
Improving the Efficiency of Robust Generative

Classifiers

Alan Rosenthal

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-68

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-68.html

May 13, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Prof. David Wagner for his mentorship throughout this
program as my advisor. I am also grateful to have worked with An Ju,
whose insights were invaluable for this project. Finally, I want to thank my
family for their continual guidance and support every step of the way.

Improving the Efficiency of Robust Generative Classifiers

by Alan Rosenthal

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor David Wagner
Research Advisor

(Date)

* * * * * * *

Professor Dawn Song
Second Reader

(Date)

��������

5/12/2021

Improving the Efficiency of Robust Generative Classifiers

by

Alan Rosenthal

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Wagner, Chair
Professor Dawn Song

Spring 2021

1

Abstract

Improving the Efficiency of Robust Generative Classifiers

by

Alan Rosenthal

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor David Wagner, Chair

The phenomenon of adversarial examples in neural networks has spurred the development
of robust classification methods that are immune to these vulnerabilities. Classifiers using
generative models, including Analysis by Synthesis (ABS) introduced by Schott et al. and
its extension E-ABS by Ju et al., have achieved state-of-the-art robust accuracy on several
benchmark datasets like SVHN and MNIST. Their inference time complexity, however, scales
linearly with the number of classes in the data, limiting their practicality. We evaluate
two approaches to speed up ABS-style models and inference: first, a hierarchical decision
tree framework that achieves accuracy nearly on par with E-ABS in logarithmic time, and
second, a scheme to classify latent vectors based on a prior distribution in constant time.
We also provide an algorithm to search over decision tree structures, which yields significant
improvements in accuracy over naive arrangements.

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1
1.1 Neural Networks and Adversarial Robustness 1
1.2 ABS . 1
1.3 E-ABS . 3
1.4 Challenges . 4

2 Hierarchical Binary Classification 5
2.1 Method . 5
2.2 Choosing Binary Splits . 6
2.3 Results . 8
2.4 Further Directions . 10

3 Classifying Latent Vectors 12
3.1 Model Structure and Training . 12
3.2 Regularization Term . 13
3.3 Results . 14

4 Discussion 18
4.1 Considerations for Scaling ABS-style Inference 18

Bibliography 20

ii

List of Figures

1.1 Module structure of ABS. Image taken from Schott et al. [36] 2
1.2 Module structure of E-ABS. Image taken from Ju et al. [18] 4

2.1 Naive splits for hierarchical binary classification trees on 10 labels. 5
2.2 Manually designed splits for hierarchical binary classification trees on 10 labels. 5
2.3 A simplified view of several classes’ latent distributions for an unconditional gen-

erative model on the entire MNIST dataset. 6
2.4 SVHN performance. Color scale shared across the three trees, with red for low

accuracy and green for high accuracy. 8
2.5 MNIST performance. Color scale shared across the three trees, with red for low

accuracy and green for high accuracy. 9
2.6 An example of subsets Si of the labels {0, 1, . . . , 9} and the binary encoding

induced by them. Each column is the bit string of the corresponding class. . . . 10
2.7 An example of the inference process using the encoding described in Figure 2.6.

The bit string for label 7 is e(7) = 0001 since e1(7) = e2(7) = e3(7) = 0 and
e4(7) = 1. The coloring reflects the relative difference between values in each row. 10

3.1 Behavior of class-conditional AAE on MNIST. During optimization, the loss from
the closest class’s discriminator is used as regularization. Latent vectors returned
by encoder are plotted. The reconstructions of ten input points using the en-
coder’s outputted latent vector as well as a latent vector determined by optimiza-
tion are shown at right. Solid-border circles in the third-column plots are encoder
outputs, dashed-border circles are latents returned by optimization. 14

3.2 Same as Figure 3.1 but using entropy as regularization during optimization. . . 15

iii

List of Tables

2.1 Average dC1,C2 by depth for different label splitting regimes. For each depth, the
value reported is the average of dC1,C2 over all the nodes at that depth. There
is one node at depth 1 (the root), two nodes at depth 2, four nodes at depth 3,
and two nodes at depth 4. In Figures 2.1, 2.2, 2.4, and 2.5, each node is drawn
as C1 / C2 . 7

2.2 Percent accuracy of hierarchical decision tree classifiers and vanilla E-ABS. . . . 8

3.1 Percent accuracy of class-conditional AAE on MNIST test data and percent of
optimizations that switch class. Description of each column:
Enc (encoder): Classify encoder output directly.
Enc+Sample: Classify the point minimizing weighted sum of reconstruction loss
and regularization term over the samples and the encoder’s output.
Enc+Sample+Opt: Classify the latent resulting from optimization starting from
the point found by Enc+Sample.
Opt Switches Class: Number of MNIST test points for which the most likely
classes of the optimization starting and ending points differed, divided by the
size of the MNIST test dataset. 15

3.2 Average log likelihoods of latent vectors for class-conditional AAE on MNIST
test data. Low values roughly indicate that the latent vectors tend to be far away
from the prior distribution. Thus, the encoder produces latents that are close to
the prior, while optimization travels far away. Log likelihood is taken with respect
to the most likely class distribution, i.e. if class 4 gives the highest likelihood for
z, then log p(z | y = 4) would be used. Log likelihood is calculated for every
test point this way and averaged over the whole dataset. The True Prior column
is slightly different, using the same log likelihood calculation but averaging over
samples drawn from the true mixture-of-Gaussians latent prior instead of test
points. This column illustrates what the log likelihood would “ideally” look like
under the true prior. 16

1

Chapter 1

Introduction

1.1 Neural Networks and Adversarial Robustness

Deep neural networks have made sweeping advances in a variety of tasks [21, 16]. However,
they suffer from a phenomenon known as adversarial examples : minuscule perturbations
added to inputs that can significantly change a network’s behavior on those inputs [38,
34]. This work considers classification, the most frequently discussed setting for adversarial
examples, in which an adversarial perturbation causes the classifier network to predict the
wrong class, often with high confidence. Adversarial examples highlight the qualitative
differences between neural networks and humans in information processing. Moreover, they
undermine the reliability and trustworthiness of neural networks that are deployed in real-
world applications.

