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Abstract

Simultaneous Localization and Mapping Through the Lens of Nonlinear Optimization

by

Amay Saxena

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Simultaneous localization and mapping (SLAM) is the problem of jointly estimating the
state (such as pose, velocity, IMU biases etc) of a robot (localization) along with a map of
the environment of the robot (mapping). The typical estimators used for landmark-based
visual-inertial SLAM fall into one of two categories: batch optimization methods, and fil-
tering methods. This paper analyzes the landmark-based SLAM problem through the lens
of nonlinear optimization, and presents a framework that can be used to analyze, imple-
ment, and flexibly interpolate between a vast variety of SLAM algorithms. In particular,
we demonstrate the equivalence between filtering based algorithms such as the Multi-state
constraint Kalman filter (MSCKF) and optimization based algorithms like the sliding win-
dow filter. We present a re-interpretation of the MSCKF in terms of nonlinear optimization,
and present a novel implementation based on it. We empirically compare the performance
of sliding window filters and MSCKF on challenging image sequences, and use the proposed
re-interpretation to explain the relative performance characteristics of the two classes of
algorithms.
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Chapter 1

Introduction

In many robotic applications where a robot is deployed in an unknown environment, it is
necessary for the robot to localize itself in its surroundings and also build a map of those
surroundings. Simultaneous Localization and Mapping (SLAM) is a category of problems
that concern a robotic agent in an uncharted environment that must jointly estimate a map
of its surroundings in addition to its location within that map. Applications of SLAM include
map construction in military applications or search-and-rescue missions [2, 3, 4, 5].

A typical SLAM algorithm consists of the front end and back end. The front end per-
forms feature extraction, data association, and outlier rejection, to process and interpret raw
sensor data. The processed data are then supplied to the SLAM back end, which does infer-
ence to produce a state estimate compatible with the data, and with underlying dynamics
and measurement models. Back end algorithms can be filtering or batch optimization based.
Filtering methods use processed data to iteratively refine the distribution of recent states
[28, 21, 15], and are typically stated in terms of matrix manipulations to the mean vector
and covariance matrix of the estimated variables. By contrast, batch optimization itera-
tively estimates recent states as the solution to an optimization problem whose objective is
constructed from odometry and landmark measurement error terms. Empirically, both fil-

tering and batch optimization algorithms have attained state-of-the-art performance, though
optimization-based methods often attain higher accuracy at the cost of higher computation
cost [2, 14, 9].

The main concrete contributions of this work are as follows:

1. A re-statement the popular Multi-State Constraint Kalman filter (MSCKF) [21] algo-
rithm as an iterative optimization, and a proof of the equivalence thereof. We show
how using our interpretation allows us to transparently analyze the properties of the
algorithm and suggest straightforward improvements and modifications to it in a way
that is conceptually much more difficult when the algorithm is stated in its standard
form (in terms of sparse matrix operations).
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2. A novel implementation of the MSCKF based on the above result.

3. An empirical evaluation and comparison of the MSCKF and other batch-optimization
based sliding window techniques; it is shown how the presented framework allows us
to easily explain the comparative features of the two techniques.

4. Experimental validation on real-world data.

Below, Section 1.1 formulates the SLAM problem for robotic agents on Euclidean spaces.
Section ?? generalizes this framework to settings where the state is overparameterized, and
constrained to evolve on a smooth manifold. Section ?? then presents our main algorithm
in three submodules: Gauss-Newton steps, linear approximation, and marginalization. Sec-
tion 4.3 demonstrates how our framework encompasses existing filtering algorithms, e.g.,
the Extended Kalman Filter (EKF) and Multi-State Constrained Kalman Filter (MSCKF).
Section ?? describes implementation details and provides empirical evaluations of a number
of sliding window techniques on real-world data.

1.1 Problem Set-up

Landmark-based SLAM

SLAM is an umbrella term for a large variety of problems and algorithms that generally
differ in terms of the sensors that are assumed to be available to the robot and the format
in which the map is to be specified. We focus in particular on the paradigm of landmark-
based SLAM, where the environment is specified as an unordered collection of landmarks.
Landmark-based SLAM is the dominant paradigm in situations where the full 6DOF pose of
a robot needs to be estimated. It is also the dominant paradigm in the case of Visual SLAM,
where the primary exteroceptive sensor available to the robot is a camera. The objective
then, is to jointly estimate the robot states (at each timestep) along with the states of every
landmark that comprises the map of the environment. Note further that we will generally
assume that the environment is static, so that the true states of the landmarks do not vary
with time.

In landmark-based SLAM, two types of variables must be jointly estimated: robot states
and features or landmarks. The state at each time t, denoted xt ∈ Rdx , encapsulates infor-
mation describing the robot, e.g., camera positions and orientations (poses). The feature
positions available at time t in a global frame, denoted {fj | j = 1, · · · , p} ⊂ Rdf , can be
obtained by analyzing information from image measurements {zt,j | j = 1, · · · , p} ⊂ Rdz and
state estimates, where zt,j is the measurement of landmark j as seen by the robot at time
t (when it is in state xt). These measurements provide information regarding the relative
position of the robot in its environment, and should be used to constrain the robot states
and feature states through the measurement of the latter from the former.
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States and features are described by a smooth (i.e., infinitely continuously differentiable)
dynamics map g : Rdx → Rdx and a smooth measurement map h : Rdx × Rdf → Rdz , via
additive noise models:

xt+1 = g(xt) + wt, wt ∼ N (0,Σw), (1.1)

zt,j = h(xt, fj) + vt,j, vt,j ∼ N (0,Σv), (1.2)

where Σw ∈ Rdx×dx ,Σw � 0 and Σv ∈ Rdz×dz ,Σv � 0. Here, g describes the discrete time
evolution of the robot state, and represents our model of the robot’s dynamics. Although this
is not notated for simplicity, the dynamics map g may depend on an odometry measurement
or a control input ut in addition to the state xt.

Equations 1.1 and 1.2 represent prior knowledge about the evolution of the robot states
and the generative process for landmark measurements. Thus, the objective of a SLAM
algorithm is to find the assignment to the unknown variables {xt}, {fj} that best explains the
observed set of landmark measurements {zt,j} and odometry measurements/control inputs
{ut}, subject to the constraints imposed by the dynamics map and measurement model.

SLAM as a Nonlinear Optimization Problem

The objective of SLAM is to estimate state and feature positions that best enforce constraints
posed by the given dynamics and measurement models, as well as noisy state and feature
measurements collected over time. This can be formulated as the unconstrained minimization
of a sum of a collection of weighted cost terms, which represent constraints generated by the
dynamics and measurement maps.

Say that at time t, we have detected and measured p landmarks. Let St ⊆ {0, · · · , t} ×
{1, · · · , p} be a set of index pairs such that (i, j) ∈ St if and only if landmark j was mea-
sured by the robot at time i. The unknown variables to be estimated are the robot states
{x0, · · · , xt} and landmark states {f1, · · · , fp}. Denote the vector of unknown variables
ξt = (x0, · · · , xt, f1, · · · , fp). Then we wish to find minξt c(ξt) where

c(ξt) := ‖ξt − µ0‖2
Σ−1

0
+

t−1∑
i=0

‖xi+1 − g(xi)‖2
Σ−1

w
+
∑

(i,j)∈St

‖zi,j − h(xi, fj)‖2
Σ−1

v
(1.3)

where we notate ‖v‖2
A := v>Av for any real vector v to be the Mahalanobis norm of v

weighted with a positive semi-definite matrix A. We weigh each cost term by the inverse
covariance matrix to best incorporate our prior belief distributions. The cost function above
is comprised of the Mahalanobis norms of a number of vectors (such as (xi+1 − g(xi)),
(zi,j − h(xi, fj)) etc.). We will refer to each such individual vector as a residual vector
and the scalar Mahalanobis norm cost term as a residual term. The first term in the cost
function ‖ξt − µ0‖2

Σ−1
0

represents a prior belief distribution N (µ0,Σ0) over the entire vector

of unknowns ξt. An initial prior over the first pose x0 is often necessary, since usually the
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pose of the robot in some global frame is not observable. So the initial prior term lets us
constrain the absolute pose of the initial robot state. Subsequently, this prior term may be
updated to incorporate new information, as we shall see in later sections.

In subsequent sections, we will introduce techniques used to minimize this cost function.
Since the above cost function is highly nonlinear and non-convex, we cannot, in general, find
the global minimum. Rather, we will start off with an initial guess for the assignment ξ∗,
and then use gradient based methods to improve upon this initial guess until convergence. If
the initial guess is good enough (i.e. is within the attraction basin of the global minimum),
then we can hope to converge to the global minimum. The standard way to do this iterative
minimization is by interpreting the cost function above as a nonlinear least squares problem
and then using methods such as the Gauss-Newton method or Levenberg-Marquardt (which
can be thought of as Gauss-Newton using a trust-region approach).

As time evolves and we receive new landmark measurements and odometry measure-
ments/control inputs, we add new residual terms to the cost and the cost function grows.
Usually, SLAM is intended for real-time operation, i.e. we wish to produce real-time es-
timates of the robot’s pose and environment map. As such, we also need techniques to
manage the size of the optimization problem as time grows. To this end, we will describe
marginalization, a technique in nonlinear optimization that can be used to eliminate vari-
ables from the cost function while maintaining, up to first order, the constraints imposed by
the removed variables on the remaining variables. In this way, we can eliminate variables
from our optimization problem without losing all the information they contain.

In the next section we describe, in detail, the Gauss-Newton and Marginalization algo-
rithms. One of the central objectives of this work is to analyze the properties of these two
algorithms as they are applied to the SLAM problem. We will show that a vast variety of
SLAM algorithms in the literature can be described as the iterative application of Gauss-
Newton descent and Marginalization, and that viewing them through this light gives us the
analytic horsepower to compare and improve upon them. The objective is to provide a trans-
parent framework for the analysis of landmark-based SLAM algorithms through the lens of
nonlinear optimization, in such a way that makes it easy to compare different algorithms
and interpolate between them or improve upon them.
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Chapter 2

Main Algorithm

In this chapter, we describe techniques for solving the least-squares minimization of the
SLAM cost-function introduced in the prequel. In particular, we will introduce the Gauss-
Newton algorithm and the Marginalization algorithm, which are both widely used techniques
for the real-time solution of the present optimization problem. As stated earlier, our cost
function is highly nonlinear, and as such the solving strategy is to start off with an initial
guess for the unknown variables and then iteratively improve upon this guess using gradient
based methods (namely, Gauss-Newton descent), and converge to the nearest local minimum.
If the initial guess is good enough, we can have some hope of converging to the global
minimum. In this chapter, we will assume that we already have a way of producing such an
initial guess. In a real SLAM system, this is the job of the front-end [2]. We will present an
example of such a system in the sequel, when we describe our implementation and present
experimental results on real data.

First, we will describe how to recast the cost function as a nonlinear least-squares cost,
on which the Gauss-Newton method can be applied. The Gauss-Newton method will then
be described. After that, we describe the technique of marginalization, which is used to
eliminate variables from the cost function, thus keeping the cost function bounded and
making real-time operation possible.

2.1 Nonlinear Least-Squares

A nonlinear least-squares (NLLS) problem is an optimization problem of the form

min
x
‖f(x)‖2

2

f : Rm → Rn is some smooth vector-valued function which we shall refer to as the cost
vector. In the special case where f(x) = Ax + b is affine, for some A ∈ Rn×m, b ∈ Rn, this
reduces to the standard linear least-squares problem minx ‖Ax+b‖ whose solution x∗ is given
by the solution to the so-called normal equations (A>A)x∗ = −A>b. If A has full column
rank, then A>A is positive definite and this solution is unique.
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In general, since f is free to be highly nonlinear, we cannot find a global optimimum of
an NLLS problem. However, if we are given a good-enough initial guess x∗, we can hope to
improve upon this guess. We can approximate f by a first-order Taylor expansion around
x∗ (which we therefore call the linearization point) as

f(x∗ + ∆x) ≈ f(x∗) + J∆x

where

J =
∂f

∂x

∣∣∣∣
x=x∗

is the Jacobian of f at x∗. We can then approximate the original NLLS problem with the
linear least squares problem

min
∆x
‖f(x∗) + J∆x‖2

2

which seeks a deviation ∆x from x∗ that minimizes an approximation to the cost in a
neighbourhood of x∗. Assuming the problem is well-conditioned, i.e. that the cost is, in
fact, well approximated by the quadratic approximation ‖f(x∗)+J∆x‖2

2 and the Jacobian J
has full column rank, the solution is given by the solving the normal equations (J>J)∆x =
−J>f(x∗). Then, we can update our guess as x∗ ← x∗+ ∆x. Assuming the initial guess was
good enough and the problem was well conditioned, this new guess will be better than the
original one.

We can then use this new guess as a new linearization point, and repeat the process above.
We can continue to improve the guess in this way until some termination criterion is reached,
such as a maximum iteration count or an improvement threshold. This process of iteratively
linearizing the cost function and solving the linearized least squares problem to improve
upon an initial guess is known as the Gauss-Newton algorithm, and can be used to tackle
any well-conditioned nonlinear optimization problem where a good initial guess is available.
It is worth noting that other policies for computing incremental improvements to the initial
guess are available, such as standard gradient descent, the Levenberg-Marquardt algorithm
[18], or Powell’s dog leg method [24, 17]. We focus on Gauss-Newton because, as we shall
see, it has a meaningful interpretation in the case of filtering based SLAM algorithms, and
because for well-conditioned problems where a good initial guess is available, Gauss-Newton
tends to be faster than other methods [23].

2.2 SLAM as a Nonlinear Least Squares Problem

To formulate SLAM as a nonlinear least-squares problem, we start by noting that we can
”whiten” the residual vectors in the cost function to get rid of the Mahalanobis norm and
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replace with a standard 2-norm.

c(ξt) := ‖ξt − µ0‖2
Σ−1

0
+

t−1∑
i=0

‖xi+1 − g(xi)‖2
Σ−1

w
+
∑

(i,j)∈St

‖zi,j − h(xi, fj)‖2
Σ−1

v

= ‖Σ−1/2
0 (ξt − µ0)‖2

2 +
t−1∑
i=0

‖Σ−1/2
w (xi+1 − g(xi))‖2

2 +
∑

(i,j)∈St

‖Σ−1/2
v (zi,j − h(xi, fj))‖2

2

This can then be easily seen as the 2-norm of a cost vector C(ξt) constructed by stacking
each of the residual vectors of the form Σ−1/2v. As a result, c(ξt) = C(ξt)

>C(ξt), and the
SLAM problem is now reduced to the following nonlinear least squares problem:

min
ξt

c(ξt) = min
ξt

C(ξt)
>C(ξt) = min

ξt
‖C(ξt)‖2

2 (2.1)

The Gauss-Newton Method for SLAM

Gauss-Newton descent involves solving for the minimization of c(ξt) via the Gauss-Newton
method applied to the NLLS form of the SLAM cost function described above. The iterative
linearization allows us to approximate c(ξt) about a given linearization point ξ?t by a linear
least-squares (hence quadratic) cost term, i.e.,

min
ξt

c(ξt) = min
ξt
‖ξt − µt‖2

Σ−1
t

+ o(ξt − ξ?t ) (2.2)

for some µt ∈ Rd and symmetric positive definite Σt ∈ Rd×d. Then, the Gauss-Newton
update gives us the new guess µt. The linearization procedure required to obtain µt ∈ Rd

and Σt ∈ Rd×d, as well as the approximation involved, are detailed in the theorem below.

