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Abstract

Three-Dimensional Phase Contrast Electron Tomography
For

Multiple Scattering Samples

by

David Ren

Doctor of Philosophy in Electrical Engineering

University of California, Berkeley

Ted Van Duzer Associate Professor Laura Waller, Chair

Three-dimensional (3D) electron tomography (ET) is used to understand the structure and
properties of samples, for applications in chemistry, materials science, and biology. By
illuminating the sample at many tilt angles using an electron probe and modelling the image
formation model, 3D information can be reconstructed at a resolution beyond the optical
diffraction limit. However, as samples become thicker and more scattering, simple image
formation models assuming projections or single scattering are no longer valid, causing the
reconstruction quality to degrade. In this work, we develop a framework that takes the
non-linear image formation process into account by modelling multiple-scattering events
between the electron probe and the sample. First, the general acquisition and inverse model
to recover multiple-scattering samples is introduced. We mathematically derive both the
forward multi-slice scattering method as well as the gradient calculations in order to solve
the inverse problem with optimization. As well, with the addition of regularization, the
framework is robust against low dose tomography applications. Second, we demonstrate in
simulation the validity of our method by varying different experimental parameters such as
tilt angles, defocus values and dosage. Next, we test our ET framework experimentally on a
multiple-scattering Montemorillonite clay, a 2D material submerged in aqueous solution and
vitrified under cryogenic temperature. The results demonstrate the ability to observe the
electric double layer (EDL) of this material for the first time. Last but not least, because
modern electron detectors have large pixel counts and current imaging applications require
large volume reconstructions, we developed a distributed computing method that can be
directly applied to our framework for seeing multiple-scattering samples. Instead of solving
for the 3D sample on a single computer node, we utilize tens or hundreds of nodes on a
compute cluster simultaneously, with each node solving for part of the volume. As a result,
both high resolution sample features and macroscopic sample topology can be visualized at
the same time.
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Chapter 1

Introduction

1.1 Transmission Electron Microscopy Layout

Invented in the 1930s by Knoll and Ruska [68, 110], electron microscopy has since been
developed to become a prevalent imaging technology in chemistry, materials science, geo-
science, and biology [12, 141]. Transmission Electron microscopes (TEM) fundamentally
rely on the interaction between the electron probe and matter, as well as magnetic lenses
that are capable of bending the path of the fast traveling electrons to form an image.

A conventional TEM (CTEM) or high resolution TEM (HRTEM) has the layout shown
in Fig. 1.1. Electrons are emitted from an electron gun and are accelerated through an
anode to a desired speed, with a corresponding energy. According to the application and
different planned experiments, the energy of the electrons could range from 20 KeV to 1
MeV, and the current of the electron source could fall anywhere between 1-10 nA. For a
typical electron energy of 300 KeV, the corresponding de Broglie wavelength is around 2
pm. After that, the accelerated electrons pass through a set of magnetic lenses, which are
made of electromagnets. Within the lens, the path of electrons are altered by the magnetic
field created by the coils. One can adjust the current passing through the coil to change the
strength of the magnetic field and hence the power of the lens. Through a set of condenser
and objective lenses, the electron wave is collimated into a plane wave and ready to be
illuminated on the sample, which sits on a stage that is sometimes capable of tilting [26].
After the electron beam interacts with the sample, it is magnified through another set of
objective lens and projector lenses and an intensity image is formed onto the detector. Recent
advances in direct electron detectors with high quantum efficiency [82] have enabled many
discoveries. In structural biology, for instance, many beam-sensitive samples can now be
seen and new protein structures have been solved [12].

Alternatively, an imaging mode also known as Scanning Transmission Electron Mi-
croscopy (STEM) can be configured on the same system. A beam is focused into a small
probe rather than collimated as a plane wave. Then, the probe is rastered across the the
field-of-view (FoV) to scan the entire sample. In the end, the scattered electrons are col-
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lected and processed. If a center disc is placed to collect the direct beam, then a bright field
image can be formed. On the other hand, if an annular ring detector is placed that collects
scattered electrons only, an annular dark field (ADF) image can be formed at the end of the
raster scan. One popular imaging mode is called high-angle ADF (HAADF), which directly
measures the signal from thermal diffuse scattering electrons [90, 99]. Due to its ease of data
interpretation, it has been adopted for 3D atomic electron tomography [141], where linear
tomographic inversion techniques can be applied.

Figure 1.1: Layout of a typical transmission electron microscope. A simulated defocus image
of a synthetic silicon oxide sample is shown.

1.2 Motivation

As described above, TEM offers unprecedented resolution for imaging applications in biol-
ogy and materials science [79, 73]. Modern systems can quantitatively reconstruct 3D local
structure, electrostatic and magnetic potentials, and local chemistry [83]. Recent progress
enables locating the 3D position of individual atoms with high precision [128, 6, 140], and
even determining both the 3D position and species of every atom in a nanoscale sample [141].
These atomic electron tomography (AET) studies use a TEM imaging mode called annular
dark field (ADF) scanning transmission electron microscopy (STEM). ADF-STEM gener-
ates contrast that increases monotonically with the 2D projection of the 3D electrostatic
potential of the sample along the beam direction. Such approximated linearity allows for
traditional tomographic reconstruction algorithms [38, 102]. However, ADF-STEM requires
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large electron doses, as it is much less efficient than phase contrast imaging [93, 19]. Addi-
tionally, because the electron probe is focused to a small spot and scanned over the sample
surface, sample motion during the experiment can cause artifacts [91].

The simplest phase contrast imaging mode used in TEM studies is plane-wave illumi-
nation, usually referred to as high-resolution transmission electron microscopy (HRTEM).
However, at atomic resolution, HRTEM imaging produces highly nonlinear contrast for any
sample thicker than a few atomic monolayers, making it difficult to interpret the results [127,
66]. For thin samples, comparing experiments to simulations can recover some quantitative
3D information [59, 4], but this is difficult or impossible for experiments with a high degree
of multiple electron scattering. Thus, phase contrast imaging is not widely used in materials
science electron tomography studies at atomic resolution.

By comparison, phase contrast HRTEM imaging in biology is simpler to interpret because
most biological specimens can be approximated as weak phase objects, which I will derive
in a later section, allowing for the sample’s phase to be reconstructed from a single defo-
cused intensity measurement [31]. This single-image requirement is important for biological
samples because they tend to be extremely sensitive to electron beam damage and cannot
tolerate the much higher electron doses used in materials science [33]. In structural biology,
the introduction of direct electron detectors with high quantum efficiency [82] has rapidly
expanded the number of solved protein structures, using 3D tomographic averaging of im-
ages of many identical or near-identical protein structures with random orientations. This
technique is called single particle cryo-electron microscopy (cryo-EM) [30]. When imaging
larger biological samples, averaging of sub-volumes can also produce high-resolution recon-
structions [16].

Recent advances in computational methods have improved reconstruction accuracy even
further, for example by introducing a correction for the microscope contrast transfer function
(CTF) [12]. However, advanced algorithms generally make a weak object assumption and
treat the measured signal as a linear sum of the projected potential [133]. This linearizes the
physical model in order to provide a closed-form solution, but these assumptions usually only
hold for very thin samples [92]. Nonlinear effects of multiple scattering are non-negligible
for thick samples, which represent a large majority of materials science samples. Therefore,
thick samples require both a nonlinear forward model and a reconstruction method that
captures the dynamical scattering of the electron beam.

Nonlinear phase reconstruction in 2D for TEM includes algorithms for reconstruction of
the sample potential phase contrast measurements [45, 11], maximum likelihood methods [23,
76, 75], and other iterative algorithms [84, 67, 1, 2]. These methods, however, are usually
limited to samples that are either single scattering or satisfy crystal approximations.

Methods to correct for multiple scattering in 3D phase reconstructions have been pro-
posed in optics [80, 117, 63, 134, 39, 112, 77, 124]. A typical strategy - the multislice or
beam propagation method [25, 66, 129] - treats the 3D object as a series of 2D slices, each
with it’s own transmittance function, separated by small distances of free-space propagation.
For TEM, the interaction of the electron beam with the sample can thus be modeled by two
linear operators. The first is a multiplication by the transmittance function that describes
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the absorption and phase delay of the electron beam when interacting with that slice of the
sample. The second is the free space propagation operator, which captures the dynamics
of propagation. Unfortunately, these two operators do not commute, making the inverse
scattering calculation both nonlinear and non-convex. Van den Broek and Koch have pro-
posed an inversion method for multiple electron scattering, which uses multiple beam tilt
projections for phase contrast TEM imaging to perform a 3D reconstruction with very few
layers [130, 129, 60] similar to 3D Fourier Ptychographic Microscopy [124]. In simulation,
they were able to reconstruct the atomic potential of a small nanoparticle in 3D from a small
number of tilt angles, for strongly scattering atoms and a low TEM accelerating voltage of
40 kV, and assuming structural priors. However, the 3D transfer function for tilting the
beam results in non-isotropic resolution [69, 86]; hence, the axial resolution is fundamentally
limited when assuming no structural priors on the sample.

In this dissertation, I present an isotropic high resolution framework for 3D reconstruction
from intensity-only images taken at varying tilt angles and defocus values. Our algorithm
models multiple scattering of the electron beam and strong phase shifts induced by indi-
vidual atoms. Along with efficient regularization and our carefully chosen inverse problem
formulation, these improvements enable imaging of thicker samples and those that cannot
withstand high electron doses. Biological cryo-EM studies may also benefit if they are per-
formed on very large volumes (where the projection assumption breaks down) or contain
multiple scattering regions.

1.3 Electron Imaging Theory

Phase Contrast Imaging

Samples in materials science and biology are transparent to electrons beams, meaning that
they do not absorb electrons, but only scatter them and slightly change their paths, and the
atomic potentials of the samples contribute to the phase delay of the electron wave. Because
the electron detector can only measure the intensity of the complex wave function (square
of the amplitude), the phase information is lost. As a result, under HRTEM imaging mode,
when an electron plane wave is illuminated onto the phase sample, the image formed has a
low contrast. Hence, to retrieve information of the phase and subsequently the sample, we
need to introduce the phase information into the amplitude variation of the image captured,
such as Fig.1.2. The amplitude variation shown in Fig.1.2 and Fig.1.1 are realized by taking
deliberate defocused intensity images of the sample, and next we explain the relationship
between the intensity variation of a defocused image and its phase information.

Without loss of generality, we derive the relationship assuming a thin 2D sample, as
phase induced from 3D multiple scattering samples are non-linear with respect to the in-
tensity measured and an analytical relation can be more convoluted. The transmittance
function for a thin 2D object can be written as t(r) = exp(iσvz(r)), where σ is the beam-
sample interaction parameter that linearly scales with wavelength λ, r = (x, y) is the lateral
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Figure 1.2: Sample micrograph of Iron-Platinum crystal on amorphous substrate in phase
contrast. Micrograph courtesy of Jihan Zhou.

coordinates, and vz(r) is the projected 2D potentials. The combined term σvz(r) forms the
phase induced by the sample. Since it is a thin 2D sample and they typically induce very
small phase values, we can apply the weak phase object approximation (WPOA) by only
taking its fist-order Taylor series:

t(r) ∼ 1 + iσvz(r) (1.1)

When an incident electron wave ψinc(r), satisfying the time-independent Schrodinger’s
equation, is illuminated, the resulting electron wave is the product of the two: ψt(r) =
t(r)ψinc(r). The rest of the electron microscope can be modelled as a low-pass filter with a
kernel of h(r), with its Fourier transform of

H(k) = A(k)exp(iχ(k)), (1.2)

where A(k) is the aperture function that models the attenuation of electrons when scattered
to higher angles, and χ(k) is the aberration function that alters the path of the electrons at
different angles k = (kx, ky). For instance, a perfect imaging system would imply χ(k) = 0.
When deliberate defocus is introduced to the imaging process, χ(k) ∝ k2 = (k2

x + k2
y).

Hence, the image acquired is the intensity of the field convolved (denoted by ?) with the
kernel:

I(r) = |ψt(r) ? h(r)|2 (1.3)

= |1 ? h(r) + iσvz(r) ? h(r)|2 . (1.4)

By expanding the intensity term and omitting the terms of second or higher order, we arrive
at:

I(r) ≈ H(0) + 2σvz(r) ? hWP (r), (1.5)
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and equivalently, the Fourier transform of the image is

F {I(r)} ≈ H(0)δ(k) + 2σF {vz(r)} · sinχ(k), (1.6)

where F{·} is the Fourier transform operator. Equation (1.6) above provides a mathematical
explanation for the phase of a sample contributing to the intensity variation. The spectrum
of the phase information is modulated by a contrast transfer function (CTF) that is the sine
of the aberration function. Therefore, when the imaging is conducted in-focus, very little
contrast of phase is turned into amplitude variation. However, as defocus is introduced, the
phase contrast becomes stronger. Notice that the transfer function is periodic and has many
zero crossings. As such, some frequency information about the phase is lost, depending on
the defocus distance. To recover a quantitatively accurate phase profile, one can capture
multiple images with different defocus distances. In addition, since the aberration function
introduced by defocus has very small values in the lower frequency region closer to the DC
in Fourier space, low-frequency content is notoriously difficult to recover [61], and larger
defocus distances are often required.

Noise Statistics

When imaging beam-sensitive samples, measurements are generally noisy due to small dosage
of illumination, so it is important to take into the account the noise associated with the
measurement processes. The two common noise factors are the detector readout noise and
the electron counting noise.

The detector readout noise can be approximately modelled as white Gaussian noise with
zero mean and a standard deviation of σw:

w ∼ N (0, σ2
w). (1.7)

The value of σw is detector dependent [82]. Notice that the noise per pixel is independent from
the intensity captured at the pixel, and each pixel’s noise can be considered as independent
and identically distributed (i.i.d).

The electron counting noise (also known as shot noise) is the noise associated with the
the process of electron arrival at the detector. It follows a Poisson distribution:

p ∼ Poisson(λ = I). (1.8)

According to Poisson distribution, both the mean and variance of the noise p at a pixel are
the true intensity at that pixel. As such, noise p is not an additive noise.

However, Poisson noise closely resembles a Gaussian distribution when the intensity is
large [142]. Mathematically, we say that when the intensity is high, noise p is approximated
by N (0, I). On the other hand, as the intensity (or equivalently dose) decreases, the dis-
tribution becomes less symmetric and more one-sided. Notice here that the noise for each
pixel has a different distribution, and each depends on its own intensity. Therefore, cor-
rectly modelling the distribution of noise is a difficult, yet very important, task in electron
tomography.
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1.4 Electron Tomography

Fundamental Principles of Linear Electron Tomography

Tomography is a class of methods to recover 3D objects from a series of 2D measurements
of the sample. It is a technique that is widely adopted in medical imaging, optics, materials
science, remote sensing, and notably other areas of science [141, 107, 106, 8, 37, 63]. In
an X-ray Computed Tomography (X-ray CT) scanner, for instance, the X-ray source and
the detector panel rotate around the patient. While it is rotating, a series of 2D X-ray
projections of the patients are taken. After the scan, an inversion algorithm recovers the
3D structure of the patient from the projections. In an electron tomography system, on
the other hand, samples of interest are prepared and placed onto a tilting stage. Instead of
rotating the source and detector around the sample, the sample itself is tilted to different
angles while the microscope is fixed in place and acquires images.

The fundamental principle that tomography relies on is the projection of 3D object down
to a 2D image, also known as the Radon transform [103, 104]. A single projection image is
related to the 3D sample by:

I(x, y; θ) =

∫∫
f(x′, y, z′)δ(x′cosθ + z′sinθ − x) dx′dz′, (1.9)

where δ(·) is the Dirac delta function, θ is the tilt angle of the sample. The 3D sample
f(x′, y, z′) is tilted with respect to the y-axis to an angle θ, and the beam propagates axially
along the z-axis to project the object down to a 2D image. The simple 2D version of
projection is illustrated in Fig.1.3(a).

The formulation above is used to derive the Projection Slice Theorem, which relates the
3D object and the projected image in terms of the information of the sample imaged. By
taking a 2D Fourier transform with respect to the coordinates x and y on both sides of
Eq.(1.9), we have:

Ĩ(kx, ky; θ) =

∫∫∫∫
f(x′, y, z′)δ(x′cosθ + z′sinθ − x)exp(−2πi(kxx+ kyy)) dxdydx′dz′.

(1.10)
By re-arranging the terms on the right hand side and separating out the variable x, we have:

Ĩ(kx, ky; θ) =

∫∫∫
f(x′, y, z′)

∫
δ(x′cosθ + z′sinθ − x)exp(−2πi(kxx+ kyy)) dxdydx′dz′

(1.11)

=

∫∫∫
f(x′, y, z′)exp(−2πi(kx(x

′cosθ + z′sinθ) + kyy)) dydx′dz′. (1.12)

Notice that the triple integral in Eq.(1.12) corresponds to a 3D Fourier transform of the
function f(x′, y, z′), and the 2D spectrum of the image is the 3D spectrum of the object
evaluated on a plane. Therefore, the Fourier transform of a projection image is:

Ĩ(kx, ky; θ) = f̃(kx′ , ky, kz′)
∣∣∣
kx′=kxcosθ,kz′=kxsinθ

= f̃(kxcosθ, ky, kxsinθ). (1.13)
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Equation (1.13) is a version of the well-known Fourier slice theorem. The theorem suggests
that the Fourier transform of the projection corresponds to a 2D slice within the 3D spectrum
of the object. The derivation above is a special case of the general theorem in that it restricts
the tilt axis to be aligned with the y-axis. In fact, the object can be rotated arbitrarily in 3D
and the same result would hold. This theorem provides the intuition to understand almost
any tomography system, and from it many reconstruction algorithms and artifacts can be
understood, even though samples can be multiple-scattering and algorithms nonlinear. From
a series of projections, we are effectively sampling the 3D spectrum of the object. And in
the end a 3D object spectrum can be recovered by “stitching” all projections back together
in the frequency space.

