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Abstract

Acquiring Motor Skills Through Motion Imitation and Reinforcement Learning

by

Xue Bin Peng

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Co-chair

Professor Pieter Abbeel, Co-chair

Humans are capable of performing awe-inspiring feats of agility by drawing from a vast
repertoire of diverse and sophisticated motor skills. This dynamism is in sharp contrast
to the narrowly specialized and rigid behaviors commonly exhibited by artificial agents in
both simulated and real-world domains. How can we create agents that are able to replicate
the agility, versatility, and diversity of human motor behaviors? Manually constructing
controllers for such motor skills often involves a lengthy and labor-intensive development
process, which needs to be repeated for each skill. Reinforcement learning has the potential
to automate much of this development process, but designing reward functions that elicit
the desired behaviors from a learning algorithm can itself involve a laborious and skill-
specific tuning process. In this thesis, we present motion imitation techniques that enable
agents to learn large repertoires of highly dynamic and athletic behaviors by mimicking
demonstrations. Instead of designing controllers or reward functions for each skill of interest,
the agent need only be provided with a few example motion clips of the desired skill, and
our framework can then synthesize a controller that closely replicates the target behavior.

We begin by presenting a motion imitation framework that enables simulated agents to imi-
tate complex behaviors from reference motion clips, ranging from common locomotion skills
such as walking and running, to more athletic behaviors such as acrobatics and martial arts.
The agents learn to produce robust and life-like behaviors that are nearly indistinguishable
in appearance from motions recorded from real-life actors. We then develop models that can
reuse and compose skills learned through motion imitation to tackle challenging downstream
tasks. In addition to developing controllers for simulated agents, our approach can also syn-
thesize controllers for robots operating in the real world. We demonstrate the effectiveness
of our approach by developing controllers for a large variety of agile locomotion skills for
bipedal and quadrupedal robots.
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Chapter 1

Introduction

Figure 1.1: Simulated and real-world agents performing highly dynamic motor skills learned
using our motion imitation techniques.

Artificial intelligence has seen remarkable breakthroughs in recent years, leading to sys-
tems that can accurately identify objects in complex scenes [135, 228, 97], synthesize high-
resolution photo-realistic images [27, 120], generate functional code from natural language
descriptions [29, 38], and surpass the best human players in challenging games [247, 15, 21].
While these systems are able to achieve astounding cognitive feats, the physical capabilities
of artificial agents still fall well behind the athletic prowess demonstrated by humans and
other animals. Humans are capable of performing awe-inspiring feats of agility in complex
environments by drawing from a vast repertoire of diverse and sophisticated motor skills.
This dynamism is in sharp contrast to the narrowly specialized and rigid behaviors com-
monly exhibited by artificial agents in both simulated and real-world domains. Developing
computational models that are able to replicate these agile behaviors has the potential for
far-reaching applications in a myriad of fields. Endowing robotic agents with more adept
physical capabilities can drastically expand the domains in which robots can effectively op-
erate, allowing them to venture out of the pristine environments of labs and factories, and
into more complex unstructured environments of the real world. Virtual agents that are
able to produce agile and life-like behaviors can offer a wealth of opportunities in computer



CHAPTER 1. INTRODUCTION 2

graphics, by automatically synthesizing naturalistic behaviors for characters without the
need for artists to painstakingly author animations, or to record motions from real-life ac-
tors. These agents may also enable more interactive and immerse virtual experiences than
is possible with traditional animation systems. Furthermore, developing better models of
human motions can be of interest for biomechanics and physiotherapy, with potential appli-
cations in injury prevention and rehabilitation. Such models can also assist in the design and
personalization of prostheses that help patients better recover their natural range of motion.

The broad potential impact of physically capable agents has lead to a large body of work
devoted to designing controllers that enable robots and other artificial agents to reproduce
various aspect of human agility [217, 172, 221, 240, 76, 279, 302, 49, 23]. But while humans
are adept at performing a wide range of skills themselves, it can be difficult to articulate the
internal strategies that underlie this proficiency, and more difficult still to encode them into
a controller. Designing controllers often involves a lengthy and labor-intensive development
process, requiring substantial expertise of both the underlying system and the desired skills.
This approach of manual controller design has produced compelling capabilities [219, 179,
105, 44, 110], but the resulting controllers are often highly specialized for a particular class
of skills, and thus limited in their ability to generalize to new behaviors and scenarios.
This development process is further complicated as the domain shifts to more athletic and
specialized behaviors, such as acrobatics and martial arts, where human insight becomes
increasingly scarce. Therefore, despite the many successes of this approach, the capabilities
achieved by manually designed controllers are still far from the rich and graceful behaviors
seen in their human counterparts.

To mitigate some of the challenges of manual controller engineering, optimization-based
methods, such as model-predictive control [138, 250, 182, 7, 74, 54, 12] and reinforcement
learning (RL) [196, 129, 264, 59, 45, 259, 90, 111], have been proposed to automate this
development process. These methods synthesize controllers by optimizing the parameters of
a controller against an objective function. The objective function specifies characteristics of
the desired behaviors that an agent should perform, and the optimization algorithm then
searches for a set of parameters that best satisfies these characteristics. Optimization-based
methods therefore shift the responsibility of the designer from crafting control strategies
to crafting objective functions. This in effect allows designers to specify what the agent
should do instead of how to do it. Reinforcement learning in particular has been a powerful
paradigm for synthesizing controllers for a large array of complex motor skills [284, 258, 149,
202, 85, 194]. However, designing effective objectives that elicit the desired behaviors from
an agent can itself involve a laborious task-specific tuning process. For example, specifying
an objective that produces a natural walking gait requires taking into account many nuances
of human locomotion, such as energy efficiency, lateral symmetry, impact minimization, head
stabilization, etc. [282, 182, 75, 42, 309, 2]. Devising these criteria again requires a great
deal of domain expertise, and different behaviors often entail different objectives. Therefore,
while objective functions are often considerably easier to design than control strategies, they
are nonetheless task-specific and unlikely to scale to the large and diverse repertoire of skills
exhibited by humans and other animals.
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1.1 Imitation Learning

Though it can be difficult for humans to introspect about how they perform a particular
behavior, it is often much easier for humans to simply perform that behavior. This leads one
to wonder: can we build more capable agents with less effort by directly imitating human
behaviors? Acquiring skills by imitating demonstrations can be a very effective paradigm for
developing controllers for a wide array of tasks [252, 213, 188, 123, 299, 128, 160, 223], par-
ticularly for tasks where it is difficult to design suitable control strategies or objective func-
tions. Our discussion will revolve around two class of imitation learning techniques, which
we will refer to broadly as supervised learning-based methods and reinforcement learning-
based methods. The primary difference between these two classes of techniques lies in how
demonstration data is utilized to train a policy. Supervised learning-based methods, such as
behavioral cloning, leverages demonstration data as direct supervision for training a policy
[214, 236, 227, 25, 167]. This approach reduces the imitation learning problem to a super-
vised learning problem, where a policy is trained to directly predict the actions taken by a
demonstrator in various states. Supervised learning-based methods can be highly effective
in settings where a large amount of demonstration data is available and the actions taken
by the demonstrator can be recorded. However, for motor control tasks, it can be extremely
difficult to record the actions that a human might take in performing a given skill, such as
the forces that are applied to the joints in a human body while walking. This challenge
is further exacerbated when there is an embodiment mismatch between the demonstrator
and the agent. In the case of a robot learning to walk by imitating a human, due to the
morphological differences between the robot and the human demonstrator, the actions taken
by the human will likely be ineffective when directly applied to the robot.

Reinforcement learning-based methods take an alternative approach, where instead of
using demonstrations as direct supervision for training a policy, the demonstrations are used
to construct an objective function that evaluates the similarity between the demonstrator’s
behavior and the behavior of the agent. Given such an objective function, optimize-based
methods, such as reinforcement learning or trajectory optimization, can be used to synthesize
a controller that performs the desired behavior by optimizing the objective derived from
the demonstration data. Reinforcement learning-based methods encompass a large class of
techniques, including trajectory tracking methods [17, 243, 249, 49, 184, 161, 145], inverse-
reinforcement learning [1, 319, 70], and adversarial imitation learning [104, 77, 133]. These
methods have a number of advantages over supervised learning-based methods. First, the
objective function can often be defined without knowledge of the demonstrator’s actions.
Therefore, this approach can be applied in settings where the demonstrator’s actions cannot
be easily recorded. Furthermore, the objective function can also be defined in a way that
abstracts away differences between the embodiments of the demonstrator and the agent,
thereby allowing agents to imitate demonstrators with significant morphological differences.
This approach also tends to be much more data efficient than behavioral cloning, with
techniques that can learn complex skills with as few as a single demonstration of a desired
behavior. These characteristics of reinforcement learning-based methods are particularly
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well-suited for motor control tasks, and therefore will be our approach of choice for much
of the work in this thesis. The core challenge of reinforcement learning-based methods is
devising general procedures for constructing objective functions from demonstrations that
allow agents to imitate a large variety of behaviors.

1.2 Thesis Overview

The work presented in this thesis explores the use of motion imitation and reinforcement
learning to develop controllers for a wide array of full-body motor skills with a diverse cast
of simulated and real-world agents. We start with a review of fundamental concepts in
reinforcement learning and motor control (Chapter 2). Then, the following chapters are
organized into two main parts:

• Part I - Motion Imitation (ch. 3-6): We present motion imitation methods that al-
low simulated agents to imitate behaviors from reference motion clips acquired through
various sources, such as motion capture (mocap) and video clips. We then develop
techniques for transferring the learned skills to downstream tasks.

• Part II - Sim-To-Real Transfer (ch. 8-10): We explore methods for transferring
controllers learned via motion imitation in simulation to robots in the real world,
including techniques such as dynamics randomization and latent space adaptation.

Finally, we conclude with a discussion of the limitations of current state-of-art techniques
for motion imitation and potential avenues for future work (Chapter 11).

Chapter 3: We present a versatile reinforcement learning framework for motion imitation,
which lays the foundations for much of the following chapters. Our framework enables
physically simulated characters to learn a large variety of highly dynamic and acrobatic
skills by imitating reference motion clips, which can be provided in the form of motion
capture data recorded from real-life actors or keyframed animations authored by artists.
We show that the same underlying method can be used to learn a wide range of skills,
ranging from everyday locomotion to challenging acrobatic stunts. Our method can also be
broadly applied to character with stark morphological differences, such bipedal humanoids
and quadrupedal animals. The resulting controllers produce high quality life-like motions
that are nearly indistinguishable in appearance from motion clips recorded from real-life
subjects. This work was published as: Xue Bin Peng, Pieter Abbeel, Sergey Levine, and
Michiel van de Panne (2018). DeepMimic: Example-Guided Deep Reinforcement Learning of
Physics-Based Character Skills. ACM Transactions on Graphics (Proc. SIGGRAPH 2018)
[207].

Chapter 4: Our motion imitation learning method allows simulated characters to learn
a wide array of skills from motion clips. But acquiring motion clips often requires a costly
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process, which typically involves either motion capture of real actors or artist generated
animations. In this chapter, we present a video imitation framework that allows simulated
character to learn a large and diverse corpus of skills from video clips, which can be a
much more accessible source of motion data. By integrating vision-based pose estimation
techniques into our previously proposed motion imitation system, our framework is able to
learn complex skills from raw monocular video clips, such as those readily found on YouTube,
reducing the reliance on expensive motion capture systems. This work was published as:
Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine (2018).
SFV: Reinforcement Learning of Physical Skills from Videos. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia 2018) [210].

Chapter 5: While motion imitation enables characters to reproduce a large corpus of
skills, the resulting control policies are generally limited to performing the particular motions
that they was trained to imitate. In this work, we explore transfer learning as means of
reusing skills acquired through motion imitation to tackle more complex downstream tasks.
We propose a method for learning and composing transferable skills using multiplicative
compositional policies (MCP). By first pre-training a collection of motor primitives to imitate
a corpus of motion clips, our model learns a collection of primitive skills that can be composed
to produce a flexible range of behaviors. Once trained, the primitives can be applied to solve
a suite of challenging mobile manipulation tasks, such as dribbling a soccer ball to a goal,
and picking up an object and transporting it to a target location. This work was published
as: Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine (2019).
MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies.
Neural Information Processing Systems (NeurIPS 2019) [209].

Chapter 6: The previously discussed motion imitation methods all utilize some form of
motion tracking, where an agent imitates a given reference motion by explicitly tracking the
sequence of target poses specified by the motion clip. However, it can be challenging to
apply tracking-based methods to imitate large and diverse motion datasets, which generally
requires significant additional overhead to organize the motion data and select an appro-
priate motion clip for the agent the track in a given scenario. In this chapter, we present
a alternative method based on adversarial imitation learning, which enables agents to imi-
tate behaviors from large motion datasets by using an adversarial motion prior (AMP). The
motion prior can be trained with large unstructured motion datasets, and acts as a general
measure of similarity between an agent’s behaviors and behaviors depicted in the dataset.
By combining the motion prior with additional task objectives, our system can train char-
acters to perform challenging tasks, while utilizing behaviors that resemble those observed
in the motion dataset. This work was published as: Xue Bin Peng, Ze Ma, Pieter Abbeel,
Sergey Levine, and Angjoo Kanazawa (2021). AMP: Adversarial Motion Priors for Styl-
ized Physics-Based Character Control. ACM Transactions on Graphics (Proc. SIGGRAPH
2021) [205].
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Chapter 8: The previous chapters focus primarily on training agents in simulated domains.
In this work, we take a step towards transferring controllers learned in simulation to robots
operating in the real world. Our key insight is that one of the primary obstacles for sim-to-
real transfer is the discrepancy between simulated and real-world dynamics. By randomizing
the dynamics of the simulated environments during training, we can encourage policies to
acquire robust and adaptable strategies that can cope with variations in the dynamics. This
then enables the resulting control policies to operate more effectively under the dynamics
of the real world. We first validate this method on transferring policies for simple non-
prehensile manipulation tasks with a Fetch robot. This work was published as: Xue Bin
Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel (2018). Sim-to-Real
Transfer of Robotic Control with Dynamics Randomization. IEEE International Conference
on Robotics and Automation (ICRA 2018) [200].

Chapter 9: Next, we combine motion imitation with dynamics randomization to develop
locomotion controllers for a real bipedal Cassie robot. By training controllers to imitate a
motion library consisting of parameterized gaits, our system produces steerable controllers
that can be interactively directed to track different walking velocities, walking heights, and
turning directions. The use of dynamic randomization leads to robust control strategies that
can be deployed directly on a real robot. This work was published as: Zhongyu Li, Xuxin
Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, and Koushil Sreenath
(2021). Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal
Robots. IEEE International Conference on Robotics and Automation (ICRA 2021) [154].

Chapter 10: Direct sim-to-real transfer relies heavily on a model’s ability to generalize to
new environments, which may not always be successful. In these cases, it can be beneficial
to further adapt the behaviors of a policy using data from the real world. In this chapter,
we leverage dynamics randomization to learn a latent representation of strategies that are
effective for different simulated environments. Then to adapt a policy to the real world,
we directly search in this latent space for a strategy that is most effective on the physical
system. This approach is able to transfer a diverse repertoire of dynamic locomotion skills
from simulation to a real quadruped Laikago robot. This work was published as: Xue Bin
Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan, and Sergey Levine
(2020). Learning Agile Robotic Locomotion Skills by Imitating Animals. Robotics: Science
and Systems (RSS 2020) [208], and was the recipient of the best paper award.
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Chapter 2

Background

The work in this thesis leverages reinforcement learning to train control policies that enable
simulated and real-world agents to perform complex motor skills. In this chapter, we provide
a review of fundamental concepts in reinforcement learning and motor control, and introduce
the notation that we will be using in the following chapters.

2.1 Reinforcement Learning

Reinforcement learning is commonly formulated as an agent interacting with an environment,
modeled as a Markov decision process (MDP), with the objective of maximizing its expected
return. An overview of the RL framework is available in Figure 2.1. The agent’s interactions
with the environment are organized into episodes, where at the beginning of each episode,
the agent starts in an initial state s0 ∈ S, sampled according to an initial state distribution
s0 ∼ p(s0), where S denotes the state space of the MDP. At each timestep t, the agent
observes the states st ∈ S of the environment, and samples an action at ∈ A from its policy
at ∼ π(at|st) in response to that state, where A denotes the action space of the MDP. The
agent then applies that action, which results in a new state st+1, sampled according to the
dynamics of the MDP st+1 ∼ p(st+1|st, at), as well as a scalar reward rt = r(st, at, st+1),
reflecting the desirability of a state transition in the context of a given task. This processes
is repeated up to some time horizon T , which may be infinite. The agent’s interactions within
an episode is recorded as a trajectory τ = (s0, a0, r0, s1, ..., sT−1, aT−1, rT−1, sT ). The agent’s
objective is to find an optimal policy π∗ that maximizes its expected discounted return J(π),

π∗ = arg max
π

J(π) (2.1)

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]
, (2.2)

where p(τ |π) = p(s0)
∏T−1

t=0 p(st+1|st, at)π(at|st) is the distribution of trajectories induced by
a policy π, and γ ∈ [0, 1] is a discount factor.
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Figure 2.1: Overview of the reinforcement learning framework. At each timestep t, the
agent observes a state st. The agent then queries a policy π(a|s) for an action at, which is
applied to the environment, leading to a transition to a new state st+1, as well as a reward
rt = r(st, at, st+1). This process is repeated up to a time horizon T , and the objective is to
learn a policy that maximizes the cumulative reward over the course of an episode.

Value Functions

Before we attempt to find an optimal policy, it can be useful to consider methods for estimat-
ing the performance of a given policy. Value functions are a central concept in reinforcement
learning, which provide an estimate of a policy’s expected future return given a particular
state and/or action [254]. The state value function of a policy π, typically denoted by V π(s),
provides an estimate of agent’s expected return from following π starting at a given state s,

V π(s) = Eτ∼p(τ |π,s0=s)

[
T−1∑
t=0

γtrt

]
, (2.3)

where p(τ |π, s0 = s) =
∏T−1

t=0 p(st+1|st, at)π(at|st) represents the likelihood of a trajectory τ
from following a policy π starting at state s. This value can therefore be interpreted as the
desirability of the agent being in a particular state. Similarly, the state-action value function
Qπ(s, a), commonly referred to as the Q-function, estimates a policy’s expected future return
from performing an action a at state s and then following π for all future timesteps,

Qπ(s, a) = Eτ∼p(τ |π,s0=s,a0=a)

[
T−1∑
t=0

γtrt

]
. (2.4)

Here, p(τ |π, s0 = s, a0 = a) = p(s1|s0, a0)
∏T−1

t=1 p(st+1|st, at)π(at|st) represents the likelihood
of a trajectory from performing action a at state s and then following π for subsequent
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timesteps. Whenever convenient and without ambiguity, the value functions’ dependency
on π will be assumed and dropped from the notation. V (s) will be referred to simply as the
value function, and Q(s, a) as the Q-function.

The value function and Q-function of the optimal policy are commonly denoted by V ∗(s)
andQ∗(s, a) respectively. Q∗ is of particular interest, since an optimal policy can be recovered
by selecting the action that maximizes Q∗ at every state,

π∗(a|s) =

{
1, if a = arg maxa′ Q∗(s, a′)

0, otherwise
. (2.5)

The connection between the value function and Q-function can be seen through their recur-
sive definitions,

Qπ(s, a) = Es′∼p(s′|s,a)Ea′∼π(a′|s′) [r(s, a, s
′) + γQπ(s′, a′)] (2.6)

= Es′∼p(s′|s,a) [r(s, a, s
′) + γV π(s′)] (2.7)

V π(s) = Ea∼π(a|s)Es′∼p(s′|s,a) [r(s, a, s
′) + γV π(s′)] (2.8)

= Ea∼π(a|s)Es′∼p(s′|s,a)Ea′∼π(a′|s′) [r(s, a, s
′) + γQπ(s′, a′)] . (2.9)

These recursive definitions can be very useful for learning the value function and Q-function
of a given policy, which we will discuss below.

Policy Evaluation

Learning the value function or Q-function of π is a common subroutine in many RL algo-
rithms. Policy evaluation is a dynamic programming algorithm for constructing an approx-
imation of a policy’s value function by leveraging the recursive definition in Equation 2.8
[254]. Given a dataset of transitions D = {(si, ai, ri, s

′
i)} collected by executing π in the en-

vironment, an approximation of V π can be learned through an iterative procedure, starting
with an initial guess V 0. At each iteration k, a new approximation V k can be constructed
by optimizing the following objective,

V k = arg min
V

E(si,ri,s′i)∼D
[
(yi − V (si))

2] , (2.10)

where yi = ri + γV k−1(s′i) is a target value that estimates the expected return of si, and
is computed using the value function from the previous iteration V k−1. This method for
computing target values is referred to as a single-step bootstrap, and multi-step variants of
bootstrapping, such as TD(λ) [254], can also be used. It can be shown that in the tabular
setting, as k →∞, V k converges to V π. But in practice, a reasonable approximation can be
obtain within a relatively small number of iterations.
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The Q-function can be learned through a similar iterative procedure, where at each
iteration k, an estimate of Qπ is constructed by optimizing the following objective,

Qk = arg min
Q

E(si,ai,ri,s′i,a
′
i)∼D

[
(yi −Q(si, ai))

2] . (2.11)

Again, yi = ri + γQk−1(s′i, a
′
i) is a target value, computed by bootstrapping with the Q-

function Qk−1 from the previous iteration. Note that we have augmented each transition to
include the action a′

i taken by the agent at the successor state s′i.
In practice, when the value function is modeled using a parametric function approximator,

such as a neural network, the objectives at each iteration (Equation 2.10, 2.11) can be
solved using iterative methods such as gradient descent. Furthermore, instead of optimizing
each objective until convergence, only a small number of update steps are required at each
iteration.

Policy Gradient Methods

Now that we have reviewed some of the fundamental concepts in reinforcement learning, we
will next discuss the choice of algorithms for solving RL problems. In this thesis, we will focus
primarily on motor control tasks, which typically give rise to continuous action spaces. Policy
gradient methods is a class of RL algorithms that is well-suited for tasks with continuous
actions [253], as well as being amenable to neural network function approximators. Policy
gradient algorithms iteratively update the parameters of a policy via gradient ascent using
an empirical estimate of the gradient of the policy’s expected return with respect to its
parameters ∇πJ(π). To derive the policy gradient, we will first rewrite the expected return
of a policy J(π) (Equation 2.2) with respect to the policy’s marginal state distribution dπ(s)
instead of its trajectory distribution p(τ |π),

J(π) = Es∼dπ(s)Ea∼π(a|s) [Q
π(s, a)] . (2.12)

Here, dπ(s) =
∑∞

t=0 [γ
tp(st = s|π)] represents the unnormalized discounted state distribution

induced by π, where p(st = s|π) is the likelihood that an agents is in state s at timestep t
by following π. Given this formulation, the policy gradient can be derived by differentiating
J with respect to the parameters of π,

∇πJ(π) = ∇πEs∼dπ(s)Ea∼π(a|s) [Q
π(s, a)] (2.13)

= Es∼dπ(s)

[∫
a∈A
∇ππ(a|s)Qπ(s, a)da

]
. (2.14)

Unfortunately, the integral over actions can be intractable in large action spaces. This
calculation can be made more tractable by replacing the integral with an expectation over
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actions using the score function ∇πlog π(a|s),

∇πJ(π) = Es∼dπ(s)

[∫
a∈A

π(a|s)
π(a|s)

∇ππ(a|s)Qπ(s, a)da

]
(2.15)

= Es∼dπ(s)

[∫
a∈A

π(a|s)∇ππ(a|s)
π(a|s)

Qπ(s, a)da

]
(2.16)

= Es∼dπ(s)Ea∼π(a|s) [∇πlog π(a|s) Qπ(s, a)] . (2.17)

This leads to a simple procedure for computing the policy gradient. We first collect data by
executing the policy in the environment. At each timestep, we compute the gradient of the
log-likelihood of the action taken by the policy ∇πlog π(a|s). Then the gradients at each
timestep is scaled by the Q-function, which represents the return that the agent received by
taking action a at state s. An approximation of the policy gradient can then be computed
by averaging the scaled gradients across all timesteps. While the policy gradient method
is conceptually simple, in practice, many design decisions and modifications are necessary
to arrive at a practical and effective algorithm. We will next review some of these design
decisions.

Baselines: First, the gradient estimator in Equation 2.17 tends to have high variance,
which can lead to slow and unstable learning dynamics. A common variance reduction
strategy is to introduce a baseline in the form of the value function [289, 254],

∇πJ(π) = Es∼dπ(s)Ea∼π(a|s) [∇πlog π(a|s) (Qπ(s, a)− V π(s))] (2.18)

= Es∼dπ(s)Ea∼π(a|s) [∇πlog π(a|s) Aπ(s, a)] . (2.19)

The term Aπ(s, a) = Qπ(s, a) − V π(s) is commonly referred as the advantage, which can
be interpreted as how much better than average a given action is compared to the average
return at a particular state. The update in Equation 2.19 can therefore be interpreted as
increasing the likelihood of actions that do better than the average return at each state, and
decreasing the likelihood of actions that do worse than average. It can be shown that the
baseline does not change the policy gradient [253].

Value Estimation: Calculating the policy gradient requires estimating the policy’s Q-
function Qπ and value function V π. Many different design decisions can be made when
approximating these quantities. For example, data from π can be used to fit function ap-
proximators to Qπ and V π, which can then be used to estimate the policy gradient. A
common approach, which we will adopt throughout our work, is to approximate V π using
a function approximator, but directly estimate Qπ(s, a) ≈ Rπ

s,a using the empirical returns
Rπ

s,a observed from the policy. The empirical return of taking an action at a given state Rπ
s,a

can be determined by simply summing the discounted rewards along a trajectory that starts
with s and a according to Equation 2.4.
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Algorithm 1 RL Training Procedure

1: π ← initialize policy
2: V ← initialize value function

3: while not done do
4: D ← ∅ initialize dataset
5: for trajectory i = 1, ...,m do
6: τ i ← (st, at, rt, ..., sT ) collect trajectory with π
7: for time step t = 0, ..., T − 1 do
8: yt ← calculate target value from τ i with TD(λ)
9: record yt in τ i

10: At ← calculate advantage from τ i with GAE(λ)
11: record At in τ i

12: end for
13: store τ i in D
14: end for

15: update V using samples {(si, yi)} from D with Equation 2.10

16: update π using samples {(si, ai, Ai)} from D with PPO
17: end while

Training

In the following chapters, our algorithm of choice for training policies will primarily be prox-
imal policy optimization (PPO) [238], which is a policy gradient algorithm with additional
modifications for improving stability and sample efficiency. Algorithm 1 summarizes the
training procedure that we will be using for most of our work. The policy and value function
will both be modeled with neural networks. At each update iteration, we collect a batch of
trajectories {τi}mi=1 from the current policy π. This data is then used to update the value
function V (s) with target values yi computed using TD(λ) [254]. Then we estimate the
advantage Ai ≈ Aπ(si, ai) for each timestep using GAE(λ) [237], which are then used to
update the policy via PPO.

Goal-Conditioned Reinforcement Learning

So far, we have considered a single-task RL framework where the agent is always trying to
achieve the same goals. But for many applications, it is desirable to develop agents that
are able to perform a variety of different tasks. We can accommodate this multitask setting
by using a goal-conditioned reinforcement learning framework, which augments the previous
RL formulation with a goal g ∈ G that specifies the task that an agent should perform. For
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example, in a navigation task, g might specify the coordinates of the target location that
the agent should move to. At the start of each episode, a goal is sampled according to a
task distribution g ∼ p(g), and the reward function rt = r(st, at, s

′
t,g) is then dependent on

the selected task. The goal g is also provided as an additional input to the policy π(a|s,g),
and the policy’s expected return is determined by its performance across the distribution of
tasks,

J(π) = Eg∼p(g)Eτ∼p(τ |π,g)

[
T−1∑
t=0

γtrt

]
. (2.20)

Note, the policy’s trajectory distribution is now also dependent on the goal p(τ |π,g) =
p(s0)

∏T−1
t=0 p(st+1|st, at)π(at|st,g). Similarly, the value function V π(s,g) and Q-function

Q(s, a,g) also receive g as an additional input. As it is likely apparent by now, g can be
treated just as an additional observation, in the exact same fashion as s. Therefore, all of the
algorithms that we have discussed so far extends trivially to this goal-conditioned setting.
This framework can also be easily generalized to accommodate non-stationary goals, where
gt may vary over time.

2.2 Motor Control

Our work will explore applications of reinforcement learning to motor control tasks in both
simulated and real world domains. However, directly applying RL to train agents in the real
world raises a myriad of challenges, including sample efficiency, safety, resets, and many more.
To circumvent some of these challenges, we will be training agents primarily in simulation,
even when the goal is to eventually deploy the policies in the real world. In this section, we
detail the design of our simulated agents, and provide a brief review of relevant concepts in
motor control.

Character Model

As a didactic example, our discussion will be structured around a canonical 3D humanoid
model, which will be featured frequently in the following chapters. A schematic illustration
of the humanoid character is available in Figure 2.2, and summary statistics of the character
model is available in Table 2.1. The character is modeled as articulated rigid bodies [63],
with each link attached to its parent link via a 3 degree-of-freedom spherical joint, except
for the elbows and knees, which are attached via 1 degree-of-freedom revolute joints, and the
hands which are attached to the arm with a 0 degree-of-freedom fixed joint. The character’s
body is composed of 15 links, with a total of 34 degrees-of-freedom. The proportions of
its body are based on that of a human actor. The configuration of the character’s body
can be described using its pose q and velocity q̇. The pose q = (xroot, qroot, q1, q2, ...qn)
records the global position of the root xroot, the global rotation of the root qroot, and the
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Figure 2.2: Properties of our simulated model of a 3D humanoid, including the mass of each
link, and the gains used for PD controllers positioned at each joint. Its body consists of 3D
spherical joints and 1D revolute joints.

Property Value
Links 15
Joints 12
Total Mass (kg) 45
Height (m) 1.62
Degrees of Freedom 34
State Features 226
Action Parameters 28

Table 2.1: Properties of the humanoid character.

Joint Torque Limit
Waist 200 Nm
Neck 50 Nm
Shoulder 100 Nm
Elbow 60 Nm
Hip 200 Nm
Knee 150 Nm
Ankle 90 Nm

Table 2.2: Torque limits of each joint.

local rotations of each joint qj expressed in the joint’s local coordinate frame. Similarly,
q̇ = (ẋroot, ωroot, ω1, ω2, ...ωn) records the root’s linear velocity ẋroot, the root’s angular ve-
locity ωroot, and the local angular velocity of each joint ωj. The character’s movements are
controlled by applying torques to each joint. Table 2.2 details the maximum torque that can
be applied to each joint. These torque limits are manually specified and kept fixed for all
tasks. The agent’s goal is therefore to learn a policy that specifies the appropriate torques
for controlling the character’s body to perform a desired task.
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State Features

Figure 2.3: Examples of the state
features used to describe the config-
uration of the character’s body.

In order to control the movement of the character, the
policy receives as part of its inputs, a set of state fea-
tures st that describes the configuration of the char-
acter’s body. Figure 2.3 illustrates examples of the
state features, which include:

• h: Height of the root off the ground (1D).

• p: Position of each link (3D).

• ṗ: Linear velocity of each link (3D).

• u,v: Rotation of each link using a tangent-
normal encoding (6D).

• ω: Angular velocity of each link (3D).

The root is designated to be the character’s pelvis.
All features are recorded in the character’s local coor-
dinate frame. The character’s local coordinate frame
is defined with the origin located at the root, the x-
axis oriented along the root link’s facing direction,
and the y-axis aligned with the global up vector. The 3D rotation of each link is encoded
using two 3D vectors corresponding to the tangent u and normal v of the link’s coordinate
frame expressed in the character’s local coordinate frame,

u = rot (qlc, [1, 0, 0]) , v = rot (qlc, [0, 1, 0]) , (2.21)

where rot (q,x) rotates a vector x by a quaternion q, and qlc is a quaternion that converts
from the link’s local coordinate frame to the character’s local coordinate frame. This rotation
encoding provides a smooth and unique representation of a given rotation. Combined, these
features result in a 226D state space for the humanoid character.

Action Parameterization and Actuation Model

At each timestep, the policy controls the character’s movements by specifying an action at,
which is used by an actuation model to calculate control forces fj for each joint j. The choice
of an action parameterization and actuation model is a crucial design decision that can have
a significant impact on the learning process and the quality of the resulting motions. A
simple option is to have the action a = (f1, f2, ..., fn) directly specify control torques for
each joint. In which case, the actuation model is just the identity function. While this a
commonly used action parameterization [28, 262], controlling a complex articulated system
through low-level torques can pose a challenging learning problem, and often leads to visual
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artifacts in the learned behaviors [100, 237, 177], such as high frequency jittering. In our
past study [203], we found that higher-level control abstractions, such as PD controllers, can
be much more effective for the types of full-body motion control tasks that we will explore
in this thesis. Therefore, we will be using PD controllers as the actuation model of choice
for much of the following chapters.

PD Controller: When using PD controllers, each action a = (q̂1, q̂2, ..., q̂n) specifies target
rotations q̂j for each of the character’s joints. To compute the torque for a particular joint,
we will first consider the simple case of a 1D revolute joint. Given a target rotation q̂ ∈ R,
represented by a scalar rotation angle, the PD controller is modeled as an angular spring
and damper system, where the torque f is computed according to

f = kp(q̂ − q)− kd q̇. (2.22)

Here, q denotes the current rotation of the joint, q̇ is its angular velocity, kp and kd are
manually specified gain parameters. The values of the PD gains for each joint are available
in Figure 2.2. This actuation model in effect applies torques to move a joint to a target
rotation, while also applying damping to prevent excessively large joint velocities. In the
case of 3D spherical joints, the target rotation q̂ can be represented by a quaternion. The
torque from the PD controller can then be calculated in a similar manner,

f = kp exp map(q̂ ⊖ q)− kd q̇, (2.23)

where q̇ ∈ R3 is the 3D angular velocity of the joint. q1⊖q2 denotes the quaternion difference
between two rotations, which can be computed via quaternion multiplication between q1 and
the conjugate q′2, q1 ⊖ q2 = q′2q1. To calculate a torque from the resulting quaternion, we
use exp map(q) to convert a quaternion q into the exponential map representation of the
underlying rotation [82]. For a rotation angle of θ, expressed in radians, around axis v, the
exponential map of this rotation is given by scaling the axis by the rotation angle q = θv.
Similarly, given an exponential map q, the rotation angle and rotation axis can be determined
according to:

v =
q

||q||2
, θ = ||q||2. (2.24)

Action Parameterization: Now that we have examined the actuation model of PD con-
trollers for 1D revolute joints and 3D spherical joints, we will next discuss the choice of action
parameterizations. Each action a from the policy specifies target rotations for the character’s
joints. But what representation should we use for these rotations, especially when the poli-
cies will be modeled using neural networks? For revolute joints, the target rotation can be
specified by simply using a scalar value θ, representing the target rotation angle. However,
the choice of representation for spherical joints is more nuanced. Since, the actuation model
for spherical joints (Equation 2.23) centers around quaternions, an obvious choice might be
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to also use quaternions for the action parameterization. But, a quaternion requires 4 param-
eters to specify a 3D rotation, the parameters need to be normalized in order to represent
a proper rotation, and the quaternion representation of a particular rotation is not unique,
since both q and −q represent the same rotation. Therefore, quaternions are not the most
compact representation for 3D rotations, and also requires additional machinery to ensure
normalization and uniqueness. Euler angles is another common option, which requires only
3 parameters per rotation, and does not require normalization. Unfortunately, euler angles
suffer from singularities and gimbal lock, where the joint loses a degree of freedom whenever
two rotation axes align [82]. Furthermore, the euler angles representation of a rotation may
also not be unique, and different settings of the components can yield the same rotation. A
more in-depth review of different rotation parameterizations and their trade-offs is available
in Grassia [82].

