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Abstract

Human-Centered Circuit Board Design With Flexible Levels of Abstraction and Ambiguity

by

Richard Cheng Lin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Björn Hartmann, Co-chair

Professor Elad Alon, Co-chair

Printed Circuit Board (PCB) design tools are critical in enabling users to build non-trivial
electronics devices. However, mainstream tools work at the lowest level of design — schemat-
ics and individual components — which can make design difficult for beginners and tedious
for experts.

In this work, we start by examining current board design practices to learn how a variety of
users approach the process, what tools they use, what works well, and where things are lack-
ing. From those results, we focus on building tools to support the system architecture level
of design — a representation that we believe captures the most important design decisions
without getting mired in the details.

Taking inspiration from software engineering and chip design languages, we implement a
hardware construction language (HCL) that supports users at multiple levels of abstraction
(from system to subcircuits), enables mixed-ambiguity design through abstract components
(such as a generic resistor instead of a particular part number), and encodes the methodology
for subcircuit design instead of static instances (for example, automatically sizing a resistor
in a LED circuit). To support users working with this very different interface to board
design, we also build an integrated development environment (IDE) plugin that adds a
linked graphical view and editor to the standard textual code editor.

Small but in-depth user studies on these tools indicate that this approach can provide benefits
over mainstream flows, but also suggests avenues for continued work.
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Chapter 1

Introduction

Electronics devices are all around us and play an increasingly large part in our lives - from
the things that we directly interact with like smartphones and game pads, to those that
quietly operate in the background like thermostats and internet-connected sensors. Almost
universally, electronics are built on printed circuit boards (PCBs), which in turn are designed
with electronics design automation (EDA) tools. Yet, the circuit design aspect supported by
these tools still revolve around drawing schematics – largely unchanged over the past several
decades, despite significant gains in computational power and the shifting context of design
as do-it-yourself and making have become more popular and accessible.

Although schematics provide a very direct mapping to the components on the board
and allows a fine degree of control, this low level of design is not without tradeoffs. For
novices and hobbyists, these tools require an understanding of electrical engineering details
in order to build a working circuit and board. For experts and professionals, the low-level
representation can be tedious and inefficient, requiring every degree of freedom to be resolved
even when there is a large acceptable design space.

1.1 Overview and Thesis
Overall, this dissertation aims to examine how to re-think circuit design tools to support
modern expectations of automation, while minimizing tradeoffs in flexibility and control that
higher level design tools often make. This work takes an interdisciplinary approach: not
only looking at the electrical engineering aspect of the problem, but also taking inspiration
from modern programming languages that enable a wide variety of users to build custom
automations, and with a human-computer interaction framing to understand underlying user
needs and ensure solutions remain usable.

As such, the thesis at the core of this work is:

a hardware description language approach to board design can better support
user design goals by providing a higher level of design and abstracting away
lower-level tasks, while remaining usable and minimizing trade-offs in flexibility.
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1.2 Contributions
Supporting that thesis, this dissertation makes the following contributions:

• A formative interview study with 15 participants to assess current practices and prob-
lems in board-level design, taking a holistic end-to-end ideas-to-device perspective
without being limited to current EDA flows (Chapter 4). We found that a significant
amount of design work happens before EDA tools come into play - and often with-
out the help of software at all. By the time users get to schematic capture, much of
the interesting and creative work has already been done, and schematic capture itself
involves a lot of rote transcription.

• A concept for a hardware construction language (HCL) based system that address
major issues with current flows revealed in the above formative study, and preliminary
user feedback on mockups of this language and supporting tooling (Chapter 4). Though
users indicated enthusiasm around the system architecture level of abstraction, they
also expressed caution around issues such as dependence on and trust in libraries. We
further discuss relevant design principles for future board tools based on our results.

• An implementation of the above system as a Python-embedded HCL, based around
a hierarchy block model to scale across multiple levels of abstraction and supporting
design re-use through user-definable libraries of blocks (Chapter 5). Blocks can be
generators, containing executable code that constructs the block’s sub-circuit from
higher-level parameters (for example, calculating resistance given a voltage and current
specification), while a type system and electronics model supports substitution and
refinement (for example, whether a particular step-down converter subcircuit can be
used in place of a generic voltage converter).
We evaluate this system by designing several example boards in this system and with
a small user study where participants built devices of their choice. Users were able
to complete designs in our system and provided a wide range of feedback including
suggestions for better tooling and areas of concern such as the higher learning curve.

• Supporting tooling for the above HCL in the form of an integrated development en-
vironment (IDE) to bridge the novel code approach with familiar schematic views, by
augmenting the standard text editor with a block diagram visualization supporting
schematic editor like actions (Chapter 6). As both views are linked – the visualization
can be updated from code edits, and code can be generated from schematic like actions
– users can easily move between interfaces based on their own preferences and the task
at hand.
We evaluate this interface with a small user study in which participants complete a
pre-defined project, and make generalized recommendations for similar tools based on
the results. Although users differed in whether they preferred to produce HCL by
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writing text or through graphical actions, the visualization still provides something for
everyone, such as by acting as an intuitive reference for writing HCL.

1.3 Roadmap
These chapters form the rest of this dissertation:

Chapter 2: Background provides an overview of the workflow for modern board-level
EDA tools, along with the historical context and the overarching class of creativity support
tools.

Chapter 3: Related Work looks at related work, both in novel board-level design tools
and empirical studies, as well as in adjacent fields such as general electronics debugging, chip-
level digital logic design, and programming tools. While recent work on board-level design
tools also aim to raise the level of design with libraries of blocks, they often neither support
user-defined libraries nor address how libraries are created, which we believe is a crucial step
for generalizability and practical usage. To address this, we take inspiration from novel chip-
level hardware description languages, which successfully span multiple levels of abstraction
from library-level modules to entire chips while offering a high degree of automation.

Chapters 4, 5, and 6 describe the the novel work in this dissertation, and are summa-
rized in more detail above in Section 1.2.

Chapter 7: Conclusion concludes the dissertation with a summary of contributions
and findings and ideas for future work.

Chapter 8: Glossary provides a definition of selected terms and acronyms.

1.4 Statement of Prior Publication
This thesis is based on, and incorporates material from, these prior published works:

• Beyond Schematic Capture: Meaningful Abstractions for Better Electronics Design
Tools [42] (CHI ’19), co-authored with Rohit Ramesh, Antonio Iannopollo, Alberto
Sangiovanni Vincentelli, Prabal Dutta, Elad Alon, and Björn Hartmann

• Polymorphic Blocks: Unifying High-level Specification and Low-level Control for Cir-
cuit Board Design [43] (UIST ’20), co-authored with Rohit Ramesh, Connie Chi, Nikhil
Jain, Ryan Nuqui, Prabal Dutta, and Björn Hartmann

• Opportunities and Challenges for Circuit Board Level Hardware Description Lan-
guages [41] (HATRA ’20), co-authored with Björn Hartmann

• Weaving Schematics and Code: Interactive Visual Editing for Hardware Description
Languages [44] (UIST ’21), co-authored with Rohit Ramesh, Nikhil Jain, Josephine
Koe, Ryan Nuqui, Prabal Dutta, and Björn Hartmann
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I am the first author on all these papers, but none of this would have been possible
without the effort of all the co-authors, including my advisors Björn Hartmann and Elad
Alon, graduate student colleagues Rohit Ramesh and Antonio Iannopollo, and all the un-
dergraduates who have worked with us over the years.
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Chapter 2

Background

Today, a wide range of users design circuit boards for a variety of reasons - spanning hobbyists
and makers working on personal projects, to commercial teams working on complex products.
The falling cost of production (especially for one-off prototypes), an active maker community,
and beginner-friendly platforms like Arduino [4] have helped make electronics and board
design more accessible. In mainstream practice, EDA tools for board design generally have
two parts: schematic capture, where users draw the circuit, and board layout, where users
place and route components from the schematic on a virtual board. This rest of this chapter
provides a brief overview of mainstream board design tools, as well as principles for the
larger class of creativity support tools.

A variety of board-level EDA tools exist for different user groups: for example KiCad [35]
is open source; EAGLE [6] is largely geared towards hobbyists; while Altium [1], Cadence
Allegro [12], and Mentor Xpedition [55] are geared towards professionals working on complex
projects. This chapter only covers high-level concepts and notable features of these tools,
but more in-depth tutorials and user guides are readily available online.

2.1 Schematic Capture
In graphical schematic capture tools such as the one shown in Figure 2.1, users create the
schematic by placing schematic symbols (representing components - for example, the squiggly
lines for a resistor) onto the schematic sheet, then drawing wires to connect their pins.
Symbols for common parts are often available in libraries [40], such as bundled with the
tool, provided by the component manufacturer, or created by the community. The circuits
themselves can be designed by referencing well-known circuits (such as RC low-pass filters
and various opamp circuits) and application schematics in manufacturer-provided datasheets.

While computerized schematics can theoretically be infinitely large, schematics are often
drawn to fit on printable sheets. More complex designs often require multiple sheets, and
there are two common organizational techniques:

• A flat schematic simply treats the contents of multiple sheets as if they were the
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Figure 2.1: Example schematic in KiCad.

contents of one big schematic. Connections between sheets are handled with tunnels,
where tunnels with the same name are connected together.

• A hierarchical schematic abstracts sheets of sub-circuits into a symbol that is
treated like a component. This provides for abstraction and re-use in design, for
example the same sub-circuit can be instantiated several times simply by duplicating
the block.

While sub-sheets in hierarchical schematics can theoretically be shared, practical barriers to
large scale direct re-use of design files include different file formats and tailoring subcircuits
(for example, tuning component values) for each design. However, organizations may re-use
internal schematic files [54].

Tools often support automated schematic checks with Electrical Rule Checks (ERC).
Typically, pins are assigned some type (like Power Input and Power Output), and rules
check for illegal connections between pins (for example, multiple Power Outputs driving a
single wire, or pin that is not connected). This tends to be a pretty coarse system: for
example the Power Output pin type does not further define voltages. Otherwise, schematic
verification tends to be done by human peer review [53].
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Tools also provide varying degrees of automation features, to ease repetitive tasks. The
simplest example are various wizards, such as for creating a chip symbol with rows of pins
on both sides. Slightly more complex is Altium’s Smart Paste [2], which allows a copied
selection to be pasted as different objects - for example, converting a group of selected pins
to tunnels.

More complete tools may also offer some kind of programming interface for end-users,
such as in the form of a scripting language or plugin API. While coding expertise is required
to write custom scripts, pre-made scripts are often shared on the internet and can be used
directly. More advanced plugin can integrate directly into the tool’s GUI and only require
installation.

Overall, however, these are still first and foremost schematic drawing tools and very
limited in what they do to actually support system and circuit design.

2.2 Layout and Assembly
As schematics are an abstract representation of a circuit, they cannot be directly made

into circuit boards. The core connectivity data from the schematic, such as in the form of a
netlist consisting of a list of components and connections between their pins, can be imported
into a board layout tool. An example netlist is shown in Figure 2.3. As in Figure 2.2,
components are dumped on the virtual board and must then be placed and routed by the
user. The layout can typically be incrementally updated from a changed schematic, without
needing to restart layout.

Placement and routing can be fully manual, tool-assisted (such as with online DRC,
which stops dragging a wire when it gets too close to another one), or fully automated (such
as with autorouters). Some tools may support features for replicating layouts of similar
subcircuits, such as Altium’s rooms feature [63] or KiCad’s Action Plugins [59]. There has
also been much work on autorouting algorithms [21], but quality of results varies widely with
factors such as choice of tool and design complexity.

Tools commonly perform two kinds of basic correctness checks. Design rules check (DRC)
checks for physical manufacturability, such as minimum wire width, minimum spacing be-
tween wires, and minimum hole sizes. Layout vs. schematic (LVS) checks that the connec-
tivity on the layout is the same as the schematic, catching unintentionally crossed wires or
unconnected pins. Some tools also support more advanced layout-sensitive analyses, such as
for signal integrity (mainly for high-speed signals) and power analysis (for voltage drop and
power loss over the copper lines).

2.3 Historical Context
While modern tools are undoubtedly easier to use, the fundamental paradigms have been
around for almost half a century. Computerized graphical schematic appeared in the liter-
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Figure 2.2: Example layout in KiCad. The components on the top have been freshly
imported from a netlist generated from a schematic, while the components on the bottom
have already been placed and routed.

ature as early as the 1970s, as a response to the awkwardness of punch card or text based
schematic entry. Matthews [48] criticized tools of the time as “operator-aided computers”,
and describes a system similar to today’s mainstream schematic tools. Despite the require-
ment for more user time on then-expensive computing resources, this system both reduced
the overall design time and eliminated an error-prone punch card step.

Shiraishi regarded interactive schematic drawing as time-consuming, and his ICAD/PCB
system [69] instead digitizes hand-drawn schematics using pattern recognition techniques.
However, it focused on logic circuits and required a standard schematic style.

Another common theme of EDA systems from this era was integration between the
different steps that we take for granted in modern EDA tools, such schematic entry, layout,
and simulation. Reasons included the time, cost, and potential for errors from manual
translation [48, 8, 39].

Systems also explored methods for component placement and board routing. Varying
degrees of automatic placement were part of many tools, while other systems provided in-
teractive feedback on manual placements [48, 69]. Autorouting was also a research theme
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1 (components
2 (comp (ref U2)
3 (value STM32F103C8Tx)
4 (footprint Package_QFP:LQFP-48_7x7mm_P0.5mm)
5 ...)
6 (comp (ref J2)
7 (value USB_C_Receptacle_USB2.0)
8 (footprint Connector_USB:USB_C_Receptacle_BSC_A40-00119)
9 ...)

10 (comp (ref U1)
11 (value TPS562200)
12 (footprint Package_TO_SOT_SMD:SOT-23-6)
13 ...)
14 ...)
15 (nets
16 (net (code 6) (name +3V3)
17 (node (ref U2) (pin 24))
18 (node (ref U2) (pin 48))
19 (node (ref U2) (pin 9))
20 (node (ref U2) (pin 36))
21 (node (ref U2) (pin 1))
22 ...)
23 (net (code 10) (name DM)
24 (node (ref J2) (pin B7))
25 (node (ref J2) (pin A7))
26 (node (ref U2) (pin 32)))
27 (net (code 11) (name DP)
28 (node (ref J2) (pin B6))
29 (node (ref J2) (pin A6))
30 (node (ref U2) (pin 33))
31 ...)
32 ...)

Figure 2.3: Example netlist snippet generated from a KiCad schematic, showing
the components, their properties (value or part number and footprint), and the nets (con-
nections) their pins are a part of.
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[39, 8, 48, 47], typically in conjunction with interactive manual routing.
Rager and Weiner [64] did an in-depth study on dense board layouts, recommending an

interactive system where a human guides automated processes, but is provided with powerful
assistive tools when lower-level manual intervention is needed.

2.4 Creativity Support Tools
EDA tools are part of the larger class of creativity support tools, which have received atten-
tion in the HCI literature with topics ranging from theoretical foundation, observations, and
suggestions. In particular, Shneiderman et al. [70, 72, 71] and Resnick et al.[67] identifies
several design principles, including supporting exploratory search, collaboration, and “low
thresholds, high ceilings, and wide walls” (easy for novices while powerful for experts). Fur-
thermore, meaningful evaluation strategies for creativity support tools are less clear than for
traditional productivity tools with their controlled studies and standardized measures. This
dissertation combines these high-level principles with domain knowledge and user feedback
to build tools that aim to better support users in building electronics.
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Chapter 3

Related Work

In recent years, there has been a significant body of work on electronics, especially for non-
professionals such as students and makers, and spanning from empirical studies to tools with
a variety of underlying technical approaches. Although this dissertation mainly focuses on
board-level electronics, this chapter also briefly reviews relevant work in chip design and
programming tools that inspires some of the approaches taken.

3.1 Empirical Studies
The rise of the maker movement has spurred some recent work on examining how people
actually work with electronics and the practical issues that arise. For example, Crossed
Wires [11] examines mistakes by novices in prototyping a physical computing system onto
a breadboard, observing mistakes in both the hardware construction, software development,
and the interface between the two. Mellis [52] observed novices over the course of a six week
workshop as they were taught embedded design and ultimately built printed circuit boards.
While it is possibly the most comprehensive examination involving modern EDA tools and
practices so far, the focus on novices sets a low complexity ceiling.

However, there does not seem to be much work on the more professional and advanced
users side. While tool vendors likely conduct usability studies, the results generally are not
available to the academic community. This poses challenges for reimagining design tools
that can be useful throughout the design complexity spectrum, instead of narrowly tailored
for novices. As such, we start by conducting a study of current design practices for a range
of users.

3.2 Electronics Design
While mainstream design practice has largely settled on schematics, novel work provides
more automation such as by synthesizing the circuit from a specification, or by raising the
level of design with pre-made modules.
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Synthesis Approaches
Synthesis approaches take a variety of inputs. For example, Trigger-Action-Circuits [3],
takes input specified at a behavioral and dataflow level – what the circuit is supposed to do
– and produces a breadboarding diagram. On the other hand, circuito.io [16] and EDASolver
[19] allows users to specify the design as a list of peripherals connected to a microcontroller.
However, technical details are scarce: only Trigger-Action-Circuits had a corresponding pub-
lication, which focused more on interactions and an user study. None emphasize user-defined
parts, which limits users to the parts library supplied by the tool vendor.