Tomographic Inversion Techniques

Depending on the particular imaging modality, a pre-processing step may be required before
inverting the projections. For STEM tomography, since the measured signal is directly
the accumulated high-angle scattering, which is proportional to Z2, where Z is the atomic
number, the forward model in Eq.(1.9) can be directly applied. However, if the projection
images are acquired in phase contrast TEM mode through defocus, the image intensities
are not linearly proportional with the projected potentials, shown in Eq.(1.6). As such,
CTF correction is needed to be able to apply Eq.(1.9) [12, 133]. As we derived previously,
such a model depends heavily on the linear approximation. If the sample becomes highly
scattering, after CTF correction the phase may no longer be a linear projection of the
sample’s electrostatic potential. Alternatively, one can experimentally place a phase plate to
avoid CTF correction and directly obtain an image that is proportional with respect to the
projected potentials [57]. Note that this method also required linearity in order to recover
the 3D sample.

When a quantity that is directly proportional to the projected potential is obtained,
either through direct measurement or after CTF correction, the 3D volume is ready to be
recovered. Filtered back projection (FBP) is one of the fundamental and original methods
to stitch the projections back to a 3D volume [13]. As the name suggests, FBP consists of
two steps: filtering and back projection. Since each projection is a 2D slice of the object
spectrum, the low-frequency space of the 3D spectrum is inevitably over-sampled and high
frequencies are under-sampled. Therefore, to weigh the balance in different regions, a filter
is applied. Theoretically, a ramp filter is needed. In practice, however, a ramp filter may
amplify the noise due to its high weights at high frequencies [13]; hence, other filters have
been proposed to mitigate the effect of noise [13, 62]. The second step is known as the
back projection step, where the filtered projection image (by the ramp filter or otherwise) is
distributed across the line integral with respect to its tilt angle θ. After all projections are
back projected on the 3D grid, the resulting 3D object is the sum of all back projections, as
illustrated in Fig.1.3.

Another popular class of algorithms is iterative algorithms [100, 41, 106]. An iterative
algorithm attempts to solve an optimization problem by iteratively updating the solution,
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Figure 1.3: Illustration of filtered back projection algorithm. Illustration courtesy of [113].(a)
Forward projection from 2D to 1D at multiple angles. (b) Backprojection step during tomo-
graphic inversion.

rather than arriving at a solution with a single calculation. The benefit of such methods
is that it is easier to enforce sample priors and constraints, thus reducing artifacts. One
drawback of such methods is that it tends to take more time in order for the algorithm to
converge.

Reconstruction Complexity

Assume that a a volume is cubic and has N3 voxels, and P projections are acquired. The
first filtering step is performed in the Fourier space and the complexity per projection is
dominated by the Fourier transform operation, which is O (N2 logN), and the complexity
when all P projection combined is thus O (PN2 logN). The second step, if performed in
real space as illustrated in Fig.1.3, is O (N3) per projection, and the total complexity is
O (PN3). Alternatively, since each projection corresponds to a slice of the 3D spectrum,
one can directly combine all slices in the 3D Fourier space and interpolate all frequency
components onto a rectangular grid [13]. After that, a 3D inverse Fourier inverse transform
is computed to obtain the 3D reconstructed sample. Depending on the interpolation method
used, the dominating complexity in this operation is usually the Fourier transform, which
has a complexity of O (N3 logN) [62, 50].

Common Issues in Electron Tomography

In this section, common practical issues that are known to be difficult to cope with in the
general area of tomography will be introduced. If the issues are not dealt with properly,
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significant artifacts can result in the reconstruction and affect the interpretability of the
reconstruction.

Missing wedge

We recall from Fourier slice theorem that each projection image corresponds to a 2D slice
of the 3D sample spectrum. If the object can be tilted to a full range of 180◦ (-90◦ to 90◦),
the entire spectrum can be covered. However, due to experimental constraints, the samples
usually need to be placed on a substrate that does not allow 180◦ tilt range [113]. In our case,
the sample’s tilt range is typically from -60◦ to 60◦ [137]. As a result, the sample spectrum
is not fully measured, with significant under-sampling along the axial direction. Because
the region of missing information closely resembles a wedge, this effect is also known as the
“missing wedge” problem. The consequence of failing to fully sample the spectrum is that
the axial resolution is significantly worse than the lateral resolution, as illustrated in Fig.1.4.

There are several methods to mitigate this problem. First, from a hardware perspective,
depending on the type of sample, a different geometry can be adopted. In [106, 141], the
sample is mounted on a tip that tilts during the acquisition. Since the sample is no longer
placed on a stage, it can be tilted to a range of full 180 ◦. Secondly, many have explored
software algorithms to mitigate the artifact [106, 100, 101]. However, all algorithms merely
try to fill in the missing information with their best judgements regarding the spectrum, so
extra caution is needed to validate the accuracy of such reconstructions.

Figure 1.4: 2D reconstruction of a phantom to illustrate the missing wedge problem with
20◦, 60◦, 100◦ missing wedge. As the amount of missing wedge increases, the axial resolution
(horizontal) decreases and artifacts start to dominate.
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Tilt-series alignment

Image alignment plays a significant role in the quality of tomographic reconstruction. There
are several reasons a tilt-series might not be well aligned. First, the sample drifts with
respect to the imaging apparatus during the acquisition, as illustrated in Fig.1.5(a). For
dose sensitive samples, it is impossible to adjust the focus while looking at the sample, as
the electron beam is sample-damaging. Often times the focus is adjusted outside of the
sample region of interest before translating the region of interest into the FoV. Additionally,
tilting the sample can also drive it out of the FoV. Therefore, images need to be registered
before passing to the reconstruction step.

Secondly, the tilt axis may be misaligned with respect to the image FoV. As shown in
Fig.1.5(b), the expected tilt axis is parallel with the horizontal axis. However, the exper-
imental tilt axis is in fact rotated with a certain angle, causing images to be misaligned.
Correction is also needed before reconstructing the tilt-series. If not addressed properly, the
reconstruction could suffer from lower resolution and inaccuracy. In a later section, methods
used to align the tilt-series will be discussed, when markers in the images are available.

Figure 1.5: 2D Illustration of tilt-series misalignment using a phantom and its set projec-
tions. (a) Lateral translation misalignment due to sample drifting. (b) Incorrect tilt axis
assumption with respect to the imaging system can cause significant errors during the re-
construction.

1.5 Dissertation Outline

Up until this point we have introduced the basic apparatus for imaging with electrons, the
fundamental principles of tomography to recover 3D volumes of electric potential from a
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series of 2D projections, and prior contributions in the filed attempting to solve for various
kinds of 3D samples. In the following chapters, new approaches will be introduced, followed
by derivations, simulation as well as experimental validations, and discussions. Through the
steps, we wish to illustrate the importance and power of modeling multiple scattering such
that better reconstruction quality maybe attained. Specifically, the rest of the dissertation
is organized as follows:

• Chapter 2 carries out the theoretical formulation of our tomography framework. We
first derive the multi-slice scattering model that is capable of accounting for multiple-
scattering events between the electron probe and the sample. Then, we write the image
formation process that relates the image captured to the 3D sample on the tilt stage.
In the end, we provide the method for solving the inverse problem.

• Chapter 3 shows our effort to validate the proposed framework via simulation. To
be rigorous, we simulated a dense atomic model that contains both crystalline and
amorphous structures of Silicon and Silicon Oxide with over 100,000 atoms. In the
reconstructed volume, we traced all atoms and compared with ground truth to check
the quality. Through varying a set of parameters such as dosage, missing wedge degrees,
regularization techniques and tilt-defocus trade offs, we found the the best experimental
parameters that provide practicality and superior quality simultaneously.

• Chapter 4 illustrates our successful application of the framework on experimental
datasets for discoveries in materials science. The main subject in this study is a
large volume of Montmorillonite clay immersed in aqueous solution. The material is
extremely dose sensitive and the experiment was performed under Cryogenic temper-
ature. Through a series of simulation and experimental validation, we demonstrated
the possibility of inferring solution ion distributions from the absorbance profile in the
3D reconstruction. For the first time, we were able to observe the electric double layer
(EDL) of this material in 3D.

• Chapter 5 explains the effort in building the driving force behind all the achievements
– computation. Throughout the dissertation, many optimizations in the algorithm
have been implemented that significantly improved the efficiency of the reconstruction
algorithm and hence increased the overall throughput of the framework, allowing larger
space-bandwidth product.

• Chapter 6 concludes the dissertation by summarizing my contributions as well as point-
ing out a few potential future directions.
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Chapter 2

Theory

In this chapter, we present a new method for high-resolution 3D transmission electron mi-
croscopy (TEM) which reconstructs the electrostatic potential of a sample at atomic resolu-
tion in all three dimensions. We use phase contrast images captured through-focus and at
varying tilt angles, along with an implicit phase retrieval algorithm that accounts for dynam-
ical and strong scattering, to provide more accurate 3D reconstruction results with much
lower electron doses than current atomic electron tomography methods. Particularly, we
will mathematically derive the multi-slice scattering algorithm, outline the image formation
process, and describe the overall optimization framework to solve for the inverse problem.

2.1 Modelling a Multiple Scattering Sample

Multi-slice Scattering Model

Throughout this dissertation, the multi-slice scattering model is used. Although it seems very
intuitive and ad-hoc from the description in the previous chapter, in this section, we derive
the this model formally from first principle. The derivation starts from the time independent
Schrödinger equation describing fast travelling electrons in space and their interaction with
matter: [

− ~
2m
∇2 − eV (x, y, z)

]
ψf (x, y, z) = Eψf (x, y, z) (2.1)

where ~ is Planck’s constant divided by 2π, m = γm0 is the relativistic mass of an accelerated
electron with a de Broglie wavelength λ, e = |e| is the unit electron charge, eV is the potential
energy, and E = h2

2mλ
is the total energy. The time-independent Schrödinger equation models

the full wave function ψf (x, y, z) of an electron travelling through a inhomogenous medium
with electric potential V (x, y, z). Since in a TEM the electrons are propagating in z with very
high velocity, the full wave function can be written as a product of a plane wave travelling
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in z and a counterpart with a slowly varying z profile:

ψf (x, y, z) = ψ(x, y, z)exp

(
i2πz

λ

)
(2.2)

As we shall see later, this factorization of the full wave function is beneficial for making
certain assumptions of the model and further simplify. We next split the differential operator
∇2 = (∇2

⊥ + ∂2

∂z2
). Then we can expand differential operator in the Schrödinger equation as

∇2ψf (x, y, z) =

[
∇2
⊥ +

∂2

∂z2

]
ψf (x, y, z) (2.3)

= exp

(
i2πz

λ

)
∇2
⊥ψ(x, y, z) +

∂2

∂z2

[
ψ(x, y, z)exp

(
i2πz

λ

)]
. (2.4)

We next focus on the second term in Eq.(2.4), using simple product rule:

∂2

∂z2

[
ψ(x, y, z)exp

(
i2πz

λ

)]
=

∂

∂z

[
exp

(
i2πz

λ

)[
∂ψ

∂z
+
i2πz

λ
ψ

]]
(2.5)

= exp

(
i2πz

λ

)[
∂2ψ

∂z2
+
i4π

λ

∂ψ

∂z

]
− i4π2

λ2
ψ(x, y, z)exp

(
i2πz

λ

)
(2.6)

= exp

(
i2πz

λ

)[
∂2ψ

∂z2
+
i4π

λ

∂ψ

∂z

]
− i4π2

λ2
ψf (x, y, z). (2.7)

With all of the expansions derived in Eq.(2.4) and Eq.(2.7), we can plug them back into the
original Schrödinger equation in Eq.(2.1). After the simplifications, we have:

− ~2

2m

[
∇2
⊥ +

∂2

∂z2
+ i

4π

λ

∂

∂z
+

2meV (x, y, z)

~2

]
ψ(x, y, z) = 0. (2.8)

Notice no assumptions have been made made at the moment and Eq.(2.8) still remains the
general Schrödinger equation, but simply expanded. Also, notice that Eq.(2.8) is only a
function of the slowly z-varying wave function. With this property we are ready to make our

first assumption:
∣∣∣ ∂2∂z2 ∣∣∣ � ∣∣ 1

λ
∂
∂z

∣∣, which allows us to disregard the second order differential

term along the z-direction. Then, as we regroup the terms and move the first order differential
term to the left, we have:

∂

∂z
ψ(x, y, z) = [A + B]ψ(x, y, z), (2.9)

where A = i λ
4π
∇2
⊥ and B = iσV (x, y, z). Equations in the form like Eq. (2.9) have a close

form solution:

ψ(x, y, z) = exp

(∫ z

0

[A(z′) + B(z′)]dz′
)
ψ(x, y, 0). (2.10)
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One can easily plug this solution into Eq.(2.9) to verify that it indeed satisfies the differential
equation. If the boundary value at z = 0 of the wave function at ψ(x, y, 0) is known, any
values of ψ(x, y, z) can be calculated. This is especially useful in the context of HRTEM
as we are able to control the incident beam on the sample, i.e. a plane wave illumination
is used and ψ(x, y, 0) = 1. Although there will be some global phase offset associated to
the incident beam, it will not affect the general intensity image contrast and thus can be
neglected.

Despite the fact that ψ(x, y, z) can be analytically related to ψ(x, y, 0), it is not straight
forward to compute the exponential of an integral of differential operators. Therefore, further
simplifications are needed in order to compute Eq.(2.9) efficiently. If we assume that z is
sufficiently small such that V (x, y, 0) is almost constant between 0 and z, the exponential
term in Eq.(2.9) can be evaluated as exp

(
i λ

4π
z∇2
⊥ + iσzV (x, y, 0)

)
. Then, we consider the

Taylor series expansion of the exponential term:

ψ(x, y, z) = exp

(
i
λz

4π
∆2
⊥

)
exp (iσzV (x, y, 0))ψ(x, y, 0) +O(z2). (2.11)

More details about the expansion details can be found in [66]. The exponential term in-
volving lateral differential operators above can be performed in Fourier space by multiplying
a quadratic term in the exponent and thus in real space becomes a convolution, and by
neglecting the higher order terms, the field ψ(x, y, z) can be expressed as:

ψ(x, y, z) = F−1
{

exp(−iπλz(k2
x + k2

y)) · F {exp (iσzV (x, y, 0))ψ(x, y, 0)}
}
, (2.12)

where F{·} and F−1{·} are Fourier transform and inverse Fourier transforms, respectively.
After some approximations we have arrived at Eq.(2.12). Notice that Eq.(2.12) can be
implemented very efficiently, and it can be split into two steps: a multiplication in real space
and a convolution (equivalent to a multiplication in Fourier space). Intuitively, the first step
corresponds to refraction where the wave function interacts with the inhomogenous medium.
The second step corresponds to a free-space propagation of distance z, and this operation
is also known as the Fresnel propagation. Notice that we arrived at this result by assuming
that z is sufficiently small. This assumption is always true if we break the 3D sample into a
series of slices with separation ∆z sufficiently small. Only then, Eq.(2.12) is to be applied
recursively to model to scattering process between the electron probe and the 3D sample,
and hence the name multi-slice.

Because of the recursive nature of the model, the multi-slice method is capable of captur-
ing the multiple scattering events between the probe and the sample, and thereby allowing
a thicker sample to be modeled [106, 128, 129, 134, 63]. However, as briefly alluded to in the
paragraph above, the accuracy of multi-slice depends on the thickness in between slices, and
the electron beam has to propagate mostly forward in order for the approximations to be
valid. Therefore, if a sample causes severe back-scattering, the multi-slice model will suffer
a decrease in accuracy [20]. To deal with such scenarios, other scattering models have been
proposed in the field of optics [20, 78], with a trade off in computation time. Luckily, due to
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the high speed of travelling electrons in a HRTEM, back-scattered electrons are extremely
rare and most electrons are scattered to relatively small angles. Therefore, the multi-slice
model is sufficient for most samples that we examine.

Image Formation

We now describe our computational model for the process of the incident beam interacting
with the sample and forming each measurement; this forward model is used to simulate
measurements and will also be crucial to our inverse problem reconstruction. It is composed
of three parts: object rotation, complex-wave propagation and imaging. We model the
3D object as a series of projected 2D atomic potential functions V , {Vm(r)}Nzm=1, where
r = (x, y) are the lateral coordinates and m is the slice index along the axial direction (z)[66],
with slice separation described by a set {∆zm}Nzm=1.

For each tilt angle, θk (k = 1, 2, ..., Nθ), we rotate the 3D object along the y-axis using a
fast rotation algorithm [94]. The tilted object Wk is then Wk = Rθk {V }, where Rθk denotes
a linear rotation operator.

Then, we model the propagation of the complex wave, with relativistically-corrected
electron wavelength λ, through the object. We use the multislice algorithm to account for
multiple scattering events (see Fig. 2.1(a)). Each slice is converted from a 2D potential
function to a 2D transmittance function tk,m(r) = exp [iσWk,m(r)], where σ is the beam-
sample interaction parameter that depends linearly on λ. Example projected potentials are
shown in Fig. 3.1(b),(c).

