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Abstract

Distillation is a common tool to compress models, accelerate training, and improve
model performance. Often a model trained via distillation is able to achieve
accuracy exceeding that of a model with the same architecture but trained from
scratch. However, we surprisingly find that distillation incurs significant accuracy
penalties for EfficientNet and MobileNet. We offer a hypothesis as to why this
happens as well as Masked Layer Distillation, a new training algorithm that recovers
a significant amount of this performance loss and also translates well to other
models such as ResNets and VGGs. As an additional benefit, we also find that
our method accelerates training by 2x to 5x and is robust to adverse initialization
schemes.

1 Introduction

Distillation is an important method to transfer knowledge from one model (a teacher) to another
model (a student). Distillation enables condensing an ensemble of teachers to one student (cite dean
et al), compression of large teachers to few-parameter students and improvements to training accuracy
(label refinery). Distillation often yields a student model with higher accuracy than would be possible
from simply training from scratch without a teacher.

However, previous work has suggested that depthwise separable convolutions (DSCs) are not resilient
to compression (cite One Weight Bitwidth to Rule Them All), which led us to investigate whether
these networks that depend on DSCs are amenable to distillation. We find a remarkable breakdown of
distillation when applied to modern architectures. Specifically, when we apply competitive knowledge
distillation methods to EfficientNet and MobileNet, we find that both models do significantly worse
than training from scratch. When distilling EfficientNet-b0 to an equivalent student, top-1 ImageNet
accuracy drops by 6.1% while MobileNetv3 drops by 7.0%.

We hypothesize that this breakdown in distillation is due to training instability from the depthwise
separable convolution (DSC) block which factorizes a dense convolution into a composition of a
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Figure 1: Masked Layer Distillation allows rapid retraining of modified neural network architectures.
Given a single change, we can retrain the modified DNN 2-5x faster than from scratch. Our key
contribution is the Mask Loss, a loss function that estimates robustness per-layer and then rapidly
performs fine-grained knowledge transfer from old layer to new layer. We can apply architecture
transformations in parallel enabling a wide class of graph-to-graph transformations. We show two
sample operations we support for DNNs: (A) deleting a single layer and (B) inserting a new layer.

channel-independent and spatial-independent operations. While this factorization enables compress-
ing parameters, we find this block is hard to distill. In a small microbenchmark, we isolate the training
instability to DSC and find per-layer gradient norms are significantly noisier than those from ResNet.
DSC instability dramatically increases with deeper networks and out-of-distribution inputs.

In this work, we demonstrate propose a remedy for this curious case of distillation degradation. Many
recent groups have demonstrated state-of-the-art accuracy on ResNets, or other similar models that
are known to have favorable distillation properties, but some of the most competitive of those methods
fail on EfficientNet and MobileNet. Our method, however, is compatible with both EfficientNet /
MobileNet and more popular models such as ResNets, offering superior or competitive performance
and significantly faster training across a variety of architectures and arbitrary architecture edits.

To improve distillation accuracy, we introduce Masked Layer Distillation, a novel training algo-
rithm that significantly outperforms competitive distillation methods on diverse architectures like
EfficientNet. To avoid distillation failure due to depth, we add a layerwise training phase prior to
conventional distillation which distills segments of a network independently with a dense loss signal.
In order to improve sensitivity of distillation under small perturbations of layer inputs, we introduce a
series of learnable masks to prioritize learning a robust model of in-distribution inputs while ignoring
out-of-distribution samples during distillation.

Overall, Masked Layer Distillation dramatically improves ImageNet accuracy for MobileNetv3 and
EfficientNet architectures over competitive distillation baselines including conventional distillation
and Label Refinery Bagherinezhad et al. (2018) Yang et al. (2021). As an additional benefit, we
also find Masked Layerwise Distillation significantly accelerates convergence for common model
architectures by 2-5x when compared with standard end-to-end fine-tuning.