Researchers have developed a variety of “attacks” to find adversarial perturbations [13,
24, 29]. Given a classifier and an input, most attacks have the constraint that the perturba-
tion to the input is Lp bounded by a certain radius in pixel space.

Likewise, many “defenses” have been proposed that attempt to classify accurately with-
out such vulnerabilities [26, 4]. Many of these defenses were subsequently defeated by
stronger attacks [39, 2, 3], underscoring the difficulty of empirically evaluating robustness.
Theoretically-guaranteed defenses [23, 14] are especially valued, but have lower accuracy
than methods with only empirical assurances, such as adversarial training [26, 4].

1.2 ABS

Schott et al. introduced an adversarially robust classifier based on generative models called
Analysis by Synthesis (ABS) [36]. ABS empirically achieved state-of-the art robust accu-
racy on MNIST [22] under arbitrary Lp-bounded perturbations. Additionally, adversarial
examples found for ABS are more effective at deceiving humans than those found for other
defense methods [12].

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Module structure of ABS. Image taken from Schott et al. [36]

For a dataset with K classes, ABS uses K generative models, one per class to learn
the conditional distribution of that class. Given an input at inference time, each of the K
generative models estimates the likelihood of the input under that class, and the most likely
choice of class is returned as the classification prediction.

A Brief Overview of VAEs

Each of the K classes in ABS is modeled by a class-conditional Variational Autoencoder
(VAE) [19, 11]. See Figure 1.1. Consider a single class y ∈ {1, . . . , K}. According to the
VAE model:

• The distribution of the latent vector Z is N (0, I), independently of class.

• Given a latent vector Z and a class y, the distribution of data points X is a multivariate
Gaussian with mean decy(Z) and diagonal covariance τ 2I, where τ 2 is a hyperparameter
and decy(Z) is the output of class y’s VAE decoder on Z.

At inference time, our prediction is the most likely class y given the input X:

arg max
1≤y≤K

p(y|X) = arg max
1≤y≤K

p(X|y) p(y) (Bayes’ Rule)

= arg max
1≤y≤K

p(X|y) (assuming uniform prior on classes)

Since p(X|y) =
∫
py(X|Z) p(Z) dz generally is intractable to estimate, we use the evidence

lower bound (ELBO) [8, 19], denoted `qy:

log p(X|y) ≥ EZ∼q[log py(X|Z)] +DKL

(
q(Z) || p(Z)

)
= `qy

CHAPTER 1. INTRODUCTION 3

Here, the variational distribution q(Z) is N (µ, σ2I), where σ2 is a hyperparameter and the
mean µ is free to vary. 1 Since the ELBO can be written in terms of µ, this parameter can
be optimized to maximize the ELBO. 2 Let `∗y = maxq `

q
y be the best ELBO to log p(X|y).

By performing the optimization once for each of the K classes, we arrive at the classification
output arg max1≤y≤K `

∗
y.

The optimization procedure begins by sampling many latent vectors from the prior, then
choosing the one with highest ELBO as the starting point for optimization.

Schott et al. use this framework to derive a lower bound of the robustness of ABS, which
depends on the learned class-conditional data distributions. Their result relies on the strong
assumption that the optimization procedure finds a global optimum. This may be largely
true for simple datasets like MNIST, where the latent space can have low dimensionality,
but becomes less certain when the data representations have more dimensions.

1.3 E-ABS

Ju et al. [18] introduced E-ABS, which modifies some of the model structure and training
regime of ABS to tackle more complex datasets than MNIST. See Figure 1.2. E-ABS achieved
state-of-the-art robust accuracy on SVHN [31] and a 10-class traffic sign dataset. Their
modifications were:

• Use Adversarial Autoencoders (AAEs) [27] instead of VAEs as the class-conditional
generative models, since VAEs have difficulty matching the imposed latent prior dis-
tribution [35] and providing accurate likelihood estimates [6]. In an AAE, a separate
discriminator network learns to distinguish vectors sampled from the true latent prior
from latent vectors produced by the encoder. The discriminator’s loss term replaces
the KL divergence in the ELBO.

• Use a single encoder and discriminator, which are shared by all K classes.

• At inference time, optimize the component variances of the variational distribution
q(Z) in addition to the mean. In contrast, ABS held the variational distribution’s
covariance constant during optimization. Also, the encoder’s output is considered in
addition to the initial samples as a possible starting point for optimization.

• Introduce a discriminative loss during training, treating the values (`∗1, . . . , `
∗
K) as logits

and using a cross-entropy loss with respect to the true class.

1During training, the variational distribution q(Z) is parametrized by a mean and diagonal covariance,
where the mean and component variances are output by a neural network encoder.

2Since p(Z) is also multivariate Gaussian, there is a closed-form expression for DKL

(
q(Z) || p(Z)

)
in

terms of µ. With the Gaussian reparametrization trick [19], an estimate for the term EZ∼q[log py(X|Z)] in
terms of µ can found by sampling. If q(Z) concentrates around the latent vectors that reconstruct X well,
then the sampling is efficient.