The complex electron wave function before reaching each slice is denoted by ψk,m(r).
As it passes through the slice, it will be multiplied by the corresponding 2D transmittance
function at the corresponding z depth. After that, it is propagated in free space to the next
slice using the angular spectrum method:

ψk,m+1(r) = P∆zm {tk,m(r)ψk,m(r)} , (2.13)

where

P∆zm{·} = F−1

{
exp

[
i2π∆zm

√
1/λ2 − ‖q‖2

]
· F {·}

}
(2.14)

is the linear operator for free-space propagation by distance ∆zm, q = (qx, qy) is the 2D
Fourier space coordinates, and F{·} and F−1{·} denote Fourier transform and its inverse,
respectively.

The exit wave of a thin sample (in focus) will show primarily amplitude contrast, but most
of the electron scattering information is encoded as phase shifts on the exit wave. Because
defocus induces phase contrast, we use the free-space propagation operator to defocus the

exit waves by distances of {∆fj}
Nf
j=1 before capturing the intensity of the exit wave:

Îk,j(r) =
∣∣H {P∆fj {ψk,Nz+1(r)}

}∣∣2 , |ψexit,k,j(r)|2 , (2.15)
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where
H{·} = F−1 {H(q) · F {·}} , (2.16)

with H(q) denoting the microscope’s transfer function [66], similar to what we saw previously
in chapter 1. After all tilt angles and defocus images are acquired, we obtain a series of images

denoted as {Îk,j(r)}Nθ,Nfk=1,j=1, examples of which are shown in Fig. 3.1(d),(e). The multislice
beam propagation method is outlined in Algorithm 1 and schematics are shown in Fig. 2.1(a).

Algorithm 1 Forward model computation

Input: Initial wave function ψ0(r), 3D rotated atomic potentials W = {Wm}Nzm=1, slice

separations {∆zm}Nzm=1, defocus angles {∆fj}
Nf
j=1, and interaction parameter σ.

1: ψ1(r)← ψ0(r)
2: for m← 1 to Nz do . Beam propagation
3: tm(r)← exp [iσWm(r)]
4: ψm+1(r)← P∆zm {tm(r) · ψm(r)}
5: end for
6: for j ← 1 to Nf do . Defocus and image
7: ψexit,j(r)← H

{
P∆fj {ψNz+1(r)}

}
8: end for

Return: Predicted exit wave {ψexit,j(r)}Nfj=1 and intermediate wave function {ψm(r)}Nzm=1.

Figure 2.1(b) shows examples of simulated HRTEM plane-wave images when the sample
is tilted at many angles and multiple defocus images are simulated.

2.2 Inverse Problem

Convex optimization

Given a set of intensity-only measurements, we estimate the potential, V , by solving an
optimization problem. Starting with an estimated potential V , we use our forward model to

generate a series of predicted measurements {Îk,j(r)}Nθ,Nfk=1,j=1. We formulate an error function

to quantify the difference between predicted and actual measurements {Ik,j(r)}Nθ,Nfk=1,j=1. The
goal is to find the 3D atomic potential that fits the intensity measured and thus minimizes
the error:

V = arg min
V

Nθ∑
k=1

Nf∑
j=1

e2
k,j

= arg min
V

Nθ∑
k=1

Nf∑
j=1

∥∥∥∥√Ik,j(r)−
√
Îk,j(r)

∥∥∥∥2

2

,

(2.17)
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Figure 2.1: Foward measurements for phase contrast atomic electron tomography experi-
ment with a core-shell SiO2 needle geometry. (a) The multislice forward model treats the
3D sample as a series of 2D slices separated by propagation, thus accounting for multiple
scattering. (b) The sample is tilted with respect to the electron beam to capture plane-wave
illuminated images at varying angles (up to 180◦). For each tilt angle several HRTEM images
are recorded at different focus planes.
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where ‖ · ‖2 is the l2 norm. Instead of directly comparing the difference between the pre-
dicted and actual intensity measurements, we compare the square roots of the intensity,
which correspond to the amplitude of the exit waves. This is because the amplitude-based
error function better accounts for Poisson-distributed noise (whereas a intensity-based error
function would be ideal for Gaussian-distributed noise) [142]. In this study, the low electron
dose means that Poisson noise dominates.

Algorithm 2 Error backpropagation for gradient computation

Input: Residual vectors {rj(r)}Nfj=1, intermediate wave functions {ψm(r)}Nzm=1, 3D rotated

atomic potentials W , slice separations {∆zm}Nzm=1, defocus angles {∆fj}
Nf
j=1, and interaction

parameter σ.

1: φNz+1(r)← 0
2: for j ← 1 to Nf do . Refocus to end of sample
3: φNz+1(r)← φNz+1(r) + P−∆fj

{
H† {rj(r)}

}
4: end for
5: for m← Nz to 1 do . Backpropagation
6: φm(r)← P−∆zm {φm+1(r)}
7: t∗m(r)← exp [−iσWm(r)]
8: gm(r)← −iσt∗m(r) · ψ∗m(r) · φm(r)
9: φm(r)← t∗m(r) · φm(r)
10: end for

Return: Estimated gradient ∇W ei , {gm(r)}Nzm=1.

We solve the optimization problem with an accelerated gradient method outlined in
Algorithm 3. For each tilt angle and defocus, We first tilt the estimated sample and predict
the intensity using the multislice algorithm outlined in Algorithm 1. Next, we minimize
Eq. (2.17) by differentiating the error with respect to each slice of V . This is done by
recursively applying the chain rule to calculate the gradient, and we refer to this process as
the backpropagation. The back propagation is illustrated in Algorithm 2, and it is derived
in the appendix. Notice that the symmetry between Algorithms 1 and 2 is a key signature
in many non-linear optimization methods. Then, we perform a regularization process that
enforces prior knowledge we have about the sample (details discussed later). The last step
in the loop is that we apply Nesterov’s acceleration, which adds a momentum factor in
the gradient update to improve convergence speed. By repeating these steps, we finally
reach a converged estimate of V and terminate Algorithm 3. Notice that the reconstruction
algorithm implicitly solves the phase retrieval problem in the gradient calculation. Line 7 of
Algorithm 3 closely resembles the traditional Gerchberg-Saxton type phase retrieval method
by applying an amplitude substitution to the residual error [40].

Algorithms that assume lattice types and occupancies inevitably preclude detection of
small scale spatial variations. Notice that during the reconstruction, we do not assume any
structural priors on the sample. Thus, our method is robust enough to show vacancies and
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defects when they are present in the sample. In contrast to [130, 129], we also do not assume
specific shapes of the individual atoms.

Algorithm 3 Iterative reconstruction

Input: Tilt angles {θk}Nθk=1, measured intensity images {Ik,j}
Nθ,Nf
k=1,j=1, interaction parameter

σ, step size α, and maximum iteration Ns.

1: U (1) ← 0, V (0) ← 0, β(1) = 1
2: for s← 1 to Ns do . Outer loop
3: for k ← 1 to Nθ do . Object rotation
4: Wk = BNB

{
Rθk

[
U (s)

]}
5:

(
{ψexit,k,j}

Nf
j=1, {ψk,m}

Nz
m=1

)
← run Algorithm 1 with Wk

6: for j ← 1 to Nf do . Compute residual

7: rk,j ← ψexit,k,j −
√
Ik,j

ψexit,k,j

|ψexit,k,j|
8: end for
9: ∇W ek(U

(s))← run Algorithm 2 with {rk,j}
Nf
j=1, {ψk,m}Nzm=1, and Wk

10: U (s) ← U (s) − αR†θk
{
B†NB

[
∇W ek(U

(s))
]}

11: end for
12: V (s) ← prox

(
U (s)

)
. Regularization

13: β(s+1) ← 1+
√

1+4(β(s))2

2
. Nesterov acceleration

14: U (s+1) ← V (s) +
(
β(s)−1
β(s+1)

)
(V (s) − V (s−1))

15: end for

Return: Estimated atomic potential V (s).

Gradient derivation

In this section, we derive the details of our approach to solve for the inverse problem in
vectorized notation. First, we discretize the coordinate system into Nx and Ny pixels for
r = (x, y) respectively. We sample all 2D functions at these discrete coordinates. Then,
we raster-scanned the samples into column vectors in RNxNy . In addition, linear operators
H,P ,F can be represented by matrices H,P,F ∈ CNxNy×NxNy

For a given tilt angle θk and defocus fj measurement, the error function in (2.17) can be
expressed as:

e2
k,j = e†k,jek,j (2.18)

where ek,j =
√

Ik,j −
√

Îk,j, and (·)† is the hermitian adjoint of a matrix or a vector. Ik,j is

the measured intensity of the image, and Îk,j is the estimated intensity through Algorithm
1.
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Because the multislice propagation model assumes that the atomic potentials of each
layer is independent of each other, we calculate the derivative of e2

k,j with respect to every
layer of the potentials Wm separately by applying the chain rule:

∇Wme
2
k,j(W) =

[
∂e†k,jek,j

∂Wm

]†
=

[
∂e†k,jek,j

∂ek,j

∂ek,j
∂Wm

]†

=

[
−2ek,j

∂ek,j
∂Wm

]†
.

(2.19)

Next, we show the calculation of
∂ek,j
∂Wm

using backpropagation. Following (2.13) and (2.15),

the derivative of ek,j with respect to the mth layer Wm is:

∂ek,j
∂Wm

= −∂(|ψexit,k,j|2)1/2

∂|ψexit,k,j|2
∂diag(ψ∗exit,k,j)ψexit,k,j

∂ψNz+1

∂ψNz+1

∂ψNz
· · · ∂ψm+1

∂tm

∂tm
∂Wm

,

(2.20)

where (·)∗ denotes complex conjugate, diag(·) is an operator that puts a vector into the
diagonal of a square matrix. Next, we list out the the differential terms in the chain rule in
(2.20):

∂(|ψexit,k,j|2)1/2

∂(|ψexit,k,j|2)
=

1

2
diag

(
1

|ψexit,k,j|

)
, (2.21)

∂diag(ψ∗exit,k,j)ψexit,k,j

∂ψNz+1

= diag(ψ∗exit,k,j)HP∆fj , (2.22)

∂ψNz+1

∂ψNz
= P∆zNz

diag(tNz), (2.23)

∂ψm+1

∂tm
= P∆zmdiag(ψNz), and (2.24)

∂tm
∂Wm

= iσdiag(tm). (2.25)

Combining the terms and apply the complex conjugate operator mentioned in (2.19), we
arrive at the gradient of e2

k,j with respect to Wm:

∇Wme
2
k,j(W) =

iσdiag(t∗m · ψ∗Nz)P−∆zm · · · diag(t∗Nz)P−∆zNz

P−∆fjH
†diag

(
ψexit,k,j

|ψexit,k,j|

)(√
Îk,j −

√
Ik,j

) (2.26)

Notice that computing the gradient is almost equivalent to applying the adjoint operators
of the forward propagation to the residual error, hence the name back propagation.
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If we consider all defocus measurements at tilt angle θk, the gradient then becomes:

∇Wme
2
k,j(W) =

iσdiag(t∗m · ψ∗Nz)P−∆zm · · · diag(t∗Nz)P−∆zNz

Nf∑
j=1

P−∆fjH
†
(
ψexit,k,j − diag

(√
Ik,j

) ψexit,k,j

|ψexit,k,j|

)
.

(2.27)

Notice that in (2.27), the last term is equivalent to an amplitude substitution as a re-
sult of using amplitude-based cost function in (2.17), and it coincides with the well-known
Gerchberg-Saxton type update term [40].

During back propagation, terms such as {ψm(r)}Nzm=1 and W will be used. However, since
they were calculated once in the forward measurement, caching them in the forward prop-
agation is recommended to avoid redundant computation. The specific steps for efficiently
computing the gradient are in Algorithm 2 and 3.

Regularization

Although the objective function in Eq.(2.17) accounts for Poisson-distributed noise, the re-
construction quality will still suffer with increased noise. In addition, as we lower the num-
ber of measurements, the inverse problem becomes more ill-posed. We use a regularization
scheme to incorporate a priori knowledge that can mitigate this problem. The regularized
cost function is:

V = arg min
V


Nθ∑
k=1

Nf∑
j=1

e2
k,j + τR(V )

 , (2.28)

where R(·) is a general penalty function, and τ is a tuning parameter for the strength of
regularization.

We tested several common types of regularization methods. LASSO (also known as
l1) regularization, where R(V ) = ‖V ‖1, promotes sparsity in the natural domain and is
extensively used in statistical parameter estimations [95]. Total Variation (TV) regulariza-
tion [109], where R(V ) = ‖D{V }‖1, with D{·} denoting the finite difference operator, is a
well-known denoising technique. TV enforces piece-wise smoothness between neighboring
pixels by promoting sparsity in the finite difference domain. Since we know that the 3D
atomic potential is a smoothly varying function, we choose to implement TV regularization
here.

We use a proximal gradient implementation, outlined in Algorithm 3. First, we compute
the gradient sequentially using through-focus intensities captured at different angles. Then,
we evaluate the proximal operator of the regularization techniques. LASSO regularization
has an efficient closed-form evaluation; however, the evaluation for the TV proximal operator
is in itself another iterative algorithm [10]. In addition, since we assume in simulation that
the atomic potential is purely real and positive (i.e. no absorption of the electron beam), we
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use a positivity constraint to refine our solution space, enforced by performing a projection
of the estimate onto real and positive space. In the case where absorption is present, we can
remove the constraint without changing the algorithm.

2.3 Summary

In this chapter we laid out the theoretical foundation of the multi-slice scattering model that
is capable of capturing the multiple scattering events between the electron probe and the
sample. At the same time, we proposed a imaging geometry for the tomography experiment
as well as a reconstruction framework. When combined with the appropriate regularization,
it is more robust even when low dose tomography problems are solved. In the next few
chapters, we will delve in deeper to see the performance of the algorithm through a series of
simulation as well as experimental datasets.

2.4 List of Symbols

In this second we list all of the symbols defined and used in the article for reader’s conve-
nience, shown in Table 2.1.

Symbol Description

Coordinates
q = (qx, qy) Frequency coordinates
r = (x, y) Spatial domain lateral coordinates
z Spatial domain axial coordinate

Indices
j Defocus index
k Tilt angle index
m Slice index in axial direction
s Iteration counter

Constants
i Imaginary unit, where i2 = −1
Ik,j 2D true intensity measurement of kth tilt and jth defocus
NB Slice-binning factor
Nf Number of defocus measurements per tilt
Ns Number of optimization iterations
Nx, Ny Number of lateral pixels
Nz Number of slices in axial direction
Nθ Number of tilt angles
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α Optimization step size
β Optimization acceleration factor
τ Optimization regularization parameter
λ Electron wavelength
σ Beam-sample interaction parameter
ψ0 2D collimated electron beam

Variables
ek,j 2D residual error between estimated and true measurement of

kth tilt and jth defocus
fj jth defocus distance
gm 2D gradient update for Wm

Îk,j 2D estimated intensity measurement of kth tilt and jth defocus
rk,j 2D intermediate residual error
tm(·) 2D transmittance function corresponding to Wm

U 3D optimization acceleration momentum
V 3D volume of projected slices
Vm 2D mth projected slice of V
W Rotated 3D volume of projected slices
Wm 2D mth projected slice of W
θk kth tilt angle
∆zm Separation distance between Wm and Wm+1

φm 2D residual error backpropagated to mth layer
ψm 2D electron beam forward propagated to mth layer
ψexit 2D exit wave

Operators
B{·} Binning operator (subscript denotes binning factor)
D{·} Finite difference
F{·} Fourier transform
H{·} System transfer function
P{·} Free space propagation (subscript denotes distance)
R{·} Rotation operator (subscript denotes tilt angle)
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Chapter 3

Phase Contrast Atomic Electron
Tomography with Multiple Scattering
Phantoms

Here, we test our algorithm using simulated images of a synthetic needle geometry dataset
composed of an amorphous silicon dioxide shell around a silicon core. By simulating various
levels of electron dose, tilt and defocus, missing projections, and regularization methods,
we identify a configuration that allows us to accurately determine both atomic properties
by using an atom-tracing algorithm that is capable of identifying individual atoms as well
as estimating their sub-voxel 3D positions and chemical species. We show that with an
efficient regularization scheme that exploits the well-known structure of atoms, we can ob-
tain a physically-accurate result, even with very low signal-to-noise ratio (SNR). We also
test the ability of our method to recover randomly positioned vacancies in light elements
such as silicon, and to accurately reconstruct strongly-scattering elements such as tungsten.
After reconstruction, we use our proposed method to enable imaging samples that contain
weakly scattering elements such as carbon, oxygen or even lithium, with either crystalline
or amorphous structures, or a mix of both.

3.1 Phantom Generation

We consider a two-component sample structure, with a tip geometry similar to the exper-
iment described in [140] (and shown in Fig. 3.1). The structure consists of a crystalline
silicon core and a silicon dioxide outer layer. The crystalline core has a tip diameter of
approximately 10 nm, as in experiments [119]. A 2 nm thick shell of SiO2 surrounds the
entire Si tip. The SiO2 coordinates were taken from the SiO2 structure given in [145], which
were computed using Density Functional Theory (DFT). Additionally, a 1.2 Å minimum
distance was enforced between the atomic positions of the Si core and SiO2 shell. In total,
150,847 atoms are present in the structure. A slice of the atomic coordinates are plotted in
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Fig. 3.1(a), showing the core-shell structure.
The overall structure of this sample is complex. It contains both fully crystalline and

fully amorphous regions along the beam direction for all projection directions. Also, while
silicon scatters the electron beam with a moderate cross-section, oxygen atoms scatter only
weakly. Finally, the amorphous SiO2 structure has an Si-O bond length of approximately 1.6
Å [28], making it challenging to resolve the individual atoms in this structure. Hence, this
is a challenging test object with realistic length scales for AET reconstruction algorithms.

