
End-to-end Model Inference and Training on Gemmini

Pranav Prakash

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-37

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-37.html

May 9, 2021



Copyright © 2021, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

 
 

End-to-end Model Inference and Training on Gemmini 
 

by Pranav Prakash 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Krste Asanovic 
Research Advisor 

 
 

(Date) 
 

 
* * * * * * * 

 
 
 

Professor Yakun Sophia Shao 
Second Reader 

 
 

(Date) 

Sophia Shao

Krste Asanovic
4/29/2021



End-to-end Model Inference and Training on Gemmini

Pranav Prakash
UC Berkeley

Abstract

Gemmini is an open-source generator for systolic-
array architectures, allowing for systematic explo-
rations of the accelerator design space. However,
the lack of existing software support for Gemmini in
machine-learning frameworks (e.g. PyTorch or Ten-
sorflow) poses a significant bottleneck to neural net-
work model evaluation and serving.

To address these limitations we present the de-
sign and implementation of a Gemmini backend for
Microsoft’s ONNX Runtime engine. By extending
ONNX Runtime’s support for heterogeneous archi-
tectures and model graph transformations, the Gem-
mini backend accelerates the primary computational
kernels – matrix multiplications, convolutions, and
pooling – while ensuring interoperability between the
channel-layouts expected by Gemmini and the rest of
ONNX Runtime. We then proceed to benchmark our
implementation on a broad-set of networks including
ResNet, BERT, and Mask-RCNN – our results show
that the Gemmini backend is a performant drop-in re-
placement for accelerating real-world workloads.

1. Introduction

The surging interest in deep neural networks over
the past decade has accordingly led to increased re-
search [25, 43] in the space of hardware accelera-
tors designed to address the computation-heavy work-
loads that densely connected layers and convolutions
pose. Differing use-cases and design constraints –
such as training on servers or performing inference at
the edge – further increase the diversity of this hard-
ware ecosystem.

Gemmini [15] is an open-source hardware genera-
tor explicitly designed with parameterization in mind,

to allow for the construction of families of accelera-
tors which can target different workloads but nonethe-
less share the same instruction set. Coupled with the
rest of the Rocket-chip generator ecosystem [2], this
allows for rapid exploration of the accelerator design
space when trading off power consumption, efficiency,
and precision.

However, the benefits of such flexibility in hard-
ware exploration are limited without a means to read-
ily evaluate the performance of the desired workloads
(deep neural networks in the most common case).
While there exist a variety of training (e.g. PyTorch,
Caffe2, TensorFlow) and inference (e.g. TFLite,
TVM, Glow) [42, 51, 33] frameworks, the majority
support only CPUs and GPUs as first-class citizens
– often making use of optimized libraries such as
cuDNN or MKL-DNN that corresponding hardware
vendors have released. Support for custom, third-party
accelerators is less standardized, and can result in var-
ious impedance mismatches (in operator granularity)
or idiosyncrasies (differing memory layouts) that must
be worked around [34].

Thus, one of the significant bottlenecks when work-
ing with accelerators without widespread framework
support is the need to manually “lower” networks from
their graph representation down to the underlying ker-
nels executable by the accelerator – a process that
can involve rewriting code, manually performing op-
timizations, or marshalling data into the correct for-
mat. This tedious process not only limits the speed
with which hardware designs can be iterated on, but
can also hinder the process of hardware-software co-
design [29].

In order to embrace the flexibility in hardware di-
versity made possible by parameterization, it is thus
important that there exist a means of easily schedul-
ing such workloads onto the underlying accelerator. In



this paper, we present a Gemmini backend for ONNX
Runtime [35] designed to seamlessly allow Gemmini-
accelerated inference of any off-the-shelf ONNX net-
work. We evaluate its performance on a wide variety
of architectures – such as image recognition, image
segmentation, and language models – and demonstrate
that its performance is comparable to that of networks
implemented by hand. Finally, we show how this work
can be extended to allow accelerating neural network
training.

2. Background

In this section we first enumerate the features of
Gemmini relevant when building out a software stack
for inference and training. We then provide some
background on the ONNX model format and its sur-
rounding ecosystem – including the ONNX Runtime
library on which this project builds.

2.1. Gemmini

Gemmini [15] is a parameterizable generator for
hardware accelerators based on a systolic-array archi-
tecture. By virtue of its parameterizability, Gemmini
supports a diverse set of data types and bit widths – in-
cluding but not limited to int8, int32, float32, and
bfloat16; it is accordingly a design goal that the soft-
ware stack be flexible enough to support all of these as
well. While the accelerator can be programmed at a
low-level by directly issuing instructions according to
Gemmini’s ISA, Gemmini also generates a header file
that provides implementations of DNN-related kernels
tuned for a given hardware instance. This header ef-
fectively exposes a C API that abstracts away the pa-
rameters and configuration of a generated instance, al-
lowing programs to transparently execute on different
instances by simply re-linking against the Gemmini-
generated library.

In addition to the core primitives of matrix-matrix
multiplication and convolution enabled by the spa-
tial array, Gemmini can also support a set of periph-
eral “compute blocks” to better handle common DNN
workloads. These include activation functions such as
ReLU, pooling operations such as MaxPool or Aver-
agePool, and transpositions. These peripheral com-
pute units operate on either the input or outputs of
the core matrix operations; for instance, a common se-
quence found in convolution neural networks is “Conv

- Pool - Relu” which Gemmini can handle directly on
the accelerator without need to shuffle memory be-
tween the host CPU and the accelerator’s local scratch-
pad. This ability to handle fused sets of operation
on the accelerator boosts performance while reduc-
ing power consumption, and is thus crucial to support
when designing an inference backend that makes full-
use of Gemmini.

2.2. ONNX

ONNX [3] is an open model-interchange format
that has gained widespread adoption in the machine
learning community as a means of alleviating the in-
teroperability issues that can arise from the multitude
of frameworks [42]. The ONNX specification is com-
posed of two parts: a file format encoding the graph
of the computation dataflow and an associated set of
standardized operators.