Theorem 2.2.1. (Gauss-Newton Step) Let ξ?t ∈ Rd denote a given linearization point,
and suppose J := ∂C

∂ξt
∈ RdC×d has full column rank. Then up to first order in ξt − ξ∗t and

some constant terms (which do not affect the minimization), we can write

c(ξt) = ‖ξt − µt‖2
Σ−1

t
+ o(ξt − ξ?t ),

where µt ∈ Rd and Σt ∈ Rd×d are given by:

Σt ← (J>J)−1,

µt ← ξ?t − (J>J)−1J>C(ξ?t ).

The Gauss-Newton algorithm then updates our initial guess to µt.
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Algorithm 1: Gauss-Newton Step.

Data: Objective C>C, linearization point ξ?t .
Result: Mean µ, covariance Σ after a Gauss-Newton step.

1 J ← ∂C
∂ξt

∣∣
µt

2 Σt ← J>J

3 µt ← ξ?t − (J>J)−1J>C(ξ?t )
4 return µt,Σt

Proof. We have:

c(ξt) = C(ξt)
>C(ξt)

=
[
C(ξ?t ) + J(ξt − ξ?t )

]>[
C(ξ?t ) + J(ξt − ξ?t )

]
+ o(ξt − ξ?t )

= (ξt − µt)>Σ−1
t (ξt − µt) + c0(ξ?t ) + o(ξt − ξ?t ),

where c0(ξ?t ) ∈ R denotes a scalar-valued function of ξ?t that is independent of the variable
ξt. This concludes the proof.

The above theorem and algorithm 1 describe one iteration of Gauss-Newton descent. As
described above, we may choose to repeat the process with the updated guess as the new
linearization point.

At each step, in addition to retrieving the new solution update, we can also retrieve the
information matrix Σ−1 = J>J . When we replace the cost function with the quadratic cost
from the theorem above, we say we have linearized the cost (even though we have in fact
quadraticized the cost, but we have linearized the cost vector, which is the object we are
more interested in anyway). When we believe that we have a good enough guess for our
state variable ξt at any given timestep, we may choose to replace our nonlinear cost with
a linearized cost for some time savings in subsequent Gauss-Newton steps. This puts the
whole cost function into the form of a prior over the states ξt. This then takes the role of
the first prior term in the cost function, onto which residual terms corresponding to new
measurements can be added as time advances. Note that choosing to linearize the cost
function is an algorithmic design decision. We point it out here, since in subsequent sections
when we discuss filtering algorithms, we will see that some sub-modules of such algorithms
are best described as the linearization of a certain cost function.
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Marginalization

During real operation, we add new residual terms to the cost function each time a new
measurement (of a landmark or of odometry) is registered, and as such, the optimization
problem as stated can grow unbounded. To make real-time operation possible, we need to be
able to discard states from the optimization problem. For instance, we may want to discard
old poses (whose estimates we are confident of) or old features (that are no longer visible)
from the optimization problem. However, these variables impose constraints on the variables
that we wish to keep, and hence simply dropping them will lead to loss of information. So
before we can discard them, we need to impose new constraints on the variables we wish to
keep that capture the relationships imposed through the removed variables. We do this by
modifying the prior term over the remaining variables to incorporate constraints (up to first
order) between the remaining variables induced by the removed variables. This process is
called marginalization and will be described next.

First, we partition the overall state ξt ∈ Rd into a marginalized component ξM ∈ RdM , to
be discarded from ξt, and a non-marginalized component ξK ∈ RdK , to be kept (d = dK+dM .)
Then, we partition c(ξt) into two cost terms: c1(ξK), which depends only on non-marginalized
state components, and c2(ξK , ξM) which depends on both marginalized and non-marginalized
state components:

c(ξt) = c(ξK , ξM) = c1(ξK) + c2(ξK , ξM)

= ‖C1(ξK)‖2
2 + ‖C2(ξK , ξM)‖2

2.

Here, C1(ξK) ∈ RdC,1 and C2(ξK , ξM) ∈ RdC,2 denote the concatenation of residuals associ-
ated with c1(ξK) and c2(ξK , ξM) (with dC = dC,1 + dC,2). To remove ξM ∈ RdM from the
optimization problem , observe that:

min
ξt

c(ξt) = min
ξK ,ξM

(
c1(ξK) + c2(ξK , ξM)

)
= min

ξK

(
‖C1(ξK)‖2

2 + min
ξM
‖C2(ξK , ξM)‖2

2

)
.

To remove ξM , it suffices to approximate the solution to the inner minimization problem by
a linear least-squares cost, i.e.:

min
ξM
‖C2(ξK , ξM)‖2

2 ≈ ‖ξK − µt,K‖2

Σ
−1
t,K

for some µt,K ∈ RdK and Σt,K ∈ RdK×dK . Since ‖C2(ξK , ξM)‖2
2 is in general non-convex, we

obtain µt,K and Σt,K by minimizing the first-order Taylor expansion of ‖C2(ξK , ξM)‖2
2 about

some linearization point, instead of minimizing ‖C2(ξK , ξM)‖2
2 directly. Below, Theorem

2.2.2 details the derivation of µt,K and Σt,K .
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Theorem 2.2.2 (Marginalization Step). Let ξ?t ∈ Rd denote a given linearization point,
and suppose J := ∂C

∂ξt
∈ RdC×d has full column rank. Define JK := ∂C

∂ξK
∈ RdC×dK and

JM := ∂C
∂ξM
∈ RdC×dM evaluated at the linearization point ξ∗t = (ξ∗K , ξ

∗
M). Up to first order,

we can write

min
ξM

c(ξK , ξM) = min
ξK

(
c1(ξK) + min

ξM
c2(ξK , ξM)

)
(2.3)

= min
ξK

(
c1(ξK) + ‖ξK − µK‖2

Σ−1
K

)
(2.4)

where ΣK ∈ RdK×dK and µK ∈ RdK are given by:

ΣK :=
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

, (2.5)

µK := ξ?K − ΣKJ
>
K

[
I − JM(J>MJM)−1J>M

]
C2(ξ∗t ). (2.6)

Proof. It suffices to show that:

min
ξM

c2(ξK , ξM)

=(ξK − µK)>Σ−1
K (ξK − µK) + c′(ξ∗t ).

To do so, we first note that up to first order in deviations ∆ξt = (∆ξK ,∆ξM) from the
linearization point:

c2(ξt) = ‖C2(ξt)‖2
2 = ‖C2(ξ∗t ) + J2∆ξt‖2

2

= ‖C2(ξ∗t ) + JK∆ξK + JM∆ξM‖2
2.

By the method of least-squares, the optimal ∆ξM is given by the normal equation:

∆ξM = −(J>MJM)−1J>M
(
C2(ξ∗t ) + JK∆ξK

)
Substituting back into our expression for c(ξt), we have:
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min
ξM

c2(ξt)

=‖
(
I − JM(J>MJM)−1J>M

)(
C2(ξ∗t ) + JK∆ξK

)
‖2

2

=
(
C2(ξ∗t ) + JK∆ξK

)>[
I − JM(J>MJM)−1J>M

](
C2(ξ∗t ) + JK∆ξK

)
=(ξK − ξ∗K)> J>K

[
I − JM(J>MJM)−1J>M

]
JK︸ ︷︷ ︸

:= Σ−1
K

(ξK − ξ∗K)

+ 2(ξK − ξ∗K)>J>K
[
I − JM(J>MJM)−1J>M

]
C2(ξ∗t )

+ C2(ξ∗t )
>[I − JM(J>MJM)−1J>M

]
C2(ξ∗t )

=
(
ξK −ξ∗K + ΣKJ

>
K

[
I − JM(J>MJM)−1J>MC2(ξ∗t )︸ ︷︷ ︸

:=−µK

])>
Σ−1
K

(
ξK −ξ∗K + ΣKJ

>
K

[
I − JM(J>MJM)−1J>M

]
C2(ξ∗t )︸ ︷︷ ︸

:=−µK

)
+ C2(ξ∗t )

(
I − JM(J>MJM)−1J>M

)
+ c′(ξ∗t )

=(ξK − µK)>Σ−1
K (ξK − µK) + c′(ξ∗t ).

with ΣK and µK as defined in the theorem statement, and c′(ξ∗t ) ∈ R as a term independent
of ξt.

The important takeaway from the above is that, up to first order, we were able to replace
all terms involving the marginalized variables ξM with a new prior ‖ξK − µK‖2

Σ−1
K

with the

expressions for (µK ,ΣK) as given in the theorem. Note that now, we are left simply with
this new prior and the original residual terms involving only ξK . In this way, the variables in
ξM have been removed from the cost function, and the cost function has been brought back
to its original form (with a prior term and a number of measurement residuals), except in
terms of only ξK . We can now proceed with this new cost function.

Note that the only non-optimality introduced in this process comes from linearization
errors in ξM . Indeed, if our cost functions were linear, this marginalization process would be
ideal. Hence, so long as we make sure that the variables being marginalized are ”mature”,
i.e. we already have good estimates for them and hence the linearization error will be small,
we can minimize the introduced errors.
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Algorithm 2: Marginalization

Data: Objective f = C>C, vector of variables to marginalize ξM , linearization point ξ∗.
Result: Mean µK and covariance ΣK for non-margnalized variables ξK .

1 C ← subvector of C containing entries dependent on xM .

2 J :=
[
JK JM

]
←
[
∂C
∂ξK

∣∣
ξ∗

∂C
∂ξM

∣∣
ξ∗

]
.

3 ΣK ←
(
J>K
[
I − JM (J>MJM )−1J>M

]
JK
)−1

4 µK ← ξ∗K − Σt,KJ
>
K

[
I − JM (J>MJM )−1J>M

]
C(x?)

5 return µK ,ΣK

2.3 A Recipe for SLAM

Now, we have the tools to describe how, at a high-level, we may approach solving the SLAM
problem. A SLAM algorithm can be described in terms of a policy for applying one or more
of the following at each timestep:

1. Cost construction: Given all measurements up to the current timestep, construct a
nonlinear least squares cost function.

2. Gauss-Newton descent: Given an initial guess for newly initialized variables (such
as newly detected landmarks or newly added poses) and the best estimate so far for
existing variables, improve upon the estimate by performing one or more iterations of
the Gauss-Newton algorithm.

3. Marginalization: Marginalize away some subset of variables, thus updating the esti-
mate of the mean and covariance over the other states, taking into account information
from the removed states.

While this may seem to be somewhat abstract at the moment, in chapter 4 we will make
this intuition concrete by looking at a wide family of state-of-the-art SLAM algorithms and
characterizing them in terms of policies for cost-construction, Gauss-Newton descent, and
marginalization. In particular, we will be able to analyze algorithms based on nonlinear
optimization and those based on filtering through the same lens, thus giving us a language
with which to compare and analyze them.

But first, we must talk about a particular complication which arises due to the fact that
often our optimization variables do not lie in Euclidean space where vector addition and
subtraction are possible and Taylor expansion has the usual meaning. Instead, many types
of commonly seen variables (most notably, 6DOF poses) lie on smooth manifolds instead.
Hence, special care needs to be taken when talking about optimizing over them. Formalizing
this is the topic of the next chapter.
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Chapter 3

Optimization on Manifolds

In this chapter, we generalize the SLAM problem formulation presented in Section 1.1 to
situations where the dynamical states under study are defined on smooth manifolds, rather
than on Euclidean spaces. For instance, the SLAM problem in three dimensions requires
keeping track of the orientations of rigid bodies on SO(3), which are usually embedded in a
higher-dimensional ambient space, e.g., via unit quaternions or rotation matrices. To address
this requirement, we need new operators to perform the required composition and difference
operations directly on the smooth manifold constraining the system states, thus ensuring
that the constraints imposed by the over-parameterization remain enforced. This implements
the most natural way of composing manifold-valued states with small perturbations in the
desired manner.

In the next section we will provide specific definitions for operators on smooth manifolds
commonly used in the SLAM literature, known as the boxplus and boxminus operators.
These operations will allow us to write down a more general version of the cost function in
(1.3) for states defined on smooth manifolds. In addition, to take the derivative of variables
with respect to their minimal coordinates, we formalize our definitions of such operators on
general smooth manifolds, acknowledging the specific case when the manifold in question
is also a Lie Group. Then, we will provide some salient examples of manifolds that are
evidently relevant to the SLAM problem, specifying boxplus and boxminus operators for
each, before presenting the generalized version of our SLAM formulation.

3.1 Box Operators on Manifolds

Suppose the full state x ∈ M evolves on an n dimensional smooth manifold M. For
each x ∈M, let πx : Ux → Vx a smooth co-ordinate chart from an open neighborhood Ux of
x ∈ M to an open neighborhood Vx ⊂ Rn of 0 in Rn. Without loss of generality, suppose
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πx(x) = 0. The operators � : Ux × Vx → Ux and � : Ux × Ux → Vx are defined as follows:

x� δ = π−1
x (δ) (3.1)

y � x = πx(y) (3.2)

The SLAM problem on manifolds concerns the minimization of a smooth function f :
M→ R via iterative descent, starting from an initial state x0 ∈M. Let xk ∈M denote the
candidate solution at iteration k, and define f̂xk := f ◦ π−1

xk
: Uxk → R to be the coordinate

representation of f w.r.t the coordinate map πxk . Since f̂xk is smooth function between

Euclidean spaces, we can compute a direction δ ∈ Rn along which f̂xk should be updated
(for instance, using Gauss-Newton on the coordinate representation of f). The update law
is then:

xk+1 ← xk � δ

In words, the iterative algorithm finds a direction around xk along which f̂xk locally decreases
the most, moves along it in local coordinates, and projects the result back onto M.

WhenM is a Lie Group, only the coordinate chart π0 :M→ Rn at the identity element
I ∈ M needs to be specified. This chart provides a natural choice for any other chart
πx :M→ Rn, by using the group multiplication operator ◦ :M×M→M:

πx(δ) = π0(x−1 ◦ δ), ∀x ∈M, δ ∈ Rn, (3.3)

π−1
x (δ) = x ◦ π−1

0 (δ), ∀x ∈M, δ ∈ Rn. (3.4)

On Lie groups, � and � can then be defined by:

x� δ = x ◦ π−1
0 (δ), ∀x ∈M, δ ∈ Rn, (3.5)

y � x = π0(x−1 ◦ y), ∀x ∈M, δ ∈ Rn. (3.6)

defined in terms of the single map π0. Lie groups occur commonly in the study of SLAM,
so it is useful to have this simplification in hand. In particular, the rotation group SO(3) is
an example of a Lie group.

3.2 Manifold Examples

In this section, we exhibit examples of the �, � and π operators for certain manifolds
that prove useful in describing state spaces for SLAM applications—in particular, Euclidean
spaces, the space Hu of unit quaternions and the rotation space SO(3).