Embedded Design Generation (EDG) [65] and Echidna [57, 58] are similar, allowing users
to specify a partial design such as sensors and motors, then automatically completes the de-
sign through interface-driven synthesis, for example by adding power systems and compute
elements. While functionally similar, these systems have different underlying technical ap-
proaches: EDG translates the circuit design problem and passes it to a SAT solver, while
Echidna is based on heuristic-assisted tree search.

Synthesis approaches have also been applied to other domains, such as for aircraft power
systems [62]. However, it structures the problem as a collection of equations specified by
the user, rather than the more user-friendly domain-specific abstractions provided by EDG
and Echidna. While this dissertation does not address synthesis, it does continue work on
domain-specific formal models for electronics that may support synthesis tools in the future.

Model-driven synthesis aside, AutoFritz [45] extends a schematic-like design system with
data-driven circuit autocomplete suggestions. Such an approach makes different trade-offs:
while model-driven tools require the (potentially tedious) creation of libraries of parts, data-
driven tools can mine existing schematics. However, without an understanding of electronics,
they may be more liable to make mistakes and may not be able to generalize past their
dataset. While suitable for a recommendation system where the human still ultimately
controls low-level details, this may be a significant limitation for higher-level design.

Although highly automated schematic tools do not appear to be in common use today,
there are many existing tools that can synthesize sub-circuits from specifications. For exam-
ple, TI’s WEBENCH [32] automatically selects power conversion chips from their product
line given high-level parameters (such as input and output voltage) and provides a full subcir-
cuit around it. Online calculators are also available for well-known circuits, such as resistor
pickers for resistive dividers [31]. While very useful, these are not integrated into schematic
tools and still require the user to stitch generated outputs into the final designs and ensure
consistency in the face of changes. This dissertation looks at an integrated design system
which can automatically invoke arbitrary sub-circuit generators.

Module-based Design
In contrast to synthesis tools which automate decision-making, module-based design keeps
users in control and instead speed up design by working at the level of modules instead
of components. A module contains some subcircuit, much like hierarchy blocks in mod-
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ern schematic tools, but is otherwise a black box and do not allow the user to modify its
implementation.

Recent commercial tools combine module-based circuit design with a layout view: instead
of placing abstract component on a schematic sheet, users place module bounding boxes on
a board view. Connections between components are still abstract (they do not physically
correlate to circuit board trace layouts), so board layout and routing still happen separately.
Examples include Sparkfun À La Carte [75] and Geppetto [25], but details have not been
published, so their internal models, library creation process, and algorithms are not known.

MorphSensor [88] also makes use of module-based design with mixed schematic and
physical views, but focuses more on the novel 3D design view for flexible PCBs. Circuit design
is out of scope of that tool, and it instead imports connectivity data from files produced by
mainstream schematic editors.

Electronics Models
Synthesis tools generally need some kind of electronics model to check parts for functionality
and compatibility to produce correct designs. For example, this may include encoding voltage
limits of parts, then checking it against the actual voltage on the power line it is connected
to.

EDG [65] defines a mixed electronics model (modeling voltages and their limits, cur-
rents and their limits, and digital logic threshold voltages) and software model (modeling
programming interfaces like buttons and LEDs) on ports and their connections. This dis-
sertation builds upon the electronics model. Additionally, both Sparkfun À La Carte [75]
and Geppetto [25] appear to have some model that limits incorrect connections, but again
comprehensive technical details have not been published.

Design tools aside, Valydate [56] provides automated schematic checking. As it is also
commercial work, technical details have not been published, but it appears to have some
kind of electronics model and parts library that includes voltage and current limits.

Summary
Overall, one common characteristic of recent work, both commercial and academic, synthesis
or otherwise, is the use of libraries of higher-level components. At the very least, this helps
speed up design through design re-use, instead of needing the user to re-draw schematics
from scratch. Many also incorporate some kind of electronics model more detailed than
the coarse pin types in mainstream ERC, to automate checks or guard against user error.
However, none of these projects focus on library creation by end users, a step necessary to
achieve scalability and generality beyond what a team of tool developers could feasibly do.
This dissertation attempts to combine a module-based design flow with an electronics model,
in a tool that allows users to create both libraries and top-level boards within an unified
interface.
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3.3 Electronics Prototyping and Beyond
While boards are a relatively permanent and stable form for building electronics, prototyping
may be preferred on more reconfigurable platforms like breadboards.

Breadboards and Prototyping
One thread of research has been to augment breadboards, especially as breadboards are
commonly a starting point for students. These include measuring and visualizing voltages
[18] and current flows [86], and detection of inserted components through active probing
[85]. Bifröst [51] further combines code instrumentation and logic analyzer circuit tracing
for examining the hardware-software boundary. CircuitStack [81], on the other hand, adds
a printed connectivity layer to breadboards to avoid the time-consuming and error-prone
process of wiring up breadboards.

A wide range of other work exists to support prototyping. One example is the use of
software programmable components, such as for designing analog circuits [76] or through an
augmented reality interface [36]. Augmented reality has also been used to overlay simulation
data onto a physical device built with parts from a specialized kit [14]. Other projects
support constructing circuits through step-by-step tutorials [83].

PCBs for Novices and Debugging
PCBs may still be useful for novices who have a design they want in a more stable form.
Fritzing [37] helps by providing a breadboard view of a circuit as a conceptual bridge to
the schematic view, but is still fundamentally a schematic drawing tool. The previously
mentioned AutoFritz [45] builds on top of that with data-driven circuit autocomplete sug-
gestions.

As PCBs don’t always work the first time around, some work exists to help in the
debugging process. For example, Pinpoint [77] automatically inserts test points onto a board
and generates a corresponding bed-of-nails testharness. This can be used to probe signals
and dynamically isolate subcircuits. BoardLab [23] takes a different approach, instead using
a magnetic positioning system to link a probed point on a physical board to the schematic.

Scaling
While many tools focus on enabling novices, some work also examines challenges of scaling
from one-of prototypes to production [34]. While the work in this dissertation does not
specifically address production, aspects of the system that specify a design space such as
substitutable parts may make it easier to optimize a design for production.
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3.4 Hardware Description Languages
Although graphical schematics are mainstream for board design, hardware description lan-
guages (HDLs) dominate digital logic design for chips and can provide useful inspiration.

Chip HDLs
HDLs like Verilog and VHDL are common in the chip design space for defining digital logic.
Generally, digital logic HDLs combine a structural component, which specifies hardware in
terms of modules and connections, and a behavioral component, which specifies arithmetic
and logic flows. Both languages are organized in terms of modules with ports, and like
hierarchical schematics for boards, digital logic modules may be composed of other modules.

Verilog-AMS [29] and VHDL-AMS [15] provide analog and mixed-signal extensions on
top of their base digital languages. Though they allow for modeling and simulation of circuit
behavior, they are neither design nor synthesis languages.

Hardware construction languages (HCLs) that support generators are an evolution on
the basic HDL. Instead of merely providing a textual format for describing a module, these
encode the rules for constructing a family of modules from high-level parameters. Chip-
level HCLs include Chisel [33] for digital hardware, and OASYS [27] and BAG [17] for
analog hardware. One implementation strategy, as taken by Chisel, is providing hardware
construction primitives (for example, instantiate module and connect ports) embedded in a
general purpose programming language.

There is also a thread of work addressing the lengthy, often hours-long latency for chip
tools to recompile from a design change – a bottleneck on productivity. Strategies include
improving synthesis performance [82] and simulation performance [74, 68] through parti-
tioning and incremental compilation. While board-level designs are orders of magnitude less
complex than chip designs, similar techniques can also speed up board-level compilation.

Board HDLs
HDLs also exist for boards, with an early one being PHDL [61] which effectively is a schematic
in textual format, but with modules and limited parameterization to promote design re-
use. Unlike chip HDLs, PCB HDLs are purely structural, as it is unclear what behavioral
abstractions can suit the wide space of PCB electronics. However, an HDL interface to the
same schematic abstractions provides little more design automation than a graphical editor.

More recently, JITPCB [7] and SKiDL [73] brings generators to the PCB space by em-
bedding circuit construction primitives in a general purpose programming language. This
dissertation builds on top of that core idea, but augments it with more detailed electronics
modeling to enable design support features like parts selection and correctness checks.
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3.5 Programming Tools
Hardware description languages, and especially ones that enable generator constructs, are
essentially programming languages — for which there is a large body of work including
supporting tooling. For HDLs, and especially for PCB design where there is currently less
familiarity with textual design methods, tools can help bridge the gap between current
practice and powerful-but-novel techniques. This section reviews some of the most relevant
work, which while not directly related to building PCBs, still serves as inspiration.

Live Programming
Live programming tools continuously run code as it is written by the user, and display the
results to provide immediate feedback. These tools can help connect the more abstract
representation of code to concrete examples [20], which users might find easier to work with
or to help navigate execution contexts [50]. Prior empirical research [38] further indicates
that simpler liveness tools were frequently used, and even small amounts of liveness can have
disproportionate impact.

One critical aspect of live programming systems is the latency between code change and
visible effects [66]. Prior work has discussed possible techniques to reduce latency [50, 79],
such as predictively starting to compute results or returning speculative results. Compilation
of HDLs can require non-negligible amounts of time, and tricks like speculative results can
preserve a smooth interaction flow.

Graphical Tools
Beyond one-way visualization, work has also examined output direct manipulation – how
these visual representations could be manipulated to write code in specific domains. One
recent example is Sketch-n-Sketch [28], which provides a graphical editor for a custom lan-
guage for 2D graphics. Other examples include such editors for string manipulation and
diagramming [49].

However, perhaps the most often used similar class of tools are graphical user interface
(GUI) builders, where users can define their GUI graphically through direct manipulation
interactions such as drag-and-drop. These tools similarly aim to provide an interface that is
closer to the domain than the equivalent GUI construction code they generate. Yet, the code
generated often is not stylistically clean or even meant to be directly edited [87] – perhaps
fine for a GUI with defined integration points and static structure, but less so for an HDL
where programming the structure is the point.

Separately from graphical interfaces for writing textual code, there are also visual pro-
gramming languages where the language itself is graphical. Examples include educational
languages such as Scratch [46] which provides a blocks interface to an imperative program-
ming language, and studies of its usage have shown some benefits [5]. Beyond education,
visual languages have also seen practical use, most notably with LabVIEW [30] which fea-
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tures a different, dataflow abstraction. While ideas from visual language approach could
provide the capabilities of a generator HDL without any code, textual interfaces are cur-
rently the dominant and familiar way to program.
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Chapter 4

Formative Studies

4.1 Introduction
Given the lack of recent research into how people actually design boards, diving straight
into designing and building tools runs the risk of not actually understanding user needs and
missing pain points. Therefore, we start by learning about current design flows, with the
focus of discovering what approaches to better design tools are fruitful, and why.

We take a broadly-scoped and holistic approach of understanding the design flows from
idea to physical device. This end-to-end investigation avoids being limited to assumptions
baked into current tools, and tries to get at the fundamental goal of building devices. Cru-
cially, this can also reveal steps that are under-served and where novel tools be impactful.
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Figure 4.1: The electronics design flow, as described by our participants. Users
start with an idea, refine that into a system architecture, and then iterate physical proto-
types. Parts selection happens throughout the process. While certain steps require linear
progression, iteration and revision of earlier stages also happen. Overall, EDA tools only
support a small part of this process, and moving between steps was a major source of friction.
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Age Motivations EDA tool Design discussed Mockup
study

P01 late 20s school, hobby EAGLE LED board Yes
P02 early 20s school, hobby EAGLE analog feedback-controlled heater Yes
P03 early 20s school, job (startup) EAGLE Arduino motor controller No
P04 early 20s school, research, hobby EAGLE music recording system Yes
P05 late 20s research, side jobs, hobby EAGLE robotics Yes
P06 early 30s research, hobby EAGLE electrical muscle stimulation No
P07 early 20s school, hobby, job (industry engineer) KiCad IO controller Yes
P08 early 30s job (industry engineer), hobby KiCad educational kits Yes
P09 mid 30s research, school EAGLE educational blocks kit Yes
P10 mid 30s job (industry engineer), hobby EAGLE breakout board Yes
P11 late 20s job (research engineer), hobby Altium motherboards for chip tapeouts Yes
P12 early 20s job (industry engineer), hobby Altium power converter Yes
P13 late 20s research EAGLE embedded development board No
P14 late 20s job (industry engineer), hobby DipTrace debug adapter No
P15 late 30s job (industry engineer), hobby Altium general consumer electronics No

Table 4.1: Summary of study participants.

For each step in the flow, we also delve into which tools (if any) are used, whether they
work well, and where the pain points are. This deeper look reveals details of designers’
thought processes, intermediate goals within their workflows, and their interactions and
frustrations with existing tools.

We use what we learn to envision and mock up plausible, alternate tools that can better
support these design flows. Then, by examining participant feedback of these prospective
designs, we look more closely at what designers find valuable, and where future tool builders
should focus.

The overall contributions consist of a formative interview study with 15 participants to
assess current practices and problems (in Sections 4 and 5), followed by the design of a
tool concept that addresses major issues (in Section 6), and ending with user feedback on
a mockup of the tool concept (in Sections 7 and 8). This overall methodology follows the
example of prior papers that combine formative studies with concept designs for better tools
in other domains [60, 26].

4.2 Participants
We conducted an interview study with 15 participants (14 male), of which 10 returned for the
follow-up mockup study. While small, this group covers a wide variety of skill levels, design
types, and EDA tools used. Critically, both professional and hobby users are included. A
summary of participants’ backgrounds is shown in Table 4.1.
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All participants are familiar with the design process from idea to PCB, and all but one
have completed at least one full project consisting of all those steps.

We recruited participants using two methods: personal referrals (7 participants), and
relevant email lists (8 participants) such as those of a local makerspace, university design
courses, and student groups. While the only criteria was some experience building PCBs
in EDA tools, we did not recruit those working on highly complex designs to avoid a long
tail of specialized issues. Participants were compensated with a $20 gift card for each of the
interview study and mockup study.

4.3 Interview Study: Methodology
Interviews were semi-structured and start with background information, including motiva-
tions, designs, and views of flow from idea to final device. Based on those responses, we
then go into depth on each step in the flow, examining tools used, pain points, references
used, and general suggestions or comments. Interviews averaged 90 minutes with a standard
deviation of 29 minutes, and were conducted either in-person at the participant’s workplace
or through videoconference.

Utilizing the principles of contextual inquiry [9], we asked for an example design to ground
discussions when possible. A majority of participants were able to do so, but some could
not because of confidentiality and lost files. Instead, we asked them to either visualize their
designs or bring up stock schematic and board layout images.

Interviews were conducted by one interviewer and audiotaped with the participant’s
consent. One researcher, experienced with board design and familiar with most of the tools
discussed, then conducted an open coding phase over the transcriptions, and further grouped
codes into related topics [84]. From these, we looked for themes that both had design
implications for EDA tools and either had support among multiple participants or were
notable outliers.

4.4 Interview Study: Findings
Participants provided rich data on their design flows, and how tools both did and did not
support steps in those flows.

Design Flows
As shown in Figure 4.1, we broadly divide the design flow into these steps, in order: specifi-
cation finding, system architecture development, and physical device iterations on a variety
of media (including breadboards, milled PCBs, and commercially produced PCBs). Overall,
each step incrementally refines the design to be more concrete, until finally a PCB can be
produced. While there is a strict chain of dependencies between steps, designers regularly
iterated and backtracked, especially in response to new information from testing and design.



CHAPTER 4. FORMATIVE STUDIES 21

Specification Finding

Determining the requirements and specifications for a device is a varied process that differed
from user to user and from project to project. Specifications could capture a whole host of
design goals including technical and functional requirements, user interactions, and aesthetic
goals. These could be captured as drawings on a whiteboard, lists on documents and slide
decks, or even a chip design that the system is built around. In many cases, these were living
documents, with requirements and project scoping being a back-and-forth process where each
edit forces many other changes down the line.

System Architecture Development

Specifications were then refined into a system architecture, represented as a block diagram.
This serves as an intermediate step, translating from requirements into an implementation
strategy.

The key distinguishing feature of this step is support for varying and mixed levels of
abstraction.

Each engineer will have what feels right for them. (P15)

Blocks in participants’ architecture diagrams ranged from the generic (”accelerometer”, ”trig-
ger circuit”, or even just ”sensors”) to the specific (part numbers and subcircuit schematics).
Three participants had examples that mixed abstractions on the same document, with some
blocks being generic and others having part numbers. Some diagrams also indicated types
of information flow between design elements such as communication buses or protocol infor-
mation.