3.2 Imaging Modality

Data is captured using the simplest TEM measurement protocol: plane-wave illumination,
typically referred to as HRTEM or phase contrast imaging. Using a modern TEM instrument
equipped with hardware aberration correction, we can image the sample with very little
aberrations and sufficient coherence for atomic resolution imaging [46, 9].

To capture phase information, we use through-focus HRTEM images at each tilt (rota-
tion) angle. Defocusing the electron wave increases contrast and delocalizes the atomic signal
(see Figure 2.1(b)). In this near-field, or Fresnel diffraction regime, each image is high-pass
filtered by the microscope, and the measured signal is modulated by the CTF [66], which
can lead to spatial frequency pass-bands or contrast inversions.

The sample is mounted on a tilt-rotation stage so that it can be rotated with respect
to the electron beam. For the tip sample considered here, a full tilt range of 180◦ has
been demonstrated [140] with the TEAM stage [26]. However, most electron tomography
experiments have a “missing wedge” of tilt angles where the sample geometry or stage prevent
measurements at some projection angles. Therefore, we consider both the full-angle and the
missing wedge situations. When the tilt direction is closely aligned with the crystalline silicon
region of the sample (the low-index zone axis imaging conditions), strong image contrast is
observed (Fig. 3.1(d)).

To image the sample with minimal damage, a low dose is required, resulting in noisy
measurements. The noise can be modeled by an electron counting process, with each pixel

incurring Poisson noise with mean {Îk,j(r)}Nθ,Nfk=1,j=1. Figures 3.1(f) and (g) illustrate a mea-

surement process with a total electron budget of 7,000 electrons/Å2, which is equivalent to
approximately 40 electrons/Å2 when distributed across 60 tilt angles having 3 defocused
images each.

In the meantime, we choose parameters that can be realistically achieved in experiments:
Electron energy: In order to achieve very high resolution, we use an electron accelerating

voltage of 300 kV (de Broglie wavelength 0.0197 Å), as in [140, 141]. While SiO2 is known to
be sensitive to the electron beam, it has been imaged previously using 300 kV HRTEM [88,
54, 71, 48].

Voxel size: The voxel size of 0.5 Å (isotropic in all three dimensions) gives a good
balance between resolution and field-of-view (FoV), with consideration for practical limits on
computation. This voxel size can resolve individual atoms in the amorphous SiO2 structure
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Figure 3.1: HRTEM simulation of the SiO2 model. (a) A slice of the atomic structure,
perpendicular to the electron beam direction. (b) The summed 2D projected potential of
the object at 0◦ and (c) 5◦ rotation, with intensity scaled to show the weakly scattering
edges. (d),(e) Noise-free (infinite dose) HRTEM images at 100 nm defocus for (b) and (c),

respectively. (f),(g) Noisy versions of the same images, simulating a dose of 40 electrons/Å
2
.
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(average Si-O bond length of 1.6 Å). Our reconstruction volume is computationally limited
to (24nm)3, corresponding to 4803 = 1.1 · 108 voxels, which requires 422 MB of storage
space for each full array at single floating point precision. Because we operate in complex
space, the storage size requirements double to 844 MB. Without loss of generality, our final
reconstruction volume contains a large majority of the sample, which includes approximately
120,000 atoms. In the appendix we show that this voxel size is sufficient by reconstructing
from measurements generated with a much smaller voxel size of 0.1 Å.

Tilt angles: Due to the nonlinearity of multiple scattering, choosing the optimal set of
tilt angles analytically is not possible. However, we can get a good estimate by using a
linear approximation (single scattering) from optical diffraction tomography [86, 62], which
treats each tomographic measurement as coming from a particular subspace of the sample’s
3D Fourier spectrum (specifically, a parameterized 2D surface). Crystalline samples have
distinct preferred measurement directions, but amorphous materials do not [24]. Since our
sample contains both, we choose tilt angles that are equally spaced, in order to evenly span
Fourier space. In simulations, we mimic experimental limitations by simulating the effect of
a missing wedge where some range of tilt angles are missing.

Defocus: As few as two measurements taken at different focus positions can provide phase
information [122]. More images will improve the phase result, but must be traded off against
dose, data size and capture time. Linearly-spaced focus steps have been shown to be an
inefficient scheme for capturing all spatial frequencies; instead, we use exponentially-spaced
focus steps [61]. Positive and negative defocus provide essentially identical information about
the sample (up to a sign difference) for aberration-corrected microscopes, so we defocus the
electron wave in one direction only. As a practical issue, we further restrict the defocus
to small enough magnitudes to enable easy translation alignment of multiple images. Due
to the increased signal delocalization, large defocus values also require a larger FoV and
correction of any magnification or rotation errors, which would increase complexity.

3.3 Results

After using the algorithm described above to reconstruct the atomic potentials, the final
step is to use the depth or size of the atomic potential wells to estimate the atomic coordi-
nate positions and classify the atomic species. We have adopted a similar atomic refinement
strategy as previous AET studies [140, 141], which is referred to as “atom tracing.” First,
the reconstructed volume is filtered with a smoothing kernel - a 3D Gaussian distribution
with a standard deviation of 0.5 voxels minus another Gaussian distribution with a stan-
dard deviation of 1 voxel, normalized to zero total amplitude. Next, the local maxima are
recorded as candidate atomic sites. These site positions are refined by fitting a 3D Gaus-
sian function using nonlinear least squares. Next, the fitted intensities are subtracted from
the reconstructed volume and candidate atomic sites are added by again filtering with a
smoothing kernel and finding local maximum.

Next, an iterative fitting routine proceeds; for each atomic candidate, the nearest-neighbor



CHAPTER 3. PHASE CONTRAST ATOMIC ELECTRON TOMOGRAPHY WITH
MULTIPLE SCATTERING PHANTOMS 29

site intensities are subtracted from the reconstructed volume. In this subtracted volume, non-
linear least squares is used to refine the 3D Gaussian function. After each of these iterations,
several criteria were used to remove atomic coordinates. Any sites with a very low intensity
(below 30 V, approximately 10% of the maximum sample potential) or size below 1 voxel
were removed, and any sites within 2.25 voxels of another site were merged into a single site.
After approximately 12 refinement steps, each reconstruction trial was removing less than 2
atomic sites per iteration, and the root-mean square (RMS) change in atomic positions was
less than 0.005 voxels. Note that the thresholds were chosen to give good average perfor-
mance across all datasets, and were not changed except in one specific instance described
below.

To classify atom species, we first generate a histogram of atom intensities. We then fit
the histogram curve with a bi-modal Gaussian distribution and choose the intersection of
the two Gaussian distributions to be the species classification threshold. All atoms having
intensities less than the threshold will be classified as oxygen, and the rest will be classified
as silicon.

While the full reconstructed volume contains over 120,000 atoms, we select a smaller
volume containing 62,402 atom sites to compare with the ground truth atomic configuration,
in order to demonstrate accuracy in atom-tracing and atom identification.

The following sections show the results of varying several experimental or reconstruction
parameters. For each, we show a single slice of the normalized reconstructed atomic potential
that is perpendicular to the tilt axis. The slice was taken from the thickest part of the
protrusion, where the diameter is approximately 12 nm. We plot the atomic coordinates
that were correctly found for each slice, and the missing and false positives.

Additionally, we show tetrahedral shapes for each cluster of 5 atoms that formed a tetra-
hedron, with bond lengths of the 4 corner atoms to the center atom within 0.375 Å of the
mean Si-O bond length of 1.6 Å. These tetrahedra help visualize how well the amorphous
region of the sample was reconstructed, especially for reconstructions with a lot of noise
or artifacts present. This feature classification is an example of the kind of classification
measurement that could be performed even in the absence of clear atomic peaks, as is done
in structural biology [64].

Next, we show two histograms that quantify how well we trace the individual atoms in
Fig. 3.3. The first histogram shows the statistics of atomic potential intensities of identified
atoms. The more resolved the two distributions are, the better we have classified the specific
types of the atoms. The second histogram shows the errors of the 3D position estimation
from the reconstruction. Here, for each identified atom we adopt the root-mean-square
(RMS) from all coordinates:

Position Error =

√
(x∗ − x̂)2 + (y∗ − ŷ)2 + (z∗ − ẑ)2, (3.1)

where x∗, y∗, z∗ are the true coordinates and x̂, ŷ, ẑ are the estimated coordinates. A good
reconstruction’s histogram has a peak close to 0 and a narrow main lobe. We also show
RMS error (ε) in all three dimensions.
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All reconstructions, unless otherwise stated, are full-angle TV regularized, created from
60 uniformly spaced tilt angles, each with 3 defocus steps (25, 45, 100nm) with total incident
electron count of 50,000 electrons / Å2. The regularization parameter τ in Eq. (2.28) is
chosen such that the background noise is suppressed, without over-smoothing (smearing)
the adjacent atoms.

Reconstructions are computed on graphics processing unit (GPU) for accelerated com-
putation (12GB NVIDIA Titan X GPU) and the algorithm converges within 40 iterations
for all scenarios. The total computation time for the dataset mentioned above is less than 2
hours.
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Figure 3.2: Varying dose. Phase contrast AET reconstructions of 1 Å thick 2D atomic
potential slices of a simulated Si-SiO2 reconstruction in x − y across multiple z depths,
using 60 tilt angles and 3 defocus values per angle. (a) Infinite dose (no noise), (b) 50,000
electrons/Å2, and (c) 7,000 electrons/Å2 total dose. Lower dose results in more noise, which
causes errors and artifacts in the reconstruction. Each slice shows the square root of the
reconstructed potential from 0 to 80 volts and the tilt axis is along the vertical direction.
White arrows show location of reconstruction slices for the following sections in FIG. 3.3.

Effect of Electron Dose

In the first set of simulations, reconstructions using different dose budgets are compared
to examine how noise affects the algorithm performance. We chose three doses: infinite
(noiseless), 50,000 electrons/Å2, and 7,000 electrons/Å2. Figure 3.2(a)-(c) shows lateral slices
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Figure 3.3: Varying dose. Phase contrast AET reconstructions in z − y direction for (a)

infinite electron dose, (b) 50,000 electrons/Å
2
, and (c) 7,000 electrons/Å

2
total dose. We

show (top row) a slice of the normalized reconstructed potential and (bottom row) the
corresponding estimated atomic coordinates. Lower dose results in more noise, causing
errors in the volume reconstruction, atom identification, and atom classification.

at multiple z depths, taken from simulations with different dose levels. Figure 3.3 shows a 1
Å thick z-x cross-section slice (intensity normalized), where the location is indicated by the
white arrows in Fig. 3.2, and atom tracing results. In all reconstructions, the atomic peaks
are easily identified. The reconstruction using 50,000 electrons/Å2 total dose over all tilts
and defocused images is nearly identical to the infinite dose reconstruction.

As expected, the reconstruction quality eventually deteriorates as we decrease the dose
budget, with the background becoming noticeably more noisy. We cannot increase the
regularization to compensate, as it will over-smooth the reconstruction. For the dose level of
7,000 electrons/Å2, atoms that are too close to each other are smeared together and missing
sites increase. Noisy fluctuations in the background lead to an increased number of false
positive sites. The noise also causes loss of contrast in the atomic potential intensity, which
can be seen from the intensity histogram; the distributions of two types of atoms are less
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Figure 3.4: Cost function vs iterations to show convergence for various dose budgets. Re-
construction becomes noisier as total dose is lowered, and cost function increases. For each
reconstruction, we ensure convergence is achieved.

resolved when dose is decreased, making it harder to classify the species of individual atoms.
Finally, the RMS position estimation error increases isotropically as we decrease the dose
level.

Figure 3.4 shows the example plots of cost function (Eq. (2.17)) vs iterations. Despite
the convergence, as we lower the dose budget, the predicted intensity of the reconstruction
has more mismatch with the measured intensity, causing the squared error to increase.

Effect of Number of Tilt and Defocus Measurements

Because total dose is distributed across measurements from all tilt angles and defocus dis-
tances, we face a trade-off between number of tilt angles (Nθ) and number of defocus planes
(Nf ). In this set of simulations, we compare the performance of our method as we vary Nθ

and Nf , while keeping the total dose level constant (50,000 electrons/Å2). Figure 3.5 shows
reconstructions from three schenarios: 20 tilt angles (separated by 9◦) with 9 defocus planes
(20 nm-100 nm in steps of 10 nm), 60 tilt angles with 3 defocus planes (20 nm, 45 nm, and
100 nm), and 180 tilt angles with a single plane at 100 nm. These values give a good balance
between using larger defocus values to produce more contrast, but not large enough to make
image alignment difficult or lose resolution due to coherence limits.

Comparing Fig. 3.5(a) and (b), we find that using fewer defocus planes and more tilt
angles results in a better reconstruction of the sample’s structure and improved atom tracing.
Particularly in the amorphous SiO2 region, the number of missing sites is greatly reduced
by using more tilt angles. Given that phase can be recovered from a few defocus planes [61],
it is reasonable that 9 focus steps are not necessary. However, more focus steps should
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Figure 3.5: Varying the number of tilt angles and the number of defocus planes while keeping
a constant total dose. Phase contrast AET reconstructions for (a) 20 tilt angles with 9 defocus
planes linearly increasing from 20nm to 100nm, (b) 60 tilt angles with 3 defocus planes at
20nm, 45nm, and 100nm, and (c) 180 tilt angles with single defocus plane at 100nm. The
case of 3 defocus planes and 60 tilt angles gives minimal error, offering a good trade-off
between number of tilt angles and defocus planes.

help to better reconstruct the atomic potential [61]. For the case of only one defocus plane
(Fig. 3.5(c)), the site intensity histograms show that the distributions of the silicon and
oxygen atoms are not as well resolved. Hence, the case in Fig. 3.5(b) gives a good tradeoff
between accurate structure recovery and good atom classification.

Effect of Missing Tilt Angles

When the tilt-rotation stage is capable of full-angle tomography, isotropic resolution can be
achieved in x, y, and z. However, often projection angles are missing due to sample geometry
or stage limitations. This means that the coverage of the object’s Fourier spectrum is
incomplete [86], often described as a “missing wedge”. In this section, we test our algorithm
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Figure 3.6: The missing wedge problem in the measurements primarily affects the axial
accuracy of our reconstructions. All scenarios have the same total dose. Phase contrast AET
reconstructions for (a) full tomography data with no missing angle , (b) limited tomography
data with 30◦ missing angle, and (c) limited tomography data with 60◦ missing angle.

with missing wedges of 30◦ and 60◦ (see Fig. 3.6(b) and (c), respectively). Across the
accessible tilt angles, the angle separation is constant, such that with constant total dose
(50,000 e / Å2) distributed across all acquisitions, the dose per image increases with the size
of the missing wedge.

We find that the missing wedge problem primarily impacts axial resolution. As more an-
gles are missed, the axial resolution deteriorates along the missing wedge direction, increasing
errors in atom tracing and identification. Comparing the reconstructions in Fig. 3.6(a) and
(c), the portion of missing sites increases from 0.06% to 0.98%. Not only is it harder to iden-
tify atoms, it is also more challenging to correctly identify the 3D positions of each atom.
The position error histogram in Fig. 3.6(c) suggests that position estimate is less accurate
in the axial direction as we increase the missing wedge, while the accuracy in the lateral
directions are maintained.
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Figure 3.7: Regularization is important for image reconstruction quality. Phase contrast
AET reconstructions using (a) real & positivity constraints only, (b) LASSO regularization,
and (c) total variation (TV) regularization. In this case, TV regularization provides the best
performance.

Effect of Regularization

Regularization allows us to use prior knowledge about the object to refine the solution
space and produce better quality reconstructions, even with noisy data. Because low dose
is required in order to preserve sample structure during imaging, our raw data suffers from
significant (Poisson-distributed) noise. Here, we examine the effectiveness of three different
regularization techniques: pure positivity & real constraint, LASSO regularization, and total
variation (TV) regularization, as introduced previously.

The results, shown in Fig. 3.7, suggest that regularization plays a significant role in
denoising with low-dose measurements. With only real & positivity constraints, the back-
ground is too noisy to perform accurate atom tracing and the position estimation error is
large in all dimensions. The intensity histogram in Fig. 3.7(a) shows that it also fails to
provide two resolved peaks that are needed to perform atom classification.
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Figure 3.8: Phase contrast AET reconstructions with vacancies. (a) Ground truth atomic
potential with vacancies. Reconstruction when (b) no vacancies are present, and when (c)
5% of the atoms are removed in the crystalline region and amorphous region. The top row
shows slices in z − y direction, and the bottom row shows slices in z − x direction.

Both LASSO (Fig. 3.7(b)) and TV (Fig. 3.7(c)) regularization significantly improve the
quality of the reconstruction. The LASSO reconstruction produces sharp peaks, but shrinks
some peak intensities as well as sizes of the potential wells. This leads to a worse distribution
of peak intensities, making atomic species classification less accurate. The peak position
estimation results are also less accurate for LASSO than TV, as shown in Table 3.1. Therefore
we choose to use TV regularization for our reconstructions.

Vacancies in crystalline Si and amorphous SiO2

Our algorithm is capable of identifying single-atom defects or vacancies in the sample. Here,
we validate this claim by simulating a Si-SiO2 tip sample that contains vacancies. We
simulate the vacancies and defects by randomly removing approximately 5% of the atoms
in the original sample. Then, with the same geometry and experimental configuration as in
Fig. 3.3(b), we reconstruct the atomic potentials of the defected sample. Figure 3.8(a) shows
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the ground truth atomic potential after the atoms have been removed. The reconstruction
result is shown in Fig. 3.8(c). We also refer to Fig. 3.8(b) for the case where no atoms are
removed. Samples can still be reconstructed when there are single-atom defects present,
because the algorithm does not assume any structural priors.