2 Related Work

Several approaches analytically derive a transformation from the source to the target networks, as in
Wei et al. (2016, 2017); Chen et al. (2015). Network Morphism Wei et al. (2016) examines expanding
the number of filters and the kernel size of a DNN layer. Net2Net Chen et al. (2015) introduces
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equations to add a single new convolution and a to increase the number of filters in a layer. However,
their approach is limited to a small handful of basic architecture transformations. Moreover, their
approach does not enable transformations that delete a layer or change a layer. Our approach is more
general, works across a wider range of transformations and architectures, and allows both adding and
removing parameters.

Model compression provides a general framework for taking the knowledge contained in a complex
model (either deep or an ensemble) and transferring the knowledge to a simpler network Buciluǎ
et al. (2006); Ba & Caruana (2014); Hinton et al. (2015). Model distillation Hinton et al. (2015)
efficiently distills an ensemble into a single simpler model. While model compression and model
distillation are general, they require many training iterations to converge to full performance. Our
approach is a more precise and fine-grained form of distillation which significantly accelerates the
knowledge transfer process over whole-model distillation. These approaches are complementary to
Masked Layer Distillation – we utilize model distillation during Stage 2 of our algorithm.

Warm starting Ash & Adams (2019) allows models that have been partially trained on a subset of a
dataset (in an online setting, for example) to be efficiently updated without sacrificing generalization
performance. Similar to our goals, warm starting solutions also aim to leverage existing parameters to
boost predictive performance. FitNets Romero et al. (2014) train networks using curriculum learning
that distills information from a source model to a deeper target model in various stages with an L2
loss. The local distillation in our technique resembles the FitNets approach, but we accelerate training
and achieve better accuracy recovery with our Mask Loss.

Contrastive learning is used in self-supervised learning to encourage models to learn the similar
internal representations Fang et al. (2021) Tian et al. (2019). These methods inspired us to develop
our methodology, which similarly leverages intermediate representations for knowledge transfer. We
found that these intermediate embeddings contain rich information that can greatly boost performance
if incorporated into a carefully designed loss function, which we explain in the next section.

3 Methodology

Gradient descent is sensitive to choice of initialization Glorot & Bengio (2010). We propose Masked
Layer Distillation as a regularization objective for deep networks that accelerates training speed
while improving robustness. Additionally, Masked Layer Distillation allows us to swap out an entire
layer group in a source model with a new target layer group. Unlike prior approaches to transfer
knowledge, Masked Layer Distillation is more general: we enable knowledge transfer from any
source architecture to new target architecture with few limitations. This includes adding, replacing or
deleting any layer groups.

Masked Layer Distillation is composed of three stages: (1) Mask generation, during which we
measure the sensitivity of the activations by randomly initializing the student layers and injecting
them into the teacher (2) Local distillation (3) End-to-end fine tuning. Further details are shown in
algorithm 1 and Figure 2

Masked Layer Distillation is fast and accurate due to early phases of local distillation combined with
a sensitivity-aware Mask Loss. Local distillation breaks down learning a complex model into learning
small groups of layers, simplifying and speeding up the process of retraining the new layer groups.
The Mask Loss enables the target layer groups to achieve an overall higher accuracy approximation
of the source layer groups.

3.1 Fine-to-coarse knowledge transfer

Because this work builds on model distillation Hinton et al. (2015), we provide a brief overview and
introduce key notation. Classic model distillation can be formulated as an empirical risk minimization
problem:

min
Ws

1

n

n∑
i=1

L(f(xi;Wt), g(xi;Ws)), (1)

where f(·;Wt) is a pretrained source network parameterized by the trained weights Wt, g(·;Ws) is a
target network parameterized byWs, and the loss function L is taken between the outputs of the target
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and source networks. Model distillation exploits two key insights. First, because the student learns
from teacher predictions on data instead of human labels, we can train on a significantly larger dataset
without labeling it. Training models with sufficient capacity on significantly larger datasets such
as JFT-300M has been shown to boost performance by several percentage points Sun et al. (2017)
Dosovitskiy et al. (2020) Deng et al. (2009) Second, by leveraging the appropriate loss function L we
can transfer information about the labels and their uncertainty. This allows student models to learn to
generalize more quickly, as the student learns not only to classify an image as X or Y but also to
predict the probability that image is X or Y . These "soft targets" have higher entropy and confer
much more information than the labels alone.