Drawings were overwhelmingly the most common representation: ten participants used
either paper, whiteboards, or graphics software like PowerPoint and Visio. Schematic capture
tools could also be used to produce nonfunctional diagrams, and two mentioned occasionally
using EDA tools for this step. While digital tools gave designers powerful advantages in-
cluding hyperlinking, cloud sharing, and backup, the unconstrained nature of drawings was
most important:

I feel very free to sketch in whatever language I want and whatever higher level
I want. (P06)

Overall, participants generally enjoyed this step:

I kind of like it. [...] It’s a very creative area where somebody gives you require-
ments and you have the freedom to meet them however you see fit. [...] There’s
the creative freedom that you don’t have once you get to the schematic and the
layout. (P14)
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Prototyping

Ten participants talked about a prototyping phase, which could be done with solderless
breadboards, soldered protoboards, milled PCBs, or development boards and kits. Agility
was a goal, which rapid prototyping machines could help with:

I’m fortunate enough to have an LPKF [PCB mill] to mill the boards with. And
that’s been great. Usually the board goes through three or four revisions after
soldering, so it’s not just that, oh, I made one board and then it’s done. (P03)

More generally, others also iterated on PCBs for their projects, with earlier boards acting as
prototypes of the final design.

Prototypes were generally intended to validate some aspect of the design, though one
participant also noted their value for exploring concepts and implementations. Validation
was not limited to electrical functionality: mechanical characteristics, user feedback, and
firmware development were also goals.

Schematic Capture

Schematic entry is where PCB design suites typically enter the design process.
Concerns here tended to be much lower-level, to the point where issues of schematic layout

and readability were as common as those of circuit design and functionality. Participants
noted the value of the schematic as a reference for later debugging or a document that should
be shared with others. Aesthetics aside, messy designs could also conceal schematic errors
or lead to bugs.

Mentions of manual transcription as part of the process were common – from either
physical prototypes, or combining block diagrams with vendor-supplied reference schemat-
ics. While circuit designs in the abstract saw re-use, the inability to import data resulted
in a time-consuming, tedious process. Yet, this was not completely devoid of designer in-
put: reference designs may need to be adapted for the specific application through parts
selection and component sizing. Quality and trust were also barriers to direct re-use: for
example, worries about the quality of random Internet parts libraries or quirks in unofficial
organization-wide reference designs.

Overall, attitudes about schematic entry were less positive:

It’s more of a necessarily evil. I wouldn’t say it’s a bad thing or a good thing,
it’s just like, I need to do this because otherwise I can’t get my board. (P03)

Board Layout

Participant concerns during this phase were also low level and often related to the physical
design and the final product: mechanical integration, signal integrity, manufacturability, and
cost.
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Despite both schematic capture and layout being part of the same EDA suite and
schematic import being a common feature in layout tools, moving between schematic and
layout was a notable source of friction. Five participants complained about the initial place-
ment of components in layout:

Altium kind of just barfs it out in a, not stacked on top of each other, but there’s
really not a lot of rhyme or reason. [...] It all seems pretty random. (P11)

Updating a layout after a schematic modification was also noted as problematic.
Participants also frequently consulted datasheets, placement rules, and routing guidelines

during this step. While parts libraries and design guidelines could be shared between projects,
layout re-use was rare. This was a result of limited tool support and projects needing
customized layouts.

Parts Selection

Parts selection happened throughout the other stages of the design process. For example,
critical parts may be specified on the block diagram, while common parts like resistors may
not be picked until just before ordering.

Concerns varied widely. Eight participants mentioned optimizing for cost, while anther
worked in a price-insensitive industry. Three also preferred parts that were immediately
available in their makerspace or research lab. Otherwise, there was a long tail of other
concerns, including hand-solderability, stocking, RoHS compliance, or avoiding vendors in
organization-wide blacklists.

Overall, this phase could require significant manual work and was deceptively difficult:

It’s something that I find to be challenging and I think that people underestimate,
[...] everyone’s like, “eh, whatever, you’re just buying stuff” and then they realize
like “oh, actually, just buying stuff is not super easy”. (P05)

Iteration

As alluded to throughout, many concerns do not fit purely within one design phase. For
example, participants mentioned going back and forth between layout and schematic to op-
timize pin assignments for routing, or redesigning the schematic to work around unavailable
parts.

In general, while later steps are dependent on the results of earlier steps, those results
are not always locked down. As an extreme example, one participant recalls being told:

Hey, you made this great device to guarantee these specs, but we really need this
new part and it kind of breaks the spec that we gave you before. Deal with it.
(P12)
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One strategy participants used to deal with this was defensive design. This included
defending against mistakes and errors, such as by inserting optional jumpers between sub-
circuits to allow modification or removal of connections, and defending against specification
changes, such as by picking a microcontroller with a wide peripheral set for flexibility.

Use of Automation
Participants talked about their experiences using automation features provided by their
tools. These features aim to minimize errors and ease tedious tasks, and fell into the broad
categories of design verification and routing assistance.

Design Verification

EDA suites generally include electrical rules check (ERC), which checks schematics for com-
mon issues, and design rules check (DRC), which checks layouts for manufacturability.

ERC is commonly implemented by assigning pin classes (for example: input, output,
or bidirectional) and defining a matrix of legal connections. Opinions were varied: six
mentioned using this feature (all with caveats), while five specifically mentioned not using it.
While electrical rules checking has utility in catching some simple mistakes like unconnected
wires, the limitations were significant:

A lot of false negatives. And false positives. Very few true positives. (P07)

On the other hand, no one mentioned skipping layout-versus-schematic or DRC, both of
which are generally very accurate. Complaints were limited to bugs, like not catching split
ground planes.

Routing Assistance

Only two participants reported using autorouting, all limited to simple designs. The general
view was that the benefits were not worth the time costs of setting up the job properly or
fixing poor results.

However, mixed-initiative, assistive routing features were well-received. These include
online or interactive DRC, which does manufacturability checks on traces as they are placed,
and smart routing tools like push-and-shove, which allow the trace being placed to intelli-
gently displace existing traces.

The auto routers are [terrible], the auto placements are [terrible]. It’s a highly
manual process. I like push and shove routing, those are great. (P12)

Tool Selection
We also asked participants about why they chose their particular EDA suite. Community
effects dominated: their choices were influenced by the tools used by their friends or teams,
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Figure 4.2: Mockup of the block diagram interface, showing the system architecture
of the datalogger example design. The details pane on the right shows information on the
selected buck converter: modeled operating parameters, selected and alternate implementa-
tions, and parts selections internal to the block. Showing operating parameters demonstrates
how the system ensures design correctness.

the tools taught in class, and the existence of an ecosystem of tutorials and libraries. For
those in industry, widespread usage was also important for compatibility with contractors
and ease of hiring.

Those using or switching to KiCad noted the benefits of open-source software, such as
lack of vendor lock-in, ease of sharing, and perpetual access to designs.

Summary
Overall, our main takeaway is that much of the interesting and creative work happens through
a combination of system architecture and parts selection. Past that, schematic capture tends
towards elaborating the system architecture by mashing in reference circuits, but the lack of
design re-use results in a tedious and time-consuming process.

Links across steps are also major sources of friction. While converting a paper sys-
tem architecture into a digital schematic is burdensome but unavoidable, moving between
schematic, layout, and parts selection was just frustrating.

4.5 Concept Design
The core insight from the interviews, then, is for designers to work at the system architecture
level. This higher level of abstraction captures the essential design intent without being mired



CHAPTER 4. FORMATIVE STUDIES 26

in implementation details. This section presents the high-level design and motivation, and
the actual implementation is described in Chapters 5 and 6.

Note that this strategy has support in the creativity support tools literature [67], satis-
fying the principles of supporting exploration by reducing the design effort and designing for
designers by being grounded in actual workflows.

Ambiguity in Block Diagrams
As schematics are fundamentally also block diagrams, the interactions and interfaces from
today’s schematic capture tools provide a solid and familiar starting point. In our use case,
these block diagrams would also need to scale between multiple levels of abstraction. At the
lowest level, blocks would still represent individual components, but at higher levels, blocks
would be sub-circuits. While many tools already support this with the notion of hierarchy
blocks, additional features are necessary to support the system architecture level of design.

Primarily, we need support for ambiguity. While current schematics must be fully defined
down to the last part, system architecture diagrams in our interviews tended to encode
minimalist design intent, leaving many decisions open. An example would be labeling a
block generically as ”accelerometer” instead of with a specific part number.

This ambiguity further provides opportunities for tools to automate the currently-manual
and sometimes-tedious parts selection process. Recent work in synthesizing schematic from
high-level specifications, including EDG [65] and Trigger-Action-Circuits [3] demonstrate
the technological feasibility of this approach. As participants generally optimized for some
criteria (commonly, but not always, cost) during their parts selection process, tools should
also optimize for an user-defined objective function. Alternatively, the system could generate
and display a shortlist of alternatives as in Trigger-Action-Circuits, though they reported
mixed results with their novice participants.

An underlying constraint-based data model, as described in EDG, works well here. Types
of components, like ”accelerometer”, would be just one aspect that could be constrained.
More powerfully, such a system allows users to directly enter functional specifications, such
as the minimum required bandwidth of said accelerometer. This also gracefully handles
nonuniform ambiguity, which we observed from diagrams containing a mix of generic blocks
as well as specific part numbers.

Supporting Libraries
Even an unambiguous high-level design still must be combined with implementations of used
blocks to form a layout-ready schematic. However, our interviews show this to be a major
issue: there usually aren’t libraries of block implementations, and designers generally have
to transcribe from datasheet reference circuits. Practical solutions must also incentivize the
creation and sharing of re-usable libraries, either by making the process easier or by providing
additional value for designers.
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In any tool responsible for parts selection, libraries would need to model parts to a
sufficient degree to check correctness of the entire system. As with EDG, electrical char-
acteristics like absolute maximum ratings could be encoded in a block’s constraints. This
would automate some of the currently-manual checks mentioned by our participants, such
as voltage and current compatibility. Furthermore, these checks could address one of the
primary drawbacks of ERC, being more accurate than current pin-type based schemes.

One roadblock is that reference circuits often need to be customized for each application.
In these cases, static hierarchy blocks would preclude any meaningful re-use. However,
a generator methodology may be the solution: encoding the rules for generating a block
implementation instead of fixed, static instances. As a simple example, a generator for a
LED circuit would contain the logic to size the resistor given the LED current and voltages.

Generators built using hardware construction languages (HCLs) have been used for both
chips [33] and PCBs [7]. Despite the limited exploration of their usability, HCL based
generators show significant promise as an abstraction. We further note that, as is common
in the chip industry, these textual representations can be applied to top-level designs as well.
This may be highly advantageous in some cases: for example, instantiating large arrays of
LEDs becomes trivial.

Allowing recursive ambiguity, where block implementations can contain further ambigu-
ous blocks, can also be helpful. Reference schematics may be ambiguous: for example, even
given a specific accelerometer, its reference circuit may include capacitors that do not have
part numbers. This also aligns well with some observed design practices, where common
passive components like resistors and capacitors are not chosen until ordering.

Interface Mockups
An example of an interface around these augmented block diagrams is shown in Figure 4.2.
This shows a potential system architecture for a datalogger that records temperature data to
a microSD card. Designers would be able to specify blocks that can range from the generic,
such as the temperature sensor, to the specific, such as the microSD card socket. When a
specific part number is needed for a generic block, the user could either allow the tool to
automatically choose, or refine individual blocks from a list of compatible parts.

An example of the HCL approach is shown in Figure 4.3. The example design for a buck
converter generator illustrates how current barriers to reuse in schematic tools are addressed.
The parameters in the block interface specify what the subcircuit needs to do, while the
constraints ensure design consistency by defining limits and how parameters propagate. The
arbitrary code in the generator can then build customized subcircuits applicable in many
different designs, for example by encoding the component sizing equations taken from the
datasheet.
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Figure 4.3: Mockup of the hardware construction language interface, showing the
implementation of a buck converter generator. The first block of code, in __init__, defines
the block interface: ports and constraints between parameters on those ports. The second
block of code, in generate, contains the logic for instantiating sub-components once the
block interface has been fully resolved. Here, this consists of equations transcribed from a
buck converter datasheet.

4.6 Mockup Study: Methodology
As building the proposed design tool is a nontrivial engineering task, we felt it important
to validate and refine the design first. In particular, we want to understand whether users
would find this abstraction useful, and more importantly, their underlying reasoning and any
perceived limitations.

To do so, we built clickthrough mockups of design flows through an example project
spanning the two interfaces described above. These mockups allowed us to talk concretely
with a visual aid that conveys similarities to conventional EDA tools, but without requiring
the full system that any meaningful interactivity would require. We choose a datalogger as
our example project because they have real-world applications, and balance easy participant
comprehension with being complex enough for better tooling to be meaningful. The example
system architecture, including the choice of blocks, are modeled off of observed diagrams.
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Figure 4.4: Mockup of the hardware construction language compiler interface.
This provides information similar to the detail pane in the block diagram interface, but
using a tree view for navigation in absence of block positioning data.

After some preliminaries, we presented our participants with an empty canvas in the
block diagram interface. From there we walked participants through instantiating the high-
level architecture from parts libraries before asking the tool to fully solve the design as shown
Figure 4.2. The finalized design is equivalent to a full schematic, which we explain as being
directly exportable to a layout tool like KiCad.

We then move into the HCL mockups, first showing a one-to-one transcription of the
datalogger high-level design in code as a conceptual bridge. Further examples demonstrate
the power of HCLs, first showing array instantiation of temperature sensors using a for loop,
then showing the buck converter generator in Figure 4.3. We provide inspection into the
solved design through the compiler interface in Figure 4.4. A tree view replaces the block
diagram view as the HCL does not encode block placement and layout information, and the
block properties pane becomes read-only.

We asked open-ended questions about advantages, disadvantages, and applicability, par-
ticularly compared against each other or conventional tools. We also asked about acceptable
solver runtimes. For the HCL, we further asked about the utility of a hypothetical schematic
visualization view and what kind of additional verification users would perform. The latter
gets at notions of trust in the tool and libraries.
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We purposefully used a sketch-like art style to key participants to focus more on design
abstractions instead of UI specifics [24]. Additionally, by having participants compare-and-
contrast between two interfaces, and asking for the rationale behind answers, we hope to
reduce the effects of acquiescence bias [80]. This is especially relevant for those recruited
through personal referrals.

Otherwise, the interview and analysis procedure were the same as the initial interview
study. Ten of the original interview participants, as described in Table 4.1, returned for this
follow-up study. Interviews averaged 46 minutes with a standard deviation of 14 minutes.

4.7 Mockup Study: Findings
Participants were generally enthusiastic about the system architecture level of abstraction
for its ability to reduce manual work, but noted concerns about increased design automation.

Advantages
Automated design verification, essentially a more powerful ERC, was the most common
advantage, mentioned by 5 participants. These automated checks reduce the chance of an
uncaught error making it to fabrication while the encapsulation of datasheet parameters
allowed replacement of the tedious manual verification process.

A related advantage, mentioned by three participants, was the integration of parts data
into the main design flow:

It does all of the parameter searching, and comes up with an appropriate part,
which is what I do anyway just on Digi-Key, which doesn’t have a very friendly
user interface that is not tied closely into the design. (P11)

Designing at the system architecture level also provided advantages. Three participants
noted the similarity to their existing processes, that this was part of their existing flow:

I’m already generating some visual representation that’s generated in software.
If that can connect me to my other things, then I would really value that. (P05)

Not only would automated linkages from system architecture to schematic to layout save
time, but it could eliminate mistakes during manual transcription. Errors where something
is forgotten entirely during transcription were especially insidious, compared to design cor-
rectness issues which were more likely to be caught during inspection.

Finally, some participants brought up additional benefits with the HCL interface. Two
talked about automated consistency throughout the design even as other parts change, and
another noted that the methodology used for manual calculations was often not kept and
must be rediscovered if needed later.
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Limitations
The most common concern, mentioned by six participants, was a requirement for or depen-
dence on quality libraries. Missing parts could either be invisible, especially for users solely
relying on the system, or difficult to build.

All participants were inclined to share their libraries, but some noted limitations like
concerns about competitiveness (especially if sharing uncommon parts), employer policy,
and quality bars. Reasoning for this general attitude ranged from open-source philosophy
to the practical benefits of community contributions. However, one participant expressed
doubt about whether part manufacturers would contribute to a system that interoperates
with competitors’ parts.

Correctness was also a commonly cited criteria, especially since the tool introduces gen-
erative features:

You’re automating design here. That is, it’s hard to do and it requires a lot of
trust. (P07)

Discussions of trust in the overall tool were generally implicit: all participants mentioned
doing some kind of verification on the generated output, from connectivity-based spot checks
to comparing against datasheet specs. Sometimes, these statements would be qualified: one
mentioned being thorough the first time, while two others suggested building trust by having
the system show its work by generating report including the data sources and rules behind
checks.

Trust in the libraries themselves was also a key part of trusting the tool. Of the five
who talked about this, four mentioned trusting libraries from the part manufacturer or rep-
utable organizations like Digi-Key and Adafruit. Trust in community libraries was mixed
and based on a variety of heuristics, such as attention to detail and spot checks against
datasheets. Community feedback was another aspect, including rating systems and indica-
tions of successful builds.