Robustness against Partial Coherence

In this section, we show the robustness of our algorithm by adding several system imper-
fections that are frequently encountered in real experiments. Then, we use the proposed
framework to reconstruct the 3D atomic potentials of the sample. Specifically, based on the
tilt and defocus configuration we have shown in Fig. 3.3(b), we upsample the object and add
partially coherent illumination to the measurements.

Upsampling: First, we use a voxel size (0.1 Å) finer than the sensor pixel size (0.5 Å)
to generate simulated measurements with accurate diffraction effects. For an object of the
same volume (24nm)3, this increases the number of voxels from 4803 to 24003. We then use
the multislice model to propagate the electron wave through the finer-grid volume. At the
image plane, we bin the pixels to the pixel size of 0.5 Å.

Defocus spread: Next, we simulate the effect of chromatic aberration in the electron
beam. In particular, we use a Gaussian spread of focal planes for each tilt and defocus to
approximate the effect. A defocus spread of 8 Å is reported in [65], so we choose a somewhat
larger Gaussian defocus spread of 20 Å with standard deviation of 10 Å. At the image plane,
we use Gaussian weighting to incoherently sum the measurements.

Spatial coherence: We incorporate spatial partial coherence by simulating a 2D Gaussian
spread of input scattering angles for each tilt and defocus. Referring to the work in [2],
which reported a angular spread of 200 µrad, we choose a Gaussian angle spread of 400 µrad
with standard deviation of 200 µrad. At the image plane, we use a 2D Gaussian weighting
to incoherently sum the measurements.

Combining all of the effects above, we simulate a series of measurements, which we then
use to reconstruct with the fully-coherent framework outlined in 3. Figure 3.9 shows a
reconstructed slice. Despite some reconstruction artifacts, we are able to achieve similar
atom identification accuracy comparing with the case in Fig. 3.3(b), as shown in Table 3.1.
However, clearly the reconstruction artifacts indicated by yellow arrows contribute to the
higher false positive rate during atom tracing, so caution should be taken when dealing with
real measurements in the future.

Robustness against Heavy Atoms

In this section, we demonstrate that the proposed framework can also be generalized to
recover the electrostatic potential distribution of samples that contain both light and heavy
atoms. Without loss of generality, we replaced the silicon atoms in the previously synthesized
sample with Tungsten atoms, which have larger electrostatic potentials, and thus induces
stronger dynamical scattering. The sample closely resembles the one demonstrated in [140].
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Figure 3.9: Phase contrast AET reconstructions for partial coherence with finer sampling
during image calculation formalism. Yellow arrows show reconstruction artifacts due to
partial coherence.

From the sample, we simulated the measurements using the same configuration as that of
Fig. 3.3(b). Figure 3.10 shows the reconstructed potentials of the Tungsten sample.

As shown in Fig. 3.10(b), while we recover most of the atoms in the Tungsten tip, the
reconstruction quality degrades towards the center of the tip, which corresponds to the
thickest region of the needle. These artifacts are due to the large amount of accumulated
dynamical scattering. As a result, these artifacts in the reconstruction will contribute to
error in future atom localization and identification.

Summary of Reconstruction Results

Table 3.1 summarizes all atom tracing and classification results. Note that Fig. 3.3(b),
Fig. 3.5(b), 3.6(a), and Fig. 3.7(c) are equivalent and are repeated for convenience. We
report mean 3D position error, portion of the atoms correctly found, portion of false positives,
and the portion of atoms where the species are correctly labeled.

3.4 Summary

We have tested our reconstruction algorithm for atomic electron tomography applications,
from a tilt series of defocused plane-wave HRTEM images. Our nonlinear model takes into
account multiple scattering of the electron beam and uses slice-binning and fast rotation and
propagation algorithms to decrease the reconstruction time. We show that TV regularization
improves the reconstruction quality. Using a simulated sample with both crystalline Si
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Figure 3.10: Phase contrast AET reconstructions for tungsten crystalline and tungsten oxide
amorphous structure.

and amorphous SiO2 in a core-shell tip geometry, we have demonstrated accurate atomic
reconstructions of more than 60,000 atoms in a sample with a diameter up to 12 nm. Our
method is robust to low-dose measurements, works for a small number of defocused images
and can handle a large missing wedge of tilt angles. Furthermore, we show that our fully
coherent model also works with partial coherent data, both temporally and spatially. The end
result is atomic-resolution tomographic reconstruction of nanoscale samples containing both
strongly and weakly-scattering elements, with either crystalline or amorphous structures.
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Chapter 4

Cryo Electron Tomography with
Multple-scattering Montmorillonite

In this chapter, we test our algorithm proposed in chapter 2 using experimental data of clay
minerals. Visualizing the structure of hydrated interfaces is of nearly ubiquitous interest
across the physical sciences and is a particularly acute need for layered minerals, whose
properties are governed by electrolyte structure, frequently referred to as the electric double
layer (EDL), at solution-mineral interfaces. We will show that cryo electron tomography
enables direct imaging of the EDL at lithium- and sodium-montmorillonite interfaces with
angstrom resolution over micron length scales. Our proposed method reveals ions bound
asymmetrically on opposite sides of curved layers, forming a regular structure that we term
an ion complexation wave.

4.1 Introduction

Layered minerals control carbon, water, and nutrient transport in the lithosphere [115, 105,
49, 125], promote cloud formation [5] and lubricate fault slip [17, 56, 55] through interactions
among charged, hydrated interfaces [53]. Consequently, interactions at the mineral-aqueous
interface have been widely investigated using scanning probe microscope (SPM), surface
force apparatus (SFA), and X-ray reflectivity measurements from the interfaces of single
crystals of mica [58, 15, 74, 81], or atomistic simulations [14]. These techniques inform elec-
tric double layer (EDL) models for the distribution of electrolyte among interface-associated
(complexed) and diffuse locations that ultimately control the properties of these materials.
However, no current model based on the planar geometries typically probed by these tech-
niques generalizes to many natural [27, 139] or colloidal [89, 121, 111, 3] layered mineral
systems because layers can swell and exfoliate, creating microstructures that are disordered
and evolve over time [85, 116, 126, 138]. While measurements of the potential drop at the
interface [35], the change in orientation and density of water molecules [132, 143, 136], and
ordering of water and counterions [96, 18, 108, 29, 144] have revealed aspects of planar inter-
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facial structures in increasing detail, direct images of electrolyte distributions where liquids
and solids meet that are independent of the intermolecular forces imposed by SPM and SFA,
the strongest constraint on theories of hydrated interfaces, have remained elusive.

Direct imaging of interfacial ion complexation in hydrated layered minerals was achieved
by cryo electron tomography (cryoET) of lithium-montmorillonite (Li-Mt) suspensions. Min-
eral and electrolyte distributions were resolved in unprecedented three-dimensional (3D) de-
tail by using the electron tomography framework proposed in 2 that accounts for multiple
electron scattering from low-dose images acquired at multiple defocus values at each tilt
angle. This enabled the recovery of both the amplitude and phase of the electron exit wave
in three dimensions, revealing interfacial structures across the thousands of mineral layers
with an isotropic real-space resolution of 3.64 Å, over a 1.02 µm × 0.79 µm × 0.36 µm field
of view, shown later in Fig.4.5.

4.2 Simulated Results

Figure 4.1: Clay stack and ion configurations used for image and tomogram simulation.

To demonstrate the existence of relationship between ion concentration and absorbance
of the 3D absorbance of the sample and hence being able to capture relevant information,
we first perform a series of tomographic reconstruction simulations of clay structures from
their known atomic structures under different scenarios. In the atomic model, not only did



CHAPTER 4. CRYO ELECTRON TOMOGRAPHY WITH MULTPLE-SCATTERING
MONTMORILLONITE 43

we add the crystal clay structures, we also included the solution of LiCl with concentration
of 0.75M dissolved in water as a more realistic background.

The clay structure’s 3D projection (top view) is shown in Fig. 4.1. The top left inset
sub-figure shows the general shape of the simulated structure - it is a stack of 3 layers of
clay, and curved to a certain degree to match those observed in real experiments. Since the
induced curvature of the clay layers will induce uneven distributions of ions on the two sides
of the surface (inner surface and outer surface), we test our algorithm by creating multiple
scenarios where excess ions are intentionally added to different sides of the clay surface.
Four cases are created: (1) excess Cl ions surrounding all surfaces, (2) no excess Cl ions
are added, (3) excess Cl ions added only on the inner surface, and finally (4) excess Cl ions
added only on the outer surface. Under these situations, the resulting electric potentials are
different and perturbed by the additional electric potential contributed from Cl atoms near
the surface.

For each of the 4 scenarios, we create a tilt-series with 3 different defocus values to match
what we measure in the real experiment, at an electron energy of 300kV. The three defocus
values are -75, -200, and -550nm, respectively, and the tilt range is from -60◦ to 60◦ with
1◦ of increment. Combined together, a total of 363 intensity images are simulated for each
case. To make the simulations physically accurate yet computationally feasible, we choose
an isotropic voxel size of 0.2Å to render the volume. The simulated volume has a physical
dimension of 40 nm(x) × 10 nm(y) × 40 nm (z), corresponding to a total of 2000 × 516 ×
2000 voxels.

Since the electron beam travels along the z direction, each intensity image has a size of
512 × 2000 pixels. Then, to match the pixel size of the physical experiment, the simulated
images are downsampled 8 times to 64 × 250 pixels, corresponding to a pixel size of 1.6 Å.

The downsampled intensity images are then reconstructed using the method proposed in
chapter 2, and the results for 4 individual cases are shown in Fig. 4.2. The first row shows
the mean projected image of the volume along the y-axis, and the second and third rows
are averaged line tracing profile perpendicular to the surfaces at the isolated and stacked
regions, respectively. The integrated density profiles do indeed produce the asymmetric
distributions as planned on the isolated layer. These trends were also present in the stacked
region, although slight sample-size artifacts reduced interpretability. The implication is that
similar analysis can be done and similar phenomenon can be observed with the tomographic
reconstruction should there be asymmetric ion distribution along the opposite sides of the
clay surfaces.

A total of 60◦ missing wedge is included in the simulation to match the experiment,
causing a lack of isotropic reconstruction resolution. As a result, the artifacts in the re-
constructions due to the missing wedge problem is apparent. Also, an absolute relationship
between the absorption profile and the ion distribution cannot be mapped out, as the specific
absorbance is highly related to the experimental parameters, such as tilt range, sample ori-
entation, and sample geometry. As such, even though the technique is capable of observing
the asymmetry, we do not draw a quantitative conclusion.
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Figure 4.2: Integrated ion density profiles in tomographically reconstructed simulated images
from structures shown in Fig. 4.1. Differences in ion densities can be observed between the
four cases in 2D slices of 3D reconstructions (top row). These differences are clear in 1D
profiles adjacent to the single isolated layer (middle row) and are also present in the stacked
region despite the presence of artifacts due to the small reconstruction volume.

4.3 Experimental Results

Next, we demonstrate our 3D volume reconstruction on real lithium-montmorillonite clay
samples. In the experimental samples, the clay layers are closely stacked together, and since
the stacked clays are no longer isolated, one can influence another. However, this is the exact
benefit of the the volumetric tomography as they offer dynamic behavior that other methods
such as x-ray crystallography do. As a result, we can see both the nanoscopic structure as
well as the implication of it on a macroscopic level. In this section, we first go over the
sample preparation and dataset acquisition process. Then, we present our pre-processing
techniques such as image normalization and coarse image alignment. After that, we show
the volumetric reconstruction along with our scientific findings on EDL observation through
clay surface analyses.
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Sample Preparation and Image Acquisition

Suspensions of Li-Mt and Na-Mt with mineral concentrations of 5 mg/mL were deposited
as 3 µL aliquots onto 200-mesh lacy carbon Cu grids (Electron Microscopy Sciences) which
had been glow-discharged in air plasma for 15 seconds. Excess solution was removed by
automatic blotting (1 blot for 10 s, blot force 10 at 95% relative humidity) before plunge-
freezing in liquid ethane using an automated vitrification system (FEI Vitrobot). Imaging
was performed with a Titan Krios TEM operated at 300 kV, equipped with a BIO Quantum
energy filter. Images were recorded on a Gatan K3 direct electron detecting camera with a
pixel size of 0.91 Å/pixel in superresolution mode for cryoE. Imaging was performed under

cryogenic conditions using a low electron dose of 1100 e−/Å
2
. Dose-fractionated movies

with a total dose of 3 e−/Å
2

were acquired at tilt angles ranging from -60◦ in 1◦ increments
and defocus values of -75, -200, and -550 nm at each tilt angle in a dose-symmetric scheme
starting at 0◦ and -75 nm defocus using a custom script in SerialEM software.

Pre-processing

After acquisition, the images are pre-processed before sending into the reconstruction frame-
work. There are two prior steps that are required for this particular dataset. First, all images
need to be normalized to ensure a uniform background. Second, to cope with the sample
drift as well as tilt axis mislignment problem mentioned in chapter 1, we utilize the fiducial
markers present in the sample to coarsely align the images in terms of both translation and
in-plane rotation. After the second step, the image stack shall have all images aligned and
the tilt axis in the center of the field of view. Sample intensity images at different defo-
cus distances are shown in Fig. 4.3, along with zoomed-in regions and their corresponding
Fourier transforms.

Image Normalization

The proposed framework in chapter 2 assumes a uniform plane wave illumination onto the
sample. However, often times in real experiments the illumination would not have uniform
intensity over the entire field of view. Illumination is usually the strongest at the center and
relatively weaker at the side or corner of the field of view. To avoid such model mismatch,
the illumination intensity needs to be corrected.

For each 2D intensity image, we estimate the illumination intensity over the entire field
of view by fitting a 2D binomial-polynomial surface to the image, with the Bézier surface
basis [34]. A 2D Bézier surface of degree m and n can be parameterized as:

p(x, y) =
n∑
i=0

m∑
j=0

Bn
i (x)Bm

j (y) (4.1)
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Figure 4.3: Images taken with different defocus values at the same tilt angle as part of the
tilt series from which the tomogram in Fig. 4.5 was reconstructed. -75 nm defocus (a-c) the
contrast is weakest (a-b) but the information transfer is highest (c). At -550 nm defocus
(g-i) the contrast is highest (g-h) but the information transfer is reduced (i). Scale bars are

100 nm in (a, d, g), 50 nm in (b, e, h) and 1.2 Å
−1

(c, f, i).

where Bn
i (x) is the binomial polynomial evaluated over the unit square

Bn
i (x) =

(
n

i

)
xi(1− x)n−i. (4.2)

For Bézier surfaces of lower degrees, the height profile p(x, y) is slowly varying and can
be used as background estimation to ensure uniform illumination. Since the experimental
parameters (tilt angle and defocus distance) vary when each image is taken, we perform the
same task for the images independently in parallel. After fitting the surface to the images,
the image is divided by the estimated slowly varying background. Notice that this process
may amplify the noise in the dimmer lit areas of the field of view, causing poor reconstruction
qualities in those areas.

After ensuring that the illumination is uniform across the field of view, we further nor-
malize the image by dividing out its mean, so that the background has a normalized value
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of 1, which is also assumed by the physical model - a physical plane wave has an intensity
1. Notice that this step assumes no electron loss when traveling through the homogeneous
medium.

Image Alignment with Fiducial Markers

10nm Gold nanoparticles are used as fiducial markers during the tomography experiment to
align the tilt series. It is easy to show that when a fiducial marker is placed in a volume, the
tilt-series of it can be traced by a sum of sinusoidal functions that is parameterized by the
tilt angle and the spatial positions of the marker inside the volume.

The algorithm first detects and tracks all markers in the tilt series, requiring certain
degree of manual effort. Then, images are translated to ensure that the markers follows
the sinusoidal trajectory according to the nominal tilt angles. After that, when all markers
are plotted together (using minimum projection), it is clear in Fig. 4.4 that the traces of
all fiducial markers are slanted. The slanted traces of markers indicate a misaligned tilt
series. The red solid line in Fig. 4.4 is the experimental tilt axis, whereas the dashed line
is the nominal tilt axis. Therefore, an in-plane rotation of angle θ is needed such that the
experimental tilt axis coincides with the nominal tilt axis that is centered and parallel to
the y − axis. The registration process requires padding of values 1 (again, intensity of a
plane wave) to avoid any boundary artifacts. As such, the boundaries may seem unnatural
in Fig. 4.3.

Figure 4.4: All traces of gold nanoparticles as fiducial markers(in blue) overlayed on top of
minimum projection of the tilt-series. A in-plane rotation of angle θ is needed to ensure that
the tilt axis is parallel to the y-axis.
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Notice that some marker traces are shorter than others, and there are a few reason for
that. First the markers can go out of the FoV at certain sample tilt agnles, especially those
closer to the boundary of the volume. Second, when the markers are locally dense and partial
or full occlusion occurs, our tracking algorithm fails to detect the correct marker, as it can
be seen on the top left corner of Fig. 4.4. However, since the in-plane rotation angle θ is
a global parameter shared among the entire tilt-series, error from tracking can be tolerated
and treated as noise as long as sufficiently many markers are found.

For finer registration and alignments, the tilt series are passed into IMOD, an open-source
software widely adopted in the community [70].

