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Abstract

Over the last decade, AI has empowered people, businesses, and governments to create some of the most
impressive products and solve some of the most challenging problems - self-driving cars, virtual assistants,
and pharmaceutical drug discovery to name a few. It is clear that AI will have a long-lasting impact on
humanity. In this context, our goal is to understand how we can ensure that this impact is as positive as
possible. This is a very broad problem, but we can tease it apart into several smaller goals that can fit under
one of three umbrellas: (1) Making AI competent (e.g. making models robust, reliable, and understand
humans), (2) Making AI aligned, and (3) Coping with the e↵ects of AI (Paul Christiano: Current Work in
AI Alignment 2020).

Part 1. In the first part of this report, we work on making AI competent, focusing on computer vision and
making progress in improving model robustness. In Chapter 1, we develop a novel data augmentation strategy,
called DeepAugment. Whereas previous data augmentation strategies relied on simple image transformations
such as rotations, color shift, shearing, resizing, etc..., DeepAugment creates augmentations using a single
forward pass through a pretrained and perturbed image-to-image neural network. This allows us to generate
augmented images using transformations that are much more complex than the simple transforms used in
previous work. We extend DeepAugment with Noise2Net, a method of creating image augmentations using
a completely randomly initialized neural network.

We also introduce the ImageNet-Renditions benchmark, a new evaluation benchmark for ImageNet models.
ImageNet-Renditions (ImageNet-R) contains 30,000 test set images of various renditions (e.g., paintings,
embroidery, etc.) of ImageNet objects from 200 out of the 1000 total classes. We show DeepAugment and
Noise2Net to be e↵ective in improving ImageNet-R performance.

Part 2. In Part 2, we work develop new datasets and benchmarks to understand the performance of large
state-of-the-art language models at various reasoning tasks. It is important for the AI community to carefully
monitor the state of AI at advanced reasoning tasks, since models approaching human performance here could
have profound social and economic implications. So far, modern large-scale language models such as GPT
(Brown et al. 2020), T5 (Ra↵el et al. 2020), BERT (Devlin et al. 2019), etc. have demonstrated impressive
capabilities across a variety of text-based tasks. Performance on a wide variety of benchmarks have been
shown to be growing steadily as model sizes increase (A. Wang et al. 2019; Zellers et al. 2019; Huang et al.
2019; Bisk et al. 2019; Hendrycks, Basart, et al. 2020; Hendrycks, Burns, Basart, Zou, et al. 2021; Hendrycks,
Burns, Basart, Critch, et al. 2021).

We introduce MATH, a dataset and benchmark for mathematical problem solving. Mathematics problems
are valuable tests for problem-solving ability : the ability to analyze a problem, pick out good heuristics from
a large set of possibilities, and chain them together to produce an answer. This contrasts with plug-and-
chug calculations, a skill which ML models can already exhibit (Henighan et al. 2020). Additionally, our
benchmark does not involve multiple-choice answers - models are trained to output the complete answer on
its own.

We show that simply scaling up models aggressively probably will not give us solutions for MATH. Our

8
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results suggest that further advancements need to be made in order to create models that can reason at a
human’s level.

We leave the 2nd question of making AI aligned to future work. Code and datasets are released for each
chapter at the following locations:

1. Distribution Shift in Computer Vision:
https://github.com/hendrycks/imagenet-r.

2. Self-Supervised Learning to Improve Robustness and Uncertainty:
https://github.com/hendrycks/ss-ood.

3. Mathematical Problem Solving:
https://github.com/hendrycks/math.

https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/ss-ood
https://github.com/hendrycks/math
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Chapter 1

Distribution Shift in Computer Vision

Deep Learning has exploded in popularity over the last decade, as a solution to a wide variety of problems
in computer vision, NLP, speech recognition, reinforcement learning, and more.

In order to ensure that these models are competent as they are deployed to a wider variety of situations, one of
the central problems that must be solved revolves around how to make these models generalizable and robust
to unforseen distribution shifts that may be encountered in the wild. In this chapter, we focus specifically on
methods to benchmark and improve performance of deep neural networks used for image classification under
various distribution shifts.

While the research community must create robust models that generalize to new scenarios, the robustness
literature (Dodge and Karam 2017; Geirhos, Jacobsen, et al. 2020) lacks consensus on evaluation benchmarks
and contains many dissonant hypotheses. (Hendrycks, Liu, et al. 2020) find that many recent language models
are already robust to many forms of distribution shift, while (Yin et al. 2019) and (Geirhos, Rubisch, et al.
2019) find that vision models are largely fragile and argue that data augmentation o↵ers one solution. In
contrast, (Taori et al. 2020) provide results suggesting that using pretraining and improving in-distribution
test set accuracy improve natural robustness, whereas other methods do not.

In this chapter, we develop a novel method of data augmentation that improves model robustness and
introduce a new benchmark for distribution shift. We also articulate and study four robustness hypotheses.
These hypotheses are as follows.

• Larger Models: Increasing model size improves robustness (Hendrycks and Dietterich 2019; C. Xie
and Yuille 2020).

• Diverse Data Augmentation: Robustness can increase through data augmentation (Yin et al. 2019).

• Pretraining: Pretraining on larger and more diverse datasets improves robustness (Orhan 2019;
Hendrycks, Lee, and Mazeika 2019).

• Texture Bias: Convolutional networks are biased towards texture, which harms robustness (Geirhos,
Rubisch, et al. 2019).

1.1 ImageNet-R

While current classifiers can learn some aspects of an object’s shape (Mordvintsev, Olah, and Tyka 2015),
they nonetheless rely heavily on natural textural cues (Geirhos, Rubisch, et al. 2019). In contrast, human
vision can process abstract visual renditions. For example, humans can recognize visual scenes from line
drawings as quickly and accurately as they can from photographs (Biederman and Ju 1988). Even some

11



CHAPTER 1. DISTRIBUTION SHIFT IN COMPUTER VISION 12

Figure 1.1: ImageNet-Renditions (ImageNet-R) contains 30,000 images of ImageNet objects with di↵erent
textures and styles. This figure shows only a portion of ImageNet-R’s numerous rendition styles. The
rendition styles (e.g., “Toy”) are for clarity and are not ImageNet-R’s classes; ImageNet-R’s classes are a
subset of 200 ImageNet classes. ImageNet-R emphasizes shape over texture.

primates species have demonstrated the ability to recognize shape through line drawings (Itakura 1994;
Tanaka 2006).

To measure generalization to various abstract visual renditions, and to help us evaluate and better under-
stand the Texture Bias hypothesis, we create the ImageNet-Rendition (ImageNet-R) dataset. ImageNet-R
contains various artistic renditions of object classes from the original ImageNet dataset. Note the original Im-
ageNet dataset discouraged such images since annotators were instructed to collect “photos only, no painting,
no drawings, etc.” (Deng 2012). We do the opposite.

Data Collection. ImageNet-R contains 30,000 image renditions for 200 ImageNet classes. We choose a
subset of the ImageNet-1K classes, following (Hendrycks, Zhao, et al. 2019), for several reasons. A handful
ImageNet classes already have many renditions, such as “triceratops.” We also choose a subset so that
model misclassifications are egregious and to reduce label noise. The 200 class subset was also chosen based
on rendition prevalence, as “strawberry” renditions were easier to obtain than “radiator” renditions. Were
we to use all 1,000 ImageNet classes, annotators would be pressed to distinguish between Norwich terrier
renditions as Norfolk terrier renditions, which is di�cult. ImageNet-R also includes the line drawings from
(H. Wang et al. 2019), excluding horizontally mirrored duplicate images, pitch black images, and images from
the incorrectly collected “pirate ship” class.