In this work, we will parameterize target rotations for spherical joints using exponential
maps, which provides a compact representation using only 3 parameters. When the param-
eters of an exponential map is bounded ||q||2 < π, it provides a unique representation of a
given rotation, free of singularities and gimbal lock. If q is unbounded then this represen-
tation has singularities whenever ||q||2 = kπ for k = 1, 2, 3, ..., where all q with a norm of
that is a multiple of π correspond to the same rotation. Furthermore, an unbounded expo-
nential map leads to non-unique representations of a given rotation, where q + k2πq/||q||2
for k = 1, 2, 3, ... all represent the same rotation. In practice, these problems can largely be
avoided by simply bounding the policy’s action space, such that all action parameters lie
within [−π, π].
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Part I

Motion Imitation
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Chapter 3

Motion Imitation

Figure 3.1: Highly dynamic skills learned by imitating reference motion capture clips using
our method, executed by physically simulated characters. Left: Humanoid character per-
forming a cartwheel. Right: Simulated Atlas robot performing a spinkick. (Video1)

Reinforcement learning provides a powerful paradigm for synthesizing controllers for a
large array of tasks, whereby an agent learns to perform various skills through trial-and-
error, thus reducing the need for human insight. While deep reinforcement learning has
been demonstrated to produce a range of complex behaviors in prior work [237, 57, 100], the
quality of the generated motions has thus far lagged well behind state-of-the-art kinematic
animation methods or manually designed controllers. In particular, controllers trained with
deep RL exhibit severe (and sometimes humorous) artifacts, such as extraneous upper body
motion, peculiar gaits, and unrealistic posture [99].2 A natural direction to improve the
quality of learned controllers is to incorporate motion capture or hand-authored animation
data. In prior work, such systems have typically been designed by layering a physics-based
tracking controller on top of a kinematic animation system [49, 145]. This type of approach
is challenging because the kinematic animation system must produce reference motions that
are feasible to track, and the resulting physics-based controller is limited in its ability to
modify the motion to achieve plausible recoveries or accomplish task goals in ways that
deviate substantially from the kinematic motion. Furthermore, such methods tend to be
quite complex to implement.

1 Supplementary video: https://xbpeng.github.io/projects/DeepMimic/
2 See, for example, https://youtu.be/hx_bgoTF7bs

https://xbpeng.github.io/projects/DeepMimic/
https://xbpeng.github.io/projects/DeepMimic/
https://youtu.be/hx_bgoTF7bs
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An ideal learning-based animation system should allow an artist or motion capture actor
to supply a set of reference motions for style, and then generate goal-directed and physically
realistic behavior from those reference motions. In this chapter, we take a simple approach
to this problem by directly rewarding the learned controller for producing motions that
resemble reference animation data, while also achieving additional task objectives. We also
demonstrate three methods for constructing controllers from multiple clips: training with
a multi-clip reward based on a max operator; training a policy to perform multiple diverse
skills that can be triggered by the user; and sequencing multiple single-clip policies by using
their value functions to estimate the feasibility of transitions.

The central contribution of this chapter is a framework for physics-based character ani-
mation that combines goal-directed reinforcement learning with data, which may be provided
in the form of motion capture clips or keyframed animations. In our experiments, we demon-
strate that our framework is able to produce a wide range of skills with motion quality and
robustness that substantially exceed prior work. By incorporating motion capture data into
a phase-aware policy, our system can produce physics-based behaviors that are nearly in-
distinguishable in appearance from the reference motion in the absence of perturbations,
avoiding many of the artifacts exhibited by previous deep reinforcement learning algorithms,
e.g., [57]. In the presence of perturbations or modifications, the motions remain natural,
and the recovery strategies exhibit a high degree of robustness without the need for hu-
man engineering. We demonstrate some of the most capable physically simulated characters
produced by learning-based methods. In our ablation studies, we identify two specific com-
ponents of our method, reference state initialization and early termination, that are critical
for achieving highly dynamic skills.

3.1 Related Work

Modeling the skilled movement of articulated figures has a long history in fields ranging from
biomechanics to robotics and animation. In recent years, as machine learning algorithms for
control have matured, there has also been an increase in interest in these problems from the
machine learning community. Here we focus on the most closely related work in animation
and RL.

Kinematic Models: Kinematic methods have been an enduring avenue of work in char-
acter animation that can be effective when large amounts of data are available. Given a
dataset of motion clips, controllers can be built to select the appropriate clip to play in
a given situation, e.g., [233, 144, 4]. Gaussian processes have been used to learn latent
representations which can then synthesize motions at run-time [301, 148]. Extending this
line of work, deep learning models, such as autoencoders and phase-functioned networks,
have also been applied to develop generative models of human motion in a kinematic set-
ting [108, 107]. Given high quality data, data-driven kinematic methods will often produce
higher quality motions than most simulation-based approaches. However, their ability to
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synthesize behaviors for novel situations can be limited. As tasks and environments become
complex, collecting enough motion data to provide sufficient coverage of the possible behav-
iors quickly becomes untenable. Incorporating physics as a source of prior knowledge about
how motions should change in the presence of perturbations and environmental variation
provides one solution to this problem, as discussed below.

Physics-based Models: Design of controllers for simulated characters remains a chal-
lenging problem, and has often relied on human insight to implement task-specific strategies.
Locomotion in particular has been the subject of considerable work, with robust controllers
being developed for both human and nonhuman characters, e.g., [302, 300, 44]. Many such
controllers are the products of an underlying simplified model and an optimization process,
where a compact set of parameters are tuned in order to achieve the desired behaviors [284,
5, 88]. Dynamics-aware optimization methods based on quadratic programming have also
been applied to develop locomotion controllers [49, 145, 146]. While model-based methods
have been shown to be effective for a variety of skills, they tend to struggle with more dy-
namics motions that require long-term planning, as well as contact-rich motions. Trajectory
optimization has been explored for synthesizing physically-plausible motions for a variety of
tasks and characters [182, 281]. These methods synthesize motions over an extended time
horizon using an offline optimization process, where the equations of motion are enforced as
constraints. Recent work has extended such techniques into online model-predictive control
methods [91, 261], although they remain limited in both motion quality and capacity for
long-term planning. The principal advantage of our method over the above approaches is
that of generality. We demonstrate that a single model-free framework is capable of a wider
range of motion skills (from walks to highly dynamic kicks and flips) and an ability to se-
quence these; the ability to combine motion imitation and task-related demands; compact
and fast-to-compute control policies; and the ability to leverage rich high-dimensional state
and environment descriptions.

Reinforcement Learning: Many of the optimization techniques used to develop con-
trollers for simulated characters are based on reinforcement learning. Value iteration methods
have been used to develop kinematic controllers to sequence motion clips in the context of
a given task [144, 148]. Similar approaches have been explored for simulated characters [45,
201]. More recently, the introduction of deep neural network models for RL has given rise to
simulated agents that can perform a diverse array of challenging tasks [57, 28, 202, 159, 223,
265]. Policy gradient methods have emerged as the algorithms of choice for many continuous
control problems [254, 239, 238]. Although RL algorithms have been capable of synthesizing
controllers using minimal task-specific control structures, the resulting behaviors generally
appear less natural than their more manually engineered counterparts [237, 176]. Part of the
challenge stems from the difficulty in specifying reward functions for natural movement, par-
ticularly in the absence of biomechanical models and objectives that can be used to achieve
natural simulated locomotion [284, 146]. Näıve objectives for torque-actuated locomotion,
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such as forward progress or maintaining a desired velocity, often produce gaits that exhibit
extraneous motion of the limbs, asymmetric gaits, and other objectionable artifacts. To mit-
igate these artifacts, additional objectives such as effort or impact penalties have been used
to discourage these undesirable behaviors. Crafting such objective functions requires a sub-
stantial degree of human insight, and often yields only modest improvements. Alternatively,
recent RL methods based on the imitation of motion capture, such as GAIL [104], address
the challenge of designing a reward function by using data to induce an objective. While
this has been shown to improve the quality of the generated motions, current results still do
not compare favorably to standard methods in computer animation [176]. The DeepLoco
system [206] takes an approach similar to the one we use here, namely adding an imitation
term to the reward function, although with significant limitations. It uses fixed initial states
and is thus not capable of highly dynamic motions; it is demonstrated only on locomotion
tasks defined by foot-placement goals computed by a high-level controller; and it is applied
to a single armless biped model. Lastly, the multi-clip demonstration involves a hand-crafted
procedure for selecting suitable target clips for turning motions.

Motion Imitation: Imitation of reference motions has a long history in computer anima-
tion. An early instantiation of this idea was in bipedal locomotion with planar characters
[244, 249], using controllers tuned through policy search. Model-based methods for tracking
reference motions have also been demonstrated for locomotion with 3D humanoid characters
[302, 185, 145]. Reference motions have also been used to shape the reward function for
deep RL to produce more natural locomotion gaits [203, 206] and for flapping flight [293]. In
our work, we demonstrate the capability to perform a significantly broader range of difficult
motions: highly dynamic spins, kicks, and flips with intermittent ground contact, and we
show that reference-state initialization and early termination are critical to their success.
We also explore several options for multi-clip integration and skill sequencing.

The work most reminiscent of ours in terms of capabilities is the Sampling-Based Con-
troller (SAMCON) [161, 160]. An impressive array of skills has been reproduced by SAM-
CON, and to the best of our knowledge, SAMCON has been the only system to demonstrate
such a diverse corpus of highly dynamic and acrobatic motions with simulated characters.
However, the system is complex, having many components and iterative steps, and requires
defining a low dimensional state representation for the synthesized linear feedback struc-
tures. The resulting controllers excel at mimicking the original reference motions, but it is
not clear how to extend the method for task objectives, particularly if they involve signifi-
cant sensory input. A more recent variation introduces deep Q-learning to train a high-level
policy that selects from a precomputed collection of SAMCON control fragments [159]. This
provides flexibility in the order of execution of the control fragments, and is demonstrated
to be capable of challenging non-terminating tasks, such as balancing on a bongo-board and
walking on a ball. In this work, we propose an alternative framework using deep RL, that is
conceptually much simpler than SAMCON, but is nonetheless able to learn highly dynamic
and acrobatic skills, including those having task objectives and multiple clips.
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3.2 Overview

Our system receives as input a character model, a corresponding set of kinematic reference
motions, and a task defined by a reward function. It then synthesizes a controller that enables
the character to imitate the reference motions, while also satisfying task objectives, such as
striking a target or running in a desired direction over irregular terrain. Each reference
motion is represented as a sequence of target poses {q̂t}. A control policy π(at|st,gt) maps
the state of the character st, a task-specific goal gt to an action at, which is then used to
compute torques to be applied to each of the character’s joints. Each action specifies target
angles for proportional-derivative (PD) controllers that then produce the final torques applied
at the joints. The reference motions are used to define an imitation reward rI(st, at, st+1),
and the goal defines a task-specific reward rG(st, at, st+1,gt). The final result of our system
is a policy that enables a simulated character to imitate the behaviours from the reference
motions while also fulfilling the specified task objectives. The policies are modeled using
neural networks and trained using the proximal policy optimization algorithm [238].

3.3 Policy Representation

Given a reference motion clip, represented by a sequence of target poses {q̂t}, the goal of
the policy is to reproduce the desired motion in a physically simulated environment, while
also satisfying additional task objectives. Since a reference motion only provides kinematic
information in the form of target poses, the policy is responsible for determining which
actions should be applied at each time step in order to realize the desired trajectory.

States and Actions

The state s uses a similar set of features as those detailed in Chapter 2 to describe the
configuration of the character’s body. Since the target poses from the reference motions vary
with time, a phase variable ϕ ∈ [0, 1] is also included among the state features. ϕ = 0 denotes
the start of a motion, and ϕ = 1 denotes the end. For cyclic motions, ϕ is reset to 0 after
the end of each cycle. Policies trained to achieve additional task objectives, such as walking
in a particular direction or hitting a target, are also provided with a goal g. Specific goal
representations used in the experiments are discussed in section 3.6. The policy is queried at
30Hz, and the actions a from the policy specify target rotations for PD controllers positioned
at each joint.

Network

Each policy π is represented by a neural network that maps a given state s and goal g to a
distribution over action π(a|s,g). The action distribution is modeled as a Gaussian, with a
state dependent mean µ(s) specified by the network, and a fixed diagonal covariance matrix
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Figure 3.2: Schematic illustration of the visuomotor policy network. The heightmap H is
processed by 3 convolutional layers with 16 8x8 filters, 32 4x4 filters, and 32 4x4 filters.
The feature maps are then processed by 64 fully-connected units. The resulting features
are concatenated with the input state s and goal g and processed by by two fully-connected
layer with 1024 and 512 units. The output µ(s) is produced by a layer of linear units. ReLU
activations are used for all hidden layers. For tasks that do not require a heightmap, the
networks consist only of layers 5-7.

Σ that is treated as a hyperparameter of the algorithm:

π(a|s) = N (µ(s),Σ). (3.1)

The inputs are processed by two fully-connected layers with 1024, and 512 units each, fol-
lowed by a linear output layer. ReLU activations are used for all hidden units. The value
function is modeled by a similar network, with exception of the output layer, which consists
of a single linear unit.

For vision-based tasks, discussed in section 3.6, the inputs are augmented with a heightmap
H of the surrounding terrain, sampled on a uniform grid around the character. The pol-
icy and value networks are augmented accordingly with convolutional layers to process the
heightmap. A schematic illustration of this visuomotor policy network is shown in Figure
3.2. The heightmap is first processed by a series of convolutional layers, followed by a fully-
connected layer. The resulting features are then concatenated with the input state s and
goal g, and processed by a similar fully-connected network as the one used for tasks that do
not require vision.

Reward

The reward rt at each step t consists of two terms that encourage the character to match
the reference motion while also satisfying additional task objectives:

rt = ωIrIt + ωGrGt . (3.2)
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Here, rIt and rGt represent the imitation and task objectives, with ωI and ωG being their
respective weights. The task objective rGt incentivizes the character to fulfill task-specific
objectives, the details of which will be discussed in the following section. The imitation
objective rIt encourages the character to follow a given reference motion {q̂t}. It is further
decomposed into terms that reward the character for matching certain characteristics of the
reference motion, such as joint orientations and velocities, as follows:

rIt = wprpt + wvrvt + weret + wcrct
wp = 0.65, wv = 0.1, we = 0.15, wc = 0.1 (3.3)

The pose reward rpt encourages the character to match the joint orientations of the refer-
ence motion at each step, and is computed as the difference between the joint orientation
quaternions of the simulated character and those of the reference motion. In the equation
below, qjt and q̂jt represent the orientations of the jth joint from the simulated character and
reference motion respectively, q1 ⊖ q2 denotes the quaternion difference, and ||q|| computes
the scalar rotation of a quaternion about its axis in radians:

rpt = exp

[
−2

(∑
j

||q̂jt ⊖ qjt ||2
)]

. (3.4)

The velocity reward rvt is computed from the difference of local joint velocities, with q̇jt being
the angular velocity of the jth joint. The target velocity ˆ̇qjt is computed from the data via
finite difference.

rvt = exp

[
−0.1

(∑
j

||ˆ̇qjt − q̇jt ||2
)]

. (3.5)

The end-effector reward ret encourages the character’s hands and feet to match the positions
from the reference motion. Here, pe

t denotes the 3D world position in meters of end-effector
e ∈ [left foot, right foot, left hand, right hand]:

ret = exp

[
−40

(∑
e

||p̂e
t − pe

t ||2
)]

. (3.6)

Finally, rct penalizes deviations in the character’s center-of-mass pc
t from that of the reference

motion p̂c
t :

rct = exp
[
−10

(
||p̂c

t − pc
t ||2
)]

. (3.7)

3.4 Training

Our policies are trained with PPO using the clipped surrogate objective [238]. We maintain
two networks, one for the policy π(a|s,g) and another for the value function V (s,g). Training
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proceeds episodically, where at the start of each episode, an initial state s0 is sampled
uniformly from the reference motion (section 3.4), and rollouts are generated by sampling
actions from the policy at every step. Each episode is simulated to a fixed time horizon or
until a termination condition has been triggered (section 3.4). Once a batch of data has been
collected, the policy and value function are updated using PPO according to Algorithm 1.

One of the persistent challenges in RL is the problem of exploration. Since most for-
mulations assume an unknown MDP, the agent is required to use its interactions with the
environment to infer the structure of the MDP and discover high value states that it should
endeavor to reach. A number of algorithmic improvements have been proposed to improve
exploration, such as using metrics for novelty or information gain [19, 109, 71]. However, less
attention has been placed on the structure of the episodes during training and their poten-
tial as a mechanism to guide exploration. In the following sections, we consider two design
decisions, the initial state distribution and the termination condition, which have often been
treated as fixed properties of a given RL problem. We will show that appropriate choices
are crucial for allowing our method to learn challenging skills such as highly-dynamic kicks,
spins, and flips. With common default choices, such as a fixed initial state and fixed-length
episodes, we find that imitation of these difficult motions is often unsuccessful.

Initial State Distribution

The initial state distribution p(s0) determines the states in which an agent begins each
episode. A common choice for p(s0) is to always place the agent in a fixed state. However,
consider the task of imitating a desired motion. A simple strategy is to initialize the character
to the starting state of the motion, and allow it to proceed towards the end of the motion over
the course of an episode. With this design, the policy must learn the motion in a sequential
manner, by first learning the early phases of the motion, and then incrementally progressing
towards the later phases. Before mastering the earlier phases, little progress can be made on
the later phases. This can be problematic for motions such as backflips, where learning the
landing is a prerequisite for the character to receive a high return from the jump itself. If
the policy cannot land successfully, jumping will actually result in worse returns. Another
disadvantage of a fixed initial state is the resulting exploration challenge. The policy only
receives reward retrospectively, once it has visited a state. Therefore, until a high-reward
state has been visited, the policy has no way of learning that this state is favorable. Both
disadvantages can be mitigated by modifying the initial state distribution.

For many RL tasks, a fixed initial state can be more convenient, since it can be chal-
lenging to initialize the agent in other states (e.g., physical robots) or obtain a richer initial
state distribution. For motion imitation tasks, however, the reference motion provides a rich
and informative state distribution, that can be leveraged to guide the agent during train-
ing. At the start of each episode, a state can be sampled from the reference motion, and
used to initialize the state of the agent. We will refer to this strategy as reference state
initialization (RSI). Similar strategies have been previously used for planar bipedal walking
[244] and manipulation [186, 223]. By sampling initial states from the reference motion, the
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agent encounters desirable states along the motion, even before the policy has acquired the
proficiency needed to reach those states. For example, consider the challenge of learning to
perform a backflip. With a fixed initial state, in order for the character to discover that
performing a full rotation mid-air will result in high returns, it must first learn to perform a
carefully coordinated jump. However, for the character to be motivated to perform such a
jump, it must be aware that the jump will lead to states that yield higher rewards. Since the
motion is highly sensitive to the initial conditions at takeoff, many strategies will result in
failure. Thus the agent is unlikely to encounter states from a successful flip, and never dis-
cover such high reward states. With RSI, the agent immediately encounters such promising
states during the early stages of training. Instead of accessing information from the reference
motion only through the reward function, RSI can be interpreted as an additional channel
through which the agent can access information from the reference motion in the form of a
more informative initial state distribution.

Early Termination

For cyclic skills, the task can be modeled as an infinite horizon MDP. But during training,
each episode is simulated for a finite horizon. An episode terminates either after a fixed
period of time, or when certain termination conditions have been triggered. For locomotion,
a common condition for early termination (ET) is the detection of a fall, characterized by the
character’s torso making contact with the ground [202] or certain links falling below a height
threshold [100]. While these strategies are prevalent, they are often mentioned in passing and
their impact on performance has not been well evaluated. In this work, we will use a similar
termination condition as [202], where an episode is terminated whenever certain links, such as
the torso or head, makes contact with the ground. Once early termination has been triggered,
the character is left with zero reward for the remainder of the episode. This instantiation
of early termination provides another means of shaping the reward function to discourage
undesirable behaviors. Another advantages of early termination is that it can function as a
curating mechanism that biases the data distribution in favor of samples that may be more
relevant for a task. In the case of skills such as walking and flips, once the character has
fallen, it can be challenging for it to recover and return to its nominal trajectory. Without
early termination, data collected during the early stages of training will be dominated by
samples of the character struggling on the ground in vain, and much of the capacity of the
network will be devoted to modeling such futile states. This phenomena is analogous to the
class imbalance problem encountered by other methodologies such as supervised learning.
By terminating the episode whenever such failure states are encountered, this imbalance can
be mitigated.
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(a) Humanoid (b) Atlas (c) T-Rex (d) Dragon

Figure 3.3: 3D simulated characters. Our framework is able to train policies for a wide range
of character morphologies.

Property Humanoid Atlas T-Rex Dragon
Links 13 12 20 32
Total Mass (kg) 45 169.8 54.5 72.5
Height (m) 1.62 1.82 1.66 1.83
Degrees of Freedom 34 31 55 79
State Features 227 212 355 482
Action Parameters 28 25 49 73

Table 3.1: Properties of the characters.

3.5 Characters

Our characters include a 3D humanoid, an Atlas robot model, a T-Rex, and a dragon.
Illustrations of the characters are available in Figure 3.3, and Table 3.1 details the properties
of each character. Both the humanoid and Atlas share similar body structures, but their
morphology (e.g., mass distribution) and actuators (e.g., PD gains and torque limits) differ
significantly, with the Atlas being almost four times the mass of the humanoid. The T-Rex
and dragon provide examples of learning behaviors for characters from keyframed animation
when no mocap data is available, and illustrate that our method can be readily applied to
non-bipedal characters. The humanoid character has a 227D state space and a 28D action
space. Our most complex character, the dragon, has a 482D state space and 73D action
space. Compared to standard continuous control benchmarks for RL [28], which typically
have action spaces varying between 3D to 17D, our characters have significantly higher-
dimensional action spaces.
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Figure 3.4: Characters traversing randomly generated terrains. Top-to-bottom: mixed
obstacles, dense gaps, winding balance beam, stairs. The blue line traces the trajectory of
the character’s center-of-mass.

3.6 Tasks

In addition to imitating a set of motion clips, the policies can be trained to perform a
variety of tasks while preserving the style prescribed by the reference motions. The task-
specific behaviors are encoded into the task objective rGt . We describe the tasks evaluated
in our experiments below.

Target Heading: Steerable controllers can be trained by introducing an objective that
encourages the character to travel in a target direction d∗

t , represented as a 2D unit vector
in the horizontal plane. The reward for this task is given by

rGt = exp
[
−2.5 max(0,v∗ − vT

t d
∗
t )

2
]
, (3.8)

where v∗ specifies the desired speed along the target direction d∗
t , and vt represents the

center-of-mass velocity of the simulated character. The objective therefore penalizes the
character for traveling slower than the desired speed along the target direction, but does
not penalize it for exceeding the requested speed. The target direction is provided as the
input goal gt = d∗

t to the policy. During training, the target direction is randomly varied
throughout an episode. At runtime, d∗

t can be manually specified to steer the character.

Strike: In this task, the character’s goal is to strike a randomly placed spherical target
using specific links, such as the feet. The reward is given by

rGt =

{
1, target has been hit

exp [−4||ptar
t − pe

t ||2] , otherwise
(3.9)

ptar
t specifies the location of the target, and pe

t represents the position of the link used to
hit the target. The target is marked as being hit if the center of the link is within 0.2m of
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the target location. The goal gt = (ptar
t , h) consists of the target location ptar

t and a binary
variable h that indicates if the target has been hit in a previous time step. As we are using
feedforward networks for all policies, h acts as a memory for the state of the target. The
target is randomly placed within a distance of [0.6, 0.8]m from the character, the height is
sampled randomly between between [0.8, 1.25]m, and the initial direction from the character
to the target varies by 2rad. The target location and h are reset at the start of each cycle.
The memory state h can be removed by training a recurrent policy, but our simple solution
avoids the complexities of training recurrent networks while still attaining good performance.

Throw: This task is a variant of the strike task, where instead of hitting a target with one
of the character’s links, the character is tasked with throwing a ball to the target. At the
start of an episode, the ball is attached to the character’s hand via a spherical joint. The
joint is released at a fixed point in time during the episode. The goal gt and reward rGt is the
same as the strike task, but the character state st is augmented with the position, rotation,
linear and angular velocity of the ball. The distance of the target varies between [2.5, 3.5]m,
with height between [1, 1.25]m, and direction direction between [0.7, 0.9]rad.

Terrain Traversal: In this task, the character is trained to traverse obstacle-filled envi-
ronments. The goal gt and task-objective rGt are similar to those of the target heading task,
except the target heading is fixed along the direction of forward progress.

We consider four environments consisting of mixed obstacles, dense gaps, a winding
balance beam, and stairs. Figure 3.4 illustrates examples of the environments. The mixed
obstacles environment is composed of gap, step, and wall obstacles similar to those presented
in [202]. Each gap has a width between [0.2, 1]m, the height of each wall varies between
[0.25, 0.4]m, and each step has a height between [0.35, -0.35]m. The obstacles are interleaved
with flat stretches of terrain between [5, 8]m in length. The next environment consists of
sequences of densely packed gaps, where each sequence consists of 1 to 4 gaps. The gaps
are [0.1, 0.3]m in width, with [0.2, 0.4]m of separation between adjacent gaps. Sequences of
gaps are separate by [1, 2]m of flat terrain. The winding balance beam environment sports
a narrow winding path carved into irregular terrain. The width of the path is approximately
0.4m. Finally, we constructed a stairs environment, where the character is to climb up
irregular steps with height varying between [0.01, 0.2]m and a depth of 0.28m. Since the
mixed obstacles and dense gaps environments follow a linear layout, the heightmaps are
represented by a 1D heightfield with 100 samples spanning 10m. In the winding balance
beam environment, a 32× 32 heightmap is used, covering a 3.5× 3.5m area.

3.7 Results

The motions from the trained policies are best seen in the supplemental videos1. Snapshots
of the skills performed by the simulated characters are available in Figure 3.5, 3.6, and 3.7.
The policies are executed at 30Hz. Physics simulation is performed at 1.2kHz using the

https://xbpeng.github.io/projects/DeepMimic/
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Bullet physics engine [30]. All neural networks are built and trained using TensorFlow. The
characters’ motions are driven by torques computed using stable PD controllers [257]. Policy
updates are performed after a batch of m = 4096 samples has been collected. Minibatches
of size n = 256 are then sampled from the data for each gradient step. A discount factor
γ = 0.95 is used for all motions. λ = 0.95 is used for both TD(λ) and GAE(λ). The PPO
likelihood ratio clipping threshold is set to ϵ = 0.2. A stepsize of αv = 10−2 is used for the
value function. A policy step size of απ = 5× 10−5 is used for the humanoid and Atlas, and
απ = 2× 10−5 for the dragon and T-Rex. Once gradients have been computed, the network
parameters are updated using stochastic gradient descent with momentum 0.9. Humanoid
policies for imitating individual skills typically require about 60 million samples to train,
requiring about 2 days on an 8-core machine.

Results for the humanoid are demonstrated for a large collection of locomotion, acrobatic,
and martial arts skills, while the results for the dragon and T-Rex are demonstrated for
locomotion. Each skill is learned from approximately 0.5-5s of mocap data collected from
http://mocap.cs.cmu.edu and http://mocap.cs.sfu.ca. For characters such as the T-
Rex and dragon, where mocap data is not available, we demonstrate that our framework
is also capable of learning skills from artist-authored keyframes. Before being used for
training, the clips are manually processed and retargeted to their respective characters. A
comprehensive list of the learned skills and performance statistics is available in Table 3.2.
Each environment is denoted by “Character: Skill - Task”. The task is left unspecified
for policies that are trained solely to imitate a reference motion without additional task
objectives. Performance is measured by the average return normalized by the minimum
and maximum possible return per episode. Note that the maximum return may not be
achievable. For example, for the throwing task, the maximum return requires moving the
ball instantaneously to the target. When evaluating the performance of the policies, early
termination is applied and the state of the character at the start of each episode is initialized
via RSI. The weights for the imitation and task objectives are set to ωI = 0.7 and ωG = 0.3 for
all tasks. More details regarding hyperparameter settings are available in the supplemental
material.

By encouraging the policies to imitate motion capture data from human subjects, our
system is able to learn policies for a rich repertoire of skills. For locomotion skills such as
walking and running, our policies produce natural gaits that avoid many of the artifacts
exhibited by previous deep RL methods [237, 176]. The humanoid is able to learn a variety
of acrobatic skills with long flight phases, such as backflips and spinkicks, which are are
particularly challenging since the character needs to learn to coordinate its motion in mid-
air. The system is also able to reproduce contact-rich motions, such as crawling and rolling,
as well as motions that require coordinated interaction with the environment, such as the
vaulting skills shown in Figure 3.6. The learned policies are robust to significant external
perturbation and generate plausible recovery behaviors. The policies trained for the T-Rex
and dragon demonstrate that the system can also learn from artist generated keyframes
when mocap is not available and scale to much more complex characters than those that
have been demonstrated by previous work using deep RL.

http://mocap.cs.cmu.edu
http://mocap.cs.sfu.ca


CHAPTER 3. MOTION IMITATION 32

Skill Tcycle (s) Nsamples (10
6) NR

Backflip 1.75 72 0.729
Balance Beam 0.73 96 0.783
Baseball Pitch 2.47 57 0.785
Cartwheel 2.72 51 0.804
Crawl 2.93 68 0.932
Dance A 1.62 67 0.863
Dance B 2.53 79 0.822
Frontflip 1.65 81 0.485
Getup Face-Down 3.28 49 0.885
Getup Face-Up 4.02 66 0.838
Headspin 1.92 112 0.640
Jog 0.80 51 0.951
Jump 1.77 86 0.947
Kick 1.53 50 0.854
Landing 2.83 66 0.590
Punch 2.13 60 0.812
Roll 2.02 81 0.735
Run 0.80 53 0.951
Sideflip 2.44 64 0.805
Spin 4.42 191 0.664
Spinkick 1.28 67 0.748
Vault 1-Handed 1.53 41 0.695
Vault 2-Handed 1.90 87 0.757
Walk 1.26 61 0.985
Atlas: Backflip 1.75 63 0.630
Atlas: Run 0.80 48 0.846
Atlas: Spinkick 1.28 66 0.477
Atlas: Walk 1.26 44 0.988
T-Rex: Walk 2.00 140 0.979
Dragon: Walk 1.50 139 0.990

Table 3.2: Performance statistics of imitating
various skills. All skills are performed by the
humanoid unless stated otherwise. Policies
are trained only to imitate a reference mo-
tion without additional task objectives. Tcycle

is the length of the clip. Nsamples specifies
the number of samples collected to train the
final policy. NR represents the normalized
return of the final policy averaged over 32
episodes, with 0 being the minimum possi-
ble return per episode, and 1 the maximum
return. For cyclic skills, each episode has a
horizon of 20s. For acyclic skills, the horizon
is specified by Tcycle.

Figure 3.5: Snapshots of motions from the
trained policies. Top-to-bottom: walk,
run, cartwheel, dance A, backflip, frontflip,
roll.
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(a) Atlas: Walk (b) Atlas: Run

(c) Atlas: Backflip (d) Atlas: Spinkick

(e) T-Rex: Walk

(f) Dragon: Walk

(g) Humanoid: Sideflip (h) Humanoid: Spin

(i) Humanoid: Getup Face-Down (j) Humanoid: Getup Face-Up

(k) Humanoid: Kick (l) Vault 1-Handed (m) Vault 2-Handed

(n) Humanoid: Punch (o) Humanoid: Crawl

Figure 3.6: Simulated characters performing various skills. Our framework is able to train
policies for a broad range of characters, skills, and environments.
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Figure 3.7: Top: Spinkick policy trained to
strike a target with the character’s right foot.
Bottom: Baseball pitch policy trained to
throw a ball to a target.

Environment N samples (10
6) NR

Humanoid: Walk - Target Heading 85 0.911
Humanoid: Jog - Target Heading 108 0.876
Humanoid: Run - Target Heading 40 0.637
Humanoid: Spinkick - Strike 85 0.601
Humanoid: Baseball Pitch - Throw 221 0.675
Humanoid: Run - Mixed Obstacles 466 0.285
Humanoid: Run - Dense Gaps 265 0.650
Humanoid: Winding Balance Beam 124 0.439
Atlas: Walk - Stairs 174 0.808

Table 3.3: Performance statistics of imitat-
ing motion clips while also fulfilling additional
task objectives.

Tasks

In addition to imitating reference motions, the policies can also adapt the motions as needed
to satisfy additional task objectives, such as following a target heading and throwing a ball to
a randomly placed target. Performance statistics for each task are available in Table 3.3. To
investigate the extent to which the motions are adapted for a particular task, we compared
the performance of policies trained to optimize both the imitation objective rI and the task
objective rG to policies trained only with the imitation objective. Table 3.4 summarizes the
success rates of the different policies. For the throwing task, the policy trained with both
objectives is able to hit the target with a success rate of 75%, while the policy trained only
to imitate the baseball pitch motion is successful only in 5% of the trials. Similarly, for the
strike task, the policy trained with both objectives successfully hits 99% of the targets, while
the policy trained only to imitate the reference motion has a success rate of 19%. These
results suggest that simply imitating the reference motions is not sufficient to successfully
perform the tasks. The policies trained with the task objective are able to deviate from
the original reference motion and developing additional strategies to satisfy their respective
goals. We further trained policies to optimize only the task objective, without imitating a
reference motion. The resulting policies are able to fulfill the task objectives, but without
a reference motion, the policies develop unnatural behaviors, similar to those produced by
prior deep RL methods. For the throw task, instead of throwing the ball, the policy adopts
an awkward but functional strategy of running towards the target with the ball. Figure 3.8
illustrates this behavior.

Retargeting

Due to modeling discrepancies between simulation and the real world, the dynamics under
which a motion capture clip was recorded can differ dramatically from the dynamics of the
simulated environments. Furthermore, keyframed motions may not be physically correct at
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Figure 3.8: Policy trained for the throw task without a reference motion. Instead of throwing
the ball, the character learns to run towards the target.

Environment rI + rG rI rG

Humanoid: Strike - Spinkick 99% 19% 55%
Humanoid: Baseball Pitch - Throw 75% 5% 93%

Table 3.4: Success rate of policies trained with the imitation or task objectives disabled.
Each policy is evaluated over 100 trials. Simply imitating the reference motions proves
insufficient for fulfilling the task objectives. Training without a reference motion produces
policies that develop awkward, but functional, strategies for satisfying the task objectives.

all. To evaluate our framework’s robustness to these discrepancies, we trained policies to
perform similar skills with different character models, environments, and physics.

