER 3. SLAM: A GENERALIZED OPTIMIZATION FRAMEWORK 12

Construction of the Optimization Problem

:
The first step of the algorithm is to construct the objective function whose minimization

defines the SLAM problem. From available visual and inertial measurements, we construct
and concatenate a collection of residual terms to form a residual vector C(xt) of the form
introduced in Section 2.1. The SLAM problem is then equivalent to solving the nonlinear
least-squares problem (2.4), reproduced below with the indices considered here:

min
xt

.c(xt) = min
xt

.C(xt)
>C(xt).

Recall that xt ∈ Rdxn+df q consists of the most recent n poses and position estimates of the
q most salient features, measured at the most recent pose (at time t). Recall also that
C : Rdxn+df q → Rdxn+df q+dx(n−1)+dznq is defined by:

C(xt) :=
[
C0(xt)

> C>gt−n+1
· · · C>gt−n+1

C>hp−q+1,t−n+1
· · · C>ht,p−q+1

· · ·

C>ht−n+1,p
· · · C>ht,p

]>
.

with weighted residual terms C0 : Rdxn+df q → Rdxn+df q, and Cgi : R2dx → Rdx , Chij :
Rdx+df → Rdz for each i ∈ {t− n+ 1, · · · , t− 1} and j ∈ {p− q + 1, · · · , p} given by:

C0(xt) := Σ
−1/2
0 (xt − µ0), (3.1)

Cgi(xi, xi+1) := Σ−1/2
w

(
xi+1 − g(xi)

)
, (3.2)

Chij(xi, ft,j) := Σ−1/2
v

(
zi,j − h(xi, ft,j)

)
. (3.3)

Gauss-Newton Descent and Linear Approximation

:
The next step is the recursive update of the joint state xt ∈ Rdxn+df q by performing Gauss-

Newton descent steps using the cost function. More precisely, let J ∈ R(dxn+df q+dx(n−1)+dzq)×(dxn+df q)

denote the Jacobian of C with respect to xt. Starting from an initial estimate xt
(0) ∈ Rdxn+df q

of xt, we recursively update iterates of our estimate {xt(k)|k ≥ 0} via the Gauss-Newton al-
gorithm:

xt
(k+1) ← xt

(k) − (JTJ)−1JTC(xt
(k)). (3.4)

These Gauss-Newton steps are iteratively applied until the current iterate xt
? := xt

(k), for
some sufficiently large k ∈ N, is believed to correspond to a sufficiently small cost c(xt

?).
Then, it is fixed, and all or part of the original SLAM optimization problem is replaced with
the following linear least squares optimization problem (2.4):

min
xt

.c(xt) = min
xt

.C(xt)
>C(xt)

CHAPTER 3. SLAM: A GENERALIZED OPTIMIZATION FRAMEWORK 13

= min
xt

.
[
(xt − µ)>Σ−1(xt − µ) + o(xt − xt?)

]
≈ min

xt
.(xt − µ)>Σ−1(xt − µ) (3.5)

where µ ∈ Rdxn+df q and Σ ∈ R(dxn+df q)×(dxn+df q) are given by:

µ← xt
? − (J>J)−1J>C(xt

?)

Σ← (J>J)−1.

Remark 3.1.1. Alternatives to the Gauss-Newton algorithm, for computing incremental
improvements to the initial guess are available, exist in abundance. These include the stan-
dard gradient descent algorithms [29], the Levenberg-Marquardt algorithm [21], or Powell’s
dog leg method [27, 20]. However, we focus on the Gauss-Newton algorithm because, as
illustrated above, it has a meaningful interpretation in the case of filtering based SLAM al-
gorithms. Moreover, for well-conditioned problems where a good initial estimate is available,
Gauss-Newton tends to be faster than other methods [26].

Marginalization

:
The marginalization step reduces the number of variables present in the SLAM problem

to reduce computation time. In the context of the above setup, these variables are estimates
of the n pose positions and q feature positions, encapsulated in the overall state xt, which
are selected to optimize the overall cost c(xt). Intuitively, the marginalization procedure
involves the following steps to reduce the number of pose and feature position estimates in our
optimization problem. First, we partition the overall state xt ∈ Rdxn+df q into marginalized
and non-marginalized components. Likewise, we rewrite the overall cost c(xt) ∈ R as the sum
of two cost terms, one of which depends only on the non-marginalized components, while
the other depends on both the marginalized and non-marginalized components. Finally,
the marginalization step is completed by approximating the latter cost term as an explicit
function of the non-marginalized cost term. This process is described mathematically below.

Among the n poses and p features present in the overall state xt, let the marginalized state
xM ∈ RdxMx+dfMf encapsulate the Mx pose positions and Mf feature positions that we wish
to discard from our optimization problem, where 1 ≤Mx ≤ n− 1 and 1 ≤Mf ≤ q − 1, and
collect the remaining pose and feature position estimates into the non-marginalized state
xK ∈ Rdx(n−Mx)+df (q−Mf). The only state components kept in the optimization problem
after marginalization, encapsulated in xK , are poses and feature position estimates that are
sufficiently recent or informative to be considered irreplaceable in the optimization problem.

Next, we wish to approximate c(xt) using a cost function that depends entirely on xK .
To do this, we first recall that c(xt) is the sum of squared residual terms. By collecting
all terms which depend only on the non-marginalized state components xK , we can rewrite
c(xt) as the sum of two costs:

c(xt) = c(xK , xM) = c1(xK) + c2(xK , xM)

CHAPTER 3. SLAM: A GENERALIZED OPTIMIZATION FRAMEWORK 14

= C1(xK)>C1(xK) + C2(xK , xM)>C2(xK , xM),

where c1 : Rdx(n−Mx)+df (q−Mf) → R describes the sum of squared residuals in c(xt) with
no dependence on xM , and C1 : Rdx(n−Mx)+df (q−Mf) → Rdc,1 denotes the concatenation
of such squared residual terms, i.e., c1(xK) = C1(xK)>C1(xK), while c2 : Rdxn+df q → R
and C2 : Rdxn+df q → Rdc,2 correspond to the remaining terms. The dimensions c1 and c2

depend on the specific way in which the state variables in xt and the cost terms in c(xt) are
partitioned. For example, consider the cost function (2.3):

c(xt) = (xt − µ0)>Σ−1
0 (xt − µ0) +

t−1∑
i=t−n+1

(xi+1 − g(xi))
>Σ−1

w

(
xi+1 − g(xi)

)
+

p∑
j=p−q+1

t∑
i=t−n+1

(
zi,j − h(xi, ft,j)

)>
Σ−1
v

(
zi,j − h(xi, ft,j)

)
.

Suppose we partition the full state vector by xt := (xK , xM), with:

Mx := {t− n+ 1, · · · , t− n+Mx}, (poses to marginalize),

Mf := {p− q + 1, · · · , p− q +Mf}, (features to marginalize),

xK := (xt−n+Mx+1, · · · , xt, ft,p−q+Mf+1, · · · , ft,p) ∈ Rdx(n−Mx)+df (p−Mf),

xM := (xt−n+1, · · · , xt−n+Mx , ft,p−q+1, · · · , ft,p−q+Mf
) ∈ RdxMx+dfMf .

and the cost function by c(xt) = c1(xK) + c2(xM , xK), with:

C1(xK) :=
[
C>gt−n+Mx

· · · C>gt−1
C>ht−n+Mx+1,p−q+Mf+1,t

· · · C>ht−n+Mx+1,p,t
· · ·

C>ht,p−q+Mf+1,t
· · · C>ht,p,t

]>
∈ Rdx(n−Mx)+dz(n−Mx)(q−Mf).

C2(xK , xM) :=
[
C0(xt)

> C>gt−n+1
· · · C>gt−n+Mx−1

C>ht−n+1,p−q+1,t
· · · C>ht−n+1,p,t

· · ·

C>ht−n+Mx,p−q+1,t
· · · C>ht−n+Mx,p

C>ht−n+Mx+1,p−q+1,t
· · · C>ht−n+Mx+1,p−q+Mf ,t

Cht,p−q+1,t · · ·Cht,p−q+Mf ,t

]>
∈ Rdxn+df q+dx(Mx−1)+dz(Mxq+Mfn−MxMf),

c1(xK) = C1(xK)>C1(xK) ∈ R,
c2(xK , xM) = C2(xK ∈ R, xM)>C2(xK , xM) ∈ R,

where C0 and each Cgi and Chij,t are given by (3.1), (3.2), and (3.3), respectively. Note that
in this case, the dimensions of C1 and C2 are given by dc,1 = dx(n−Mx)+dz(n−Mx)(q−Mf)
and dc,2 = dxn+ dfq + dx(Mx − 1) + dx(Mxq +Mfn−MxMf), respectively.

The SLAM problem can now be written as:

min
xt

.c(xt) = min
xK

.
[
C1(xK)>C1(xK) + min

xM
.C2(xK , xM)>C2(xK , xM)

]

CHAPTER 3. SLAM: A GENERALIZED OPTIMIZATION FRAMEWORK 15

To complete the marginalization step, we replace the output of the inner minimization,
minxM .C2(xK , xM)>C2(xK , xM), with an explicit function of xK . To do so, we apply first-
order approximation to the cost term C2(xK , xM)>C2(xK , xM) to obtain:

C2(xK , xM) = C2(x?K , x
?
M) +

[
J>K J>M

] [xK − x?K
xM − x?M

]
+ o(xK − x?K , xM − x?M), (3.6)

where JK ∈ Rc2×(dx(n−Mx)+df (q−Mf)) denotes the Jacobian of C2 with respect to xK and JM ∈
Rc2×(dxMx+dfMf) denotes the Jacobian of C2 with respect to xM . Using (3.6) to approximate
the inner minimization in the above optimization problem, we arrive at the approximate
optimization problem below, which depends only on the non-marginalized state xK :

min
xt

.c(xt) = min
xK

.
[
C1(xK)>C1(xK) + min

xM
.C2(xK , xM)>C2(xK , xM)

]
≈ min

xK
.
(
C1(xK)>C1(xK) + (xK − µK)>Σ−1

K (xK − µK))
)

(3.7)

where the algorithm defines the mean µK ∈ Rdx(n−Mx)+df (q−Mf) and the covariance matrix
ΣK ∈ R(dx(n−Mx)+df (q−Mf))×(dx(n−Mx)+df (q−Mf)) of xK by assigning:

µK ← x?K − ΣKJ
>
K

[
I − JM(J>MJM)−1J>M

]
C2(x?) (3.8)

ΣK ←
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

, (3.9)

This paper mathematically demonstrates the optimality of the approximations in (3.6)
and (3.7), and examines the implications of varying the frequency in executing the Gauss-
Newton Descent, Linear Approximation, and Marginalization steps. In particular, in Section
4, we will interpret a selection of mainstream filtering-based SLAM algorithms as the re-
peated iteration of the above three steps at different rates. Moreover, in Section 5, we will
illustrate that, by varying the frequencies at which each of the above three steps is per-
formed, we can construct novel SLAM algorithms whose accuracy and computational time
interpolate smoothly between those of existing algorithms.

In the sections below, we consider the Gauss-Newton Descent, Linear Approximation,
and Marginalization steps in detail.

3.2 Gauss-Newton Descent

Gauss-Newton descent involves solving for the minimization of c(xt) via Gauss-Newton steps,
an iterative linearization method that approximates c(xt) about a given linearization point
xt
? by a linear least-squares cost term, i.e.,

min
xt

.c(xt) = min
xt

.‖xt − µt‖2
Σ−1

t
+ o(xt − xt?) (3.10)

for some µt ∈ Rd and Σt ∈ Rd×d. The linearization procedure required to obtain µt ∈ Rd

and Σt ∈ Rd×d, as well as the approximation involved, are detailed in the theorem below.

CHAPTER 3. SLAM: A GENERALIZED OPTIMIZATION FRAMEWORK 16

Theorem 3.2.1. (Gauss-Newton Step) Let xt
? ∈ Rd denote a given linearization point,

and suppose J := ∂C
∂xt
∈ RdC×d has full column rank. Then applying a Gauss-Newton step to

the cost c(xt), about xt
? ∈ Rd yields the new cost:

c(xt) = ‖xt − µt‖2
Σ−1

t
+ o(xt − xt?),

where µt ∈ Rd and Σt ∈ Rd×d are given by:

Σt ← (J>J)−1,

µt ← xt
? − (J>J)−1J>C(xt

?).

Proof. See Appendix (Section 7.2).

Algorithm 1: Gauss-Newton Step.

Data: Objective C>C, linearization point x?t .
Result: Mean µ, covariance Σ after a Gauss-Newton step.

1 J ← ∂C
∂xt

∣∣
µt

2 Σt ← J>J
3 µt ← x?t − (J>J)−1J>C(x?t)
4 return µt,Σt

3.3 Marginalization of States

The marginalization step reduces the state dimension in our SLAM algorithm, which helps to
reduce the computation time. First, we partition the overall state xt ∈ Rd into a marginalized
component xt,M ∈ RdM , to be discarded from xt, and a non-marginalized component xt,K ∈
RdK , to be kept (d = dK +dM .) Then, we partition c(xt) into two cost terms: c1(xt,K), which
depends only on non-marginalized state components, and c2(xt,K , xt,M) which depends on
both marginalized and non-marginalized state components:

c(xt) = c(xK , xM) = c1(xK) + c2(xK , xM)

= ‖C1(xK)‖2
2 + ‖C2(xK , xM)‖2

2.

Here, C1(xK) ∈ RdC,1 and C2(xK , xM) ∈ RdC,2 denote the concatenation of residuals associ-
ated with c1(xK) and c2(xK , xM) (with dC = dC,1 + dC,2). To remove xt,M ∈ RdM from the
optimization problem , observe that:

min
xt

c(xt) = min
xt,K ,xt,M

(
c1(xt,K) + c2(xt,K , xt,M)

)

CHAPTER 3. SLAM: A GENERALIZED OPTIMIZATION FRAMEWORK 17

= min
xt,K

(
‖C1(xt,K)‖2

2 + min
xt,M
‖C2(xt,K , xt,M)‖2

2

)
.

To remove xt,M , it suffices to approximate the solution to the inner minimization problem
by a linear least-squares cost, i.e.:

min
xt,M
‖C2(xt,K , xt,M)‖2

2 ≈ ‖xt,K − µt,K‖2

Σ
−1
t,K

for some µt,K ∈ RdK and Σt,K ∈ RdK×dK . Since ‖C2(xt,K , xt,M)‖2
2 is in general non-convex,

we obtain µt,K and Σt,K by minimizing the first-order Taylor expansion of ‖C2(xt,K , xt,M)‖2
2

about some linearization point, instead of minimizing ‖C2(xt,K , xt,M)‖2
2 directly. Below,

Theorem 3.3.1 details the derivation of µt,K and Σt,K .

Theorem 3.3.1 (Marginalization Step). Let xt
? ∈ Rd denote a given linearization point,

and suppose J := ∂C
∂xt
∈ RdC×d has full column rank. Define JK := ∂C

∂xt,K
∈ RdC×dK and JM :=

∂C
∂xt,M

∈ RdC×dM . If C(xt,M , xt,K) were a linear function of xt = (xt,M , xt,K), then applying a

Marginalization step to the cost c(xt), about the linearization point xt
? = (x?t,K , x

?
t,M) ∈ Rd

yields:

min
xt,M

c(xt,K , xt,M) = min
xt,K

.
(
c1(xt,K) + min

xt,M
c2(xt,K , xt,M)

)
, (3.11)

where Σt,K ∈ RdK×dK and µt,K ∈ RdK are given by:

Σt,K :=
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

, (3.12)

µt,K := x?t,K − Σt,KJ
>
K

[
I − JM(J>MJM)−1J>M

]
C2(x?t). (3.13)

Proof. See Appendix (Section 7.2).

Algorithm 2: Marginalization

Data: Objective f = C>C, vector of variables to marginzlie xt,M , linearization
point x?t .

Result: Mean µt,K and covariance Σt,K of x?t,K of non-margnalized variables.

1 C ← subvector of C containing entries dependent on xM .

2 J :=
[
JK JM

]
←
[

∂C
∂xt,K

∣∣
x?

∂C
∂xt,M

∣∣
x?

]
.

3 Σt,K ←
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

4 µt,K ← x?t,K − Σt,KJ
>
K

[
I − JM(J>MJM)−1J>M

]
C(x?)

5 return µt,K ,Σt,K

CHAPTER 3. SLAM: A GENERALIZED OPTIMIZATION FRAMEWORK 18

3.4 Main Algorithm on Manifolds

Our SLAM framework, formulated above on Euclidean spaces, can be straightforwardly
extended to a formulation on manifolds. This involves using manifold-related concepts in
Section 2.2 to modify the Euclidean-space dynamics and measurement maps in Section 2.1,
as well as the cost functions, Gauss-Newton steps, and marginalization steps in Sections 3.2,
3.3. In particular, when appropriate, plus and minus operations must be replaced with the
� and boxminus operators.