3.2 Local distillation

The first step of Masked Layer Distillation is local distillation. In contrast to classic model distillation,
local distillation trains individual layers or groups of layers in the target network to approximate the
corresponding layers in the source network. We denote the individual layers of the source and target
networks (f and g respectively) as:

x
(l)
t = f (l)

(
x
(l−1)
t ;W

(l)
t

)
, x(l)s = g(l)

(
x(l−1)s ;W (l)

s

)
, (2)

where x(l−1)t , x
(l−1)
s represent the input to layer-l in the source and target network, x(l)t , x

(l)
s are the

output of layer-l, and W (l)
t ,W

(l)
s are the weights. Local distillation decomposes the problem (Eq. 1)

into a separate distillation problem for each layer l:

min
W

(l)
s

∑
x∈X
L
(
f (l)

(
x
(l−1)
t ;W

(l)
t

)
, g(l)

(
x
(l−1)
t ;W (l)

s

))
. (3)

This decomposition provides much faster convergence than full model distillation by reducing the
parameter complexity and eliminating many of the challenges of vanishing gradients. Bengio et al.
(1994) Zagoruyko & Komodakis (2016). In our experiments, we find that only a few epochs of local
distillation are sufficient to recover most of the accuracy of the target network.

Figure 2: Layer distillation for a single mask. A per-pixel sensitivity mask is learned for each
activation. (a) The mask is learned by injecting noise from a randomized target model into the
source’s activations and minimizing the subsequent downstream loss. (b) The learned mask is then
used to weight the L1 loss between pixels of the source and target.
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Algorithm 1: Layer Distillation Pseudocode for a Single Mask (illustrated in Figure 2)
Input: Dataset D
Input: Pre-trained m layer model fm(fk(fl(x)))
Input: Target n layer model gn(gi(gj(x)))
Input: Task-specific loss function L(ŷ, y)
Alignment: Source {fl(x), fk(fl(x))}
Alignment: Target {gj(x), gi(gj(x))}

—————————————– Phase 1: Mask Generation —————————————–
Initialize mask M with learnable weights
Freeze source and target model weights
for (x, y) ∈ D do

Inject noise f(x)← fm(fk(fl(x)) + (1−M)gi(fl(x)))
Calculate loss L′ ← L(f(x), y)
Update mask M via SGD M ←M − η ∗ ∇L′

end for
—————————————– Phase 2: Layer Distillation —————————————–

Unfreeze gθ target weights
for (x, y) ∈ D do

Calculate masked loss Lm = ‖(1−ReLU(M)) ∗ (fk(fl(x))− gi(gj(x)))‖1
Update gθ via SGD gθ ← gθ − η ∗ ∇Lm

end for
————————————- Phase 3: End-to-End Distillation ————————————-

for (x, y) ∈ D do
Calculate KD loss L = LKD(f(x), g(x))
Update gθ via SGD gθ ← gθ − η ∗ ∇L

end for

3.3 Mask Loss: Sensitivity-aware distillation loss

As with model distillation, the choice of loss function can have a significant impact in the overall
performance. FitNets Romero et al. (2014) proposed a loss function that minimizes the L2 loss
between intermediate representations of the teacher and student networks. However, we find that
the L2 loss alone can lead to large reconstruction errors between the source network and the target
networks. When we attempt to distill to ResNet-34 by applying layer distillation to only a single
block, the student is only able to achieve -12.1% of baseline teacher accuracy on ImageNet.

Directly minimizing the L2 loss between the source and target at each layer is a poor way to formulate
the objective because different pixels have different weight in influencing the final prediction. For
example, corner pixel activations may have far less influence on the prediction than pixels in the
center of the activation map. Therefore, we need a mechanism to identify the sensitivity of the
classification loss to errors in the individual layer outputs.