CHAPTER 1. INTRODUCTION 4

Figure 1.2: Module structure of E-ABS. Image taken from Ju et al. [18]

Ju et al. [18] also derive a similar lower bound of the robustness of E-ABS as Schott et al.
[36] derive for ABS, with similar caveats.

1.4 Challenges

Despite good performance on simpler datasets, ABS-style models have two major shortcom-
ings.

1. Time complexity of inference is linear in the number of classes (assuming each optimiza-
tion costs the same) because each class performs its own class-conditional optimization
to find an optimal variational distribution.

2. Achieving high accuracy on complex data distributions such as CIFAR-10 [20] remains
challenging.

Our contributions address only the first issue, of time complexity during inference. The
computational load is manageable for 10-class datasets like MNIST and SVHN, but would
become impractical for any application with many categories, like the 1000-class ImageNet
classification dataset [9]. With this motivation, we use a decision tree in which each decision
node is a binary E-ABS classifier to classify in logarithmic time (Chapter 2). We also
describe a method to use a generative model to classify an input’s latent vector in constant
time (Chapter 3).

5

Chapter 2

Hierarchical Binary Classification

2.1 Method

Vanilla ABS-style models require K optimizations to be performed at inference time, one
optimization per class. Using a hierarchical decision tree structure, O(logK) optimizations
are needed to classify an input. The model is defined as follows.

Let C1, C2 be a partition of the classes {1, . . . , K}. Use an E-ABS model to classify inputs
as belonging to C1 or C2. For each subset of classes C1, C2, partition Ci into Ci1, Ci2 and
use an E-ABS model to classify inputs into Ci1, Ci2. Repeat until all subsets are of size 1. A
binary decision tree structure emerges from this construction, with K−1 binary classification
nodes. See Figure 2.1 for an example of the tree structure with a naive partitioning of the
labels {0, 1, . . . , 9}. As long as the class partitions are as equally-sized as possible, i.e.
differing in size by at most one, any path from the root to a leaf travels through either
blog2Kc or dlog2Ke decision nodes. Each decision node performs 2 optimizations since it is

Figure 2.1: Naive splits for hierarchical
binary classification trees on 10 labels.

Figure 2.2: Manually designed splits for
hierarchical binary classification trees on
10 labels.

CHAPTER 2. HIERARCHICAL BINARY CLASSIFICATION 6

Figure 2.3: A simplified view of several classes’ latent distributions for an unconditional
generative model on the entire MNIST dataset.

2-class E-ABS, so at most 2dlog2Ke optimizations are performed at inference time.
Similar constructions to use binary classifiers for multi-class classification have been dis-

cussed in the literature before [28, 37, 25], including in conjunction with neural methods [40].
In this work, E-ABS classifiers are used at each node to confer the robustness advantages of
E-ABS models.

2.2 Choosing Binary Splits

The question of choosing which classes are grouped together at each binary decision node
remains. We first identify two sources of classification difficulty in the tree-based model:

1. If many classes are partitioned into a binary split, the distribution of each binary class
is the union of several classes’ distributions. Since the generative classifier must model
a more complex distribution, difficulty increases. Thus, in general, shallow nodes will
have more difficulty than deep nodes.

For example, consider the nodes 01234 / 56789 and 0 / 1 in Figure 2.1. The two

generative models in 01234 / 56789 each learn the union of five different class distri-

butions, while those in 0 / 1 each only learn one.

2. We hypothesize that there are different degrees of inherent similarity between the
classes, and deciding between similar classes is more difficult than deciding between
dissimilar ones.

For example, the shape of the digit 1 could be said to be more similar to 7 than
8. See Figure 2.3 for a visualization, with the assumption that similar classes’ latent

CHAPTER 2. HIERARCHICAL BINARY CLASSIFICATION 7

Dataset Depth Naive Manual (vs. Naive) Greedy (vs. Naive)

1 5.181 5.235 (+0.053) 5.250 (+0.069)
SVHN 2 5.382 5.408 (+0.025) 5.412 (+0.030)

3 5.720 5.591 (−0.128) 5.551 (−0.169)
4 5.670 5.633 (−0.037) 5.528 (−0.142)

1 5.314 5.516 (+0.202) 5.516 (+0.202)
MNIST 2 5.700 5.796 (+0.097) 5.836 (+0.136)

3 6.409 5.745 (−0.664) 5.901 (−0.508)
4 6.799 6.047 (−0.752) 5.574 (−1.225)

Table 2.1: Average dC1,C2 by depth for different label splitting regimes. For each depth, the
value reported is the average of dC1,C2 over all the nodes at that depth. There is one node
at depth 1 (the root), two nodes at depth 2, four nodes at depth 3, and two nodes at depth
4. In Figures 2.1, 2.2, 2.4, and 2.5, each node is drawn as C1 / C2 .

distributions are closer together than dissimilar classes’. If the four depicted classes
were to be paired and a binary E-ABS classifier trained to classify one pair versus the
other, then the split 17 / 38 would likely have higher accuracy than 13 / 78 because
the former distributions are farther apart (blue) than the latter ones (red).

To partially alleviate the first issue, we increase the latent dimensionality of the binary
classifiers at depth 1 or 2.

A Principle for Choosing Class Partitions

To further counterbalance the asymmetry arising from classes being grouped together, we
combine similar classes in the shallower decision nodes, thereby deferring to deeper nodes
the harder tasks of discriminating between similar classes. Later, we show experimentally
that such arrangements perform better than those in which dissimilar classes are grouped
together and difficulty concentrates near the root node.

We now address the task of deciding what the class partitions will be in the decision tree.
One option is manual design; for the digits {0, 1, . . . , 9}, we manually specify the splits to
follow visual intuition about the shapes of digits, arriving at the structure in Figure 2.2.