Finally, even the higher level of abstraction still requires nontrivial engineering knowledge:

Beginners don’t understand the difference between buck and boost and current
and max and minimum footprint space versus component cost. (P10)

Blocks vs. HCL
While all participants were able to follow and understand the HCL examples, they also talked
about trade-offs with the block diagram interface.

When asked about use cases, there were (predictably) mentions of parameterization and
repetitive designs for the HCL. However, there were also mentions of its unsuitability for
designs where its capabilities are not required, such as connectivity-driven or straightforward
designs. One participant made the observation that:
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[The HCL] feels less kind of exploratory. It feels more like something I’d do if I
already have sketched out something on paper, and then I need to figure out the
components. [...] [The block diagram interface] feels almost like, to be a little bit
abstract, it feels less serious, right? Because you’re kind of working with these
graphical representations, whereas this is code. (P04)

Participants were more critical of the HCL, with five mentioning the learning curve as a
disadvantage. Four also mentioned the code representation as more difficult to work with,
instead preferring a visual schematic. One described the HCL as completely unusable, though
could still see value for large repetitive operations.

Participants had mixed feelings about textual interfaces. Two believed it would be faster,
though one thought that even writing a for loop would be slower than operations in the block
diagram interface. Another noted benefits of compatibility with version control tools and
text editors.

Finally, one participant recognized that it is not an either-or situation, correctly noticing
the possibility of using a GUI to define constraints. As both the block diagram interface and
the HCL are built on top of the same data model, both could support constraints with the
appropriate interface elements.

Running Time
Thoughts about acceptable solver running times largely fell into two broad groups: inter-
active, generally on the order of seconds, and batch, which spanned minutes to hours. An
equal number of participants were in each group.

Those who wanted interactive runtimes pointed to the responsiveness of existing board
design tools and modern websites as justification. They also suggested a modified version
of the mockup flow to achieve these speeds, such as solving a subset of the design, or incre-
mentally solving for design changes.

Those participants who were comfortable with batch processes cited both the time savings
of automation as well as avoiding manual tedious work. Three mentioned benchmarking
against manual processes, such as parts search. Another talked about the idea of active time
and background time: while manual verification of a schematic requires active attention to
the problem, one could attend to other tasks while waiting for the solver to complete in the
background.

Summary
First, our results suggest that designers have two primary concerns when evaluating new
tools: correctness and design effort. However, both must be evaluated holistically, across the
entire design flow.

While the integration of parts data from datasheets provides a correctness advantage
from a more powerful ERC, designing at the system architecture level also eliminates an
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error-prone manual transcription step from paper. Both also provide an important speed
advantage: the higher level of abstraction also frees users from worrying about details that a
computer could solve, and block re-use reduces time spent reinventing the wheel. However,
trust in both the system and libraries was a major concern, but could be earned through
visibility into automated processes and community feedback mechanisms.

Second, reliable partial automation seems to be preferable to unreliable full automation.
The initial interviews hint at this, with participants preferring assistive push-and-shove rout-
ing to fully automated routing. We see a similar trend in the mockup study, where partici-
pants were happy with the incrementally higher level of abstraction instead of pushing for,
say, full synthesis from system requirements.

It may be useful to view the balance of user effort and system effort as a multi-dimensional
trade-off, in terms of factors such as user time required, tediousness of tasks, expressiveness of
abstractions, and feasibility of automation. For example, asking the user to further constrain
a design to reduce the search space for runtime reasons may be a reasonable strategy.

Finally, based on the feedback from the mockup user study, we believe that our concept
design is a good starting point for the designers of future tools.

4.8 Future Work
While this concept system address what we think are the highest-impact and lowest-hanging
fruit in electronics design tools with our concept, both our interviews and principles for
creativity support tools [67] suggest that these considerations are worth further investigation:

Iteration

Designers tended to iterate, both within the EDA suite, such as optimizing between schematic
and layout, and through physical prototypes. Our concept only tangentially addresses iter-
ation through refining constraints of the example design.

Open Interchange

We observed two design flows involving significant use of external tools (Inkscape and chip
design suites), and there are likely to be more highly custom workflows. However, supporting
these may be more of an implementation detail, by documenting file formats or exposing
programming interfaces.

Community and Collaboration

Community effects were a large factor throughout both the initial and mockup interviews.
Library quality and availability were emphasized in the mockup responses, but both may
ultimately depend on the existence of a vibrant community. How to encourage the formation
of, and sharing within, such a community may be as important as the tool design itself.
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Enabling Library Creation

Tooling may also encourage creating libraries by partially automating turning datasheets into
machine-readable data. For example, uConfig [13] is able to extract pinout data from PDFs
for datasheets from certain vendors. Furthermore, tools might also parse the highly-regular
electrical characteristics tables, and populate block model parameters.

Beyond the Schematic

While the concept primarily addresses schematic capture, the interviews also suggest im-
provements to other stages like layout. Additionally, there may be value in persisting ambi-
guity past schematic capture, such as to optimize for layout area.

Beyond Electronics
While this study was conducted in the context of PCB design tools, the findings and recom-
mendations may be applicable to other domains. The ideas of incrementally raising the level
of abstraction, specification and utilization of ambiguity in design, and eliminating tedious
transcription work through better integration can generalize to any design domain. Know-
ing the limitations and requirements of these approaches, such as the need for trustworthy
automation, will be important to building practical systems.

Our exploration comparing and combining visual interfaces and programming languages
can also inform other design domains. One application may be in mechanical CAD, where
parameterized parts could be defined in a powerful generator language, akin to OpenSCAD,
and instantiated in a visual assembly-level interface.

4.9 Limitations
Ultimately, electronics design is a very broad field with many specialties. While we chose to
address PCB design in general because of its ubiquity, we also realize that tools tailored for
a particular subdomain may be more powerful.

Our goal of looking at entire PCB design flows also trades depth for breadth. An inter-
view study meant a fairly high-level investigation and would be subject to participant recall
limitations. However, our findings could form the basis for more targeted observational
studies of particular steps.

Participants also tended to be younger (early 20s to late 30s), likely as a result of a
majority of the mailing lists being university-affiliated. However, given the observation of
similar design flows and repeated themes, we believe that we have at least found some
interesting directions for future work. The data here could also form the basis for wider
studies that use more scalable methods such as surveys.

Finally, while the feedback on our tool concept was largely positive, it is far from proof
that it is useful, usable, or even feasible. Though we try to maintain an internal consistency
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in our mockups and construct a representative design flow, they are only our best effort
at imagining what such a tool would look like without actually building it. However, now
knowing that we are not horribly off the mark, we move on to building and evaluating the
system in the next chapter.
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Chapter 5

Hardware Description Language

5.1 Introduction
In the previous chapter, we proposed a sketch for a tool that had the following features:

• supports the system architecture level of abstraction, typically block diagrams of high-
level components

• also supports defining those high-level blocks, as re-usable libraries of subcircuits

• enables generators that automatically customize the implementation of those libraries,
for example sizing components by higher-level parameters

• allows ambiguity in those block diagrams, for example with a generic resistor instead
of a specific part number, at both the system architecture and library level

While we mocked up a hardware construction language (HCL) approach which automat-
ically produces customized implementations of blocks based on higher-level specifications, in
general programming concepts could support all of the features. Concepts from type hierar-
chies like polymorphism can encode the relationships between generic and specific parts to
support ambiguity, while modern programming languages provide good support for abstrac-
tion.

Furthermore, like interfaces, classes, and inheritance in object-oriented programming,
constructing electronics from blocks allows a division of labor: system designers can focus
on high-level architecture while experienced engineers can build reusable libraries of blocks.
Defining blocks as generators – executable code that translates high-level specifications into
an implementation, e.g. a LED-resistor subcircuit that calculates resistance from input
voltage – also helps separates interface from implementation and enables relative novices to
leverage the knowledge of experts. Furthermore, block-level polymorphism – refining blocks
with compatible subtypes, e.g., substituting a specific buck converter in place of an abstract
voltage converter – balances high-level design with fine-grained control.
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Figure 5.1: The Polymorphic Circuit Blocks HCL design flow. In the Polymorphic
Circuit Blocks approach (purple box), board designers start by writing their system archi-
tecture in a hardware description language (HCL), which is then elaborated into a hierarchy
block graph model and expanded using community libraries. That graph is then refined
through interactive choices in a GUI and automatically propagated parameters are checked
to ensure system correctness. The result can be exported to a netlist file, which can then be
imported into a board design tool for layout. In contrast, mainstream tools (gray box) gen-
erally do not support system architecture level design, so such diagrams are often done with
pen and paper. Furthermore, schematics are typically manually entered from the bottom-up
using reference circuit diagrams from datasheets: while part libraries are available in main-
stream tools, these are limited to single components and direct re-use of sub-circuit files is
difficult and uncommon outside limited contexts.

We foresee an open-source community of engineers and designers, similar to that in the
software world, where open collaboration and communication lowers the threshold of entry
into electronics design even further, while preserving a high ceiling of complex designs, and
offering wide walls of rapid exploration of design alternatives [67].

We implement this new model of circuit design in Polymorphic Circuit Blocks, an end-
to-end system for authoring block diagrams. As summarized in Figure 5.1, users write
designs in an HCL with the aid of subcircuit generator libraries, then interactively explore
refinements to obtain a layout-ready circuit. An underlying electronics model checks designs
using constraints such as operating voltages and currents. Supporting tooling in the form of
a graphical visualization and refinement interface enables users to view their designs as block
diagrams and specify refinements. This combination of HCL, electronics model, and user
interface distinguishes our work from related work on purely textual PCB HCL efforts [7,
61] and high-level design tools that don’t also allow lower-level control [3].
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Figure 5.2: Example of a blinky LED circuit in the Polymorphic Circuit Blocks
HCL user-facing model (left) and internal model (right). The simplified user-facing
model is presented at a single level of hierarchy, and contains just blocks (rectangles) with
ports (circles) that can be connected. This largely follows representations in system archi-
tecture diagrams. The more detailed internal model spans multiple levels of abstraction by
including internal hierarchy, and connections are described through links (diamonds).

Overall, we contribute a novel generator HCL for board-level circuit design, supporting
tooling, and an accompanying evaluation. In the rest of this chapter, we expand on our
hierarchy block diagram model, its expression in our HCL, the visualization and refinement
interface, and important implementation choices. We then demonstrate our system’s capa-
bilities by building and testing two example embedded devices, and report on a remote study
with three electrical engineers who designed PCBs of their own choice with our system.

5.2 System Design
In the Polymorphic Circuit Blocks workflow, as summarized in Figure 5.1, users start with
an idea and a high-level system architecture in mind. They then translate that architecture
into code written in our HCL, which is fundamentally organized around hierarchy block
diagrams extended with generators, a type system, and an electronics model. Block level
polymorphism and a class hierarchy allows the use of abstract blocks which can be refined
later – for example, a generic voltage step-down block can be refined into a buck converter
subcircuit based on a particular controller chip. Our visualization and refinement interface
then allows the user to inspect their design and review these refinement choices. Finally, the
user can export a netlist which can then be used to lay out the PCB in mainstream tools.

In the following sections, we will use a running example of a simple blinking LED cir-
cuit, shown in Figure 5.2, to introduce our model and the design workflow. However, it is
important to emphasize that the system is designed to handle and produce more complex
designs such as the data logger in Figure 5.3.
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Figure 5.3: A more complex example: the datalogger PCB designed in Polymor-
phic Circuit Blocks, further explained in Section 5.4.

Block Diagram Model
Figure 5.2 shows our model’s structure, extending the basic block diagram and consisting of
blocks, ports, and links.

Blocks, shown as rectangles in figures, are elements of the circuit and the main construct
users will interact with. They represent structures from single components like resistors
and chips, to subcircuits like buck converters, to abstract functional blocks like voltage
converters. Internally, they can have a set of parameters that define operating conditions
along with constraints on those parameters.

Ports, shown as small circles in figures, represent the interface of blocks like power pins,
GPIO pins, and signal busses. They can also contain parameters that describe properties of
the interface, like maximum voltage ratings.

Links, shown as diamonds in figures, represent connections between ports, defining how
ports connect and how parameters can propagate. They are structured much like blocks,
containing ports, parameters, and constraints, however, block ports can only connect to link
ports (and vice versa). As shown in Figure 5.2, links are simplified in the user-facing model
as a connection between ports, and inferred into explicit objects in the internal model based
on the types of connected ports.

This model improves on mainstream schematics by enabling electronics modeling and
additional automated checks. However, more advanced automation and design support re-
quires two notions of hierarchy: a structural hierarchy for encapsulation and a class hierarchy
for abstraction.
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Figure 5.4: Bridge example which adapts an externally facing port to an internally
facing link. The enclosing block has one externally facing sink port, which must feed two
internal devices. A bridge “block” provides the internal version (in this case, the flipped
version) of the externally facing port, with one port directly connected to the external port
and its flipped version exposed to an internally facing link which multiple ports can then
connect to.

Structural Hierarchy

Modern schematic editors already support a form of structural hierarchy via hierarchy blocks,
which can be placed on the schematic like ordinary components but represent a sub-“sheet” or
sub-circuit instead of a single component. This serves two purposes: as an organizational tool
to make large schematics comprehensible, and as a re-use tool for replicating the same circuit
block. We support the same concept, as shown in Figure 5.2 right where the IndicatorLed
nests internal LED and resistor sub-blocks. Generators, discussed later, further increase the
encapsulation power of these hierarchy blocks.

Hierarchy support requires cross-hierarchy additions to the block model. In the simplest
case, a sub-block port can be directly exported to a containing block port, as shown with
the IndicatorLed’s ports in Figure 5.2 right. In the more complex case, where multiple
sub-block ports connect to a containing block port, a bridge is necessary. For example,
as in Figure 5.4, a block might have a single power input feeding two sub-blocks, but a
connection of only power inputs is nonsensical. A bridge would take the external facing port,
a power input, and present a flipped internal version, a power source, to feed the sub-blocks.
Bridges are structured as two-ported blocks, with one port being directly exported, and the
other connecting to the internal link. We note that this structure preserves parameters and
constraints of the internal blocks, allowing automatic management of lower-level invariants.

This hierarchy also extends to ports, which can be bundles of sub-ports, and links, which
can be composed from sub-links. For example, the UART port is comprised of two digital
ports TX and RX, and the UART link contains two digital links.
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Figure 5.5: Class hierarchy example with step-down voltage converters. The ab-
stract step-down converter has three subclasses, a linear regulator, a synchronous buck con-
verter, and a buck converter. All these fulfill the step-down converter interface and func-
tionality, and can be used in its place. This mechanism provides support for abstraction in
our model.

Class Hierarchy

The main differentiator from mainstream schematic tools is the notion of a class hierarchy
for blocks. While modern schematic tools require blocks to be specific parts, we would
like designers to be able to, for example, instantiate and connect a “generic” LED at that
(ambiguous) level of specificity. This is grounded in observations from our interviews in
Chapter 4, where participants tend to start with high-level and weakly specified versions of
designs, using general modules like power, sensing, and processing.

Our class hierarchy, borrowing inheritance concepts from object-oriented programming,
defines how parts are functionally similar and can be used in place of one another. Super-
classes provide higher-level interfaces, while subclasses have a is-a relationship with their
superclass but can be more specific and concrete. For example, in Figure 5.5, a buck con-
verter is a type of (and can be used in place of a) generic step down converter. This allows
using blocks that are abstract – generic and without implementation – and delaying the
precise specification until later.

These abstract parts also enable more generalizable library blocks, by allowing system
designers control over elements nested within the structural hierarchy. For example, libraries
can use the generic resistor block, preserving the choice of whether to use surface-mount or
through-hole parts for the system designer who would have a better idea of application
requirements.

We note that, differently from object-oriented programming, replacing a block with a
subclass is not always safe. For example, a generic and abstract buck converter would
not have current limits, but a concrete one made of physical components would. Block
constraints enable automated checks to catch compatibility issues with selected refinements,
but designer expertise is generally helpful in making high-level trade-offs.
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Power Source
voltage_out = 3.3 V
current_limit = 2 A voltage_limit = 3.0-3.6 V

current_draw = 1 A

voltage ⇐ src.voltage_out = 3.3 V
current ⇐ sum(sinks.current_draw) = 1 A

voltage ⊆ intersection(sinks.voltage_limit) = 3.0-3.6 V
current ≤ src.current_limit = 2 A

src sinks

Power Sink
Power
Link

Assignments

Assertions

Figure 5.6: Example of parameter propagation and checking in the Polymorphic
Circuit Blocks model, with a simplified constant-voltage link. Ports are defined with
their physical properties: voltage output and current limits for sources, and current draw
and voltage limits for sinks. These parameters ”flow” through connected ports to links,
which create aggregate parameters of connected ports such as the total current drawn and
acceptable voltage range. Links also define assertions to check correctness properties.

