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Monotonicity-Based Symbolic Control for Safety in Real Driving
Scenarios

Stanley W. Smith, Adnane Saoud, and Murat Arcak

Abstract— In this letter we use a monotonicity-based ap-
proach to design a safety controller in two realistic driving situ-
ations: a vehicle-following scenario and an unprotected left turn
scenario. For each scenario we construct a symbolic abstraction
of the system and efficiently synthesize a safety controller by
exploiting the monotonicity property of the dynamics. In the
vehicle-following scenario, we show how monotonicity-based
reasoning can be used to handle model uncertainty; in the
unprotected left turn scenario, we show how such reasoning
can be applied to efficiently deal with the complex scenario of
two oncoming vehicles.

I. INTRODUCTION

A commonly studied traffic situation is the vehicle-
following scenario. For this scenario, one typically designs
a controller for the ego vehicle with the goal of meeting a
particular specification, e.g. ensuring a safety constraint on
the distance between the ego and lead vehicle is maintained
at all times [1]. In some cases, it is beneficial to relax
this safety specification slightly - for example, in vehicle
platooning, where the goal is to have a group of vehicles
drive closely together in a tight formation (see [2] and [3]).
To this end, in [4] the authors allow a soft impact with
bounded relative velocity to occur in a worst-case driving
scenario. By doing so, the time required to safely execute a
platoon join maneuver, for example, is reduced.

Another common maneuver that a driver must execute
is an unprotected left turn. Recent works have studied this
scenario due to its complexity; see e.g. [5]. In [6] the
authors consider an analogous scenario of highway merging
for connected vehicles, where the ego vehicle can merge
either ahead of or behind the other vehicle. In each case,
the state space is separated into conflict, nonconflict, and
uncertain regions, where the boundaries of these regions are
dependent on the acceleration capabilities of each vehicle.
Similarly, in [7] the authors compute a capture set, i.e. the
set of states that lead to conflict regardless of input choice.
In particular, this computation can be done efficiently if
the system has an order preserving property. The authors
propose a control map ensuring the capture set is avoided,
and the approach is demonstrated on an example where two
connected vehicles approach an intersection, and also on an
autonomous roundabout scenario in [8].

In this letter, we apply symbolic control techniques from
[9] and [10] to both driving scenarios mentioned above.
Symbolic control techniques have multiple advantages - for
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example, they can handle complex specifications, and can be
applied directly to nonlinear systems. In contrast, [4], [6],
and [8] ignore nonlinearities in the vehicle dynamics, and
in [7] the authors use feedback linearization. Similarly, in
[11] the authors only consider nonlinear vehicle dynamics
on a restricted input space, otherwise using a linear approx-
imation. Furthermore, we note that by exploiting the mono-
tonicity property of the system dynamics, we can reduce
the computational complexity of the controller synthesis and
implementation [10]. In the vehicle-following scenario we
also use monotonicity-based reasoning to consider model
uncertainty, and in the left turn scenario we apply it to
efficiently handle two oncoming vehicles.

The contribution of this work is two-fold. First, we
showcase the flexibility of symbolic control techniques by
applying them in two realistic driving situations: a vehicle-
following scenario in Section III, and an unprotected left turn
scenario in Section IV, each of which is of independent inter-
est. Second, to deal with the specification in each scenario we
construct a non-standard abstraction, in which we introduce
a sink state to transform the considered specifications into
lower closed safety specifications [10]. We also introduce
a new construction of the transition relation which ensures
monotonicity of the abstraction.

II. MONOTONICITY CONCEPTS

In this section, we overview the monotonicity and sym-
bolic control concepts we will use throughout the letter.

A. Partial orders

A binary relation ≤L⊆ L×L is a partial order if and only
if for all l1, l2, l3 ∈ L we have: (i) l1 ≤L l1, (ii) if l1 ≤L l2
and l2 ≤L l1 then l1 =L l2 and, (iii) if l1 ≤L l2 and l2 ≤L l3
then l1 ≤L l3. Given a partially ordered set L, for a ∈ L
the lower closure of the element a ∈ L is denoted ↓ a and
defined as ↓ a := {x ∈ L : x ≤L a}. Similarly the upper
closure of a ∈ L is defined as ↑ a := {x ∈ L : a ≤L x}. The
lower closure (respectively upper closure) of a set A ⊆ L is
↓ A :=

⋃
a∈A ↓ a (respectively ↑ A =

⋃
a∈A ↑ a). A subset

A ⊆ L is said to be lower-closed (respectively upper-closed)
if ↓ A = A (respectively ↑ A = A).