An Algorithm to Partition Classes

Motivated by the latent space intuition in Figure 2.3, we train an unconditional AAE [27]
model on the entire dataset and compute the latent vectors of every point in the training
set. For a data point x and a subset of classes C ⊆ {1, . . . , K}, we define the distance from
x to C as the Euclidean distance from the latent vector of x to the closest latent vector of

CHAPTER 2. HIERARCHICAL BINARY CLASSIFICATION 8

Figure 2.4: SVHN performance. Color scale shared across the three trees, with red for low
accuracy and green for high accuracy.

Dataset Tree (Naive) Tree (Manual) Tree (Greedy) Vanilla E-ABS

SVHN 81.42 85.18 86.48 90.78
MNIST 98.32 98.37 98.37 99.16

Table 2.2: Percent accuracy of hierarchical decision tree classifiers and vanilla E-ABS.

any point in C. Denote this quantity mx,C . For two disjoint subsets of classes C1, C2, we
define the one-way distance dC1→C2 from C1 to C2 as the average value of mx,C2 over all x in
C1. Finally, let dC1,C2 = 1

2
(dC1→C2 + dC2→C1) for symmetry. These values can be computed

quickly by caching the values mx,{y} for each y ∈ {1, . . . , K} for each point x in the dataset.
Next, examine all splits of the labels {1, . . . , K} into balanced binary partitions and

greedily choose the split (C1, C2) that maximizes dC1,C2 . This groups similar classes together
for shallow nodes, under the assumption that class similarity is inversely related to this
distance measurement. For each set of labels C1, C2, again greedily choose the split (Ci1, Ci2)
that maximizes dCi1,Ci2

. Repeat until all subsets are of size one. The greedily chosen splits for
SVHN and MNIST can be seen in the rightmost trees in Figures 2.4 and 2.5, respectively.1

Table 2.1 confirms that, in shallow nodes, average latent-vector distances dC1,C2 are larger
for manual and greedily searched splits compared to the naive ordering. The trend reverses
in deeper nodes. Under the assumption that dC1,C2 is inversely related to similarity, the
manual and greedily searched splits are indeed better than the naive ones.

2.3 Results

On SVHN, manually specifying label splits for the decision tree increases overall accuracy
compared to naive splits, and greedily chosen splits give the highest accuracy. Furthermore,

1The manual and greedy splits happen to be similar for MNIST. In particular, the first split is identical.

CHAPTER 2. HIERARCHICAL BINARY CLASSIFICATION 9

Figure 2.5: MNIST performance. Color scale shared across the three trees, with red for low
accuracy and green for high accuracy.

the naive-split tree has worse performance on shallower nodes and better performance on
deep nodes, in contrast to the other two, whose nodes have more uniform performance
throughout. These observations support the hypothesis that combining similar classes in
shallower decision nodes balances against the naturally higher difficulty of these nodes, which
is due to the union of several classes’ distributions.

However, vanilla E-ABS trained directly on the datasets outperformed all three decision
tree models. In Table 2.2, we report the overall accuracy of all the models under consider-
ation. Figures 2.4 and 2.5 display more detailed performance information from the decision
trees. The accuracy values reported at each node are computed based only on data points
that were correctly classified by the parent node. Relative to vanilla E-ABS, the decision
tree model has lower inference time at the cost of having worse accuracy.

The same trends occured on MNIST, but the choice of label splits did not have as large
an impact as on SVHN.

A Note on Complexity

While vanilla E-ABS outperforms the decision tree model in accuracy, the tree has better
time complexity during inference: O(logK) for the tree vs. O(K) for E-ABS. However, if
computation is freely parallelizable, then vanilla E-ABS takes constant time (each optimiza-
tion can be performed independently, in parallel). In this case, the decision tree still takes
O(logK) since parallelization only reduces inference time by a constant factor of 1

2
(each

node has 2 optimizations that can be parallelized, but each binary decision must be made
serially).

Another aspect to consider is training time. For simplicity, let us first assume that the
training time for an E-ABS model is proportional to the number of classes. Then to train
a single E-ABS model on K classes requires O(K) time, but training the tree model takes
O(K logK) since there are O(2d) trees at depth d, each has O(K/2d) classes, and depth
ranges from 1 to dlog2Ke.

CHAPTER 2. HIERARCHICAL BINARY CLASSIFICATION 10

Figure 2.6: An example
of subsets Si of the labels
{0, 1, . . . , 9} and the binary
encoding induced by them.
Each column is the bit string
of the corresponding class.

Figure 2.7: An example of the inference process using the
encoding described in Figure 2.6. The bit string for label
7 is e(7) = 0001 since e1(7) = e2(7) = e3(7) = 0 and
e4(7) = 1. The coloring reflects the relative difference
between values in each row.

Finally, while the inference-time gains of the decision tree model would be clear for
a dataset like ImageNet, where 1000 classes means 2000 optimizations for E-ABS and 20
optimizations for the tree, the question of choosing high-performance splits would become
an issue. The exact greedy search procedure described earlier to maximize dC1,C2 would
be intractable because the number of permutations grows factorially in K, so a different
algorithm would be necessary. To this end, Wan et al. [40] explores inducing a class hierarchy
using agglomerative clustering on pre-trained network weights.

2.4 Further Directions

The hierarchical binary classifier described in this work is far from the only way to use binary
classifiers to do multi-class classification [25], and we defer exploration of these directions to
future work. Allwein et al. [1] propose a code-matrix framework that unifies several schemes,
including the one presented here. In that work, the correct sequence of binary decisions in
the tree for a single class forms a bit string representation of that class.