In addition, it is well known that L1 loss is favorable to L2 loss when recovering signals with sharp
features or when outlier noise is significant Chan & Shen (2005). This makes the L1 loss preferable
in applying Masked Layer Distillation, as these signals become more frequent when comparing the
intermediate outputs of two very different models. For this reason, we base our objective on the L1

loss.

3.3.1 Mask Loss Formulation

To better capture the varying effect of errors in the layer outputs we introduce the Mask Loss, a
local distillation technique that can transfer knowledge from source to target layer with a small error
penalty. The Mask Loss improves the efficiency of Masked Layer Distillation as it increases accuracy
recovered by the first local distillation phase. Intuitively, the Mask Loss reweights different parts of
the reconstruction error based on the overall model’s sensitivity to noise.
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The mask loss first models the layer-wise sensitivity to noise in each dimension of the output activation
(channel and spatial). This noise map represents the per-layer sensitivity to noise. We notice that
certain channels can tolerate very little error but others are much more sensitive.

In order to measure the sensitivity to noise in the feature map, we use a randomly initialized target
to generate noise. We want the model to tolerate as much noise as possible without significantly
impacting loss. The details of the masked loss and training technique are illustrated below as well as
in Figure 2. The user first manually selects a few "breakpoints" at which intermediate representations
of source and target models are compared. In Equation 4 and Equation 5, xsi and xti denote source
and target activations respectively at the ith user-defined breakpoint, Mi denotes the learned mask at
the ith breakpoint, and f(x) denotes the final output of the source model after injecting masked noise.

Learning the mask values The exact mask generation technique is as follows:

1. Randomly initialize the weights and bias of all target layer groups.

2. Freeze the source and target network

3. Inject noise into the source network at predefined breakpoints as such

x′si := xsi + (1−Mi) ∗ xti (4)

4. Apply gradient steps to the masks to minimize Eq. 5. α is a hyperparameter that trades off
accuracy and noise resistance.

Lm = CrossEntropy(f(x), y) + α
∑
i

‖Maski‖2 (5)

Equation for the masked loss Once our mask has been trained, we apply masked L1 loss in our
training strategy and optimize this function.

MLoss :=
N∑
i=1

‖(1−ReLU(Mi)) ∗ (xsi − xti)‖1 (6)

In Equation 4, we can see that the mask will tend toward larger values (i.e., 1) for pixels that are
sensitive to noise, and in Equation 6, those larger values will prevent the loss from exploding if xsi
and xti differ significantly at sensitive indices. This prevents the gradient of the target model from
being disproportionately influenced by a very small minority of pixels.

3.4 Model distillation and fine-tuning

After local distillation, the majority of knowledge distillation has been completed. For a ResNet-34
model, we find that we can recover nearly the full accuracy potential in just 12 epochs. However,
although the Mask Loss improves the accuracy gap of ResNet34 from -12% to -3% as compared to
the FitNets approach, we wanted to close the gap even further. Model distillation Hinton et al. (2015)
is a technique that has been proven to improve the training speed as well as smooth the loss function.
Further utilizing the source network’s knowledge, we add a fine tuning stage using global model
distillation to train the target model. We use two variants of traditional knowledge distillation, Label
Refinery (LR) and Softmax Regression Representation Learning (SRRL), proposed by Bagherinezhad
et al. (2018) and Yang et al. (2021), which offer competitive accuracy boosts on ImageNet. In cases in
which the target model is expected to exhibit superior performance to the source (i.e., when distilling
from a smaller model to a larger model), we additionally perform global fine tuning on the labels.
These post-Layer Distillation steps allow us to achieve full target network accuracy on ResNets and
significantly higher accuracy than baseline end-to-end distillation on other models in significantly
fewer epochs.

4 Experiments and applications

We evaluate Masked Layer Distillation in three diverse applications. In subsection 4.1, we first
demonstrate Masked Layer Distillation’s robustness to a range of initialization procedures, showcasing
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Table 1: Masked Layer Distillation (MLD) vs training from scratch on CIFAR-10 with different
initialization schemes.