The ONNX model format encodes a network in
terms of its representation as a directed acyclic graph
of operations on tensors – with each high-level opera-
tion such as “convolution” or “gemm” conventionally
corresponding to a layer in the network. Each opera-
tor is recorded as a “node” that includes the operator
type, the set of input and output edges, and any addi-
tional “attributes” that may be needed to fully specify
the behavior of the operator. For instance, a convo-
lution operator might include attributes specifying the
stride lengths on each of the image dimensions. While
most node inputs can be computed only at run-time
– often depending on the output of a previous node
which is ultimately derived from user input – others
such as the weights of a convolution are fixed during
training and must be included in the graph encoding.
Such node inputs with fixed tensor values can be speci-
fied as “initializers” of the graph, whose values will be
directly encoded into the final model file. This infor-
mation (along with optional metadata such as human-
readable documentation strings or type/shape informa-
tion for non-terminal nodes) is serialized as a protocol
buffer (protobuf) [16], with schema provided by the
corresponding [13] proto definition files. The resulting
.onnx file can be imported into nearly all of the previ-
ously mentioned inference engines [12, 11] and such
files can be natively exported by training frameworks
such as PyTorch [40].

Operator types are represented as strings and hence

2



unconstrained by the protobuf schema; however,
to provide a degree of standardization, the ONNX
specification additionally consists of a standardized
set of operators [14] that are expected to be well-
supported by inference engines consuming ONNX
models. “Custom” operators not part of this set may
be used at the risk of losing interoperability – for
instance, ONNX Runtime defines and implements a
number of experimental operators such as Gelu. (As
models containing this operator are not generated or
recognized by other tools in the ONNX ecosystem,
ONNX Runtime thus also provides a set of scripts to
rewrite “standard” ONNX networks into ones contain-
ing Gelu nodes.)

ONNX groups operators into versioned operator
sets (opsets) distinguished by domains that correspond
to different vendors; standardized operators fall under
the ai.onnx domain, and Microsoft’s custom exten-
sions fall under the com.microsoft domain.

2.3. ONNX Runtime

ONNX Runtime is an inference engine developed
by Microsoft with support for ONNX models as a first-
class citizen. Namely, its internal graph representation
matches the ONNX graph model closely, allowing for
serialization of a post-transformation graph back into
an ONNX model. Moreover, with an explicit goal of
supporting inference on heterogeneous architectures,
its codebase is divided into loosely coupled “provider-
dependent” and “provider-independent” modules to
provide flexibility and extensibility.

ONNX Runtime uses the notion of an execution
provider to abstract the notion of the hardware on
which a given ONNX node will be run. Each execution
provider can register implementations – termed “ker-
nels” – for operators that it supports. The interface be-
tween ONNX Runtime and a given execution provider
is standardized: each execution provider implements
a method GetCapability() that accepts a view into
a graph of nodes and returns a list of sub-graphs that
can be handled. These sub-graphs are then internally
assigned to the execution provider that claimed them
in a process known as partitioning. In most cases,
each sub-graph consists of only a single node, and so
the nodes of a graph will be divided according to the
execution providers that can handle them. Currently,
this assignment is done in a greedy manner: search-

ing through execution providers in the order that they
were registered, and assigning each node to the first
execution provider that can handle it. By convention,
the default CPU-based execution provider has lowest
priority and is the fallback for any node that has not
been claimed by another provider.

Execution providers must separately register a
mapping from operator types to kernel implementa-
tions. These implementations can be wholly provider-
dependent, but they must make use of the pre-defined
Tensor and Node APIs for reading/writing node input-
s/outputs as well as accessing associated attributes.

ONNX Runtime additionally supports graph trans-
formations that can be performed both before and after
the partitioning process. These graph transformations
can arbitrarily rewrite the graph – removing, modi-
fying, or adding nodes – allowing for common opti-
mizations such as constant folding or identity elimi-
nation. Furthermore, during partitioning a subgraph
of more than one node that is claimed by a provider
is transformed into a single “fused” node assigned to
that provider – allowing graph transforms for the com-
mon case of fused-operators to be handled by execu-
tion providers themselves.

3. Related Work

In this section, we survey the landscape of frame-
works related to inference and discuss their relation
to our work. Broadly speaking, inference frameworks
can be divided into two classes: graph compilers and
graph interpreter engines.

3.1. Graph Interpreters

We define the class of “interpreted inference en-
gines” as those that roughly share a common execution
pattern: parsing a model graph at runtime to produce
an execution DAG, subsequently performing optimiza-
tions via graph transformations, mapping subgraphs
onto a predefined set of kernel implementations, and
finally calling into each of those kernels as a “black
box.” Significantly, the specific choice of model af-
fects only the sequence of kernels that are invoked;
the granularity of optimizations is limited to that of
individual graph nodes, limiting opportunities to spe-
cialize kernels against a given model. (Of course, an
execution provider may still dispatch between multi-
ple kernel implementations at run-time based on e.g.

3



input dimensions or attributes.) Along with other pop-
ular frameworks including Tensorflow/TFLite (with-
out XLA) [1], Caffe2 [24], and MxNet [6], ONNX
Runtime belongs to this class. For a fixed hardware
backend (e.g. GPU) most of these frameworks provide
similar performance as they often rely on identical un-
derlying kernel implementations (e.g. MKL-DNN on
CPUs or CuDNN on GPUs) [48, 6]. A large benefit of
this style of framework is their simplicity and ease of
extensibility – adding new backends or operators only
requires implementing the corresponding kernel as a
standard function.

As machine learning models have increased in com-
plexity, however, simple graph transformations have
proven insufficient or unwieldy in producing opti-
mized models, resulting in the rise of domain-specific
compilers for these model graphs.