1. Unit Quaternions:

In this paper, we use the JPL convention to describe the Lie Group of unit
quaternions Hu, by expressing each unit quaternion q as q = (qu, ~qv) where qu ∈ R
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is the scalar part of the quaternion and ~qv ∈ R3 is the imaginary or vector part,
constrained so that ‖q‖ =

√
q2
u + ‖~qv‖2 = 1. The Lie group Hu is equipped with

the standard quaternion multiplication ?, and its mininal representation is completely
specified by its Lie Algebra. Thus, the local projection function π : Hu → R3 can be
defined as the respective Log map, and its inverse π−1 : R3 → Hu can be defined as
the Exp map. To define the Log map, we first rewrite each unit quaternion q = (qu, ~qv)
as q = (cos(θ/2), sin(θ/2)~ω) for some θ ∈ [0, π], and ~ω ∈ R3 with ‖~ω‖ = 1. In this
form, q is interpreted as the quaternion that implements a rotation about the unit axis
~ω by θ radians counter-clockwise. When q is not the identity, this decomposition is
unique; when it is the identity, we have θ = 0, but ~ω can be arbitrary. The projection
πg : Hu → R3 to local coordinates is then defined as:

πg(q) = Log(q) = θ~ω

and the inverse map π−1
g is defined as:

π−1
g (θ~ω) = Exp(θ~ω) = (cos(θ/2), sin(θ/2)~ω)

Note that the image of πg is the open ball of radius π, and so the inverse map is only
defined there.

Equipped with the Exp and Log maps, we can implement the � and � operations
using the standard quaternion product ? : Hu ×Hu → Hu:

qa � ~ω = qa ∗ Exp(~ω) (3.7)

qa � qb = Log(q−1
b ∗ qa) (3.8)

2. The Rotation Group SO(3):

The definition of the boxplus and boxminus operators for SO(3) parallels those
for quaternions. In particular, we use as our projection operator π : SO(3) → R3 the
standard Log operator on SO(3), with output restricted to vectors of length less than
π. In this case, the relevant increment and difference operators are:

Ra � ~ω = Ra ∗ Exp(~ω) (3.9)

Ra �Rb = Log(RT
b Ra) (3.10)

3. Cartesian Products of Manifolds

Often, the full state maintained in the SLAM algorithm is defined on the Carte-
sian product of a finite collection of manifolds, since it contains poses and features
which exist and evolve on their own manifolds. Fortunately, the product of a finite
collection of smooth manifolds is also a smooth manifold, and likewise for Lie groups,
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with the group operation defined simply as element-wise multiplication. For a prod-
uct manifold M = M1 ×M2, with projection, increment, and difference maps already
defined on M1 and M2, we can define the boxplus and boxminus operators on M by:

(g1, g2) � (ξ1, ξ2) = (g1 � ξ1, g2 � ξ2) (3.11)

(g1, g2) � (h1, h2) = (g1 � h1, g2 � h2) (3.12)

The projection map π, too, can be defined similarly via element-wise projection.

3.3 SLAM on Manifolds

To formulate SLAM on manifold-valued variables, we must slightly alter our definition
of the state variables, feature and image positions, and dynamics and measurement maps.
Let X be a smooth manifold of dimension dx, embedded in Rdx,e , on which camera poses are
defined. Similarly, let F be a smooth manifold of dimension df , embedded in an ambient
space Rdf,e , on which features are defined, and let Z be the smooth manifold of dimension
dz, embedded in the ambient space Rdz,e , on which image measurements are defined. We
then have:

xt ∈ X : Camera pose at time t

g : X → X : Discrete-time dynamics,

wt ∈ Rdx : Discrete-time dynamics (process) noise,

Σw ∈ Rdx×dx : Covariance matrix of dynamics (process) noise,

with Σw � 0.

ft,j ∈ F : Feature position j in the world frame,

obtained at the camera pose at time t,

ztj ∈ Z : Observation of feature j relative to pose xt,

(Feature measurement),

h : X × F → Z : Measurement map,

vtj ∈ Rdz : Measurement noise,

Σv ∈ Rdz×dz : Covariance matrix of measurement (process) noise,

with Σv � 0.

As xt ∈ X only has dx degrees of freedom, our process noise will be of dimension dx.
Here, we use our definition of the boxplus operator (�) to enable the perturbation of g(xt)
by our noise wt. Thus our additive noise dynamics model becomes:

xt+1 = g(xt) � wt (3.13)

where wt ∼ N (0,Σw) is the process noise in Rdx (of the same dimension as the minimal
coordinates of xt). Similarly, as our measurement ztj only has dz degrees of freedom, our
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measurement noise will be of dimension dz. By incorporating the � operator, our measure-
ment function is defined as:

ztj = h(xt, ft,j) � vtj (3.14)

where vt ∼ N (0,Σv) is the measurement noise in Rdz (of the same dimension as Z).

SLAM as an Optimization Problem on Manifolds

Next, we interpret the SLAM problem on manifolds as the optimization of a cost function
c : X t × Fp → R, constructed from residual terms of the same dimension of the minimal
coordinates of ξt, xt and zt:

c(ξt) := ‖ξt � µ0‖2
Σ−1

0
+

t−1∑
i=0

‖xi+1 � g(xi)‖2
Σ−1

w
+
∑

(i,j)∈St

‖zi,j � h(xi, fj)‖2
Σ−1

v
(3.15)

In this way we can generalize our previous results with minimal changes to the algorithm.
Note that (1.3) is a special case of this function where all variables live in Euclidean space,
and � and � are just the standard vector + and − operators respectively.

Further note that since the coordinate maps are assumed smooth, we can differentiate
through them. In particular, we can define

J :=
∂C(ξ∗ � δ)

∂δ

∣∣∣∣
δ=0

at the linearization point ξ∗, which is just the Jacobian of a standard vector valued function
δ 7→ C(ξ∗ � δ). With these operations in hand, we can define the Gauss-Newton and
Marginalization algorithms as

1. Gauss-Newton: Given linearization point ξ∗, solve the normal equations (J>J)∆ξ =
J>C(ξ∗), and then update using

ξ∗ ← ξ∗ � ∆ξ

2. Linear approximation: Given linearization point ξ∗, a linearized version of the cost
function c(ξ) = ‖C(ξ)‖2

2 is given by

c(ξ) ≈ ‖(ξ � ξ∗)− µ̂‖2
Σ̂−1

where Σ̂ = (J>J)−1, µ̂ = −(J>J)−1J>C(ξ∗)

3. Marginalization: Given linearization point ξ∗ = (ξ∗K , ξ
∗
M), up to first order, we have

min
ξK

(
c1(ξK) + min

ξM
‖C2(ξK , ξM)‖2

2

)
= min

ξK

(
c1(ξK) + ‖(ξK � ξ∗K)− ξ̂K‖2

Σ̂−1
K

)
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for

Σ̂−1
K = J>K

[
I − JM

(
J>MJM

)−1
J>M

]
JK

ξ̂K = −Σ̂K J>K

[
I − JM

(
J>MJM

)−1
J>M

]
C2 (ξ∗K , ξ

∗
M)

where JK and JM are the Jacobians of C2(ξK + ∆ξK , ξM + ∆ξM) with respect to ∆ξK
and ∆ξM respectively, evaluated at 0.
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Chapter 4

Analyzing SLAM Algorithms

In this section, we utilize the framework developed so far to analyze a wide family of SLAM
algorithms, with a focus on visual inertial odometry (although the analytical insights can be
extended to algorithms with any sensory modalities). First, we describe the classic sliding
window filter, a workhorse of optimization-based SLAM and the motivating application of
marginalization to the SLAM problem. Then, we demonstrate how popular filtering-based
SLAM algorithms can also be equivalently viewed as the iterative minimization of a NLLS
cost function for different marginalization policies. The equivalence of the Extended Kalman
Filter (EKF SLAM) to a sliding window filter with window size 1 is shown. Although
several versions of this result exist in the literature, the presented proof lays the groundwork
for our analysis. The main result of this section is a demonstration of the equivalence
of the popular Multi-State Constrained Kalman Filter (MSCKF) [21] to iterative NLLS
optimization with a specific marginalization scheme. This result allows us to restate the
MSCKF algorithm in simple terms by specifying a marginalization scheme, instead of in
terms of matrix operations, as Kalman filter based algorithms are usually stated. This
allows us to analyze the MSCKF and its variants on equal footing with the sliding-window
optimization algorithms, and also hints at a more straight-forward implementation. We will
further see that some improvements or modification to the algorithm become trivial to derive
and implement when it is viewed through this perspective.

Finally, we list a number of popular visual SLAM algorithms and algorithm paradigms
and characterize them in terms of descent and marginalization schemes.

4.1 Sliding Window Filter

The main application of marginalization to SLAM is the sliding window filter [26]. As stated
earlier, the SLAM cost function grows unbounded with time as additional measurements are
recorded. To enable real-time operation of optimization-based SLAM, a sliding-window filter
is proposed, which only maintains the most recent k camera poses and landmarks visible from
those poses in the cost function. This is done by marginalizing away the oldest pose as soon



CHAPTER 4. ANALYZING SLAM ALGORITHMS 20

as the number of poses in the optimization problem exceeds k. Moreover, any landmarks
that are no longer visible from any of the most recent k poses are discarded.

We can summarize the algorithm as follows. We start off with a prior (µ0,Σ0) over the
initial robot pose x0. The cost function at time 0 includes only the variable ξ = (x0), and is
c0(ξ) = ‖x0 − µ0‖2

Σ−1
0

. The best estimate ξ∗0 is simply the prior pose µ0. Then at the n-th

timestep, the following processing steps are performed.

1. Cost function: The current cost has the form

cn(ξ) = ‖ξ − µn‖2
Σ−1

n
+

n−1∑
t=n−k+1

‖xt+1 − g(xt)‖2
Σ−1

v
+
∑
t,j∈Sn

‖ztj − h(xt, fj)‖2
Σ−1

w

where Sn is a set of index pairs such that (t, j) ∈ Sn if and only if a measurement of
landmark j from robot pose xt is available at timestep n.

2. State augmentation: Add the latest pose xn+1 to the optimization problem using
the odometry measurement made at time n.

cn(ξ)← cn(ξ) + ‖xn+1 − g(xn)‖2
Σ−1

v

If the best available estimate of the existing optimization variables is

ξ∗n = (x∗0, · · · , x∗n, f ∗1 , · · · , f ∗p ), then initialize variable xn+1 with the guess x∗n+1 = g(x∗n).

3. Feature augmentation: Add new landmark measurements from the current pose
xn+1. Let {j1, · · · , jm} be the indices of landmarks (old and new) measured from the
current pose.

cn(ξ)← cn(ξ) +
∑

i=j1,··· ,jm

‖zn+1,i − h(xn+1, fi)‖2
Σ−1

w

Also update Sn ← Sn ∪ {(n + 1, jk)}. Additionally, initialize all newly detected land-
marks with initial guesses by adding them to the vector ξ∗n.

4. Cost propagation: if n > k, some poses must be removed. Let Sf be the set of
landmark indices that are not visible from poses (xn−k+2, · · · , xn+1). Apply marginal-
ization to remove the variables ξM = Sf ∪ {xn−k+1}. Update sn ← Sn \ {(t, j) : j ∈
Sf , t = 0, · · · , n+ 1}.

5. Measurement Update: Update the best estimate of all variables currently in the
optimization problem by taking Gauss-Newton steps until convergence. Reset cn+1 ←
cn, ξ

∗
n+1 ← ξ∗n, Sn+1 ← Sn, and proceed to the next timestep.
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In other words, the sliding window filter marginalizes away the oldest pose whenever
the number of poses in the optimization problem exceeds k, marginalizes features as soon
as they are no longer visible from the last k poses, and takes Gauss-Newton steps until
convergence to update the estimates of all variables after including feature measurement
cost terms from the current timestep. Under the assumption that landmarks are more-or-
less evenly distributed in the scene, this marginalization policy ensures that the number of
variables in the optimization problem remains constant, thus ensuring constant runtime per
timestep. The time to process each frame can be tuned simply by changing the window size.
The smaller k is, the less time it will take to process each frame. Note that most of the
runtime is spent in taking Gauss-Newton steps.

The sliding window filter is an example of a SLAM algorithm paradigm that explicitly
depends on nonlinear optimization. Sliding window filters are used as the backbone of many
state of the art SLAM systems such as [14, 22, 25]. Such approaches have received prominence
more recently as computational resources have made online optimization possible.

4.2 Kalman Filtering Based SLAM

The other class of SLAM systems are based on Kalman-type filtering. Here, a mean vector
and covariance matrix over the estimated variables is maintained explicitly and recursively
updated when new information is made available through matrix operations. Perhaps the
most popular algorithmic paradigm for the SLAM problem is the Extended Kalman Filter
(which when applied to the SLAM problem is termed EKF-SLAM) [28]. Indeed, the earliest
solutions to the SLAM problem were stated and solved in terms of the EKF as the central
estimator, with the seminal solution provided by Smith and Cheeseman in 1987 [27]. Solu-
tions based on the EKF are favoured due to their relatively cheap computational cost, and
remain a popular choice for real-time state estimation.

EKF-SLAM recursively estimates the current pose of the robot in addition to the states
of all landmarks detected in the scene. Note that this means that the estimator never revisits
estimates of previous robot states; only the estimate of the current robot state is kept around.
Mourikis et al. [21] proposed the Multi-State Constrained Kalman Filter (MSCKF), which
keeps n robot poses as part of the state vector, and updates its estimates by taking into
account the constraints imposed by landmark measurements common to multiple poses at
the same time (hence “multi-state constrained”). Empirically, the MSCKF achieves state-of-
the-art performance, and remains a popular choice of real-time estimator in modern SLAM
systems.

In the next section, we will establish that filtering-based approaches to SLAM can be
interpreted as an iterative optimization of the form discussed above with particular marginal-
ization schemes. First, we will show that the standard EKF-SLAM is equivalent to a sliding
window filter with window size 1, where we only take one Gauss-Newton step at each itera-
tion (instead of iterating till convergence). Several versions of this observation can be found
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in the literature [30, 13, 26]. We present our own proof and formalize the EKF-SLAM algo-
rithm in terms of an iterative optimization with a chosen marginalization scheme. Then, we
establish a similar result for the MSCKF, and show that it also corresponds to an iterative
optimization with a chosen marginalization scheme. We will then formalize the MSCKF
algorithm as an iterative optimization; this is the main result of this section. As we shall see
towards the end of this chapter and the sequel, this allows us to put the MSCKF on equal
footing with other optimization based approaches such as sliding window filters, and allow
us to explain its performance characteristics and compare them directly to other approaches.

4.3 Equivalence of Filtering and Optimization

Approaches

Here, we demonstrate the equivalence of filtering and batch optimization based SLAM algo-
rithms, using the Extended Kalman Filter (EKF, in Section 4.3) and Multi-State Constrained
Kalman Filter (MSCKF, in Section 19), as examples.

Extended Kalman Filter (EKF)

The EKF SLAM algorithm maintains the EKF full state vector, ξt := (xt, f1, · · · , fp), con-
sisting of the most recent robot state, xt ∈ Rdx , and the most recent landmark estimates
f1, · · · , fp of all detected features. We also maintain a covariance matrix Pt. The EKF
proceeds by updating the estimate ξ∗t and covariance matrix Pt based on odometry and
landmark measurements. We base the details of the EKF-SLAM algorithm for the purposes
of our discussion on [28]. The EKF-SLAM algorithm, in the standard formulation, proceeds
by alternating between the following three steps:

1. Feature augmentation: When new landmark are detected, the state vector ξt needs
to be grown to accommodate these new landmarks. This is the state augmentation
step.

2. Measurement Update: When existing landmarks are re-observed, the estimate and
covariance matrix are updated by means of an EKF update, using Jacobians of the
measurement model h.

3. State propagation: When a new odometry measurement is registered, the robot state
is propagated forward according to the dynamics map g(xt). Since the landmarks are
assumed static, they are not propagated. The covariance matrix is updated based on
Jacobians of the dynamics map g.

See algorithm 5 for the precise operations performed in each of these steps. In this
section, we will show how to re-interpret the EKF-SLAM algorithm as the solution to an



CHAPTER 4. ANALYZING SLAM ALGORITHMS 23

iterative optimization problem. First, let us walk through the proposed optimization based
algorithm.

