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Abstract 
 

Development of prosthetic limbs that offer more degrees of freedom in gesture control can benefit 
from peripheral neural activity recording. A network of miniaturized wireless implants that sit 
locally near residual peripheral nerves in amputees and record and transmit high resolution neural 
activity can enhance the functionality of such prosthetics. Such a network can be realized using 
small ultrasonically operating motes and be interrogated with a single-element external transducer. 
Multiple access protocols are adopted to permit simultaneous communication with the individual 
motes. 
This overall system is constrained not only by common issues associated with simultaneous multi-
transmitter communication, but also by a set of requirements imposed due to the design of the 
ultrasonic motes, the power/data delivery protocols, the mechanical nature of ultrasonic 
transducers, as well as computational simplicity on the implant side. Achieving high throughput 
communication with the implants faces several challenges as a result.   
This project aims to address those issues and offers a machine learning (ML) based approach that 
achieves near an order of magnitude of improvement in the bit-error rate (BER) performance 
compared to traditional methods. Compared to state-of-the-art, this work provides 4 times higher 
total channel capacity and the largest number of implants.  
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Chapter 1 
 
Introduction 
 
 
1.1 Motivation 
 
Recording of residual peripheral neural activity from a large number of nerves has been shown to 
help with an enhanced control of prosthetic arms. In particular, chronic recording of such data 
provides higher degrees of freedom to mimic natural arm gestures [1], [2]. However, the prior art 
has mostly utilized a wired connection to a set of electrode arrays that prohibits the longevity of 
high-quality recordings. Furthermore, such a disruptive approach suffers from degradation of 
signal-to-noise (SNR) ratio due to the development of dead-zones around the electrode location 
[15]. As a result, a system consisting of miniaturized neural recording implants that can power up 
and communicate wirelessly are envisioned as a solution.  
Figure 1 shows the concept of this solution with a handful of implants placed near the median and 
ulnar nerves. The system is comprised of a set of ultrasonically powered neural recording implants 
that are interrogated by an external transducer. Both digital and analog communication schemes 
have been investigated in several prior works. For instance, [11] shows both amplitude shift keying 
(ASK) and on-off keying (OOK) to establish data transmission for two motes. In addition, [4] has 
shown individual recording motes operating with an incoming ultrasound wave to send back 
recorded analog data using analog amplitude modulation (AM) backscattering. Further 
optimizations have been shown in [8] to linearly adjust the reflection coefficient of the ultrasonic 
transducer (in this case a piezo-electric device). Power-up and communication protocols have also 
been discussed in [3] to specify time windows available for uplink data transfer given a reasonable 
implantation depth of 50 mm. At such depths, ultrasound waves are preferred over radio frequency 
(RF) waves because of lower attenuation factor when propagating through the tissue [16] and 
hence are assumed as the carrier wave in this project. Despite covering a variety of multiplexing 
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schemes for the ultrasonic motes [6], no prior art to our knowledge has demonstrated simultaneous 
data recording from more than 2 implants. In this effort, the goal is to achieve a platform that can 
potentially accommodate simultaneous communication with 10s of ultrasonic implants. Required 
specifications and challenges associated with this target are elaborated on in the following sections 
and various solutions are discussed and evaluated in the later chapters.  
 
 
1.2 System Overview 
 
A network of ultrasonically powered implants can be placed near the residual peripheral nerves of 
severed limbs to monitor and record the neural activity. The implants can provide higher resolution 
information that will translate to more degrees of freedom in prosthetic limb control. High 
resolution recording of spiking neural data requires a minimum uplink data rate of ~200 kbps (10 
bits at ~20 kS/s) per implant. In order to accommodate such data rates from 10s of different sites, 
a communication channel with >2 Mbps capacity is required. Prior art in uplink communication 
of ultrasonic implants reports a maximum overall channel capacity of about 200 kbps [6], an order 
of magnitude lower than what the target application necessitates.   