3.2. Graph Compilers

Frameworks in the class of “graph compilers” com-
pile a given model down into a fixed binary (either
ahead of time or just-in-time), with the generated code
implementation optimized to target fixed architectures.
Such frameworks have the potential to generate highly
efficient code as they are not limited to working with
graph transformations and fixed kernels, but can per-
form optimizations both on underlying tensor oper-
ations as well as the generated instructions. These
graph compilers are often closer to compilers for tradi-
tional languages – having intermediate representations
(IR) whose instructions are progressively lowered to
target backends – and indeed many leverage existing
projects in this space such as LLVM [30] and MLIR
[31]. Frameworks in this class include ONNC [34],
Glow [44], Tensorflow with XLA, and TVM [7].

This potential increase in performance comes at the
cost of complexity in porting new operators and back-
ends; operators must be lowered down into IR rather
than expressed directly as functions, and backends re-
quire appropriate code-generation support. These can
pose a variety of impedance mismatch issues – for in-
stance, a coarse-grained operator that can map onto
a backend directly rather than needing to be broken
up into fine-grained IR instructions – which must be
worked around via e.g. a post-lowering pass.

3.2.1 Halide

Halide [41] by itself is not an inference framework.
However, the Halide IR which was designed for opti-
mizing the highly parallel tasks of digital image pro-
cessing has found new applications in graph compilers
such as TVM. The core idea of Halide – separation
between the high-level specification of the algorithm
being computed and the underlying means by which it
is scheduled onto the hardware – is in some sense anal-
ogous to the idea of scheduling operators of computa-
tional graphs onto different providers. In both cases,
compilers have freedom to explore various schedules
– optimizing for memory locality, performing fusion,
tiling, reordering as necessary, etc.

However, Halide’s IR is best suited for vector-based
architectures (such as SIMD or GPUs) given that it
represents operations in terms of loop nests. On the
other hand, as Gemmini operates on matrices as prim-
itives, the optimizations that Halide is capable of per-
forming are not directly applicable.

3.3. Relation to Our Work

Our decision to base our work on an interpreted in-
ference engine was due to both its greater flexibility
in implementing operators and its ability to general-
ize to use-cases such as training. Moreover, given that
Gemmini can directly handle the majority of compute-
heavy bottleneck kernels in most networks, benefits
from graph compilers’ optimizations would be real-
ized only for those few kernels executed on the CPU.
(Note however that the primitive matrix-multiplication
operation Gemmini exposes must still be tiled via an
outer software loop to act on larger matrices; we con-
sider the problem of finding efficient schedules for
Gemmini primitives to be orthogonal to our work.)

Even with an interpreted inference engine, it is pos-
sible to take advantage of the optimizations offered by
graph compilers by using a graph compiler as an ex-
ecution provider onto which subgraphs will be sched-
uled. In such a manner, one effectively JIT compiles
subgraphs which are then invoked by the inference
engine. This technique can be extended to compute
kernels for subgraphs ahead of time as well 1, further

1As a proof of concept, we have been able to accomplish this
by combining pre-existing ONNX graph compilers [18, 52] with
ONNX Runtime’s support for kernels dynamically loaded at run-

4



lowering any performance drawbacks and allowing in-
terpreted inference engines to take advantage of auto-
mated scheduling.

4. Implementation

In this section we detail the design of our Gemmini
backend for inference with ONNX Runtime. We then
show how by re-using much of the same underlying
infrastructure, our backend can be extended to support
training of neural networks as well.

4.1. Inference

At a high level, we add support for Gemmini to
ONNX Runtime by implementing a custom execution
provider (EP) that schedules convolutions and mat-
muls on Gemmini. By ensuring that all interaction
with the hardware is mediated by calls into the auto-
generated Gemmini headers mentioned in 2.1, we can
thus immediately support the entire range of design
parameters that can be varied in Gemmini-generated
accelerators. However, due to layout and granularity
mismatches between standard ONNX operators and
the primitives exposed by Gemmini, implementing
a Gemmini execution provider by naively converting
corresponding CPU kernels would pose several chal-
lenges:

• Whereas CPU operator kernels can assume 32-
bit floating-point data-types, the most common
configuration of Gemmini involves a parameter-
ization that uses 8-bit signed integers for inputs
and outputs (with an internal 32-bit accumulator).
Such a configuration is thus limited to perform-
ing inference on neural networks that have been
quantized [17], and explicit care must be taken to
ensure that such quantized operators are handled
by the Gemmini EP.

• Whereas ONNX Runtime traditionally sched-
ules each operator in an ONNX graph inde-
pendently, Gemmini supports Relu and Max-
Pooling as functions that can be performed post-
matmul/convolution. For full performance, these
must be taken advantage of by adding appropriate
graph-fusion transforms.

time via shared-libraries.

• Standard ONNX operators use an NCHW mem-
ory layout for tensors, where the first two tensor
dimensions correspond to batch-size and num-
ber of channels, while the remaining dimensions
are spatial dimensions (height and width in the
most common case of networks using 2D convo-
lutions). Gemmini’s convolutions, however, ex-
pect tensors to be in an NHWC format – with the
channel dimension innermost.

In the following subsections, we discuss how our
backend addresses each of these points.

4.1.1 Quantized Operators

For FP32 Gemmini configurations, support for op-
erators that rely primarily on general matrix multi-
ply (GEMM) can be implemented by directly converting
CPU-based kernels (most of which call directly into
BLAS [4] after setting up inputs and outputs) to in-
stead call into the Gemmini headers. Designs param-
eterized with int8 inputs, however, are limited to ac-
celerating quantized operators; such operators take as
inputs not only tensors but also associated scalar “scale
factors” which are used to reconstruct the original dy-
namic range of the tensor from values in the quantized
8-bit range.

Version 10 of the ONNX operator set intro-
duced support for such quantized operators by
adding schemas for QLinearConv, QLinearMatMul,
QuantizeLinear, and DequantizeLinear to the stan-
dard set of operators. These operations can be concep-
tually mapped onto Gemmini’s functions, and thus be
used to accelerate inference of models that have been
appropriately converted to make use of these operators
(see Section 5.1).