B. Monotone Transition Systems

Below we recall the notion of a transition system [12]
and define transition systems that preserve order on input
and state spaces.

Definition 1: A transition system is a tuple T =
(X,X0, U,∆), where X is a set of states, X0 ⊆ X is a



set of initial states, U is a set of inputs and ∆ : X×U → X
is a deterministic transition relation. A transition system is
said to be finite if X and U are finite.

Definition 2: A transition system T = (X,X0, U,∆) is
said to be input-state monotone if X and U are equipped with
partial orders ≤X , ≤U , respectively, and for all x1, x2 ∈ X,
for all u1, u2 ∈ U, with x1 ≤X x2 and u1 ≤U u2, it follows
that ∆(x1, u1) ≤X ∆(x2, u2).

C. Controller Synthesis for Safety Specifications

1) Maximal safety controller: Given a transition system
T = (X,X0, U,∆), a controller for T is a set-valued map
C : X ⇒ U and its domain is defined as dom(C) = {x ∈
X : C(x) 6= ∅}. A safety controller is then defined as:

Definition 3: A safety controller C for the transition sys-
tem T = (X,X0, U,∆) and the safe set XS ⊆ X satisfies:

• dom(C) ⊆ XS ;
• ∀x ∈ dom(C) and ∀u ∈ C(x), ∆(x, u) ⊆ dom(C).
A suitable solution to the safety problem is a controller

that enables as many actions as possible. This controller C∗
is said to be a maximal safety controller, in the sense that
for any other safety controller and for all x ∈ X , we have
C(x) ⊆ C∗(x).

2) Lazy controller synthesis for safety specifications:
Consider an input-state monotone transition system T =
(X,X0, U,∆) and a safety specification XS ⊆ X . The
safety specification XS is said to be lower closed (respec-
tively, upper closed) if XS is a lower closed (respectively,
upper closed) subset of X . While classical approaches to
deal with general safety specifications rely on the use of
the fixed-point algorithm [12], efficient symbolic abstractions
and lazy synthesis approaches have been proposed recently
in [9] and [10], respectively, making it possible to deal
with upper and lower safety specifications. These approaches
allow us to compute the maximal safety controller while
reducing the computational cost required for the synthesis
and implementation of the maximal safety controller.

III. VEHICLE-FOLLOWING SCENARIO

In this section, we consider a vehicle-following scenario.
We first introduce the vehicle dynamics model that we
use and present the control objective. We then use the
monotonicity properties of the model to construct a symbolic
abstraction and to synthesize a controller.

A. Monotone Vehicle Dynamics

The vehicle-following model is:

ḣ = vL − v,
v̇ = α(T, v, θ),

v̇L = α(TL, vL, θL), (1)

where h ∈ R is the headway between the vehicles, v, T ∈
R are the velocity and wheel torque for the ego vehicle,
vL, TL ∈ R are the velocity and wheel torque for the lead

vehicle, and θ, θL ∈ R5 contain modelling parameters. The
individual vehicle dynamics evolve according to

α(T, v) :=


1
M

(
T
Rw
− 1

2ρv
2CDA

)
, v > 0,

max(T, 0), v = 0,
(2)

which ensures that the vehicles never reverse, that is v(t) ≥ 0
and vL(t) ≥ 0 for t ≥ 0. Furthermore, (2) contains the
following modelling parameters: M > 0 is the vehicle mass,
Rw > 0 is the wheel radius, ρ > 0 is air density, CD > 0
is the vehicle drag coefficient, and A > 0 is the vehicle
reference area. We collect all modelling parameters in θ :=
[M ; Rw; ρ; CD; A] for the ego vehicle and, similarly, in
θL for the lead vehicle (which may have different modelling
parameters). We assume for the sake of simplicity the values
of M = 2044kg, Rw = 0.3074m, and A = 2.6292m2

are known and identical for each vehicle. Furthermore, air
density ρ = 1.206kg/m3, but the air drag coefficient for
each vehicle is unknown and belongs to the set CD, C

