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Abstract
Interaction History for Building Human-Data Interfaces
by
Yifan Wu
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Joseph Hellerstein, Chair

History provides context for the present. In the same way, past user interactions provide
context for present explorations. This thesis investigates ways to reify user interaction history
to address emerging challenges in the design and programming of human-data interfaces.

We leverage interaction history in three different but connected designs. The first is to en-
hance the design of interactions that suffer from delays, such as when working with remote
databases. We use interaction history as a visual anchor to facilitate concurrent interactions,
which ameliorate the cognitive burdens caused by delays. The second is to facilitate the pro-
gramming of interactive visualizations involving asynchronous communication with remote
databases. We capture event histories as a first-class programming construct, allowing the
developer to declaratively specify what data to compute and how to update the state of the
user interface. This way, developers avoid the low-level details of accessing remote data and
coordinating events. The third and last design is to use interaction history to create a bridge
between interaction design and programming. We capture and reify interaction history in
both computational notebooks and interactive visualizations. Affordances on these reified
histories help data scientists move fluidly between the two mediums.



To AGP.
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for each response to load before they are allowed to interact again. Case (3) is
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Chapter 1

Introduction

Data science is becoming relevant to all aspects of work, and with the increased use comes
new challenges. Among the challenges that researchers have identified [73, 6, 23|, scalable
computations and better exploration are the two we will address in this thesis. The first chal-
lenge is to support interactions over larger datasets in human-data interfaces and the second
challenge is to support easier interactive visualizations in a programming environment.

To tackle these challenges, we make use of interaction history in three ways. The first uses
interaction history as a design component for a new interaction experience that is resilient to
long data processing delays. The second uses interaction history as a programming construct
to work with distributed data and asynchronous events. The third uses interaction history
as a building block for bridges between programming and interaction design.

For Interaction Design

Interaction history has been an integral part of interactive visualization design: Shneiderman
encouraged designers to “keep a history of actions to support undo, replay, and progressive
refinement” [129]. Willett et al. augmented interactive widgets with a visualization of the
history of people’s interactions to provide cues for others to “forage” for information to navi-
gate in new information space [106]. Callahan et al. called for the use of analytics provenance
to track the “trails” of analysis to improve the scientific process [20]. Heer et al. analyzed
ways to surface and model interaction histories in visualization tools like Tableau [59]. More
recently, Feng et al. developed methods to directly represent interaction history in existing
visualizations, creating markers in information saturated environments [39].

These prior works demonstrate the utility of interaction history as a design component:
it allows users to develop their analyses over sequences of interactions without having to
remember their past steps. We use this insight to tackle a challenge created by large datasets,
where the system responds to user interactions after a long delay.

The reason why it is worthwhile to create a latency-resilient interface, rather than just
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removing latency from the system side [90, 88, 97, 111, 139], is that upgrading an existing
database to these systems can be expensive and prevents the creation of new applications.
It would be valuable to develop a solution that only changes the frontend design.

Our observation is that existing interaction designs support only one interaction at a
time'. If instead we can support multiple concurrent interactions, users may be able to
amortize the cost of the delays. However, these concurrent interactions could be difficult to
use because the results to the response may arrive out of order after unexpected delays [68].
To overcome the challenge, we hypothesized that interaction history can serve as a visual
anchor to stabilize these otherwise unexpected visual updates.

We tested the hypothesis through a design technique—Interaction Snapshots. It captures
previous interaction state in thumbnails and allows users to make multiple interactions and
visit results at a later time. We found that the Snapshots design allows users to initiate
multiple interactions without having to wait for each to load synchronously, thereby reducing
the aggregate latency. Participants reported improved user experience dealing with the
latencies. They also commented on better support to navigate the snapshots. The feedback
points to the added cognitive complexity introduced by history-based designs and warns of
potential limitations to adoption that need to be addressed by future work.

For Programming

Since interaction history has proven useful as design component for interactive visualizations,
it would be ideal for a programming library to support designs that use interaction histories.
For instance, the complexity of programming Interaction Snapshots would be reduced if an
external library tracked the history of interaction and server response. To support the pro-
gramming of interactive visualization applications, we hypothesize that interaction history,
in the form of event logs, can be a useful abstraction.

Through our investigations of the hypothesis, we found that event logs offer additional
programming benefits based on research in distributed systems programming, a field that
uses event logs extensively [62, 7]. Distributed programming is a valuable lens to look
at emerging interactive visualization use cases. When developers change from working with
small, browser-based, data files to working with remote database and streaming data sources,
they must grapple with distributed data and asynchronous events—the same challenges as
in distributed systems.

Interaction history offers two key capabilities for programming distributed system. First,
by capturing history as event logs, transient events are now persistent data. Rather than
handling the events with imperative networking, developers can specify the state of the

1 With the exception of Pangloss [97]: Pangloss is a progressive interactive visualization system that shows
users a quick result based on sampled data, and users could request full results to be loaded in the
background. We build on prior work but do not require a database migration to support online aggregation.
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interface as a query over the event logs and underlying static data. They specify what data
to get, rather than how to manipulate the data [28, 113]. This way, the system shoulders
the burden of executing the queries instead of the developer. Second, the system augments
the event logs with a logical timestep and ensures that the Ul state updates in an atomic
fashion. This way, developers can declaratively reason with the asynchrony and know that
the interface will abide by the design invariant specified. They do not need to manually
mutate state [62, 96] or keep track of the correspondences between events.

Based on these ideas, we created DIEL, an interactive visualization middle-ware. Through
a series of evaluations on performance, expressibility, and notation usability, we found that
DIEL provides a simple but functional declarative abstraction for interactive visualizations
over distributed data and asynchronous events.

For Bridging Interactions and Programming

Since interaction history can support both the design and the programming of interactive
visualizations, we hypothesize that it can serve as a bridge between visualization interactions
and programs.

We tested the hypothesis in the medium of computational notebooks, e.g., Jupyter [79],
a popular tool used by data scientists to both manipulate and visualize data [55, 23]. Note-
books supports both programming and interactivity through widgets [67] and HTML based
cell outputs [122, 107]. However, the two mediums still remain siloed?: interactive visualiza-
tions must be manually specified as they are divorced from the analysis provenance expressed
via dataframes, while code cells have no access to users’ interactions with visualizations, and
hence no way to operate on the results of interaction.

To break the silos and build a bridge between the two mediums, we look to their dif-
ferences through the lens of interaction history. Notebooks persist history in “cells”, which
grows linearly. In contrast, interactions on visualizations are transient and hence the visu-
alizations are displayed in a fixed parallel layout.

Besides helping us identify some gaps, history also helps us bridge gaps. To make the
transient interactions persistent (and hence reproduceable), interactions on visualizations
can be reified as programs executed in notebook cells, creating a persisted, executable log
of the interactions. To relieve users the tedium of creating interactive visualizations, we
can capture the data manipulation done in notebook cells to create relevant interactive
visualizations automatically.

We instantiated these bridges in B2, a Jupyter notebook extension that brings seamless
exploratory data analysis into the notebook.

2 Bret Victor has also demonstrated novel programming interfaces that supports interactive controls [149],
but these work are graphic editors and not data visualizations, which has a different set of abstractions.
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1.1 Thesis Outline

This thesis contributes three novel techniques and artifacts that use interaction history to
enhance the design and development of human-data interfaces. The rest of the thesis will
present the main contributions in turn: Interaction Snapshots, DIEL, and B2. We summarize
the three contributions to help the reader navigate the paper.

Interaction Snapshots is a design technique based on interaction history to improve the
user experience in the face of high latency. It augments existing interactive visualizations
with “snapshots” of past interactions and their respective results. As users interact, responses
to requests from the interactions are asynchronously loaded into these snapshots. These
snapshots serve as a visual anchor to help users work concurrently with multiple interactions.
Our user study participants found the design helpful as they did not have to wait for each
result to load and could easily navigate to prior snapshots.

DIEL is a programming toolkit based on interaction history to facilitate interactions with
remote databases and streaming data. DIEL captures event history in event logs. These
logs transform events into data, which developers can query directly to specify the state of
the interface. As a result, developers avoid low-level details of networking data. Instead,
DIEL compiles and optimizes a corresponding dataflow graph, and automatically generates
necessary low-level distributed systems details. The event logs also provide logical timesteps
that help developers reason about asynchronous events, such that their non-blocking interface
avoids ending in inconsistent states and confusing the end user.

Lastly, B2 uses interaction history to bridge the divide between programming and in-
teractive visualization in the computational notebook. B2 does so by leveraging history in
both programming and interactions. On the programming side, it instruments dataframes
to track the queries expressed in code and synthesize corresponding visualizations. These
visualizations are displayed in a dashboard to facilitate interactive analysis. On the visu-
alization side, B2 reifies interactions as data queries and generates a history log in a new
code cell. Subsequent cells can use this log to further analyze interaction results and, when
marked as reactive, to ensure that code is automatically recomputed when new interaction
occurs. In a user study with data scientists, we find that B2 promotes a tighter feedback
loop between coding and interacting with visualizations. All participants frequently moved
from code to visualization and vice-versa, which facilitated their exploratory data analysis
in the notebook.

1.2 Prior Publications and Authorship

Although I am the main author of the research in this thesis, the work is in collaboration
with my advisor Joe Hellerstein and mentors Arvind Satyanarayan, Eugene Wu, and Remco
Chang. I use the first person plural to reflect the collaborative effort.
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Interaction Snapshots was published in InfoVis 2020 [163]. T arrived at the idea while
working on Dewil [166] with Joe Hellerstein and Eugene Wu. In that work, we explored
different consistency models of the user interface by borrowing concepts from databases.
In particular, the concept of Multi-version Concurrency Control in particular caught our
attention. Remco’s InfoVis and HCI expertise then helped guide the experiment designs,
which was conducted by Larry Xu and I. Larry was a Master’s student at UC Berkeley and
we worked on early design of Snapshots, which we called Chronicles [167]. Three years after
the initial work, I added the dashboard based designs that is the core of the Interaction
Snapshots paper published in InfoVis 2020.

The work presented in DIEL is the result of a two prior publications [166, 161], though
the main work is still in submission. DIEL was initially inspired by Bloom [7], work advised
by Joe. By looking at interactive visualization programming through the lens of distributed
systems, we were able to identify not only ways to improve the programming of interactive
visualizations, but also expose potential UX issues caused by inconsistencies created by out
of order events. UC Berkeley undergrads Lucie Choi and Ryan Purpura helped me with the
programming of DIEL.

B2 was published at UIST 2020 [165]. I proposed the initial plan to Joe Hellerstein and
later Arvind Satyanarayan, who then helped me iterate on the research questions, design of
the artifact, experiment design and the final writing. Ryan Purpura also helped me with the
programming of B2.
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Facilitating Exploration with
Interaction Snapshots under High
Latency

Most interactive visualizations are transient—each interaction replaces the previous state
and updates the visualization with the current specification. Interaction Snapshots augment
these visualizations design with interaction history in an unobtrusive manner. With the
augmented history view, the interactions are no longer transient but rather persisted directly
in the visualization.

We hypothesized that when using snapshots in visualizations with high interactive la-
tency, users can, using snapshots as the stabilizing visual anchor, make multiple interactions
concurrently. In our user study, participants performed analysis tasks more quickly and
preferred the snapshots design. The results validate our hypothesis that interaction history
can be used to improve user experience under high interactive latency.

Interaction Snapshots was published at InfoVis 2020.

2.1 Introduction

Current interactive data visualization systems rely on fast response times to provide a good
user experience. This approach simplifies the design of the visualization Ul and ensures direct
manipulation interfaces that facilitate fluid user data exploration [89]. However, interactive
data visualization is increasingly an integral part of big data analysis. The scale of the
datasets and the required computational power has made it necessary to shift the data
processing and storage to remote databases. In such a client-server architecture, client
interactions are translated into server requests that incur both data processing and network
latency. Ensuring ultra fast response times in the face of all these latencies is often challenging
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if not impossible. The interface therefore should have a backup plan should the latency be
high—the frontend needs to be resilient to high latencies.

Prior work, such as progressive visualization [63, 40, 171, 37, 112] and optimistic visu-
alization [97], have also utilized interface design to deal with latency. However, these ap-
proaches still rely on considerable backend instrumentation, namely online aggregation [64,
63, 82] and approximate query processing [35, 5|. In many settings, designers do not have
the opportunity, desire, or resources to make changes to the backend database systems.

Current UX-oriented solutions primarily address usability challenges stemming from a
single user request. They focus on ways to shorten the time between the frontend sending the
request to the backend and receiving the response. For instance, progressive visualization
updates a single selected visualization with more accurate results over time. But what
happens when the user wishes to make another interaction while the previous is still being
processed? We now discuss the two predominant designs.

One such design is “blocking”, where users are not allowed to perform a new interaction
until the prior ones have rendered. This design makes the most sense when the latency is
negligible, which is often the case when the data is small and fits in memory, such as the
case for Vega [123] which runs on the browser, and Excel. The design is easy to implement
and puts the least amount of load on the backend. As a result, even client-server systems
like Tableau, which may not always guarantee negligible latency, adopt it.

Another common design is to allow new requests to be made and cancel previous requests.
Allowing the user to interrupt existing requests makes the interface more responsive and
ensures that “time-consuming operations that block other activity” can be aborted [69].
The interface renders the results of the most recent interaction only.

If the previous interaction is not cancelled, then more than one pending request will be
processed concurrently, which has potential to reduce the overall latency and improve user
experience. However, rendering interaction responses concurrently runs contrary to direct
manipulation[131, 68], a commonly held user-interface design principle. Direct manipulation
requires that “the object of interest is immediately visible”, which in effect assumes a serial
relationship between a user’s action and the system’s response in a one-to-one fashion. In
contrast, allowing multiple responses to render concurrently behaves in an opposite manner—
when a user interacts with a number of visual elements, the system might not respond to
these interactions in the sequence the user’s actions are performed or to replace the results
too quickly. Both of which can be confusing to users by making it difficult to reason about
the correspondence between interaction and response and to make sense of the responses.

To harness the benefit of concurrent interactions, we must address the design challenge
it imposes. Our approach is to visualize the coordination between asynchronous request and
responses explicitly. We do so by capturing the interaction results in a sequence of snapshots.
This way, each new result of an interaction is appended to a history of results. Snapshots
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provide a stable frame of reference that helps users make sense of uncertain latencies. Given
this easy visual reference, the users could view the snapshots at a later time once the response
is received. Snapshots mediate the asynchronous results through history and create a direct
manipulation experience for multiple concurrent interactions.

Consider a cross-filter application, as shown in Fig. 2.1. After a user makes an interaction,
a snapshot is created and appended beneath the visualization dashboard. The snapshot is a
scaled-down display of the current visualization which continues to load while other snapshots
are appended. The snapshot gives a visual indicator (e.g., spinner) of whether the data is still
being processed. When the user sees the visual indication that the processing is complete,
they can click on the corresponding snapshot, which loads the processed visualization into
the main view for analysis. Users can also navigate through the snapshots quickly with left
and right arrows, which “animates” through the selections.

We evaluated the efficacy of interaction snapshots on dashboards with 6 participants.

Figure 2.1: Applying interaction snapshots to a cross-filter visualization. FEvaluation of
US wildfire data. As users interact, snapshots are created. Users can perform concurrent
interactions where they do not have to wait until the previous results arrive.



CHAPTER 2. FACILITATING EXPLORATION WITH INTERACTION SNAPSHOTS
UNDER HIGH LATENCY 9

Traces of participant behavior demonstrate they can make effective use of concurrent inter-
actions and navigate to different snapshots. Qualitative feedback reveals that participants
find the interaction snapshot design helpful in the face of latency.

2.2 Related Work

Dealing with Interactive Latency: Prior work addressing the issue of latency in inter-
active visualizations can be divided along two axes: whether the solution is provided by the
backend or the frontend, and whether the query is evaluated on whole or samples of the
data.

Backend techniques to reduce latency for queries over all of the data include GPU-based
compute [90, 93, 45], custom indices [88, 139], and prefetching [98, 14]. Backend techniques
for a probabilistic query trade some amount of uncertainty for the reduction in processing
time. These include approximate query processing [5, 35] and online aggregation engines [64,
63] from which progressive visualization [64, 40, 171, 37, 112], which we discuss in the next
paragraph, is based on. While innovations in these backend techniques improve computation
capabilities, they do not eliminate the existence of latency in the real world. Users could be
dealing with legacy systems, large amounts of data, or, sometimes, slow network connection.

Compared to the pure backend efforts, our work is more closely related to progressive
visualization, which streams partial results (containing error bounds) to users. An augmen-
tation to the streaming design is Moritz et al.’s optimistic visualization, which allows the
user to first interact with an approximate query engine, and lets users mark an interaction
as “remembered” for a full, non-approximate, evaluation to check later [97].

We take inspiration from these works’ approach of leveraging design to adapt to the real-
ities of “big data”. In particular, optimistic visualization allows for users to optimize across
interactions, from which our design builds on. However, both progressive and optimistic
visualization rely on approximate query processing. Since on-the-fly sampling cannot cover
every small subset of data, many approximate query techniques also involve precomputing
samples, sketches, or other summary structures [31]. The preprocessing steps require time,
computation, and storage for each precomputed result. The additional effort may be worth-
while for developers who could afford backend changes, e.g., adapting advanced engines like
Sample+Seek. For those who would rather make changes just to the frontend, interaction
snapshots may be a more preferable trade-off—developers just need to add the new UX
technique and potentially limit their interaction designs to avoid ones that would trigger a
large amount of interactions, such as continuous brushing.

Interaction History: Much prior HCI work has used interaction histories to facilitate
user actions. Work in the CSCW community used trails of cursor positions to give temporal
context to the actions of remote participants [126]. In the visualization community, Heer et al.
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model history as a sequence of movements through a graph of application states, presented in
thumbnails in Graphical histories [59]. Feng et al. externalized interaction history by showing
the “footprints” of interactions [38]. Optimistic visualization, as mentioned earlier, also
makes use of history (the “remember” feature) to help users verify approximate results [97].

These prior work inform our design. Feng et al. observed that a direct encoding of
interaction history supports visual recognition of previous interactions. The visual history
does not require users to recall the past, which can be mentally taxing. The observation
inspired us to visualize interaction history to reduce the cognitive challenges to asynchronous
interactions. Graphical histories gave us inspirations for how to design the snapshot for
dashboards, and optimistic visualization gives initial support that users do revisit interaction
history when exploring data.

2.3 Design Iterations

To design with latency, we first analyze different ways interactions are handled in the presence
of latency. The top diagram in Fig. 2.2 depicts a time-ordered model, where time increases
from left to right. User inputs are depicted along the top line (interaction history), and the
responses are rendered along the bottom line (render history). A dashed arrow between the
interaction and render history corresponds to the time to respond to the request.

Fig. 2.2 (1) shows the ideal case where requests respond instantaneously. However, when
there is latency, a number of possible scenarios can occur: (2) shows the blocking case where
the user is not allowed to submit a new request until the prior one completes; (3) shows
the non-blocking case where users freely interact with the visualization and new requests
supersede and cancel previous requests; (4) shows the concurrent case where neither the
input nor the output is blocked. The benefit of this approach is that the total time is
shorter, but the downside is that the interface could be difficult to interpret, especially when
the amount of latency varies (5).

To address the dis-coordination between interaction request and response, as seen in
Fig. 2.2 (4,5), we hypothesize that displaying past interactions in snapshots could serve as a
stabilizing visual anchor. A simple mechanism is to encode the step by which the interaction
was made using a visual encoding channel. The right of Fig. 2.3 shows an example where
selections are rendered in snapshots.

