
Robust deep-reinforcement learning policies for

mixed-autonomy traffic

Kathy Jang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-252

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-252.html

December 8, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Robust deep-reinforcement learning policies
for mixed-autonomy traffic

M.S. Report Plan II

Author
Kathy Jang

 12/8/21

M.S. Report Plan II Kathy Jang

Acknowledgments

Many thanks to Eugene Vinitsky and Professor Bayen for their continuous mentor-
ship, and all the various members of Bayen Lab that have made my time at Berkeley
so memorable. I am eternally grateful for my family and their everlasting support,
and dedicate to this to my dad, who always believed in me.

1

Contents

1 Introduction 3

2 Flow 7
2.1 Reinforcement Learning . 7
2.2 Reinforcement Learning in Traffic Control 8
2.3 Policy Gradient Methods . 9
2.4 Car Following Models . 9

3 Gaussian Policy Transfer 11
3.1 University of Delaware’s Scaled Smart City (UDSSC) 12
3.2 Experimental Setup . 12
3.3 Discussion . 23
3.4 Conclusions . 24

4 Adversarial Policy Transfer 26
4.1 Problem Formulation . 27
4.2 Simulation Framework . 30
4.3 Experimental Deployment . 32
4.4 Conclusion . 34

2

Chapter 1

Introduction

Transportation is a major source of US energy consumption and greenhouse gas
emissions, accounting for 28% and 26% respectively. According to the bureau of
transportation statistics, total road miles traveled is continuously increasing, growing
at 2 to 3% per year between 2010 and 2014 while over the same period the total
road length of the US transportation network remained unchanged. The increased
road usage is coupled with an increase in congestion. Overall congestion delay in
2014 was 6.9 billion hours, an increase of 33% since 2000; the problem is even
worse in metropolitan areas where travelers needed to allocate an additional 150%
more travel time during peak periods to arrive on time. The congestion also has
significant economic cost, totaling 160 billion dollars in 2014 [1]. Depending on their
usage, automated vehicles have the potential to alleviate system level metrics such
as congestion, accident rates, and greenhouse gas emissions through a combination
of intelligent routing, smoother driving behavior, and faster reaction time [2].

Partially automated systems are predicted to increasingly populate roadways be-
tween 2020 and 2025 but will primarily be usable in high driving or high speed
operations in light traffic. Hazard detection technology is not expected to be ma-
ture enough for full automation in the presence of general vehicles and pedestri-
ans (i.e. heterogeneous fleets, manned/unmanned, bicycles, pedestrians, mixed use
road-space etc.) until at least 2030. It takes 20 years for a vehicle fleet to turn over
sufficiently which makes it likely that vehicles will be partially manned at least until
2050 [3].

Recently, the steady increase in usage of cruise control systems on the roadway
offers an opportunity to study the optimization of traffic in the framework of mixed-
autonomy traffic: traffic that is partially automated but mostly still consists of
human driven vehicles. However, the control problems posed in this framework

3

M.S. Report Plan II Kathy Jang

are notoriously difficult to solve. Traffic problems, which often exhibit features
such as time-delay, non-linear dynamics, and hybrid behavior, are challenging for
classical control approaches, as microscopic traffic models are high complexity: dis-
crete events (lane changes, traffic light switches), continuous states (position, speed,
acceleration), and non-linear driving models. These complexities make analytical
solutions often intractable. The variety and non-linearity of traffic often leads to
difficult trade-offs between the fidelity of the dynamics model and tractability of the
approach.

Classical control approaches: Classical control approaches have successfully
solved situations in which the complexity of the problem can be reduced without
throwing away key aspects of the dynamics. For example, there is a variety of an-
alytical work on control of autonomous intersections with simple geometries. For
mixed-autonomy problems, there have been significant classical controls based re-
sults for simple scenarios like vehicles on a ring [4] or a single lane of traffic whose
stability can be characterized [5, 6]. A thorough literature review on coordinating
autonomous vehicles in intersections, merging roadways, and roundabouts can be
found in [?]. The classical control approaches described in this review can be broken
down into reservation methods, scheduling, optimization with safety constraints, and
safety maximization. Other approaches discussed in the review involve applications
of queuing theory, game theory, and mechanism design.

However, as the complexity of the problem statement increases, classical techniques
become increasingly difficult to apply. Shifting focus from simple scenarios to, for
example, hybrid systems with coexisting continuous and discrete controllers, ex-
plicit guarantees for hand-designed controllers can become harder to find. Ulti-
mately, when the complexity of the problem becomes too high, optimization-based
approaches have been shown to be a successful approach in a wide variety of domains
from robotics [7] to control of transportation infrastructure [8].

Deep reinforcement learning: Deep reinforcement learning (deep RL) has
emerged as an effective technique for control in high dimensional, complex CPS
systems. Deep RL has shown promise for the control of complex, unstructured
problems as varied as robotic skills learning [9], playing games such as Go [10], and
traffic light ramp metering [11]. Of particular relevance to this work, deep RL has
been successful in training a single autonomous vehicle to optimize traffic flow in
the presence of human drivers [12].

One key distinction in RL is whether the algorithm is model-free or model-based,
referring to whether the algorithm is able to query a dynamics model in the com-
putation of the control or the policy update. Model-free RL tends to outperform
model-based RL if given sufficient optimization time, but requires longer training

4

M.S. Report Plan II Kathy Jang

times. Thus, model-free techniques are most effective when samples can be cheaply
and rapidly generated. This often means that model-free RL works best in simulated
settings where a simulation step can be made faster than real-time and simulation
can be distributed across multiple CPUs or GPUs. A long-standing goal is to be
able to train a controller in simulation, where model-free techniques can be used,
and then use the trained controller to control the actual system.

Policy Transfer: Transfer of a controller from a training domain to a new domain
is referred to as policy transfer. The case where the policy is directly transferred
without any fine-tuning is referred to as zero-shot policy transfer. Zero-shot pol-
icy transfer is a difficult problem in RL, as the true dynamics of the system may
be quite different from the simulated dynamics, an issue referred to as model mis-
match. Techniques used to overcome this include adversarial training, in which the
policy is trained in the presence of an adversary that can modify the dynamics
and controller outputs and the policy must subsequently become robust to pertur-
bations [13]. Other techniques to overcome model mismatch include re-learning a
portion of the controller[14], adding noise to the dynamics model [15], and learn-
ing a model of the true dynamics that can be used to correctly execute the desired
trajectory of the simulation-trained controller [16]. Efforts to overcome the reality
gap have been explored in vision-based reinforcement learning [17] and in single AV
systems [18].

Other challenges with policy transfer include domain mismatch, where the true
environment contains states that are unobserved or different from simulation. For
example, an autonomous vehicle might see a car color that is unobserved in its
simulations and subsequently react incorrectly. Essentially, the controller overfits to
its observed states and does not generalize. Domain mismatch can also occur as a
result of imperfect sensing or discrepancies between the simulation and deployment
environment. While in simulation it is possible to obtain perfect observations, this
is not always the case in the real world. Small differences between domains can lead
to drastic differences in output. For example, a slight geometric difference between
simulation and real world could result in a vehicle being registered as being on one
road segment, when it is on another. This could affect the control scheme in a
number of ways, such as a premature traffic light phase change. Techniques used
to tackle this problem include domain randomization [19], in which noise is injected
into the state space to enforce robustness with respect to unobserved states.

Contributions and organization of the work: In this report we discuss two
different approaches to policy transfer as well as the RL-traffic framework used to
create these results:

• Chapter 2: Flow

5

M.S. Report Plan II Kathy Jang

• Chapter 3: Gaussian Policy Transfer

• Chapter 4: Adversarial Policy Transfer

Chapter 2 discusses an RL / driving framework whose involvement and development
I have significantly contributed to, published about [20], and have used to produce
the work discussed in Chapters 3 and 4.