Reconstructed Volume

When the tilt-series is normalized and registered, it is passed into the multi-slice framework
for reconstruction. All volumetric reconstructions are performed on the Lawrence Berkeley
National Lab Lawrencium High Performance Computing Clusters. Due to the large size of
the volume, the reconstruction process is carried out in a distributed fashion by splitting the
tilt-series along the direction of the tilt axis. Splitting the tilt-series along the single tilt axis
is intuitive and most accurate, as long as enough of pixels along the tilt axis is cropped and
sufficient overlaps are used to ensure the diffraction effects and multiple scattering effects
are preserved.

At a mineral volume fraction of 2% and electrolyte concentrations of C = 0.1M and
0.75M the lithium-montmorillonite (Li-Mt) suspensions are composed of mixtures of exfo-
liated layers and stacked layers separated by electrolyte solution, termed osmotic hydrates
(Fig. 4.5a,d). All Mt layers are curved, despite having chemical compositions that are nom-
inally symmetrical about the layer midplane and therefore exhibiting no spontaneous cur-
vature due to, e.g., residual strain. In contrast to the common assumption that osmotic
hydrates are planar stacks, we find that they are stacks of curved layers with coaligned cur-
vature axes (Fig. 4.5 b, e). Furthermore, we find that the degree of curvature differs between
the two electrolyte concentrations (Fig. 4.5b, e), which we show below is a result of the
strong coupling between curvature and the potential drop at the mineral interface, Ψ, due
to differing counterion complexation profiles (i.e, charge distribution) on opposing sides.

The large field of view in cryoET enables comparison to structural information accessible
by in situ X-ray scattering of equivalent samples over two orders of spatial magnitude. We
observe that the average interlayer spacing, 〈D〉, reflected by a peak in the reciprocal-space
structure factor that is commonly used to characterize the structures and interaction forces
in layered mineral suspensions [89], differs between electron- and X-ray-based techniques
(Fig. 4.5c, f). This indicates that the structure sampled by cryoET, with a volume of
0.29 µm3, differs from the ensemble structure of a suspension within the approximately
108 µm3 volume sampled by the X-ray beam. Therefore, X-ray profiles are not adequately
representative of individual suspension microstates from which interaction forces arise. In
other words, the X-ray structure factor cannot be uniquely inverted to produce the irregular
distribution of layer spacings that is obviously present in Fig. 4.5a. Only from cryoET can
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Figure 4.5: Li-Mt suspensions viewed with cryoET. Isosurfaces of Li-Mt layers in 0.1 M
(a) and 0.75 M (d) lithium chloride. (b, e) Subvolumes from (a) and (d), showing osmotic
hydrate stacks. Comparison of structure factors from X-ray scattering and cryoET in 0.1 M
(c) and 0.75 M (f), showing larger average interlayer spacing and larger layer thickness at
lower electrolyte concentration.

we determine that positionally ordered regions like that observed in Fig. 4.5b exist in some
places but not others, and that not all layers participate in such ordered stacks.

Novel analyses of the 3D cryoET datasets in real and reciprocal space show how lithium
complexation varies with electrolyte concentration. While the integrated and cryoET data
in Fourier space are directly comparable to X-ray scattering, the difference is that both the
phase and amplitude of the cryoET data are known by virtue of recording the data in real
space first, allowing us to unambiguously interpret the structure factor peaks. For example, a

peak in the cryoET structure factor between scattering vectors q = 0.50-0.57 Å
−1

(Fig. 4.5c,
f) corresponds to an average layer thickness, 〈t〉, that includes the aluminosilicate layer and
hydrated lithium counterions at the interface, but not bulk electrolyte. The thickness of an
exfoliated layer is 12.6 +1.7/-1.8 Å in 0.1 M lithium chloride and 11.0 Å +1.0/-1.9 in 0.75
M lithium chloride. Thicker layers at low electrolyte concentration are thus indicative of a
greater fraction of fully hydrated lithium ions that reside further from the layer midplane,
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while conversely, thinner layers at elevated electrolyte concentration are direct evidence
of a higher fraction of lithium ions that make inner-sphere complexes with the mineral
interface. This is in accordance with the expectation of EDL models, which predict that
higher electrolyte concentration drives complexation equilibria towards partially dehydrated
inner sphere complexes.

Montmorillonite Clay Analysis

Segmentation

The clay sheets in the reconstructed cryoET absorption volumes were segmented using cus-
tom codes written in Matlab. The below variables were defined for a bin 2 reconstruction
size. The goal was to reduce the set of voxels to a set of “sheets” which were defined ass
a cloud of points representing a 2D sheet embedded in 3D space, each with an associated
normal vector representing the sheet surface normal. First, we generated a list of unit vectors
ni with roughly even angular spacing over a hemispherical surface, representing the possible
sheet orientations. Next, for each orientation we generated a 3D kernel ki defined by the
function

ki =
1

2
− 1

2
erf

(
t/2− |r · ni|

w

)
, (4.3)

where r is the real space coordinates centered on the origin, t = 3 is the estimated sheet
thickness, and w = 1 is the estimated sheet interfacial width. This kernel was normalized
by applying a 3D Gaussian envelope function and subtracting the mean, i.e. the formula

knormi =

[
ki −

〈
kiexp

(
−|r|

2

2σ2

)〉]
exp

(
−|r|

2

2σ2

)
(4.4)

where σ = 8 is the Gaussian envelope standard deviation, and 〈·〉 represents the expected
value. For each potential orientation, we use Fast Fourier Transforms to efficiently compute
the correlation of the kernel with the reconstructed volume.

Classification

We then take the maximum correlation value in each voxel over all orientations, while also
storing the best-match orientation. We then classified the sheet voxels by applying two
thresholds: (1) a global threshold by using a minimum value for the correlation signal,
and (2) voxels with correlation signals greater than at least 18 neighboring voxels (out of a
possible 26 neighbors).

Next, we computed the nearest neighbor network for the set of all sheet voxels. This
network was used to segment the set into separate sheets using two matching rules: (1)
locally connected voxels, and (2) those with orientations within 30◦ of each other. At this
stage we also discarded sheets which consisted of less than 1000 voxels, since these were either
false positives or sheets too small to make accurate measurements of the surface topology.
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Surface Profile

The final analysis steps consisted of measurements performed on the segmented surfaces.
After individual voxels are grouped together to form larger clay sheets, local change curvature
within the clay sheet can be estimated. For each voxel in clay sheet, together with all its
neighboring voxels within a certain distance d, the local surface curvature is parameterized
by

S(x, y) = a1 + a2x+ a3y + a4x
2 + a5y

2 + a6xy, (4.5)

where S is the surface height (also the z coordinate) given coordinates x and y, and a1, ..., a6

are coefficients describing the local surface. The coordinates of each voxels (x, y, z) are known
a priori, and a linear regression is run to solve for the best coefficients a1, ..., a6 that describes
the local parabolic surface.

Once the parabolic surface is fitted, mean surface curvature 2H was then calculated by
using the following expression

2H =
(1 + S2

x)Syy − 2SxSySxy +
(
1 + S2

y

)
Sxx(

1 + S2
x + S2

y

)3/2
, (4.6)

where Sx and Sy are the first order spatial derivatives of the surface, and Sxx, Syy, and
Sxy are the second order derivatives.

From the parabolic surfaces, surface normal vectors are also defined, and so are line traces
crossing the surface in the normal direction.

Discussion

The real-space structure of the EDL and its dependence on curvature were first quantified
by extracting and averaging the reconstructed absorbance magnitudes normal to the surface
of Mt layers, with representative exfoliated Mt layers with low and intermediate curvature
(Fig. 4.6a,b) compared with Mt layers exhibiting higher curvature in an osmotic hydrate
(Fig. 4.6c). Statistical analysis of between 5.3× 104 and 1.3× 105 absorbance profiles taken
normal to the layers at each midplane voxel revealed features below the nominal voxel res-
olution (Fig. 4.6d-f), in analogy with the common practice of particle- or sub-tomogram
averaging in cryoEM of biological macromolecules [21]. The resulting averaged ion-density
profiles reflect some expected aspects of EDL models of layer silicates. For example, a re-
gion of low absorbance extends approximately 5 nm from the layer midplane (Fig. 4.6d-f),
arising from the depletion of chloride ions that are repelled from the negatively charged min-
eral. Thus, absorbance profiles starting from the layer midplane and moving into the bulk
solution can be attributed to dominant contributions from mineral, lithium, and chlorine,
respectively. In contrast to existing models, however, real-space ion-density profiles reveal a
prominent role for layer curvature, H, in modulating interfacial ion distributions. Compared
to the low-curvature layer (Fig. 4.6d), both high-curvature layers show asymmetry in the
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Figure 4.6: Effect of layer curvature on montmorilonite-electrolyte ion-density profiles in
0.1 M lithium chloride. (a) Density reconstruction of a single exfoliated layer with low
curvature quantified by H, the reciprocal of the local radius of curvature. (b) Single layer
with intermediate curvature. (c) Highly curved layer in an osmotic hydrate stack. A single
layer is colored according to local curvature and the neighboring layers shown in transparent
gray. (d) Symmetric average ion-density profiles from within 20 nm of convex and concave
sides of the low-curvature layer. Shading indicates the variance from 128,180 individual
profiles. (e) Asymmetric average ion-density profile from the intermediate-curvature layer.
(f) Asymmetric, and higher magnitude, average ion-density profiles between stacked layers
(note difference in scale). (g) Non-negative matrix factorization (NNMF) of all absorbance
profiles in (d), showing first two factors, f1 (Mt) and f2 (Li). (h) Increasingly asymmetric f2
in NNMF profile of curved layer in (b). (i) Highly asymmetric NNMF f2 for curved stacked
layer.
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anion depletion region directly adjacent to the mineral surface and in the anion distribu-
tions at distances up to 15 nm from the mineral (Fig. 4.6e,f). Thus, concavity sequesters
counterions over appreciable distances near exfoliated layers.

Often, profiles do not converge at large distances because of the presence of neighboring
layers. Such a case is presented in Fig. 4.6c, in which the neighboring layers are shown in gray.
The interlayer distance is not uniform between neighboring layers, and profiles taken normal
to the midplane of a layer (over which the degree of curvature, and thus the orientation of the
normal vector, vary considerably) extend over a large range of distances before encountering
a neighboring layer (and the interfacial ion distribution associated with that layer). The use
of normal vectors to extract ion profiles in Fig. 4.6d-f leads to reproducible trends in ion
distributions, despite capturing broad distributions of interfacial curvature and interlayer
distances. We also applied non-negative matrix factorization (NNMF) to the collection of
normal profiles in order to separate these many convoluted contributions into quantifiable
trends in the ion distributions, shown in Fig. 4.6g-i.

We observe that outer-sphere lithium complexation is asymmetrically distributed, with
greater concentrations on the convex side relative to the concave side. Due to the strong ab-
sorbance from the layers, contributions from inner-sphere Li complexes could not be directly
quantified. However, asymmetric outer-sphere complexation increases with increasing cur-
vature (Fig. 4.6g-i), a clear demonstration that both inner- and outer-sphere complexation
states coexist and that their relative proportions are dependent on layer curvature.

Summary

In this chapter, not only have we validated our proposed framework to achieve high resolution
3D reconstruction of multiply scattering samples, but also have new findings to demonstrate
that complexation waves occur over a wide range of conditions in layered mineral systems
that arise from the exchange of elastic, electrostatic and hydration energy as ions partition
from the bulk electrolyte, complex with the mineral layer and induce it to bend. A new
interaction force, carried by complexation waves, emerges through the delocalizing effect of
curvature, which spans length scales ranging from hundreds of nanometers to angstroms, and
strongly couples the temporal response of layered mineral systems to chemical or mechanical
perturbations. This work has opened a new window into similar analysis of structure of
other materials using cryoET.
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Chapter 5

Efficient Computation for Electron
Tomography

With the recent development of high-resolution detectors and algorithms that can account
for multiple-scattering events,thicker samples can be examined at finer resolution, resulting
in larger reconstruction volumes than previously possible. In this chapter, we introduce a
series of optimizations toward efficient 3D reconstruction.

5.1 Introduction

In a brightfield Transmission Electron Microscopy (TEM) system, a plane wave illuminates
the sample and phase delays are induced by the sample’s electric potential. Phase contrast
can be obtained by slightly defocusing the image of the sample, and the image contrast will be
linear with respect to the cumulative phase as long as the sample is weakly-scattering. Many
biological samples and thin foils meet this criteria; as such, classical tomography methods
that rely on the projection slice theorem[41, 86, 102] can be directly applied to solve for 3D
structures. However, to ensure the validity of the weakly-scattering assumption, the sample
should be thin, and this poses a great challenge to sample preparation. For thicker samples
or materials with larger Z number, nonlinear scattering effects become non-negligible.

In addition, many samples cannot tolerate high electron dose – these samples are often
vitrified in medium at cryogenic temperature to avoid sample damage from the electron
beam, known as Cryo-EM for 2D imaging or Cryo-ET for 3D imaging [12]. Electron beam
damage is a complex process that is not fully understood, but is roughly inversely correlated
with atomic number and occurs more rapidly at surfaces and defects. Therefore, most matter
on Earth’s surface is generally beam sensitive in an electron microscope, being composed of
light elements that are frequently hydrated and imaged with cryoEM/cryoET [53, 137].
Being able to model the multiply-scattering events between the sample and the beam probe
and more efficiently ‘use’ the electrons counted in the images can reduce the amount of dose
needed to achieve the same reconstructed SNR [106].
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To image thicker and more diverse samples, multiple scattering and the non-linearity
in the image formation process should be taken into account [131, 118, 63, 106, 98, 78].
This can be done by incorporating such phenomena into the forward model, for example
by implementing a multi-slice (beam propagation) model [131, 63, 106], which represents
the 3D scattering process using a sequence of 2D layers of transmittance functions that
cause beam absorption and phase delay. The input plane wave is propagated through the
layers, assuming a fixed distance of free space in between. This method is intuitive, robust,
and efficient to implement. Multi-slice methods are powerful, but more computationally
expensive than traditional projection-based methods, and often need to be run dozens or
hundreds of times inside an iterative reconstruction loop.

Computational requirements are further increased by recent advances in direct electron
detector technology which have greatly improved imaging throughput, both in frame rate
and pixel count. Many detectors have demonstrated capacity to capture images with up to
8k× 8k pixels [47, 87, 120, 82]. In our study, for example, a Gatan K3 detector is used, and
the images captured have 5760 × 4092 pixels. Given that 3D techniques generally capture
dozens or hundreds of images in a tilt-series, the result is that very large volumes (in terms
of voxels) can be reconstructed.

With these hardware improvements, more computational resources are required to pro-
cess the increasing amount of tomography data. The scale of the datasets usually exceeds the
capacity of a modern single-node computer; hence, parallelization is needed to decompose
the reconstruction into multiple parallel sub-problems. Previous work in linear tomography
has extensively used parallel computing [36, 43, 7, 8, 51, 52, 135], but requires linear pro-
jections or tomographic matrix sparsity. Since multiple scattering is a nonlinear interaction
between the wave and the sample, a matrix cannot be written to represent the scattering pro-
cess. Consequently, these methods are not compatible with existing distributed computing
strategies.

Particular in the following sections, we first describe a slice-binning mechanism we use
to reduce the number of axial slices needed per scattering calculation while maintaining
accuracy. Secondly, a GPU-enabled python tomography solver is presented. With GPU
acceleration, the reconstruction speed is significantly improved. Third, a distributed com-
puting framework is presented that reconstructs large volumes by decomposing a projected
tilt-series into smaller datasets such that sub-volumes can be simultaneously reconstructed
on separate compute nodes using a cluster. We demonstrate our method by reconstructing
a multiple-scattering montmorillonite sample at high resolution from a large field-of-view
tilt-series dataset.

5.2 Slice-binning

In both the forward and back propagation of the multislice scattering model, the major bot-
tleneck in computation is the Fourier transform. The number of Fourier transform performed
is proportional to the number of slices in z. Since complete tomography without missing
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angles achieves isotropic resolution, the number of slices in z should match the number of
pixels reconstructed in x and y, so the number of slices along the beam direction should be
equally as dense, causing very heavy computation.

In this section, we describe our application of the slice-binning in the tomography algo-
rithm [114]. With slice-binning, at every tilt angle we increase the thickness of each slice (i.e.
reducing axial resolution per angle). As a result, while total thickness of the sample remains
constant, the total number of slices is reduced, along with the computation time. However,
because tomography allows us to capture information about each voxel from multiple angles,
the redundant information from the other tilt angles allows us to still reconstruct the object
at the original resolution isotropically.

In particular, we sum the 2D projected potentials of NB consecutive layers at each angle:

BNB{V } =

{
M∑
m=1

VnNB+m(r)

}dNz/NBe−1

n=0

, (5.1)

where d·e is the ceiling function, and

M =

{
NB , if n < dNz/NBe − 1

Nz − nNB , if n = dNz/NBe − 1
. (5.2)

We then compute both the forward model and back propagation using this binned potential.
After the gradient is calculated, we distribute the gradient to the full volume by applying
the adjoint operator, B†:

B†NB{VB} =
{
VB,d m

NB
e(r)
}Nz
m=1

. (5.3)

In the simulations shown in the results section, we bin every 10 slices. Since the pixel
size in z is 0.5 Å, the effective slice separation becomes 5 Å, which is sufficient to recover
atomic resolution in the 2D parallel directions. This combined with many tilt angles will
produce atomic resolution in 3D with pixel size of (0.5Å)3.