Configuration ResNet34 to ResNet18 VGG13 to VGG19 ResNet101 to ResNet50

Initialization Batch size Scratch MLD Scratch MLD Scratch MLD

1 N (0, 1) 256 92.06 94.22 90.88 92.55 93.00 93.59
2 N (0, 1) 1024 71.61 92.73 72.86 91.91 - -
3 N (1, 1) 256 81.13 94.19 38.61 92.26 41.96 92.29
4 N (1, 1) 1024 22.24 92.94 18.16 92.17 - -
5 N (1, 0) 256 63.50 94.00 33.34 92.31 31.76 92.34
6 N (1, 0) 1024 18.25 91.10 13.39 92.16 - -
7 N (1, 10) 256 77.64 93.99 77.58 92.37 84.05 93.26
8 N (1, 10) 1024 48.10 93.01 23.26 92.35 - -
9 Xavier Uniform 256 94.34 94.33 92.67 92.31 94.03 93.65
10 Xavier Uniform 1024 92.91 92.38 90.42 91.29 - -

its regularization properties. In subsection 4.2, we apply our method to MobileNet and EfficientNet
to highlight a case of distillation degradation. In subsection 4.3, we repeat those experiments using a
modern state-of-the-art distillation benchmark. Finally in subsection 4.4, we evaluate our approach in
a practical setting where a user makes many changes to an architecture. We perform the conventional
ResNet34 to ResNet18 distillation task and demonstrate competitive results, and then we demonstrate
Masked Layer Distillation’s versatility by distilling from ResNet18 to ResNet34. We show our
approach has significant speedups over training from scratch and distillation.

4.1 Robustness to Initialization Choice

It is well known that the choice of parameter initialization is crucial to the speed of deep neural
network training Yam & Chow (2000). We evaluated Masked Layer Distillation’s robustness by
training target models on CIFAR-10 with varying intialization schemes and batch sizes. Results are
shown in Table 1 and confirm our hypothesis that Masked Layer Distillation is a regularizer as well
as a tool to accelerate training. Across nearly all configurations, poor initialization choices have an
outsize effect on training from scratch but close to no effect on models trained using our method. We
propose a theory for Masked Layer Distillation’s robustness to initialization schemes:

Initializations with large variance likely produce more intermediate pixels that are sensitive to noise,
as parameter magnitudes may be very large and therefore compound errors. The mask learns to hide
these pixels, which prevents the poorly initialized parameters from having undue influence on the loss.
The Lottery Ticket Hypothesis suggests that large networks contain "lucky," significantly smaller
subnetworks that are sufficient to maintain the accuracy of the full model Frankle & Carbin (2019).
Our masking mechanism likely weights the pixels in a way that heavily encourages optimization of
the lucky subnetwork instead of the parameters that compound errors.

For initializations with 0 variance, the mask prevents all units in a layer from having the same gradient
by assigning a different weight to each pixel in the activation map. The naive L1 loss would take
‖f(x)− g(x)‖1 where f is a source layer and g is a target layer. f(x) is a constant function because
the source weights are frozen, so the gradient would reduce to −x if all of g’s weights were the
same, causing each hidden unit to have the same gradient vector for each input. If the weights are
initialized to be the same value and every gradient step is the same for each hidden unit in the same
layer, then the neurons in that layer never differ from each other throughout training; the layer’s
capacity never exceeds that of one neuron. Since a single neuron does not have sufficient capacity
to learn meaningful representations on CIFAR-10, performance suffers dramatically, which is the
reason from-scratch training (Configuration 6 in Table 1) barely does better than guessing.

However, with the introduction of the mask loss, ‖(1 − ReLU(Mask)) ∗ (f(x) − g(x))‖1, the
gradient becomes (ReLU(Mask) − 1) ∗ x. Since the mask values corresponding to each hidden
unit are different, the gradients will be different for each unit, alleviating the main issue that comes
with constant initializations. The different weights of the mask make each gradient step different for
different neurons, which allows the hidden units to learn different representations and achieve higher
performance, as shown in Table 1.
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Table 2: Masked Layer Distillation (MLD) vs Label Refinery (LR) on ImageNet