In the following sections, ImageNet-R is used as a test set for models trained on the standard ImageNet
dataset. Since this framework induces a distribution shift between train time and test time, it helps us
understand and benchmark the generalization capabilities of various models and training methods.

1.2 DeepAugment

In order to further explore the Diverse Data Augmentation hypothesis, we introduce a new data augmen-
tation technique. Whereas most previous data augmentations techniques use simple augmentation primitives
applied to the raw image itself (e.g. rotations, scaling, color shift, etc.), we introduce DeepAugment, which
distorts images by perturbing internal representations of deep networks.

DeepAugment works by passing a clean image through an image-to-image network and introducing several



CHAPTER 1. DISTRIBUTION SHIFT IN COMPUTER VISION 13

perturbations during the forward pass. These perturbations are randomly sampled from a set of manually
designed functions and applied to the network weights and to the feed-forward signal at random layers. For
example, our set of perturbations includes zeroing, negating, convolving, transposing, applying activation
functions, and more. This setup generates semantically consistent images with unique and diverse distortions
Figure 1.3. Although our set of perturbations is designed with random operations, we show that Deep-
Augment still outperforms other methods on benchmarks such as ImageNet-C and ImageNet-R. We provide
pseudocode in Figure 1.2.

For our experiments, we specifically use the CAE (Theis et al. 2017) and EDSR (Lim et al. 2017) architectures
as the basis for DeepAugment. CAE is an autoencoder architecture, and EDSR is a superresolution archi-
tecture. These two architectures show the DeepAugment approach works with di↵erent architectures. Each
clean image in the original dataset and passed through the network and is thereby stochastically distored,
resulting in two distorted versions of the clean dataset (one for CAE and one for EDSR). We then train on
the augmented and clean data simultaneously and call this approach DeepAugment.

1.2.1 Noise2Net

In this section we explore a variant of DeepAugment, called Noise2Net, where we use randomly initialized
image-to-image networks to generate diverse image augmentations.

In Noise2Net, the architecture and weights are randomly sampled. Noise2Net is the composition of several
residual blocks: Block(x) = x+ " · f⇥(x), where ⇥ is randomly initialized and " is a parameter that controls
the strength of the augmentation. For all our experiments, we use 4 Res2Net blocks (Gao et al. 2019)
and " ⇠ U(0.375, 0.75). The weights of Noise2Net are resampled at every minibatch, and the dilation and
kernel sizes of all the convolutions used in Noise2Net are randomly sampled every epoch. Hence, Noise2Net
augments an image to an augmented image by processing the image through a randomly sampled network
with random weights.

Recall that in the case of EDSR and CAE, we used networks to generate a static dataset, and then we
trained normally on that static dataset. This setup could not be done on-the-fly. That is because we fed
in one example at a time with EDSR and CAE. If we pass the entire minibatch through EDSR or CAE,
we will end up applying the same augmentation to all images in the minibatch, reducing stochasticity and
augmentation diversity. In contrast, Noise2Net enables us to process batches of images on-the-fly and obviates
the need for creating a static augmented dataset.

In Noise2Net, each example in a minibatch is processed di↵erently in parallel, so we generate diverse aug-
mentations in real-time. To make this possible, we use grouped convolutions. A grouped convolution with
number of groups = N will take a set of kN channels as input, and apply N independent convolutions
on channels {1, . . . , k}, {k + 1, . . . , 2k}, . . . , {(N � 1)k + 1, . . . , Nk}. Given a minibatch of size B, we can
apply a randomly initialized grouped convolution with N = B groups in order to apply a di↵erent random
convolutional filter to each element in the batch in a single forward pass. By replacing all the convolutions
in each Res2Net block with a grouped convolution and randomly initializing network weights, we arrive at
Noise2Net, a variant of DeepAugment. See Figure 1.5 for a high-level overview of Noise2Net and Figure 1.4
for sample outputs.

1.3 Experiments

In this section we briefly describe the evaluated models, pretraining techniques, self-attention mechanisms,
data augmentation methods, and note various implementation details.

Model Architectures and Sizes. Most experiments are evaluated on a standard ResNet-50 model (He
et al. 2015). Model size evaluations use ResNets or ResNeXts (S. Xie et al. 2016) of varying sizes to help us
evaluate the Larger Models hypothesis.
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1 def main ():

2 net. apply weights ( deepAugment getNetwork ()) # EDSR , CAE , ...

3 for image in dataset : # May be the ImageNet training set

4 if np. random . uniform () < 0.05: # Arbitrary refresh prob

5 net. apply weights ( deepAugment getNetwork ())

6 new image = net. deepAugment forwardPass (image)

7

8 def deepAugment getNetwork ():

9 weights = load clean weights ()

10 weight distortions = sample weight distortions ()

11 for d in weight distortions :

12 weights = apply distortion (d, weights )

13 return weights

14

15 def sample weight distortions ():

16 distortions = [

17 negate weights ,

18 zero weights ,

19 flip transpose weights ,

20 ...

21 ]

22

23 return random subset ( distortions )

24

25 def sample signal distortions ():

26 distortions = [

27 gelu ,

28 negate signal random mask ,

29 flip signal ,

30 ...

31 ]

32

33 return random subset ( distortions )

34

35

36 class Network ():

37 def apply weights ( weights ):

38 ... # Apply given weight tensors to network

39

40 # Clean forward pass. Compare to deepAugment forwardPass ()

41 def clean forwardPass (X):

42 X = network . block1 (X)

43 X = network . block2 (X)

44 ...

45 X = network . blockN (X)

46 return X

47

48 # Our forward pass. Compare to clean forwardPass ()

49 def deepAugment forwardPass (X):

50 # Returns a list of distortions , each of which

51 # will be applied at a different layer.

52 signal distortions = sample signal distortions ()

53

54 X = network . block1 (X)

55 apply layer 1 distortions (X, signal distortions )

56 X = network . block2 (X)

57 apply layer 2 distortions (X, signal distortions )

58 ...

59 apply layer N ≠1 distortions (X, signal distortions )

60 X = network . blockN (X)

61 apply layer N distortions (X, signal distortions )

62

63 return X

Figure 1.2: Pythonic Pseudocode for DeepAugment
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Figure 1.3: DeepAugment examples preserve semantics, are data-dependent, and are far more visually diverse
than augmentations such as rotations.

Pretraining. To analyze the Pretraining hypothesis, we use ImageNet-21K which contains approximately
21,000 classes and approximately 14 million labeled training images, or around 10⇥ more labeled training
data than ImageNet-1K. We tune (Kolesnikov et al. 2019)’s ImageNet-21K model. We also use a large pre-
trained ResNeXt-101 model from (Mahajan et al. 2018). This was pre-trained on on approximately 1 billion
Instagram images with hashtag labels and fine-tuned on ImageNet-1K. This Weakly Supervised Learning
(WSL) pretraining strategy uses approximately 1000⇥ more labeled data.