4.1.2 Operator fusion

Gemmini primarily supports two types of fusion: a
ReLU that can be performed post-matmul or post-
convolution as part of mvout, or max-pooling that can
applied after convolution. We handle these two cases
via two types of graph transformations.

The former case – fusing a sequence of matmul or
convolution followed by ReLU – is handled directly
during model partitioning. Before the Gemmini exe-
cution provider returns the list of nodes it can handle,

5



it attempts to pattern-match the operator DAG against
the desired MatMul/Conv + ReLU sequence. If found,
such a two-node sequence is wholly claimed as a sub-
graph, instead of as two individual nodes. As de-
scribed in Section 2.3, claimed subgraphs of more than
one node are internally converted into a single fused
node, for which an implementation can be appropri-
ately defined.

We discuss the case of fused pooling – which re-
quires that the preceding convolution be converted to
NHWC format to be run on Gemmini – in the subsequent
subsection.

4.1.3 NHWC Transformations

Unlike the NCHW data layouts assumed in standard
ONNX models, Gemmini requires inputs for convolu-
tions to be in NHWC format. Thus, to allow for hardware
acceleration of convolution (and pooling), we first de-
fine our own schema for NHWC versions of these oper-
ators then implement a custom graph-transform pass
that converts operators into this NHWC format. Note
that in addition to converting convolution inputs into
an NHWC format, convolution weights must also be con-
verted to an HWIO format – with the first two dimen-
sions corresponding to spatial height and width of the
kernel, the third dimension corresponding to the num-
ber of input channels, and the fourth corresponding to
the number of output channels.

Transposes are inserted before or after operators as
needed to preserve correctness in the case of edges
from our custom NHWC-aware to standard ONNX NCHW

operators. While such a transformation may poten-
tially lead to slowdown in the pathological case of al-
ternating NHWC and NCHW operators (resulting in trans-
poses after each layer), for convolution neural net-
works whose layers consist mostly of stacked convo-
lution ! pooling ! ReLU operations, the bulk of the
network can be converted to NHWC format with trans-
positions needed only at terminal nodes. (Note that as
Gemmini supports a hardware transposer unit, the case
of exotic networks that result in pathological trans-
poses can be addressed by performing transpositions
in hardware.) Finally, as part of NHWC conversion we
fuse any MaxPool nodes into the preceding convolu-
tion, if it exists.

Because Gemmini handles only a subset of the con-

volutions permitted in the ONNX spec (e.g. Gemmini
does not support depthwise-convolutions), any NHWC

convolution that cannot be handled directly by Gem-
mini uses a fallback path that runs im2col [23] on the
CPU followed by a matrix-multiplication on Gemmini.
In the case of a fused operator, pooling is subsequently
performed on the CPU as well.

4.2. Training

ONNX Runtime additionally supports training of
neural networks: by augmenting a standard ONNX
graph with gradients of operators, it becomes possi-
ble to re-use much of the underlying graph execution
engine to perform not only the forward pass but also
the backward gradient-computation passes and weight
updates. Thus assuming an FP32 Gemmini configu-
ration, the inference backend described in the previ-
ous section is sufficient to accelerate both the forward-
propagation phase as well as gradient computations for
certain operators such as Gemm, whose gradients can be
expressed directly in terms of acceleratable operators.

Gradients of convolutions, however, require more
care. The gradient with respect to weights (dW ) can
be computed as a unitary-stride convolution of the in-
put against the dilated output gradient [5] (preceded
and followed by appropriate transpositions to match
tensor shapes). Thus with minimal hardware changes
to support filter dilations, computation of dW can
be mapped onto a convolution accelerated by hard-
ware. (In the case that Gemmini is configured with an
im2col block, dW can also be computed by an appli-
cation of im2col and transposed matrix-multiplication
[50].)

Likewise, computation of the gradient with respect
to inputs, dX , (an operation known in the literature
as “transposed convolution” or sometimes “deconvo-
lution” [10, 45]) can be expressed as a unitary-stride
convolution of the dilated output gradient against the
filter rotated by 180� (reversal in both height and width
axes) [5]. Note that unlike in the computation of dW ,
here dilation is performed on the input as opposed to
the filter of the convolution.

As some operators exhibit different behavior in
training versus inference modes, certain transforma-
tions that were applicable during inference no longer
apply. In particular, during training MaxPool outputs
an additional tensor containing the indices of elements

6



from the input that were transferred to the output. As
this is currently unsupported by Gemmini, MaxPool

must be run on the CPU during the forward-pass of
training. Finally, care must be taken to add support for
NHWC-data layouts to all gradient operators, to match
the NHWC operators added for inference.

5. Evaluation

In this section we discuss how the backend de-
tailed in the previous section can be put into practice
to perform inference or training on a variety of real-
world networks. We first describe our methodology for
producing quantized ONNX networks via automated
post-training quantization. Using FireSim [27], we
then benchmark these networks on our fork of ONNX
Runtime.

5.1. Post-training Quantization

While our inference backend can be used to directly
run exported ONNX models, most networks are ex-
ported in a floating-point format. Running networks
on an int8 Gemmini configuration, however, requires
an ONNX model that makes use of quantized weights
and the associated set of quantization-aware operators.

In general, neural-network quantization manifests
in two forms [28]: quantization-aware training/fine-
tuning – where weights are projected to lower-
precision during training and can thus be optimized
to retain accuracy – and post-training quantization –
where the precision of weights is reduced according
to its distribution on sample data but is otherwise not
optimized.

As the ONNX ecosystem currently lacks support
for exporting quantization-aware trained models, we
have opted to make use of post-training quantization
in the models used for our evaluation, performed via a
version of ONNX Runtime’s quantization scripts [36]
that were modified to support int8 data-types and ad-
ditional quantized operators.

Given a floating-point ONNX model and a set of
sample inputs, the aforementioned quantization scripts
first record the ranges 2 of inputs/outputs for each in-
termediary layer, then compute appropriate scale fac-
tors; weights and operators such as Conv can thus be

2More robust post-training quantization schemes [38, 37]
could also be implemented.