Electronics Model and Libraries
An electronics layer on top of this basic structure models common pin types and part ratings.
This consists of common links and their associated ports, such as a power link representing
a constant-voltage power net, and power source and sink ports encoding output voltages,
input currents, and their limits. We also define signal types, including digital ports modeling
high and low voltage thresholds and analog ports modeling input and output impedances.
Multi-wire protocols like SPI, USB, and CAN are modeled as bundles composed of the above
single-wire primitives. As shown in Figure 5.6, we structured the model so that parameters
on ports define properties of the device (e.g., voltage limits and current draw for a power
sink), while links define properties of the net as derived from connected devices (e.g., voltage
on a wire).

With this electronics model, we built a library of common blocks. Primitives include
a resistor generator using the E24 series of preferred numbers, and inductor, capacitor,
diode, and transistor generators created from parts tables. These primitives are defined with
untyped passive ports, and are wrapped in higher-level library blocks (e.g., pull-up resistors
for digital lines and decoupling capacitors for power lines) that translate port parameters to
component parameters (e.g., pin voltage to rated voltage on a decoupling capacitor).

These library blocks provide significant design automation and integration. For example,
a low-pass resistor-capacitor (RC) filter block calculates the resistance and capacitance based
on a cutoff frequency and impedance specification, while a resistive divider block finds a pair
of resistor values in the E24 series meeting the target ratio and output impedance. The
library also includes application circuits of more specialized devices like microcontrollers,
displays, and protocol converters, all of which can be directly dropped into the system
architecture level HCL.
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Figure 5.7: Blinky circuit showing the different levels of design and where people
of varying skill levels can fit in. The overall system is intended to be accessible and
useful to novices who can compose system-level designs using libraries, while the relatively
fewer but more experienced electronics experts build those libraries of blocks and underlying
port and link models.

1 class Blinky(Block):
2 def contents(self):
3 super().contents()
4 self.mcu = self.Block(Nucleo_F303k8())
5 self.led = self.Block(IndicatorLed())
6 self.connect(self.mcu.gnd, self.led.gnd)
7 self.connect(self.mcu.digital[0], self.led.io)

Figure 5.8: Example code defining the Blinky circuit Block. Within the block’s
contents, lines 4 and 5 instantiate the sub-blocks for the Nucleo microcontroller board and
a discrete LED. Lines 6 and 7 then make the signal and ground connections.

The overall vision of the layers of our system and how different users interact with it is
summarized in Figure 5.7.

Hardware Description Language
Taking inspiration from recent work on chip generators [33], we provide a generator HCL
interface for authoring blocks. This programmatic construction of blocks captures the design
methodology to construct a family of subcircuits, and separates interface from implementa-
tion by translating high-level inputs into internal parameters. For example, the LED-resistor
generator calculates the resistor value given the input voltage.

As shown by the Blinky code example in Figure 5.8 (which describes the diagram in
Figure 5.2 left), the HCL is a Python-embedded domain specific language, making use of its
object-oriented features. Classes represent re-usable block templates, while objects represent
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1 with self.implicit_connect(
2 ImplicitConnect(self.mcu.gnd, [Common]),
3 ) as imp:
4 (self.led, ), _ = self.chain(self.mcu.digital[0],
5 imp.Block(IndicatorLed()))

Figure 5.9: Example of an alternative structure for instantiating the Blinky cir-
cuit using implicit connect and chain. Line 2 defines the ports (microcontroller ground)
that inner blocks instantiated in the with block should connect to, by tag matching. The
IndicatorLed instantiated on line 5 has its ground port tagged with Common, so it is auto-
matically to the microcontroller’s ground. The chain statement on line 4 then connects the
microcontroller’s digital pin to the LED’s Input-tagged signal pin.

individual instances. Generators defining a block’s contents are written as a member function
which can instantiate and connect sub-blocks, ports, and parameters.

We also provide syntactic sugar constructs for frequent use cases as shown in Figure 5.9.
The first, implicit connect, is motivated by the large number of common connections like
power and ground. This is structured as a code block, in which internal sub-blocks will have
connections made by tag matching. The second, chain, is motivated by the frequent appear-
ance of connections through blocks, in one port and out another. Syntactically, this allows
block declaration and connection to happen on one line, and also makes linear connection
topologies more obvious in HCL. These constructs can be mixed with each other, as also
shown in Figure 5.9, where the implicit connect provides the ground and the chain provides
the signal.

Subcircuits and generators are defined in the same way, as shown in Figure 5.10. The
same also mostly holds true for links, given their block-like structure.

Visualization and Refinement Interface
As our formative studies in Chapter 4 highlighted the need to balance control and trans-
parency with automation, we also provide a visualization and refinement GUI. This user
interface, shown in Figure 5.11, visualizes the resulting design with an automatically laid
out block diagram and provides insight into the system’s reasoning though inspection of
solved values.

Furthermore, users can select block subclass refinements in the interface, allowing the
HCL to remain high-level while specifics can be dealt with interactively. The resulting
subcircuit is then automatically generated, and model checks catch mistakes. For example,
a user could refine an abstract resistor into a concrete surface-mount chip resistor, and its
modeled power rating allows automated compatibility checks.
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1 class IndicatorLed(GeneratorBlock):
2 def __init__(self) -> None:
3 super().__init__()
4 self.io = self.Port(DigitalSink())
5 self.gnd = self.Port(Ground())
6
7 def generate(self):
8 super().generate()
9 voltage = self.get(self.io.output_high_voltage)

10 self.led = self.Block(Led())
11 self.res = self.Block(Resistor(
12 resistance=(voltage / 0.010, # max current, 10 mAmp
13 voltage / 0.001))) # min current, 1 mAmp

Figure 5.10: Simplified code for the indicator LED subcircuit. Lines 4 and 5 define
the external ports by their types, while lines 10-13 define the internal blocks. Notably, as
on line 9, generators can access solved values like digital logic thresholds, and use those to
automatically size internal blocks like the resistor. Internal connections omitted for brevity.

Figure 5.11: Visualization and refinement GUI with the Blinky example from Fig-
ure 5.2 open. An automatically laid out block diagram is on the left side, while tree view of
the design is immediately to the right. In the design tree, abstract blocks (needing refine-
ment) would be shown in yellow, refined blocks in green, and error blocks in red. The top
of the vertically split pane shows the available refinements for the currently selected block,
and users can apply block-specific or type-wide refinements through a context menu. The
bottom pane shows all the chosen refinements. The rightmost pane displays details of the
selected block, including parameters and connected ports.
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Board Generation
As subcircuits are fully defined at lowest level of the hierarchy block diagram, the overall
design is equivalent to a schematic. Our system can export this as a netlist file describing
components and their connectivity, which can then be imported into KiCad’s [35] board
layout tool. Otherwise, we do not address board layout.

As the overall hardware design flow involves a back-and-forth between schematic and
layout, we enable netlist updates to a work-in-progress layout by generating deterministic
component names using HCL variable names. However, this does require those names to be
stable, so additional techniques will be needed to support user HCL refactoring.

5.3 System Implementation
The user-facing HCL is implemented as a library of base classes in Python, with mypy
static type annotations allowing user code to be type checked. The compiler, netlister, and
visualization interface were also written in Python with the TkInter GUI toolkit. The entire
project is open-source at https://github.com/BerkeleyHCI/PolymorphicBlocks.

The user HCL code invokes hardware construction methods (like Block and Port) which
builds up the hierarchy block model as a tree data structure.

Compiler Structure
The hardware compiler takes the “high-level” model, as in Figure 5.2 left, and incrementally
“lowers” the model by adding detail and expanding sub-elements until getting to the lowest
form, as in Figure 5.2 right. This is structured as a tree walk, from blocks to its internal
ports, sub-blocks, and links, recursively. Each visited block is transformed as follows:

Refinement: if there is a refinement selected for the type or particular block, the block
is replaced with the refinement.

Generation: if the block is a generator, the generator is provided with the concrete values
of any accessible parameters, then invoked to define the block’s internal elements.

Generators run once and not in any specific order, so all referenced parameters must
have at least worst-case bounds, and the generator must be written to produce a working
implementation for that entire range. Similarly, generators must specify pre-execution worst-
case bounds for parameter values. For example, voltage converter generators define a worst-
case current draw before a tighter one is available post-generation. This is an implementation
limitation, and future work could explore better approaches like inferring an order from the
constraint graph and allowing interactive updates.

Constraint graph update: constraints between parameters are parsed into a directed
graph. Constraints of the form ”a == something” are recorded as assignments to a, and
constraints of the form ”a subset-of something” are recorded as bounds to a. Parameter
values are evaluated by walking the constraint graph, and only when needed (lazily). A value
may have any number of subset bounds, but only one assigned value (as long as it satisfies

https://github.com/BerkeleyHCI/PolymorphicBlocks
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all subset bounds). Constraints not matching either form do not affect evaluation, and are
instead recorded as assertions that are checked at the end.

Netlisting is handled as a compiler phase after the design has been fully lowered, and is
also a tree walk that builds up and writes out the index of footprints, pins, and connections.

Block Diagram Layout
We use ELK [22] (through py4j) as the block diagram layout engine, specifically its “layered”
algorithm which supports hierarchy blocks and ports. As this algorithm relies on directed
edges to provide a reasonable layout, we infer directionality primarily from the link port.
For example, a voltage source would be the tail, and a voltage sink would be the head.
Bidirectional ports are treated as sinks, except for when the link has no sources, the first
bidirectional port is treated as a source.

A series of simplification transforms hides internal details like bridge and adapter pseudo-
blocks by collapsing them and merging their input and output edges. High-fanout links
(containing over thee sinks) have their edges replaced with stubs for simplicity, analogous to
power rail and ground symbols in schematics. Overall, while these approximations are not
perfect, they appear to produce usable block diagrams.

5.4 Example Applications
We demonstrate the capabilities of our system by designing, physically building, and testing
two example systems.

Simon
We extend the Blinky example into the Simon memory game, shown in Figure 5.12 and
consisting of four colored light-up buttons and an accompanying audio tone for each color.

We use a socketed Nucleo microcontroller development board as both a power source and
compute element. Since the lights in the dome buttons require 12 volts while the Nucleo only
supplies 5 volts, a boost converter generates the necessary voltage and a MOSFET circuit
drives the lights from a 3.3 volt pin. We further added a speaker driver, speaker connector,
and debugging tricolor LED. In terms of structure, each of these is a library sub-block.

Overall, the top-level HCL for Simon is 58 lines. Of note is that the boost converter
instantiation requires only one line of code including the desired output voltage, minimizing
design effort for an element where we do not care about the specific implementation. The
boost converter generator library encapsulates the details and process of component sizing.
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Figure 5.12: The Simon PCB (with detail view) and connected buttons.

Datalogger
A more complex design is the datalogger, shown in Figure 5.3, which records data from a
Controller Area Network (CAN) interface onto an SD card. In contrast to Simon’s sock-
eted microcontroller board, this drops a microcontroller chip and its supporting components
directly on the board.

In addition to the necessary CAN interface, SD card socket, microcontroller, and power
conditioning blocks, this design also includes a supercapacitor-based backup power supply.
Similar to the boost converter generator, this block generates a current-limited charger and
automatically sizes internal elements like the transistor and reference voltage divider.

5.5 User Study: Methodology
While the preceding examples demonstrate that our system can produce working boards,
usability is also an important practical consideration. We ran a small user study, in which
participants designed an electronics project of their choice.

Overall, our study design prioritizes ecological validity (realism) with open-ended tasks
and participants’ choice of projects, important aspects for creativity support tools [72]. Fur-
thermore, we focused on qualitative feedback: as a concept significantly different from current
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practice, we felt that answers to “where and why does it work” which could drive future work
were more interesting than a binary “does it work”.

Participants
We recruited 3 local participants through personal referrals, including two professional engi-
neers and one electrical engineering undergraduate. All participants had at least intermediate
familiarity with PCB design and Python.

Participants were compensated with gift cards at $50 an hour for the data collection
interviews, and given a budget of up to $300 for parts and boards to build their projects.

Structure
We set up a fresh virtual machine (VM) for each participant, which they would remote-
desktop into using X2go. Each VM ran Ubuntu 18.04 with XFCE and IntelliJ Community
Edition (which all participants used) pre-configured to work with our system. Participants
did not have issues navigating the remote desktop interface, and everything was reasonably
responsive.

We asked participants to share their VM window over video conference so we could watch
their progress and provide help. While we did not record these sessions, we did take notes. As
documentation and error messages were specifically not under evaluation, we would answer
any questions participants had, including giving pointers to example code where appropriate.

The study started with a introductory session where participants worked through a tu-
torial document which involved building the blinky design from Figure 5.2, then extending
it with a switch, LED array, discrete microcontroller, and temperature sensor. This tutorial
introduced all the HCL constructs, from basic model and abstractions to the implicit-connect
and chain syntactic sugar constructs, and ended with a simple part definition exercise for
the temperature sensor.

Afterwards, we worked with participants to define a project of appropriate complexity
and scope. In particular, we wanted a system architecture which neatly decomposes into
blocks and could re-use common library elements, but also involved building a generator and
modeling a few parts. We felt that building a single generator would help in understanding
how automation features (like low-pass RC generators) work, while remaining considerate
of participants’ time. Furthermore, as the effectiveness of our tool depends on extensive
libraries which normally would be provided by a community in mature projects, we also built
library parts needed for participants’ projects for parts we deemed common. This phase was
conducted with a mix of video conference and instant messaging, as a back-and-forth process
which spanned several days. We then scheduled time for participants to actually write HCL.

Once participants were satisfied with their HCL, we conducted a semi-structured inter-
view. Topics included their overall thoughts about working in the system and comparisons
with mainstream flows, as well as specific thoughts on the HCL, abstractions, electronics
model, and supporting tooling. We attempted to reduce the effects of acquiescence bias by
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encouraging participants to be frank and by framing the interview as constructive feedback
rather than evaluation. Interviews were audio recorded (with participants’ consent), and
lasted an average of 2 hours and 19 minutes.

Afterwards, participants had the option of continuing to a board layout, which was pri-
marily independent and on their own computer, unless they needed to make netlist changes.
Because of COVID-19, we were unable to physically fabricate, assemble, and test the final
devices.

5.6 User Study: Results
Overall, participants spent an average of 1 hour 5 minutes completing the tutorial, and 5
hours 15 minutes working on their HCL, including 2 hours building subcircuit and part
libraries, and including untracked time understanding the circuits being built and becom-
ing familiar with the system. By the end, participants were able to work effectively with
the system, got designs to a point they were satisfied with, and continued to layout. All
three projects are detailed below, with PH02’s project shown in Figure 5.13 and HCL in
Figure 5.14.

Project: Power Meter
PH01’s project was an inline power meter that measures the voltage and current passing
through it. PH01 started by modeling the INA190 current sense amplifier chip, then building
the top-level system with stub sub-blocks for the current and voltage sense chains, and finally
implementing those sub-blocks including writing the differential RC filter generator. The
initial design idea came as a sketch of the analog signal chain in KiCad, while the rest of the
system came together during HCL writing and based on available library parts.

PH01 wrote 112 lines of system-level HCL (including signal chain sub-blocks), 20 lines of
generator libraries, and 95 lines of part definitions. The layout had 66 individual components.

Project: Thermistor Reader
PH02’s project was a thermistor reader that displays readings from a bank of 8 thermis-

tors and plays an audio alert if bounds are exceeded. PH02 chose to start by writing the
thermistor and RC filter combination generator, which would calculate the series resistor
and parallel capacitor values given the nominal thermistor resistance. Of note is the use of
a for loop to generate the repeated thermistors and signal chains. This was also the only
case requiring a model override: the OLED and speaker worst-case current draw exceeded
capabilities of the USB port, so an inline pseudo-block (using 3 lines of code) was used to
lower the modeled current, effectively telling the system that these parts would not be run
at full power.
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Figure 5.13: PH02’s initial system diagram for the thermistor reader, and the
resulting PCB (rendering) they produced using our system.
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PH02 wrote 52 lines of system-level HCL, 40 lines of generator libraries, and 15 lines of
part definitions. The layout had 90 individual components.

Project: Multifunction Instrument
PH03’s project was an USB oscilloscope, function generator, logic analyzer, and power sup-
ply combination device, all driven from a microcontroller. PH03 chose to start by writing
the variable-output buck converter generator, modifying the existing feedback controller chip
based buck converter by adding a PWM input, MOSFET switch, and diode. This process
turned out to be tricky, requiring deeper circuits knowledge to size switches and diodes com-
pared to the typical process of choosing an off-the-shelf chip and using reference schematics
and part selections. However, once completed, the top-level system architecture, including
hooking up the converter, signal buffers, LCD, and USB, progressed smoothly.

PH03 wrote 48 lines of system-level HCL, 24 lines of generator libraries, and 90 lines of
part definitions. The layout had 53 individual components.

Advantages
Overall, participants were happy with the system architecture and level of design, with PH01
noting that it matched the ideal.

Participants also liked the pre-built blocks and the encapsulation they provide. PH02
noted that library blocks could reduce the need to read through datasheets and make it more
difficult to miss non-obvious elements like the pull-down resistors on the Type-C receptacle.
PH03 also compared the cleaner and integrated generator library approach of our system
with their painful existing flow of building buck converters by searching on chip vendor sites,
using Excel calculators, and downloading and importing footprints.