L
D ∈

[Cmin
D , Cmax

D ], where Cmin
D = 0.20 and Cmax

D = 0.40. Since
these parameters are unknown, we aim to set CD and CL

D

to their worst-case values during controller synthesis.
Next, we define the state of (1) as x(t) :=

[h(t); v(t); vL(t)], the input u(t) := T (t), and the dis-
turbance w(t) := TL(t), each of which are assumed to lie
within a corresponding constraint set at all times

X :=
{
x : 0 ≤ v and 0 ≤ vL ≤ 20

}
,

U :=
{
u : −1800 ≤ T ≤ 1200

}
,

W :=
{
w : −2500 ≤ TL ≤ 1200

}
. (3)

The solution of the vehicle model (1) at time t > 0, from an
initial condition x0 ∈ X , under a control input u : [0, t] →
U , a disturbance input w : [0, t] → W and a vector of
unknown parameters [θ; θL] is denoted Φ(t;x0, u, w, [θ; θL]).
Hence, under the same conditions, the reachable set over the
time interval [0, t] reads Φ([0, t];x0, u, w, [θ; θL]). Several
methods exist for the computation of overapproximations
of such reachable sets for the class of monotone systems
considered in this letter [13].

Finally, we equip the state, input and disturbance spaces
of the model in (1) with the partial orders

(x1 ≤X x2) ⇐⇒
[
(h1 ≥ h2) ∧ (v1 ≤ v2) ∧ (vL,1 ≥ vL,2)

]
(u1 ≤U u2) ⇐⇒ (T1 ≤ T2),

(w1 ≤W w2) ⇐⇒ (TL,1 ≥ TL,2) (4)

where ≤ is the usual partial order on R. With the partial
order defined above, it is easy to verify that the dynamics in
(1) are monotone, which can be done via the Kamke-Muller
conditions [14]. This property states that for x1 ≤X x2,
u1 ≤U u2, and w1 ≤W w2, we have:

Φ(t;x1, u1, w1, [θ; θL]) ≤ Φ(t;x2, u2, w2, [θ; θL]), ∀t ≥ 0.
(5)



B. Control Objective

We now discuss the control objective we want the ego
vehicle to satisfy. Typically, one would require

x(t) ∈ X ∩H, ∀t ≥ 0 (6)

where
H :=

{
x : 0 < h and v ≤ 20

}
. (7)

From the definition of the set of constraints X in (3), the
condition x(t) ∈ X , for all t ≥ 0 is already satisfied. The
objective here is to synthesize a controller for the ego vehicle
ensuring that x(t) ∈ H, for all t ≥ 0, which, as discussed
in Section II-C, is a lower closed safety specification with
respect to the partial order (4). In words, (6) means the ego
vehicle must ensure it never collides with the lead vehicle.
Moreover, the ego vehicle velocity must be bounded by
the maximum velocity of 20m/s, while assuming the lead
vehicle velocity is also bounded by 20m/s.

Next, we define the set of states for which a soft impact
has occurred [4]:

S :=
{
x : h ≤ 0 and v − vL ≤ vallow

}
. (8)

For our modified safety specification, we allow a soft impact
to occur in a worst-case driving scenario, but never an unsafe
impact - that is, one that violates (8). This is beneficial
since it relaxes the restrictive constraint (6) on the ego
vehicle, allowing it to follow the lead vehicle more closely,
for example. We now formally state the control objective
considered in this section:

Problem 1: Given the model of the vehicle-following sce-
nario in (1), synthesize a sampled-data controller C : X ⇒ U
such that either (6) holds or the following holds:

∃t0 ≥ 0 s.t. x(t0) ∈ S and x(t) ∈ X ∩H for t ∈ [0, t0).
(9)

The control objective described above is in the same spirit of
a reach-avoid specification, in the sense that the system state
must either remain in the set X∩H for all time (avoiding an
unsafe impact), or eventually reach the set S. We emphasize
that the set S will only be reached in a worst-case scenario
- for example, if the ego vehicle fails to satisfy (6) because
the lead vehicle applied harsh brakes.