This perspective suggests another possible approach using E-ABS. For a K-class clas-
sification task, consider taking m := dlog2Ke different subsets Si of the labels such that
|Si| = K

2
for all i = 1, . . . ,m, and no two labels y1 6= y2 have y1 ∈ Si ⇐⇒ y2 ∈ Si holding

for every i. Let 1{A} denote the indicator function for event A. For each i and label y, let
ei(y) := 1{y∈Si}, and train an E-ABS classifier fi to predict ei. The bit string representation
for class y is the vector e(y) :=

(
e1(y), . . . , em(y)

)
. See Figure 2.6.

At inference time, consider an input X and its true class Y , both random variables. For
each i let Ei = 1{Y ∈Si}, and let E :=

(
E1, . . . , Em

)
. Since Y = y if and only if E = e(y),

classifying Y is equivalent to classifying the vector E, i.e. p(Y = y | X) = p(E = e(y) | X).
We wish to find arg maxy p(e(y) | X) = arg maxy

∏
i p(Ei = ei(y) | X). By Bayes’ rule

CHAPTER 2. HIERARCHICAL BINARY CLASSIFICATION 11

and the condition that |Si| = K
2

, we have p(Ei | X) ∝ p(X | Ei). Since the fi are E-
ABS models, we have access to the likelihood estimates p̂(X | Ei = 0) and p̂(X | Ei = 1).
Then if we let fprod(y,X) =

∏
i p̂(X | Ei = ei(y)), we have that p̂(y|X) ∝ fprod(y,X) and the

proportionality does not depend on y. Thus, the classification result is arg maxy p(e(y) |X) =
arg maxy fprod(y,X). See Figure 2.7.

This scheme would specifically exploit the generative nature of E-ABS, since the logits
of standard discrimnative classifiers are known to be poor estimators of likelihood. The
downside of such a model is that each binary classifier has a difficult task since each binary
class is the union of half of the K classes. Conversely, O(logK) complexity is preserved for
inference, and unlike the tree model, computation is parallelizable.

Further extending the interpretation of binary classification as encodings, Dietterich et
al. [10] consider a scheme where the bit string encodings of each class are specially chosen
to be an error-correcting code such as a Hamming code [15]. In such a model, the likelihood
estimates p(E | X) would be unnecessary; instead, the class y with the nearest (by Hamming
distance) bit-encoding e(y) may be used. Thus, the classification decision of the model would
be robust to errors by a certain number of the binary classifiers.

12

Chapter 3

Classifying Latent Vectors

A crucial aspect of the robustness of ABS-style models is their inference procedure, which
avoids depending solely on the output of any feedforward neural network layers that could
introduce vulnerability. Instead, using optimization, they search the latent space for latent
vectors that reconstruct the input well. ABS-style inference requires K optimizations for
a K-class classifier. The decision tree model presented in the previous section reduces the
computation from O(K) to O(logK).

We now propose a different model where only one optimization is needed for inference
instead of K, further reducing inference complexity to O(1). A single latent variable model
learns the entire dataset, with a single decoder and latent space shared by all classes. At
inference time, it searches the latent space and classifies the optimal vector based on the
structure of the latent space.

3.1 Model Structure and Training

Let X be a data point, y ∈ {1, . . . , K} a class, and Z a latent vector. Consider a latent-
variable model in which all classes share the same latent space according to a specified prior.
Then the class-conditional distribution of the latent vector Z|y depends on y. Also let the
likelihood of the data be conditionally independent of the class given the latent vector, i.e.
p(X|Z, y) = p(X|Z), to reflect that the model has a single class-agnostic decoder. At infer-
ence time, latent vectors are sampled from the prior and the best vector is the starting point
for optimization, as in ABS. The optimal latent vector Z minimizes the reconstruction loss
with respect to the input plus a regularization term that encourages staying in-distribution.
Due to the prior imposed on the latent space, the class-conditional likelihood p(Z|y) can be
found immediately for any class y, and the class maximizing this value is the prediction.

For this work, the class-conditional latent distributions Z|y are multivariate Gaussian, all
with the same scaled identity covariance, and with mean µy dependent on y. For K classes,
the µy are chosen in such a way that their mean is zero and the geometric relation of each
class to each other is symmetric. Our arrangement requires that the latent dimensionality

CHAPTER 3. CLASSIFYING LATENT VECTORS 13

is at least the number of classes and is as follows:

(µy)i =

− 1

K
, i 6= y and i ≤ K

1− 1
K
, i = y

0, i > K

We use an AAE [27] as the latent variable model, with different latent-space discriminators
for each class to account for the different class-conditional latent distributions. As in E-
ABS, the training objective includes a discriminative loss term: a cross-entropy loss with
respect to the true class where the logits are the log class-conditional latent likelihoods(

log p(Z|y = 1), . . . , log p(Z|y = K)
)
.

3.2 Regularization Term

For inference, a regularization term is required in addition to the reconstruction loss so that
the optimization does not travel far outside the latent prior, since deep generative models
are known to give poor likelihood estimates on out-of-distribution samples [30, 5, 17]. At
the same time, when the latent vector is being optimized, this term should not inhibit it
from switching classes during optimization, i.e. traveling to a region where a different class
is most likely under the prior. That way, optimization will be able to correct for starting
points that begin in the wrong class-region.

Several methods can be considered for this purpose:

• Find the class y that is most likely for the current value of the latent vector, and use
the loss term from that class’s latent discriminator model (or KL divergence).