Chapter 3 is first-author work that is published with authors from the University of
Delaware at the International Conference on Cyber-Physical Systems and is drawn
from the associated paper [21].

Chapter 4 is work that is published with authors from the University of Delaware
at the International Conference on Control and Automation and is drawn from the
associated paper [22]. While not listed as the first author, I am responsible for the
RL work and chiefly responsible for the RL-related writing.

6

Chapter 2

Flow

For both chapters 3 and 4, we run our experiments in Flow [12], a library that
provides an interface between a traffic microsimulator, SUMO [23], and three RL
libraries, rllab [24] and RLlib [25], and Stable Baselines, which are centralized and
distributed RL libraries respectively. Flow enables users to create new traffic net-
works via a Python interface, introduce autonomous controllers into the networks,
and then train the controllers in a distributed system on the cloud via AWS EC2. To
make it easier to reproduce our experiments or try to improve on our benchmarks,
the code for Flow, scripts for running our experiments, and tutorials can be found
at https://github.com/flow-project/flow. The remainder of this chapter dis-
cusses the experimental setup Flow has that is used to produce the work in both
both chapters 3 and 4, and is organized as follows:

• Definition of Reinforcement Learning

• Reinforcement Learning in Traffic Control

• Policy Gradient Methods

• Car Following Models

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a form of machine learning which studies how an in-
telligent agent can perform optimal actions within the environment that it exists in.
RL is formally described via a Markov Decision Process (MDP) [26]. The standard
discounted, finite-horizon MDP can be defined by the tuple (S,A, P, r, ρ0, γ, T). The
variables in the MDP are:

7

M.S. Report Plan II Kathy Jang

• S is a set of states (finite or infinite),

• A is a set of actions (finite or infinite),

• P : S ×A×S → R≥0 is the transition probability distribution of transitioning
from one state s to another state s′ given action a,

• r : S ×A → R is the reward function,

• ρ0 : S → R≥0 is the probability distribution over start states,

• γ ∈ (0, 1] is the discount factor, and

• T is the horizon.

The problem formulation in this project uses a fully observable MDP.

Every step in the RL algorithm involves an agent interacting with its environment.
The agent receives sensory data or information about its environment in the form
of a state space. It then uses this observation as an input to a function (a neural
net in the case of deep RL), receiving a set of actions, which it then performs in
the environment. After taking this action, the agent receives a reward from the
environment, which informs the agent on the quality of its previous state-action
(s, a) pair.

The goal of RL is to develop a series of actions such that the agent can achieve the

highest possible cumulative, discounted reward: R = E
[∑T

t=0 γ
trt

]
where rt is the

reward at time t. Optimizing over R produces an RL policy π, which maps state
space information s to actions a. In deep RL, π is parameterized with the weights
of a neural net. At one end the neural net contains an input layer which takes in
s ∈ S as input, and at the other end it contains an output layer which yields a ∈ A.
Additional hidden layers, including affine transformations and non-linear activation
functions, exist between the input and output. Due to this structure, neural nets,
and thus deep RL, are capable handling large amounts of complexity.

2.2 Reinforcement Learning in Traffic Control

The data-rich combination of deep learning with reinforcement learning (RL) has
overtaken years of classical control research in transportation. Combined, deep re-
inforcement learning (deep RL) has emerged as an effective form of traffic control.
Wu demonstrated in [12] how an autonomous vehicle equipped with an RL-learned
policy could effectively dissipate the same shockwaves Stern mitigated in 2017. The
effectiveness of RL in traffic extends to a number of other traffic scenarios, such as
figure-eight roads, bottlenecks, and merge networks [12, 27, 11, 20].

8

M.S. Report Plan II Kathy Jang

As control methods become increasingly complex, so does the importance of manual
hyperparameter tuning. In order to reduce reliance on expert opinion and human
subjectivity, methods have emerged that use intelligent control to determine hyper-
parameters for training. Work by Hutter et al. [28] demonstrates a Bayesian method
for automated optimization of hyperparameter choices. Similar work is done via RL,
using deep Q-network and evolutionary algorithms [29, 30].

2.3 Policy Gradient Methods

Policy gradient methods use Monte Carlo estimation to compute an estimate of the

gradient of the expected discounted reward ∇θR = ∇θE
[∑T

t=0 γ
trt

]
where θ are

the parameters of the policy πθ. We perform repeated rollouts, in which the policy
is used to generate the actions at each time step. At the end of the rollout, we
have accumulated a state, action, reward trajectory τ = (s0, a0, r0, . . . , sT). Policy
gradient methods take in a set of these trajectories and use them to compute an
estimate of the gradient ∇θR which can be used in any gradient ascent-type method.

The particular policy gradient method used in this work is Trust Region Policy
Optimization (TRPO) [31]. TRPO is a monotonic policy improvement algorithm,
whose update step provides guarantees of an increase in the expected total reward.
However, the exact expression for the policy update leads to excessively small steps so
implementations of TRPO take larger steps by using a trust region. In this case, the
trust region is a bound on the KL divergence between the old policy and the policy
update. While not a true distance measure, a small KL divergence between the two
policies suggests that the policies do not act too differently over the observed set of
states, preventing the policy update step from sharply shifting the policy behavior.

2.4 Car Following Models

For our model of the driving dynamics, we used the Intelligent Driver Model [32]
(IDM) that is built into the traffic microsimulator SUMO [23]. IDM is a microscopic
car-following model commonly used to model realistic driver behavior. Using this
model, the acceleration for vehicle α is determined by its bumper-to-bumper headway
sα (distance to preceding vehicle), the vehicle’s own velocity vα, and relative velocity
∆vα, via the following equation:

aIDM =
dvα
dt

= a

[
1−

(
vα
v0

)δ

−
(
s∗(vα,∆vα)

sα

)2]
(2.1)

9

M.S. Report Plan II Kathy Jang

Figure 2.1: Diagram of the iterative process in Flow. Portions in red correspond to
the controller and rollout process, green to the training process, and blue to traffic
simulation.

where s∗ is the desired headway of the vehicle, denoted by:

s∗(vα,∆vα) = s0 +max

(
0, vαT +

vα∆vα

2
√
ab

)
(2.2)

where s0, v0, T, δ, a, b are given parameters. Typical values for these parameters can
be found in [32]; the values used in our simulations are given in Sec. 3.2.1. To
better model the natural variability in driving behavior, we induce stochasticity in
the desired driving speed v0. For a given vehicle, the value of v0 is sampled from a
Gaussian whose mean is the speed limit of the lane and whose standard deviation
is 20% of the speed limit.

Car following models are not inherently collision-free, we supplement them with a
safe following rule: a vehicle is not allowed to take on velocity values that might
lead to a crash if its lead vehicle starts braking at maximum deceleration. However,
due to some uncertainty in merging behavior, there are still rare crashes that can
occur in the system.

Fig. 2.1 describes the process of training the policy in Flow. The controller, here
represented by policy πθ, receives a state and reward from the environment and uses
the state to compute an action. The action is taken in by the traffic microsimulator,
which outputs the next state and a reward. The (state, next state, action, reward)
tuple are stored as a sample to be used in the optimization step. After accumulating
enough samples, the states, actions, and rewards are passed to the optimizer to
compute a new policy.

10

Chapter 3

Gaussian Policy Transfer

In this work we use deep RL to train two autonomous vehicles to learn a classic form
of control: ramp metering, in which traffic flow is regulated such that one flow of
vehicles is slowed such that another flow can travel faster. While in the real world,
ramp metering is controlled via metering lights, we demonstrate the same behavior
using AVs instead of lights. Each RL vehicle interacts with sensors at each of the
entrance ramps and is additionally able to acquire state information about vehicles
on the roundabout, as well as state information about the other RL vehicle. By
incorporating this additional sensor information, we attempt to learn a policy that
can time the merges of the RL vehicles and their platoons to learn ramp metering
behavior, which prevents energy-inefficient decelerations and accelerations. Being
positioned at the front of a platoon of vehicles, each RL vehicle has the ability to
control the behavior of the platoon of human-driven vehicles following it. The RL
vehicle, also referred to in this work as an autonomous vehicle (AV), is trained with
the goal of minimizing the average delay of all the vehicles in simulation.