Data Augmentation. We use Style Transfer, AugMix, and DeepAugment to analyze the Diverse Data
Augmentation hypothesis, and we contrast their performance with simpler noise augmentations such as
Speckle Noise and adversarial noise. Style transfer (Geirhos, Rubisch, et al. 2019) uses a style transfer
network to apply artwork styles to training images. We use AugMix (Hendrycks, Mu, et al. 2020) which
randomly composes simple augmentation operations (e.g., translate, posterize, solarize). DeepAugment,
introduced above, distorts the weights and feedforward passes of image-to-image models to generate image
augmentations. Speckle Noise data augmentation muliplies each pixel by (1+x) with x sampled from a normal
distribution (Rusak et al. 2020; Hendrycks and Dietterich 2019). We also consider adversarial training as a
form of adaptive data augmentation and use the model from (Wong, Rice, and Kolter 2020) trained against
`1 perturbations of size " = 4/255.

1.4 Results

We now perform experiments using DeepAugment and other methods to test generalization capabilities on
ImageNet-R and ImageNet-C.
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Figure 1.4: Example outputs of Noise2Net for di↵erent values of ". Note " = 0 is the original image.

Figure 1.5: Parallel augmentation with Noise2Net. We collapse batches to the channel dimension to ensure
that di↵erent transformations are applied to each image in the batch. Feeding images into the network in
the standard way would result in the same augmentation being applied to each image, which is undesirable.
The function f⇥(x) is a Res2Net block with all convolutions replaced with grouped convolutions.

1.4.0.1 ImageNet-R.

Table 1.1 shows performance on ImageNet-R as well as on ImageNet-200 (the original ImageNet data re-
stricted to ImageNet-R’s 200 classes). This has several implications regarding the four method-specific
hypotheses. Pretraining with ImageNet-21K (approximately 10⇥ labeled data) hardly helps. Table 1.1
shows WSL pretraining can help, but Instagram has renditions, while ImageNet excludes them; hence we
conclude comparable pretraining was ine↵ective. Compared to simpler data augmentation techniques such as
Speckle Noise, the Diverse Data Augmentation techniques of Style Transfer, AugMix, and DeepAugment
improve generalization. Note AugMix and DeepAugment improve in-distribution performance whereas Style
transfer hurts it. Also, our new DeepAugment technique is the best standalone method with an error rate of
57.8%. Last, Larger Models reduce the IID/OOD gap.

DeepAugment and Noise2Net were designed to keep high-level semantic image characteristics constant, while
diversifying texture. Biasing networks away from natural textures using DeepAugment and Noise2Net im-
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ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 (He et al. 2015) 7.9 63.9 56.0
+ ImageNet-21K Pretraining (10⇥ data) 7.0 62.8 55.8
+ `1 Adversarial Training 25.1 68.6 43.5
+ Speckle Noise 8.1 62.1 54.0
+ Style Transfer 8.9 58.5 49.6
+ AugMix 7.1 58.9 51.8
+ DeepAugment 7.5 57.8 50.3
+ DeepAugment + AugMix 8.0 53.2 45.2

ResNeXt-101 32⇥8d (Larger Models) 6.2 57.5 51.3
+ WSL Pretraining (1000⇥ data) 4.1 24.2 20.1
+ DeepAugment + AugMix 6.1 47.9 41.8

Table 1.1: ImageNet-200 and ImageNet-Renditions error rates. ImageNet-200 uses the same 200 classes as
ImageNet-R. DeepAugment+AugMix improves over the baseline by over 10 percentage points. ImageNet-21K
Pretraining tests Pretraining. Style Transfer, AugMix, and DeepAugment test Diverse Data Augmenta-
tion in contrast to simpler noise augmentations such as `1 Adversarial Noise and Speckle Noise. While there
remains much room for improvement, results indicate that progress on ImageNet-R is tractable. ImageNet-
21K and WSL Pretraining test the Pretraining hypothesis, and here pretraining gives mixed benefits. and
ResNeXt-101 32⇥8d tests the Larger Models hypothesis, and this helps. Other methods augment data,
and Style Transfer, AugMix, and DeepAugment provide support for the Diverse Data Augmentation
hypothesis.

ImageNet-200 (%) ImageNet-R (%) Gap

ResNet-50 7.9 63.9 56.0
+ DeepAugment (EDSR) 7.9 60.3 55.1
+ DeepAugment (CAE) 7.6 58.5 50.9
+ DeepAugment (EDSR + CAE) 7.5 57.8 50.3
+ DeepAugment (Noise2Net) 7.2 57.6 50.4

+ DeepAugment (All 3) 7.4 56.0 48.6

Table 1.2: DeepAugment (EDSR, CAE, Noise2Net) ablations on ImageNet-200 and ImageNet-Renditions.

proved performance, so we find support for the Texture Bias hypothesis.

1.4.0.2 Ablations.

We run ablations on DeepAugment to understand the contributions from the EDSR, CAE, and Noise2Net
models independently. Table 1.2 contains results of these experiments on ImageNet-R and Table 1.3 contains
results of these experiments on ImageNet-C. In both tables, “DeepAugment (EDSR)” and “DeepAugment
(CAE)” refer to experiments where we only use a single extra augmented training set (+ the standard training
set), and train on those images.

We evaluate the Noise2Net variant of DeepAugment on ImageNet-R. Table 1.2 shows that it outperforms the
EDSR and CAE variants of DeepAugment, even though the network architecture is randomly sampled, its
weights are random, and the network is not trained. This demonstrates the flexibility of the DeepAugment
approach. It’s possible that systematically optimizing these network parameters could even further improve
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Noise Blur Weather Digital
Clean mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 23.9 76.7 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77
+ DeepAugment (EDSR) 23.5 64.0 56 57 54 64 77 71 78 68 64 64 55 64 78 46 67
+ DeepAugment (CAE) 23.2 67.0 58 60 62 62 75 73 77 68 66 60 52 66 80 63 78
+ DeepAugment (Both) 23.3 60.4 49 50 47 59 73 65 76 64 60 58 51 61 76 48 67

Table 1.3: Clean Error, Corruption Error (CE), and mean CE (mCE) values for DeepAugment ablations on
ImageNet-C. The mCE value is computed by averaging across all 15 CE values.

performance.
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Figure 1.6: The left figure shows accuracy as a function of corruption severity. In the right figure, we show Im-
ageNet accuracy and ImageNet-C accuracy. Previous architectural advances slowly translate to ImageNet-C
performance improvements, but the DeepAugment+AugMix robustness intervention on a ResNet-50 approx-
imately yields a 19% accuracy improvement.

1.4.0.3 ImageNet-C.

We now consider a previous robustness benchmark to reassess all four hypotheses. We use the ImageNet-C
dataset (Hendrycks and Dietterich 2019) which applies 15 common image corruptions (e.g., Gaussian noise,
defocus blur, simulated fog, JPEG compression, etc.) across 5 severities to ImageNet-1K validation images.
We find that DeepAugment improves robustness on ImageNet-C. Figure 1.6 shows that when models are
trained with AugMix and DeepAugment, they attain the state-of-the-art, break the trendline, and exceed
the corruption robustness provided by training on 1000⇥ more labeled training data. Note the augmentations
from AugMix and DeepAugment are disjoint from ImageNet-C’s corruptions. This is evidence for the Larger
Models, Diverse Data Augmentation, Pretraining, and Texture Bias hypotheses.