• Normalize the class-conditional latent likelihoods
(
p(Z|y = 1), . . . , p(Z|y = K)

)
to

be a discrete probability distribution over the K classes, denoting the current latent
vector as Z. Use the discrete entropy of this distribution.

• A KL divergence between a latent variational distribution and the mixture-of-Gaussians
latent prior, such as would be used in a VAE, is unsuitable here for several reasons.
First, there is no closed-form expression for the KL divergence between Gaussian mix-
tures. Second, if the variational distribution is a single Gaussian, the KL-minimizing
parameters will have high covariance, defeating the purpose of the variational distri-
bution to concentrate on the latent region that decodes the input well.

The first method will keep the latent vector close to the prior, but will make it difficult
for the optimization to switch classes. In the region where a single class is most likely, the
gradient will pull the latent vector toward the mean of that distribution. At the boundaries,
the gradient discontinuously changes direction to point to the new most-likely class.

The second method incentivizes being close to one of the latent prior means, since in-
creasing the likelihood of one class reduces the entropy of the discrete distribution. The

CHAPTER 3. CLASSIFYING LATENT VECTORS 14

Figure 3.1: Behavior of class-conditional AAE on MNIST. During optimization, the loss
from the closest class’s discriminator is used as regularization. Latent vectors returned by
encoder are plotted. The reconstructions of ten input points using the encoder’s outputted
latent vector as well as a latent vector determined by optimization are shown at right. Solid-
border circles in the third-column plots are encoder outputs, dashed-border circles are latents
returned by optimization.

gradient is also continuous at the class boundaries. One downside, however, is that the
entropy is bounded, meaning it only has a limited capacity to penalize. Moreover, when the
latent is not particularly close to any class, the gradient of entropy is relatively low, further
weakening its ability to regularize.

3.3 Results

All experiments were conducted on MNIST. Figures 3.1 and 3.2 demonstrate the behavior of
the model when the closest class’ discriminator loss (“closest-dsc”) and entropy, respectively,
are used as regularization. The learned latent distributions largely match the Gaussian
priors, although not perfectly, such as for class 1 (orange). Moreover, optimization tends to
stray outside the prior distributions, leading to potential problems with out-of-distribution

CHAPTER 3. CLASSIFYING LATENT VECTORS 15

Figure 3.2: Same as Figure 3.1 but using entropy as regularization during optimization.

Regularization Enc Enc+Sample Enc+Sample+Opt Opt Switches Class
Closest Disc. Loss 97.42 94.53 88.43 10.51%

Entropy 97.42 93.88 83.10 15.32%

Table 3.1: Percent accuracy of class-conditional AAE on MNIST test data and percent of
optimizations that switch class. Description of each column:
Enc (encoder): Classify encoder output directly.
Enc+Sample: Classify the point minimizing weighted sum of reconstruction loss and regu-
larization term over the samples and the encoder’s output.
Enc+Sample+Opt: Classify the latent resulting from optimization starting from the point
found by Enc+Sample.
Opt Switches Class: Number of MNIST test points for which the most likely classes of the
optimization starting and ending points differed, divided by the size of the MNIST test
dataset.

CHAPTER 3. CLASSIFYING LATENT VECTORS 16

Regularization True Prior Enc Enc+Sample Enc+Sample+Opt
Closest Disc. Loss −4.87 −3.78 −4.75 −8.96

Entropy −4.87 −3.78 −4.34 −8.36

Table 3.2: Average log likelihoods of latent vectors for class-conditional AAE on MNIST
test data. Low values roughly indicate that the latent vectors tend to be far away from
the prior distribution. Thus, the encoder produces latents that are close to the prior, while
optimization travels far away. Log likelihood is taken with respect to the most likely class
distribution, i.e. if class 4 gives the highest likelihood for z, then log p(z | y = 4) would be
used. Log likelihood is calculated for every test point this way and averaged over the whole
dataset. The True Prior column is slightly different, using the same log likelihood calculation
but averaging over samples drawn from the true mixture-of-Gaussians latent prior instead of
test points. This column illustrates what the log likelihood would “ideally” look like under
the true prior.

behavior. The entropy regularization term suffers from this issue more severely than the
closest-dsc term, affirming the intuition that the entropy term does not send a strong enough
regularization signal except possibly when the latent vector is already close to one of the
prior means. Contrary to expectations, Table 3.1 shows that using the closest-dsc term still
allows the optimization to switch classes, though slightly less so than the entropy term.

The accuracy of this method is low. As detailed in Table 3.1, simply classifying the
encoder’s output results in the highest accuracy of 97.42%, although this is still significantly
lower than the performance of E-ABS. Choosing the point that minimizes a weighted sum
of the reconstruction loss and the regularization term and classifying it directly results in
lower accuracy. Finally, further optimizing that point results in the lowest accuracy of all.
Using optimization causes accuracy to drop 6.10% when closest-dsc is used and 10.78%
when entropy is used. Most of the cases in which optimization switches classes are therefore
switching from a correct starting point to an incorrect ending point.

Key Difficulties

The optimization procedure fails to work properly, as demonstrated by the fact that accuracy
drops when it is used. We identify several reasons:

• It is too easy for the optimization to veer away from the prior distribution. One reason
for this is that the regularization terms are ineffective at keeping the optimization
within the prior, especially the entropy term due to its boundedness. Another reason
is that the model produces good reconstructions for latents that are outside the prior
distribution, due to the difficulty in controlling the model’s behavior outside the prior.
The discriminative loss term, which attempts to use outlier exposure [17] to address

CHAPTER 3. CLASSIFYING LATENT VECTORS 17

this problem, is evidently not sufficient. Table 3.2 shows that optimization moves far
away from the prior distribution.