Recall the states, poses, features, dynamics and measurement maps, and costs defined in
Section 2.2. In particular, the cost c(x) is given by:

c(x) = C(x)>C(x) (3.14)

Now, let x̄∗ be a chosen linearization point. Let Ĉx̄∗ := C ◦ π−1
x̄? be the coordinate represen-

tation of the function C near x̄∗. Recall that Ĉx̄∗ is simply a function from one Euclidean
space to another. We can now Taylor expand to write:

C(x̄) = (C ◦ π−1
x?)
(
πx?(x)

)
= Ĉx̄?(∆χ)

= Ĉx̄?(0) + J∆χ+ o(∆χ), (3.15)

where ∆χ = x� x? and J is the Jacobian of Ĉx̄∗ with respect to ∆χ evaluated at zero. We
then apply a modified version of the algorithms from Section 7.2:

Gauss-Newton Descent

:
Gauss-Newton steps update the current linearization point x̄{k} to a new linearization

point x̄{k+1}.

x(k+1) ← x(k) �
(
− (JTJ)−1JTC(x(k))

)
(3.16)

After Gauss-Newton steps have been taken, the linearization point x? is fixed, and all or
part of the original optimization problem, reproduced below:

min
x

c(x) = min
x

C(x)>C(x)

is replaced with the following linear least squares optimization problem:

min
x
.(x� µ)>Σ−1(x� µ) (3.17)

where the algorithm assigns:

µ← x? � (J>J)−1J>C(x?)

Σ← (J>J)−1.

CHAPTER 3. SLAM: A GENERALIZED OPTIMIZATION FRAMEWORK 19

Marginalization

:
Marginalization steps remove variables xM from the optimization problem by applying

linear approximation to C—in particular, the optimization problem:

min
x
.c(x)

is approximated by:

min
xK

.(xK � µK)>Σ−1
K (xK � µK),

where the algorithm assigns:

µK ← x?K �
(
− ΣKJ

>
K

[
I − JM(J>MJM)−1J>M

]
C2(x?)

)
ΣK ←

(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

,

20

Chapter 4

Filtering as Nonlinear Optimization

This chapter presents the equivalence of filtering and batch optimization based SLAM algo-
rithms, using the Extended Kalman Filter (EKF, in Section 4.1) and Multi-State Constrained
Kalman Filter (MSCKF, in Section 4.2), as examples. (For an introduction to the classical
formulation of EKF SLAM and MSCKF, please see Appendices 7.3, 6).

First, we demonstrate how popular filtering-based SLAM algorithms can be reformulated
as the iterative minimization of a nonlinear least squares cost function for different design
choices (more precisely, marginalization schemes). We show that the Extended Kalman
Filter (EKF SLAM) is equivalent to a sliding window filter of window size 1. Although
several versions of this result exist in the literature, the presented proof lays the groundwork
for our analysis.

The main result of this section is a demonstration of the equivalence of the popular
Multi-State Constrained Kalman Filter (MSCKF) [24] to iterative nonlinear least squares
optimization with a specific marginalization scheme. This result implies that the MSCKF can
be formulated as an optimization-based algorithm with a specific marginalization scheme,
instead of using matrix operations, as in the classical formulation [24]. This, in turn, al-
lows the MSCKF and its variants to be implemented more straightforwardly, while also
allowing their empirical performance to be more directly compared with that of sliding-
window optimization algorithms. Indeed, due to the user flexibility granted by our general-
ized optimization-based framework, improvements or modification to the algorithm become
trivial to derive and implement. To summarize, we describe the classic sliding window filter,
a workhorse of optimization-based SLAM and the motivating application of marginalization
to the SLAM problem. Finally, at the end of the chapter, we list a number of popular visual
SLAM algorithms and algorithm paradigms and characterize them in terms of descent and
marginalization schemes.

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 21

4.1 Extended Kalman Filter (EKF)

The EKF SLAM algorithm constantly maintains the EKF full state vector, x̃t := (xt, ft,1, · · · , ft,p) ∈
Rdx+pdf , consisting of the most recent state, xt ∈ Rdx , and the most recent position estimates
ft,1, · · · , ft,p ∈ Rdf of all features maintained in the EKF full state x̃t. At initialization
(t = 0), no feature has yet been detected (p = 0), and the EKF full state is simply the initial
state x̃0 = x0 ∈ Rdx , with mean µ0 ∈ Rdx and covariance Σ0 ∈ Rdx×dx . Suppose that at
the current time t, the running cost maintained in the optimization formulation of the EKF
SLAM algorithm, cEKF,t,0 : Rdx+pdf → Rdx+pdf , is:

cEKF,t,0 = ‖x̃t − µt‖2
Σ−1

t
,

where x̃t := (xt, ft,1, · · · , ft,p) ∈ Rdx+pdf denotes the EKF full state at time t, with mean µt ∈
Rdx+pdf and covariance Σt ∈ R(dx+pdf)×(dx+pdf). First, the feature augmentation step appends
position estimates of new features fp+1, · · · , fp+p′ ∈ Rdf to the EKF full state x̃t, and updates
its mean and covariance. In particular, feature measurements (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz are
incorporated by adding measurement residual terms to the current running cost cEKF,t,0,
resulting in a new cost cEKF,t,1 : Rdx+(p+p′)df → R:

cEKF,t,1(x̃t, ft,p+1, · · · , ft,p+p′)

:=‖x̃t − µt‖2
Σ−1

t
+

p+p′∑
k=p+1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

In effect, cEKF,t,1 appends new feature positions to x̃t, and constrains it using feature mea-
surements residuals.

The feature update step uses measurements of features already described by x̃t to update
the mean and covariance of x̃t. More precisely, feature measurements zt,1:p := (zt,1, · · · , zt,p) ∈
Rdzp, of the p features f1, · · · , fp included in x̃t, are introduced by incorporating associated
measurement residuals to the running cost, resulting in a new cost cEKF,t,3 : Rdx+pdf → R:

cEKF,t,3(x̃t) := ‖x̃t − µt‖2
Σ−1

t
+

p∑
k=1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

A Gauss-Newton step is then applied to construct an updated mean µt ∈ Rdx+pdf and
covariance Σt ∈ R(dx+pdf)×(dx+pdf) for x̃t, resulting in a new cost cEKF,t,4 : Rdx+pdf → R:

cEKF,t,4(x̃t) := ‖x̃t − µt‖2

Σ
−1
t

,

which returns the running cost to the form of cEKF,t,0.
The state propagation step propagates the EKF full state forward by one time step, via

the EKF state propagation map g : Rdx+pdf → Rdx+pdf . To propagate x̃t forward in time,

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 22

we incorporate the dynamics residual to the running cost cEKF,t,0, thus creating a new cost
cEKF,t,5 : R2dx+pdf → R:

cEKF,t,5(x̃t, xt+1) := ‖x̃t − µt‖2

Σ
−1
t

+ ‖xt+1 − g(xt)‖2
Σ−1

w
.

In effect, cEKF,t,5 appends the new state xt+1 ∈ Rdx to x̃t, while adding new constraints posed
by the dynamics residuals. One marginalization step, with x̃t,K := (xt+1, ft,1, · · · , ft,p) ∈
Rdx+pdf and x̃t,M := xt ∈ Rdx , is then applied to remove the previous state xt ∈ Rdx from
the running cost. This step produces a mean µt+1 ∈ Rdx+pdf and a covariance Σt+1 ∈
R(dx+pdf)×(dx+pdf) for the new EKF full state, x̃t+1 := x̃t,K . Accordingly, the running cost
maintained in the optimization framework is updated to cEKF,t+1,0 : Rdx+pdf → R:

cEKF,t+1,0(x̃t+1) := ‖x̃t+1 − µt+1‖2
Σ−1

t+1
,

which returns the running cost to the form of cEKF,t,0.
The theorems below establish that the feature update, and propagation steps of the EKF,

presented above in our optimization framework, correspond precisely to those presented in
the standard EKF SLAM algorithm (Algorithm 6) [34] [33].

Theorem 4.1.1. The feature augmentation step of the standard EKF SLAM algorithm (Alg.
7) is equivalent to applying a Gauss-Newton step to cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,1(x̃t, ft,p+1, · · · , ft,p+p′) = ‖x̃t − µt‖2
Σ−1

t
+

p+p′∑
k=p+1

‖zt,k − h(xt, ft,k)‖2
Σ̃−1

v
.

Proof. See Appendix (Section 6).

Theorem 4.1.2. The feature update step of the standard EKF SLAM algorithm (Alg. 8) is
equivalent to applying a Gauss-Newton step on cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,3(x̃t) = ‖x̃t − µt‖2
Σ−1

t
+

p∑
k=1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

Proof. See Appendix (Section 6).

Theorem 4.1.3. The state propagation step of the standard EKF SLAM algorithm (Alg. 9)
is equivalent to applying a Marginalization step to cEKF,t,5 : R2dx+pdf → R, given by:

cEKF,t,5(x̃t, xt+1) = ‖x̃t − µt‖2

Σ
−1
t

+ ‖xt+1 − g(xt)‖2
Σ−1

w
.

with x̃t,K := (xt+1, ft,1, · · · , ft,p) ∈ Rdx+pdf and x̃t,M = xt ∈ Rd.

Proof. See Appendix (Section 6).

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 23

Algorithm 3: EKF SLAM, as an iterative optimization problem.

Data: Prior N (µ0,Σ0) on x0 ∈ Rdx , noise covariances Σw, Σv, dynamics map g,
measurement map h, time horizon T .

Result: Estimates x̂t ∈ Rdx , ∀ t ∈ {1, · · · , T}.
1 f0(x)← ‖x0 − µ0‖2

Σ−1
0

2 p← 0.

3 for t = 0, 1, · · ·T do
4 (zt,1, · · · , zt,p)← Measurements of existing features.
5 costt ← costt +

∑p
k=1 ‖zt,k − h(xt, fk)‖2

Σ−1
v

6 µ̄t, Σ̄t, costt ← 1 Gauss-Newton step on costt, about µt, (Alg. 1).
7 x̂t ← µ̄t ∈ Rdx+pdf .
8 (zt,p+1, · · · , zt,p+p′)← Measurements of new features.

9 costt ← costt +
∑p+p′

k=p+1 ‖zt,k − h(xt, fk)‖2
Σ−1

v

10 µ̄t ←
(
µ̄t, `(xt, zt,p+1), · · · , `(xt, zt,p+p′)

)
∈ Rdx+(p+p′)df .

11 µ̄t, Σ̄t, costt ← 1 Gauss-Newton step on costt, about µt (Alg. 1).
12 p← p+ p′

13 if t < T then
14 costt ← costt + ‖xt+1 − g(xt)‖2

Σ−1
w

15 µt+1,Σt+1, costt ← 1 Marginalization step on costt+1 with xM = xt, about
(µt, g(µt)) (Alg. 2).

16 costt+1 ← ‖xt+1 − µt+1‖2
Σ−1

t+1

17 end

18 end
19 return x̂0, · · · , x̂T

Remark 4.1.1. The earliest solutions to the SLAM problem were stated and solved in terms
of the EKF as the central estimator, with the seminal solution provided by Smith and Cheese-
man in 1987 [31]. Solutions based on the EKF are favoured due to their relatively cheap
computational cost, and remain a popular choice for real-time state estimation.

Remark 4.1.2. In practice, the application of the Gauss-Newton algorithm for the feature
augmentation step can be delayed, and instead done in conjunction with the feature update
step.

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 24

4.2 Multi-State Constrained Kalman Filter

The MSCKF algorithm constantly maintains a full state, x̃t ∈ XIMU × (Xp)n, containing the
most recent IMU state, xIMU ∈ XIMU and n recent poses, (x1, · · · , xn) ∈ (Xp)n:

x̃t := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n,

with mean µt ∈ XIMU × (Xp)n and covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx). As new poses are
introduced, old poses are discarded, and features are marginalized to update x̃t, the mean
µt, covariance Σt, and the integer n accordingly.

At initialization (t = 0), no pose has yet been recorded (n = 0), and the full state x̃0 is
the initial IMU state x̃0,IMU ∈ XIMU, with mean µ0 ∈ XIMU and covariance Σ0 ∈ RdIMU×dIMU .
In other words, x̃0 = µ0 optimizes the initial instantiation cMSCKF,0 : XIMU → R of the
running cost in our framework:

cMSCKF,0,0(x̃0) = ‖x̃0 � µ0‖2
Σ−1

0
.

Suppose that at the current time t, the running cost cMSCKF,t,0 : XIMU×(Xp)n → XIMU×(Xp)n
is:

cMSCKF,t,0(x̃t) = ‖x̃t � µt‖2
Σ−1

t
,

where µt ∈ XIMU× (Xp)n and Σt ∈ R(dIMU+ndx)×(dIMU+ndx) denote the mean and covariance of
the full state x̃t := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n at time t, consisting of the current
IMU state and n poses. When a new image is received, the pose augmentation step adds
a new pose xn+1 ∈ X p (global frame) to x̃t, derived from xIMU

n+1 ∈ X p, the IMU position
estimate in the global frame, via the map ψ : (XIMU)2 × (Xp)n → Xp, i.e.,

xn+1 := ψ(x̃t, x
IMU
n+1) ∈ Xp.

The feature update step uses features measurements to update the mean and covariance
of x̃t. In the MSCKF, features are discarded if (A) they are not observed in the current
pose, or (B) n ≥ Nmax, a specified upper bound, in which case bNmaxc/3 of the n poses are
dropped after features common to these poses are marginalized. Let Sz,1 and Sz,2 denote
the set of pose-feature pairs (xi, fj) described in cases (A) and (B) above, respectively, and
let Sf denote the set of all features to be marginalized. (Algorithm 10.) These feature
constraints are then incorporated into the running cost, resulting in a new cost cMSCKF,t,3 :
XIMU × (Xp)n → R:

cMSCKF,t,3(x̃t)

:=‖x̃t � µt‖2
Σ−1

t
+

∑
(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, fj)‖2
Σ−1

v
,

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 25

where zi,j ∈ Rdz denotes the feature measurement of feature j observed at pose xi ∈ Xp.
By using Gauss-Newton linearization, we leverage constraints posed by the measurement
residuals to construct an updated mean for x̃t, denoted µt ∈ XIMU × (Xp)n, and an updated
covariance for x̃t, denoted Σt ∈ R(dIMU+ndx)×(dIMU+ndx). As a result, our cost will be updated
to cMSCKF,t,4 : XIMU × (Xp)n → R:

cMSCKF,t,4(x̃t) := ‖x̃t � µt‖2

Σ
−1
t

,

which assumes the form of cMSCKF,t,0.
The state propagation step propagates the full state by incorporating dynamics residuals

into the running cost cMSCKF,t,0, resulting in a new cost cMSCKF,t,5 : R2dIMU+ndx → R:

cMSCKF,t,5(x̃t, xt+1,IMU)

:=‖x̃t � µt‖2

Σ
−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

In effect, cMSCKF,t,5 appends the new IMU variable xt+1,IMU ∈ XIMU to the current full
state x̃t ∈ XIMU × (Xp)n, and constrains this new full state via the dynamics residuals. One
marginalization step, with x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU×(Xp)n and x̃t,M := xt,IMU ∈
XIMU, is then applied to remove the previous IMU state, xt,IMU, from the running cost. This
produces a mean µt+1 ∈ XIMU× (Xp)n and a covariance Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx) for the
new MSCKF full state, x̃t+1 := x̃t,K = (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n. Accordingly,
the running cost maintained in the optimization framework is updated to cMSCKF,t+1,0 :
XIMU × (Xp)n → R:

cMSCKF,t+1,0(x̃t+1) := ‖x̃t+1 � µt+1‖2
Σ−1

t+1
,

which returns the running cost to the form of cMSCKF,t,0.
The theorems below establish that the feature update, and propagation steps of the

MSCKF, presented above in our optimization framework, correspond precisely to those pre-
sented in the standard MSCKF (Algorithm 10) [24].

Theorem 4.2.1. The pose augmentation step of the standard MSCKF SLAM algorithm
(Alg. 11) is equivalent to applying a Gauss-Newton step to cMSCKF,t,1 : XIMU × (Xp)n → R,
given by:

cMSCKF,t,1(x̃t, xn+1) = ‖x̃t � µt‖2
Σ−1

t
+ ε−1‖xn+1 � ψ(x̃t, x

IMU
n+1)‖2

2,

and taking ε→ 0 in the resulting (augmented) mean µt and covariance Σt.

Proof. See Appendix (Section 5).

Theorem 4.2.2. The feature update step of the standard MSCKF algorithm (Alg. 12) is
equivalent to applying a marginalization step to cMSCKF,t,3 : XIMU × (Xp)n × R|Sf |df → R,
given by:

cMSCKF,t,3(x̃t, fSf
) = ‖x̃t � µt‖2

Σ−1
t

+
∑

(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, fj)‖2
Σ−1

v
,

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 26

Algorithm 4: Multi-State Constrained Kalman Filter, as iterative optimization.

Data: Prior N (µ0,Σ0) on xIMU,0 ∈ XIMU, noise covariances Σw, Σv, dynamics gIMU,
measurement map h, time horizon T , Pose transform ψ (IMU → global) ,
ε > 0.