At initialization (t = 0), no feature has yet been detected (p = 0), and the EKF full state
is simply the initial state x̃0 = x0 ∈ Rdx , with mean µ0 ∈ Rdx and covariance Σ0 ∈ Rdx×dx .
So at time 0, the cost function is simply ‖x̃0 − µ0‖2

Σ−1
0

.

Suppose that at the current time t, the running cost maintained in the optimization
formulation of the EKF SLAM algorithm, cEKF,t,0 : Rdx+pdf → Rdx+pdf , is:

cEKF,t,0 = ‖x̃t − µt‖2
Σ−1

t
,

where x̃t := (xt, f1, · · · , fp) ∈ Rdx+pdf denotes the EKF full state at time t, with mean µt ∈
Rdx+pdf and covariance Σt ∈ R(dx+pdf )×(dx+pdf ). First, the feature augmentation step appends
position estimates of new features fp+1, · · · , fp+p′ ∈ Rdf to the EKF full state x̃t, and updates
its mean and covariance. In particular, feature measurements (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz are
incorporated by adding measurement residual terms to the current running cost cEKF,t,0,
resulting in a new cost cEKF,t,1 : Rdx+(p+p′)df → R:

cEKF,t,1(x̃t, fp+1, · · · , fp+p′) = ‖x̃t − µt‖2
Σ−1

t
+

p+p′∑
k=p+1

‖zt,k − h(xt, fk)‖2
Σ−1

v
.

In effect, cEKF,t,1 appends new feature positions to x̃t, and constrains it using feature mea-
surements residuals.

The feature update step uses measurements of features already described by x̃t to update
the mean and covariance of x̃t. More precisely, feature measurements zt,1:p := (zt,1, · · · , zt,p) ∈
Rdzp, of the p features f1, · · · , fp included in x̃t, are introduced by incorporating associated
measurement residuals to the running cost, resulting in a new cost cEKF,t,3 : Rdx+pdf → R:

cEKF,t,3(x̃t) = ‖x̃t − µt‖2
Σ−1

t
+

p∑
k=1

‖zt,k − h(xt, fk)‖2
Σ−1

v
.

A Gauss-Newton step is then applied to construct an updated mean µt ∈ Rdx+pdf and
covariance Σt ∈ R(dx+pdf )×(dx+pdf ) for x̃t, resulting in a new cost cEKF,t,4 : Rdx+pdf → R:

cEKF,t,4(x̃t) = ‖x̃t − µt‖2

Σ
−1
t

,

which returns the running cost to the form of cEKF,t,0.

The state propagation step propagates the EKF full state forward by one time step, via
the EKF state propagation map g : Rdx+pdf → Rdx+pdf . To propagate x̃t forward in time,
we incorporate the dynamics residual to the running cost cEKF,t,0, thus creating a new cost
cEKF,t,5 : R2dx+pdf → R:

cEKF,t,5(x̃t, xt+1) := ‖x̃t − µt‖2

Σ
−1
t

+ ‖xt+1 − g(xt)‖2
Σ−1

w
.
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In effect, cEKF,t,5 appends the new state xt+1 ∈ Rdx to x̃t, while adding new constraints posed
by the dynamics residuals. One marginalization step, with x̃t,K := (xt+1, ft,1, · · · , ft,p) ∈
Rdx+pdf and x̃t,M := xt ∈ Rdx , is then applied to remove the previous state xt ∈ Rdx from
the running cost. This step produces a mean µt+1 ∈ Rdx+pdf and a covariance Σt+1 ∈
R(dx+pdf )×(dx+pdf ) for the new EKF full state, x̃t+1 := x̃t,K . Accordingly, the running cost
maintained in the optimization framework is updated to cEKF,t+1,0 : Rdx+pdf → R:

cEKF,t+1,0(x̃t+1) = ‖x̃t+1 − µt+1‖2
Σ−1

t+1
,

which returns the running cost to the form of cEKF,t,0.

The theorems below establish that the feature update, and propagation steps of the EKF,
presented above in our optimization framework, correspond precisely to those presented in
the standard EKF SLAM algorithm (Algorithm 5) [29] [28].

Theorem 4.3.1. The feature augmentation step of the standard EKF SLAM algorithm (Alg.
6) is equivalent to applying a Gauss-Newton step to cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,1(x̃t, ft,p+1, · · · , ft,p+p′)

=‖x̃t − µt‖2
Σ−1

t
+

p+p′∑
k=p+1

‖zt,k − h(xt, ft,k)‖2
Σ̃−1

v
.

Proof. See Appendix (Section 6.2).

Theorem 4.3.2. The feature update step of the standard EKF SLAM algorithm (Alg. 7) is
equivalent to applying a Gauss-Newton step on cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,3(x̃t)

:=‖x̃t − µt‖2
Σ−1

t
+

p∑
k=1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

Proof. See Appendix (Section 6.2).

Theorem 4.3.3. The state propagation step of the standard EKF SLAM algorithm (Alg. 8)
is equivalent to applying a Marginalization step to cEKF,t,5 : R2dx+pdf → R, given by:

cEKF,t,5(x̃t, xt+1)

:=‖x̃t − µt‖2

Σ
−1
t

+ ‖xt+1 − g(xt)‖2
Σ−1

w
.

with x̃t,K := (xt+1, ft,1, · · · , ft,p) ∈ Rdx+pdf and x̃t,M = xt ∈ Rd.

Proof. See Appendix (Section 6.2).

Remark 4.3.1. In practice, the application of the Gauss-Newton algorithm for the feature
augmentation step can be delayed, and instead done in conjunction with the feature update
step.
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Algorithm 3: EKF SLAM, as an iterative optimization problem.

Data: Prior N (µ0,Σ0) on x0 ∈ Rdx , noise covariances Σw, Σv, dynamics map g,
measurement map h, time horizon T .

Result: Estimates x̂t ∈ Rdx , ∀ t ∈ {1, · · · , T}.

1 f0(x)← ‖x0 − µ0‖2Σ−1
0

2 p← 0.

3 for t = 0, 1, · · ·T do
4 (zt,1, · · · , zt,p)← Measurements of existing features.
5 costt ← costt +

∑p
k=1 ‖zt,k − h(xt, fk)‖2Σ−1

v

6 µ̄t, Σ̄t, costt ← 1 Gauss-Newton step on costt, about µt, (Alg. 1).

7 x̂t ← µ̄t ∈ Rdx+pdf .
8 (zt,p+1, · · · , zt,p+p′)← Measurements of new features.

9 costt ← costt +
∑p+p′

k=p+1 ‖zt,k − h(xt, fk)‖2Σ−1
v

10 µ̄t ←
(
µ̄t, `(xt, zt,p+1), · · · , `(xt, zt,p+p′)

)
∈ Rdx+(p+p′)df .

11 µ̄t, Σ̄t, costt ← 1 Gauss-Newton step on costt, about µt (Alg. 1).
12 p← p+ p′

13 if t < T then
14 costt ← costt + ‖xt+1 − g(xt)‖2Σ−1

w

15 µt+1,Σt+1, costt ← 1 Marginalization step on costt+1 with xM = xt, about
(µt, g(µt)) (Alg. 2).

16 costt+1 ← ‖xt+1 − µt+1‖2Σ−1
t+1

17 end

18 end
19 return x̂0, · · · , x̂T

Multi-State Constrained Kalman Filter

The Multi-State Constrained Kalman Filter [21] is an algorithm based on the Kalman fil-
ter that improves upon the classic EKF-SLAM by utilizing constraints imposed by feature
measurements across multiple robot poses. In particular, the filter maintains a maximum of
n robot poses as part of the filter state. In contrast to the classic EKF-SLAM, landmark
positions are not included as part of the state vector, which means the state vector always
stays bounded and small. Occasionally, some subset of features observed in two or more
of the poses in the filter state are selected to perform an EKF update with. When this
happens, the location of the chosen features are estimated by multi-view triangulation using
the current best estimates of the involved robot poses. Then, the constraints imposed by the
feature measurement across all poses it is visible from is used to perform an EKF update.

Features are chosen for the EKF update according to the following policy:

1. Every feature that is no longer visible in the most recent pose is selected for a feature
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update.

2. When the number of states exceeds the maximum number of states n, some subset of
them must be discarded. The MSCKF selects bn/3c poses evenly spaced in the state
vector, starting from the second pose. Then, all features visible from these poses are
utilized for an EKF update, before these poses are removed from the state vector.

The exact update equations are outlined in algorithm 9. In this section, we will show that
the MSCKF is equivalent to an iterative optimization algorithm that proceeds as follows.
Classically, the MSCKF maintains a filter state vector ξt that consists of the most recent
IMU state (which contains the pose of the robot body frame, velocity of the body frame,
and the IMU biases at the latest timestep), along with n camera poses (without any IMU
biases or velocities). So we will first present the reductions with this state in mind, but later
we will be able to simplify it to a more standard state vector.

The MSCKF algorithm constantly maintains a full state, ξt ∈ XIMU × (Xp)n, containing
the most recent IMU state, xIMU ∈ XIMU and n recent poses, (x1, · · · , xn) ∈ (Xp)n:

ξt := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n,

with mean µt ∈ XIMU × (Xp)n and covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx). As new poses are
introduced, old poses are discarded, and features are marginalized to update ξt, the mean
µt, covariance Σt, and the integer n accordingly.

At initialization (t = 0), no pose has yet been recorded (n = 0), and the full state ξ0 is
the initial IMU state x̃0,IMU ∈ XIMU, with mean µ0 ∈ XIMU and covariance Σ0 ∈ RdIMU×dIMU .
In other words, x̃0 = µ0 optimizes the initial instantiation cMSCKF,0 : XIMU → R of the
running cost in our framework:

cMSCKF,0,0(x̃0) = ‖x̃0 � µ0‖2
Σ−1

0
.

Suppose that at the current time t, the running cost cMSCKF,t,0 : XIMU×(Xp)n → XIMU×(Xp)n
is:

cMSCKF,t,0(ξt) = ‖x̃t � µt‖2
Σ−1

t
,

where µt ∈ XIMU × (Xp)n and Σt ∈ R(dIMU+ndx)×(dIMU+ndx) denote the mean and covariance
of the full state ξt := (xt,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n at time t, consisting of the current
IMU state and n poses.

When a new image is received, the pose augmentation step adds a new pose xn+1 ∈ X p

(global frame) to ξt, derived from xIMU
n+1 ∈ X p, the IMU position estimate in the global frame.

Essentially, we append a copy of the camera pose associated with the current IMU pose to
the state vector ξt. So now, there is an IMU state xt,IMU, along with a new pose xn+1 which
is just the pose of the camera at time t.
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The feature update step uses features measurements to update the mean and covariance
of ξt. In the MSCKF, features are chosen for an EKF update according to the criterion
mentioned above. Let Sf denote the set of all features chosen to be used for an EKF
update. (Algorithm 9.) These feature constraints are then incorporated into the running
cost, resulting in a new cost cMSCKF,t,3 : XIMU × (Xp)n → R:

cMSCKF,t,3(x̃t) = ‖x̃t � µt‖2
Σ−1

t
+

∑
xi,fj∈Sf

‖zi,j � h(xi, fj)‖2
Σ−1

v
,

where i in the sum above ranges over camera poses in the state vector from which feature
fj is visible, and zi,j ∈ Rdz denotes the feature measurement of feature j observed at pose
xi ∈ Xp. Initial guesses for these features are produced using multi-view triangulation from
the camera poses where they are visible. Then, we immediately perform a marginalization
step to marginalize away all features fj. This produces an updated mean for ξt, denoted
µt ∈ XIMU × (Xp)n, and an updated covariance for ξt, denoted Σt ∈ R(dIMU+ndx)×(dIMU+ndx).
As a result, our cost will be updated to cMSCKF,t,4 : XIMU × (Xp)n → R:

cMSCKF,t,4(x̃t) = ‖x̃t � µt‖2

Σ
−1
t

,

which assumes the form of cMSCKF,t,0.

The state propagation step propagates the full state by incorporating dynamics residuals
into the running cost cMSCKF,t,0, resulting in a new cost cMSCKF,t,5 : R2dIMU+ndx → R:

cMSCKF,t,5(x̃t, xt+1,IMU)

:=‖x̃t � µt‖2

Σ
−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

In effect, cMSCKF,t,5 appends the new IMU variable xt+1,IMU ∈ XIMU to the current full state
x̃t ∈ XIMU × (Xp)n, and constrains this new full state via the dynamics residuals. One
marginalization step, with ξK := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n and ξM := xt,IMU ∈
XIMU, is then applied to remove the previous IMU state, xt,IMU, from the running cost. This
produces a mean µt+1 ∈ XIMU× (Xp)n and a covariance Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx) for the
new MSCKF full state, x̃t+1 := x̃t,K = (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n. Accordingly,
the running cost maintained in the optimization framework is updated to cMSCKF,t+1,0 :
XIMU × (Xp)n → R:

cMSCKF,t+1,0(x̃t+1) := ‖x̃t+1 � µt+1‖2
Σ−1

t+1
,

which returns the running cost to the form of cMSCKF,t,0.

The theorems below establish that the feature update, and propagation steps of the
MSCKF, presented above in our optimization framework, correspond precisely to those pre-
sented in the standard MSCKF (Algorithm 9) [21].
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Theorem 4.3.4. The feature update step of the standard MSCKF algorithm (Alg. 11) is
equivalent to applying a marginalization step to cMSCKF,t,3 : XIMU × (Xp)n × R|Sf |df → R,
given by:

cMSCKF,t,3(x̃t, fSf
) = ‖x̃t � µt‖2

Σ−1
t

+
∑

(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, fj)‖2
Σ−1

v
,

where fSf
∈ R|Sf |df denotes the stacked vector of all feature positions in Sf (see Algorithm

9).

Proof. See Appendix (Section 6.2).

Theorem 4.3.5. The state propagation step of the standard MSCKF SLAM algorithm (Alg.
12) is equivalent to applying a Marginalization step once to cMSCKF,t,5 : R2dIMU+ndx → R,
given by:

cMSCKF,t,5(x̃t, xt+1,IMU)

:=‖x̃t � µt‖2

Σ
−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

with x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n and x̃t,M = xt,IMU ∈ XIMU.

Proof. See Appendix (Section 6.2).

Remark 4.3.2. With the above formal results in hand, we are ready to make a few ob-
servations that will make an optimization based implementation of the MSCKF a lot more
natural:

1. The standard statement of the MSCKF maintains a state vector consisting of one IMU
state and multiple old camera poses. Due to this invariant, we need to go through the
trouble of introducing a new camera pose and then marginalizing the old IMU state at
each iteration. Instead, it is no loss of generality for us to instead keep n IMU states
in the state vector. This way, no complicated pose augmentation step is needed, and
we can simply add the robot state to the optimization problem and constrain it using a
dynamics residual as usual.

2. Instead of simply dropping the poses to be removed, in the optimization-based approach,
we can marginalize them away instead. This is a cheap operation, since each pose is
only constrained to the pose before and after it through the dynamics residual terms.

Finally, we arrive at the following optimization-based formulation of the MSCKF. At
each timestep, we must:

1. Receive a new odometry measurement, and add a dynamics residual of the form ‖xt+1−
g(xt)‖2

Σ−1
v

to the optimization problem.
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2. Pick features to perform an EKF update with. Let Sf be the set of features that are
no longer visible in the most recent pose.