However, the reconstruction quality deteriorates as we gradually increase the number of
slices being binned NB. Therefore, the extent to which we can bin the slices is of special
interest. The precise mathematical error analysis is not available due to the non-linearity of
the multislice method, and so to estimate an upper bound for slice-burring we use the 3D
CTF of the imaging system by assuming single or weakly scattering [124]. Then, we are able
to linearize the problem to obtain an estimate of the error. In a traditional imaging system
with numerical aperture NA = λ/∆x, where ∆x is the pixel size, the axial resolution can be
characterized as:

∆z = λ/(1−
√

1− NA2). (5.4)

Based on Nyquist sampling criterion, the maximum thickness for every slice should be less
than ∆z to support the axial resolution at every angle.
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Figure 5.1: Plot of cost function vs iterations to show convergence for various binning factors
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We test the effectiveness and fundamental limit of the proposed slice-binning method.
Here, we exponentially increase NB to examine the effect it has on reconstruction error,
computation time, and convergence behavior of the algorithm.

To simplify our discussion, all synthetic datasets in the validation process are generated
from 60 uniformly separated tilt angles with 3 defocus planes, assuming infinite dose, and the
phantom is the same as that described in 3. We do not apply any regularization methods as
they alter the convergence behavior depending on the choice of the regularization parameter.

5.3 Implementation of Multi-slice Algorithm

The underlying reconstruction framework is powered by a Phase Contrast Tomography Solver
library that is custom written in Python. This solver repository allows one to input the tilt-
series and a list of configuration parameters and outputs the reconstructed volume. The
details could be found online at GitHub.

The solver is written in a modularized fashion, into many different classes, as illustrated
Fig. 5.3. First, an object of the highest level class TorchTomographySolver is constructed
by passing in all relevant measurement parameters such as tilt-series, tilt angles, voxel sizes,
as well as reconstruction parameters such as number of iterations, step size. After passing in
the data and configuration parameters, the constructor of TorchTomographySolver class
will subsequently in a hierarchical fashion create lower level objects of the following classes:

Class name Description
ImageRotation Rotates a 3D sample to an arbitrary degree.
PhaseContrastScattering Models 2D image formation process from 3D sample.
ImageTransformOpticalFlow Registers measurement images.
Regularizer Enforces prior information about the sample.
AETDataset Manages all measurements and corresponding parameters.

The configuration parameters will be parsed and distributed to the constructors of indi-
vidual classes accordingly to initiate the objects.

The object of TorchTomographySolver class has a method called run() to start the
reconstruction process when called. A flag forward only(Default false) is used to switch
between a single forward pass or full reconstruction. If the forward only is true, then a
single forward scattering operation is done to form the tilt-series given the input 3D sample.
On the other hand, if the flag is false, a full reconstruction will be done. The reconstruction
is conducted iteratively. In each iteration, the predicted measurements from a 3D estimated
sample are formed by rotating the sample and propagating the electron wave through it using
multi-slice. Then, the predicted tilt-series is registered with the experimental tilt-series to
correct for translation and in-plane rotation error. The registration step is optional and is
built based on an open source library named pyStackReg [123]. After that, a gradient step
with respect to the error between the predicted and actual tilt-series is taken to update the

https://github.com/yhren1993/PhaseContrastTomographySolver
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3D sample. The gradient is automatically calculated by Pytorch Autograd functionality and
thus is transparent to us. Regularization is enforced after all tilt-angles have been visited.
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Rotate
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Figure 5.3: Brief software architecture for the proposed framework from high level to lower
level.

To ensure fast recovery of the 3D sample, GPU (Graphics processing unit) -accelerated
implementation of the multi-slice algorithm is needed. Different from CPU, GPU helps
parallelizing standard operations such as element-wise multiplication and Fourier transforms,
thus vastly reducing the computation time. In our work, we used a python package named
Pytorch [97] that has automatic low-level parallelization for complex numbers. Therefore,
without changing much of the python code, one can move the computation entirely from
CPU to GPU.

Notice, however, that the capacity of GPU memory is limited comparing to CPU RAM.
Therefore, one needs to be cautious and efficient about the content saved in the GPU mem-
ory. Frequent transfer of arrays between CPU and GPU memory can become a bottleneck
of the computation efficiency. In our work, the 3D sample is always saved on the GPU
memory once the reconstruction begins. In the meantime, the tilt-series is saved on the
CPU as not all of them are used at the a time. When a particular tilt-angle is visited, the
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corresponding measurement will be transferred from CPU memory to GPU memory. Total
variation regularization mentioned in chapter 2 requires large amount of memory (3 times or
more, depending on the implementation) in order to save intermediate variables. As such,
largest size of 3D sample is limited. An alternative solution would be to use other classes of
regularizers, or simply run the total variation regularization on the CPU, naturally coming
with an impact on computation efficiency.

5.4 Distributed Compute for Electron Tomography

In this section, we propose a distributed algorithm that preserves the coherent diffraction
effects in the tilt-series, and thus works for multiple-scattering forward models. We first
show that by carefully cropping out particular regions of each raw image in the original tilt-
series, any given sub-volume within the full volume can be reconstructed, though artifacts
may occur due to contributions from outside of the sub-volume. Thus, we can define many
sub-volumes within the full volume and reconstruct them all in parallel on separate com-
pute nodes, while still accounting for multiple-scattering effects. The sub-volumes are then
stitched together to form the full-volume reconstruction. We demonstrate the performance of
the algorithm experimentally by solving small tomography problems while varying different
parameters. Both reconstruction time and mean square error (MSE) are reported. Finally,
we demonstrate the tomographic reconstruction of a large volume consisting of clay minerals
vitrified in aqueous solution. To our knowledge, this is the largest volume (in number of
voxels) ever reconstructed in Cryo-ET, with a size of (0.73(x)× 1.00(y)× 1.73(z)µm3) and

resolution of 1.82 Å
3
/voxel. At this resolution, not only do we see unprecedented microscopic

features, but also we can visualize and understand macroscopic sample structure immersed
in the solution. In all, our method offers the following advantages:

• It is model independent as we only manipulate the tilt-series before the reconstruction.
The choice of tomography algorithm is thus decoupled, ensuring compatibility with
any multiple-scattering tomography model.

• It requires no inter-node communication – during the reconstruction, all parallel com-
pute nodes are completely independent from each other. Therefore, the reconstruction
speed of one node does not impact the speed of others, and results in less overall process
idle time.

• It does not require one to possess deep knowledge of computer architecture, because
implementing it does not need low-level architecture-specific optimization such as ex-
ploiting the matrix sparsity and other structural properties of the linear inverse prob-
lem.
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Figure 5.4: Conceptual illustration of our distributed reconstruction algorithm. Two ex-
amples of parallel nodes are shown in this figure, in blue and green, respectively. Each
correspond to a different sub-volume of the sample, the tilt-series of which are shifted by
∆xθ = x0cos(θ) + z0sin(θ) and cropped from the full tilt-series dataset depending on the
position of the sub-volume with respect to the full volume. After all sub-volumes are recon-
structed, they are stitched together to form the large-volume reconstruction.

Methods

Reconstructing a sub-volume

In this section, we will show that a subset of the full volume can be reconstructed inde-
pendently by shifting and cropping each raw image in the tilt-series appropriately. Each
sub-volume within the full 3D sample volume can then be reconstructed in a distributed
fashion, as shown in Fig. 5.4. To calculate which parts of each raw image to crop for a given
sub-volume, we use the mathematics of linear projection, also known as the Radon trans-
form [103, 104]. We first look at the 2D projection image formulation for single-axis tilt along
the y-axis. The 2D projected image I(x, y) at tilt angle θ is related to the volume-of-interest
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through a Radon transform:

I(x, y; θ) =

∫∫
f(x′, y, z′)×

δ(x′cos(θ) + z′sin(θ)− x) dx′dz′,

(5.5)

where f(x, y, z) is the 3D sample and δ(·) denotes Dirac delta function. A full projection
dataset is formed by rotating the 3D sample to different angles θ. The tilt axis is assumed to
be at the center of the volume. However, when a sub-volume of the 3D sample is considered,
the center of it does not necessarily coincide with the center of the full 3D volume, and
further manipulation is required to relate the tilt-series of the sub-volume to that of the full
volume.

Consider the tilt axis of a sub-volume. It is parallel with the true tilt axis of the full
volume during the experiment, and translated along x and z by x0 and z0, respectively. This
is equivalent to the sample being shifted in opposite directions. The new projected images
I ′(x, y; θ) are then:

I ′(x, y; θ) =

∫∫
f(x′ − x0, y, z

′ − z0)×

δ(x′cos(θ) + z′sin(θ)− x) dx′dz′.

(5.6)

After performing a change of variables (x′′ = x′ − x0 and z′′ = z′ − z0) and simplification,
the relationship becomes

I ′(x, y; θ) =

∫∫
f(x′′, y, z′′)×

δ[x′′cos(θ) + z′′sin(θ)−
(x− x0cos(θ)− z0sin(θ))] dx′′dz′′.

(5.7)

The new projections can now be related to the original projection as:

I ′(x, y; θ) = I(x− x0cos(θ)− z0sin(θ), y; θ). (5.8)

Given a tilt angle θ, the new projection corresponding to the tilt axis of the sub-volume is
simply a shift along the x-axis with an amount of ∆xθ = x0cos(θ) + z0sin(θ). With the new
tilt-series I ′(x, y; θ), the set can be cropped while ensuring that the subset is centered around
the tilt axis of the sub-volume. Because the result suggests a global shift of the projection
along the x-axis for each tilt angle θ, it preserves the multiple scattering and diffraction
effects in the original tilt-series. As such, new sets of tilt-series corresponding to different
sub-volumes can be calculated independently from the original tilt-series. After that, each
new set of tilt-series can be used to reconstruct the sub-volumes simultaneously on different
compute nodes, in order to improve compute speed.
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Sub-volume Overlap

When splitting a full volume into smaller sub-volumes, overlap between adjacent sub-volumes
is necessary both to avoid empty areas in the volume, as well as to avoid artifacts due
to diffraction and multiple scattering, where light scatters outside the edges of the sub-
volume [22].

We can derive the minimum amount of overlap in order to avoid empty areas and ensure
coverage of the full 3D volume. From a tilt series of size Nx × Ny pixels, the size of the
reconstructed volume is Nx×Ny ×Nz voxels, where each is the number of pixels along each
of the three axes, respectively. Since the sample is rotating with respect to the y-axis, the
support of the reconstructed sample within the volume is an inscribed elliptic cylinder with
semimajor axis Nx/2, semiminor axis Nz/2 and height Ny. If Nx = Nz, the support becomes
a cylinder with radius Nx/2. When we concatenate the sub-volume cylinders together to
form a 3D volume, there will still be areas in the volume that remain empty (i.e. the four
corners) unless there is sufficient overlap between the cylinders.

x
z

y

Nx
Nz

Ny

Nx

Nz

Reconstruction Volume
Reconstruction Support

Nz
4

Nz
2

Top view

Figure 5.5: Illustration for calculating the minimum overlap between sub-volumes that covers
the entire volume, assuming Nx = Nz. The reconstructed volume has cylindrical support
and the inscribed blue square with side length of

√
2/2Nz is used for final volume stitching.

As such, the minimum overlap required is approximately 30%.

In our method, we overlap the adjacent sub-volumes, and only consider the cuboid in-
scribed within the cylinder ( Fig. 5.5) for each sub-volume reconstruction. By geometry, the
inscribed cuboid has length and width of

√
2/2Nx and

√
2/2Nz, respectively. This corre-

sponds to a minimum required overlap of 30% along both x-axis and z-axis. In Section 5.4,
we show the effects of varying the overlap parameters. If overlap is not sufficient, major
artifacts start to appear in the reconstructions.
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Given the size of each sub-volume and the amount of overlap desired, the number of
parallel nodes (M) needed to cover the full volume is M = MxMyMz, where

Mx =

⌈
1− rvxro
rvx − rvxro

⌉
. (5.9)

0 ≤ rvx ≤ 1 is the ratio of size of reconstructed volume to that of full volume in x, and
0 ≤ ro ≤ 1 is the overlap ratio between consecutive sub-volumes. My and Mz can be derived
similarly. Notice that this is also the largest number of parallel nodes needed on the cluster
to reconstruct the full volume.

Another benefit that follows from being able to solve for sub-volumes is that one can
easily reconstruct a custom volume-of-interest in order to quickly zoom in on particular
features in 3D, or to avoid reconstructing areas that the sample does not occupy without
requiring unnecessary computation. For instance, flat samples that have disproportionate
ratio of length and width to depth can have reconstructions with larger Mx,My and smaller
Mz.

Distributed algorithm

We now describe the overall algorithm for our distributed reconstruction method and show
the pseudo code in algorithm 4. With sub-volumes having size {rvxNx, rvyNy, rvzNz} and
an overlap ratio ro, we first calculate the centers of each sub-volume. As shown previously,
along the x-axis, there are Mx nodes, so for each node m(1 ≤ m ≤Mx), the center xm is:

xm =
Nx

2
(1 + (rvx − rorvx)(2m−Mx − 1)) . (5.10)

The centers are defined to be uniformly spaced. Similarly, volume centers along the y-axis
and z-axis can be calculated as yl and zn, respectively, where 1 ≤ l ≤My and 1 ≤ n ≤Mz.

Next, we calculate the sub-volume center points’ deviation from the center of the full vol-
ume, and apply Eq. (5.8) to obtain the cropped tilt-series corresponding to each sub-volume
from the original tilt-series (see Fig. 5.4). Each sub-volume may then be reconstructed inde-
pendently of all other sub-volumes with any choice of tomographic reconstruction algorithm.
As mentioned previously, we use the multi-slice algorithm [106] for multiple scattering. After
all sub-volumes are reconstructed, we stitch them together into the full volume reconstruction
using a volume blending method described in [20, 22].

Results

To test our distributed algorithm, we used the experimental data described in Whittaker et
al. [137]. The sample is clay minerals suspended in a vitrified solution of electrolyte. The
sample is imaged using a Titan Krios TEM operated at 300 KeV. A Gatan K3 direct electron
detector is used, which has an effective pixel size of 0.91 Å under superresolution mode. The
images are then binned down by a factor of 2 after registration. After binning and removing
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Algorithm 4 Distributed algorithm

Input: Tilt angles {θk}Nθk=1, measured intensity images {Ik,j}Nθk=1, sub-volume size
{rvxNx, rvyNy, rvzNz}, overlap ratio ro, reconstruction algorithm algrecon, and stitching algo-
rithm algstitch.

1:

(
{xm}Mx

m=1, {yl}
My

l=1, {zn}
Mz
n=1

)
← Eq. (5.10)

2: . Pre-calculate centers
3: for each sub-volume center i do
4: x0 ← Nx/2− xm
5: z0 ← Nz/2− zm
6: for k ← 1 to Nθ do . Shift and crop projections
7: ∆x← x0 cos θk + z0 sin θk
8: ∆y ← ym
9: I ′k ← shift (Ik, [∆x,∆y])
10: I ′k ← crop center (I ′k, size = [rvxNx, rvyNy])
11: end for
12: f ∗i ← algrecon

(
{I ′k}

Nθ
k=1

)
13: end for
14: f ∗ ← algstitch

(
{f ∗i }Mi=1

)
Return: Estimated full volume f ∗.

the boundaries, each image has 5760×4092 pixels. The full tilt series has 121 tilt angles and
3 defocus images per tilt, with a total applied dosage of 1100 e−/Å. The large field-of-view
3D reconstruction of the sample allows not only a direct comparison with the previously
determined average static structure factor by in-situ X-ray scattering, but also more insight
into the dynamic mesoscale properties of the sample [137].

To reconstruct each sub-volume, we used the algorithm outlined in [106] with a multi-slice
forward model. Thus, it includes nonlinear modelling of the 3D sample that captures the
multiple-scattering events between the probe and the sample. We then solve for the sample’s
3D electric potential by formulating a nonconvex optimization algorithm. The multi-slice
reconstruction algorithm is implemented using PyTorch [97], including GPU acceleration.
The distributed algorithm, on the other hand, is implemented in Python using only CPU.

The complexity of the multi-slice algorithm [106] on a single volume is O (N logN),
where N = NxNyNz is the number of voxels in the reconstruction. By following the calcula-
tions in Section 5.4, the total computation complexity across all compute nodes is therefore
O (M(rvN) log (rvN)), with sub-volume ratio rv = rvxrvyrvz (ratio of the size of a sub-volume
to that of the full volume) and M nodes required to cover the full volume. Figure 5.7 il-
lustrates the complexity of the proposed algorithm in comparison with the full tomographic
reconstruction. For all overlap ratios (ro) and sub-volume ratios (rv) tested, our algorithm
has higher complexity than if a single multi-slice reconstruction is run on the entire volume.
However, since all M tomographic reconstructions can be carried out simultaneously on dif-
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Figure 5.6: Splitting the volume into more sub-volumes, each with smaller size, enables
faster reconstructions, but also induces more artifacts. (a) Extra reconstruction error (MSE
with respect to a full reconstruction) vs. sub-volume size. (b) Number of nodes needed and
reconstruction time for each node vs. sub-volume size. (c)-(f) Example z−x slice and (g)-(j)
y − x slice of reconstructed 3D volume with various sub-volume sizes. As the sub-volume
size decreases, artifacts increase, as indicated by the white arrows.

ferent nodes of the compute cluster, the total run time for our algorithm is notably faster
than for the full reconstruction.
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Figure 5.7: Computation complexity as a function of ratio of reconstructed sub-volume size
to full volume size and sub-volume overlap ratio. The complexity is normalized with respect
to that of a single reconstruction.



CHAPTER 5. EFFICIENT COMPUTATION FOR ELECTRON TOMOGRAPHY 67

All parallel reconstructions were performed using the Lawrencium high-performance com-
puting facility at Lawrence Berkeley National Lab. The cluster contains nodes with one Intel
8-core Xeon Silver-4112 CPU and two NVIDIA V100 GPUs per node. The raw intensity
measurements were first loaded into the RAM of a single node that then split it into mul-
tiple parallel job instances. Then, the jobs were distributed such that each individual node
reconstructed one sub-volume. Finally, all results were aggregated on a single node to form
the full volume using a linear stitching algorithm [20, 22].