Result: Estimates x̂t for all desired timesteps t ∈ {1, · · · , T} .
1 costt ← ‖x0 � µ0‖2

Σ0
. (Initialize objective function).

2 Sz, Sx, Sz,1, Sz,2 ← φ
3 (n, p)← (0, 0)
4 for t = 0, · · · , T do
5 while new pose xn+1 ∈ Xp recorded, new IMU measurement not received do
6 costt ← costt + ε−1‖xn+1 � ψ(x̃t, x

IMU
n+1)‖2

2.
7 µt,Σt, costt ← 1 Gauss-Newton costt (Alg. 1), about (µt, ψ(µt, x

IMU
n+1)) with

ε→ 0.
8 {zn+1,j} ← Feature measurements at xn+1

9 Sz ← Sz ∪
{

(xn+1, fj)|fj observed at n+ 1
}

10 n← n+ 1
11 if n ≥ Nmax − 1 then
12 Sx ← {xi|i mod 3 = 2, and 1 ≤ i ≤ n.}
13 Sz,1 ←

{
(xi, fj) ∈ Sz

∣∣xi ∈ Sx, feature j observed at each pose in Sx
}

14 end

15 Sz,2 ←
{

(xi, fj) ∈ Sz|fj not observed at xn
}

.
16 costt ← costt +

∑
(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, ft,j)‖Σ−1
v

17 µt, Σt, costt ← 1 Gauss-Newton step on costt, about µt (Alg. 1)
18 x̂t ← µt ∈ XIMU × (Xp)n.
19 Sz ← Sz\(Sz,1 ∪ {(xi, fj)|xi ∈ Sx})
20 Reindex poses and features in ascending order.
21 (p, n)← (p− |Sf |, n− |Sx|)
22 end
23 if t < T then
24 costt ← costt + ‖xt+1,IMU � gIMU(xt,IMU)‖2

Σ−1
w

.

25 µt+1,Σt+1, costt ← 1 Marginalization step on costt, about (µt, g(µt,IMU)) (Alg.
2)

26 end

27 end
28 return x̂0, · · · x̂T ∈ XIMU × (Xp)n

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 27

where fSf
∈ R|Sf |df denotes the stacked vector of all feature positions in Sf (see Algorithm

10).

Proof. See Appendix (Section 5).

Theorem 4.2.3. The state propagation step of the standard MSCKF SLAM algorithm (Alg.
13) is equivalent to applying a Marginalization step once to cMSCKF,t,5 : R2dIMU+ndx → R,
given by:

cMSCKF,t,5(x̃t, xt+1,IMU) = ‖x̃t � µt‖2

Σ
−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

with x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n and x̃t,M = xt,IMU ∈ XIMU.

Proof. See Appendix (Section 5).

Remark 4.2.1. In practice, the application of the Gauss-Newton algorithm for the pose
augmentation step can be delayed, and instead done in conjunction with the feature update
step.

4.3 State-of-the-Art SLAM Algorithms

This paper aims to construct a generalized, optimization-based SLAM algorithm that bal-
ances the need for computational efficiency, estimation accuracy, and map precision. These
tradeoffs are clearly observed in the design choices of SLAM algorithms in the existing liter-
ature.

• Extended Kalman Filter (EKF) [34] [33] [36] [35] –The EKF iteratively updates
a full state consisting of the current pose, and position estimates of all features ob-
served; all past poses are marginalized. This design favors computational speed over
localization precision. The iterated Extended Kalman Filter (iEKF), a variant of EKF,
takes multiple Gauss-Newton steps before each marginalization step, to tune the lin-
earization point about which marginalization occurs. This improves mapping and
localization accuracy but increases computation time.

• Multi-State Constrained Kalman Filter [24] [18] [19]–The MSCKF iteratively
updates a full state consisting of the current IMU state and n past poses, with n ≤
Nmax, a specified upper bound (features are stored separately). Here, the choice of Nmax

most directly characterizes the tradeoff between accuracy and computational speed.

• Sliding Window Smoother, Fixed-Lag Smoother [22] [30] [10]–The fixed-lag
smoother resembles the MSCKF, but performs multiple steps of Gauss-Newton descent
before the marginalization step, to tune the linearization point. This improves mapping
and localization accuracies of the MSCKF at the cost of increasing computation time.

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 28

• Open Keyframe Visual-Inertial SLAM (OKVis) [17] [23] [25] –OKVis updates
a sliding window of “keyframe” poses, that are deemed the most informative and
may be arbitrarily spaced in time. Keyframe poses leaving the sliding window are
marginalized, while non-keyframe poses are dropped. This design choice improves
estimation accuracy by maximizing information encoded by the stored poses, without
increasing computation time.

• Graph SLAM and Bundle Adjustment [34] [13] [14] –These algorithms solve the
full SLAM problem, with no marginalization. Their state estimation can be more
accurate than the above algorithms, but their computational times are often longer by
one to two orders of magnitude.

4.4 A Generalized Sliding Window SLAM Algorithm

The main application of marginalization to SLAM is illustrated by the classical sliding win-
dow filter [30]. As stated earlier, the SLAM cost function grows unbounded with time as
additional measurements are recorded. To enable real-time operation of optimization-based
SLAM, a sliding-window filter is proposed, which only maintains the most recent k camera
poses and landmarks visible from those poses in the cost function. This is done by marginal-
izing away the oldest pose as soon as the number of poses in the optimization problem
exceeds k. Moreover, any landmarks that are no longer visible from any of the most recent
k poses are discarded.

In this section, we use our optimization-based framework to generalize the algorithms
listed in (4.3) into a unified framework. Presented in Algorithm 5 this generalized sliding-
window SLAM algorithm allows the human operator to flexibly tune critical design choices,
e.g., if and when poses and features are incorporated into and marginalized (or discarded)
from the algorithm, and how many steps of iterative optimization are performed on the
resulting running cost. These choices allow explicit fine-tuning of the tradeoff between com-
putational efficiency, localization accuracy, and map construction precision.

We can summarize the algorithm as follows. We start off with a prior (µ0,Σ0) over the
initial robot pose x0. The cost function at time 0 includes only the variable x = (x0), and
is c0(x) = ‖x0 − µ0‖2

Σ−1
0

. The best estimate x∗0 is simply the prior pose µ0. Then at the n-th

timestep, the following processing steps are performed.

1. Cost function: The current cost has the form

cn(x) = ‖x− µn‖2
Σ−1

n
+

n−1∑
t=n−k+1

‖xt+1 − g(xt)‖2
Σ−1

v
+
∑
t,j∈Sn

‖ztj − h(xt, fj)‖2
Σ−1

w

where Sn is a set of index pairs such that (t, j) ∈ Sn if and only if a measurement of
landmark j from robot pose xt is available at timestep n.

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 29

Algorithm 5: Generalized Sliding Window Filter, as an iterative optimization prob-
lem .

Data: Prior on xIMU,0 ∈ Xp: N (µ0,Σ0), noise covariances Σw, Σv, dynamics gIMU,
measurement map h, time horizon T , pose transformation ψ (IMU→ global).

Result: Estimates x̂t, ∀ t ∈ {1, · · · , T} .
1 costt ← ‖x0 � µ0‖2

Σ0
∈ R. (Initialize objective function).

2 x?0 ← µ0 ∈ Xp. (Initialize linearization point).
3 Sz, Sx, Sz,1, Sz,2 ← φ
4 (n, p)← (0, 0)
5 for t = 0, · · · , T do
6 xn+1 ∈ Xp ← New pose recorded in new image
7 costt ← costt + ε−1‖xn+1 � ψ(x̃t, x

IMU
n+1)‖2

2 ∈ R.

8 µt,Σt, costt ← Gauss-Newton step(s) on costt, about
(
µt, ψ(µt, x

IMU
n+1)

)
(Alg. 1),

with ε→ 0
9 (zt,1, · · · , zt,p+p′)← Measurements of existing features.

10 costt ← costt +
∑p+p′

k=1 ‖zt,k − h(xt, fk)‖2
Σ−1

v
∈ R.

11 µt,Σt, costt ← Gauss-Newton step(s) on costt, about µt, 1 iteration (Alg. 1).
12 Sx ← {xi|xi is a pose to marginalize}
13 µt,Σt, costt ← Marginalization step on costt, about µt (Alg. 2).

14 Sz ←
{

(xi, fj)
∣∣Feature measurements to marginalize

}
15 Sf ←

{
fj
∣∣∃xi ∈ x1:n s.t. (xi, fj) ∈ Sz

}
16 costt ← costt +

∑
(xi,fj)∈Sz

‖zi,j � h(xi, fj)‖Σ−1
v
∈ R

17 µt, Σt, costt ← Gauss-Newton step(s) on costt (Alg. 1)
18 x̂t ← µt ∈ XIMU × (Xp)n × (Rdf)p.
19 Reindex poses and features, in ascending order .
20 (p, n)← (p− |Sf |, n− |Sx|)
21 if t < T then
22 costt ← costt + ‖xt+1,IMU � gIMU(xt,IMU)‖2

Σ−1
w
∈ R.

23 µt+1,Σt+1, costt ← Marginalization step on costt, about
(
µt,IMU, gIMU(µt,IMU)

)
(Alg. 2)

24 end

25 end
26 return x̂0, · · · x̂T ∈ XIMU × (Xp)n × (Rdf)p

CHAPTER 4. FILTERING AS NONLINEAR OPTIMIZATION 30

2. State augmentation: Add the latest pose xn+1 to the optimization problem using
the odometry measurement made at time n.

cn(x)← cn(x) + ‖xn+1 − g(xn)‖2
Σ−1

v

If the best available estimate of the existing optimization variables is

x∗n = (x∗0, · · · , x∗n, f ∗1 , · · · , f ∗p), then initialize variable xn+1 with the guess x∗n+1 = g(x∗n).

3. Feature augmentation: Add new landmark measurements from the current pose
xn+1. Let {j1, · · · , jm} be the indices of landmarks (old and new) measured from the
current pose.

cn(x)← cn(x) +
∑

i=j1,··· ,jm

‖zn+1,i − h(xn+1, fi)‖2
Σ−1

w

In addition, update Sn ← Sn ∪{(n+ 1, jk)}. Additionally, initialize all newly detected
landmarks with initial guesses by adding them to the vector x∗n.

4. Cost propagation: if n > k, some poses must be removed. Let Sf be the set of
landmark indices that are not visible from poses (xn−k+2, · · · , xn+1). Apply marginal-
ization to remove the variables xM = Sf ∪ {xn−k+1}. Update sn ← Sn \ {(t, j) : j ∈
Sf , t = 0, · · · , n+ 1}.

5. Measurement Update: Update the best estimate of all variables currently in the
optimization problem by taking Gauss-Newton steps until convergence. Reset cn+1 ←
cn, x

∗
n+1 ← x∗n, Sn+1 ← Sn, and proceed to the next timestep.

In other words, the sliding window filter marginalizes away the oldest pose whenever the
number of poses in the optimization problem exceeds k, marginalizes features as soon as they
are no longer visible from the last k poses, appends feature measurement cost terms from the
current timestep, and takes Gauss-Newton steps until convergence to update estimates of all
variables. Under the assumption that landmarks are more-or-less evenly distributed in the
scene, this marginalization policy ensures that the number of variables in the optimization
problem remains constant, thus ensuring constant runtime per timestep. The time to process
each frame can be tuned simply by changing the window size. The smaller k is, the less time
it will take to process each frame. Note that most of the runtime is spent in taking Gauss-
Newton steps.

The sliding window filter is a SLAM algorithm paradigm that explicitly depends on
nonlinear optimization. Sliding window filters are used as the backbone of many state of the
art SLAM systems such as [17, 25, 28]. Such approaches have received renewed prominence
in online optimization recently, due to the rapid increase in the accessibility of computational
resources.

31

Chapter 5

Implementation and Experimental
Results

This chapter presents the empirical performance of our optimization-based SLAM framework
on the quality of pose tracking in real-world data. We designed a general SLAM back-end
that modularly implements utilities to keep track of the current cost function, performs
Gauss-Newton descent, and marginalizes out variables. We then analyze and implement
each state-of-the-art algorithm as a particular choice of marginalization scheme in this general
back-end algorithm. Next, we implemented a sliding window filter, to examine the effect of
window size on state estimation accuracy, and contrast its performance to that of the our
optimization-based reformulation of the MSCKF.

5.1 Simulation Settings

Dataset

All experiments are performed on the EuRoC MAV dataset [2], a popular public SLAM
dataset of stereo image sequences and inertial measurement unit (IMU) measurements. The
stereo images and IMU measurements arrive at rates of 20Hz and 200Hz, respectively. The
sensor suite is mounted on board a micro aerial vehicle. Ground-truth poses, recorded using
a Vicon moion capture system and IMU biases, are also available for each sequence. Our
experiments are carried out on the Vicon Room 2 01 and 02 sequences, which contain about
2300 stereo images each and span about 2 minutes of real-time operation. The first of these
sequences is easier to analyze via our SLAM algorithms, as it corresponds to simple and slow
evolution of the camera, while the latter contains some jerky and quick motions that prove
challenging to some algorithms.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 32

Front-end and Back-end

Since the focus of this work is the SLAM back-end, we standardize the front-end across all
experiments, altering only the back-end used to process the abstracted data produced by
the front-end. We use keypoint features as environment landmarks, as is standard in visual
SLAM. First, BRISK features are extracted from both images of the input stereo pair.
Then, feature matching is carried out between the left and right image frames. We then
carry out brute force matching using Hamming distance on the binary BRISK descriptors,
and filter outliers via an epipolar constraint check, using the known relative pose between
the two cameras in the stereo set-up. Only keypoints for which a stereo match was found
are kept. Next, a four-way consistence check is carried out. i.e. a match between two
stereo frames S1, S2 is accepted if and only if both observations of a given feature in S1 are
matched to the respective observations of the same feature in S2. Finally, outlier matches are
rejected by projecting the best estimate of the matched feature onto the best estimate of the
current camera pose, and rejecting matches that have a high reprojection error. Any stereo
matches in the current frame that were not matched with a previously seen is recorded as a
newly detected landmark, and initialized using stereo triangulation from the best estimate of
the current camera pose. The front-end maintains data structures allowing two-way access
between features and camera poses: for each feature index, it is possible to look up all camera
poses from which that feature is visible, and likewise for each camera pose it is possible to
query which features are visible in that frame.

For book-keeping the cost function in the back-end, computing Jacobians, and imple-
menting Gauss-Newton optimization, we use GTSAM in C++ [8, 9].

Dynamics and Image Measurement Models

We use an on-board IMU to collect odometry measurements, i.e., body-frame angular ve-
locity and linear acceleration, and apply the IMU pre-integration scheme detailed in [11],
as summarized below. The objective of IMU preintegration is to establish a discrete-time
dynamics map xt+1 = g(xt) that allows us to predict the pose of the robot at time xt+1 given
the pose at time t and the IMU measurement at time t. Here, each timestep corresponds
to a new image measurement. Since IMU measurements arrive at a faster rate than image
measurements, to compute this map, we must stack several IMU measurements into a rel-
ative state measurement, which can then be concatenated with the state at time xt to get
the predicted state at time xt+1.

The robot state xt consists of the orientation, position, and velocity of the body frame
relative to the world frame, and the IMU biases, so that xt = (Rt, pt, vt, bt), where (Rt, pt) ∈
SE(3), vt ∈ R3 and bt = (bgt , b

a
t) ∈ R3 × R3 ' R6 are the IMU biases in the gyroscope and

accelerometer respectively. The IMU biases are slowly varying and generally unknown, so
they are included in the robot state and are also jointly estimated.

The IMU measures angular velocity and accelerations. The measurements are denoted

Bã and Bω̃WB. Here, B refers to the robot’s body frame and W the world frame. The prefix

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 33

B means that the quantity is expressed in the B frame, and the suffix WB denotes that
the quantity represents the motion of the B frame relative to W . So the pose of the robot
is (RWB,Wp) ∈ SE(3). The measurements are affected by additive white noise η and the
slowly varying IMU biases:

Bω̃WB(t) = BωWB(t) + bg(t) + ηg(t)

Bã(t) = R>WB(t)(Wa(t)− Wg) + bg(t) + ηg(t)

where WωWB is the true angular velocity, Wa the true acceleration, and Wg the gravity
acceleration vector in the world frame. Assume that between timestep t and t + 1, we
received m IMU measurements, at constant time increments ∆t. [11] provides expressions
for (xt+1 � g(xt)) directly in terms of the IMU measurements. Additionally, expressions for
noise propagation are also provided, which allows us to compute the covariance Σv over the
error (xt+1 � g(xt)) in terms of the measurement noise η, which is what we need to compute
the required cost function ‖xt+1 � g(xt)‖2

Σ−1
v

and Jacobians.