3. Pick poses that need to be dropped. This is only done if the number of poses in the
optimization problem has exceeded the maximum allowable number n. If this is the
case, let Sx be the set of bn/3c poses spaced out evenly along the vector of optimization
states. Add all features visible from these poses into Sf .

4. Initialize estimates for the features in Sf by multi-view triangulation, then add feature
measurement terms of the form ‖z − h(x, f)‖2

Σ−1 for each feature in Sf to the cost
function.

5. Feature update: Update the mean and covariance of the robot state estimate by
marginalizing away all features in Sf .

6. Dropping states: Remove states in Sx from the optimization problem by marginal-
izing them away.

Note that now, the MSCKF is seen as a sliding window filter with a different, more
sophisticated marginalization scheme. In the classical sliding window filter, features are
added to the optimization problem as soon as they are seen, the oldest pose is marginalized
away, and features are only marginalized away when they are no longer visible. At each step,
the estimate is improved by taking multiple costly nonlinear Gauss-Newton steps. In the
MSCKF, the introduction of features to the optimization problem is delayed until they are
“matured”, i.e. have been viewed from multiple views and are no longer visible in the most
recent pose. Then, features are immediately marginalized. When poses are to be dropped,
evenly spaced poses are marginalized away instead of just marginalizing the oldest pose.

Note that in the MSCKF, no nonlinear Gauss-Newton based updates with feature con-
straints are performed at all, so only first-order effects of feature constraints are used (through
the marginalization). In the next chapter, we will see if and how this affects the performance
of the filter. It should be noted that there are already two safeguards against this: first,
since the initialization of features is delayed until they have matured and have been seen
from multiple views, the linearization error (which is the only error involved with marginal-
ization) is minimized. Additionally, by removing robot states in this evenly-spaced manner,
we keep around robot states from arbitrarily far in the past. Such poses tend to have a
higher baseline with more recent poses, and hence possess better localization information.

4.4 Other State-of-the-Art SLAM Algorithms

In this section, we briefly overview some other common SLAM/structure from motion al-
gorithmic paradigms, and interpret them through the lens of marginalization and update
policies.
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Algorithm 4: Multi-State Constrained Kalman Filter, as iterative optimization.

Data: Prior N (µ0,Σ0) on xIMU,0 ∈ XIMU, noise covariances Σw, Σv, dynamics gIMU,
measurement map h, time horizon T , Pose transform ψ (IMU → global) , ε > 0.

Result: Estimates x̂t for all desired timesteps t ∈ {1, · · · , T} .
1 costt ← ‖x0 � µ0‖2Σ0

. (Initialize objective function).

2 Sz, Sx, Sz,1, Sz,2 ← φ
3 (n, p)← (0, 0)
4 for t = 0, · · · , T do
5 while new pose xn+1 ∈ Xp recorded, new IMU measurement not received do
6 costt ← costt + ε−1‖xn+1 � ψ(x̃t, x

IMU
n+1 )‖22.

7 µt,Σt, costt ← 1 Gauss-Newton costt (Alg. 1), about (µt, ψ(µt, x
IMU
n+1 )) with ε→ 0.

8 {zn+1,j} ← Feature measurements at xn+1

9 Sz ← Sz ∪
{

(xn+1, fj)|fj observed at n+ 1
}

10 n← n+ 1
11 if n ≥ Nmax − 1 then
12 Sx ← {xi|i mod 3 = 2, and 1 ≤ i ≤ n.}
13 Sz,1 ←

{
(xi, fj) ∈ Sz

∣∣xi ∈ Sx, feature j observed at each pose in Sx
}

14 end
15 Sz,2 ←

{
(xi, fj) ∈ Sz|fj not observed at xn

}
.

16 costt ← costt +
∑

(xi,fj)∈Sz,1∪Sz,2
‖zi,j � h(xi, ft,j)‖Σ−1

v

17 µt, Σt, costt ← 1 Gauss-Newton step on costt, about µt (Alg. 1)
18 x̂t ← µt ∈ XIMU × (Xp)n.
19 Sz ← Sz\(Sz,1 ∪ {(xi, fj)|xi ∈ Sx})
20 Reindex poses and features in ascending order.
21 (p, n)← (p− |Sf |, n− |Sx|)
22 end
23 if t < T then
24 costt ← costt + ‖xt+1,IMU � gIMU(xt,IMU)‖2

Σ−1
w

.

25 µt+1,Σt+1, costt ← 1 Marginalization step on costt, about (µt, g(µt,IMU)) (Alg. 2)

26 end

27 end
28 return x̂0, · · · x̂T ∈ XIMU × (Xp)n
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• Extended Kalman Filter (EKF) [29] [28] [31] [30] –The EKF iteratively updates
a full state consisting of the current pose, and position estimates of all features ob-
served; all past poses are marginalized. This design favors computational speed over
localization precision. The iterated Extended Kalman Filter (iEKF), a variant of EKF,
takes multiple Gauss-Newton steps before each marginalization step, to tune the lin-
earization point about which marginalization occurs. This improves mapping and
localization accuracy but increases computation time.

• Multi-State Constrained Kalman Filter [21] [15] [16]–The MSCKF iteratively
updates a full state consisting of the current IMU state and n past poses, with n ≤
Nmax, a specified upper bound (features are stored separately). Here, the choice of Nmax

most directly characterizes the tradeoff between accuracy and computational speed.

• SlidingWindow Smoother, Fixed-Lag Smoother [19] [26] [8]–The fixed-lag smoother
resembles the MSCKF, but performs multiple steps of Gauss-Newton descent before
the marginalization step, to tune the linearization point. This improves mapping and
localization accuracies of the MSCKF at the cost of increasing computation time.

• Open Keyframe Visual-Inertial SLAM (OKVis) [14] [20] [22] –OKVis updates
a sliding window of “keyframe” poses, that are deemed the most informative and
may be arbitrarily spaced in time. Keyframe poses leaving the sliding window are
marginalized, while non-keyframe poses are dropped. This design choice improves
estimation accuracy by maximizing information encoded by the stored poses, without
increasing computation time.

• Graph SLAM and Bundle Adjustment [29] [11] [12] –These algorithms solve the
full SLAM problem, with no marginalization. Their state estimation can be more
accurate than the above algorithms, but their computational times are often longer by
one to two orders of magnitude.
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Chapter 5

Implementation and Experimental
Results

In this section we present empirical results showing the effects of different marginalization
and update schemes to the quality of pose tracking in real-world data. We designed a gen-
eral SLAM backend that modularly implements utilities to keep track of the current cost
function, perform Gauss-Newton descent, and marginalize out variables. This backend is
then called from different algorithms to implement various marginalization and state-update
schemes. We implement a sliding window filter and examine the effect of window size on
state estimation accuracy. We also provide a novel implementation of the MSCKF as an
iterative optimization algorithm, and compare its performance to the sliding window filters.
Due to our approach of analyzing and implementing each algorithm as a particular choice of
marginalization scheme, we are able to make concrete statements about the relative charac-
teristics of the two types of algorithms, and hence comment on their relative performance.

5.1 Dataset

All experiments are carried out using the popular public EuRoC MAV dataset [1], which
includes stereo image sequences along with inertial measurement unit (IMU) measurements.
The stereo images arrive at a rate of 20Hz and the IMU measurements at a rate of 200Hz. The
sensor suite is mounted on board a micro aerial vehicle, as shown in figure 5.1. Ground-truth
poses recorded using a Vicon moion capture system and IMU biases are also available for each
sequence. Our experiments are carried out on the Vicon Room 2 01 and 02 sequences, which
contain about 2300 stereo images each and span about 2 minutes of real-time operation.
The first of these sequences is easier, as it corresponds to simple and slow evolution of the
camera, while the latter contains some jerky and quick motions that prove challenging to
some algorithms.
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5.2 Front-end

Since the focus of this work is the SLAM backend, we standardize the front-end across all
experiments, altering only the backend used to process the abstracted data produced by
the front-end. We use keypoint features as environment landmarks as is standard in visual
SLAM. First, BRISK features are extracted from both images of the input stereo pair. Then,
feature matching is carried out between the left and right image frames. First, brute force
matching using Hamming distance on the binary BRISK descriptors is carried out, and then
outliers are filtered using an epipolar constraint check using the known relative pose between
the two cameras in the stereo set-up. Only keypoints for which a stereo match was found
are kept.

After stereo matching, all keypoint pairs observed in the previous k frames are considered
for matching with the features in the current frame. First, brute-force matching based on
Hamming distance is carried out in the left and right frames separately. Then, a four-way
consistence check is carried out. i.e. a match between two stereo frames S1, S2 is accepted
if and only if both observations of a given feature in S1 are matched to the respective
observations of the same feature in S2. Finally, outlier matches are rejected by projecting
the best estimate of the matched feature onto the best estimate of the current camera pose,
and rejecting matches that have a high reprojection error. Any stereo matches in the current
frame that were not matched with a previously seen feature, it is considered a newly detected
landmark, and is initialized using stereo triangulation from the best estimate of the current
camera pose. The front-end maintains data structures allowing two-way access between
features and camera poses: for each feature index, it is possible to look up all camera poses
from which that feature is visible, and likewise for each camera pose it is possible to query
which features are visible in that frame.

5.3 Dynamics Model

We have access to odometry measurements in the form of an on-board IMU, which gives
us measurements of body-frame angular velocity and linear acceleration. We use the IMU
pre-integration scheme detailed in [10]. We wish to establish a discrete-time dynamics map
xt+1 = g(xt) that allows us to predict the pose of the robot at time xt+1 given the pose at
time t and the IMU measurement at time t. Note that for us, one timestep corresponds
to a new image measurement. Since IMU measurements arrive at a faster rate than image
measurements, computing this map requires us to accumulate several IMU measurements
together into a relative state measurement, which can then be composed with the state at
time xt to get the predicted state at time xt+1. This is called IMU pre-integration, since we
must integrate a number of IMU measurements in advance.

The robot state xt consists of the orientation, position, and velocity of the body frame
relative to the world frame, and the IMU biases, so that xt = (Rt, pt, vt, bt), where (Rt, pt) ∈
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Figure 5.1: The micro aerial vehicle used to collect the EuRoC MAV dataset.

SE(3), vt ∈ R3 and bt = (bgt , b
a
t ) ∈ R3 × R3 ' R6 are the IMU biases in the gyroscope and

accelerometer respectively. The IMU biases are slowly varying and generally unknown, so
they are included in the robot state and are also jointly estimated.

The IMU measures angular velocity and accelerations. The measurements are denoted

Bã and Bω̃WB. Here, B refers to the robot’s body frame and W the world frame. The prefix
B means that the quantity is expressed in the B frame, and the suffix WB denotes that
the quantity represents the motion of the B frame relative to W . So the pose of the robot
is (RWB,Wp) ∈ SE(3). The measurements are affected by additive white noise η and the
slowly varying IMU biases:

Bω̃WB(t) = BωWB(t) + bg(t) + ηg(t)

Bã(t) = R>WB(t)(Wa(t)− Wg) + bg(t) + ηg(t)

where WωWB is the true angular velocity, Wa the true acceleration, and Wg the gravity
acceleration vector in the world frame. Assume that between timestep t and t + 1, we
received m IMU measurements, at constant time increments ∆t. [10] provides expressions
for (xt+1 � g(xt)) directly in terms of the IMU measurements. Additionally, expressions for
noise propagation are also provided, which allows us to compute the covariance Σv over the
error (xt+1 � g(xt)) in terms of the measurement noise η, which is what we need to compute
the required cost function ‖xt+1 � g(xt)‖2

Σ−1
v

and Jacobians.
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5.4 Image Measurement Model

Given a camera pose xt = (Rt, pt) and a 3D feature location fj = (fxj , f
y
j , f

z
j ), the camera

measurement model h(xt, fj) predicts the projected pixel location of the point in both stereo
images. We assume the stereo camera pair is calibrated and rectified, so that both cameras
have the same pinhole camera matrix K and the epilines are horizontal, so that the two
measurements of a point in the two cameras will share the same v-coordinate in (u, v) image
space. Therefore, an image measurement will be stored as a 3-vector (uL, uR, v), where the
coordinates of the measurement in the left and right image are (uL, v) and (uR, v) respectively.
The measurement map h predicts the image location (uL, uR, v) by projecting the point fj
onto both image frames (with the standard pinhole projection), using the known poses of
the two cameras in the robot’s body-frame. Due to noise, the actual measurement will
not have the exact same v coordinate, so the image measurement is collected by averaging
the two v-coordinates of the two keypoints. This measurement ztj is then compared to
the predicted coordinates by a Mahalanobis distance in R3 space to get the cost function
‖ztj − h(xt, fj)‖2

Σ−1
w

. The covariance Σw is the expected noise in image space, which is a

design parameter. In our experiments we choose Σw = σI3 where I3 is the 3 × 3 identity
matrix and σ = 0.05 pixels, which was found to work well in practice.

5.5 Backend

For book-keeping the cost function in the backend, computing Jacobians, and implementing
Gauss-Newton optimization, we use GTSAM [6, 7]. The whole system is implemented in
C++.

5.6 Results and Discussion

The localization results for a sliding window filter with filter sizes 5, 10, 30, and 50 on the
Vicon room 2 01 dataset (easy) are shown in figure (5.2) along with an MSCKF with window
size 10. Recall that the images arrive at 20Hz, so a window size of 20 corresponds to 1 second
of real-time. We can see that most algorithms are able to do well on this sequence. What
may be surprising is that the MSCKF, despite its lack of multiple nonlinear Gauss-Newton
updates at each iteration, is able to perform about as well the large sliding window filters
which are much more computationally intensive. The results for the Vicon room 2 02 dataset
(medium) are shown in figure (5.3). Note that on this dataset, sliding window filters of size
smaller than 30 fail completely; there are parts of the sequence where the front-end loses
tracking, and the filters are unable to recover. Results are shown for the sliding window filter
with window size 30 and the MSCKF for window size 10, and we can see that the MSCKF
scheme outperforms the larger sliding window filter on this challenging dataset.
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A few observations can be made immediately. First, on the easy dataset, there is not
much improvement in the performance of the sliding window filter when the window size
is increased past 10. This tells us that there is a critical limit at which point features and
poses are maximally “matured” and can be safely marginalized away. However, on the harder
dataset, a small window size can be fatal, since if tracking is lost for any significant chunk
of the duration of the window size, then we can lose track entirely.

Additionally, despite the fact that the MSCKF does not perform any costly multiple
nonlinear Gauss-Newton updates, its performance is comparable to even sliding window
filters with a much larger window size. On the harder dataset, the MSCKF is able to recover
from lost tracking whereas sliding window filters of comparable sizes are not. This can be
attributed to a couple of factors. First of all, the MSCKF employs a marginalization scheme
wherein poses that are evenly spaced in the optimization window are dropped. This means
that any given point in time, the optimization windows contains poses from arbitrarily far
in the past, with the density of included poses being highest near the current time. This is
significant since older poses generally represent higher baselines with respect to more recent
poses, and hence features common to more recent poses and these older poses contain better
localization information. This was also noted in the original MSCKF paper [21]. This also
allows the MSCKF to recover from losing track, since the older poses in the optimization
window can give it the localization information it needs. Further, features are only included
into the optimization window once they have “matured” i.e. they have been viewed from
multiple camera poses and are no longer in view. This also allows us to maximally utilize
their localization information with fewer updates.