Next, we show how we overcome the RL to real world reality gap and demon-
strate RL’s real world relevance by transferring the controllers to the University
of Delaware’s Scaled Smart City (UDSSC), a reduced-scale city whose dynamics,
which include sensor delays, friction, and actuation, are likely closer to true vehicle
dynamics. RL trained policies, which are learned in a simulation environment, can
overfit to the dynamics and observed states of the simulator and can then fare poorly
when transferred to the real world. The combination of model and domain mismatch
contributes to this problem. We combine the ideas of domain randomization with
adversarial perturbations to the dynamics and train a controller in the presence of
noise in both its observations and actions. For reasons discussed in Sec. 3.3, we
expect the addition of noise in both state and action to help account for both model
and domain mismatch.

11

M.S. Report Plan II Kathy Jang

In this chapter we present the following results:

• The use of deep RL in simulation to learn an emergent metering policy.

• A demonstration that direct policy transfer to UDSSC leads to poor perfor-
mance.

• A successful zero-shot policy transfer of the simulated policy to the UDSSC
vehicles via injection of noise into both the state and action space.

• An analysis of the improvements that the autonomous vehicles bring to the
congested roundabout.

3.1 University of Delaware’s Scaled Smart City

(UDSSC)

The University of Delaware’s Scaled Smart City (UDSSC) was used to validate the
performance of the RL control system. UDSSC is a testbed (1:25 scale) that can
help prove concepts beyond the simulation level and can replicate real-world traffic
scenarios in a small and controlled environment. UDSSC uses a VICON camera
system to track the position of each vehicle with sub-millimeter accuracy, which is
used both for control and data collection. The controller for each vehicle is offloaded
to a mainframe computer and runs on an independent thread which is continuously
fed data from the VICON system. Each controller uses the global VICON data to
generate a speed reference for the vehicles allowing for precise independent closed-
loop feedback control. A detailed description of UDSSC can be found in [?]. To
validate the effectiveness of the proposed RL approach in a physical environment,
the southeast roundabout of the UDSSC was used (Fig. 3.1).

3.2 Experimental Setup

3.2.1 Simulation Details

To derive the RL policy, we developed a model of the roundabout highlighted in red
in Fig. 3.1 in SUMO. The training of the model, shown in Fig. 3.2, included a single-
lane roundabout with entry points at the northern and western ends. Throughout
this work we will refer to vehicles entering from the western end as the western
platoon and the north entrance as the northern platoon. The entry points of the
model are angled slightly different as can be seen in Figs. 3.1 and 3.2.

The human-controlled vehicles operate using SUMO’s built-in IDM controller, with
several modified parameters. In these experiments, the vehicles operating with the

12

M.S. Report Plan II Kathy Jang

Figure 3.1: Diagram of the UDSSC road map, with the experimental zone high-
lighted in red.

IDM controller are run with T = 1, a = 1, b = 1.5, δ = 4, s0 = 2, v0 = 30,
and noise = 0.1, where T is a safe time headway, a is a comfortable acceleration in
m/s2, b is a comfortable deceleration, δ is an acceleration exponent, s0 is the linear
jam distance, v0 is a desired driving velocity, and noise is the standard deviation
of a zero-mean normal perturbation to the acceleration or deceleration. Details of
the physical interpretation of these parameters can be found in [32]. Environment
parameters in simulation were set to match the physical constraints of UDSSC.
These include: a maximum acceleration of 1m

s2
, a maximum deceleration of −1m

s2
,

and a maximum velocity of 15m
s
. The timestep of the system is set to 1.0 seconds.

Simulations on this scenario in the roundabout were executed across a range of
different settings in terms of volume and stochasticity of inflows. In the RL policy
implemented in UDSSC and discussed in 3.2.2, vehicles are introduced to the system
via deterministic inflows from the northern and western ends of the roundabout using
two routes: (1) the northern platoon enters the system from the northern inflow,
merges into the roundabout, and exits through the western outflow and (2) the
western platoon enters the system from the western inflow, U-turns through the
roundabout, and exits through the western outflow. The western platoon consists of
four vehicles total: three vehicles controlled with the IDM controller led by a vehicle
running with the RL policy. The northern platoon consists of of three vehicles total:
two vehicles controlled with the IDM controller led by a vehicle running with the
RL policy. New platoons enter the system every 1.2 minutes, the rate of which is
significantly sped up in simulation. These inflow settings are designed to showcase

13

M.S. Report Plan II Kathy Jang

Figure 3.2: SUMO-generated network in UDSSC’s roundabout. The blue ve-
hicles are the AVs; they are both controlled by the RL policy. Videos of
this policy in simulation are available at https://sites.google.com/view/

iccps-policy-transfer.

the scenario where routes clash (Fig. 3.2).

3.2.2 UDSSC Setup

Each vehicle in UDSSC uses a saturated IDM controller to (1) avoid negative speeds,
(2) ensure that the rear-end collision constraints do not become active, and (3)
maintain the behavior of Eq. (2.1). Both the IDM and RL controllers provide a
desired acceleration for the vehicles, which is numerically integrated to calculate
each vehicle’s reference speed.

Merging at the northern entrance of the roundabout is achieved by an appropriate
yielding function. Using this function, the car entering the roundabout proceeds only
if no other vehicle is on the roundabout at a distance from which a potential lateral
collision may occur. Otherwise, the vehicle stops at the entry of the roundabout
waiting to find a safe space to proceed.

To match the SUMO training environment, only one vehicle per path was allowed
to use the RL policy. The paths taken by each vehicle are shown in Fig. 3.3. For
each path, the first vehicle to enter the experimental zone was controlled by the
RL policy; every subsequent vehicle runs with the saturated IDM controller. Once
an active vehicle running with the RL policy exits the experimental zone, it reverts
back to the IDM controller.

In the experiments, the vehicles operated in a predefined deterministic order, as

14

M.S. Report Plan II Kathy Jang

Figure 3.3: Visualization of the path taken on the UDSSC roundabout. The red
route enters going east and exits going west; the blue route enters north and exits
via the same west entrance as the red route.

described in 3.2.1. Four vehicles were placed just outside the experimental zone
on the western loop, and three vehicles were placed in the same fashion near the
northern entrance. Each vehicle platoon was led by a vehicle running with the
RL policy, except in the baseline case where all vehicles used the saturated IDM
controller. The experiment was executed with three variations: (1) the baseline case
with all vehicles running with the IDM controller, (2) the case with a leader vehicle
running with an RL policy trained in SUMO, and (3) the case where the leader
vehicles running with an RL policy were trained in simulation with noise injected
into their observations and accelerations.

3.2.3 Reinforcement Learning Structure

Action space

We parametrize the controller as a neural net mapping the observations to a mean
and diagonal covariance matrix of a Gaussian. The actions are sampled from the
Gaussian; this is a standard controller parametrization [33]. The actions are a two-
dimensional vector of accelerations in which the first element corresponds to vehicles
on the north route and the second element to the west route. Because the dimension
of the action vector is fixed, there can only ever be 1 AV from the northern entry and
1 AV from the western entry. Two queues, one for either entryway, maintain a list
of the RL-capable vehicles that are currently in the system. It should be noted that
the inflow rates are chosen such that the trained policy never contains more than a
queue of length 2. Platoons are given ample time to enter and exit the system before
the next platoon arrives. This queue mechanism is designed to support the earlier

15

M.S. Report Plan II Kathy Jang

stages of training, when RL vehicles are learning how to drive, which can result in
multiple sets of platoons and thus more than 2 RL vehicles being in the system at
the same time. Control is given to vehicles at the front of both queues. When a
vehicle completes its route and exits the experimental zone, its ID is popped from
the queue. All other RL-capable vehicles are passed IDM actions until they reach
the front of the queue. If there are fewer than two AVs in the system, the extra
actions are simply unused.