All participants found the more detailed automated checks to be useful, with PH01
considering it the best part of the system. PH02 felt the system could be particularly useful
for novices, making it more difficult to get an obviously bad schematic compared to the
weaker ERC in existing tools. Furthermore, in combination with previous hardware-proven
designs built in this system, the block diagram visualization, and familiarity with the circuit
from doing the layout, all participants had between medium and high confidence that their
design would work. However, participants were more skeptical of community libraries, for
example saying that they would do spot checks or want quality indicators.

Limitations
While participants generally felt the electrical checks were reasonable without being exces-
sive, PH01 cautioned that the checks were better described as sanity checks as the modeled
values were based on datasheets which might assume certain conditions, context that is lost
in our model. Furthermore, PH02 noted that the modeling and encapsulation of generators
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might not be comprehensive: for example, a user instantiating a thermistor block would
need to know whether the signal rises or falls with increasing temperature.

All participants encountered failed checks, often due to tolerances set too strict for parts
like resistive dividers. Though participants recognized these as true-positives and solved
these by loosening tolerances, this tolerance specification with stackup differs from design
practices around nominal values. Furthermore, PH01 found the common tolerance debugging
process of loosen, re-compile, and iterate to be annoying, suggesting either tighter iteration
loops or presenting the best achievable value. PH01 also preferred checks to be non-fatal and
not prevent netlist generation where possible, though PH02 preferred to not waive checks
and instead use more targeted and explicit mechanisms like tightening the worst-case current
draws.

PH03 felt that the learning curve was steeper than a GUI, and that the system does
require familiarity with Python. Furthermore, the object-oriented Python in our HCL may
differ from the scripting aspects used by hardware designers. PH01 also noted mismatches
between terminology and class names presented in our system and existing schematic capture
concepts, and viewed intuitive names as essential to easy learning.

One issue PH01 noted with the refinement process is that this data are stored separately
from the HCL, so the HCL alone would be insufficient for a design review. Suggestions
include having refinements generate code back into the HCL, or having refinements be part
of review. In general, PH01 and PH03 also noted good tool support for code diffs, though
also acknowledged the existence of schematic diff tools.

Finally, participants brought up a slew of less-fundamental usability issues with the
system. This ranged from poor automatic net naming, to HCL syntax issues like excessive
verbosity reducing the signal-to-noise ratio.

Part Building
Though all participants agreed that modeling parts and writing generators was worth the
cost if it was likely to be re-used and shared, they differed in the details. PH02 found writing
the math for the RC filter calculation to be easy, and PH03 noted that having an existing
generator as a starting was very helpful. On the other hand, PH01 pushed for an untyped
port, which would in effect waive model checks for when one just wants things to connect.

Graphical Interfaces
All participants also made use of the visualization and refinement interface to explore the
compiled designs. PH01 noted that circuit reading usually relies on visual pattern matching
on schematics, and it was harder to see the connectivity structure from the HCL, though
PH02 believed the HCL to be reasonably clear. PH01 also thought that while the auto-
matically generated block diagram was reasonable for the top level, deeper levels showing
individual components significantly deviated from schematic convention. However, that was
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tempered with the hope that adding a few more simple rules, like ordering ports by voltage,
could produce significant improvements.

All participants also independently suggested tightening the HCL and block diagram
update loop, perhaps by integrating the visualization into an IDE. One use case suggested
by PH02 was to highlight block pins that still need to be connected.

Participants did have differing opinions on the HCL as a design entry interface. PH02
thought the HCL with its for loop and textual entry was faster, though modern schematic
tools somewhat close the gap with support for hierarchy replication. PH01 noted more
generally that HCLs and graphical schematic editors were suitable for different purposes,
preferring schematics for analog designs with high connectivity between a few components,
and preferring HCLs when the equivalent schematic sheets would be very complex and
cluttered.

Design Time
All participants mentioned design time as a metric when comparing this system to main-
stream flows, with PH03 also mentioning design pain. While acknowledging that it was
difficult to fairly compare time for such different flows, PH02 and PH03 estimated their
projects would have taken about as long in a traditional flow (give or take depending on as-
sumptions), while PH01 was more wary about comparing new tools to familiar tools. PH03
further noted that the end results were more “portable”, including time invested in reusable
components. However, PH02 was unsure about benefits when dealing with specialized, one-
off components, and PH01 noted the flexibility in mainstream flows to defer component
sizing to quickly proceed to layout.

5.7 Limitations and Future Work
While we have presented a system that ultimately produces working boards and conducted
user trials with an emphasis on simulating realistic conditions, there are both important
limitations and open avenues for continued work.

Graphical Interfaces
Based on user feedback, perhaps the most important usability improvement would be better
integration with graphical block diagram or schematic representations. The most ambi-
tious idea would be a fully linked, hybrid HCL and block diagram editor, allowing users to
freely move between whichever representation suits their current task best. Less ambitious
would be tighter updating of block diagrams from HCL, better automatic block diagram
layouts (possibly with user-specified hints), and better tools for tracing and sense-making of
constraint errors.
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Furthermore, while an HCL is necessary to write generators, the resulting blocks and the
rest of our design model can be used from within a graphical, schematic-like interface. This
would eliminate the need for programming experience and provide a more familiar interface
and graceful transition.

We implement and evaluate an integrated development environment (IDE) plugin based
on these ideas and supporting mixed text and graphical editing next, in Chapter 6.

Library-Based Approach
Our approach relies on having good and complete libraries to maximize re-use. Though
our current library includes many common parts and subcircuits, it is far from complete.
While a database of simple parts might be easily parse-able from a parametric product table,
complete details for more complex parts are often only available in PDF datasheets. Future
research on extracting data from datasheets with tools such as Tabula [78] and DocParser
could accelerate this effort.

Overall, collaboration from a large community may be key to building a critical mass
of parts and subcircuit generators to support the needs of users. However, as noted by
participants, this must be balanced with quality indicators to enable confidence in re-use.

Electronics Model
The foundational abstractions of hierarchy blocks, links, and parameters appeared use-
ful to and was understood by users. While the electronics model proved suitable for our
intermediate-level example designs and user projects, it has many limitations, for example
defining only a few signal interfaces and lacking support for multiple grounds. We do cau-
tion that continued work extending the model must balance functionality with usability and
usefulness.

Users and User Study
In building our system and libraries, we focused on supporting intermediate-level designers
and projects. In particular, sufficient circuits background enables effective use of library
blocks, while less complex projects avoid needing a long tail of specialized parts. However,
we believe that with additional work – such as on-demand documentation for novices, or an
expanded library and model for experts – our approach will scale up and down both the skill
and complexity hierarchy.

That being said, we do caution against generalizing the user study results, given the
small participant pool and the selection for circuits knowledge and programming experience.
We position our results as a first step, leaving larger and more robust studies – and the need
for a more polished and scalable system – as future work.
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1 self.usb = self.Block(UsbDeviceCReceptacle())
2 with self.implicit_connect( ImplicitConnect(self.usb.pwr, [Power]),
3 ImplicitConnect(self.usb.gnd, [Common]) ) as imp:
4 self.usb_reg = imp.Block(BuckConverter(output_voltage=(3.0, 3.3)))
5
6 with self.implicit_connect( ImplicitConnect(self.usb_reg.pwr_out, [Power]),
7 ImplicitConnect(self.usb.gnd, [Common]) ) as imp:
8 self.mcu = imp.Block(Lpc1549_48())
9 (self.swd, ), _ = self.chain(imp.Block(SwdCortexTargetHeader()), self.mcu.swd)

10 (self.crystal, ), _ = self.chain(self.mcu.xtal, imp.Block(
11 OscillatorCrystal(frequency=12 * MHertz(tol=0.005))))
12 (self.usb_esd, ), _ = self.chain(self.usb.usb, imp.Block(UsbEsdDiode()), self.mcu.usb_0)
13
14 self.thermistors = ElementDict[ThermistorLowPassRc]() # Thermistor array and buffers
15 self.buffers = ElementDict[OpampFollower]()
16 for i in range(8):
17 (self.thermistors[i], self.buffers[i]), _ = self.chain(
18 imp.Block(ThermistorLowPassRc(47*kOhm(tol=0.05), 0.5*kHertz(tol=0.2), True)),
19 imp.Block(OpampFollower()), self.mcu.new_io(AnalogSink))
20
21 self.screen = imp.Block(Nhd_312_25664uc()) # Screen
22 self.connect(self.mcu.new_io(DigitalBidir), self.screen.cs)
23 self.connect(self.mcu.new_io(DigitalBidir), self.screen.reset)
24 self.connect(self.mcu.new_io(DigitalBidir), self.screen.dc)
25 self.connect(self.mcu.new_io(SpiMaster), self.screen.spi)
26
27 self.sw1 = imp.Block(DigitalSwitch()) # Switches
28 self.connect(self.sw1.out, self.mcu.new_io(DigitalBidir))
29 self.sw2 = imp.Block(DigitalSwitch())
30 self.connect(self.sw2.out, self.mcu.new_io(DigitalBidir))
31 self.rgb_led = imp.Block(IndicatorSinkRgbLed()) # Indicator light
32 self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.red)
33 self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.green)
34 self.connect(self.mcu.new_io(DigitalBidir), self.rgb_led.blue)
35
36 self.forced_current = self.Block(ForcedCurrentDraw( (0, 0.1*Amp) ))
37 self.speaker_amp = self.Block(Lm4871())
38 self.speaker = self.Block(Speaker())
39 self.connect(self.forced_current.pwr_in, self.usb_reg.pwr_out)
40 self.connect(self.forced_current.pwr_out, self.speaker_amp.pwr)
41 self.connect(self.speaker_amp.spk, self.speaker.input)
42 self.connect(self.speaker_amp.gnd, self.usb.gnd)
43 self.connect(self.speaker_amp.sig, self.mcu.new_io(AnalogSource))

Figure 5.14: The system-level HCL for PH02’s thermistor board, simplified for
brevity.
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Chapter 6

Integrated Development Environment

6.1 Introduction
While the last chapter described an HCL approach to board design and demonstrated that it
can produce boards with more automation and design assistance than mainstream schematic
flows, HCLs are also a very different interface. As the user study showed, the Visualization
and Refinement Interface which provided a schematic-like block diagram view of the compiled
HCL was useful, yet a major issue was the lengthy compilation delay on each update. All
participants suggested tightening the visualization with the HCL writing process.

We note that HCLs and block diagrams are ultimately views on similar underlying data,
but each representation emphasizes different information and provides different affordances
for understanding and manipulating a design [10]. For example, while an HCL might enable
loops to quickly generate arrays of components, the circuit connectivity is much more obvious
in a block diagram. However, more practically, mainstream schematic tools are likely more
familiar to existing electronics designers and familiar interfaces can lower the barrier to entry
for more powerful approaches.

In this chapter, we present a novel integrated development environment (IDE) approach
to bridging these two views. Our approach is centered on interactive block diagrams that
are synchronized with HCL code: code edits are reflected in diagram updates, and diagrams
can be edited to modify code. We hope this schematic-like representation can provide a
complementary view for editing the HCL, and furthermore a graphical interface may make
HCLs more accessible to a broader community of hardware engineers, device designers, and
hobbyists with more limited programming expertise. Our work relates to visual editors for
other domains such as GUI editors with code generation. However, our approach differs in
that code remains the primary design input, and modifications from the GUI and direct text
edits can be arbitrarily interleaved. This preserves the flexibility of the underlying HCL.

We contribute an IDE implementing these techniques, both as a tool to concretely support
board design, and more generally as another design point in the space of similar tools [28,
49] that bring programming power to domains beyond software. Furthermore, we contribute
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class Blinky:
  mcu = Block(MagicMcu)
  led = Block(IndicatorLed)

  connect(mcu.io0, led.io)

  connect(mcu.gnd, led.gnd)

class IndicatorLed:
  io = Port(DigitalSink)
  led = Block(Led)
  res = Block(Resistor(
    res=in.voltage / 10mA))
  connect(io, led.anode)
  ...

mcu
MagicMcu

led
IndicatorLed

io0
io1
io2
io3

gnd

gnd

io

Led
led

anode
cathode

Resistor
res

a
b

Update visualization
from HDL changes

Generate HDL from block edits
HDL Code View Block Diagram Visualization

U1

MagicMcu

D1

R1 1k

Schematic Equivalent
(for reference)

Quick-update visualization
with speculative effects

Figure 6.1: Left: an overview of our integrated development environment (IDE)
approach for tooling to support working with circuit board-level hardware de-
scription languages (HCLs). This consists of the traditional text editor (left half of the
IDE), and a block diagram visualization of the compiled HCL (right half of the IDE). Edit
actions on the block diagram, such as creating connections between ports shown in blue,
generate the corresponding lines of code in the HCL and update the visualization without
incurring the latency of a full recompile. The HCL code, including that inserted from block
diagram edit actions, can also be freely edited to preserve the full power and flexibility of the
base HCL. User-triggered updates recompile the HCL, and changes such as the connection
shown in orange, are visible in the block diagram and available for editing. Right: As a
reference, the equivalent design in a mainstream schematic editor. Comparatively,
schematics often require the system designer to work at the lowest level of abstraction (in-
stead of re-using library components like IndicatorLed) and manually handle component
calculations (like the resistor) which are both tedious and do not preserve design intent.

an evaluation in the form of a qualitative and remote user study with four participants,
from which we draw takeaways and recommendations for similar tools. We found that even
though some participants preferred to write HCL by direct text edits instead of through the
block diagram interface, the tight visualization loop was beneficial to all users. Furthermore,
participants were able to blend use of the block diagram interface with textual HCL edits,
suggesting that this mixed IDE approach is viable and even if not all possible code edits are
supported from the GUI.
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Code Editor Block Diagram Editor

Library View and Footprint Editor
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Figure 6.2: Overview of the IDE components. The IDE, implemented as an extension
for IntelliJ, has several major views: (a) a code editor for the hardware description language,
(b) an interactive block diagram editor that corresponds to the compiled HCL, (c) a tree
view of the same compiled HCL, and (d) a library view for browsing available blocks.

6.2 System Description
Although there are many possible ways to bridge HCL code and schematics, our system is
motivated by two underlying principles:

1. Preserve the full power of the underlying HCL, while noting that from the formative
studies in Chapter 4 that board design tends to be highly iterative. This precludes
approaches that do not allow users to freely move between code and schematic work-
flows, such as single-shot code generation from schematics (like GUI builders) in which
continued editing from the schematic view may be difficult after modification of the
generated HCL. We further note that as there are likely programming constructs for
which there is no (useful) corresponding graphical representation, the visualization will
necessarily be a subset of the HCL.

2. Interfaces based in current practices. While this means supporting a schematic-like
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interface for HCL editing, it also means boundaries on what be may less useful in a
graphical editor. For instance, although a LabVIEW-style [30] interface may support
programming constructs such as arithmetic and control flow as blocks in a purely
graphical environment, code is overwhelmingly the more common way to express this
kind of logic.

From these principles, we built a system that takes an ”HCL first” approach, where the
HCL code is the primary and authoritative design artifact. Tooling then provides support for
understanding, navigating, and producing this code through an IDE metaphor built around
a schematic-like view of the compiled output design as shown in Figure 6.2. More concretely,
the block diagram view provides users with a visual representation of the HCL, and, com-
bined with the library view, provides for schematic-like GUI edit actions that generate into
corresponding HCL. However, we explicitly do not support the more code-like parameteri-
zation operations. Furthermore, as a prototype, we chose to focus on the basics and do not
support syntactic sugar constructs like implicit connects or refactoring operations like delete
and rename.

In the rest of this section, we will introduce our system in more detail through how a
hypothetical user might build the example blinky LED system in Figure 6.3 and magnetic
field sensor component in Figure 6.4, starting from an empty top-level design.

Block Diagram Edit Actions
Like with schematic capture tools, the user starts with adding parts to the design by searching
libraries. In our system, the library view on the bottom right lists available components as a
tree, organized by the type hierarchy which encodes both categorical (e.g., power converters,
sensors) and structural (e.g., three ported DC-DC converter) dimensions. The textbox above
provides search and filtering by simple string matching.

Since each edit occurs within the HCL, our user first starts by moving the caret to
where code should be inserted, at the beginning of def __init__(...):. Then, to add a
microcontroller, they would first enter microcontroller in the library filter textbox, which
brings up the microcontroller category in the library tree. Within that category, our user
chooses the Lpc1549_48, double-clicks it to insert the block instantiation line at the caret,
and provides a name in the pop-up prompt.

Alternatively, right-clicking (instead of double-clicking) brings up the context menu which
provides suggested locations for code insertion independent of the caret position. For block
inserts, one such option is appending to the end of the __init__ method.