Configuration MLD + LR LR

Model % Deleted Accuracy Epochs Accuracy Epochs Speedup Teacher Accuracy

1 MobileNet 0 63.9 21 60.4 120 5.7x 67.4
2 MobileNet 7.7 63.8 34 60.2 107 3.1x 67.4
3 MobileNet 15.4 62.1 45 59.2 113 2.5x 67.4
4 MobileNet 23.1 61.1 53 58.9 117 2.2x 67.4

5 EfficientNet 0 74.1 26 71.6 80 3.1x 77.7
6 EfficientNet 6.3 74.0 26 71.5 74 2.9x 77.7
7 EfficientNet 12.5 73.9 25 71.3 76 3.0x 77.7
8 EfficientNet 25.0 72.7 26 71.0 80 3.1x 77.7
9 EfficientNet 37.5 71.2 26 70.5 80 3.1x 77.7

4.2 Rectifying Distillation Degradation

Recent work Fang et al. (2021) has found that contrastive learning does not work well on small
networks. Since Masked Layer Distillation also relies on internal representations, we were curious to
see how our method would perform on smaller models whose distillation / compression properties
are not as well studied as ResNets. We were specifically interested in EfficientNet and MobileNet
because previous work has indicated that depthwise separable convolutions (DSCs) are less resilient
to compression Chin et al. (2020) Sheng et al. (2018), and these two architecture families contain
many DSCs.

We applied Masked Layer Distillation to EfficientNet-B0 and MobileNetV3-Small and evaluated their
performance on ImageNet. We manually chose breakpoints in both networks where we compared the
intermediate outputs of the teacher and student models and learned a mask. We kept the choice of
breakpoints the same across different configurations. One could experiment with different breakpoint
positions and the number of breakpoints to shoot for state-of-the-art accuracy, but we found that even
our arbitrary choices presented competitive results.

We also challenged Masked Layer Distillation by applying it to edited versions of MobileNet and
EfficientNet in which we randomly deleted several blocks. Arbitrary scaling of network depth often
results in sub-optimal accuracy, and using the same teacher architecture as the student often degrades
distillation performance Mishra & Marr (2017) Koratana et al. (2018). In addition, some initialization
schemes are sensitive to deletions; for example Xavier initialization initializes weights depending on
the number of units in the adjacent layer Glorot & Bengio (2010), a process that would obviously be
perturbed in the presence of block deletion. We were interested whether Masked Layer Distillation
on DSCs is robust even in such adverse circumstances. Note that our goal here was not compression,
as compression often requires a carefully chosen teacher model and careful tuning of depth, width,
and resolution to avoid destabilizing the network. We instead wanted to examine how our method
performed even when faced with very coarse block deletions and the model itself as a teacher.

As shown in Table 2, Masked Layer Distillation outperforms distillation by a large margin in both
speed and accuracy across a broad range of architectures and edits. Each student model is guided
by a full teacher model of the same type i.e., all EfficientNet-B0 students have an EfficientNet-B0
teacher with no block deletions.

4.3 SOTA Comparisons

Although Label Refinery is a competitive distillation technique, it is unclear how it compares to
other recent advances in knowledge transfer. To better understand the performance of Masked
Layer Distillation, we additionally evaluated EfficientNet and MobileNet distillation using Softmax
Regression Representation Learning (SRRL) Yang et al. (2021), which has been shown to achieve
state-of-the-art performance on ImageNet distillation and outcompetes Hinton et al. (2015) Zagoruyko
& Komodakis (2017) Tian et al. (2019) Park et al. (2019) Heo et al. (2019). Results are shown in
Table 3. Using SRRL as our tuning method, we generally perform +1% higher than with Label
Refinery, and we reconfirm that Masked Layer Distillation beats or matches existing end-to-end
methods in significantly fewer epochs.