Given a camera pose xt = (Rt, pt) and a 3D feature location fj = (fxj , f
y
j , f

z
j), the camera

measurement model h(xt, fj) predicts the projected pixel location of the point in both stereo
images. We assume the stereo camera pair is calibrated and rectified, so that both cameras
have the same pinhole camera matrix K, and the epilines are horizontal. As such, the two
measurements of a point in the two cameras will share the same v-coordinate in (u, v) image
space. Therefore, an image measurement will be stored as a 3-vector (uL, uR, v), where the
coordinates of the measurement in the left and right image are (uL, v) and (uR, v) respectively.
The measurement map h predicts the image location (uL, uR, v) by projecting the point fj
onto both image frames (with the standard pinhole projection), using the known poses of
the two cameras in the robot’s body-frame. Due to noise, the actual measurement will
not have the exact same v coordinate, so the image measurement is collected by averaging
the two v-coordinates of the two keypoints. This measurement ztj is then compared to
the predicted coordinates by a Mahalanobis distance in R3 space to get the cost function
‖ztj − h(xt, fj)‖2

Σ−1
w

. The covariance Σw is the expected noise in image space, which is a

design parameter. In our experiments we choose Σw = σI3 where I3 is the 3 × 3 identity
matrix and σ = 0.05 pixels, which was found to work well in practice.

5.2 Results and Discussion

The localization results for a sliding window filter with filter sizes 5, 10, 30, and 50 on the
Vicon room 2 01 dataset (easy) are shown in Figure (5.1) along with an MSCKF with window
size 10. Recall that the images arrive at 20Hz, so a window size of 20 corresponds to 1 second
of real-time. Simulation results indicate that most algorithms do well on this sequence. More
surprising is the fact that the MSCKF, despite its lack of multiple nonlinear Gauss-Newton
updates at each iteration, performs approximately as well the large sliding window filters
which are much more computationally intensive. The results for the Vicon room 2 02 dataset

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 34

Figure 5.1: Localization results for various sliding window filters and the MSCKF on the
Vicon room 2 01 (easy) dataset.

(medium) are shown in figure (5.2). Note that on this dataset, sliding window filters of size
smaller than 30 fail completely, since there are parts of the sequence where the front-end
loses tracking; as a result, filters are unable to recover previously collected data. Results for
the sliding window filter (window size 30) and the MSCKF (window size 10) indicate that
the MSCKF outperforms the larger sliding window filter on this more challenging dataset.

A few observations can be made immediately. First, on the easy dataset, there is not
much improvement in the performance of the sliding window filter when the window size
is increased past 10. This indicates a critical limit past which point features and poses
are maximally “matured,” and can be safely marginalized away. However, on the harder
dataset, a small window size can be fatal, where losing tracking for any significant chunk of
the duration of the window size can prove fatal for the algorithm’s performance.

Second, despite the fact that the MSCKF does not perform any costly multiple nonlinear
Gauss-Newton updates, its performance is comparable to even sliding window filters with a
much larger window size. On the harder dataset, the MSCKF is able to recover from lost
tracking whereas sliding window filters of comparable sizes are not. This can be attributed to
a few factors. First of all, the MSCKF employs a marginalization scheme wherein poses that
are evenly spaced in the optimization window are dropped. As such, at any point in time,

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 35

Figure 5.2: Localization results for various sliding window filters and the MSCKF on the
Vicon room 2 02 (medium) dataset.

the optimization window contains poses from arbitrarily far in the past, with the density
of included poses being highest near the current time. This is significant, since older poses
generally represent higher baselines with respect to more recent poses, and hence features
common to more recent poses and these older poses contain better localization information
[24]. This also allows the MSCKF to recover from losing track, since the older poses in
the optimization window can give it the localization information it needs. Further, features
are only included into the optimization window once they have “matured” i.e. they have
been viewed from multiple camera poses and are no longer in view. This also allows us to
maximally utilize their localization information with fewer updates.

In summary, the MSCKF can be seen as a sliding window filter with a special marginal-
ization scheme where localization “updates” are carried out by introducing and then immedi-
ately marginalizing away features. This way, we only use first-order localization information
from the features to perform updates. When running the MSCKF, dropping evenly spaced
poses from the optimization window and only incorporating matured features makes up for
the absence of costly nonlinear updates through multiple iterations of Gauss-Newton. More-
over, by only incorporating matured features, we ensure that the feature is always initialized
through multiple-view triangulation instead of just stereo triangulation; this minimizes the

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 36

linearization error when the feature is marginalized away. All of this means that through the
choice of a clever marginalization scheme, the MSCKF is able to compete with large slid-
ing window filters, despite the fact that the latter employ multiple nonlinear Gauss-Newton
updates for each feature before marginalization.

37

Chapter 6

Conclusion and Future Work

In this thesis, we presented a nonlinear optimization-based framework for analyzing and
implementing SLAM algorithms. Using this framework, we demonstrated the equivalence
between popular filtering based techniques, such as EKF-SLAM or MSCKF, and nonlin-
ear optimization-based formulations, such as OK-Vis. In particular, we recast the MSCKF
algorithm as an iterative optimization solver is presented, and contrasted the empirical per-
formance of this reformulated MSCKF algorithm against explicitly optimization-based slid-
ing window filters on a benchmark SLAM dataset in simulation. The results indicate that
MSCKF with a design choice of smaller optimization windows is able to outperform a sliding
window filter with large window size, despite the fact that the MSCKF does not perform
multiple nonlinear feature measurement updates through Gauss-Newton steps. Further, we
verified that the MSCKF recovers more efficiently from lost tracking, compared to the slid-
ing window filter. By interpreting the MSCKF as iterative optimization with a specific
marginalization scheme, the characteristics of this marginalization scheme are used to ex-
plain the observed performance characteristics. We believe that the presented approach and
analysis serves as a basis for visual odometry algorithm design, specifically for filter design.
Indeed, by simply tweaking marginalization policies, we can see that new performance char-
acteristics can be extracted from the same implementation, as we see from the comparison
between implementations of the sliding window filter and the MSCKF that are identical up
to the marginalization scheme.

An immediate and natural direction for future work is to validate the generalized algo-
rithm proposed in this work in real-life scenarios, by validating its performance on hardware
experiments. Future work will also study the dynamic SLAM problem using the general-
ized optimization-based framework proposed in this thesis. In the dynamic SLAM problem,
landmarks (and thus their associated features), are assumed to be mobile [15] [3]. Thus,
rather than performing tracking estimation while simultaneously mapping a static environ-
ment, a dynamic SLAM algorithm must perform tracking while simultaneously updating a
potentially highly dynamic environment. This problem is of growing interest in the SLAM
community, due to the natural occurrence of moving features in practical multi-agent ap-
plications, such as real-life traffic scenarios, and due to the difficulty of solving SLAM in

CHAPTER 6. CONCLUSION AND FUTURE WORK 38

rapidly evolving surroundings [4] [12] [16]. We anticipate that the generalized SLAM algo-
rithm introduced in this thesis will be useful in tackling the dynamic SLAM problem, due
to the great flexibility offered by the user-selected design choices in its optimization-based
framework.

39

Bibliography

[1] B. Bell. “The Iterated Kalman Smoother as a Gauss-Newton Method”. In: SIAM J.
Optim. 4 (1994), pp. 626–636.

[2] Michael Burri et al. “The EuRoC Micro Aerial Vehicle Datasets”. In: The Interna-
tional Journal of Robotics Research (2016). doi: 10.1177/0278364915620033. eprint:
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.

full.pdf+html. url: http://ijr.sagepub.com/content/early/2016/01/21/
0278364915620033.abstract.

[3] C. Cadena et al. “Past, Present, and Future of Simultaneous Localization and Mapping:
Toward the Robust-Perception Age”. In: IEEE Transactions on Robotics 32.6 (2016),
pp. 1309–1332.

[4] Chih-Yuan Chiu, David Fridovich-Keil, and Claire J. Tomlin. Encoding Defensive Driv-
ing as a Dynamic Nash Game. 2021. arXiv: 2011.04815 [cs.RO].

[5] Anna Dai et al. “Fast Frontier-based Information-driven Autonomous Exploration
with an MAV”. In: 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA). 2020, pp. 9570–9576. doi: 10.1109/ICRA40945.2020.9196707.

[6] Andrew J. Davison. FutureMapping: The Computational Structure of Spatial AI Sys-
tems. 2018. eprint: 1803.11288 (cs.AI).

[7] Andrew J. Davison and Joseph Ortiz. FutureMapping 2: Gaussian Belief Propagation
for Spatial AI. 2019. eprint: 1910.14139 (cs.AI).

[8] Frank Dellaert et al. “Gtsam”. In: URL: https://borg. cc. gatech. edu (2012).

[9] Frank Dellaert, Michael Kaess, et al. “Factor Graphs for Robot Perception”. In: Foun-
dations and Trends® in Robotics 6.1-2 (2017), pp. 1–139.

[10] Frank Dellaert and Michael Kaess. “Square Root SAM: Simultaneous Localization and
Mapping via Square Root Information Smoothing”. In: The International Journal of
Robotics Research 25.12 (2006), pp. 1181–1203. doi: 10.1177/0278364906072768.
eprint: https://doi.org/10.1177/0278364906072768. url: https://doi.org/10.
1177/0278364906072768.

[11] Christian Forster et al. “IMU Preintegration on Manifold for Efficient Visual-Inertial
Maximum-a-Posteriori Estimation”. In: Georgia Institute of Technology. 2015.

https://doi.org/10.1177/0278364915620033
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.full.pdf+html
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://arxiv.org/abs/2011.04815
https://doi.org/10.1109/ICRA40945.2020.9196707
1803.11288
1910.14139
https://doi.org/10.1177/0278364906072768
https://doi.org/10.1177/0278364906072768
https://doi.org/10.1177/0278364906072768
https://doi.org/10.1177/0278364906072768

BIBLIOGRAPHY 40

[12] David Fridovich-Keil et al. “Efficient Iterative Linear-Quadratic Approximations for
Nonlinear Multi-Player General-Sum Differential Games”. In: arXiv preprint arXiv:1909.04694
(2019).

[13] G. Grisetti et al. “A Tutorial on Graph-Based SLAM”. In: IEEE Intelligent Trans-
portation Systems Magazine 2.4 (2010), pp. 31–43. doi: 10.1109/MITS.2010.939925.

[14] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.
2nd ed. USA: Cambridge University Press, 2003. isbn: 0521540518.

[15] Mina Henein et al. Dynamic SLAM: The Need For Speed. 2020. arXiv: 2002.08584
[cs.RO].

[16] Forrest Laine et al. “The Computation of Approximate Generalized Feedback Nash
Equilibria”. In: arXiv preprint arXiv:2101.02900 (2021).

[17] Stefan Leutenegger et al. “Keyframe-based Visual-Inertial Odometry using Nonlinear
Optimization”. In: The International Journal of Robotics Research 34 (2015), pp. 314–
334.

[18] Mingyang Li and Anastasios I. Mourikis. “Improving the Accuracy of EKF-based
Visual-Inertial Odometry”. In: 2012 IEEE International Conference on Robotics and
Automation (2012), pp. 828–835.

[19] Mingyang Li and Anastasios I. Mourikis. “Optimization-based Estimator Design for
Vision-aided Inertial Navigation: Supplemental Materials”. In: Robotics: Science and
Systems (2012).

[20] MLA Lourakis and Antonis A Argyros. “Is Levenberg-Marquardt the most efficient
optimization algorithm for implementing bundle adjustment?” In: Tenth IEEE Inter-
national Conference on Computer Vision (ICCV’05) Volume 1. Vol. 2. IEEE. 2005,
pp. 1526–1531.

[21] Donald W Marquardt. “An algorithm for least-squares estimation of nonlinear param-
eters”. In: Journal of the society for Industrial and Applied Mathematics 11.2 (1963),
pp. 431–441.

[22] Peter S. Maybeck et al. Stochastics Models, Estimation, and Control: Introduction.
1979.

[23] Christopher Mei et al. “RSLAM: A System for Large-Scale Mapping in Constant-Time
Using Stereo”. In: International Journal of Computer Vision 94 (Sept. 2011), pp. 198–
214. doi: 10.1007/s11263-010-0361-7.

[24] Anastasios I. Mourikis and Stergios I. Roumeliotis. “A Multi-State Constraint Kalman
Filter for Vision-aided Inertial Navigation”. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation (2007), pp. 3565–3572.

https://doi.org/10.1109/MITS.2010.939925
https://arxiv.org/abs/2002.08584
https://arxiv.org/abs/2002.08584
https://doi.org/10.1007/s11263-010-0361-7

BIBLIOGRAPHY 41

[25] Esha Nerurkar, Kejian Wu, and Stergios Roumeliotis. “C-KLAM: Constrained Keyframe-
based Localization and Mapping”. In: Proceedings - IEEE International Conference
on Robotics and Automation (May 2014), pp. 3638–3643. doi: 10.1109/ICRA.2014.
6907385.

[26] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Busi-
ness Media, 2006.

[27] Michael JD Powell. “A new algorithm for unconstrained optimization”. In: Nonlinear
programming. Elsevier, 1970, pp. 31–65.

[28] Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-Mono: A Robust and Versatile Monoc-
ular Visual-Inertial State Estimator”. In: IEEE Transactions on Robotics 34.4 (2018),
pp. 1004–1020.

[29] Benjamin Recht and Stephen Wright. Optimization for Modern Data Analysis. Cam-
bridge University Press, 2021. isbn: 1316518981.

[30] Gabe Sibley, Larry H. Matthies, and Gaurav S. Sukhatme. “Sliding window filter with
application to planetary landing.” In: J. Field Robotics 27.5 (2010), pp. 587–608. url:
http://dblp.uni-trier.de/db/journals/jfr/jfr27.html#SibleyMS10.

[31] Randall C Smith and Peter Cheeseman. “On the representation and estimation of
spatial uncertainty”. In: The international journal of Robotics Research 5.4 (1986),
pp. 56–68.

[32] J. Solà, Jérémie Deray, and Dinesh Atchuthan. “A Micro Lie Theory for State Esti-
mation in Robotics”. In: ArXiv abs/1812.01537 (2018).

[33] Joan Solà. “Simultaneous localization and mapping with the extended Kalman filter”.
In: arXiv (2014).

[34] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005. isbn: 0262201623.

[35] S. Tully et al. “Iterated Filters for Bearing-only SLAM”. In: 2008 IEEE International
Conference on Robotics and Automation. 2008, pp. 1442–1448. doi: 10.1109/ROBOT.
2008.4543405.

[36] Zhengyou Zhang. “Parameter Estimation Techniques: a Tutorial with Application to
Conic Fitting”. In: Image and Vision Computing 15.1 (1997), pp. 59–76. issn: 0262-
8856. doi: https://doi.org/10.1016/S0262- 8856(96)01112- 2. url: http:

//www.sciencedirect.com/science/article/pii/S0262885696011122.

https://doi.org/10.1109/ICRA.2014.6907385
https://doi.org/10.1109/ICRA.2014.6907385
http://dblp.uni-trier.de/db/journals/jfr/jfr27.html#SibleyMS10
https://doi.org/10.1109/ROBOT.2008.4543405
https://doi.org/10.1109/ROBOT.2008.4543405
https://doi.org/https://doi.org/10.1016/S0262-8856(96)01112-2
http://www.sciencedirect.com/science/article/pii/S0262885696011122
http://www.sciencedirect.com/science/article/pii/S0262885696011122

42

Chapter 7

Appendix

7.1 Appendix for Chapter 2

Jacobians Under Box Operators

In subsequent proofs, we require the following results regarding the behavior of Jacobian
matrices under the � and � operators. In particular, we will focus on the case where the
box operator acts on elements of SO(3), since SO(3) is the non-Euclidean-space Lie group
that appears most often in this paper.

Definition 7.1.1 (Jacobian on SO(3)). We say that f : SO(3)→ SO(3) is differentiable
at R ∈ SO(3), with Jacobian denoted by:

∂

∂θ
f(R) ∈ R3×3,

if the following equality holds:

lim
δθ→0

∥∥f(R� δθ) � f(R)− ∂f
∂θ
δθ
∥∥

2

‖δθ‖2

= 0.

Theorem 7.1.2. Suppose f : SO(3) → SO(3) is differentiable. Then, for any fixed y ∈
SO(3):

∂

∂θ

(
y � f(R)

)
= −∂f

∂θ
+O(y � f(R)).

Proof. Using the definition of the � operator for SO(3), we have, for any δθ ∈ R3:

y � f(R� δθ) = y �

(
f(R) �

∂f

∂θ
δθ

)
+ o(δθ)

= y �

(
f(R)Exp

(
∂f

∂θ
δθ

))
+ o(δθ)

CHAPTER 7. APPENDIX 43

= Log

(
Exp

(
−∂f
∂θ
δθ

)
f(R)>y

)
+ o(δθ)

= Log

(
Exp

(
−∂f
∂θ
δθ

)
Exp

(
y � f(R)

))
+ o(δθ)

= y � f(R) + J−1
`

(
y � f(R)

)
·
(
−∂f
∂θ
δθ

)
+ o(δθ).