Character Retargeting: To demonstrate the system’s capabilities in retargeting motions
to different characters, we trained policies for walking, running, backflips and spinkicks on
a simulated model of the Atlas robot from http://www.mujoco.org/forum/index.php?

resources/atlas-v5.16/. The Atlas has a total mass of 169.8kg, almost four times the
mass of the humanoid, as well as a different mass distribution. The serial 1D revolute
joints in the original Atlas model are aggregated into 3D spherical joints to facilitate simpler
retargeting of the reference motions. To retarget the motion clips, we simply copied the
local joint rotations from the humanoid to the Atlas, without any further modification.
New policies are then trained for the Atlas to imitate the retargeted clips. Despite the
starkly different character morphologies, our system is able to train policies that successfully
reproduce the various skills with the Atlas model. Performance statistics of the Atlas policies
are available in Table 3.2. The performance achieved by the Atlas policies are comparable to
those achieved by the humanoid. Qualitatively, the motions generated by the Atlas character
closely resemble the reference clips. To further highlight the differences in the dynamics of
the characters, we evaluated the performance of directly applying policies trained for the
humanoid to the Atlas. The humanoid policies, when applied to the Atlas, fail to reproduce
any of the skills, achieving a normalized return of 0.013 and 0.014 for the run and backflip,
compared to 0.846 and 0.630 achieved by policies that were trained specifically for the Atlas
but using the same reference clips.

http://www.mujoco.org/forum/index.php?resources/atlas-v5.16/
http://www.mujoco.org/forum/index.php?resources/atlas-v5.16/
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Figure 3.9: Left: Original landing motion on flat terrain. Right: Policy trained to imitating
landing motion while jumping down from a 2m ledge. Despite being provided only with a
motion recorded on flat terrain, the policy is able to adapt the skill to jump down from a
tall ledge.

Environment Retargeting: While most of the reference motions were recorded on flat
terrain, we show that the policies can be trained to adapt the motions to irregular envi-
ronments. First, we consider the case of retargeting a landing motion, where the original
reference motion is of a human subject jumping and landing on flat ground. From this ref-
erence motion, we trained a character to reproduce the motion while jumping down from a
2m ledge. Figure 3.9 illustrates the motion from the final policy. The system was able to
adapt the reference motion to a new environment that is significantly different from that of
the original clip.

Next, we explore vision-based locomotion in more complex procedurally generated envi-
ronments. By augmenting the networks with a heightmap input, we are able to train the
humanoid to run across terrains consisting of random obstacles. Examples of the environ-
ments are available in Figure 3.4. Over the course of training, the policies are able to adapt
a single clip of a forward running motion into a variety of strategies for traversing across
the different classes of obstacles. Furthermore, by training a policy to imitate a balance
beam walk, the character learns to follow a narrow winding path using only a heightmap
for pathfinding. The balance beam policy was trained with only a forward walking clip,
but is nonetheless able to develop turning motions to follow the winding path. In addition
to the humanoid, we also trained a policy for the Atlas to climb up stairs with irregular
step heights. The policy was able to adapt the original walking clip on flat terrain to climb
the steps, although the resulting motion still exhibits an awkward gait. We suspect that
the problem is partly related to the walking reference motion being ill-suited for the stairs
environment.
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Figure 3.10: Learning curves for policies
trained with and without reference state ini-
tialization (RSI) and early termination (ET).

Skill RSI + ET ET RSI
Backflip 0.791 0.730 0.379
Sideflip 0.823 0.717 0.355
Spinkick 0.848 0.858 0.358
Walk 0.980 0.981 0.974

Figure 3.11: Normalized average returns of
policies trained with and without reference
state initialization (RSI) and early termina-
tion (ET).

Physics Retargeting: To further evaluate the framework’s robustness to discrepancies
between the dynamics of the motion capture data and simulation, we trained policies to
perform a spinkick and cartwheel under moon gravity (1.622m/s2). Despite the difference in
gravity, the policies were able to adapt the motions to the new dynamics, achieving a return
of 0.792 for the spinkick and 0.688 for the cartwheel.

Ablations

To evaluate the impact of our design decisions, we compare our full method against alter-
native training schemes that disable some of the components. We found that the reference
state initialization and early termination are two of the most important components of our
training procedure. The comparisons include training with reference state initialization and
with a fixed initial state, as well as training with early termination and without early ter-
mination. Without early termination, each episode is simulated for the full 20s. Figure 3.10
compares the learning curves with the different configurations and Table 3.11 summarizes
the performance of the final policies. During evaluation, early termination is disabled and
the character is initialized to a fixed state at the start of each episode. Due to the time
needed to train each policy, the majority of performance statistics are collected from one
run of the training process. However, we have observed that the behaviors are consistent
across multiple runs. Early termination proves to be crucial for reproducing many of the
skills. By heavily penalizing the character for making undesirable contacts with the ground,
early termination helps to eliminate local optima, such as those where the character falls
and mimes the motions as it lies on the ground. RSI also appears vital for more dynamic
skills that have significant flight phases, such as the backflip. While the policies trained
without RSI appear to achieve a similar return to those trained with RSI, an inspection
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Skill Forward (N) Sideway (N)
Backflip 440 100
Cartwheel 200 470
Run 720 300
Spinkick 690 600
Walk 240 300

Table 3.5: Maximum forwards and sideways push each policy can tolerate before falling.
Each push is applied to the character’s pelvis for 0.2s.

of the resulting motions show that, without RSI, the character often fails to reproduce the
desired behaviours. For the backflip, without RSI, the policy never learns to perform a full
mid-air flip. Instead, it performs a small backwards hop while remaining upright.

Robustness

To determine the policies’ robustness to external perturbations, we subjected the trained
policies to perturbation forces and recorded the maximum force the character can tolerate
before falling. The perturbation forces are applied halfway through a motion cycle to the
character’s pelvis for 0.2s. The magnitude of the force is increased by 10N until the character
falls. This procedure is repeated for forces applied along the forward direction (x-axis) and
sideway direction (z-axis). Table 3.5 summarizes the results from the experiments on the
humanoid. The learned policies show comparable-or-better robustness than figures reported
for SAMCON [160]. The run policy is able to recover from 720N × 0.2s forward pushes,
while the spin-kick policy is able to survive 600N × 0.2s perturbations in both directions.
Note that no external perturbations are applied during the training process; we suspect that
the policies’ robustness is in large part due to the exploration noise applied by the stochastic
policy used during training.

3.8 Discussion

In this chapter, we presented a data-driven deep reinforcement learning framework for train-
ing control policies for simulated characters. We show that our method can replicate a wide
range of challenging skills. The resulting policies are highly robust and produce natural mo-
tions that are nearly indistinguishable from the original motion capture data in the absence
of perturbations. Our framework is also able to retarget skills to a variety of characters,
environments, and tasks.

Although our experiments illustrate the flexibility of this approach, there are still numer-
ous limitations to be addressed in future work. First, our policies require a phase variable to
be synchronized with the reference motion, which advances linearly with time. This limits
the ability of the policy to adjust the timing of the motion, and lifting this limitation could
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produce more natural and flexible perturbation recoveries. The learning process itself is also
quite time consuming, often requiring several days per skill, and is performed independently
for each policy. Although we use the same imitation reward across all motions, this is still
currently based on a manually defined state-similarity metric. The weighting of the reward
terms also needs to be defined with some care. It would also be interesting to understand
the learned control strategies and compare them to the equivalent human strategies.
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Chapter 4

Video Imitation

Figure 4.1: Simulated characters performing highly dynamic skills learned by imitating video
clips of human demonstrations. Left: Humanoid performing cartwheel B on irregular terrain.
Right: Backflip A retargeted to a simulated Atlas robot. (Video1)

Motion capture (mocap) is one of the most popular methods for acquiring motion data,
and is the crucial source of reference motions for our work in Chapter 3. However, the
acquisition of mocap data can pose major hurdles for practitioners, often requiring heavily
instrumented environments and actors. The infrastructure required to procure such data can
be prohibitive, and some activities remain exceedingly difficult to motion capture, such as
large-scale outdoor sports. A more abundant and flexible source of motion data is monocular
video. A staggering 300 hours of video is uploaded to YouTube every minute [16]. Searching
and querying video sources on the web can quickly yield a large number of clips for any
desired activity or behavior. However, it is a daunting challenge to extract the necessary
motion information from monocular video frames, and the quality of the motions generated
by previous methods still falls well behind the best mocap-based animation systems [278].

In this chapter, we propose a method for acquiring dynamic character controllers di-
rectly from monocular video through a combination of pose estimation and deep reinforce-
ment learning. Recent advances with deep learning techniques have produced breakthrough

1 Supplementary video: https://xbpeng.github.io/projects/SFV/

https://xbpeng.github.io/projects/SFV/
https://xbpeng.github.io/projects/SFV/


CHAPTER 4. VIDEO IMITATION 41

results for vision-based 3D pose estimation from monocular images [119]. However, pose es-
timation alone is not yet sufficient to produce high-fidelity and physically plausible motions:
frequent errors and physical inconsistencies in the estimated poses accumulate and result
in unnatural character behaviors. Motion imitation with reinforcement learning provides a
powerful tool for acquiring skills from videos while remaining robust to such imperfections.
By reproducing the skill in a physical simulation, the learning process can refine imperfect
and noisy pose sequences, compensate for missing frames, and take into account the physical
constraints of the character and environment. By bringing together deep pose estimation
and reinforcement learning, we propose a framework that enables simulated characters to
learn a diverse collection of dynamic and acrobatic skills directly from video demonstrations.

The primary contribution of this chapter is a system for learning character controllers
from video clips that integrates pose estimation and reinforcement learning. To make this
possible, we introduce a number of extensions to both the pose tracking system and the re-
inforcement learning algorithm. We propose a motion reconstruction method that improves
the quality of reference motions to be more amenable for imitation by a simulated charac-
ter. We further introduce a novel reinforcement learning method that incorporates adaptive
state initialization, where the initial state distribution is dynamically updated to facilitate
long-horizon performance in reproducing a desired motion. We find that this approach for
dynamic curriculum generation substantially outperforms standard methods when learn-
ing from lower-fidelity reference motions constructed from video tracking sequences. Our
framework is able to reproduce a significantly larger repertoire of skills and higher fidelity
motions from videos than has been demonstrated by prior methods. The effectiveness of our
framework is evaluated on a large set of challenging skills including dances, acrobatics, and
martial arts. Our system is also able to retarget video demonstrations to widely different
morphologies and environments. Figure 1 illustrates examples of the skills learned by our
framework. While our framework is able to reproduce a substantially larger corpus of skills
than previous methods, there remains a large variety of video clips that our system is not
yet able to imitate. We include a discussion of these challenges and other limitations that
arise from the various design decisions.

4.1 Related Work

Our work lies at the intersection of pose estimation and physics-based character animation.
The end goal of our system is to produce robust and naturalistic controllers that enable
virtual characters to perform complex skills in physically simulated environments. Facets
of this problem have been studied in a large body of prior work, from techniques that have
sought to produce realistic skills from first principles (i.e. physics and biomechanics) [44,
284, 281], to methods that incorporate reference motion data into the controller construction
process [246, 144, 161]. These techniques can synthesize motions kinematically [144, 148,
107] or as the product of dynamic control in a physics simulation [146, 75]. Most data-driven
methods, save for a few exceptions, are based on motion capture data, which often requires
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costly instrumentation and pre-processing [108]. Raw video offers a potentially more accessi-
ble and abundant alternative source of motion data. While there has been much progress in
the computer vision community in predicting human poses from monocular images or videos,
integrating pose predictions from video with data-driven character animation still presents
a number of challenges. Pose estimators can generally produce reasonable predictions of
an actor’s motion, but they do not benefit from the manual cleanup and accurate tracking
enjoyed by professionally recorded mocap data. Prior methods that learn from motion data
often assume accurate reference motions as a vital component in the learning process. For
example, during training, [207] reinitializes the character state to frames sampled from the
reference motion. The effectiveness of these strategies tend to deteriorate in the presence of
low-fidelity reference motions.

Reinforcement Learning: Many methods for acquiring character controllers utilize re-
inforcement learning [45, 283, 144, 148, 201]. The use of deep neural network models for RL
has been demonstrated for a diverse array of challenging skills [57, 28, 202, 159, 223, 265].
While deep RL methods have been effective for motion control tasks, the policies are prone
to developing unnatural behaviours, such as awkward postures, overly energetic movements,
and asymmetric gaits [237, 176]. In order to mitigate these artifacts, additional auxiliary ob-
jectives such as symmetry, effort minimization, or impact penalties have been incorporated
into the objective to discourage unnatural behaviors [309]. Designing effective objectives
can require substantial human insight and may nonetheless fall short of eliminating unde-
sirable behaviours. An alternative for encouraging more natural motions is to incorporate
high-fidelity biomechanical models [284, 75, 146]. However, these models can be challenging
to build, difficult to control, and may still result in unnatural behaviours. In light of these
challenges, data-driven RL methods that utilize reference motion data have been proposed
as an alternative [293, 207]. Reference motion clips can be incorporated via a motion imita-
tion objective that incentivizes the policy to produce behaviours that resemble the reference
motions. In this chapter, we explore methods for extending motion imitation with RL to
accommodate low-fidelity reference motions extracted from videos, and introduce a novel
adaptive state initialization technique that makes this practical even for highly dynamic and
acrobatic movements.

Monocular Human Pose Estimation: While mocap remains the most popular source of
demonstrations, it typically requires significant instrumentation, which limits its accessibility.
Practitioners therefore often turn to public databases to satisfy their mocap needs [43, 242].
Unfortunately, the volume of publicly available mocap data is severely limited compared
to datasets in other disciplines, such as ImageNet [53]. Alternatively, video clips are an
abundant and accessible source of motion data. While recovering motion from raw video has
been a long standing challenge [139, 26], recently deep learning approaches have made rapid
progress in this area.
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Performance of 2D pose estimation improved rapidly after Toshev and Szegedy [273]
introduced a deep learning approach for predicting the 2D coordinates of joints directly
from images. This is followed by methods that predict joint locations as a spatial heat
map [271, 288, 191]. In this work we build upon the recent OpenPose framework [33], which
extends previous methods for real-time multi-person 2D pose estimation. Monocular 3D pose
estimation is an even more challenging problem due to depth ambiguity, which traditional
methods resolve with strong priors [263, 315, 24]. The introduction of large-scale mocap
datasets [113] with ground truth 3D joint locations allowed for the development of deep
learning based methods that directly estimate 3D joint locations from images [316, 173, 199].
However, mocap datasets are typically captured in heavily instrumented environments, and
models trained on these datasets alone do not generalize well to the complexity of images of
humans in the wild. Therefore, recent methods focus on weakly supervised techniques, where
a model may also be trained on images without ground truth 3D pose [226, 318]. Note that
most approaches only estimate the 3D joint locations and not the 3D rotations of a kinematic
tree, which is necessary to serve as reference for our RL algorithm. Methods that predict joint
locations require additional post-processing to recover the joint rotations through inverse
kinematics [173]. Only a handful of techniques directly estimate the 3D human pose as 3D
joint rotations [317, 275, 119]. Although there are methods that utilize video sequences as
input [266], most state-of-the-art approaches predict the pose independently for each video
frame. Recently Xu et al. [298] propose a method that recovers a temporally consistent
trajectory from monocular video by an additional optimization step in the 3D pose space.
However, their method requires a pre-acquired template mesh of the actor and hence cannot
be applied to legacy videos, such as those available from YouTube. In this work we build
on the recent work of Kanazawa et al. [119], which is a weakly-supervised deep learning
framework that trains a model to directly predict the 3D pose, as joint rotations, from a
single image. A more detailed discussion is available in Section 4.3.

Video Imitation: The problem of learning controllers from monocular video has received
modest attention from the computer graphics community. The work most related to ours is
the previous effort by Vondrak et al. [278], which demonstrated learning bipedal controllers
for walking, jumping, and handsprings from videos. The controllers were represented as a
finite-state machines (FSM), where the structure of the FSM and the parameters at each
state were learned through an incremental optimization process. Manually-crafted balance
strategies and inverse-dynamics models were incorporated into the control structure within
each state of the FSM. To imitate the motion of the actor in a video, the controllers were
trained by optimizing a 2D silhouette likelihood computed between the actor and simulated
character. To resolve depth ambiguity, they incorporated a task-specific pose prior computed
from mocap data. While the system was able to synthesize controllers for a number of
skills from video demonstrations, the resulting motions can appear robotic and the use of
a silhouette likelihood can neglect a significant amount of task-relevant information in the
video. Furthermore, the task-pose priors require access to mocap clips that are similar to the
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skills being learned. If such data is already available, it might be advantageous to imitate
the mocap clips instead. Similarly, Coros et al. [46] utilized video clips of canine motions
to train quadruped controllers, where the reference motions were extracted via manually
annotating gait graphs and marker locations.

In this work, we take advantage of state-of-the-art 3D pose estimation techniques to ex-
tract full-body 3D reference motions from video, which resolves much of the depth ambiguity
inherent in monocular images and improves the motion quality of the learned controllers.
Deep RL enables the use of simple but general control structures that can be applied to a
substantially wider range of skills, including locomotion, acrobatics, martial arts, and danc-
ing. To the best of our knowledge, the only prior work that has demonstrated learning
full-body controllers from monocular video is the work by Vondrak et al. [278]. Although
incorporating reinforcement learning to imitate video demonstrations is conceptually natu-
ral, in practice it presents a number of challenges arising from nonphysical behaviours and
other artifacts due to inaccurate pose estimation.

4.2 Overview

Our framework receives as input a video clip and a simulated character model. It then
synthesizes a controller that enables a physically simulated character to perform the skill
demonstrated by the actor in the video. The resulting policies are robust to significant
perturbations, can be retargeted to different characters and environments, and are usable
in interactive settings. The learning process is divided into three stages: pose estimation,
motion reconstruction, and motion imitation. A schematic illustration of the framework is
available in Figure 4.2. The input video is first processed by the pose estimation stage,
where a learned 2D and 3D pose estimators are applied to extract the pose of the actor in
each frame. Next, the set of predicted poses proceeds to the motion reconstruction stage,
where a reference motion trajectory {q∗

t} is optimized such that it is consistent with both the
2D and 3D pose predictions, while also enforcing temporal-consistency between frames and
mitigating other artifacts present in the original set of predicted poses. The reference motion
is then utilized in the motion imitation stage, where a control policy π is trained to enable
the character to reproduce the reference motion in a physically simulated environment. The
pose estimator is trained with a weakly-supervised learning approach, and the control policy
is trained with reinforcement learning using a motion imitation objective.

4.3 Background

Pose estimation: Our approach builds upon the recent 2D and 3D pose estimators, Open-
Pose [288] and Human Mesh Recovery (HMR) [119] respectively. OpenPose performs both
detection and 2D pose estimation of humans from a single image. It outputs the 2D pose
as joint locations xj ∈ R2 in the image coordinate space, as well as a confidence score for



CHAPTER 4. VIDEO IMITATION 45

Figure 4.2: The pipeline consists of three stages: pose estimation, motion reconstruction,
and imitation. It receives as input, a video clip of an actor performing a particular skill
and a simulated character model, and outputs a control policy that enables the character to
reproduce the skill in simulation.

each joint cj ∈ R. HMR is a recent approach that directly predicts the 3D pose and shape
of a human model [163], along with the camera configuration from an image of a localized
person. The predicted 3D pose q = {qj} is parameterized by the local rotation of each joint
qj, represented in axis-angle form with respect to the parent link’s coordinate frame. The
world transformation of the root, designated to be the pelvis, is obtained using the predicted
weak-perspective camera Π. The 3D pose is predicted by first encoding an image I into a
2048D latent space z = f(I) via a learned encoder f . The latent features are then decoded
by a learned decoder q(z) to produce the pose. HMR uses a weakly-supervised adversarial
framework that allows the model to be trained on images with only 2D pose annotations,
without any ground truth 3D labels. Therefore, it can be trained on datasets of in-the-wild
images, such as COCO [156], and sports datasets [118], which is vital for learning acrobatic
skills from video clips.

4.4 Pose Estimation

Given a video clip, the role of the pose estimation stage is to predict the pose of the actor
in each frame. Towards this goal, there are two main challenges for our task. First, the
acrobatic skills that we wish to imitate exhibit challenging poses that vary significantly from
the distribution of common poses available in most datasets. Second, poses are predicted
independently for each frame, and therefore may not be temporally consistent, especially for
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Figure 4.3: Comparison of the motions gen-
erated by different stages of the pipeline for
Backflip A. Top-to-Bottom: Input video
clip, 3D pose estimator, 2D pose estimator,
simulated character.

dynamic motions. We address these chal-
lenges by leveraging an ensemble of pose es-
timators and a simple but effective data aug-
mentation technique that substantially im-
prove the quality of the predictions.

One of the challenges of tracking acro-
batic movements is that they tend to exhibit
complex poses with wildly varying body ori-
entations (e.g. flips and spins). These poses
are typically underrepresented in existing
datasets, which are dominated by everyday
images of humans in upright orientations.
Thus, off-the-shelf pose estimators struggle
to predict the poses in these videos. To
compensate for this discrepancy, we aug-
ment the standard datasets with rotated ver-
sions of the existing images, where the rota-
tions are sampled uniformly between [0, 2π].
We found that training the pose estimators
with this augmented dataset, substantially
improves performance for acrobatic poses.
Once trained, both estimators are applied
independently to every frame to extract a
2D pose trajectory {x̂t} and 3D pose trajectory {q̂t}. Note that the 2D pose x̂t consists only
of the 2D screen coordinates of the actor’s joints, but tends to be more accurate than the
3D predictions. Examples of the predictions from the different pose estimators are shown in
Figure 4.3. The independent predictions from the pose estimators are then consolidated in
the motion reconstruction stage to produce the final reference motion.

4.5 Motion Reconstruction

Since poses are predicted independently for every frame in the pose estimation stage, sim-
ply sequencing the poses into a trajectory tends to produce motions that exhibit artifacts
due to inconsistent predictions across adjacent frames (see supplementary video1). The
motion artifacts often manifest as nonphysical behaviours in the reference motion, such as
high-frequency jitter and sudden changes in pose. These artifacts can hinder the simulated
character’s ability to reproduce the intended motion. The role of the motion reconstruction
stage is to take advantage of the predictions from the two pose estimators to reconstruct a
new kinematic trajectory that reconciles the individual predictions and mitigates artifacts,
such that the resulting reference motion is more amenable for imitation.

Specifically, given the predictions from the 2D and 3D pose estimators, we optimize a 3D

https://xbpeng.github.io/projects/SFV/index.html
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pose trajectory that consolidates their predictions while also enforcing temporal consistency
between adjacent frames. Instead of directly optimizing in the 3D pose space, we take
advantage of the encoder-decoder structure of the 3D pose estimator and optimize the 3D
pose trajectory in the latent pose space zt, which captures the manifold of 3D human poses
[119]. The final 3D reference motion is constructed by optimizing a trajectory Z = {zt} in
the latent space to minimize the reconstruction loss lrec:

lrec(Z) = w2Dl2D(Z) + w3Dl3D(Z) + wsmlsm(Z)

w2D = 10, w3D = 100, wsm = 25, (4.1)

The 2D consistency loss l2D minimizes the reprojection error between the predicted 2D joint
locations and the 2D projections of the corresponding joints from the pose specified by zt,

l2D =
∑
t

∑
j

ct,j ∥(x̂t,j − Π [Fj (q (zt))])∥1 , (4.2)

where x̂t,j is the predicted 2D location of the jth joint, ct,j is the confidence of the prediction,
and Fj[·] is the forward kinematics function that computes the 3D position of joint j given
the 3D pose. q(zt) represents the pose decoded from zt, and Π [·] is the weak-perspective
projection that transforms 3D positions to 2D screen coordinates.

The 3D consistency loss l3D encourages the optimized trajectory to stay close to the
initial 3D prediction q̂t:

l3D =
∑
t

wt dist(q̂t,q(zt)), (4.3)

where dist(·, ·) measures the distance between two rotations by the angle of the difference
rotation. wt = exp(−δt) estimates the confidence of the initial 3D prediction using the
difference between the initial 2D and 3D predictions, computed via the reprojection error
δt =

∑
j ct,j||(x̂t,j − ΠFj(q̂t))||2. This ensures that initial 3D poses that are consistent with

the 2D predictions are preserved, while inconsistent poses are adjusted through the other
terms in the loss.

Finally, the smoothness loss lsm encourages smoothness of the 3D joint positions between
adjacent frames

lsm =
∑
t

∑
j

∥Fj(q(zt))− Fj(q(zt+1))∥22 . (4.4)

After the optimization process, we obtain the final 3D reference motion {q∗
t} = {q(z∗t )}.

4.6 Motion Imitation with RL

Once the reference motion has been reconstructed, it progresses to the motion imitation
stage, where the goal is to learn a policy π that enables the character to reproduce the
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demonstrated skill in simulation. The reference motion extracted by the previous stages is
used to define an imitation objective, and a policy is then trained through reinforcement
learning to imitate the given motion. The policy is modeled as a feedforward network that
receives as input the current state s and outputs an action distribution π(a|s). To train the
policy, we propose a variant of proximal policy optimization (PPO) [238] augmented with
an adaptive initial state distribution, as described below.

Initial State Distribution

The initial state distribution p(s0) determines the states at which an agent starts each
episode. Careful choice of p(s0) can have a significant impact on the performance of the
learned policy, as it can mitigate the challenges of exploration inherent in RL. An effective
initial state distribution should expose the agent to promising states that are likely to max-
imize its expected return, thereby reducing the need for the agent to discover such states on
its own. As we showed in Chapter 3, sampling initial states from the reference motion can
be highly effective for reproducing dynamic motions. But the effectiveness of this strategy
depends heavily on the quality of the reference motion. Due to artifacts from the pose es-
timator and modeling discrepancies between the simulated character and real-world actor,
states sampled from the reference motion may not be ideal for reproducing the entirety of the
motion. For example, a common artifact present in motion data recorded from real-world
actors, be it through motion capture or vision-based pose estimation, is high-frequency jit-
tering, which can manifest as initial states with large joint velocities. Naively initializing
the agent to such states will then require the agent to recover from the artifacts of the ref-
erence motion. These artifacts can be substantially more pronounced in reference motions
reconstructed from video. Though the motion reconstruction stage is able to mitigate many
of these artifacts, some errors may still persist.

While a myriad of post-processing techniques can be applied to mitigate artifacts in the
reference motion, we can instead reduce the dependency on the quality of the reference mo-
tion by learning an initial state distribution with the specific purpose of aiding the character
in learning an effective controller. This can be formulated as a cooperative multi-agent re-
inforcement learning problem where the first agent, defined by the policy πθ(at|st), controls
the movement of the character, and the second agent ρω(s0) proposes the initial states at
which the character should start each episode. Both agents cooperate in order to maximize
the multi-agent objective:

J(θ, ω) = Eτ∼pθ,ω(τ)

[
T∑
t=0

γtrt

]

=

∫
τ

(
ρω(s0)

T−1∏
t=0

p(st+1|st, at)πθ(at|st)

)(
T∑
t=0

γtrt

)
dτ. (4.5)

Note that, since the reward requires tracking the entire reference motion (as discussed in the
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Figure 4.4: Character imitating a 2-
handed vault.

next section), the initial state distribution cannot ob-
tain the maximum return by “cheating” and providing
excessively easy initializations. The maximum return
is attained when the initial state distribution is close
to the reference trajectory, but does not initialize the
character in states from which recovery is impossi-
ble, as might be the case with erroneous states due to
tracking error. The policy gradient of the initial state
distribution ρω(s0) can be estimated according to:

∇ωJ(θ, ω) = Eτ∼pθ,ω(τ)

[
▽ωlog (ρω(s0))

T∑
t=0

γtrt

]
.

(4.6)

Similar to the standard policy gradient for π, the
gradient of the initial state distribution can be in-
terpreted as increasing the likelihood of initial states
that result in high returns. Unlike the standard pol-
icy gradient, which is calculated at every time step,
the gradient of the initial state distribution is calcu-
lated only at the first time step. The discount factor captures the intuition that the effects
of the initial state attenuates as the episode progresses. We will refer to this strategy of
learning the initial state distribution as adaptive state initialization (ASI). Learning an ini-
tial state distribution can also be interpreted as a form of automatic curriculum generation,
since ρω(s0) is incentivized to propose states that enable the character to closely follow the
reference motion while avoiding states that may be too challenging for the current policy.

4.7 Experimental Setup

Once a reference motion has been reconstructed from a video clip, training proceeds in a
similar manner as Chapter 3, using the same reward function and network architecture. Our
framework will be demonstrated with a humanoid character and a simulated Atlas robot.

Initial State Distribution: At the start of each episode, the character is initialized to a
state s0 sampled from the initial state distribution ρω(s0). When applying adaptive state ini-
tialization, ρω(s0) is represented with a parametric model composed of independent Gaussian
distributions over the character state. The Gaussian components are positioned at uniform
points along the phase of the motion. To sample from this distribution, we first partition the
state features s = [ŝ, ϕ], where ϕ is the phase variable and ŝ represents the other features.
The distribution ρω(s) is then factorized according to:

ρω(s) = pω(ŝ|ϕ)p(ϕ), (4.7)
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Figure 4.5: Simulated Atlas robot performing skills learned from video demonstrations. Top:
Cartwheel A. Bottom: Dance.

with p(ϕ) being a uniform distribution over discrete phase values [ϕ0, ϕ1, ..., ϕk−1]. Each
phase-conditioned state distribution pω(ŝ|ϕi), corresponding to ϕi, is modeled as a Gaussian
N (µi,Σi), with mean µi and diagonal covariance matrix Σi. The parameters of the initial
state distribution consists of the parameters for each Gaussian component ω = {µi,Σi}k−1

i=0 .
Both the mean and covariance matrix of each component are learned using policy gradients.
When sampling an initial state, a phase value is first sampled from the discrete distribution
p(ϕ). Next, ŝ is sampled from pω(ŝ|ϕ), and the combined features constitute the initial state.

4.8 Results

Motions from the trained policies can be seen in the supplementary video1. Figures 4.4, 4.6,
and 4.7 compare snapshots of the simulated characters with the original video clips. All video
clips were collected from YouTube, and depict human actors performing various acrobatic
stunts (e.g. flips and cartwheels) and locomotion skills (walking and running). The clips
were selected such that the camera is primarily stationary over the course of the motion, and
only a single actor is present in the scene. Each clip is trimmed to contain only the relevant
portions of their respective motion, and depicts one demonstration of a particular skill.

Table 4.1 summarizes the performance of the final policies. Performance is recorded as the
average normalized return over multiple episodes. As it is challenging to directly quantify
the difference between the motion of the actor in the video and the simulated character,
performance is evaluated with respect to the reconstructed reference motion. Since the
reference motions recovered from the video clips may not be physically correct, a maximum
return of 1 may not be achievable. Nonetheless, given a single video demonstration of each
skill, the policies are able to reproduce a large variety of challenging skills ranging from
contact-rich motions, such as rolling, to motions with significant flight phases, such as flips
and spins. Policies can also be trained to perform skills that require more coordinated
interactions with the environment, such as vaulting and pushing a large object.

https://xbpeng.github.io/projects/SFV/index.html
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(a) Frontflip (b) Handspring A

(c) Jump (d) Kip-Up

(e) Roll (f) Spin

Figure 4.6: Simulated characters performing skills learned from video clips. Top: Video
clip. Middle: 3D pose estimator. Bottom: Simulated character.
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Figure 4.7: Humanoid character imitating
skills from video demonstrations. Top-to-
Bottom: Jumping jack, kick, push.

Skill T cycle (s) N samples (10
6) NR

Backflip A 2.13 146 0.741
Backflip B 1.87 198 0.653
Cartwheel A 2.97 136 0.824
Cartwheel B 2.63 147 0.732
Dance 2.20 257 0.631
Frontflip 1.57 126 0.708
Gangnam Style 1.03 97 0.657
Handspring A 1.83 155 0.696
Handspring B 1.47 311 0.578
Jump 2.40 167 0.653
Jumping Jack 0.97 122 0.893
Kick 1.27 158 0.761
Kip-Up 1.87 123 0.788
Punch 1.17 115 0.831
Push 1.10 225 0.487
Roll 2.07 122 0.603
Run 0.73 126 0.878
Spin 1.07 146 0.779
Spinkick 1.87 196 0.747
Vault 1.43 107 0.730
Walk 0.87 122 0.932
Atlas: Backflip A 2.13 177 0.318
Atlas: Cartwheel A 2.97 174 0.456
Atlas: Dance 2.20 141 0.324
Atlas: Handspring A 1.83 115 0.360
Atlas: Jump 2.40 134 0.508
Atlas: Run 0.73 130 0.881
Atlas: Vault 1.43 112 0.752
Atlas: Walk 0.87 172 0.926

Table 4.1: Performance statistics of over 20
skills learned by our framework. Tcycle de-
notes the length of the clip. Nsamples records
the number of samples collected to train each
policy. NR represents the average normalized
return of the final policy, with 0 and 1 being
the minimum and maximum possible return
per episode respectively. For cyclic skills, the
episode horizon is set to 20s. For acyclic skills,
the horizon is determined by Tcycle. All statis-
tics are recorded from the humanoid character
unless stated otherwise.

Retargeting: One of the advantages of
physics-based character animation is its abil-
ity to synthesize behaviours for novel situ-
ations that are not present in the original
data. In addition to reproducing the various
skills, our framework is also able to retar-
get the skills to characters and environments
that differ substantially from what is presented in the video demonstrations. Since the same
simulated character is trained to imitate motions from different human actors, the morphol-
ogy of the character tends to differ drastically from that of the actor. To demonstrated the
system’s robustness to morphological discrepancies, we also trained a simulated Atlas robot
to imitate a variety of video clips. The proportions of the Atlas’ limbs differ significantly from
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Figure 4.8: Skills retargeted to different environments. Top-to-Bottom: Backflip A across
slopes, cartwheel B across gaps, pushing a box downhill and uphill.

normal human proportions, and with a weight of 169.5kg, it is considerably heavier than
the average human. Despite these drastic differences in morphology, our framework is able
to learn policies that enable the Atlas to reproduce a diverse set of challenging skills. Table
4.1 summarizes the performance of the Atlas policies, and Figure 4.5 illustrates snapshots
of the simulated motions.

In addition to retargeting to difference morphologies, the skills can also be adapted to
different environments. While the video demonstrations were recorded on flat terrain, our
framework is able to train policies to perform the skills on irregular terrain. Figure 4.8
highlights some of the skills that were adapted to environments composed of randomly
generated slopes or gaps. The pushing skill can also be retargeted to push a 50kg box uphill
and downhill with a slope of 15%. To enable the policies to perceive their environment,
we follow the architecture used by Peng et al. [207], where a heightmap of the surrounding
terrain is included in the input state, and the networks are augmented with corresponding
convolutional layers to process the heightmap. Given a single demonstration of an actor
performing a backflip on flat terrain, the policy is able to develop strategies for performing
a backflip on randomly varying slopes. Similarly, the cartwheel policy learns to carefully
coordinate the placement of the hands and feet to avoid falling into the gaps.
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Figure 4.9: Learning curves comparing policies trained with fixed state initialization (FSI),
reference state initialization (RSI), and adaptive state initialization (ASI). Three policies
initialized with different random seeds are trained for each combination of skill and initial
state distribution. Compared to its counterparts, ASI consistently improves performance
and learning speed.