We conducted a pilot study to verify the hypothesis. In the pilot, participants used a
simple visualization shown in Fig. 2.3: a bar chart that displays sales data for a company
across years, split into facets of the months. There are three conditions: baseline, treatment
1 and treatment 2. The first two uses the interfaces on the left of Fig. 2.3, and the last
one the right of Fig. 2.3. The baseline is the blocking interaction, as illustrated in Fig. 2.2
(2). Treatment 1 has the same Ul as baseline, but asynchronously renders the results, as in
Fig. 2.2 (4,5). Treatment condition 2 shows interaction snapshots.
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Figure 2.2: A sequence of interaction requests and responses under different conditions
visualized on a horizontal time axis. Colored arrows represent request/response pairs over
time. Light vertical lines highlight request times. Case (1) is the ideal no-latency scenario
commonly assumed by visualization designers—everything works as expected. Case (2) is a
latency scenario where the user is forced to wait for each response to load before they are
allowed to interact again. Case (3) is another latency scenario but unlike the previous, the
user does not need to wait. Previous interaction responses that are in-flight are not rendered.
Case (4) differs from the previous in that all responses are rendered. Lastly, case (5) shows
an example of (4) where the responses are shown in a different order than the order requests
were issued.

Since asynchronous rendering causes reordering of the results (per Fig. 2.2 (5)), we chose
a visual task that is not order dependent, to encourage asynchronous interactions. For a
bar chart that displays sales data for a company across months and years, we asked users to
identify if any of the months crossed the sales threshold of 80 units sold. We generated data
to ensure the task was not perceptually difficult. There were no data points that were close
to the threshold of 80 units.

We measured the accuracy of the response and the total time to complete a task in
seconds (the time between when the participant is allowed to start interacting and when the
they submit an answer). We also logged all events on the UI, such as interactions, responses
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Figure 2.3: Pilot experiment: on the left is the basic design where interaction results update
in place, on the right is a design that displays snapshots of interaction results as small
multiples.
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Figure 2.4: Comparison of median users task completion times, with the interaction snap-
shots condition being much faster than the others.

received, and response rendered.

We recruited participants online through Amazon Mechanical Turk (17 participants for
baseline, and 30 for the two treatments, 58% with bachelors degree or higher, and 46%
female, ranging from 23 to 67 years of age). Participants were compensated $0.30 per task,
with a $3-5 completion bonus, compliant with Californian minimum wage. Participants were
randomly sorted into either the baseline or treatment group. They were shown instructions
about the task and trained to complete two sample tasks beforehand, followed by 10 actual
tasks.

The differences were in task completion time, shown in Fig. 2.4. We report the unsigned
Wilcoxon Rank-Sum test: baseline median=37 sec (N = 31), treatment (condition 1) with-
out snapshots median=33 sec (N=52), Z=0.63, p < 0.5, and treatment (condition 2) with
snapshots median=17 sec (N=54), Z=3.22, p < 0.002 where N denotes the count of the
group. There were no significant differences in accuracy between the three conditions. We
can see that participants were able to complete the tasks much faster with the snapshots
design. We did not observe a learning effect—there were no significant differences between
the metrics on early tasks and later tasks. We speculate that this is because the participants
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Figure 2.6: Each chart of the plot visualizes median task completion time with 95% CI
(y-axis).

had already familiarized with the interface in the training session prior to tasks.

To understand why this was the case, we visualized the concurrency—the percentage
of task completion time where there was more than one concurrent request. Fig. 2.5 show
that participants could complete tasks faster with higher concurrency tend to complete tasks
faster, which is made possible because of asynchrony and encouraged by the snapshot design.

To ensure that the result also generalizes to other tasks, we conducted a second pilot
study to include two more tasks: identifying the month with a maximum value, and the
month with a certain trend. These two tasks represent the “find maximum /extremum” and
“characterize distribution” tasks in Amar et al.’s analytic activity taxonomy [8]. Both of
these tasks are known to be more challenging than the threshold task in the first pilot study,
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which falls under “retrieve value” in the taxonomy.

Each participant completed the tasks with either no snapshots (baseline) or with snap-
shots designs (treatment). We also have two latency conditions: one is uniformly sampled
from 0 to 1 second (short), and the other is uniformly sampled between 0 to 5 seconds
(long). Each participant completes three conditions (none, short, and long). For each group,
we recruited 50 Mechanical Turk participants.

Again, we found that there were no significant differences in task accuracy and observed
no learning effect. Task completion time, however, was very different, as shown in Fig. 2.6.
We see that participants complete all tasks significantly faster in the with-snapshots condition
when there was long latency.

More qualitatively, participants commented that completing the tasks with latency with
no snapshots is “painful”, “frustrating”, “tedious”, and “awful”. Some explained that re-
sponses were hard to remember— “I had a hard time remembering what 1’d just seen a
second ago.”. In contrast, participants commented on the ease of use when snapshots are
present— “The ability to load several months at once definitely offsets any loading latency
— difficulty was roughly the same as one month with no latency. One month with latency
was a bit painful.”. Interestingly, the perceived speed of loading seemed to have changed
as well— “Some of the tasks loaded really slow, single month got irritating waiting. Most of
the multiple tasks loaded fairly quickly.” While the perception of latency is not the focus
of this study, the feedback suggests the benefits of the use of interaction snapshots beyond
improving task-completion times [53].

The interaction snapshots design was not free from fault. One participant commented
that “It took a few tries to get used to how it worked”. We also see evidence of this in
Fig. 2.6—under the no-latency condition, participants took on average longer to complete
tasks when using the new design compared to baseline.

2.4 Dashboard Snapshots: Design and Evaluation

The pilots evaluated interaction snapshots’ effectiveness on a single visualization for fixed
tasks. We now evaluate the technique for a more complex setting—dashboard—with open
ended exploration.

One key design challenge with snapshots for dashboard is space. Replicating the interac-
tion results as small multiples is not feasible for dashboards. We address this constraint by
creating a separate representation of the snapshot—a smaller “thumbnail” view, much like
Graphical Histories [59] and Pangloss [97], which can be clicked on and expanded. Fig. 2.1
is an example application of the technique on a cross-filter visualization of wildfires in the
US [71]. The interaction details and code are included in supplementary materials.
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Figure 2.7: On the left is a visualization participants’ interaction traces while exploring
US wildfire data. The traces visualized are interactions—which contains both concurrent
interactions (concInteract), and non-concurrent interactions (interact). On the right is
the percent of concurrent interactions of all interactions made.

Methods

Rather than assigning participants specific tasks (as in previous pilots), we plan to observe
how participants explore data and report qualitative metrics. First is whether and how much
the participants make use of concurrent multiple interactions. A higher usage would suggest
that the snapshots design is able to facilitate concurrent interactions, and that it is useful to
the participants. Second is how often snapshots are revisited—the more participants engage

in older snapshots, the more they are leveraging interaction snapshots’ unique capabilities.
Third is direct feedback.

We conducted a first-use study with 6 users, all college students who have taken data
science courses, with a self-reported “somewhat experienced” with visual data analysis on
a b-point Likert scale (u = 3.0,0 = 0.89). Due to the COVID-19 “shelter-in-place” order,
we conducted the studies over video. We began each study with a 5-minute tutorial of the
interaction snapshot enabled dashboard on mass mobilization protest data [27], and then
asked participants to analyze US wildfires using a similar dashboard (Fig. 2.1). Participants
were prompted with a specific question (“identify the states with the most wildfires in the
years 2000 to 2004”) followed by free-form exploration for about 8 minutes. Then, partic-
ipants verbally summarized their findings. All interaction latency was set to between 5 to
7 seconds. At the conclusion of the study, we administered an exit survey to measure the
effectiveness of the interface and to debrief participants about their experiences. The session
took 20-25 min and participants were compensated $15 in Amazon gift cards.

Quantitative Results

We instrumented the interface to log all user interactions, including interactive selections
of elements in the charts, navigating to prior interaction states, and scrolling through the
snapshots. To analyze this data, we visualized the traces in Fig. 2.7. For the interactions
that happened before the completion of the previous interaction result (since there is a 5
to 7 second delay), we mark them as concurrent interactions (concInteract, as labeled
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in Fig. 2.7), and the rest of the interactions as interact. We also provide a distribution
of the percent of concurrent interactions out of all interactions in the bar chart to the
right, with (4 = 0.38,0 = 0.10). Participants interacted with the interface on average
20 times (u = 20.33,0 = 5.99) during the session, and navigated twice that on average
(u=43.17,0 = 17.49).

On 5-point Likert scales, participants positively rated the interface overall (u = 4.33,0 =
0.47), as well as the history feature (1 = 4.17,0 = 0.69). In terms of how frustrating the
delay was, participants rated it as only a little (u = 2.0,0 = 0.58).

Qualitative Results

We observed participants quickly grasped how to make use of concurrent interactions through
the snapshots. One common pattern was to make multiple interactions concurrently when the
participants had a question in mind. P3 mentioned that it was “nice to have [the interaction
result] pre-loaded”, and that reminded them of “opening search results in multiple tabs [in
the background] when browsing web pages.” P6 also indirectly commented that “Tabs [i.e.,
snapshots| made the wait less painful/annoying.”

However concurrent interactions were not always used. When participants had a specific
question or targets in mind, such as “I want to compare how different causes of fires differ
geographically”, they knew exactly what interactions they would need and opted for con-
current interactions. When the participants did not have such a question, they relied on the
results to their immediate selections to generate ideas for further interactions. Hence they
waited for the response to load instead of making other interactions while waiting.

Interestingly, the snapshots still proved useful while they waited. P4 mentioned that
when they were waiting for the result to load, they would “look at the history to remember
what I was doing earlier to keep track of what I'm looking for”. P1 also used the delay to
positive effect, saying that “the delay gives my brain a time to reflect on what I'm expecting
and what to do. I think it’s actually better [than instantaneous responsel.” None of the
participants found the delay to be worse than “a little frustrating”.

All of the participants browsed through history when summarizing their findings (the
final task), recalling relevant insights they made prior. The evidence is shown in Fig. 2.7, a
visualization of participant activities. The visualization records “navigate” events, which is
created when a user navigates to a different snapshot. In the figure, we can see dense patches
of navigate ticks towards the end of the sessions. Qualitative feedback also corroborates
this pattern: P6 mentioned that “History tool allowed me to go back to my previous thoughts
easily, and made it easy to reference observations.”

Participants also desired more features. P4 mentioned that the snapshots quickly became
cluttered, which made it difficult to navigate and detracted from the positive aspects of
history. P3 suggested ways to introduce more guides for the snapshots, such as adding text
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Figure 2.8: Fig. 2.1 showed an example where the charts pending updates are completely
replaced by a spinner (see the last three snapshots) to indicate the loading status. This figure
shows an alternative design. The loading status of the chart is indicated by the transparency
of the chart plus the “loading...” text. More importantly, the “base” chart (light blue portion
of the Cause chart to the right) is kept despite not having received a response. This way, the
user can directly make another interaction without having to navigate to another snapshot
where the chart has loaded.

to describe the interaction, or a way to either arrange or color encode the snapshots by the
chart interacted with. P3 and P4 asked about the ability to remove snapshots that they
found irrelevant.

2.5 The Interaction Snapshot Design Process

Having presented examples of interaction snapshots, we now conclude with a generalized
design process. Interaction snapshots require three elements: (1) the user’s past interactions,
(2) the effect of each interaction, and (3) the temporal ordering of the interactions. Together,
they show the correspondence between the user’s interaction requests and the response of the
system over time. There are different ways to satisfy these requirements. For the bar chart,
we used the position encoding channel, which can be applied to other single visualizations.
For the dashboard, we used snapshots, which can be applied to other multiple coordinated
visualizations.

Interaction snapshots prescribes some design choices and leaves others intentionally under-
specified, such as how the visualizations update before the response is received, including
the design of relevant spinners and removal of previous results. These designs are not part of
Snapshots because the interface likely already has a preexisting design that composes with
the addition of snapshots. While these designs compose, there are still some design lessons
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Figure 2.9: Illustration of different ways the snapshots could be created for the interactive.
The design on the right does not have visible snapshots and we found it less conducive to
concurrent interactions and does not improve the UX under high latency.

that we learnt from our own implementations. We now share these lessons with readers
interested in applying Snapshots.

Easier Concurrent Interactions The running example implements the UX where charts
with pending interaction results are immediately replaced with spinners. This means that
the user cannot directly continue to make a new interaction on the chart. Rather, the user
would have to go to a previous snapshot to interact.

To remove this additional hurdle , the designer could make a simple modification. As
illustrate in Fig. 2.8, the the base interactive visualization is preserved despite the loading
of the linked chart. Since the underlying chart is stable across interactions, the user could
continue to make another interaction directly. There are other plausible designs for indicating
that the system is processing, and we defer the reader to existing literature [127, 126].

Loading Indicators. When a dashboard is complex, it may become difficult to see if the
result has loaded in a snapshot. Being able to see the snapshot results at a glance helps users
navigate multiple snapshots quickly. To make the results more visible, we can visualize the
loading status into an encoding channel, such as the color of the snapshot bounding box, or
a colored dot or spinner.

Ensuring Snapshots Visibility. Snapshots of visualization dashboards easily run into
interface real-estate limitations and we found it important to ensure that snapshots are
immediately visible.

For example, for the initial interface used in our user study, we appended full-sized snap-
shots to the interface (right of Fig. 2.9). Users had to scroll to up to see prior interactions
results. Furthermore, they do not have an immediate sense what snapshots has finished
loading. Both of these factors discouraged participants from performing concurrent interac-
tions.
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Another example of ensuring snapshot visibility is automatically scrolling the newest
snapshot into view. This makes it easier for the user to locate their current interactions.

In general, these findings and design reflect the core idea that snapshots only are as
effective as their ability to help users navigate multiple concurrent interactions.

Implementation Method. Asynchronous interactions are notoriously difficult to imple-
ment. However, the snapshot design obviates the complexity of coordinating asynchronous
events by allowing the developer to append new results to the current view. When the re-
sponse is missing, simply render a spinner (or any other progress indicator) in its place. By
recording the request/response pairs into a log, the entire interface becomes a visualization
of the event log data. Chapter 3 will present a programming library that provides direct
support for this programming pattern based on event logs.

2.6 Conclusion

Through many pilots and design iterations, we explored aspects of the design space for
multiple concurrent interactions. We found a positive answer to our initial question of
whether frontend design alone could offer some alleviation to the pain of latency.

Limitations and Future Work

While our findings inform us of the utility of the snapshots design, there still remain impor-
tant questions unanswered. Since we have only evaluated the latency of around 5 seconds,
we do not know exactly how much latency the snapshots design could permit.

Our hypothesis is that the latency that the snapshots design “buys” the system is con-
gruous to the time it takes to comprehend the visualizations and formulate a question. Of
course, the exact duration would depend on the visualization, the goal of the exploration,
and the participant’s data analysis experience. Future work can aim to identify the common
range from a distribution of data collected. For instance, we anticipate that a latency of
an hour will certainly prove the interface unusable for interactive explorations even with
snapshots.

Future evaluations could explore eliciting subjective user experience and measuring quan-
titative metrics on a spectrum of latencies. Following prior work [89], we can systematically
study how snapshots change user behavior in terms of their rates of making observations,
drawing generalization, and forming hypothesis. We can also compare interaction snapshots
and progressive/optimistic visualizations [97].

Another concern with snapshots is balancing the trade-off of cognitive ease versus com-
plexity. On the one hand, we see that snapshots facilitates concurrent interactions, which
makes latency less taxing. On the other hand, we see that users have to put in additional
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effort to make sense of snapshots. Given that prior work on using history to facilitate web
searches and data analysis have seen mixed results—ranging from limited adoption [10, 59,
56, 118] to widespread success in computational notebooks [79]—we need a longitudinal
study to more accurately evaluate the efficacy and trade-offs of the snapshots design.

Besides studying the long-term utility of Snapshots, we can also explore ways to make
it more usable. Following user study feedback, we can further develop controls around
the snapshots such as editing and organizing. Another option is to augment the linear
history with when users “branched” off into a different interaction to capture richer context—
the snapshots could double as an interaction provenance graph. More broadly, interaction
snapshots present opportunities to bring features common in literate computing to interactive
visualizations.
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Chapter 3

DIEL: Interactive Visualization
Beyond the Here and Now

We continue to investigate the use of interaction history to facilitate interactive visualizations
over remote datasets. In this work, rather than the interactive experience, we look to the
programming experience.

When working with large datasets, the design challenge is latency and the programming
challenge is complexity. Scaling from a browser-based application to one that leverages
compute on remote databases adds complexity because the system is now distributed: data
is on both the client browser and a remote database. As a result, handling interactions is
now much more complex. Developers need to communicate asynchronously between the
client and the remotes, sometimes translating between two different languages (JavaScript
and SQL).

To address this challenge, we found that interaction history allows us two critical capa-
bilities. First, capturing the interaction in an event log unifies events as data. This makes it
possible for the programmer to define the application state more declaratively. Second, the
logs provide the temporal context of events, which allows the programmer to reason with
more user friendly, non-blocking, designs of the interface.

We make use of these two capabilities in the DIEL model and prototype. Through a
series of performance, notation, and example based evaluations, we validate that history is
not only a useful construct for design, but also for programming.

3.1 Introduction

Recent advances have made authoring browser-based interactive visualizations quite simple,
via novel abstractions for specifying encodings [157, 19], layout, data transformations, and
interactions [125, 122]. Critically, these abstractions enable declarative specification: devel-
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Figure 3.1: Example interactive visualization use cases “beyond here and now”. (1) An inter-
active visualization over a databases, where the data is remote and the events are evaluated
asynchronously. (2) A streaming interactive visualization where a new data point arrives
within the existing brushed selection (colored green with dotted line), creating potential am-
biguity for the brush selection behavior. (3) A collaborative interactive visualization where
multiple people are interacting with a visualization and their activities are shared asyn-
chronously. (4) “Scented” visualization where prior interactions are shown to provide users
with analysis context.

opers can compose these visualization elements and defer execution concerns to the toolkit
runtime. Declarative abstractions thus enable developers to build and iterate on designs
quickly and expressively, while reducing the errors that would arise from imperative imple-
mentation [58, 125]. However, these abstractions do not gracefully support use cases where
data may be distributed across multiple locations, or where events cannot be synchronously
handled to completion. To illustrate, we discuss two interactive visualization settings—one
quite traditional and another more complex—and reflect on the difficulty of addressing these
issues with current practices.

Consider the client-server architecture, a classical design for scalable interactive visualiza-
tions that remains common even in recent research [98, 97]. A concrete example is shown in
Fig. 3.1(1), where the brush selection over the scatterplot is computed by a remote database.
To handle the brush selection, a developer can no longer rely on existing declarative abstrac-
tions (e.g., Vega-Lite’s selections [122]) alone. Instead, they must now translate interaction
logic from a visualization specification to the query language of the database, network with
the remote database, and manually bookkeep the provenance of interactions and database
responses to ensure that the interface is displaying the correct results, in the correct order,
in the face of non-deterministic processing latency.

A more specialized example is streaming data, increasingly investigated in research [168,
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83, 154] and industry [173]. An example is shown in Fig. 3.1(2), where the points can be
streamed in the scatterplot and selected by a brush interaction. The two processes— the
user’s brushing interaction, and the tweet stream — introduce ambiguity about what should
happen when both attempt to update the visualization concurrently. For instance, consider
the case when a new point streams in, falling within a brushed region. Should this new point
be part of the existing selection, or should it be isolated in a new separate selection? Should
the new point be blocked until the user removes the brush selection, or should the point
be added and the brush selection removed? These decisions can be further complicated if
the brush selection is processed by a remote server, which introduces another asynchronous
event that multiplies the complexity.