Chapter 2

Self-Supervised Learning and Model
Robustness & Uncertainty

In this chapter, we expand on our goal of trying to improve model robustness by also looking at performance
on out-of-distribution (OOD) detection, a measure of model uncertainty, as well as adversarial robustness.
In order to improve both model robustness and OOD detection, we turn to Self-Supervised Learning (SSL).
We find that self-supervision can benefit robustness in a variety of ways and that self-supervision greatly
benefits out-of-distribution detection on di�cult, near-distribution outliers - so much so that it exceeds the
performance of fully supervised methods.

Again, we focus on Computer Vision as our domain, this time focusing on experiments involving image
classification problems on the CIFAR-10 and CIFAR-100 datasets.

2.1 Self-Supervision

High-quality large-scale training datasets for data-hungry tasks such as image classification (e.g. ImageNet)
are di�cult to create. These training datasets often comprise of millions or more pairs (xi, yi), where xi is a
data point and yi is a label. Often, the xi are cheap and easy to acquire. In the case of image classification,
one can automate the scraping of millions of images from the internet. However, the labels yi are often much
more expensive to acquire, since they often involve manual human intervention.

Self-supervised learning holds great promise for improving model representations when such labeled data are
scarce because SSL manages to extract useful training signals using only the xi. As a concrete example,
given an image dataset {xi}Ni=0, one can train a model roughly in the following fashion:

1. For each data point xi, rotate it by r 2 {0�, 90�, 180�, 270�} degrees.

2. Feed the rotated image into the model. The model would have a prediction head with 4 logits (one for
each possible rotation amount)

3. Backpropagate using r as the true class label.

Intuitively, models must learn something about the structure of images and the classes of images they are
shown in order to do well at this task. The internal representations of models trained using SSL in such a
fashion can be used for downstream tasks that may otherwise require more data. For example, one can freeze
the several layers of the model, replace the head of the model with a small MLP with a softmax output,
and train an image classifier using a smaller set of training data {(xi, yi)}N

0

i=0. There are many di↵erent

19



CHAPTER 2. SELF-SUPERVISED LEARNING AND MODEL ROBUSTNESS & UNCERTAINTY 20

transformations (apart from rotation) that one can use to transform the training image and construct a true
class label with. In the following discussion, however, we only focus on rotations.

To date, self-supervised approaches lag behind fully supervised training on standard accuracy metrics and
research has existed in a mode of catching up to supervised performance. Additionally, when used in conjunc-
tion with fully supervised learning on a fully labeled dataset, self-supervision has little impact on accuracy.
This raises the question of whether large labeled datasets render self-supervision needless.

In the following sections, we show that this is not the case, and that SSL can improve various aspects of
model robustness and uncertainty.

2.2 Robustness to Adversarial Perturbations

Improving robustness to adversarial inputs has proven di�cult, with adversarial training providing the only
longstanding gains (Carlini and Wagner 2017; Athalye, Carlini, and Wagner 2018). In this section, we
demonstrate that auxiliary self-supervision in the form of predicting rotations (Gidaris, Singh, and Komodakis
2018) can improve upon standard Projected Gradient Descent (PGD) adversarial training (Madry et al.
2018). We also observe that self-supervision can provide gains when combined with stronger defenses such as
TRADES (Zhang et al. 2019) and is not broken by gradient-free attacks such as SPSA (Uesato et al. 2018).

2.2.1 Setup

The problem of defending against bounded adversarial perturbations can be formally expressed as finding
model parameters ✓ for the classifier p that minimize the objective

min✓ E(x,y)⇠D [maxx02S LCE(y, p(y | x0); ✓)] where S = {x0 : kx� x0k < "} (2.1)

In this paper, we focus on `1 norm bounded adversaries. This means that the norm used to bound S is an
`1 norm. (Madry et al. 2018) propose that PGD is “a universal first-order adversary.” Hence, we first focus
on defending against PGD. Let PGD(x) be the Kth step of PGD,

xk+1 = ⇧S

�
xk + ↵ sign(rxLCE(y, p(y | xk); ✓))

�
and x0 = x+ U(�", ") (2.2)

where K is a preset parameter which characterizes the number of steps that are taken, ⇧S is the projection
operator for the l1 ball S, and LCE(y, p(y | x0); ✓) is the loss we want to optimize. Normally, this loss is
the cross entropy between the model’s softmax classification output for x and the ground truth label y. For
evaluating robust accuracy, we use 20-step and 100-step adversaries. For the 20-step adversary, we set the
step-size ↵ = 2/256. For the 100-step adversary, we set ↵ = 0.3/256 as in Madry et al. 2018. During training,
we use 10-step adversaries with ↵ = 2/256.

In all experiments, we use 40-2 Wide Residual Networks (Zagoruyko and Komodakis 2016). For training,
we use SGD with Nesterov momentum of 0.9 and a batch size of 128. We use an initial learning rate of 0.1
and a cosine learning rate schedule (Ilya Loshchilov and Frank Hutter 2016) and weight decay of 5 ⇥ 10�4.
For data augmentation, we use random cropping and mirroring. Hyperparameters were chosen as standard
values and are used in subsequent sections unless otherwise specified.

2.2.2 Method

We explore improving representation robustness beyond standard PGD training with auxiliary rotation-based
self-supervision (Gidaris, Singh, and Komodakis 2018). In our approach, we train a classification network
along with a separate auxiliary head, which takes the penultimate vector from the network as input and
outputs a 4-way softmax distribution. This head is trained along with the rest of the network to predict the
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Clean 20-step PGD 100-step PGD

Normal Training 94.8 0.0 0.0
Adversarial Training 84.2 44.8 44.8
+ Auxiliary Rotations (Ours) 83.5 50.4 50.4

Table 2.1: Results for our defense. All results use " = 8.0/255. For 20-step adversaries ↵ = 2.0/255, and for
100-step adversaries ↵ = 0.3/255. More steps do not change results, so the attacks converge. Self-supervision
through rotations provides large gains over standard adversarial training.

amount of rotation applied to a given input image (from 0�, 90�, 180�, and 270�). Our overall loss during
training can be broken down into a supervised loss and a self-supervised loss

L(x, y; ✓) = LCE(y, p(y | PGD(x)); ✓) + �LSS(PGD(x); ✓). (2.3)

Note that the self-supervised component of the loss does not require the ground truth training label y as
input. The supervised loss does not make use of our auxiliary head, while the self-supervised loss only makes
use of this head. When � = 0, our total loss falls back to the loss used for PGD training. For our experiments,
we use � = 0.5 and the following rotation-based self-supervised loss

LSS(x; ✓) =
1

4

2

4
X

r2{0�,90�,180�,270�}

LCE(one hot(r), prot head(r | Rr(x)); ✓)

3

5 , (2.4)

where Rr(x) is a rotation transformation and LCE(r, x; ✓) is the cross-entropy between the auxiliary head’s
output and the ground-truth label r 2 {0�, 90�, 180�, 270�}. In order to adapt the PGD adversary to the new
training setup, we modify the loss used in the PGD update equation (2.2) to maximize both the rotation
loss and the classification loss. We report results with the modification here, for completeness. The overall
loss that PGD will try to maximize for each training image is LCE(y, p(y | x); ✓) + LSS(x; ✓). At test-time,
the PGD loss does not include the LSS term, as we want to attack the image classifier and not the rotation
classifier.