• Whereas in E-ABS each class has its own latent space, here all classes share the same
space, so it is more critical that the learned boundaries adhere closely to the prior than
in E-ABS.

Future Work

Based on the analysis in the previous section, it is imperative for the latent prior to be learned
correctly. While the difficulty of this task for deep generative models is well-recognized [30,
5, 17], some developments specifically modify model architectures to address this problem,
such as two-stage VAE models [7]. Incorporating such a model is likely necessary to achieve
good performance with the concept presented here.

18

Chapter 4

Discussion

In this work, we demonstrate that the costly inference time complexity of ABS-like models
can be addressed, albeit with some possible concessions to final accuracy. Nevertheless,
the challenge of generalizing to more complex datasets with ABS remains. To this end,
ABS-style frameworks must as a baseline ensure two conditions are met:

1. The generative architectures used must be expressive enough to model highly complex
datasets.

2. The sample-and-optimize inference procedure must search the latent space effectively
with a tractable amount of computation.

To the first point, recent advances in generative modeling have led to powerful models [32,
41, 33] that can model highly complex datasets such as CIFAR-10 and ImageNet, though
care must be taken to handle out-of-distribution likelihood estimation [30, 5, 17]. To the
second point, while the improvements in this report address the issue of efficiency, they do
so under the assumption that a single optimization takes a constant amount of time and has
high accuracy. When considering challenging datasets, these assumptions must be revisited.

4.1 Considerations for Scaling ABS-style Inference

The theoretical certificate of robustness for ABS hinges on finding a global optimum with
optimization [36, 18], and more generally, inference is unlikely to perform well if the latent
space cannot be searched comprehensively. The robust latent search procedure of ABS
inference, based on pixel-space distance, protects the model from adversarial examples that
might exist in any feed-forward neural layers applied to the input directly. Non-reliance on
neural outputs shifts the burden of finding a rare latent region that reconstructs the input
onto the initial sampling and optimization.

Since the pixel-space reconstruction loss is a poor indicator of perceptual similarity, its
gradient signal will likely be ineffective at guiding the optimization. Existing approaches to

CHAPTER 4. DISCUSSION 19

creating perceptually-aligned features, from which distances may be calculated, rely on feed-
forward neural network components. While these components may be able to be hardened
using existing robustness approaches like adversarial training [26], the additional advantages
of the ABS structure become questionable over simply using those approaches on their own.

Alternatively, pixel-space reconstruction loss may be sufficient if the optimization starting
point is already close to an optimal region. Thus, taking many samples to get better initial
coverage may compensate for less informative loss signals. To cover the latent space with
a certain density, however, the requisite number of samples increases exponentially in the
dimensionality of the latent space. Complex datasets require large latent spaces due to their
high intrinsic complexity.

Independently of the computational concerns addressed in this work, the task of scaling
ABS-style inference to complex datasets remains an open problem. Advances toward this
goal, combined with the strides already being taken in generative modeling and the speedups
presented here, would overcome the barriers for generative classifiers as a promising and
practical alternative to feed-forward architectures in robust classification.

20

Bibliography

[1] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. “Reducing Multiclass to Bi-
nary: A Unifying Approach for Margin Classifiers”. In: J. Mach. Learn. Res. 1 (Sept.
2001), pp. 113–141. issn: 1532-4435. doi: 10.1162/15324430152733133. url: https:
//doi.org/10.1162/15324430152733133.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. “Obfuscated Gradients Give a
False Sense of Security: Circumventing Defenses to Adversarial Examples”. In: Pro-
ceedings of the 35th International Conference on Machine Learning. Ed. by Jennifer Dy
and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct.
2018, pp. 274–283. url: http://proceedings.mlr.press/v80/athalye18a.html.

[3] Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robustness of Neural
Networks”. In: 2017 IEEE Symposium on Security and Privacy (SP) (2017), pp. 39–57.

[4] Nicholas Carlini et al. “On Evaluating Adversarial Robustness”. In: ArXiv abs/1902.06705
(2019).

[5] Hyunsun Choi, Eric Jang, and Alexander A. Alemi. “WAIC, but Why? Generative
Ensembles for Robust Anomaly Detection”. In: arXiv e-prints, arXiv:1810.01392 (Oct.
2018), arXiv:1810.01392. arXiv: 1810.01392 [stat.ML].

[6] B. Dai and D. Wipf. “Diagnosing and Enhancing VAE Models”. In: ArXiv abs/1903.05789
(2019).

[7] B. Dai and D. Wipf. “Diagnosing and Enhancing VAE Models”. In: ArXiv abs/1903.05789
(2019).

[8] Peter Dayan et al. “The helmholtz machine”. In: Neural computation 7.5 (Sept. 1995),
pp. 889–904.

[9] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848.

[10] Thomas G. Dietterich and Ghulum Bakiri. “Solving Multiclass Learning Problems via
Error-Correcting Output Codes”. In: J. Artif. Int. Res. 2.1 (Jan. 1995), pp. 263–286.
issn: 1076-9757.

[11] Carl Doersch. “Tutorial on Variational Autoencoders”. In: ArXiv abs/1606.05908 (2016).

https://doi.org/10.1162/15324430152733133
https://doi.org/10.1162/15324430152733133
https://doi.org/10.1162/15324430152733133
http://proceedings.mlr.press/v80/athalye18a.html
https://arxiv.org/abs/1810.01392
https://doi.org/10.1109/CVPR.2009.5206848

BIBLIOGRAPHY 21

[12] Tal Golan, Prashant C. Raju, and Nikolaus Kriegeskorte. “Controversial stimuli: pit-
ting neural networks against each other as models of human recognition”. In: CoRR
abs/1911.09288 (2019). arXiv: 1911.09288. url: http://arxiv.org/abs/1911.
09288.