Here, we have defined J−1
` : R3\{0} → SO(3) by:

J−1
` (θ) = I − 1

2
θ∧ +

(
1

‖θ‖2
− 1 + cos ‖θ‖

2‖θ‖ · sin ‖θ‖

)
(θ∧)2,

in accordance with [32]. Here, ∧ : R3 → R3×3 denotes the wedge operator. Thus, we have:

∂

∂θ

(
y � f(R)

)
= −J−1

`

(
y � f(R)

)
· ∂f
∂θ
.

The theorem statement now follows.

Theorem 7.1.3. Suppose f : SO(3) → SO(3) is differentiable. Then for any fixed y ∈
SO(3):

∂

∂θ

(
f(R) � y

)
=
∂f

∂θ
+O(f(R) � y).

Proof. Using the definition of the � operator for SO(3), we have, for any δθ ∈ R3:

f(R� δθ) � y =

(
f(R) �

∂f

∂θ
δθ

)
� y + o(δθ)

=

(
f(R)Exp

(
∂f

∂θ
δθ

))
� y + o(δθ)

= Log

(
y>f(R)Exp

(
∂f

∂θ
δθ

))
+ o(δθ)

= Log

(
Exp

(
f(R) � y

)
Exp

(
∂f

∂θ
δθ

))
+ o(δθ)

= f(R) � y + J−1
r

(
f(R) � y

)
·
(
∂f

∂θ
δθ

)
+ o(δθ),

which implies:

∂

∂θ

(
f(R) � y

)
= J−1

r

(
f(R) � y

)
· ∂f
∂θ
.

Here, we have defined J−1
r : R3\{0} → SO(3) by:

J−1
r (θ) = I +

1

2
θ∧ +

(
1

‖θ‖2
− 1 + cos ‖θ‖

2‖θ‖ · sin ‖θ‖

)
(θ∧)2,

in accordance with [32]. The theorem statement now follows.

CHAPTER 7. APPENDIX 44

In subsequent discussions, when we consider dynamics and measurement models of the
form y = f(R) � n, where n ∈ R3 denotes small-magnitude, zero-sum noise, terms of order
O(y � f(R)) and O(f(R) � y) are often ignored.

7.2 Appendix for Chapter 3

Proof of Theorem 3.2.1 (Gauss-Newton Steps)

Here, we present the proof of Theorem 3.2.1, reproduced below.

Theorem 7.2.1. (Gauss-Newton Step) Let xt
? ∈ Rd denote a given linearization point,

and suppose J := ∂C
∂xt
∈ RdC×d has full column rank. Then applying a Gauss-Newton step to

the cost c(xt), about xt
? ∈ Rd yields the new cost:

c(xt) = ‖xt − µt‖2
Σ−1

t
+ o(xt − xt?),

where µt ∈ Rd and Σt ∈ Rd×d are given by:

Σt ← (J>J)−1,

µt ← xt
? − (J>J)−1J>C(xt

?).

Proof. We have:

c(xt) = C(xt)
>C(xt)

=
[
C(xt

?) + J(xt − xt?)
]>[

C(xt
?) + J(xt − xt?)

]
+ o(xt − xt?)

= (xt − µt)>Σ−1
t (xt − µt) + c0(xt

?) + o(xt − xt?),

where c0(xt
?) ∈ R denotes a scalar-valued function of xt

? that is independent of the variable
xt. This concludes the proof.

Proof of Theorem 3.3.1 (Maringalization Steps)

Theorem 7.2.2 (Marginalization Step). Let xt
? ∈ Rd denote a given linearization point,

and suppose J := ∂C
∂xt
∈ RdC×d has full column rank. Define JK := ∂C

∂xt,K
∈ RdC×dK and JM :=

∂C
∂xt,M

∈ RdC×dM . If C2(xt,M , xt,K) were a linear function of xt = (xt,M , xt,K), then applying

a Marginalization step to the cost c(xt), about the linearization point xt
? = (x?t,K , x

?
t,M) ∈ Rd

yields:

min
xt,M

c2(xt,K , xt,M) = ‖xt,K − µt,K‖2
Σ−1

t,K
,

where Σt,K ∈ RdK×dK and µt,K ∈ RdK are given by:

Σt,K :=
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

,

µt,K := x?t,K − Σt,KJ
>
K

[
I − JM(J>MJM)−1J>M

]
C(x?t).

CHAPTER 7. APPENDIX 45

Proof. It suffices to show that:

min
xt,M

c2(xt,K , xt,M) = (xt,K − µK)>Σ−1
K (xt,K − µK) + c′(x?t).

To do so, we first note that since C2(xt) is linear in xt:

c2(xt) = ‖C2(xt)‖2
2 = ‖C2(x?t) + J2∆xt‖2

2

= ‖C2(x?t) + JK∆xt,K + JM∆xt,M‖2
2.

By the method of least-squares, the optimal ∆xt,M is given by the normal equation:

∆xt,M = −(J>MJM)−1J>M
(
C2(x?t) + JK∆xt,K

)
Substituting back into our expression for c(xt), we have:

min
xt,M

.c2(xt) =‖
(
I − JM(J>MJM)−1J>M

)(
C2(x?t) + JK∆xt,K

)
‖2

2

=
(
C2(x?t) + JK∆xt,K

)>[
I − JM(J>MJM)−1J>M

](
C2(x?t) + JK∆xt,K

)
=(xt,K − x?t,K)> J>K

[
I − JM(J>MJM)−1J>M

]
JK︸ ︷︷ ︸

:= Σ−1
K

(xt,K − x?t,K)

+ 2(xt,K − x?t,K)>J>K
[
I − JM(J>MJM)−1J>M

]
C2(x?t)

+ C2(x?t)
>[I − JM(J>MJM)−1J>M

]
C2(x?t)

=
(
xt,K −x?t,K + ΣKJ

>
K

[
I − JM(J>MJM)−1J>MC2(x?t)︸ ︷︷ ︸

:=−µK

])>
Σ−1
K

(
xt,K −x?t,K + ΣKJ

>
K

[
I − JM(J>MJM)−1J>M

]
C2(x?t)︸ ︷︷ ︸

:=−µK

)
+ C2(x?t)

(
I − JM(J>MJM)−1J>M

)
+ c′(x?t)

=(xt,K − µK)>Σ−1
K (xt,K − µK) + c′(x?t).

with ΣK and µK as defined in the theorem statement, and c′(x?t ∈ R as a term independent
of xt.

7.3 Appendix for Chapter 4

Continuous to Discrete Time Formulation

The robotic systems analyzed by most mainstream SLAM algorithms are described using
continuous-time dynamics models. The implementation of these algorithms thus involves

CHAPTER 7. APPENDIX 46

discrete-time propagation. We sketch this process below, in a manner which is both mathe-
matically aligned with the existing literature and convenient for illustrating our optimization
algorithm, which operates using a discrete-time dynamics model.

To begin, let H and Hu denote the space of quaternions and the space of unit quaternions,
respectively. Recall that the time derivative of a smooth curve on Hu, e.g., q ∈ Hu, can be
expressed as an element of H; in particular, there exists some ω ∈ R3 such that:

q̇ = q ?

[
0
ω

]
∈ H. (7.1)

Let X be the dx-dimensional Lie group inhabited by the robot state x ∈ X , given by
the finite Cartesian product of Euclidean spaces and unit quaternions. In other words, X
can be written as X := X1 × · · · XN ,, where Xk is either Hu or an Euclidean space, for
each k ∈ {1, · · · , N}. Inspired by (7.1), we define X ′ := X ′1 × · · · X ′N , where, for each
k ∈ {1, · · · , N}, we have X ′k = H if Xk = Hu, and X ′k = Xk otherwise.

The fundamental question underlying the time discretization process is as follows. Sup-
pose the continuous-time dynamics model for the robot state is given by:

ẋ(s) = gct
(
x(s), wc(s)

)
, ∀s ∈ R, (7.2)

with gct : X × Rdx → X ′ smooth, and with wc(s) ∈ Rdx as zero-mean white noise with
autocorrelation E[wc(s)wc(s

′)] = K · δ(s− s′) for each s ∈ R, where K ∈ Rdx×dx , K � 0, and
δ(·) denotes the Dirac delta function. Suppose wc(s) and deviations in x(s) are treated as
first-order perturbations. Can we straightforwardly construct an approximate discrete-time
additive noise model, of the form:

xt+1 = g(xt) � w(t), (7.3)

where xt := x(t0) ∈ X , g : X → X smooth, and xt+1 := x(t1) ∈ X and w(t) ∈ Rdx , whose
evolution agrees with that of (7.2) up to first-order perturbations?

We answer the above question in the affirmative, by detailing below the time discretiza-
tion process used throughout the remainder of this section. With a slight abuse of notation,
we write the discrete-time states as xt := x(t0) ∈ X and xt+1 := x(t1) ∈ X for some t0, t1 ∈ R,
with t0 < t1. The main idea is to first perform non-linear integration on a set of nominal
dynamics, which ignores error in the initial state and the dynamics noise. We then correct
for these perturbations by assuming that they evolve as a linear dynamical system.

• Nominal state dynamics:

We define the nominal state dynamics as:

˙̂x(s) = gct(x̂(s), 0) ∀s ∈ R.

This is the set of dynamics that would be obeyed in the absence of the white noise wc(s).
If the solution x̂(s) uniquely exists, we can construct a smooth function ĝ : X → X
that maps x̂(t0) to x̂(t1), i.e.:

x̂(t1) = ĝ
(
x̂(t0)

)
, (7.4)

CHAPTER 7. APPENDIX 47

which describes the discrete-time propagation of the nominal state x(t).

• Error state dynamics:

To characterize the drift of the true state x(s) away from the nominal state x(s), we
define the error state δx(s) := x(s) � δx̂(s) ∈ Rdx , and characterize the corresponding
error-state dynamics as:

˙δx(s) = gct(x(s), wc(s)) � gct(δx(s), 0)

=
∂f

∂x
(x̂(s), 0) · δx(s) +

∂f

∂wc
(x̂(s), 0) · wc(s) + o

(
δx(s) · wc(s)

)
,

By approximating the dynamics of the error state δx(s) ∈ Rdx as a linear, time-varying
system, we can write, for each s ∈ (t0, t1):

δx(s) = Φ(s, t0)δx(t0) +

∫ s

t0

Φ(s, τ) · ∂f
∂ωc

(x̂(τ), 0) · wc(τ)dτ, (7.5)

where Φ(s, t0) ∈ Rdx×dx is the state transition matrix satisfying:

d

ds
Φ(s, t0) =

∂f

∂x
(x̂(s), 0) · Φ(s, t0).

• True State dynamics—Discrete-time propagation of mean and covariance:

From the discrete-time propagation of the nominal and error dynamics, i.e., (7.4)
and (7.5), we have:

x(t1) = x̂(t1) � δx(t1)

= ĝ(x̂(t0)) �

(
Φ(t1, t0)δx(t0) +

∫ t1

t0

Φ(t1, τ) · ∂f
∂ωc

(x̂(τ), 0) · wc(τ)dτ

)

=
(
ĝ(x̂(t0)) � Φ(t1, t0)δx(t0)

)
�

(∫ t1

t0

Φ(t1, τ) · ∂f
∂ωc

(x̂(τ), 0) · wc(τ)dτ

)
+ o
(
δx(t0), wc(·)

)
,

where we have used the fact that the � operator, which operates through:

Exp(δθ + δφ) = Exp(δθ) · Exp(δφ) + o(δθ · δφ)

for any x ∈ H and δθ, δφ ∈ R3.

Finally, by identifying:

xt+1 ← x(t1) ∈ X ,
g(xt)← x̂(t1) � Φ(t1, t0)δx(t0) ∈ X ,

CHAPTER 7. APPENDIX 48

wt ←
∫ t1

t0

Φ(t1, τ) · ∂f
∂ωc

(x̂(τ), 0) · wc(τ)dτ ∈ Rdx ,

we obtain our discrete-time dynamics model:

xt+1 = g(xt) � wt.

Notice that wt ∈ Rdx×dx is a zero-mean random variable, with covariance Σw ∈ Rdx×dx

given by:

Σw := E[wtw
>
t] = E

[∫ t1

t0

∫ t1

t0

Φ(t1, τ)
∂f

∂ωc
(x̂(τ), 0) · wc(τ)wc(τ

′)>

·
(
∂f

∂ωc
(x̂(τ ′), 0)

)>
Φ(t1, τ

′)> dτdτ ′

]

=

∫ t1

t0

Φ(t1, τ)
∂f

∂ωc
(x̂(τ), 0) ·K ·

(
∂f

∂ωc
(x̂(τ), 0)

)>
Φ(t1, τ)> dτ

where we have used the fact that E[wc(τ)wc(τ
′)>] = K · δ(τ − τ ′), with δ(·) denoting

the Dirac delta function.

EKF, Setup

The Extended Kalman Filter (EKF), whose standard formulation is presented in Algorithm
6, is an iterative algorithm for updating estimates of the current pose xt (i.e. n = 1) and
positions of all observed features at the current time, ft := (ft,1, · · · , ft,p) ∈ Rpdf . This
corresponds to the sliding window filter in our formulation, with n = 1 and q = p. Below,
as an application of our optimization-based SLAM framework, we present the dynamics and
measurement maps of the EKF algorithm in R2, as well as the associated cost functions.
Dimension-wise, in its standard formulation, the 2D EKF is an instantiation of Algorithm
6 with dx = 3, df = 2, and dz = 2. To unify our notation, we will suppose that dx, df , dz
assume these values throughout the rest of this section.

Let xt := (x1
t , x

2
t , θt) ∈ Rdx denote the robot pose, comprising its position and angle in

Rdf , let ft,k := (f 1
t,k, f

2
t,k) ∈ Rdf denote the position of each feature fk ∈ {f1, · · · , fp} visible

at time t, and let zt,k := (z1
t,k, z

2
t,k) ∈ Rdz denote the measurement of feature fk at time t.

The dynamics map g : Rdx → Rdx , with ẋt = g(xt) is obtained by performing numerical
integration on the continuous-time dynamics:

ẋ1
t = v cos θ + w1

t ,

ẋ2
t = v sin θ + w2

t ,

θ̇t = ω + w3
t ,

CHAPTER 7. APPENDIX 49

where wt := (w1
t , w

2
t , w

3
t) ∈ Rdx denotes additive zero-mean Gaussian noise on the (x, y, θ)

coordinates of the state variable, respectively, with joint covariance wt ∼ N (0,Σw) for some
covariance matrix Σw ∈ Rdx×dx , Σw � 0. For more details regarding the numerical integration
process, see Section 7.3 in the Appendix.

The measurement map h : Rdx × Rdf → Rdz is given by:

z1
t,k = f 1

t,k − x1
t + v1

t ,

z2
t,k = f 2

t,k − x2
t + v2

t ,

where vt := (v1
t , v

2
t) ∈ Rdz denotes additive zero-mean Gaussian noise on the measurements

z1
t,j, z

2
t,j ∈ R, respectively, with joint covariance vt ∼ N (0,Σv) for some covariance matrix

Σv ∈ Rdz×dz , Σv � 0. The measurement vector zt ∈ Rpdf is then given by concatenating
each of the q residual measurements obtained at time t, i.e. zt := (zt,1, · · · , zt,p) ∈ Rpdz .

Algorithm 6: Extended Kalman Filter SLAM, Standard Formulation.

Data: Prior distribution on x0 ∈ Rdx : N (µ0,Σ0), dynamics and measurement noise
covariances Σw ∈ Rdx×dx ,Σv ∈ Rdz×dz , (discrete-time) dynamics map
g : Rdx → Rdx , measurement map h : Rdx × Rpdf → Rdz , time horizon T ∈ N.

Result: Estimates x̂t for all desired timesteps t ≤ T .

1 for t = 0, · · · , T do
2 if detect new feature measurements zt,p+1:p+p′ := (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz

then
3 µt,Σt, p← Alg. 7, EKF feature augmentation

(
µt,Σt, p, zt,p+1:p+p′ , h(·)

)
4 end
5 zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz ← New measurements of existing features.

6 µt,Σt ← Alg. 8, EKF feature update
(
µt,Σt, zt,1:p, h(·)

)
.

7 if t < T then
8 µt+1,Σt+1 ← Alg. 9, EKF state propagation

(
µt,Σt, g(·)

)
9 end

10 end
11 return x̂0, · · · x̂T ∈ Rdx.

Proofs from Section 4.1

Theorem 7.3.1. The feature augmentation step of the standard EKF SLAM algorithm (Alg.
7) is equivalent to applying a Gauss-Newton step to cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,1(x̃t, ft,p+1, · · · , ft,p+p′) = ‖x̃t − µt‖2
Σ−1

t
+

p+p′∑
k=p+1

‖zt,k − h(xt, ft,k)‖2
Σ̃−1

v
.

CHAPTER 7. APPENDIX 50

Algorithm 7: Extended Kalman Filter, Feature Augmentation Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf)×(dx+pdf), current number of features p, observations of new
features at current pose zt,p+1:p+p′ := (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz ,
measurement map h : Rdx × Rdf → Rdz , inverse measurement map
` : Rdx × Rdz → Rdf .