2.2.3 Results

Figure 2.1: The e↵ect of attack strength on a " = 8/255
adversarially trained model. The attack strengths are
" 2 {4/255, 5/255, . . . , 10/255}. Since the accuracy
gap widens as " increases, self-supervision’s benefits
are masked when observing the clean accuracy alone.

We are able to attain large improvements over stan-
dard PGD training by adding self-supervised rota-
tion prediction. Table 2.1 contains results of our
model against PGD adversaries with K = 20 and
K = 100. In both cases, we are able to achieve
a 5.6% absolute improvement over classical PGD
training. In Figure 2.1, we observe that our method
of adding auxiliary rotations actually provides larger
gains over standard PGD training as the maximum
perturbation distance " increases. The figure also
shows that our method can withstand up to 11%
larger perturbations than PGD training without any
drop in performance.

In order to demonstrate that our method does not
rely on gradient obfuscation, we attempted to at-
tack our models using SPSA Uesato et al. 2018 and
failed to notice any performance degradation com-
pared to standard PGD training. In addition, since
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our self-supervised method has the nice property of
being easily adaptable to supplement other di↵er-
ent supervised defenses, we also studied the e↵ect of
adding self-supervised rotations to stronger defenses
such as TRADES Zhang et al. 2019. We found that
self-supervision is able to help in this setting as well. Our best-performing TRADES + rotations model gives
a 1.22% boost over standard TRADES and a 7.79% boost over standard PGD training in robust accuracy.

2.3 Robustness to Common Corruptions

2.3.1 Setup

In real-world applications of computer vision systems, inputs can be corrupted in various ways that may
not have been encountered during training. Improving robustness to these common corruptions is especially
important in safety-critical applications. ImageNet-C is a set of fifteen test corruptions and four validation
corruptions common corruptions to measure input corruption robustness (Hendrycks and Dietterich 2019).
These corruptions fall into noise, blur, weather, and digital categories. Examples include shot noise, zoom
blur, snow, and JPEG compression.

Figure 2.2: A comparison of the accuracy of usual training compared to training with auxiliary rotation self-
supervision on the nineteen CIFAR-10-C corruptions. Each bar represents an average over all five corruption
strengths for a given corruption type.

We use the CIFAR-10-C validation dataset from the ImageNet-C paper and compare the robustness of
normally trained classifiers to classifiers trained with an auxiliary rotation prediction loss. As in the previous
section, we predict all four rotations in parallel in each batch. We use 40-2 Wide Residual Networks and the
same optimization hyperparameters as before. We do not tune on the validation corruptions, so we report
average performance over all corruptions. Results are in Figure 2.2.

2.3.2 Results

The baseline of normal training achieves a clean accuracy of 94.7% and an average accuracy over all cor-
ruptions of 72.3%. Training with auxiliary rotations maintains clean accuracy at 95.5% but increases the
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average accuracy on corrupted images by 4.6% to 76.9%. Thus, the benefits of self-supervision to robustness
are masked by similar accuracy on clean images. Performance gains are spread across corruptions, with a
small loss of performance in only one corruption type, JPEG compression. For glass blur, clean accuracy
improves by 11.4%, and for Gaussian noise it improves by 11.6%. Performance is also improved by 8.9% on
contrast and shot noise and 4.2% on frost, indicating substantial gains in robustness on a wide variety of
corruptions. These results demonstrate that self-supervision can regularize networks to be more robust even
if clean accuracy is not a↵ected.

2.4 Multi-Class Out-of-Distribution Detection

Self-supervised learning with rotation prediction enables the detection of harder out-of-distribution examples.
In this section, we show that self-supervised learning improves out-of-distribution detection when the in-
distribution consists in multiple classes.

2.4.1 Setup

In the following experiment, we train a CIFAR-10 classifier and use it as an out-of-distribution detector.
When given an example x, we write the classifier’s posterior distribution over the ten classes with p(y | x).
Hendrycks and Gimpel 2017 show that p(y | x) can enable the detection of out-of-distribution examples. They
show that the maximum softmax probability maxc p(y = c | x) tends to be higher for in-distribution examples
than for out-of-distribution examples across a range of tasks, enabling the detection of OOD examples.

We evaluate each OOD detector using the area under the receiver operating characteristic curve (AUROC)
auroc. Given an input image, an OOD detector produces an anomaly score. The AUROC is equal to the
probability an out-of-distribution example has a higher anomaly score than an in-distribution example. Thus
an OOD detector with a 50% AUROC is at random-chance levels, and one with a 100% AUROC is without
a performance flaw.

2.4.2 Method

We train a classifier with an auxiliary self-supervised rotation loss. The loss during training is given by:

LCE(y, p(y | x)) +

2

4
X

r2{0�,90�,180�,270�}

LCE(one hot(r), prot head(r | Rr(x)))

3

5 (2.5)

We only train on in-distribution CIFAR-10 training examples. After training is complete, we score in-
distribution CIFAR-10 test set examples and OOD examples with the formula:

KL[Ukp(y | x)] + 1

4

2

4
X

r2{0�,90�,180�,270�}

LCE(one hot(r), prot head(r | Rr(x)))

3

5 (2.6)

We use the KL divergence of the softmax prediction to the uniform distribution U since it combines well
with the rotation score, and because KL[Ukp(y | x)] performs similarly to the maximum softmax probability
baseline maxc p(y = c | x) (Hendrycks, Mazeika, and Dietterich 2019).

The training loss is standard cross-entropy loss with auxiliary rotation prediction. The detection score is
the KL divergence detector from prior work with a rotation score added to it. The rotation score consists
of the cross entropy of the rotation softmax distribution to the categorical distribution over rotations with
probability 1 at the current rotation and 0 everywhere else. This is equivalent to the negative log probability
assigned to the true rotation. Summing the cross entropies over the rotations gives the total rotation score.
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FPR95 # AUROC " AUPR "
Din Dtest

out MSP Rotation MSP Rotation MSP Rotation

C
IF
A
R
-1
0

Gaussian 8.1 1.2 96.3 99.0 70.8 85.6
Rademacher 5.9 1.1 97.5 99.1 79.4 86.3
Blobs 13.3 2.3 94.6 98.9 68.3 86.5
Textures 45.4 8.9 87.9 97.4 56.2 86.7
SVHN 25.7 2.7 91.9 98.9 64.0 89.8
Places365 46.0 38.4 87.7 92.2 57.2 71.3
LSUN 39.5 28.7 88.5 93.2 57.2 71.0
CIFAR-100 45.9 44.9 87.2 90.9 54.1 67.7

Mean 28.7 16.0 91.4 96.2 63.4 80.6

Table 2.2: Out-of-distribution example detection results for the maximum softmax probability (MSP) baseline
and our rotation method. All results are percentages and the average result of 5 runs.

2.4.3 Results

We evaluate this proposed method against the maximum softmax probability baseline Hendrycks and Gimpel
2017 on a wide variety of anomalies with CIFAR-10 as the in-distribution data. For the anomalies, we select
Gaussian, Rademacher, Blobs, Textures, SVHN, Places365, LSUN, and CIFAR-100 images. We observe per-
formance gains across the board and report average AUROC values in 2.3. On average, the rotation method
increases the AUROC by 4.8%.