Simultaneously, the block diagram updates with the visual representation of the newly
added block. To preserve flow with GUI operations, this is not the result of a full recompile,
but is instead a speculative effect: the system assumes (regardless of context, such as if the
caret was within an if block or for loop) that exactly one instance of the block would have
been created. These blocks are indicated with a hatched fill, and additionally do not contain
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1 class BlinkyExample(SimpleBoardTop):
2 def __init__(self) -> None:
3 super().__init__()
4 self.jack = self.Block(PowerBarrelJack(voltage_out=3.3*Volt(tol=0.05)))
5
6 with self.implicit_connect(
7 ImplicitConnect(self.jack.pwr, [Power]),
8 ImplicitConnect(self.jack.gnd, [Common]),
9 ) as imp:

10 self.mcu = imp.Block(Lpc1549_48())
11 self.led = imp.Block(IndicatorLed())
12
13 self.connect(self.mcu.digital[0], self.led.signal)
14
15 def refinements(self) -> Refinements:
16 return super().refinements() + Refinements(
17 instance_refinements=[
18 (['jack'], Pj_102a),
19 ])

Figure 6.3: Example system-level design HCL. Lines 4, 10, and 11 respectively instan-
tiate and name Block objects for a barrel jack, microcontroller, and indicator LED. Blocks
can have assignable parameters, such as the target output voltage of the barrel jack in line
4. Lines 15 - 19 further refine the abstract PowerBarrelJack instantiated in line 4 to be the
specific and concrete subtype, the PJ-102A.

an internal implementation. However, their ports are valid, which allows connections to be
made to them without re-compiling.

If our user instantiated a block with a required parameter, such as the voltage_out
specification for a barrel jack, the unfilled keyword argument appears on the instantiation
line. As with parameterization in general, the user must write this in HCL, here by providing
an output voltage target of 3.3*Volt(tol=0.05) as in line 4 of the example in Figure 6.3.

After repeating the instantiation flow with the LED, our user can then start connecting
blocks. As shown in Figure 6.5, unconnected-but-required ports are marked with a red fill,
and the user starts with one such port, the LED’s signal input pin. Double-clicking the
pin starts the connect tool, which dims the rest of the schematic except for ports that have
compatible types, as also shown in Figure 6.5. The user chooses the only such available pin
on the microcontroller, a digital IO line, then double-clicks again to commit the connection.
For connects, names are optional and may be left blank.

Similarly with the block insert action, the connect statement is inserted at the caret,
and the connection is immediately though speculatively made on the block diagram. As
required ports are connected, the red error fill also goes away.

Our user then initiates a recompile through the Update button, and a second or two
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1 class Lf21215tmr_Device(FootprintBlock):
2 def __init__(self) -> None:
3 super().__init__()
4 self.vcc = self.Port(
5 VoltageSink(voltage_limits=(1.8, 5.5)*Volt, current_draw=(0, 1.5)*uAmp),
6 [Power]
7 )
8
9 self.gnd = self.Port(Ground(), [Common])

10
11 self.vout = self.Port(DigitalSource.from_supply(
12 self.gnd, self.vcc, output_threshold_offset=(0.2, -0.3)
13 ))
14
15 self.footprint(
16 'U', 'Package_TO_SOT_SMD:SOT-23',
17 {
18 '1': self.vcc,
19 '2': self.vout,
20 '3': self.gnd,
21 },
22 mfr='Littelfuse', part='LF21215TMR',
23 )

Figure 6.4: Example part definition of a Lf21215TMR digital magnetic field sensor.
Lines 4 - 13 defines the interface by instantiating ports vcc of type VoltageSink (voltage
input), gnd of type Ground, and vout of type DigitalSource (digital output) with defined
voltage and current parameters. Lines 15 - 23 define the associated footprint and pinning.

later, the recompilation completes and diagram updates. The hatched fill disappears, but
the diagram is otherwise unchanged as the speculative effects matched the HCL.

All edit actions are guarded by basic checks, such as for name legality and insert position.
Connect insertion further checks that the referenced blocks and ports are declared before
the insertion point. These checks are performed before the action is invoked, so an invalid
caret location would result in a greyed out context menu item. For double-click actions, an
error message pops up instead.

We currently do not support deletion actions in the graphical editor, as accurate static
analysis of Python code is difficult. However, the right-click context menu for block diagram
objects has options to navigate to the line of code where a block is instantiated or a port is
connected to assist in textual edits.

Code-to-block diagram navigation is also supported. Where a line of code may correspond
to several objects in the block diagram (such as within a block instantiated multiple times),
a disambiguation list pops up for the user to choose from.
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Figure 6.5: The connection interface, showing legal connections (by type) from the
microcontroller’s digital IO, with other pins dimmed out. Additionally, unconnected-
but-required pins are highlighted in red, while the hatched fill indicates the preview status
of both the LED and LPC1549 blocks inserted in the GUI as well as the modified status of
the block they were inserted in.

Design-wide Edits
After inserting and connecting the rest of the circuit, the design now includes an abstract
barrel jack block that requires a refinement.

Our user starts by selecting the abstract block in the diagram view. As with the block
insertion flow, they search for barrel jacks in the library browser, and choose a Pj_102a
barrel jack receptacle. The right-click context menu provides options to refine either the
selected block instance, or all blocks of its class.

Because refinements are written in the top-level design’s class and commonly as a single
return statement like in lines 15-19 of Figure 6.3, there is no need for caret positioning. Since
the code does not have a refinements function yet, the entire code block is generated, in-
cluding the selected refinement. However, if a refinements block already existed, the selected
refinement would be appended at the end of the list.

This feature expects refinements to be written with this specific structure in order to
insert new refinements. While meta-programming refinements using arbitrary code may
have advantages in some cases, we believe that the required refinements structure will suit
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Figure 6.6: Inspection of the resistor in the IndicatorLed block, showing both the
actual resistance of the selected part and its specification or requested resistance, which in
turn was derived from the connected voltage source.

most applications.
Speculative effects do not apply to refinements. While refinements can change parameters

throughout the entire design as well as the implementation of the refined block, refinements
do not change the ports on the refined block itself and so do not impact following edit
operations.

Inspection
At this point, there are several blocks in the design, and our user may be interested in the de-
tails of the generated design. For example, to understand what was inside the IndicatorLed,
our user double-clicks into it. This allows navigating a potentially complex design by viewing
one level of hierarchy at a time. Otherwise, standard mousewheel-to-zoom and drag-to-pan
interfaces support moving around the diagram.

Our user may be curious about the value of the resistor in this LED-resistor circuit,
especially since it was automatically chosen. They mouse-over the part to show additional
details, producing the popup shown in Figure 6.6 containing summary data of the object in
question.

In general, summary views exist for common blocks (such as showing component values
for resistors, capacitors, and inductors, or showing ratios for resistive dividers) and common
connections (such as showing voltage thresholds between digital ports, or impedances be-
tween analog ports). While the same information is also available through a tree view of the
entire design showing all parameters and constraints, this avoids information overload with
a human-curated description at an appropriate level of detail.

Library Creation and Edits
Where existing libraries are insufficient, end-users will need to create custom block defini-
tions. To model the magnetic sensor component in Figure 6.4, our user starts by choosing
a base class from the library browser, in this case the FootprintBlock class that allows an
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Figure 6.7: The IDE’s footprint assignment and pinning interface. The footprint
browser on the right shows the available KiCad footprints, while the footprint preview on
the left allows assignment of mappings between footprint pads and block ports. All edit
actions generate HCL.

associated PCB footprint. The context menu provides an option to create a new subclass,
which inserts the class template at the caret.

As blocks are written similarly to top-level designs, the same block diagram based sub-
block instantiation and connection interactions also apply here. However, non-top-level
blocks additionally support ports, which are inserted similarly to blocks: by positioning the
caret, searching for a port type in the library browser, and giving it a name.

To associate the PCB footprint, our user switches over to the KiCad tab shown in Fig-
ure 6.7. Similarly to the library browser, they start by searching for an SOT-23 device using
the filter box, then double-click the specific footprint from the list to insert the footprint
statement at the caret.

The footprint itself also appears on the left side of the tab. From here, our user could
double-click on a pad to bring up a list of connect-able ports, then choose one to update the
footprint statement with the selected port to pad mapping. Similarly to block insertion
and connect, effects of each action shown speculatively on the footprint interface. The final
footprint code looks like lines 15-23 of Figure 6.4.

6.3 System Implementation
The block diagram view and library browser and footprint tabs are built as a tool window
plugin for the IntelliJ Community Edition IDE with the PyCharm Community plugin. The
plugin itself is written in Scala and uses the Swing GUI toolkit to work with IntelliJ. The
entire project is open sourced at https://github.com/BerkeleyHCI/edg-ide.

The IDE operates in part on Polymorphic Circuit Blocks’ compiled designs which are

https://github.com/BerkeleyHCI/edg-ide
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Code Editorclass Blinky:
  mcu = Block(MagicMcu)
  led = Block(Led)
  connect(mcu.io0,
          led.io)
  connect(mcu.gnd,
          led.gnd)
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Figure 6.8: Overall architecture of the IDE. HCL source code is compiled into a in-
ternal block model, which creates the user-facing block diagram through automatic layout.
Edit actions and some static analyses are done through an AST-like view (IntelliJ’s Project
Structure Interface, or PSI) of the underlying HCL and speculatively update the compiled
block model.

defined in (and serialized with) Protocol Buffers. A Python stub ”server” program handles
HCL re-compilation requests from the IDE and communicates through gRPC, built on top
of Protocol Buffers. This overall architecture is shown in Figure 6.8.

To speed up re-compilation, the IDE keeps a cached version of compiled library blocks
used in the current design and listens for changes to the code of these classes. On a change,
it invalidates the cached versions. For simplicity and to keep the system responsive, analysis
only considers the class hierarchy and would miss other dependencies, such as changes to
global functions. As a last resort, the user can also manually clear caches.

Code Analysis and Edits
For functionality dealing with code, the IDE uses IntelliJ’s Project Structure Interface (PSI),
which is a combination of parse tree (AST) like data structure combined with navigation
and analysis tools.

As an example of analysis functionality, the invalidate-cache-on-modify invalidates the
edited class and all derived subclasses by using the PSI’s find-subclasses-of function. Param-
eters for block and port classes are found by inspecting the class’s __init__ arguments (in-
cluding varargs *args and **kwargs arguments) and tracing those through super().__init__
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calls if such a call is the first statement.
Code edits are similarly performed using PSI write operations, by building up the PSI

tree representation of the text to be inserted, then either inserting it as a new node or
replacing an existing node. A code formatter automatically manages stylistic aspects of the
inserted code (for example, inserting line breaks on long lines).

Block Diagram Visualization
The block diagram layout algorithm is functionally similar to the one for the Visualization
and Refinement Interface described in Chapter 5: start with the design as a set of hierarchy
blocks, ports, and connections, infer the connection directions by port type (for example, a
voltage source is an edge tail while a voltage sink is an edge head), simplify internal pseudo-
blocks (like port type adapters) into direct connections, and replace high-fanout connections
(for example, a voltage source connected to four voltage sinks) with tunnels or named nets.
To simplify editing, we also remove disconnected array ports except for one to allocate a new
port. This is structured as a series of transformations on a hierarchy block data structure,
then finally passed to ELK’s [22] “layered” algorithm for layout to obtain the final positioning
and size data of graphical elements.

6.4 User Study: Methodology
As our system’s workflow is a different way of working with code and a very different way
of constructing hardware (compared to mainstream schematic flows), we felt it important
to get user feedback to understand how these tools might actually be used. To that end, we
ran a small user study in which participants complete a pre-defined project with our IDE.
This structure tries to balance realism (ecological validity), decoupling observations about
the underlying HCL from the IDE interface, and use of participants’ time.

Because we are examining a prototype IDE and novel concepts which may not have the
degree of interface and interaction polish as a final product, our study’s goals lean more
towards qualitative feedback and usage observations to drive ideas for iteration, rather than
a more quantitative and evaluative approach that we do not believe is appropriate at this
stage.

Participants
We recruited four participants through personal referrals, with the goal of sampling for
range by having participants of different skill levels and motivations for PCB design. As
a baseline, we required intermediate familiarity with PCB design and Python – supporting
complete novices is currently out of scope. Two participants built PCBs primarily for per-
sonal and hobby reasons (one electrical engineering undergraduate, one professional software
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engineer), while the other two participants designed PCBs professionally (one graduate stu-
dent researcher and one industry engineer). Two participants had prior experience with the
Polymorphic Circuit Blocks HCL, and all participants had at least some familiarity with
HCLs in general such as Verilog.

Participants were compensated with gift cards at $50 an hour.

Structure

This study was conducted entirely by videoconference, similarly to the HCL user study in
Chapter 5 Each participant accessed a fresh virtual machine (VM) running our IDE through
the remote-desktop application X2go.

We encouraged participants to share their VM window over videoconference so we could
watch their progress (which all did). While these sessions were not recorded, we took notes
on participants’ flows, specifically where they chose to use the IDE or not. Additionally, as
coding practically often relies on community references like StackOverflow that do not yet
exist for this HCL, we would answer any questions from participants.

The first part of the study consisted of a tutorial session to familiarize participants with
the IDE and HCL. Participants worked through a tutorial document which involved building
a slightly expanded version of the BlinkyExample design from Figures 6.3 and 6.4. While
the document hand-held participants through individual GUI edit actions, it also described
the resulting code so participants could understand the generated HCL. The tutorial also
described some common but code-only syntactic sugar constructs like implicit connects and
included refactoring exercises using them.

In the second part of the study, participants used the IDE to build a predetermined
mini-project from a specification document. This project was an USB-powered ambient light
sensor with a visual readout (such as through an LCD). The required USB connector, display,
microcontroller, and power converter blocks were included in the library, and multiple options
existed for each (such as having a choice between micro-B and Type-C USB connectors).

After the system-level design was completed, participants then modeled the BH1620FVC
analog light sensor and application subcircuit before integrating it into their overall system.
This task included automatically calculating the current-to-voltage load resistor value based
on the high-level input parameters of maximum illuminance and maximum output voltage.

Participants were free to use (or not use) the IDE to build this project, based on their
preferences or what felt natural. This gave us the opportunity to observe what features were
useful, and how these features worked in the larger picture of circuit design.

The study ended with a semi-structured interview, covering overall thoughts of the HCL
and IDE, comparisons against schematic capture flows, and specific thoughts on the block
diagram edit actions, visualization updates, automatic layout, and inspection interface. In-
terviews were framed as constructive feedback and we encouraged participants to be frank
about the system’s strengths and shortcomings to reduce effects of acquiescence bias. Inter-
views were audio recorded (with participants’ consent) and lasted an average of 1 hour and
34 minutes.
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6.5 User Study: Results
Participants spent an average of 60 minutes to complete the tutorial, 19 minutes to build
the system-level design of their project, and 52 minutes to build the light sensor part model
and subcircuit. We note that we expected the subcircuit modeling to take significantly
longer because of the additional need to understand the component datasheet, the system’s
electronics model at a deeper level, and parameterization functions – things outside the scope
of the IDE. Furthermore, as library parts are designed to fully encapsulate details, it is much
simpler to instantiate and connect them.

Individual Flows
Overall, participants had diverse flows as a result of individual preferences, and while they
all made use of the IDE in writing HCL, they differed in what features they used and
preferred. Furthermore, all participants also directly edited textual HCL, such as to make use
of syntactic sugar operations unavailable in IDE (all participants), to refactor and rearrange
GUI-generated block instantiations and connects (also all participants), or as the primary
way to produce HCL (PW03 and PW04). In the rest of this section, we report on individual
flows and preferences.

PW01 started by sketching out the system architecture block diagram, then instantiated
the blocks with GUI actions and connected them with a mix of text editing and GUI actions.
Overall, PW01 felt the IDE approach was a good in-between for schematics and HCL, but
still requires users to have a baseline competence with both code and circuits.

PW02 similarly instantiated blocks and made connections from GUI actions, but as a
more iterative process including refactoring inserted blocks. PW02 specifically noted the
helpfulness of the connect interface view filtering by legal connections, and also felt the IDE
was a good coupling of code and diagrams.

PW03, on the other hand, used text edits to instantiate some blocks and all connects,
noting a preference for copy-paste coding. Uniquely, PW03 made the connections to the dis-
play by writing a for-loop iterating through a list of ports. While PW03 did not feel the block
diagram generated edits were useful, the library browser was noted for its discoverability of
parts and the block visualization was noted for its discoverability of connections.

PW04 similarly also preferred text edits for block instantiation and connection, noting
“not being a code snippets person”. However, PW04 also mentioned the tightly-integrated
block diagram as an invaluable reference of what needed to be connected.

Edit Actions
Where participants used the GUI to write code, they almost always used the caret-based
actions instead of the other insertion points suggested in the context menu. P04 noted that
this list of alternatives was confusing.
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Participants did criticize our interface as being clunky (PW02), such as by requiring
multiple selections (both a caret position and navigating to the edited block in the block
diagram, PW03) or being very sensitive to caret location (PW04). In a broader sense, both
PW01 and PW03 mentioned preserving flow by staying in one interface instead of jumping
between text and block diagram. However, these may be more issues of our specific prototype
implementation, and it may be possible that tweaks to the interface specifics could produce
a more usable flow.