Result: Updated number of features p, updated EKF state mean µt ∈ Rdx+pdf ,
covariance Σt ∈ R(dx+pdf)×(dx+pdf) (with p already updated)

1 (µt,x, µt,f,1:p)← µt ∈ Rdx+pdf , with µt,x ∈ Rdx , µt,f,1:p ∈ Rpdf .

2 ` : Rdx × Rdz → Rdf ← Inverse measurement map, satisfying zt,k = h
(
xt, `(xt, zt,k)

)
for each xt ∈ Rdx , zt,k ∈ Rdz , ∀k = p+ 1, · · · , p+ p′.

3 ˜̀(µt,x, zt,p+1, · · · , zt,p+p′)←
(
`(µt,x, zt,p+1), · · · , `(µt,x, zt,p+p′)

)
∈ Rp′df×(dx+p′dz)

4 µt ←
(
µt, ˜̀(µt,x, zt,p+1, · · · , zt,p+p′)

)
∈ Rdx+(p+p′)df

5

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]
← Σt ∈ R(dx+pdf)×(dx+pdf), with Σt,xx ∈ Rdx×dx ,

Σt,xf = Σ>t,fx ∈ Rdx×pdf , Σt,ff ∈ Rpdf×pdf .

6 Lx ← ∂ ˜̀

∂x

∣∣
(µt,z′t)

∈ Rp′df×dx

7 Lz ← ∂ ˜̀

∂z

∣∣
(µt,z′t)

∈ Rp′df×p′dz

8 Σ̃v ← diag{Σv, · · · ,Σv} ∈ Rp′dz×p′dz

9 Σt ←

 Σt,xx Σt,xf Σt,xxL
>
x

Σt,fx Σt,ff Σt,fxL
>
x

LxΣt,xx LxΣt,xf LxΣt,xxL
>
x + LzΣ̃vL

>
z

 ∈ R(dx+(p+p′)df)×(dx+(p+p′)df)

10 p← p+ p′

11 return µt ∈ Rdx+pdf ,Σt ∈ R(dx+pdf)×(dx+pdf), p ≥ 0

Proof. To simplify the analysis below, we assume all degrees of freedom of new features
are observed. More specifically, we assume the existence of an inverse observation map
` : Rdx×Rdz → Rdf , satisfying h(xt, `(xt, zt)) = zt for each xt ∈ Rdx , zt ∈ Rdz , which directly
generates position estimates of new features from their feature measurements and the current
pose, by effectively “inverting” the measurement map h : Rdx × Rdf → Rdz [33]. When full
observations are unattainable, the missing degrees of freedom are introduced as a prior to
the system [33]; in this case, similar results follow.

First, to simplify notation, define:

zt,p+1:p+p′ = (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz ,

ft,p+1:p+p′ = (ft,p+1, · · · , ft,p+p′) ∈ Rp′df ,

h̃(xt, ft,p+1:p+p′) :=
(
h(xt, ft,p+1), · · · , h(xt, ft,p+p′)

)
∈ Rp′dz ,

Σ̃v = diag{Σv, · · · ,Σv} ∈ Rp′dz×p′dz .

CHAPTER 7. APPENDIX 51

Algorithm 8: Extended Kalman Filter, Feature Update Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf)×(dx+pdf), new measurements of existing features
zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz , measurement map h : Rdx × Rdf → Rdz

Result: Updated EKF state mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf)×(dx+pdf)

1 ft,1:p ← (ft,1, · · · , ft,p) ∈ Rpdf .

2 h̃(xt, ft,1:p)←
(
h(xt, ft,1), · · · , h(xt, ft,p)

)
∈ Rpdz

3 Ht ← ∂h̃
∂(xt,ft,1:p)

∣∣∣
µt

Jacobian of h̃ : Rdx × Rpdf → Rpdz evaluated at µt ∈ Rdx+pdf .

4 Σ̃v ← diag{Σv, · · · ,Σv} ∈ Rpdz×pdz .

5 µt ← µt + ΣtH
T
t (HtΣtH

T
t + Σ̃v)

−1
(
zt,1:p − h̃(µt, ft,1:p)

)
∈ Rdx+pdf .

6 Σt ← Σt − ΣtH
T
t (HtΣtH

T
t + Σ̃v)

−1HtΣt ∈ R(dx+pdf)×(dx+pdf).

7 return µt ∈ Rdx+pdf ,Σt ∈ R(dx+pdf)×(dx+pdf).

Algorithm 9: Extended Kalman Filter, State Propagation Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf)×(dx+pdf), (discrete-time) dynamics map g : Rdx → Rdx

Result: Propagated EKF state mean µt+1 ∈ Rdx+pdf and covariance
Σt+1 ∈ R(dx+pdf)×(dx+pdf)

1 (µt,x, µt,f,1:p)← µt, with µt,x ∈ Rdx , µt,f,1:p ∈ Rpdf .

2

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]
← Σt ∈ Rdx×dx , with Σt,xx ∈ Rdx×dx ,Σt,xf = Σ

>
t,fx ∈ Rdx×pdf ,

Σt,ff ∈ Rpdf×pdf .

3 Gt ← ∂g
∂x

∣∣∣
µt,x

.

4 µt+1 ←
(
g(µt), µt,f,1:p

)
∈ Rdx+pdf .

5 Σt+1 ←
[
GtΣt,xxG

>
t + Σw GtΣt,xf

Σt,fxG
>
t Σt,ff

]
∈ R(dx+pdf)×(dx+pdf).

6 return µt+1 ∈ Rdx+pdf ,Σt+1 ∈ R(dx+pdf)×(dx+pdf).

CHAPTER 7. APPENDIX 52

We can now rewrite the cost cEKF,t,1 as:

cEKF,t,1(x̃t, ft,p+1:p+p′) = ‖x̃t − µt‖2
Σ−1

t
+ ‖zt,p+1:p+p′ − h̃(xt, ft,p+1:p+p′)‖2

Σ̃−1
v
.

To apply a Gauss-Newton step, our first task is to find a vector C1(x̃t, ft,p+1:p+p′) of an ap-
propriate dimension such that cEKF,t,1(x̃t, ft,p+1:p+p′) = C1(x̃t, ft,p+1:p+p′)

>C1(x̃t, ft,p+1:p+p′).
A natural choice is furnished by C1(x̃t, ft,p+1:p+p′) ∈ Rdx+pdf+p′dz , as defined below:

C1(x̃t, ft,p+1:p+p′) :=

[
Σ
−1/2
t (x̃t − µt)

Σ
−1/2
v

(
zt,p+1:p+p′ − h̃(xt, ft,p+1:p+p′)

)] .
Thus, our parameters for the Gauss-Newton algorithm submodule are:

x̃?t := (x?t , f
?
t,1:p, f

?
t,p+1:p+p′)

=
(
µt, `(x

?
t , zt,p+1), · · · , `(x?t , zt,p+p′)

)
∈ Rdx+(p+p′)df ,

where x?t ∈ Rdx , f ?t,1:p ∈ Rpdf , f ?t,p+1:p+p′ ∈ Rp′df ,

C1(x̃?t) =

[
Σ
−1/2
t (x̃?t − µt)

Σ̃v
−1/2(

zt,p+1:p+p′ − h̃(x?t , f
?
t,p+1:p+p′)

)] =

[
0
0

]
∈ Rdx+pdf+p′dz ,

J =

[
Σ
−1/2
t O

−Σ̃
−1/2
v H̃t,x

[
I O

]
−Σ̃

−1/2
v H̃t,f

]
∈ R(dx+pdf+p′dz)×(dx+(p+p′)df),

where H̃t :=
[
H̃t,x H̃t,f

]
∈ Rp′dz×(dx+p′df) is defined as the Jacobian of h̃ : Rdx×Rp′df → Rp′dz

at (x?t , f
?
t,p+1:p+p′) ∈ Rdx+p′df , with H̃t,x ∈ Rp′dz×dx and H̃t,f ∈ Rp′dz×pdf . By Algorithm 1, the

Gauss-Newton update is thus given by:

Σt ← (J>J)−1

=

(Σ
−1/2
t −

[
I
O

]
H̃>t,xΣ̃

−1/2
v

O −Σ̃
−1/2
v H̃t,f

[Σ
−1/2
t O

−Σ̃
−1/2
v H̃t,x

[
I O

]
−Σ̃
−1/2
v H̃t,f

])−1

=

Σ−1
t +

[
I
O

]
H̃>t,xΣ̃−1

v H̃t,x

[
I O

] [
I
O

]
H̃>t,xΣ̃

−1/2
v H̃t,f

H̃>t,f Σ̃−1
v H̃t,x

[
I O

]
H̃>t,f Σ̃−1

v H̃t,f

−1

=

Ωt,xx + H̃>t,xΣ̃−1
v H̃t,x Ωt,xf H̃>t,xΣ̃−1

v H̃t,f

Ωt,fx Ωt,ff O

H̃>t,f Σ̃−1
v H̃t,x O H̃>t,f Σ̃−1

v H̃tf

−1

, (7.6)

µt ← x̃?t − (J>J)−1J>C1(x̃?t)

=
(
µt, `(x

?
t , zt,p+1), · · · , `(x?t , zt,p+p′)

)
.

Here, we have defined Ωt,xx ∈ Rdx×dx ,Ωt,xf = Ω>t,fx ∈ Rdx×pdf and Ωt,ff ∈ Rpdf×pdf by:[
Ωt,xx Ωt,xf

Ωt,fx Ωt,ff

]
:=

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]−1

(7.7)

CHAPTER 7. APPENDIX 53

To conclude the proof, we must show that (7.6) is identical to the update equations for
covariance matrix in the standard formulation of the Extended Kalman Filter algorithm,
i.e., we must show that: Σt,xx Σt,xf Σt,xxL

>
x

Σt,fx Σt,ff Σt,fxL
>
x

LxΣt,xx LxΣt,xf LxΣt,xxL
>
x + LzΣvL

>
z

 ·
Ωt,xx + H̃>t,xΣ̃

−1
v H̃t,x Ωt,xf H̃>t,xΣ̃

−1
v H̃t,f

Ωt,fx Ωt,ff O

H̃>t,f Σ̃
−1
v H̃t,x O H̃>t,f Σ̃

−1
v H̃tf

equals the (dx + (p + p′)df) × (dx + (p + p′)df) identity matrix. This follows by applying
(7.7), as well as the matrix equalities resulting from taking the derivative of the equation
zt := h

(
xt, `(xt, zt)

)
with respect to xt ∈ Rdx and zt ∈ Rdz , respectively:

I = H̃t,fLz,

O = H̃t,x +Ht,fLx.

Theorem 7.3.2. The feature update step of the standard EKF SLAM algorithm (Alg. 8) is
equivalent to applying a Gauss-Newton step on cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,3(x̃t) := ‖x̃t − µt‖2
Σ−1

t
+

p∑
k=1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

Proof. First, to simplify notation, define:

zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz ,

ft,1:p := (ft,1, · · · , ft,p) ∈ Rpdf ,

h̃(xt, ft,1:p) :=
(
h(xt, ft,1), · · · , h(xt, ft,p)

)
∈ Rpdz ,

Σ̃v := diag{Σv, · · · ,Σv} ∈ Rpdz×pdz .

We can then rewrite the cost as:

cEKF,t,1(x̃t) = ‖x̃?t − µt‖2
Σ−1

t
+ ‖zt,1:p − h̃(x̃?t)‖2

Σ̃−1
v
.

To apply a Gauss-Newton step, our first task is to find a vector C2(x̃t) of an appropriate
dimension such that cEKF,t,1(x̃t) = C2(x̃t)

>C2(x̃t). A natural choice is furnished by C2(x̃t) ∈
Rdx+pdf+pdz , as defined below:

C2(x̃t) :=

[
Σ
−1/2
t (x̃t − µt)

Σ̃
−1/2
v (zt,1:p − h̃(x̃t))

]
.

Thus, our parameters for the Gauss-Newton algorithm submodule are:

x̃?t = µt ∈ Rdx+pdf ,

CHAPTER 7. APPENDIX 54

C2(x̃?t) =

[
Σ
−1/2
t (x̃?t − µt)

Σ̃
−1/2
v (zt,1:p − h̃(x̃?t))

]
=

[
0

Σ̃
−1/2
v (zt,1:p − h̃(µt)

]
∈ Rdx+pdf+pdz ,

J =

[
Σ
−1/2
t

−Σ̃
−1/2
v Ht

]
∈ R(dx+pdf+pdz)×(dx+pdf),

where H̃t ∈ Rpdz×Rdx+pdf is defined as the Jacobian of h̃ : Rdx×Rpdf → Rpdz at x̃?t ∈ Rdx+pdf .
By Algorithm 1, the Gauss-Newton update is thus given by:

Σt ← (J>J)−1

= (Σ−1
t +H>t ΣvHt)

−1

= Σt − ΣtH
>
t (Σ−1

v +HtΣ
−1
t H>)−1HtΣt,

µt ← µt − (J>J)−1J>C2(x̃?t)

= µt − (Σ−1
t +H>t Σ−1

v Ht)
−1
[
Σ
−1/2
t −H>t Σ

−1/2
v

] [0

Σ
−1/2
v (zt,1:p − h̃(µt))

]
= µt + (Σ−1

t +H>t Σ−1
v Ht)

−1H>t Σ−1
v

(
zt,1:p − h̃(µt)

)
,

= µt + Σ−1
v H>t (Σ−1

t +H>t Σ−1
v Ht)

−1
(
zt,1:p − h̃(µt)

)
,

which are identical to the feature update equations for the mean and covariance matrix in
the Extended Kalman Filter algorithm, i.e. (4) and (5) respectively. Note that, in the final
step, we have used a variant of the Woodbury Matrix Identity.

Theorem 7.3.3. The state propagation step of the standard EKF SLAM algorithm (Alg. 9)
is equivalent to applying a Marginalization step to cEKF,t,5 : R2dx+pdf → R, given by:

cEKF,t,5(x̃t, xt+1) := ‖x̃t − µt‖2

Σ
−1
t

+ ‖xt+1 − g(xt)‖2
Σ−1

w
.

Proof. Intuitively, the state propagation step marginalizes out x̃t ∈ Rdx and retain xt+1 ∈
Rdx . In other words, in the notation of our Marginalization algorithm submodule, we have:

x̃t,K = xt+1 ∈ Rdx+pdf ,

x̃t,M = x̃t ∈ Rdx+pdf .

To apply a marginalization step, our first task is to find vectors CK(xK) = CK(x̃t) and
CM(xK , xM) = CM(x̃t, xt+1) of appropriate dimensions such that cEKF,t,5(x̃t, xt+1) = CK(xt+1)>CK(xt+1)+
CM(x̃t, xt+1)>CM(x̃t, xt+1). A natural choice is furnished by CK(xt+1) ∈ R and CM(x̃t, xt+1) ∈
Rdx , as defined below:

cK(xt+1) = 0

cM(x̃t, xt+1) = ‖x̃t − µt‖2

Σ
−1
t

+ ‖xt+1 − g(xt)‖2
Σ−1

w
.

CHAPTER 7. APPENDIX 55

where we have identified the following parameters, in the language of a Marginalization step
(Section 2.1):

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

[
Σ̄
−1/2
t (x̃t − µt)

Σ
−1/2
w

(
xt+1 − g(xt)

)] ∈ R2dx+pdf .

For convenience, we will define the pose and feature track components of the mean µt ∈
Rdx+pdf by µt := (µt,x, µt,f) ∈ Rdx+pdf , with µt,x ∈ Rdx and µt,f ∈ Rpdf , respectively. This
mirrors our definition of xt ∈ Rdx and ft,1:p ∈ Rpdf as the components of the full state x̃t :=

(xt, ft,1:p) ∈ Rdx+pdf . In addition, we will define the components of Σ̄
−1/2
t ∈ R(dx+pdf)×(dx+pdf)

and Σ̄−1
t ∈ R(dx+pdf)×(dx+pdf) by:[

Ωt,xx Ωt,xf

Ωt,fx Ωt,ff

]
:= Σ̄−1

t ∈ R(dx+pdf)×(dx+pdf),[
Λt,xx Λt,xf

Λt,fx Λt,ff

]
:= Σ̄

−1/2
t ∈ R(dx+pdf)×(dx+pdf),

where Σt,xx,Λt,xx ∈ Rdx×dx , Σt,xf ,Λt,xf ∈ Rdx×pdf , Σt,fx,Λt,fx ∈ Rpdf×dx , and Σt,ff ,Λt,ff ∈
Rpdf×pdf . Using the above definitions, we can reorder the residuals in CK ∈ R and CM ∈
R2dx+pdf , and thus redefine them by:

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

Λt,xx(xt − µt,x) + Λt,xf (ft,1:p − µt,f)
Σ
−1/2
w (xt+1 − g(xt))

Λt,fx(xt − µt,x) + Λt,ff (ft,1:p − µt,f)

 ∈ R2dx+pdf .