For a designer to explore decision space fluidly [46], we want to to minimize the friction
of experimenting with these choices. But distributed and streaming visualizations still have
a high programming barrier, despite progress on declarative libraries for browser-based data
visualizations. The effect is that designers get “cornered” into whatever is easiest: for
example opting for a high-latency blocking design, or disallowing users from interacting
with streaming data, purely for ease of implementation rather than superior usability. To
improve design fluidity in these use cases, we identify two key abstractions that are missing
from existing interactive visualization frameworks:

Distributed Data. Data is increasingly distributed at different compute nodes (e.g., across
a browser and a remote database). As such, developers currently need to write code to access
the data, which they often need to further optimize. Our goal is to develop abstractions that
(1) free developers from sending data manually between local and remote processes, (2) allow
developers to easily change their data storage and compute sources (e.g., between the main
browser thread, a WebWorker [99], a local database, or cloud databases) without rewriting
their application code, and (3) unobtrusively perform low-level optimization (e.g., caching).

Asynchronous Events. When data is local on one client, user interactions are the only
events that a developer has to work with. Thus, computation caused by interactions, such
as filtering data based on a selection, can be handled synchronously. However, when data
is remote, asynchronous events are the norm: responses from a server, streaming data from
real-world events, or events generated by other users. These asynchronous events are outside
of the application’s direct control and, thus, have to be handled as they arrive. Our goal
is to develop abstractions that allow developers to (1) create consistent user experiences in
the face of concurrency and out-of-order execution, and (2) easily experiment with different
designs for handling asynchronous events.

To effectively work in this new paradigm of distributed data and asynchronous events,
we adapt two patterns from the field of distributed systems programming;:

Logical Constraints. Rather than imperatively manipulating data, developers express
logical constraints (i.e., queries) over data, and the system determines the methods used
to execute the queries [28, 113]. By decoupling the how from the what, logical constraints



CHAPTER 3. DIEL: INTERACTIVE VISUALIZATION BEYOND THE HERE AND
NOW 24

allow the system to plan and optimize the execution of the query (possibly spanning multiple
databases) [113], relieving the developer of this burden. This approach also has practical
implications. In particular, SQL and data frame libraries express logical constraints over
data, and have been widely adopted by developers and database engines [133, 108, 9] alike.

Immutable Events. Past events, along with their time steps, are stored as an immutable
log by the system. Developers declare the current state of the application as a logical
constraint over the immutable log rather than transiently handling events and mutating state
via side effects [62, 7]. As a result, developers can coordinate events declaratively without
worrying about how to update the application state through callbacks over transient events.

In this work, we bring these ideas from distributed systems programming to the context
of interactive visualization. DIEL' models interactions and asynchronous data computation
events as timestamped records in event tables, and the state of the interface as a query over
the event tables and data tables. The DIEL runtime maintains an event loop to reevaluate
queries as event tables change, ensuring that the interface is responsive to interactions. With
DIEL, we are able to achieve the requirements outlined earlier — developers no longer need to
implement low-level networking with remote databases or perform optimizations, and have
a way to easily coordinate asynchronous events that maintain a consistent interface.

To evaluate DIEL’s expressiveness, we construct a diverse set of interactive visualizations
over distributed data and asynchronous time. Examples include ways to handle request-
response asynchrony [166, 163], interactions on streaming data, composing two related in-
teractions, and interaction scents [158, 38]. These examples show that DIEL’s abstractions
allow developers to rapidly and concisely explore different interface designs. We also present
a heuristic analysis of the usability of these abstractions using the Cognitive Dimensions of
Notation framework [17], highlighting both gains to fluidity, and compromises to premature
commitment. Finally, we verify the viability of DIEL through performance measurements of
a prototype, and show that DIEL adds low overhead and scales as data increases in size.

3.2 Related Work

DIEL builds on prior work in databases, visualization systems, and distributed systems pro-
gramming.

Database and Visualization Systems. Research at the intersection of visualization and
database systems has traditionally focused on enhancing performance —for instance, by of-
floading data aggregation and filtering to a remote database [134, 97] or by embedding a
high-performance database-like query engine into the browser [122]. In contrast, our work is
not motivated primarily by performance but instead by the programming experience of visu-
alization developers. In particular, DIEL should be thought of as a programming abstraction

I Declarative Interaction Event Log
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between a database and a client. Although DIEL embeds a SQL query engine in the browser,
it does so for its benefits as a programming construct, and its ability to interoperate with a
remote database. Critically, DIEL is agnostic to the specific database system, which could
range from a SQLite instance in the browser’s main thread [92], to commonly used databases
on a server, such as SQLite, Postgres [108], or new research systems [90, 111].

FORWARD is a general web application programming framework that directly binds
database records and query results to DOM elements [41]. DIEL is similar in that it man-
ages how elements in the visualization are updated based on changes in the underlying
database that represents user interactions. However, DIEL uniquely addresses the challenges
of asynchronous events, which are shown to be especially challenging for interactive visu-
alizations [166]. DIEL does so through a novel declarative programming API over event
histories.

Visual Programming over Tables. There is a close connection between visual query-
ing and textual queries— visual querying systems combine textual query specification with
direct manipulation and data visualization. For instance, VIQING maps visual selections,
joins, and reordering to SQL operators [102]. Polaris endowed the pivot operator with pow-
erful interactive capabilities [134]. Wrangler brings together interactions and a query based
DSL for data transformations [72]. B2 leverages query lineage to instrument interactive
cross-filtering visualizations in computational notebooks [165]. DIEL builds on these close
connections using relational queries to define the data transformation logic of interactions.
However, DIEL differs from these systems in that it is a programming abstraction and a
middleware layer for general purpose interactive visualization programming.

Interactive Visualization Libraries. While DIEL makes use of interactive visualization
libraries, such as D3 [19] and Vega [122], it is not one itself. DIEL relies on the front-
end visualization libraries to map data to visual encodings, perform visualization-specific
transformations (such as voroni, treemap, or wordcloud [144]), create interactors, and capture
selection values. Existing abstractions in these libraries support interactions in a synchronous
setting where the computation is expected to finish immediately. As a result, the events are
also transient by default and assumed to be unnecessary for subsequent events. In contrast,
DIEL supplements existing frontend visualization libraries by filling in the gap of working
with distributed data and asynchronous events. Of particular note is how DIEL differs from
Vega, which also models interaction events as streaming data. Like other libraries, events in
Vega are transient by default and, although a rich set of data transformations are offered,
they only operate over client-side data. DIEL, on the other hand, records all events into a
persistent log and offers a simple set of relational abstractions over distributed data. Future
research could consider how to further extend Vega’s dataflow abstractions [125, 124] to
better integrate with, or adopt DIEL’s abstractions.

Frameworks for Provenance and Asynchrony. With current programming paradigms,
developers need additional instrumentation to support features like logging or undo/redo.
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For example, Trrack is a purpose-built library that augments existing interactive visual-
izations with a provenance graph of state history [32]. DIEL, in contrast, offers a more
general-purpose set of abstractions which provide provenance tracking via first-class event
histories.

Similarly, to be able to share and synchronize multiple users’ changes over the network,
programmers of collaborative groupware applications rely on special-purpose frameworks.
Toolkits such as Janus help developers resolve concurrent and possibly conflicting events to
ensure that each participant views a consistent artifact [126]. DIEL takes inspiration from
these systems, e.g., the time-stamped events in Janus [126], but also adds specialization for
interactive visualizations, such as providing support for working with distributed data and
tracking request-response provenance. DIEL was directly inspired by distributed program-
ming language research, notably the Bloom [7] language and CRDT [110] data structures.
Like Bloom, DIEL focuses on the semantics of atomic timesteps immediately after the user
interacts, helping developers reason about out-of-order events. DIEL differs from the prior
work in its focus on reifying a log of history as a core aspect of its data model.

3.3 Programming Interactions Across Space & Time

To address the challenges of asynchronous events and distributed data, we look to distributed
systems programming for inspiration and adapt the ideas to interactive visualization pro-
gramming.

Asynchronous Interactions: Immutable Events

Asynchronous events, unlike their synchronous counterparts, need to be coordinated by
developers to ensure a good user experience [166]. This coordination can be challenging
as developers need to maintain relevant information of past events and selectively trigger
event handlers. And, since different parts of the event handling and bookkeeping logic are
scattered across functions and variables, these imperative bookkeeping and callbacks can
become tedious to maintain and prone to errors. This situation is exacerbated when new
types of events need to be supported (e.g., a new interaction). To address these challenges,
we look to key methods in distributed systems programming.

Events as Data. An important technique in distributed systems programming is making
events immutable and first class [62]. Events are stored as a log, and the state after each
event is defined as a function (or query) of the log [3]. This design abstracts away the details
of maintaining state (no more mutations with callbacks) and makes it easier to reason about
the consistency of the application [7]. We can apply this framing directly to interactive
visualizations: user interactions are events, and queries over these events (and other tables)
can specify the state of the interface.
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Atomic Timesteps. Compared to synchronous events, asynchronous events can, by defini-
tion, arrive out of order. This behavior can lead to a variety of “inconsistent” visualization
states, as documented by Wu et al. [166]. One simple example is naively rendering a response
when it is received, even if it is for an “old” interaction made prior to the most recent one.
To deal with unpredictable sequences of events, developers need to reason about what prior
events occurred, and when they did so.

Given this challenge of inconsistency, one obvious solution is to synchronize the events.
However, this solution violates a core HCI principle: responsiveness [68, 69]. Making events
synchronous means that the user is blocked from performing new interactions until their
previous interaction result has been executed completely (including being sent to the server,
computed on the server database, received by the client, and rendered to the UI). As this
process can take a significant amount of time to complete, making the interface unresponsive
yields a frustrating user experience.

To maintain a smooth user experience, it is important to work with asynchronous events.
Here, one idea from distributed programming is particularly helpful: atomic timesteps [7],
whereby the system guarantees an atomic unit of evaluation by computing the state of the
application in full before admitting another input event. With atomic timesteps, developers
reason independently, “frame by frame”, about what computation needs to be computed
synchronously within a given timestep. Moreover, developers can reference the explicit
timesteps stamped on events, with the guarantee that an event with a smaller timestep
precedes an event with a larger timestep. Finally, developers can be sure that the interface
satisfies the constraints specified at every timestep, which could support robust UX in the
face of asynchrony.

Distributed Data: Logical Constraints

To be able to scale an interactive visualization application, a developer must be able to
flexibly change where the data is stored and computed upon. They may initially build
a prototype over small datasets that are stored and computed in the main thread of the
browser. To use a larger dataset, they may utilize WebWorkers [99], which allow the data-
rich tasks to run asynchronously in the background and not block the interface. Then, as the
developer deploys the application to real-world datasets, they may move the computation to
a database on their local machine or a cloud database.

To achieve this flexibility, the system should abstract data access details from developers.
The field of databases has tackled this problem using a concept that is not unfamiliar to
interactive visualization developers: relations (also called tables). Relations are sets of data
tuples with a fixed schema, and computation over relations is governed by an algebra of
select, project, join, and group by operators [28]. Relational query languages bring with
them two important properties for our purposes:
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Physical Data Independence. Currently, to change from storing and computing data
in the main browser thread to any other options requires custom code: developers may
need to map interaction logic from JavaScript to SQL, handle the database connection, and
perform networking. This work is needed for two reasons. First, developers often specify
how to access the data. If the data location changes, the program changes. Second, the
computation abstractions on the client and other locations may be different. Relational
languages can address both of the factors. They allow developers to specify what data to
access, making the program independent from the physical details of the data. Furthermore,
if a standard relational language is used everywhere, be it the client, a WebWorker thread,
or a remote database, the developer can work with one abstraction and not have to translate
between specifications.

Rich Optimization Currently, developers may implement optimizations manually, such as
caching. This is not ideal for two reasons: one is a higher programming barrier, and another
is that the developer may not have enough time for more involved optimizations beyond a
simple cache. Relational languages relieve the optimization burden from the developer and
allow the system to compile the logical specification into a physical execution plan, using a
wealth of optimization techniques [113].

3.4 The DIEL Model

To address the challenges in Section 1, DIEL manages user interactions, remote databases,
and the communication between local and remote. On the browser frontend, the developer
specifies the data that the user can interact with and select (e.g., using Vega-Lite [122]) and
translates them into events that are sent to DIEL via its JavaScript API. DIEL stores events in
the local in-browser local database and manages query processing on the remote databases,
which are connected to DIEL through a set of remote-side APIs. Through standard database
connection libraries such as node-postgres and sqlite3, DIEL allows the developer to connect
to remote databases ranging from SQLite, to PostgreSQL, to cloud databases like Amazon
Redshift.

Note that remote databases and their asynchronous complexities can arise in surprising
settings. In addition to databases on remote servers (such as Redshift), remote databases
also arise when data is managed by a different process on the user’s computer. For instance,
browser WebSockets communicate with the web page’s main thread via asynchronous mes-
saging. For this reason, DIEL is designed to work for any distributed database setting,
irrespective of whether the databases are on the cloud.

The developer provides a specification that DIEL uses to coordinate query processing be-
tween the local and remote databases. The specification defines the application state that
DIEL will manage, and is written in a SQL-like language. We chose SQL as the basis be-
cause it is the most widely used data processing languages today [103], and is familiar to
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Figure 3.2: Example code using DIEL to power the interactive visualization of wild fires in the
US. The user can click on a US state to filter the distribution of fires over the years (3). To
create this visualization, developers use DIEL in conjunction with data visualization libraries
and remote databases (1). Developers query over timestamped event logs (selection) and
base dataset (fire) to specify the state of the application (a logical spec (5)), and DIEL
orchestrates the computation between the local and remote databases (an execution plan

(2)).

developers working with large datasets. However, DIEL is not tied to SQL, and alternative
relational languages. It is straightforward to layer a data frame-like API atop DIEL’s abstrac-
tions. Given the specification and runtime API calls, DIEL coordinates the local and remote
database to exchange data and query results. The query results then update visualization
state back to the application via a JavaScript API so that it can render results and update
the visualizations.

We next discuss how developers specify different types of application state, and how it
is managed during run time. Fig. 3.2 depicts the running example, and Tables 3.1 and 3.2
summarize the syntax.

Data Model

Static Visualizations Static visualization is a well-accepted domain, where tabular data
is fed to APIs that implement a grammar of graphics [122, 157]. For static visualization,
DIEL is responsible for preparing the data to be rendered, and invoking the visualization
API when the data is ready. The tables used to create visualizations could either be stored
tables or the results of queries. For instance, in Fig. 3.2, the map visualization maps the
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’ keyword ‘ syntax CREATE ‘

event EVENT TABLE <table_name>(<column>)...
EVENT VIEW <view_name> AS SELECT...
output | OUTPUT <output_name> AS SELECT...

Table 3.1: DIEL syntax for creating tables. An EVENT TABLE stores the history of an event.
Developers can access the table with two additional columns maintained by DIEL: timestep
(logic time of the event) and timestamp (wall-clock time of the event). An EVENT VIEVW is a
named SQL query (view) that spans the local and server databases. Developers access these
views the same way they access event tables, with an additional column request_timestep,
which indicates when the view was requested. An OUTPUT is a view whose results, after each
timestep, are evaluated and passed to the rendering function bound via the BindOutput API.

fields (us_state, count) from the query result in (5B) to polygons and fill color in the
visualization. When the application is first loaded, DIEL evaluates the initial queries to
render the static visualizations. Using the BindOutput API (6D), the developer registers a
callback rendering function that is called when the query results are updated. The developer
annotates the queries that the rendering function will access using the OUTPUT keyword. The
system will use the information to inform the dataflow as well as instrument the BindOutput
APL

Events DIEL stores events as timestamped tables. When the developer defines visualization
interactions, such as selections, the data records that are selected are ingested into DIEL
through the NewEvent API and stored in tables. For instance, the selection on the map (3A)
is mapped via a Vega listener (6A) and stored in the selection table (5A), with a single
column, us_state, representing the state selected, e.g., “CA”. An event may be one or more
rows. At runtime, each new event is augmented with a logical timestep, which we discuss
in Section 3.4 , and a physical timestamp, recording the wall-clock time of the event. Other
external events, such as those generated from an automated process in the browser on behalf
of the user (e.g., timers), follow the same model.

Developers mark event tables with the EVENT keyword (5A). DIEL generates the corre-
sponding JavaScript handler for the API NewEvent. Developers are free to use their favorite
frontend libraries (e.g., Vega-Lite, D3) to generate events; they simply invoke the DIEL API
to store new events in the event table.

Interactive Visualizations User interactions add events to DIEL event tables that ulti-
mately update the visualizations. This happens naturally because the developer can query
the EVENT tables in the same way as any normal data table. Any such queries marked with
OUTPUT will automatically generate the corresponding BindOutput API to register a rendering
function callback (used in e.g., 5D).
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’ API ‘ syntax ‘
input | diel.NewEvent(’<event>’, <object>)

output | diel.BindOutput (’<output>’,
<rendering func>)

Table 3.2: DIEL JavaScript APIs to interface with the frontend. NewEvent takes in events from
the developer, e.g., user’s selection. BindOutput binds the outputs to a rendering function
specified by the developer that takes a table and renders a visualization.

When a developer is working with a remote database, they need to query across both
the local and the remote databases. For instance, the fires table is on a remote database,
whereas selection is in the local database. DIEL automatically manages the asynchronous
communication between the two databases. Due to this asynchrony, we treat such queries as
events as well, and ask developers to explicitly mark these queries with EVENT VIEW so they
are aware of the table being an event log (despite the fact that DIEL can automatically detect
them). For each EVENT VIEW, DIEL maintains the corresponding timesteps of the event that
caused its reevaluation, and stores the timestep values as a column named request_timestep
in the EVENT VIEW. Developers then use the data in EVENT VIEWs to specify OUTPUTSs, with the
help of the timesteps to specify how asynchronous events should be handled in the face of
out-of-order events.

For example, the line chart in Fig. 3.2 (3C) visualizes the distribution of fires by year.
The query in (5D) fetches the distribution of fires based on the us_state selected: it combines
the fires and selection event tables using the JOIN operator, and then filters the rows in
fires by applying the filter on the selected us_state selected using the WHERE operator. (5C)
is a query that selects the year distribution results of the most recent interaction is selected,
based on the timestep data. This ensures that the interface displays the correct data despite
out of order responses.

DIEL Execution

DIEL orchestrates the local database and one or more remote databases in response to new
events. Each event is evaluated synchronously in the local thread, corresponding to one
logical timestep. As a result, the application-level effects of events with more recent logical
timestamps are guaranteed to occur after events with earlier logical timestamps. From the
perspective of the local database, user interactions and responses from remote databases are
both events, however they are handled slightly differently, as described in Fig. 3.3.

Interaction Event: The application creates new events from user interactions (la), and
inserts them into the corresponding EVENT TABLE using the NewEvent API call (1b). DIEL re-
computes the local OUTPUT tables, and triggers the corresponding render function callbacks



CHAPTER 3. DIEL: INTERACTIVE VISUALIZATION BEYOND THE HERE AND

NOW 32
? . .
interaction data
..... remote
P handler renderer database
O\ -
- =
N— —_—
DIEL client
l DIEL remote

Figure 3.3: Illustration of the DIEL runtime. The dashed arrows indicate asynchronous events
that advance the system logical timestep forward. There are two in this diagram, one from
user interaction (green) one from a database response (orange). The solid arrows indicate
synchronous evaluation after each new event.