Table 1. Comparison of ResNet-50 performance. FPS cal-
culated assuming a 1GHz clock speed.

Execution Mode Cycles (·106) FPS
Baremetal WS 75 13.33
ORT WS 113 8.85
ORT CPU 131690 0.01

converted into their quantized equivalents. To improve
accuracy in the case of a Conv node followed by a pool-
ing or activation, we compute the scale factor of the
convolution’s output based on the output of that pool-
ing/activation node.

6. ResNet-50

To evaluate the performance of ResNet-50 [20] on
our backend, we first performed post-training quan-
tization on the ResNet50-caffe2 model downloaded
from the ONNX Model Zoo [39]. This model was
used as input to an “imagenet runner” program writ-
ten to perform inference on a variety of models de-
signed to be used with the imagenet dataset [8] (e.g.
MobileNet [21] or SqueezeNet [22]); it first performs
appropriate pre-processing on an input image then
calls into the ONNX Runtime library to perform infer-
ence. As a benchmark reference, we used a version of
ResNet-50 that was hand-implemented in C and com-
piled to a standalone bare-metal binary.

Our results comparing the inference times from
ONNX Runtime using the Gemmini backend, ONNX
Runtime running only on CPU, and the baremetal ref-
erence are provided in Table 1. Note that results for
all models evaluated were obtained from a FireSim
simulation of Gemmini (parameterized with its default
int8 configuration) and an in-order Rocket core as the
host CPU.

As seen above, the performance obtained using the
Gemmini ONNX Runtime backend is within a factor
of two of the performance obtained from a hand-coded
bare-metal implementation (both of which are three or-
ders of magnitude faster than the CPU-only run). The
remaining gap in performance between the two can
likely be attributed to three factors:

• When performing post-training quantization on
ResNet-50, it was found that quantizing the fully
connected layer at the end of the network severely
impacted accuracy. As such, this Gemm was left

7



unquantized and performed on the CPU. More
robust post-training quantization procedures may
ameliorate this, allowing for automated quantiza-
tion of the fully-connected layer as well, bringing
performance up to parity with the hand-rolled im-
plementation.

• The bare-metal implementation makes use of re-
cently added support in Gemmini for accelerating
global average pooling. Support for this feature
was not present in our ONNX Runtime backend
at the time of evaluation.

• The presence of unquantized operators caused by
the previous two factors leads to the need to con-
vert between float and int8 when passing ten-
sors between these floating-point operators and
quantization-aware ones.

The above is corroborated by Table 2, which breaks
down the total inference time by the time taken for
each operator type. Though the dominant operator is
the QLinearConv_nhwc which is performed on Gem-
mini, both Gemm and QuantizeLinear nonetheless
contribute significantly – accounting for about 25%
and 12% of the total time respectively – and the im-
pact of AveragePool closely trails at 9%.

Also note that aside from the initial –
QuantizeLinear and NHWC Transpose – and fi-
nal – DequantizeLinear, NCHW Transpose, Gemm,
and Softmax – layers, all other nodes have been
mapped onto Gemmini. In particular, MaxPool and
ReLU activation have been fused into the convolution
as a single accelerated macro-op.

7. BERT

The performance of our backend on NLP mod-
els was evaluated against a BERT model [9] pre-
trained against the objective of masked language mod-
eling. To procure a suitable model, we first exported
the bert-base-uncased model from the Huggingface
[49] model hub into the ONNX format before per-
forming ahead-of-time model optimization and post-
training quantization. As the default ONNX opset
lacks a specification for the self-attention operator
used heavily in BERT, Attention operators are con-
ventionally unrolled into their constituent primitive
operators when transformer models are exported into

Table 2. ResNet-50 ORT-WS inference time breakdown per
operator. Durations based on the default FireSim base fre-
quency of 3.2 GHz.

Operator Time (µs) %
Reshape 14 0.04
Softmax 54 0.16
Transpose 443 1.35
DequantizeLinear 563 1.71
AveragePool 3007 9.16
QLinearAdd 3210 9.77
QuantizeLinear 4071 12.40
Gemm 8037 24.47
QLinearConv nhwc 13442 40.93
Total 32841 100%

Table 3. Comparison of BERT performance on a 9-token
input. Tokens/sec based on assumption of a 1GHz clock
speed.

Execution Mode Cycles (·106) Tokens/sec
ORT WS 238 37.82
ORT CPU 34564 0.26

ONNX format; the aforementioned AOT optimization
scripts provided by Microsoft fuse such unrolled oper-
ators back into a custom Attention operator defined
in the com.microsoft domain.

Within our backend, support for the Attention op-
erator (quantized or unquantized) is currently imple-
mented by accelerating the first step of self-attention
calculation. That is, the computation of queries, keys,
and values [46] vectors (performed via multiplication
of input and weight tensors) is mapped onto Gemmini.
Note that while the subsequent query-key dot products
used in computation of the final attention scores can
also be accelerated, this has not yet been added.

Our results on a 9-token input are provided in Ta-
ble 3. Based on the breakdown of time per operator as
shown in Table 4, we see that when using Gemmini,
computation of self-attention is no longer the primary
bottleneck; instead, these costs are shifted to computa-
tion of BiasGelu (performed on the CPU) and the as-
sociated quantization/dequantization costs of running
a floating-point operator after a quantized operator. As
we note in the Section 9, these costs could potentially
be mitigated by offloading QuantizeLinear and Gelu

computation onto a vector accelerator such as Hwacha
[32].

8



Table 4. BERT ORT-WS inference time breakdown per op-
erator. Durations based on the default FireSim base fre-
quency of 3.2 GHz.