The dynamics model of the autonomous vehicles are given by the IDM described in
sec. 2.4 subject to a minimum and maximum speed i.e.

vIDM
j (t+∆t) = max

(
min

(
vAV (t) + aIDM∆t, vmax

j (t)
)
, 0
)

(3.1)

where vAV
j (t) is the velocity of autonomous vehicle j at time t, aIDM is the acceler-

ation given by an IDM controller, ∆t is the time-step, and vmax
j (t) is the maximum

speed set by the city j. For the AVs, the acceleration at is straightforwardly added
to the velocity via a first-order Euler integration step

vAVj (t+∆t) = max
(
min

(
vAVj (t) + at∆t, vmax

j (t)
)
, 0
)

(3.2)

Observation space

For the purposes of keeping in mind physical sensing constraints, the state space of
the MDP is partially observable. It is normalized to ±1 and includes the following:

• The positions of the AVs.

• The velocities of the AVs.

• The distances from the roundabout of the 6 closest vehicles to the roundabout
for both roundabout entryways.

• The velocities of the 6 closest vehicles to the roundabout for both roundabout
entryways.

• Tailway and headway (i.e. distances to the leading and following vehicles) of
vehicles from both AVs.

• Length of the number of vehicles waiting to enter the roundabout for both
roundabout entryways.

• The distances and velocities of all vehicles in the roundabout.

This state space was designed with real-world implementation in mind, and could
conceivably be implemented on existing roadways equipped with loop detectors,

16

M.S. Report Plan II Kathy Jang

sensing tubes, and vehicle-to-vehicle communication between the AVs. For a suffi-
ciently small roundabout, it is possible that an AV equipped with enough cameras
could identify the relevant positions and velocities of roundabout vehicles. Similarly,
the queue lengths can be accomplished with loop detectors, and the local informa-
tion of the AVs (its own position and velocity, as well as the position and velocity
of its leader and follower) are already necessarily implemented in distance-keeping
cruise control systems.

Action and State Noise

The action and state spaces are where we introduce noise with the purpose of training
a more generalizable policy that is more resistant to the difficulties of cross-domain
transfer. We train the policies in two scenarios, a scenario where both the action
and state space are perturbed with noise and a scenario with no noise. This former
setting corresponds to a type of domain randomization. In the noisy case, we draw
unique perturbations for each element of the action and state space from a Gaussian
distribution with zero mean and a standard deviation of 0.1. In the action space,
which is composed of just accelerations, this corresponds to a standard deviation of
0.1m

s2
. In the state space, which is normalized to 1, this corresponds to a standard

deviation of 1.5 m/s for velocity-based measures. The real-life deviations of each
distance-based state space element are described here: AV positions, and the tail-
ways and headways of the AVs, deviate the most at 44.3 m, the large uncertainty
of which results in a policy that plays it safe. The distance from the northern and
western entryways respectively deviate by 7.43m and 8.66 m. The length of the
number of vehicles waiting to enter the roundabout from the northern and western
entryway respectively deviate by 1.6 and 1.9 vehicles.

These perturbations are added to each element of the action and state space. The
elements of the action space are clipped to the maximum acceleration and deceler-
ation of ±1, while the elements of the state space are clipped to ±1 to maintain
normalized boundaries. Noisy action and state spaces introduce uncertainty to the
training process. The trained policy must still be effective even in the presence
of uncertainty in its state as well as uncertainty that its requested actions will be
faithfully implemented.

Reward function

For our reward function we use a combination of the L2-norm of the velocity of all
vehicles in the system and penalties discouraging standstills or low velocity travel.

rt =
max

(
vmax

√
n−

√∑n
i=1(vi,t − vmax)2, 0

)
vmax

√
n

− 1.5 · pens − penp (3.3)

17

M.S. Report Plan II Kathy Jang

where n is the number of all vehicles in the system, vmax is the maximum velocity
of 15m

s
, vi,t is the velocity that vehicle vi is travelling at at time t. The first term

incentives vehicles to travel near speed vmax but also encourages the system to prefer
a mixture of low and high velocities versus a mixture of mostly equal velocities. The
preference for low and high velocities is intended to induce a platooning behavior.
RL algorithms are sensitive to the scale of the reward functions; to remove this effect
the reward is normalized by vmax

√
n so that the maximum reward of a time-step is

1.

This reward function also introduces 2 penalty functions, pens and penp. pens

returns the number of vehicles that are traveling at a velocity of 0, and penp is the
number of vehicles that are traveling below a velocity of 0.3 m/s. They are defined
as:

pens =
n∑

i=1

g(i) where g(x) =

{
0, vx ̸= 0,

1, vx = 0.
(3.4)

penp =
n∑

i=1

h(i) where h(x) =

{
0, vx ≥ 0.3,

1, vx ≤ 0.3
(3.5)

These penalty functions are added to discourage the autonomous vehicle from fully
stopping or adopting near-zero speeds. In the absence of these rewards, the RL
policy learns to game the simulator by blocking vehicles from entering the simulator
on one of the routes, which allows for extremely high velocities on the other route.
This occurs because velocities of vehicles that have not yet emerged from an inflow
do not register, so no penalties are incurred when the AV blocks further vehicles
from entering the inflow.

3.2.4 Algorithm/simulation details

We ran the RL experiments with a discount factor of .999, a trust-region size of
.01, a batch size of 20000, a horizon of 500 seconds, and trained over 100 iterations.
The controller is a neural network, a Gaussian multi-layer perceptron (MLP), with
hidden sizes of (100, 50, 25) and a tanh non-linearity. The choice of neural network
non-linearities, size, and type were picked based on traffic controllers developed in
[20]. The states are normalized so that they are between 0 and 1 by dividing each
states by its maximum possible value. The actions are clipped to be between −1
and 1. Both normalization and clipping occur after the noise is added to the system
so that the bounds are properly respected.

18

M.S. Report Plan II Kathy Jang

Figure 3.4: Convergence of the RL reward curve of an experiment with noised IDM,
RL accelerations, and noisy state space

3.2.5 Code reproducibility

In line with open, reproducible science, the following codebases are needed to re-
produce the results of our work. Flow can be found at https://github.com/

flow-project/flow. The version of rllab used for the RL algorithms is available
at https://github.com/cathywu/rllab-multiagent at commit number 4b5758f.
SUMO can be found at https://github.com/eclipse/sumo at commit number
1d4338ab80.

3.2.6 Policy Transfer

The RL policy learned through Flow was encoded as the weights of a neural network.
These weights were extracted from a serialized file and accessed via a Python function
which maps inputs and outputs identical to those used in training. Separating these
weights from rllab enables an interface for state space information from the UDSSC
to be piped straight into the Python function, returning the accelerations to be used
on the UDSSC vehicles. The Python function behaves as a control module within
the UDSSC, replacing the IDM control module in vehicles operating under the RL
policy.

The inputs to the RL neural network were captured by the VICON system and
mainframe. The global 2D positions of each vehicle were captured at each time
step. These positions were numerically derived to get each vehicle’s speed and were
compared to the physical bounds on the roadways to get the number of vehicles in
each queue at the entry points. Finally, the 2D positions were mapped into the 1D
absolute coordinate frame used during training. This array was passed into the RL
control module as the inputs of the neural network.