 

 
Figure 1.1 - Multi-site wireless peripheral neural recording concept. [3] 

1.3 Measurement Setup 
 
A setup consisting of 4 ultrasonic transducers over a printed circuit board (PCB) is made as shown 
in figure 1.2. These motes are driven using high-voltage driver boards (Maxim, MAX14808) that 
are controlled by an FPGA (Xilinx Spartan-6) controller. The received ultrasound signal is 
transduced into electrical voltage by an external probe. The induced voltage is then measured and 
digitized by an 8-bit Analog to Digital Converter (ADG9057). Finally, the PC receives the data 
through the FPGA interface allowing for all processing to happen in PC hardware. The propagation 



 

 7 

medium is filled with Canola oil with similar acoustic properties to the tissue. Data packets are 
generated in PC, loaded onto FPGA and drive the Maxim boards to actuate the piezo transducers. 
The acoustic wave then travels through the medium, reaches the external probe and produces 
vibrations that cause an electric voltage. This voltage signal is eventually measured as ADC output. 
A set of 10,000 total packets for different configurations are collected to evaluate the performance 
of the communication link. 
 
 
 
1.4 Focus of this thesis 
 
The focus of this thesis is on the computing backend for the wireless receiver (Rx) implemented 
in the project. Several decoding schemes are discussed and implemented over MATLAB or Python 
environment. The Google TensorFlow library with Keras extension [7] is used to model the neural 
network. A performance comparison is made between the applied methods and finally a summary 
including a comparison with the best performing prior arts is presented.  
 

 
Figure 1.2 - Measurement setup [3] 
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Chapter 2 
 
Coding Scheme  
 

Analog code division multiplexing for the ultrasonic motes was shown for a set of two free-
floating implants in [8]. The principle of operation was based on up-modulation of the analog 
recorded neural data by a sub-carrier frequency orthogonal to that of other implants and the 
external decoder took the charge of performing proper demodulation to extract the information. In 
this work, digital block-coded CDMA is employed that uses unique orthogonal codes per implant 
and the external unit retrieves the data after dispreading using the pre-assigned keys.  
 
The modulation scheme used on the implants side is a simple amplitude on-off keying (OOK) 
through which the implants either send a maximum amplitude pulse or a zero signal. This can be 
viewed in figure (2.1) as a bit stream of “10101” is sent. 
 

 
Figure 2.1 - Sample OOK Sequence 
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Here, since the data rate requirements are already stringent, no redundancy in the code structures 
are considered. Since there are 4 individual motes in the setup, the codes are taken from rows of a 
4x4 Walsh-Hadamard matrix as shown below.  
 

𝐻𝑏(22) = [
0 0
0 1

0 0
0 1

0 0
0 1

1 1
1 0

] 

 
If the codes are taken from a 4x4 identity matrix (I), the resulting coding structure would belong 
to Time-Division Multiplexing (TDM). This shows that CDMA has the penalty of higher power 
level (more energy in a single time frame) and the overlap of levels from different transmitters to 
achieve a more robust communication in presence of multipath reflection. Figure 2.2 shows the 
structure of encoder on the implant side. The bits of information are XORed with the key and the 
final stream is applied to the OOK transmitter driver. Eventually at the receiver end, the waves 
from all implants are superimposed in the acoustic domain and form a multi-level signal that 
follows the direct summation of the codes.  
 
 

 
Figure 2.2 - Encoder Schematic 

 
On the receiver end, the backend is comprised of a detector that decodes the received waveform 
and outputs a CDM sequence which is then used to extracts individual bits of information. Shown 
in figure 2.3 is the structure of the receive chain. A despreading block applies the CDM key of 
each implant to the detected sequence to remove the data content of other motes, leaving only the 
transmitted bit of that particular implants. 
 

 
Figure 2.3 - The receiver chain structure 
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In order to despread the received sequence, a simple one-to-one mapping is applied to convert the 
received sequence into a DC-balanced version and then the resulting sequence is multiplied by the 
DC-balanced pre-assigned keys. The outgoing sequence is then integrated over the symbol 
duration and the sign of integration output determines the actual bit of information. Figure 2.3 
shows such steps for a sample received waveform. Table 2.1 lists all of the configurations 
implemented in this project. This includes a range of different data rates, based on different number 
of symbols per packet of transmission or the allocated number of ultrasound cycles per bit of 
transfer. 
 
 

 
Figure 2.3 - Despreading Governing Equations 

 
Table 2.1 - List of the configurations 
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Chapter 3 
 
Data Rate vs. Intersymbol Interference 
(ISI) 
 

In the previous chapter, we discussed that the ultrasound transducers are used as antennas 
for signal transmission. Such devices can be made of piezoelectric materials that vibrate in 
response to the applied electrical voltage signal and produce the acoustic waves. On the other hand, 
they can be actuated acoustically as well to reproduce an electric signal across their terminals. Due 
to the mechanical nature of the vibrations, these transducers suffer from a limited mechanical 
bandwidth (BW) and as a result cannot allow rapid deformations when receiving rapid voltage 
actuations.  
 