We tested the performance of the proposed algorithm by varying sub-volume size (Fig.
5.6) as well as overlap ratio (Fig. 5.8) and calculating the Mean Square Error (MSE) with
respect to a single full tomographic reconstruction (f ∗), which we treated as the ground
truth in the error calculation:

MSE(f) =
1

N

∑
x,y,z

|f(x, y, z)− f ∗(x, y, z)|2 . (5.11)

For these comparisons, the raw images were down-sampled by a factor of 4× in order to
make a full tomographic reconstruction feasible on a single NVIDIA V100 GPU, and par-
allel reconstructions were carried out with only one reconstruction on a GPU at a time for
benchmarking purposes.

Varying Sub-volume Size

First, we compared the performance for different sizes of individual sub-volumes, rv, which
trade off parallelization (compute speed) for reconstruction quality. Specifically, we increased
volume sizes from 503 voxels to 2503 voxels, with the overlap ratio being fixed at 25%. Fig-
ure 5.6 shows the result. As expected, decreasing the sub-volume size causes the reconstruc-
tion quality to deteriorate and artifacts to appear. This is because the proposed algorithm
requires cropping of the projected image to reconstruct a reduced volume. However, elec-
trons that scatter or diffract outside of the designated volume in 3D could still contribute
to the projection data, and hence create artifacts during reconstruction. For larger sub-
volume sizes, there is less contribution from outside of the sub-volume, and hence artifacts
are reduced.

As predicted by the complexity analysis, reconstruction time decreases when more nodes
are used and the size of each sub-volume decreases (Fig. 5.6(b)). Overall, many essential
structures in the sample that appear in the full reconstruction are also present in the re-
constructions at all sub-volume sizes. However, there are diminishing marginal returns on
reconstruction time as we decrease the sub-volume size. When N is sufficiently small, other
operations in the algorithm start to dominate the reconstruction time, such as memory trans-
fer, sample rotation, and regularization. The increasing severity of artifacts prevented us
from reducing the size further.
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Figure 5.8: Increasing the overlap between adjacent sub-volumes reduces reconstruction
errors. (a) Extra reconstruction error (MSE with respect to a single reconstruction) vs.
overlap ratio. (b) Number of nodes needed and reconstruction time for each node as overlap
ratio varies. (c)-(f) Single z − x slice of reconstructed volume with various overlap ratios.
(g)-(j) Single y − x slice of reconstructed volume with various overlap ratios. (f) and (j) are
full single reconstructions without any overlaps.

Varying Overlap Ratio

Next, we tested our algorithm’s performance for varying overlap ratio, ro. As mentioned
in Section 5.4, overlaps are necessary to take into account edge effects due to diffraction
and multiple-scattering. The overlap ratio is varied from 15% to 65% while maintaining the
sub-volume size to be a cube with 1503 voxels. Similar to the previous section, we compared
the MSE and compute times when the parameter is changing, with results shown in Fig. 5.8.
As predicted, with only 25% overlap (less than the minimum overlap of 30% calculated
earlier in Section 5.4), the reconstruction suffers from some artifacts (see white arrows in
Fig. 5.8(c) & (g)). With overlap ratio greater or equal to 45%, the MSE starts to converge.
It is worth noting that the reconstruction time for individual sub-volume reconstructions are
almost identical, because overlap ratio does not play a role in the complexity of individual
sub-volume reconstructions; however, the number of nodes needed to cover the entire volume
varies. Thus, the total complexity is still increasing as a function of overlap ratio.

Carbon Footprint

Since our methods will use significant compute power for large-volume high-resolution datasets,
we report the equivalent carbon dioxide (CO2) emission of the previous experiments. All
numbers are calculated in units of Kilogram (Kg), and as a baseline we assume that each
NVIDIA GPU V100 has a carbon footprint of 0.13 Kg/hr. Estimations were conducted
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using the MachineLearning Impact calculator presented in [72]. The total CO2 emission is
the baseline multiplied by total amount of computation taken across all nodes, as shown
in Fig. 5.9. Figure 5.9(a) shows the carbon footprint for experiments that vary sub-volume
sizes, and (b) shows the experiments that vary overlap ratio. In Fig. 5.9(a), the carbon diox-
ide emission converges above 1003 voxels, because the increase in number of nodes M trades
off with reduced time needed to reconstruct smaller volumes. However, the trade-off is no
longer true for sizes smaller than 1003 voxels, as computation overhead starts to dominate.
The curve in Fig. 5.9(b) mostly adheres to the predicted result - since the size of sub-volumes
remain the same for any overlap ratio, the CO2 emission is scaling linearly with the number
of nodes in order to cover the full volume. Therefore, the overlap ratio should be chosen
to be as small as possible, yet satisfying the minimum derived in Section 5.4 to achieve an
acceptable reconstruction quality.
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Figure 5.9: Carbon footprint with (a) varying sub-volume sizes and (b) varying overlap
ratio. The optimal combination should be made by balancing the two parameters, such as
sub-volume size of 1503 voxels and a 35% overlap ratio.

Full Resolution Reconstruction

We show in Fig. 5.10 a reconstruction of the full lithium-montmorillonite dataset in a volume

of 3952× 5500× 952 voxels with isotropic resolution of 1.82 Å
3
/voxel. This corresponds to

a volume of 0.73(x)× 1.00(y)× 1.73(z)µm3. Figure 5.10(a) shows the maximum projection
of the volume along the z-axis. All features are reconstructed, with occasional artifacts
observed in the background, either due to noise or the stitching algorithm. We zoom in on
three regions-of-interest (ROIs) in Fig. 5.10(b-j). Within each, the clay layers have different
degrees of curvature and number of neighboring layers. For each sub-volume, two cross-
sections at different depths are shown, along with a volume render. As pointed out with

https://mlco2.github.io/impact#compute
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Figure 5.10: Full field-of-view 3D reconstruction of lithium-montmorillonite, with a total of
5500×3952×952 voxels. (a) Maximum depth projection of the absorption channel. Three
smaller regions-of-interest (ROIs) are cropped and zoomed in, with sizes of 4003 voxels. (b)-
(c),(e)-(f),and (h)-(i) Show zoom-in lateral slices at different depth for ROI 1, 2, and 3,
respectively. (d), (g), and (j) show 3D volume renders for each of the ROIs.

green arrows in Fig. 5.10(b,c), two layers that are closely stacked (∼ 1nm separation) can be
observed in ROI 1. If the full volume was reconstructed using the downsampled tilt-series,
such observation would not be possible. Also enabled by high-resolution reconstruction,
detailed crystal structures that were previously blurred out in [137] are now visible, as
indicated by white arrows in Fig.5.10(b,h and i).

Notice that the total depth of the sample is significantly smaller than the other two di-
mensions, since the sample is fairly flat. Because our method is capable of reconstructing
a custom-sized volume, a smaller depth is chosen such that computation resources are not
wasted on empty space. The volume is broken down into 702 nodes of cubic volume re-
constructions, with an isotropic overlap of 25%. Each sub-volume has a size of 5003 voxels.
The full volume stored in complex 32 bit float has a size of ∼154 GB, which is difficult
to fit into the RAM of a computer, particularly with the overhead storage requirements of
the algorithm. In addition, GPU acceleration is often needed in order for the algorithms to
converge in a reasonable amount of time, and volumes with such sizes cannot be fit into the
memory of a modern GPU without partitioning.
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Discussion

The distributed computing algorithm we proposed allows large tomography datasets to be
decomposed into smaller independent sub-problems for faster compute times on clusters.
One can choose different values of overlap ratio (ro) and sub-volume sizes (rv) according to
their tolerance of artifacts, or optimize parameters to minimize the overall carbon footprint
while ensuring a reasonable reconstruction quality.

Once the full tilt-series is split into multiple independent projection data, reconstructions
are carried out in parallel by any tomography algorithm of choice. In our work, to accurately
model the interaction between the electron beam and the clay minerals in the large volume
at microscopic level, we adopted the multi-slice algorithm [106] that is capable of account-
ing for multiple-scattering samples. Our distributed algorithm is similar to that in X-ray
CT by Basu and Bresler [7, 8]; however, we use coherent multiple-scattering reconstruction
algorithms instead of the filtered back-projection algorithm. We also do not continue to
decompose the tomography problem in a hierarchical manner for further parallelization, as
in [7, 8] because we find that there is a limit as to how small a sub-volume can be without
suffering from severe artifacts. Further acceleration could be achieved by combining the
slice-binning idea outlined in [106]. In this method, consecutive axial slices at each tilt angle
are summed into a “thicker” slice during the forward propagation. In the update step, the
error gradient is equally distributed back to individual slices. Slice-binning allows signifi-
cant reduction of number of slices required to propagate through the 3D sample, without
significant loss of accuracy.

To reduce the reconstruction artifacts, effort can be spent on exploring more advanced
algorithms for volume stitching. In our study, we used a simple weighting function for all
sub-volumes similar to [20, 22]. More complicated algorithms such as pyramid blending, or
2-band blending, could be explored [44, 32]. However, the major drawback of these methods
is that they are content-aware to some extent, and could be altering the volume-of-interest
in order to reduce stitching artifacts near the boundary.

5.5 Summary

In this chapter, we described multiple efficient computing strategies for 3D reconstruction
from intensity-only TEM tilt-series data. By combining these methods with a multiple-
scattering reconstruction algorithm, we have successfully demonstrated the performance
boost. We compared various parameters on experimental data and showed performance
difference in terms of MSE and reconstruction time, and we reconstructed a large 3D volume

of size (0.73(x)×1.00(y)×1.73(z)µm3) with resolution of 1.82 Å
3
/voxel, the largest cryo-ET

reconstruction to our knowledge. With minimal restrictions for the scattering algorithm of
choice, and minimal knowledge required of computer architecture, these methods open the
door to larger tomographic reconstructions that require heavy computational resources, and
provides great flexibility in choosing specific volumes-of-interest to recover.
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Chapter 6

Conclusion and Future Directions

In this dissertation, I have explored a new possibility to achieve low-dose and efficient electron
tomography for multiple-scattering samples. Conventional electron tomography methods al-
ways rely on linear projection assumptions between the sample and the electron probe, hence
will either require very thin or weakly scattering samples, which poses great challenges to
the sample preparation process, or demands large dosage on the sample, creating irreversible
damage. The framework that we proposed allows for reconstruction of thicker and more
scattering samples in the field of materials science and biology.

Specifically, in Chapter 2 we laid out the theoretical foundation for the framework. We
chose to combine the the tilting of the sample under TEM plane wave illumination as well as
the through-focus stack to recover its 3D structure. The tilt series of the sample offers a new
3D perspective of the sample, and is necessary in order to achieve isotropic resolution in x,
y, and z. And since the samples do not absorb electrons, when illuminated by a collimated
electron beam they show very little amplitude contrast in focus. Therefore, deliberate defocus
images are necessary to show phase contrast and quantitatively recover the electric potentials
of the samples. In addition to the imaging geometry, both the forward scattering model and
inverse process for describing the interaction between electrons and samples were derived.
The forward scattering model is part of the image formation processing given a 3D sample,
and the inverse process is for iteratively updating the sample estimation. Lastly, in Chapter
2, we briefly described the regularization process in our work as an attempt to enforce our
prior information about the sample.

In Chapter 3, our proposed method was validated via simulation at atomic resolution.
In the beginning of the chapter our motivation as well as our choice of the phantom were
explained, which includes over 100,000 individual atoms configured both as amorphous and
crystalline structure. After that, detailed parameters for the simulation were laid out such
as voxel size, tilt angles, electron wavelength, and so on. These parameters are practically
designed so that they can be achieved in real experiments. Then, a series of scenarios were
explored. First, we varied the dosage and mimicked the Poisson nature of the electron arrival
process, and we showed that we were able to reconstruct the 3D volume with relatively high

accuracy with as low a dosage as 7000 e−/Å
2
. Second, with a fixed amount of total dosage, we
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tested the trade-off between the number of tilt angles and defocus images. We concluded that
at least 2 defocus planes are needed in order to recover quantitatively accurate potentials,
and the rest of the electrons ought to be used to have denser tilt angles to improve 3D atomic
position estimation accuracy. Third, the performance of our algorithm was tested against
different degrees of tilt range. Up to 60◦ of missing wedge, our method can still recover
individual atoms. However, since the axial resolution deteriorates as we increase the amount
of missing wedge, the axial atomic position estimation accuracy worsens. In addition to the
cases mentioned, we also tested different regularization methods, robustness against atom
vacancy in the sample, heavy atoms, and poor experiment conditions when partial coherence
is present.

In Chapter 4, we demonstrated an application of our framework in earth sciences. Asym-
metric EDL structure along the clay surface normal direction was observed through recon-
structing the sample’s absorption profile. We first generated a phantom volume with realistic
atomic structure of the Montmorillonite clay vitrified in aqueous solution. We then simu-
lated various cases with uneven distribution of ions along the surfaces, giving rise to the
asymmetric EDL profile. By forming the tilt-series from the phantom and reconstructing
it, we demonstrated the possibility to observe the asymmetry from absorbance profile of the
sample. In an experiment, a Montmorillonite clay sample is prepared in cryogenic mode,
and a tilt-series is obtained. A sequence of pre-processing steps were performed in order to
avoid model mismatch. After pre-processing, the full volume of clay was recovered, from
which we segmented out individual layers to confirm what we observed earlier in simulation.

In Chapter 5, we revealed the backbone of our tomography framework – computation.
Throughout the dissertation work, many attempts have been made at improving the com-
putation efficiency of our algorithm. First, a slice-binning idea was implemented that avoids
propagating the electron wave through all layers in the 3D volume by aggregating consecu-
tive layers. We showed that the reconstruction has similar quality as without slice-binning,
while offering as much as an order-of-magnitude boost in computation time. Second, a
GPU-enabled python package is implemented to enable fast reconstruction. The package is
open-source on Github and has been tested on other tilt-series datasets as well. Third, a
distributed computing method was introduced to split the volume into multiple sub-volumes
and simultaneously reconstruct them by manipulating the original tilt-series. The method
is particularly useful when a compute cluster is available. It is also noteworthy that both
diffraction and multiple scattering effects can be preserved in all of the optimizations we
attempted.

While our electron tomography framework has been thoroughly tested both in simulation
and some experimental datasets, another class of application has yet to be completed – atomic
electron tomography (AET). So far, AET has only been done using HAADF STEM [141].
However, not only does HAADF STEM require a large dosage on the sample or strongly
scattering atoms to obtain high SNR, it also assumes linear projection and does not account
for multiple-scattering effects. As a result, samples that are beam sensitive or multiple-
scattering cannot be imaged using this technique, and phase contrast electron tomography
provides a natural alternative. Although atomic resolution datasets have been collected,
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high-accuracy recovery of individual atoms is yet to be achieved. To do that, the following
problems need to be explored/solved:

• Tilt-series alignment without fiducial markers: Recall that in Chapter 4 gold
nano particles were used as registration markers for estimating the tilt error and sample
drift between frames. Unfortunately, samples examined at atomic resolution often have
comparable size as the gold fiducial markers, so they are no longer available for tilt-
series registration. Compared to HAADF STEM, phase contrast electron tomography
also often requires more than one defocus image per tilt. Change in contrast at different
defocus distances will create extra difficulty for the registration algorithm. Poor tilt-
series alignment can cause ‘fake’ atoms or degraded resolution in the reconstruction.
Previously, I explored a joint estimation scheme to solve for both sample and drift
simultaneously. However, due to the high dimensionality and ill-posed nature of the
problem, being accurate in estimating one can significantly affect the accuracy of the
other. If one does not have a confident estimate of the 3D sample, they can hardly
estimate an accurate drift. Additional prior information regarding the sample or the
system may alleviate this issue.

• Imaging system aberration correction: Inconsistent system aberration in electron
microscopes due to the change of parameters of magnetic lenses can also degrade the
reconstruction quality. The major source of aberration is caused by the difference be-
tween the nominal defocus values and the true experimental values. After the sample
is tilted to a new angle, it needs to be manually refocused, inconsistent judgement of
zero focus can cause a deviation from nominal defocus values. Luckily, for amorphous
atomic resolution materials, the defocus values can be estimated after a defocused in-
tensity image is measured – the radial profile of its Fourier transform is characterized
by the defocus coherent transfer function (a.k.a. Thon Rings [42]) and can be fitted to
estimated the defocus values. The remainder of the system aberrations such as spher-
ical, coma, or astigmatism are more subtle and need finer estimation and correction
techniques. Note that this is a more general problem and is not limited to AET. It re-
quires more attention in AET, because higher resolution and atomic position accuracy
is desired.

• Electron probe induced sample change (damage) during experiment: During
the experiments, fast traveling electrons can cause random irreversible effects to the
sample, such as knocking atoms off, changing atom positions, or contaminating the
sample. All current electron tomography methods (including ours) neglect this effect
by assuming a consistent 3D sample throughout the experiment. While it might not
be an issue for mid-resolution tomography, it can certainly degrade the reconstruction
quality by either creating ‘fake’ atoms or confusing the alignment algorithms. One
idea we have is to consider a time dynamic model to allow sample change during the
experiment. Not only do we solve for the 3D sample, but also we estimate the change
in between tilts. This model would vastly increase the dimensionality of the problem,
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and we expect that strong priors are needed to confine the solution space. For instance,
the change of sample in between two consecutive acquisitions ought to be sparse.
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