Skill FSI RSI ASI
Backflip A 0.086 0.602 0.741
Cartwheel A 0.362 0.738 0.824
Frontflip 0.435 0.658 0.708
Handspring A 0.358 0.464 0.696

Table 4.2: Performance of policies trained
with different initial state distributions. ASI
outperforms the other methods for all skills
evaluated.

Initial State Distribution: To evaluate
the impact of adaptive state initialization
(ASI), we compare the performance of poli-
cies trained with ASI to those trained with
fixed state initialization (FSI) and reference
state initialization (RSI). In the case of fixed
state initialization, the character is always
initialized to the same pose at the start of
the motion. With reference state initial-
ization, initial states are sampled randomly
from the reference motion as proposed by
Peng et al. [207]. For ASI, the initial state distribution is modeled as a collection of k = 10
independent Gaussian distributions positioned at uniformly spaced phase values. The mean
of each Gaussian is initialized to the state at the corresponding phase of the reference motion,
and the diagonal covariance matrix is initialized with the sample covariance of the states
from the entire reference motion. Both the mean and covariance matrix of each distribu-
tion are then learned through the training process, while the corresponding phase for each
distribution is kept fixed. Figure 4.9 compares the learning curves using the three differ-
ent methods and Table 4.2 compares the performance of the final policies. Each result is
averaged over three independent runs with different random seeds.

Overall, the behaviour of the learning algorithm appears consistent across multiple runs.
Policies trained with ASI consistently outperform their counterparts, converging to the high-
est return between the different methods. For more challenging skills, such as the backflip
and frontflip, ASI also shows notable improvements in learning speed. Policies trained with
FSI struggles to reproduce any of the skills. Furthermore, we evaluate the sensitivity of ASI
to different numbers of Gaussian components. Policies were trained using k = 5, 10, 20 com-
ponents and their corresponding learning curves are available in Figure 4.12. Using different
numbers of components does not seem to have a significant impact on the performance of
ASI. Qualitatively, the resulting motions also appear similar.
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(a) Backflip A (b) Handspring A

Figure 4.10: 3D pose predictions with and without rotation augmentation. Top: Video.
Middle: Without rotation augmentation. Bottom: With rotation augmentation. The
pose estimator trained without rotation augmentation fails to correctly predict challenging
poses, such as when the actor is upside-down.

(a) Cartwheel A (b) Frontflip

Figure 4.11: 3D pose predictions before and after motion reconstruction. Top: Video. Mid-
dle: Raw predictions from the 3D pose estimator before motion reconstruction. Bottom:
After motion reconstruction. The motion reconstruction process is able to fix erroneous
predictions from the 3D pose estimator by taking advantage of the information from the 2D
pose estimator and temporal consistency between adjacent frames.
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Skill RSI RSI + MR ASI ASI + MR
Frontflip 0.404 0.658 0.403 0.708
Handspring A 0.391 0.464 0.631 0.696

Table 4.3: Performance of policies with and without motion reconstruction.

Reference Motion: A policy’s ability to reproduce a video demonstration relies on the
quality of the reconstructed reference motion. Here, we investigate the effects of rotation
augmentation and motion reconstruction on the resulting reference motions. Most existing
datasets of human poses are biased heavily towards upright poses. However, an actor’s ori-
entation can vary more drastically when performing highly dynamic and acrobatic skills, e.g.
upside-down poses during a flip. Rotation augmentation significantly improves predictions
for these less common poses. Figure 4.10 compares the predictions from pose estimators
trained with and without rotation augmentation. We found that this step is vital for accu-
rate predictions of more extreme poses, such as those present in the backflip and handspring.
Without augmentation, both pose estimators consistently fail to predict upside-down poses.

Next, we evaluate the effects of the motion reconstruction stage in producing reference
motions that can be better reproduced by a simulated character. Polices that are trained
to imitate the optimized reference motions generated by motion reconstruction (MR), are
compared to policies trained without MR, where the poses from the 3D pose estimator are di-
rectly used as the reference motion. Figure 4.11 compares the motions before and after MR.
While the 3D pose estimator occasionally produces erroneous predictions, the MR process
is able to correct these errors by taking advantage of the predictions from the 2D estimator
and enforcing temporal consistency between adjacent frames. Learning curves comparing
policies trained using reference motions before and after motion reconstruction are available
in Figure 4.13, and Table 4.3 summarizes the performance of the final policies. For each
type of reference motion, we also compared policies trained with either RSI or ASI. Overall,
imitating reference motions generated by the motion reconstruction processes improves per-
formance and learning speed for the different skills. The improvements due to MR appears
more pronounced when policies are trained with RSI. Since the initial states are sampled di-
rectly from the reference motion, performance is more susceptible to artifacts present in the
reference motion. MR also shows consistent improvement across multiple training runs when
using ASI. Note that since the reward reflects similarly to the reference motion, and not the
original video, a higher return does not necessarily imply better reproduction of the video
demonstration. Instead, the higher return with MR indicates that the simulated character
is able to better reproduce the reference motions produced by MR than the raw predictions
from the pose estimator. Thus, the results suggest that by enforcing temporal consistency
and mitigating artifacts due to inaccurate pose predictions, motion reconstruction is able
to generate reference motions that are more amenable to being mimicked by a simulated
character.
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Figure 4.12: Learning curves of policies
trained with ASI using different number of
Gaussian components. The choice of the
number of components does not appear to
have a significant impact on performance.

Figure 4.13: Learning curves comparing poli-
cies trained with and without motion recon-
struction (MR). MR improves performance
for both RSI and ASI.

4.9 Discussion

In this chapter, we presented a framework for learning full-body motion skills from monocu-
lar video demonstrations. Our method is able to reproduce a diverse set of highly dynamic
and acrobatic skills with simulated humanoid characters. We proposed a data augmenta-
tion technique that improves the performance of pose estimators for challenging acrobatic
motions, and a motion reconstruction method that leverages an ensemble of pose estima-
tors to produce higher-fidelity reference motions. Our adaptive state initialization method
substantially improves the performance of the motion imitation process when imitating low-
fidelity reference motions. Our framework is also able to retarget skills to characters and
environments that differ drastically from those present in the original video clips.

While our framework is able to imitate a diverse collection of video clips, it does have
a number of limitations. Since the success of the motion imitation stage depends on the
accuracy of the reconstructed motion, when the pose estimators are not able to correctly
predict an actor’s pose, the resulting policy will fail to reproduce the behavior. Examples
include the kip-up, where the reconstructed motions did not accurately capture the motion of
the actor’s arms, and the spinkick, where the pose estimator did not capture the extension of
the actor’s leg during the kick. Furthermore, our characters still sometimes exhibit artifacts
such as peculiar postures and stiff movements. Fast dance steps, such as those exhibited
in the Gangnam Style clip, remains challenging for the system, and we have yet to be able
to train policies that can closely reproduce such nimble motions. Due to difficulties in
estimating the global translation of the character’s root, our results have primarily been
limited to video clips with minimal camera motion.

Nonetheless, we believe this work opens many exciting directions for future exploration.
Our experiments suggest that learning highly-dynamic skills from video demonstrations is
achievable by building on state-of-the-art techniques from computer vision and reinforcement
learning. An advantage of our modular design is that new advances relevant to the various
stages of the pipeline can be readily incorporated to improve the overall effectiveness of the
framework. However, an exciting direction for future work is to investigate methods for
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more end-to-end learning from visual demonstrations, for example taking inspiration from
Sermanet et al. [241] and Yu et al. [305], which may reduce the dependence on accurate pose
estimators. Another exciting direction is to capitalize on our method’s ability to learn from
video clips and focus on large, outdoor activities, as well as motions of nonhuman animals
that are conventionally very difficult, if not impossible, to mocap.
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Chapter 5

Multiplicative Compositional Policies

Figure 5.1: Multiplicative compositional policies enable physically simulated characters to
perform challenging tasks by reusing skills learned through motion imitation. Left: Simu-
lated T-Rex dribbling a soccer ball to a target. Middle: Biped picking up and carrying a
box to a goal location. Right: Humanoid walking along a target heading direction. (Video1)

In the previous chapters, we have primarily used reinforcement learning to train policies
for each task from scratch. While tabula rasa learning can achieve state-of-the-art perfor-
mance on a broad range of tasks [180, 28, 85, 248, 194], this approach can incur significant
drawbacks in terms of sample efficiency and limits the complexity of skills that an agent can
acquire. The ability to transfer and re-purpose skills learned from prior experiences to new
domains is a hallmark of intelligent agents. Transferable skills can enable agents to solve
tasks that would otherwise be prohibitively challenging to learn from scratch, by leverag-
ing prior experiences to provide structured exploration and more effective representations.
However, learning versatile and reusable skills that can be applied to a diverse set of tasks
remains a challenging problem, particularly when controlling systems with large numbers of
degrees-of-freedom.

In this chapter, we propose multiplicative compositional policies (MCP), a method for
learning reusable motor primitives that can be composed to produce a continuous spectrum
of skills. Once learned, the primitives can be transferred to new tasks and combined to yield
different behaviors as necessary in the target domain. Standard hierarchical models [255,
61] often activate only a single primitive at each time step, which can limit the diversity

1 Supplementary video: https://xbpeng.github.io/projects/MCP/

https://xbpeng.github.io/projects/MCP/
https://xbpeng.github.io/projects/MCP/
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of behaviors that can be produced by the agent. MCP composes primitives through a
multiplicative model that enables multiple primitives to be activated at a given time step,
thereby providing the agent a more flexible range of skills. Our method can therefore be
viewed as providing a means of composing skills in space, while standard hierarchical models
compose skills in time by temporally sequencing the set of available skills. MCP can also
be interpreted as a variant of latent space models, where the latent encoding specifies a
particular composition of a discrete set of primitives.

The primary contribution of this chapter is a method for learning and composing trans-
ferable skills using multiplicative compositional policies. By pre-training the primitives to
imitate a corpus of different motion clips, our method learns a set of primitives that can
be composed to produce a flexible range of behaviors. While conceptually simple, MCP is
able to solve a suite of challenging mobile manipulation tasks with complex simulated char-
acters, significantly outperforming prior methods as task complexity grows. Our analysis
shows that the primitives discover specializations that are reminiscent of previous manually-
designed control structures, and produce coherent exploration strategies that are vital for
high-dimensional long-horizon tasks. In our experiments, MCP substantially outperforms
prior methods for skill transfer, with our method being the only approach that learns a
successful policy on the most challenging task in our benchmark.

5.1 Transfer Learning

We consider a multi-task RL framework for transfer learning, consisting of a set of pre-
training tasks and transfer tasks. An agent is trained from scratch on the pre-training tasks,
but it may then apply any skills learned during pre-training to the subsequent transfer tasks.
The objective then is to leverage the pre-training tasks to acquire a set of reusable skills that
enables the agent to be more effective at the later transfer tasks. Each task is represented by
a state space st ∈ S, an action space at ∈ A, a dynamics model st+1 ∼ p(st+1|st, at), a goal
space g ∈ G, a goal distribution g ∼ p(g), and a reward function rt = r(st, at, st+1,g). The
goal specifies task specific features, such as a motion clip to imitate, or the target location an
object should be placed. All tasks share a common state space, action space, and dynamics
model. However, the goal space, goal distribution, and reward function may differ between
pre-training and transfer tasks. For each task, the agent’s objective is to learn an optimal
policy π∗ that maximizes its expected return. Successful transfer cannot be expected for
unrelated tasks. Therefore, we consider the setting where the pre-training tasks encourage
the agent to learn relevant skills for the subsequent transfer tasks, but may not necessarily
cover the full range of skills required to be effective at the transfer tasks.

Hierarchical policies are a common model for reusing and composing previously learned
skills. One approach for constructing a hierarchical policy is by using a mixture-of-experts
model [114, 189, 267, 94, 202], where the composite policy’s action distribution π(a|s,g) is
represented by a weighted sum of distributions from a set of primitives πi(a|s,g) (i.e. low-
level policies). A gating function determines the weights wi(s,g) that specify the probability
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of activating each primitive for a given s and g,

π(a|s,g) =
k∑

i=1

wi(s,g)πi(a|s,g),
k∑

i=1

wi(s,g) = 1, wi(s,g) ≥ 0. (5.1)

Here, k denotes the number of primitives. We will refer to this method of composing prim-
itives as an additive model. To sample from the composite policy, a primitive πi is first
selected according to w, then an action is sampled from the primitive’s distribution. There-
fore, a limitation of the additive model is that only one primitive can be active at a particular
time step. While complex behaviors can be produced by sequencing the various primitives
in time, the action taken at each time step remains restricted to the behavior prescribed
by a single primitive. Selecting from a discrete set of primitive skills can be effective for
simple systems with a small number of actuated degrees-of-freedom, where an agent is only
required to perform a small number of subtasks at the same time. But as the complexity of
the system grows, an agent might need to perform more and more subtasks simultaneously.
For example, a person can walk, speak, and carry an object all at the same time. Further-
more, these subtasks can be combined in any number of ways to produce a staggering array
of diverse behaviors. This combinatorial explosion can be prohibitively challenging to model
with policies that activate only one primitive at a time.

5.2 Multiplicative Compositional Policies

In this work, we propose multiplicative compositional policies (MCP), a method for compos-
ing primitives that addresses this combinatorial explosion by explicitly factoring the agent’s
behavior – not with respect to time, but with respect to the action space. Our model enables
the agent to activate multiple primitives simultaneously, with each primitive specializing in
different behaviors that can be composed to produce a continuous spectrum of skills. Our
probabilistic formulation accomplishes this by treating each primitive as a distribution over
actions, and the composite policy is obtained by a multiplicative composition of these dis-
tributions,

π(a|s,g) = 1

Z(s,g)

k∏
i=1

πi(a|s,g)wi(s,g), wi(s,g) ≥ 0. (5.2)

Unlike an additive model, which activates only a single primitive per time step, themultiplica-
tive model allows multiple primitives to be activated simultaneously. The gating function
specifies the weights wi(s,g) that determine the influence of each primitive on the composite
action distribution, with a larger weight corresponding to a larger influence. The weights
need not be normalized, but in the following experiments, the weights will be bounded
wi(s,g) ∈ [0, 1]. Z(s,g) is the partition function that ensures the composite distribution is
normalized. While the additive model directly samples actions from the selected primitive’s
distribution, the multiplicative model first combines the primitives, and then samples actions
from the resulting distribution.
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Gaussian Primitives

Gaussian policies are a staple for continuous control tasks, and modeling multiplicative
primitives using Gaussian policies provides a particularly convenient form for the composite
policy. Each primitive πi(a|s,g) = N (µi(s,g),Σi(s,g)) will be modeled by a Gaussian with

mean µi(s,g) and diagonal covariance matrix Σi(s,g) = diag
(
σ1
i (s,g), σ

2
i (s,g), ..., σ

|A|
i

)
,

where σj
i (s,g) denotes the variance of the jth action parameter from primitive i, and |A|

represents the dimensionality of the action space. A multiplicative composition of Gaus-
sian primitives yields yet another Gaussian policy π(a|s,g) = N (µ(s,g),Σ(s,g)). Since the
primitives model each action parameter with an independent Gaussian, the action param-
eters of the composite policy π will also assume the form of independent Gaussians with
component-wise mean µj(s,g) and variance σj(s,g),

µj(s,g) =
1∑k

l=1
wl(s,g)

σj
l (s,g)

k∑
i=1

wi(s,g)

σj
i (s,g)

µj
i (s,g), σj(s,g) =

(
k∑

i=1

wi(s,g)

σj
i (s,g)

)−1

. (5.3)

Note that while wi(s,g) determines a primitive’s overall influence on the composite distribu-
tion, each primitive can also independently adjust its influence per action parameter through
σj
i (s,g). Once the parameters of the composite distribution have been determined, π can

be treated as a regular Gaussian policy, and trained end-to-end using standard automatic
differentiation tools.

Pre-Training and Transfer

The primitives are learned through a set of pre-training tasks. The same set of primitives
is responsible for solving all pre-training tasks, which results in a collection of primitives
that captures the range of behaviors needed for the set of tasks. Note, the primitives are
not manually assigned to particularly tasks. Instead, the primitives are trained jointly in an
end-to-end fashion and the specializations emerge automatically from the learning process.
Algorithm 2 illustrates the overall training process. Jpre(π1:k, w) denotes the objective for the
pre-training tasks for a given set of primitives π1:k and gating function w, and Jtra(π1:k, ω)
denotes the objective for the transfer tasks. When transferring primitives to a new task, the
parameters of the primitives are kept fixed, while a new policy is trained to specify weights
for composing the primitives. Therefore, the primitives can be viewed as a set of nonlinear
basis functions that defines a new action space for use in subsequent tasks. During pre-
training, in order to force the primitives to specialize in distinct skills, we use an asymmetric
model, where only the gating function wi(s,g) observes the goal g, and the primitives have
access only to the state s,

π(a|s,g) = 1

Z(s,g)

k∏
i=1

πi(a|s)wi(s,g), πi(a|s) = N (µi(s),Σi(s)) . (5.4)
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Algorithm 2 MCP Pre-Training and Transfer

1: Pre-training:
2: πi ← random parameters for i = 1, ..., k
3: w ← random parameters
4: π∗

1:k, w
∗ = arg max

π1:k,w
Jpre (π1:k, w)

5: Transfer:
6: ω ← random parameters
7: ω∗ = arg max

ω
Jtra (π

∗
1:k, ω)

This asymmetric model prevents the degeneracy of a single primitive becoming responsible
for all goals, and instead encourages the primitives to learn distinct skills that can then
be composed by the gating function as needed for a given goal. Furthermore, since the
primitives depend only on the state, they can be conveniently transferred to new tasks
that share similar state spaces but may have different goal spaces. When transferring the
primitives to new tasks, the parameters of the primitives πi(a|s) are kept fixed to prevent
catastrophic forgetting, and a new gating function ω(w|s,g) is trained to specify the weights
w = (w1, w2, ...) for composing the primitives.

5.3 Related Work

Learning reusable representations that are transferable across multiple tasks has a long
history in machine learning [268, 34, 13, 197, 225]. Finetuning remains a popular transfer
learning technique when using neural network, where a model is first trained on a source
domain, and then the learned features are reused in a target domain by finetuning via
backpropagation [103, 56]. One of the drawbacks of this procedure is catastrophic forgetting,
as backpropagation is prone to destroying previously learned features before the model is
able to utilize them in the target domain [229, 126, 230].

Hierarchical Policies: A popular method for combining and reusing skills is by construct-
ing hierarchical policies, where a collection of low-level controllers, which we will refer to as
primitives, are integrated together with the aid of a gating function that selects a suitable
primitive for a given scenario [255, 18, 94]. A common approach for building hierarchical
policies is to first train a collection of primitives through a set of pre-training tasks, which
encourages each primitive to specialize in distinct skills [45, 202, 159, 69, 175]. Once trained,
the primitives can be integrated into a hierarchical policy and transferred to new tasks.
End-to-end methods have also been proposed for training hierarchical policies [52, 18, 134,
277]. However, since standard hierarchical policies only activate one primitive at a time, it is
not as amenable for composition or interpolation of multiple primitives in order to produce
new skills.
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Latent Space Models: Our work falls under a class of methods that we will refer to
broadly as latent space models. These methods specify controls through a latent representa-
tion that is then mapped to the controls (i.e. actions) of the underlying system [130]. Similar
to hierarachical models, a latent representation can first be learned using a set of pre-training
tasks, before transferring to downstream tasks [89, 100]. But unlike a standard hierarchi-
cal model, which activates a single primitive at a time, continuous latent variables can be
used to enable more flexible interpolation of skills in the latent space. Various diversity-
promoting pre-training techniques have been proposed for encouraging the latent space to
model semantically distinct behaviors [67, 60, 95]. Demonstrations can also be incorporated
during pre-training to acquire more complex skills [177]. In this work, we present a method
for modeling latent skill representations as a composition of multiplicative primitives. We
show that the additional structure introduced by the primitives enables our agents to tackle
complex continuous control tasks, achieving competitive performance when compared to
previous models, and significantly outperforming prior methods as task complexity grows.

5.4 Experiments

We evaluate the effectiveness of our method on controlling complex simulated characters,
with large numbers of degrees-of-freedom (DoFs), to perform challenging long-horizon tasks.
The tasks vary from simple locomotion tasks to difficult mobile manipulation tasks. The
characters include a simple 14 DoF ant, a 23 DoF biped, a more complex 34 DoF humanoid,
and a 55 DoF T-Rex. Examples of transfer tasks are shown in Figure 5.2. Our experiments
aim to study MCP’s performance on complex temporally extended tasks, and examine the
behaviors learned by the primitives. We also evaluate our method comparatively to determine
the value of multiplicative primitives as compared to more standard additive mixture models,
as well as to prior methods based on options and latent space embeddings. Behaviors learned
by the policies are best seen in the supplementary video1.

Experimental Setup

Pre-Training Tasks: The pre-training tasks in our experiments consist of motion imita-
tion tasks, where the objective is for the character to mimic a corpus of different reference
motions. Each reference motion specifies a sequence of target states {ŝ0, ŝ1, ..., ŝT} that the
character should track at each time step. We use a motion imitation approach following
Peng et al. [207]. But instead of training separate policies for each motion, a single policy,
composed of multiple primitives, is trained to imitate a variety of motion clips. To imitate
multiple motions, the goal gt = (ŝt+1, ŝt+2) provides the policy with target states for the next
two time steps. A reference motion is selected randomly at the start of each episode. To
encourage the primitives to learn to transition between different skills, the reference motion
is also switched randomly to another motion within each episode. The corpus of motion
clips is comprised of different walking and turning motions.

https://xbpeng.github.io/projects/MCP/
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(a) Heading: Humanoid (b) Carry: Biped

(c) Dribble: Humanoid (d) Dribble: T-Rex

Figure 5.2: The transfer tasks pose a challenging combination of locomotion and object
manipulation, such as carrying an object to a target location and dribbling a ball to a goal,
which requires coordination of multiple body parts and temporally extended behaviors.

Transfer Tasks: We evaluate our method on a set of challenging continuous control tasks,
involving locomotion and object manipulation using the various characters.

Heading: First we consider a simple heading task, where the objective is for the character
to move along a target heading direction θ̂t. The heading is changed every timestep by
applying a random perturbation θ̂t = θ̂t−1+∇θt sampled from a uniform distribution ∇θt ∼
Uniform(−0.15rad, 0.15rad). The goal gt = (cos(θ̂t),−sin(θ̂t)) encodes the heading as a unit
vector along the horizontal plane. The reward rt encourages the character to follow the
target heading, and is computed according to

rt = exp
(
−4 (û · vcom − v̂)2

)
. (5.5)

Here, (·) denotes the dot product, vcom represents the character’s center-of-mass (COM)
velocity along the horizontal plane, v̂ = 1m/s represents the target speed that the character
should travel in along the target direction û = (cos(θ̂t),−sin(θ̂t)).

Carry: To evaluate our method’s performance on long horizon tasks, we consider a mobile
manipulation task, where the objective is to move a box from a source location to a target
location. The task can be decomposed into a sequence of subtasks, where the character must
first pickup the box from the source location, before carrying it to the target location, and
placing it on the table. To enable the character to carry the box, when the character makes
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contact with the box at the source location with a specific link (e.g. torso), a virtual joint is
created that attaches the box to the character. Once the box has been placed at the target
location, the joint is detached. The box has a mass of 5kg and is initialized to a random
source location at a distance of [0m, 10m] from the character. The target is initialized to a
distance of [0m, 10m] from the source. Depending on the initial configuration, the task may
require thousands of time steps to complete. The goal gt = (xtar, qtar,xsrc, qsrc,xb, qb,vb, ωb)
encodes the target table’s position xtar and orientation qtar, the source table’s position xsrc

and orientation qsrc, and box’s position xb, orientation qb, linear velocity vb, and angular
velocity ωb. The reward function consists of terms that encourage the character to move
towards the box, as well as to move the box towards the target,

rt = wcvrcvt + wcprcpt + wbvrbvt + wbprbpt , (5.6)

rcvt encourages the character to move towards the box, while rcpt encourages the character to
stay near the box,

rcvt = exp
(
−1.5 min (0,ub · vcom − v̂)2

)
(5.7)

rcpt = exp
(
−0.25 ||xcom − xb||2

)
. (5.8)

ub is a unit vector pointing in the direction of the box with respect to the character’s COM,
vcom is the COM velocity of the character, v̂ = 1m/s is the target speed, xcom is the COM
position, and xb is the box’s position. All quantities are expressed on the horizontal plane.
Similarly, rbvt and rbpt encourages the character to move the box towards the target,

rbvt = exp
(
−1 min (0,utar · vb − v̂)2

)
(5.9)

rbpt = exp
(
−0.5 ||xb − xtar||2

)
. (5.10)

utar represents the unit vector pointing in the direction of the target with respect to the box,
vb is the velocity of the box, and xtar is the target location. The weights for the reward
terms are specified according to (wcv, wcp, wbv, wbp) = (0.1, 0.2, 0.3, 0.4).

Dribble: This task poses a challenging combination of locomotion and object manipula-
tion, where the objective is to move a soccer ball to a target location. Since the policy does
not have direct control over the ball, it must rely on complex contact dynamics in order to
manipulate the movement of the ball while also maintaining balance. The ball is randomly
initialized at a distance of [0m, 10m] from the character, and the target is initialized to a
distance of [0m, 10m] from the ball. The goal gt = (xtar,xb, qb,vb, ωb) encodes the target
location xtar, and ball’s position xb, orientation qb, linear velocity vb, and angular velocity
ωb. The reward function for this task follows a similar structure as the reward for the carry
task, consisting of terms that encourage the character to move towards the ball, as well as
to move the ball towards the target,

rt = wcvrcvt + wcprcpt + wbvrbvt + wbprbpt , (5.11)
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Figure 5.3: Schematic illustrations of the MCP architecture. The gating function receives
both s and g as inputs, which are first encoded by separate networks, with 512 and 256 units.
The resulting features are concatenated and processed with a layer of 256 units, followed by a
sigmoid output layer to produce the weights w(s,g). The primitives receive only s as input,
which is first processed by a common network, with 512 and 256 units, before branching
into separate layers of 256 units for each primitive, followed by a linear output layer that
produces µi(s) and Σi(s) for each primitive. ReLU activation is used for all hidden units.

rcvt encourages the character to move towards the ball, while rcpt encourages the character to
stay near the ball,

rcvt = exp
(
−1.5 min (0,ub · vcom − v̂)2

)
(5.12)

rcpt = exp
(
−0.5 ||xcom − xb||2

)
. (5.13)

ub represents the unit vector pointing in the direction of the ball with respect to the charac-
ter’s COM, vcom is the character’s COM velocity, v̂ = 1m/s is the target speed, xcom is the
COM position, and xb is the ball’s position. Similarly, rbvt and rbpt encourages the character
to move the ball towards the target,

rbvt = exp
(
−1 min (0,utar · vb − v̂)2

)
(5.14)

rbpt = exp
(
−0.5 ||xb − xtar||2

)
. (5.15)

utar represents the unit vector pointing in the direction of the target with respect to the ball,
vb is the velocity of the ball, and xtar is the target location. The weights for the reward
terms are specified according to (wcv, wcp, wbv, wbp) = (0.1, 0.1, 0.3, 0.5).

Model Representation: All experiments use a similar network architecture for the policy,
as illustrated in Figure 5.3. Each policy is composed of k = 8 primitives. The gating function
and primitives are modeled by separate networks that output w(s,g), µi:k(s), and Σi:k(s),
which are then composed according to Equation 5.2 to produce the composite policy. The
state describes the configuration of the character’s body, using a similar set of features
as those described in Chapter 2. Actions from the policy specify target rotations for PD
controllers positioned at each joint. Target rotations for 3D spherical joints are parameterized
using exponential maps. The policies operate at 30Hz and are trained using proximal policy
optimization (PPO) [238].



CHAPTER 5. MULTIPLICATIVE COMPOSITIONAL POLICIES 68

Environment Scratch Finetune Hierarchical Option-Critic MOE Latent Space MCP (Ours)
Heading: Biped 0.927± 0.032 0.970± 0.002 0.834± 0.001 0.952± 0.012 0.918± 0.002 0.970± 0.001 0.976± 0.002
Heading: Humanoid 0.965± 0.010 0.975± 0.008 0.681± 0.006 0.958± 0.001 0.857± 0.018 0.969± 0.002 0.970± 0.003
Heading: T-Rex 0.840± 0.003 0.953± 0.004 − 0.830± 0.004 0.672± 0.011 0.686± 0.003 0.932± 0.007
Carry: Biped 0.027± 0.035 0.324± 0.014 0.001± 0.002 0.346± 0.011 0.013± 0.013 0.456± 0.031 0.575± 0.032
Dribble: Biped 0.072± 0.012 0.651± 0.025 0.546± 0.024 0.046± 0.008 0.073± 0.021 0.768± 0.012 0.782± 0.008
Dribble: Humanoid 0.076± 0.024 0.598± 0.030 0.198± 0.002 0.058± 0.007 0.043± 0.021 0.751± 0.006 0.805± 0.006
Dribble: T-Rex 0.065± 0.032 0.074± 0.011 − 0.098± 0.013 0.070± 0.017 0.115± 0.013 0.781± 0.021
Holdout: Ant 0.951± 0.093 0.885± 0.062 − − − 0.745± 0.060 0.812± 0.030

Table 5.1: Performance statistics of different models on transfer tasks. MCP outperforms
other methods on a suite of challenging tasks with complex simulated characters.

Reference Motions: During pre-training, the primitives are trained by imitating a corpus
of reference motions. The biped and humanoid share the same set of reference motions,
consisting of mocap clips of walking and turning motions collected from a publicly available
database [242]. In total, 230 seconds of motion data is used to train the biped and humanoid.
To retarget the humanoid reference motions to the biped, we simply removed extraneous
joints in the upper body (e.g. arms and head). The reference motions for the T-Rex consist
of artist generated keyframe animations. Due to the cost of manually authored animations,
the T-Rex is trained with substantially less motion data than the other characters. In total,
11 seconds of motion data is used to train the T-Rex. The T-Rex motions include 1 forward
walk, 2 left turns, and 2 right turns. Despite having access to only a small corpus of reference
motions, MCP is nonetheless able to learn a flexible set of primitives that enables the complex
T-Rex character to perform challenging tasks.

Comparisons

We compare MCP to a number of prior methods, including a baseline model trained from
scratch for each transfer task, and a model first pre-trained to imitate a reference motion
before being finetuned on the transfer tasks. To evaluate the effects of being able to ac-
tivate and compose multiple primitives simultaneously, we compare MCP to models that
activate only one primitive at a time, including a hierarchical model that sequences a set
of pre-trained skills [159, 175], an option-critic model [18], and a mixture-of-experts model
(MOE) analogous to Equation 5.1. Finally, we also include comparisons to a continuous
latent space model with an architecture similar to Hausman et al. [95] and Merel et al. [177].
All models, except for the scratch model, are pre-trained with motion imitation [207]. Fig-
ure 5.4 illustrates learning curves for the various methods on the transfer tasks and Table 5.1
summarizes their performance. Each environment is denoted by ”Task: Character”. Perfor-
mance is recorded as the average normalized return across approximately 100 episodes, with
0 being the minimum possible return per episode and 1 being the maximum. Three models
initialized with different random seeds are trained for each environment and method.

Our experiments show that MCP performs well across the suite of tasks. For simple
tasks such as heading, all models show similar performance. But as task complexity in-
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Figure 5.4: Learning curves of the various models when applied to transfer tasks. MCP
substantially improves learning speed and performance on challenging tasks (e.g. carry and
dribble), and is the only method that succeeds on the most difficult task (Dribble: T-Rex).

creases, MCP exhibits significant improvements to learning speed and asymptotic perfor-
mance. Training from scratch is effective for the simple heading task, but is unable to solve
the more challenging carry and dribble tasks. Finetuning proved to be a strong baseline,
but struggles with the more complex morphologies. With higher dimensional action spaces,
independent action noise is less likely to produce useful behaviors. Models that activate only
a single primitive at a time, such as the hierarchical model, option-critic model, and MOE
model, tend to converge to lower asymptotic performance due to their limited expressivity.
MOE is analogous to MCP where only a single primitive is active at a time. Despite using
a similar number of primitives as MCP, being able to activate only one primitive per time
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Figure 5.5: Left: Learning curves on holdout tasks in the Ant environment. Right: Tra-
jectories produced by models with target directions from pre-training, and target directions
from the holdout set after training on transfer tasks. The latent space model is prone to
overfitting to the pre-training tasks, and can struggle to adapt to the holdout tasks.

step limits the variety of behaviors that can be produced by MOE. This suggests that the
flexibility of MCP to compose multiple primitives is vital for more sophisticated tasks. The
latent space model shows strong performance on most tasks. But when applied to characters
with more complex morphologies, such as the humanoid and T-Rex, MCP consistently out-
performs the latent space model, with MCP being the only model that solves the dribbling
task with the T-Rex.

We hypothesize that the performance difference between MCP and the latent space model
may be due to the process through which a latent code w is mapped to an action for the
underlying system. With the latent space model, the pre-trained policy π(a|s,w) acts as
a decoder that maps w to a distribution over actions. We have observed that this decoder
has a tendency to overfit to the pre-training behaviors, and can therefore limit the variety of
behaviors that can be deployed on the transfer tasks. In the case of MCP, if σj

i is the same
across all primitives, then we can roughly view w as specifying a convex combination of the
primitive means µi:k. Therefore, µ1:k forms a convex hull in the original action space, and the
transfer policy ω(w|s,g) can select any action within this set. As such, MCP may provide
the transfer policy with a more flexible range of skills than the latent space model. To test
this hypothesis, we evaluate the different models on transferring to out-of-distribution tasks
using a simple setup. The environment is a variant of the standard Gym Ant environment
[28], where the agent’s objective is to run along a target direction θ̂. During pre-training,
the policies are trained with directions θ̂ ∈ [0, 3/2π]. During transfer, the directions are
sampled from a holdout set θ̂ ∈ [3/2π, 2π]. Figure 5.5 illustrates the learning curves on the
transfer task, along with the trajectories produced by the models when commanded to follow
different target directions from the pre-training and transfer tasks. Indeed we see that the
latent space model is prone to overfitting to the directions from pre-training, and struggles
to adapt to the holdout directions. MCP provides the transfer policy sufficient flexibility to
adapt quickly to the transfer tasks. The scratch and finetune models also perform well on
the transfer tasks, since they operate directly on the underlying action space.
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Figure 5.6: Trajectories of the humanoid’s root along the horizontal plane visualizing the
exploration behaviors of different models. MCP and other models that are pre-trained with
motion imitation produce more structured exploration behaviors.