C. Synthesis using the symbolic approach

In this section, we design a control law C : X ⇒ U
which is a solution to Problem 1 using the symbolic control
approach [12] that relies on the use of symbolic models,
which are discrete abstractions of continuous dynamics.

1) Symbolic abstraction: An abstraction Σa for the
vehicle model in (1) is a transition system Σa :=
(Xa, Xa

0 , U
a,∆a), where Xa, Xa

0 and Ua are finite (sym-
bolic) sets of states and control inputs respectively, while
∆ : Xa×Ua → Xa is a transition relation. For constructing
the symbolic sets and in view of the control objective defined
in Problem 1, the set X of constraints on the state-space
defined in (3) is decomposed into three regions: an impact-
free region, represented by the set H in (7), a region of soft

ℎ ≤ 0 ℎ = 0 ℎ ≥ 0

𝑣 ≥
𝑣𝐿 + 𝑣𝑎𝑙𝑙𝑜𝑤

𝑣 ≤
𝑣𝐿 + 𝑣𝑎𝑙𝑙𝑜𝑤

𝑣 =
𝑣𝐿 + 𝑣𝑎𝑙𝑙𝑜𝑤

ℎ

𝑣

𝑆

Fig. 1: The state space is divided into three areas: the
area corresponding to set S (bottom left cell), the area
corresponding to unsafe impacts (top left cell), and the area
where no impact has occurred (right cells).

impact, represented by the set S in (8), and a remaining
unsafe region given by X \ (H ∪ S). Each of these regions
is represented in symbolic form as follows:
• We discretize the impact-free regionH into N ≥ 1 half-

open intervals qi = (q
i
; qi] using a finite partition. Since

H is unbounded, we follow the approach in [15, Section
V-B-3] which uses bounded and unbounded intervals to
construct the partition. The states of these regions are
represented by the green states in Figure 1.

• We use a unique state qsink to model the safe-impact
region S, represented by the blue state in Figure 1.

• We use a unique state qunsafe to represent the unsafe
region X \ (H ∪ S); see the red state in Figure 1.

The symbolic set Xa consists then of N + 2 states:

Xa :=
{
qi : i = 1, . . . , N

}
∪ {qsink, qunsafe}.

The set of initial conditions corresponds to Xa
0 =

{
qi : i =

1, . . . , N
}

. Moreover, we discretize the set of inputs U into
M ≥ 2 values, with the discrete input set given by

Ua :=
{
uj : j = 1, . . . ,M

}
.

Assuming the controller to be designed is implemented by
a microprocessor with a sampling time τ > 0, the transition
relation ∆ : Xa ×Ua ⇒ Xa can be defined as follows. For
any q, q′ ∈ Xa, u ∈ Ua, q′ = ∆(q, u) if and only if one of
the following scenarios holds:

(i) For q, q′ ∈ Xa
0 and u ∈ Ua, q′ = ∆(q, u) if and

only if Φ([0, τ ]; q, u, Tmax,brake, [θmin; θL,max]) ⊆ H
and Φ(τ ; q, u, Tmax,brake, [θmin; θL,max]) ∈ q′;

(ii) For q ∈ Xa
0 ∪ {qsink} and u ∈ Ua, qsink = ∆(q, u)

if and only if q = qsink or there exists s ∈ [0, τ ]
such that Φ(s; q, u, Tmax,brake, [θmin; θL,max]) ∈ S and
Φ([0, τ ]; q, u, Tmax,brake, [θmin; θL,max]) ⊆ H ∪ S;



(iii) For q ∈ Xa
0 ∪ {qunsafe} and u ∈ Ua,

qunsafe = ∆(q, u) if and only if q = qunsafe

or Φ([0, τ ]; q, u, Tmax,brake, [θmin; θL,max]) ∩
(X \ (H ∪ S)) 6= ∅.

In each scenario, the vector of unknown parameters
[θmin; θL,max] used in the construction of the transition
relation above is given by θmin = [M ; Rw; ρ; Cmin

D ; A]
and θL,max = [M ; Rw; ρ; Cmax

D ; A], with the parameter
values mentioned previously. This represents the worst-case
values for the modelling parameters in (1). Furthermore,
Tmax,brake = −2500Nm is the maximum braking torque for
the lead vehicle. Intuitively, we want to underestimate how
much air drag will help the ego vehicle avoid a collision, and
overestimate how much it will help the lead vehicle cause
one. For the construction of the transition relation, the first
scenario is used to represent the impact-free case where the
trajectory of the vehicles remains in the set X ∩ H. The
second scenario represents the case of soft impact. Moreover,
in this second scenario we added a self-loop to the sink state
qsink to transform the reach-avoid specification in Problem 1
to a safety problem. Finally, the last scenario is used to
represent the fact that the trajectory of the vehicle is unsafe,
in the sense that an unsafe impact violating (8) occurs.