(1c). Finally, DIEL handles any EVENT VIEWs that depend on the new event. If it accesses
remote data, DIEL first sends the appropriate query to the remote database and handles the
response as described below (1d). Otherwise, DIEL executes the local EVENT VIEW query.

Data Response Event: Once the local DIEL runtime receives a response from a remote
database (2a), which is tagged with the originating event’s timestep, it calls NewEvent to
insert it into the EVENT VIEW. Finally, the OUTPUTs are reevaluated, and the results are sent
to the application rendering functions.

3.5 A Prototype Implementation of DIEL

To verify the feasibility of the DIEL model, we implemented a prototype. It ingests a DIEL
specification and produces a distributed dataflow that is executed in conjunction with the
frontend JavaScript libraries and backend databases. There are two main challenges in
this process. First, queries over distributed data cannot be executed directly since the
computation requires data to be co-located. Second, the DIEL model poses performance
challenges.

An implementation should both create a dataflow such that necessary data is exchanged
between the local and remote databases, and overcome these performance hurdles to keep the
interface responsive. As such, DIEL builds the distributed dataflow in four phases. The first
three phases address the challenge of distribution, and the last phase address the challenge
of performance.

Two libraries manage these steps: (1) alocal (browser-based) library updates the JavaScript
state, and (2) a remote library configures access to the remote database. The developer pro-
vides these respective libraries with the connection configurations (e.g., Fig 3.2 (4) and (6)).
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In the first step, DIEL parses and compiles the specification into an abstract syntax tree
that captures the relational operations between tables. The tree diagrams in Fig. 3.2(2)
(left) illustrates that of the running example. With the tree of operators, DIEL can now
reason about the data exchange needed to co-locate tables for evaluation.

To reason about the exchange, DIEL next identifies the tables and their schema in the
remote databases, i.e. a table catalog. Then, with the catalog, DIEL identifies queries that
involve tables on both the local and remote databases. DIEL determines, for such queries,
what data need to be exchanged between these databases. This process transforms the
high-level logical specification into a distributed dataflow that can now be executed.

An example of such a transformation done by the current prototype is shown in Fig. 3.2(2)
(right). DIEL decides to perform the evaluation of yearDistributionEvent on the remote
database, thus requiring the selection table to be sent over the network to the remote
database from the local database, and the result yearDistributionEvent to be sent over
the network from the remote to the local database. The output yearDistribution is then
evaluated within the local database upon each step. Note that this is not the only distributed
dataflow possible. Alternative implementations of DIEL could instrument more advanced
algorithms that can further optimize for performance by changing what data needs to be
shared over the network . This can be done by partitioning the execution of queries into
more granular subqueries.

In the final phase, DIEL optimizes the physical execution plan from the previous step.
Four mechanisms are used.

1. Selective output invocation. Interactive dashboards often contain multiple visualizations,
and sometimes ones with many visual elements that are expensive to render. A naive plan
will reevaluate all the queries and re-render all the visual marks, which could block the main
browser thread from responding to user events. To address this issue, the DIEL prototype
analyzes the execution plan and builds a dependency graph of the DIEL queries. Using the
dependency graph, DIEL selectively evaluates and invokes rendering functions for only the
output views dependent on the current event.

This issue can be addressed via static analysis of DIEL queries at compile time. From
the queries, we can extract dependencies across queries, views and tables syntactically. For
example, in Fig. 3.2, there are two outputs—stateDistribution and yearDistribution.
Looking closely at 3.2 (2), note that selection “flows into” yearDistribution, but does not
flow into stateDistribution. This reflects the syntax of those outputs in 3.2 (5), where
selection appears only in the definition of yearDistribution. Using this information, DIEL
knows to only selectively update yearDistribution when there is a new user interaction
(selection).

2. Materialized intermediate views. One interaction can require updating multiple visual-
izations. Data transformations are sometimes shared when computing these updates. For
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CREATE VIEW filtered AS
FROM fires f
JOIN LATEST selection s ON f.state = s.us_state;

CREATE EVENT VIEW
causeDistributionEvent AS
SELECT cause, count()

FROM filtered GROUP BY cause;

CREATE EVENT VIEW
yearDistributionEvent AS
SELECT year, count()

FROM filtered GROUP BY year;

Figure 3.4: A example of reuse and materialization. The filtering logic based on the selection
in Fig. 3.2, filtered, is shared by two visualizations. DIEL analyzes the query plan and
materializes filtered to avoid evaluating it twice.

instance, the filtered view in Fig. 3.4 is shared by two outputs. Since views are just named
queries in SQL, this can lead to redundant work: whenever the database evaluates any
query that references a view, the view is reevaluated as part of the query. This wasteful
reevaluation can be prevented if the view results are materialized into a table for use by
downstream queries [25]. For materialized views to work correctly, they must be updated
appropriately when the data they query changes. We tackle this problem pragmatically in
our prototype: we implement update mechanisms for views in the our local database code;
for remote databases, we count on their native support for materialized view maintenance.

3. Automatic caching. Developers often build a client-side cache by hand to amortize the
compute and network time to a server. For any given specification, DIEL can automatically
instrument this functionality, thus saving the developers’ time. The server response data are
already stored in the event log. To make use of the past values, DIEL analyzes the execution
plan at this stage and instruments a layer of indirection to the evaluation of the EVENT VIEWS
when a new event arrives: DIEL hashes the parameters of the relevant rows of the event tables
and looks up the hash in an event cache table instrumented by DIEL. If the hash is present,
DIEL returns that value, and if not, DIEL dispatches the dataflow. DIEL’s automatic caching
process saves storage by not having multiple copies of the responses, which is especially
limited on the client. In addition to helping save the developers’ time, DIEL’s automatic
caching process also alleviates the additional memory usage caused by DIEL’s log of events.

4. Automatic Index Selection. Good database performance is typically tied to building
indexes that suit your query workload. For a given DIEL program, this workload is known in
advance as part of the spec, hence DIEL analyzes the query structure to statically determine
indexes that will result in good performance.
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Figure 3.5: Flight distribution, where the blue is flight count filtered by LAX, and the orange
is the overall flight delay.

Besides optimizing the dataflow, we also optimized the execution speed of the local
database. Unlike the remote databases, the implementation of the local database is controlled
by DIEL. The local database runs in the browser’s main-thread and any delay would directly
block user interactions and HTML updates. Therefore, it is critical that the local database
executes quickly. A recent advance in browser technology, WebAssembly [155], allows for fast
execution of SQLite, which we use as the local database, through optimized transpilation.

Additional Language Support

Through using and observing others use DIEL, we have identified and implemented three
extensions to DIEL that improve usability.

Syntax Sugar with Templates and Defaults

Programmers can reuse their DIEL specifications through SQL VIEWs, but VIEWSs do not
support all the cases for code reuse. For instance, Fig. 3.5 shows a visualization where the
developer need to provide the distribution of the flight delays by the origin airport. Suppose
that they have already written the logic to compute the distribution over all the airport in a
query distributionAll. To define the filtered query distributionFiltered, there is no way
to reuse distributionAll, because the origin airport column is now filtered out. The query
would have to be written from scratch.

To facilitate reuse, we implemented a simple templating engine. The syntax is shown
in Listing 3.2 line 2 and 4. We illustrate the template’s use with an example. To now add the
additional filter of the origin airport, instead of copying the entire query flightDelayDist
from Listing 3.5 and adding the filter, the developer can use the DIEL template feature,
shown in Fig 3.1. Here, the distributionTemplate template allows the developer to define
a table as a variable called variable table in line 3. In the case of the flight without the
airport filter, the variable table parameter is flight, and in the case of the flight filtered
by the airport, filteredFlights.
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CREATE TEMPLATE distributionTemplate (variable_table) AS
SELECT

FROM [{[variable_table[}]
JOIN LATEST zoombelayItx =z

L4
CREATE EVENT TABLE originSelectionInteraction (origin TEXT);

CREATE VIEW filteredFlights AS
SELECT =«

FROM flights
JOIN LATEST originSelectionInteraction
ON origin;

CREATE OUTPUT distributionAll AS
USE TEMPLATE distributionTemplate (variable_table='flight');

CREATE OUTPUT distributionFiltered AS

USE TEMPLATE distributionTemplate (variable_table='filteredFlights');

Listing 3.1: Example templating feature in DIEL that promotes code reuse in cases of filtering.
The omitted select clause on line 2 to 4 is the same as flightDelayDist from Listing 3.5 line
2 to 9, with the flights table replaced by the template variable variable table.

-— define template
CREATE TEMPLATE <template_name> (<var_name>) AS SELECT...;

—— use template
USE TEMPLATE (<variable_ name>=<value>)

—— copy schema
CREATE TABLE <new_table_name> AS <existing_relation>;

—-— LATEST expanded
SELECT... FROM <relation> WHERE timestep = (
SELECT MAX (timestep) FROM <relation>);

—-— state programs (side effects)
CREATE PROGRAM AFTER (<eventl>, <event2>, ...)

BEGIN
INSERT INTO <history_table> ...;
SELECT <udf> (), ...;

END;

Listing 3.2: Different DIEL extensions to improve programmer experience: templates, schema
copy, LATEST, and state programs.

Side Effects with History Programs

In DIEL, all tables are append-only logs through the invocation of the JavaScript API
NewEvent. However, we found that in more advanced cases, such as undo, it can be use-
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CREATE EVENT TABLE clickInteraction(id INT);

CREATE EVENT TABLE undolInteraction();

CREATE TABLE allSelections (id INT);

—-— record the items at every timestep into state

CREATE PROGRAM AFTER (clickInteraction, undoInteraction)

BEGIN INSERT INTO allSelections SELECT * FROM currentSelection; END;
-— derive current selection base on both the click and the undo
CREATE OUTPUT currentSelection AS

SELECT COALESCE (s.id, e.id) AS id

FROM LATEST clickInteraction e

LEFT OUTER JOIN curUndoSel s ON 1;
—— using basic math to derive the selection base on undo
CREATE VIEW curUndoSel AS
SELECT * FROM allSelections AS s WHERE rowid = ((
SELECT MAX (rowid) FROM allSelections
) =«
SELECT COUNT () 2 - 1
FROM undoInteraction u JOIN LATEST clickInteraction c
ON u.timestep > c.timestep

)) s

Listing 3.3: Linear undo in DIEL for click selections.

ful to be able to have some “side-effects”, where developers can modify state more flexibly.

We implemented this functionality, called state programs (after [3]), and the tables they
insert to are history tables—DIEL augments the history tables with the timestep column, but
does not invoke the event loop.

We illustrate its use through a simple example of undo, which is a common interac-
tion [170]. For simplicity, we discuss an example linear undo implementation (used in ap-
plications such as Emacs [109]). In this example, the user clicks on a visual mark to select,
and the undo re-selects the previous selection. Say the user clicks on A, B, and C, and then
presses undo twice. The sequence of actions is (A, B, C, Undo, Undo), and the user will
see the sequence of selections: (A, B, C, B, C), where B means that B is selected due to an
undo action.

Listing 3.3 provides an implementation. Since an undo is another interaction event, it
is defined as an EVENT TABLE; allSelections will track the sequence of selections as de-
scribed above, where the rank is simply the sequential id. The state program populates
allSelections with the actual selection for each logical timestep (i.e., each click and undo
event). To compute the current selection, it first checks whether the most recent interactions
were undo events or normal clickInteraction. If there are undo events, then it subtracts
their count from the maximum rank in allSelections to identify the selection that the undos
represent (e.g., B after the first undo above).
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I\CREATE VIEW filtered_view AS
2| SELECT al, a2

3\ FROM t1 WHERE al > 10

4\ CONSTRAIN al NOT NULL;

Listing 3.4: Example Constraints

Debugging with Constraints

Logic programs can be difficult to debug when the error manifests downstream from the code
containing the bug. For instance, if the developer accidentally filtered on the wrong value
in a view V1, and output O references VI and V2. If the developer is debugging missing
results from O, they need to inspect both of the views. The situation can be improved with
constraints. We have implemented this feature in DIEL. Listing 3.4 shows one such constraint
syntax.

3.6 Evaluating DIEL’s Expressivity

To assess the benefits of DIEL, we show examples of interactive visualizations that deal with
the variety of challenges that arise when managing asynchrony and distribution, including
coordinating responses from remote servers, streaming data, and composing interactions.
Our discussion focuses on the aspects addressed by DIEL and omits implementation details
of the frontend. We also show how DIEL specifications compose in a modular manner, by
building each new interaction on the running example of Fig. 3.2. Since the challenges are
independent of the particular choice of visual encodings, we do not focus on varying the
visual designs.

Coordinating Requests and Responses. Latency from remote databases’ responses can
cause inconsistencies in the interface, if not handled properly [166]. For instance, Fig. 3.6
shows a timeline of user interactions (selection) and server responses (yearDistributionEvent).
The user clicks TX and then CA, but the remote database responds with the result for CA first.
Rendering the most recent result (TX) would surprise a user who is expecting CA. To avoid
inconsistent interfaces, developers can use DIEL to specify a range of designs in a few lines
of code. We walk through three possible designs shown in Fig. 3.6.

Option () always displays the result of the most recent interaction. The DIEL spec first
identifies the interaction by selecting the rows with the highest timestep (LATEST selection),
then selects the rows in yearDistributionEvent with matching request-response timesteps
(d.request timestep = e.timestep). If no match is available yet, nothing is returned. The
front-end visualization logic could indicate as such, e.g., using a spinner as shown.

Option () always displays the most recent response and its corresponding selection,
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response,
CREATE OUTPUT snapshots AS
SELECT x

CREATE OUTPUT yearDistribution AS CREATE OUTPUT yearDistribution AS
SELECT % SELECT d.*, e.us_state

FROM LATEST selection e FROM LATEST yearDistributionEvent d .
J0IN yearDistributionEvent d JOIN selection e . JOIN yearbistributiontvent
ON d.request_timestep=e.timestep; ON d.request_timestep=e.timestep; Y y

. ON y.request_timestep=s.timestep;
CREATE OUTPUT pending AS

SELECT state FROM selection WHERE timestep NOT IN
(SELECT request_timestep
FROM yearDistributionResult);

Figure 3.6: Designs to coordinate asynchronous requests and responses when querying over
distributed data: () renders the most recent interaction requested; () renders the most
recent response received as well as any pending interactions; () renders snapshots of all
interactions and their corresponding results [163].

as well as pending selections. The DIEL spec first selects the most recent response (LATEST
yearDistributionEvent), then joins it with the selection table to retrieve the corresponding
value of the selection (e.us_state) by matching their timesteps. The second output pending
represents pending selections and is computed by finding the request(s) that do not have a
corresponding response.

Option () displays “snapshots” of all interactions [163], where past interactions and
their results are scaled down into a scrolling pane of small multiples at the bottom. The
DIEL spec simply selects all the interactions from the event table selection, joined with the
corresponding responses by their timesteps. The snapshots allow a user to interact with the
visualization and navigate to prior states, concurrent with the loading of new responses.

Without DIEL, implementing these designs would require the developer to manually keep
track of events—store the points of interest selected, their respective responses, and the
global ordering of all the events— and coordinate multiple event handlers. While each step
is simple in isolation, put together the complexity of this low-level data-recording and event
handling compounds substantially. Developers may have trouble reasoning about the overall
design.

DIEL, on the other hand, encourages a consistent experience by asking the developer to
specify which of the events should be in the output at any given time. There is no acci-
dental design resulting from interrupt-driven event handling, such as immediately rendering
whatever response arrives. Furthermore, DIEL takes care of recording event history and
provenance. The developer can query these data directly — for example identifying the re-
sponses from remote databases with timestep data that DIEL automatically maintains. As a
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Figure 3.7: Example DIEL spec for the symbol overlay of active fires, determined by selecting
incidents that do not yet have a row with the column type of contained.

pan

fireMap

brushedIncidents
CREATE EVENT TABLE brush( CREATE VIEW brushedIncidents

min_lat FLOAT, AS SELECT m.id

max_lat FLOAT, FROM fireMap m

min_lon FLOAT, JOIN LATEST brush b
max_lon FLOAT); ON contained(m.x, b.x)

Figure 3.8: Example DIEL spec for brushing interaction: brushedIncidents selects fires in
the symbol map fireMap that falls into the brushed region pan to update the bar chart (query
omitted).

result, the developer can iterate on alternate designs without any instrumentation overhead.

Streaming Data. Given the real-time nature of fires, the developer may want to incorporate
streaming data into their visualization. Fig. 3.7 overlays the choropleth in Fig. 3.2 with a
symbol map of active current fires. The event incident contains the location of the fire and
whether it is new or contained. When a new incident event arrives, fires are either added
to or removed from the symbol map overlay. To implement this design with DIEL, the event
incident is captured as an event table and the data for the overlay is captured by the output
table fireMap. Fach tuple from the latter is used to query the incident table to identify
fires that have not yet been controlled, via the NOT IN subquery. Note how the developer
can rely on a few lines of DIEL code, instead of programming custom JavaScript functions
to store and manipulate streaming events.

Composing Events: Interaction and Streaming. Cross-linking is a common interaction
technique [130]. Fig. 3.8 shows a new brush selection added to the map visualization, linked

2 As with materialized views in Section 3.5, we take a pragmatic approach in our prototype: we handle
streams in the client database, but do not support streaming in the remote databases.
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CREATE EVENT TABLE pan AS brush;

CREATE VIEW effectiveBrush AS brush

SELECT b.x
FROM LATEST brush b, LATEST pan p pan

[ - -

WHERE b.timestep > p.timestep .
WHERE contained(b.*, p.*); effectiveBrush

Figure 3.9: Example DIEL specification of composing two interactions: panning and brushing
(from Fig. 3.8). There are two ways to coordinate: () removes the brush selection whenever
there is a more recent panning event, and () removes the brush only when the brush is
panned out of view.

to the bar chart shown to the right (the query not shown for brevity). contained checks if the
lat, lon bounds in fireMap are within the min and max of the brush. It is a utility function
defined by DIEL, using the user defined function construct in SQL [113]. The new interaction
composes with the streaming firemap view from before —if there is a new event received that
falls into the brushed area, the incidents selected in brushedIncidents will also be updated,
and any dependent output views will be updated as well. This subtle instrumentation,
automatically performed by DIEL, may be difficult for a developer to catch in a traditional
implementation where the logic may be dispersed into different event handlers.

Composing Events: Brushing and Panning. Different interactions serve different pur-
poses and more than one interaction could be employed for the same visualization, which
the developer may need to coordinate. Following the running example, suppose now the
developer wishes to introduce a pan-zoom interaction, shown in Fig. 3.9. The brush table is
defined in geographic coordinates, so the user can pan the map to an area where the brush
is no longer visible, and the value of the selection is in question. We present two possible
designs to address this ambiguity. Both derives a new brush, effectiveBrush for use in place
of the raw brush.

Option () invalidates the brush when the user initiates a new panning interaction. The
DIEL spec selects the most recent brush (LATEST brush) only if it occurred after the most
recent pan (LATEST pan). If we replace option () with option (1), we instead invalidate the
brush only when a new panning event moves the brush out of view. In either case, developers
do not manually modify the callbacks to the panning interaction handler to check and remove
the previous brush selection. The “removal” is specified declaratively and enforced implicitly
by DIEL as the logical timesteps progress.