Method AUROC

Baseline 91.4%
Rotations (Ours) 96.2%

Figure 2.3: OOD detection perfor-
mance of the maximum softmax prob-
ability baseline and our method us-
ing self-supervision. Full results are
in Chapter ??.

This method does not require additional data as in Outlier Exposure
(Hendrycks, Mazeika, and Dietterich 2019), although combining the
two could yield further benefits. As is, the performance gains are
of comparable magnitude to more complex methods proposed in the
literature (C. Xie, Wu, et al. 2018). This demonstrates that self-
supervised auxiliary rotation prediction can augment OOD detectors
based on fully supervised multi-class representations. More detailed
descriptions of the OOD datasets and the full results on each anomaly
type with additional metrics are in Table 2.2.
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Chapter 3

Mathematical Problem Solving

Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capa-
bilities of computers.

Although many other tasks have been done very well just by increasing model size (A. Wang et al. 2019;
Zellers et al. 2019; Huang et al. 2019; Bisk et al. 2019; Hendrycks, Basart, et al. 2020; Hendrycks, Burns,
Basart, Zou, et al. 2021; Hendrycks, Burns, Basart, Critch, et al. 2021), it is unknown if strong mathematical
reasoning can be reached by just scaling models in this manner.

In this section, we develop a new, benchmark to assess true mathematical problem solving and reasoning
abilities. Moreover, we find that current state-of-the-art models such as the 1.5 Billion parameter GPT-2
perform poorly on this dataset. If scaling trends continue, our findings indicate that simply increasing budgets
and model parameter counts will most likely be an impractical strategy to achieve strong mathematical
reasoning.

3.1 The MATH Dataset

To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging
competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be
used to teach models to generate answer derivations and explanations. To facilitate future research and
increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach
models the fundamentals of mathematics. Even though we are able to increase accuracy on MATH, our
results show that accuracy remains relatively low, even with enormous Transformer models. Moreover, we
find that simply increasing budgets and model parameter counts will be impractical for achieving strong
mathematical reasoning if scaling trends continue. While scaling Transformers is automatically solving most
other text-based tasks, scaling is not currently solving MATH. To have more traction on mathematical
problem solving we will likely need new algorithmic advancements from the broader research community.

While MATH covers advanced problem-solving techniques, models may first need to be trained thoroughly
on the fundamentals of mathematics. To address this, we create the first large-scale mathematics pretraining
dataset with hundreds of thousands of step-by-step solutions in natural language and LATEX. We call this
dataset the Auxiliary Mathematics Problems and Solutions (AMPS) pretraining corpus, which consists of
Khan Academy and Mathematica data. AMPS has over 100, 000 Khan Academy problems with step-by-step
solutions in LATEX; these exercises are used to teach human students concepts ranging from basic addition to
Stokes’ Theorem. It also contains over 5 million problems generated using Mathematica scripts, based on 100
hand-designed modules covering topics such as conic sections, div grad and curl, KL divergence, eigenvalues,
polyhedra, and Diophantine equations. In total AMPS contains 23GB of problems and solutions. Domain-
specific pretraining Gururangan et al. 2020 on AMPS improves relative accuracy by around 25%, equivalent
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Metamath Theorem Proving

To prove: n 2 N ^ n+1
2 2 N =) 9m 2 N : n = 2m+ 1. GPT-f ’s generated proof:

|- ((N e. NN0 /\ ((N + 1)/2) e. NN0) ->

((N - 1) / 2) e. NN0)

|- (N e. NN0 -> N e. CC)

|- 1 e. CC

|- ((N e. CC /\ 1 e. CC) ->

(N - 1) e. CC ) ....

DeepMind Mathematics Dataset

Problem: Divide 1136975704 by -142121963

Answer: -8

Problem: Calculate ((-2)/3)/(-1-(-24)/9)

Answer: -2/5

Problem: Let k(u) = u**2+u-4. Find k(0)

Answer: -4

Problem: Sort 2, 4, 0, 6

Answer: 0, 2, 4, 6

MATH Dataset (Ours)

Problem: Tom has a red marble, a green marble, a blue marble, and three identical yellow marbles. How
many di↵erent groups of two marbles can Tom choose?
Solution: There are two cases here: either Tom chooses two yellow marbles (1 result), or he chooses two
marbles of di↵erent colors (

�4
2

�
= 6 results). The total number of distinct pairs of marbles Tom can choose

is 1 + 6 = 7 .
Problem: If

P1
n=0 cos

2n ✓ = 5, what is cos 2✓?
Solution: This geometric series is 1 + cos2 ✓ + cos4 ✓ + · · · = 1

1�cos2 ✓ = 5. Hence, cos2 ✓ = 4
5 . Then

cos 2✓ = 2 cos2 ✓ � 1 =
3

5
.

Problem: The equation x2 +2x = i has two complex solutions. Determine the product of their real parts.
Solution: Complete the square by adding 1 to each side. Then (x+ 1)2 = 1 + i = e

i⇡
4

p
2, so

x+ 1 = ±e
i⇡
8

4
p
2. The desired product is then

�
�1 + cos

�
⇡
8

�
4
p
2
� �

�1� cos
�
⇡
8

�
4
p
2
�
= 1� cos2

�
⇡
8

�p
2 = 1� (1+cos(⇡

4 ))
2

p
2 =

1�
p
2

2
.

Figure 3.1: Previous work is based on formal theorem provers or straightforward plug-and-chug problems.
Our dataset, MATH, has competition mathematics problems with step-by-step solutions written in LATEX
and natural language. Models are tasked with generating tokens to construct the final (boxed) answer.

to a 15⇥ increase in model size.

3.1.1 Categorizing Problems.

Problems span various subjects and di�culties. The seven subjects are Prealgebra, Algebra, Number Theory,
Counting and Probability, Geometry, Intermediate Algebra, and Precalculus. While subjects like Prealgebra
are generally easier than Precalculus, within a subject problems can take on di↵erent di�culty levels. We
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encode a problem’s di�culty level from ‘1’ to ‘5,’ where a subject’s easiest problems for humans are assigned
a di�culty level of ‘1,’ and a subject’s hardest problems are assigned a di�culty level of ‘5.’ Concretely, the
first few problems of an AMC 8 exam are often level 1, while AIME problems are level 5. This allows us to
assess performance across both di↵erent subjects and di↵erent levels of di�culty.

3.1.2 Formatting

Problems and solutions are consistently formatted using LATEX and the Asymptote vector graphics language.
Our usage of LATEX allows us to flexibly encode mathematical problems while avoiding unusual symbols or
cumbersome formal languages. Meanwhile, mathematical figures are encoded in the Asymptote language
rather than as raster images. This enables pure language models to process figures, diagrams, and graphics,
making it possible to assess these models on subjects such as geometry for the first time.

To assess models using exact match, we force the final boxed answers to follow consistent formatting rules.
Specifically, probabilities are expressed as simplified fractions. Moreover, matrix entry fractions are encoded
with x/y, while all other fractions are consistently encoded with the \frac{x}{y} command. Coe�cients are
encoded without a multiplication symbol (e.g. 5x not 5*x). Expressions with multiple variables are entered
in alphabetical order; polynomials are expressed in decreasing degree order. Di↵erent fraction encodings
equivalent, such as \frac{x}{y} and \dfrac{x}{y} and x/y. Di↵erent parenthesis encodings, such as \left(
and (, are treated as equivalent.