As mentioned in the previous chapter, the modulation scheme used here is a simple OOK which 
allows for only two amplitude levels of transmission. As a result, the only way to increase the 
transmission data rate is to include more and more bits into the same number of cycles, thereby 
increasing the bit/cycle ratio. At the maximum possible limit, there is only 1 ultrasound cycle for 
1 bit of information for each mote. However, in reality a single cycle drive of piezo device 
produces multiple cycles of ultrasound waves due to the mechanical ringing in response to the 
applied actuation. Figure 3.1 depicts the resulting waveform for a 3-bit drive of implant transducers 
when the number of cycles per bit is reduced.  
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Figure 3.1 - ISI vs. number of cycles/bit 

 
As can be seen from figure 3.1, for higher data rates, consecutive bits merge together. This causes 
an extremely strong intersymbol interference (ISI) that prohibits easy detection of multi-bit 
symbols. As discussed in the previous chapter, the configurations for different data-rates include 
symbols of 4 bits, each 1 to 14 ultrasound cycles long, resulting in 56 kbps to 784 kbps data rates 
respectively. The ultrasound waves transmitted from individual implants propagate toward the 
external transducer and the receiver gets a summation of those incoming waves. Figure 3.2 
compares two samples of such overall waveforms as plotted with respect to time for two different 
configurations. 
 

 
Figure 3.2 - ISI in real packets. 
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As shown in the figure, at higher data rates, none of the symbols can be clearly distinguished and 
all transitions are dissolved into the neighboring levels. This makes the job of the detector 
extremely difficult to retrieve the correct sequence. Hence, a set of different approaches are 
implemented as discussed in the next chapter to mitigate this ISI effect and detect the received 
packets in all configurations. 
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Chapter 4 
 
ISI Mitigation 
 

The literature of digital communication systems covers a deep variety of pre- and post-
transmission techniques to enhance the performance of the communication link against ISI. This 
includes but is not limited to error minimization methods based on certain criteria (such as Mean 
Squared Error etc.) as well as maximum likelihood detectors that pick the most probable sequence 
when receiving a certain waveform. Here, due to computational complexity as well as tight 
requirements on the overall channel capacity, only two of the most common methods are practiced, 
namely, a Minimum Mean Squared Error (MMSE) detector [17] as well as a Maximum Likelihood 
Viterbi Trellis decoder [18]. Section 4.1 expands on the implementation of MMSE algorithm and 
discusses its limitation. In section 4.2, the trellis decoder is introduced and evaluated for the 
system. Finally, section 4.3 elaborates on the shortcomings of each method and provides an insight 
on how to take advantage of a smarter decoder in later chapters. 
 
 
4.1 MMSE Detector 
 

The idea behind an MMSE detector is to learn the effect of channel using a set of pre-
known pilot signals and then try to revert that effect by means of training a set of equalization 
weights. This approach excels in moderate ISI conditions and delivers a suitable performance at a 
very insignificant computation cost. Depending on how fast the channel parameters change, 
updates will be necessary to the equalizer weights which requires retransmission of pilot signals. 
This introduces a data rate overhead that can be costly at fast-changing channel conditions. 
There exist other similar approaches that do not require constant updates to the channel state 
information (CSI), and instead rely on a predicted joint distribution for those parameters. These 
decoders, known as “Blind MMSE Detectors”, work at the expense of higher error probability and 
as a result are not ideal for bit error rate (BER) sensitive applications. The backend core for MMSE 
equalization is implemented in MATLAB software. The block diagram of the system is shown in 
figure 4.1.  
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Figure 4.1 - MMSE Detector Backend 

The equalizer weights are fit based on a set of training samples consisting of 4,000 packets for 
each configuration. The resulting equalizer is then used to decode the remaining test waveforms 
and the detection error is evaluated at each configuration. Figure 4.2 plots the achieved BER vs. 
the data-rate of transmission. As seen in figure 4.2, at lower data rates, the detector performs well 
in decoding the received sequences and remains error free up to 1E5 tested bits. However, at even 
a moderate data rate of 224 kbps, the BER rises to 2E-3 which is a considerable change. It further 
degrades at higher data rates, essentially making a reliable communication at those configurations 
infeasible.  