Our state variables and cost functions for the Gauss-Newton algorithm submodule are:

x?M = x̃?t = µt ∈ Rdx+pdf ,

x?K = g(x̃?t) = g(µt) ∈ Rdx+pdf ,

CK(x̃?t,K) = 0 ∈ R,

CM(x̃?t,K , x̃
?
t,M) =

[
0
0

]
∈ R2dx+pdf ,

JM =

 O Λxf

Σ
−1/2
w O
O Λff

 ∈ R(2dx+pdf)×(dx+pdf)

JK =

 Λxx

−Σ
−1/2
w Gt

Λxf

 ∈ R(2dx+pdf)×dx ,

CHAPTER 7. APPENDIX 56

where we have defined Gt to be the Jacobian of g : Rdx → Rdx at µt,x ∈ Rdx , i.e.:

Gt :=
∂g

∂xt

∣∣∣∣∣
xt=µt,x

Applying the Marginalization equations, we thus have:

µt+1 ← x̃t,K − Σt+1J
>
K

[
I − JM(J>MJM)−1J>M

]
CM(x?K , x

?
M)

= g(µt),

Σt+1 ←
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

,

=
(
J>KJK − J>KJM(J>MJM)−1J>MJK

)−1
,

=

([
Σ−1
w O
O ΛfxΛxf + Λ2

ff

]
−
[

−Σ−1
w Gt

ΛfxΛxx + ΛffΛfx

]
(Λ2

xx + ΛxfΛfx +G>t Σ−1
w Gt)

−1

·
[
−G>t Σ−1

w ΛxxΛxf + ΛfxΛff

])−1

=

([
Σ−1
w O
O Ωff

]
−
[
−Σ−1

w Gt

Ωfx

]
(Ωxx +G>t Σ−1

w Gt)
−1
[
−G>t Σ−1

w Ωxf

])−1

To show that this is indeed identical to the propagation equation for the covariance matrix
in the Extended Kalman Filter algorithm, i.e. Algorithm 6, Line 5, we must show that:([

Σ−1
w O
O Ωff

]
−
[
−Σ−1

w Gt

Ωfx

]
(Ωxx +G>t Σ−1

w Gt)
−1
[
−G>t Σ−1

w Ωxf

])−1

=

[
GtΣt,xxG

>
t + Σw GtΣt,xf

Σt,xfG
>
t Σt,ff

]
This follows by brute-force expanding the above block matrix components, and applying
Woodbury’s Matrix Identity, along with the definitions of Σt,xx,Λt,xx, Σt,xf ,Λt,xf , Σt,fx,Λt,fx,
Σt,ff , and Λt,ff .

MSCKF, Setup

The Multi-State Constrained Kalman Filter (MSCKF) algorithm iteratively refines the mean
and covariance of a MSCKF full state, consisting of the most recent IMU state and a sliding
window of n poses. (Algorithm 10) In particular, when a set of new IMU measurements is
obtained, the MSCKF full state is propagated forward in time. When a new image mea-
surement arrives, the current pose is appended to the MSCKF full state vector. Features
not observed in the current pose are marginalized. If the number of poses maintained in

CHAPTER 7. APPENDIX 57

the MSCKF full state, denoted n, exceeds a pre-specified upper bound Nmax, then features
common to every third currently maintained pose, starting from the second oldest pose, are
marginalized. Below, we discuss the key components of the MSCKF algorithm—the IMU
state, poses, MSCKF full states, features, image measurements, dynamics, pose augmenta-
tion and measurement maps—in more detail.

The IMU state xt,IMU takes the form:

xt,IMU := (qWS, vS, bg, ba, rWS)(t) ∈ R3 ×Hu × R9, (7.8)

where we use S and W to represent the sensor frame and world frame, respectively. Here,
rWS ∈ R3 denotes the position of the IMU sensor frame represented in the world frame,
qWS ∈ Hu denotes the unit quaternion of axis rotation from world frame to IMU sensor
frame, and R(qWS) ∈ SO(3) denotes the rotation matrix associated with qWS. Moreover,
vS ∈ R3 denotes the linear velocity of the IMU sensor frame relative to the world frame, as
represented in the world frame, while bg ∈ R3 and ba ∈ R3 denote the sensor biases of the
gyroscope and accelerometer, respectively. Finally, ω̃S ∈ R3 and ãS ∈ R3 denote gyroscope
and accelerometer measurements, respectively.

For convenience, define XIMU := R3×Hu×R9 and X ′IMU := R3×H×R9. The continuous-
time IMU dynamics map gIMU,ct : XIMU → X ′IMU is given by:

q̇WS = qWS ?
1

2

[
0

ω̃S − bg − wg

]
,

ḃg = wbg ,

v̇S = R(qWS)>
(
ãS − ba + wa

)
+ gW ,

ḃa = wba ,

ṙWS = vS.

where ? denotes quaternion multiplication, and wg, wa, wbg , wba ∈ R3 denote zero-mean stan-
dard Gaussian noise.

Each pose xk ∈ {x1, · · · , xn} currently maintained in the sliding window of poses takes
the form xk := (qWCk

, rWCk
) ∈ Hu × R3, where rWCk

∈ R3 denotes the position of the
camera at pose xk in the world frame, while qWCk

∈ Hu denotes the quaternion associated
with the axis rotation from the world frame to the camera frame at pose xk ∈ H× R3. For
convenience, we define Xp := Hu × R3.

The MSCKF full state maintained throughout the operation of the MSCKF algorithm
contains the IMU state at the current time, as well as a collection of n poses, where n is
constrained to remain below a pre-specified, fixed upper bound Nmax:

x̃t := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n. (7.9)

The state space is thus X := XIMU × (Xp)n.
When a new image measurement arrives, the estimate of the current camera pose in

the IMU frame, denoted xIMU
n+1 ∈ XIMU, is transformed to the global frame, and appended

CHAPTER 7. APPENDIX 58

Algorithm 10: Multi-State Constrained Kalman Filter, Standard Formulation.

Data: Prior distribution on xIMU,0 ∈ Xp: N (µ0,Σ0), dynamics and measurement noise
covariances Σw ∈ Rdx×dx , Σv ∈ Rdx×dz , discrete-time dynamics map
gIMU : RdIMU × RdIMU , measurement map h : Xp × Rdf → Rdz , time horizon T , pose
transformation ψ : XIMU × (Xp)n ×Xp → Xp (IMU → global).

Result: Estimates x̂t ∈ XIMU × (Xp)n for all desired timesteps t ≤ T , where n := number
of poses in x̂t at time t.

1 Sz, Sx, Sz,1, Sz,2 ← φ
2 (n, p)← (0, 0)
3 for t = 0, · · · , T do
4 while new image I with new pose xn+1 ∈ Xp recorded, next IMU measurement not

yet received do

5 µt ∈ XIMU × (Xp)n,Σt ∈ R(dIMU+ndx)×(dIMU+ndx) ← Alg. 11 (x̃t, µt, Σt, xn+1, xIMU
n+1 ,

ψ(·))
6 {zn+1,j | feature j is observed at xn+1} ← Feature measurements at xn+1

7 {f?j | Feature j is observed at xn+1} ← Feature position estimates at xn+1.

8 Record new estimates of existing features and first estimate of new features at
xn+1 ∈ Xp.

9 Sz ← Sz ∪
{

(xn+1, fj)| Feature j observed at n+ 1
}

10 n← n+ 1
11 if n ≥ Nmax − 1 then
12 Sx ← {xi|i mod 3 = 2, and 1 ≤ i ≤ n.}
13 Sz,1 ←

{
(xi, fj) ∈ Sz

∣∣xi ∈ Sx, feature j observed at each pose in Sx
}

14 end
15 Sz,2 ←

{
(xi, fj) ∈ Sz|xi ∈ x1:n, feature j observed at xi but not at xn

}
.

16 Sf ←
{
fj
∣∣∃xi ∈ x1:n s.t. (xi, fj) ∈ Sz,1 ∪ Sz,2

}
17 if Sf 6= φ then

18 µt ∈ XIMU × (Xp)n,Σt ∈ R(dIMU+ndx)×(dIMU+ndx) ← Alg. 12 (x̃t, µt, Σt, xn+1,
Sz,1 ∪ Sz,2, Sf , h(·))

19 x̂t ← µt ∈ XIMU × (Xp)n.

20 end
21 Sz ← Sz\(Sz,1 ∪ {(xi, fj)|xi ∈ Sx})
22 Reindex poses and features, in ascending order of index, i.e., {x1, · · · , xn−|Sx|} and

{f1, · · · , fp−|Sf |}.
23 (p, n)← (p− |Sf |, n− |Sx|)
24 end
25 if t < T then

26 µt+1 ∈ XIMU × (Xp)n,Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx) ← Alg. 13, MSCKF State

Propagation (x̃t, µt, Σt)
27 end

28 end
29 return x̂0, · · · x̂T ∈ XIMU × (Xp)n

CHAPTER 7. APPENDIX 59

to the MSCKF full state x̃t. This coordinate transformation is realized by the map ψ :
XIMU × (Xp)n → Xp, defined by:

ψ
(
qWS, vS, bg, ba, rWS, qWC1 , rWC1 , · · · , qWCn , rWCn , qWIn+1 , rWIn+1

)
=
(
qIC ? qWIn+1 , rWIn+1 + C(qWIn+1)rIC

)
:=(qWCn+1 , rWCn+1),

where qIC denotes the quaternion encoding the (fixed) transformation from the IMU frame
to the camera frame. In summary, the MSCKF algorithm defines the new pose xn+1 and
updates the MSCKF full state x̃t as follows:

xn+1 ← ψ(x̃t, x
IMU
n+1) ∈ Xp,

x̃t ← (x̃t, xn+1) =
(
x̃t, ψ(x̃t, x

IMU
n+1)

)
∈ XIMU × (Xp)n+1,

with the map ψ as defined above.
When new feature position estimates are detected from a new image measurement, the

new camera pose corresponding to this image measurement is appended to x̃t, and n is
incremented by 1. If n = Nmax the upper limit Nmax, a third of all old poses in x̃t is
discarded, starting from the second oldest pose. Then, feature measurements, corresponding
to features unobserved at the current pose, are marginalized and used to update the mean
and covariance of the new MSCKF full state x̃t.

As is the case with the EKF algorithm, we assume that the image measurement space and
feature space are given by Rdz and Rdf , respectively, with dz = 2 and df = 3. Throughout
the duration of the MSCKF algorithm, poses and features are added into, dropped from, and
marginalized from the MSCKF full state. Suppose at a given time, the MSCKF maintains
n poses in the MSCKF full state x̃t, and retains measurements of p features. For each pose
i ∈ {1, · · · , n} and feature j ∈ {1, · · · , p} currently maintained in the SLAM algorithm, if
feature j were detected at pose i, let zi,j ∈ Rdz denote the associated feature measurement.
For the MSCKF, the measurement map h : XIMU × Rdf → Rdz is given by:

zi,j = h(xi, fj) =
1

(R(qWCk
)fj − rWCk

)z

[
(R(qWCk

)fj − rWCk
)x

(R(qWCk
)fj − rWCk

)y

]
(t) + vi,j.

where R(qWCk
) ∈ SO(3) denotes the rotation matrix associated with the quaternion qWCk

,
fj ∈ R3 denotes the position of feature j in the world frame, while the subscript indices
“x, y, z” refer to the respective coordinates of the vector R(qWS)fj − rWS ∈ Xp. Meanwhile,
vi,j ∈ Rdz denotes zero-mean standard Gaussian noise in the measurement at time t, with
covariance matrix Σv ∈ Rdz×dz , Σv � 0.

When a new image measurement is received, the MSCKF algorithm performs marginal-
ization, described in Section 3.3, using two sets of feature measurements—the set of all
feature measurements common to old poses xi to be dropped, denoted Sz,1, as well as the set
of all feature measurements of features fj not seen in the current pose, denoted Sz,2. These

CHAPTER 7. APPENDIX 60

are more precisely defined in Section 4.2. The measurement vector used for marginaliza-
tion, denoted z̃ ∈ R|Sz,1∪Sz,2|dz , is then given by concatenating the q residual measurements
obtained at times t− n+ 1, · · · , t, i.e.:

z̃ := {zi,j|(xi, fj) ∈ Sz,1 ∪ Sz,2} ∈ R|Sz,1∪Sz,2|dz .

Algorithm 11: Multi-State Constrained Kalman Filter, Pose Augmentation Sub-
block.

Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and
covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), New pose xn+1 ∈ Xp, measurement of
new pose in IMU frame xIMU

n+1 ∈ Xp, Transformation of poses from IMU frame
to global frame ψ : R(dIMU+ndx) ×Xp → Xp

Result: Updated MSCKF state mean µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx), updated number of poses n.

1 x̃t ← (x̃t, xn+1) ∈ RdIMU+(n+1)dx , where xn+1 ∈ Xp is the new pose vector.
2 {zn+1,j| Feature j is observed at pose n+ 1} ← Feature measurements at pose xn+1

3 {f ?j | Feature j is observed at pose xn+1} ← Feature position estimates at pose xn+1.

4 µt ← (µt, ψ(µt, x
IMU
n+1)) ∈ RdIMU+(n+1)dx , where µt,IMU ∈ RdIMU := IMU component of

µt, x
IMU
n+1 ∈ Xp := pose estimate of xn+1 from the IMU frame.

5 Σt ←

[
IdIMU+(n+1)dx

∂ψ
∂(x̃t,xIMU

n+1)

]
Σt

[
IdIMU+(n+1)dx

∂ψ
∂(x̃t,xIMU

n+1)

]>
6 return µt ∈ XIMU × (Xp)n, Σt ∈ R(dIMU+ndx)×(dIMU+ndx), n ≥ 0

Proofs from Section 4.2

Theorem 7.3.4. The pose augmentation step of the standard MSCKF SLAM algorithm
(Alg. 11) is equivalent to applying a Gauss-Newton step to cMSCKF,t,1 : XIMU × (Xp)n → R,
given by:

cMSCKF,t,1(x̃t, xn+1) = ‖x̃t � µt‖2
Σ−1

t
+ ε−1‖xn+1 � ψ(x̃t, x

IMU
n+1)‖2

2,

and taking ε→ 0 in the resulting (augmented) mean µt and covariance Σt.

Proof. We claim that from an optimization perspective, the state augmentation step is
equivalent to applying one Gauss-Newton step to the cost function cMSCKF,t,1(x̃t, xn+1),
specified above, and then taking the limit ε → 0 in the resulting augmented mean µt(ε) ∈
XIMU × (Xp)(n+1) and augmented covariance µt(ε) ∈ R(dIMU+(n+1)dx)×(dIMU+(n+1)dx).

To apply a Gauss-Newton step, our first task is to find a vector C(x̃t, xn+1) of an ap-
propriate dimension such that cMSCKF,t,1(x̃t, xn+1) = C1(x̃t, xn+1)>C1(x̃t, xn+1). A natural

CHAPTER 7. APPENDIX 61

Algorithm 12: Multi-State Constrained Kalman Filter, Feature Update Sub-block.

Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and
covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), Set of image measurements for
marginalization Sz,1 ∪ Sz,2, Set of features to marginalize Sf , measurement
map h : Xp × Rdf → Rdz .

Result: Updated MSCKF state mean µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx).

1 fSf
∈ R|Sf |df ← Concatenation of all features in Sf

2 f ?Sf
∈ R|Sf |df ← Concatenation of position estimate of all features in Sf

3 h̃(x̃t, fSf
) ∈ R|Sz,1∪Sz,2|dz ← Concatenation of measurement map outputs{

h(xi, fj)|(xi, fj) ∈ Sz,1 ∪ Sz,2
}

.

4 z̃ ∈ R|Sz,1∪Sz,2|dz ← Concatenation of feature measurements{
zij|(xi, fj) ∈ Sz,1 ∪ Sz,2

}
.

5 H̃t,x ← ∂h̃
∂x̃t

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×(dIMU+ndx).

6 H̃t,f ← ∂h̃
∂fSf

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×|Sf |df .

7 {a1, · · · , a|Sz,1∪Sz,2|dz−|Sf |df} ⊂ R|Sz,1∪Sz,2|dz ← Orthonormal basis for N(H̃>t,f).

8 A←
[
a1 · · · a|Sz,1∪Sz,2|dz−|Sf |df

]
∈ R|Sz,1∪Sz,2|dz×(|Sz,1∪Sz,2|dz−|Sf |df).

9 QT ← QR Decomposition of A>H̃t,x, with

Q ∈ R(|Sz,1∪Sz,2|dz−|Sf |df)×(|Sz,1∪Sz,2|dz−|Sf |df), T ∈ R(|Sz,1∪Sz,2|dz−|Sf |df)×(dIMU+ndx).

10 Σ
−1

t ← Σ−1
t + T>(Q>A>RAQ)−1T ∈ R(dIMU+ndx)×(dIMU+ndx).

11 µt ← µt �
(
Σ−1
t + T>(Q>A>RAQ)−1T

)−1
T>(Q>A>RAQ)−1

(
z̃ � h̃(x̃t)

)
∈

XIMU × (Xp)n.
12 x̂t ← µt ∈ XIMU × (Xp)n.