On the other hand, PW04 called out the footprint and pinning interface as something
done well, because it directly matches the visual presentation often provided by compo-
nent documentation. Participants additionally suggested different interfaces for edit actions,
such as drag-and-drop for block instantiation (PW01), click-and-drag for making connec-
tions (PW04), or improving the existing IDE autocomplete with awareness of the HCL (for
example, presenting only connectable ports; PW03).

As a completely different interface, PW01 also suggested an import flow from existing
schematic tools, both to use existing libraries written in mainstream tools, and to support
users who are more familiar and comfortable working with mainstream tools.

Block Diagram Visualization
For the automatically generated block diagrams, the overall consensus was that it was very
usable for writing HCL including reasonable adherence to convention, but still had many
rough edges. All participants suggested more usage of symbols, such as ground symbols for
the ground connections or part symbols instead of the simple rectangles for blocks. PW03
additionally suggested symbols as a way to manage complexity when zoomed out: dense
text could fade out and the entire block could be replaced with a symbol.

PW01, PW02, PW03 all discussed ideas for manual layout constraints, such as grouping
blocks together, but also acknowledged it is a hard problem without clear solutions. PW04,
on the other hand, felt that a tool for creating presentation-grade diagrams may be out of
scope here.

Finally, PW01 and PW02 mentioned layout considerations: PW01’s schematic capture
flow takes into account rough layout floorplanning when placing symbols, while PW02 felt
disconnected from the physical (footprint) view though also believed that more stuff on the
block diagram could be cluttering.

Refresh and Speculative Effects
Participants had varied opinions on the manual (user-initiated) recompilation and block
diagram update. At one extreme, PW01 preferred continuous compilation to minimize the
feedback loop between HCL edits and visual presentation. On the other hand, PW03 felt
that the current user-initiated scheme makes sense, crucially preserving diagram stability as
text is being edited. PW04 was in-between, feeling that automatic updates could save a few
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keystrokes, but the system should be smart about detecting when the user is at a stopping
point.

As for speculative effects from block diagram insert or connect operations, participants
generally did not notice the details and felt things seemed synchronized.

6.6 Discussion
While we have built a functional but prototype IDE and obtained user feedback, there are
important limitations of the user study to keep in mind when interpreting results. Yet, even
if qualified, this data can help focus practically useful directions for future work.

Study Limitations
While we believe we accomplished our goal of sampling for range given the diverse observed
flows and feedback, the small participant pool does mean the feedback is not exhaustive.
However, we do believe it is appropriate in terms of early usability testing for a novel concept
and for informing future work.

Additionally, because the entire study was one session per participant, learning effects
may still be in play. If participants had used this system for longer, they may have tried
and adopted different workflows. This may be especially important for a tool intended to
support long-term projects and include professional users.

Overall Takeaways
Overall, we believe a major generalizable takeaway is that graphical editing operations do
not need to cover all conceivable code edits – here, participants were able to effectively
blend use of GUI tooling with textual HCL edits for operations not supported by the GUI.
Consistent with prior work [38], the simplest tools of visualization and library browsing were
the ones that were most consistently used. Beyond PCB design, tools working on similar
concepts may find it valuable to focus on supporting a few common workflows well before
being bogged down by how to support trickier operations in a GUI.

While not all participants preferred the code generation features, others aspects of the
IDE were still useful in helping manually write HCL. Perhaps unsurprisingly for a prototype
tool, the interactions were not perfect and this may have affected some participants’ decisions
type out HCL instead, but it also does appear to be partially rooted in personal preference.
We believe that tools working with HCLs will need to acknowledge and support diverse and
free-form flows, and these user observations and feedback can provide starting points for
further iteration.

Furthermore, imperfect techniques that improve responsiveness, like speculative effects
and caching, can provide the smooth interface expected of direct manipulation system even
with slower compilers. Despite both techniques having unsupported edge cases, which may
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Figure 6.9: Potential flow-preserving IDE interface concept with insertion options
and live preview, which provides options for code insertion positions as part of the default
block insertion process and includes a live preview and an automatic position that takes
stylistic factors into consideration.

be fundamentally difficult to resolve especially with a dynamic language like Python, they
seemed to have worked well enough in practice for our (albeit somewhat limited) user study.
More generally, it may be useful for future work to explore this time-accuracy trade-off in
more detail, as well as investigate compromise strategies that provide more accurate results
as they become available.

Flow for Edit Actions
While our intent with caret editing was to disambiguate degrees of freedom for edit actions
in a mainstream language like Python, in practice participants raised issues with our im-
plementation. However, we believe that the feedback of needing a consistent flow, instead
of jumping between HCL and GUI, provides a useful guiding principle for future output-
directed manipulation tools in these mainstream but messy languages.

While participants did not use the edit locations in the context menu, avenues for future
work may include how those choices can be unobtrusively made part of the default workflow.
Perhaps users could be offered the option alongside other parameters like name and provided
with a reasonable default option, such as in Figure 6.9. Smarter defaults might be inferred
according to style rules, perhaps selected by the user. Furthermore, a live preview of the
code to be inserted may help users understand the choice. Alternatively, as in Figure 6.10,
edits may also be tracked (or buffered) by the IDE to support smooth sequences of GUI
actions, while powerful refactoring tools can help users clean up their code afterward.
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Figure 6.10: Potential flow-preserving IDE interface concept that tracks inserted
blocks for later refactoring, allowing users to complete a sequence of block insertions
without worrying about what the code looks like, then return later to refactor and rearrange
the generated code with the help of tools.

Layout
Although participants found our automatically generated block diagram visualization suf-
ficient, there is still much room for improvement. The user feedback provides ideas for
specific features, though the ultimate goal would be automated schematic layout from a
netlist. While our implementation uses a stock layout algorithm for general hierarchical
block diagrams, custom algorithms tailored around electronics conventions may do much
better.

Performant Recompilation
Finally, from a more engineering standpoint, speculative effects may require code that is sim-
ilar to what would be in the compiler, but just different enough to require re-implementation.
While the architecturally elegant solution would be to fully recompile after a GUI-inserted
code edit, this may not always be performant enough to sustain a sequence of interactive
GUI edits. While speculative effects will likely always remain a solution in general, it is
worth exploring how far we can get with optimizations such as incremental re-compilation
to avoid the complexity of speculative effects.
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Chapter 7

Conclusion

7.1 Summary of Contributions
Reiterating the introduction, this dissertation makes the following contributions:

• A formative interview study with 15 participants to assess current practices and prob-
lems in board-level design, taking a larger end-to-end ideas-to-device perspective with-
out being limited to current EDA flows (Chapter 4). We found that a significant
amount of design work happens before EDA tools come into play - and often with-
out the help of software at all. By the time users get to schematic capture, much of
the interesting and creative work has already been done, and schematic capture itself
involves a lot of rote transcription.

• A concept for a hardware construction language (HCL) based system that address
major issues with current flows revealed in the above formative study, and preliminary
user feedback on mockups of this language and supporting tooling (Chapter 4). Though
users indicated enthusiasm around the system architecture level of abstraction, they
also expressed caution around issues such as dependence on and trust in libraries. We
further discuss relevant design principles for future board tools based on our results.

• An implementation of the above system as a Python-embedded HCL, based around
a hierarchy block model to scale across multiple levels of abstraction and supporting
design re-use through user-definable libraries of blocks (Chapter 5). Blocks can be
generators, containing executable code that constructs the block’s sub-circuit from
higher-level parameters (for example, calculating resistance given a voltage and current
specification), while a type system and electronics model supports substitution and
refinement (for example, whether a particular step-down converter subcircuit can be
used in place of a generic voltage converter).
We evaluate this system by designing several example boards in this system and with
a small user study where participants built boards of their choice. Users were able
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to complete designs in our system, and provided a wide range of feedback including
suggestions for better tooling and areas of concern such as the higher learning curve.

• Supporting tooling for the above HCL in the form of an integrated development en-
vironment (IDE) to bridge the novel code approach with familiar schematic views, by
augmenting the standard text editor with a block diagram visualization supporting
schematic editor like actions (Chapter 6). As both views are linked – the visualization
can be updated from code edits, and code can be generated from schematic like actions
– users can easily move between interfaces based on their own preferences and the task
at hand.
We evaluate this interface with a small user study in which participants complete a
pre-defined project, and make generalized recommendations for similar tools based on
the results. Although users differed in whether they preferred to produce HCL by
writing text or through graphical actions, the visualization still provides something for
everyone, such as by acting as an intuitive reference for writing HCL.

7.2 Future Work
In addition to the chapter-specific future work, a few overarching directions for future work
exist:

• Model extensions: the models, both problem structure and electronics model, sit
at the core of this HCL, and largely determines how expressive it is. While genera-
tors supporting arbitrary code mean that there is almost no limit to what any one
component can do, the models set the rules for interactions between components.
However, proposed model extensions must also be balanced with the costs: these intro-
duce additional complexity into the core compiler, and must play nicely and integrate
with other core compiler features.

– Core Model: Although the core model of blocks, ports, links, parameters and
constraints on parameters has enabled the example designs shown in the previous
chapters, improvements to the core model could make the system much more
expressive and further the goal of design re-use. One idea is higher-level blocks,
or blocks that take a block type as a parameter. These can enable generic sub-
circuits, for example a discrete boost converter parameterized by the controller
chip, instead of an unique subcircuit class for each converter chip. Other ideas
from type systems in programming languages may also be useful: for example,
could it make sense to have union and intersection types for hardware design?

– Electronics Model: The current electronics model encodes some of the most
common static component ratings and parameters specified with modern devices
and automates their checks, but there are many more in a modern datasheet that
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can be useful. A large part of this will likely be driven by what specifications are
provided by manufacturers, but tools may also drive manufacturers to provide
additional data optimized for these automated reasoning systems.
One issue here is balancing what to include in the electronics model that all
parts must adhere to, versus what is part of the long tail and not worth the
effort. A middle ground may be to have some sort of optional model extensions
which parts can implement on an opt-in basis, but can also fail gracefully for
parts that are unaware of this extension. How this can work is an open question.
Inspiration from programming languages may be helpful, where some languages
support community-defined extensions through a compiler plug-in architecture.

– Cross-Domain Support: While EDG [65] had a mixed software and electron-
ics model, this dissertation focuses on only the electronics side. Adding (back)
in support for software models could help integration into firmware flows, for ex-
ample generating header files containing pin mappings, linking in interface shims
and adapters, or even entire software components.
More ambitiously would be integrating and linking models from multiple domains,
for example mechanical and behavioral, so automated tools can automatically
check and enforce consistency — a pain point in current workflows. Furthermore,
going back to EDG, a design in one domain (for example, behavioral description)
can provide a specification for another domain (for example, the electronics design
on a PCB), providing a framework for synthesis.

– User-defined Extensibility: While a standardized model is a powerful tool
to enable interoperability, it is also likely to be limited to the lowest common
denominator. As hinted in the electronics model section, user-extensible model
extensions may be a way to support both a base model and custom extensions.
This does not need to be limited to electronics, but could be extensions to the
core model or additional domains. However, this would need to be done in a way
that interoperates with the base model, other user-defined extensions, and ideally
supports a path to be added to the standard model.

• IDE extensions: while Chapter 6 describing the IDE provides some ideas for future
work, there are also cross-cutting concerns:

– Visualizations for Extended Models: While users found the existing auto-
matically generated visualizations acceptable for design and better layout algo-
rithms that adhere to schematic conventions can be an improvement, it is much
less clear how to define an intuitive visualization that works across multiple do-
mains. How can multiple domains be shown on the same screen, and how can
cross-domain connections and blocks be made apparent? Might some kind of
layering approach help - either for always displaying multiple domains, or merely
as a visual aid for moving between domains?



CHAPTER 7. CONCLUSION 77

– Support for Advanced Constructs: Although we made a conscious decision
to restrict the IDE graphical editor features to analogues in modern schematic ed-
itors, it may be interesting to explore ideas for supporting the more programmatic
hardware construction features. Furthermore, perhaps this could be integrated
with improved visualization: for example, perhaps an action could be to array-
replicate a component, which would generate a for-loop in the code and show
stacked elements on the visualization.
That being said, probably not everything needs a corresponding graphical inter-
face. For example, equations for parameter propagation should probably continue
to be defined in code, as opposed to a LabVIEW-style [30] graphical dataflow in-
terface.

– User-defined Extensions: The IDE should also support user-defined model
extensions. While anything built on top of the standard core model is already
supported (such as custom link and port types), any modifications of the core
model may require modifications to the IDE. Conventionally, this may be some
kind of plugin architecture, but more lightweight methods that don’t require
knowledge of IDE internals can help provide user-defined extensions the same
degree of tooling support as the base models.

– Design Space Exploration: Currently, all design details still must be resolved
by the user, which requires knowledge of the trade-offs to make when choosing
between parts. Since the higher level of design captures a design space, a computer
could do a much more thorough and rigorous search of the design space. To be
useful, this requires the data for making the trade-offs to be encoded in the model
and the optimization criteria to be formalized, but ideally in a form that is still
accessible to novices. Questions include what data would be important to support
these optimizations (for example, component cost? total board area?) and what
canned optimization criteria could be useful to novices?

• Building Community: Finally, as much of the vision of this system relies on li-
braries, someone will have to build out those libraries. In the software world, there
is a significant open-source community that writes and shares code that is used by
others. While there shouldn’t be any fundamental barriers to the same philosophy in
the board design domain, there are some challenges:

– Trust and Quality: Users in our studies repeatedly mentioned trust and quality
issues as a barrier to using community-supplied libraries. While library author is
one proxy to assess trust and quality, are there other indicators and mechanisms?
For example, automated tests are common in the software and chip domain —
what might the same look like for boards, especially when simulation models are
not available for the vast majority of parts? It is also important to note that even
in the software domain, trust is not a solved problem (even if it is often ignored)
and software supply chain is an emerging area of research.
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– Balancing Scale and Agility: While having comprehensive libraries is nec-
essary for a generalizable and useful tool, it also has the drawback of inertia,
especially on the underlying system. For example, with a huge library of elec-
tronics parts, it will probably be difficult to make breaking changes to the core
electronics model. Yet, iteration is likely key to converging on good solutions,
so locking down models early may be undesirable. Are there solutions that both
allow scaling and agility? For example, how might optional extensions work with
older parts that don’t support the extension, and what mechanisms could help
and incentive users to update older libraries?

7.3 Conclusion
Ultimately, the goal of tools is to enable people to do more, and it is the hope that these
tools for electronics design will provide something for everyone: for existing engineers, a way
to work more efficiently by building upon and re-using existing designs without the tedious
transcription, and for novices and makers, the ability to build more complex and customized
devices that otherwise may not have been feasible.
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Chapter 8

Glossary

This section defines some domain-specific terms used throughout the dissertation with the
relevant context.

• Direct Manipulation Interface: an interface where users are presented with and
can manipulate representations of objects, such as moving and connecting electronic
components on a screen in a schematic capture program.

• EDA (Electronics Design Automation): the currently mainstream tools for de-
signing electronics, which in general can refer to both chips and boards. For boards,
this consists of two parts:

– Schematic Capture: the first step of a board EDA workflow, where users draw
the circuit schematic by placing components and connecting their pins. Example
in Figure 2.1. This dissertation proposes a replacement for schematic capture as
a hardware construction language (HCL).

– Board Layout: the second step of a board EDA workflow, where components
from the schematic are placed on a virtual board, and conductive copper traces
between their pins are routed. Example in Figure 2.2. This step is out of scope
of this dissertation.

• ERC (Electrical Rules Check): an automated check on a schematic, typically based
on a coarse system of types on components’ pins (for example, Power Input and Power
Output), and rules defining illegal connections between them (for example, multiple
Power Outputs connected together, or pin that is not connected).

• DRC (Design Rules Check): an automated check on a board layout for physical
manufacturability, such as minimum copper width, minimum spacing between copper,
and minimum hole sizes.

• HCL (Hardware Construction Language): a subset of hardware description lan-
guages (HDLs) which additionally supports user-defined generators where modules
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can be defined as a program that generates its implementation based on higher-level
parameters. For example, a board HDL might enable an LED module to define the
resistor’s resistance as a function of the voltage, as opposed to a vanilla HDL which
requires a fixed numeric resistance.

• HDL (Hardware Description Language): an approach to electronics design where
users define the hardware in a textual format, as opposed to graphical schematics. Cur-
rently mainstream practice for chip design, but not board design. Typically supports
encapsulating a sub-circuit as a module, and making connections between modules.

• GUI (Graphical User Interface): an interface where users are presented with
graphical objects, as opposed to (for example) text interfaces such as for writing code.
In this dissertation, this typically refers to visualizations (and interactive tools around
those visualizations) generated from a compiled design.

• IDE (Integrated Development Environment): a software tool for software devel-
opment, commonly augmenting the standard code text editor with additional features
such as syntax highlighting, refactoring tools (for example, rename a variable and all
its usages), and visualizations (for example, of a class hierarchy).

• PCB (Printed Circuit Board): a common way of building electronics, consisting of
a board to which electronic components are soldered down, and containing conductive
copper traces to connect those components’ pins. Example in Figure 5.3.
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