The MSCKF can be seen as a sliding window filter with a special marginalization scheme
where localization “updates” are carried out by introducing and then immediately marginal-
izing away features. This way, we only use first-order localization information from the
features to perform updates. The absence of costly nonlinear updates through multiple iter-
ations of Gauss-Newton is made up for by the pose marginalization scheme of dropping poses
from evenly spaced out spots in the optimization window, and only incorporating features
that have matured. The latter technique further ensures that when the feature is initialized
this is done through multiple-view triangulation instead of just stereo triangulation, so that
the linearization error when the feature is marginalized away is also minimal. All of this
means that through the choice of a clever marginalization scheme, the MSCKF is able to
compete with large sliding window filters, despite the fact that the latter employ multiple
nonlinear Gauss-Newton updates for each feature before it is marginalized away.

5.7 Conclusion

We have presented a framework based on nonlinear optimization for analyzing and imple-
menting SLAM algorithms. The equivalence between popular filtering based techniques such
as EKF-SLAM or MSCKF and nonlinear optimization is shown. A novel re-statement of the
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Figure 5.2: Localization results for various sliding window filters and the MSCKF on the
Vicon room 2 01 (easy) dataset.

MSCKF as an iterative optimization solver is presented, and is used as the basis for a novel
implementation of the algorithm. We evaluate the performance of the sliding window filter,
which is explicitly optimization based, and the presented implementation of the MSCKF,
and show that the MSCKF with a smaller optimization window is able to outperform a slid-
ing window filter with large window size, despite the fact that the MSCKF does not perform
multiple nonlinear feature measurement updates through Gauss-Newton. Further, we find
that the MSCKF is able to better recover from lost tracking than the sliding window fil-
ter. By interpreting the MSCKF as an iterative optimization with a special marginalization
scheme, the characteristics of this marginalization scheme are used to explain the observed
performance characteristics. We believe that the presented approach and analysis can serve
as a basis for visual odometry algorithm design, specifically for filter design. Indeed, by
simply tweaking marginalization policies, we can see that new performance characteristics
can be extracted from the same implementation, as we see from the comparison between
the sliding window filter and the MSCKF. We implemented both of those algorithms in the
exact same way, with only the marginalization scheme swapped out. As such, by examining
the effects of various marginalization schemes in more detail, we can aid the design and
implementation of SLAM algorithms.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 38

Figure 5.3: Localization results for various sliding window filters and the MSCKF on the
Vicon room 2 02 (medium) dataset.
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Chapter 6

Appendix

6.1 Algorithms from Chapter 4

Algorithm 5: Extended Kalman Filter SLAM, Standard Formulation.

Data: Prior distribution on x0 ∈ Rdx : N (µ0,Σ0), dynamics and measurement noise
covariances Σw ∈ Rdx×dx ,Σv ∈ Rdz×dz , (discrete-time) dynamics map
g : Rdx → Rdx , measurement map h : Rdx × Rpdf → Rdz , time horizon T ∈ N.

Result: Estimates x̂t for all desired timesteps t ≤ T .

1 for t = 0, · · · , T do

2 if detect new feature measurements zt,p+1:p+p′ := (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz
then

3 µt,Σt, p← Alg. 6, EKF feature augmentation
(
µt,Σt, p, zt,p+1:p+p′ , h(·)

)
4 end

5 zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz ← New measurements of existing features.

6 µt,Σt ← Alg. 7, EKF feature update
(
µt,Σt, zt,1:p, h(·)

)
.

7 if t < T then
8 µt+1,Σt+1 ← Alg. 8, EKF state propagation

(
µt,Σt, g(·)

)
9 end

10 end

11 return x̂0, · · · x̂T ∈ Rdx.
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Algorithm 6: Extended Kalman Filter, Feature Augmentation Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf )×(dx+pdf ), current number of features p, observations of new
features at current pose zt,p+1:p+p′ := (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz ,
measurement map h : Rdx × Rdf → Rdz , inverse measurement map
` : Rdx × Rdz → Rdf .

Result: Updated number of features p, updated EKF state mean µt ∈ Rdx+pdf ,
covariance Σt ∈ R(dx+pdf )×(dx+pdf ) (with p already updated)

1 (µt,x, µt,f,1:p)← µt ∈ Rdx+pdf , with µt,x ∈ Rdx , µt,f,1:p ∈ Rpdf .

2 ` : Rdx × Rdz → Rdf ← Inverse measurement map, satisfying zt,k = h
(
xt, `(xt, zt,k)

)
for each xt ∈ Rdx , zt,k ∈ Rdz , ∀k = p+ 1, · · · , p+ p′.

3 ˜̀(µt,x, zt,p+1, · · · , zt,p+p′)←
(
`(µt,x, zt,p+1), · · · , `(µt,x, zt,p+p′)

)
∈ Rp′df×(dx+p′dz)

4 µt ←
(
µt, ˜̀(µt,x, zt,p+1, · · · , zt,p+p′)

)
∈ Rdx+(p+p′)df

5

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]
← Σt ∈ R(dx+pdf )×(dx+pdf ), with Σt,xx ∈ Rdx×dx ,

Σt,xf = Σ>t,fx ∈ Rdx×pdf , Σt,ff ∈ Rpdf×pdf .

6 Lx ← ∂ ˜̀

∂x

∣∣
(µt,z′t)

∈ Rp′df×dx

7 Lz ← ∂ ˜̀

∂z

∣∣
(µt,z′t)

∈ Rp′df×p′dz

8 Σ̃v ← diag{Σv, · · · ,Σv} ∈ Rp′dz×p′dz

9 Σt ←

 Σt,xx Σt,xf Σt,xxL
>
x

Σt,fx Σt,ff Σt,fxL
>
x

LxΣt,xx LxΣt,xf LxΣt,xxL
>
x + LzΣ̃vL

>
z

 ∈ R(dx+(p+p′)df )×(dx+(p+p′)df )

10 p← p+ p′

11 return µt ∈ Rdx+pdf ,Σt ∈ R(dx+pdf )×(dx+pdf ), p ≥ 0
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Algorithm 7: Extended Kalman Filter, Feature Update Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf )×(dx+pdf ), new measurements of existing features
zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz , measurement map h : Rdx × Rdf → Rdz

Result: Updated EKF state mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf )×(dx+pdf )

1 ft,1:p ← (ft,1, · · · , ft,p) ∈ Rpdf .

2 h̃(xt, ft,1:p)←
(
h(xt, ft,1), · · · , h(xt, ft,p)

)
∈ Rpdz

3 Ht ← ∂h̃
∂(xt,ft,1:p)

∣∣∣
µt

Jacobian of h̃ : Rdx × Rpdf → Rpdz evaluated at µt ∈ Rdx+pdf .

4 Σ̃v ← diag{Σv, · · · ,Σv} ∈ Rpdz×pdz .

5 µt ← µt + ΣtH
T
t (HtΣtH

T
t + Σ̃v)

−1
(
zt,1:p − h̃(µt, ft,1:p)

)
∈ Rdx+pdf .

6 Σt ← Σt − ΣtH
T
t (HtΣtH

T
t + Σ̃v)

−1HtΣt ∈ R(dx+pdf )×(dx+pdf ).

7 return µt ∈ Rdx+pdf ,Σt ∈ R(dx+pdf )×(dx+pdf ).

Algorithm 8: Extended Kalman Filter, State Propagation Sub-block.

Data: Current EKF state x̃t ∈ Rdx+pdf , with mean µt ∈ Rdx+pdf and covariance
Σt ∈ R(dx+pdf )×(dx+pdf ), (discrete-time) dynamics map g : Rdx → Rdx

Result: Propagated EKF state mean µt+1 ∈ Rdx+pdf and covariance
Σt+1 ∈ R(dx+pdf )×(dx+pdf )

1 (µt,x, µt,f,1:p)← µt, with µt,x ∈ Rdx , µt,f,1:p ∈ Rpdf .

2

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]
← Σt ∈ Rdx×dx , with Σt,xx ∈ Rdx×dx ,Σt,xf = Σ

>
t,fx ∈ Rdx×pdf ,

Σt,ff ∈ Rpdf×pdf .

3 Gt ← ∂g
∂x

∣∣∣
µt,x

.

4 µt+1 ←
(
g(µt), µt,f,1:p

)
∈ Rdx+pdf .

5 Σt+1 ←
[
GtΣt,xxG

>
t + Σw GtΣt,xf

Σt,fxG
>
t Σt,ff

]
∈ R(dx+pdf )×(dx+pdf ).

6 return µt+1 ∈ Rdx+pdf ,Σt+1 ∈ R(dx+pdf )×(dx+pdf ).



CHAPTER 6. APPENDIX 45

Algorithm 9: Multi-State Constrained Kalman Filter, Standard Formulation.

Data: Prior distribution on xIMU,0 ∈ Xp: N (µ0,Σ0), dynamics and measurement noise
covariances Σw ∈ Rdx×dx , Σv ∈ Rdx×dz , discrete-time dynamics map
gIMU : RdIMU × RdIMU , measurement map h : Xp × Rdf → Rdz , time horizon T , pose
transformation ψ : XIMU × (Xp)n ×Xp → Xp (IMU → global).

Result: Estimates x̂t ∈ XIMU × (Xp)n for all desired timesteps t ≤ T , where n := number
of poses in x̂t at time t.

1 Sz, Sx, Sz,1, Sz,2 ← φ
2 (n, p)← (0, 0)
3 for t = 0, · · · , T do
4 while new image I with new pose xn+1 ∈ Xp recorded, next IMU measurement not

yet received do

5 µt ∈ XIMU × (Xp)n,Σt ∈ R(dIMU+ndx)×(dIMU+ndx) ← Alg. 10 (x̃t, µt, Σt, xn+1, xIMU
n+1 ,

ψ(·))
6 {zn+1,j | feature j is observed at xn+1} ← Feature measurements at xn+1

7 {f?j | Feature j is observed at xn+1} ← Feature position estimates at xn+1.

8 Record new estimates of existing features and first estimate of new features at
xn+1 ∈ Xp.

9 Sz ← Sz ∪
{

(xn+1, fj)| Feature j observed at n+ 1
}

10 n← n+ 1
11 if n ≥ Nmax − 1 then
12 Sx ← {xi|i mod 3 = 2, and 1 ≤ i ≤ n.}
13 Sz,1 ←

{
(xi, fj) ∈ Sz

∣∣xi ∈ Sx, feature j observed at each pose in Sx
}

14 end
15 Sz,2 ←

{
(xi, fj) ∈ Sz|xi ∈ x1:n, feature j observed at xi but not at xn

}
.

16 Sf ←
{
fj
∣∣∃xi ∈ x1:n s.t. (xi, fj) ∈ Sz,1 ∪ Sz,2

}
17 if Sf 6= φ then

18 µt ∈ XIMU × (Xp)n,Σt ∈ R(dIMU+ndx)×(dIMU+ndx) ← Alg. 11 (x̃t, µt, Σt, xn+1,
Sz,1 ∪ Sz,2, Sf , h(·))

19 x̂t ← µt ∈ XIMU × (Xp)n.

20 end
21 Sz ← Sz\(Sz,1 ∪ {(xi, fj)|xi ∈ Sx})
22 Reindex poses and features, in ascending order of index, i.e., {x1, · · · , xn−|Sx|} and

{f1, · · · , fp−|Sf |}.
23 (p, n)← (p− |Sf |, n− |Sx|)
24 end
25 if t < T then

26 µt+1 ∈ XIMU × (Xp)n,Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx) ← Alg. 12, MSCKF State

Propagation (x̃t, µt, Σt)
27 end

28 end
29 return x̂0, · · · x̂T ∈ XIMU × (Xp)n
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Algorithm 10: Multi-State Constrained Kalman Filter, Pose Augmentation Sub-
block.
Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and

covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), New pose xn+1 ∈ Xp, measurement of
new pose in IMU frame xIMU

n+1 ∈ Xp, Transformation of poses from IMU frame
to global frame ψ : R(dIMU+ndx) ×Xp → Xp

Result: Updated MSCKF state mean µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx), updated number of poses n.

1 x̃t ← (x̃t, xn+1) ∈ RdIMU+(n+1)dx , where xn+1 ∈ Xp is the new pose vector.
2 {zn+1,j| Feature j is observed at pose n+ 1} ← Feature measurements at pose xn+1

3 {f ?j | Feature j is observed at pose xn+1} ← Feature position estimates at pose xn+1.

4 µt ← (µt, ψ(µt, x
IMU
n+1 )) ∈ RdIMU+(n+1)dx , where µt,IMU ∈ RdIMU := IMU component of

µt, x
IMU
n+1 ∈ Xp := pose estimate of xn+1 from the IMU frame.

5 Σt ←

[
IdIMU+(n+1)dx

∂ψ
∂(x̃t,xIMU

n+1 )

]
Σt

[
IdIMU+(n+1)dx

∂ψ
∂(x̃t,xIMU

n+1 )

]>
6 return µt ∈ XIMU × (Xp)n, Σt ∈ R(dIMU+ndx)×(dIMU+ndx), n ≥ 0
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Algorithm 11: Multi-State Constrained Kalman Filter, Feature Update Sub-block.

Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and
covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), Set of image measurements for
marginalization Sz,1 ∪ Sz,2, Set of features to marginalize Sf , measurement
map h : Xp × Rdf → Rdz .

Result: Updated MSCKF state mean µt ∈ XIMU × (Xp)n and covariance
Σt ∈ R(dIMU+ndx)×(dIMU+ndx).

1 fSf
∈ R|Sf |df ← Concatenation of all features in Sf

2 f ?Sf
∈ R|Sf |df ← Concatenation of position estimate of all features in Sf

3 h̃(x̃t, fSf
) ∈ R|Sz,1∪Sz,2|dz ← Concatenation of measurement map outputs{

h(xi, fj)|(xi, fj) ∈ Sz,1 ∪ Sz,2
}

.

4 z̃ ∈ R|Sz,1∪Sz,2|dz ← Concatenation of feature measurements{
zij|(xi, fj) ∈ Sz,1 ∪ Sz,2

}
.

5 H̃t,x ← ∂h̃
∂x̃t

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×(dIMU+ndx).

6 H̃t,f ← ∂h̃
∂fSf

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×|Sf |df .

7 {a1, · · · , a|Sz,1∪Sz,2|dz−|Sf |df} ⊂ R|Sz,1∪Sz,2|dz ← Orthonormal basis for N(H̃>t,f ).

8 A←
[
a1 · · · a|Sz,1∪Sz,2|dz−|Sf |df

]
∈ R|Sz,1∪Sz,2|dz×(|Sz,1∪Sz,2|dz−|Sf |df ).

9 QT ← QR Decomposition of A>H̃t,x, with

Q ∈ R(|Sz,1∪Sz,2|dz−|Sf |df )×(|Sz,1∪Sz,2|dz−|Sf |df ), T ∈ R(|Sz,1∪Sz,2|dz−|Sf |df )×(dIMU+ndx).

10 Σ
−1

t ← Σ−1
t + T>(Q>A>RAQ)−1T ∈ R(dIMU+ndx)×(dIMU+ndx).

11 µt ← µt �
(
Σ−1
t + T>(Q>A>RAQ)−1T

)−1
T>(Q>A>RAQ)−1

(
z̃ � h̃(x̃t)

)
∈

XIMU × (Xp)n.
12 x̂t ← µt ∈ XIMU × (Xp)n.

13 return µt ∈ XIMU × (Xp)n, Σt ∈ R(dIMU+ndx)×(dIMU+ndx)

Algorithm 12: Multi-State Constrained Kalman Filter, State Propagation Sub-
block.
Data: MSCKF state x̃t ∈ XIMU × (Xp)n, with mean µt ∈ XIMU × (Xp)n and

covariance Σt ∈ R(dIMU+ndx)×(dIMU+ndx), (discrete-time) dynamics map
g : RdIMU → RdIMU .