Interaction Scent. Research has shown the benefit of visualizing interaction history: Hind-
Sight visualizes the user’s prior interactions in the visualization [38]; Scented Widgets visu-
alize interactions by other users [158]; Interaction Snapshots visualize historical interactions
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CREATE OUTPUT brushScent AS
[:] SELECT UNIQUE(b.*) FROM brush b;
O H :
O L AN brush/selection
O O e ¢ brushScent/selectionScent
=

CREATE OUTPUT selectionScent AS
SELECT us_state, count()

FROM selection_all

GROUP BY us_state;

Figure 3.10: Example DIEL spec for () Hindsight: select all unique brushes in the brush
event table, and () Scented Widget: a bar chart that shows the frequency of selections
ACross Users.

and their results [163]. We have shown an example of Interaction Snapshots in Fig. 3.6; we
now discuss the other two designs in Fig. 3.10.

() instantiates a HindSight design, where all prior brushes are shown [38]. The DIEL spec
for brushScent selects unique brushes through the UNIQUE operator. (1) shows an example
design of scented widgets, where a histogram of all prior us_state selections are aggregated
and counted [158]. The selection_all is a table in the database that stores all the event
tables from each session, which is saved by the developer from event tables to the remote
databases (and not handled automatically by the current DIEL prototype), e.g., INSERT INTO
selection_all SELECT * FROM brush.

With DIEL, the data backing these visualizations is already in event tables ready to be
queried, and the visualization scents are automatically updated. Without DIEL, the developer
would have to manually store the events and re-render the visualization scents after each
interaction, or use libraries like Trrack [32].

More Advanced Usage of DIEL

Since DIEL uses SQL as its host language, DIEL inherents SQL’s advanced features as well.
We illustrate with a few examples.

Dynamic Histogram Zoom.. When zooming into a histogram, the user may want to see
a more fine-grained view of the distribution. Listing 3.5 provides an example flight delay
distribution. zoomInteraction captures the selection, and the bin size dynamically adjusts
to the size of the selection.

Drop Down Menus. Drop down menus are a common design in interactive visualization
dashboards. Listing 3.6 shows an example where the user could toggle between the origin or
destination column when sorting the table. The toggling is implemented with the CASE. ..
WHEN clause supported by SQL. Another SQL feature we leverage is CHECK, a constraint
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Figure 3.11: Example zoom interaction. Where as the user zooms in more detail, the bin
size gets more granular.

CREATE EVENT TABLE zoomlInteraction (minD INT, maxD INT);

CREATE VIEW flightDelayDisttribution AS
SELECT

ROUND (delay/ ((z.maxD-z.minD) /10))
% ((z.maxD-z.minD) /10) delayBin,
COUNT () count
FROM flights JOIN LATEST zoomInteraction z
GROUP BY delayBin
HAVING delayBin < z.maxD AND delayBin > z.minDj;

Listing 3.5: Example zoom interaction (Fig 3.11) where the more the user zooms in, the
smaller the bin size.

checking mechanism that makes sure that the column entry is well defined (Line 2).

Dynamic Sample Size. Listing 3.7 shows an example where the user can sample from the
table, and adjust the sample size. Line 2 ensures that all invalid user entries are ignored,
and line 5 randomly orders the data to avoid skew.

3.7 Evaluating DIEL’s Performance

We evaluate the feasibility of the DIEL model using our prototype implementation. We focus
on the overhead that the DIEL middleware introduces during initial setup and user interac-
tions, as well as its ability to scale to large datasets as compared to leading visualization
libraries.

We used Kaggle’s wildfire dataset [1], creating the visualization shown in Fig. 3.2, and
conducted evaluations on a MacBook Pro with 2.7 GHz Quad-Core Intel Core i7 and 16 GB
of memory. In the experiments, the “remote” database server is a SQLite process running
on a web application deployed on Heroku (”Free Dynos” tier with 512 MB of RAM). The
network bandwidth was 18.5 Mbps. Changing the dataset size or database will not affect the
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CREATE EVENT TABLE columnSelectionInteraction (
column TEXT
CHECK

column='origin'

OR column='destination'
OR column='delay'

)i

CREATE OUTPUT flightTable AS
SELECT f.«
FROM flights f JOIN LATEST columnSelectionInteraction i
ORDER BY CASE i.col
WHEN 'origin' THEN origin
WHEN 'delay' THEN delay ELSE destination
END;

Listing 3.6: Example DIEL code that reconfigures which columns to sort by. The CASE clause
is a SQL syntax shortcut that helps developer express the logic dynamically change the
selection based on some predicates.

CREATE EVENT TABLE sampleSizelInteraction (
sizeSelection INT CHECK size > 0
)i

CREATE OUTPUT flightSample AS
SELECT » FROM flights ORDER BY RANDOM/()
LIMIT (
SELECT sizeSelection
FROM LATEST sampleSizelInteraction);

Listing 3.7: Example DIEL code that reconfigures the number of rows to be seen. The
developer can dynamically control how much data is shown based on user input, achieved
by limiting the number of row by a sub-query (line 6).

overhead that the DIEL middle-ware incurs. Thus we chose to focus on these three evaluation
configurations.

Initialization. Fig. 3.12 shows the time taken to setup DIEL. The local setup only involves a
local database in the main browser thread. DIEL (1) sets up the synchronous database in the
main thread; (2) compiles the DIEL spec into logical representations, including optimization
steps such as caching; and, (3) sets up the views in the local database. The remote setup
accesses the remote database server. DIEL shares step (1) and (2) of the local setup, then
it builds a catalog of tables in remote databases and sets up a distributed dataflow based
on the catalog. The remote+network results are the same as remote, but with the addition
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Figure 3.12: The x-axis represents the respective time taken for DIEL’s initialization steps,
in milliseconds, and the y-axis represents the type of setup being measured.

of nontrivial network communication overheads. These introduce fixed costs—such as the
200ms overhead to fetch the SQL.js library in order to set up the local database—as well
as variable costs to send results between the client and server. These costs depend on the
network bandwidth. For instance, decreasing the network bandwidth to 1.4 Mbps caused
the set up local database to be 8687ms.

In all three cases, we see that the initialization time does not pose a usability challenge,
especially given that the initiation is a one time cost at the beginning of loading the web
page containing the interactive visualizations.

Event Handling. Fig. 3.13 shows the time taken to handle events. One type of event is
user interaction, which took less than 5 ms to handle. During that time, DIEL (1) saves
the input event to the local database (serializing from JavaScript to SQLite); (2) outputs
the view data (deserializing from SQLite to JavaScript); and, (3) networks with the remote
database. Another type of event is a remote database response, which takes about 20 ms to
handle. During that time, DIEL (1) processes the remote message; (2) saves the input event
to the local database; and, (3) outputs the view data. Processing the data from the remote
database and serializing that data into the local database takes the bulk of the time. We
see that the overhead in either case is well under the limit of 100 msec prescribed by Card
et al. to sustain perceptual causality [21].

Different Data Sizes. To demonstrate a DIEL program’s ability to scale, we created
samples from 10 thousand rows to 4 million rows and benchmarked two implementations
of the visualization shown in Fig. 3.2: one with DIEL (the SQLite server and static Vega
visualizations) and one with Reactive Vega running in the browser. We measured the time
taken between the handler receiving the interaction and outputting the computed result.
This excludes the rendering logic, which is common across the experimental runs. The
SQLite and DIEL results also exclude the network latency since it is shared in both cases.

Fig. 3.14 shows that DIEL is able to handle the increasingly large data by leveraging
resources beyond the client, whereas a client-only Reactive Vega application freezes the
browser at 4 million rows of data. We also measured the query evaluation time directly
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Figure 3.13: The x-axis represents the time taken for the event handling steps, and the
y-axis the type of event being measured. These results are evaluated against both the
remote+network and the remote only setup. The numbers follow the same distribution
because the tick performance is decoupled from the database query processing performance.
The steps are all local evaluations after the asynchronous events have been received. The
actual latencies for each individual response are depicted in Fig. 3.14.
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Figure 3.14: A visualization of how long the query processing takes as the data grows in
size. One program is implemented with Vega, another with DIEL used in conjunction with a
remote SQLite database, whose raw query time is also plotted. DIEL is able to make use of
the backend database and process data beyond the capacity of the browser, with less than
1s of additional overhead for (de)serialization when working with the remote database.

against the remote SQLite database — DIEL’s processing time follows closely with negligible
serialization /serialization overhead. Additionally, the DIEL implementation benefits from a
non-blocking design because it does not take up costly resources on the main thread.

While this study does not exhaustively analyze DIEL’s performance, we believe it ad-
dresses DIEL’s core motivations of usability, expressivity and scalability via remote data
servers.
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3.8 Evaluating DIEL’s Usability

We evaluate the programming experience of DIEL using the Cognitive Dimensions of Nota-
tion [17], a set of considerations to evaluate the effectiveness of notational systems. Cognitive
dimensions have been used by prior visualization systems to evaluate their usability [125,
119, 172, 120]. We pick a relevant subset and contrast the effectiveness of DIEL against that
of current common practices.

Viscosity (resistance to change). DIEL facilitates change in a few ways. First, its declarative
query specification abstracts what to compute from how to compute. As a result, switching
from a client-only application to a client-server one (or to one using WebWorkers) requires
only a few lines of change to configuration details. Fig. 3.2(4E) provides an example of
the configuration, remoteDbConfigs, a JavaScript object containing high-level specification
such as the type of the database used and what socket to connect to the DIEL database
wrapper. Query changes are moreover isolated from table changes thanks to the classical
data independence property of the relational model [113]. For instance, if the incident
schema changes because the data provider now also includes the reporting station, none of
the downstream queries, fireMap or pannedIncidents, would need to change; more complex
schema changes can be hidden behind relational views. Finally, views also provide a way to
reuse logic within an application. Fig. 3.4 shows an example where a change to the internal
specification of the query filtered would be abstracted away from the dependent views as
long as its SELECT clause is unchanged.

Closeness of Mapping (closeness of representation to domain). Since SQL is widely used
in modern databases and for general data manipulation tasks [103], DIEL closely represents
the data processing domain. However, DIEL does not fully represent the complex domain
of data visualizations. For example, the Vega authors identify that visualizations involving
small multiples often require hierarchical structures with second-order quantification [124].

We agree that the expressiveness of SQL is more limited than interactive visualization
frameworks. Relational languages like DIEL expresses only first-order logic. In particular,
DIEL can define and quantify relationships between entities, but cannot quantify over a data-
dependent set of table names or column names. Yet this limitation is key for distributed
execution and optimization. Neither physical data independence nor the rich optimization
methods discussed in Section 3.3 would be easy to implement without the relational ab-
straction. Moreover, developers could transform the data into other forms by manipulating
the output tables provided by DIEL in any JavaScript functions. For instance, they can use
Vega to transform the tabular data into nested groups to render small multiples. These data
transformations happen at the end of DIEL’s dataflow and does not diminish the effectiveness
of DIEL’s ability to orchestrate distributed query evaluations.

Consistency (similar semantics are expressed in similar syntactic forms). In DIEL, the
only data structure is a table. One of the key contributions of DIEL’s model is to unify both
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“live” events and “stored” data in a single frame of reference—tables—which store both
data and history. Once events are reified as data in an event table, DIEL presents a unified
data-centric language.

Premature Commitment (constraints on the order of doing things). For DIEL to be
effective, it imposes a premature commitment. Developers must represent the state of vi-
sualizations using tables (rather than arbitrary data structures) upfront. This premature
commitment can hamper a rapid prototyping process, but we believe the advantages of the
table format outweigh these concerns. As discussed in Section 3.3, the table format facilitates
working with distributed data, and makes explicit possibly concurrent processes.

Role-expressiveness (the purpose of an entity is readily inferred). DIEL reuses an existing,
well-established data model of relational tables and queries, and introduces only two addi-
tional constructs: EVENTs and OUTPUTs. This approach has proven sufficiently expressive, as
demonstrated by the examples in Section 3.6. DIEL operates as a middleware layer between
the frontend and backends, and lifts the logic of data exchange between client and remotes.
The relatively small surface area of DIEL’s abstractions stands in contrast to the existing
imperative code written to support such use cases, which is often dispersed across custom
functions with a commensurate burden of role-expressiveness.

Hidden Dependencies (important links between entities are not visible). DIEL makes
dependencies quite explicit. The only type of dependency DIEL introduces is between tables,
which are syntactically evident in queries: the table a query creates is dependent on the
tables it references. In contrast, current imperative practice distributes dependencies across
different functions, each with custom logic and bookkeeping formats that require additional
effort to navigate and make sense of.

Hard Mental Operations (high demand on cognitive resources). There are two potentially
challenging programming tasks in DIEL. One challenge is debugging in SQL [42]. Consider
the case where the developer is debugging a view O which involves both V1 and V2 views;
they need to inspect both of the views to locate the error. To address this challenge, we built
view level constraints (as discussed in Section 3.5), similar to SQL table constraints [113],
so that developers could make assertions on intermediate queries. Another challenge is not
being able to mutate state. It could be challenging to define the state of the visualization
with only raw events, especially when the logic is more complex (e.g., undo-redo). To help,
we took a page from the construct of state programs in relational transducers [3], which allow
developers to maintain derived state by inserting values into tables after events.

Diffuseness (verbosity of language). The current DIEL syntax hews close to SQL, and as
such does not have syntactic conveniences one might like for visualization (e.g., binning [82]).
Some aspects of DIEL’s current verbosity can be alleviated by introducing syntactic sugar
for common operations. Through our own experience working with DIEL and analyzing
code snippets, we identified the most common programming patterns and implemented a
handful of syntactic sugars. For instance, LATEST selects the most recent event (discussed
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in Section 3.5). Similarly, the default asynchrony policy for output views over distributed
data creates an event table for the developer and selects the response for the most recent
interaction. We provide additional details in the supplement.

In sum, DIEL introduces some premature commitment and hard mental operations. How-
ever, we believe these are outweighed by the decrease in viscosity, and more explicit depen-
dencies, role-expressiveness, and consistency.

3.9 Conclusion

By adapting two key ideas from distributed systems programming —immutable events and
logical constraints — DIEL contributes a substantive step towards declarative programming
over distributed data and asynchronous events for interactive visualization. Through ex-
amples, we demonstrate that developers can use DIEL to declaratively specify a variety of
emerging interactive visualization use cases, ranging from working with remote data to vi-
sualizing interaction history. And, to assess the challenge that DIEL’s use of a relational
language poses to developers, we conducted a heuristic evaluating using the Cognitive Di-
mensions of Notation [17]. We find that although DIEL introduces premature commitment
and possible hard mental operations, these disadvantages are outweighed by a decrease in
viscosity for working with data of various sizes and changing the designs appropriately, and
the increase in consistency between specifying operations over distributed data. Moreover,
as our performance benchmarks suggest, this declarative model allows DIEL to reason about
the specification and optimize the execution plan.

DIEL is an open source system available at https://github.com/yifanwu/diel. By de-
signing a unified abstraction over distributed data and asynchronous events, we hope to help
developers prototype and explore alternative designs for emerging interactive visualizations
faster.

Limitations and Future Work

Expressibility and Usability. DIEL uses SQL as a host language, and this limits ex-
pressibility, which we analyzed in Section 3.8. Since DIEL expresses only first-order logic, it
limits the the expressibility. In fact, the very existence of the additional language features
we implemented (Section 3.5) points to this limitation. For instance, Listing 3.6 shows SQL
variables can only range over data values, not over schema values such as table and column
name. Hence, we cannot write a DIEL expression that will handle an arbitrary column name
as a variable—the columns have to be enumerated literally in the query.

As explained in Section 3.8, these limitations were to facilitate scalability and they can be
bi-passed by using more expressive libraries like Vega [122] in conjunction with DIEL. While
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this separation and additional composition is a significant improvement from the chore of
setting up the client-server architecture, it is still far from ideal.

Future iterations of DIEL may benefit from using a data frame library based syntax
instead, which could be more flexibly integrated into JavaScript [162]. We could also explore
integration with Vega and Vega-Lite to directly support scalability.

Optimizations. As data grows in size and computation grows in complexity, optimiz-
ing the performance of interactive visualization application is a hot topic. DIEL’S unique
middleware architecture that spans the local and remotes allows for a number of research
opportunities. To start, operator-level materialized-view maintenance techniques [25] can
make the frontend database even faster. Federated databases that optimize globally across
multiple databases [34] can help us optimize data exchange between the local database and
remote database. Another possibility is to automatically parallelize query evaluation [113]
across multiple threads of computation, e.g. multiple WebWorkers in a browser. Finally,
we can enhance the performance of each timestep with “garbage collection” by removing
rows that are no longer in use from logs. This pattern is common in many areas, such as
in replicated database systems [117], multi-version concurrency control [16] and distributed
systems programming [29].

Collaboration. DIEL does not yet support an important distributed use case, collabo-
rative interactive visualizations (Fig 3.1(3)). Coordinating communication between multiple
users is a classic challenge in distributed systems and CSCW [137]. A global order of events
across multiple editors cannot be guaranteed without explicit coordination that decreases the
interface’s responsiveness. Instead, various coordination-free proposals have emerged that
use more involved metadata than simple local timesteps to provide distributed consistency
guarantees, e.g., [156, 30]. It would be interesting to extend DIEL with ideas from this work.
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Chapter 4

B2: Bridging Code and Interactive
Visualization in Computational
Notebooks

The two previous chapters demonstrate that interaction history is an abstraction useful for
interactions and programming. The fact that it is useful for both suggests that it may serve
as a shared abstraction between the two mediums. This led us to investigate ways to leverage
history to bring the two mediums closer. With a more unified medium, the analyst can have
the best of both worlds—the quick feedback loops of interaction and also the expressiveness
and reproducibility of programming.

We hypothesize that interaction can serve as a bridge to unlock the best of both worlds
in computational notebooks. This hypothesis gave birth to B2, an extension in Jupyter. B2
bridges three gaps between programming and the interactive visualizations in the notebook,
using capabilities provided by interaction history. Participants in our user study engaged
with B2 extensively and switched frequently between interacting and programming. They
confirmed that B2 helped them with faster data exploration in the notebook. B2 was pub-
lished at UIST 2020.

4.1 Introduction

Computational notebooks (e.g., Jupyter and Observable) have become increasingly popular
in data science because they enable literate computing [105]: a single document captures
analysis code, textual observations, and visualizations of results. These computational note-
books remain useful far beyond the initial act of authoring: e.g., for auditing, reproducing,
or sharing data insights. Moreover, the structure of these notebooks — a series of executable
cells—facilitates a more iterative and interactive coding process well-suited for data sci-
ence workflows [6, 159]. Surveys and interviews with data scientists, however, highlight the
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Figure 4.1: An analyst’s workflow with B2. They start by (1) importing the library which
creates (2) a resizable dashboard pane to the right of the traditional notebook. The ana-
lyst can (3) click on the columns, which creates (4) code that computes and (5) visualizes
corresponding distributions. The analyst can also write (6) a custom data frame query to
create (7) the scatter plot. (8) B2’s reactive cells automatically recompute when new inter-
actions occur on visualizations. Interactions involve (9) selections of marks, which link or
cross-filter the other visualizations in the dashboard, and are reified in code cells as either
(10) an interaction history or by (11) copying their composed predicate definitions.

impoverished use of visualization within computational notebooks. In contrast to visual
analysis tools such as Tableau (née Polaris [134]) or Microsoft PowerBI, which offer rapid or
automated specification of visualizations and direct manipulation interactions to coordinate
multiple linked views, visualizations in notebooks are largely manually specified single, static
views [13, 159].