Operator Time (µs) %
Unsqueeze 6 0.01
Shape 9 0.01
ReduceSum 13 0.02
Cast 16 0.02
Gather 101 0.13
Slice 159 0.20
LayerNormalization 165 0.21
Add 1829 2.30
DequantizeLinear 4685 5.90
SkipLayerNormalization 4894 6.16
QLinearMatMul 13256 16.68
QAttention 15451 19.45
QuantizeLinear 16858 21.20
BiasGelu 22007 27.70
Total 79449 100%

8. Mask-RCNN

The final network we evaluate is the Mask-RCNN
object detection and segmentation network [19]. Be-
cause the sub-networks for bounding-box recognition
and mask-prediction make heavy use of data-shuffling
operators such as Flatten and Squeeze, to avoid the
introduction of redundant DequantizeLinear nodes it
is important that the quantizer be capable of “passing-
through” the scale factors of quantized inputs to such
data-shuffling operators.

After exporting 3 and quantizing the pre-trained
Mask-RCNN model from the Torchvision library, we
can perform inference on a sample image using a run-
ner nearly identical to that which we used for running
ResNet-50 networks.

Our results are summarized in Table 5. The per-op
timing breakdown shown in Table 6 reveals that with
hardware acceleration of all convolutions and matrix-
multiplies, the majority of inference time is instead
spent on the CPU, in the form of three operators:
RoiAlign, ScatterElements, and QuantizeLinear.

3Reference implementations of Mask-RCNN use
a FrozenBatchNorm operator in the Resnet back-
bone; as PyTorch does not map these onto ONNX’s
BatchNormalization, before export it is necessary to
modify the network to make use of standard BatchNorm
operators.

Table 5. Comparison of Mask-RCNN performance on an
800x800 image. Duration calculated assuming a 1GHz
clock speed.

Execution Mode Cycles (·106) Sec/image
ORT WS 11572 11.6
ORT CPU 1647055 1647.1

Table 6. Mask-RCNN ORT-WS inference time breakdown
per operators. Top-15 operators shown. Durations based on
a 1GHz clock speed.

Operator Time (s) %
Mul 0.12 1.05
QLinearAdd 0.15 1.31
Slice 0.16 1.39
Loop 0.17 1.48
Div 0.20 1.74
Concat 0.22 1.92
NonMaxSuppression 0.26 2.26
If 0.27 2.35
DequantizeLinear 0.30 2.61
Expand 0.40 3.48
Transpose 0.52 4.53
QLinearConv nhwc 0.79 6.88
QuantizeLinear 1.35 11.76
ScatterElements 2.37 20.64
RoiAlign 3.53 30.75
Total 10.81 94.15%

The RoiAlign operator – which is used in the
prediction of masks based on outputs of the re-
gion proposal network – is known to pose perfor-
mance issues even on GPUs due to its control-flow
heavy logic [47]. On the other hand, we believe
that the chains of ScatterElements (and preceding
QuantizeLinear nodes) in the exported ONNX net-
work are a result of operator unrolling during PyTorch
export; more careful analysis and tweaked export pro-
cedures could eliminate these. Finally, it should be
noted that the Mask-RCNN network contains a sin-
gle ConvTranspose operator used for upsampling.
Though this is among the dominant operators in CPU-
only runs, when accelerated with Gemmini (via an im-
plementation identical to that in ConvGrad) the impact
of this operator during runtime becomes negligible.

9



9. Future Work

While the presented Gemmini backend is reason-
ably comprehensive in making full-use of Gemmini’s
features, there are several avenues by which this work
can be extended to result in increased performance or
power-efficiency.

9.0.1 Cross-accelerator Interaction

The most compelling improvement is exploration of
cross-accelerator integration, such as with the Hwacha
[32] vector accelerator. While an independent Hwacha
execution-provider would allow for the acceleration
of bottlenecking operators such as QuantizeLinear,
BatchNormalization, or depthwise convolutions, the
combined use of Hwacha and Gemmini backends al-
lows for much richer forms of interaction. For instance
with a scratchpad shared between Hwacha and Gem-
mini, redundant memory-movement could be avoided
when passing tensors between operators run on dif-
ferent accelerators. Moreover, given that many oper-
ators such as Attention require certain parts of the
computation to be carried out in floating-point for-
mat, Hwacha/Gemmini integration could result in bet-
ter performance and power-efficiency than could be
achieved with either backend independently.

9.0.2 Parallelization

The existing Gemmini backend could also be mod-
ified to scale-out inference across multiple Gemmi-
nis. ONNX Runtime currently supports three no-
tions of parallelism: task-level parallelism, where for
a given network inference on different batches is per-
formed independently across several threads; pipeline-
parallelism, where the execution of a given DAG
is parallelized rather than performed serially; and
data-level parallelism, where the implementation of
a single operator can be accelerated by use of mul-
tiple threads. Note that as Gemmini does not sup-
port context-switching, multi-Gemmini configurations
must use one Gemmini per rocket tile. Accordingly,
ONNX Runtime will need to be modified to pin each
thread in its threadpool to a separate core.

Multiple Gemmini accelerators could also be used
in a heterogeneous arrangement of different data-
widths, some supporting int8 and others supporting

fp32/bfloat16. Such an arrangement allows both
training and quantized inference on the same chip,
which might be useful for edge-computing applica-
tions.

9.0.3 BFloat16 Support

The current Gemmini backend supports only Gem-
mini parameterized with int8 and fp32 types. A nat-
ural extension of this is to support bfloat16 data-
types, which has gained increasing popularity [26] in
training due to its power efficiency and performance.
Given that bfloat16 kernels are nearly identical to
their fp32 counterparts, this addition would require
minimal changes to the Gemmini execution provider
itself, with the majority of changes occurring in the
bridge layer between ONNX Runtime and the Gem-
mini hardware primitives exposed via gemmini.h.