3.2.7 Results

In this section we present our results from a) training vehicular control policies via
RL in simulation, and b) transferring the successful policy to UDSSC. Extended

19

M.S. Report Plan II Kathy Jang

Figure 3.5: Space-time diagrams of the simulated baseline and RL policy. Each
line corresponds to a vehicle in the system. Top: a guide to the color-scheme
of the space time diagrams. The northern route is in red, the western route in
blue. Middle: illustrates the overlap between the merging northern platoon and
the western platoon. Bottom: The RL policy, depicted at the bottom success-
fully removes this overlap. Videos of this policy in simulation are available at
https://sites.google.com/view/iccps-policy-transfer.

Figure 3.6: Comparison of the first vehicle on the southern loop for the baseline
(IDM) and RL experiments. The RL vehicle starts off slower but eventually accel-
erates sharply once the northern platoon has passed.

20

M.S. Report Plan II Kathy Jang

Figure 3.7: Experiment with two platoons being led by RL vehicles (blue, circled).

work and videos of the policies in action are available at https://sites.google.
com/view/iccps-policy-transfer.

Simulation results

Fig. 3.4 depicts the reward curve. The noise-injected RL policy takes longer to train
than the noise-free policy and fares much worse during initial training, but converges
to an almost identical final reward. In the simulations, videos of which are on the
website, a ramp metering behavior emerges in which the incoming western vehicle
learns to slow down to allow the vehicles on the north ramp to smoothly merge.

This ramp metering behavior can also be seen in the space-time diagrams in Fig. 3.5,
which portrays the vehicle trajectories and velocities of each vehicle in the system.
Western vehicles are depicted in blue and northern in red. Due to the overlapping
routes, visible in Fig. 3.3, it was necessary to put a kink in the diagram for purposes
of clarity; the kink is at the point where the northern and western routes meet. As
can be seen in the middle figure, in the baseline case the two routes conflict as the
northern vehicles aggressively merge onto the ramp and cut off the western platoon.
Once the RL policy controls the autonomous vehicles, it slows down the western
platoon so that no overlap occurs and the merge conflict is removed.

Transfer to UDSSC

The RL policies were tested under three cases in UDSSC: (1) the baseline case with
only vehicles running with the IDM controller, (2) the case with a leader vehicle
running with the RL policy trained in sumo without additional noise, and (3) the
case where the leader vehicles running with the RL policy were trained with noise
actively injected into their observations and accelerations. The outcomes of these
trials are presented in Table 3.1.

21

M.S. Report Plan II Kathy Jang

Figure 3.8: RL-controlled vehicle demonstrating smoothing behavior in this series of images.
First: RL vehicle slows down in anticipation of a sufficiently short inflow from the north. Second:
The northern inflow passes through the roundabout at high velocity. Fourth:The RL vehicle
accelerates and leads its platoon away from the roundabout. Videos of this policy in simulation
are available at https://sites.google.com/view/iccps-policy-transfer.

During the congestion experiment, the third case, in which noise was actively injected
into the action and state space during training, successfully exhibits the expected
behavior it demonstrated in simulation. In this RL controlled case, the transfer
consistently showed successful ramp metering: the western platoon adopted a lower
speed than the baseline IDM controller, as can be seen in the lower velocity of
the RL vehicle in Fig. 3.6. This allowed the northern queue to merge before the
western platoon arrived, increasing the overall throughput of the roundabout. This
is closer to a socially optimal behavior, leading to a lower average travel time than
the greedy behavior shown in the baseline scenario. No unexpected or dangerous
driving behavior occurred.

This is in comparison with the second case, a policy trained on noiseless observations.
In the second case, undesirable and unexpected deployment behavior suggests prob-
lems with the transfer process. Collisions occurred, sometimes leading to pile-ups,
and platooning would frequently be timed incorrectly, such that, for example, only
part of the Western platoon makes it through the roundabout before the Northern
platoon cuts the Western platoon off. This indicates that the noise-injected policy
is robust to transfer and resistant to domain and model mismatch.

Furthermore, the platoons led by RL vehicles trained with injected noise outper-
formed the baseline and noise-free cases. The results of these experiments, averaged
over three trials with the RL vehicles, are presented in Table 3.1. This improvement
was the outcome of a metering behavior learned by the western RL platoon leader.
In the baseline case, the north and western platoons meet and lead to a merge con-
flict that slows the incoming western vehicles down. This sudden decrease in speed

22

M.S. Report Plan II Kathy Jang

Avg. Vel.[m/s] Avg. Time[s] Max Time[s]
Baseline 0.26 15.71 23.99

RL 0.22 15.68 20.62
RL with Noise 0.23 14.81 18.68

Table 3.1: Results for the congestion experiment, the average and maximum times
are averaged between three RL trials and a single baseline trial.

can be seen in the drop in velocity at 20 seconds of the baseline in Fig. 3.6.

Fig. 3.7 shows the experiment in progress, with the blue (circled) vehicles being RL
vehicles trained under noisy conditions. The RL vehicle entering from the western
(lower) entrance has performed it’s metering behavior, allowing vehicles from the
northern (upper) queue to pass into the roundabout before the western RL vehicle
speeds up again. Videos of the emergent behavior can be found on the website.

3.3 Discussion

For the simulated environment, the choice of reward function, specifically, using the
L2-norm rather than the L1-norm, encourages a more stable, less sparse solution.
This makes evaluating the success of policy transfer more straightforward. Table 3.1
reports the results of the UDSSC experiments on three metrics:

• The average velocity of the vehicles in the system

• The average time spent in the system

• The maximum time that any vehicle spent in the system

Note, the system is defined as the entire area of the experiments, including the
entrances to the roundabouts. The layer of uncertainty in the noise-injected policy
aided with overcoming the domain and model mismatch between the simulation
system and the UDSSC system. Thus, the noised policy was able to successfully
transfer from simulation to UDSSC and also improved the average travel time by
5% and the maximum travel time by 22%. The noise-free policy did not improve
on the average travel time and only improved the maximum travel time by 14%.
Although we did not perform an ablation study to check whether both state space
noise and action space noise were necessary, this does confirm that the randomization
improved the policy transfer process.

The UDSSC consistently reproduced the moderate metering behavior for the noise-
injected policy, but did not do so for the policy that was trained without noise. As
can be seen in the videos, the noise-free policy was not consistent and would only

23

M.S. Report Plan II Kathy Jang

irregularly reproduce the desired behavior, or meter dramatically to the point that
average travel time increased. Overall the noised policy significantly outperformed
the noise-free version.

However, we caution that in our testing of the policy transfer process on the UDSSC,
we performed a relatively limited test of the effectiveness of the policy. The vehicles
were all lined up outside the system and then let loose; thus, the tests were mostly
deterministic. Any randomness in the tests would be due solely to randomness in
the dynamics of the UDSSC vehicles and stochasticity in the transferred policy.
In training, the acceleration of IDM vehicles are noised and can account for some
stochasticity in the initial distribution of vehicles on the UDSSC. However, the
trained policy was not directly given this inflow distribution at train time, so this
does correspond to a separation between train and test sets.

There may be several reasons why the noise and action injection may have allowed
for a successful zero shot transfer. First, because the action is noisy, the learned
policy will have to learn to account for model mismatch in its dynamics: it cannot
assume that the model is exactly the double-integrator that is used in the simulator.
Subsequently, when the policy is transferred to an environment with both delay,
friction, and mass, the policy sees the mismatch as just another form of noise and
accounts for it successfully. The addition of state noise helps with domain random-
ization; although the observed state distributions of the simulator and the scaled
city may not initially overlap, the addition of noise expands the volume of observed
state space in the simulator which may cause the two state spaces to overlap. Fi-
nally, the addition of noise forces the policy to learn to appropriately filter noise,
which may help in the noisier scaled city environment.