8



Table 3: Masked Layer Distillation (MLD) vs Softmax Regression Representation Learning (SRRL)
on ImageNet

Configuration MLD + SRRL SRRL

Model % Deleted Accuracy Epochs Accuracy Epochs Speedup Teacher Accuracy

1 MobileNet 0 64.4 25 62.1 100 4.0x 67.4
2 MobileNet 7.7 63.8 33 61.7 94 2.8x 67.4
3 MobileNet 15.4 62.8 32 61.8 80 2.5x 67.4
4 MobileNet 23.1 62.3 33 61.9 87 2.6x 67.4

5 EfficientNet 0 75.1 25 73.1 100 4.0x 77.7
6 EfficientNet 6.3 74.9 25 72.8 98 3.9x 77.7
7 EfficientNet 12.5 74.6 26 73.1 100 3.8x 77.7
8 EfficientNet 25.0 73.5 26 72.7 97 3.7x 77.7
9 EfficientNet 37.5 72.0 32 72.0 99 3.1x 77.7

Table 4: ResNet distillation results on ImageNet. Masked Layer Distillation (MLD) is compared
against Label Refinery (LR) and from scratch training (Scratch)

Configuration MLD + LR LR Scratch

Student Teacher Accuracy Epochs Accuracy Epochs Speedup Accuracy Epochs Speedup

1 ResNet18 ResNet34 70.1 19 70.3 61 3.2x 69.8 83 4.4x
2 ResNet34 ResNet18 73.3 64 - - - 73.2 90 1.4x

4.4 Fast ResNet Training

To evaluate the efficiency of our training technique, we used a pretrained ResNet-34 to train a
randomly initialized ResNet-18. We evaluate performance on the Top-1 and Top-5 accuracy on the
validation set of ImageNet 2012 dataset. The baseline accuracy for the pre-trained ResNet-34 used in
our experiment is 73.3% pyt and the baseline for ResNet-18 is 69.76%pyt.

In order to distill ResNet-34 to ResNet-18, we perform the following source-to-target transformations:
we distill both blocks 1.1 and 1.2 from ResNet-34 to block 1.1 in ResNet-18; we next distill blocks
{2.0, 2.1} to 2.0, {2.2, 2.3} to 2.1, {3.0, 3.1, 3.2} to 3.0, {3.3, 3.4, 3.5} to 3.1, {4.0} to block 4.0
and finally {4.1, 4.2} to block 4.1.

For comparison, we trained ResNet-18 using random initialization as well as using label refinery
pyt (source network of ResNet-34) for 90 epochs. Our re-implementation of ResNet-18 (random
initialization) has a testing accuracy of 69.15% and ResNet-18 (label refinery) has a validation
accuracy of 70.3%. We show that we can achieve 70.1% accuracy in 19 epochs of training, 4.4x
times faster than training from scratch and 3.2x times faster than model distillation method.

We also note that our results are competitive with Blakeney et al. (2020), who achieved a 3.6x speedup
with a distributed cluster, compared to our method that can achieve 4.4x speedup without additional
system complexity. All of our experiments in this section were run on a single node.

We additionally challenged Masked Layer Distillation to distill knowledge from a ResNet-18 to
ResNet-34. In 64 epochs of Masked Layer Distillation with additional global fine tuning, we were
able to achieve 73.3% accuracy, compared to 73.2% accuracy which we achieved from 90 epochs
from scratch training.

These experiments indicate to us that Masked Layer Distillation is not just a tool for exploring minor
edits during architecture search; it is also a general tool for transferring knowledge to and from vastly
different source and target layer groups.

5 Conclusion

We introduce a novel distillation method, Masked Layer Distillation, which performs significantly
better than current competitive works across a range of aggressive edits on EfficientNet and MobileNet.
We show that a paradigm shift away from the excessive focus on ResNet and ResNet-like models
in the distillation community is long overdue. The state-of-the-art backbone on ImageNet has been
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EfficientNet for a few years now, yet even the smallest base models from this family incurs large
performance degradation when attempting to perform knowledge transfer on ImageNet. This is
especially relevant because at the time of this writing, the top performing methodology on ImageNet
is Meta Psuedo Labels Pham et al. (2020), which draws heavily on both the EfficientNet backbone
and distillation. We expect that our work on recouping distillation losses may help future practitioners
on achieving state-of-the-art accuracy on ImageNet, given Masked Layer Distillation’s versatility and
robustness.
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