13 return µt ∈ XIMU × (Xp)n, Σt ∈ R(dIMU+ndx)×(dIMU+ndx)

Algorithm 13: Multi-State Constrained Kalman Filter, State Propagation Sub-
block.

Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and
covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), (discrete-time) dynamics map
g : RdIMU → RdIMU .

Result: Updated MSCKF state mean µt+1 ∈ XIMU × (Xp)n and covariance
Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx).

1 (µt,IMU, µt,x,1:n)← µt, with µt,IMU ∈ RdIMU , µt,x,1:n ∈ Rndx .

2 Gt ← Jacobian of gIMU : RdIMU → RdIMU evaluated at µt,IMU ∈ RdIMU .

3 µt+1 ←
(
gIMU(µt,IMU), µt,x,1:n

)
∈ XIMU × (Xp)n.

4 Σt+1 ←
[
Gt O
O Indx

]
Σt

[
G>t O
O Indx

]
+

[
Σw O
O O

]
∈ R(dIMU+ndx)×(dIMU+ndx).

5 return µt+1 ∈ XIMU × (Xp)n, Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx).

CHAPTER 7. APPENDIX 62

choice is furnished by C1(x̃t, xn+1) ∈ RdIMU+(n+1)dx , as defined below:

C1(x̃t, xn+1) :=

[
Σ
−1/2
t (x̃t � µt)

ε−1/2
(
xn+1 � ψ(x̃t, x

IMU
n+1)

)] .
Thus, our parameters for the Gauss-Newton algorithm submodule are:

(x̃?t , x
?
n+1) := (µt, ψ(µt, x

IMU
n+1)) ∈ XIMU × (Xp)n,

C1(x̃?t , x
?
n+1) =

[
Σ
−1/2
t (x̃?t − µt)

ε−1/2
(
x?n+1 − ψ(x̃?t , x

IMU
n+1)

)] =

[
0
0

]
∈ RdIMU+(n+1)dx ,

J =

[
Σ
−1/2
t O

−ε−1/2Ψ ε−1/2Idx

]
∈ R(dIMU+(n+1)dx)×(dIMU+(n+1)dx),

where Ψ ∈ Rdx×(dIMU+ndx) is defined as the Jacobian of ψ : XIMU × (Xp)n → Xp with respect
to x̃t at (x̃?t , x

IMU
n+1) ∈ RdIMU+(n1)dx . By Algorithm 1, the Gauss-Newton update is thus:

Σt(ε)← (J>J)−1 =

[
Σ

1/2
t O

ΨΣ
1/2
t ε1/2Idx

] [
Σ

1/2
t Σ

1/2
t Ψ>

O ε1/2Idx

]
=

[
Σt ΣtΦ

>

ΨΣt ΨΣtΨ
> + εIdx

]
,

µt(ε)← x̃?t − (J>J)−1J>C1(x̃?t , x
?
n+1)

= 0.

Taking ε→ 0 concludes the proof.

Theorem 7.3.5. The feature update step of the standard MSCKF algorithm (Alg. 12) is
equivalent to applying a marginalization step to cMSCKF,t,3 : XIMU × (Xp)n × R|Sf |df → R,
given by:

cMSCKF,t,3(x̃t, fSf
) := ‖x̃t � µt‖2

Σ−1
t

+
∑

(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, fj)‖2
Σ−1

v
,

where fSf
∈ R|Sf |df denotes the stacked vector of all feature positions in Sf (see Alg. 10).

Proof. First, we rewrite cMSCKF,t,3 as:

cMSCKF,t,3(x̃t, fSf
) := ‖x̃t � µt‖2

Σ−1
t

+ ‖z̃ � h̃(x̃t, fSf
)‖2

Σ̃−1
v
,

where z̃ ∈ R|Sz,1∪Sz,2|dz , h̃ : XIMU × (Xp)n × R|Sf |df → R|Sz,1∪Sz,2|dz : are defined as follows—
z̃ denotes the stacked measurement vectors in {zi,j|(xi, fj) ∈ Sz,1 ∪ Sz,2} ∈ R|Sz,1∪Sz,2|dz ,
h̃(x̃t, fSf

) denotes the stacked outputs of the measurement map in {h(xi, fj)|(xi, fj) ∈ Sz,1 ∪
Sz,2} ∈ R|Sz,1∪Sz,2|dz , and Σ̃v := diag{Σv, · · · ,Σv} ∈ R|Sz |dz×|Sz |dz .

CHAPTER 7. APPENDIX 63

Essentially, by marginalizing the feature position estimates, this step utilizes information
from feature measurements to constrain our state estimates. To accomplish this, we choose
our algorithm variables as follows:

x̃t,K := x̃t = (xt,IMU, x1, · · · , xn) ∈ RdIMU+ndx+|Sf |df ,

x̃t,M := fSf
∈ R|Sf |df ,

x := (x̃t,K , x̃t,M) ∈ RdIMU+ndx+|Sf |df ,

CM(x̃t,K , x̃t,M) :=

[
Σ
−1/2
t (x̃t � µt)

Σ̃
−1x/2
v

(
z̃ � h̃(x̃t, fSf

)
)] ∈ RdIMU+ndx+|Sz,1∪Sz,2|dz .

The Marginalization algorithm block then implies that:

JK :=
∂CM
∂x̃t

(µt, f
?
Sf

) =

[
Σ
−1/2
t

−Σ̃
−1/2
v H̃t,x

]
∈ R(dIMU+ndx+|Sz,1∪Sz,2|dz)×(dIMU+ndx),

JM :=
∂CM
∂fSf

(µt, f
?
Sf

) =

[
O

−Σ̃
−1/2
v H̃t,f

]
∈ R(dIMU+ndx+|Sz,1∪Sz,2|dz)×|Sf |df ,

where we have defined:

f ?Sf
∈ R|Sf |df ← Stacked position estimates of features in Sf ,

H̃t,x :=
∂h̃

∂x̃t
h̃(µt, f

?
Sf

) ∈ R|Sz,1∪Sz,2|dz×(dIMU+ndx),

H̃t,f :=
∂h̃

∂fSf

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×|Sf |df .

Recall that the marginalization equations (3.8) and (3.9) in our formulation read:

µK ← µK − ΣKJ
>
K

[
I − JM(J>MJM)−1J>M

]
CM
(
x̃t,K , x̃t,M

)
,

ΣK ←
(
J>K(I − JM(J>MJM)−1J>M)JK

)−1
.

Substituting in the above expressions for JK , JM , and CM
(
µt, f

?
Sf

)
, we have:

Σt ← (J>K(I − JM(J>MJM)−1J>M)JK
)−1

,

=

([
Σ
−1/2
t −H̃>t,xΣ̃

−1/2
v

] [I O

O I − Σ̃
−1/2
v H̃t,f (H̃

>
t,f Σ̃

−1
v H̃t,f)

−1H̃>t,f Σ̃
−1/2
v

][
Σ

1/2
t

−Σ̃
−1/2
v H̃t,x

])−1

=
(
Σ−1
t + H̃>t,xΣ̃

−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f)

−1H̃>t,f Σ̃
−1/2
v

]
Σ̃−1/2
v H̃t,x

)−1

µt ← µK − ΣKJ
>
K

[
I − JM(J>MJM)−1J>M

]
CM
(
µt, f

?
Sf

)
= µt +

(
Σ−1
t + H̃>t,xΣ̃

−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f)

−1H̃>t,f Σ̃
−1/2
v

]
· Σ̃−1/2

v H̃t,x

)−1

CHAPTER 7. APPENDIX 64

· H̃>t,xΣ̃−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f)

−1 · H̃>t,f Σ̃−1/2
v

]
Σ̃−1/2
v

(
z̃ − h̃(x̃t, fSf

)
)
.

Comparing with the update step in MSCKF, i.e., (10) and (9), reproduced below:

Σ
−1

t ← Σ−1
t + T>(Q>A>Σ̃vAQ)−1T,

µt ← µt +
(
Σ−1
t + T>(Q>A>Σ̃vAQ)−1T

)−1
T>(Q>A>Σ̃vAQ)−1

(
z̃ − h̃(x̃t, fSf

)
)
,

we find that it suffices to show:

T>(Q>A>Σ̃vAQ)−1 = H̃>t,xΣ̃
−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f)

−1H̃>t,f Σ̃
−1/2
v

]
· Σ̃−1/2

v

=H̃t,xΣ̃
−1
v H̃t,x − H̃>t,xΣ̃−1

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f)

−1H̃>t,f Σ̃
−1
v .

To see this, recall that A is defined as a full-rank matrix whose columns span N(H̃>t,f). Thus:

(Σ̃−1/2
v H̃t,f)

> · Σ̃1/2
v AQ = H̃>t,fAQ = O.

In other words, the columns of Σ̃
−1/2
v H̃t,f and of Σ̃

1/2
v AQ form bases of orthogonal subspaces

whose direct sum equals Rnqdz . We thus have:

Σ̃−1/2
v H̃t,f (H̃

>
t,f Σ̃

−1
v H̃t,f)

−1H̃>t,f Σ̃
−1/2
v + Σ̃1/2

v AQ(Q>A>Σ̃vAQ)−1Q>A>Σ̃1/2
v = I,

which in turn implies that:

T>(Q>A>Σ̃vAQ)−1 =H̃>t,xAQ(Q>A>Σ̃vAQ)−1Q>A>

=H̃>t,xΣ̃
−1/2
v (Σ̃1/2

v AQ)(Q>A>Σ̃1/2
v · Σ̃1/2

v AQ)−1(Q>A>Σ̃1/2
v)Σ̃−1/2

v

=H̃>t,xΣ̃
−1/2
v

(
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f)

−1H̃>t,f Σ̃
−1/2
v

)
Σ̃−1/2
v

=H̃t,xΣ̃
−1
v H̃t,x − H̃>t,xΣ̃−1

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f)

−1H̃>t,f Σ̃
−1
v ,

as claimed.

Theorem 7.3.6. The state propagation step of the standard MSCKF SLAM algorithm (Alg.
13) is equivalent to applying a Marginalization step once to cMSCKF,t,5 : R2dIMU+ndx → R,
given by:

cMSCKF,t,5(x̃t, xt+1,IMU) :=‖x̃t � µt‖2

Σ
−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

Proof. We claim that from an optimization perspective, the update step is equivalent to ap-
plying one marginalization step to the cost function cMSCKF,t,5(x̃t, xt+1,IMU) specified above.
In particular, we wish to marginalize out xt,IMU ∈ XIMU and retain xt+1,IMU ∈ XIMU; in other
words, in the notation of our Marginalization algorithm submodule, we have:

x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n,

CHAPTER 7. APPENDIX 65

x̃t,M := xt,IMU ∈ XIMU.

To apply a marginalization step, our first task is to find vectors CK(xK) = CK(x̃t) and
CM(xK , xM) = CM(x̃t, xt+1,IMU) of appropriate dimensions such that cMSCKF,t,5(x̃t, xt+1,IMU) =
CK(xt+1,IMU)>CK(xt+1,IMU) + CM(x̃t, xt+1,IMU)>CM(x̃t, xt+1,IMU). A natural choice is fur-
nished by CK(xt+1,IMU) ∈ R and CM(x̃t, xt+1,IMU) ∈ Xp, as defined below:

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

[
Σ̄
−1/2
t (x̃t − µt)

Σ
−1/2
w

(
xt+1,IMU − gIMU(xt,IMU)

)] ∈ R2dIMU+ndx .

For convenience, we will define the IMU state and pose components of the mean µt ∈
XIMU × (Xp)n by µt := (µt,IMU, µt,IMU) ∈ XIMU × (Xp)n, with µt,IMU ∈ Xp and µt,x ∈ (Xp)n,
respectively. This mirrors our definition of xt ∈ Xp and xn+1 ∈ (Xp)n as the components of
the full state x̃t := (xt, xn+1) ∈ XIMU × (Xp)n. In addition, we will define the components of

Σ̄
−1/2
t ∈ R(dIMU+ndx)×(dIMU+ndx) and Σ̄−1

t ∈ R(dIMU+ndx)×(dIMU+ndx) by:[
Ωt,IMU,IMU Ωt,IMU,x

Ωt,x,IMU Ωt,x,x

]
:= Σ̄−1

t ∈ R(dIMU+ndx)×(dIMU+ndx),[
Λt,IMU,IMU Λt,IMU,x

Λt,x,IMU Λt,x,x

]
:= Σ̄

−1/2
t ∈ R(dIMU+ndx)×(dIMU+ndx),

with the dimensions of the above block matrices given by Σt,IMU,IMU,Λt,IMU,IMU ∈ RdIMU×dIMU ,
Σt,IMU,x,Λt,IMU,x ∈ RdIMU×ndx , Σt,x,IMU,Λt,x,IMU ∈ Rpdx×dIMU , and Σt,x,x,Λt,x,x ∈ Rndx×ndx .
Using the above definitions, we can reorder the residuals in CK ∈ R and CM ∈ R2dIMU+ndx ,
and thus redefine them by:

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

Λt,IMU,IMU(xt,IMU − µt,IMU) + Λt,IMU,x(x1:n − µt,x)
Σ
−1/2
w (xt+1,IMU − gIMU(xt,IMU))

Λt,x,IMU(xt,IMU − µt,IMU) + Λt,x,x(x1:n − µt,x)

 ∈ R2dIMU+ndx ,

where x1:n := (x1, · · · , xn) ∈ (Xp)n.
Our state variables and cost functions for the Gauss-Newton algorithm submodule are:

x?M = x̃?t = µt ∈ XIMU × (Xp)n,
x?K = g(x̃?t) = g(µt) ∈ XIMU × (Xp)n,

CK(x̃?t,K) = 0 ∈ R,

CM(x̃?t,K , x̃
?
t,M) =

[
0
0

]
∈ R2dIMU+ndx ,

JK =

 O ΛIMU,x

Σ
−1/2
w O
O Λxx

 ∈ R(2dIMU+ndx)×(dIMU+ndx)

CHAPTER 7. APPENDIX 66

JM =

 ΛIMU,IMU

−Σ
−1/2
w Gt

Λx,IMU

 ∈ R(2dIMU+ndx)×dx ,

where we have defined Gt to be the Jacobian of gIMU : XIMU → XIMU at µt,IMU ∈ XIMU, i.e.:

Gt :=
∂g

∂xt,IMU

∣∣∣∣∣
xt,IMU=µt,IMU

Applying the Marginalization update equations, we thus have:

µt+1 ← x̃t,K − Σt+1J
>
K

[
I − JM(J>MJM)−1J>M

]
CM(x?K , x

?
M)

= g(µt),

Σt+1 ←
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

,

=
(
J>KJK − J>KJM(J>MJM)−1J>MJK

)−1
,

=

([
Σ−1
w O
O Λx,IMUΛIMU,x + Λ2

xx

]
−
[

−Σ−1
w Gt

Λx,IMUΛIMU,IMU + ΛxxΛx,IMU

]
·

· (Λ2
IMU,IMU + ΛIMU,xΛx,IMU +G>t Σ−1

w Gt)
−1

·
[
−G>t Σ−1

w ΛIMU,IMUΛIMU,x + Λx,IMUΛxx

])−1

=

([
Σ−1
w O
O Ωxx

]
−
[
−Σ−1

w Gt

Ωx,IMU

]
(ΩIMU,IMU +G>t Σ−1

w Gt)
−1
[
−G>t Σ−1

w ΩIMU,x

])−1

To show that this is indeed identical to the propagation equation for the covariance matrix
in the Extended Kalman Filter algorithm, i.e. Algorithm 6, Line 5, we must show that:([

Σ−1
w O
O Ωxx

]
−
[
−Σ−1

w Gt

Ωx,IMU

]
(ΩIMU,IMU +G>t Σ−1

w Gt)
−1
[
−G>t Σ−1

w ΩIMU,x

])−1

=

[
GtΣt,IMU,IMUG

>
t + Σw GtΣt,IMU,x

Σt,IMU,xG
>
t Σt,x,x

]
This follows by brute-force expanding the above block matrix components, and applying
Woodbury’s Matrix Identity, along with the definitions of Σt,IMU,IMU,Λt,IMU,IMU, Σt,IMU,x,Λt,IMU,x,
Σt,x,IMU,Λt,x,IMU, Σt,x,x, and Λt,x,x.

	Chiu___MS_Title_Signed___05132021
	Chiu___MS_Report___05132021
	Contents
	Introduction
	SLAM: Setup and Formulation
	SLAM: Formulation on Euclidean Spaces
	SLAM: Formulation on Manifolds

	SLAM: A Generalized Optimization Framework
	Algorithm Overview
	Gauss-Newton Descent
	Marginalization of States
	Main Algorithm on Manifolds

	Filtering as Nonlinear Optimization
	Extended Kalman Filter (EKF)
	Multi-State Constrained Kalman Filter
	State-of-the-Art SLAM Algorithms
	A Generalized Sliding Window SLAM Algorithm

	Implementation and Experimental Results
	Simulation Settings
	Results and Discussion

	Conclusion and Future Work
	Bibliography
	Appendix
	Appendix for Chapter 2
	Appendix for Chapter 3
	Appendix for Chapter 4