Remark 1: In view of (9), a transition to qsink

should be created from q ∈ Xa and u ∈ Ua if
and only if q = qsink or there exists s ∈ [0, τ ]
such that Φ(s; q, u, Tmax,brake, [θmin; θL,max]) ∈ S
and also Φ([0, s]; q, u, Tmax,brake, [θmin; θL,max]) ⊆
H ∪ S. The latter condition is replaced in (ii) by
Φ([0, τ ]; q, u, Tmax,brake, [θmin; θL,max]) ⊆ H ∪ S in
order to preserve the monotonicity property of the transition
system, at the cost of a small additional conservatism.

Remark 2: The proposed construction of the symbolic
abstraction Σa makes it possible to deal with the inter-
sampling behaviour. Indeed, our construction is based on
continuous-time reachability, ensuring safety at continuous-
time and not only at sampling instants.

2) Abstract control objective: Using such construction of
the symbolic abstraction Σa, the concrete control objective
in Problem 1 can be transformed to the following abstract
control objective:

Problem 2: Given the abstraction Σa of the vehicle-
following model in (1), synthesize the maximal discrete
safety controller D : Xa ⇒ Ua keeping the trajectories of
the transition system Σa in the set Xa

0 ∪ {qsink}.
To synthesize the controller D, we rely on the use of the

monotonicity concepts introduced in Section II. We first have
the following result, characterizing the structural properties
of the abstraction Σa and the considered specification.

Proposition 1: The transition system Σa :=
(Xa, Xa

0 , U
a,∆a) defined above is an input-state monotone

transition system and the safety specification Xa
0 ∩ {qsink}

is lower closed.
Proof: We first show that Σa is an input-state upper

monotone transition system. We start by defining the partial
order for the discrete state and input spaces. We define a
partial order ≤ Xa over the set of discrete states Xa as

follows: for q1, q2 ∈ Xa, q1 ≤Xa
0
q2 if and only if q1 ≤X q2.

For the special states qunsafe and qsink we have the following:
for all q ∈ Xa

0 , q ≤Xa qsink ≤Xa qunsafe. Moreover, since
Ua ⊆ U , the partial order ≤Ua on the discrete input space
is inherited from ≤U .

Consider q1, q2 ∈ Xa, u1, u2 ∈ Ua with q1 ≤Xa q2 and
u1 ≤Ua u2. We will show that ∆(q1, u1) ≤ ∆(q2, u2).
From the definition of the monotonicity property in (5),
we have that Φ(τ ; q1, u1, Tmax,brake, [C

max
D ;Cmax

D ]) ≤
Φ(τ ; q2, u2, Tmax,brake, [C

max
D ;Cmax

D ]). To complete the
proof, we distinguish three cases:
• ∆(q1, u1) ∈ Xa

0 . In this case, we have two options.
If ∆(q2, u2) ∈ Xa

0 , in then we get directly from (5)
that ∆(q1, u1) ≤ ∆(q2, u2). Otherwise, we have that
∆(q2, u2) = qsink or ∆(q2, u2) = qunsafe, which implies
from the construction of the partial order ≤Xa above
that ∆(q1, u1) ≤ ∆(q2, u2).

• ∆(q1, u1) = qsink. In this case, we have from (5) that
∆(q2, u2) = qsink or ∆(q2, u2) = qunsafe, which implies
from the construction of the partial order ≤Xa above
that ∆(q1, u1) ≤ ∆(q2, u2).

• ∆(q1, u1) = qunsafe. In this case we have either q1 ∈
Xa

0 or q1 = qunsafe. If q1 ∈ Xa
0 , we have from the

construction of the transition relation ∆ and using (5)
that ∆(q2, u2) = qunsafe, which implies that ∆(q1, u1) ≤
∆(q2, u2). Similarly, if q1 = qunsafe and q1 ≤ q2 then
q2 = qunsafe and ∆(q1, u1) = qunsafe ≤ ∆(q2, u2) =
qunsafe.