3.4 Conclusions

In this work, we demonstrated the real-world relevance of deep RL AV controllers for
traffic control by overcoming the gap between simulation and the real world. Using
RL policies, AVs in the UDSSC testbed successfully coordinated at a roundabout
to ensure a smooth merge. We trained two policies, one in the presence of state
and action space noise, and one without, demonstrating that the addition of noise
led to a successful transfer of the emergent metering behavior, while the noise-free
policy often over-metered, or failed, to meter at all. This implies that for non-vision
based robotic systems with small action-dimension, small amounts of noise in state
and action space may be sufficient for effective zero-shot policy transfer. As a side
benefit, we also demonstrate that the emergent behavior leads to a reduction of 5%
in average travel time and 22% max-travel time on the transferred network.

24

M.S. Report Plan II Kathy Jang

Ongoing work includes characterizing this result more extensively, evaluating the
effectiveness of the efficiency of the policy against a wide range of vehicle spacing,
platoon sizes, and inflow rates. In this context, there are still several questions we
hope to address, as for example:

• Are both state and action space noise needed for effective policy transfer?

• What scale and type of noise is most helpful in making the policy transfer?

• Would selective domain randomization yield a less lossy, more robust transfer?

• Would adversarial noise lead to a more robust policy?

• Can we theoretically characterize the types of noise that lead to zero-shot
policy transfer?

Finally, we plan to generalize this result to more complex roundabouts including
many lanes, many entrances, and the ability of vehicles to change lanes. We also
plan to evaluate this method of noise-injected transfer on a variety of more complex
scenarios, such as intersections using stochastic inflows of vehicles.

25

Chapter 4

Adversarial Policy Transfer

In this chapter and sequel to Chapter 3, we demonstrate a zero-shot transfer of an
autonomous driving policy from simulation to University of Delaware’s scaled smart
city with adversarial multi-agent reinforcement learning, in which an adversary at-
tempts to decrease the net reward by perturbing both the inputs and outputs of the
autonomous vehicles during training. We train the autonomous vehicles to coordi-
nate with each other while crossing a roundabout in the presence of an adversary in
simulation. The adversarial policy successfully reproduces the simulated behavior
and incidentally outperforms, in terms of travel time, both a human-driving baseline
and adversary-free trained policies. Finally, we demonstrate that the addition of ad-
versarial training considerably improves the performance of the policies after transfer
to the real world compared to Gaussian noise injection introduced in Chapter 3.

The contributions of this work are: (1) the introduction of Gaussian single-agent
noise and adversarial multi-agent noise to learn traffic control behavior for an au-
tomated vehicle; (2) a comparison performance with noise injected into the action
space, state space, and both; (3) the demonstration of real-world disturbances lead-
ing to poor performance and crashes for some training methods, and (4) experi-
mental demonstration of how autonomous vehicles can improve performance in a
mixed-traffic system.

The remainder of this chapter is organized as follows.

• Section 4.1 introduces the mixed-traffic roundabout problem and the imple-
mentation of the RL framework

• Section 4.2 presents the simulation results

• Section 4.3 discusses the policy transfer process along with the experimental
results.

26

M.S. Report Plan II Kathy Jang

• Finally, we draw concluding remarks in Section 4.4.

4.1 Problem Formulation

To demonstrate the viability of autonomous RL vehicles in reducing congestion in
mixed traffic, we implemented the scenario shown in Fig. 4.1. In this scenario, two
groups of vehicles enter the roundabout stochastically, one at the northern end and
one at the western end. In what follows, we refer to the vehicles entering from the
north entry as the northern group, and to the vehicles entering from the west entry
as the western group.

The baseline scenario consists of homogeneous human-driven vehicles using the IDM
controller (2.1). The baseline is designed such that vehicles approaching the round-
about from either direction will clash at the roundabout. This results in vehicles at
the northern entrance yielding to roundabout traffic, resulting in significant travel
delays. The RL scenario puts an autonomous vehicle at the head of each group,
which can be used to control and smooth the interaction between vehicles; these
mixed experiments correspond to a 15%− 50% mixture of autonomous and human-
driven vehicles.

Figure 4.1: The routes taken by the northern (solid blue) and western (dashed red)
groups through the roundabout.

27

M.S. Report Plan II Kathy Jang

4.1.1 Reinforcement Learning Structure

We categorize two sets of RL experiments that are used and compared in this work.
We will refer to them as: Gaussian single-agent : A single-agent policy trained with
Gaussian noise injected into the state and action space. Adversarial multi-agent :
A multi-agent policy trained wherein a second agent provides selective adversarial
noise to the learning agent. We discuss the particulars of these two methods in
Sections 4.1.1 and 4.1.1. In this work, we deploy seven RL-trained policies, one of
which is single-agent with no noise, three of which are Gaussian single-agent and the
other three of which are adversarial multi-agent. All experiments follow the same
setup. Inflows of stochastic length emerge at the northern and western ends of the
roundabout. The size of the northern group will range from 2 to 5 cars, while the
size of the western group ranges from 2 to 8. The length of these inflows will remain
static across each rollout, and are randomly selected from a uniform distribution at
the beginning of each new rollout.

Action Space

The actions are applied from a 2-dimensional acceleration vector, in which the first
element is used to control the AV leading the northern group, and the second is used
to control the AV leading the western group. If the AV has left the experiment, that
element of the action vector is discarded.

State Space

The state space conveys the following information about the environment to the
agent: the position, velocity, tailway, and headway of each AV and each vehicle
in the roundabout, the distance from the roundabout entrances to the 6 closest
vehicles, the velocities of the 6 closest vehicles to each roundabout entrance, the
number of vehicles queued at each entrance, and the lengths of each inflow. All
elements of the state space are normalized. The state space was designed with
real-world implementation in mind and could contain any environmental factors
that the simulation supports. As such, it is partially-observable to support modern
sensing capabilities. All of these observations are reasonably selected and could be
emulated in the physical world using sensing tools such as induction loops, camera
sensing systems, and speedometers.

Reward Function

The reward function used for all experiments minimizes delay and applies penalties
for standstill velocities, near-standstill velocities, jerky driving, and speeding, i.e.,

28

M.S. Report Plan II Kathy Jang

rt = 2 ·
max

(
vmax

√
n−

√∑n
i=1(vi,t − vmax)2, 0

)
vmax

√
n

− p, (4.1)

p = ps + pp + pj + pv. (4.2)

where n is the total number of vehicles, p is the sum of four different penalty func-
tions, ps is a penalty for vehicles traveling at zero velocity, designed to discourage
standstill; pp penalizes vehicles traveling below 0.2 m/s, which discourages the al-
gorithm from learning an RL policy which substitutes extremely low velocities to
circumvent the zero-velocity penalty; pj discourages jerky driving by maintaining a
dynamic queue containing the last 10 actions and penalizing the variance of these
actions; and pv penalizes speeding.

Gaussian single-agent noise

Injecting noise directly to the state and action space has been shown to aid with
transfer from simulation to real-world testbeds [21, 19]. In this method, which
applies to three of the policies we deployed, each element of the state space was
perturbed by a random number selected from a Gaussian distribution. Only two
elements describing the length of the inflows approaching the merge were left unper-
turbed. Elements of the state space corresponding to positioning on the merge edge
were perturbed from a Gaussian distribution with a standard deviation of 0.05. For
elements corresponding to absolute positioning, the standard deviation was 0.02. All
other elements used a standard deviation of 0.1. These values were selected to set
reasonable bounds for the degree of perturbation in the real world. Each element
of the action space was perturbed by a random number selected from a zero mean
Gaussian distribution with 0.5 standard deviation.

Adversarial multi-agent noise

For the other three policies, we use a form of adversarial training to yield a policy
resistant to noise [13]. This is a form of multi-agent RL, in which two policies are
learned. Adversarial training pits two agents against each other in a zero-sum game.
The first is structurally the same as the agent which is trained in the previous four
policies. The second, adversarial agent has a reward function that is the negative of
the first agent’s reward; in other words, it is incentivized by the first agent’s failure.
The adversarial agent can attempt to lower the agent reward by perturbing elements
of the action and state space of the first agent.