Exploration Behaviors

To analyze the exploration behaviors produced by the primitives, we visualize the trajectories
obtained by random combinations of the primitives, where the weights are sampled from a
Gaussian and held fixed over the course of a trajectory. Figure 5.6 illustrates the trajectories
of the humanoid’s root produced by various models. Similar to MCP, the trajectories from
the latent space model are also produced by sampling w from a Gaussian. The trajectories
from the hierarchical model are generated by randomly sequencing the set of primitives. The
model trained from scratch simply applies Gaussian noise to the actions, which leads to a
fall after only few time steps. Models that are pre-trained with motion imitation produce
more structured behaviors that travel in different directions.

Primitive Specializations

To analyze the specializations of the primitives, we record the weight of each primitive over
the course of a walk cycle. Figure 5.7 illustrates the weights during pre-training, when the
humanoid is trained to imitate walking motions. The activations of the primitives show
a strong correlation to the phase of a walk cycle, with primitive 1 becoming most active
during left stance and becoming less active during right stance, while primitive 2 exhibits
precisely the opposite behavior. The primitives appear to have developed a decomposition of
a walking gait that is commonly incorporated into the design of locomotion controllers [302].
Furthermore, these specializations consistently appear across multiple training runs. Next,
we visualize the actions proposed by each primitive. Figure 5.7 shows a PCA embedding of
the mean action from each primitive. The actions from each primitive form distinct clusters,
which suggests that the primitives are indeed specializing in different behaviors.
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Figure 5.7: Left: Weights for primitives over the course of a walk cycle. Primitives develop
distinct specializations, with some primitives becoming most active during the left stance
phase, and others during right stance. Right: PCA embedding of actions from each primitive
exhibits distinct clusters.

5.5 Discussion

In this chapter, we presented multiplicative compositional policies (MCP), a method for
learning and composing skills using multiplicative primitives. Despite its simplicity, our
method is able to learn sophisticated behaviors that can be transferred to solve challenging
continuous control tasks with complex simulated agents. Once trained, the primitives form
a new action space that enables more structured exploration and provides the agent with the
flexibility to combine the primitives in novel ways in order to elicit new behaviors for a task.
Our experiments show that MCP can be effective for long horizon tasks and outperforms
prior methods as task complexity grows. While MCP provides a form of spatial abstraction,
we believe that incorporating temporal abstractions is an important direction. During pre-
training, some care is required to select an expressive corpus of reference motions. In future
work, we wish to investigate methods for recovering sophisticated primitive skills without
this supervision.
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Chapter 6

Adversarial Motion Priors

Figure 6.1: Our framework enables physically simulated character to solve challenging tasks
while adopting stylistic behaviors specified by unstructured motion data. Left: A character
learns to traverse an obstacles course using a variety of locomotion skills. Right: A character
learns to walk to and punch a target. (Video1)

In the previous chapters, we showed that motion imitation can be a highly effective
approach for training agents to perform a wide array of sophisticated skills. The primary
motion imitation method we have utilized thus far is motion tracking, where an agent im-
itates a motion by explicitly tracking the sequence of target poses specified by a reference
motion. This is accomplished through a tracking objective that encourages an agent to
minimize the difference between the pose of the character’s body and the pose specified by
the reference motion at every time step. These tracking-based methods can produce high-
quality motions for a large repertoire skills. But extending these techniques to effectively
leverage large unstructured motion datasets remains challenging, since a suitable motion clip
needs to be selected for the character to track at each time step. This selection process is
typically performed by a motion planner, which generates reference trajectories for solving
a particular task [206, 20, 198]. However, constructing an effective motion planner can itself
be a challenging endeavour, and entails significant overhead to annotate and organize the
motion clips for a desired task. For many applications, it is not imperative to exactly track
a particular reference motion. Since a dataset typically provides only a limited collection of
example motions, a character will inevitably need to deviate from the reference motions in
order to effectively perform a given task. Therefore, the intent is often not for the character

1 Supplementary video: https://xbpeng.github.io/projects/AMP/

https://xbpeng.github.io/projects/AMP/
https://xbpeng.github.io/projects/AMP/
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to closely track a particular motion, but to adopt general behavioral characteristics depicted
in the dataset. We refer to these behavioral characteristics as a style.

In this chapter, we aim to develop a system where users can specify high-level task objec-
tives for a character to perform, while the low-level style of a character’s movements can be
controlled through examples provided in the form of unstructured motion clips. To control
the style of a character’s motions, we propose adversarial motion priors (AMP), a method
for imitating behaviors from raw motion clips without requiring any task-specific annota-
tions or organization of the dataset. Given a set of reference motions that constitutes a
desired motion style, the motion prior is modeled as an adversarial discriminator, trained to
differentiate between behaviors depicted in the dataset from those produced by the charac-
ter. The motion prior therefore acts as a general measure of similarity between the motions
produced by a character and the motions in the dataset. By incorporating the motion prior
in a goal-conditioned reinforcement learning framework, our system is able to train physi-
cally simulated characters to perform challenging tasks with natural and life-like behaviors.
Composition of diverse behaviors emerges automatically from the motion prior, without the
need for a motion planner or other mechanism for selecting which clip to imitate.

The central contribution of this chapter is an adversarial learning approach for physics-
based character animation that combines goal-conditioned reinforcement with an adversarial
motion prior, which enables the style of a character’s movements to be controlled via example
motion clips, while the task is specified through a simple reward function. We present
one of the first adversarial learning systems that is able to produce high-quality full-body
motions for physically simulated characters. By combining the motion prior with additional
task objectives, our system provides a convenient interface through which users can specify
high-level directions for controlling a character’s behaviors. These task objectives allow our
characters to acquire more complex skills than those demonstrated in the original motion
clips. While our system is built on well-known adversarial imitation learning techniques,
we propose a number of important design decisions that lead to substantially higher quality
results than those achieved by prior work, enabling our characters to learn highly dynamic
and diverse motors skills from unstructured motion data.

6.1 Related Work

Developing systems that can synthesize natural motions for virtual characters is one of
the fundamental challenges of computer animation. These procedural animation techniques
can be broadly categorized as kinematic methods and physics-based methods. Kinematic
methods generally do not explicitly utilize the equations of motion for motion synthesis.
Instead, these methods often leverage datasets of motion clips to generate motions for a
character [140, 144]. Given a motion dataset, controllers can be constructed to select an
appropriate motion clip to play back for a particular scenario [233, 274, 4]. Data-driven
methods using generative models, such as Gaussian processes [301, 148] and neural networks
[157, 106, 313], have also been applied to synthesize motions online. When provided with
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sufficiently large and high-quality datasets, kinematic methods are able to produce realistic
motions for a large variety of sophisticated skills [144, 151, 4, 142, 251]. However, their
ability to synthesize motions for novel situations can be limited by the availability of data.
For complex tasks and environments, it can be difficult to collect a sufficient amount of data
to cover all possible behaviors that a character may need to perform. This is particularly
challenging for nonhuman and fictional creatures, where motion data can be scarce. In this
work, we combine data-driven techniques with physics-based animation methods to develop
characters that produce realistic and responsive behaviors to novel tasks and environments.

Physics-Based Methods: Physics-based methods address some of the limitations of kine-
matic methods by synthesizing motions from first principles. These methods typically lever-
age a physics simulation, or more general knowledge of the equations of motion, to generate
motions for a character [220, 281]. Optimization techniques, such as trajectory optimization
and reinforcement learning, play a pivotal role in many physics-based methods, where con-
trollers that drive a character’s motions are produced by optimizing an objective function
[196, 182, 258]. While these methods are able to synthesize physically plausible motions for
novel scenarios, even in the absence of motion data, designing effective objectives that lead
to natural behaviors can be exceptionally difficult. Heuristics derived from prior knowledge
of the characteristics of natural motions are commonly included into the objective function,
such as symmetry, stability, effort minimization, and many more [282, 182, 308]. Simulating
more biologically accurate actuators can also improve motion quality [284, 75, 116], but may
nonetheless yield unnatural behaviors.

Imitation Learning: The challenges of designing objective functions that lead to natural
motions have spurred the adoption of data-driven physics-based animation techniques [320,
244, 49, 145, 137], which utilizes reference motion data to improve motion quality. Reference
motions are typically incorporated through an imitation objective that encourages a char-
acter to imitate motions in the dataset. The imitation objective is commonly implemented
as a tracking objective, which attempts to minimize the pose error between the simulated
character and target poses from a reference motion [249, 145, 161, 160, 207]. Since the
pose error is generally computed with respect to a single target pose at a time, some care
is required to select an appropriate target pose from the dataset. A simple strategy is to
synchronize the simulated character with a given reference motion using a phase variable
[207, 210, 143], which is provided as an additional input to the controller. The target pose
at each time step can then be conveniently determined by selecting the target pose according
to the phase. This strategy has been effective for imitating individual motion clips, but it
can be difficult to scale to datasets containing multiple disparate motions, as it may not
be possible to synchronize and align multiple reference motions according to a single-phase
variable. Recent methods have extended these tracking-based techniques to larger motion
datasets by explicitly providing target poses from the reference motion that is being tracked
as inputs to the controller [39, 20, 198, 290]. This then allows a controller to imitate different
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motions depending on the input target poses. However, selecting the appropriate motion for
a character to imitate in a given scenario can still entail significant algorithmic overhead.
These methods often require a high-level motion planner that selects which motion clip the
character should imitate for a given task [206, 20, 198]. The character’s performance on a
particular task can therefore be constrained by the performance of the motion planner.

Another major limitation of tracking-based imitation techniques is the need for a pose
error metric when computing the tracking objective [244, 161, 207]. These error metrics are
often manually-designed, and it can be challenging to construct and tune a common metric
that is effective across all skills that a character is to imitate. Adversarial imitation learning
provides an appealing alternative [1, 319, 104], where instead of using a manually-designed
imitation objective, these algorithms train an adversarial discriminator to differentiate be-
tween behaviors generated by an agent from behaviors depicted in the demonstration data
(e.g. reference motions). The discriminator then serves as the objective function for training
a control policy to imitate the demonstrations. While these methods have shown promising
results for motion imitation tasks [176, 287], adversarial learning algorithms can be notori-
ously unstable and the resulting motion quality still falls well behind what has been achieved
with state-of-the-art tracking-based techniques. Peng et al. [211] was able to able to produce
substantially more realistic motions by regularizing the discriminator with an information
bottleneck. However, their method still requires a phase variable to synchronize the policy
and discriminator with the reference motion. Therefore, their results are limited to imitat-
ing a single motion per policy, and thus not suitable for learning from large diverse motion
datasets. In this work, we propose an adversarial method for learning general motion pri-
ors from large unstructured datasets that contain diverse motion clips. Our approach does
not necessitate any synchronization between the policy and reference motion. Furthermore,
our approach does not require a motion planner, or any task-specific annotation and seg-
mentation of the motion clips [206, 198, 20]. Instead, composition of multiple motions in
furtherance of a task objective emerges automatically through the motion prior. We also
present a number of design decisions for stabilizing the adversarial training process, leading
to consistent and high-quality results.

Latent Space Models: Latent space models can also act as a form of motion prior that
leads to more life-like behaviors. These models specify controls through a learned latent
representation, which is then mapped to controls for the underlying system [31, 100, 67, 95].
The latent representation is typically learned through a pre-training phase using supervised
learning or reinforcement learning techniques to encode a diverse range of behaviors into
a latent representation. Once trained, this latent representation can be used to build a
control hierarchy, where the latent space model acts as a low-level controller, and a separate
high-level controller is trained to specify controls via the latent space [67, 89, 167]. For
motion control of simulated characters, the latent representation can be trained to encode
behaviors from reference motion clips, which then constrains the behavior of a character to
be similar to those observed in the motion data, therefore leading to more natural behaviors
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for downstream tasks [177, 209]. However, since the realism of the character’s motions
is enforced implicitly through the latent representation, rather than explicitly through an
objective function, it is still possible for the high-level controller to specify latent encodings
that produce unnatural behaviors [209, 174]. Luo et al. [166] proposed an adversarial domain
confusion loss to prevent the high-level controller from specifying encodings that are different
from those observed during pre-training. However, since this adversarial objective is applied
in the latent space, rather than on the actual motions produced by the character, the model
is nonetheless prone to generating unnatural behaviors. Our proposed motion prior directly
enforces similarity between the motions produced by the character and those in the reference
motion dataset, which enables our method to produce higher fidelity motions than what has
been demonstrated by latent space models. Our motion prior also does not require a separate
pre-training phase, and instead, can be trained jointly with the policy.

6.2 Overview

Given a dataset of reference motions and a task objective defined by a reward function, our
system synthesizes a control policy that enables a character to achieve the task objective in a
physically simulated environment, while utilizing behaviors that resemble the motions in the
dataset. Crucially, the character’s behaviors need not exactly match any specific motion in
the dataset, instead its movements need only to adopt more general characteristics exhibited
by the corpus of reference motions. These reference motions collectively provide an example-
based definition of a behavioral style. By providing the system with different motion datasets,
the character can then be trained to perform a task in a variety of distinct styles.

Figure 6.2 provides a schematic overview of the system. The motion datasetM consists of
a collection of reference motions, where each motion mi = {q̂i

t} is represented as a sequence
of poses q̂i

t. The motion clips may be collected from the mocap of real-life actors or from
artist-authored keyframe animations. Unlike previous frameworks, our system can be applied
directly on raw motion data, without requiring task-specific annotations or segmentation of
a clip into individual skills. The motion of the simulated character is controlled by a policy
π(at|st,g) that maps the state of the character st and a given goal g to a distribution over
actions at. The actions from the policy specify target positions for proportional-derivative
(PD) controllers positioned at each of the character’s joints, which in turn produce control
forces that drive the motion of the character. The goal g specifies a task reward function
rGt = rG(st, at, st+1,g), which defines high-level objectives for the character to satisfy (e.g.
walking in a target direction or punching a target). The style objective rSt = rS(st, st+1) is
specified by an adversarial discriminator, trained to differentiate between motions depicted
in the dataset from motions produced by the character. The style objective therefore acts
as a task-agnostic motion prior that provides an a-priori estimate of the naturalness or style
of a given motion, independent of a specific task. The style objective then encourages the
policy to produce motions that resemble behaviors depicted in the dataset.
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Figure 6.2: Schematic overview of the system. Given a motion dataset defining a desired
motion style for the character, the system trains a motion prior that specifies style-rewards
rSt for the policy during training. These style-rewards are combined with task-rewards rGt
and used to train a policy that enables a simulated character to satisfy task-specific goals g,
while also adopting behaviors that resemble the reference motions in the dataset.

6.3 Generative Adversarial Imitation Learning

Our system combines techniques from goal-conditioned reinforcement learning and genera-
tive adversarial imitation learning to train control policies that enable simulated characters
to perform challenging tasks in a desired behavioral style. Generative adversarial imita-
tion learning (GAIL) [104] adapts techniques developed for generative adversarial networks
(GAN) [80] to the domain of imitation learning. In the interest of brevity, we exclude the
goal g from the notation, but the following discussion readily generalizes to goal-conditioned
settings. Given a dataset of demonstrationsM = {(si, ai)}, containing states si and actions
ai recorded from an unknown demonstration policy, the objective is to train a policy π(a|s)
that imitates the behaviors of the demonstrator. Behavioral cloning can be used to directly
fit a policy to map from states observed inM to their corresponding actions using supervised
learning [214, 25]. However, if only a small amount of demonstrations are available, then
behavioral cloning techniques are prone to drift [227]. Furthermore, behavioral cloning is
not directly applicable in settings where the demonstration actions are not observable (e.g.
reference motion data).

GAIL addresses some of the limitations of behavioral cloning by learning an objective
function that measures the similarity between the policy and the demonstrations, and then
updating π via reinforcement learning to optimize the learned objective. The objective is
modeled as a discriminator D(s, a), trained to predict whether a given state s and action a
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is sampled from the demonstrationsM or generated by running the policy π,

arg min
D

−EdM(s,a) [log (D(s, a))]− Edπ(s,a) [log (1−D(s, a))] . (6.1)

dM(s, a) and dπ(s, a) denote the state-action distribution of the dataset and policy respec-
tively. The policy is then trained using RL with rewards specified by,

rt = −log (1−D(st, at)) . (6.2)

This adversarial training procedure can be interpreted as training a policy to produce states
and actions that appear to the discriminator as being indistinguishable from the demonstra-
tions. It can be shown that this objective minimizes the Jensen-Shannon divergence between
dM(s, a) and dπ(s, a) [193, 122].

6.4 Adversarial Motion Prior

In this work, we consider reward functions that consist of two components specifying: 1)
what task a character should perform, and 2) how the character should go about performing
that task,

r(st, at, st+1,g) = wGrG(st, at, st+1,g) + wSrS(st, st+1). (6.3)

The what is represented by a task-specific reward rG(st, at, st+1,g), which defines high-level
objectives that a character should satisfy (e.g. moving to a target location). The how is
represented through a learned task-agnostic style-reward rS(st, st+1), which specifies low-
level details of the behaviors that the character should adopt when performing the task
(e.g., walking vs. running to a target). The two reward terms are combined linearly with
weights wG and wS. The task-reward rG can be relatively intuitive and simple to design.
However, it can be exceptionally difficult to design a style-reward rS that leads a character
to learn naturalistic behaviors, or behaviors that conform to a particular style. Learning
effective style objectives will therefore be the primary focus of this work.

We propose to model the style-reward with a learned discriminator, which we refer to
as an adversarial motion prior (AMP), by analogy to the adversarial pose priors that were
previously proposed for vision-based pose estimation tasks [119]. Unlike standard tracking
objectives, which measure pose similarity with respect to a specific reference motion, the
motion prior returns a general score indicating the similarity of the character’s motion to
the motions depicted in the dataset, without explicitly comparing to a particular motion
clip. Given a motion dataset, the motion prior is trained using the GAIL framework to
predict whether a state transition (st, st+1) is a real sample from the dataset or a fake
sample produced by the character. The motion prior is independent of the task-specific goal
g, therefore a single motion prior can be applied to multiple tasks, and different motion
priors can be applied to train policies that perform the same task but in different styles. By
combining GAIL with additional task objectives, our approach decouples task specification
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from style specification, thereby enabling our characters to perform tasks that may not be
depicted in the original demonstrations. However, adversarial RL techniques are known to
be highly unstable. In the following sections, we discuss a number of design decisions to
stabilize the training process and produce higher fidelity results.

Imitation from Observations

The original formulation of GAIL requires access to the demonstrator’s actions [104]. How-
ever, when the demonstrations are provided in the form of motion clips, the actions taken
by the demonstrator are unknown, and only states are observed in the data. To extend
GAIL to settings with state-only demonstrations, the discriminator can be trained on state
transitions D(s, s′) instead of state-action pairs D(s, a) [272],

arg min
D

− EdM(s,s′) [log (D(s, s′))]− Edπ(s,s′) [log (1−D(s, s′))] . (6.4)

dM(s, s′) and dπ(s, s′) denote the likelihood of observing a state transition from s to s′

in the dataset M and by following policy π respectively. Note that if the demonstrator
is different from the agent (e.g. a human actor), the observed state transitions may not
be physically consistent for the agent, and therefore impossible for the agent to perfectly
reproduce. Despite this discrepancy, we show that the discriminator still provides an effective
objective for imitating a wide range of behaviors.

Least-Squares Discriminator

The standard GAN objective detailed in Equation 6.4 typically uses a sigmoid cross-entropy
loss function. However, this loss tends to lead to optimization challenges due to vanishing
gradients as the sigmoid function saturates, which can hamper training of the policy [14]. A
myriad of techniques have been proposed to address these optimization challenges [216, 235,
121, 14, 22, 127, 86, 178]. In this work, we adopt the loss function proposed for least-squares
GAN (LSGAN) [170], which has demonstrated more stable training and higher quality results
for image synthesis tasks. The following objective is used to train the discriminator,

arg min
D

EdM(s,s′)

[
(D(s, s′)− 1)

2
]
+ Edπ(s,s′)

[
(D(s, s′) + 1)

2
]
. (6.5)

The discriminator is trained by solving a least-squares regression problem to predict a score
of 1 for samples from the dataset and −1 for samples recorded from the policy. The reward
function for training the policy is then given by

r(st, st+1) = max
[
0, 1− 0.25(D(st, st+1)− 1)2

]
. (6.6)

The additional offset, scaling, and clipping are applied to bound the reward between [0, 1],
as is common practice in previous RL frameworks [202, 207, 262]. Mao et al. [170] showed
that this least-squares objective minimizes the Pearson χ2 divergence between dM(s, s′) and
dπ(s, s′).
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Discriminator Observations

Since the discriminator specifies rewards for training the policy, selecting an appropriate set
of features for use by the discriminator when making its predictions is vital to provide the
policy with effective feedback. As such, before a state transition is provided as input to the
discriminator, we first apply an observation map Φ(st) that extracts a set of features relevant
for determining the characteristics of a given motion. The resulting features are then used
as inputs to the discriminator D(Φ(s),Φ(s′)). The set of features include:

• Linear velocity of the root (3D).

• Angular velocity of the root (3D).

• Local rotation of each joint using the tangent-normal encoding (6D).

• Local velocity of each joint (3D).

• 3D positions of the end-effectors (e.g. hands and feet) (3D).

Similar to the state features, all features in the discriminator’s observation are also recorded
in the character’s local coordinate frame. This set of observation features is selected to
provide a compact representation of the motion across a single state transition. The ob-
servations also do not include any task-specific features, thus enabling the motion prior to
be trained without requiring task-specific annotation of the reference motions, and allowing
motion priors trained with the same dataset to be used for different tasks.

Gradient Penalty

The interplay between the discriminator and generator in a GAN often results in unstable
training dynamics. One source of instability is due to function approximation errors in the
discriminator, where the discriminator may assign nonzero gradients on the manifold of real
data samples [178]. These nonzero gradients can cause the generator to overshoot and move
off the data manifold, instead of converging to the manifold, leading to oscillations and
instability during training. To mitigate this phenomenon, a gradient penalty can be applied
to penalize nonzero gradients on samples from the dataset [127, 86, 178]. We incorporate
this technique to improve training stability. The discriminator objective is then given by:

arg min
D

EdM(s,s′)

[
(D(Φ(s),Φ(s′))− 1)

2
]
+ Edπ(s,s′)

[
(D (Φ(s),Φ(s′)) + 1)

2
]

+
wgp

2
EdM(s,s′)

[∣∣∣∣∇ϕD(ϕ)
∣∣
ϕ=(Φ(s),Φ(s′))

∣∣∣∣2] , (6.7)

where wgp is a manually-specified coefficient. Note, the gradient penalty is calculated with
respect to the observation features ϕ = (Φ(s),Φ(s′)), not the full set of state features (s, s′).
As we show in our experiments, the gradient penalty is crucial for stable training and effective
performance.
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6.5 Model Representation

Given a high-level task objective and a dataset of reference motions, the agent is responsible
for learning a control policy that fulfills the task objectives, while utilizing behaviors that
resemble the motions depicted in the dataset. In this section, we detail the design of various
components of the learning framework.

Network Architecture

Similar to previous chapters, each policy π is modeled by a neural network that maps a given
state st and goal g to a Gaussian distribution over actions π(at|st,g) = N (µ(st,g),Σ), with
an input-dependent mean µ(st,g) and a fixed diagonal covariance matrix Σ. The mean
is specified by a fully-connected network with two hidden layers, consisting of 1024 and
512 ReLU [187], followed by a linear output layer. The values of the covariance matrix
Σ = diag(σ1, σ2, ...) are manually-specified and kept fixed over the course of training. The
value function V (st,g) and discriminator D(st, st+1) are modeled by separate networks with
a similar architecture as the policy.

Training

Our policies are trained using a combination of GAIL [104] and proximal-policy optimization
(PPO) [238]. Algorithm 3 provides an overview of the training process. At each time step t,
the agent receives a task-reward rGt = rG(st, at, st+1,g) from the environment, it then queries
the motion prior for a style-reward rSt = rS(st, st+1), computed according to Equation 6.6.
The two rewards are combined according to Equation 6.3 to yield the reward for the partic-
ular timstep. Reference state initialization is applied by initializing the character to states
sampled randomly from all motion clips in the dataset.

Once a batch of data has been collected with the policy, the recorded trajectories are used
to update the policy and value function. The policy and value function are updated using
the same procedure as Chapter 3. Each trajectory recorded from the policy is also stored in
a replay buffer B, containing trajectories from past training iterations. The discriminator is
updated according to Equation 6.7 using minibatches of transitions (s, s′) sampled from the
reference motion data set M and transitions from the replay buffer B. The replay buffer
helps to stabilize training by preventing the discriminator from overfitting to the most recent
batch of trajectories from the policy.

6.6 Tasks

To evaluate AMP’s effectiveness for controlling the style of a character’s motions, we apply
our framework to train complex 3D simulated characters to perform various motion control
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Algorithm 3 Training with AMP

1: inputM: dataset of reference motions
2: D ← initialize discriminator
3: π ← initialize policy
4: V ← initialize value function
5: B ← ∅ initialize reply buffer

6: while not done do
7: for trajectory i = 1, ...,m do
8: τ i ← {(st, at, r

G
t )

T−1
t=0 , sGT ,g} collect trajectory with π

9: for time step t = 0, ..., T − 1 do
10: dt ← D(Φ(st),Φ(st+1))
11: rSt ← calculate style reward according to Equation 6.6 using dt
12: rt ← wGrGt + wSrSt
13: record rt in τ i

14: end for
15: store τ i in B
16: end for

17: for update step = 1, ..., n do
18: bM ← sample batch of K transitions {(sj, s′j)}Kj=1 fromM
19: bπ ← sample batch of K transitions {(sj, s′j)}Kj=1 from B
20: update D according to Equation 6.7 using bM and bπ

21: end for

22: update V and π using data from trajectories {τ i}mi=1

23: end while

tasks using different motion styles. The characters include a 34 DoF humanoid, a 59 DoF
T-Rex, and a 64 DoF dog.

Target Heading: In this task, the character’s objective is to move along a target heading
direction d∗ at a target speed v∗. The goal for the policy is specified as gt = (d̃∗

t , v
∗), with

d̃∗
t being the target direction in the character’s local coordinate frame. The task-reward is

calculated according to:

rGt = exp
(
−0.25 (v∗ − d∗ · ẋcom

t )2
)
, (6.8)

where ẋcom
t is the center-of-mass velocity of the character at time step t, and the target speed

is selected randomly between v∗ ∈ [1, 5]m/s. For slower moving styles, such as Zombie and
Stealthy, the target speed is fixed at 1m/s.
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Target Location: In this task, the character’s objective is to move to a target location
x∗. The goal gt = x̃∗

t records the target location in the character’s local coordinate frame.
The task-reward is given by:

rGt = 0.7 exp
(
−0.5||x∗ − xroot

t ||2
)

+ 0.3 exp
(
− (max (0, v∗ − d∗

t · ẋcom
t ))2

)
. (6.9)

Here, v∗ = 1m/s specifies a minimum target speed at which the character should move
towards the target, and the character will not be penalized for moving faster than this
threshold. d∗

t is a unit vector on the horizontal plane that points from the character’s root
to the target.

Dribbling: To evaluate our system on more complex object manipulation tasks, we train
policies for a dribbling task, where the character’s objective is to dribble a soccer ball to a
target location. The reward function is given by:

rGt = 0.1rcvt + 0.1rcpt + 0.3rbvt + 0.5rbpt (6.10)

rcvt = exp
(
−1.5 max

(
0, v∗ − dball

t · ẋcom
t

)2)
(6.11)

rcpt = exp
(
−0.5 ||xball

t − xcom
t ||2

)
(6.12)

rbvt = exp
(
−max

(
0, v∗ − d∗

t · ẋball
t

)2)
(6.13)

rbpt = exp
(
−0.5 ||x∗

t − xcom
t ||2

)
. (6.14)

rcvt and rcpt encourages the character to move towards and stay near the ball, where xball
t and

ẋball
t represent the position and velocity of the ball, dball

t is a unit vector pointing from the
character to the ball, and v∗ = 1m/s is the target velocity at which the character should
move towards the ball. Similarly, rbvt and rbpt encourages the character to move the ball
to the target location, with d∗

t denoting a unit vector pointing from the ball to the target.
The goal gt = x̃∗

t records the relative position of the target location with respect to the
character. The state st is augmented with additional features that describe the state of the
ball, including the position x̃ball

t , orientation q̃ball
t , linear velocity ˜̇xball

t , and angular velocity
˜̇qball
t of the ball in the character’s local coordinate frame.

Strike: To demonstrate AMP’s ability to compose diverse behaviors, we consider a task
where the character’s objective is to strike a target using a designated end-effector (e.g.
hands). The target may be located at various distances from the character. Therefore, the
character must first move close to the target before striking it. These distinct phases entail
different optimal behaviors, and thus require the policy to compose and transition between
the appropriate skills. The goal gt = (x̃∗

t , ht) records the location of the target x̃∗
t in the

character’s local coordinate frame, along with an indicator variable ht that specifies if the
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target has already been hit. The task-reward is partitioned into three phases:

rGt =


1, target has been hit

0.3 rneart + 0.3, ||x∗ − xroot
t || < 1.375m

0.3 rfart , otherwise

. (6.15)

If the character is far from the target x∗, rfart encourages the character to move to the
target using a similar reward function as the Target Location task (Equation 6.9). Once the
character is within a given distance of the target, rneart encourages the character to strike the
target with a particular end-effector,

rneart = 0.2 exp
(
−2||x∗ − xeff

t ||2
)
+ 0.8 clip

(
2

3
d∗
t · ẋeff

t , 0, 1

)
,

where xeff
t and ẋeff

t denote the position and velocity of the end-effector, and d∗
t is a unit vector

pointing from the character’s root to the target. After striking the target, the character
receives a constant reward of 1 for the remaining time steps.

Obstacles: Finally, we consider tasks that involve visual perception and interaction with
more complex environments, where the character’s objective is to traverse an obstacle-filled
terrain, while maintaining a target speed. Policies are trained for two types of environments:
1) An environment containing a combination of obstacles include gaps, steps, and overhead
obstructions that the character must duck under. 2) An environment containing narrow
stepping stones that requires more precise contact planning. Examples of the environments
are available in Figure 6.1 and 6.3. The task-reward is the same as the one used for the
Target Heading task (Equation 6.8), except the target heading is fixed along the direction
of forward progress. In order for the policy to perceive the upcoming obstacles, the state
is augmented with a 1D height-field of the upcoming terrain. The height-field records the
height of the terrain at 100 sample locations, uniformly spanning 10m ahead of the character.

6.7 Results

We evaluate our framework’s effectiveness on a suite of challenging motion control tasks
with complex simulated characters. First, we demonstrate that our approach can readily
scale to large unstructured datasets containing diverse motion clips, which then enables
our characters to perform challenging tasks in a natural and life-like manner by imitating
behaviors from the dataset. The characters automatically learn to compose and generalize
different skills from the motion data in order to fulfill high-level task objectives, without
requiring mechanisms for explicit motion selection. We then evaluate AMP on a single-
clip imitation task, and show that our method is able to closely imitate a diverse corpus
of dynamic and acrobatic skills, producing motions that are nearly indistinguishable from
reference motions recorded from human actors. Behaviors learned by the characters can be
viewed in the supplementary video1.

https://xbpeng.github.io/projects/AMP/
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(a) Humanoid: Target Location (Locomotion) (b) Humanoid: Target Location (Zombie)

(c) Humanoid: Target Heading (Locomotion + Getup)

(d) Humanoid: Dribble (Locomotion) (e) Humanoid: Strike (Walk + Punch)

(f) Humanoid: Obstacles (Run + Leap + Roll)

(g) Humanoid: Stepping Stones (Cartwheel) (h) Humanoid: Stepping Stones (Jump)

Figure 6.3: The motion prior can be trained with large datasets of diverse motions, enabling
simulated characters to perform complex tasks by composing a wider range of skills. Each
environment is denoted by ”Character: Task (Dataset)”.

Experimental Setup

All environments are simulated using the Bullet physics engine [30], with a simulation fre-
quency of 1.2kHz. The policy is queried at 30Hz, and each action specifies target positions
for PD controllers positioned at the character’s joints. All neural networks are implemented
using Tensorflow [171]. Reference motion clips are collected from a combination of public
mocap libraries, custom recorded mocap clips, and artist-authored keyframe animations [43,
242, 313]. Hyperparameter settings used in the AMP experiments are available in Table 6.1.
The gradient penalty coefficient is set to wgp = 10. For single-clip imitation tasks, we found



CHAPTER 6. ADVERSARIAL MOTION PRIORS 87

Parameter Value
wG Task-Reward Weight 0.5
wS Style-Reward Weight 0.5
wgp Gradient Penalty 10
Samples Per Update Iteration 4096
Batch Size 256
K Discriminator Batch Size 256
π Policy Stepsize (Single-Clip Imitation) 2× 10−6

π Policy Stepsize (Tasks) 4× 10−6

V Value Stepsize (Single-Clip Imitation) 10−4

V Value Stepsize (Tasks) 2× 10−5

D Discriminator Stepsize 10−5

B Discriminator Replay Buffer Size 105

γ Discount (Single-Clip Imitation) 0.95
γ Discount (Tasks) 0.99
SGD Momentum 0.9
GAE(λ) 0.95
TD(λ) 0.95
PPO Clip Threshold 0.2

Table 6.1: AMP hyperparameters.

that a smaller discount factor γ = 0.95 allows the character to more closely imitate a given
reference motion. A larger discount factor γ = 0.99 is used for experiments that include ad-
ditional task objective, since these tasks may require longer horizon planning, such as Dribble
and Strike. Depending on the task and character, each policy is trained with 100-300 million
samples, requiring about 30-140 hours on 16 CPU cores.

Tasks

In this section, we demonstrate AMP’s effectiveness for controlling the style of a charac-
ter’s motions as it performs other high-level tasks. The weights for the task-reward and
style-reward are set to wG = 0.5 and wS = 0.5 for all tasks. The character can be trained
to perform tasks in a variety of distinct styles by providing the motion prior with different
datasets. Figure 6.3 illustrates behaviors learned by the Humanoid on various tasks. Ta-
ble 6.2 records the performance of the policies with respect to the normalized task return,
and summary statistics of the different datasets used to train the motion priors are available
in Table 6.3. AMP can accommodate large unstructured datasets, with the largest dataset
containing 56 clips from 8 different human actors, for a total of 434s of motion data. In
the case of the Target Heading task, a motion prior trained using a locomotion dataset,
containing walking, running, and jogging motions, leads to a policy that executes different
locomotion gaits depending on the target speed. Transitions between various gaits emerge
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Character Task Dataset Task Return
Humanoid Target Locomotion 0.90± 0.01

Heading Walk 0.46± 0.01
Run 0.63± 0.01

Stealthy 0.89± 0.02
Zombie 0.94± 0.00

Target Locomotion 0.63± 0.01
Location Zombie 0.50± 0.00
Obstacles Run + Leap + Roll 0.27± 0.10
Stepping Cartwheel 0.43± 0.03
Stones Jump 0.56± 0.12
Dribble Locomotion 0.78± 0.05

Zombie 0.60± 0.04
Strike Walk + Punch 0.73± 0.02

T-Rex
Target
Location Locomotion 0.36± 0.03

Table 6.2: Performance statistics of combining AMP with additional task objectives. Perfor-
mance is recorded as the average normalized task return, with 0 being the minimum possible
return per episode and 1 being the maximum possible return. The return is averaged across
3 models initialized with different random seeds, with 32 episodes recorded per model. The
motion prior can be trained with different datasets to produce policies that adopt distinct
stylistic behaviors when performing a particular task.

automatically through the motion prior, with the character adopting walking gaits at slow
speeds (∼ 1m/s), switching to jogging gaits at faster speeds (∼ 2.5m/s), and breaking into
a fast run as the target speed approaches (∼ 4.5m/s). The motion prior also leads to other
human-like strategies, such as banking into turns, and slowing down before large changes in
direction. The policies develop similar behaviors for the Target Location task. When the
target is near the character, the policy adopts slower walking gaits. But when the target is
further away, the character automatically transitions into a run.