Finally, the fact that the set Xa
0 ∩ qsink is lower closed

follows immediately from the definition of the partial order
≤Xa .

We now have all the ingredients to provide a solution
to Problem 1. First, using the lazy controller synthesis
approach for input-state upper monotone transition systems
and directed safety specification (see Section II-C.2) we can
construct the maximal abstract safety controller D : Xa ⇒
Ua for the transition system Σa and lower closed safety
specification Xa

0 ∪ {qsink}, which is indeed a solution to
Problem 2. Second, using the construction of the abstraction
Σa, one can show, similarly to [9], that the abstraction
Σa is related to the original system in (1) by an upper
alternating simulation relation. This relation is useful for
controller refinement for our lower closed safety specification
Xa

0 ∪ {qsink}. Based on this relationship, we can refine the
abstract controller D : Xa ⇒ Ua into a concrete controller
C : X ⇒ U , providing a solution to Problem 1. In this
case, the concrete controller C can be defined for x ∈ X
as follows: C(x) = D(Q(x)), where Q is the quantizer
associated to the abstraction Σa and relating the continuous
state-space X to the discrete state-space Xa as follows:
Q : X → Xa, with Q(x) = q if and only if x ∈ q.

Using the lazy controller synthesis approach, we compute
a safe set (that is, the set Z = dom(C) ⊂ X where we
can enforce the given specification) with respect to both the
strict specification (6) and the relaxed specification given
in Problem 1. For constructing our abstraction, we use the
discretization parameters given in Table I. The resulting



Fig. 2: Boundary of safe set Z ⊂ X for the strict (top
surface) and relaxed (bottom surface) vehicle-following spec-
ification.

TABLE I: Vehicle-Following Abstraction Parameters

hres headway resolution m 0.4
vres velocity resolution m/s 0.2
Tres wheel torque resolution Nm 50
τ sampling time s 0.2

safe sets are shown in Figure 2. As expected, relaxing the
safety specification with vallow = 3m/s expands the safe set.
This allows the vehicles to drive more closely together and
potentially improve traffic efficiency - for example, in vehicle
platooning [3].

IV. UNPROTECTED LEFT TURN SCENARIO

In this section, we compute a safety controller for an
unprotected left turn scenario using the approach established
in Section III. Indeed, the vehicle dynamics in this scenario
are monotone, and collision avoidance only requires the ego
vehicle to adjust its velocity along its current path [11].

A. Monotone Vehicle Dynamics and Control Objective

We model the vehicle dynamics in the unprotected left
turn scenario as follows

ṡ = v,

v̇ = β(a, v),

ṙ = v0, (10)

where s, v, a ∈ R are the position, velocity, and acceleration
of the ego vehicle along its (curved) path, and r ∈ R is the
position of the oncoming vehicle along its path, see Figure
3. Furthermore, v0 = 12m/s is the (constant) velocity of the
oncoming vehicle, and the ego vehicle dynamics are

β(a, v) :=


a, v ∈ (0, vmax),

max(a, 0), v = 0,

min(a, 0), v = vmax.

(11)

Here, we use a simplified vehicle dynamics model - typically,
the task of computing the velocity trajectory in this scenario
would be handled by a planner system, which uses such a

𝑣

𝑠

𝑠 = 𝑟 = 0

𝑟

Fig. 3: Depiction of the states for the ego (blue) and oncom-
ing (yellow) vehicle in the unprotected left turn scenario.

model to reduce complexity [16]. Importantly, we also note
that the positions s and r increase in the direction of travel,
and at the point s = r = 0 the vehicle paths cross.