[13] I. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples”. In: CoRR abs/1412.6572 (2015).

[14] Sven Gowal et al. On the Effectiveness of Interval Bound Propagation for Training
Verifiably Robust Models. Oct. 2018.

[15] R. W. Hamming. “Error detecting and error correcting codes”. In: The Bell System
Technical Journal 29.2 (1950), pp. 147–160. doi: 10.1002/j.1538- 7305.1950.

tb00463.x.

[16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.
doi: 10.1109/CVPR.2016.90.

[17] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep Anomaly Detection
with Outlier Exposure. Dec. 2018.

[18] An Ju and David A. Wagner. “E-ABS: Extending the Analysis-By-Synthesis Robust
Classification Model to More Complex Image Domains”. In: Proceedings of the 13th
ACM Workshop on Artificial Intelligence and Security (2020).

[19] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2014. arXiv:
1312.6114 [stat.ML].

[20] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Neural Information Processing Systems 25
(Jan. 2012). doi: 10.1145/3065386.

[22] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Pro-
ceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[23] Mathias Lécuyer et al. “Certified Robustness to Adversarial Examples with Differential
Privacy”. In: 2019 IEEE Symposium on Security and Privacy (SP) (2019), pp. 656–
672.

[24] Y. Liu et al. “Delving into Transferable Adversarial Examples and Black-box Attacks”.
In: ArXiv abs/1611.02770 (2017).

[25] Ana Carolina Lorena, A. Carvalho, and João Gama. “A review on the combination of
binary classifiers in multiclass problems”. In: Artificial Intelligence Review 30 (2009),
pp. 19–37.

[26] A. Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks”.
In: ArXiv abs/1706.06083 (2018).

https://arxiv.org/abs/1911.09288
http://arxiv.org/abs/1911.09288
http://arxiv.org/abs/1911.09288
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1312.6114
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791

BIBLIOGRAPHY 22

[27] Alireza Makhzani et al. “Adversarial Autoencoders”. In: ArXiv abs/1511.05644 (2015).

[28] Eddy Mayoraz and Miguel Moreira. “On the Decomposition of Polychotomies into
Dichotomies”. In: Proceedings of the Fourteenth International Conference on Machine
Learning. ICML ’97. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1997, pp. 219–226. isbn: 1558604863.

[29] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and P. Frossard. “DeepFool: A Sim-
ple and Accurate Method to Fool Deep Neural Networks”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 2574–2582.

[30] Eric T. Nalisnick et al. “Do Deep Generative Models Know What They Don’t Know?”
In: ArXiv abs/1810.09136 (2019).

[31] Yuval Netzer et al. “Reading Digits in Natural Images with Unsupervised Feature
Learning”. In: 2011.

[32] Aäron van den Oord, Oriol Vinyals, and K. Kavukcuoglu. “Neural Discrete Represen-
tation Learning”. In: NIPS. 2017.

[33] Aäron van den Oord et al. “Conditional Image Generation with PixelCNN Decoders”.
In: Proceedings of the 30th International Conference on Neural Information Processing
Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc., 2016, pp. 4797–4805.
isbn: 9781510838819.

[34] Nicolas Papernot, P. McDaniel, and I. Goodfellow. “Transferability in Machine Learn-
ing: from Phenomena to Black-Box Attacks using Adversarial Samples”. In: ArXiv
abs/1605.07277 (2016).

[35] Mihaela Rosca, Balaji Lakshminarayanan, and S. Mohamed. “Distribution Matching
in Variational Inference”. In: ArXiv abs/1802.06847 (2018).

[36] Lukas Schott et al. Towards the first adversarially robust neural network model on
MNIST. 2018. arXiv: 1805.09190 [cs.CV].

[37] F. Schwenker. “Hierarchical support vector machines for multi-class pattern recogni-
tion”. In: KES’2000. Fourth International Conference on Knowledge-Based Intelligent
Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516). Vol. 2.
2000, 561–565 vol.2. doi: 10.1109/KES.2000.884111.

[38] Christian Szegedy et al. Intriguing properties of neural networks. 2014. arXiv: 1312.
6199 [cs.CV].

[39] Jonathan Uesato et al. “Adversarial Risk and the Dangers of Evaluating Against Weak
Attacks”. In: ArXiv abs/1802.05666 (2018).

[40] Alvin Wan et al. NBDT: Neural-Backed Decision Trees. 2021. arXiv: 2004.00221

[cs.CV].

https://arxiv.org/abs/1805.09190
https://doi.org/10.1109/KES.2000.884111
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/2004.00221
https://arxiv.org/abs/2004.00221

BIBLIOGRAPHY 23

[41] Han Zhang et al. “Self-Attention Generative Adversarial Networks”. In: Proceedings of
the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri
and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
Sept. 2019, pp. 7354–7363. url: http://proceedings.mlr.press/v97/zhang19d.
html.

http://proceedings.mlr.press/v97/zhang19d.html
http://proceedings.mlr.press/v97/zhang19d.html

	alan_ms_signature_page_signed
	Masters_Thesis
	Contents
	List of Figures
	List of Tables
	Introduction
	Neural Networks and Adversarial Robustness
	ABS
	E-ABS
	Challenges

	Hierarchical Binary Classification
	Method
	Choosing Binary Splits
	Results
	Further Directions

	Classifying Latent Vectors
	Model Structure and Training
	Regularization Term
	Results

	Discussion
	Considerations for Scaling ABS-style Inference

	Bibliography