 
Figure 4.2 - MMSE detector BER vs Data Rate 
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4.2 Viterbi Trellis Decoder 
 

As seen in the previous section, the MMSE decoder was unable to deliver the needed 
performance at higher data rates. This is mainly due to the strong ISI and the fact that a set of linear 
weights cannot provide an accurate mapping for the superposition of tightly sitting symbols 
produced from the input patterns. In this section, inspired by the Viterbi Maximum-Likelihood 
decoder for convolutional source encoding schemes, a trellis is introduced that consists of a set of 
states that represent the previously transmitted symbols, and this way in effect, the memory of the 
channel is reconstructed and certain patterns are learnt to help detect the correct sequence.  
 
First, the memory length of the channel is evaluated. This can be approximated by monitoring a 
single “1” to “0” or “0” to “1” transition. Looking at figure 4.3 from the actual measurements, it 
can be seen that the transient response dies out after about 6 ultrasound cycles.  
 

 
Figure 4.3 - Channel memory and transitions 

 
As a result, a detector that monitors the current symbol while considering the previous six-cycle 
window can find the sequence with highest correlation to the received waveform. In this work, a 
decoder backend is coded in MATLAB that starts from the first symbol and adds every symbol 
that is decoded into the decoder state. Figure 4.4 shows a block diagram of the detector with two 
symbols memory.  
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Figure 4.4 - Viterbi Trellis Decoder State Diagram 

The new decoder is also evaluated using the same training and test datasets. Figure 4.5 shows the 
plot of BER vs. Bit rate for this detector. In comparison with the MMSE decoder, up to 200× of 
improvement in BER is achieved in certain configurations when the Viterbi trellis decoder is 
employed.  
 

 
Figure 4.5 - Viterbi Detector BER vs. Data rate 
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The experiments with MMSE and Viterbi decoders demonstrated that at higher ISI 
conditions, a detector that evaluates the set of symbols together and decodes the received packet 
as a whole can outperform the ones with narrower decoding window. This encourages an attempt 
to develop a decoder that detects the entire sequence all at once. This is in essence very similar to 
an optimal decoder which finds the pattern with the highest cross-correlation between all possible 
patterns. The computational complexity of the optimal decoder prohibits its application for high 
data rate configurations simply because of vastly large number of possible patterns.  On the other 
hand, if a decoder is trained to learn the entire packet as a whole rather than constantly computing 
cross-correlation, a superior performance can be obtained. This raises the idea of employing a class 
of machine learning models that excel at interpretation and classification of images, namely, 
Convolutional Neural Networks (CNN). The next chapter goes over the CNN model that is used 
as a decoder to achieve a much more desirable BER performance. 
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Chapter 5 
 
Convolutional Neural Network (CNN) 
based decoder 
 

In the previous chapter, the shortcomings of MMSE and Viterbi decoders were discussed. 
The motivation behind developing a neural network (NN) model is the fact that raw data can be 
input to the model with no manual feature extraction and the entire sequence will be observed as 
a whole. The application of ML based decoders has long been discussed in the literature. Azhang 
et al. [9] demonstrated a NN based approach that could outperform the traditional matched filter 
implementations and deliver near optimal performance. Farsad et al. [10] also discusses how a 
bidirectional recurrent neural network (BRNN) can excel at continuous multi-symbol detection of 
transmitted signals impacted by strong ISI.  
Here, a CNN based model is designed to benefit from the parameter sharing of the kernels, thereby 
reducing the number of model parameters. Few pre-processing steps are taken to scale the voltage 
waveforms into images that can be properly fed to the model. Section 5.1 reviews all the pre-
processing steps and determines the size of the model input layer. The architecture of the model is 
shown and discussed in section 5.2, and finally the results using this decoder are provided in 
section 5.3.  
 