We also allow units to be included or omitted from an answer, we ignore spaces, and we treat common
equivalent ways of expressing the same number (e.g., 0.5 and 1/2, or 0.1 and .1) as the same. When the
answer is a factorized polynomial, we permit di↵erent orderings of the factors, so that 4(x + 1)(x � 1) is
equivalent to 4(x� 1)(x+ 1), and so on. These rules cover nearly all ways that di↵erent generated or actual
solutions can be equivalent in practice.

3.1.3 Automatically Assessing Generated Answers.

Due to design choices in MATH, we can assess the answers generated by a model automatically, even though
the space of model outputs is combinatorially large. Automatic assessment starts by determining the begin-
ning and end of the answer. This is possible to do even if a model generates step-by-step solutions because
the final answers in MATH are wrapped and delimited with the \boxed{} command. We can consequently
evaluate a model’s output by parsing what is inside the \boxed{} command and comparing that with the
ground truth answer, while accounting for the equivalent ways of formatting a string described above. To-
gether, the box delimiter and formatting rules provide a unique answer in a well-defined location, which
allows us to test for equivalence and use accuracy as our primary metric.

3.1.4 Human-Level Performance.

To estimate human-level performance, we randomly sampled 20 problems from the MATH test set and gave
them to humans. We artificially require that the participants have 1 hour to work on the problems and
must perform calculations by hand. All participants are university students. One participant who does not
like mathematics got 8/20 = 40% correct. A participant ambivalent toward mathematics got 13/20. Two
participants who like mathematics got 14/20 and 15/20. A participant who got a perfect score on the AMC
10 exam and attended USAMO several times got 18/20. A three-time IMO gold medalist got 18/20 = 90%,
though missed questions were exclusively due to small errors of arithmetic. Expert-level performance is
theoretically 100% given enough time, though even 40% accuracy for a machine learning model would be
impressive.
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Average

GPT-2 (0.1B) 5.2 5.1 5.0 2.8 5.7 6.5 7.3 5.4 (+0%)
GPT-2 (0.3B) 6.7 6.6 5.5 3.8 6.9 6.0 7.1 6.2 (+15%)
GPT-2 (0.7B) 6.9 6.1 5.5 5.1 8.2 5.8 7.7 6.4 (+19%)
GPT-2 (1.5B) 8.3 6.2 4.8 5.4 8.7 6.1 8.8 6.9 (+28%)
GPT-3 (2.7B) 2.8 2.9 3.9 3.6 2.1 2.5 2.6 2.9 (�46%)
GPT-3 (175B) 7.7 6.0 4.4 4.7 3.1 4.4 4.0 5.2 (�4%)

Table 3.1: MATH accuracies across subjects for GPT-2 and few-shot GPT-3 models. The character ‘B’
denotes the number of parameters in billions. The gray text indicates the relative improvement over the
0.1B baseline. All GPT-2 models pretrain on AMPS, and all values are percentages. A 15⇥ increase in
model parameters increased accuracy by 1.5%, a 28% relative improvement. Model accuracy is increasing
very slowly, so much future research is needed.

3.2 AMPS (Khan + Mathematica) Dataset

Since pretraining data can greatly influence performance Hernandez et al. 2021 and since mathematics is
a small fraction of online text, we introduce a large and diverse mathematics pretraining corpus. Our
pretraining dataset, the Auxiliary Mathematics Problems and Solutions (AMPS) dataset, has problems and
step-by-step solutions typeset in LATEX. AMPS contains over 100, 000 problems pulled from Khan Academy
and approximately 5 million problems generated from manually designed Mathematica scripts.

3.2.1 Khan Academy.

The Khan Academy subset of AMPS has 693 exercise types with over 100, 000 problems and full solutions.
Problem types range from elementary mathematics (e.g. addition) to multivariable calculus (e.g. Stokes’
theorem), and are used to teach actual K-12 students. Many of the exercises can be regenerated using code
from github.com/Khan/khan-exercises.

3.2.2 Mathematica.

To make AMPS larger, we also contribute our own Mathematica scripts to generate approximately 50⇥ more
problems than our Khan Academy dataset. With Mathematica, we designed 100 scripts that test distinct
mathematics concepts, 37 of which include full step-by-step LATEX solutions in addition to final answers. We
generated around 50, 000 exercises from each of our scripts, or around 5 million problems in total. This
results in over 23 GB of mathematics problems, making it larger than the 16 GB of natural language used
to train BERT Devlin et al. 2019.

Problems include various aspects of algebra, calculus, counting and statistics, geometry, linear algebra, and
number theory. Unlike prior approaches to algorithmically generating mathematics problems, we use Mathe-
matica’s computer algebra system so that we can manipulate fractions, transcendental numbers, and analytic
functions.

https://github.com/Khan/khan-exercises/
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3.3 Experiments

In this section, we perform experiments to investigate performance on the MATH dataset. We find that
accuracy remains low even for the best models. Furthermore, unlike for most other text-based datasets,
we find that accuracy is increasingly very slowly with model size. If trends continue, then we will need
algorithmic improvements, rather than just scale, to make substantial progress on MATH. Nevertheless, we
show that making progress is also possible today. We find that pretraining on AMPS increases relative
accuracy by 25%, which is comparable to the improvement due to a 15⇥ increase in model size.

We also experiment with using step-by-step solutions. We find that having models generate their own step-by-
step solutions before producing an answer actually degrades accuracy. We qualitatively assess these generated
solutions and find that while many steps remain illogical, they are often related to the question. Finally, we
show that step-by-step solutions can still provide benefits today. We find that providing partial ground truth
step-by-step solutions can improve performance, and that providing models with step-by-step solutions at
training time also increases accuracy.

3.3.1 Setup

Because MATH answers must be generated, we use autoregressive language models, namely GPT-2 (Radford,
Metz, and Chintala 2016) and GPT-3 (Brown et al. 2020), which are decoder models pretrained on natural
language text. Our GPT-2 models tokenizes numbers so that one digit is processed at a time (Henighan
et al. 2020). We were unable to get T5 (Ra↵el et al. 2020), which has a tokenizer that removes many LATEX
symbols, to have competitive accuracy after a broad hyperparameter sweep.

Before fine-tuning on MATH, models pretrain on AMPS. We pretrain for one epoch, using AdamW (I.
Loshchilov and F. Hutter 2019), using a batch size of 128, and using a weight decay of 0.05. We use the
standard autoregressive language modeling objective. During pretraining, we upsample Khan Academy data
by a factor of 5 and we downsample Mathematica by a factor of 2 to account for the large di↵erence in
dataset sizes.

During fine-tuning, models predict final answers and solutions. Concretely, if hP i is the problem statement, we
train with an equal mix of “hP i Final Answer: <Answer>” and “hP i Full Solution: <Step-by-Step

Solution>” sequences. This makes it possible for the model to both generate full solutions and also to output
just the final answer. For fine-tuning we use the same batch size and weight decay as in pretraining.

Unless otherwise specified, for GPT-2 we use the default HuggingFace (Wolf et al. 2020) generation parame-
ters, except that we use beam search. Our beam search has a beam size of 20 when only generating the final
answer, and a beam size of 10 when generating full step-by-step solutions. By default, we evaluate models by
prompting them with “hP i Final Answer:” so that they directly generate the final answer to each problem,
not the step-by-step solution.