Recent work suggests that although notebook users could benefit from richer support
for interactive visualization, the friction of switching between the two paradigms remains
too high. For example, although notebooks allow code cells and visualizations to be inter-
leaved, these two types of artifacts remain siloed [13]. Code cells cannot access the results
of interactive operations performed on visualizations — for instance, after brushing a region
on a scatter plot, data scientists cannot extract the selected points for subsequent analysis.
This gulf is exacerbated by the fact that interactive results are transient, a property that
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violates literate computing. Unless an analyst explicitly documents them — a rare practice
due to the friction it introduces [116] — these results are lost when a notebook session ends.
A similar disconnect also exists in the other direction. Code cells express a rich analysis
provenance, which often has a natural correspondence to interactive visualizations. Ana-
lysts, however, are unable to leverage this provenance and are, instead, forced to manually
specify interactive visualizations from scratch. Finally, interleaving code and visualization
cells may itself be an impediment. As there may be several cells between successive visual-
izations, it is unlikely to have more than one visualization visible on screen; thus, interaction
techniques become confined to operating over a single visualization at a time, which provides
only limited utility.

In response, we present B2, a library of techniques to bridge the divide between code
and interactive visualizations in computational notebooks. To map between these two sides,
we need a shared representation of the work occurring on either side. The fundamental
task of data analysis involves iterative data transformation, and both code and interactive
visualizations can capture this task as a data query. In code, queries are typically constructed
through data frame manipulations or as SQL statements while, in visualization, queries are
often expressed as interactive selections [57, 121, 164].

To allow analysts to more seamlessly move from code to interactive visualizations, B2
wraps a data frame library and records the abstract syntax tree of queries that occur as a
result of data frame transformations. Based on this data lineage, B2 offers an additional vis
API method on data frames which, when invoked, automatically synthesizes an appropriate
interactive visualization. For instance, consider the example shown in Fig. 4.1. An analyst
imports a dataset about wildfires in the United States' as a B2 data frame. In a subsequent
series of cells, they first group the data by State, and then by Cause, producing a new data
frame each time. B2 tracks these steps and using the data lineage, creates two histogram
visualizations that can be interactively cross-filtered. By design, these visualizations do
not appear in the normal flow of notebook cells. Rather, they appear within a secondary
dashboard panel to facilitate richer multi-view coordination [153] regardless of where in an
analysis process they are created.

To bridge the gulf in the other direction, B2 instruments its visualizations to track the
interactive selections that occur. An API method materializes the selected state as a data
frame, thereby allowing analysts to conduct follow-up analysis of interactive results in code.
When such cells are marked as reactive, they are automatically reevaluated as new interac-
tions occur. B2 also creates a new code cell to maintain a log of interaction history —old
entries are commented out and new entries appended, with selections represented by their
underlying predicate definitions. In doing so, B2 reifies interactivity and persists it in the
flow of the literate computing notebook. For instance, analysts can (un)comment entries
in the log to replay their interactions or compare states, can use code comments to doc-

! https://www.kaggle.com/rtatman/188-million-us-wildfires
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Figure 4.2: Snapshotting creates a cell in the notebook with an SVG of the visualization,
persisting the transient interactive state.

ument meaningful interactive discoveries, and can copy and paste selection predicates for
downstream analysis.

We implement B2 as an open source extension for Jupyter notebooks available at https:
//github.com/yifanwu/b2, and evaluate its efficacy through a first-use study with 7 par-
ticipants. Traces of participant behavior demonstrate they make use of B2’s “bridges” to
frequently switch between code and interactive visualization, and qualitative comments in-
dicate that B2 helps facilitate the exploratory data analysis process.

4.2 A Demo of B2

To place the design and goals of B2 in context, we present a full demo following the wildfire
example in Fig. 4.1. We identify the times when the analyst, Sam, switches from code to
visualizations and switches from visualizations to code. We also include a supplementary
video demo of this section.

Sam first initiates B2 with code b2 = B2(), which creates a dashboard to the right.
She then loads in the fires dataset from a CSV file using b2.from_file, which creates
a list of columns in the pane to the right. To start exploring, Sam switches to the
dashboard. She sees a State column and wonders how the count of fires varies across
states. She clicks on this column. B2 then adds and executes a code cell that derives the
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distribution state_dist=df.group('State') and creates a visualization in the dashboard
state_dist.vis(). Sam then switches to a markdown cell to record the insight that “CA
has the highest number of wildfires.”

To speed up code execution, Sam takes a sample of the data frame (sample df=df.
sample (1000)). She then switches to the dashboard to investigate the Cause for CA fires.
She clicks on the column Cause (which again generates a code cell deriving a new data
frame and visualization) and then clicks on the resulting State histogram to select the bar
representing CA. This interaction cross-filters the Cause histogram, with the filtered CA fires
shown in darker blue. To document this result, Sam clicks “Snapshot Charts” which copies
the visualizations to a notebook cell (Fig. 4.2).

Sam now wonders if there are fewer fires in the early morning since it is cooler. After
clicking on the Time column, she wishes to sort by time but notices some null values. So she
switches back to the code generated and filters out the null values, formats the time, and
specifies the visualization to sort by the x-axis (Fig. 4.3). She verifies in the visualization
that her original hypothesis was true.

Besides distribution visualizations, B2 also supports custom visualizations. She hypoth-
esizes that there may also be a correlation between fire size and time. She switches to
code, writes sample df.select([‘Time’, ‘Size’]).vis(), and switches to the dashboard
to inspect the resulting chart (7) and interacts with it to explore. Sam notices that the
cause of large fires in the afternoons are mostly Lightning and wonders if the fires caused by
lightning in CA increases year over year, so she clicks the Year column in the yellow column
pane and then on Lightning bar in the Cause histogram.
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Figure 4.3: The top code cell is generated by B2 to visualize the distribution of Time, after
a selection on the column pane by the analyst. The bottom code cell is edited by the
analyst from the code above, using functions such as format, and where, to further refine the
visualization.
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Figure 4.4: The full state of the chart, including interactive selections, is converted into code
and made available through the “Copy Code to Clipboard” button.

To model the rate of increase, Sam clicks on the menu item for the histogram, “Copy
Code” “to Clipboard” (Fig. 4.4), and switches to paste the code into a new cell. The pasted
code expresses the interactive selections as composed query predicates—sample_df .where
('State', 'CA') .where('Cause','Lightning'). Sam replaces sample_df with df, and
writes a simple linear model to fit the full dataset. She verifies that there is indeed a trend
upwards and notes the finding in a new markdown cell.

Having explored the “low hanging fruit”, Sam decides to dive deeper into fire locations.
She switches back to code, and uses a Python library to draw a heatmap using the (Lat,
Lon) coordinates. To enable interactive analysis, she marks this cell as %%reactive and uses
a data frame that materializes the interactive state via the get_filtered data API, which
returns the rows of df filtered by the current selection (Fig. 4.5). Sam then switches back
to the dashboard and clicks on the Lightning bar in the Cause histogram. The reactive cell
updates, showing that Lightning is skewed towards the north-central states.

Finally, Sam sends this notebook to her collaborator Alex. Alex starts by wanting a high-
level overview of Sam’s process. He clicks the “Toggle @” button at the top of the notebook
to hide the interaction history cells, to more easily view Sam’s code and markdown notes,
as well as charts she explicitly chose to persist via “Snapshot”. To validate Sam’s insights
for himself, Alex un-toggles the interaction histories, and replays interactions by unfolding
and (un)commenting relevant lines in the history, and re-executing the cells. The charts in
the dashboard, as well as the reactive heatmap update in response.
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Figure 4.5: Contrast the top cell, which is static, to the reactive cell below. The reactive
cell can be iterated on using interactions.

4.3 Related Work

Prior work has primarily investigated two mechanisms for integrating code and direct ma-
nipulation interactions: using interactions to parameterize code or generate code. Here, we
review these approaches and draw contrasts to B2, and motivate its design through prior
surveys of data scientists.

Interactions Parameterizing Code

Early systems like Juxtapose [54] and work by Bret Victor [148, 149, 150] helped popu-
larize instrumenting code editors with interactive controls [135]. Computational notebook
platforms offer analysts ways of instrumenting code with HTML widgets (e.g., range slid-
ers, radio buttons, checkboxes, and drop-down menus). For instance, Jupyter offers Jupyter
widgets [70], R Markdown notebooks can be made interactive with shiny [48], and Stream-
lit [141] and Observable [101] provide a standard library of options. Widgets can be manu-
ally instantiated by analysts, or can be automatically inferred using code semantics (e.g., the
@interact function decorator found with Jupyter widgets). Across these platforms, widgets
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primarily serve to parameterize code—i.e., each widget maps to a single variable in the code,
and manipulating the widget re-executes the corresponding code. In doing so, widgets help
tighten the feedback loop by allowing analysts to rapidly explore alternate input parameters
instead of rewriting and rerunning whole cells [67].

Widgets, however, are only an initial step towards endowing code with interactive se-
mantics. First, widgets have limited expressivity — although they can be composed together
into interactive dashboards [18, 81, 86], widgets do not provide behaviors as rich as those
found in interactive visualizations [170]. Second, widgets violate the literate computing goal
of reproducibility [105] as interactions with them are transient — the results associated with
a particular widget state are lost on subsequent interactions. B2 builds on the benefits that
widgets bring to code, and extends them to interactive visualizations. Akin to the automatic
synthesis found in features like Jupyter’s @interact decorator, B2 tracks the lineage of data
frame derivations to generate visualizations and automatically instruments them with inter-
activity. And, rather than simply parameterizing individual variables, interactive operations
populate intensional and extensional predicates called selections [121]. Finally, B2 persists
these operations by maintaining logs of interaction histories in new code cells.

Interactions Generating Code

The programming-by-example (PBE) community has a long history of studying how user
input can be used to synthesize programs. For example, a user can provide concise input-
output pairs [50, 51], indicate hierarchical structure using colored blocks [169], or record and
replay interactions with lists on web pages [12, 22]. These systems receive user interactions
as input and synthesize as output a program in a general-purpose programming language.

While B2 takes inspiration from this line of work, our approach most directly follows
systems that establish a bidirectional relationship between direct manipulation interaction
and textual specification of code. One example is Sketch-N-Sketch [26, 65, 66], which allows
users to write a program to generate SVG output, and then directly manipulate the SVG
canvas to modify the original code. Another example in the data domain is Wrangler [52,
72], a data transformation interface that provides a direct-manipulation tabular interface
reminiscent of a spreadsheet, and maps user interactions into editable textual histories that
can be compiled into standalone code.

These approaches are motivated by recognizing that neither direct manipulation nor
coding is best suited for all tasks, but combining them yields an accumulation of benefits —
users can rapidly and intuitively specify designs via direct manipulation, but then switch
to code to construct reusable abstractions. This goal resonates with the results of recent
surveys and interviews of data scientists which find that visual interfaces are most useful
if their output can be captured in code [6, 23, 159]. Thus, akin to Sketch-N-Sketch and
Wrangler, B2 provides bidirectional bridges between code and interactive visualizations:
B2 synthesizes appropriate visualizations by tracing the data lineage expressed in code,
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and interactions performed on the visualizations are logged to code cells to enable further
analysis. Critically, B2 differs in the domain it addresses (cf. Sketch-N-Sketch) and in its
support for richer interactive visualizations integrated with general-purpose programming
languages (cf. Wrangler’s domain-specific language).

Systems like GUESS [4] and DEVise [91] are more closely aligned with B2’s goal of
bridging code and interactive visualization. In particular, GUESS offers an environment
where interactions with graph visualizations can be captured in Python-based REPL (read-
evaluate-print loop), and textual commands manipulate the visual output. DEVise identifies
that interactive visualizations can be modeled as SQL expressions, and that multiple views
can be coordinated by analyzing their schemas—an approach analogous to B2’s automatic
synthesis of interactions based on data frame lineage. However, B2 differs in two key ways.
While GUESS and DEVise are standalone systems, B2 is embedded within the existing
data science ecosystem —namely in computational notebooks and by leveraging data frame
APIs. In doing so, B2 must bridge an additional set concerns that these prior systems did not
grapple with: how best to combine the highly iterative nature and two-dimensional layout of
interactive visualizations with the persistence and linear layout of computational notebooks.

Meeting data scientists where they work is a motivation that B2 shares with Wrex [36],
a recent system that embeds a visual data wrangling interface within the Jupyter notebook.
Building on the previous theme, a key insight of Wrex is that it is not enough to simply
embed PBE systems in context; rather, to respect literate computing principles, the code
these systems synthesize must be human-readable. B2 follows this insight in two ways. First,
the interaction history that B2 produces is expressed as a series of human-understandable
API calls, rather than low-level event logs. And, second, to preserve the linear flow of literate
computing, B2 records these interaction histories in new code cells placed directly after the
most recently executed cell.

B2 is contemporaneous with work by Kery et al. developing mechanisms to move “fuidly”
between code and graphical interfaces within computational notebooks [78]. In particular,
Kery et al. introduce %mage, a Jupyter extension that provides APIs for graphical interfaces
to affect notebook state. They demonstrate how %mage can be used to provide a spreadsheet
interface to interactively manipulate data frames, and extract or materialize interactive se-
lections performed on visualizations. Although %mage and B2 share a common set of goals,
the two systems differ in their scope: B2 targets integrating code with interactive visualiza-
tions specifically, whereas %mage looks to graphical interfaces more broadly. This difference
in scope yields salient differences and tradeoffs in how the two systems achieve their desired
outcomes. For example, mage uses string templates and pattern matching to translate
interactions to code—an approach that many different types of graphical interfaces can tar-
get, but that can also be brittle when trying to map code changes back to the interfaces.
In contrast, B2 records interaction histories as predicates, a representation that is tailored
to interactive visualization but is also more robust to bidirectional changes. Moreover, by
taking a more focused scope, B2 identifies and addresses an additional challenge with inte-
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grating code and visualizations that may not apply to graphical interfaces more generally:
restricting interactive visualizations to a linear flow of interleaved cell outputs limits the
creation of richer multi-view coordination [23, 153].

Since B2’s publication, there has been newer works published to help data exploration
in a notebook programming setting. Luz by Lee et al., is a Python library that facilitate
data exploration through automation [87]. Unlike B2, which captures user intention through
data frame query operators, Lux captures user intentions explicitly through the .intent
API and provides visualizations for potential next-steps. B2 and Lux share the common
goal of facilitating data exploration in notebooks. However they are complimentary: Lux
could incorporate in the history of data frame queries to enhance their recommendation
algorithm, and B2 could incorporate recommendation heuristics and algorithms to enhance
the exploration process.

The Needs of Data Scientists

B2’s goal of bridging code and interactive visualization is motivated by recent surveys and
interviews of data scientists [6, 13, 23, 159]. In particular, Wongsuphasawat et al. find
that data scientists often switch between several tools including textual environments (e.g.,
MATLAB or Jupyter) and graphical interfaces (e.g., Tableau or Microsoft PowerBI) during
their analysis sessions [159]. As Chattopadhyay et al. report, this switching behavior forces
analysts to repeat themselves by manually translating work they conducted in code to visual
interfaces, or vice-versa [23]. For many data scientists, this overhead is sufficiently prohibitive
that they eschew visual analysis tools altogether and restrict themselves to working only
in code [159]. Indeed, Batch and Elmqvist identify that visualizations “should be first-class
members of the analytical process so that actions and transformations interactively performed
in the component can be exported and passed on to the next component in the sequence” [13]
and Alspaugh et al. call for new systems that combine the expressiveness of programming
and scripting languages, with the efficiency and ease-of-use of visual analysis tools [6].

These studies also indicate the challenges of integrating code and interactive visualiza-
tions within notebook environments. For instance, analysts report frustrations with how the
cell-based structure of notebooks limits the usefulness of visualizations [23].

And, a naive integration of the two risks exacerbating existing concerns of notebooks
being a “mess” [76], full of “ugly code” and “dirty hacks” [116]. This problem is exacerbated
by the structure of code cells, which can be executed out of written order, and the inclu-
sion of interactive widgets, which control input parameters in a transient fashion. A naive
integration of code and interactive visualization could significantly compound this problem.
Recent work has explored a spectrum of strategies to ameliorate this latter issue including
version control that occurs automatically for all artifacts in a notebook [75], on a per-cell
basis [115], or for manually-defined snippets [74], or tools for gathering, cleaning, and com-
paring messy code [55]. Inspired by these solutions, and in particular by their lightweight
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and in situ nature, B2 records a history of interactions in new code cells. Critically, to not
further contribute to the spatial dimension of mess [55], B2 merges contiguous selections into
a single cell, with old interactions commented out and folded.

Finally, recent work has also explored how to extend the literate computing paradigm
to visual analysis. For instance, Wood et al. introduce literate visualization [160] while
Mathisen et al. propose literate analytics [94]. While both approaches share our goal of
bridging literate computing and exploratory visual analysis, their focus is on the narrative
aspects of the process. In particular, literate visualization introduces a schema validator to
prompt users to document their design decisions, while Mathisen et al. implement Insideln-
sights, a system for structured and hierarchical annotation of insights that are a result of
visual analysis. B2, by contrast, is concerned with enabling analysts to move between the
code-driven work of literate computing and the interactive visualizations of exploratory vi-
sual analysis. Rather than focusing on promoting documentation of insights, B2 synthesizes
visualizations from code semantics, and allows code to operate on the results of interactions
performed on visualizations.

4.4 The Gaps Between Code and Interactions

Computational notebooks meld ideas from traditional scientific notebooks and literate pro-
gramming as envisioned by Knuth [80]. Interactive visualization environments are inspired
by vehicle dashboard design and the ideas of Exploratory Data Analysis as envisioned by
Tukey [142]. However, there are significant gaps between the metaphors of notebooks and
dashboards, and the goals of programming and data exploration.

A rich integration of interactive visualization into notebooks should strive for a com-
position of the benefits offered by both paradigms. However, we identify three gaps that
currently hinder such integration: a semantic gap that prevents each side from understand-
ing the work that is happening in the other; a temporal gap that allows only code to persist,
and only interactions on visualizations to be transient; and a layout gap between the note-
book’s linear structure and rich coordinated multi-view visualizations. In this section, we
describe these gaps and their impact on an analyst’s workflow. We identified these gaps by
studying the pitfalls of computational notebooks as reported by data scientists [6, 13, 23,
159], and by examining the design choices and tradeoffs manifest in prototypes we developed
through our iterative design process.

The Semantic Gap

At base, we assume that raw data to be analyzed is accessible to both code and visualiza-
tions — via data frames for code, and encoded as visualizations via the grammar of graphics.
However, neither side is able to capture the work that occurs in the other. The code side
has no access to the work involved in interactions that are performed on a visualization.
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Thus, visualizations become a “dead end” from code, unable to drive subsequent analysis
unless an analyst chooses to manually code up insights they identified via visual interaction.
Conversely, visualizations do not understand the work expressed in code: specifically it is
blind to the lineage of transformations and derivations on a data frame. As a result, an
analyst must manually construct appropriate interactive visualizations from scratch even if
the code that specifies the data frame captures semantics that can automate visualization
design. For instance, when data results from a group operator, it is typical to favor a bar
marks to produce a histogram. Similarly, visualizations of two derived data frames that
share a common ancestor can often be usefully linked or cross-filtered. In both directions,
this semantic gap introduces friction into an analyst’s process and prevents them from being
able to “round-trip” their data and their work without repeated specification of intent.