9.0.4 Bare Metal Binaries

The ONNX Runtime library requires a Linux host en-
vironment due to its direct use (e.g. memory alloca-
tion & threading) and indirect use (via the protobuf
library) of various syscalls. However, we have experi-
mentally found that the required syscall surface is min-
imal, such that binaries linked against ONNX Runtime
run unmodified using Spike’s proxy kernel [2] (with
the futex syscall noop’d, as Spike does not support
threading). Given this, it is conceivable that such bina-
ries could be made to work directly on bare-metal plat-
forms by both compiling a minimal subset of ONNX
Runtime and providing equivalent implementations of
needed syscalls.

10. Conclusion

Given the flexibility in design-space exploration
made possible by Gemmini’s parameterizations, the
ability to easily evaluate neural network workloads is
critical when iterating and tuning hardware designs.
However, Gemmini currently lacks a high-level soft-
ware stack, requiring one to manually implement net-
works – a tedious process which limits the classes of
workloads that can be readily run. To address this de-
ficiency, in this paper we have presented a Gemmini
backend for Microsoft’s ONNX Runtime inference en-
gine. Our backend transparently supports different pa-

10



rameterizations while taking full-advantage of Gem-
mini’s exposed primitives. Evaluating this backend
on a broad set of networks – ResNet-50, BERT, and
Mask-RCNN – shows that our backend’s performance
is comparable to that of hand-written implementations;
our backend can thus serve a seamless drop-in replace-
ment for running real industry workloads.

11. Acknowledgements

This work was supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) through
the Real-Time Machine Learning (RTML) Program
under award FA8650-20-27006, as well as partially
funded by ADEPT Lab industrial sponsors and affil-
iates.

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: A system for large-scale machine
learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pages
265–283, 2016.

[2] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach,
Scott Beamer, David Biancolin, Christopher Celio,
Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, et al. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, 2016.

[3] Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX:
Open Neural Network Exchange, 2019. https:
//github.com/onnx/onnx.

[4] L Susan Blackford, Antoine Petitet, Roldan Pozo,
Karin Remington, R Clint Whaley, James Demmel,
Jack Dongarra, Iain Duff, Sven Hammarling, Greg
Henry, et al. An updated set of basic linear algebra
subprograms (BLAS). ACM Transactions on Mathe-
matical Software, 28(2):135–151, 2002.

[5] Jake Bouvrie. Notes on convolutional neural net-
works. 2006.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan
Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. Mxnet: A flexible and effi-
cient machine learning library for heterogeneous dis-
tributed systems. arXiv preprint arXiv:1512.01274,
2015.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An

automated end-to-end optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
578–594, 2018.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierar-
chical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–
255. Ieee, 2009.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[10] Vincent Dumoulin and Francesco Visin. A guide
to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285, 2016.

[11] Open Neural Network Exchange. Convert
ONNX models into Apple Core ML format,
2019. https://github.com/onnx/onnx-
coreml#convert-onnx-models-into-
apple-core-ml-format.

[12] Open Neural Network Exchange. Convert-
ing Models from ONNX to TensorFlow, 2019.
https://github.com/onnx/onnx-
tensorflow#converting-models-from-
onnx-to-tensorflow.

[13] Open Neural Network Exchange. ONNX IR,
2019. https://github.com/onnx/onnx/
blob/master/docs/IR.md.

[14] Open Neural Network Exchange. ONNX Oper-
ators, 2019. https://github.com/onnx/
onnx/blob/master/docs/Operators.md.

[15] Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon
Amid, Howard Mao, John Wright, Colin Schmidt,
Jerry Zhao, Albert Ou, Max Banister, et al. Gemmini:
An agile systolic array generator enabling system-
atic evaluations of deep-learning architectures. arXiv
preprint arXiv:1911.09925, 2019.

[16] Google. Protocol Buffers, 2008. https:
//developers.google.com/protocol-
buffers/.

[17] Yunhui Guo. A survey on methods and theo-
ries of quantized neural networks. arXiv preprint
arXiv:1808.04752, 2018.

[18] Halide. Halide ONNX Converter, 2019.
https://github.com/halide/Halide/
tree/master/apps/onnx.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask R-CNN. In Proceedings of the IEEE
international conference on computer vision, pages
2961–2969, 2017.

11

https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/onnx/onnx-coreml#convert-onnx-models-into-apple-core-ml-format
https://github.com/onnx/onnx-coreml#convert-onnx-models-into-apple-core-ml-format
https://github.com/onnx/onnx-coreml#convert-onnx-models-into-apple-core-ml-format
https://github.com/onnx/onnx-tensorflow#converting-models-from-onnx-to-tensorflow
https://github.com/onnx/onnx-tensorflow#converting-models-from-onnx-to-tensorflow
https://github.com/onnx/onnx-tensorflow#converting-models-from-onnx-to-tensorflow
https://github.com/onnx/onnx/blob/master/docs/IR.md
https://github.com/onnx/onnx/blob/master/docs/IR.md
https://github.com/onnx/onnx/blob/master/docs/Operators.md
https://github.com/onnx/onnx/blob/master/docs/Operators.md
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/halide/Halide/tree/master/apps/onnx
https://github.com/halide/Halide/tree/master/apps/onnx


[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision ap-
plications. arXiv preprint arXiv:1704.04861, 2017.

[22] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and¡ 0.5 MB model size. arXiv preprint
arXiv:1602.07360, 2016.

[23] Yangqing Jia. Learning Semantic Image Representa-
tions at a Large Scale. 2014.

[24] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In Pro-
ceedings of the 22nd ACM international conference
on Multimedia, pages 675–678, 2014.

[25] Norman P Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor pro-
cessing unit. In Proceedings of the 44th annual inter-
national symposium on computer architecture, pages
1–12, 2017.

[26] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen
Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj
Jammalamadaka, Jianyu Huang, Hector Yuen, et al.
A study of BFLOAT16 for deep learning training.
arXiv preprint arXiv:1905.12322, 2019.

[27] Sagar Karandikar, Howard Mao, Donggyu Kim,
David Biancolin, Alon Amid, Dayeol Lee, Nathan
Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, et al. FireSim: FPGA-accelerated cycle-exact
scale-out system simulation in the public cloud. In
2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 29–42.
IEEE, 2018.