The adversarial agent’s action space is a 1-dimensional vector of length 22, composed
of perturbation values bound by [−1, 1]. The first two elements of the adversarial

29

M.S. Report Plan II Kathy Jang

action space are used to perturb the action space of the original agent’s action space.
Adversarial action perturbations are scaled by 0.1. Combining adversarial training
with selective randomization, the adversarial agent has access to perturb a subset
of the original agent’s state space. The remaining 20 elements of the adversarial
agent’s action space are used to perturb 20 selective elements of the original agent’s
state space. Both the adversarial action and state perturbations are scaled down by
0.1. The selected elements that the adversary can perturb are the observed positions
and velocities of both controlled AVs in the system and the observed distances of
vehicles from the merge points.

4.2 Simulation Framework

4.2.1 Car Following Parameters

As introduced in Section 2.4, the human-driven vehicles in these simulations are
controlled via IDM. Accelerations are provided to the vehicles via (2.1) and (2.2).
Within these equations, s0 is the minimum spacing or minimum desired net distance
from the vehicle in front of it, v0 is the desired velocity, T is the desired time headway,
δ is an acceleration exponent, a is the maximum vehicle acceleration, and b is the
comfortable braking deceleration.

Human-driven vehicles in the system operate using SUMO’s built-in IDM controllers,
which allows customization to the parameters described above. Standard values for
these parameters as well as a detailed discussion on the experiments producing
these values can be found in [32]. In these experiments, the parameters of the IDM
controllers are defined to be T = 1 s , a = 1 m/s2 , b = 1.5 m/s2, δ = 4, s0 = 2 m,
v0 = 30 m/s. A noise parameter 0.1 was used to perturb the acceleration of the
IDM vehicles.

Environment parameters in the simulation were set to match the physical constraints
of the experimental testbed. These include: a maximum acceleration of 1 m/s2, a
maximum deceleration of −3 m/s2, and a maximum velocity of 8 m/s. The timestep
of the system is set to 1 s.

4.2.2 Algorithm/Simulation Details

We ran experiments with a discount factor of 0.999, a trust-region size of 0.01,
a batch size of 20000, a horizon of 500 seconds, and trained over 100 iterations.
The controller is a neural network, a Gaussian multi-layer perceptron with a tanh
non-linearity, and hidden sizes of (100, 50, 25). The choice of neural network non-
linearities, size, and type were picked based on traffic controllers developed in [20].

30

M.S. Report Plan II Kathy Jang

The states are normalized so that they are between 0 and 1 by dividing each state
by its maximum possible value. The agent actions are clipped to be between −3
and 1. Both normalization and clipping occur after the noise is added to the system
so that the bounds are properly respected. The following codebases are needed to
reproduce the results of our work. Flow 1, SUMO2 and the version of RLlib3 used
for the RL algorithms is available on GitHub.

4.2.3 Simulation Results

Figure 4.2: Convergence of the RL reward curves of the 3 Gaussian experiments and
the noiseless policy.

Figure 4.3: Two RL-controlled AVs trained with adversarial multi-agent noise
demonstrate emergent ramp metering behavior.

The reward curves of the Gaussian single-agent experiments are displayed in Fig.
4.2. These include the curves of the 3 experiments, which are trained with Gaussian
noise injection, as well as one trained without any noise. In both the Gaussian single-
agent and adversarial multi-agent experiments, the policy learns a classic form of
traffic control: ramp-metering, in which one group of vehicles slows down to allow
for another group of vehicles to pass. Despite the varying length of inflows from the
two entries, policies consistently converge to demonstrate ramp-metering.

1https://github.com/flow-project/flow.
2https://github.com/eclipse/sumo at commit number 1d4338ab80.
3https://github.com/flow-project/ray/tree/ray_master at commit number ce606a9.

31

M.S. Report Plan II Kathy Jang

4.3 Experimental Deployment

4.3.1 The University of Delaware’s Scaled Smart City

University of Delaware’s Scaled Smart City (UDSSC) is a 1:25 scale testbed designed
to replicate real-world traffic scenarios and implement cutting-edge control technolo-
gies in a safe and scaled environment. UDSSC is a fully integrated smart city, which
can be used to validate the efficiency of control and learning algorithms, including
their performance on physical hardware. UDSSC utilizes high-end computers and
a VICON motion capture system to simulate a variety of control strategies with as
many as 35 scaled CAVs. For further information on the capabilities and features
of the UDSSC, see [34].

UDSSC utilizes a multi-level control architecture to precisely position each vehicle
using position feedback from a VICON motion capture system. High-level routing
and desired velocity calculation is handled by the mainframe computer, as well as
locating the vehicle relative to each street on the map. This information is sent to
each CAV which then calculates its desired steering and velocity actions based on a
Stanley Controller [35, eq. (9)], and the velocity control for each non-RL vehicle is
specified by the IDM controller (2.1).

To implement the RL policy in UDSSC, the weights of the network generated by Flow
were exported into a data file. This file was accessed through a Python script on the
mainframe, which uses a ROS service to map the current state of the experiment
into a control action for each RL vehicle. During the experiment, the RL vehicles
took commands from this script as opposed to the IDM controller.

To generate a disturbance on the roundabout system, a random delay for when each
group was released was introduced. This delay was uniformly distributed between 0
and 1 seconds for the western group and between 0 and 4 seconds for the northern
group during UDSSC experiments. The size of each vehicle group was randomly
selected from a uniform distribution for each trial.

4.3.2 Experimental Results

The data for each vehicle was collected through the VICON motion capture system
and is presented in Table 4.1. The position of each car was tracked for the duration
of each experiment, and the velocity of each car was numerically derived with a first
order finite difference method.

For all trials, the RL vehicle exhibited the learned ramp metering behavior, where
the western leader reduced its speed to avoid yielding by the northern group. The
metering behavior was extreme for the Gaussian single-agent noise case, especially

32

M.S. Report Plan II Kathy Jang

Table 4.1: Experimental results for the baseline (no RL) case and each training
method.

Training Mean Mean Trials % Time Crashes
Time (s) Speed (m/s) Saved

Baseline 23.6 0.23 47 - 0
Adversarial Multi-Agent

Action-State 22.1 0.24 29 +6.3 0
Action 22.1 0.23 23 +6.4 0
State 21.4 0.24 26 +9.6 10

Gaussian Single-Agent
Action-State 25.8 0.21 26 -9.2 0
State 23.0 0.23 18 +2.6 0
Action 23.1 0.22 37 +2.4 0
Noiseless 22.8 0.23 32 +3.5 0

when noise was added to the action and state together. This excessive metering
significantly reduced the average speed and increased travel delay, as seen in Table
4.1. The adversarial multi-agent training significantly outperformed the Gaussian
single-agent and tended to leave only a single vehicle yielding at the northern en-
trance. This strategy led to a travel time reduction for the northern group without
a significant delay in western vehicles. The adversarial multi-agent case with noise
injected only into the state accelerated especially fast and led to several catastrophic
accidents between the two RL vehicles. Finally, for small numbers of vehicles, the
adversarial multi-agent trained controllers appeared to exhibit an emergent zipper
merging behavior.4

Relative frequency histograms of average travel time and mean speed for the adver-
sarial multi-agent case with noise injected into both action and state versus baseline
scenarios are overlaid in Fig. 4.4. Over all trials, the adversarial case had a higher
relative frequency of shorter travel time compared to the baseline scenario. Average
travel time for 30% of adversarial scenarios, lies in the range [15s, 20s] comparing to
15% for the baseline scenarios.