To bridge the semantic gap, it helps to have a shared abstraction to represent the work oc-
curring on either side. The fundamental task of data analysis involves the iterative transfor-
mation of data, and both code and interactive visualizations capture this task as data queries.
In code, queries are expressed as data frame manipulations — following our demo example,
df [df ['FIRE_SIZE'] > 500] returns a data frame of large fires while df.group('STATE')
groups tuples by the STATE field. For visualization, although a wide variety of interactive
techniques are available [60], we consider those techniques that can be modeled as data
queries. Here, we turn to Vega-Lite [121], which identifies a selection as a fundamental
building block for interaction design that is suitably expressive to cover an established tax-
onomy of interaction techniques in data visualization [170]. In particular, every Vega-Lite
selection includes a definition for a predicate, or a data query that determines which tuples lie
within the selection. These predicates are defined in one of two ways: an intensional pred-
icate specifies a set of data points based on logical conditions that must be satisfied, while
an extensional predicates explicitly enumerates a set of selected data points. In essence, an
intensional predicate is an expression (a piece of code), and an extensional predicate is a
fixed set of data.

With this shared representation in place, we can begin to translate the data queries oc-
curring in code to interactive visualization, and vice-versa. For instance, by tracking the
queries expressed via data frame manipulations, we can automatically synthesize appropri-
ate visualizations and instrument them with linked or cross-filtering interactions. Similarly,
interactive selections can be captured in code by their predicate definitions, or by material-
izing them as data frames. We detail how to operationalize these bridges in the subsequent
section.

The Temporal Gap

Iteration is a critical process in data science. Both code and interactive visualizations support
iterative workflows, but they occur at different time scales. The key mechanism for iterating
in code is cell execution: data scientists author their analysis as a series of discrete steps
(or “cells”) which can be executed individually, sequentially, or out of the order they were
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originally written in. Although cells may be edited and re-executed any number of times,
analysts often prefer to copy and paste their code to a new cell to be able to compare different
iterations of an idea. Critically, however, all these cells and their output are persistent —
a property that facilitates literate computing goals of sharing and reproducing analyses,
but also contributes to the burdensome mess that data scientists report. In visualizations,
iteration occurs through repeatedly performing interaction techniques that manipulate the
view (e.g., through highlighting or filtering points of interest). However, in contrast to the
persistent nature of iteration in code, iteration through interacting on a visualization is
entirely transient. This transience violates a key tenet of literate computing: it hinders an
analyst’s ability to refine or share insights they arrived at interactively. However, it also
lowers the threshold for engaging in iteration by shifting the process from one of authoring
and editing code to one of browsing and exploration.

Thus, the temporal gap introduced by persistence on one side and transience on the other
either limits how much an analyst might iterate, or the degree to which they capture and
share insights that result from iteration. To bridge this gap, we need to enable users to make
their exploratory iterations in visualization persist when appropriate, and make their code
iteration more transient when appropriate. Doing so will allow interactions performed on
visualizations to serve, alongside the code, as a reproducible log of work—this also reduces
the code versioning burden of a large trail of slightly different cells that analysts currently
generate. In the next section, we detail the mechanisms B2 provides for crossing this gap
including capturing a snapshot of visualizations, reifying interactions as a history log or
a materialized data frame, and by introducing reactive cells that automatically re-execute
when new interaction occurs.

The Layout Gap

Given their narrative roots in scientific notebooks and literate programming, notebooks
naturally have a linear layout. When visualizations are incorporated into notebooks, they
are interleaved between code cells like figures in a research paper. While this format facilitates
sharing and communicating the logic of analytic workflows, it often puts a physical distance
between related charts, which limits an analyst’s ability to exploit visual signals that arise
from multiple charts—especially signals resulting from chart interaction.

By contrast, data dashboards offer a compact co-location of charts on a 2-dimensional
canvas. This layout enables the dynamic, multi-view coordination across charts we see in
exploratory visual analysis tools [153], where charts can be linked so that interactions on one
chart can meaningfully change the view in others. While this is useful for short-timescale
analysis, it lacks the notebook’s ability to structure and narrate a multi-step investigation.

For the best of both worlds, we can integrate a dashboard layout into the notebooks.
Doing so, however, brings with it several design challenges. First, a dashboard layout breaks
the formerly tight coupling between a visualization and the code cell containing its specifi-
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cation: although a visualization may be visible in the dashboard, its specification cell may
have scrolled out of view. Analysts may wish to locate these cells in order to understand
how a visualization was constructed, or modify its design. Second, a dashboard layout has
implications for the bridges we introduced to address the temporal gap. In particular, as
interactions on visualizations now occur in the dashboard rather than as part of the linear
notebook layout, should code cells containing interaction histories be automatically created
or manually requested? In either case, where should they be placed in the linear structure of
the notebook to fulfill the readability goals of literate computing, without further contribut-
ing to the mess data scientists currently grapple with? In the next section, we describe how
B2 resolves these tensions when bridging the layout gap.

4.5 System Design and Implementation

B2 is implemented as a Jupyter extension. It is composed of two components: (1) on the
code side, a Python back-end component that provides an instrumented data frame library,
an event-loop reacting to interactions, and an API to access the state of the interactive visu-
alizations current and past (2) on the visualization side, a JavaScript front-end component
that renders visualizations, captures user selections, and generates synthesized notebook
code cells corresponding to visual interaction. In this section, we describe how the notebook
and dashboard work together to bridge the three gaps previously described. Throughout,
we refer back to Fig. 4.1 for illustration.

Bridging the Semantic Gap

To bridge the semantic gap between code and visualization, we need to translate the work
happening on either side to the other. As discussed above, this work is represented in
a shared abstraction of data frame queries, which can be generated from each side and
translated across.

Code to Interactive Visualizations

B2 provides a simple Python API to generate interactive visualizations from data frame
code. This API is backed by novel techniques for auto-generating interaction logic in Vega-
Lite [121] based on the Python lineage of a data frame.

B2 delivers this API in the context of a Python data frame library called datascience?,
by adding a single method, .vis. To minimize the activation energy of using B2 visu-

alizations, the .vis method does not require any parameters to work—B2 can infer the

2 datascience was designed for instructional purposes in large data science courses [33]. Pandas is the
most popular Python data frame library, but it is notoriously complex, with an API that permits many
different ways to express the same logic, making operator tracking difficult [15, 162]. To inter-operate, B2
data frames can be easily mapped to/from pandas via df .to_pd and b.from_pd.
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specification for a data frame visualization using established heuristics like column data
types [143]. The .vis method can be controlled directly via a set of optional parameters
based on Vega-Lite configuration specifications, which are augmented with instrumentation
from B2 for cross-filtering. The mark [146] parameter chooses among bar charts, scatter
plots, and line charts; encoding [145] configures which column is the x-axis, y-axis, how
they should be interpreted (ordinal, quantitative, temporal), and sorted; selection type
and selection dimensions [147] configure how the selection should happen and whether the
selection is the x-axis, y-axis, or both. Any parameters that the analyst chooses to specify
are locked to their specification, the rest are inferred.

Critically, we do not ask the user to specify any interaction logic—we infer that logic
through the data lineage of the queries. This goes beyond traditional visualization inference
techniques like ShowMe [143] that only apply to static charts. Consider the scatter plot
of the fire Size and Time (Listing 4.1, Line 2) (7), and the bar chart of the distribution of
fires by their Cause (Line 3) (9). Because both data frames derive from the same parent,
fires_df, B2 infers that they should be linked. As a result, a brush selection on the scatter
plot cross-filters the bar chart by overlaying a second bar chart on the first. This overlay is
defined by a new, automatically-generated query that first filters the rows of fires whose Time
and Size is in the selected region (Line 5), then re-applies the grouping on Causes (Line 6)
to the filtered base data frame. This query is derived by tracing the operators used to derive
each data frame, and then applying the selections to the base data frames of the ”source”
data frame, then replacing the filtered data frame with the base of the ”target” data frame.?

# given
size_time_df = fires_df.select['size', 'time']
cause_df = fires_df.group('cause', count)

# derived

5 filtered_df = fires_df.where(lambda r: r.size < max_size and r.time

< max_time)

i cause_df_filtered = filtered_df.group('cause', count)

Listing 4.1: Example queries and automatically synthesized interactions.

Visual Interactions to Code

B2’s chart interactions are expressed as selections of data. We want to enable users to use
chart interactions for easy, familiar tasks, and fluidly reify selections into code so they can
bring them back into the customizable logic of the notebook pane. To illustrate, we work
through a scenario in which an analyst identifies an interesting area in the scatter plot of the
fire size and time of the fire in (7), and brushes to highlight the area. The brush specifies

3 Technical details that describe the scope of the inference, methods and algorithms are discussed in Sec-
tion 4.6.
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a selection bounding the size and time of the fires. This selection can be accessed in three
different ways that exercise different features of B2.

Data. After brushing, the analyst sees a filtered chart containing an interesting distri-
bution of fire causes. They wish to directly access the data of the filtered chart to evaluate
custom functions using the data—for example, to join with data of state population and
compute the correlation or customize the visualization in another library/tool. The data
in the current selection is accessed through the get_ filtered data API, which returns a
standard data frame object.

Code. The analyst also wishes to access the code that derives the data of the state
histogram to (1) run the code on a different dataset with the same schema, (2) share or
record the code so the result can be reproduced directly, or compared with other analysis.
This code can be accessed through the get_code API, as well as the “Copy Code to Clipboard”
dashboard button (11).

Predicates. The analyst realizes that they also want to access selections that occurred
previously. The all_selections API returns the full history of selections as a list of B2
objects, and a corresponding API returns the current_selection. These B2 objects can be
reused using additional API calls that give access to either a data frame or code representa-
tion.

# predicates

b2.current_selection
b2.all_selections

# data from the current selection
df .get_filtered_data ()

# code from the current selection
df .get_code ()

Listing 4.2: B2 APIs, from interactive visualization to code

Bridging the Layout Gap

The goal of the B2 dashboard pane is to allow visualizations that correspond to many,
possibly distant notebook cells on the left to be co-located spatially on the right. Hence the
dashboard pane is a 2D canvas that scrolls independently of the notebook pane. Users are
given affordances to control the position of charts within the dashboard.

To bridge the layout gap between notebook and dashboard metaphors, we have to con-
sider both how notebook features map into the dashboard, and how dashboard interactions
are reified back into the sequential layout of the notebook.
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From Notebook to Dashboard

Invoking the Python vis API of B2 causes a visualization to be generated, which needs to
be placed in the 2D canvas of the dashboard. Given the layout flexibility of the dashboard
and the goal of allowing users to colocate charts, we simply append new visualizations to
the bottom right of the current dashboard pane, and scroll the pane to the new chart. Users
can then reposition the visualization via a menu on the chart.

From Dashboard to Notebook

To make an interaction persistent, we need to place its reified code into a notebook cell,
which requires choosing a location in the sequential layout of the notebook. One option is to
paste the code into whatever cell currently contains the Juypter notebook cursor. We ruled
out this choice after pilot tests showed that analysts are often not aware of where the cursor
is. We also considered always placing selections at the end of the notebook, or even all in
one dedicated cell, but in that design interactions are separated the flow of work, conflicting
with our goal of “closing the loop” and integrate coding with visual exploring in a single
flow of work.

We ended on a design that seemed intuitive to pilot users: placing generated code cell
after the most recently executed cell. To cue the user as to where new cells will be placed,
we maintain a horizontal blue bar in the notebook under the most recently executed cell.

Beyond the initial code placement, users need long-term affordances to investigate the
connection between charts on the right and cells on the left. To see the connection between
a visualization and the cell where it was specified, analysts can click on the button, "find
defining cell”, in a drop-down menu (11), and the notebook will navigate to the cell where
the visualization call vis is invoked.

Bridging the Temporal Gap

The temporal gap between notebooks and interactive visualizations require introducing per-
sistence to interaction, and allowing code cells to respond interactively to user input. We
describe how we support these in turn.

Bringing Persistence to Interaction

The ability to reify interactions into code allows users to persist their interactions. This can
substantively change the user experience of interactive visualization, integrating it into the
longer-term, narrative metaphor of a computational notebook.

However, not every real-time data exploration gesture merits being solemnized in the
narrative of a notebook. If we record every transient visual state, it would bloat the note-
book significantly. Instead, we record the minimum amount of code to specify interactive
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Naively generated cells.

v # @ 08:14 PH @
m.gel([{"TIME dist": {"clean_time_bin": ["15", "14"]}}])

v # @ 08:15 PM @

m.sel ([ {"STAT CAUSE_DESCR_fires_df dist": {"STAT CAUSE_DESCR": ["Fireworks"]}}])

+ # @ 08:20 pM @

m.sel([{"STAT_CAUSE_DESCR_fires_df_dist": {"STAT_CAUSE_DESCR": ["Lightning®]}}])

r# @ 08:22 M @
m.sel([{"STAT CAUSE DESCR fires df dist": {"STAT CAUSE_DESCR":

"Lightning”]}}, {"TIME dist": {"clean_time bin": ("14","15"1}}])

History compressed into comments in the same cell.

v # @ 08:22 PM @
# m.sel([{"TIME dist": {"clean time bin": ["15", "14"]}}])
# m.sel([{"STAT CAUSE_DESCR_fires df dist": {"STAT CAUSE DESCR": ["Fireworks"]}}])
# m.sel([{"STAT_CAUSE_DESCR _fires_df dist": {"STAT_CAUSE_DESCR": ["Lightning®j}}])

m.sel([{"STAT CAUSE DESCR fires df dist": {"STAT CAUSE_DESCR": ["Lightning”]}}, {"TIME dist": {"clean_ time bin": ["14","15"]1}}])
Comments folded away in the cell.
- # @ 08:22 PM @ e

m.sel([{"STAT CAUSE_DESCR_fires df dist": {"STAT CAUSE_DESCR": ["Lightning®]}}, {"TIME dist": {"clean_time bin": ["14","15"]}}])

Figure 4.6: A demonstration of three designs of selection cells. The top four cells represent
the result of creating new cells every time there is an interaction. The second last cell
represents all four selections, with three commented out. The last cell represents the previous
cell folded, and is the design we finalized on for B2.

visualization states. For interactions with the data pane, we create a column distribution
cell that contains the logic of grouping and visualizing the values (e.g., (4)). For selections
on the visualizations, we create a selection cell that contains the predicates of the current
selections (e.g., (10)). The automatically injected cells allow analysts to reference and replay
previous interactions directly in the notebook.

The rest of the visualization state can be “pulled” explicitly into the notebook narrative
at relevant times by clicking on “snapshot”, which captures an SVG representation of the
state of all visible visualizations in a notebook cell and the code to derive the data for the
respective visualizations in comments.

However, even just with the selection specifications in the reified cell, their accumulation
could still produce clutter. To further reduce clutter, if multiple selections are made without
the analyst switching to the notebook pane, all their reifications are merged into a single cell,
with the code for all but the last selection commented out and folded (with a code mirror
API), as shown in Fig. 4.6. This way, the default space devoted to each interaction “session”
in the notebook is small and constant, but the history is easily accessed by code unfolding
for replay, copy-paste, and other purposes. If analysts still find the injected cells disruptive
to their notebook flow, they can toggle the hiding of all generated cells with the “Toggle @”
(11).
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Bringing Interactivity to Code Cells

To introduce interactivity into the notebook, B2 implements reactive cells. These are in some
sense the mirror image of reified cells—instead of persisting interactive events, they make the
(persistent) code cells interactive. With reactive cells, analysts can create their own custom
interactions using a visualization package of their choosing, expanding the expressiveness
of the default interactive visualizations. A cell is made reactive by simply prefixing its
code with a Jupyter “magic” command, %%reactive. B2 ensures that the notebook’s JS
component executes the cell after every visual selection. If the magic command has a -df
<variable> flag, it executes after the visualization that is named after the variable in the flag
(e.g., "STATE fires df dist" in (4) and (5)). In every other way, reactive cells are regular
notebook cells—for example, they can be moved and deleted.

4.6 Technical Highlights

For readers interested in implementing B2-like techniques, we describe the algorithm used
to synthesize interactions and the system architecture.

Synthesizing Interactions from Queries

Section 4.5 describes the high level process we use to synthesize the interactions from the
queries. Here we explain in more detail the technical detail of the algorithm used. The
algorithm is developed based on data lineage research in database research. Data lineage
allows us to map a row of a query’s output to the set of rows of the input tables that
contributed to its content [24]. In the context of interactive visualizations, data lineage
allows us to connect a visual selection (rows from the table which the visualization is based
on) to other subsets of data, i.e., a filter.

B2 is not the first visualization system to make use of this connection. Smoke was an
important reference prior work that used the concept of data lineage to implement cross-
filtering [111]. In Smoke, all operators are instrumented such that developers of an interactive
visualization express linked visualizations as “lineage queries”. Smoke deploys physical in-
strumentation of data lineage because it allows for more efficient query execution. However,
B2 requires a logical approach to allow the user to access the results in a readable query
format, in addition to the result of the lineage query.

As a result, we looked to prior work in logical lineage capture in B2. Perm is a system
that derives the lineage query via transforming the original query with “provenance rewrite
rules” that capture a wide (though not complete) range of queries [43]. B2’s algorithm is
developed based on Smoke and Perm. We first walk through an example shown in Fig. 4.7
to outline the method and we then explain the algorithm shown in Listing 1.
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Figure 4.7: An illustration of how B2 synthesizes interaction queries: first identify rows
in fires_df responsible for producing the selected row in state df, and then apply the
derivation for cause_df based on the rows responsible.

Fig. 4.7 shows the backing tables of two visualizations: average size of fire by US state,
and count of fire by cause. Given a selection of the US state TX, we can identify the rows
in the original data frame®, fires df (highlighted in yellow). Then we can apply the same
logic of computing the distribution of the causes of fires by applying the logic on the rows
in fires df as part of the selection’s lineage.

Listing 1 provides the pseudocode of the algorithm. The main function, SYNTHESIZEIN-
TERACTION, applies the current selections to the target data frame and returns a data frame
filtered by the selections. Line 2 obtains the original data frame of the query through the
function GETORIGINALDF. The details of its implementation are omitted, but the gist is
that it recursively walks through the operators traced until an original data frame is reached.
Since we only support queries without joins, there will be only one original data frame. The
tracing is achieved by creating a wrapper datascience library to capture the specification
of each data frame as an abstract syntax tree (AST), recorded in a hidden field of the data
frame, _ops.

Now that we have the original data frame, we iteratively apply each selection to the data
frame using APPLYSELECTION (lines 4 to 5). The filtered data is then used to replace the
original data frame (line 7), yielding the final result (line 8). Function APPLYSELECTION
applies the selection to the data frame by deriving the rows of the original data frames
linked to the selected column values. In Line 11, we first get the original data frame of the
column that was selected via function GETSELORIGINALDF. We then check if this original
data frame matches that of the target data frame. If it does not, we attempt to join the
two original data frames (lines 13 to 15). If the join is not possible, the function returns
the original data frame without any filtering logic applied (line 17). Lastly, we apply the

4 “QOriginal” data frames are defined as data frames loaded from external sources and not derived from any
other data frames.
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selection as a predicate to the data frame sub_ops) and return the result (lines 22 and 23).

Note that B2 only supports lineage for selections over columns from the original data
frame and do not yet support queries involving joins. However this is not a critical limitation
because users could always join the data into one table (denormalization) before they use
B2. This is a common pratice in visual analytic tools [138]. That being said, future work
could continue to apply methods from database lineage literature to further enhance queries
supported.

System Architecture

Components. A B2 instance is composed of: (1) a Python runtime that tracks data frame
operations and handles Ul requests, (2) a JavaScript runtime that injects the dashboard
component and manages the event-loop within the browser, and (3) a communication layer
between the Python and JavaScript runtimes, Comm [132].