5.1 Data Preprocessing 
 

Figure 5.1 depicts a sample waveform received at the output of the transceiver. In order to 
prepare the input 1-dimensional images for the model, the envelope of the samples is first 
extracted. The waveforms are then passed through a standard scaling process to normalize the 
amplitude into [0,1] range. The final output image is shown in Figure 5.1 as well. In our system, 
the normalized input images are at maximum 1750 pixels wide which is a reasonable length for 
the model. In case of extended images in future experiments, it is possible to downsample the 
extracted envelope to reduce the number of sample points, and the image size as a result. 
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Figure 5.1 - Data Pre-processing 

 
Finally, the samples are divided into three sets for training, validation, and testing of model. Out 
of 10,000 recorded packets, 4,000 samples are used for the training phase, 1000 are assigned for 
validation to tune the hyper parameters, and the remaining 5,000 packets form the test dataset. For 
the last two configurations that have a higher data-rate, this ratio changes to include 6,400 samples 
for the training phase. This allows a better performance as in those cases the input data has a much 
higher degree of freedom and variability.  
 
5.2 Model Architecture 
 
The CNN architecture is shown in Figure 5.2. The number of hidden layers, the kernel sizes, as 
well as the size of the final fully connected (FC) layer is determined by monitoring the training 
and validation losses and accuracies. The model is defined as a regressor that outputs the detected 
value for each level through the output sequence. Using one-dimensional kernels, larger kernel 
sizes can be selected that cover a wider section of the input image at each cross-correlation 
operation, allowing for more long-lasting features to be perceived.  Finally, a dropout layer with a 
ratio of 0.1 is applied before the last layer to reduce the model overfitting. The model is then 
compiled with “mean squared error” (MSE) loss function and “Adam” optimizer is used with a 
learning rate of 0.01. Batches of 50 samples are used to speed up the training phase and each model 
for each configuration is trained for 50 epochs. Next section will discuss the evaluation results in 
detail. 
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Figure 5.2 - CNN architecture 

 
5.3 Evaluation Results   
 
The CNN model is trained at each different configuration. Figure 5.3 plots the achieved BER at 
different configuration. As seen in the plot, using the CNN-based decoder, the BER at the 
highest data rates is kept below 1E-3 limit which allows a reliable communication for the target 
application. As seen in the plot, at data rates lower than 672 kbps, the transmission happens error 
free for up to 1E5 bits. This significantly improves the BER compared to the previous detectors. 

 

 
Figure 5.3 - CNN-based detector BER vs. data rate 

 
 
 



 

 22 

Effect of Signal-to-Noise Ratio (SNR) 
 

The SNR of the collected data in the setup is about 35 dB. All of the previous experiments 
were done with data with this SNR level. In this section, in order to evaluate the performance of 
the model in different SNR levels, in-band Gaussian noise computationally is added to the 
collected samples to give an SNR range of 0 dB to 35 dB. The model is then retrained and retested 
using noisy samples and the results are shown in Figure 5.4. As expected, the number of error bits 
increases as the noise level goes up. Even at a reasonable SNR level of 25 dB, data rates as high 
as 392 kbps can be achieved with a BER less than 1E-3.  

 
Figure 5.4 - ML-assisted detector BER vs. SNR 
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Chapter 6 
 
Comparison, Conclusion, and Future 
work 
 
In this chapter, the state of the art for uplink communication link in the ultrasonically powered 
implants are reviewed. Table 6.1 lists the important specifications for the selected prior arts 
compared to this work. This work doubles the number of measured implants over prior art. The 
total channel capacity is improved by a factor of 4, and the spectral efficiency (SE) is 6.3 times 
better than the best prior art.  Furthermore, this work only utilizes a single external transducer that 
facilitates the alignment of transducer elements and reduces the cost of the entire setup. 

 
 

 
Table 6.1 - Comparison with State-of-the-art 

 
 

In conclusion, an uplink ultrasound communication channel consisting of 4 ultrasonic 
implants is presented. Using a novel CNN-based decoder, the BER performance of the link is 
enhanced by almost 3 orders of magnitude compared to conventional MMSE detectors. This work 
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advances the state of the art in both total channel capacity as well as number of implants and 
provides a promising vision to achieve a robust communication for multi-implant neural recording 
networks.  
 
Looking forward, the carrier frequency of the piezoelectric transducers can scale to 5 MHz, 
potentially allowing a total uplink capacity of 2.44 Mbps, which meets the demand of the target 
application. Further techniques in the source and channel coding can be employed to enhance the 
performance at lower SNR levels. In addition, the performance of model should be evaluated under 
changing channel conditions and potential online learning capabilities should be investigated to 
track varying features.  
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