To address the possibility of a collision between the ego
and oncoming vehicles, we define a conflict zone [17] around
this crossing point, and require the two vehicles to never
occupy the conflict zone simultaneously. Formally, we define
the following set of conflicting states

C :=
{
x : |s| ≤ ` and |r| ≤ `

}
, (12)

where ` > 0 is an adjustable parameter - here, we take ` =
10m. To avoid the unsafe set (12) at all times, the ego vehicle
can either go first and complete its turn before the oncoming
vehicle enters the intersection, or wait for the the oncoming
vehicle to pass through the intersection first, and then start
its turn. For each case, we define a respective goal set

Gwait :=
{
x : r > `

}
, Ggo :=

{
x : s > `

}
, (13)

which represents the opposite side of the intersection for each
vehicle. Next, we define the following constraint sets for the
state and input, respectively

Xwait :=

{
x :

− 70 ≤ s ≤ −10, 0 ≤ v ≤ 12,

− 70 ≤ r ≤ 10

}
,

Xgo :=

{
x :

− 70 ≤ s ≤ 10, 0 ≤ v ≤ 12,

− 70 ≤ r ≤ −10

}
,

U :=
{
a : −3 ≤ a ≤ 2

}
, (14)

where the bounds on each of the state variables depend on the
ego vehicle’s strategy for executing the turn. For example, the
set Xgo excludes states where the oncoming vehicle occupies
the intersection, since we want the ego vehicle to go first in
this case. With (12) - (14), we state our control objective.

Problem 3: Our control objective is to ensure the conflict
set is avoided at all times

x(t) /∈ C, ∀t ≥ 0, (15)



(a) Safe set Zwait ⊂ Xwait.

(b) Safe set Zgo ⊂ Xgo.

Fig. 4: Boundary of each safe set for the unprotected left
turn scenario.

and a goal set is eventually reached:

∃t0 s.t. x(t) ∈ Gi for t > t0 and x(t) ∈ Xi for t ∈ [0, t0]
(16)

where i ∈ {wait, go}, depending on the ego vehicle’s
strategy for executing the turn.

We again wish to accurately characterize the set of states
Zwait ⊂ Xwait and Zgo ⊂ Xgo from which it is possible
for the ego vehicle to safely execute its left turn, by either
waiting for the oncoming vehicle or going first, respectively.
Since the system dynamics are monotone, and since we are
again considering a (directed) reach-avoid type specification,
we are able to compute safe sets Zwait and Zgo using the
same symbolic control approach outlined in Section III-C.
The resulting safe sets are shown in Figure 4.

B. Two Oncoming Vehicles

We now apply safe sets Zwait and Zgo in an unprotected
left turn scenario with two oncoming vehicles. Our goal is
to design a controller for the ego vehicle such that it safely
cuts in-between the two oncoming vehicles to execute its
turn. Since we represent the ‘wait’ and ‘go’ strategies for
executing the turn as upper and lower-closed safety specifica-
tions, we can do this by performing an incremental synthesis
procedure for the intersection of an upper and lower-closed
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Fig. 5: Simulation results for the unprotected left turn sce-
nario. We note two vehicles never occupy the intersection
(bounded by the dotted purple lines) simultaneously.

safety specification. For more details on this approach, we
refer to [18, Section 6]. The idea is to synthesize a controller
which keeps the state in Zwait ∩ Zgo at all times. Since the
oncoming vehicles travel at constant velocity and thus are
separated by constant distance, we can map points in Zwait

to corresponding points in Zgo, and vice versa.
The resulting controller is tested in simulation with the

results shown in Figure 5. At each time step during simula-
tion, we obtain a feasible range of inputs via the synthesized
controller. As long as a control input in this range is selected,
the ego vehicle will not conflict with either oncoming vehi-
cle. A simple model-predictive controller is used to choose
the optimal control input in this feasible range, with the
objective of maintaining a velocity of 6m/s. We note that
at the beginning of the simulation and at 3.4s the control
input changes rapidly to avoid a conflict.

V. CONCLUSION

We used a monotonicity-based approach to design vehicle
controllers for two realistic driving scenarios: a vehicle-
following scenario and an unprotected left turn scenario.
For each scenario we considered a reach-avoid type control
specification and showed that we can apply a controller
synthesis procedure for safety specifications by augmenting
our symbolic abstraction of the system dynamics with two
unique states. Since the vehicle dynamics in each scenario
are monotone, the controller synthesis and implementation
computations are be performed efficiently. Lastly, in the
vehicle-following scenario we showed how monotonicity-
type reasoning can be applied to handle model uncertainty,
and in the unprotected left turn scenario we showed how it
enables us to consider two oncoming vehicles.
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