These intricate behaviors arise automatically from the motion prior, without requiring a
motion planner to explicitly select which motion the character should execute in a given sce-
nario, such as those used in prior systems [206, 20, 166]. In addition to standard locomotion
gaits, the motion prior can also be trained for more stylistic behaviors, such as walking like a
shambling zombie or walking in a stealthy manner. Our framework enables the character to
acquire these distinct styles by simply providing the motion prior with different unstructured
motion datasets.

To determine whether the transitions between distinct gaits are a product of the motion
prior or a result of the task objective, we train policies to perform the Target Heading task
using limited datasets containing only walking or running data. Figure 6.4 compares the
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Character Dataset Size (s) Clips Subjects
Humanoid Cartwheel 13.6 3 1

Jump 28.6 10 4
Locomotion 434.1 56 8

Run 204.4 47 3
Run + Leap + Roll 22.1 10 7

Stealthy 136.5 3 1
Walk 229.6 9 5

Walk + Punch 247.8 15 9
Zombie 18.3 1 1

T-Rex Locomotion 10.5 5 1

Table 6.3: Summary statistics of the different datasets used to train the motion priors. We
record the total length of motion clips in each dataset, along with the number of clips, and
the number of subjects (e.g. human actors) that the clips were recorded from.

performance of policies trained with these different datasets. Policies trained with only
walking motions learn to perform only walking gaits, and do not show any transitions to
faster running gaits even at faster target speeds. As a result, these policies are not able to
achieve the faster target speeds. Similarly, policies trained with only running motions are
not able to match slower target speeds. Training the motion prior with a diverse dataset
results in more flexible and optimal policies that are able to achieve a wider range of target
speeds. This indicates that the diversity of behaviors exhibited by our policies can in large
part be attributed to the motion prior, and is not solely a result of the task objective.

To further illustrate AMP’s ability to compose disparate skills, we introduce additional
reference motions into the dataset for getting up from the ground in various configurations.
These additional motion clips then enable our character to recover from a fall and continue to
perform a given task (Figure 6.3(c)). The policy also discovers novel recovery behaviors that
are not present in the dataset. When the character falls forward, it tucks its body into a roll
during the fall in order to more quickly transition into a getup behavior. While this particular
behavior is not present in the motion clips, the policy is able to generalize behaviors observed
in the dataset to produce novel and naturalistic strategies for new scenarios.

For the Strike task (Figure 6.1), the motion prior is trained using a collection of walking
motion clips and punching motion clips. The resulting policy learns to walk to the target
when it is far away, and then transition to a punching motion once it is within range to hit
the target. Note that the motion clips in the dataset contain strictly walking-only motions
or punching-only motion, and none of the clips show an actor walking to and punching
a target. Instead, the policy learns to temporally sequence these different behaviors in
order to fulfill the high-level task objectives. Again, this composition of different skills
emerges automatically from the motion prior, without requiring a motion planner or other
mechanisms for motion selection.
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Figure 6.4: Performance of Target Heading policies trained with different datasets. Left:
Learning curves comparing the normalized task returns of policies trained with a large dataset
of diverse locomotion clips to policies trained with only walking or running reference motions.
Three models are trained using each dataset. Right: Comparison of the target speed
with the average speed achieved by the different policies. Policies trained using the larger
Locomotion dataset is able to more closely follow the various target speeds by imitating
different gaits.

Finally, our system can also train visuomotor policies for traversing obstacle-filled envi-
ronments. By providing the motion prior with a collection of locomotion clips and rolling
clips, the character learns to utilize these diverse behaviors to traverse the different obstacles.
The character learns to leap over obstacles such as gaps. But as it approaches the overhead
obstructions, the character transitions into a rolling behavior in order to pass underneath
the obstacles. Previous systems that have demonstrated similar composition of diverse ma-
neuvers for clearing obstacle have typically required a separate motion planner or manual
annotations [162, 198]. Our approach provides a unified framework where the same under-
lying algorithm is able to learn how to perform the various skills and which skill to execute
in a given scenario. Furthermore, the character can also be trained to traverse obstacles in
distinct styles by providing the motion prior with different motion clips, such as jumping or
cartwheeling across stepping stones (Figure 6.3).

Comparisons

An alternative approach for learning a motion prior from unstructured motion data is to
build a latent space model [100, 167, 209, 174]. Unlike AMP, which encourages a character to
adopt a desired motion style directly through an optimization objective, a latent space model
enforces a particular motion style indirectly, by using a latent representation to constrain
the policy’s actions to those that produce motions of the desired style. To compare AMP to
these latent space models, we first pre-train a low-level controller using a motion tracking
objective to imitate the same set of reference motions that are used to train the motion prior.
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Figure 6.5: Learning curves comparing the task performance of AMP to latent space models
(Latent Space) and policies trained from scratch without motion data (No Data). Our
method achieves comparable performance across the various tasks, while also producing
higher fidelity motions.

The learned low-level controller is then used to train separate high-level controllers for each
downstream task. Note that reference motions are used only during pre-training, and the
high-level controllers are trained to optimize only the task objectives.

A qualitative comparison of the behaviors learned using AMP and the latent space model
is available in the supplementary video1. Figure 6.5 compares the task performance of the
different models, along with a baseline model trained from scratch for each task without
leveraging any motion data. Both AMP and the latent space models are able to produce
substantially more life-like behaviors than the baseline models. For the latent space models,
since the low-level and high-level controllers are trained separately, it is possible for the distri-
bution of encodings specified by the high-level controller to be different than the distribution
of encodings observed by the low-level controller during pre-training [166]. This in turn can
result in unnatural motions that deviate from the behaviors depicted in the original dataset.
AMP enforces a motion style directly through the reward function, and is therefore able to
better mitigate some of these artifacts. The more structured exploration behaviors from the
latent space model enable the policies to solve downstream tasks more quickly. However, the
pre-training stage used to construct the low-level controller can itself be sample intensive.
In our experiments, the low-level controllers are trained using 300 million samples before
being transferred to downstream tasks. With AMP, no such pre-training is necessary, and
the motion prior can be trained jointly with the policy.

Single-Clip Imitation

Although our goal is to train characters with large motion datasets, to evaluate the effective-
ness of our framework for imitating behaviors from motion clips, we consider a single-clip
imitation task. In this setting, the character’s objective is to imitate a single motion clip at a
time, without additional task objectives. Therefore, the policy is trained solely to maximize
the style-reward rSt from the motion prior. Unlike previous motion tracking methods, our
approach does not require a manually designed tracking objective or a phase-based synchro-

https://xbpeng.github.io/projects/AMP/
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(a) Backflip (b) Side-Flip

(c) Cartwheel (d) Spin

(e) Spin-Kick (f) Roll

Figure 6.6: Snapshots of behaviors learned by the Humanoid on the single-clip imitation
tasks. AMP enables the character to closely imitate a diverse corpus of highly dynamic and
acrobatic skills.

nization of the reference motion and the policy Peng et al. [207]. Table 6.4 summarizes the
performance of policies trained using AMP to imitate a diverse corpus of motions. Figure 6.6
and 6.7 illustrate examples of motions learned by the characters. Performance is evaluated
using the average pose error, where the pose error eposet at each time step t is computed
between the pose of the simulated character and the reference motion using the relative
positions of each joint with respect to the root (in units of meters),

eposet =
1

N joint

∑
j∈joints

∣∣∣∣(xj
t − xroot

t )− (x̂j
t − x̂root

t )
∣∣∣∣
2
. (6.16)

xj
t and x̂j

t denote the 3D Cartesian position of joint j from the simulated character and
the reference motion, and N joint is the total number of joints in the character’s body. This
method of evaluating motion similarity has previously been reported to better conform to
human perception of motion similarity [93, 260]. Since AMP does not use a phase variable
to synchronize the policy with the reference motion, the motions may progress at different
rates, resulting in de-synchronization that can lead to large pose errors even when the overall
motions are similar. To better evaluate the similarity of the motions, we first apply dynamic
time warping (DTW) to align the reference motion with the motion of the simulated character
[234], before computing the pose error between the two aligned motions. DTW is applied
using Equation 6.16 as the cost function.

AMP is able to closely imitate a large variety of highly dynamic skills, while also avoiding
many of the visual artifacts exhibited by prior adversarial motion imitation systems [176,
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(a) T-Rex (Walk)

(b) Dog (Trot)

(c) Dog (Canter)

Figure 6.7: AMP can be used to train complex non-humanoid characters, such as a 59 DoF
T-Rex and a 64 DoF dog. By providing the motion prior with different motion clips, the
characters can be trained to perform various locomotion gaits, such as trotting and cantering.

287]. We compare the performance of our system to results produced by the motion tracking
approach from Peng et al. [207], which uses a manually designed reward function and requires
synchronization of the policy with a reference motion via a phase variable. Figure 6.8
compares the learning curves of the different methods. Since the tracking-based policies
are synchronized with their respective reference motions, they are generally able to learn
faster and achieve lower errors than policies trained with AMP. Nonetheless, our method is
able to produce results of comparable quality without the need to manually design or tune
reward functions for different motions. However, for some motions, such as the Front-Flip,
AMP is prone to converging to locally optimal behaviors, where instead of performing a
flip, the character learns to simply shuffle forwards in order to avoid falling. Tracking-based
methods can mitigate these local optima by terminating an episode early if the character’s
pose deviates too far from the reference motion [207, 290]. However, this strategy is not
directly applicable to AMP, since the policy is not synchronized with the reference motion.
But as shown in the previous sections, this lack of synchronization is precisely what allows
AMP to easily leverage large datasets of diverse motion clips to solve more complex tasks.

Ablations

Our system is able to produce substantially higher fidelity motions than prior adversar-
ial learning frameworks for physics-based character control [176, 287]. In this section, we
identify critical design decisions that lead to more stable training and higher quality results.
Figure 6.8 compares learning curves of policies trained on the single-clip imitation tasks with
different components of the system disabled. Gradient penalty proves to be the most vital
component. Models trained without this regularization tend to exhibit large performance
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Character Motion
Dataset
Size

Motion
Tracking

AMP
(Ours)

Humanoid Back-Flip 1.75s 0.076± 0.021 0.150± 0.028
Cartwheel 2.72s 0.039± 0.011 0.067± 0.014
Crawl 2.93s 0.044± 0.001 0.049± 0.007
Dance 1.62s 0.038± 0.001 0.055± 0.015

Front-Flip 1.65s 0.278± 0.040 0.425± 0.010
Jog 0.83s 0.029± 0.001 0.056± 0.001
Jump 1.77s 0.033± 0.001 0.083± 0.022
Roll 2.02s 0.072± 0.018 0.088± 0.008
Run 0.80s 0.028± 0.002 0.075± 0.015
Spin 1.00s 0.063± 0.022 0.047± 0.002

Side-Flip 2.44s 0.191± 0.043 0.124± 0.012
Spin-Kick 1.28s 0.042± 0.001 0.058± 0.012
Walk 1.30s 0.018± 0.005 0.030± 0.001
Zombie 1.68s 0.049± 0.013 0.058± 0.014

T-Rex Turn 2.13s 0.098± 0.011 0.284± 0.023
Walk 2.00s 0.069± 0.005 0.096± 0.027

Dog Canter 0.45s 0.026± 0.002 0.034± 0.002
Pace 0.63s 0.020± 0.001 0.024± 0.003
Spin 0.73s 0.026± 0.002 0.086± 0.008
Trot 0.52s 0.019± 0.001 0.026± 0.001

Table 6.4: Performance statistics of imitating individual motion clips without task objectives.
”Dataset Size” records the total length of motion data used for each skill. Performance is
recorded as the average pose error (in units of meters) between the time-warped trajectories
from the reference motion and simulated character. The pose error is averaged across 3
models initialized with different random seeds, with 32 episodes recorded per model. Each
episode has a maximum length of 20s. We compare our method (AMP) with the motion
tracking approach proposed by Peng et al. [207]. AMP is able to closely imitate a diverse
repertoire of complex motions, without manual reward engineering.

fluctuations over the course of the training, and lead to noticeable visual artifacts in the
final policies, as shown in the supplementary video. The addition of the gradient penalty
not only improves stability during training, but also leads to substantially faster learning
across a large set of skills. The inclusion of velocity features in the discriminator’s obser-
vations is also an important component for imitating some motions. In principle, including
consecutive poses as input to the discriminator should provide some information that can be
used to infer the joint velocities. But we found that this was insufficient for some motions,
such as rolling. As shown in the supplementary video, in the absence of velocity features, the
character is prone to converging to a strategy of holding a fixed pose on the ground, instead
of performing a roll. The additional velocity features mitigate these undesirable behaviors.
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Figure 6.8: Learning curves of various methods on the single-clip imitation tasks. We com-
pare AMP to the motion tracking approach proposed by Peng et al. [207] (Motion Tracking),
as well a version of AMP without velocity features for the discriminator (AMP - No Vel),
and AMP without the gradient penalty regularizer (AMP - No GP). AMP produces results
of comparable quality when compared to prior tracking-based methods, without requiring
a manually designed reward function or synchronization between the policy and reference
motion. Velocity features and gradient penalty are vital for effective and consistent results
on challenging skills.

6.8 Discussion

In this chapter, we presented an adversarial learning system for physics-based character ani-
mation that enables characters to imitate diverse behaviors from large unstructured datasets,
without the need for motion planners or other mechanisms for clip selection. Our system
allows users to specify high-level task objectives for controlling a character’s behaviors, while
the more granular low-level style of a character’s motions can be controlled using a learned
motion prior. Composition of disparate skills in furtherance of a task objective emerges
automatically from the motion prior. The motion prior also enables our characters to closely
imitate a rich repertoire of highly dynamic skills, and produces results that are on par with
tracking-based techniques, without requiring manual reward engineering or synchronization
between the controller and the reference motions.

Our system demonstrates that adversarial imitation learning techniques can indeed pro-
duce high fidelity motions for complex skills. However, like many other GAN-based tech-
niques, AMP is susceptible to mode collapse. When provided with a large dataset of diverse
motion clips, the policy is prone to imitating only a small subset of the example behaviors,
ignoring other behaviors that may ultimately be more optimal for a given task. The motion
priors in our experiments are also trained from scratch for each policy. But since the motion
prior is largely task-agnostic, it should in principle be possible to transfer and reuse mo-
tion priors for different policies and tasks. Exploring techniques for developing general and
transferable motion priors may lead to modular objective functions that can be conveniently
incorporated into downstream tasks, without requiring retraining for each new task. While
the motion prior does not require direct access to task-specific information, the data used
to train the motion prior is generated by policies trained to perform a particular task. This
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may introduce some task dependencies into the motion prior, which can hinder its ability
to be transferred to other tasks. Training motion priors using data generated from larger
and more diverse repertoires of tasks may help to facilitate transferring the learned motion
priors to new tasks. Our experiments also focus primarily on tasks that involve temporal
composition of different skills, which require the character to perform different behaviors at
different points in time. However, spatial composition might also be vital for some tasks that
require a character to perform multiple skills simultaneously. Developing motion priors that
are more amenable to spatial composition of disparate skills may lead to more flexible and
sophisticated behaviors. Despite these limitations, we hope this work provides a useful tool
that enables physically simulated characters to take advantage of the large motion datasets
that have been so effective for kinematic animation techniques, and open exciting directions
for future exploration in data-driven physics-based character animation.
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Chapter 7

Recent Related Work on Motion
Imitation

The motion imitation approach presented in Chapter 3 can be effective for learning a wide
range of skills. But the breadth of behaviors that can be modeled by an individual policy
can be fairly limited, and our experiments in that chapter have primarily trained separate
policies for each motion clip. Since the publication of that work, several subsequent works
have extended this approach to train general policies that can imitate large libraries of
diverse motion clips [39, 290]. Wang et al. [285] trained a single model to imitate thousands
of motion clips by leveraging a fast GPU simulator [169], along with a number of careful
design decisions, to drastically increase the number of samples that can be used to train a
policy. The resulting model showed strong zero-shot generalization performance when used
to imitating new motion clips. Fussell, Bergamin, and Holden [72] showed that model-based
RL can also be applied to imitate large motion datasets through a similar tracking-based
approach. By learning a differential dynamics model, their approach can produce lower
variance gradient estimates, which empirically lead to higher quality motions and allow the
system to imitate more intricate behaviors, such as dancing.

Our simulated characters have primarily been controlled using simplified actuation mod-
els (e.g. PD controllers), which do not capture the complex nonlinear dynamics of biological
actuators (e.g. muscles). Lee et al. [143] applied a similar motion imitation technique to
control characters with complex musculoskeletal systems. Their use of biologically-inspired
actuators led to more naturalistic behaviors, particularly when the character is subjected
to perturbations and novel scenarios that deviate from the context of the original reference
motion data. Rather than training policies for controlling a specific character, Won and Lee
[292] showed that by randomizing the morphology of the character during training, a more
general policy can be trained to control characters with large morphological variations.

Motion imitation has also been used as an effective pre-training task for for learning
resuable motor skills in order to solve more challenging downstream tasks. Park et al. [198]
and Bergamin et al. [20] combined general motion tracking policies with kinematic motion
planners to control simulated characters to perform high-level tasks, such as navigation and
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obstacle traversal. Merel et al. [174] used motion imitation to learn latent variable models of
motor skills, which can then be used by high-level policies to solve challenging locomotion and
manipulation tasks. Luo et al. [166] combined the MCP architecture from Chapter 5 with a
domain confusion loss to prevent unnatural behaviors when training models to perform new
tasks without motion data. Won, Gopinath, and Hodgins [291] used a similar hierarchical
architecture to train policies for two-player sports, such as boxing and fencing.

One of the advantages of imitating skills from video clips is the ability to learn behaviors
that are difficult to record using motion capture. Yu, Park, and Lee [304] used a similar
video imitation framework as the one presented in Chapter 4 to learn figure skating skills
from video clips. Figure skating motions are particularly difficult to record using mocap,
since the routines often span large areas. Similar video imitation techniques have also be
applied to learn dexterous manipulation skills from video clips [11]. In addition to leveraging
vision-based pose estimation techniques to train simulated characters, physically simulated
characters can also be used as priors for improving the physical realism of vision-based pose
predictors [312].
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Part II

Sim-To-Real Transfer
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Chapter 8

Dynamics Randomization

Figure 8.1: A recurrent neural network policy trained for a pushing task in simulation is
deployed directly on a Fetch Robotics arm. The red marker indicates the target location for
the puck. (Video1)

In the previous part of this thesis, we showed that reinforcement learning can be a power-
ful framework for developing agents that are able to perform a diverse array of sophisticated
skills in simulation. Unfortunately, many of the capabilities demonstrated by simulated
agents have often not been realized by their physical counterparts. In the second part of this
thesis, we will explore sim-to-real techniques for transferring policies trained in simulation
to the real world. One of the obstacles for translating some of the successes of reinforcement
learning in simulation to real-world domains is that many of the modern RL algorithms,
which have spurred recent breakthroughs, require large amounts of data to learn effective
policies, therefore often precluding their direct application to physical systems. In addition
to sample complexity, deploying RL algorithms in the real world also raises a number of
safety concerns both for the agent and its surroundings. Since exploration is a key com-
ponent of the learning process, an agent can at times perform actions that endanger itself
or its environment. Therefore, training agents in simulation is a promising approach that
circumvents some of these obstacles. However, transferring policies from simulation to the
real world entails challenges in bridging the ”reality gap”, the mismatch between the simu-
lated and real world environments. Narrowing this gap has been a subject of intense interest

1 Supplementary video: https://xbpeng.github.io/projects/SimToReal/

https://xbpeng.github.io/projects/SimToReal/
https://xbpeng.github.io/projects/SimToReal/
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in robotics, as it offers the potential of applying powerful algorithms that have so far been
relegated to simulated domains.

While significant efforts have been devoted to building higher fidelity simulators, we show
that dynamics randomization using low fidelity simulations can also be an effective approach
to develop policies that can be transferred directly to the real world. In this chapter, we
provide a proof-of-concept for the effectiveness of this approach on an object pushing task,
where a policy trained exclusively in simulation is able to successfully perform the task
with a real robot without additional training on the physical system. Then in the following
chapters, we will extend this technique to transfer more complex locomotion behaviors from
simulation to robots operating in the real world.

8.1 Related Work

Recent years have seen the application of deep reinforcement learning to a growing repertoire
of control problems. The framework has enabled simulated agents to develop highly dynamic
motor skills [202, 206, 159, 99]. But due to the high sample complexity of RL algorithms and
other physical limitations, many of the capabilities demonstrated in simulation have yet to
be replicated in the physical world. Guided Policy Search (GPS) [147] represents one of the
few algorithms capable of training policies directly on a real robot. By leveraging trajectory
optimization with learned linear dynamics models, the method is able to develop complex
manipulation skills with relatively few interactions with the environment. The method has
also been extended to learning vision-based manipulation policies [149]. Researchers have
also explored parallelizing training across multiple robots [150]. Nonetheless, successful
examples of training policies directly on physical robots have so far been demonstrated only
on relatively restrictive domains.

Domain Adaptation

The problem of transferring control policies from simulation to the real world can be viewed
as an instance of domain adaptation, where a model trained in a source domain is transfered
to a new target domain. One of the key assumptions behind these methods is that the
different domains share common characteristics such that representations and behaviours
learned in one will prove useful for the other. Learning invariant features has emerged
as a promising approach of taking advantage of these commonalities [276, 73]. Tzeng et
al. [276] and Gupta et al. [87] explored using pairwise constraints to encourage networks
to learn similar embeddings for samples from different domains that are labeled as being
similar. Daftry, Bagnell, and Hebert [50] applied a similar approach to transfer policies for
controlling aerial vehicles to different environments and vehicle models. In the context of RL,
adversarial losses have been used to transfer policies between different simulated domains,
by encouraging agents to adopt similar behaviours across the various environments [294].
Alternatively, progressive networks have also been used to transfer policies for a robotic
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arm from simulation to the real world [230]. By reusing features learned in simulation,
their method was able to significantly reduce the amount of data needed from the physical
system. Christiano et al. [40] transfered policies from simulation to a real robot by training an
inverse-dynamics model from real world data. While promising, these methods nonetheless
still require data from the target domain during training.

Domain Randomization

Domain randomization is a complementary class of techniques for adaptation that is par-
ticularly well suited for simulation. With domain randomization, discrepancies between the
source and target domains are modeled as variability in the source domain. Randomization
in the visual domain has been used to directly transfer vision-based policies from simula-
tion to the real world without requiring real images during training [232, 269]. Sadeghi and
Levine [232] trained vision-based controllers for a quadrotor using only synthetically ren-
dered scenes, and Tobin et al. [269] demonstrated transferring image-based object detectors.
Unlike previous methods, which sought to bridge the reality gap with high fidelity rendering
[115], their systems used only low fidelity rendering and modeled differences in visual ap-
pearance by randomizing scene properties such as lighting, textures, and camera placement.
In addition to randomizing the visual features of a simulation, randomized dynamics have
also been used to develop controllers that are robust to uncertainty in the dynamics of the
system. Mordatch, Lowrey, and Todorov [181] used a trajectory optimizer to plan across an
ensemble of dynamics models, to produce robust trajectories that are then executed on a
real robot. Their method allowed a Darwin robot to perform a variety of locomotion skills.
But due to the cost of the trajectory optimization step, the planning is performed offline.
Other methods have also been proposed to develop robust policies through adversarial train-
ing schemes [222, 212]. Yu, Liu, and Turk [307] trained a system identification module to
explicitly predict parameters of interest, such as mass and friction. The predicted param-
eters are then provided as input to a policy to compute the appropriate controls. While
the results are encouraging, these methods have so far only been demonstrated on transfer
between different simulators.

The work most reminiscent to our proposed method is that of Antonova et al. [10], where
randomized dynamics was used to transfer manipulation policies from simulation to the real
world. By randomizing physical parameters such as friction and latency, they were able
to train policies in simulation for pivoting objects held by a gripper, and later transfer the
policies directly to a Baxter robot without requiring additional fine-tuning on the physical
system. However their policies were modeled using memoryless feedforward networks, and
while the policies developed robust strategies, the lack of internal state limits the feedforward
policies’ ability to adapt to mismatch between the simulated and real environment. We show
that memory-based policies are able to cope with greater variability during training and also
better generalize to the dynamics of the real world. Unlike previous methods which often
require meticulous calibration of the simulation to closely conform to the physical system,
our policies are able to adapt to significant calibration error.
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Non-Prehensile Manipulation

Pushing, a form of non-prehensile manipulation, is an effective strategy for positioning and
orienting objects that are too large or heavy to be grasped [303]. Though pushing has
attracted much interest from the robotics community [168, 55, 62], it remains a challenging
skill for robots to adopt. Part of the difficulty stems from accurately modeling the complex
contact dynamics between surfaces. Characteristics such as friction can vary significantly
across the surface of an object, and the resulting motions can be highly sensitive to the
initial configuration of the contact surfaces [303]. Models have been proposed to facilitate
planning algorithms [168, 6, 55], but they tend to rely on simplifying assumptions that
are often violated in practice. More recently, deep learning methods have been applied to
train predictive models for pushing [66]. While data-driven methods overcome some of the
modeling challenges faced by previous frameworks, they require a large corpus of real world
data during training. Such a dataset can be costly to collect, and may become prohibitive
for more complex tasks. Ignasi Clavera and Abbeel [112] demonstrated transferring pushing
policies trained in simulation to a real PR2. Their approach took advantage of shaped reward
functions and careful calibration to ensure that the behaviour of the simulation conforms to
that of the physical system. In contrast, we will show that adaptive policies can be trained
exclusively in simulation and using only sparse rewards. The resulting policies are able
accommodate large calibration errors when deployed on a real robot and also generalize to
variability in the dynamics of the physical system.

8.2 Hindsight Experience Replay

During training, RL algorithms often benefit from carefully shaped reward functions that
help guide the agent towards fulfilling the overall objective of a task. But designing a
reward function can be challenging for more complex tasks, and may bias the policy towards
adopting less optimal behaviours. An alternative is to use a binary reward r(s,g) that only
indicates if a goal is satisfied in a given state,

r(s,g) =

{
0, if g is satisfied in s

−1, otherwise
(8.1)

Learning from a sparse binary reward is known to be challenging for most modern RL
algorithms. We will therefore leverage a recent innovation, Hindsight Experience Relay
(HER) [9], to train policies using sparse rewards. Consider an episode with trajectory τ ∈
(s0, a0, ..., aT−1, sT ), where the goal g was not satisfied over the course the trajectory. Since
the goal was not satisfied, the reward will be −1 at every timestep, therefore providing
the agent with little information on how to adjust its actions to procure more rewards.
But suppose that we are provided with a mapping m : S → G, that maps a state to the
corresponding goal satisfied in the given state. For example, m(sT ) = g′ represents the goal
that is satisfied in the final state of the trajectory. Once a new goal has been determined,
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rewards can be recomputed for the original trajectory under the new goal g′. While the
trajectory was unsuccessful under the original goal, it becomes a successful trajectory under
the new goal. Therefore, the rewards computed with respect to g′ will not be −1 for every
timestep. By replaying past experiences with HER, the agent can be trained with more
successful examples than is available in the original recorded trajectories. So far, we have
only considered replaying goals from the final state of a trajectory. But HER is also amenable
to other replay strategies, and we refer interested readers to the original paper [9] for more
details.

8.3 Method

Our objective is to train policies that can perform a task under the dynamics of the real world
p∗(st+1|st, at). Since sampling from the real world dynamics can be prohibitive, we instead
train a policy using an approximate dynamics model p̂(st+1|st, at) ≈ p∗(st+1|st, at) that is
easier to sample from. For all of our experiments, p̂ assumes the form of a physics simulation.
Due to modeling and other forms of calibration error, behaviours that successfully accomplish
a task in simulation may not be successful once deployed in the real world. Furthermore,
it has been observed that DeepRL policies are prone to exploiting idiosyncrasies of the
simulator to realize behaviours that are infeasible in the real world [155, 99]. Therefore,
instead of training a policy under one particular dynamics model, we train a policy that can
perform a task under a variety of different dynamics models. First we introduce a set of
dynamics parameters µ that parameterizes the dynamics of the simulation p̂(st+1|st, at, µ).
The objective is then modified to maximize the expected return across a distribution of
dynamics models ρµ,

E
µ∼ρµ

[
Eτ∼p(τ |π,µ)

[
T−1∑
t=0

r(st, at)

]]
(8.2)

By training policies to adapt to variability in the dynamics of the environment, the resulting
policy might then better generalize to the dynamics of real world.

Tasks

Our experiments are conducted on a puck pushing task using a 7-DOF Fetch Robotics arm.
Images of the real robot and simulated model is available in Figure 8.2. The goal g for each
episode specifies a random target position on the table that the puck should be moved to.
The reward is binary with rt = 0 if the puck is within a given distance of the target, and
rt = −1 otherwise. At the start of each episode, the arm is initialized to a default pose and
the initial location of the puck is randomly placed within a fixed bound on the table.
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State and Action

The state is represented using the joint positions and velocities of the arm, the position of
the gripper, as well as the puck’s position, orientation, linear and angular velocities. The
combined features result in a 52D state space. Actions from the policy specify target joint
angles for a position controller. Target angles are specified as relative offsets from the current
joint rotations. This yields a 7D action space.

Dynamics Randomization

Figure 8.2: Our experiments are conducted
on a 7-DOF Fetch Robotics arm. Left: Real
robot. Right: Simulated MuJoCo model.

During training, rollouts are organized into
episodes of a fixed length. At the start
of each episode, a random set of dynam-
ics parameters µ are sampled according to
ρµ and held fixed for the duration of the
episode. The parameters which we random-
ize include:

• Mass of each link in the robot’s body

• Damping of each joint

• Mass, friction, and damping of the
puck

• Height of the table

• Gains for the position controller

• Timestep between actions

• Observation noise

which results in a total of 95 randomized parameters. The timestep between actions specifies
the amount of time an action is applied before the policy is queried again to sample a new
action. This serves as a simple model of the latency exhibited by the physical controller.
The observation noise models uncertainty in the sensors and is implemented as independent
Gaussian noise applied to each state feature. While parameters such as mass and damping
are constant over the course of an episode, the action timestep and the observation noise
varies randomly each timestep.

Adaptive Policy

Manipulation tasks, such as pushing, have a strong dependency on the physical properties
of the system (e.g. mass, friction, and characteristics of the actuators). In order to de-
termine the appropriate actions, a policy requires some means of inferring the underlying
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Algorithm 4 Dynamics Randomization with HER and RDPG

1: θ ← random weights
2: φ← random weights
3: while not done do
4: g ∼ ρg sample goal
5: µ ∼ ρµ sample dynamics
6: Generate rollout τ = (s0, a0, ..., sT )with dynamics µ
7: for each st, at in τ do
8: rt ← r(st,g)
9: end for
10: Store (τ, {rt},g, µ) in M
11: Sample episode (τ, {rt},g, µ) from M
12: with probability k
13: g← replay new goal with HER
14: rt ← r(st,g) for each t
15: endwith

16: for each t do
17: Compute memories zt and yt
18: ât+1 ← πθ(st+1, zt+1,g)
19: ât ← πθ(st, zt,g)
20: qt ← rt + γQφ(st+1, ât+1,yt+1,g, µ)
21: △qt ← qt −Qφ(st, at,yt,g, µ)
22: end for
23: ▽φ = 1

T

∑
t△qt

∂Qφ(st,at,yt,g,µ)

∂φ

24: ▽θ =
1
T

∑
t
∂Qφ(st,ât,yt,g,µ)

∂a
∂ât

∂θ

25: Update value function and policy with ▽θ and ▽φ

26: end while

dynamics of its environment. While the dynamics parameters are readily available in sim-
ulation, the same does not hold once a policy has been deployed in the real world. In the
absence of direct knowledge of the parameters, the dynamics can be inferred from a his-
tory of past states and actions. System identification using a history of past trajectories
has been previously explored by Yu, Liu, and Turk [307]. Their system incorporates an
online system identification module ϕ(st,ht) = µ̂, which utilizes a history of past states and
actions ht = [at−1, st−1, at−2, st−2, ...] to predict the dynamics parameters µ. The predicted
parameters are then used as inputs to a universal policy that samples an action according
to the current state and inferred dynamics π(at|st, µ̂). However, this decomposition requires
identifying the dynamics parameters of interest to be predicted at runtime, which may be
difficult for more complex systems. Constructing such a set of parameters necessarily re-
quires some structural assumptions about the dynamics of a system, which may not hold
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Figure 8.3: Schematic illustrations of the policy network (top), and value network (bot-
tom). Features that are relevant for inferring the dynamics of the environment are processed
by the recurrent branch, while the other inputs are processed by the feedforward branch.

in the real world. Alternatively, SysID can be implicitly embedded into a policy by using
a recurrent model π(at|st, zt,g), where the internal memory zt = z(ht) acts as a summary
of past states and actions, thereby providing a mechanism with which the policy can use
to infer the dynamics of the system. This model can then be trained end-to-end and the
representation of the internal memory can be learned without requiring manual identification
of a set of dynamics parameters to be inferred at runtime.

Recurrent Deterministic Policy Gradient

Since HER augments the original training data recorded from rollouts of the policy with
additional data generated from replayed goals, it requires off-policy learning. Deep De-
terministic Policy Gradient (DDPG) [155] is a popular off-policy algorithm for continuous
control. Its extension to recurrent policies, Recurrent Deterministic Policy Gradient (RDPG)
[101], provides a method to train recurrent policies with off-policy data. To apply RDPG,
we denote a deterministic policy as π(st, zt,g) = at. In additional to the policy, we will also
model a recurrent universal value function as Q(st, at,yt,g, µ), where yt = y(ht) is the value
function’s internal memory. Since the value function is used only during training and the
dynamics parameters µ of the simulator are known, µ is provided as an additional input to
the value function but not to the policy. We will refer to a value function with knowledge
of the dynamics parameters as an omniscient critic. This follows the approach of [68, 164],
where additional information is provided to the value function during training in order to
reduce the variance of the policy gradients and allow the value function to provide more
meaningful feedback for improving the policy.

Algorithm 4 summarizes the training procedure, where M represents a replay buffer
[155], and θ and φ are the parameters for the policy and value function respectively. We also
incorporate target networks [155], but they are excluded for brevity.
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Figure 8.4: LSTM policy deployed on the Fetch arm. Bottom-Right: The contact dynamics
of the puck was modified by attaching a packet of chips to the bottom.