Result: Updated MSCKF state mean µt+1 ∈ XIMU × (Xp)n and covariance
Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx).

1 (µt,IMU, µt,x,1:n)← µt, with µt,IMU ∈ RdIMU , µt,x,1:n ∈ Rndx .

2 Gt ← Jacobian of gIMU : RdIMU → RdIMU evaluated at µt,IMU ∈ RdIMU .

3 µt+1 ←
(
gIMU(µt,IMU), µt,x,1:n

)
∈ XIMU × (Xp)n.

4 Σt+1 ←
[
Gt O
O Indx

]
Σt

[
G>t O
O Indx

]
+

[
Σw O
O O

]
∈ R(dIMU+ndx)×(dIMU+ndx).

5 return µt+1 ∈ XIMU × (Xp)n, Σt+1 ∈ R(dIMU+ndx)×(dIMU+ndx).
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6.2 Proofs from Chapter 4

Proofs from Section 4.3

Theorem 6.2.1. The feature augmentation step of the standard EKF SLAM algorithm (Alg.
6) is equivalent to applying a Gauss-Newton step to cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,1(x̃t, ft,p+1, · · · , ft,p+p′)

=‖x̃t − µt‖2
Σ−1

t
+

p+p′∑
k=p+1

‖zt,k − h(xt, ft,k)‖2
Σ̃−1

v
.

Proof. To simplify the analysis below, we assume all degrees of freedom of new features
are observed. More specifically, we assume the existence of an inverse observation map
` : Rdx×Rdz → Rdf , satisfying h(xt, `(xt, zt)) = zt for each xt ∈ Rdx , zt ∈ Rdz , which directly
generates position estimates of new features from their feature measurements and the current
pose, by effectively “inverting” the measurement map h : Rdx × Rdf → Rdz [28]. When full
observations are unattainable, the missing degrees of freedom are introduced as a prior to
the system [28]; in this case, similar results follow.

First, to simplify notation, define:

zt,p+1:p+p′ = (zt,p+1, · · · , zt,p+p′) ∈ Rp′dz ,

ft,p+1:p+p′ = (ft,p+1, · · · , ft,p+p′) ∈ Rp′df ,

h̃(xt, ft,p+1:p+p′) :=
(
h(xt, ft,p+1), · · · , h(xt, ft,p+p′)

)
∈ Rp′dz ,

Σ̃v = diag{Σv, · · · ,Σv} ∈ Rp′dz×p′dz .

We can now rewrite the cost cEKF,t,1 as:

cEKF,t,1(x̃t, ft,p+1:p+p′)

=‖x̃t − µt‖2
Σ−1

t
+ ‖zt,p+1:p+p′ − h̃(xt, ft,p+1:p+p′)‖2

Σ̃−1
v
.

To apply a Gauss-Newton step, our first task is to find a vector C1(x̃t, ft,p+1:p+p′) of an ap-
propriate dimension such that cEKF,t,1(x̃t, ft,p+1:p+p′) = C1(x̃t, ft,p+1:p+p′)

>C1(x̃t, ft,p+1:p+p′).
A natural choice is furnished by C1(x̃t, ft,p+1:p+p′) ∈ Rdx+pdf+p′dz , as defined below:

C1(x̃t, ft,p+1:p+p′)

:=

[
Σ
−1/2
t (x̃t − µt)

Σ
−1/2
v

(
zt,p+1:p+p′ − h̃(xt, ft,p+1:p+p′)

)] .
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Thus, our parameters for the Gauss-Newton algorithm submodule are:

x̃?t := (x?t , f
?
t,1:p, f

?
t,p+1:p+p′)

=
(
µt, `(x

?
t , zt,p+1), · · · , `(x?t , zt,p+p′)

)
∈ Rdx+(p+p′)df ,

where x?t ∈ Rdx , f ?t,1:p ∈ Rpdf , f ?t,p+1:p+p′ ∈ Rp′df ,

C1(x̃?t ) =

[
Σ
−1/2
t (x̃?t − µt)

Σ̃v
−1/2(

zt,p+1:p+p′ − h̃(x?t , f
?
t,p+1:p+p′)

)]

=

[
0
0

]
∈ Rdx+pdf+p′dz ,

J =

[
Σ
−1/2
t O

−Σ̃
−1/2
v H̃t,x

[
I O

]
−Σ̃

−1/2
v H̃t,f

]
∈ R(dx+pdf+p′dz)×(dx+(p+p′)df ),

where H̃t :=
[
H̃t,x H̃t,f

]
∈ Rp′dz×(dx+p′df ) is defined as the Jacobian of h̃ : Rdx×Rp′df → Rp′dz

at (x?t , f
?
t,p+1:p+p′) ∈ Rdx+p′df , with H̃t,x ∈ Rp′dz×dx and H̃t,f ∈ Rp′dz×pdf . By Algorithm 1, the

Gauss-Newton update is thus given by:

Σt

← (J>J)−1 (6.1)

=

(Σ
−1/2
t −

[
I
O

]
H̃>t,xΣ̃

−1/2
v

O −Σ̃
−1/2
v H̃t,f


[

Σ
−1/2
t O

−Σ̃
−1/2
v H̃t,x

[
I O

]
−Σ̃
−1/2
v H̃t,f

])−1

(6.2)

=

Σ−1
t +

[
I
O

]
H̃>t,xΣ̃−1

v H̃t,x

[
I O

] [
I
O

]
H̃>t,xΣ̃

−1/2
v H̃t,f

H̃>t,f Σ̃−1
v H̃t,x

[
I O

]
H̃>t,f Σ̃−1

v H̃t,f

−1

=

Ωt,xx + H̃>t,xΣ̃−1
v H̃t,x Ωt,xf H̃>t,xΣ̃−1

v H̃t,f

Ωt,fx Ωt,ff O

H̃>t,f Σ̃−1
v H̃t,x O H̃>t,f Σ̃−1

v H̃tf

−1

, (6.3)

µt ← x̃?t − (J>J)−1J>C1(x̃?t )

=
(
µt, `(x

?
t , zt,p+1), · · · , `(x?t , zt,p+p′)

)
.

Here, we have defined Ωt,xx ∈ Rdx×dx ,Ωt,xf = Ω>t,fx ∈ Rdx×pdf and Ωt,ff ∈ Rpdf×pdf by:[
Ωt,xx Ωt,xf

Ωt,fx Ωt,ff

]
:=

[
Σt,xx Σt,xf

Σt,fx Σt,ff

]−1

(6.4)
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To conclude the proof, we must show that (6.3) is identical to the update equations for
covariance matrix in the standard formulation of the Extended Kalman Filter algorithm,
i.e., we must show that: Σt,xx Σt,xf Σt,xxL

>
x

Σt,fx Σt,ff Σt,fxL
>
x

LxΣt,xx LxΣt,xf LxΣt,xxL
>
x + LzΣvL

>
z


·

Ωt,xx + H̃>t,xΣ̃
−1
v H̃t,x Ωt,xf H̃>t,xΣ̃

−1
v H̃t,f

Ωt,fx Ωt,ff O

H̃>t,f Σ̃
−1
v H̃t,x O H̃>t,f Σ̃

−1
v H̃tf


equals the (dx + (p + p′)df ) × (dx + (p + p′)df ) identity matrix. This follows by applying
(6.4), as well as the matrix equalities resulting from taking the derivative of the equation
zt := h

(
xt, `(xt, zt)

)
with respect to xt ∈ Rdx and zt ∈ Rdz , respectively:

I = H̃t,fLz,

O = H̃t,x +Ht,fLx.

Theorem 6.2.2. The feature update step of the standard EKF SLAM algorithm (Alg. 7) is
equivalent to applying a Gauss-Newton step on cEKF,t,1 : Rdx+pdf → R, given by:

cEKF,t,3(x̃t)

:=‖x̃t − µt‖2
Σ−1

t
+

p∑
k=1

‖zt,k − h(xt, ft,k)‖2
Σ−1

v
.

Proof. First, to simplify notation, define:

zt,1:p := (zt,1, · · · , zt,p) ∈ Rpdz ,

ft,1:p := (ft,1, · · · , ft,p) ∈ Rpdf ,

h̃(xt, ft,1:p) :=
(
h(xt, ft,1), · · · , h(xt, ft,p)

)
∈ Rpdz ,

Σ̃v := diag{Σv, · · · ,Σv} ∈ Rpdz×pdz .

We can then rewrite the cost as:

cEKF,t,1(x̃t) = ‖x̃?t − µt‖2
Σ−1

t
+ ‖zt,1:p − h̃(x̃?t )‖2

Σ̃−1
v
.

To apply a Gauss-Newton step, our first task is to find a vector C2(x̃t) of an appropriate
dimension such that cEKF,t,1(x̃t) = C2(x̃t)

>C2(x̃t). A natural choice is furnished by C2(x̃t) ∈
Rdx+pdf+pdz , as defined below:

C2(x̃t) :=

[
Σ
−1/2
t (x̃t − µt)

Σ̃
−1/2
v (zt,1:p − h̃(x̃t))

]
.
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Thus, our parameters for the Gauss-Newton algorithm submodule are:

x̃?t = µt ∈ Rdx+pdf ,

C2(x̃?t ) =

[
Σ
−1/2
t (x̃?t − µt)

Σ̃
−1/2
v (zt,1:p − h̃(x̃?t ))

]
=

[
0

Σ̃
−1/2
v (zt,1:p − h̃(µt)

]
∈ Rdx+pdf+pdz ,

J =

[
Σ
−1/2
t

−Σ̃
−1/2
v Ht

]
∈ R(dx+pdf+pdz)×(dx+pdf ),

where H̃t ∈ Rpdz×Rdx+pdf is defined as the Jacobian of h̃ : Rdx×Rpdf → Rpdz at x̃?t ∈ Rdx+pdf .
By Algorithm 1, the Gauss-Newton update is thus given by:

Σt ← (J>J)−1

= (Σ−1
t +H>t ΣvHt)

−1

= Σt − ΣtH
>
t (Σ−1

v +HtΣ
−1
t H>)−1HtΣt,

µt ← µt − (J>J)−1J>C2(x̃?t )

= µt − (Σ−1
t +H>t Σ−1

v Ht)
−1
[
Σ
−1/2
t −H>t Σ

−1/2
v

]
[

0

Σ
−1/2
v (zt,1:p − h̃(µt))

]
= µt + (Σ−1

t +H>t Σ−1
v Ht)

−1H>t Σ−1
v

(
zt,1:p − h̃(µt)

)
,

= µt + Σ−1
v H>t (Σ−1

t +H>t Σ−1
v Ht)

−1
(
zt,1:p − h̃(µt)

)
,

which are identical to the feature update equations for the mean and covariance matrix in
the Extended Kalman Filter algorithm, i.e. (4) and (5) respectively. Note that, in the final
step, we have used a variant of the Woodbury Matrix Identity.

Theorem 6.2.3. The state propagation step of the standard EKF SLAM algorithm (Alg. 8)
is equivalent to applying a Marginalization step to cEKF,t,5 : R2dx+pdf → R, given by:

cEKF,t,5(x̃t, xt+1)

:=‖x̃t − µt‖2

Σ
−1
t

+ ‖xt+1 − g(xt)‖2
Σ−1

w
.

Proof. Intuitively, the state propagation step marginalizes out x̃t ∈ Rdx and retain xt+1 ∈
Rdx . In other words, in the notation of our Marginalization algorithm submodule, we have:

x̃t,K = xt+1 ∈ Rdx+pdf ,

x̃t,M = x̃t ∈ Rdx+pdf .
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To apply a marginalization step, our first task is to find vectors CK(xK) = CK(x̃t) and
CM(xK , xM) = CM(x̃t, xt+1) of appropriate dimensions such that cEKF,t,5(x̃t, xt+1) = CK(xt+1)>CK(xt+1)+
CM(x̃t, xt+1)>CM(x̃t, xt+1). A natural choice is furnished by CK(xt+1) ∈ R and CM(x̃t, xt+1) ∈
Rdx , as defined below:

cK(xt+1) = 0

cM(x̃t, xt+1) = ‖x̃t − µt‖2

Σ
−1
t

+ ‖xt+1 − g(xt)‖2
Σ−1

w
.

where we have identified the following parameters, in the language of a Marginalization step
(Section 1.1):

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

[
Σ̄
−1/2
t (x̃t − µt)

Σ
−1/2
w

(
xt+1 − g(xt)

)] ∈ R2dx+pdf .

For convenience, we will define the pose and feature track components of the mean µt ∈
Rdx+pdf by µt := (µt,x, µt,f ) ∈ Rdx+pdf , with µt,x ∈ Rdx and µt,f ∈ Rpdf , respectively. This
mirrors our definition of xt ∈ Rdx and ft,1:p ∈ Rpdf as the components of the full state x̃t :=

(xt, ft,1:p) ∈ Rdx+pdf . In addition, we will define the components of Σ̄
−1/2
t ∈ R(dx+pdf )×(dx+pdf )

and Σ̄−1
t ∈ R(dx+pdf )×(dx+pdf ) by:[

Ωt,xx Ωt,xf

Ωt,fx Ωt,ff

]
:= Σ̄−1

t ∈ R(dx+pdf )×(dx+pdf ),[
Λt,xx Λt,xf

Λt,fx Λt,ff

]
:= Σ̄

−1/2
t ∈ R(dx+pdf )×(dx+pdf ),

where Σt,xx,Λt,xx ∈ Rdx×dx , Σt,xf ,Λt,xf ∈ Rdx×pdf , Σt,fx,Λt,fx ∈ Rpdf×dx , and Σt,ff ,Λt,ff ∈
Rpdf×pdf . Using the above definitions, we can reorder the residuals in CK ∈ R and CM ∈
R2dx+pdf , and thus redefine them by:

CK(x̃t,K) = 0 ∈ R
CM(x̃t,K , x̃t,M)

=

Λt,xx(xt − µt,x) + Λt,xf (ft,1:p − µt,f )
Σ
−1/2
w (xt+1 − g(xt))

Λt,fx(xt − µt,x) + Λt,ff (ft,1:p − µt,f )


∈ R2dx+pdf .
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Our state variables and cost functions for the Gauss-Newton algorithm submodule are:

x?M = x̃?t = µt ∈ Rdx+pdf ,

x?K = g(x̃?t ) = g(µt) ∈ Rdx+pdf ,

CK(x̃?t,K) = 0 ∈ R,

CM(x̃?t,K , x̃
?
t,M) =

[
0
0

]
∈ R2dx+pdf ,

JM =

 O Λxf

Σ
−1/2
w O
O Λff

 ∈ R(2dx+pdf )×(dx+pdf )

JK =

 Λxx

−Σ
−1/2
w Gt

Λxf

 ∈ R(2dx+pdf )×dx ,

where we have defined Gt to be the Jacobian of g : Rdx → Rdx at µt,x ∈ Rdx , i.e.:

Gt :=
∂g

∂xt

∣∣∣∣∣
xt=µt,x

Applying the Marginalization equations, we thus have:

µt+1 ← x̃t,K − Σt+1J
>
K

[
I − JM(J>MJM)−1J>M

]
CM(x?K , x

?
M)

= g(µt),

Σt+1 ←
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

,

=
(
J>KJK − J>KJM(J>MJM)−1J>MJK

)−1
,

=

([
Σ−1
w O
O ΛfxΛxf + Λ2

ff

]
−
[

−Σ−1
w Gt

ΛfxΛxx + ΛffΛfx

]
(Λ2

xx + ΛxfΛfx +G>t Σ−1
w Gt)

−1

·
[
−G>t Σ−1

w ΛxxΛxf + ΛfxΛff

])−1

=

([
Σ−1
w O
O Ωff

]
−
[
−Σ−1

w Gt

Ωfx

]

(Ωxx +G>t Σ−1
w Gt)

−1
[
−G>t Σ−1

w Ωxf

])−1
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To show that this is indeed identical to the propagation equation for the covariance matrix
in the Extended Kalman Filter algorithm, i.e. Algorithm 5, Line 5, we must show that:([

Σ−1
w O
O Ωff

]
−
[
−Σ−1

w Gt

Ωfx

]
(Ωxx +G>t Σ−1

w Gt)
−1

[
−G>t Σ−1

w Ωxf

])−1

=

[
GtΣt,xxG

>
t + Σw GtΣt,xf

Σt,xfG
>
t Σt,ff

]
This follows by brute-force expanding the above block matrix components, and applying
Woodbury’s Matrix Identity, along with the definitions of Σt,xx,Λt,xx, Σt,xf ,Λt,xf , Σt,fx,Λt,fx,
Σt,ff , and Λt,ff .