From Table 4.1, we can see the average speed for baseline and the adversarial multi-
agent with noise in action-state are nearly the same. However, in Fig. 4.4, we can
see that approximately 8% of trials in the baseline scenarios have an average speed
between 0.1 m/s and 0.15 m/s. Furthermore, there are some trials that the average
speed of the baseline scenario is between 0.35 m/s and 0.4 m/s. On the other hand,

4Videos of the experiment and supplemental information can be found at: https://sites.

google.com/view/ud-ids-lab/arlv.

33

M.S. Report Plan II Kathy Jang

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (

%
)

(a)

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (

%
)

(b)

Figure 4.4: A relative frequency histogram for a the mean speed and b travel time of
each vehicle for the baseline and adversarial multi-agent scenarios with noise injected
in action and state.

the average speed for the adversarial multi-agent with noise in action and state varies
less, and near 65% of trials have the average speed between 0.2 m/s and 0.25 m/s
compared to 55% in the baseline scenarios.

4.4 Conclusion

In this work, we developed a zero-shot transfer of an autonomous driving policy
directly from simulation to the UDSSC testbed. Even under stochastic, real-world
disturbances, the adversarial multi-agent policy improved system efficiency by re-
ducing travel time and average speed for most vehicles.

As we continue to investigate approaches for policy transfer, some potential direc-
tions for future research include: multi-agent adversarial noise with multiple ad-
versaries, tuning to determine which elements of the state space are most suitable
for perturbations, tuning injected noise to maximize policy robustness, larger, more
complex interactions, such as intersections, or merging at highway on-ramps, and
longer tests involving corridors with multiple bottlenecks.

34

Bibliography

[1] U. DOT, “National transportation statistics,” Bureau of Transportation Statis-
tics, Washington, DC, 2016.

[2] Z. Wadud, D. MacKenzie, and P. Leiby, “Help or hindrance? the travel, energy
and carbon impacts of highly automated vehicles,” Transportation Research
Part A: Policy and Practice, vol. 86, pp. 1–18, 2016.

[3] S. E. Shladover, “Connected and automated vehicle systems: Introduction and
overview,” Journal of Intelligent Transportation Systems, no. just-accepted,
pp. 00–00, 2017.

[4] S. Cui, B. Seibold, R. Stern, and D. B. Work, “Stabilizing traffic flow via a
single autonomous vehicle: Possibilities and limitations,” in Intelligent Vehicles
Symposium (IV), 2017 IEEE, pp. 1336–1341, IEEE, 2017.

[5] G. Orosz, “Connected cruise control: modelling, delay effects, and nonlinear
behaviour,” Vehicle System Dynamics, vol. 54, no. 8, pp. 1147–1176, 2016.

[6] D. Swaroop and J. K. Hedrick, “String stability of interconnected systems,”
IEEE transactions on automatic control, vol. 41, no. 3, pp. 349–357, 1996.

[7] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion plan-
ning, estimation, and control design for the atlas humanoid robot,” Autonomous
Robots, vol. 40, no. 3, pp. 429–455, 2016.

[8] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforcement
learning,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 3, pp. 247–254,
2016.

[9] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates,” in Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pp. 3389–3396,
IEEE, 2017.

35

M.S. Report Plan II Kathy Jang

[10] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go
without human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[11] F. Belletti, D. Haziza, G. Gomes, and A. M. Bayen, “Expert level control of
ramp metering based on multi-task deep reinforcement learning,” IEEE Trans-
actions on Intelligent Transportation Systems, 2017.

[12] C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow: Archi-
tecture and benchmarking for reinforcement learning in traffic control,” arXiv
preprint arXiv:1710.05465, 2017.

[13] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial re-
inforcement learning,” arXiv preprint arXiv:1703.02702, 2017.

[14] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell,
“Sim-to-real robot learning from pixels with progressive nets,” arXiv preprint
arXiv:1610.04286, 2016.

[15] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real
transfer of robotic control with dynamics randomization,” arXiv preprint
arXiv:1710.06537, 2017.

[16] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin,
P. Abbeel, and W. Zaremba, “Transfer from simulation to real world through
learning deep inverse dynamics model,” arXiv preprint arXiv:1610.03518, 2016.

[17] M. Mueller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driving policy transfer
via modularity and abstraction,” in Conference on Robot Learning, pp. 1–15,
IEEE, 2018.

[18] Z. Xu, C. Tang, and M. Tomizuka, “Zero-shot deep reinforcement learning
driving policy transfer for autonomous vehicles based on robust control,” in
International Conference on Intelligent Transportation Systems, pp. 2865–2871,
IEEE, 2018.

[19] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Do-
main randomization for transferring deep neural networks from simulation to
the real world,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on, pp. 23–30, IEEE, 2017.

[20] E. Vinitsky, A. Kreidieh, L. Le Flem, N. Kheterpal, K. Jang, F. Wu, R. Liaw,
E. Liang, and A. M. Bayen, “Benchmarks for reinforcement learning in mixed-
autonomy traffic,” in Conference on Robot Learning, pp. 399–409, IEEE, 2018.

36

M.S. Report Plan II Kathy Jang

[21] K. Jang, E. Vinitsky, B. Chalaki, B. Remer, L. Beaver, A. Malikopoulos, and
A. Bayen, “Simulation to scaled city: zero-shot policy transfer for traffic control
via autonomous vehicles,” in 2019 International Conference on Cyber-Physical
Systems, (Montreal, CA), 2019.

[22] B. Chalaki, L. E. Beaver, B. Remer, K. Jang, E. Vinitsky, A. M. Bayen, and
A. A. Malikopoulos, “Zero-shot autonomous vehicle policy transfer: From sim-
ulation to real-world via adversarial learning,” 2019.

[23] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development
and applications of SUMO - Simulation of Urban MObility,” International Jour-
nal On Advances in Systems and Measurements, vol. 5, pp. 128–138, December
2012.

[24] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking
deep reinforcement learning for continuous control,” in International Conference
on Machine Learning, pp. 1329–1338, 2016.

[25] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Goldberg,
and I. Stoica, “Ray rllib: A composable and scalable reinforcement learning
library,” arXiv preprint arXiv:1712.09381, 2017.

[26] R. Bellman, “A markovian decision process,” Journal of Mathematics and Me-
chanics, pp. 679–684, 1957.

[27] C. Wu, A. Kreidieh, E. Vinitsky, and A. M. Bayen, “Emergent behaviors in
mixed-autonomy traffic,” in Conference on Robot Learning, pp. 398–407, 2017.

[28] F. Hutter, J. Lücke, and L. Schmidt-Thieme, “Beyond manual tuning of hyper-
parameters,” KI-Künstliche Intelligenz, vol. 29, no. 4, pp. 329–337, 2015.

[29] S. Hansen, “Using deep q-learning to control optimization hyperparameters,”
arXiv preprint arXiv:1602.04062, 2016.

[30] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton, “Opti-
mizing deep learning hyper-parameters through an evolutionary algorithm,” in
Proceedings of the Workshop on Machine Learning in High-Performance Com-
puting Environments, pp. 1–5, 2015.

[31] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region pol-
icy optimization,” in International Conference on Machine Learning, pp. 1889–
1897, 2015.

[32] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical
observations and microscopic simulations,” Physical review E, vol. 62, no. 2,
p. 1805, 2000.

37

M.S. Report Plan II Kathy Jang

[33] S. Levine and P. Abbeel, “Learning neural network policies with guided policy
search under unknown dynamics,” in Advances in Neural Information Process-
ing Systems, pp. 1071–1079, 2014.

[34] L. E. Beaver, B. Chalaki, A. M. Mahbub, L. Zhao, R. Zayas, and A. A. Ma-
likopoulos, “Demonstration of a Time-Efficient Mobility System Using a Scaled
Smart City,” Vehicle System Dynamics, vol. 58, no. 5, pp. 787–804, 2020.

[35] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous
automobile trajectory tracking for off-road driving: Controller design, experi-
mental validation and racing,” in 2007 American Control Conference, pp. 2296–
2301, July 2007.

38