Network Architecture

A schematic illustrations of the policy and value networks are available in Figure 8.3. The
inputs to the network consist of the current state st and previous action at−1, and the internal
memory is updated incrementally at every step. Each network consists of a feedforward
branch and recurrent branch, with the latter being tasked with inferring the dynamics from
past observations. The internal memory is modeled using a layer of LSTM units and is
provided only with information required to infer the dynamics (e.g. st and at−1). The
recurrent branch consists of an embedding layer of 128 fully-connected units followed by
128 LSTM units. The goal g does not hold any information regarding the dynamics of the
system, and is therefore processed only by the feedforward branch. Furthermore, since the
current state st is of particular importance for determining the appropriate action for the
current timestep, a copy is also provided as input to the feedforward branch. This presents
subsequent layers with more direct access to the current state, without requiring information
to filter through the LSTM. The features computed by both branches are then concatenated
and processed by 2 additional fully-connected layers of 128 units each. The value network
Q(st, at, at−1,g, µ) follows a similar architecture, with the query action at and parameters
µ being processed by the feedforward branch. ReLU activations are used after each hidden
layer (apart from the LSTM). The output layer of Q consists of linear units, while π consists
of tanh output units scaled to span the bounds of each action parameter.

8.4 Experiments

Results are best seen in the supplemental video1. Snapshots of policies deployed on the real
robot are available in Figure 8.4. All simulations are performed using the MuJoCo physics
engine [270] with a simulation timestep of 0.002s. 20 simulation timesteps are performed
for every control timestep. Each episode consists of 100 control timestep, corresponding

https://xbpeng.github.io/projects/SimToReal/
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Parameter Range
Link Mass [0.25, 4]× default mass of each link
Joint Damping [0.2, 20]× default damping of each joint
Puck Mass [0.1, 0.4]kg
Puck Friction [0.1, 5]
Puck Damping [0.01, 0.2]Ns/m
Table Height [0.73, 0.77]m
Controller Gains [0.5, 2]× default gains
Action Timestep λ [125, 1000]s−1

Table 8.1: Dynamics parameters and their respective ranges.

to approximately 4 seconds per episode, but may vary as a result of the random timesteps
between actions. Table 8.1 details the range of values for each dynamics parameter. At
the start of each episode, a new set of parameters µ is sampled by drawing values for each
parameter from their respective range. Parameters such as mass, damping, friction, and
controller gains are logarithmically sampled, while other parameters are uniformly sampled.

Figure 8.5: Joint trajectories recorded from
the simulated and real robot when executing
the same target trajectories. The joints corre-
spond to the shoulder, elbow, and wrist of the
Fetch arm.

The timestep △t between actions varies ev-
ery step according to △t ∼ △t0 + Exp(λ),
where △t0 = 0.04s is the default control
timestep, and Exp(λ) is an exponential dis-
tribution with rate parameter λ. While △t
varies every timestep, λ is fixed within each
episode. In addition to randomizing the
physical properties of the simulated environ-
ment, we also simulate sensor noise by ap-
plying gaussian noise to the observed state
features at every step. The noise has a mean
of zero and a standard deviation of 5% of the
running standard deviation of each feature.
Gaussian action exploration noise is added
at every step with a standard deviation of
0.01rad.

The real puck has a mass of approxi-
mately 0.2kg and a radius of 0.065m. The
goal is considered satisfied if the puck is
within 0.07m of the target. The location
of the puck is tracked using the PhaseSpace
mocap system. When evaluating perfor-
mance on the physical system, each episode
consists of 200 timesteps. Little calibration
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Model Success (Sim) Success (Real) Trials (Real)
LSTM 0.91 ± 0.03 0.89 ± 0.06 28
FF no Rand 0.51± 0.05 0.0± 0.0 10
FF 0.83± 0.04 0.67± 0.14 12
FF + Hist 0.87± 0.03 0.70± 0.10 20

Table 8.2: Performance of the policies when deployed on the simulated and real robot.
Performance in simulation is evaluated over 100 trials with randomized dynamics parameters.

was performed to ensure that the behaviour of the simulation closely conforms to that of
the real robot. While more extensive calibration will likely improve performance, we show
that our policy is nonetheless able to adapt to the physical system despite poor calibration.
To illustrate the discrepancies between the dynamics of the real world and simulation we
executed the same target trajectory on the real and simulated robot, and recorded the re-
sulting joint trajectories. Figure 8.5 illustrates the recorded trajectories. Given the same
target trajectory, the pose trajectories of the simulated and real robot differ significantly,
with varying degrees of mismatch across joints.

During training, parameter updates are performed using the ADAM optimizer [124] with
a stepsize of 5× 10−4 for both the policy and value function. Updates are performed using
batches of 128 episodes with 100 steps per episode. New goals are sampled using HER with
a probability of k = 0.8. Each policy is trained for approximately 8000 update iterations
using about 100 million samples, which requires approximately 8 hours to simulate on a 100
core cluster.

Comparison of Architectures

To evaluate the impact of different architectural choices, we compared policies modeled us-
ing different architectures and tested their performance in simulation and on the real robot.
The first is an LSTM policy following the architecture illustrated in Figure 8.3. Next we
consider a memoryless feedforward network (FF) that receives only the current state st and
goal g as input. As a baseline, we also trained a memoryless feedforward network without
randomization (FF no Rand), then evaluated the performance with randomization. To pro-
vide the feedforward network with more information to infer the dynamics, we augmented
the inputs with a history of the 8 previously observed states and actions (FF + Hist). The
success rate is determined as the portion of episodes where the goal is fulfilled at the end
of the episode. In simulation, performance of each policy is evaluated over 100 episodes,
with randomized dynamics parameters for each episode. Learning curves comparing the
performance of different model architectures in simulation are available in Figure 8.6. Four
policies initialized with different random seeds are trained for each architecture. The LSTM
learns faster while also converging to a higher success rate than the feedforward models. The
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Figure 8.6: Learning curves of different net-
work architectures. Four policies are trained
for each architecture with different random
initializations. Performance is evaluated over
100 episodes in simulation with random dy-
namics.

Figure 8.7: Performance of different mod-
els when deployed on the simulated and real
robot for the pushing task. Policies are
trained using only data from simulation.

feedforward network trained without randomization is unable to cope with unfamiliar dy-
namics during evaluation. While training a memoryless policy with randomization improves
robustness to random dynamics, it is still unable to perform the task consistently.

Next, we evaluate the performance of the different models when deployed on the real
Fetch arm. Figure 8.7 compares the performance of the final policies when deployed in
simulation and the real world. Table 8.2 summarizes the performance of the models. The
target and initial location of the puck is randomly placed within a 0.3m×0.3m bound. While
the performance of LSTM and FF + Hist policies are comparable in simulation, the LSTM
is able to better generalize to the dynamics of the physical system. The feedforward network
trained without randomization is unable to perform the task under the real world dynamics.

Ablation

To evaluate the effects of randomizing the various dynamics parameters, we trained policies
with subsets of the parameters held fixed. A complete list of the dynamics parameters are
available in Table 8.1. The configurations we consider include training with a fixed timestep
between actions, training without observation noise, or with fixed mass for each link. Table
8.3 summarizes the performance of the resulting policies when deployed on the real robot.
Disabling randomization of the action timestep, observation noise, link mass, and friction
impairs the policies’ ability to adapt to the physical environment. Policies trained without
randomizing the action timestep and observation noise show particularly noticeable drops in
performance. This suggests that coping with the latency of the controller and sensor noise
are important factors in adapting to the physical system.
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Model Success Trials
all 0.89 ± 0.06 28
fixed action timestep 0.29± 0.11 17
no observation noise 0.25± 0.12 12
fixed link mass 0.64± 0.10 22
fixed puck friction 0.48± 0.10 27

Table 8.3: Performance of LSTM policies on the real robot, where the policies are trained
with subsets of parameters held fixed.

Robustness

To evaluate the robustness of the LSTM policy to different dynamics when deployed on the
real robot, we experimented with changing the contact dynamics of the physical system by
attaching a packet of chips to the bottom of the puck. The texture of the bag reduces the
friction between the puck and the table, while the contents of the bag further alters the
contact dynamics. Nonetheless, the LSTM policy achieves a success rate of 0.91 ± 0.04,
which is comparable to the success rate without the attachment 0.89 ± 0.06. The policy
also develops clever strategies to make fine adjustments to position the puck over the target.
One such strategy involves pressing on one side of the puck in order to partially upend it
before sliding it to the target. Other strategies including manipulating the puck from the
top or sides depending on the required adjustments, and correcting for case where the puck
overshoots the target. These behaviours emerged naturally from the learning process using
only a sparse binary reward.

8.5 Discussion

In this chapter, we demonstrated the use of dynamics randomization to train recurrent
policies that are capable of adapting to unfamiliar dynamics at run-time. Training policies
with randomized dynamics in simulation enables the resulting policies to be deployed directly
on a physical robot despite poor calibrations. By training exclusively in simulation, we are
able to leverage simulators to generate a large volume of training data, thereby enabling
us to use powerful RL techniques that are not yet feasible to apply directly on a physical
system. Our experiments with a real world pushing tasks showed comparable performance
to simulation and the ability to adapt to changes in contact dynamics. We also evaluated the
importance of design decisions pertaining to choices of architecture and parameters which
to randomize during training. In the next chapters, we will extend this approach to transfer
policies for more challenging locomotion tasks to legged robots in the real world.
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Chapter 9

Bipedal Locomotion

(a) Lower Walking Height (b) Raise Normal Height (c) Push Recovery

Figure 9.1: Our system is able to learn robust parameterized locomotion controllers for
a bipedal Cassie robot. The controller can vary parameters such as walking velocity and
height, while also being robust to significant external perturbations. (Video1)

In this chapter, we combine the dynamics randomization techniques discussed in Chap-
ter 8 with the motion imitation method from Chapter 3 to develop locomotion controllers
for a bipedal Cassie robot2. Many environments, particularly those designed for humans, are
more accessible by legged systems. However, designing locomotion controllers for bipedal
systems involves many challenges due to the high degrees-of-freedom (DoFs), hybrid non-
linear dynamics, and persistent but hard-to-model ground impacts. Classical model-based
methods [280, 131, 84] for stabilizing and controlling bipedal systems tend to require careful
modeling and usually lack the ability to adapt to changes in the environment. In this work,
we present a system that addresses these challenges of bipedal locomotion by using reinforce-
ment learning. To develop policies that are capable of performing diverse gaits, we train the
policies to imitate motion clips from a gait library containing diverse walking motions. The
gait library is constructed using Hybrid Zero Dynamics (HZD) [84], but our system can also
easily accommodate motions from other sources, such as mocap. This diverse dataset allows
us to train parameterized policies, whose behaviors can be controlled using low-dimensional
gait parameters.

1 Supplementary video: https://xbpeng.github.io/projects/Cassie_Walking/
2 This work was led by Zhongyu Li.

https://xbpeng.github.io/projects/Cassie_Walking/
https://xbpeng.github.io/projects/Cassie_Walking/
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Due to the size and instability of real bipedal robots, it is particularly dangerous to
perform RL directly on the physical system. We instead leverage techniques from sim-
to-real transfer to train policies in a simulated environment, which are then evaluated in
another higher fidelity simulator, before finally being deployed on the real robot. Domain
randomization is incorporated during training in simulation to develop robust policies that
can successfully transfer to the real world. The resulting policies can then be deployed on
the real Cassie robot to perform a repertoire of different locomotion behaviors in challenging
scenarios, as shown in Fig. 9.1.

The primary contribution of this chapter is the development of a reinforcement learning
based framework that produces diverse and robust walking controllers on the Cassie robot.
We develop an end-to-end versatile walking policy that combines a HZD-based gait library
with reinforcement learning to enable a bipedal robot to walk while following commands that
specify frontal and lateral walking speeds, walking height, and turning yaw rate. The pro-
posed learning-based walking policy notably expands the feasible command set and safe set
over prior model-based controllers, and improves stability during gait transitions compared
to a HZD-based baseline walking controller. The learned policies are robust to modelling
error, perturbations, and environmental changes. This robustness emerges from our training
strategy, which trains a policy to imitate a collection of diverse gaits, and also incorporates
domain randomization. The learned policy can be directly transferred to other simulators,
such as a more accurate simulator implemented with SimMechanics, as well as to a real robot.
Our policies are able to reliably follow commands in indoor and outdoor environments. The
policies demonstrate agile recoveries from random perturbations, while also being robust to
malfunctioning motors, changes of ground friction, and carrying unknown payloads.

Related Work

Traditional approaches for locomotion of bipedal robots are typically based on notions of gait
stability, such as the ZMP criterion [280] and capturability [131], simplified models [136, 215,
297], and constrained optimization methods [132, 64, 51]. These methods have been shown
to be effective for controlling various humanoid robots with flat feet, but the resulting motion
tends to be slow and conservative. Hybrid Zero Dynamics (HZD) [84, 102, 48, 192, 79, 153] is
another control technique for generating stable periodic walking gaits based on input-output
linearization. Our work, which is based on reinforcement learning, is not constrained by the
requirement of a precise model and stabilization to a periodic orbit, as is the case for HZD,
which enables our method to produce more diverse behaviors.

RL-based Control for Legged Robots: Reinforcement learning for legged locomotion
has shown promising results in acquiring locomotion skills in simulation [46, 206, 207] and
in the real world [129, 111, 208]. Data-driven methods provide a general framework that
enables legged robots to perform a rich variety of behaviors by introducing reference motion
terms into the learning process [224, 207, 208]. However, most previous RL-based work
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are deployed on either multi-legged systems [152, 208, 141] or on low-dimensional bipedal
robots [183, 311], where learned motions are typically quasi-static.

More recently, RL has been applied to learn agile walking skills for Cassie. Model-based
RL in [36, 35] attains a velocity regulating adaptive walking controller on Cassie in simula-
tion. In [295, 296], reference motions combined with model-free residual learning [117] are
used to learn walking policies that are able to reliably track given planar velocity commands
on Cassie in the real world. Residual control structure used in the policy can speed up train-
ing, but the resulting policy can only apply limited corrections to the underlying reference
trajectory. Moreover, a model-based walking controller on Cassie is still needed to provide
reference motions recorded from control outputs. This limits the accessibility to the refer-
ence motions and therefore reduces the diversity of learned behaviors. In addition, most of
the previous learning-based walking policies on Cassie do not show significant improvement
over traditional model-based controllers. Also, they lack the ability to change the walking
height and turning yaw, which increases the complexity of controller design but enables the
robot to travel in narrow environments. In our work, we show a clear improvement over
model-based methods by examining the tracking performance and robustness over a range
of gait parameters.

Simulation to Real World Transfer: Sim-to-real transfer is an attractive approach for
developing policies, which takes advantage of fast simulations as a safe and inexpensive
source of data. Model-based methods require careful system identification to bridge the
reality gap [79, 153]. Randomizing the system properties in the source domain in order to
cover the uncertainty in the target domain has allowed for solutions that use low-fidelity
simulations for learning-based methods [232, 269, 200, 311, 310, 208, 245]. In this paper,
we adopt domain randomization to overcome the sim-to-real gap, without the need for any
additional training on the robot.

9.1 Parameterized Control of Cassie

In this section, we present the Cassie robot, which is the platform for our experiments and
introduce a HZD-based gait library of versatile walking behaviors for the Cassie.

Cassie Robot Model

Cassie is a person-sized bipedal robot with 20 DoFs, as shown in Fig. 9.1 and explained
in [153, Sec. II]. There are 10 actuated 1D revolute joints, which include abduction, rotation,
hip pitch, knee, and toe motors. There are also four passive joints that correspond to the
shin and tarsus joints. Its floating base pelvis has 3 transitional DoFs (sagittal, lateral,
transverse) and 3 rotational DoFs (roll, pitch, yaw).
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Figure 9.2: Proposed learning-based walking controller. The inputs of the policy consists of
desired gait parameter pd, desired turning yaw velocity q̇dϕ, a reference gait gr decoded from

the desired gait parameter pd, observed robot states qt−4:t, q̇t−4:t from time step t-4 to t, and
past policy outputs, which consist of the desired motor positions q̂t−4:t−1 from time step t-4
to t-1. The current desired motor positions q̂t are sent to joint-level controllers after passing
through a low-pass filter (LPF).

Gait Library and Parameterized Control

To create a controller that can be directed online to perform and transition between different
motions, we parameterize the input to the system using a set of gait parameter p that specifies
the desired gait. A gait g is a set of periodic joint trajectories that encode a locomotion
behavior [96]. In this work, we use 5th order Bézier curves α to represent smooth profiles
for the 10 actuated joints. The Bézier curves are normalized by 1 step period t. The
gaits designed in this paper consist of 2 steps, referred to as right stance and left stance,
and transitions between the steps are triggered by a foot impact on the ground. The gait
parameters chosen in this work are forward velocity q̇x, lateral velocity q̇y and walking height
qz, i.e., p = [q̇x q̇y qz]

T ∈ R3. A gait library G = {gi(α, t)} is constructed by indexing the
ith gait gi with its gait parameter pi. The optimization program for constructing the HZD-
based gait library is formulated in CFROST [102] and the resulting gaits are described in
Tab. 9.1 [153]. The gait libray is later combined with an online regulator to implement a
parameterized walking controller in [153, Sec. IV].

9.2 Learning Walking Control and Sim-to-Real

Having an optimized gait library is not enough to control bipedal robots without online
feedback. We will next combine the pre-computed HZD-based gait library with reinforcement
learning to develop a versatile locomotion policy π for the Cassie. Our policies are trained
using a simulation environment built with the MuJoCo simulator[270, 3]. This section details
the design of the simulation environment.
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Parameter Values
q̇x [− 1,−0.8, . . . , 0.8, 1.0]
q̇y [− 0.3,−0.24, . . . , 0.24, 0.3]
qz [0.65, 0.685, . . . , 0.965, 1.0]

number of gaits 11× 11× 11 = 1331

Table 9.1: The gait library contains reference motions for gaits that satisfy a range of
commands specifying different target values for forward velocity q̇x, lateral velocity q̇y, and
walking height qz.

Action Space

The action at = q̂ specifies target positions for the 10 motors on Cassie. In order to obtain
a smoother motion, the target positions are first passed through a low-pass filter [208], as
shown in Fig. 9.2, before being applied to the motors. A joint-level PD controller generates
torque u for each motor on Cassie based on the filtered targets.

State Space

The state st = (qt−4:t, q̇t−4:t, at−4:t−1) at time t consists of three components. The first
component qt−4:t consists of features that describe the pose of the robot’s body in the past
5 time steps. The features include the local rotations of each joint, as well as the rotation
of the pelvis. Note, that q does not include the translation of the pelvis, since that can
be difficult to measure in the real world without external instrumentation. Similarly, the
second component q̇t−4:t consists of the joint velocities in the past 5 time steps. The final
component at−4:t−1 records the actions taken by the plicy in the past 4 time steps. This
history of past observations and actions provides the policy with some information to infer
the system dynamics.

Goal

To train a policy to produce a desired reference motion, target frames from the reference
motion are provided to the policy as input via a time-dependent goal gt. The user com-
mand c is used to operate the robot online and it is defined as c = [pd q̇dϕ] which in-

cludes desired gait parameters pd and desired turning yaw velocity q̇dϕ. Given a desired

gait parameter pd, a reference gait gr is constructed by interpolating the parameterized
gait library with respect to pd as explained in Sec. 9.1. The goal is then specified by
gt = (c(t), q̂t, ˆ̇qt, q̂t+1, ˆ̇qt+1, q̂t+4, ˆ̇qt+4, q̂t+7, ˆ̇qt+7), which includes the current user commands
c(t), and the target motor positions q̂t and velocities ˆ̇qt for current and future time steps.
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Reward Function

The reward function is designed to encourage the agent to satisfy the given command while
reproducing the corresponding reference motion from the gait library. The reward at each
time step t is given by:

rt = 0.3rmt + 0.24rpt + 0.15rṗt + 0.13rrt + 0.06rṙt + 0.06rut + 0.06rft (9.1)

The motor reward rmt encourages the policy to minimize the discrepancies between the motor
positions qt and the target positions q̂t from the reference motion:

rmt = exp[−ρm||q̂t − qt||22]. (9.2)

where ρm is a scaling factor for the error term. The reward terms rpt , r
ṗ
t and rṙt follow the same

formulation as equation 9.2 and encourage the agent to track reference pelvis translational
position, translational velocity and rotational velocity in robot local frame, respectively. The
pelvis rotation reward rrt encourages the robot to reduce the difference between the rotation
of its pelvis qrt and the reference rotation q̂rt , and it is formulated by rrt = exp[−ρr||q̂rt ⊖ qrt ||22]
where ⊖ denotes the geodesic distance between two rotation angles. The torque reward
rut = exp[−ρu||u||22] encourages the robot to reduce energy consumption. Lastly, the ground
reaction force reward rft = exp[−ρf ||f ||22] helps to minimize the vertical contact forces f .
The weights of the reward terms are specified manually.

The desired roll and pitch velocity are always set to 0 to stabilize the pelvis, while the
desired yaw velocity is specified by the user command c(t). Note that the reference motion
from the gait library does not specify the turning yaw. Therefore, including non-zero desired
turning yaw in the reward can encourage the agent to develop turning behaviors, which are
not provided in the gait library.

Domain Randomization

In order to improve the robustness of the policy and bridge the gap between the simula-
tion and the real world, the dynamics of the environment is randomized during training
in simulation. The randomization regiment is designed to address three major sources of
uncertainty in the environment: 1) modelling error of the robot and the environment, 2)
sensor noise, and 3) communication delay between the policy and the joint-level controller.
These dynamics properties are parameterized as µ, with values varying between the ranges
specified in Tab. 9.2.

Network Architecture

The policy in modeled by a neural network with 2 hidden layers of 512 tanh units. The
value function is modeled by a separate network with a similar architecture. For the policy
network π(at|st,gt), the inputs include the state st and goal gt. The policy network uses
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Parameter Range Unit
Link Mass [0.75,1.15] × default kg

Link Mass Center [0.75,1.15] × default m
Joint Damping [0.75,1.15] × default Nms/rad

Ground Friction Ratio [0.5, 3.0] 1
Motor Rotation Noise [-0.1, 0.1] rad

Motor Angle Velocity Noise [-0.1, 0.1] rad/s
Accelerometer Noise [-0.4, 0.4] m/s2

Gyro Rotation Noise [-0.1, 0.1] rad
Gyro Angle Velocity Noise [-0.1, 0.1] rad/s
Communication Delay [0, 0.03] sec

Table 9.2: Dynamics Properties and Sample Range.

tanh as the activation function for the output layer. The output of the policy network is a
10 dimensional vector representing a Gaussian action distribution N (mπ(a|s,g),Σπ) with a
learned mean mπ(a|s) and fixed standard deviation Σπ = 0.1I. The action a (i.e., desired
motor positions) is sampled from this output distribution. The value network outputs a
scalar value V (s,g,µ) representing the expected return of the policy given state s, goal g,
and the dynamics parameters µ used in simulation. As in Chapter 8, we use an asymmetry
architecture where the value function is provided with access to the ground-truth dynamics
parameters, which is only accessible in simulation.

Training Setup

The policy operates at 30 Hz, while the joint-level PD controller illustrated in Fig. 9.2 runs at
2000 Hz. The maximum number of time steps for each episode is designated to be T=2500,
corresponding to approximately 83 s. In each episode, a new command c(t) = [q̇dx q̇dy qdz , q̇

d
ϕ] is

uniformly sampled every 8 s, and remains unchanged during the 8 s window. The command
range is from [−2,−0.8, 0.65,−π/6] to [2, 0.8, 1, π/6]. The first command in each episode is
always set to a random walking forward velocity with 0 yaw velocity at a normal height above
0.9 m. Note that the range of training commands is larger compared to the gait parameter
provided in Tab. 9.1. In this way, the agent is able to learn to follow a command that is
out-of-range of gait parameters and thus learns behaviors beyond what the gait library can
provide. An episode ends when the maximum number of time steps is reached, or early
termination conditions have been triggered. Early termination is triggered if the height of
the pelvis drops below 0.55 m, and if the tarsus joints hit the ground.

Dynamics randomization presented in Sec. 9.2 is introduced gradually over the course of
training through a curriculum. The curriculum helps to prevent the policy from adopting
excessively conservative sub-optimal behaviors. For example, if training starts with the full
range of randomizations detailed in Table 9.2, the policy is prone to adopting strategies that
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Figure 9.3: Comparison between (a) proposed Curriculum (CR) and Non-Curriculum (NCR)
methods and (b) proposed Non-Residual Control (NRC) and Residual Control (RC) used
in previous work [296]. Our proposed method shows best overall training performance in
terms of learning speed and converged rewards. The corresponding total samples for the
curriculum is 6.6×107, while the NCR model has full range of dynamics randomization from
the start of training.

prevent the robot from falling by simply standing in-place. In a highly dynamic environment,
standing can be more stable than walking, and is therefore easier to learn, but is nonetheless
sub-optimal. Therefore, over the course of the first 2000 training iterations, the upper and
lower boundaries of the randomized dynamics parameters are linearly annealed from fixed
default values to the maximum ranges specified in Tab. 9.2.

9.3 Experiments

The walking policy is trained with a MuJoCo simulation of the Cassie robot [270]. The
performance of the learned policy is evaluated in three domains: MuJoCo, MATLAB Sim-
Mechanics, and on Cassie. Performance is first evaluated in the MuJoCo simulator, which
is the domain used for training. Later, SimMechanics provides a safe and high-fidelity simu-
lated environment that closely replicates the physical system to extensively test the learned
policy. However, the high-fidelity simulation is slower than real-time by an order of magni-
tude, so it is primarily used for testing. Finally, the policy is deployed and validated on the
real Cassie robot.

Learning Performance

To evaluate the effects of the randomization curriculum, we compare the performance of
policies trained with and without the curriculum. Fig. 9.3(a) compares learning curves for
the different policies. The policy trained with the randomization curriculum (CR) starts
training with a small amount of randomization, which is then gradually increased over the
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course of training. The policy trained without the curriculum (NCR) starts training with the
full range of randomization. The large amount of randomization at the start of training leads
the policy to adopt an excessively conservative and sub-optimal behavior. The policy trained
with the curriculum exhibits substantially faster learning progress, while also achieving a
higher return.

The effects of residual control are evaluated by comparing the performance of our policy
that uses non-residual control (NRC), with a policy that uses residual control (RC) [295,
296]. Learning curves comparing the different policies are available in Fig. 9.3(b). In the
absence of external perturbations, the performance of the two policies is similar, with the
non-residual policy performing marginally better than the residual policy. However, as we
show in the following experiments, our non-residual policy with dynamics randomization is
more robust than the residual policy, which may be due to the non-residual policy’s greater
flexibility to deviate from the behaviors prescribed by the reference motion in order to recover
from perturbations.

Robustness Analysis in High-Fidelity Simulation

A Feasible command set is a set of input gait parameters pd that will not cause a controller
to fail. A safe set is defined as a set of gait parameters that a controller actually achieves on
the robot while maintaining a stable walking gait. During each iteration, a gait parameter
pd is provided to the controller as a command in MATLAB SimMechanics, if the controller
succeeds in maintaining a stable gait for 15 seconds, then pd will be added to the feasible
command set and the actual achieved gait parameter p̂ will be added to the safe set. Through
extensive tests of a controller, the resulting feasible command set and safe set provide infor-
mative metrics to evaluate the control performance and robustness of the controller when
deployed on the robot. Typically, a walking controller with a larger feasible command set
can handle more scenarios, and a controller with a larger safe set can achieve more dynamic
motions. Moreover, a controller with better tracking performance can result in a similar
shape between the feasible command set and safe set, as the difference between these two
sets indicates tracking errors between pd and p̂.

We compare the feasible command sets and safe sets between the learned policy and prior
HZD-based variable walking height controller developed in [153] and based on [79]. The pro-
cedures for generating the command sets and safe sets of these two controllers are identical,
and the testing range for pd is set to be between [−1.1, − 0.6, 0.65]T and [2, 0.6, 1.0]T ,
with a resolution of [0.1, 0.1, 0.05]T . The resulting feasible command sets and safe sets are
shown in Fig. 9.4. As shown in Fig. 9.4(a), the proposed RL-based controller is able to cover
almost the entire testing range, while the HZD-based controller can only handle a smaller
bowl-shape region. Quantitatively, the feasible command set of the RL-based walking con-
troller is more than 4 times larger than HZD-based controller. Moreover, as illustrated in
Fig. 9.4(b), the RL-based walking controller covers a broader safe set than the HZD-based
controller. In practice, this means that the RL-based controller can achieve faster forward
and backward walking (from −1.2 m/s to 1.2 m/s) than HZD-based one (below 1 m/s).
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(a) Feasible Command Set (b) Safe Set

Figure 9.4: Comparison of proposed commands (Feasible Command Set) and achieved com-
mands (Safe Set) between HZD-based controller [153] and proposed RL-based controller.
Our RL-based controller can handle more tracking commands than the HZD-based baseline
and thus results in a larger feasible command set. The safe set of RL-based policy is also
larger in the sagittal walking velocity ˆ̇qx and walking height q̂z direction. The tracking per-
formance of the RL-based policy also shows advantages as the shapes of feasible command
set and safe set are closer.

Although Fig. 9.4(b) shows that the HZD-based controller can achieve walking gaits with
lower heights (0.6 m) than the RL-based one (0.65 m), the tracking error of the HZD-based
controller is not negligible as its minimum feasible walking height command can only reach
0.7 m while RL-based one can go to 0.65 m. Therefore, the RL-based controller exhibits bet-
ter performance on tracking commands. Moreover, by inspecting the relationship between
Fig. 9.4(a) and Fig. 9.4(b), we find that the RL-based controller can handle the commands
that are outside of the given gait library in Tab. 9.1, e.g., 2 m/s in the sagittal direction.
The resulting actual velocity ˆ̇qx is around 1.2 m/s, which is also outside of the range seen in
the gait library. With the standard HZD-based controller, the robot only approaches 1 m/s
when it is being given a 2 m/s command, due to a large tracking error. This shows that the
RL-based controller is not strictly tracking the commands, and instead finds a more optimal
gait that is close to the commands while maintaining stability.

Robustness in the Real World

The deployed policy on Cassie in the real world can reliably control the robot to perform
various behaviors, such as changing walking heights in Fig. 9.1(a),9.1(b), fast walking in
Fig. 9.5(a), walking sideways in Fig. 9.5(b), turning around in Fig. 9.5(c). Moreover, the
policy also shows robustness to the changes of the robot itself and the environment.
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(a) Fast Walking Outdoor (b) Side Walking (c) Turning

(d) Recover from Foot Sliding (e) Unknown Load (f) Anti-Slip(g) Slippery

Figure 9.5: Experiment Results. The proposed learned walking policy extensively on Cassie
in real world in different scenarios. In the experiments, the policy enables the Cassie to
perform various agile behaviors such as fast forward and backward walking, sideways walking,
changing walking height, and turning around. Moreover, empowered by the proposed policy,
the robot is able to recover from random perturbation and also able to adapt to change
different ground frictions and unknown load.

Modeling Error

During the experiments in this paper, a malfunction caused two motors on the Cassie to
behave abnormally. Specifically, the right rotation and right knee motors were partially
damaged, rendering them unable to produce as much torque as the corresponding motors on
the left side. Following this malfunction, model-based walking controllers, such as the factory
default controller and the HZD-based variable walking controller [153], were no longer able
to reliably produce a walking gait. The baseline HZD-based controller was no longer able to
recover to a normal height after a reduction in walking height, since the right leg was weaker
than the left leg. However, by training with dynamics randomization (Sec. 9.2), especially
the damping ratio of each joint, the proposed learned walking controller could control the
robot even with partially damaged motors. Indeed, this policy was able to successfully
control the robot the very first time it was deployed, without additional tuning.

Perturbation

To show that our approach is more robust, three quantitative experiments are done in the
MuJoCo simulator: 1) a non-residual policy trained with the gait library, 2) a non-residual
policy trained using a single reference motion from the gait library, and 3) a residual policy
trained with the same single gait as the previous work [296]. All policies are trained without
domain randomization. During the evaluation, the pelvis is perturbed randomly by a 6 DoF
force with a probability of 0.15%β at each time step lasting for a random time span sampling
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Figure 9.6: Comparison of robustness to perturbation among 3 different methods in Mu-
JoCo simulation. Non-Residual Controlled Gait Library (NRC+GL) trained with the gait
library; Non-Residual Controlled Single Gait (NRC+SG) and Residual Controlled Single
Gait (RC+SG) are trained with only one single gait. A 6 DoF force is randomly applied
on the pelvis with probability 0.15β%. The Normalized Return is computed with the mean
reward of 32 roll-outs for each model and β.

from [0, 0.8β] s, where β ∈ [0, 1] stands for perturbation intensity. The achieved return of
each model is illustrated in Fig. 9.6. When larger perturbations like β ∈ {0.8, 1} are applied,
the model trained by the proposed method shows significant advantages over other models.

To further demonstrate the robustness in the real world qualitatively, we randomly push
Cassie with a rod in different directions Fig. 9.1(c). The feet of Cassie are also perturbed
during walking, including stepping on the gantry in Fig. 9.5(d). In addition an unknown load
is applied in Fig. 9.5(e) and changes in ground friction in Fig. 9.5(f),9.5(g). The proposed
learned policy shows improved robustness over previous work across all scenarios.

9.4 Discussion

In this chapter, we presented a reinforcement learning system that combines motion imitation
and domain randomization to create robust parameterized bipedal locomotion policies that
can walk, turn and squat. The proposed learning method shows benefits over a baseline
model-based walking controller, produces a larger feasible command set, a larger safe set,
and better tracking performance. In real world experiments, the policies also demonstrate
considerable robustness, allowing the Cassie to walk over floors with different friction, recover
from perturbations, and even walk with malfunctioning motors. An exciting future direction
is to explore more dynamic and agile behaviors with the Cassie by building on the approach
presented in this work.
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Chapter 10

Domain Adaptation

Figure 10.1: Laikago robot performing locomotion skills learned by imitating motion data
recorded from a real dog. Top: Motion capture data recorded from a dog. Middle: Sim-
ulated Laikago robot imitating reference motions. Bottom: Real Laikago robot imitating
reference motions. (Video1)

Animals can traverse complex environments with remarkable agility, bringing to bear
broad repertoires of agile and acrobatic skills. Reproducing such agile behaviors has been a
long-standing challenge in robotics, with a large body of work devoted to designing control
strategies for various locomotion skills [179, 217, 240, 76, 23]. However, designing control
strategies often involves a lengthy development process, and requires substantial expertise of
both the underlying system and the desired skills. Despite the many success in this domain,
the capabilities achieved by these systems are still far from the fluid and graceful motions
seen in the animal kingdom.

In this chapter, we propose an imitation learning framework that enables legged robots
to learn agile locomotion skills from real-world animals. To address the high sample re-
quirements of current RL algorithms, the initial training phase is performed in simulation.

1 Supplementary video: https://xbpeng.github.io/projects/Robotic_Imitation/

https://xbpeng.github.io/projects/Robotic_Imitation/
https://xbpeng.github.io/projects/Robotic_Imitation/
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However, the directly sim-to-real transfer approach used in Chapter 9 may not always be
successful when transferring more agile behaviors, which can be more sensitive to variations
in the dynamics of a system. In order to transfer these agile skills from simulation to the real
world, we propose a sample efficient adaptation technique, which fine-tunes the behavior of
a policy using a learned dynamics representation. The central contribution of this chapter
is a system that enables legged robots to learn agile locomotion skills by imitating animals.
We demonstrate the effectiveness of our framework on a variety of dynamic locomotion skills
with the Laikago quadruped robot [286], including different locomotion gaits, as well as dy-
namic hops and turns. In our ablation studies, we explore the impact of different design
decisions made for the various components of our system.