[28] Raghuraman Krishnamoorthi. Quantizing deep
convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[29] Kiseok Kwon, Alon Amid, Amir Gholami, Bichen
Wu, Krste Asanovic, and Kurt Keutzer. Co-
design of deep neural nets and neural net acceler-
ators for embedded vision applications. In 2018
55th ACM/ESDA/IEEE Design Automation Confer-
ence (DAC), pages 1–6. IEEE, 2018.

[30] Chris Lattner and Vikram Adve. LLVM: A compila-
tion framework for lifelong program analysis & trans-
formation. In International Symposium on Code Gen-
eration and Optimization, 2004. CGO 2004., pages
75–86. IEEE, 2004.

[31] Chris Lattner, Mehdi Amini, Uday Bondhugula, Al-
bert Cohen, Andy Davis, Jacques Pienaar, River
Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. MLIR: A compiler infrastruc-
ture for the end of Moore’s law. arXiv preprint
arXiv:2002.11054, 2020.

[32] Yunsup Lee, Colin Schmidt, Albert Ou, Andrew Wa-
terman, and K Asanovic. The Hwacha vector-fetch
architecture manual, version 3.8. 1. EECS Depart-
ment, University of California, Berkeley, Tech. Rep.
UCB/EECS-2015-262, 2015.

[33] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin
You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guang-
wen Yang, and Depei Qian. The deep learning com-
piler: A comprehensive survey. IEEE Transactions
on Parallel and Distributed Systems, 32(3):708–727,
2020.

[34] Wei-Fen Lin, Der-Yu Tsai, Luba Tang, Cheng-Tao
Hsieh, Cheng-Yi Chou, Ping-Hao Chang, and Luis
Hsu. ONNC: A compilation framework connecting
ONNX to proprietary deep learning accelerators. In
2019 IEEE International Conference on Artificial In-
telligence Circuits and Systems (AICAS), pages 214–
218. IEEE, 2019.

[35] Microsoft. ONNX Runtime, 2019. https://
github.com/microsoft/onnxruntime.

[36] Microsoft. Quantize ONNX Models, 2019.
https://www.onnxruntime.ai/docs/
how-to/quantization.html.

[37] Markus Nagel, Mart van Baalen, Tijmen Blankevoort,
and Max Welling. Data-free quantization through
weight equalization and bias correction. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 1325–1334, 2019.

[38] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii
Zheltonozhskii, Ron Banner, Alex M Bronstein, and
Avi Mendelson. Loss aware post-training quantiza-
tion. arXiv preprint arXiv:1911.07190, 2019.

[39] ONNX. ONNX Model Zoo, 2019. https://
github.com/onnx/models.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch:

12

https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://www.onnxruntime.ai/docs/how-to/quantization.html
https://www.onnxruntime.ai/docs/how-to/quantization.html
https://github.com/onnx/models
https://github.com/onnx/models


An Imperative Style, High-Performance Deep
Learning Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Cur-
ran Associates, Inc., 2019. http://papers.
neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-
deep-learning-library.pdf and https:
//pytorch.org/docs/stable/onnx.html.

[41] Jonathan Ragan-Kelley, Andrew Adams, Dillon
Sharlet, Connelly Barnes, Sylvain Paris, Marc Levoy,
Saman Amarasinghe, and Frédo Durand. Halide:
Decoupling algorithms from schedules for high-
performance image processing. Communications of
the ACM, 61(1):106–115, 2017.

[42] Vijay Janapa Reddi, Christine Cheng, David Kan-
ter, Peter Mattson, Guenther Schmuelling, Carole-
Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. Mlperf inference
benchmark. In 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA),
pages 446–459. IEEE, 2020.

[43] Albert Reuther, Peter Michaleas, Michael Jones, Vi-
jay Gadepally, Siddharth Samsi, and Jeremy Kepner.
Survey and benchmarking of machine learning accel-
erators. In 2019 IEEE high performance extreme com-
puting conference (HPEC), pages 1–9. IEEE, 2019.

[44] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Gar-
ret Catron, Summer Deng, Roman Dzhabarov, Nick
Gibson, James Hegeman, Meghan Lele, Roman Lev-
enstein, et al. Glow: Graph lowering compiler
techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

[45] Wenzhe Shi, Jose Caballero, Lucas Theis, Ferenc
Huszar, Andrew Aitken, Christian Ledig, and Zehan
Wang. Is the deconvolution layer the same as a con-
volutional layer? arXiv preprint arXiv:1609.07009,
2016.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
arXiv preprint arXiv:1706.03762, 2017.

[47] Leyuan Wang, Zhi Chen, Yizhi Liu, Yao Wang, Lian-
min Zheng, Mu Li, and Yida Wang. A unified op-
timization approach for cnn model inference on inte-
grated gpus. In Proceedings of the 48th International
Conference on Parallel Processing, pages 1–10, 2019.

[48] Zhaobin Wang, Ke Liu, Jian Li, Ying Zhu, and Yaonan
Zhang. Various frameworks and libraries of machine
learning and deep learning: a survey. Archives of com-
putational methods in engineering, pages 1–24, 2019.

[49] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. HuggingFace’s Transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

[50] Jianxin Wu. Introduction to convolutional neural net-
works. National Key Lab for Novel Software Technol-
ogy. Nanjing University. China, 5:23, 2017.

[51] Yanzhao Wu, Ling Liu, Calton Pu, Wenqi Cao, Semih
Sahin, Wenqi Wei, and Qi Zhang. A comparative mea-
surement study of deep learning as a service frame-
work. IEEE Transactions on Services Computing,
2019.

[52] Jerry Zhao. ONNX-Halide: A Halide back-
end for ONNX, 2018. https://github.com/
jerryz123/onnx-halide.

13

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://pytorch.org/docs/stable/onnx.html
https://pytorch.org/docs/stable/onnx.html
https://github.com/jerryz123/onnx-halide
https://github.com/jerryz123/onnx-halide