Algorithm 1 Interaction Synthesis Algorithm

1: function SYNTHESIZEINTERACTION(sels, df)

2 original < GETORIGINALDF(df)

3 filtered <— CopY(original)

4: for sel € sels do

5: filtered < APPLYSELECTION(sel, filtered)
6 end for

7 new_df <— REPLACEBASE( filtered, df)

8: return new_df

9: end function

10: function APPLYSELECTION(sel, original)

11: sel_original < GETSELORIGINALDF(df)

12: if sel_original! = original then

13: joins <— GETJOINABLEDFS(sel_original)
14: if original € joins then

15: sub_ops <— JOIN(original, sel_original.ops)
16: else

17: return original

18: end if

19: else
20: sub_ops < CoPY(original.ops)
21: end if
22:  pred <~ CREATEPREDICATE(sel)
23: return WHERE(sub_ops, pred)

24: end function
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Figure 4.8: Participants’ interaction traces while working on task 3, an open-ended task to
model the dataset. Each participant’s activity is represented by a horizontal strip plot, with
participants arrayed down the visualization. Orange colors represents the work done in the
code domain, and the blue colors represent the work done in the interactive visualization
domain.

Event Flow. When a user selects a visual mark, the visualization implemented in Vega
captures the selection event and invokes a B2 function that sends the selection values to the
Python runtime. The Python runtime then synthesizes the selection code based on existing
active selections. The synthesized code is sent to the JavaScript runtime, which then executes
the code in a @ selection cell. The function invoked then loops through all the currently
visualized data frames and apply the selection to each and sends the serialized values to the
JavaScript runtime. The JavaScript runtime renders the filtered values in the visualizations
and checks if the new selection matches the current selection. If not, the new selection is
drawn to synchronize state between the Python and JavaScript runtimes. Note that this
double round-trip design is necessary to support the bi-directional execution of interactions
from not just the UI but also the code.

4.7 Evaluation: First-Use Study

To evaluate the usability of B2’s bridges, we conducted a first-use study with 7 representative
users’, including 6 college students who have taken an upper-division data science course,
and 1 data scientist from industry. All participants had experience using Jupyter notebooks
and data frames, and their average self-reported data science expertise was 3.7 on a 5-point
Likert scale (o = 0.6). Participants also reported regularly using static visualizations for their
day-to-day analysis (u = 4.2,0 = 0.7), and only sometimes use interactive visualizations
(L=29,0=1.0).

Methods

Due to the COVID-19 “shelter-in-place” order, we conducted the studies over video confer-
ence using a hosted Jupyter Notebook. We began each study with a 30-minute tutorial of

5 COVID-19 affected our ability to broadly recruit participants.
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B2’s features, and then asked participants to complete three data analysis tasks. The tasks
used an open dataset of logged calls to the local police department [104], which we chose
to be interesting to participant. Tasks began specifically-focused and then transitioned to
being more open-ended: (la) identify the top two types of offenses on the weekend; (1b)
verify that the result from the previous task holds on another dataset; (2a) identify how
the locations of calls skew based on different factors; (2b) note factors you have not looked
at; (3) explore the data further and share observations and recommendations for the police
department. We asked the participants to record their findings in markdown cells and to
think aloud.

Participants took 45-60 minutes to complete the three tasks. At the conclusion of the
study, we administered an exit survey to measure the usefulness of B2 features, and to debrief
participants about their experiences. Participants were compensated with $30 Amazon gift
cards.

Quantitative Results

We instrumented the Jupyter notebook to log all user interactions with elements of the
notebook and dashboard, including B2 API invocations, interactive selections on the vi-
sualizations, clicks on the column pane, and clicks on the drop-down menus of individual
visualizations. To analyze this data, we computed the count of logged entry by type, and
report the average and standard deviation across participants.

Crossing the Semantic Gap: On average, participants clicked columns from the dashboard
listing 17 times (0 = 4.4), and selected marks in the visualizations 63 times (o = 41.9).
Participants manually invoked the B2 APIs (Listing 4.2) in code an average of 26.7 times
(0 = 21.9); this number rises to an average of 112 times (0 = 84.8) when we include
automatic invocations as a result of reactive cells.

Crossing the Layout Gap: Participants controlled the dashboard (e.g., adjusting its size,
hiding or (re)moving visualizations, etc.) an average of 12.6 times (¢ = 5.3), and scrolled
to navigate the notebook’s linear flow an average of 536 times (o = 140.7). To navigate
from the dashboard to the notebook, participants clicked the “Find Defining Cell” button
an average of 2.2 times (¢ = 1.9) and none of the participants used B2’s functionalities to
navigate from the notebook to the dashboard.

Crossing the Temporal Gap: On average, participants recorded transient interactive vi-
sualizations to the notebook using snapshots 3.7 times (o = 2.9), and made cells interactive
with the %%reactive magic command 4.43 times (o = 2.94).

Post-study survey results

On 5-point Likert scales, participants positively rated B2 overall (¢ = 3.7,0 = 0.6), with
similar ratings for interactive visualization (u = 4.2,0 = 0.75), static visualization (u =



CHAPTER 4. B2: BRIDGING CODE AND INTERACTIVE VISUALIZATION IN
COMPUTATIONAL NOTEBOOKS 74

In [150]: M .are.contained in(superstring=[2, 1, 4, 3, 5]), Mone).group( OFFENSE', Hone)@ﬁﬁf}(lmbﬁa X xfs,"cuuut_f_:l
: = _'-’

out[150]: array([ 4.2, ©.2, 3. 9.2, 1.2, 63.2, 6.8, 9.4, 15.6, 6. , 7.8,
1. , 8., 0.6, 2.2, 0.2, 0.4, 5., 8.8, 3.2, 1.8, 16.6,
9.4, 1. , 45.8, 12.6, 0.6, 16.2, ©0.2])

Figure 4.9: Modifying a generated query to further derive the average count, which is not
possible through interactions.

3.7,0 = 0.9), B2’s programmatic API (¢ = 3.6,0 = 0.7), and interaction histories (y =
3.5,0 = 0.92). In terms of ease-of-use, participants rated B2 a 3.1 (o = 0.3), but responded
that they were likely to use B2 in the future (u = 3.6,0 = 0.8).

Qualitative Results

We observed participants quickly grasped how to use code and interactions together in a
complementary fashion. One common pattern was using code to first process data before
visualizing it. For instance, P2 first attempted to visualize the time column by clicking on
the pane, but B2 flagged that there were too many unique values and it would not be able
to synthesize the code to visualize the data. In response, P2 switched to the notebook and
inspected the values in the Time column with code. They then extract out the Hour from the
Time column with a regex function and visualized the distribution by Hour using the .vis
API. Having built the hour distribution visualization, P2 then interacted with it by brushing
time ranges to further filter other visualizations. Another common pattern was using code to
compute statistics using the interactively filtered visualizations. For instance, using “Copy
Code to Clipboard”, P3 copied the code used to derive an interactive visualization and added
their own functions to compute the average values (Fig. 4.9). Similarly, P7 was inspired by
B2’s visualization, and wrote their own visualization in matplotlib using the data frame B2
reified in the previous code cell, before then computing statistics in code (Fig. 4.10).

These types of patterns switching between code and interactive visualization, and vice-
versa, were common across all participants. Fig. 4.8 visualizes the interaction traces of
participants in task 3, and we can see frequent interleavings between coding and interacting
with the visualizations for all participants and throughout the duration of this open-ended
task. Indeed, in the post-study debrief, participants shared enthusiastic comments about
B2’s features. For instance, P5 wanted them to be able to “create custom visualizations for
their day to day work” while P6 wanted them in order to “share the raw underlying data of
a chart [with coworkers]”.

When working on task 2, which prompted exploration of call location, all but one par-
ticipant chose to use interactive visualizations. In particular, these participants chose to
create an initial heatmap, make it reactive using B2’s %/%reactive magic command, and then
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select different values in the dashboard histograms. In contrast, P7 primarily used code to
re-derive the Lat Lon information. P7’s manual iteration was slower and resulted in fewer
insights in the time given (Fig. 4.11). In either case, participants frequently needed to refer
to documentation, even when using popular libraries such as numpy and matplotlib. This
need to consult resources outside of the notebook appeared to impose a high cost, and several
participants interacted with the dataset using B2’s visualizations before committing to using
extensive coding to answer the task. For instance, when thinking out loud, P5 shared that
“I need to dig into this [with code] but maybe later”.

The fact that the interactive visualizations were automatically synthesized proved to be
important. P1 commented that the features offered by B2 are “hard to do [for them] with
plotting libraries”. P5 said that B2 “spares the user from tedious commands” and “facilitates
the EDA process”. This ease of use also prompted comments about targeting B2 at those
less familiar with code. P7 said B2 “engages people who would like to conduct research and
data analysis but don’t have much programming experience”, and P2 said "I think this would
be awesome to show students in my data science class”.

There was also evidence that incorporating interactions into the programming process
may require a mental shift. We observed this shift in thinking most saliently in how partici-
pants chose to complete Task 1b. To verify if the answer to task la holds true for a different
dataset with the same schema, five analysts exported their interactive work to code using the
“Copy Code to Clipboard”. With this code, they replaced the data frame from task la with
the new data frame loaded in 1b, executed the query and evaluated the results in code. The
other 2 analysts manually re-applied the interactions from the Task la on the new dataset
and were not aware of using B2’s capability to translate interaction results to code.
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Figure 4.10: Using code to create a custom plot with the average line in the chart, and
computing percentages.
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Figure 4.11: Participants’ interaction traces while working on task 2. To plot the heatmap,
all analysts initially interleaved between code and interactions. P3’s gap between 300-400s
is when they searched the web for information about the city. P7 used code, interaction,
and the get filtered data API to inspect whether null values were present.

When asked in the exit interview about their approach, they commented that the alter-
native approach of mapping interactions to code hadn’t crossed their minds. In other words,
the first approach requires that the analyst understands how B2 let them work across the
two mediums, and it seems from the results that it’s not always apparent. P4 said “It might
be because I am not very familiar with the idea of interactive visualizations, I find it not
so easy to adapt to the tools given my background”. Further study is required to determine
whether this mental shift will be ameliorated with increased and longer-term exposure to
interactive visualizations and exploratory visual analysis, or whether it represents a more
fundamental overhead of switching between these two paradigms that future versions of B2
can address.

Participants had more mixed opinions about the auto-injected reified selection cells. For
instance, P2 mentioned that they could “make the notebook very crowded” and suggested
that we “have it appear in some separate tab”; P3 mentioned that it was “annoying that the
left side gets populated by lines of code each time I click on the visualization on the right”.
However, the most experienced data analyst (with years of industry experience), appreciated
the feature, saying “being able to remember the current selection and history” is important
“because I often forget what I've done if I go get coffee or lunch”, and that the feature may
help with reproducing the analysis ( “I often have one team reach out to get a version of an
analysis that I did for another team”).

Interestingly, although B2 does provide a feature to combat this issue (the “Toggle @”
button), neither P2 or P3 made use of it. They explained that they forgot the toggle control
feature. Perhaps the issue could be addressed by more use with the tool. It could also be
that, fundamentally, some analysts do not like their notebook to be modified. Regardless,
this initial finding speaks to well-known explanation-exploration conflict in notebook ex-
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ploration [116] and we need to study further to understand the design and cognitive issues
present.

Lastly, although participants were able to easily adjust B2 to have more screen real-
estate for code (or visualizations), none of the participants did. This could be due to a
lack of familiarity to the many controls B2 provide. Though it may be more likely that
participants did find both code and visualizations helpful at all times.

4.8 Conclusion

We contribute B2, a library of techniques to bridge the gaps between code and interactive
visualizations in computational notebooks. We identified these gaps by studying prior work
that surveyed and interviewed data scientists, and then evolved our understanding based on
the tradeoffs manifest in prototype implementations we piloted with representative users.
These gaps—and the way they arise from the metaphors, layouts, and timescales of the
two styles of work —are a significant influence on the specific bridges we ultimately chose to
instantiate in B2. Our first-use study validates that these bridges indeed help users iterate
between code and interactive visualization more seamlessly.

Having addressed this first set of questions, we have uncovered a number of additional
challenges that appear to be rich topics for further investigation.

Non-Linear Workflows & Asynchronous Collaborations: Our user studies yielded
relatively short sessions, but notebook explorations could often become non-linear, where
analysts may want to jump between sections of analysis. These jumps cause changes in
context, both in terms of the program state and analysts’ mental models. The challenge of
managing segments of analysis state is also faced in collaboration settings, where analysts
sometimes jump through cells and need to understand cell dependencies [151]. Supporting
analysts in navigating between segments of analysis in space and time poses additional
challenges for the layout and temporal gaps. Future work could explore bringing in techniques
such as bookmarking, linking, and annotations from asynchronous collaboration literature
[61]. For instance, we could consider bookmarks containing groups of visualizations that
match sections of the notebook that may correspond to a set of visualizations. We could
also link the states of charts and data frames—when a data frame is modified, the charts
reactively update in accord.

DSLs Beyond the Data Frame: A data frame API is an attractive semantic foundation
for bridging visualization and code, because (a) it is broadly useful across many classes of
data (tables, matrices) and analysis steps (data preparation, database-style queries, linear
algebra), and (b) it maps well to the core visual aspects of EDA. However there are other
data science microcosms where it might be interesting to bridge code and data. One popular
example today is deep learning, where APIs like Keras [49] or Tensorflow [2] are often coupled
with domain-specific charting packages like Tensorboard [140]. How might a different set of
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data frame operations and visualizations impact the gaps we identify in this paper, and
might they suggest new gaps and bridges?

Links Beyond Cross-Filter: In this paper, we focus on synthesizing cross-filters as our
main interactive mechanism, but there are many other possible techniques to consider. For
instance, Yi, et al. present one taxonomy of this space, with seven different categories
of interaction techniques [170] covering dozens of ideas in prior work. For many of these,
it would be interesting to consider how data properties and operation lineage could aid
in automatic synthesis of useful interactions. As a more general question, if we expand
B2 to accommodate many different interaction models, how might we prioritize automatic
selection of the most appropriate model, or design semi-automatic interfaces for interaction
model selection?

B2 is available as open-source software at https://github.com/yifanwu/b2.
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Chapter 5

Summary and Future Work

In this thesis, we contributed three novel artifacts that collectively support more scalable and
fluid human-data interfaces, and verified the utility of interaction history. In this chapter,
we summarize the key insights and highlight interesting future research directions.

New Interaction History Affordances

In Interaction Snapshots and B2, study participants found access to past interactions so
helpful that they suggested ways to edit and iterate on the reified interaction histories. One
suggestion is to make reified interaction history editable. For Snapshots, users wanted to be
able to organize snapshots into groups, remove ones no longer needed, and add annotations.
For B2, users wanted to define multiples dashboard view and connect the dashboard views
with segments of the notebook cells. We hypothesize that the design of “scrollytelling”,
popularized in recent journal articles [128], can help. As the user scrolls through to different
part of the notebook, the dashboard can update accordingly.

Another direction builds on top of a related research area, visual analytics provenance.
Researchers in the field find that the generation of visualizations are often limited to the
final visual artifact, and the “trails” of analysis that not captured. VisTrails tackles this
problem by capturing the visualization pipeline, or dataflow; users can then query and
edit the dataflow, and to apply the dataflow to other inputs [20]. Gotz et al. tackles a
similar problem, insight provenance, using a novel action abstraction as semantic building
blocks [44].

Computational notebooks are well suited to leverage these research ideas, and we hy-
pothesize that the use of history and the inter-operation provided by B2 can help. The
code cells in notebooks already provides natural units of provenance, and the visualization
interactions are reified into code cells through B2. Users can manually change the dataset
and replay the code cells that captures the interactions and related operations. However,
because notebooks permit out-of-order executions, reproducibility is still a challenge. Future
work may leverage program slicing techniques [55] or lean into a new execution model like
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those in Observable [101] and Streamlit [141].
Human-Data Interfaces as Distributed Systems

The lens of distributed system on interactive visualizations has not only been fruitful for
our research. It also highlights open questions and opportunities.

One direction is to support the programming of collaborative human-data interfaces,
which is an emerging use case for interactive visualizations [118, 100]. Programming for col-
laboration has been widely studied in the collaborative groupware community [47, 137, 136],
but less so in the interactive visualization space, which supports different user interactions
than document edits.

Programming for collaboration tools is fundamentally different from that for a single
user. The DIEL model only supports one source of change—those observed on the client
through its API. However in a collaborative setting, there are multiple sources of changes:
user A and user B could both be interacting in separate interfaces concurrently. While we
can certainly try to enforce a single global ordering of events via a linearizable coordination
service using an algorithm like MultiPaxos [84]. However such a solution often leads to
latencies unacceptable to modern UI design principle of responsiveness [69].

To support non-blocking interfaces in the context of collaboration, we need to support
a distributed notion of time. This is where the lens of distributed systems could help us.
Distributed system programmers have long recognized that distributed time supports only
partial ordering (as opposed to a global ordering). One key concept to to help distributed
systems developers reason about concurrent events is vector clocks [85]. While vector clocks
have been used for collaborative editors [156], programming with it had been challenging.
Recent advances in languages for distributed programming, such as like Bloom [7], offer
simple mechanisms for strong coordination using monotonic programming constructs. Bloom
allows for multiple nodes to generate events simultaneously, and provides language support
to determine when the concurrency can result in inconsistent experiences or outcomes across
users [7]. Conway explored augmenting Bloom for collaborative editing [30], but future work
is still needed to specialize the abstractions for interactive visualizations.

Beyond programming, the distributed systems lens is also useful for design. By modeling
the user as an agent in a distributed system along with the UI and remote databases, we can
capture and reason with UX anomalies. Like systems, users also take time to process signals
and perform actions. We know that users take more than 100ms to observe a change on
the screen and perform an action (like clicking) [21]. We also know that some interactions,
such as drawing a brush, or making multiple selections by clicking on each item, take time
to perform. Given these latencies in human processes, it is possible for different events to
go out of order, causing the Ul to end up in an unexpected state. We have explored these
inconsistencies and reconciliation methods in a prior work [166], but much remains to be
done.
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A New Medium of Programming and Interactions

B2 is only one step in the direction of tools that inter-operate between programming
and interactions. One obvious future work direction is to support interactions beyond cross-
filtering. For instance, we can inter-operate code with a Tableau-like shelf interactions
through pivot operators [134]. Another future work direction is to expand beyond relational
operators and support composable abstractions in other domains. For instance, machine
learning is a good candidate given its highly structured workflows.

B2 could also serve as an inspiration to help complete “unfinished” bridges in prior work,
where the interactions can generate code, but not the other way around. Completing the
unfinished bridges from the code to interaction may help non-technical users make sense
of the code in a process that they understand. It may also serve as an education tool to
help users learn coding. One example is data wrangling: Wrangler leverages a DSL based
on Potter’s Wheel [114] to synthesize executable programs from interaction sequences [72].
Another example is SQL query composition: Sieuferd is an interface that allows users to
expresses all of SQL through direct manipulation [11]. Future work could explore ways to
synthesize interactive controls from programming history.

Of course, B2 is not the only approach to building this bridge. Interaction history is
just one way to share specific types of state between the two mediums. One alternative
is templating. mage allows tools to represent themselves as both code and GUI as needed
through templates [77]. Ivy is another recent project using templates to help users synthe-
size Vega-Lite specifications [95]. Another option is programming by example: Falzr allows
users to interactively define programs via thesis [152], and Wrex allows users a Excel flash
fill experience but with Pandas [36]. Yet another line of work is output-directed program-
ming [65]. Users can either make direct manipulations or write code to edit the final artifact.
This way, edits not possible through direct manipulation can instead be performed via code
edits. It would be interesting work to see how interaction history could be used to enhance
these tools to push the envelope for the future of programming.
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