10.1 Related Work

The development of controllers for legged locomotion has been an enduring subject of interest
in robotics, with a large body of work proposing a variety of control strategies for legged
systems [179, 217, 240, 81, 76, 302, 44, 23]. However, many of these methods require in-depth
knowledge and manual engineering for each behavior, and as such, the resulting capabilities
are ultimately limited by the designer’s understanding of how to model and represent agile
and dynamic behaviors. Trajectory optimization and model predictive control can mitigate
some of the manual effort involved in the design process, but due to the high-dimensional and
complex dynamics of legged systems, reduced-order models are often needed to formulate
tractable optimization problems [138, 74, 54, 12]. These simplified abstractions tend to be
task-specific, and again require significant insight of the properties of each skill.

Motion imitation: Imitating reference motions provides a general approach for robots to
perform a rich variety of behaviors that would otherwise be difficult to manually encode into
controllers [213, 83, 252, 299]. But applications of motion imitation to legged robots have
predominantly been limited to behaviors that emphasize upper-body motions, with fairly
static lower-body movements, where balance control can be delegated to separate control
strategies [188, 123, 128]. In contrast to physical robots, substantially more dynamic skills
can be reproduced by agents in simulation [184, 145, 46, 160]. Recently, motion imitation
with reinforcement learning has been effective for learning a large repertoire of highly ac-
robatic skills in simulation [207, 158, 210, 143]. But due to the high sample complexity
of RL algorithms and other physical limitations, many of the capabilities demonstrated in
simulation have yet to be replicated in the real world.

Sim-to-real transfer: The challenges of applying RL in the real world have driven the use
of domain transfer approaches, where policies are first trained in simulation (source domain),
and then transferred to the real world (target domain). Sim-to-real transfer can be facili-
tated by constructing more accurate simulations [259, 296], or adapting the simulator with
real-world data [256, 92, 111, 165, 37]. However, building high-fidelity simulators remains a
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challenging endeavour, and even state-of-the-art simulators provide only a coarse approxi-
mation of the rich dynamics of the real world. Domain randomization can be incorporated
into the training process to encourage policies to be robust to variations in the dynamics
[232, 269, 212, 200, 195]. Sample efficient adaptation techniques, such as finetuning [231]
and meta-learning [58, 65, 41] can also be applied to further improve the performance of pre-
trained policies in new domains. In this work, we leverage a class of adaptation techniques,
which we broadly referred to as latent space methods [98, 311, 310], to transfer locomotion
policies from simulation to the real world. During pre-training, these methods learn a latent
representation of different behaviors that are effective under various scenarios. When trans-
ferring to a new domain, a search can be conducted in the latent space to find behaviors
that successfully execute a desired task in the new domain. We show that by combining
motion imitation and latent space adaptation, our system is able to learn a diverse corpus
of dynamic locomotion skills that can be transferred to legged robots in the real world.

RL for legged locomotion: Reinforcement learning has been effective for automatically
acquiring locomotion skills in simulation [207, 158, 143] and in the real world [129, 264, 59,
259, 90, 111]. Kohl and Stone [129] applied a policy gradient method to tune manually-
crafted walking controllers for the Sony Aibo robot. By carefully modeling the motor dy-
namics of the Minitaur quadruped robot, Tan et al. [259] was able to train walking policies
in simulation that can be directly deployed on a real robot. Hwangbo et al. [111] proposed
learning a motor dynamics model using real-world data, which enabled direct transfer of
a variety of locomotion skills to the ANYmal robot. Their system trained policies using
manually-designed reward functions for each skill, which can be difficult to specify for more
complex behaviors. Imitating reference motions can be a general approach for learning di-
verse repertoires of skills without the need to design skill-specific reward functions [160, 207,
210]. Xie et al. [296] trained bipedal walking policies for the Cassie robot by imitating refer-
ence motions recorded from existing controllers and keyframe animations. The policies are
again transferred from simulation to the real world with the aid of careful system identifi-
cation. Yu et al. [311] transferred bipedal locomotion policies from simulation to a physical
Darwin OP2 robot using a latent space adaptation method, which mitigates the dependency
on accurate simulators. In this work, we leverage a similar latent space method, but by
combining it with motion imitation, our system enables real robots to perform more diverse
and agile behaviors than have been demonstrated by these previous methods.

10.2 Overview

The objective of our framework is to enable robots to learn skills from real animals. Our
framework receives as input a reference motion that demonstrates a desired skill for the robot,
which may be recorded using motion capture (mocap) of real animals (e.g. a dog). Given
a reference motion, it then uses reinforcement learning to synthesize a policy that enables
a robot to reproduce that skill in the real world. A schematic illustration of our framework
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Figure 10.2: The framework consists of three stages: motion retargeting, motion imitation,
and domain adaptation. It receives as input motion data recorded from an animal, and
outputs a control policy that enables a real robot to reproduce the motion.

is available in Figure 10.2. The process is organized into three stages: motion retargeting,
motion imitation, and domain adaptation. 1) The reference motion is first processed by the
motion retargeting stage, where the motion clip is mapped from the original subject’s mor-
phology to the robot’s morphology via inverse-kinematics. 2) Next, the retargeted reference
motion is used in the motion imitation stage to train a policy to reproduce the motion with a
simulated model of the robot. To facilitate transfer to the real world, domain randomization
is applied in simulation to train policies that can adapt to different dynamics. 3) Finally,
the policy is transferred to a real robot via a sample efficient domain adaptation process,
which adapts the policy’s behavior using a learned latent dynamics representation.

10.3 Motion Retargeting

When using motion data recorded from animals, the subject’s morphology tends to differ
from that of the robot’s. To address this discrepancy, the source motions are retargeted to
the robot’s morphology using inverse-kinematics [78]. First, a set of source keypoints are
specified on the subject’s body, which are paired with corresponding target keypoints on the
robot’s body. An illustration of the keypoints is available in Figure 10.3. The keypoints
include the positions of the feet and hips. At each timestep, the source motion specifies the
3D location x̂i(t) of each keypoint i. The corresponding target keypoint xi(qt) is determined
by the robot’s pose qt, represented in generalized coordinates [63]. IK is then applied to
construct a sequence of poses q0:T that track the keypoints at each frame,

arg min
q0:T

∑
t

∑
i

||x̂i(t)− xi(qt)||2 + (q̄− qt)
TW(q̄− qt). (10.1)
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Figure 10.3: Inverse-kinematics (IK) is used to retarget mocap clips recorded from a real dog
(left) to the Laikago robot (right). Corresponding pairs of keypoints (red) are specified on
the dog and robot’s bodies, and then IK is used to compute a pose for the robot that tracks
the keypoints.

An additional regularization term is included to encourage the poses to remain similar to
a default pose q̄, and W = diag(w1, w2, ...) is a diagonal matrix specifying regularization
coefficients for each joint.

10.4 Motion Imitation

To imitate a given reference motion, we follow a similar motion imitation approach as Chap-
ter3. The inputs to the policy is augmented with an additional goal gt, which specifies the
motion that the robot should imitate. The policy is modeled as a feedforward network that
maps a given state st and goal gt to a distribution over actions π(at|st,gt). The policy is
queried at 30Hz for a new action at each timestep. The state st = (qt−2:t, at−3:t−1) is repre-
sented by the poses qt−2:t of the robot in the three previous timesteps, and the three previous
actions at−3:t−1. The pose features qt consist of IMU readings of the root orientation (row,
pitch, yaw) and the local rotations of every joint. The root position is not included among
the pose features to avoid the need to estimate the root position during real-world deploy-
ment. The goal gt = (q̂t+1, q̂t+2, q̂t+10, q̂t+30) specifies target poses from the reference motion
at four future timesteps, spanning approximately 1 second. The action at specifies target
rotations for PD controllers at each joint. To ensure smoother motions, the PD targets are
first processed by a low-pass filter before being applied on the robot [32].

Reward Function: The reward function encourages the policy to track the sequence of
target poses (q̂0, q̂1, ..., q̂T ) from the reference motion at every timestep. The reward rt at
each timestep is given by:

rt = wprpt + wvrvt + weret + wrprrpt + wrvrrvt (10.2)

wp = 0.5, wv = 0.05, we = 0.2, wrp = 0.15, wrv = 0.1
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The pose reward rpt encourages the robot to minimize the difference between the joint ro-
tations specified by the reference motion and those of the robot. In the equation below,
q̂j
t represents the 1D local rotation of joint j from the reference motion at time t, and qj

t

represents the robot’s joint,

rpt = exp

[
−5
∑
j

||q̂j
t − qj

t ||2
]
. (10.3)

Similarly, the velocity reward rvt is calculated according to the joint velocities, with ˆ̇qj
t and

q̇j
t being the angular velocity of joint j from the reference motion and robot respectively,

rvt = exp

[
−0.1

∑
j

||ˆ̇qj
t − q̇j

t ||2
]
. (10.4)

Next, the end-effector reward ret , encourages the robot to track the positions of the end-
effectors, where xe

t denotes the relative 3D position of end-effector e with respect to the root,

ret = exp

[
−40

∑
e

||x̂e
t − xe

t ||2
]
. (10.5)

Finally, the root pose reward rrpt and root velocity reward rrvt encourage the robot to track the
reference root motion. xroot

t and ẋroot
t denotes the root’s global position and linear velocity,

while qroot
t and q̇root

t are the rotation and angular velocity,

rrpt = exp
[
−20||x̂root

t − xroot
t ||2 − 10||q̂root

t − qroot
t ||2

]
(10.6)

rrvt = exp
[
−2||ˆ̇xroot

t − ẋroot
t ||2 − 0.2||ˆ̇qroot

t − q̇root
t ||2

]
. (10.7)

10.5 Domain Adaptation

Due to discrepancies between the dynamics of the simulation and the real world, policies
trained in simulation tend to perform poorly when deployed on a physical system. Therefore,
we propose a sample efficient adaptation technique for transferring policies from simulation
to the real world.

Domain Randomization

Domain randomization is a simple strategy for improving a policy’s robustness to dynamics
variations [232, 269, 200]. Instead of training a policy in a single environment with fixed
dynamics, domain randomization varies the dynamics during training, thereby encouraging
the policy to learn strategies that are functional across different dynamics. However, there
may be no single strategy that is effective across all environments, and due to unmodeled
effects in the real world, strategies that are robust to different simulated dynamics may
nonetheless fail when deployed in a physical system.
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Domain Adaptation

In this work, we aim to learn strategies that are robust to variations in the dynamics of the
environment, while also being able to adapt its behaviors as necessary for new environments.
Let µ represent the values of the dynamics parameters that are randomized during training
in simulation (Table 10.1). At the start of each episode, a random set of parameters are
sampled according to µ ∼ p(µ). The dynamics parameters are then encoded into a latent
embedding z ∼ E(z|µ) by a stochastic encoder E, and z is provided as an additional input
to the policy π(a|s, z). For brevity, we have excluded the goal input g for the policy. When
transferring a policy to the real world, we follow a similar approach as Yu, Liu, and Turk
[306], where a search is performed to find a latent encoding z∗ that enables the policy to
successfully execute the desired behaviors on the physical system. Next, we propose an
extension that addresses potential issues due to over-fitting with the previously proposed
method.

A potential degeneracies of the previously described approach is that the policy may
learn strategies that depend on z being an accurate representation of the true dynamics
of the system. This can result in brittle behaviors where the strategies utilized by the
policy for a given z can overfit to the precise dynamics from the corresponding parameters
µ. Furthermore, due to unmodeled effects in the real world, there might be no µ that
accurately models real-world dynamics. Therefore, to encourage the policy to be robust to
uncertainty in the dynamics, we incorporate an information bottleneck into the encoder. The
information bottleneck enforces an upper bound Ic on the mutual information I(,Z) between
the dynamics parameters and the encoding Z. This results in the following constrained
policy optimization objective,

arg max
π,E

Eµ∼p(µ)Ez∼E(z|µ)Eτ∼p(τ |π,µ,z)

[
T−1∑
t=0

γtrt

]
(10.8)

s.t. I(,Z) ≤ Ic. (10.9)

where the trajectory distribution is now given by,

p(τ |π, µ, z) = p(s0)
T−1∏
t=0

p(st+1|st, at, µ)π(at|st, z). (10.10)

Since computing the mutual information is intractable, the constraint in Equation 10.9 can
be approximated with a variational upper bound using the KL divergence between E and a
variational prior ρ(z) [8],

I(,Z) ≤ Eµ∼p(µ) [DKL [E(·|µ)||ρ(·)]] . (10.11)

We can further simplify the objective by converting Equation 10.9 into a soft constraint, to
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Algorithm 5 Adaptation with Advantage-Weighted Regression

1: π ← trained policy
2: ω0 ← N (0, I)
3: D ← ∅
4: for iteration k = 0, ..., kmax − 1 do
5: zk ← sampled encoding from ωk(z)
6: Rollout an episode with π conditioned zk and record the return Rk

7: Store (zk,Rk) in D
8: v̄ ← 1

k

∑k
i=1Ri

9: ωk+1 ← arg maxω
∑k

i=1

[
log ω(zi) exp

(
1
α
(Ri − v̄)

)]
10: end for

yield the following information-regularized objective,

arg max
π,E

Eµ∼p(µ)Ez∼E(z|µ)Eτ∼p(τ |π,µ,z)

[
T−1∑
t=0

γtrt

]
− β Eµ∼p(µ) [DKL [E(·|µ)||ρ(·)]] ,

(10.12)

with β ≥ 0 being a Lagrange multiplier. In our experiments, we model the encoder E(z|µ) =
N (m(µ),Σ(µ)) as a Gaussian distribution with mean m(µ) and standard deviation Σ(µ),
and the prior ρ(z) = N (0, ) is given by the unit Gaussian. This objective can be interpreted
as training a policy that maximizes the agent’s expected return across different dynamics,
while also being able to adapt its behaviors when necessary by relying on only a minimal
amount of information from the ground-truth dynamics parameters. In our formulation,
the Lagrange multiplier β provides a trade-off between robustness and adaptability. Large
values of β restrict the amount of information that the policy can access from µ. In the limit
β → ∞, the policy converges to a robust but non-adaptive policy that does not access the
underlying dynamics parameters. Conversely, small values of β → 0 provides the policy with
unfettered access to the dynamics parameters, which can result in brittle strategies where
the policy’s behaviors overfit to the nuances of each setting of the dynamics parameters,
potentially leading to poor generalization to real-world dynamics.

Real World Transfer

To adapt a policy to the real world, we directly search for an encoding z that maximizes the
return on the physical system

z∗ = arg max
z

Eτ∼p∗(τ |π,z)

[
T−1∑
t=0

γtrt

]
, (10.13)

with p∗(τ |π, z) being the trajectory distribution under real-world dynamics. To identify z∗,
we use advantage-weighted regression (AWR) [190, 204], a simple off-policy RL algorithm.
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Parameter Training Range Testing Range
Mass [0.8, 1.2] × default value [0.5, 2.0] × default value
Inertia [0.5, 1.5] × default value [0.4, 1.6] × default value
Motor Strength [0.8, 1.2] × default value [0.7, 1.3] × default value
Motor Friction [0, 0.05] Nms/rad [0, 0.075] Nms/rad
Latency [0, 0.04] s [0, 0.05] s
Lateral Friction [0.05, 1.25] Ns/m [0.04, 1.35] Ns/m

Table 10.1: Dynamic parameters and their respective range of values used during training
and testing. A larger range of values are used during testing to evaluate the policies’ ability
to generalize to unfamiliar dynamics.

Algorithm 5 summarizes the adaptation process. The search distribution is initialized with
the prior ω0(z) = N (0, I). At each iteration k, we sample an encoding from the current
distribution zk ∼ ωk(z) and execute an episode with the policy conditioned on zk. The return
Rk for the episode is recorded and stored along with zk in a replay buffer D containing all
samples from previous iterations. ωk(z) is then updated by fitting a new distribution that
assigns higher likelihoods to samples with larger advantages. The likelihood of each sample
zi is weighted by the exponentiated-advantage exp

(
1
α
(Ri − v̄)

)
, where the baselines v̄ is the

average return of all samples in D, and α is a manually specified temperature parameter.
Note that, since ωk(z) is Gaussian, the optimal distribution at each iteration (Line 9) can be
determined analytically. However, we found that the analytic solution is prone to premature
convergence to a suboptimal solution. Instead, we update ωk(z) incrementally using a few
steps of gradient descent. This process is repeated for kmax iterations, and the mean of
the final distribution ωkmax(z) is used as an approximation of the optimal encoding z∗ for
deploying the policy in the real world.

10.6 Experimental Evaluation

We evaluate our robotic learning system by learning to imitating a variety of dynamic lo-
comotion skills using the Laikago robot [286], an 18 degrees-of-freedom quadruped with 3
actuated degrees-of-freedom per leg, and 6 under-actuated degrees of freedom for the root
(torso). Behaviors learned by the policies are best seen in the supplementary video1, and
snapshots of the behaviors are also available in Figure 10.4. In the following experiments,
we aim to evaluate the effectiveness of our framework on learning a diverse set of quadruped
skills, and study how well real-world adaptation can enable more agile behaviors. We show
that our adaptation method can efficiently transfer policies trained in simulation to the real
world with a small number of trials on the physical system. We further study the effects
of regularizing the latent dynamics encoding with an information bottleneck, and show that
this provides a mechanism to trade off between the robustness and adaptability of the learned

https://xbpeng.github.io/projects/Robotic_Imitation/
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(a) Dog Pace (b) Dog Backwards Trot

(c) Side-Steps (d) Turn

(e) Hop-Turn (f) Running Man

Figure 10.4: Laikago robot performing skills learned by imitating reference motions. Top:
Reference motion. Middle: Simulated robot. Bottom: Real robot.

policies.

Experimental Setup

Retargeting via inverse-kinematics and simulated training is performed using PyBullet [47].
Table 10.1 summarizes the dynamics parameters and their respective range of values. The
motion dataset contains a mixture of mocap clips recorded from a dog and clips from artist



CHAPTER 10. DOMAIN ADAPTATION 135

Parameter Value
Discount factor γ 0.95
Policy Adam learning rate 2× 10−5

Value function Adam learning rate 10−5

PPO clip threshold 0.2
PPO batch size 10000
PPO epochs 10
Information penalty coefficient (β) 10−4

Table 10.2: Hyper-parameters used during
training in simulation with PPO.

Parameter Value
Discount factor γ 1.0
Adam learning rate 5× 10−3

Gradient steps per iteration 10
AWR temperature α 0.01

Table 10.3: Hyper-parameters used for do-
main adaptation with AWR in the real world.

generated animations. The mocap clips are collected from a public dataset [314] and re-
targeted to the Laikago following the procedure in Section 10.3. Figure 10.6 lists the skills
learned by the robot and summarizes the performance of the policies when deployed in the
real world. Motion clips recorded from a dog are designated with “Dog”, and the other clips
correspond to artist animated motions. Performance is recorded as the average normalized
return, with 0 corresponding to the minimum possible return per episode and 1 being the
maximum return. Note that the maximum return may not be achievable, since the reference
motions are generally not physically feasible for the robot. Performance is calculated using
the average of 3 policies initialized with different random seeds. Each policy is trained with
proximal policy optimization using about 200 million samples in simulation [238]. Both the
encoder and policy are trained end-to-end using the reparameterization trick [125]. Domain
adaptation is performed on the physical system with AWR in the latent dynamics space,
using approximately 50 real-world trials to adapt each policy. Trials vary between 5s and
10s in length depending on the space requirements of each skill. Table 10.2 summarizes the
hyper-parameter settings for training with proximal-policy optimization (PPO) in simula-
tion, and Table 10.3 shows the hyper-parameters for domain adaptation with advantage-
weighted regression (AWR). Gradient descent descent updates are performed using Adam
kingma2014adam.

Model representation: All policies are modeled using the neural network architecture
shown in Figure 10.5. The encoder E(z|µ) is represented by a fully-connected network that
maps the dynamics parameters µ to the mean mE(µ) and standard deviation ΣE(µ) of the
encoder distribution. The policy network π(a|s,g, z) receives as input the state s, goal g, and
dynamics encoding z, then outputs the mean mπ(s,g, z) of a Gaussian action distribution.
The standard deviation Σπ = diag(σ1

π, σ
2
π, ...) of the action distribution is represented by a

fixed matrix. The value function V (s,g, µ) receives as input the state, goal, and dynamics
parameters.
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Figure 10.5: Schematic illustration of the network architecture used for the adaptive policy.
The encoder E(z|µ) receives the dynamics parameters µ as input, which are processed by
two fully-connected layers with 256 and 128 ReLU units, and then mapped to a Gaussian
distribution over the latent space Z with mean mE(µ) and standard deviation ΣE(µ). An
encoding z is sampled from the encoder distribution and provided to the policy π(a|s,g, µ)
as input, along with the state s and goal g. The policy is modeled with two layers of 512
and 256 units, followed by an output layer which specifies the mean mπ(s,g, z) of the action
distribution. The standard deviation Σπ of the action distribution is specified by a fixed
diagonal matrix. The value function V (s,g, µ) is modeled by a separate network with 512
and 256 hidden units.

Learned Skills

Our framework is able to learn a diverse set of locomotion skills for the Laikago, including
dynamic gaits, such as pacing and trotting, as well as agile turning and spinning motions
(Figure 10.4). Pacing is typically used for walking at slower speeds, and is characterized
by each pair of legs on the same side of the body moving in unison (Figure 10.4(a)) [218].
Trotting is a faster gait, where diagonal pairs of legs move together (Figure 10.1). We are
able to train policies for these different gaits just by providing the system with different
reference motions. Furthermore, by simply playing the mocap clips backwards, we are able
to train policies for different backwards walking gaits (Figure 10.4(b)). The gaits learned by
our policies are faster than those of the manually-designed controller from the manufacturer.
The fastest manufacturer gait reaches a top speed of about 0.84m/s, while the Dog Trot
policy reaches a speed of 1.08m/s. The backwards trotting gait reaches an even higher speed
of 1.20m/s. In addition to imitating mocap data from animals, our system is also able
to learn from artist animated motions. While these hand-animated motions are generally
not physically correct, the policies are nonetheless able to closely imitate most motions
with the real robot. This includes a highly dynamic Hop-Turn motion, in which the robot
performs a 90 degrees turn midair (Figure 10.4(e)). While our system is able to imitate a
variety of motions, some motions, such as Running Man (Figure 10.4(f)), prove challenging
to reproduce. The motion requires the robot to travel backwards while moving in a forward-
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Figure 10.6: Performance statistics of imitating various skills in the real world. Performance
is recorded as the average normalized return between [0, 1]. Three policies initialized with
different random seeds are trained for each combination of skill and method. The perfor-
mance of each policy is evaluated over 5 episodes, for a total of 15 trials per method. The
adaptive policies outperform the non-adaptive policies on most skills.

Skill No Rand Robust Adaptive (Before) Adaptive (After)
Dog Pace 0.128± 0.033 0.350± 0.172 0.395± 0.277 0.827± 0.020
Dog Trot 0.171± 0.031 0.471± 0.102 0.237± 0.092 0.593± 0.070
Dog Backwards Pace 0.067± 0.003 0.421± 0.244 0.401± 0.264 0.390± 0.254
Dog Backwards Trot 0.072± 0.004 0.120± 0.126 0.167± 0.048 0.656± 0.071
Dog Spin 0.098± 0.033 0.209± 0.081 0.121± 0.035 0.751± 0.116
In-Place Steps 0.822± 0.002 0.845± 0.004 0.771± 0.001 0.778± 0.002
Side-Steps 0.541± 0.070 0.782± 0.009 0.310± 0.114 0.710± 0.057
Turn 0.108± 0.008 0.410± 0.227 0.594± 0.018 0.606± 0.014
Hop-Turn 0.174± 0.050 0.478± 0.054 0.493± 0.012 0.518± 0.005
Running Man 0.149± 0.004 0.430± 0.031 0.488± 0.045 0.503± 0.008

Table 10.4: Performance statistics of imitating various skills in the real world. The method
that achieves the highest return for each skill on the real robot is highlighted. Our adaptive
model achieves higher returns on most skills.

walking manner. Our policies learn to keep the robot’s feet on the ground and shuffle
backwards, instead of lifting the feet during each step.

Domain Adaptation

To determine the effects of domain adaptation, we compare our method to non-adaptive
policies trained in simulation without randomization (No Rand), and robust policies trained
with randomization (Robust) but do not perform adaptation in new environments. Real-
world performance comparisons of these methods are shown in Figure 10.6 and Table 10.4.
When deployed on the real robot, the adaptive policies outperform their non-adaptive coun-
terparts on most skills. For simpler skills, such as In-Place Steps and Side-Steps, the robust
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Figure 10.7: Comparison of the time elapsed before the robot falls when deploying various
policies in the real world. The adaptive policies are often able to maintain balance longer
than the other baselines policies, and tend to reach the max episode length without falling.

policies are sufficient for transfer to the real robot. But for more dynamic skills, such as Dog
Pace and Dog Spin, the robust policies are prone to falling, while the adaptive policies can
execute the skills more consistently. Policies trained without randomization fail to transfer
to the real world for most skills. Figure 10.7 compares the time elapsed before the robot
falls under the various policies. The adaptive policies are often able to maintain balance for
a longer period of time than the other methods, with a significant performance improvement
after adaptation.

To evaluate the policies’ abilities to cope with unfamiliar dynamics, we test the policies
in out-of-distribution simulated environments, where the dynamics parameters are sampled
from a larger range of values than those used during training. The range of values used
during training and testing are detailed in Table 10.1. Figure 10.8 visualizes the perfor-
mance of the policies in 100 simulated environments with different dynamics. The vertical
axis represents the normalized return, and the horizontal axis records the portion of envi-
ronments in which a policy achieves a return higher than a particular value. For example,
in the case of Dog Pace, the adaptive policies achieve a return higher than 0.6 in 50% of the
environments, while the robust policy achieves a return higher than 0.6 in 38% of the envi-
ronments. The experiments are repeated 3 times for each method using policies initialized
with different random seeds. In these experiments, the adaptive policies tend to outperform
their non-adaptive counterparts across the various skills. This suggests that the adaptation
process is able to better generalize to environments that differ from those encountered during
training. To analyze the performance of policies during the adaptation process, we record
the performance of individual policies after each update iteration. Figure 10.9 illustrates the
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Figure 10.8: Performance of policies in 100 simulated environments with different dynamics.
The y-axis represents the normalized return, and the x-axis records the portion of environ-
ments in which a policy achieves a return higher than a particular value. The adaptive
policies achieve higher returns under more diverse dynamics than the non-adaptive policies.

Figure 10.9: Learning curves of adapting policies to different simulated environments using
the learned latent space. The policies are able to adapt to new environments in a relatively
small number of episodes.

learning curves in 5 different environments for each skill. The policies are generally able to
adapt to new environments in a relatively few number of episodes.

Information Bottleneck

Next we evaluate the effects of the information bottleneck on adaptation performance. Fig-
ure 10.10 summarizes the performance of policies trained with different values of β for the
information penalty. Larger values of β produce policies that access fewer number of bits
of information from the dynamics parameters during pre-training. This encourages a policy
to be less reliant on precise knowledge of the underlying dynamics, which in turn results in
more robust behaviors that attain higher performance before adaptation. However, since the
policy’s behavior is less dependent on the latent variables, this can also result in less adapt-
able policies, which exhibit smaller performance improvements after adaptation. Similarly,
smaller values of β tend to produce less robust but more adaptive policies, exhibiting lower
performance before adaptation, but a larger improvement after adaptation. In our experi-
ments, we find that β = 10−4 provides a good trade-off between robustness and adaptability.
We also compare the information-constrained latent representations to the unconstrained
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Figure 10.10: Performance of adaptive policies trained with different coefficients β for the
information penalty. ”No IB” corresponds to policies trained without an information bottle-
neck. The dotted lines represent performance before adaptation, and the solid lines represent
after adaptation. Larger values of β results in more robust but less adaptable policies, which
starting with better performance before adaptation, but exhibits smaller improvements after
adaptation. Vice-versa for smaller values of β.

counterparts (No IB). The information-constrained policies generally achieve better perfor-
mance both before and after adaptation.

10.7 Discussion

In this chapter, we presented a framework for learning agile legged-locomotion skills by
imitating reference motion data. By simply providing the system with different reference
motions, we are able to learn policies for a diverse set of behaviors with a quadruped robot,
which can then be efficiently transferred from simulation to the real world. However, due
to hardware and algorithmic limitations, we have not been able to learn more dynamic
behaviors such as large jumps and runs. Exploring techniques that are able to reproduce
these behaviors in the real world could significantly increase the agility of legged robots. The
behaviors learned by our policies are currently not as stable as the best manually-designed
controllers. Improving the robustness of these learned controllers would be valuable for
more complex real-world applications. We are also interested in learning from other sources
of motion data, such video clips, which could substantially increase the volume of behavioral
data that robots can learn from.



141

Chapter 11

Conclusion

Motor control models that can replicate the physical and athletic capabilities of humans and
animals can enable a wide range of applications. In this thesis, we have taken steps towards
this goal by developing learning-based frameworks that allow agents to reproduce a large
and diverse repertoire of motor skills. A common theme throughout our work is the use of
motion data to shape the behaviors of policies trained through reinforcement learning, which
greatly reduces the reliance on carefully-crafted skill-specific control strategies and reward
functions. In Chapter 3, we showed that a versatile motion-tracking approach can be applied
to learn a large corpus of complex behaviors in simulation, ranging from common locomotion
behaviors such as walking and running, to more athletic capabilities such as acrobatics and
martial arts. The agents are able to produce robust and high-quality motions that are
nearly indistinguishable in appearance from motion clips recorded from real-life actors. By
incorporating vision-based pose estimation techniques, our approach can be extended to
imitate challenging skills from video clips, such as those readily found on YouTube. In
Chapter 6, we developed an adversarial imitation learning approach that enables agents to
imitate behaviors from large unstructured motion datasets, resulting in policies that can
automatically select, interpolate, and seamlessly transition between diverse behaviors.

In addition to developing motor skills for simulated agents, our methods can also be
applied to develop motor skills for robots in the real world. To circumvent challenges of
directly applying reinforcement learning on physical systems, we have primarily utilized sim-
to-real transfer techniques to first train policies in simulation and then transfer the learned
policies to robots operating in the real world. In order to bridge the reality gap, we showed
that randomizing the dynamics of the simulated environment during training can lead to
sufficiently robust policies that can then be deployed directly on real robots. However, for
more dynamic locomotion skills, which can be more sensitive to variations in the dynamics,
direct sim-to-real transfer may not always be successful. Therefore, we proposed a sample
efficient adaptation technique that further fine-tunes the behavior of a policy using a small
amount of real-world data. This approach then enables the transfer of more agile behaviors,
such as fast trotting, hopping, and spinning motions.

The work we presented in this thesis have taken steps towards developing agents that can
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replicate the rich physical capabilities of humans and animals. However, there remains a large
gap between the capabilities demonstrated by humans and those that can be reproduced by
our agents. Humans can not only perform a vast corpus of behaviors, but can also compose
and sequence those skills in versatile ways to further overarching goals. While our techniques
can train policies to imitate a large variety of skills, the breadth of behaviors that can be
effectively modeled by an individual policy is still fairly limited. More expressive and versatile
models will be needed before our agents can agilely interact and perform sophisticated tasks
in complex environments. These challenges highlight a number of exciting directions for
future exploration:

Reusable Motor Models: Large expressive models trained on massive datasets have been
central to the recent successes in machine learning. Not only can these models solve complex
tasks, but also provide reusable components for a wide range of downstream applications.
This is in stark contrast to the current state-of-affairs in reinforcement learning and motor
control, where models are most typically trained to specialize in a narrow set of skills. Motion
imitation can provide a sufficiently rich set of tasks for training more expressive and general
motor control models. Coupled with architectures that are amenable to reuse, these models
may produce useful building blocks that enable novel downstream applications, which would
otherwise not be possible with tabula rasa learning.

Learning in the Real World: While the work in this thesis has taken steps towards
deploying policies trained in simulation to robots in the real world, there remains a large gap
between the capabilities of simulated and real-world agents. Moving forward, simulation
will likely continue to be a vital component of the skill acquisition pipeline, as a way of
providing models with good initializations prior to real-world deployment. But as the focus
shifts to more and more sophisticated behaviors, real-world training will likely be crucial for
successful deployment of these skills. Developing algorithms that can learn safely, efficiently,
and continuously learn in real world environments will therefore be of vital importance for
developing robots that can replicate the capabilities of their real-life counterparts.

Directability: One of the impediments that have precluded physics-based character ani-
mation from being more widely adopted in computer graphics applications is the difficulty
of directing the behaviors of physically simulated characters. Current learning-based frame-
works are generally not well suited for the iterative process of animation workflows, where
users incrementally refine a given motion according to feedback and production require-
ments. Developing intuitive interfaces for users to specify feedback, and algorithms that can
quickly update a character’s behaviors according to that feedback will be valuable for the
wider adoption of these simulation-based animation systems. This direction can also provide
useful tools for directing the behavior of real-world robots, providing accessible interfaces
through which nontechnical users can control the behaviors of robotic agents.
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Behavioral Priors: In addition to learning behaviors from motion data, it may also be
possible to learn behavioral priors that quantify abstract characteristics, such as the natural-
ness of a motion. Our work on adversarial motion priors has taken steps towards this goal,
but the priors from that system must be trained in tandem with a particular policy, and can-
not be easily reused to train new policies without additional retraining. More portable priors
can provide convenient objective functions for training agents to perform new tasks, while
adopting behaviors that conform to characteristics specified by the priors. Such priors may
also be useful tools for artists by providing a quantitative score of the realism of manually
authored animations, and possibly suggesting instructive feedback for potential corrections.
This line of work can provide relevant insights for inverse reinforcement learning and adver-
sarial examples, which can have impact on a wide range of applications beyond computer
graphics.

Cross-Domain Imitation Learning: While our work has made heavy use of motion
data recorded from human actors, we have largely overlooked challenges associated with the
domain shift between the demonstrator and the agent. Motion data recorded from real-life
actors will rarely have the same embodiment and morphology as the agent. Our systems
obviate this mismatch by using motion retargeting techniques to map a given motion clip to
the target agent’s embodiment. However, this retargeting process tends to be manual and
tedious, requiring users to directly specify correspondences between the demonstrator and
the agent that captures the semantically salient characteristics of a desired skill. Developing
imitation learning techniques that can automatically resolve such domain shifts can lead to
more versatile and scalable systems that are able to imitate demonstrations with drastic
domain shifts, such as directly imitating video clips of human actors without the need for
explicit pose estimation. Effective cross-domain imitation learning may allow agents to
continuously observe and learn from other agents in their environment, perpetually growing
their repertoire of skills by mimicking others.

∗ ∗ ∗

We hope the work presented in this thesis will provide useful building blocks on the
path towards agents that can rival the athletic prowess of humans and animals. Just as the
evolution of the brain has been spurred by the need for complex motor skills, the insights
gained thorough building systems that can replicate these sophisticated behaviors may also
help to shed light on the nature of intelligence.
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