Proofs from Section 19

Theorem 6.2.4. The feature update step of the standard MSCKF algorithm (Alg. 11) is
equivalent to applying a marginalization step to cMSCKF,t,3 : XIMU × (Xp)n × R|Sf |df → R,
given by:

cMSCKF,t,3(x̃t, fSf
)

:=‖x̃t � µt‖2
Σ−1

t
+

∑
(xi,fj)∈Sz,1∪Sz,2

‖zi,j � h(xi, fj)‖2
Σ−1

v
,

where fSf
∈ R|Sf |df denotes the stacked vector of all feature positions in Sf (see Algorithm

9).

Proof. First, we rewrite cMSCKF,t,3 as:

cMSCKF,t,3(x̃t, fSf
)

:=‖x̃t � µt‖2
Σ−1

t
+ ‖z̃ � h̃(x̃t, fSf

)‖2
Σ̃−1

v
,

where z̃ ∈ R|Sz,1∪Sz,2|dz , h̃ : XIMU × (Xp)n × R|Sf |df → R|Sz,1∪Sz,2|dz : are defined as follows—
z̃ denotes the stacked measurement vectors in {zi,j|(xi, fj) ∈ Sz,1 ∪ Sz,2} ∈ R|Sz,1∪Sz,2|dz ,
h̃(x̃t, fSf

) denotes the stacked outputs of the measurement map in {h(xi, fj)|(xi, fj) ∈ Sz,1 ∪
Sz,2} ∈ R|Sz,1∪Sz,2|dz , and Σ̃v := diag{Σv, · · · ,Σv} ∈ R|Sz |dz×|Sz |dz .

Essentially, by marginalizing the feature position estimates, this step utilizes information
from feature measurements to constrain our state estimates. To accomplish this, we choose
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our algorithm variables as follows:

x̃t,K := x̃t = (xt,IMU, x1, · · · , xn)

∈ RdIMU+ndx+|Sf |df ,

x̃t,M := fSf
∈ R|Sf |df ,

x := (x̃t,K , x̃t,M)

∈ RdIMU+ndx+|Sf |df ,

CM(x̃t,K , x̃t,M) :=

[
Σ
−1/2
t (x̃t � µt)

Σ̃
−1x/2
v

(
z̃ � h̃(x̃t, fSf

)
)]

∈ RdIMU+ndx+|Sz,1∪Sz,2|dz .

The Marginalization algorithm block then implies that:

JK :=
∂CM
∂x̃t

(µt, f
?
Sf

) =

[
Σ
−1/2
t

−Σ̃
−1/2
v H̃t,x

]
∈ R(dIMU+ndx+|Sz,1∪Sz,2|dz)×(dIMU+ndx),

JM :=
∂CM
∂fSf

(µt, f
?
Sf

) =

[
O

−Σ̃
−1/2
v H̃t,f

]
∈ R(dIMU+ndx+|Sz,1∪Sz,2|dz)×|Sf |df ,

where we have defined:

f ?Sf
∈ R|Sf |df ← Stacked position estimates of features in Sf ,

H̃t,x :=
∂h̃

∂x̃t
h̃(µt, f

?
Sf

) ∈ R|Sz,1∪Sz,2|dz×(dIMU+ndx),

H̃t,f :=
∂h̃

∂fSf

(µt, f
?
Sf

) ∈ R|Sz,1∪Sz,2|dz×|Sf |df .

Recall that the marginalization equations (2.6) and (2.5) in our formulation read:

µK ← µK − ΣKJ
>
K

[
I − JM(J>MJM)−1J>M

]
CM
(
x̃t,K , x̃t,M

)
,

ΣK ←
(
J>K(I − JM(J>MJM)−1J>M)JK

)−1
.
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Substituting in the above expressions for JK , JM , and CM
(
µt, f

?
Sf

)
, we have:

Σt ← (J>K(I − JM(J>MJM)−1J>M)JK
)−1

,

=

([
Σ
−1/2
t −H̃>t,xΣ̃

−1/2
v

]
[
I O

O I − Σ̃
−1/2
v H̃t,f (H̃

>
t,f Σ̃

−1
v H̃t,f )

−1H̃>t,f Σ̃
−1/2
v

]
[

Σ
1/2
t

−Σ̃
−1/2
v H̃t,x

])−1

=
(
Σ−1
t + H̃>t,xΣ̃

−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f )

−1

H̃>t,f Σ̃
−1/2
v

]
Σ̃−1/2
v H̃t,x

)−1

µt ← µK − ΣKJ
>
K

[
I − JM(J>MJM)−1J>M

]
CM
(
µt, f

?
Sf

)
= µt +

(
Σ−1
t + H̃>t,xΣ̃

−1/2
v[

I − Σ̃−1/2
v H̃t,f (H̃

>
t,f Σ̃

−1
v H̃t,f )

−1H̃>t,f Σ̃
−1/2
v

]
· Σ̃−1/2

v H̃t,x

)−1

· H̃>t,xΣ̃−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f )

−1

· H̃>t,f Σ̃−1/2
v

]
Σ̃−1/2
v

(
z̃ − h̃(x̃t, fSf

)
)
.

Comparing with the update step in the MSCKF algorithm, i.e., (10) and (9), reproduced
below:

Σ
−1

t ← Σ−1
t + T>(Q>A>Σ̃vAQ)−1T,

µt ← µt +
(
Σ−1
t + T>(Q>A>Σ̃vAQ)−1T

)−1

T>(Q>A>Σ̃vAQ)−1
(
z̃ − h̃(x̃t, fSf

)
)

we find that it suffices to show:

T>(Q>A>Σ̃vAQ)−1

=H̃>t,xΣ̃
−1/2
v

[
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f )

−1H̃>t,f Σ̃
−1/2
v

]
· Σ̃−1/2

v

=H̃t,xΣ̃
−1
v H̃t,x − H̃>t,xΣ̃−1

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f )

−1H̃>t,f Σ̃
−1
v .

To see this, recall that A is defined as a full-rank matrix whose columns span N(H̃>t,f ). Thus:

(Σ̃−1/2
v H̃t,f )

> · Σ̃1/2
v AQ = H̃>t,fAQ = O.
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In other words, the columns of Σ̃
−1/2
v H̃t,f and of Σ̃

1/2
v AQ form bases of orthogonal subspaces

whose direct sum equals Rnqdz . We thus have:

Σ̃−1/2
v H̃t,f (H̃

>
t,f Σ̃

−1
v H̃t,f )

−1H̃>t,f Σ̃
−1/2
v

+ Σ̃1/2
v AQ(Q>A>Σ̃vAQ)−1Q>A>Σ̃1/2

v = I,

which in turn implies that:

T>(Q>A>Σ̃vAQ)−1

=H̃>t,xAQ(Q>A>Σ̃vAQ)−1Q>A>

=H̃>t,xΣ̃
−1/2
v (Σ̃1/2

v AQ)

(Q>A>Σ̃1/2
v · Σ̃1/2

v AQ)−1(Q>A>Σ̃1/2
v )Σ̃−1/2

v

=H̃>t,xΣ̃
−1/2
v

(
I − Σ̃−1/2

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f )

−1H̃>t,f Σ̃
−1/2
v

)
Σ̃−1/2
v

=H̃t,xΣ̃
−1
v H̃t,x − H̃>t,xΣ̃−1

v H̃t,f (H̃
>
t,f Σ̃

−1
v H̃t,f )

−1H̃>t,f Σ̃
−1
v ,

as claimed.

Theorem 6.2.5. The state propagation step of the standard MSCKF SLAM algorithm (Alg.
12) is equivalent to applying a Marginalization step once to cMSCKF,t,5 : R2dIMU+ndx → R,
given by:

cMSCKF,t,5(x̃t, xt+1,IMU)

:=‖x̃t � µt‖2

Σ
−1
t

+ ‖xt+1,IMU � gIMU(xt,IMU)‖2
Σ−1

t
.

Proof. We claim that from an optimization perspective, the update step is equivalent to ap-
plying one marginalization step to the cost function cMSCKF,t,5(x̃t, xt+1,IMU) specified above.
In particular, we wish to marginalize out xt,IMU ∈ XIMU and retain xt+1,IMU ∈ XIMU; in other
words, in the notation of our Marginalization algorithm submodule, we have:

x̃t,K := (xt+1,IMU, x1, · · · , xn) ∈ XIMU × (Xp)n,
x̃t,M := xt,IMU ∈ XIMU.

To apply a marginalization step, our first task is to find vectors CK(xK) = CK(x̃t) and
CM(xK , xM) = CM(x̃t, xt+1,IMU) of appropriate dimensions such that cMSCKF,t,5(x̃t, xt+1,IMU) =
CK(xt+1,IMU)>CK(xt+1,IMU) + CM(x̃t, xt+1,IMU)>CM(x̃t, xt+1,IMU). A natural choice is fur-
nished by CK(xt+1,IMU) ∈ R and CM(x̃t, xt+1,IMU) ∈ Xp, as defined below:

CK(x̃t,K) = 0 ∈ R

CM(x̃t,K , x̃t,M) =

[
Σ̄
−1/2
t (x̃t − µt)

Σ
−1/2
w

(
xt+1,IMU − gIMU(xt,IMU)

)]
∈ R2dIMU+ndx .
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For convenience, we will define the IMU state and pose components of the mean µt ∈
XIMU × (Xp)n by µt := (µt,IMU, µt,IMU) ∈ XIMU × (Xp)n, with µt,IMU ∈ Xp and µt,x ∈ (Xp)n,
respectively. This mirrors our definition of xt ∈ Xp and xn+1 ∈ (Xp)n as the components of
the full state x̃t := (xt, xn+1) ∈ XIMU × (Xp)n. In addition, we will define the components of

Σ̄
−1/2
t ∈ R(dIMU+ndx)×(dIMU+ndx) and Σ̄−1

t ∈ R(dIMU+ndx)×(dIMU+ndx) by:[
Ωt,IMU,IMU Ωt,IMU,x

Ωt,x,IMU Ωt,x,x

]
:= Σ̄−1

t

∈ R(dIMU+ndx)×(dIMU+ndx),[
Λt,IMU,IMU Λt,IMU,x

Λt,x,IMU Λt,x,x

]
:= Σ̄

−1/2
t

∈ R(dIMU+ndx)×(dIMU+ndx),

with the dimensions of the above block matrices given by Σt,IMU,IMU,Λt,IMU,IMU ∈ RdIMU×dIMU ,
Σt,IMU,x,Λt,IMU,x ∈ RdIMU×ndx , Σt,x,IMU,Λt,x,IMU ∈ Rpdx×dIMU , and Σt,x,x,Λt,x,x ∈ Rndx×ndx .
Using the above definitions, we can reorder the residuals in CK ∈ R and CM ∈ R2dIMU+ndx ,
and thus redefine them by:

CK(x̃t,K) = 0 ∈ R
CM(x̃t,K , x̃t,M)

=

Λt,IMU,IMU(xt,IMU − µt,IMU) + Λt,IMU,x(x1:n − µt,x)
Σ
−1/2
w (xt+1,IMU − gIMU(xt,IMU))

Λt,x,IMU(xt,IMU − µt,IMU) + Λt,x,x(x1:n − µt,x)


∈ R2dIMU+ndx ,

where x1:n := (x1, · · · , xn) ∈ (Xp)n.
Our state variables and cost functions for the Gauss-Newton algorithm submodule are:

x?M = x̃?t = µt ∈ XIMU × (Xp)n,
x?K = g(x̃?t ) = g(µt) ∈ XIMU × (Xp)n,

CK(x̃?t,K) = 0 ∈ R,

CM(x̃?t,K , x̃
?
t,M) =

[
0
0

]
∈ R2dIMU+ndx ,

JK =

 O ΛIMU,x

Σ
−1/2
w O
O Λxx


∈ R(2dIMU+ndx)×(dIMU+ndx)

JM =

 ΛIMU,IMU

−Σ
−1/2
w Gt

Λx,IMU

 ∈ R(2dIMU+ndx)×dx ,
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where we have defined Gt to be the Jacobian of gIMU : XIMU → XIMU at µt,IMU ∈ XIMU, i.e.:

Gt :=
∂g

∂xt,IMU

∣∣∣∣∣
xt,IMU=µt,IMU

Applying the Marginalization update equations, we thus have:

µt+1 ← x̃t,K − Σt+1J
>
K

[
I − JM(J>MJM)−1J>M

]
CM(x?K , x

?
M)

= g(µt),

Σt+1 ←
(
J>K
[
I − JM(J>MJM)−1J>M

]
JK
)−1

,

=
(
J>KJK − J>KJM(J>MJM)−1J>MJK

)−1
,

=

([
Σ−1
w O
O Λx,IMUΛIMU,x + Λ2

xx

]
−
[

−Σ−1
w Gt

Λx,IMUΛIMU,IMU + ΛxxΛx,IMU

]
·

· (Λ2
IMU,IMU + ΛIMU,xΛx,IMU +G>t Σ−1

w Gt)
−1

·
[
−G>t Σ−1

w ΛIMU,IMUΛIMU,x + Λx,IMUΛxx

])−1

=

([
Σ−1
w O
O Ωxx

]
−
[
−Σ−1

w Gt

Ωx,IMU

]
(ΩIMU,IMU +G>t Σ−1

w Gt)
−1

[
−G>t Σ−1

w ΩIMU,x

])−1

To show that this is indeed identical to the propagation equation for the covariance matrix
in the Extended Kalman Filter algorithm, i.e. Algorithm 5, Line 5, we must show that:([

Σ−1
w O
O Ωxx

]
−
[
−Σ−1

w Gt

Ωx,IMU

]

(ΩIMU,IMU +G>t Σ−1
w Gt)

−1
[
−G>t Σ−1

w ΩIMU,x

])−1

=

[
GtΣt,IMU,IMUG

>
t + Σw GtΣt,IMU,x

Σt,IMU,xG
>
t Σt,x,x

]
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This follows by brute-force expanding the above block matrix components, and applying
Woodbury’s Matrix Identity, along with the definitions of Σt,IMU,IMU,Λt,IMU,IMU, Σt,IMU,x,Λt,IMU,x,
Σt,x,IMU,Λt,x,IMU, Σt,x,x, and Λt,x,x.
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