We also evaluate GPT-3 in a few-shot setting (no fine-tuning) using the OpenAI API. We use the ‘Ada’ GPT-
3 model which has approximately 2.7 billion parameters, and the ‘Davinci’ model which has approximately
175 billion parameters. Since we are performing few-shot evaluation, we construct our prompt by prepending
8 problems with correct answers (but not step-by-step solutions due to space). Using temperature 0, models
output up to 20 tokens for the final answer.

3.3.2 Results

3.3.2.1 Results vs. Model Size

While increasing model parameters often automatically solves many tasks (Brown et al. 2020), we find that
MATH is unusually challenging for enormous Transformers. Table 3.1 shows that the average accuracy across
subjects for the smallest model, GPT-2 with 0.1 billion parameters, is 5.4%. Meanwhile, a GPT-2 model
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with 15⇥ the number of parameters attains 6.9% accuracy, a 28% relative improvement. This indicates that
while having more parameters helps, absolute accuracy remains far from the ceiling and is only increasing
slowly, quite unlike most other text-based tasks.

3.3.2.2 Results vs. Problem Di�culty

We also analyze model accuracy while controlling for problem di�culty. Higher levels of di�culty correspond
to lower accuracy, as expected. These results are visualized in Chapter 3.2. The accuracy of GPT-2 (1.5B)
is around 15% for level 1 (easy) and around 4% for level 5 (hard). Even our benchmark’s easiest problems
are more challenging than previous benchmarks that focused on straightforward plug-and-chug problems.
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Figure 3.2: Problems that are more di�cult for humans are also more di�cult for GPT-2.
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Figure 3.3: Accuracy on MATH per subject per di�culty level, with GPT-2 1.5B and GPT-2 0.1B

3.3.2.3 The e↵ect of AMPS Pretraining

As an ablation, we test how models with AMPS pretraining compare with models that were not pretrained on
AMPS. Without pretraining on AMPS, a GPT-2 (1.5B) model fine-tuned on MATH attains 5.5% accuracy.
In contrast, a GPT-2 (1.5B) model both pretrained on AMPS and fine-tuned on MATH attains 6.9%, a 25%
relative improvement in accuracy. Consequently, AMPS increases accuracy about as much as a 15⇥ increase
in parameters, indicating its value as a pretraining dataset.

We tried additionally pretraining on StackExchange, a real-world but less curated source of mathematics text.
A GPT-2 (0.3B) model pretrained on both AMPS and questions and answers from Math StackExchange (⇠ 3
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GB) had 6.0% accuracy, which is actually less than the 6.2% accuracy attained by pretraining on AMPS
alone. Thus our dataset is more useful for pretraining even than diverse real-world mathematics data.

3.3.2.4 Error Detection

To determine whether we can trust the answers from a model, we analyze model confidence to see whether
confidence tends to be higher for correct answers. We define confidence as the average prediction probability
of the tokens that make up a generated answer. We histogram confidences for correct and incorrect answers
in Figure 3.5. GPT-2 (1.5B) is highly overconfident, with confidences that are typically around 100%, and
there is substantial overlap between correct and incorrect answers.

Following Hendrycks and Gimpel 2017, we computed the probability that a correct answer has higher confi-
dence than an incorrect answer. To do this, we compute the Area Under the Receiver Operating Characteristic
curve (AUROC). An AUROC of 100% corresponds to being able to perfectly detect correct and incorrect
answers, while 50% corresponds to random chance. We find that with GPT-2 (1.5B), the AUROC is quite
low at 68.8%. This suggests there is substantial room for improvement in detecting model errors.

3.3.2.5 The Benefits of MATH Solutions

We find that giving models partial step-by-step MATH solutions during inference can improve accuracy. We
test performance when we allow models to predict the final answer given a “hint” in the form of a portion of the
ground truth step-by-step solution. To do so, for this experiment we prompt models with “hP i <Partial

Step-by-Step Solution without Final Answer> Final Answer:” during both fine-tuning and evalua-
tion for di↵erent partial fractions of the step-by-step solution. This is the same as the default setting when
we let models see 0% of the step-by-step solution. When models see “99%” of the solution, they are given
the whole step-by-step solution except for the final answer. We show results with GPT-2 (0.7B) for di↵erent
fractions of the solution in Figure 3.6. Observe that the model still only attains approximately 40% when
given 99% of the solution, indicating room for improvement.

Finally, we also find that providing models with step-by-step during training can further improve performance.
We run an ablation by fine-tuning models on MATH with the same setup as before, except that we only show
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examples with the final answer and no step-by-step solution. If we fine-tune with only the final answer, the
GPT-2 (1.5B) accuracy decreases by 0.6% to 6.3%, a 10% relative reduction.



Conclusion

In Part 1, we made progress in improving model robustness by using new data augmentation techniques and
self-supervision. We also introduced a new dataset (ImageNet-R) that helped us benchmark our new data
augmentation strategy (DeepAugment).

In our analysis of DeepAumgnet in Chapter 1, we saw that even the best training setup for our ResNet-50s
(DeepAugment + AugMix) still had a 53.2% error rate on ImageNet-R (45.2% higher than the error rate
on ImageNet-200). It is promising that DeepAugment is the first neural-network based data augmentation
strategy, and still outperforms classic strategies. In this vein, Noise2Net demonstrated the flexibility of the
DeepAugment approach. It’s possible that instead of randomly initializing network parameters, systemati-
cally optimizing these parameters could even further improve performance. This is an avenue of research we
leave to future work. In fact, at the time of this writing, work has already built upon DeepAugment and
shown that this is true (Calian et al. 2021).

We also introduced self-supervised learning as a possible avenue of research to improve model robustness.
Whereas in Chapter 1, where we mainly looked at model robustness through the lens of image corruptions and
ImageNet-R, in Chapter 2, we expanded our analysis to include out-of-distribution detection and adversarial
robustness, as well as robustness to common corruptions. Surprisingly, we showed that self-supervised learning
provides benefits on all of these axes, making it a promising avenue for future robustness research. Specifically,
we leave experiments such as testing out new self-supervised objectives (instead of rotation prediction) and
new loss integration techniques (instead of our additive self-supervised loss) to future work.

In Part 2, we took steps to understand how we might best cope with AI in the future. Our core question was
to evaluate the reasoning capabilities of large language models. It is critical to have some foresight regarding
model performance on di�cult reasoning tasks to guide the decisions we make on how to best handle a future
with such powerful AI. We introduced the MATH, a very di�cult benchmark and dataset for evaluating
automated reasoning on mathematics problems. We showed that the research community has a long way to
go in terms of creating models that can reason as well as humans - a good thing, since it gives us as a society
more time to decide on steps forward to prepare for increasingly powerful AI. We hope that MATH will help
in keeping track of reasoning capabilities over the coming years.

We only mentioned mathematical problem solving as a way to measure the reasoning ability of large language
models. Several benchmarks that measure reasoning capabilities will always be more useful than a singular
benchmark. A future avenue of research is to expand on this with new tasks that require reasoning. One
promising direction is programming challenge problem solving: giving models natural language text defining
a programming challenge as input, and training them to generate code to solve the problem. Such continued
work would help us forecast and prepare for AGI.
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